
Imperial College London
Department of Computing

System modelling of cell signalling pathways
by

Holehouse, A.

Submitted in partial fulfilment of the requirements for the MSc Degree
in Computing Science of Imperial College London

September 2011

Abstract

In this project, we researched, constructed and simulated signalling pathways in the context of
glucocorticosteroid resistant asthma. There is significant evidence that p38 MAPK has a role in
modulating and disrupting the glucocorticosteroid signalling pathway in corticosteroid resistant
asthma patients. By re-constructing a pre-existing p38 MAPK signalling pathway, designing and
building a novel glucocorticosteroid signalling pathway and developing a general software tool for
integrating two pathways together, we have generated a model whereby with empirical data, an
assessment regarding pathway crosstalk can be made. To validate these models, we developed a
Monte Carlo parameter estimation tool to generate functional parameter sets, and applied it to both
the p38 MAPK pathway and our integrated p38 MAPK - glucocorticosteroid signalling pathway.
The p38 MAPK simulations were in line with empirical data, as well as previous simulations done
using JACOBIAN and BIO-PEPA. Although we lacked the experimental data to establish the
biological correctness of the integrated model, we validated that it behaves in a tractable manner,
and represents a stable, functional, multi-branched pathway.

Acknowledgements

I would like to thank Prof. Yike Guo for his support and guidance, Prof. Ian Adcock for valuble
discussions regarding the glucocorticosteriod signalling pathway, and Xian Yang for extensive soft-
ware troubleshooting and general discussion.

I would also like to thank Martha for putting up with my ramblings, Sam Hampton and Lucy
Farrimond for everything, and all my other friends, family and coursemates for their unwaivering
support and help throughout this project.

Contents

1 Introduction 4
1.1 Overview . 4
1.2 Systems Biology . 6
1.3 Biochemistry Overview . 8

1.3.1 Protein Expression . 8
1.3.2 Description of Biochemical Systems . 9

1.4 Kinetic Modelling . 9
1.4.1 Time-course Modelling . 11
1.4.2 Deterministic Modelling . 13
1.4.3 Non-deterministic (stochastic) Modelling . 13
1.4.4 Project Approach . 14

1.5 Monte Carlo Parameter Estimation . 15
1.6 Systems Biology Markup Language . 17

1.6.1 Specification Summary . 17
1.7 Asthma . 20

1.7.1 Overview . 20
1.7.2 Molecular Mechanism . 20
1.7.3 Corticosteroid Resistance . 22
1.7.4 Pathway Crosstalk . 23

1.8 Preceding Work . 24

2 SBMLIntegrator 26
2.1 Introduction . 26
2.2 Specification . 27
2.3 Design . 29

2.3.1 Model Integration . 31
2.3.2 Import, Replace, Integrate . 33
2.3.3 Development Language . 34
2.3.4 Architecture . 34
2.3.5 User Interface . 34
2.3.6 Configuration File Interface . 36
2.3.7 Log Files . 38

2.4 Methodology . 39
2.4.1 Development Tools . 39

2.5 Implementation . 39
2.5.1 Class Description . 41
2.5.2 Functionality Concepts and Implementation 45
2.5.3 Program Operation . 45

2.6 Evaluation and Future Development . 50
2.6.1 Evaluation of Goals . 50
2.6.2 Future Work and Long Term Goals . 51

2

CONTENTS CONTENTS

3 Model Development 52
3.1 GR Pathway Development . 52
3.2 p38 Update . 59

3.2.1 Testing the p38 MAPK Model . 60
3.3 Integration Process . 61
3.4 The Integrated Model . 63

4 Parameter Generation 64
4.1 MATLAB Script Overview . 64

4.1.1 Setup, Loading and Initialization . 66
4.1.2 Simulation and Evaluation . 67

4.2 Parameter Generation Ranges . 68
4.3 Simulations Run . 69

5 Results and discussion 70
5.1 p38 MAPK Simulations . 70
5.2 Integrated Pathway Simulations . 75

6 Conclusion and Further Work 80
6.1 Project Summary . 80
6.2 Future Work . 81

6.2.1 p38 MAPK Model . 81
6.2.2 Glucocorticosteriod Signalling Pathway . 82
6.2.3 SBMLIntegrator . 82
6.2.4 Parameter Generation and Evaluation . 82

6.3 Final Project Work . 82

A SBMLIntegrator 83
A.1 SBMLIntegrator Output Screens . 83

A.1.1 Explore Model . 83
A.1.2 Display Summary . 84
A.1.3 Display Compartments . 85
A.1.4 Display Reactions . 85
A.1.5 Display Rules . 86

B Model development 87
B.1 p38 MAPK Initial Concentration Ranges . 87
B.2 p38 MAPK Parameter Ranges . 88

C Simulation results 89

3

Chapter 1

Introduction

1.1 Overview

Systems biology offers a set of methodologies to simulate and model of biological systems. In this
project, we consider the signalling processes which occur in the asthmatic response, and how these
may be affected by Glucocorticosteroid (GC), the typical treatment for chronic asthma. Resistance
to GC is a major source of asthmatic complications, and accounts for a significant proportion of
both the mortality rate and the cost associated with the disease. By investigating these signalling
pathways, a better understanding of the disease’s molecular mechanism, and more specifically the
resistance mechanism is envisaged. Based on these developments, more effective research targets,
drugs and treatments for these Corticosteroid Resistant (CSR) patients may be possible.

To achieve this goal, we constructed two models of signalling pathways, developed a piece of
software to (generally) integrate signalling pathway models together in a semantically and syntac-
tically correct manner, and then carried out simulations on both one of the induvidual pathways,
and the integrated system. By comparing the results of these simulations to both previous work
and one another, the model’s basic validity has been proven. We open the door to interdiciplinary
research between pharmacologists and systems biologists to dynamically explore this new integrated
pathways properties, with a view to identifying signalling crosstalk between the two arms.

Initially, background information regarding the state of the art and a brief biological refresher
will be presented, with methods of model simulation discussed and our choice of ODEs using mat-
lab justified. We consider some of the features associated with Monte Carlo parameter estimation,
and include an overview and description of the Systems Biology Markup Language (SBML) specifi-
cation. Next, a discussion on asthma, GC resistance, and the challenges facing medical practitioners
and researchers alike is presented. An overview of the work which directly preceded this project is
done, and a justification of our approach is presented. With this background in place, it becomes
apparent how the project has been divided up.

Chapter 2 outlines the design process and implementation of SBMLIntegrator, a stand alone
command line Linux based software for integrating two SBML models together. We consider the
semantic challenges associated with model integration, some of the functional approaches used in
our software architecture, and the development style and tools used to complete the work. The
source code is provided, along with complete code documentation, installation guide and a manual
for use in the supporting information. In addition to its current state, we discuss future develop-
ment.

Chapter 3 describes the work involved in taking a pre-existing SBML model of the p38 MAPK
pathway, de-constructing it to ensure it meets the SBML standard, and reconstructing it in a man-
ner whereby matlab based ODE simulations can be performed using it as a base model. Beyond
this, using the design concepts upon which this original model was built and extensive background

4

CHAPTER 1. INTRODUCTION 1.1. OVERVIEW

research, we discuss the novel design of a model of the GC signalling pathway. Finally, we discuss
the process of integrating these two pathways together using SBMLIntegrator.

Chapter 4 shows the work done with both our reconstructed p38 MAPK model and the new
integrated model, and describes the design process for a basic Monte Carlo parameter estimation
algorithm, implemented in matlab. This tool randomly generates a parameter set of rate constants
and initial concentrations, simulates the system with these parameters, and evaluates the success
of the resulting output by comparing the simulation data with real experimental data.

Chapter 5 provides a cursory analysis of the data generated by our simulations, confirming
the validity of both of our parameter estimation approach and the integrated model. We look at
some of the features of the generated data, and highlight a small number of biologically relevant
hallmarks of the data.

Chapter 6 offers a conclusion the project, and considers future work and development, high-
lighting not only potential work, but additionally genuine paths of development being explored at
this moment in time.

Below we include a summary roadmap detailing the project’s progress along an approximate
time scale, describing how the discrete components of the project combine together.

Figure 1.1: Overview roadmap describing the project’s timeframe. (1) An existing model (p38 MAPK) was taken,
updated, and reformatted. (2) An entirly new, complementary model was designed and built. (3) Realising the
challenges associated with manually integrating two models, a software tool to automatically integrated two models
together was developed. (4) Using that tool the two seperate models were combined into a single integrated model.
(5) A set of matlab scripts were produced which ran both the induvidual model and the integrated one in a
simulation. (7) We first evaluated the results of the induvidual model to confirm the systems validity. (8) Finally,
the results of the integrated model simulations were analysed, confirming its overall validity.

5

1.2. SYSTEMS BIOLOGY CHAPTER 1. INTRODUCTION

1.2 Systems Biology

Systems biology is the application of multiple sets of techniques from a wide range of disciplines
to develop, improve and re-define our understanding of the natural world, providing theoretical
models to describe natural occurrences. Initial work on membrane action potential by Hodgkin
and Huxley [33] led to one of the earliest and most widely used biologically relevant mathemat-
ical models (the Hodgkin-Huxley model). Since then, various fields and techniques providing a
computational means for biological simulation and modelling have been developed to great effect,
providing insight and information which would be impossible to obtain under conventional means.
These techniques include those such as Metabolic Control Analysis (MCA)[39][22], agent based
modelling[67], network analysis, [40] and molecular dynamics simulation[60], each of which pro-
vides unique information relating to the system being described, although their applications differ
significantly.

Ultimately, however, these techniques are simply different approaches to the same task - gen-
erating a model of a biological system. A model, in this context, can be seen as an abstracted
collection of parameters and constraints, which aim to describe the features (static and dynamic)
of the source representation. Typically (although not necessarily) models provide a simplification,
giving us a tractable set of information, from which we can determine information which may
not be readily available from the individual components of that model. The techniques described
above differ primarily in the mechanism by which they simplify and aggregate biological informa-
tion, so as to allow simulation of a hugely complex system using the hardware available today.
As a consequence of the aggregation techniques used, different aspects, details and dimensions of
a system are lost, such as molecular detail, an extensive time scale, or a system of a meaningful size.

The complexity within biology should not be underestimated. A single eukaryotic (e.g. mam-
malian) cell contains thousands of proteins [19], many more strands of Ribonucleic Acid (RNA)
and Deoxyribonucleic Acid (DNA), and a wealth of other small molecules such as lipids, phosphate
based compounds and ions. These biochemical species interact together in countless combinations
depending on a huge rage of factors, ranging from those triggered by extracellular events to more
predicable activities relating to the properties of the different components. Like a city, different
biochemical species, or combinations of species, have a huge range of roles to play, such as cellular
maintenance, metabolic anabolism and catabolism, information processing, replication, and cell
death. Different species play different roles depending on when in the cells life cycle they appear
and exist, where in the cell and its associated substructures they are localized, and what other
species are present or not present while they act. This culminates and a near inconceivable level of
complexity in every cell, and with the human body containing between 30-100 trillion cells (3×1013

to 1× 1014)[29], with a huge range of different cell types and environments, the complexity facing
biochemists begins to become apparent [66][38]. Entwined in this complexity, however, is a sig-
nificant opportunity for new branches of research, as well as an explosive increase in the quality
provided by traditional systems biology techniques

This is a golden time for computational biology, and by extension, for biological research as
a whole. In the last fifty years the development of the computer has transformed quantitative
analysis from laborious, long winded work to the ubiquitous mainstay of every business, research
project and development in virtually every sector of the modern world. Simultaneously, in part
through the development of advanced electronics and through an increasingly sophisticated set of
tools at experimentalists’ disposal, more and more data regarding many different aspects of biology
is being uncovered. The combination of a drastic reduction in cost relating to much of this data
acquisition, combined with the exponentially growing power of processors means huge amounts
of data are being generated which we are only now approaching a stage where we can effectively
process, analyse and interpret the data being generated. The complexity, and the number of events
occurring in a cell is vast, but largely static, while the number of calculations which can be per-
formed a second is constantly growing. It is not unreasonable to assume that in the next twenty

6

CHAPTER 1. INTRODUCTION 1.2. SYSTEMS BIOLOGY

to fifty years, unanticipated advances in science and technology will yield increasingly powerful
electronics and software. With advanced methods and hardware, there is no reason why in the fu-
ture, systems approaching in size to a cell could not be simulated in increasingly fine detail. While
systems biology has previously been seen as the blunt end of research, where guestimation meets
ill-fitting parameters and too many assumptions are made to create a biologically relevant models,
as both the computational power available and our understanding of the systems increase, more and
more of these subtitles can be described. No one is suggesting that systems biology (or indeed the
broader scope of computational biology) should replace wet-lab based research. Instead, however,
it can provide an additional angle and guidance tool, suggesting possible avenues for researchers to
explore, avoiding expensive and time consuming research which may never work.

Figure 1.2: Graph describing number of computations per kWh over time (c©Jonathan Koomey 2011[43])

7

1.3. BIOCHEMISTRY OVERVIEW CHAPTER 1. INTRODUCTION

1.3 Biochemistry Overview

To effectively describe a biological system, there is a need to carefully define the constraints and
parameters involved in that system. To understand the context of these factors, it is advisable to
have at least a general understanding of the key components of biological systems. The infinite and
repetitive nature of life is primarily driven by the replicative nature of cells. These act as homoeo-
static micro environments to facilitate ideal conditions for a wide array of biological functions. Cells
come together to form multicellular organisms, where different cells have different roles. Additional
components made of protein and/or inorganic material can be exported by the cells to construct
huge, complex structures to provide a framework for more complex life. This is how the human
body is built - a mass of cells draped around a bone scaffolding, held together by proteinaceous
connective tissue.

Information flow and cellular replication are intertwined by the central dogma of molecular
biology. DNA provides a long-term storage molecule for information, which can be transcribed
into Messenger Ribonucleic Acid (mRNA). mRNA acts as a malleable and short term information
transfer molecule, and is used as a blueprint by the cells molecular machinery to assemble proteins.
A macromolecular polymer of amino acids, proteins come in a huge range of sizes and roles, from
the relative simple structural protein collagen, a primary component of connective tissue [63] to
the vastly complicated and multifaceted apoptosome complex, responsible for the coordination and
control and apoptosis - programmed cell death[1]. Through the manufacturing of different proteins,
cells can construct machinery to carry out all the activities they need to perform. Evolutionary
pressures have driven the survival of cells whose DNA produces the proteins best suited to carry
out the tasks which lead to their survival in the local environment.

1.3.1 Protein Expression

Protein expression is the process of taking a segment of DNA, transcribing the information encoded
in that DNA and translating it into a protein. This is a very complicated process, especially in
eukaryotes, but for the purposes of this dissertation a short overview of the critical steps is rele-
vant. Ligand1 (transcription factor) triggered DNA expression typically occurs through a number
of steps. Initially, the transcription factor binds to a DNA promoter region in a reversible fashion.
Once this initial binding has occurred, other transcription factors associated with the DNA-ligand
complex interact to form the transcription apparatus. With the transcription apparatus in place,
it proceeds linearly along the DNA, using individual RNA nucleotides as reactants and converting
these isolated, individual RNA monomers into a single RNA polymer which is complementary2 to
the DNA section being read. While the RNA polymer is being generated the original promoter-
bound ligands may remain bound, or they may dissociate. If they remain bound, the RNA synthesis
process may repeat, either before the first has finished, meaning two RNA molecules are being built
concurrently, or some time after. The rate at which this re-starting occurs depends on a number
of factors including nucleotide availability, the ligand species, cell state etc. This is the process
of transcription - transcribing the information, previously stored as a DNA sequence, into the
related medium of RNA. Once this has finished, we are left with a newly formed RNA molecule,
the mRNA, and this mRNA molecule can then associate with a ribosome.

Ribosomes are massive, complex molecular superstructures which act as protein factories, taking
in an mRNA molecule and amino acid monomers and producing an amino acid polymer (protein
3. As in an assembly line factory, they have a conveyor belt like organisation, where the mRNA

1A ligand in this context is a small biological species (protein) which binds to a macromolecule (DNA)
2The concept of complementarity is non-relevant to this discussion, although is absolutely crucial to the process.

For additional details see [66]
3The distinction between peptide, amino acid polymer and protein is subjective. A protein is an amino acid poly-

mer, although in addition to the order of the amino acids (the primary structure) it includes additional information

8

CHAPTER 1. INTRODUCTION 1.4. KINETIC MODELLING

molecule enters into the ribosome through a single entry point and is pulled in a stepwise motion
through the ribosome. The ribosome scans the RNA as it passes through, and for every three RNA
nucleotides translates this information into one of twenty amino acid monomers. That amino acid
is obtained from the ribosome’s local environment and is bound to an ever growing chain of amino
acids. This is the process of translation - translating the information from the nucleotide medium
into the protein medium. Once the full mRNA molecule has passed through, the ribosome releases
this newly formed polymer, which goes on to form a protein through a number of post-translation
steps, including folding and potentially chemical modification.

1.3.2 Description of Biochemical Systems

As a result of its central role in biology, traditional biochemistry has developed increasingly sophis-
ticated techniques for analysing protein-protein interactions. As this research has progressed, more
and more data regarding the network of proteins involved in various processes in the body can be
summarized, and using graph theory based semantics and syntax these networks can be visualized
and analysed [11].

Protein Protein Interaction (PPI) networks can be defined as undirected graphs, where nodes
represent proteins and edges an interaction between those proteins[11]. Such graphs provide a vi-
sual, if highly simplistic way to represent the possible interactions in a cell, and databases such as
KEGG are beginning to amass relevant information describing these interactions[57]. One of the
primary drawbacks of PPI networks is the lack of directionality associated with the interaction,
often because this metric is non-relevant. Biochemical cell signalling pathways can additionally be
simplistically described as specialist directed PPI networks, specifying species involved in commu-
nication as nodes, and with the direction of communication as directed edges. With both of these
descriptions we lack any kind of dynamism in our model. While adding weights to directed edges
indicating relative speed of a pathway or strength of an interaction, the values associated with these
interactions or reactions vary significantly with a wide range of factors. How rates of reactions vary
has been the subject of extensive research over the last fifty years, and today reaction kinetics is
at the heart of almost all biochemical processes. By understanding how fast a process is occurring,
and what factors determine that speed, new insight into the mechanism behind the process can be
explored. It is this kinetic modelling and analysis our work focusses on.

1.4 Kinetic Modelling

Much of the early organic chemistry relating to reaction kinetics originated in Germany in the
late nineteenth and early twentieth century. There are a number of different ways reaction ki-
netics can be modelled, such as Michaelis Menten kinetics[29] or Hill kinetics[31]. This project
focusses on using mass action ratio based kinetics, initially described by Guldberg and Waage in
the late nineteenth century[28]. This is the simplest kinetic scheme (outlined below) and provides
a straightforward starting point for simulations. Additionally, mass action kinetics have been used
in previous studies on model systems similar to the ones developed, and it seemed prudent to
maintain some kind of continuity, allowing the comparison between the results of our simulations
with previously done ones. Although a critical underpinning, we do not focus on thermodynamics
here, as it is considered beyond the necessary scope for this introduction.

The mass action ratio is the simplest measure for rates, and ties thermodynamic and kinetic
analysis together. It provides a formal and mathematics description of the basic intuitive idea that
the more of a reactant you have, the more products you generate, and that this can only happen
at a maximum rate. Consider the equation below. Here A and B are reactants and C and D are

in terms of how it is folded (the secondary, tertiary and quaternary structural information). A peptide is a shorter,
typically unfolded amino acid polymer, between two and around forty amino acids, although there is no definite cut
off point)

9

1.4. KINETIC MODELLING CHAPTER 1. INTRODUCTION

products, which is to say we combine A and B and they form C and D. a,b,c,d are the stoicheometric
coefficients of the species, and relay information regarding the ratio of molecular species between
one another. Note these coefficients are specific to this equation, though not unique.

10

CHAPTER 1. INTRODUCTION 1.4. KINETIC MODELLING

aA+ bB ↔ cC + dD (1.1)

With this setup in mind, the mass action ratio defines an equilibrium constant Keq as shown
below;

Keq = [C]c[D]d

[A]a[B]b (1.2)

Note that here, as in standard biochemical and chemical notation, [A] denotes the concentration
of species A. TheKeq parameter, described here in terms of species concentration and stoichiometric
coefficients can also be described in terms of the forward and backwards reaction kinetics. The
reaction shown in equation 1.1 in fact describes two reactions

aA+ bB → cC + dD (1.3)

cC + dD → aA+ bB (1.4)

For each of these, the rate constant for the forwards reaction (as there is no backwards reaction
in these irriversible reactions) is traditionally denoted k1 or kf (for equation 1.3) and k−1 or kr (for
equation 1.4). These two constants related to Keq as follows;

Keq = k1
k−1

(1.5)

Through subsitution, we can then derive the following equation;

k1[A]aeq[B]beq = k−1[C]ceq[D]deq (1.6)

Which says that at equilibrium, the product of the concentration of reactants multiplied by the
forward reaction constant is equal to the the product of the concentration of products multiplied
by the backwards reaction constant.

We can further, then, expand these equations to the following equation

reaction_rate = k1[A]aeq[B]beq − k−1[C]ceq[D]deq (1.7)

At equilibrium reaction_rate is 0. However, at non-equilibrium this equation gives a simple
reaction_rate equation which follows the mass action laws of chemical kinetics. It is upon this
law we base our reaction laws in the models. The units of the k1 and k−1 depend entirly on the
euqation at hand, as we must ensure both k1[A]aeq[B]beq and k−1[C]ceq[D]deq are of the same units. A
detailed dicussion is not required here, but to subtract one value from the other they must be the
same type of information. As a result, kinetic constants are tailored to give us the correct values.

1.4.1 Time-course Modelling

With a basic description of mass action kinetics, the equations behind some commonly used kinetic
models, various method for describing a system’s progression through time exist. We can define
a model scheme and a simulation scheme. The model scheme defines how the system is described
at the starting point, and the mathematics behind how new values are calculated. The simulation
scheme provides an algorithmic solution to solving variables defined by the model scheme, where
such a scheme can be deterministic or non-deterministic.

The simplest model scheme is simply one based on mass action kinetics, where each reaction in
the system is described as above, with the reaction rate based purely on the reactants and products.
Such schemes fail to model certain systems correctly, but do provide a fast and effective starting
point for building models.

11

1.4. KINETIC MODELLING CHAPTER 1. INTRODUCTION

Beyond a basic mass action kinetic scheme is the classic and simple example from Leonor
Michaelis and Maud Menton’s 1913 Michaelis-Menten kinetic model for enzyme kinetics[50]. En-
zymes are biological catalysts, and facilitate a chemical conversion of one or more reactants into
one or more products without themselves being destroyed. In the Michaelis-Menten model, which
has it’s foundations in mass action kinetics, an enzyme’s reaction rate is determined by a number
of factors, including reactant, product and enzyme concentration, the rate of catalysis, and the
rates of binding and release of both reactant and product. Michaelis-menten modelling gave rise
to the steady-state system description, whereby enzymes reach an equilibrium which responds to
increasing levels of reactant or enzyme. While initial Michaelis-Menten kinetics focussed on simple
systems, the scheme was subsequently extended to include the effect of reaction modifiers (both
activators and inhibitors), leading to complex but effective equation sets which provide a good
approximation for a number of systems. A Michaelis-Menten based steady state system provides
a good model for many discrete biochemical pathways, especially those relating to metabolism.
However, it is ill-suited to the unidirectional and non-linear flow of information associated with
signalling.

Hill kinetics were developed as a method for describing cooperative binding, originally for a lig-
and binding to a macromolecule[31] but can more generally be applied to general reactions where
reactants bind in a cooperative manner[29]. Cooperativity is the affect of multiple identical ligands
binding to one species, where the binding of each successive ligand affects the affinity of subsequent
binding, both positively (higher affinity) or negatively (lower affinity). In a combination of Hill
and Michaelis Menten kinetics, Monod Wyman Changeux (MWC) sigmoid kinetics combine the
cooperative of Hill kinetics with a Michaelis-Menten structure to take advantage of multi-subunit
enzymes where catalytic rate subunit state affects the enzymes overall activity.

π-calculus (or process calculus) provides an additional tool, where a small number of logical
rules, symbols and parameters define the allowed interconversion between species, the species them-
selves, their compartments, and all parameters associated with reactions. Developed for modelling
complex computational systems, deterministic process calculus has had some biologically relevant
success[44], although more research has been done into stochastic process calculus (or Stochastic
Process Algebra (SPA)). BIO-PEPA[16] provides the relevant semantics and syntax to describe
biological systems system, making up for some of the shortcomings of PEPA. PEPA uses an under-
lying Continous Time Markov Chain (CTMC) model to provide a stochastic component based on a
negative exponential distribution. By using logical descriptors as opposed to hard (real) numbers,
a system can be described in qualitative manner more akin to much of the data collected by exper-
imental approaches. While BIO-PEPA has been used with some success for simulating biological
systems [27], [58] it suffers from a lack of support in terms of user base, software, and models.
Despite previous work in our group using BIO-PEPA, after a conclusive review of the state of the
art4 the decision was made to move away.

4Included in supporting information

12

CHAPTER 1. INTRODUCTION 1.4. KINETIC MODELLING

Petri-Nets provide another method for discrete and parallel systems description. They are
based on places and transitions, with arcs which connect the two. Places represent objects, and
transitions how objects are inter converted. Each place may hold zero or more tokens, where tokens
represent the number of objects in existence.

Figure 1.3: Simple diagram of a petri net P1, P2, P3 and P4 are places, with T1 and T2 transitions between them.
The solid black circles are tokens [70]

A transition’s activity depends on the arcs connecting places to that transition, and the num-
ber of objects at a connected place. Upon a transition, tokens are removed from the source object
and added to the destination object, where the number of tokens added or subtracted depends
on the weight of the arc. It requires integral values for tokens, and a number of both metabolic
and signal-transduction based systems have been based on Petri nets [26]. However, despite some
success they have had limited results with larger systems, providing an over simplification which
inhibits the description of some biological events.

The aforementioned model schemes set out frameworks to describe the components of a system.
We touch on a number of the most commonly used approaches, although there are many more not
considered here. A system described by one of these setups can then be dynamically simulated
using a number of different approaches.

1.4.2 Deterministic Modelling

Deterministic modelling is the original form of biochemical simulation, and provides a mathemat-
ical description which yields the same result each time the model’s values are calculated over a
time course. The most commonly used mechanism for such simulations are Ordinary Differential
Equations (ODEs), where an ODE is solved to describe a species’ concentration through time.

Petri nets can be solved by ODEs[23], although more typically are evaluated simply based on
integral values and progressive basic calculations along a continuous time course for firing. This
provides a deterministic implementation of Petri nets, although a stochastic implementation is also
possible[9].

1.4.3 Non-deterministic (stochastic) Modelling

Following from the previous section, non-deterministic modelling provides some random element
to a simulation, where the same result is not generated if the system is simulated multiple times.
The underlying algorithm for many simulation techniques in chemical and biochemical stochastic
models is frequently based on Gillespie’s algorithm [24] [25].

When Gillespie’s algorithm is not possible then some interface to a Markovian system is typi-
cally used. A Markov chain is a system with states which transition between one-another in such a
way that the following transition depends solely on the current state - i.e. the transition pathway
is memoryless. While a Markov chain has discrete time steps which trigger a (potential) change in
state, a CTMC has this memoryless property, but additionally the trigger for state change is not
a discrete value, but instead a negative exponentially distributed delay on the action [32]. This
negative exponentially distributed delay means implicit probabilities of transition can be derived
from the the distribution. CTMC are difficult to work with directly so a number of systems have

13

1.4. KINETIC MODELLING CHAPTER 1. INTRODUCTION

developed, essentially as high level wrappers to underlying CTMC model.

1.4.4 Project Approach

For this project, we have opted to begin with a simple approach and use matlab based ODE
simulations. This decision was motivated by a number of factors. matlab provides a widely used
and well defined interface for running biological simulations. The matlab SimBiology package[49]
is well defined, and includes a number of relevant tools, such as automatic model checking, graph
generation and an easy to use GUI. However, in addition these tools, it provides a powerful script-
ing language, allowing the running of complex simulations and analysis in an automated manner.
In a previous dissertation, BIO-PEPA was used to carry out simulations, and while the simulations
themselves generated interesting data, the lack of a scripting back-end made this project pro-
hibitively difficult to develop into a high-throughput system[8]. By using matlab we avoid these
issues, getting the best of both worlds, a convenient user interface, a powerful numerical engine,
Linux/Mac/Windows portability, and a well developed scripting and programming language.

14

CHAPTER 1. INTRODUCTION 1.5. MONTE CARLO PARAMETER ESTIMATION

1.5 Monte Carlo Parameter Estimation
Parameter estimation is the process associated with taking a biological model and through some
means generating system defining parameters, which when applied to that model allow it to behave
as expected. This “expectation” is based on a comparison of the simulated data with experimental
data, for example comparing the protein concentration time course in a simulation with experi-
mentally collected results. The data generation can be done in a number of ways. Parameters
can be initially estimated based on comparable systems, and then fine tuned to generate results
in line with experimentally derived data. This typically yields one a single parameter set. An
alternative method is to use Monte Carlo simulations to generate a random set of parameters,
import these parameters into the model, run a simulation with that parameter set and then com-
pare the results with experimental data. Where a parameter set has generated results which are
favourably comparable with empirical data, that parameter set is saved, and the process is repeated.

Figure 1.4: Schematic diagram describing the Monte Carlo parameter estimation algorithm

One factor which is often glossed over with regards to parameter estimation is the concept of
parameter set scope. More specifically, (working under the assumption that the model is perfect)
even if a parameter set is generated which produces results in line with empirical data, this does
not mean that the values generate are the real rate constants. They simply represent a set which
when used in a simulation generate the expected results, but there may well be many more sets.
The number of possible sets which can generate identical results depends somewhat on the system.
For example, in a pathway with one hundred species where empirical data exists for just three,
there will be more parameter sets which can generate the same results for those three species than
there would be if there were empirical data for all one hundred. However, in both cases it is likely
(although admittedly not a certainty) that there will be many parameter sets which yield identical
results. While this is true for Monte-Carlo simulations, it also holds up where parameters from an
apparently similar model are introduced and fine tuned. Just because two systems appear similar
(assume similarity is in terms of pathway topology and/or constituents) there is no guarantee the
underlying mechanics bare any resemblance to one another. While superimposing parameters may
be tempting (and often correct) this new parameter set is not necessarily “the” correct set of values
- rather, it represents a member of a larger set of possible parameters.

15

1.5. MONTE CARLO PARAMETER ESTIMATION CHAPTER 1. INTRODUCTION

Figure 1.5: Graphical overview of the concept of multiple sets of functionally equivalent but numerically disparate
parameter sets. Note, black concentric circles represent any of the possible parameter sets in the set of working
parameter sets

In assessing parameters generated through Monte-Carlo simulation, therefore, there is a need
to compare the working5 parameter sets with one another. If, for example we are able to generate
one hundred working parameter sets, and in all of these sets one of the values remains the same
throughout, it is likely this specific variable is crucial, and that this consistent value represents
potentially a real number. By analysing statistical indicators between equivalent parameters from
working sets, a better picture of a model can be obtained. Indeed, if there appears to be no
correlation, there may be a fundamental problem with the model. However, an in depth analysis
of parameters sets generated through Monte-Carlo simulations goes beyond the scope of this paper.

In addition to the concept of sets of parameter sets, we must also accept that our model is a
simplification of an incredibly complicated process. Ideally, such a model is biologically relevant
if it captures the key determinants in a system. For example, if a signalling pathway is largely
controlled by ten proteins, all of which are in our model, then the fact that another five hundred
proteins have a minor role in regulating that pathway may not have a major impact of the final
outcome. Bearing this in mind, however, it is important to remember that any numbers generated
by the simulation are simply rough estimates, and not hard numbers.

5Working here is used to describe a parameter set which when applied to a model and that model simulated, the
results generate data which is comparable with experimental results

16

CHAPTER 1. INTRODUCTION 1.6. SYSTEMS BIOLOGY MARKUP LANGUAGE

1.6 Systems Biology Markup Language

SBML[34] has (arguably) become the standard format for describing biological systems. It com-
bines a well defined specification with a complete syntax for describing models, as well as a number
of highly developed APIs in a range of languages (C++, Java, C#, Python and matlab), each of
which has extensive documentation. Although defined in a language agnostic manner, it’s typical
implementation is in an Extensible Markup Language (XML) based format. XML is a standardized
mark up language for encoding information into a consistent and machine readable format[13] and is
an ideal format for storing structured, periodic data such as that defined by the SBML specification.

Major editions of SBML are called levels, with minor updates termed versions. For this project
we focus on level 2 version 1 (L2V1), however, higher levels and versions can be mapped down,
although lower levels/versions cannot be mapped up. We have chosen to focus on L2V1 as it repre-
sents the majority of publicly available of SBML models. Many models are available in higher, more
advanced versions, but in a number of repositories later formats can be automatically converted
to earlier ones for downloading [56], meaning L2V1 acts as the lowest common denominator for
virtually all models.

Through ever increasing use in systems biology projects combined with it’s open source nature,
SBML has developed a large user base as well as a a number of online model repositories, and a
significant number of different software vendors have integrated SBML import and export into their
products. By taking advantage of the backwards compatible nature of the format developments,
SBML provides a broad, flexible language for defining the features relevant to a specific model or
system in a consistent manner, without a forced need for overspecification.

1.6.1 Specification Summary

A complete overview of the specification can be found here[34]. An SBML model is structured as
lists of one or more of the ten key components outlined below. We included a brief description of
each of these components and their role. It’s important to note this is a highly superficial overview -
the specification document is succinct, clear, and well written and manages to encompass 167 pages.
Each component is a list of elements - these lists simply act as containers for the elements stored
in them and provide a logical interface for iterators. For each element, assume a non unique name
(for easy reference) and a unique ID (for internal model referencing) unless otherwise suggested.

• List of function definitions (optional) - To add clarity to the specification, users can define
commonly used functions here and then refer to them throughout the model

• List of unit definitions (optional) - Where units are not basic unary descriptors (moles,
litres, seconds etc.) the user can define multiple-component units (mole/sec, litre3) here and
then refer to them throughout the model

• List of compartments (optional) - Individual compartments can be defined here. Typically
this may only include the cytoplasm, but may also include the nucleus, vesicles, or any other
compartments. Compartments include a size, the compartment’s units, and a boolean value
to show if their size is held constant through a simulation

• List of species (optional) - Each species, such as proteins, ions, enzymes, small molecules
or conceptual items (such as “protein synthesis”) is represented as a species. Species have
a starting amount or concentration, units, associated compartment, and a number of other
attributes

• List of parameters (optional) - Parameters provide a simple element which stores some
value. This value can change, or can remain constant, and can have units associated with it

17

1.6. SYSTEMS BIOLOGY MARKUP LANGUAGE CHAPTER 1. INTRODUCTION

• List of initial assignments (optional) - Initial assignments are a little different from the
elements already encountered - they lack a name or an ID, instead providing a mechanism to
set the initial value of a species where that value depends on other factors which cannot be
predetermined. They can be seen as;

species_ID = initial_assignment(p1, p2, ...pn) (1.8)

Where px can be constants or variables determined by an initial assignment, a parameter
from the model, other species’ initial concentration, or a function with input values

• List of rules (optional) - Rules provide a way to dynamically calculate a parameter rather
than have it pre-determined. There are three kinds of rules;

– Assignment rule - Used to express an equation which sets a variables value (such as a
parameter, species concentration, or compartment size)

– Rate rule - Used to express the rate of change of a variable (such as a parameter, species
concentration or compartment size)

– Algebraic rule - Used to calculate a numerical intermediate or temporary value

Like initial assignments, rules do not have a name or ID, but instead simply act on an element,
essentially providing an optional extension for that element

• List of constraints (optional) - Constraints are a mathematical description of model as-
sumptions which the model must remain under. If during a simulation the constraint is no
longer satisfied, then that simulation is deemed invalid. A constraint might be that no species
concentration can become negative (for example)

• List of reaction (optional) - Reactions are by far the most complex element in the SBML
specification. They consist of a number of sub-elements defined below. Overall they provide
an element which describes a reaction between one or more species (“reactants”), and their
conversion to one or more species (“products”). The basic reaction object, as well as a name
and an ID, has a boolean value to determine if it is reversible or not, and the compartment
it occurs in

– List of reactants - A list of species which are the reaction’s reactants
– List of products - A list of species which are the reaction’s products
– List of modifiers - A list of species which are the reaction’s modifiers (both activators

and inhibitors)
– Kinetic law - The kinetic law includes an equation to determine the rate of the reac-

tion. This equation can include predefined functions, parameters and species. However,
any species used to define the rate must be included in one the aforementioned lists
(reactants, products or modifiers).

In addition to global parameters (defined in the list of parameters) reactions can have their
own local parameters, in a list of parameters object associated with the kinetic law. These
parameters take precedence over global parameters.

• List of events (optional) - Events describe discontinuous, discrete changes made in response
to a certain state in the model. They include a trigger element, which defines what causes the
event to be fired, a list of event assignments, which define what assignments occur in response
to the trigger, as well as a number of other elements such as priority and delay objects which
allow fine tuning.

18

CHAPTER 1. INTRODUCTION 1.6. SYSTEMS BIOLOGY MARKUP LANGUAGE

Figure 1.6: Example of an XML SBML file structure, with the elements described above labelled for clarity. The
content here is irrelevant, although included as a demonstration

19

1.7. ASTHMA CHAPTER 1. INTRODUCTION

This overview describes the ten basic components in an SBML file. It is clear that there is in
fact significant overlap in terms of what can be done to achieve the same result. For example, an
event can be used to set the initial concentrations (by defining a trigger at t=0), or alternatively an
initial assignments could be used. This functional redundancy is not accidental. In the context of
the rapidly evolving understanding of biological systems and the development of different ways to
represent them, it is impossible for one single system modelling language to include all the required
detail for all systems without introducing a significant amount of redundancy into the majority of
described systems. SBML, therefore, provides a flexible core for describing the fundamental com-
ponents of a system, which can then be built on by other software to include necessary detail where
appropriate, or simply use the optional objects and attributes provided by the SBML specification.
This framework does not require over determination where inappropriate, nor does it typically
introduce significant redundancy into the model. By providing a relatively flexible specification,
SBML provides a framework for structured system description without being overly restrictive in
terms of what can and cannot be done.

1.7 Asthma

In this section we provide an overview of the molecular characteristics or asthma, with a focus on
GC resistant asthma. Much of this content is relevant for our generation of the GC signalling path-
way, although is not crucial to understand the project’s development. We include it here primarily
as reference material for those more biochemically minded.

1.7.1 Overview

Asthma is characterized as a chronic disease which affects the respiratory system, inflaming and
narrowing the airways to induce breathing difficulties [54]. Typically, a trigger causes a sponta-
neous attack, which may dissipate rapidly (within hours or even minutes), or may last significantly
longer (a period of weeks or even months). Currently affecting 300 million people, that number is
predicted to rise by an additional 100 million by 2025[3]. While the vast majority of suffers keep the
disease in check using inhalable corticosteroids, occasionally in combination with Long Acting β
Agonists (LABAs), around 5% of those affected are resistant to this treatment. This small fraction
generates a disproportionate amount of the costs associated with sever asthma[36]. By better un-
derstanding the molecular mechanism associated with this resistance, improved treatment regimes
and more effective drugs could be designed to reduce its impact of the quality of life of individuals,
as well as the cost burden burden associated with the resistant asthma.

1.7.2 Molecular Mechanism

The asthmatic triggers depends on the individual and the environment, but are typically associated
with an allergic response, which may be caused or exacerbated by infection (bacterial or viral), or
pollution. The systemic inflammatory response has been the subject of extensive research, and is
not considered in detail here. In summary, upon detection of an allergen, mast cells in the tis-
sue around the airways release granules packed with inflammatory mediators, including histamine,
which interact with the cells in airway tissue (especially those of smooth muscle) to trigger con-
striction and an immediate reduction in airflow to the lungs. These mast cells also produce a
whole host of other inflammatory signalling molecules (such as prostaglandins, leukotriens, kinins,
Interleukin (IL)-4, IL-13 and chemokines) which promote muscular constriction and attract other
immune cells such as neutrophils, lymphocytes and eosinophils. Additionally, lymphocytes release
IL-5, macrophages produces Tumour Necrosis Factor (TNF)-α, and a variety of other molecules
such as neutrophil chemokines, cytokines and growth factors such as IL-6, IL-11 are produced.
These inflammatory signalling molecules all cause the surrounding cells to shift into an inflamma-

20

CHAPTER 1. INTRODUCTION 1.7. ASTHMA

tory state, which is primarily regulated by the antagonistic actions of corticosteroids.

Inside the airway tissue cells, this recruitment and activation of immune cells and the expression
of inflammatory signalling molecules triggers a number of processes which lead to the intracellular
inflammatory cascade, and is not something considered here. Additionally, there is a demonstrable
increase in the transcription and activation of a number of inflammatory transcription factors, such
as the NF-κB and Activator Protein-1 (AP-1) families of proteins[4]. Both of these are activated by
a whole range of inflammatory signalling molecules associated with the asthmatic response. NF-κB
family proteins are responsible for the up-regulation in expression of a wide range of molecules,
such as chemokines, cytokines, growth factors and enzymes[5], while the genes up-regulated by
AP-1 are more typically associated with proliferation and survival.

This frequently leads to the chain reaction observed in asthma attacks (a sever and prolonged
episode of restricted breathing caused by the inflammation) - the initial trigger leads to the tran-
scription of the critical signalling molecules (such as cytokines, chemokines and interleukins), which
in turn leads to the expression of those proteins involved in the intracellular inflammatory cascade.
At the same time, the signalling molecules cause an increase in the expression and activation of
transcription factors such as NF-κB and AP-1.

NF-κB is activated by a wide range of different stimulatory elements through a number of well
defined pathway[6]. Active AP-1 is a heterodimer of Jun and Fos proteins, and characteristically
binds to the TRE (TBA response element). The formation of the active heterodimer is facilitated
by the Mitogen Activated Protein Kinase (MAPK) family kinase c-Jun N-terminal Kinase (JNK)
through a number of phosphorylation events. NF-κB and AP-1 go on to up-regulate transcription of
inflammatory proteins as well as those signalling molecules, causing a positive feedback loop which
maintains a state of inflammation in the tissue. In addition to this transcription/expression cycle,
chromatin remodelling, typically consisting of histone acetylation to relax DNA tension and facili-
tate transcription, triggered by CBP (CREB (cAMP (cyclic Adenosine Monophosphate) Response
Element Binding Protein) Binding Protein) also contributes to inflammatory protein expression[64].

Inflammation is mediated and reduced by corticosteroids. These signalling molecules signal
between cells (in the extracellular environment), and originate from the adrenal cortex. Synthetic
versions provide a much higher dosage in a localized manner through an inhaler, rather than relying
on the circulatory system. They bind to Glucocortocoid Receptors (GR), found in almost all cells,
which then dissociate from a Heat Shock Protein (hsp)-90 chaperone protein to form homodimers.
The homodimeric protein can now diffuse into the nucleus, where it binds to a Glucocortocoid
Response Element (GRE) in the DNA, where the AF-1 and AF-2 (Activation Function) domains
alter DNA transcription. This is where the interplay between the pro and anti inflammatory signals
occurs - the ligand bound GR dimer binds and represses transcription of inflammatory and immune
genes, effectively counteracting the activities of NF-κB and AP-1.

Corticosteroids bind to NF-κB directly and indirectly, causing a reduction in the transcription
factor’s ability to up-regulate transcription of inflammatory proteins. Additionally, corticosteroids
repress MAPKs such as Extracellular Regulated Kinase (ERK) and JNK. By inhibiting JNK acti-
vation, corticosteroids block the formation of the active AP-1 heterodimer, meaning corticosteroids
implement a rapid response mechanism to alleviate inflammation both by directly reducing the
expression of inflammatory molecules and by reducing the transcription and activation of pro-
inflammatory transcription factors. Dexamethasone, a potent synthetic corticosteroid, was also
shown to induce MAPK phosphatase-1 (MKP-1) (an inhibitor of MAPK) and as a result reduces
p38 activity, a MAPK frequently associated with inflammation.

GRs are phosphoproteins, meaning their state is altered by phosphorylation. With five sites for
phosphorylation (Ser113, Ser141, Ser203, Ser211 and Ser226) phosphorylation provides an effective

21

1.7. ASTHMA CHAPTER 1. INTRODUCTION

Figure 1.7: 1. Schematic diagram of GR with LBD (Ligand Binding Domain) and DBD (DNA Binding Domain)
highlighted. 2. hsp90 binds to the GR and stops it dissociating from the cell membrane 3. Corticosteroid bind as
ligands and trigger hsp90 dissociation, releasing GR from the membrane 4. Two free GR bind together as a dimer,
and can the bind DNA 5. The AF-1 and AF-2 domains in a monomer (single GR) are highlighted here.

mechanism to control GR activity. Agonist or antagonist binding to GR effects how the receptor is
phosphorylated [68], and the phosphorylation state has been associated with a range of functions.
Phosphorylation has been shown to affect DNA binding in a promoter dependent manner [18][69],
and Ser211 phosphorylation affects ligand binding, nuclear localization and and GR activation[18].
Conversely, in another study Ser211 phosphorylation seemed to increase GR functionality [41].
MAPK, Cylcin Dependent Kinase (CDK), Glycogen Synthase Kinase 3 (GSK-3) and JNK are all
implicated in the phosphorylation of GR, although the the role (if any) of p38 remains unclear. In
HeLa cells (a standard immortal human cell-line used in a wide array of scientific experiments),
up regulated p38 lead to a reduced GR activity through some effect on the ligand binding domain.
However, mutation in the p38 gene had no impact on this functionality, suggesting a possible
downstream activity relating to GR chaperone proteins or co-activators[62]. However, in human
and mouse lymphoid cells p38 has been shown to directly increase phosphorylation of GR[51].
Essentially, this appears to be a highly complicated tissue and species specific mechanism, where a
general consensus on the role of enzymes and phosphorylation on activity is yet to be determined.

1.7.3 Corticosteroid Resistance

Corticosteroids provide a fast and effective treatment for asthma, and represents the foundations
of the standard regime for managing the disease at a severe level. However, in a small number
of patients even a high concentration of oral corticosteroids is ineffective [48]. Alternative thera-
pies, such as targeting IL-4, IL-5 and IgE (immunoglobulin E) has been investigated, but clinical
trial results were not encouraging [12] [42] [55]. Better understanding corticosteroid resistance in
asthma is crucial in developing new and effective treatment strategies for those affected. From a
clinical perspective, CSR asthma is typically diagnosed when the condition fails to improve despite
long-term (14-days) use of oral corticosteroids. On a molecular level, a reduced suppression of
IL-4 and IL-5 mRNA in bronchoalveolar tissue has been reported, as well as a greater number of
cells expressing IL-2, IL-4 and IL-13, indicating that cytokine expression profiles may contribute
towards the resistance [47]. Peripheral Blood Mononuclear Cells (PBMCs) - blood based cells with
a round nucleus such lymphocyte, monocyte, macrophage, but not neutrophil or eosinophils as
these contain multilobed nuclei - display reduced sensitivity to corticosteroid suppression, meaning
in CSR asthma patients corticosteroids have a reduced impact of PMBC cytokine release.

22

CHAPTER 1. INTRODUCTION 1.7. ASTHMA

Cortecosteroid resistance appears to be mediated in patients by a number of distinct mecha-
nisms, reflecting the complexity of this regulation. In acquired CSR patients, mechanisms include
reduced GR expression, reduced affinity of corticosteroids for GR or a reduced affinity of GR for
DNA. Indirect mechanisms include a decreased expression/activity of co-repressor proteins and
an increase in NF-κB or AP-1 expression. Patients are not GC deficient[20], with serum GC ly-
ing in normal ranges[45]. Similarly, no reduction in the gastrointestinal absorption of GC[46] is
seen. Patients display elevated levels of pro-inflammatory interleukins[47] in the bronchial tissue,
suggesting an inability to effectively respond to the actions of GC. These elevated levels may be
caused by p38 MAPK phosphorylation of GR[35], activating the inflammatory response pathway.
Additionally, a distinct reduction in p38 MAPK phosphatase expression is seen in CSR patients
after exposure to GC [23], and dysregulation of JNK and AP-1 both appear to have some role in
the desensitization to GC[36]. We end our overview of the biological mechanism of GC resistance
here, although the extensive reference material highlighted in the section provides ample discussion
on the topic. It is clear that this is a highly complex issue, which does not have a “black and white”
answer. Indeed, it seems likely that a number of discrete molecular conditions would give rise to
the same physiological lack of response to GC, although many of these diverse mechanisms may in
fact be mediated by a small number of interfaces between crucial pathways.

1.7.4 Pathway Crosstalk

Understanding signalling crosstalk between different pathways in the context of GCs signalling may
provide crucial information to help understand the molecular mechanism of CSR asthma. There is
experimental evidence to suggest that in some forms of CSR patients, the cause of this resistance
is a genetic defect which causes a disruption in normal crosstalk between pathways[4]. Histori-
cally, rare genetic anomalies have often provided insight into complex molecular mechanisms, so
it seems plausible that while dysregulated crosstalk can have serious effects, under normal condi-
tions crosstalk provides an underlying homeostatic mechanism which normally maintains a careful
balance between pro and anti-inflammatory signals. If this is the case, then treating CSR patients
with GC will have no impact on their well being. However, combining GC with components to
offset or correct cross-talk associated problems may allow these traditional regimes to be effective.
In the preceding section, we mentioned the possible impact of JNK, AP-1 and p38 MAPK on GC
signalling, and it is this set of key mediators we focus on here.

Crosstalk appears to occur both at the signalling level and at the gene regulation level, meaning
both aspects should be considered[53]. However, the intricacies associated with the crosstalk is
poorly understood. There is a tendency to study pathways as linear routes from trigger to effector,
despite this being a poor representation of signalling systems. As a result, the nuances relevant to
pathway crosstalk offered by many proteins is lost.

23

1.8. PRECEDING WORK CHAPTER 1. INTRODUCTION

1.8 Preceding Work
This project is the evolution of two sets of work: a previous MSc project carried out by C. Baroukh[8]
and a paper published by B. Hendriks, F. Hua and J. Chabot entitled “Analysis of Mechanistic
Pathway Models in Drug Discovery: p38 Pathway”[30].

Hendriks et al. developed a model of the p38 MAPK signalling pathway shown below, and
additional determined a range between which the parameters in the model would lie based on
general values for biological reaction kinetics.

Figure 1.8: p38 MAPK model[30] (includes a minor updated - see section 3.2 for further details.

The Hendriks model was developed in the Teranode Design Suite (Teranode Corporation),
exported to SBML and translated into JACOBIAN (Numerica Technology). Simulations for pa-
rameter estimation were then performed in JACOBIAN, and a number of possible parameter sets
were generated. Our starting point for this project, was this p38 MAPK model developed by Hen-
driks et al, combined with the parameter ranges they had already determined.

Baroukh’s dissertation was based on using some of the parameter sets defined by Hendriks et al
with the BIO-PEPA language to simulate the p38 MAPK pathway using a BIO-PEPA generated
model, running a version of Gillespie’s algorithm. While this was successful, it became obvious
that the overall lack of software support for the BIO-PEPA framework at this time meant that
high-throughput simulation and analysis with BIO-PEPA was not-practical. Additionally, despite

24

CHAPTER 1. INTRODUCTION 1.8. PRECEDING WORK

having idealized parameters based on the model developed my Hendriks et al. the results of Hsp27P
species concentration for a simulation with these idealized parameters using Gillespie’s algorithm
based on the BIO-PEPA model does not match the experimental data provided. In contrast, the
JACOBIAN based ODE simulation gives a much closer match, indicating potentially a problem
with the BIO-PEPA simulation framework. However, this has not been explored further, and my
in fact reflect a flaw in the JACOBIAN model.

25

Chapter 2

SBMLIntegrator

Overview
In this chapter we overview one of the key problems encountered early on, and describe the approach
and implementation of a software solution. The specifications regarding this problem are considered,
general design concepts shown and the software engineering methodologies used are named and
justified. We finish by describing the finished project, evaluating it in the context of our original
goals, and discussing the future work associated with it.

2.1 Introduction

The ultimate aim of this project is to built a framework to evaluate the existence of crosstalk
between two different pathways, the p38 MAPK pathway and the GC signalling pathway. Upon
initial research into the tools available for SBML, it became clear there were no tools for integrating
two SBML models together. There are a number of SBML model editors available, so although
constructing three models (the isolated p38-MAPK pathway, the GC-signalling pathway and the
combined pathways) would be possible, this seemed an unnecessary duplication of work. Moreover,
if our pathways were significantly larger, building a new model by extending out an original model
manually is a very time consuming activity, and one fraught with the risk of error.

Figure 2.1: Example of integrating pathways A and B to form pathway C. Note that in the new pathway, we have
replaced some identical elements with others to construct one, single system.

If we consider the SBML overview discussed in chapter 1, it becomes clear these models heav-
ily utilize internal dependencies. If two pathways are being combined there will inevitably be a
significant amount of overlap between those models, both in terms of species and compartments,

26

CHAPTER 2. SBMLINTEGRATOR 2.2. SPECIFICATION

but also units. Additionally, there is a need to ensure element IDs are unique across both models.
Some software check this, but many do not, leading to scoping conflicts. The ID variable is not
enforced as unique in the SBML specification to allow for deliberate namespace ambiguity (e.g. for
local parameters), however, in situations where two models are being combined it can lead to silent
errors which disrupt a model while failing to generate any obvious symptoms. A tool to automate
the integration of two models in a semantically and syntactically accurate manner would speed
this process up immensely, and significantly reduce the risk of human error in what would be an
incredibly long winded and tedious process.

A second motivation for developing an automatic integration tool is that biological understand-
ing of systems often changes, leading to a need to update models or parameters. Such updates to a
poorly constructed integrated system risk breaking the model - small changes can have significant
impact across a model in a cascading effect. Typically the reason for integrating two models will
be to investigate how they interact, which suggests a lack of detailed understanding of this newly
formed integrated model, but a better overview of the two individual models. By ensuring inte-
gration is quick and easy, researchers can make changes to individual models and then re-integrate
them, rather than navigating through the complex and convoluted task of editing an already inte-
grated model in the context of one of its two submodels.

Ultimately, this relates to the concept of least resistance - if a tool is available to make integrating
two models together easy, then this becomes an appealing research topic. Hundreds of models
already exist in the BioModels Database[56], many of which could be integrated and investigated for
crosstalk. The description of biochemical pathways as semi-linear isolated communication networks
is largely an inaccurate representation, brought about because it provides an ideal way to teach
and understand these pathways. Instead, pathways should be looked at as a smaller subcomponent
or a larger multi directional and multidimensional network, and integrating two pathways together
is a means of enlarging two single fragments of an overall signalling network into one, larger section
of that same network. This is the role of SBMLIntegrator.

2.2 Specification

Considering the challenges discussed, there were a number of initial high level goals for this software;

Functionality
The tool should allow the integration of two models basic1 in a flexible manner, where elements
from one model can be added to, replace or be integrated with elements in a second model.

Ease of use
A tool should remove all possible semantic difficulties, and where it cannot do so should offer users
the opportunity to make a decision with a number of options presented. The process of integra-
tion may not be trivial, however, the overall goal is to ensure any difficulty arises from biological
questions, rather than those relating to SBML semantic or syntax.

Ease of installation
One thing which became clear during the initial overview of the various SBML software available
was that in almost all cases installation was time consuming and complicated. Frequently, extra
(often deprecated) libraries were required, which had to be manually configured, and a range of
other problems. To avoid this our aim is that the user needs to simply run a single “Install” program
once, which will install the libSBML library automatically, and then install the SBMLIntegrator.

1Basic in this sense means a model containing one or more of the following elements: Unit Definitions, Compart-
ments, Species, Parameters, Rules and Reactions only.

27

2.2. SPECIFICATION CHAPTER 2. SBMLINTEGRATOR

Use of a configuration file
The process of determining how to integrate two models is (from a biological standpoint) difficult.
By providing a simple configuration file where users can enter the specific parameters regarding
their model integration, this abstracts much of the decision making away from a live program to
one where the user has time to carefully consider their options. Additionally, a separate file avoids
time consuming and repetitive interaction, especially if two models are integrated multiple times
with small changes to integration settings but not to the species being selected. Ideally, the user
should be able to write a configuration file once, and re-integrate two models instantly thereafter,
assuming they do not change the way in which the integration occurs. If they do, however, this is
simply a case of updating the configuration file.

Completed in a timely manner
It is important to bear in mind that this thesis is not primarily a software engineering project. Con-
sidering this, despite taking a thorough approach to the development of SBMLIntegrator, there is
also a need to objectively prioritise the features required for this specific project. While generating
a software which can integrate any generic models is key for the long-term success of SBMLInte-
grator as an independent software tool, in the short term we have focussed here on basic SBML
models, which exclude those which contain constraints, function definitions, initial assignments or
events. However, the overall software structure will be developed so as to ultimately facilitate the
introduction of this functionality. With necessity as the mother of invention, this software was born
of a need to integrate two SBML models together, and the realisation that this may be a more
general problem. However, developing a fully fledged software tool to deal with all eventualities
was not a project objective as such, so while this tool does work for a number of generic cases, it
is not all encompassing, although these limitations should be viewed in the context of this project,
rather than in the context of the SBML specification as a whole.

28

CHAPTER 2. SBMLINTEGRATOR 2.3. DESIGN

2.3 Design
Based on the high level goals outlined above, we developed an overall initial software structure for
the project. A schematic of this structure is outlined below.

Figure 2.2: Simplified schematic of the software’s architecture, with reference to how it interacts with external files.
(1) The integration configuration file (discussed below) defines the integration behaviour, and this information is
parsed by the configuration file API. (2) Models are read (and in fact written) by functions provided by the LibSBML
API. This API is provided for us, and includes a range of functionality, as well as a complete set of containers with
getter and setter functions for all SBML elements.(3) The configuration file API provides a transparent set of functions
to the rest of the software for getting relevant data from the configuration file. (4) The main software then uses the
parameters defined by the configuration file and the data imported from the two models to integrate them together
and construct a new, integrated model

Figure 2.2 describes how SBMLIntegrator interacts with the three input files it requires. The
two models are imported into the software, however, they remain in the containers implemented by
the LibSBML API. Similarly, the configuration file is parsed by the configuration file API, which
stores all the information from that file. The main software acts as a co-ordinator of the data in a
controlled manner, but avoids the issues associated with data ownership, duplication and integrity.
The LibSBML API containers are well implemented and provide perfect data structures. Similarly,
we use a combination of LibSBML data structures and our own template structures to store the
configuration file information. By abstracting the stored information into specific modules we help
to clarify the flow of information. The process of integration is by it’s nature complicated, with
serious issues surrounding data duplication, data validity and data corruption. By ensuring we
maintain a copy of all original data in a state where it cannot be changed while developing a new
model in a stepwise, dynamic and deterministic manner, we provide fixed reference points for the
integration process while implementing that integration in a logical and efficient way.

29

2.3. DESIGN CHAPTER 2. SBMLINTEGRATOR

One of our earliest design decisions was to allow integration to proceed through the use of three
models. These are best described by an example where we are integrating model A and model B
together. In this example, model A is three times the size of model B. Therefore, we designated
model A the base model. The base model is used as a template for the new model being created
through the act of integration. The base model is copied, and this copy forms the integration
model. Initially the integration model and the base model are identical. However, as we proceed
through the various integration operations, we change the integration model by bringing in com-
ponents from the import model (in this example model B). The import model is typically the
smaller of the two, and from it we introduce new elements into the integration model. Neither the
base nor import models are changed in any way, but instead act as static reference points for the
process of integration use. We refer to the various models as base, import or integration models
throughout this chapter. The three models are outlined below, where a basic overview of how
integration proceeds.

Figure 2.3: Overview of the progressive nature of integration based on the three models outlined previously. (1)
We begin with the base and import models. (2) The base model is copied to form an identical integration model.
(3) The integration process begins by taking new and unique information from the import model. (4) Following this,
duplication and redundancy introduced by the action of importing new elements from the import model is removed.
(5) Finally, an interactive integration of elements which contain overlap in their attributes for the new model is
carried out. This may include elements such as new reactions which combine reactants and products of two different
reactions. (6) The integration model is now finalized.

After identifying a good method for model representation, the next question regarding the
SBMLIntegrator software was, “What is the best way to integrate two models together?”. On the
surface, this seems a fairly simple question, but as various approaches were investigated it became
clear this was less straight forward than anticipated. There is a need to balance efficiency with
usability and flexibility. By committing the user to a specific mechanism of integration we reduce
their ability to do certain things, but equally, by allowing integration to be open and flexible we
risk huge redundancy in the software, or worse, data inconsistency. After a number of theoretical
prototypes built as flow charts and then evaluated with both user interaction and time/space com-
plexity in mind, we developed the Import Replace Integrate (IRI) mechanism for integration.

30

CHAPTER 2. SBMLINTEGRATOR 2.3. DESIGN

2.3.1 Model Integration

Early in our research into methods for integration, it became clear there are three distinct operations
which can be implemented to integrate elements from two separate models;

• Import - We can simply import (copy) an element from model A into model B.

• Replace - We can define an element in model A to replace an element in model B. This
involves not only overwriting the element in model B, but additionally scanning through
model B and changing any reference to the overwritten element to the new element from
model A. For example if one one model contained Alice and the other Bob, and we replace
Alice with Bob, then not only would both models now contain Bob (and neither Alice), but
any references to Alice (such as “Alice in wonderland”) would now be replaced by Bob (“Bob
in wonderland”)

• Integrate - We can integrate two elements together, combining aspects of the elements from
both model to create a hybrid element. For example, if Alice wore red shoes and Bob wore
brown shoes, we could integrate the two together, meaning Alice may now wear brown shoes
(and Bob would still wear brown shoes as the integration only affects on of the party).

With these three operations in mind, we can discuss the semantics associated with IRI.

IRI integration is based on the fact that you can quickly predefine elements you wish to import
from one model into another. Similarly, you can also quickly define elements from one model which
you wish to use to replace elements in another. This process is the same for any element type - for
example, conceptually, replacing Alice in model A with Bob from model B is the same operation
as replacing MAPK in model A with ERK in model B. The type of component which Alice, Bob,
MAPK and ERK represent is irrelevant. Moreover, there is only one possible outcome from this
replacement operation. The same is true for the import operations - the outcome of importing the
first three species from model B into model A will always be the same.

However, integrating two elements together is not uniformly comparable over all element types,
and does not always yield the same result. Compartments have different attributes compared to
species, and again compared to units, and so on. Additionally, where elements have a number of
attributes we do not pre-determine how we integrate these individual attributes. For example with
our previous Alice and Bob example, instead of selecting Alice’s name (“Alice”) and Bob’s shoe
colour (“Brown”) we could have selected Bob’s name and Alice shoe colour, or chosen to change
everything or nothing. As shown below this gives four equally possible an correct outcomes of the
same integration, where Alice and Bob are unique IDs, and each individual has two attributes, a
name and a shoe colour;

Figure 2.4: The four possible outcomes if we integrate Bob into Alice (note the directionality here)

Beyond this, it should be clear that the order we carry out our replacement, import and integra-
tion operations has profound semantic consequences. If we had previously replace all the references
to “Red shoes” with “Brown shoes” in Alice’s model our option for integration would be reduced;

31

2.3. DESIGN CHAPTER 2. SBMLINTEGRATOR

Figure 2.5: The two possible outcomes if we integrate Bob into Alice after the “Red shoes” → “Brown shoes”
replacement operation

We consider below a more relevant example, where we integrate two models together, each of
which has a reaction. This shows how the order of operations impacts the final model in a biological
context.

Figure 2.6: We have two models we wish to integrate, model A and model B, where we designate A the base
model and B the import model. We wish to integrate these two models together in the following way (A) Import
species S2B into model A, (B) Integrate RxnA and RxnB, such that the hybrid reaction is [S1A + S2A → S2B +
S3A] and (C) Replace cytosol_B in model A with cytosol_A.. Figures 1 and 2 show the initial models. Figure 3
shows the integration model after the import of species B. Species B is still in cytosol_B, although in the integration
model cytosol_B does not exist, so we represent it’s compartment as a grey environment. In figure 4 we integrate
the reactions together, which involves introducing S2B as a product. However, it remains in cytosol_B. Figure 5
shows the model after the process of replacing references to cytosol_B with cytosol_A. Nowe S2B is in the correct
compartment, and the models have been integrated successfully

32

CHAPTER 2. SBMLINTEGRATOR 2.3. DESIGN

As shown, to achieve successful integration the order of operations is critical. If we attempt
to integrate the reactions prior to importing the species, this is possible, although for a while the
reaction will refer to a species which does not exist. This may be risky, as it entirely relies on
the user importing the correct species later. It is this kind of complexity we are attempting to
abstract from the user, so this is not ideal. Similarly, if we replace cystosol_B with cytosol_A
before the import of S2B, then S2B’s “compartment” attribute will still refer to cysto_B. However,
cytosol_B does not exist in Model A, and to make the system semantically correct we must re-run
the cytosol_B → cytosol_A replacement operation.

This is a very simple example, and in this case it is obvious how to go about this integration
in a manner that would achieve the correct result. However, when dealing with two large, complex
systems, this process is not trivial. With this in mind, we have defined a specific methodology for
the integration of two models.

2.3.2 Import, Replace, Integrate

Below we describe the defined order of operations in IRI integration;

1. A list of all the elements from the import model are imported into the integration model.
This occurs exactly once, and is the first thing to happen.

2. A list of all the replacements from the import model are replaced by elements in the base
model.

3. Once these two set-up operations have been run, we can begin the interactive integration
process. Although not required, the software strongly recommends you proceed the integra-
tion in the following order - Unit Definitions, Parameters, Compartments, Species, Reactions,
Rules. During the integration process, an element created through an integration operation
can be added to the replacement list with the species from the import model as the target
to be overwritten - i.e. any reference to the import model’s species is corrected to refer to
the newly created integration species. Additionally, this new integration element can either
replace the pre-existing element from the base model, or can become a new element in its
own right.

With the model wide import and replacement operations happening once at the start, we begin
the integration operations with the model in as a prepared state as possible. While the import
and replacement operations are model wide and automatic, the integration operations are carried
out on each of the ten element types individually. It is possible to integrate all ten element types
back to back. However, it is also possible to re-run the replacement operation between integration
operations. This is typically not necessary, but may provide a means to recover an error made in
the integration process.

By forcing the initial import and replacement, but allowing for stepwise integration of differ-
ent element lists with repeated (but not required) replacement of the up-datable replacement list,
there is flexibility in terms of how the integration proceeds, but hopefully not at the expense of
maintaining data integrity. This IRI integration also has the advantage of facilitating it’s specifi-
cation through a configuration file. Using such a file, we can define elements to be imported, pairs
to be replaced and pairs to be integrated, pre-defining the actions away from the actual software
operations. By providing this separation of definition and action, we create a system which can
repeatedly integrate together similar models very quickly. In an ideal world a configuration file
would not be necessary, and the software would intelligently detect elements which were the same,
or seemed relate, to offer replacement or integration options. However, with a total lack of any kind
of naming standardisation this is simply not possible2. In addition, the flexible design of SBML

2Biochemical ontological standardisation is a significant research topic, and it is our hope that it will lead to
better, consistent naming conventions

33

2.3. DESIGN CHAPTER 2. SBMLINTEGRATOR

means two syntactically very different models may in fact describe two similar semantic systems.
It us up to the user to identify such a scenario, and act accordingly in the design of a configuration
file.

2.3.3 Development Language

SBMLIntegrator was developed in C++ for a number of reasons. Arguably the most complete
and best documents SBML API is for C++. By starting with a well documented and highly
effective API we avoid many of the low level issues associated with data structures, getters, setters
and other functionality provided by the API. C++ is also a language ideal for file stream input
and manipulation at the character level, as required by the configuration file interface, providing
enough low level functionality to construct a complete and fault tolerant file interaction system.
Finally, many of the existing SBML tools are already written in C++, so should SBMLIntegrator
be absorbed into another, multifaceted tool, this avoids the need for a translation.

2.3.4 Architecture

There are a number of key points relating to the software architecture. The LibSBML API includes
an SBML model container class, with container objects for the ten lists described in section 1.4, for
each of the elements stored in those lists, and for any other object appropriate attributes associated
with those elements. In addition, the API provides getters and setters, as well as functionality to
read and write SBML files. Considering this, these predefined container classes were used, with
classes containing pointers to Model objects where appropriate. On the whole, however, we’ve
attempted to avoid the issue of class ownership. By treating classes primarily as collections of
associated functionality, with significant parent classes holding model objects, we avoid issues of
data conflict and duplication.

2.3.5 User Interface

We chose to develop a command line based system, rather than a GUI interface. This was pri-
marily motivated by the restrictive time scale of the software development element of this project.
However, as this work has unfolded, there is a noticeable absence of a good GUI SBML model
editor for Linux. Command line editors provide an adequate interface for interacting with highly
structured data formats such as SBML, however, we have designed the software in such a way that
for a final release a QT GUI can be written as an interface over the underlying systems.

For the interface itself, simplicity is a crucial design factor. Command line based systems have
the potential to be overwhelming and difficult to understand. One of the main aims for this software
was to provide a tool which is easy to use - the difficulties associated with model integration should
be limited exclusively to questions relating to the biological significance of decisions, not file format
issues, duplication of elements, or clashes between names. Considering this we have adopted a
number of standardized approaches to user interaction. These include having three primary ways
of interacting with the software which remain consistent through the software.

34

CHAPTER 2. SBMLINTEGRATOR 2.3. DESIGN

Where multiple options are available, the user can enter a number from a list to select an option.

Select components to show

[1] ------------ Function Definitions
[2] ------------ Unit Definitions
[3] ------------ Compartments
[4] ------------ Species
[5] ------------ Parameters
[6] ------------ Rules
[7] ------------ Initial Assignments
[8] ------------ Constraints
[9] ------------ Reactions
[10] ----------- Events
[11] ----------- Return
Select:

Interface 1: User interaction through a list of options

Where one of two options or one of three options are available a selection of A or B (or C)
is presented, rather than a number selection. This is a deliberate separation of the user menu
interface, which uses numbers (as shown above in Interface 1) with the interactive integration
options (shown in Interface 2, below).

Please select a name for the compartment
A ----- Medium
B ----- Extracellular_env
Select (A or B):

Interface 2: User interaction where one of two options is available

There are also times where the user must select yes or no to a question. Here, the user is invited
to select “Y” or “N”, although “y” or “n” are also acceptable

Do you wish to do X?

Please select Y/N:

Interface 3: User interaction with a yes or no question

35

2.3. DESIGN CHAPTER 2. SBMLINTEGRATOR

At times the user must enter a number or name - here again we have a similar interface. When
the user must (or is advised) to select a element which exists in the model, where appropriate, a
list of options is presented.

Please enter the new name for the reaction:
Please reselect :

Interface 4: Entry screen for value or string

If the user enters an invalid number, a letter or any other kind of illegal character, a standardized
error message is generated and they can re-try;

**** Invalid selection ****
Please reselect :

Interface 5: Typical error message upon invalid input

2.3.6 Configuration File Interface

As mentioned, SBMLIntegrator uses a configuration file to define the elements to import, replace
and integrate. The API for this file was developed to be largely separate from the SBMLIntegrator,
providing a common interface for the SBMLIntegrator main classes to interact with data structures
representing the loaded file in a manner that is totally abstracted from the main functionality, and
from any file I/O manipulation.

The SBMLIntegrate configuration file (referred to as the .conf file in the documentation and
from here on out) has a regular structure, where for each of the ten element types, we define an
import list, a list of paired replacement values and a list of paired integration values. The numbers
used in this file refer to the element’s index location in the model. We can determine what these
values are using the SBMLIntegrator to explore the model and output the list of elements. We
suggest configuration file design should be done with the SBMLIntegrator open and being used to
determine the correct index values, although this is not required.

36

CHAPTER 2. SBMLINTEGRATOR 2.3. DESIGN

FunctionDefinitions:
Import: [0,1,2,3]
Replace: [1,2] [2,3]
Integrate: [4,5]

UnitDefinitions:
Import: [1,2,3]
Replace:
Integrate:

Compartments:
Import:
Replace: [2,3]
Integrate:

Species:
Import:
Replace:
Integrate: [4,5]

Parameters:
Import:
Replace:
Integrate:

InitialAssignments:
Import: [1,2]
Replace: [2,3]
Integrate:

Rules:
Import: [3,4]
Replace:
Integrate: [1,5]

Constraints:
Import:
Replace: [1,1]
Integrate: [2,3]

Reactions:
Import:
Replace:
Integrate:

Events:
Import:
Replace:
Integrate:

Configuration file 1: Example configuration file structure

37

2.3. DESIGN CHAPTER 2. SBMLINTEGRATOR

The previous page shows an example of a configuration file, giving a general structure. For the
paired values (replacements and integration) the first value in the pair comes from the base model,
with the second from the import model. In the case of the replacement operation, the base model
element replaces any reference to the import model element in the model. In the case of integration
operation, the base model element and import model element are combined together.

The .conf file interface uses the keywords Function Definition:, Unit Definition:, Compartment:
etc. to act as placeholders for the interface data loader. Once the loader locates these placeholder, it
uploads the data following the Import:, Replace: and Integrate: keywords to relevant data structures
in the configuration file API. A more detailed discussion of the approach chosen here is provided
in the implementation.

A key feature of the configuration file interface is to ensure the state of the data loaded from the
file is functional. That is, to provide error and warning messages when a configuration file is badly
formatted, and to provide output relating to the data loaded for debugging purposes. Typically,
systems which facilitate interactions through a user generated configuration file are exposed to
error based on user input through that file, so it is important to ensure that this interface is well
guarded against incorrect or pathological input.

2.3.7 Log Files

The integration process is also repeatable, so if the user makes a mistake they can re-do the inte-
gration, overwriting previous elements to correct the error. One of the potential drawbacks of a
command line interface is that it does not provide any easy mechanism to keep track of a system’s
state. A GUI interface may provide multiple windows or side boxes, where values exist and are
updated in real time to provide an effective at-a-glance evaluation of a systems state. This is not
possible with a command line system. With the model integration process, users may not want to
be informed of every event going on behind the scenes. Indeed, with complex model integrations,
one simple decision such as “Replace compartment X with compartment Y ” can results in literally
hundreds of replacement operations. Consistently outputting all of these to the user would be
unhelpful, however, the user may also want some manner to review what operations have taken
place, to evaluate a problem with a newly created model and it’s source.

With this in mind, for each integration operation the software generates a log file detailing
all events and any potential errors or problems it has encountered. In addition to recording all
replacement, integration, and import operations, it also details the data loaded of data based on
the .conf file, and any problems or errors which occur. For example, if in the configuration file
you accidentally defined an import compartment as 20 instead of 2, but there does not exist a
compartment 20, then the log file will display the following warning.

WARNING - in loading compartments for import from conf file, non-existant
compartment referenced (20). Ignoring...

Log file 1: Warning message for undefined compartment

Similarly however, if we had meant to define “[2]” in the import list, but instead defined “[]”,
this causes an error to be written to the log file, and the aborting of the software.

ERROR - in conf_preprocess() line 166, two [] back-to-back - this usually
means there is missing data!

Log file 2: Error message during configuration file preprocessing

38

CHAPTER 2. SBMLINTEGRATOR 2.4. METHODOLOGY

2.4 Methodology
Considering the limited time scale to develop the software, it was essential to determine which
components were not relevant to the project and could be left as incomplete stubs. While there is
an absolute need to prioritise functionality relevant to this dissertation, this should not be at the
expense of the software architecture. We therefore designed initial classes in a complete manner,
leaving non-critical functionality with stubs inside completely built functions, containers or classes,
rather than simply not doing it.

The overall time scale for the majority of the coding was four weeks, excluding documentation
and installation scripts. With the time frame defined, the critical design and development objec-
tives were determined in the context of the overall project’s goals. Based on this high level plan
with a real completion date, a high-speed scrum like development process was used. Through this,
a set of goals were designated and over a sprint period of around three to four days these goals
were met. Where there were significant problems, the cause of these problems were evaluated,
and the implication considered in the context of the remainder of the project. This is reflected
in the implementation of the software. Early design decisions to separate the search and replace-
ment class lead to later decisions to separate the classes which carry out import, replacement and
integration. Similarly, despite providing a significant reduction in lines of code, the initial use
of a template design pattern in the the cleanup/search classes perhaps made the software more
confusing that it needed to be. Subsequently, template classes and functions were increasingly
used, while the template design pattern was used less avoiding premature optimisation. This is
especially critical considering a significant portion of this base code may need to be restructured
for the re-development of SBMLIntegrator into a GUI based tool (not during this project).

2.4.1 Development Tools

Our primary development tool was Emacs, with version control provided by Git. The GitHub
repository for this project can be found at https://github.com/rednaxela/SBMLIntegrator. We
chose Git and GitHub, as they provide an ideal, decentralized mechanism for version control, which
considering a number of different computers were used to carry out development, provided an ideal
mechanism not just to maintain regression versions, but additionally to synchronize development
across a number of different devices. Testing was carried out through text-dumps, some basic unit
testing and user testing. A number of different biochemical systems were used to give a spread of
different scenarios for integration, although a more complete testing package would be advisable
during beta development.

2.5 Implementation
On the following page, we include the summary inheritance diagram for the SBMLIntegrator soft-
ware structure. Following this, we will briefly describe each class’ role, consider some of the key
features in the implementation and the technical decisions which motivated them. We then overview
the series of operations which the software performs to take two, separate SBML models and com-
bine them into one single model.

39

2.5. IMPLEMENTATION CHAPTER 2. SBMLINTEGRATOR

Fi
gu

re
2.
7:

T
hi
s
in
he

rit
an

ce
di
ag
ra
m

de
sc
rib

es
th
e
ba

si
c
st
ru
ct
ur
e
of

ou
r
fin

al
im

pl
em

en
ta
tio

n
of

th
e
SB

M
LI
nt
eg
ra
to
r.

O
n
th
e
fo
llo

w
in
g
pa

ge
w
e
br
ie
fly

de
sc
rib

e
ea
ch

cl
as
s
an

d
it’
s

pr
im

ar
y
ro
le

40

CHAPTER 2. SBMLINTEGRATOR 2.5. IMPLEMENTATION

2.5.1 Class Description

The classes are described below in a logical order, although this does not always reflect the order
they appear in the preceding diagram. As this is not primarily a software engineering project, we
will avoid undue focus on the actual code, although the fully commented source code, complete with
separate class and function documentation courtesy of Doxygen[65] is included in the supporting
information3.

SBML_formatter
The SBML_formatter class is the root class to all the other classes in the SBMLIntegrator struc-
ture. It contains text and data structure formatting tools as well as storing a static output stream
called the log_stream. This log_stream provides a software wide portal to a single log file, through
which any operations, warnings and errors can be reported. A number of system-wide constants
are set here too, as well as simple functions to get data such as time, date, product version etc.
This is also where the template function append_to_ID() exists (discussed later).

SBML_UI_general
Like the SBML_formatter class acts as a root class to everything, the
SBML_UI_general class acts as a root class to anything which has any possibility of user interac-
tion. This encompasses everything except the two container classes SBML_integration_container
and SBML_listpair_container. This class contains generic, user interaction functions which may
be used by any other class, including functionality such as selecting a value, inputting data or
outputting standardized text.

SBML_UI_main
SBML_UI_main provides the core user interface for the main menu, as well as a number of public
user interface functions (print logo, print version, print usage etc)

SBML_search
The SBML_search class includes the functionality which allows for the searching through the
model for a specific element. This includes functions to determine if a specific element is present
(is_present(...)) or not, as well as a unit definition lookup to give the long form of a unit definition.
In addition to simply searching for an element, the search framework uses the template design
pattern in conjunction with the cleanup class to provide model-wide replacement of an element
with an alternative.

SBML_cleanup
The SBML_cleanup class is a child of the SBML_search superclass, and utilizes dynamic binding
of methods in the superclass which bind to virtual functions in either the superclass or subclass,
depending on what object type is having the method invoked. The cleanup class has a set of
public functions for replacing one element with another (replace(element1, element2)). When this
method is called it calls the search function locate_and_replace(...). Locate_and_replace is the pri-
mary search function in the SBML_search class. However, when called by an SBML_cleanup object
it implements a replacement functionality by calling a virtual function which in the search class
simply returns true (to indicate the target has been found) but in the cleanup class replaces that
element. Through this we effectively use near identical code to achieve radically different results
with minimal code duplication.

SBML_augment
SBML_augment is the class responsible for implementing model wide changes. At present, it has
a single role in appending a single string to the end of every ID of every element in the model.
This is achieved in part through the template function append_to_ID() found in SBML_formatter.
This function takes any element and appends a string onto it’s ID. It is imperative the user does

3Documentation is found the SBMLIntegrator folder under docs. The main page is index.html

41

2.5. IMPLEMENTATION CHAPTER 2. SBMLINTEGRATOR

not pass an element which does not have an ID attribute to this function.

SBML_confInput
SBML_confInput is a somewhat different class to the ones encountered so far. It is here we imple-
ment the configuration file interface. The file interface works by taking a .conf file and scanning
it to ensure it has the ten components expected. Once this has been verified, it re-scans through
the file, importing the defined values in the import, replace and integrate lists into internal data
structures. With the data from the file parsed, the connection to the configuration file is then closed.

The SBML_confInput object has ten internal container objects (SBML_integration_container). Each
of these containers can store the import list, two replacement lists (where list_A contains the base
elements doing the replacing and list_B the import elements which are to be replaced) and two
integration lists (where list_A contains the elements from the base model, and list_B from the
import model). With the dual lists, the first item in list A and B are a pair, as are the second,
and so on. With the data successfully uploaded from the configuration file, the designated ele-
ments are loaded into their appropriate lists in each of the SBML_integration_container objects,
and then these are stored permanently as internal data objects in the SBML_confInput object.
To access the elements of the lists, getter function, providing access to the container through the
SBML_confInput object exist, allowing other classes to request the contents of the container objects,
with the SBML_confInput acting as a gatekeeper, maintaining the data’s integrity.

SBML_integration_container
As mentioned, this container acts as a data structure to store five lists of elements. It includes
getters and setters, as well as a function which returns the length of any of the lists. The paired
replace lists A & B and integrate lists A & B should always be the same length.

SBML_integrate
The SBML_integrate class acts as the controller class for the IRI integration process. It con-
tains the user interface menus and houses the interaction which calls upon the classes involved
in import, replacement and integration process. It holds a SBML_confInput object with the .conf
file data loaded and provides a means for the SBML_integrate_import, SBML_integrate_replace
and SBML_integrate_integrate classes to access the relevant information. Additionally, it contains
ten SBML_listpair_container objects, which hold the replacement lists, initially copied from an
SBML_confInput object. These provide an efficient manner to pass the replacement list between
functions, and between classes, and provides a dynamic copy which is updated by the integration
process as this proceeds.

SBML_listpair_container
The SBML_listpair_container is a very simple data structure for storing a pair of SBML listOf ob-
jects, whatever their element contents may be. It is used to primarily to improve code readability
and clarity.

SBML_integrate_import
SBML_integrate_import takes configuration file Import: lists from SBML_integrate and implements
the import of the relevant elements from the import model into the integrate model

SBML_integrate_replace
SBML_integrate_replace takes configuration file Replace: lists from SBML_integrate and imple-
ments the model-wide replacement of the relevant elements as defined by the two lists.

SBML_integrate_integrate
SBML_integrate_integrate takes the configuration file Integrate: lists from SBML_integrate and im-
plements the model-wide integration of the relevant elements as defined by the two lists. For all

42

CHAPTER 2. SBMLINTEGRATOR 2.5. IMPLEMENTATION

the integrate_*(...) functions, we step through the various attributes of that element type. If two
attributes are identical (or not present in both) we skip over them. However, if they differ, we can
chose one of the two for our new “integration” element. This is true for all currently implemented
integration functions except for reactions. When integrating reactions it is quite probable that nei-
ther of the two reactions will obtain the attribute values needed to describe the integrated element.
Therefore, where appropriate, the user can define their own value, including kinetic laws, names or
reaction constants.

After the integration of an element is complete, the user can select for it to represent either
a brand new element, or an update to the existing element in the integration model. Where the
integration element can be referenced (i.e. it has an ID variable, such as a species or a parameter,
but not a rule) then the user can select to add the newly defined integration element and the import
element to as a replacement pair to the replacement list. For example, if they defined a new type of
protein based on data from two different species, all future references to the import species would
now refer to the newly created species.

We include a very basic UML diagram to describe visually how the preceding classes in-
teract. Note the classes who’s role is primarily to provide parent functionality (SBML_search,
SBML_formatter, SBML_UI_general SBML_integrate_helper) are not included here for clarity

43

2.5. IMPLEMENTATION CHAPTER 2. SBMLINTEGRATOR

Fi
gu

re
2.
8:

Ve
ry

si
m
pl
e
U
M
L
sh
ow

in
g
th
e
so
ftw

ar
e
ar
ch
ite

ct
ur
e

44

CHAPTER 2. SBMLINTEGRATOR 2.5. IMPLEMENTATION

2.5.2 Functionality Concepts and Implementation

A common theme throughout this development process was the concept of similarity. Frequently,
different SBML elements were scanned for a particular string in one or more attributes. Where
possible, we tried to implement template functions to take a generic SBML elements as arguments,
then use a polymorphic LibSBML function to obtain a value, compare that value to the search
target, and act accordingly. However, on occasion specific elements were simply too different from
one another to make this approach worthwhile. While our final implementation may not represent
the most absolute, code-sparing approach, we have attempted to balance both code clarity and
reduction in the form of template functions, with functionality. In some instances, it proved easier
to write element-specific functions rather than tailor template functions with specializations.

The use of a template class to store the data from the configuration file enables us to produce a
software specific dynamic structure on top of the lower level SBML specific containers implemented
by the LibSBML API. Through the template functions we define a standard interface for the main
software to interact with the data we import from the two models based on the integration file.
The integration file is parsed once, the data used to import all the relative SBML elements from
the two models, and then those elementes are stored in a dynamic data structure which can grow
and shrink using the underlying SBML ListOf objects. This provides a quick and efficient way to
get the relevant data into a stable state. All the disk I/O occurs at the start in a single block,
although we chose to carry out multiple reads of the file in favour of a single sequential read, which
would require all the data to be in a rigid structure. This represents a significant reduction in disk
latency compared to an earlier prototype, where in lieu of storing all the information in memory
we carried out individual reads to the file on request. By avoiding the I/O bottleneck we ensure
architecturally that the software is optimised, especially for older hardware.

On a earlier prototypes, the ability to select the import and base models on the initial setup
was not included. Instead, the software evaluated which model was the bigger and the more com-
plicated, and assigned the larger model as the base model and the smaller as the import model.
However, in practice not having control over which is which is not an ideal design feature. It may
be the case that the user simply wishes to import a small number of components from a large model
into a smaller one. An important design choice is that SBMLIntegrator does not force the user
to fully integrate two models. In keeping with SBML’s philosophy of not enforcing specific design
decisions on model builders, it was decided the forcing the complete integration of two models could
reduce usability. Instead, by specifying components the user has the choice of integrating parts of
a model. Of course, it is the user’s responsibility to ensure they components they import ensure
the final model works. However, using the configuration file it is very simple to update the defined
model integration parameters should they make a mistake on the first integration.

The use of a detailed logfile began as a debugging tool during development. However, it very
quickly became obvious that having an optional detailed output describing the operations the
software is carrying out is a valuable tool for model integrators. By being able to see what is
happening behind the scenes, much more effective diagnostics, as well as identifying the need to re-
run the replacement operations. This information is not critical to the software’s functionality, and
forcing it upon the user would be unhelpful and overwhelming. However, in equal measure - hiding
the complexity to the extent it is not possible to effectively troubleshoot is counter productive. We
have therefore opted for a "See as much as you want" approach - the user can easily access the
detailed information if they need it, but is not presented with it unless they have a specific need.

2.5.3 Program Operation

We include here a very brief user guide to the software, describing the installation and integra-
tion of two models. This is a very brief walk-through, with a more detailed description in the
README.txt file included with the source code. As one of the software’s objectives, we hope that

45

2.5. IMPLEMENTATION CHAPTER 2. SBMLINTEGRATOR

the process is

Installation
On this distribution we include the LibSBML API library (used for installation) with the source
code, configured to install locally with SBMLIntegrator. In future releases we will offer the option
to configure with a pre-existing LibSBML installation, however, for the dissertation hand in it is
paramount to ensure we provide a fully, standalone working software. Installation is simply a case
of running the installation script as follows

COPYING.txt dxygn_config INSTALL.sh README.txt src
docs example libsbml-5.0.0 scripts

$ sh INSTALL.sh

Interface 6: SBMLIntegrator installation process

Upon running INSTALL.sh the installation package begins by running the predefined configure
process for LibSBML. SBMLIntegrator piggybacks on LibSBML’s dependencies, meaning we need
only a single configure process for both packages. Should the installation fail during this configure
process the user will be greeted with an error message and the library missing. Typically we have
tested the installation on a number of systems, and found that the only package missing may be
the xml2-config library, an XML parsing library used in favour of the more commonly used Xerces
due to an error in Xerces which could not be worked around by LibSBML. This can be obtained
by installing the libxml2-dev package.

After the successful configuration process LibSBML is compiled and installed, followed by SBM-
LIntegator. The installation automatically runs ldconfig, which requires ROOT access. However, if
you are unable to enter the root password this is not a major problem, and can be skipped. After
SBMLIntegrator has installed you may receive the following error upon attempting to run run the
software;

$./SBMLIntegrator: error while loading shared libraries: libsbml.so.5:
cannot open shared object file: No such file or directory

Interface 7: Shared object error

46

CHAPTER 2. SBMLINTEGRATOR 2.5. IMPLEMENTATION

Such an error suggest you need to configure the LD path. In a BASH shell this involves adding

export LD_LIBRARY_PATH=<full directory where libsbml/lib is located>:$LD_LIBRARY_PATH

to your .bashrc. Similarly, with csh add the following to your .cshrc file

setenv LD_LIBRARY_PATH <full directory where libsbml/lib is located>

In both these cases the libsbml directory is in the folder you ran INSTALL.sh from after installation.
No other potential problems have been encountered, and this extra configuration of the
LD_LIBRARAY_PATH variable pertain to the LibSBML installation and configuration, not SBM-
LIntegrator 4.

Usage

With the software installed, it is run using the command;

./SBMLIntegrator file [file2]

Interface 8: Running SBMLIntegrator, where file and file2 are .xml SBML files

The software takes one or two files. Typical *nix system flags –help and –version appropriately
display basic help and the software version. If the program is passed a single file it initiates the
software into explore-only mode, meaning it acts as a very simple text-based model viewer.

###
WELCOME TO SBML INTEGRATOR (version 0.1 (alpha))
###

----- SBMLIntegrator - Main Menu -----
Select an option from below:

[1] ------------ Explore Models
[2] ------------ Display Model Summary
[3] ------------ Quit

Select:

Interface 9: Single file input welcome screen

From here the user can explore a model or display a summary of the models parameters. Figures
of these outputs are available in the appendix. To exit the software, the user selects quit. This
goes through a process of closing output streams to ensure data integrity of the log file

4For more details on these issues see http://sbml.org/Software/libSBML/docs/cpp-api/libsbml-installation.html

47

2.5. IMPLEMENTATION CHAPTER 2. SBMLINTEGRATOR

If two models are loaded, the user is greeted by the same screen, but with an additional “Integrate
models” option. Selection of this triggers the import and initial replacement phases, as discussed
previously, leading to the following screen;

##
##################### Integrate model ####################
##

Import model is: MAPK_L2V1.xml
--> Model ID [Huang1996_MAPK_ultrasens]

Base model is: p38model.xml
--> Model ID []

[1] ------------ Integrate Function Definitions (0)
[2] ------------ Integrate Unit Definitions (0)
[3] ------------ Integrate Compartments (0)
[4] ------------ Integrate Species (1)
[5] ------------ Integrate Parameters (0)
[6] ------------ Integrate Initial Assignments (0)
[7] ------------ Integrate Rules (0)
[8] ------------ Integrate Constraints (0)
[9] ------------ Integrate Reactions (0)
[10] ----------- Integrate Events (0)
[11] ----------- Explore models
[12] ----------- Explore replacement, import and integration parameters
[13] ----------- Write integrated model
[14] ----------- Re-run replacement
[15] ----------- Return to main menu
Please select an option:

Interface 10: Main integration screen, with two example models loaded. Note the numbers in parenthesis after
each of the Integrate <element type> options refers to the number of elements to integrate.

From here, the user can integrates each element type in a stepwise manner. They can re-run the
replacement operations (as discussed) and the replacement list can be updated. Full description
of the interactive integration process and more can be found in the README.txt file. We do not
include it here as it is entirely self explanatory - each step is a question with two or more options
and instructions relating to those options. Redundant information is not displayed, and upon inte-
gration of an element type a (DONE) message pops up to the left of that element type. Users can
re-run an integration step, however, bear in mind this does not reset the previous integration, but
re-runs the integration between the newly integrated species and the import species, not between
the base model species and the import species.

In addition to running the integration, the user can explore any of the three models by selecting
Explore models. When the user is satisfied the integration is complete, they can write the integration
model to file by selecting Write integrated model. Functionality not mentioned is easy to use, and
as mentioned, help messages provide ample instruction regarding all of the interactive integration
choices.

48

CHAPTER 2. SBMLINTEGRATOR 2.5. IMPLEMENTATION

Code documentation

In addition to the brief discussion on the software code provided here, a far more in depth overview
can be obtained by viewing the source code documentation. We provide a convenient and easily
accessible HTML guide created by Doxygen to overview the roles of classes, functions and member
attributes. Above are screenshots of the interface, showing the overall class overview, and the
structure of the class documentation.

Figure 2.9: Main class list page

Figure 2.10: Example documentation, here showing the detailed description of the SBML_confInput function

49

2.6. EVALUATION AND FUTURE DEVELOPMENT CHAPTER 2. SBMLINTEGRATOR

2.6 Evaluation and Future Development

In this section we consider if the SBMLIntegrator in its current form meets our initial objectives.
We review the features which were left out in order to accomplish development within the time
frame for our specific purpose, and consider what steps were made to ensure their integration in
future versions. On this topic, we look ahead to the future of SBMLIntegrator, in terms of future
releases and new features added to the software.

2.6.1 Evaluation of Goals

Below we present an overview of the project’s goals, and the success with which each was met;

Objective Notes Evaluation
Functionality Our software is capable of integrating

two basic SBML models together. Such
models do not include initial assign-
ments, events, constraints or function
definitions. However, these elements
are more advanced features not neces-
sary for simple systems biology mod-
elling. Integration occurs in a sys-
tematic, clear manner, which preserves
data integrity while remaining flexible.

Through extensive user testing of
model integrations we believe the
software more than adequately
meets this goals, hugely improv-
ing the time it would take to in-
tegrate two models by hand.

Ease of use Wherever necessary, help messages and
extra information provide supporting
guidance through the software. We in-
clude the generation of a log file to fa-
cilitate easy debugging if necessary, but
avoid an overwhelming amount of in-
formation where it is not required

We believe the software is intu-
itive and easy to use, and that
the complexity relating to the in-
tegration process has been ab-
stracted to biologically relevant
questions exclusively

Ease of installa-
tion

Installation requires a single command,
with potentially the addition of a file to
the LD Path.

We believe the software offers a
very straight forward and com-
pelling installation process

Use of a configu-
ration file

A configuration file is used to define the
elements to import, replace and inte-
grate. A well defined API for reading
the file and accessing the parsed data
was developed, which as well as mak-
ing data access straight forward for the
software, provides a number of error
checking and defensive programming
strategies against mal-formatted files

A configuration file is used

Completed in a
timely manner

We deployed a regimented development
process to ensure deadlines were met
and a product was produced on time.
The development of the installation
process took considerably longer than
expected, however, despite this the ver-
sion deployed meets our other objec-
tive and was completed well before the
project’s September 9th deadline

The project was successfully
completed without becoming an
overwhelming burden on the dis-
sertation

Table 2.1: Evaluation of SBMLIntegrator’s goals

50

CHAPTER 2. SBMLINTEGRATOR 2.6. EVALUATION AND FUTURE DEVELOPMENT

2.6.2 Future Work and Long Term Goals

The current SBMLIntegrator version does not presently permit the integration of complex systems5.
These are more advanced modelling features which were not part of our models, and represent func-
tionality and semantics ignored matlab. Therefore, had these elements been included in the models
there would have been a need to remove them again before they could be simulated. Despite not
including functionality relating to the integration of these elements, we have structured the software
as if they exist, with the source code including the completed function calls, devoid of content. An
early future update to the software will be to include functionality relating to these elements, and
allow their integration.

At present, the software can only deal with L2V1 models. While this represents the lowest
common denominator, it would be preferable to facilitate multiple levels and versions of support.
As a result of the backwards compatibility of SBML, this could be easily facilitated through in-
heritance, whereby a base class would allow the integration of L2V1, with progressive subclasses
allowing for the integration of later SBML versions. Virtual functions and dynamic binding could
specify version specific behaviour where different approaches are required depending on the version.

A better user interface is a primary objective for the version 1 release. Through discussion with
the SBML community we are identifying desirable features for a simple, fast SBML model viewer,
editor and integrator. Adding complete model editing power to SBMLIntegrator is a natural step
forwards, although was not one of our initial goals, and considering the time frame was deliberate
not attempted in this project. In addition, we are looking at taking the underlying functional core
developed here, and implementing a QT framework GUI above it to allow fast and effective user
interaction. The command line approach is adequate for this project, and indeed has proven to be
necessary to allow us to complete the software in time. However, with more time, a GUI interface
has a number of significant advantages over a command line one, and we hope in the months
following this project to complete and push out a fully functional GUI based version to meet the
need identified during the early phases of this project. Additional discussion on the future work
relating to SBMLIntegrator can be found in section 6.2.3.

5Where a complex system contains one or more of the following element types: Function Definitions, Initial
Assignments, Constraints or Events

51

Chapter 3

Model Development

In this chapter we describe our development of an integrated p38 MAPK-GC signalling pathway.
Although quite a short chapter it was a significant part of the project, as it required a extensive
amount of background research. Ultimately, we present an entirely new SBML model, which we
hope will in the future help demonstrate the existence of crosstalk between the p38 MAPK and
GC signalling pathways.

Early in the project, we held discussions with Professor Ian Adcock, who planned to carry out
wet lab experiments to obtain empirical data relating to the species defined in our model. The hope
was that by comparing the data generated through Monte Carlo parameter estimation simulations
with the real, empirical data, we would be able to identify parameter sets which, upon simulation
using our model, would generate results in line with the available experimental data. By comparing
how those parameter sets change when the two pathways are integrated (specifically in relation to
the p38-MAPK pathway) we hope to identify any impact the GC pathway has on the p38 MAPK
pathway and vice-versa, which would be indicative of the crosstalk suggested in the introductory
chapter.

3.1 GR Pathway Development

As described in figure 1.8, our starting point was the p38 MAPK model developed by Pfizer.
A number of possible related pathways were considered for exploration and development in the
context of the p38 MAPK pathway. These included the Interleukin-2 (IL-2), Interleukin-4 (IL-4)
and Interleukin-13 (IL-13). Research suggested the IL-13 may be one of the crucial mediators
of asthma[71], however upon research into pathway structure it was determined insufficient data
exists to generate an effective model. Similarly, despite their potential role, both IL-2 and IL-4
have extensive roles in a number of other processes[52], suggesting that any simplified pathway
would have fundamental and potentially overwhelming flaws due to the absence of any interaction
with typical cellular components. GCs, however, have a much more specific role, and are almost
exclusively associated with the anti-inflammatory response, and it is with this activity that they
fulfil their role as a treatment for chronic asthma.

With this in mind, the GC pathway seemed an ideal starting point for designing a complemen-
tary signalling pathway which could be merged into the previously designed p38 MAPK pathway
model. Developing a new model pathway is not an easy task. There are necessary simplifications
which must be made to make the process tractable, and identifying the core pathway components
while avoiding unnecessary periphery can be impossible when data is lacking. For this development,
an extensive and broad research phase was carried out, looking at the various possible components
in the GC pathway. In this development process, there is a need to carefully balance model com-
plexity with completeness; if the model is too simplistic we miss out on key nuances which give
characteristic system behaviour. Inevitably a model will be far more simple than the biological

52

CHAPTER 3. MODEL DEVELOPMENT 3.1. GR PATHWAY DEVELOPMENT

reality. However, with our understanding of a biochemical pathway, there is a fundamental bias
towards proteins or pathway components that are well known, easy to isolate, biochemically stable
and easy to detect. This means while there may be a significant amount of data for component X,
X may not be a core element of this pathway, but instead represents a species for which detection
assays are highly sensitive, a species which is more abundant, or a species which is simply impli-
cated by virtue of its role in other similar pathways. There is a need to bear these pitfalls in mind
during the model development process.

On the following page we introduce our GR signalling pathway. The schematic provides an
overview of the model, followed by a more detailed description of the model. We have numbered
the reactions starting at 36 as the reactions in the p38-MAPK pathway go from 1 to 35. Therefore,
to facilitate an easier nomenclature in the integrated model, we have begun ours at 36.

Global
Reaction
Number

Reaction ID Reaction name Reaction constants

36 rxnGR_1 GR + GC association GR_rxn1_kf, GR_rxn1_kr
38 rxnGR_2 GR + p38p association GR_rxn2_kf, GR_rxn2_kr
39 RxnGR_3 p38P_GR catalysis GR_rxn3_kc
37 RxnGR_4 GR dimerization GR_rxn4_kf, GR_rxn4_kr
41 RxnGR_5 JNK activation GR_rxn5_kf, GR_rxn5_kr
42 RxnGR_6 JNK + AP1 association GR_rxn6_kf, GR_rxn6_kr
43 RxnGR_7 AP1_JNK catalysis GR_rxn7_kc
45 RxnGR_8 AP1P + GR association GR_rxn8_kf, GR_rxn8_kr
46 RxnGR_9 Nf-kB + IkB association GR_rxn9_kf, GR_rxn9_kr
47 RxnGR_10 Nf-kB_IkB + complex association GR_rxn10_kf,

GR_rxn10_kr
48 RxnGR_11 Nf-kB_IkB_complex catalysis GR_rxn11_kc
40 RxnGR_12 GRP spontaneous dephos. GR_rxn12_kf
44 RxnGR_13 AP1P spontaneous dephos. GR_rxn13_kf
49 RxnGR_14 GR + Nf-kB association GR_rxn14_kf,

GR_rxn14_kr
50 RxnGR_15 GR_dimer nuclear impor GR_rxn15_kf,

GR_rxn15_kr
51 RxnGR_16 NfkB nuclear import GR_rxn16_kf,

GR_rxn16_kr
52 RxnGR_17 AP1P nuclear import GR_rxn17_kf,

GR_rxn16_kr
53 RxnGR_18 GR dimer + antiInf DNA association GR_rxn18_kf,

GR_rxn18_kr
54 RxnGR_19 MKP-1 protein expression GR_rxn19_kf
55 RxnGR_20 IkB protein expression GR_rxn20_kf
56 RxnGR_21 Nf-kB + proInf DNA association GR_rxn21_kf,

GR_rxn21_kr
57 RxnGR_22 AP1P + proInf DNA association GR_rxn22_kf,

GR_rxn22_kr
60 RxnGR_23 Pro Inf. DNA + GR dimer association GR_rxn23_kf,

GR_rxn23_kr
58 RxnGR_24 Pro inf. protein expression1 GR_rxn24_kf
59 RxnGR_25 Pro inf. protein expression2 GR_rxn25_kf
61 RxnGR_26 IkB nuclear import GR_rxn26_kf,

GR_rxn26_kr

Table 3.1: GC signalling pathway - Reaction numbers, IDs, names and associated rate constants. Please note that
the GR_rxn<number>_k*_ASSIGNED rate constants are in fact not constants, but instead reflect the result of the
assignment rule, where the GR_rxn<number>_k*_ASSIGNED is a variable defined by the equation GR_rxn <
number > _k ∗ ×compartment_volume where the compartment depends on the direction of the reaction.

53

3.1. GR PATHWAY DEVELOPMENT CHAPTER 3. MODEL DEVELOPMENT

Figure 3.1: Glucocorticosteroid signalling pathway. GC binds to the inactive GR-inhibitor complex, causing
the release of the inhibitor and activating the GR. The GR monomer can bind to p38P, where p38P then phospho-
rylates and inactivates the GR. It can also bind the active AP-1P transcription factor, sequestering it and down
regulating it’s pro-inflammatory impact. Similarly, it also sequesters the NF-κB transcription factor to reduce it’s
pro-inflammatory effects. Finally, the GR can also dimerize, forming a dimeric transcription factor. This GR dimer
undergoes bidirectional transport into the nucleus where it binds to anti inflammatory genes and triggers anti inflam-
matory protein expression, including the expression of MKP-1, the p38P dephosphorylase and IκB, the NF-κB specific
inhibitor. In addition to this positive transcription regulation, GR can also bind to pro inflammatory genes, inhibiting
the binding of transcription machinery and blocking their expression. AP-1P, mentioned previously is formed through
AP-1 phosphorylation which is catalysed by JNK. AP-1P is dephosphoryalted by a number of proteins, an similarly
JNK is activated and deactivated by a number of different factors, this includes both positive and negatively acting
phosphorylation and displays extensive tissue specificity. To simplify this, we describe JNK’s activation/inactivata-
tion and AP-1Ps dephosphorylation as a simple first order reversible reaction. If AP-1P remains active and is not
sequestered by GR it can undergo nuclear transport and bind to pro-inflammatory genes, triggering the expression
of generic pro-inflammatory proteins. TAK1 complex can phosphorylate the NF-κB-Iκ complex, releasing NFκB-Iκ
from it’s inhibitory subunit and allowing it to move into the nucleus, where, like AP-1P, it triggers the expression
of generic pro-inflammatory proteins after binding to pro-inflammatory genes. For the process of protein expression,
we combine transcription and translation into a single process, treat all nucleotides as an unlimited pool at a fixed
concentration, and consider the only factor which impacts gene expression to be the transcription factor in question.
This is a gross simplification, but will suffice for an initial model.[6][7][4][5][35][48][53][62][51][41][14][21][10][37][2]

54

CHAPTER 3. MODEL DEVELOPMENT 3.1. GR PATHWAY DEVELOPMENT

The model is similar to the p38 MAPK model in a number of respects. We deliberately chose
to model conversion reactions as a reversible forwards association step, and a second, irreversible
catalytic step. For example p38P and the active GR associate together in reaction 38, and this
GR_p38P complex can either collapse back to it’s constituent reactants, or progress through the
catalytic reaction (39) to form the phosphorylated GR (GRP), while the p38P species remains
unchanged. It is important to not that these reactions fail to account for molecular mechanisms in
any way, nor do they include the affect of modifiers on the reactions.

In addition to the proteins, the GR pathway includes DNA expression regulation. To describe
protein expression in such a simplistic system is difficult. The process of DNA expression is highly
complicated, and the effect of positive and negative regulation very delicate, complex and multi-
faceted. We have attempted here to define a simple approximation for DNA expression, using the
same underlying principles used for protein-protein catalysis. For a review of the core components
of protein expression see section 1.3.1. We represent the binding of transcription factors such as
the GR dimer, NF-κB and AP-1P to DNA as association reactions, similar to the protein-protein
ones described previously. However, we can estimate the concentration of anti inflammatory and
pro inflammatory DNA to a much more narrow range compared to the ranges of protein species,
based on the fact that the number of relevant genes can be far more accurately estimated than the
concentration of a protein. The number of genes remains static, and is consistent for all cells in an
organism, while protein concentration is dynamic, and varies widely in a cell specific manner.

As the foundation for our range, typical multi-target transcription factors my bind around 10
different genes with common promoter or enhancer regions. From this we can estimate there are
around 10 proteins which can have their expression directly triggered through (say) GR dimer
binding to DNA (we assume one gene-one protein hypothesis, ignoring RNA processing). We must
estimate the number of nucleotides which GR can use to recognize the promoters of the relevant
proteins. This is difficult, as it not only depends on the DNA sequence, but also DNA structure. As
a rough estimate, we suggest 40 nucleotides either side of the promoter region, plus 8 nucleotides
for the promoter itself. Based on this estimate, each of the 10 DNA sequences where GR dimer
could bind includes 88 nucleotides, meaning there are 880 possible nucleotides that GR dimer could
bind to and correctly associate with the promoter. These are rough estimates, largely based on
general trends and not pertaining to a specific target. We need to determine a general range of
orders of magnitude to begin the parameter estimation process, and depending on the outcome we
can change this range as seems appropriate. Do not consider these numbers hard values.

Using Avogadro’s law we can determine the number of moles;

Na = N

n
≡ n = N

Na
≡ n = 880

6.023× 1023 = 1.4611× 10−21mol (3.1)

Using the nuclear volume as 1×10−13 we can then calculate the concentration of relevant DNA;

c = n

V
≡ c = 1.4611× 10−21

1× 10−13 = 1.4611× 10−8mol/l (3.2)

This gives a concentration of around 0.015µmol, placing it within an equivalent range of of
the concentration of protein species, although somewhat lower than the majority of species, as we
would expect. To achieve biochemically relevant DNA binding at this concentration, the kon for
GR dimer would need to be at the top end of the range of kon, with second order forward rate
constants around 1×106M−1. Indeed, such a kon rate constant would be consistent with a number
of empirical studies evaluating promoter association rates[15][59]. Compared to protein species, the
concentration of relevant DNA is static, and although this concentration estimation is effectively
no more than an educated guess, it does represent a value which can be quantitatively checked
and updated easily, and is likely to be far more consistent between cells irrespective of tissue. For
simplicity, we assume a concentration one order of magnitude around 0.01µmol.

55

3.1. GR PATHWAY DEVELOPMENT CHAPTER 3. MODEL DEVELOPMENT

The empirically defined association rates of DNA and transcription factor give an estimated
range of between 104 and 109. However, the process of transcription uses a number of molecular
clamps and other mechanisms to ensure that once transcription begins the process continues until
completion. For our model this is not the case - here this association rate determines the concentra-
tion of DNA:transcription factor which in a gross simplification is then converted in a single reaction
to transcription factor and expressed protein. Considering this, the ranges for DNA-transcription
factor association should higher than the empirical values predict, and should correlate with the
rate of protein expression to ensure it is statistically likely for proteins will ever be expressed.

The rate of protein expression can be less accurately estimated based on empirical data, as we
condense both transcription and translation into a single, mass action based reaction. Initially we
attempted to define a range based on available empirical data. However, it very quickly became
clear that a huge number of factors1 make such an estimation for our simplified and condensed
“gene expression” reaction impossible. Instead, we consider the reaction in the context of this
model and simulation, as opposed to the reaction in the context of the empirical data associated
with the phenomena. Choosing an (empirically) realistic low rate constant would be incorrect, as
such rate constants simply describe the rate at which nucleotides are transcribed, or amino acids
polymerized. However, for this reaction we are simplifying the DNA and the transcription factor to
two, single species, which combine and produce two species. We must therefore give the reaction a
rate constant appropriate for a simple chemical reaction, not a the empirical data associated with
gene transcription and translation.

With this in mind, we define the DNA-transcription factor association rate as between 108 and
1011 M−1 min−1, meaning the DNA has a very high affinity for the transcription factors. We define
the reverse reaction as between 10−6 and and 10−1 min−1, reducing the dissociation rate by half
that of other reaction ranges. We then define the forward protein expression rate as being between
10−4 and 100 min−1. This is a lower range than other reactions, meaning that proteins will still be
generated (as the DNA-transcription factor is a super-stable complex) but this generation should
occur at a significantly reduced rate compared to other reactions. The nucleotide concentration
is then also defined with the same range as normal species, except they remain constant through
the reaction by setting their boundary conditions boolean attribute to "TRUE". This reflects that,
except under exception circumstances, nucleotides do not represent a limiting factor the protein
expression, and our model does not include the pathways necessary to generate more nucleotides

A final comment of the values presented here - these simply represent a starting point to
narrow the search space. They are educated, intelligent guesses, based on a significant amount of
background work and experience. They are a starting point from which we can build a model,
and hopefully using empirical data begin to improve and enhance the range and model description.
Other rate constant and initial concentration ranges were based on the values used by Hendriks et
al[30] to maintain model parity between the two models.

1Factors include tissue specificity, species specificity, oxidation state, growth conditions, gene, transcription factor,
and post translational modification

56

CHAPTER 3. MODEL DEVELOPMENT 3.1. GR PATHWAY DEVELOPMENT

Compartment Name Lower conc Upper conc
medium medium_GC 10−3 102

cytosol cytosol_GR_inactive 10−3 102

cytosol cytosol_p38P_GR 0 0
cytosol cytosol_GRP 0 0
cytosol cytosol_GR 0 0
cytosol cytosol_GR_dimer 0 0
cytosol cytosol_JNK_inactive 10−3 102

cytosol cytosol_JNK 0 0
cytosol cytosol_AP1 10−3 102

cytosol cytosol_JNK_AP1 0 0
cytosol cytosol_AP1P 0 0
cytosol cytosol_NFkB 0 0
cytosol cytosol_IkB 0 0
cytosol cytosol_NFkB_IkB 10−3 102

cytosol cytosol_NFkB_IkB_complex 0 0
cytosol cytosol_NFkB_GR 0 0
cytosol cytosol_p38P 0 0
cytosol cytosol_AP1P_GR 0 0
cytosol cytosol_complex 0 0
nucleus nucleus_MKP1 0 0
nucleus nucleus_IkB 10−3 102

nucleus nucleus_NFkB 10−3 102

nucleus nucleus_GR_dimer 0 0
nucleus nucleus_nucleotides 10−3 102

nucleus nucleus_antiInfDNA 10−3 10−1

nucleus nucleus_antiInfDNA_GR_dimer 0 0
nucleus nucleus_proInfDNA 10−3 10−1

nucleus nucleus_proInfDNA_NFkB 0 0
nucleus nucleus_proInfDNA_AP1P 0 0
nucleus nucleus_proInfDNA_GR_dimer 0 0
nucleus nucleus_proInfProteins 0 0

Table 3.2: Initial concentrations. Non zero values originate either from ranges determined by
Hendrix et al, or (in the case of DNA) based on our discussion on the previous page.

57

3.1. GR PATHWAY DEVELOPMENT CHAPTER 3. MODEL DEVELOPMENT

Name Description Rxn Lower Upper Units
GR_rxn1_kf GR_inactive:GC association rate 1 104 107 M−1 min−1

GR_rxn1_kr GR_inactive:GC dissociation rate 1 10−4 101 min−1

GR_rxn2_kf GR:p38P association rate 2 104 107 M−1 min−1

GR_rxn2_kr GR:p38P dissociation rate 2 10−4 101 min−1

GR_rxn3_kc p38P catalytic rate on GR 3 10−2 102 min−1

GR_rxn4_kf GR dimerisation rate 4 104 107 M−1 min−1

GR_rxn4_kr GR un-dimerisation rate 4 10−4 101 min−1

GR_rxn5_kf JNK activation rate 5 10−4 101 min−1

GR_rxn5_kr JNK inactivation rate 5 10−4 101 min−1

GR_rxn6_kf JNK:AP1 association rate 6 104 107 M−1 min−1

GR_rxn6_kr JNK:AP1 dissociation rate 6 10−4 101 min−1

GR_rxn7_kc JNK catalytic rate on AP1 7 10−2 102 min−1

GR_rxn8_kf AP1P:GR association rate 8 104 107 M−1 min−1

GR_rxn8_kr AP1P:GR dissociation rate 8 10−4 101 min−1

GR_rxn9_kf NfkB:IkB association rate 9 104 107 M−1 min−1

GR_rxn9_kr NfkB:IkB dissociation rate 9 10−4 101 min−1

GR_rxn10_kf TAK1:NFkB_IkB association rate 10 104 107 M−1 min−1

GR_rxn10_kr TAK1:NFkB_IkB dissociation rate 10 10−4 101 min−1

GR_rxn11_kc TAK1 catalytic rate on NfkB_IkB 11 10−2 102 min−1

GR_rxn12_kf Spontaneous GRP dephosphorylation 12 10−4 101 min−1

GR_rxn13_kf Spontaneous AP1P dephosphorylation 13 10−4 101 min−1

GR_rxn14_kf NfkB:GR association rate 14 104 107 M−1 min−1

GR_rxn14_kr NfkB:GR dissociation rate 14 10−4 101 min−1

GR_rxn15_kf GR dimer nuclear import rate 15 10−4 101 min−1

GR_rxn15_kr GR dimer nuclear export rate 15 10−4 101 min−1

GR_rxn16_kf NfkB nuclear import rate 16 10−4 101 min−1

GR_rxn16_kr NfkB nuclear export rate 16 10−4 101 min−1

GR_rxn17_kf AP1P nuclear import rate 17 10−4 101 min−1

GR_rxn17_kr AP1P nuclear export rate 17 10−4 101 min−1

GR_rxn18_kf GR dimer:antiInf DNA association rate 18 108 1011 M−1 min−1

GR_rxn18_kr GR dimer:antiInf DNA dissociation rate 18 10−6 10−1 min−1

GR_rxn19_kf MKP-1 protein expression rate 19 10−4 100 min−1

GR_rxn20_kf IkB protein expression rate 20 10−4 100 min−1

GR_rxn21_kf Nf-kB:proInf DNA association rate 21 108 1011 M−1 min−1

GR_rxn21_kr Nf-kB:proInf DNA dissociation rate 21 10−6 10−1 min−1

GR_rxn22_kf AP1P:proInf DNA association rate 22 108 1011 M−1 min−1

GR_rxn22_kr AP1P:proInf DNA dissociation rate 22 10−6 10−1 min−1

GR_rxn23_kf Pro Inf. DNA:GR dimer association 23 108 1011 M−1min−1

GR_rxn23_kr Pro Inf. DNA:GR dimer dissociation 23 10−6 10−1 min−1

GR_rxn24_kf Pro inf. protein expression1 rate 24 10−4 100 min−1

GR_rxn25_kf Pro inf. protein expression2 rate 25 10−4 100 min−1

GR_rxn26_kf IkB nuclear import rate 26 10−4 101 min−1

GR_rxn26_kr IkB nuclear export rate 26 10−4 101 min−1

Table 3.3: Reaction constant ranges and units, ranges based on work by Hendriks et al. and our
estimations

58

CHAPTER 3. MODEL DEVELOPMENT 3.2. P38 UPDATE

3.2 p38 Update
The original SBML file provided as supporting information by Hendriks et al. provides an excel-
lent starting point for the p38 MAPK model. It does, however, require some changes to make it
usable, as in its current state it fails both to conform the SBML L2V1 specification as well as the
requirements which allow it to be simulated in matlab. This was a tedious process of removing a
significant amount of redundancy, and restructuring the way reaction rates were calculated. In the
original p38 model2, kinetic laws for reactions were defined as a variable, with that variable set by
an assignment rule. We reformatted the model so reaction rules were simply the rules themselves,
avoiding an unnecessary intermediate assignment.

Reaction constants in the updated p38 model3 have the format main_P_<type>_<species>.
These are the true constants for the reactions. However, the “constants” actually used in the rate
equations have the format main_<compartment>_<reaction-number>_<type>, and are in fact
not constant. For clarity, we refer to them as applied values. These applied values are instead
assigned on each time step through the simulation by an assignment rule, generally of the formula;

[main_ < compartment > _ < reaction− number > _ < type > = main_P_ < type > _ < species >]
(3.3)

For the majority of the rules, this introduces unnecessary redundancy. However, it allows us to
maintain a single constant, but add additional factors the change the applied value. This is best
demonstrated by the nuclear import and export reactions, where the rate is crucially dependent on
the nuclear and cytoplasmic volume.

[main_cytosol_Rxn135_Kf = main_P_ki_p38P × comp_cytosol] (3.4)

Additionally, the model provides all units of time as seconds, while their paper uses minutes.
To accommodate for this we converted all units which use seconds into minutes by multiplying by
0.016. To ensure consistent units throughout, we converted the LPS concentration from ng/ml into
Molar. This is not strictly necessary, however it means the rate constants for the LPS + TLR4
reaction are in equivalent and comparable units to the rest of the model. 10 ng/ml evaluates to
1×10−11 or 100nM assuming an LPS molecular mass of 100 kDa[8]. This also changed the range of
values which the rate constant could be at, although the units stated are describe as ng/ml/Min−1,
it is our belief that this should in fact read 1/(ng/ml)/Min to give a unit consistent model. As a
result, the range is transformed from between 1×10−4 and 1×107 to between 1×10−5 and 1×106.
Finally, the diagram shown in figure 2.2 is not identical to the one produced by Hendriks et al. We
have made a small but crucial adaptation to change reaction 4 from

TAK1_complex_inactive→ TLR4 (3.5)

to

TAK1_complex_inactive→ LPS : TLR4 (3.6)

It is the author’s opinion that the original diagram contains an error. If the inactive TAK1Complex
could degrade TLR4 alone, this would represent an irreversible exit point for LPS from the system.
In the original SBML model provided by Hendriks, the reaction uses formula 3.6, not 3.5. We have
therefore opted to use this in our model.

2p38model.xml in supporting information
3p38_idealized_model.xml in supporting information

59

3.2. P38 UPDATE CHAPTER 3. MODEL DEVELOPMENT

3.2.1 Testing the p38 MAPK Model

To ensure the restructuring of the p38 model was successfully, we loaded in the best fitting idealized
parameter set generated by Hendriks et al. (and used by Baroukh[8]) into the model and ran a 7200
second simulation in matlab. The results generated were highly similar to the empirical data, and
essentially identical to the JACOBIAN simulations done by Hendriks et al (figures below).

Figure 3.2: 10 ng/ml LPS simulations done in JACOBIAN by Hendriks et al. compared with the experimental
data

Figure 3.3: 10 ng/ml LPS simulations done in matlab

These results were very encouraging. At this stage, it would have also been good to simulate
our isolated GC pathway and compared results to the experimental data. However, the required
experimental data (do select appropriate parameter sets for the model) was not available at this
time.

60

CHAPTER 3. MODEL DEVELOPMENT 3.3. INTEGRATION PROCESS

3.3 Integration Process
With our isolated GR model complete, we used the SBMLIntegrator software described in chapter
2 to integrate our GR model with with the p38 MAPK model. After the significant discussion
regarding integration theory in chapter 3 we will not go into detail on how this was accomplished.
Instead, we include the integrate.conf file in the supporting information, which details the integra-
tion parameters used.

As the GC signalling pathway was constructed with the specific purpose of being integrated
with the p38 MAPK pathway, there were no species or reactions to integrate. Designing the
configuration file4 took five minutes, and running the integration was essentially instant. The ease
at which these pathways can be re-integrated through the use of the same configuration file (or
have their integration parameters updated) allows us to easily make changes and updates to the
models individually and then re-run the model integration. This has proven to be invaluable, as we
made a number of minor changes and corrections from the original integrated model. We include
a full diagrammatic schematic of the integrated model on the following page.

4Included in supporting information as integration/integrate.conf

61

3.3. INTEGRATION PROCESS CHAPTER 3. MODEL DEVELOPMENT

Figure 3.4: Integrated p38 MAPK - glucocorticosteroid signalling model - For details of the p38 pathway
topology please see the paper by Hendriks et al. For details on the GC topology see figure 3.1

62

CHAPTER 3. MODEL DEVELOPMENT 3.4. THE INTEGRATED MODEL

3.4 The Integrated Model
This model is relatively self explanatory, it combines the models defined in figure 1.8 and figure
3.1 into a single model. There are a number of positions along the pathway where crosstalk could
occur. p38P provides a crucial integration point between the pathways, and is formed by the
action of both MKK3 and MKK6 on p38. p38P binds to active, monomeric GR and phosphory-
lates it into an inactive form, essentially acting as an off switch for the GC signalling pathway.
Similarly p38P binds to and phosphorylates the TAK1 complex into an inactive state, meaning
p38P has an antagonistic impact in the two pathways - the TAK1 complex leads to inflammation,
while the active GR down regulates it. However, we should consider the species role in the in-
dividual pathways to consider the ultimate role of p38P in the integrated pathway. In the p38
pathway, p38P acts to trigger inflammation, and it’s role in deactivating TAK1 is one of negative
feedback, a regulation control on the pathway to avoid a run-away inflammatory response. In the
GC signalling pathway, however, p38P is a pure antagonist to GC’s activity, and has no further role.

A second, related interaction point between the two models is that of MKP-1 in the nucleus.
Active GR forms dimers which move into the nucleus. Here they trigger the expression of anti
inflammatory proteins include MKP-1, the p38P phosphorylase. The increased MKP-1 expression
causes an increase in the rate of p38P dephosphorylation into an inactive state in the nucleus,
helping to down-regulate it’s nuclear activities.

Finally, the TAK1 complex interacts with the IκB - NF-κB complex to release NF-κB. IκB
sequesters NF-κB, stopping it from causing pro-inflammatory DNA expression. By freeing NF-κB,
the TAK1 complex promotes the expression of of pro-inflammatory proteins indirectly. Active GR
binds to and sequesters NF-κB, stopping it from promoting pro inflammatory expression.

Despite having just three points where the pathways interact, they are on three crucial proteins.
By comparing the affect of LPS and dexamethasone (a synthetic GC) on the levels of various
proteins, we hope to use this pathway to propel the qualitative and quantitative investigation into
MAPK-GC crosstalk. To use these pathways, we have developed a set of scripts to carry out
Monte Carlo parameter generation and evaluation. By comparing the outcome of simulations run
with the data generate by these scripts with real experimental data, we hope to begin to generate
putative parameter sets. By evaluating how these sets change in response to different experimental
conditions, we hope to gain insight into the signalling process involved.

63

Chapter 4

Parameter Generation

In this chapter we discuss the final phase of this dissertation, the generation of parameter sets, the
simulation of the models, and their evaluation. We consider our design process for the matlab
scripts which implement these tasks and consider any difficulties and how we overcame them. With
the technical description of these scripts complete, the resulting simulation results are described,
and the implications of these results considered. It should be noted the primary purpose of this
project was not parameter estimation and evaluation. If this were the case, the following chapter
would require a far more rigorous approach in terms of the underlying statistics, the mechanism of
parameter generation, and the evaluation of the generated results. Instead, this phase was originally
part of a means to asses the validity of the integrated model, as well as potentially demonstrate
the existence of crosstalk between the two signalling pathways (p38 MAPK and the GC signalling
pathway) in the integrated model as described in the preceding chapters. However, the experimen-
tal data required to biologically contextualize the integrated model was not obtained, and so as a
result crosstalk evaluation was not possible.
Despite this, we include the following discussion, as with the exception of this experimental data,
this project is completely prepared to run our Monte Carlo parameter estimation scripts and assess
the generated parameter sets. It is our hope that as soon as this data becomes available, this
assessment can begin.

We do not include a discussion on the concepts behind the Monte Carlo parameter estimation
here, please refer to section 1.5 for further details. Instead, we evaluate our scripts, describing their
design and implementation and evaluate their efficiency.

4.1 MATLAB Script Overview
Below we include a structural overview of the driver script which facilitates the process of parameter
generation1. The script can be seen as two halves, a set up half, were parameters are defined, data
is loaded, and the system is prepared for the impending Monte Carlo simulation, and a simulation
half. In matlab Code 1 we describe, this first part, while the second is described in matlab code
2. We use a combination of matlab pseudo code and comments to convey the modularity of the
procedure, while ensuring the process remains clear and conceptually tractable.

1Included in supporting information as /monte_carlo_simulation/additional_information/parameter_estimation_skeleton.m

64

CHAPTER 4. PARAMETER GENERATION 4.1. MATLAB SCRIPT OVERVIEW

% |||
% SETTINGS

% Model settings

% Model settings are those relating to the overall model. We set the file
% name for the model and the replacement number.

% Species Settings

% Settings defining species related parameters. We set some species numbers
% and concentrations of our variables such as LPS and Dexamethason

% Simulation Settings

% Things specific to the ODE simulation and parameter generation steps.
% We define the number of Monte Carlo loop iterations, the simulation length,
% the max timestep and how we generate random numbers

% Ouput Settings

% Output settings are those relating to what data we output, and the system
% we’re running on (Windows or Linux)

% |||
% LOADING DATA

experimental_data = load_experimental_data(...)

normalized_experimental_data = normalize(experimental_data)

model = load_SBML_model(filename)

% |||
% PRE-SIMULATION SETUP

set_formatting_for_windows_or_unix()

% Determine concentration of any species not in Molar (i.e. LPS is in
% ng/ml, so we convert it).

determine_concentrations(...)

% Set simulation settings, including ODE solver to be used (ode23s),
% the relative max tolerance (1e-02) and all the settings you defined
% in the "settings" bit earlier
set_simulation_settings(model)

[missing_initial_concs, missing_params] = identify_missing_parameters(model,
replacement_number)

check_file_structure()
preconstruct_matrices()

matlab Code 1: Script part 1/2: Setup, loading and initialization

65

4.1. MATLAB SCRIPT OVERVIEW CHAPTER 4. PARAMETER GENERATION

4.1.1 Setup, Loading and Initialization

Settings
The settings provide the input for users using this script to define variables. It should be noted
these scripts are very much specific to specific models, although there are some parameters the user
may want to alter which are included in the settings section of the script. Below is a summary of
those settings and a description of each;

Variable Description
model_name Name of the .xml SBML file to be uploaded
replacement_number Value used by the script to identify parameters which are to be generated
p38P_species_number Model index number for p38P
Hsp27P_species_number Model index number for Hsp27P
LPS_species_number Model index number for LPS
LPS_concentration Concentration of LPS in ng/ml
LPS_molar_mass Molar mass of LPS
N_montecarlo_iterations Number of Monte Carlo loop iterations
simulation_length Number of simulation seconds to run
max_timestep Maximum time step through simulation
randomization_type Type of randomization used (1,2 or 3)
plot_graphs_on_success Record .fig of P38p and Hsp27p data for working sets
results_folder Name of folder for output
threshold_val Sensitivity threshold for good parameters (-1 to 1)
windows Working in windows (true/false)
unix Working in a *Nix environment (true/false)

Table 4.1: Settings for matlab script

Loading data
Here, three types of data are loaded into the system. The times at which samples were taken as
a row vector, one or more sets of experimental results themselves, also as a row vector (where
the number of elements in the time points vector must equal the number of elements in the re-
sults vector), and the SBML model itself, which is loaded based on the file name defined in settings.

Pre-simulation setup
In this section we carry out all the pre-simulation checks, conversions and set ups. This includes
setting the ODE configurations, identifying the number of species in the model and carrying out any
unit conversions to ensure parameters are homogeneous in terms of units. We also check to see if a
folder exists with the defined folder name - if it does not we create one, so it is imperative the user of
the scripts has write permission in the defined output folder. We also use the replacement_number
defined in “Settings ” to create a matrix which contains the index location of the parameters
and initial concentrations which require random values to be generated for them. The variable
replacement_number acts as a place-holder to represent, “This value must be generated”, which
by default we set to 99999. When the user is creating a model to simulate in this script they
add this value into any parameter or initial concentration attribute they wish for a random value
to be generated. Using the identify_missing_parameters(model, replacement_number) function, we
scan through the loaded SBML model, and wherever we find an instance of the value, we index
the location of that initial concentration or parameter in the model. This generates two matrices,
one for all the indexed initial concentrations (missing_initial_concs) and one for all the indexed
parameters (missing_params). We must use a numerical value as this number because the SBML
specification ensures that values in parameters or initial concentration must be of type double.
However, by hard coding in we run the (somewhat unlikely) risk of replacing a real value which is
actually 99999. It is the users responsibility to ensure the replacement_number does not clash with
any real values in the model.

66

CHAPTER 4. PARAMETER GENERATION 4.1. MATLAB SCRIPT OVERVIEW

% |||
% MONTE CARLO SIMULATION

for 1 to number of loop iterations
% Generate a random set of parameters for the model based on the missing
% initial concentrations and parameters defined in the pre-simulation setup
[new_conc, new_param] = generate_parameters(missing_initial_concs,

missing_params,
randomization_type)

% Load newly generate initail_concs and parameters into the model
model = load_model(new_conc, new_param, model);

% RUN SIMULATION!
try

[t,x,names]= sbiosimulate(model);
catch error

keyboard
continue

end

% Normalize all the results
normalized_results = normalize(results)

% Compare the results with any experimental data you have
good_value = compare(normalized_experimental_data, normalized_results)

% If a parameter set generates good results, save it and the loaded
% model to results/<parameter_set_number>_<date>
if (good_value)

save_data()

% If not then discard
end of for loop

matlab Code 2: Script part 2/2: Simulation, evaluation and recording or data

4.1.2 Simulation and Evaluation

matlab Code 2 describes the second half of the script, where the parameters are generated, the
simulation run and the results compared with our pre-loaded empirical data. The
generate_parameters(...) function takes the missing_initial_concs and missing_params variables, and
generates random parameters between a predefined range for that specific indexed variable. This
means that generate_parameters(...) has the specific ranges and the index location for each pos-
sible parameter hard-coded in, and forms the primary basis of why this script is totally model
dependent. By hard-coding these ranges and index locations we avoid a massive amount of pro-
cessing to lookup each value, although as a trade-off we do lose portability in terms of other systems.

In addition to passing the missing_initial_concs and missing_params variables, this function also
takes a randomization_type variable, which should be a value between one and three. This provides
three different ways to generate random numbers.

• Type 3 is a standard random number generator generating a uniformly distributed value
between a defined range. For example, a random number between 1 × 101 and 1 × 104 is

67

4.2. PARAMETER GENERATION RANGES CHAPTER 4. PARAMETER GENERATION

almost always on the order of magnitude of 1 × 103. The problem with this is that when
you have significant ranges of values (such as between 1 × 10−5 and 1 × 106 the probability
of getting a value less than 1 × 102 is incredibly low. This places an unjustified bias on the
upper end of the range of values offered.

• Type 2 is a similar implementation, except it rescales the range to be between 1 and a value,
generates a random integer in that range, then rescales that integer back to an appropriate
value. For example, if you were to generate a random number between 1×107 and 1×108, it
rescales this range to be between 1 and 10, generates a random int between 1 and 10 (say 4)
and rescales this back to be 4× 107. This does not change the distribution of numbers, but
it does limit the number of possible numbers.

• Type 3 is a different implementation which introduces it’s own bias but gives a much broader
range of values. Here, the range of exponents is determined, and a random integer within that
range determines the exponent of the returned value. We then generate a random number
between 0.1 and 0.999999, which is multiplied by 10 to the power of the new exponent. For
a range between 1 × 10−5 and 1 × 106, this means there is an equal probability of getting a
value on the order of magnitude of 1× 10−5 and 1× 105. The disadvantage here is that this
biases our average value towards the lower end of the range, as in reality there are “more”
numbers between 1000 and 10000 then there are between 1 and 10. However, for the sake
of generating a wide range of values for a simple randomization function in this context it
performs fine, and for that reason the default randomization_type is 3. When types 1 or 2
are used the types of results are very similar on every parameter set generation, however, a
much wider range of results (including working sets) are generated by type 3.

Once we have created our matrix of new values the load_model(new_conc, new_param, model)
function loads these new values into the model at their correct locations. With this complete we
use the aptly titled simulate(model) function to run the ODE simulation using matlab’s built in
ODE simulator. The default simulator used is the ODE23s - chemical reactions are notorious for
providing stiff ODEs[61], and our system can afford to use crude error tolerance - there is not a
specific correct value to determine. ODE23s is ideal for such a system, and although other engines
could be used we would highly recommend against it. The simulated(model) function is enclosed
in a try/catch block for easy access if a parameter set causes the system to stall. For example, if
the parameter set triggers matrix convergent errors or the system stiffness prohibits progress, sug-
gesting the parameter set is not valid, the user can press [ctrl + c] to abort the simulation. This
triggers an exception, meaning we jump into the catch block and invoke the keyboard command,
transferring control to the user. We could then select enter “resume”, which causes us to jump to
the next loop iteration or “dbquit” which aborts the entire script. Without the keyboard method
call we would be unable to quit the simulation midway through without forcing matlab to quit.

The normalize_results(results) rescales the results into a normalized form, and then
compare(normalized_experimental_data, normalized_results) uses a simple combination of interpola-
tion from the simulation data to the experimental time points followed by a coefficient cost function
to determine how similar the results are. If the results are above a certain threshold then we con-
sider this parameter set to be acceptable. The data associated with this run (the parameter set,
model, coefficient values for all comparisons, and graphs of those comparisons) are saved, and then
process repeats, generating a new random set of values and running the simulation with those
newly created values loaded into the model.

4.2 Parameter Generation Ranges

The ranges for our parameters originate from both the original p38 MAPK model and from our
own work as discussed in tables 3.2 and 3.3 (GC model) and appendix B1 and B2. These ranges are
used as input to the randomizer function in the generate_parameters2.m file. For the rate constant

68

CHAPTER 4. PARAMETER GENERATION 4.3. SIMULATIONS RUN

values, on each loop iteration, a random values is generated which lies within these ranges. For
the initial concentrations, the same is done, except only for the species which have a non-zero
concentration to begin with (as described by the aforementioned tables and appendices).

4.3 Simulations Run
We ran simulations of p38 MAPK pathway at 1, 10 and 100 ng/ml LPS. Simulations used a
threshold value of 0.88, and ran 50 000 Monte Carlo iterations, with a max time step of 100s,
leading approximately 72-100 data points per variable per simulation. We present our results of
these simulations in the following section. The ability to select parameter sets depends entirely
on the availability of experimental data. We had initially expected to obtain data relating to the
pathways under the following experimental conditions;

LPS ng/ml Dexamethasone MAPK inhibitor
1 Absent Absent
10 Absent Absent
0 Present Absent
1 Present Absent
10 Present Absent
1 Absent Present
10 Absent Present
0 Present Present
1 Present Present
10 Present Present

Table 4.2: Varying experimental conditions

These experiments were originally to be run and the results collected in good time (July), but
unfortunately various problems meant that this data was not able to be obtained. This was unfor-
tunate - without this data were were unable to run physiologically contextualized simulations of our
integrated pathway. However, using the experimental data generated by previously by Hendriks
et al. we were able to run the p38-MAPK simulation to ensure our new p38 MAPK model was valid.

In addition, we used our parameter generation algorithm to generate all of the relevant param-
eters and concentrations for our integrated system, and using the original p38 data ran a number
of simulations of the integrated system to check it’s biological validity. Such a system is not phys-
iologically relevant - the p38 data is for experimental results where no GC were present, while our
integrated system includes GC . However, despite not being physiologically relevant, running the
integrated system like this has two major advantages. We are able to confirm that our integrated
model runs, that it has been correctly implemented and does not consistently crash, hugely disrupt
the p38 results, or give wildly unexpected results. Secondly, assuming the system works correctly,
we can check that it is behaving as expected by examining the concentration of inflammatory
protein over time. Based on our models, we would expect the level of pro inflammatory proteins
to increase - there is no mechanism for their reduction, although they do not interfere with the
reaction in anyway, acting essentially as biomarkers for the model’s progress. It is predicted that
if the integrated pathway is proceeding correctly, the concentration of pro inflammatory proteins
will increase (at different but steady rates) through the course of the simulation.

69

Chapter 5

Results and discussion

We include here some of the data generated by our simulations. All the parameter sets, the complete
models and a range of other data is provided in the supporting information. Because of the lack
of experimental data and the overall aims of this project, the discussion of these parameter sets is
brief. The rate constant values are discussed exclusively, as is their impact on the concentration
trajectory (that is, how a species’ concentration varies across the simulation), while the initial
concentration values do not at this stage add any significant discussion. Some of the implications
of these results are considered, although any detailed statistical analysis is avoided. The purpose of
these simulations is not the generate parameter sets for analysis (although another project would
no doubt find a wealth of information of interest here) but instead as qualitative tools to test the
validity of both the re-structured p38 model, and our integrated p38-MAPK model. The results
should be biochemically relevant, match previous work, and meet our expectation defined in the
previous section.

5.1 p38 MAPK Simulations
Three p38 MAPK simulations were run, with critical simulation parameters defined below;

Simulation [LPS] (ng/ml) # parameter sets # loop iterations Corr. threshold
1 1 53 50000 0.88
2 10 95 50000 0.88
3 100 240 50000 0.88

Table 5.1: Summary of p38 MAPK simulations

A subsection of the concentration graphs produced by the p38 MAPK simulations are included.
These graphs show the concentrations of specific species over time generated by every parameter
sets which was determined functional based on existing experimental data. These concentration
spectrum graphs provide a qualitative overview of the progression of various species over all the
operational parameter sets. The objective here is not to analyse these data individually, but instead
to use the graphs as qualitative tools from which we can gain insight into the model, the variability
on each of those species’ and ensure the progressions meet our expectations.

70

CHAPTER 5. RESULTS AND DISCUSSION 5.1. P38 MAPK SIMULATIONS

Figure 5.1: p38P concentration spectrum. Plot (A) describes the concentration at 1 ng/ml LPS, while plot
(B) is at 100 ng/ml LPS

Figure 5.2: Hsp27P concentration spectrum. Plot (A) describes the concentration at 1 ng/ml LPS, while plot
(B) is at 100 ng/ml LPS

Despite some variation in absolute levels of both p38P and Hsp27P, there is a consistent shape,
which is highly similar to the p38P experimental data. This shape can be seen in the normalized
graphs (not shown, but in supporting information). This is in contrast to the levels of the TAK1
complex, shown on the following page. The cytosol degradation and TAK1:MKK3 spectrum graphs
(Appendix C.1-A and C.1-B) show very similar shapes, although the ranges vary significantly owing
to the different starting concentrations. The MKK6P spectrum (C.2-C) on the other hand, appears
to show a number of different behaviours. For example, the prominent red and blue lines have very
different trajectories over the simulation’s time course. However, they both represent functional
parameter sets. C.3-D and C.3-E display similar trends. In all our parameter sets for the p38P
graphs, concentration trajectories displayed generally smooth curves (with the exception of the
first few time steps where the system reaches an initial equilibrium). This is consistent both with
previous work [30][8] and represents a typical species concentration progression as shown in wide
range of system biology simulations.

71

5.1. P38 MAPK SIMULATIONS CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.3: TAK1 concentration spectrum. Plot (A) describes the concentration at 1 ng/ml LPS, while plot
(B) is at 100 ng/ml LPS

Based on the TAK1 data shown above, it appear that we have a wide range of different pro-
gressions. The overwhelming trend is an initial increase, followed by a drop in the concentration of
TAK1 (referred to through the graphs as “complex”). However, 5.3-B especially shows a huge range
of different paths - some trajectories initial jump very rapidly and immediately begin to decrease
in concentration, while others rise for the first quarter of the simulation, then begin to decrease
again. This is consistent with a species with a number of different associated reactions (TAK1 can
bind to MKK3, MKK6, p38P or undergo degradation), where each of the parameters associated
with these reactions is variable.

The table on the following page gives some simple statistics associated with the data generated.

72

CHAPTER 5. RESULTS AND DISCUSSION 5.1. P38 MAPK SIMULATIONS

Mean STD/mean

Names 1ng/ml 10ng/ml 100ng/ml 1ng/ml 10ng/ml 100ng/ml
kr_p38PMK2P 2.25 1.71 1.81 1.28 1.73 1.60
kr_LPS_TLR4 1.12 1.35 1.19 2.34 1.99 1.90
kr_p38_MKK6 1.14 1.53 1.01 2.02 1.63 2.09
kr_p38P_Ppase 1.86 1.39 1.52 1.55 1.95 1.72
ki_p38PMK2P 0.61 0.81 0.70 2.43 2.43 2.84
ki_MK2 0.80 1.30 1.17 2.64 2.01 1.99
kr_complex_p38P 1.00 1.14 1.48 1.92 2.05 1.82
kr_Hsp27P_Ppase 0.59 1.20 1.36 2.66 2.17 1.96
ki_p38 1.06 1.49 1.50 2.13 1.74 1.78
kc_p38ppase 11.44 12.65 15.42 1.88 1.93 1.70
kf_MK2_p3 2.29×106 2.27×106 2.03×106 1.37 1.34 1.42
kf_complex_p38P 1.26×106 1.63×106 1.66×106 1.72 1.63 1.56
kr_MKK3_complex 0.83 1.50 1.25 2.43 1.75 1.99
kc_MK2 20.79 25.86 19.58 1.42 1.24 1.41
kf_Hsp27P_Ppase 4.00×106 2.13×106 2.15×106 0.93 1.38 1.31
kf_MKK6_complex 1.50×106 1.66×106 1.97×106 1.76 1.56 1.45
kr_MKK6_complex 1.45 1.84 1.32 1.70 1.66 1.96
kc_Hsp27ppase 8.97 12.33 15.64 2.30 1.88 1.69
k_inactivation 0.79 0.69 0.85 2.61 2.63 2.36
kr_Hsp27_MK2 0.94 1.68 1.19 2.25 1.79 2.00
kf_p38_MKK6 1.51×106 2.00×106 2.21×106 1.74 1.46 1.35
kf_MK2P_Ppase 3.28×106 3.18×106 2.33×106 1.00 1.05 1.28
kc_MKK6ppas 11.49 15.91 14.18 1.82 1.72 1.83
kf_p38_MKK3 2.42×106 2.67×106 2.11×106 1.25 1.26 1.43
kr_MKK6P_Ppase 2.14 1.43 1.44 1.46 1.77 1.88
kc_MKK3ppase 16.76 12.88 14.54 1.68 1.81 1.79
ko_p38P 1.17 1.47 1.39 2.06 1.82 1.87
kf_MKK3P_Ppase 2.06×106 1.82×106 1.93×106 1.43 1.65 1.49
kc_MKK3 14.50 14.37 17.02 1.82 1.93 1.68
kr_MKK3P_Ppase 1.07 1.29 1.19 2.13 1.91 1.91
kc_p38Pcomplex 16.56 17.40 15.32 1.76 1.69 1.74
kc_MKK6 10.75 16.18 12.22 2.15 1.65 1.97
kf_p38P_Ppase 1.02×106 1.21×106 1.50×106 2.03 1.83 1.68
kc_complexMKK3 11.27 13.87 16.44 2.04 1.87 1.73
kf_MKK3_complex 1.79×106 1.63×106 1.86×106 1.48 1.47 1.51
kc_MK2ppase 21.11 19.79 16.94 1.40 1.57 1.57
kf_Hsp27_MK 1.34×106 1.82×106 1.61×106 1.76 1.49 1.57
kf_MKK6P_Ppase 1.68×106 1.87×106 1.84×106 1.65 1.41 1.56
ko_p38PMK2P 2.16 2.12 2.11 1.35 1.41 1.46
k_deg_complex 1.11 0.98 0.71 2.26 2.30 2.58
kr_MK2P_Ppase 0.74 0.96 0.79 2.40 2.43 2.44
k_activation 8.19 5.49 5.13 2.79 2.81 3.22
kf_p38P_Ppase_nucleus 2.51×106 2.23×106 1.76×106 1.29 1.35 1.54
kc_p38 12.18 17.86 13.60 1.97 1.73 1.80
kc_complexMKK6 18.81 15.95 17.13 1.49 1.65 1.76
ko_p38 1.47 1.36 1.30 1.91 1.91 1.89
kr_MK2_p38 1.20 1.12 1.11 2.11 2.18 2.19
kr_p38_MKK3 1.50 1.13 1.18 1.82 2.16 2.01
k_reactivation 0.87 1.30 1.40 2.15 2.03 1.83
kf_LPS_TLR4 1.01E+17 8.46E+16 7.45E+16 2.31 2.52 2.80
ko_MK2 0.93 1.10 0.99 2.17 2.06 2.09
kc_p38P_Ppase_nucleus 11.16 14.80 16.28 2.00 1.77 1.67
kr_p38P_Ppase_nucleu 0.85 1.00 1.34 2.77 2.28 1.97
ki_p38P 1.40 1.33 1.10 1.83 2.06 2.10

Table 5.2: Mean and standard deviation/mean for rate constant values generate through parameter
estimation

73

5.1. P38 MAPK SIMULATIONS CHAPTER 5. RESULTS AND DISCUSSION

We will not consider the significance of these parameters. Indeed, the method of random number
generation introduces statistical bias which means carrying out analysis of parameter distribution
assuming a uniform distribution of random sets would not be appropriate. The mean provides a
standard metric with which to asses the average value. Because of the difference in some of the
units of these parameters the standard deviation/mean metric is also included, as it gives an easily
comparable way of looking at the spread of values around the mean. As shown, these values are
fairly similar for all parameters across all LPS concentrations, and indicate a significant spread
around the mean. We avoid further statistical analysis, partly because of the nature of the project,
but additionally because with such variable data three simulations does not represent enough data
to carry out effective data mining. We include a subset of the concentration spectrum graphs in
the appendix, with captions describing features of interest. Displaying a selection of the spectrum
graphs as opposed to all of them is simply an issue of space, but all forty graphs at the three LPS
concentrations, all the parameter sets and a range of other information is included in the supporting
information.

Based on our data we feel confident that both matlab and our reconstruction of the p38
MAPK model produce results consistent both with the simulation work done by Hendriks et al.[30]
and the supporting experimental work. This in itself is a major achievement, as it facilitates a
significant potential for investigation into the MAPK-p38 pathway. matlab is a universally used
mathematical analysis and modelling tool, while JACOBIAN is much less widely used or available.
We welcome further research from computational biologists interested in pursuing work on this
pathway with more advanced parameter generation and evaluation methodologies.

74

CHAPTER 5. RESULTS AND DISCUSSION 5.2. INTEGRATED PATHWAY SIMULATIONS

5.2 Integrated Pathway Simulations

In addition to the p38 MAPK model, the parameter estimation and evaluation scripts were adapted
to operate on the integrated model, using the additional parameter and concentration ranges de-
fined in 3.2 and 3.3. As discussed, these simulation are not physiologically relevant, so analysis of
the resulting systems is inappropriate. Our metric for a functional parameter set is based upon
empirical data where GC are not present, meaning raw values and specific system behaviour is
not relevant. However, these simulations tell us a great deal about the integrated model from an
operational standpoint.

We ran a single simulation with 10 ng/ml LPS, a threshold value of 0.88 and 50000 loop
iterations. This simulation generated results consistent with our previous simulations in terms of
scale and concentration progression of species present in both, producing 113 functional parameter
sets, while the p38 MAPK pathway at the same LPS concentration generated 95 parameter sets.

Figure 5.4: Concentration spectrum graphs for (A) TAK1 and (B) Hsp27P

Figure 5.5: Concentration spectrum graphs for (A) NF-κB:IκB:TAK1 complex and (B) Anti inflammatory
DNA:GR dimer

The Hsp27P spectrum is similar to our p38 MAPK simulation spectrum. The TAK1 spectrum
is also similar the p38 MAPK TAK1 spectrum, although we do see a number of later peaking tra-

75

5.2. INTEGRATED PATHWAY SIMULATIONS CHAPTER 5. RESULTS AND DISCUSSION

jectories, suggesting there may be additional routes for the TAK1, such as binding the NF-κB-IκB
complex. The NF-κB:IκB:TAK1 concentration spectrum has a range of values not dissimilar to
the isolated TAK1 data. The anti-inflammatory DNA:GR dimer spectrum contains an even wider
range of different trajectories. Some peak very early, decline rapidly and remain there, while others
rise slowly then fall, rise over the entire course of the simulation, or even rise in a linear manner.
This probably reflects the multi-route nature of GR and the GR dimer - if we consider its position
in the integrated pathway GR_dimer can be converted back to GR easily, which interacts with a
wide number of species.

The most interesting graph, however, is that of the pro inflammatory proteins, shown below,
clearly demonstrating the predicted behaviour of gradual increase of the simulation time-scale at a
variety of different rates.

Figure 5.6: Concentration spectrum graphs for (A) TAK1 and (B) Hsp27P. We can see the Hsp27P

On the following page we include some statistics comparing integrated and non-integrated pa-
rameter sets, as well as the mean and standard deviation/mean values for the remaining parameter
sets exclusive to the GC signalling pathway.

As mentioned, statistical analysis is not offered, however, the values are consistent throughout,
suggesting a stable, functional model where neither of the p38 MAPK nor GC signalling pathways
are dominant regarding the flux of concentration. Based on these results, our initial observations
are that this integrated pathway represents a new, stable system for exploring the crosstalk between
p38 MAPK and the glucocorticosteroid signalling pathway. A significant amount of model checking
needs to be done to determine if the model behaves in a manner similar to that of the actual
pathways, however, this is the case for all system biology models, and we hope that this further
investigation can fuel research and development.

76

CHAPTER 5. RESULTS AND DISCUSSION 5.2. INTEGRATED PATHWAY SIMULATIONS

Parameter name p38 mean Integrated pathway mean Ratio

main.P.kr_p38PMK2P 1.71 1.86 0.9
main.P.kr_LPS_TLR4 1.35 1.02 1.3
main.P.kr_p38_MKK6 1.53 0.94 1.6
main.P.kr_p38P_Ppase 1.39 1.20 1.2
main.P.ki_p38PMK2P 0.81 0.65 1.2
main.P.ki_MK2 1.30 0.94 1.4
main.P.kr_complex_p38P 1.14 1.30 0.9
main.P.kr_Hsp27P_Ppase 1.20 0.97 1.2
main.P.ki_p38 1.49 1.27 1.2
main.P.kc_p38ppase 12.65 16.80 0.8
main.P.kf_MK2_p3 2.27×106 1.68×106 1.4
main.P.kf_complex_p38P 1.63×106 1.85×106 0.9
main.P.kr_MKK3_complex 1.50 1.32 1.1
main.P.kc_MK2 25.86 16.38 1.6
main.P.kf_Hsp27P_Ppase 2.13×106 3.06×106 0.7
main.P.kf_MKK6_complex 1.66×106 1.48×106 1.1
main.P.kr_MKK6_complex 1.84 1.39 1.3
main.P.kc_Hsp27ppase 12.33 11.37 1.1
main.P.k_inactivation 0.69 0.79 0.9
main.P.kr_Hsp27_MK2 1.68 1.35 1.2
main.P.kf_p38_MKK6 2.00×106 2.11×106 0.9
main.P.kf_MK2P_Ppase 3.18×106 3.03×106 1.1
main.P.kc_MKK6ppas 15.91 18.13 0.9
main.P.kf_p38_MKK3 2.67×106 2.32×106 1.2
main.P.kr_MKK6P_Ppase 1.43 0.95 1.5
main.P.kc_MKK3ppase 12.88 15.58 0.8
main.P.ko_p38P 1.47 1.32 1.1
main.P.kf_MKK3P_Ppase 1.82×106 1.70×106 1.1
main.P.kc_MKK3 14.37 12.68 1.1
main.P.kr_MKK3P_Ppase 1.29 1.30 1.0
main.P.kc_p38Pcomplex 17.40 16.68 1.0
main.P.kc_MKK6 16.18 14.33 1.1
main.P.kf_p38P_Ppase 1.21×106 1.49×106 0.8
main.P.kc_complexMKK3 13.87 12.19 1.1
main.P.kf_MKK3_complex 1.63×106 2.01×106 0.8
main.P.kc_MK2ppase 19.79 19.08 1.0
main.P.kf_Hsp27_MK 1.82×106 1.54×106 1.2
main.P.kf_MKK6P_Ppase 1.87×106 1.94×106 1.0
main.P.ko_p38PMK2P 2.12 2.02 1.0
main.P.k_deg_complex 0.98 1.14 0.9
main.P.kr_MK2P_Ppase 0.96 1.10 0.9
main.P.k_activation 5.49 8.04 0.7
main.P.kf_p38P_Ppase nucleus 2.23×106 2.15×106 1.0
main.P.kc_p38 17.86 12.58 1.4
main.P.kc_complexMKK6 15.95 18.12 0.9
main.P.ko_p38 1.36 1.27 1.1
main.P.kr_MK2_p38 1.12 1.28 0.9
main.P.kr_p38_MKK3 1.13 1.18 1.0
main.P.k_reactivation 1.30 1.28 1.0
main.P.kf_LPS_TLR4 8.46E+16 5.38E+16 1.6
main.P.ko_MK2 1.10 1.54 0.7
main.P.kc_p38P_Ppase nucleus 14.80 9.83 1.5
main.P.kr_p38P_Ppas nucleus 1.00 0.87 1.2
main.P.ki_p38P 1.33 1.20 1.1

Table 5.3: p38 MAPK at 10 ng/ml LPS mean values compare to integrated pathway with 10
ng/ml LPS mean, including the p38/integrated ratio to compare them. They are consistently
similar throughout, with a number of minor exceptions, although these may simply represent
system variation brought about by the range of possible parameters and initial concentration

77

5.2. INTEGRATED PATHWAY SIMULATIONS CHAPTER 5. RESULTS AND DISCUSSION

Parameter name p38 stdev/mean Integrated pathway stdev/mean

main.P.kr_p38PMK2P 1.73 1.57
main.P.kr_LPS_TLR4 1.99 2.18
main.P.kr_p38_MKK6 1.63 2.33
main.P.kr_p38P_Ppase 1.95 1.90
main.P.ki_p38PMK2P 2.43 2.55
main.P.ki_MK2 2.01 2.20
main.P.kr_complex_p38P 2.05 1.97
main.P.kr_Hsp27P_Ppase 2.17 2.26
main.P.ki_p38 1.74 1.86
main.P.kc_p38ppase 1.93 1.70
main.P.kf_MK2_p3 1.34 1.49
main.P.kf_complex_p38P 1.63 1.57
main.P.kr_MKK3_complex 1.75 1.94
main.P.kc_MK2 1.24 1.51
main.P.kf_Hsp27P_Ppase 1.38 1.08
main.P.kf_MKK6_complex 1.56 1.64
main.P.kr_MKK6_complex 1.66 1.87
main.P.kc_Hsp27ppase 1.88 1.98
main.P.k_inactivation 2.63 2.56
main.P.kr_Hsp27_MK2 1.79 1.86
main.P.kf_p38_MKK6 1.46 1.40
main.P.kf_MK2P_Ppase 1.05 1.05
main.P.kc_MKK6ppas 1.72 1.65
main.P.kf_p38_MKK3 1.26 1.29
main.P.kr_MKK6P_Ppase 1.77 2.16
main.P.kc_MKK3ppase 1.81 1.75
main.P.ko_p38P 1.82 1.99
main.P.kf_MKK3P_Ppase 1.65 1.60
main.P.kc_MKK3 1.93 1.85
main.P.kr_MKK3P_Ppase 1.91 1.95
main.P.kc_p38Pcomplex 1.69 1.67
main.P.kc_MKK6 1.65 1.72
main.P.kf_p38P_Ppase 1.83 1.63
main.P.kc_complexMKK3 1.87 1.93
main.P.kf_MKK3_complex 1.47 1.42
main.P.kc_MK2ppase 1.57 1.56
main.P.kf_Hsp27_MK 1.49 1.66
main.P.kf_MKK6P_Ppase 1.41 1.44
main.P.ko_p38PMK2P 1.41 1.46
main.P.k_deg_complex 2.30 2.11
main.P.kr_MK2P_Ppase 2.43 2.03
main.P.k_activation 2.81 2.69
main.P.kf_p38P_Ppase nucleus 1.35 1.36
main.P.kc_p38 1.73 1.95
main.P.kc_complexMKK6 1.65 1.52
main.P.ko_p38 1.91 1.97
main.P.kr_MK2_p38 2.18 2.06
main.P.kr_p38_MKK3 2.16 1.92
main.P.k_reactivation 2.03 2.00
main.P.kf_LPS_TLR4 2.52 3.15
main.P.ko_MK2 2.06 1.73
main.P.kc_p38P_Ppase nucleus 1.77 2.12
main.P.kr_p38P_Ppas nucleus 2.28 2.38
main.P.ki_p38P 2.06 2.07

Table 5.4: Comparing the spread around the mean for 10 ng/ml LPS p38 MAPK pathway and
integrated pathway. Shows a highly similar set of values, indicating the range around the mean is
comparable. This indicates that the integrated pathway is not destabilizing any of the original p38
MAPK parameters significantly, adding weight to the idea that it is a stable model.

78

CHAPTER 5. RESULTS AND DISCUSSION 5.2. INTEGRATED PATHWAY SIMULATIONS

Parameter name MEAN STDEV STDEV/Mean

GR_inactive:GC association rate 2.11×106 2.87×106 1.36
GR_inactive:GC dissociation rate 1.15 2.41 2.09
GR:p38P association rate 1.71×106 2.69×106 1.57
GR:p38P dissociation rate 1.17 2.45 2.10
p38P catalytic rate on GR 13.17 25.70 1.95
GR dimerisation rate 1.9×106 2.80×106 1.48
GR un-dimerisation rate 1.35 2.74 2.03
JNK activation rate 1.29 2.48 1.92
JNK inactivation rate 1.44 2.70 1.87
JNK:AP1 association rate 1.86×106 2.75×106 1.48
JNK:AP1 dissociation rate 1.01 2.20 2.17
JNK catalytic rate on AP1 12.92 25.25 1.96
AP1P:GR association rate 2.08×106 3.02×106 1.45
AP1P:GR dissociation rate 1.28 2.41 1.88
NfkB:IkB association rate 1.77×106 2.53×106 1.43
NfkB:IkB dissociation rate 0.72 1.72 2.39
TAK1:NFkB_IkB association rate 2.24×106 3.08×106 1.37
TAK1:NFkB_IkB dissociation rate 1.22 2.46 2.01
TAK1 catalytic rate on NfkB_IkB 11.57 24.16 2.09
Spontaneous GRP dephosphorylation 1.08 2.22 2.05
Spontaneous AP1P dephosphorylation 1.22 2.57 2.11
NfkB:GR association rate 2.03×106 2.90×106 1.43
NfkB:GR dissociation rate 1.41 2.46 1.75
GR dimer nuclear import rate 0.99 2.10 2.11
GR dimer nuclear export rate 0.84 2.09 2.48
NfkB nuclear import rate 0.97 2.45 2.52
NfkB nuclear export rate 1.22 2.32 1.91
AP1P nuclear import rate 1.41 2.47 1.75
AP1P nuclear export rate 1.24 2.43 1.96
GR dimer:antiInf DNA association rate 2.27×1010 3.04×1010 1.34
GR dimer:antiInf DNA dissociation rate 0.01 0.02 1.93
MKP-1 protein expression rate 0.20 0.31 1.58
IkB protein expression rate 0.15 0.28 1.81
Nf-kB:proInf DNA association rate 1.80×1010 2.79×1010 1.55
Nf-kB:proInf DNA dissociation rate 0.01 0.03 1.95
AP1P:proInf DNA association rate 2.55×1010 3.33×1010 1.31
AP1P:proInf DNA dissociation rate 0.02 0.03 1.69
Pro Inf. DNA:GR dimer association 1.96×1010 2.64×1010 1.35
Pro Inf. DNA:GR dimer dissociation 0.01 0.02 2.48
Pro inf. protein expression1 rate 0.25 0.33 1.28
Pro inf. protein expression2 rate 0.15 0.27 1.80
IkB nuclear import rate 0.87 2.04 2.34
IkB nuclear export rate 1.66 2.99 1.80

Table 5.5: Final parameter statistics for those constants not additionally in the p38 MAPK pathway.
Means and standard deviation/mean are generally consistent with previous values

79

Chapter 6

Conclusion and Further Work

In this final chapter, we overview the project’s progress and achievements, both in a quantitative
and qualitative sense. We then go on to outline the future work regarding the various elements of
this project, considering both possible avenues of interests and ones being actively explored.

6.1 Project Summary

The initial motivation for this project was to develop a platform from which research into potential
crosstalk between the glucocorticosteroid (GC) signalling pathway and p38 MAPK could proceed in
the context of corticosteroid resistant (CSR) asthma. CSR asthma represents a significant portion
of the cost and mortality associated with the disease, but affects only a tiny fraction of sufferers.
By better understanding the molecular mechanism(s) and pathways causing this disease, not only
may more effective treatments present themselves, but a better understanding of asthma as a whole
may be obtained.

We began with a thorough overview of both possible simulation techniques and the signalling
pathways associated with asthma. Included in this early stage work is a three and a half thousand
word review of the state of the art regarding BIO-PEPA, included in the electronic submission of
this project, although not as part of this dissertation. Based on this research, it was decided that,
based on current software functionality and availability, BIO-PEPA did not represent an ideal ap-
proach to modelling complex signalling pathways. However, being able to fully justify this position
was very useful, especially in the context of Barkouhk’s dissertation [8].

With a good overview of the signalling processes involved, we began working with an existing
signalling model developed by Hendriks et al. [30] of the p38 MAPK pathway. This pathway is
involved in the pro inflammatory response, and a number of it’s components are significantly up-
regulated in CSR patients. While this model had already been developed, we had to reconstruct
it into a format usable by matlab before simulations to confirm it’s stability and reliability could
proceed. While this was being carried out, we identified the GC signalling pathway as an ideal
system to combine with the p38 MAPK pathway to investigate possible crosstalk. GCs are used
as the typical treatment for asthma, although CSR patients frequently display insensitivity and up
regulated p38 MAPK components. By looking at how these two pathways interact we may be able
to identify putative drug targets at non-traditional locations in the pathway(s).

After an exhaustive literature review, we developed a GC signalling pathway model comparable
in design, structure, size, and parameter ranges to the existing p38 MAPK pathway. During this
process, it became clear that while developing the GC signalling pathway model as an indepen-
dent system was necessary, integrating the two models together by hand was non-trivial. With
this in mind, we identified a significant lack of existing software to integrate two SBML models
together, and so set about the process of developing a complete, generic software tool to achieve
just that. After identifying specification goals we used a high velocity scrum style methodology

80

CHAPTER 6. CONCLUSION AND FURTHER WORK 6.2. FUTURE WORK

to develop what ended up being a significant product to integrate two basic SBML1 models together.

With both our p38 MAPK and GC models fully developed, we designed and implemented a
set of matlab scripts to carry out a Monte Carlo based parameter generation, simulation and
evaluation process on these models. Using pre-existing experimental data as the benchmark, we
randomly generate a parameter set, ran the simulation using that parameter set and then evalu-
ate how comparable the simulation outcome was with the previously reported experimental data.
Initially the p38 MAPK model was used (which we had previously tested using the best fitting
idealized parameter set presented by Hendriks et al.) to generate 388 parameter sets with a coef-
ficient comparison between normalized experimental/simulation generated data of 0.88 (the best
fitting Hendriks parameter set was around 0.6 when normalized). When the project began, it
was envisaged that by working in parallel with Prof. Ian Adcock we would obtain empirical data
relating to experimental conditions relevant to the integrated pathway, which we could then use
to generate an evaluation function to identify operational parameter sets for the integrated model
in the same way as we had shown for the p38 MAPK model. Unfortunately this data was not
available, however, we were able to generate some entirely synthetic data and use the p38 MAPK
experimental data to evaluate that our integrated model was functional and produced plausible
output, even if the actual data was not biologically relevant. With this successfully done, the work
required to generate correctly evaluated parameters for the integrated pathway is simply a case of
entering in the new empirical data running the scripts.

6.2 Future Work
As mentioned in the preceding section, this project comprises of related yet independent compo-
nents;

• Reconstruction of the p38 MAPK pathway model, originally developed by Hendriks et al [30]
into a more efficient, syntactically correct matlab compliant SBML model

• A totally novel SBML implementation of the GC signalling pathway based on a significant
amount of data and good understanding of the underlying biochemical processes

• A software tool for integrating two SBML models together in a semantically and syntactically
correct manner

• A set of matlab scripts for automating the process of generating random parameters, running
a simulation with those parameters, assessing if the generated model meets the experimental
criterion and then either discarding or saving the parameter sets

We consider each of these four elements in turn, evaluating future endeavours, as well as finally
considering the extension of this project.

6.2.1 p38 MAPK Model

While semantically this model was already in the public domain, it was in a not easily usable
format. Despite being described as SBML, the original file failed to comply to either SBML or
matlab specifications for model manipulation. We do not presume to suggest that without this
work further development and work based on this model would not have been possible, however,
it significantly reduces the friction associated with justifying future projects using the model. The
p38 MAPK pathway is central to a significant number of biological process, and is especially
relevant in the prognosis and diagnosis of cancer[17]. With our SBMLIntegrator software, having
an operational and widely available version of the MAPK model may facilitate future investigation

1Basic here denotes a model which contains one or more of the SBML elements: Unit Definition, Compartment,
Species, Parameter, Rule or Reaction

81

6.3. FINAL PROJECT WORK CHAPTER 6. CONCLUSION AND FURTHER WORK

into cancer-related signalling. We plan to discuss the possible submission of this updated version
to the BioModels database with Hendriks et al.

6.2.2 Glucocorticosteriod Signalling Pathway

To our knowledge there are no GC signalling models which convey the detail of ours. Additionally,
our approach of modelling gene expression has not been seen in any other SBML models either.
Clearly a great deal of additional work needs to be done to verify that this model and the integration
model are valid, but using SBMLIntegrator we can easily make changes to the seperate GC signalling
pathway and re-integrate the two. It is hoped that when the empirical data produced by Prof.
Adcock becomes available we will be able to begin a significant and more advanced parameter
estimation process on the integrated pathway. Based on the results if these simulations, the presence
of pathway crosstalk should be easily identifiable. It is important to remember that crosstalk in
this model does not necessarily mean that biological models participate in crosstalk. However, it
may indicate potential future experimental targets, which could confirm or deny it’s existence.

6.2.3 SBMLIntegrator

The SBMLIntegrator software is currently available through github 2 and is in it’s alpha stage
of public release. Over the next few weeks we will add in additional functionality relating to
the SBML elements not already covered by the implementation (function definitions, constraints,
initial assignments and events). In addition, we are in the process of discussing with the SBML
community features for a good, fast GUI based model designer and integrator3. By gauging specific
desires of those who use the software most, we will attempt to use the underlying SBMLIntegrator
core to construct an SBML modelling tool. There is discussion with other developers around the
world regarding pooling resources, and we hope to have a functional version of this software up
and running my mid October.

6.2.4 Parameter Generation and Evaluation

Our matlab tools for parameter estimation have provided an efficient, fast and effective way to
generate a widely ranging set of parameters for our model estimation. However, there are issues
associated with the number distribution of the random values generated, but with the ranges
provided a uniformly distributed random number creates such a vast search space that a simple,
Monte-Carlo approach is not tractable for a system of this size. We would suggest, therefore, that
the development of intelligent parameter estimation algorithms represents a significant challenge
facing not only this project, but the entire parameter estimation space. Using a guided Monte Carlo
approach may facilitate favourable results, whereby a search space is narrowed based on a dynamic
programming approach in a top down manner. Such an algorithm would have a significant impact
on the systems biology discipline as a whole, and could allow for automated parameter estimation
for models on the BioModels database.

6.3 Final Project Work
As a final note, work has begun on a paper detailing the results of this project. We focus on the
development of the glucocorticosteriod model and it’s integration with the p38 MAPK model. If
the empirical data becomes available during this write up process it may be possible to incorporate
some of the results and analysis here. However, irrespectively, it will provide an example of the
development of an associated signalling pathway based on an existing one, and the progress of
developing a system where the pathway interface can be explored. We hope that by providing
the tools to carry out this integration that there will be an increase in the research into signalling
crosstalk, an area where systems biology has the potential to yield great results.

2https://github.com/rednaxela/SBMLIntegrator
3http://sbml.org/Forums/index.php?t=msg&goto=7160&rid=6678#msg_7160

82

Appendix A

SBMLIntegrator

A.1 SBMLIntegrator Output Screens

A.1.1 Explore Model

NB: Model
Select components to show

[1] ------------ Function Definitions
[2] ------------ Unit Definitions
[3] ------------ Compartments
[4] ------------ Species
[5] ------------ Parameters
[6] ------------ Rules
[7] ------------ Initial Assignments
[8] ------------ Constraints
[9] ------------ Reactions
[10] ----------- Events
[11] ----------- Return
Select:

Interface 11: Explore model initial screen - from here each option goves a list of the various elements
and their attributes. If a value is abscent from an attribute we display the fact with message

83

A.1. SBMLINTEGRATOR OUTPUT SCREENS APPENDIX A. SBMLINTEGRATOR

A.1.2 Display Summary

##
##################### Display Summary ####################
##
File name ---------------- p38model.xml
Model ID -----------------
Model name ---------------
Model version ------------ 1
ModeL level -------------- 2
Model substance units ----
Model time units ---------
Model volume units -------
Model area units ---------
Model length units -------
Model extent units -------
Model conversion factor --

Summary of model components

No of funtions ----------- 0
No of unit definitions --- 19
No of compartments ------- 4
No of species ------------ 40
No of parameters --------- 169
No of initial assigments - 0
No of rules -------------- 101
No of constraints -------- 0
No of reactions ---------- 35
No of events ------------- 0

Interface 12: Model summary screen, with the original p38-MAPK model as the example

84

APPENDIX A. SBMLINTEGRATOR A.1. SBMLINTEGRATOR OUTPUT SCREENS

A.1.3 Display Compartments

##
################### Display Compartments #################
##
There are 4 compartments defined;
Compartment [1] ID(main_cytosol) name(cytosol)

Spatial Dimensions: 3
Size: 1
Units: litre
Constant: 1

Compartment [2] ID(main_Medium) name(Medium)
Spatial Dimensions: 3
Size: 1
Units: litre
Constant: 1

Interface 13: Compartment viewer, describing the two of the compartments in the original p38
MAPK model

A.1.4 Display Reactions

##
##################### Display Reaction ###################
##
There are 35 reactions defined;
Reaction [1] Name(Rxn1271) ID(main_cytosol_Rxn1271)

main_cytosol_complex_MKK6 <---> main_cytosol_complex + main_cytosol_MKK6P

Modfiers: <none>
Rate law: main_cytosol_Rxn1271_Flux

Local parameters: 0
Global parameters: 0
Referenced rule: main_cytosol_Rxn1271_Kf * main_cytosol_complex_MKK6
* main_cytosol

Interface 14: Reaction viewer, describing the one of the reactions in the original p38 MAPK model

85

A.1. SBMLINTEGRATOR OUTPUT SCREENS APPENDIX A. SBMLINTEGRATOR

A.1.5 Display Rules

##
###################### Display Rules #####################
##
There are 101 rules defined;
Rule [1] ID(main_cytosol_Rxn1534_Kf)

Assignment rule: main_P_kf_LPS_TLR4 * main_cytosol
Units: litre^(2) * second^(-1) * mole^(-1)

Rule [2] ID(main_cytosol_Rxn126_Kr)
Assignment rule: main_P_kr_p38P_Ppase
Units: second^(-1)

Rule [3] ID(main_nucleus_Rxn1_Kr)
Assignment rule: main_P_kr_MK2_p38
Units: second^(-1)

Interface 15: Rules viewer, describing three of the rules in the original p38 MAPK model

86

Appendix B

Model development

B.1 p38 MAPK Initial Concentration Ranges

Compartment Name Lower conc Upper conc
Medium LPS 0.00001 0.01

Cytoplasm TLR4 0.25 2.25
Cytoplasm MKK3 0.01 0.09
Cytoplasm MKK6 0.01 0.12
Cytoplasm p38 1.3 11.7
Cytoplasm Hsp27 6.5 58.8
Cytoplasm PhosphataseMKK3 10-3 102
Cytoplasm PhosphataseMKK6 10-3 102
Cytoplasm Phosphatasep38 10-3 102
Cytoplasm PhosphataseMK2 10-3 102
Cytoplasm PhosphataseHsp27 10-3 102
Nucleus Phosphatasep38,nucleus 10-3 102
Nucleus MK2nucleus 21 190

Cytoplasm LPS:TLR4 0 0
Cytoplasm TAK1complex 0 0
Cytoplasm p38P:TAK1complex 0 0
Cytoplasm TAK1complexinactive 0 0
Cytoplasm TAK1complex:MKK3 0 0
Cytoplasm MKK3P 0 0
Cytoplasm Ppase:MKK3P 0 0
Cytoplasm TAK1complex:MKK6 0 0
Cytoplasm MKK6P 0 0
Cytoplasm Ppase:MKK6P 0 0
Cytoplasm MKK3P:p38 0 0
Cytoplasm MKK6P:p38 0 0
Cytoplasm p38P 0 0
Cytoplasm p38P:MK2P 0 0
Cytoplasm MK2P 0 0
Cytoplasm Ppase:MK2P 0 0
Cytoplasm MK2P:Hsp27 0 0
Cytoplasm Hsp27P 0 0
Cytoplasm Ppase:Hsp27 0 0
Nucleus Ppase:p38Pnucleus 0 0
Nucleus p38Pnucleus 0 0
Nucleus p38P:MK2nucleus 0 0
Nucleus p38P:MK2Pnucleus 0 0

Table B.1: Initial concentration ranges for p38 model (and by association p38 model components
in the p38-GC model). Based on data from Hendriks et al[30]. Units in µM

87

B.2. P38 MAPK PARAMETER RANGES APPENDIX B. MODEL DEVELOPMENT

B.2 p38 MAPK Parameter Ranges

Name Description Rxn Lower Upper Units
V olumecytosol Cytosolic volume 10−12 10−12 L
volumenucleus Nuclear volume 10−13 10−13 L
kf,LP S:T LR4 LPS:TLR4 association rate 1 107 1018 M−1 min−1

kr,LP S:T LR4 LPS:TLR4 dissociation rate 1 10−4 101 min−1

kactivation LPS:TLR4 -> TAK1complex activation rate 2 10−4 102 min−1

kdeactivation TAK1complex deactivation rate 2 10−4 101 min−1

kreactivation TAK1complexinactive reactivation rate 4 10−4 101 min−1

kdeg,complex TAK1complex degradation rate 3 10−4 101 min−1

kf,complex:p38P TAK1complex:phospho-p38 association rate 5 104 107 M−1 min−1

kr,complex:p38P TAK1complex:phospho-p38 dissociation rate 5 10−4 101 min−1

kc,p38P :complex phospho-p38 catalytic rate for TAK1complex 6 10−2 102 min−1

kf,MKK3:complex TAK1complex:MKK3 association rate 11 104 107 M−1 min−1

kr,MKK3:complex TAK1complex:MKK3 dissociation rate 11 10−4 101 min−1

kc,complex(MKK3) TAK1complex catalytic rate for MKK3 12 10−2 102 min−1

kf,MKK3P :P pase phospho-MKK3:PhosphataseMKK3 association rate 14 104 107 M−1 min−1

kr,MKK3:P pase phospho-MKK3:PhosphataseMKK3 dissociation rate 14 10−4 101 min−1

kc,P paseMKK3 PhosphataseMKK3 catalytic rate 13 10−2 102 min−1

kf,MKK6:complex TAK1complex:MKK6 association rate 7 104 107 M−1 min−1

kr,MKK6;complex TAK1complex:MKK6 dissociation rate 7 10−4 101 min−1

kc,complex(MKK6) TAK1complex catalytic rate for MKK6 8 10−2 102 min−1

kf,MKK6P :P pase phospho-MKK6:PhosphataseMKK6 association rate 10 104 107 M−1 min−1

kr,MKK6P :P pase phospho-MKK6:PhosphataseMKK6 dissociation rate 10 10−4 101 min−1

kc,P paseMKK6 PhosphataseMKK6 catalytic rate 9 10−2 102 min−1

kf,p38:MKK3 phospho-MKK3:p38 association rate 15 104 107 M−1 min−1

kr,p38:MKK3 phospho-MKK3:p38 dissociation rate 15 10−4 101 min−1

kc,MKK3 phospho-MKK3 catalytic rate 16 10−2 102 min−1

kf,p38:MKK6 phospho-MKK6:p38 association rate 17 104 107 M−1 min−1

kr,p38:MKK6 phospho-MKK6:p38 dissociation rate 17 10−4 101 min−1

kc,MKK6 phospho-MKK6 catalytic rate 18 10−2 102 min−1

kf,p38P :P pase phospho-p38:Phosphatasep38 association rate (cytosol) 20 104 107 M−1 min−1

kr,p38P :P pase phospho-p38:Phosphatasep38p38 dissociation rate (cytosol) 20 10−4 101 min−1

kc,P pasep38 Phosphatasepp38 catalytic rate (cytosol) 19 10−2 102 min−1

kf,p38P :P pase,nucleus phospho-p38:Phosphatasep38 association rate (nucleus) 21 104 107 M−1 min−1

kr,p38P :P pase,nucleus phospho-p38:Phosphatasep38 dissociation rate (nucleus) 21 10−4 101 min−1

kc,p38P :P pase,nucleus Phosphatasep38 catalytic rate (nucleus) 22 10−2 102 min−1

kf,MK2:p38 phospho-p38:MK2 association rate 23 104 107 M−1 min−1

kr,MK2:p38 phospho-p38:MK2 dissociation rate 23 10−4 101 min−1

kc,p38 phospho-p38 catalytic rate for MK2 24 10−2 102 min−1

kr,p38P :MK2P phospho-p38:phospho-MK2 dissociation rate 25 10−4 101 min−1

kf,MK2P :P pase phospho-MK2:PhosphataseMK2 association rate 26 104 107 M−1 min−1

kr,MK2P :P pase phospho-MK2:PhosphataseMK2 dissociation rate 26 10−4 101 min−1

kc,P paseMK2 PhosphataseMK2 catalytic rate 27 10−2 102 min−1

kf,Hsp27:MK2 phospho-MK2:Hsp27 association rate 28 104 107 M−1 min−1

kr,Hsp27:MK2 phospho-MK2:Hsp27 dissociation rate 28 10−4 101 min−1

kc,MK2 phospho-MK2 catalytic rate 29 10−2 102 min−1

kf,Hsp27P :P pase phospho-Hsp27:PhosphataseHsp27 association rate 30 104 107 M−1 min−1

kr,Hsp27P :P pase phospho-Hsp27:PhosphataseHsp27 dissociation rate 30 10−4 101 min−1

kc,P paseHsp27 PhosphataseHsp27 catalytic rate 31 10−2 102 min−1

ki,p38 p38 nuclear import rate 32 10−4 101 min−1

ko,p38 p38 nuclear export rate 32 10−4 101 min−1

ki,p38P phospho-p38 nuclear import rate 33 10−4 101 min−1

ko,p38P phospho-p38 nuclear export rate 33 10−4 101 min−1

ki,p38P :MK2P phospho-p38:phospho-MK2 nuclear co-import rate 34 10−4 101 min−1

ko,p38P :MK2P phospho-p38:phospho-MK2 nuclear co-export rate 34 10−4 101 min−1

ki,MK2 MK2 nuclear import rate 35 10−4 101 min−1

ko,MK2 MK2 nuclear export rate 35 10−4 101 min−1

Table B.2: p38 MAPK parameter ranges

88

Appendix C

Simulation results

Figure C.1: (A) - Cytosol degradation concentration spectrum graph and (B) - TAK1:MKK3 concentration
spectrum graphs, both at 10ng/ml

Figure C.2: (C) - MKK6 concentration spectrum graph and (D) - MK2_phosphatase concentration spectrum
graphs, both at 10ng/ml

89

APPENDIX C. SIMULATION RESULTS

Figure C.3: (E) - p38P:TAK1 concentration spectrum graph and (F) - LPS:TLR4 concentration spectrum graphs,
both at 10ng/ml

Figure C.4: (G) - MK2P concentration spectrum graph and (H) - Nuclear localized p38P:MK2concentration
spectrum graphs, both at 10ng/ml

90

Acronyms

AP-1 Activator Protein-1. 20

CDK Cylcin Dependent Kinase. 21

CSR Corticosteroid Resistant. 4, 21, 22, 79

CTMC Continous Time Markov Chain. 11–13

DNA Deoxyribonucleic Acid. 6

ERK Extracellular Regulated Kinase. 20

GC Glucocorticosteroid. 4, 5, 19, 22, 25, 51, 59, 60, 62, 63, 68, 74, 75, 79–81

GR Glucocortocoid Receptors. 20, 22, 54, 62

GRE Glucocortocoid Response Element. 20

GSK-3 Glycogen Synthase Kinase 3. 21

hsp Heat Shock Protein. 20

IL Interleukin. 19

IL-13 Interleukin-13. 51

IL-2 Interleukin-2. 51

IL-4 Interleukin-4. 51

IRI Import Replace Integrate. 29, 41

JNK c-Jun N-terminal Kinase. 20, 21

LABAs Long Acting β Agonists. 19

MAPK Mitogen Activated Protein Kinase. 20, 21

MCA Metabolic Control Analysis. 6

MKP-1 MAPK phosphatase-1. 20

mRNA Messenger Ribonucleic Acid. 8

MWC Monod Wyman Changeux. 11

ODEs Ordinary Differential Equations. 12

91

Acronyms Acronyms

PBMCs Peripheral Blood Mononuclear Cells. 21

PPI Protein Protein Interaction. 9

RNA xRibonucleic Acid. 6

SBML Systems Biology Markup Language. 4, 16

SPA Stochastic Process Algebra. 11

TNF Tumour Necrosis Factor. 19

XML Extensible Markup Language. 16

92

Bibliography

[1] Devrim Acehan, Xuejun Jiang, David Gene Morgan, John E Heuser, Xiaodong Wang, and
Christopher W Akey. Three-dimensional structure of the apoptosome: Implications for assem-
bly, procaspase-9 binding, and activation. Molecular Cell, 9(2):423–432, February 2002.

[2] I M Adcock, S J Lane, C R Brown, T H Lee, and P J Barnes. Abnormal glucocorticoid receptor-
activator protein 1 interaction in steroid-resistant asthma. The Journal of Experimental
Medicine, 182(6):1951–1958, December 1995.

[3] Ian M. Adcock and Peter J. Barnes. Molecular mechanisms of corticosteroid resistance.
CHEST, 134-2:394–401, 2008.

[4] Ian M Adcock and Gaetano Caramori. Cross-talk between pro-inflammatory transcription
factors and glucocorticoids. Immunol Cell Biol, 79(4):376–384, August 2001.

[5] A.S. Baldwin Jr. Series introduction: the transcription factor nf-kappab and human disease.
J Clin Invest, 107:3–6, 2001.

[6] Peter Barnes and Michael Karin. Nuclear factor-kb: a pivotal transcription factor in chronic
inflammatory diseases. The New England journal of medicine, 336 : 15:1066, 1997.

[7] Peter J. Barnes. Efficacy of inhaled corticosteroids in asthma. Journal of Allergy and Clinical
Immunology, 102(4):531–538, October 1998.

[8] C. Baroukh. Representing biological processes using process calculus. Master’s thesis, Imperial
College London, 2010.

[9] Falko Baus and Pieter S Kritzinge. Stochastic Petri Nets - An Introduction to the Theory.
Bause and Kritzinger, 2002.

[10] P. Bhavsar, N. Khorasani, M. Hew, M. Johnson, and K. F. Chung. Effect of p38 mapk inhibi-
tion on corticosteroid suppression of cytokine release in severe asthma. European Respiratory
Journal, 35(4):750–756, April 2010.

[11] Falk Schreiber Björn H. Junker. Analysis of Biological Networks. Wiley, 2008.

[12] Corren J Bensch G Busse WW Whitmore J Borish LC, Nelson HS. Efficacy of soluble il-4
receptor for the treatment of adults with asthma. J Allergy Clin Immunol, 107:963–970, 2001.

[13] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau. Extensible
markup language (xml) 1.0 (fifth edition), November 2008.

[14] Matthew D. Brown and David B. Sacks. Protein scaffolds in map kinase signalling. Cellular
Signalling, 21(4):462–469, April 2009.

[15] M Brunner and H. Bujard. Promoter recognition and promoter strength in the escherichia coli
system. EMBO J, 6(10):3139–3144, 1987.

[16] Federica Ciocchetta and Jane Hillston. Bio-pepa: An extension of the process algebra pepa
for biochemical networks. Electron. Notes Theor. Comput. Sci, 194:3:103–117, 2008.

93

BIBLIOGRAPHY BIBLIOGRAPHY

[17] A S Dhillon, S Hagan, O Rath, and W Kolch. Map kinase signalling pathways in cancer.
Oncogene, 26(22):3279–3290, 0000.

[18] Danielle Duma, Christine M. Jewell, and John A. Cidlowski. Multiple glucocorticoid re-
ceptor isoforms and mechanisms of post-translational modification. The Journal of Steroid
Biochemistry and Molecular Biology, 102(1-5):11–21, December 2006.

[19] R Duncan and EH McConkey. How many proteins are there in a typical mammalian cell?
Clin Chem, 28(4):749–755, April 1982.

[20] T. Kino E. Charmandari. Novel causes of generalized glucocorticoid resistance. Horm Metab
Res, 39(6):445–450, 2007.

[21] Michael R. Edwards, Nathan W. Bartlett, Deborah Clarke, Mark Birrell, Maria Belvisi, and
Sebastian L. Johnston. Targeting the nf-[kappa]b pathway in asthma and chronic obstructive
pulmonary disease. Pharmacology & Therapeutics, 121(1):1–13, January 2009.

[22] D. Fell. Metabolic control analysis: a survey of its theoretical and experimental development.
Biochem J., 286 Part-2:313–330, 1992.

[23] D. Gilbert and M. Heiner. From petri nets to differential equations - an integrative approach
for biochemical network analysis. Lecture Notes in Computer Science, 4024:181–200, 2006.

[24] D. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem,
81:2340–2361, 1977.

[25] Daniel T. Gillespie. A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions. Journal of Computational Physics, 22:403, 1976.

[26] Peter J. E. Goss and Jean Peccoud. Quantitative modeling of stochastic systems in molecular
biology by using stochastic petri nets. Proceedings of the National Academy of Sciences,
95(12):6750–6755, June 1998.

[27] Maria Luisa Guerriero. Qualitative and quantitative analysis of a bio-pepa model of the
gp130/jak/stat signalling pathway. Lecture Notes in Computer Science, 5750:90–115, 2009.

[28] C.M. Guldberg and P. Waage. Uber die chemische affinitat. Journal fur Pracktische Chemie,
19:69, 1879.

[29] S Lawrence Zipursky Paul Matsudaira David Baltimore Harvey Lodish, Arnold Berk and
James Darnell. Molecular Cell Biology, 4th edition. New York: W. H. Freeman, 2000. ISBN-
10: 0-7167-3136-3.

[30] Bart S. Hendriks, Fei Hua, and Jeffrey R. Chabot. Analysis of mechanistic pathway models
in drug discovery: p38 pathway. Biotechnology Progress, 24(1):96–109, 2008.

[31] A. V. Hill. The possible effects of the aggregation of the molecules of huemoglobin on its
dissociation curves. Proceedings of the Physilogical Society (Sup), 40:4–7, 1910.

[32] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, 1978.

[33] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. J Physiol., 117(4):500–544, 1952.

[34] Michael Hucka, Frank T. Bergmann, Stefan Hoops, Sarah M. Keating, Sven Sahle, James C.
Schaff, Lucian P. Smith, and Darren J. Wilkinson. The systems biology markup lan-
guage (sbml): Language specification for level 3 version 1 core. Nature Precedings,
http://dx.doi.org/10.1038/npre.2010.4959.1:–, 2010.

94

BIBLIOGRAPHY BIBLIOGRAPHY

[35] Elvis Irusen, John G. Matthews, Atsushi Takahashi, Peter J. Barnes, Kian F. Chung, and
Ian M. Adcock. p38 mitogen-activated protein kinase-induced glucocorticoid receptor phos-
phorylation reduces its activity: Role in steroid-insensitive asthma. Journal of Allergy and
Clinical Immunology, 109(4):649–657, April 2002.

[36] K. Ito, KF. Chung, and IM. Adcock. Update on glucocorticoid action and resistance. J Allergy
Clin Immunol, 117:522–543, 2006.

[37] Eric Jacques, Abdelhabib Semlali, Louis-Philippe Boulet, and Jamila Chakir. Ap-1 overex-
pression impairs corticosteroid inhibition of collagen production by fibroblasts isolated from
asthmatic subjects. American Journal of Physiology - Lung Cellular and Molecular Physiology,
–:–, June 2010.

[38] John L Tymoczko Jeremy M Berg and Lubert Stryer. Biochemistry, 5th edition. New York:
W H Freeman, 2002.

[39] H. Kacser and J. A. Burns. The control of flux. Symp Soc Exp Biol., 27:65–104, 1973.

[40] A. D. King, N. Pržulj, and I. Jurisica. Protein complex prediction via cost-based clustering.
Bioinformatics, 20(17):3013–3020, November 2004.

[41] Tomoshige Kino, Takamasa Ichijo, Niranjana D. Amin, Sashi Kesavapany, Yonghong Wang,
Nancy Kim, Sandesh Rao, Audrey Player, Ya-Li Zheng, Michael J. Garabedian, Ernest
Kawasaki, Harish C. Pant, and George P. Chrousos. Cyclin-dependent kinase 5 differentially
regulates the transcriptional activity of the glucocorticoid receptor through phosphorylation:
Clinical implications for the nervous system response to glucocorticoids and stress. Molecular
Endocrinology, 21(7):1552–1568, July 2007.

[42] J.C. Kips, B.J. O’Connor, S.J. Langley, A. Woodcock, H.A. Kerstjens, and D.S Postma. Effect
of sch55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: a
pilot study. Am J Respir Crit Care Med, 167:1655–1659, 2003.

[43] J. Koomey. Why we can expect ever more amazing mobile computing devices in the years
ahead (presentation), 2011.

[44] C. Kuttler and J. Niehren. Gene regulation in the pi calculus: simulating cooperativity at the
lambda switch. Transactions on Computational Systems Biology, 4230-VII:24–55, 2004.

[45] SJ Lane, BA Atkinson, R Swaminathan, and TH Lee. Hypothalamic-pituitary-adrenal axis
in corticosteroid-resistant bronchial asthma. Am. J. Respir. Crit. Care Med., 153(2):557–560,
February 1996.

[46] SJ. Lane, JB Palmer., IF. Skidmore, and TH. Lee. Corticosteroid pharmacokinetics in asthma.
Lancet., 17;336(8725):1265, 1990 Nov.

[47] D Y Leung, R J Martin, S J Szefler, E R Sher, S Ying, A B Kay, and Q Hamid. Dysregulation of
interleukin 4, interleukin 5, and interferon gamma gene expression in steroid-resistant asthma.
The Journal of Experimental Medicine, 181(1):33–40, January 1995.

[48] Donald Y. M. Leung and John W Bloom. Update on glucocorticoid action and resistance.
Journal of Allergy and Clinical Immunology, 111(1):3–22, January 2003.

[49] Mathworks. Matlab simbiology package, 2011.

[50] L. Menten and M.I. Michaelis. Die kinetik der invertinwirkung. Biochem Z, 49:333–369, 1913.

[51] Aaron L. Miller, M. Scott Webb, Alicja J. Copik, Yongxin Wang, Betty H. Johnson, Raj Ku-
mar, and E. Brad Thompson. p38 mitogen-activated protein kinase (mapk) is a key mediator
in glucocorticoid-induced apoptosis of lymphoid cells: Correlation between p38 mapk activa-
tion and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. Mol
Endocrinol, 19(6):1569–1583, June 2005.

95

BIBLIOGRAPHY BIBLIOGRAPHY

[52] Kenneth Murphy. Immunobiology. Garlander Science, 2011.

[53] Brian M. Necela and John A. Cidlowski. Mechanisms of glucocorticoid receptor action in
noninflammatory and inflammatory cells. Proc Am Thorac Soc, 1(3):239–246, November
2004.

[54] NHLBI. Asthma overview, Feb 2011.

[55] P.M. O’Byrne, M.D. Inman, and E. Adelroth. Reassessing the th2 cytokine basis of asthma.
Trends Pharmacol Sci, 25:244–248, 2004.

[56] BioModels Database A Database of Annotated Published Models.
http://www.ebi.ac.uk/biomodels-main/.

[57] KEGG: Kyoto Encyclopedia of Genes and Genomes. http://www.genome.jp/kegg/.

[58] Andrea Degasperi Ozgur E. Akman, Federica Ciocchetta and Maria Luisa Guerriero. Mod-
elling biological clocks with bio-pepa: Stochasticity and robustness for the neurospora crassa
circadian network. Lecture Notes in Computer Science, 5688:52–67, 2009.

[59] Klaus Paal, Patrick A. Baeuerle, and M. Lienhard Schmitz. Basal transcription factors tbp
and tfiib and the viral coactivator e1a 13s bind with distinct affinities and kinetics to the
transactivation domain of nf-kb p65. Nucleic Acids Research, 25(5):1050–1055, March 1997.

[60] James C. Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhorshid, Elizabeth
Villa, Christophe Chipot, Robert D. Skeel, Laxmikant Kalé, and Klaus Schulten. Scalable
molecular dynamics with namd. J. Comput. Chem., 26(16):1781–1802, 2005.

[61] M. Rathinam, L. Petzold, Y. Cao, and D. Gillespie. Stiffness in stochastic chemically reacting
systems: The implicit tau-leaping method. The Journal of Chemical Physics, 119:12784, 2003.

[62] Zoltán Szatmáry, Michael J. Garabedian, and Jan Vilček. Inhibition of glucocorticoid receptor-
mediated transcriptional activation by p38 mitogen-activated protein (map) kinase. Journal
of Biological Chemistry, 279(42):43708–43715, October 2004.

[63] W. TRAUB, A. YONATH, and D. M. SEGAL. On the molecular structure of collagen. Nature,
221(5184):914–917, March 1969.

[64] Fyodor D. Urnov and Alan P. Wolffe. Chromatin remodeling and transcriptional activation:
the cast (in order of appearance). Oncogene, 20:2991–3006, 2001.

[65] Dimitri van Heesch. Doxygen - generate documentation from source code
(http://www.stack.nl/ dimitri/doxygen/).

[66] Donald Voet and Judith G. Voet. Biochemistry, 4th Edition. Wiley, 2011.

[67] D. C. Walker, J. Southgate, G. Hill, M. Holcombe, D. R. Hose, S. M. Wood, S. Mac Neil, and
R. H. Smallwood. The epitheliome: agent-based modelling of the social behaviour of cells.
Biosystems, 76(1-3):89–100, August.

[68] Zhen Wang, Weiwei Chen, Evelyn Kono, Thoa Dang, and Michael J. Garabedian. Modula-
tion of glucocorticoid receptor phosphorylation and transcriptional activity by a c-terminal-
associated protein phosphatase. Molecular Endocrinology, 21(3):625–634, March 2007.

[69] Nancy L. Weigel and Nicole L. Moore. Steroid receptor phosphorylation: A key modulator of
multiple receptor functions. Molecular Endocrinology, 21(10):2311–2319, October 2007.

[70] Wikipedia. Petri net image, 2011.

[71] Marsha Wills-Karp, Jackie Luyimbazi, Xueying Xu, Brian Schofield, Tamlyn Y. Neben,
Christopher L. Karp, and Debra D. Donaldson. Interleukin-13: Central mediator of aller-
gic asthma. Science, 282(5397):2258–2261, December 1998.

96

