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Abstract

With the emergence of ubiquitous computing, innovations in mobile phones have changed the
way users lead their lives. With nearly 73% [BBC] of the world population owning a mobile
phone, its use defines certain rules and behaviours. Minimising user interaction requires devel-
opment of adaptive systems that autonomously respond to changes by identifying patterns in
past usage data. The use of machine learning to learn behaviours, based on empirical data,
allows for autonomous user management with either minimal or no user intervention at all.
We explore the possibilities of extracting user behaviour rules and patterns from past usage
data. Such rules can be deployed to define or adapt existing policy rules that manage pervasive
systems. Specifically, this project aims at investigating the feasibility of using Inductive Logic
Programming (ILP) in the automated task of extraction of user behaviour rules through data
mining and acquisition. This is a challenging task for various reasons. Firstly, to our knowledge,
it is the first attempt of using ILP in tasks that in the past have been carried out using conven-
tional data mining techniques. Furthermore, the datasets often carry a substantial amount of
noise and are not evenly/normally distributed. Lastly, the data may often be not rich enough
to allow the computation of expressive rules. The challenge is to investigate to what extent
ILP and the recently developed system TAL can be adapted and customised to perform the
learning of meaningful user behaviour rules in a way that addresses the above obstacles. After
an experimental investigation with the Reality Mining dataset, a framework is set up for the
automation and extraction of rules. In conjunction with this framework, we present ULearn,
a mobile phone application developed to gather and process quantitative data autonomously.
The learning results, that are presented to the user in Prolog and English, can ultimately be
“enforced”, refined, by the means of integrity constraints, or selected for theory revision.
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1
Introduction

In this chapter, we are going to explain the problem tackled in this project, the aspects we need
to take into account and why it is difficult to address. Section 1.1 explains the problem and
motivation behind the project and the challenges we face in solving it. Section 1.2 outlines what
this project is effectively trying to achieve along with a brief overview of the steps we intend
on undertaking to find a solution. Section 1.3 lists our contributions towards the project and
finally, Section 1.4 provides a summary of how this report is organised.

1.1 Motivation

In the past few years, companies such as Apple and Samsung have really managed to develop
cutting-edge mobile systems that have revolutionised the way we use mobile phones. Often,
the complexity of these systems prevent the user from utilising the device to its maximum. To
facilitate the user, such systems must be able to continuously adapt to the user’s preferences and
behaviour while requiring as little help as possible from the user. Policies, governing the choices
in behaviour of a system, are increasingly becoming more popular for implementing adaptive
systems that promote the flexibility to manage such devices.

Extensive research in this field has shown that, while these frameworks work as expected, they
require disclosure of private information that the user might not be comfortable with or in
favour of. An alternative approach, far less intrusive, is to implicitly collect information about a
particular user through their actions and make use of past usage data for rule-based knowledge
acquisition to define previously unknown relations. These need not necessarily be in the form
of logic programs. Instead, any programming language capable of representing rules would be
sufficient (e.g Lisp). Adaptive systems could then benefit from these (logic) programs by taking
the appropriate action when certain conditions are met.

To provide an accurate solution to the problem we need to address some of the challenges that
come attached with it. To say that there exist noise-less datasets, it would be a lie. Noise in
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CHAPTER 1. INTRODUCTION

data often plays a major role in the degradation of performance of learning systems in general
and is important that it is addressed properly. Data are often not normally/evenly distributed.
In multi-relational data mining problems this has a negative impact since patterns are usually
identified through the “completeness” of data. Therefore, data distribution is key to solving the
problem. Lastly, the domain of the problem we are targeting, although not infinite, is very large
and a large amount of rich data is required to compute expressive rules.

According to [Wei91], pervasive systems should “weave themselves into the fabric of everyday life
until they are undistinguishable from it”. However, until recently, the majority of such systems
have been unable to minimally involve the user in taking decisions on their behalf. Firstly, such
systems require policy frameworks to govern certain actions but often prove to be impractical
as users are always asked to specify their preferences in advance. Secondly, it is impossible to
predict every possible case. In addition, users will find it hard to express the way they want to
share information by means of rules. Therefore, manually defining a human-driven specification
of these policies becomes part of a largely unrealistic process.

Adaptive systems belong to a class known as context-aware computing [SAW94].They are prac-
tically used, successfully, in network security (e.g., intrusion detection systems), search engines
(e.g., feature extraction), pattern recognition (e.g., audio-visual recognition problems) and com-
puter games. Another form of adaptability in the context of mobile devices, directly related to
our problem, is that of privacy. There has been a huge increase of interest in adapting the user’s
privacy settings through the use of privacy policies.

Nevertheless, users are still concerned with what information their mobile devices can expose.
Even if we grant the user’s consent, the implicit collection of data is a major concern for most
users. For this reason, the development of privacy management frameworks becomes essential.
Combining the two, and their respective solutions, together results in a powerful platform. That
is, the problem of extracting user behaviour rules finds a direct application in the context of
privacy management research. A joint research project [PRI] between the Open University and
Imperial College London, aims to develop a Privacy Rights Management (PRM) framework that
will enable users to specify an appropriate level of privacy in pervasive systems. However, such
frameworks need to be flexible enough to allow the users to interact with the device as they wish.
So far, development of privacy management frameworks mostly focussed on representation and
analysis of policy specifications as opposed to learning such policies. [Cra02, AHK+03].

As previously mentioned, we cannot expect the user to define such policies with great confidence.
Recent efforts, without the explicit need of the user’s intervention, include that of [BRL07] which
suggest an analysis and learning of privacy policies using Inductive Logic Programming (ILP).
In such scenarios, ILP is preferred than traditional machine learning techniques because of its
powerful expressibility. ILP learns target relations, expressed in logic programs notation, that
are easily understood by users and are amenable to automated analysis [BRL07, CRR+08]. Ad-
ditionally, declarative rules are easily translated into English language rules using a pre-defined
mapping of words and sentences thus enabling the system to involve the user for validation of
the learned outcomes.

Learning rules, is only a preliminary step but the results should be promising. The real challenge,
which still lies as a main research open question is the development of frameworks that allow
the learning of privacy policy rules from past usage and user behaviour data in an automated
fashion.

The motivation behind this project is twofold. We are interested in overcoming the aforemen-
tioned challenges/problems and provide a solution that is correct and accurate and requires as
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little user input as possible. To do this we must first investigate the fundamentals of logic, in-
ductive and abductive logic programming that will provide us with the right theory and correct
mechanisms to learn.

1.2 Objectives

This project sets out to explore the benefits of using alternative methods to adapt systems
through learning. More specifically, we look at different ways of applying Inductive Logic Pro-
gramming (ILP) to learn user behaviours of mobile phones. We aim to develop a learning
framework for the automated extraction of raw data into a learning file which is then used for
the computation of rules. On top of that, we aim to complement it with an Android application
enabling us to perform real user evaluation to validate our results.

The novelty behind the project is the fact that we use ILP to learn such rules, an attempt that
has only been tried using conventional data mining and other machine learning techniques in
the past. We also examine the effects of two other machine learning techniques to gain a deeper
understanding of the hidden structure in the data and if worthwhile for an improved background
knowledge in an ILP setting, in the face of uncertainty.

The real challenge is to explore whether ILP can be used over arbitrary real (large) set of data
that contain a large amount of noise and are not normally distributed. We then evaluate the
results based on empirical data obtained by our own developed mobile phone application. This
validation will enable us to draw a conclusion based on the results we obtain.

This requires, as a first step, the definition of a domain model that is suitable to the prob-
lem of learning mobile user behaviours. This entails the definition of appropriate background
knowledge, language bias and training data. This setting enables us to both apply ILP using
TAL [CRL10] (a non-monotonic inductive programming tool developed at Imperial College) as
well as other statistical machine learning algorithms that may prove beneficial to the precision
of the overall learning process.

To improve accuracy, it is necessary to proceed with experimental analysis by tweaking the
learning parameters and perform rule refinement with the use of integrity constraints. For refin-
ing rules, we also involve the users by taking their feedback into account. Finally, a rule revision
strategy for theory revision will be considered by identifying situations of over-generalisation or
lack of coverage of existing rules. After having defined a formal learning framework, we begin
development of our Android application as a means of implementing a learning rule system on
a mobile phone for empirically evaluating the learning outcomes and their effectiveness.

1.3 Contributions

The overall vision behind this project is to assess the applicability of ILP for learning mobile user
behaviours. To our knowledge, this is something that has never been explored before. The final
outcome of this project is a fully tested learning framework and a complete Android application
called ULearn (refer to Chapter 5 for more details) that enables rich data acquisition on a user’s
mobile phone, accumulates the data into an ILP learning file which is in turn sent to a back-end
server for processing.
The outcome is learned rules which are displayed back to the user. These rules are circumstances
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CHAPTER 1. INTRODUCTION

under which the user accepts or rejects calls. The user can then choose to enforce any of the rules
i.e., allow the mobile phone to automatically accept or reject phone calls whenever all of the
conditions of the enforced rule are satisfied. The application can also perform rule refinement by
excluding pairs of conditions that are inappropriate to the user. The following list summarises
the main contributions of this project:

• The definition of a mobile user behaviour domain.

• The definition of background knowledge and appropriate language bias in the context of
accepting/rejecting calls.

• The combination of the two to form an ILP learning framework for learning mobile user
behaviours, able to perform cross validation and ROC analysis.

• An application of our framework to a large existing dataset. Our framework is also applied
on our own collected dataset, allowing for a detailed comparison of the two.

• A proof-of-concept Android application that collects user data on a continuous basis and
prompts the results to the user.

• The adjustment of our language bias and TAL’s learning parameters to determine the
combination of which achieves maximum performance.

1.4 Report Structure

The report is further organised as follows:

• Chapter 2, outlines the relevant work in the fields of ILP and statistical machine learning
methods that can be coupled with ILP, to some extent, successfully.

• Chapter 3 describes the main aspects of this project, that is, our formalism of a learning
framework. It includes the definition of a domain appropriate to our problem and con-
sequently the definition of the background knowledge and encoding of language bias. It
explains how the framework is applied to learn certain rules and demonstrates how this
framework has assisted in the automated process of extracting data into a learning file fed
as input to TAL for the computation of rules.

• Chapter 4 demonstrates the applicability of our learning framework to a large, existing
dataset, available online. A number of experiments are carried out to get the best results
possible. We also explain the difficulties we encountered trying to fit the data to our needs
and describe ways in which we have solved these difficulties.

• Chapter 5 focusses on our design and programming considerations which we make use
during the implementation phase. We also present the specification and development of a
graphical user interface application on the Android platform and its integration with the
back-end capable of performing the learning tasks.

• Chapter 6 illustrates our results, how we evaluated them and the comparisons we made to
ascertain whether learning user behaviours in terms of rules is helpful enough to minimise
user intervention in pervasive devices.

• Lastly, Chapter 7 summarises the achievements of this project. It also highlights various
limitations that we encountered along the way followed by suggestions of future work that
can be undertaken to extend our system further.
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2
Background

This chapter introduces the motivating work for this project. We examine the key ideas taken
from machine learning that are necessary to understand the process we employ throughout.
We begin with a brief introduction to machine learning and inductive learning followed by
some essential notation, necessary to understand the nature of logic programming, and more
specifically that of Inductive Logic Programming (ILP). We then take a closer look at TAL,
the tool that will be used throughout this project, the background work related to it together
with its performing search capabilities and its learning parameters. We consider a couple of
statistical machine learning methods that we believe could provide a deeper understanding of
the data and finally, we examine tools we make use of in this project.

2.1 Machine Learning

Machine Learning is an area of Artificial Intelligence that enables the development of techniques
which allow machines to learn. Tom Mitchell [Mit97] defines learning to include any computer
program that improves its performance at some task through experience. More formally, Mitchell
defines a well-posed learning problem as follows:

“A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P , if its performance at tasks in T , as measured by P , improves with
experience E.”

In order to design a learning system we must be able to represent the type of knowledge to
be learned together with a learning mechanism. The type of knowledge to be learned is often
problem dependent. Once we establish this type of knowledge, we need to define a function
or a program that provides a mapping between an observed instance and the result of a new
instance.

Hence we can define a machine problem as a problem consisting of:
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CHAPTER 2. BACKGROUND

1. A target function V : D → C representing the problem to be solved. D is the input space
and can be thought of as the training data and unobserved instances that need to be
classified. C is the output space and more informally the set of classes that each instance
can be classified under. Examples include choosing the best legal move in a board game,
identifying people, or preventing credit card fraud.

2. The training data (positive and negative) relevant to the definition of the target function.
Each example is represented as a tuple (d, c) where d ∈ D and c ∈ C.

3. A learning algorithm that finds a hypothesis that best fits the training data.

Figure 2.1: The design of a machine learning system [Pan10]

Figure 2.1, above, illustrates the process of designing a machine learning system. The two side
arrows are only there to place emphasis on the relation between the learning problem with
the target function and between the type of examples with the choice of a learning algorithm.
As we can see, once a well-posed problem has been defined, we can determine an appropriate
target function which represents the problem to be solved. Ideally we would want to find the
exact function, V , but machine learning algorithms only learn an approximation, V ′. The
representation function V ′ to be learned should be as close an approximation of V as possible
and should require a small amount of training data to be learned. Finally, the learning algorithm
is selected based on the training examples, the number of classification types and the availability
of a learner.

6



2.1. MACHINE LEARNING

2.1.1 Inductive Machine Learning

Inductive inference within machine learning enables new instances of a hypothesis/concept to be
classified accordingly. We make a strong assumption here in that the best hypothesis regarding
unseen instances is the hypothesis that best fits the observed training data. Without a priori
assumptions regarding the target concept, a system is unable to classify new, unseen instances.
The training data itself are not sufficient enough to find a solution. Generally, inductive learning
requires some form of prior assumptions or inductive bias. We can think of this as a policy by
which the learning system will generalise beyond the observed training examples to infer the
classification of new instances [Alp04].

More formally,

Given

• An inductive learning algorithm L

• A set of possible examples LE

• A set of hypotheses LH (or concepts)

• An unknown target function f : E 7→ Y

• A set of training examples Eh = {(e1, f(e1), ..., (en, f(en)} where each ei ∈ LE

• A loss function loss(h,E)

Find

• A hypothesis h ∈ Lh that minimises the loss function.

• Y represents the domain of the classification and characterises the setting of the learning
task. In concept learning Y ∈ {true, false}.

Once training is complete, we can use L to classify a new instance xi. If L(xi, Eh) (true or false)
denotes the classification that L assigns to xi, then we can describe this inductive inference step
performed by L as follows:

(Eh ∧ xi) � L(xi, Eh)

where the notation y � z denotes that z is inductively inferred from y. At times, the classification
of L(xi, Eh) might not follow deductively from the training data Eh and the description of the
new instance xi. But if we have some form of background knowledge (assumptions), B, together
with the training data then we can classify the new instance deductively. This is defined as
inductive or semantic bias of L, as a set of additional assumptions. Inductive bias is defined
formally as:

(B ∧ Eh ∧ xi) ` L(xi, Eh)

where the y ` z denotes that z follows deductively from y (i.e., that z is provable from y).
The above formula can be thought of as a form of inverse entailment (more in Section 2.2)
where the background knowledge together with the negative examples model the negation of
the hypothesis. So the above formula can also, loosely, be written as follows:

B ∧ E |= H

Example 2.1.
Suppose that we see a swan for the first time and it is white. The next time we see another
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CHAPTER 2. BACKGROUND

swan, it is also white. Even though logically it does not follow that the next time we see a swan
will be white, it’s an assumption we make anyway. To be able to say that all “swans are white”
we need an extra assumption of the sort, “all swans have the same colour”.
From the above definitions, B = “all swans have the same colour”, xi is a swan with colour
we haven’t determined yet and Dc are all the swan observations in our training set. Then
our learning algorithm L together with the training set Dc can deduce that the colour of the
unobserved swan is white.

2.2 Inductive Logic Programming (ILP)

Inductive Logic Programming is concerned with the development of techniques and tools for
relational data mining [Dze03].

This section introduces the different kinds of logical reasoning there exist and, briefly explain
the concept of ILP before we introduce some essential notation and terminology required to
understand the theory behind ILP.

2.2.1 Logical Reasoning

There are three methods of logical reasoning: deduction, induction and abduction.

Definition 2.1.
Given a rule R : β ← α, read as α therefore β or β if α, then for each method:

• Deduction: determining β (i.e. α ∧ R → β) using R and its antecedent α to make a
conclusion,

• Induction: determining rule R through learning by using a large number of examples of
α and β and,

• Abduction: using rule R and its consequent β to assume that the antecedent α could
explain β (i.e. β ∧R→ α).

From the above definitions, it follows that abduction can be regarded as the reverse of deduction.

Consider the following example from [KKT93]:

shoes are wet← grass is wet ∧ walked on grass
grass is wet← rained last night
grass is wet← sprinkler was on

If we walked on the grass and we know that it rained last night, we can deduce that the grass
is wet and our shoes will be wet. This is a form of deductive reasoning. On the other hand, if
we knew that our shoes were wet, we can only be sure that either the grass was wet or that
it rained last night. Trying to determine an explanation with respect to the observation(s) is
abductive reasoning.

2.2.2 ILP in concept

Inductive Logic programming [DM94] is a machine learning technique which combines inductive
learning and logic programming. It uses inductive learning to explore the hypothesis search space
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2.2. INDUCTIVE LOGIC PROGRAMMING (ILP)

and to make inference from past observations. ILP systems develop predicate descriptions from
examples and background knowledge. Such systems generate rules that are able to distinguish
between positive and negative examples. Both input and output are described as logic programs.
ILP searches for a hypothesis that generalises the concept we are trying to learn from the training
data and some background knowledge.

Before we give a formal definition of ILP, we first need to understand the necessary terms and
notation in the context of logic programming.

2.2.3 Logic Programming: notation and terminology

Logic programs represent information about a particular relation in terms of rules and assertions.
The simplest logic program is a fact called an atom. A very simple example representing the
fact that “Helen is the daughter of Tom” can be written as follows:

daughter(helen, tom).

We can extend this simple logic program to include rules which represent properties relations.
We can encode a rule which says that “Helen is a daughter of Tom, if Helen is female and Tom
is the parent of Helen” as the following logical rule:

daughter(helen, tom)← female(helen), parent(tom, helen)

The expression on the left-hand side of the left arrow is said to be the head of the rule and the
terms on the righthand side are said to be the body of the rule. The procedural reading of the
daughter(X,Y ) rule reduces to the problem of finding out if X is female, and if Y is the parent
of X.

Such statements are called clauses. Before we continue, we define some logic programming
notation.

Following Prolog conventions [SS86], variables are denoted by capital case letters (e.g. X,Y, Z),
function symbols are denoted by a finite sequence of lower case letters (e.g. f, g, h, age), predicate
symbols are denoted by a finite sequence of lower case letters (e.g. p, q,married, greater than),
propositional constants are either true or false and constants are denoted by a finite sequence
of letters (e.g. Bob, Louise). Predicates take on values of True or False and functions may take
on any constant as their value. From the definitions of each symbol above, we can build up
expressions which are defined below.

Definition 2.2. Term
A term is either a variable or a constant. If f is an n-ary function symbol and t1, ..., tn are
terms, then f(t1, ..., tn) is a term (e.g., Tom,X, age(Tom)).

Definition 2.3. Atom
An atom contains no logical connectives and has no propositional structure. It is the simplest
expression in logic (e.g., p(X, f(3, Y ) assuming that variables are universally quantified).

Definition 2.4. Literal
A literal is either an atom (e.g. A) or its negation ( e.g. ¬A). A positive literal is an atom ( e.g.,
greater than(20, 5)). A negative literal is the negation of an atom (e.g., ¬greater than(5, 20)).

Definition 2.5. Clause
A clause is a formula of the form

∀X1, ..., Xn(l1 ∨ ... ∨ lm)

9



CHAPTER 2. BACKGROUND

where each li is a literal and X1, ...., Xn are all variables occurring in l1 ∨ ... ∨ lm.

In logic programming, clauses are usually written as the implication of a head from a body. In
its simplest form, the body is a conjunction of positive and negative literals while the head is a
single positive literal. The clause is written as follows:

h← b1, ..., bm

Each element of the body of the rule is called a condition or an antecedent.

A Horn clause is a clause containing at most one positive literal. It’s an expression of the form

H ← (L1 ∧ ... ∧ Ln)

A definite clause is a Horn clause that has exactly one positive literal. A Horn clause without
a positive literal is called a goal or a headless rule and is of the form ← b1, ..., bn.

A normal clause is a clause of the form h← b1, ..., bn where h is a positive literal and literals in
the body can either be positive or negative.

A normal logic program is a finite set of normal clauses.

Definition 2.6. Ground term/atom/literal/formula
A ground term is a term that does not contain any variables. A ground atom is an atom that
does not contain any variables. A ground literal is a literal constructed from a ground atom. A
ground formula is a formula where no variable occurs in it.

Definition 2.7. Complementary atom/literal
If L is an atom, then its complement or complementary literal is given by ¬L. If L is a negative
literal, of the form ¬L, its complement is given by L.

Definition 2.8. Theory
A theory consists of a finite set of conjunctive clauses (e.g., {C1, ..., Cn}). A logic program is
made up of a finite set of conjunctive Horn clauses.

A substitution is any function that replaces variable by terms. For example, the substitution
{x/tom, y/5} replaces the variable x by the term tom and replaces the variable y by the term 5.
Given a substitution θ and a literal L we write Lθ to denote the result of applying substitution
θ to L. A unifying substitution for two literals L1 and L2 is any substitution θ such that
L1θ = L2θ.

Atom and Clause Subsumption
Given a substitution θ = {v1/t1, ..., vn/tn} and formula F then Fθ is formed by replacing every
variable vi in F by ti. Atom A subsumes atom B, A � B, iff there exists a substitution θ such
that Aθ = B. Clause C subsumes clause D, C � D, iff there exists a substitution θ such that
Cθ ⊆ D.

Example 2.2, below, illustrates the concept of generalisation and subsumption.

Example 2.2.

Daffy Duck can fly
All ducks can fly.

∣∣∣∣∣∣
can fly(daffy)
can fly(x)
can fly(x) � can fly(daffy), θ = {x/daffy}
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Models and Entailment

• Model: M is a model of formula (atom/literal/clause/theory) F iff F evaluates to True
given M .

• Entailment: C is more general than D iff C |= D.

• Relative Entailment: C is more general than D w.r.t B iff B,C |= D.

Example 2.3, below, illustrates the concept of generalisation with an additional assumption. C is
more general than D with respect to B since B,C |= D. At first this may seem counter-intuitive
but this is generalisation as relative entailment.

Example 2.3.

C : Andreas lives in Nicosia
D : Andreas lives in Cyprus

∣∣∣∣ lives(andreas, nicosia)
lives(andreas, cyprus)

B : lives(x, cyprus)← lives(x, nicosia).

For additional semantic and syntactic definitions , we refer the reader to [LMR92, Mug08].

2.2.4 ILP definition

Given background knowledge B and a set of evidence E, E = E+ ∧ E− (positive and negative
evidence respectively), as logic programs, the aim of an ILP system is to find a hypothesis H
such that the following conditions hold:

• Prior Satisfiability: B ∧ E− 6|= 2

• Consistency (Posterior Satisfiability): B ∧H ∧ E− 6|= 2

• Prior Necessity: B 6|= E+

• Completeness (Posterior Sufficiency): B ∧H |= E+

In practice these conditions are not always checked against the computed hypotheses.

2.2.5 ILP task

An ILP task [Lav98, CRL10] is formally defined as < E,B, S >, where E,B are defined as
above and S is a set of clauses referred to as the language bias [Blo10]. The theory H ∈ ILP <
E,B, S >, called hypothesis, is an inductive solution for < E,B, S > if H ⊆ S, H is consistent
with B and B ∪H |= E. ILP < E,B, S > represents the set of all inductive solutions for the
given task.

Example 2.4, below, illustrates the usage of each term and how a hypothesis can be constructed
in an ILP setting. The set B represents the background knowledge, E+ the positive training
examples and E− the negative training examples.

We know the relation grandfather in terms of father(X,Y ) and parent(X,Y ) and some addi-
tional facts all of which are logic programs in B, the background knowledge.
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Example 2.4.

B =


grandfather(X,Y )← father(X,Z), parent(Z, Y )
father(andy, dina)←
mother(dina, helen)←
mother(dina, andreas)←

E+ =
{
grandfather(andy, helen)←
grandfather(andy, andreas)← E− =

{
grandfather(andreas, andy)←
grandfather(helen, andreas)←

Adding positive and negative examples concerning the relationship between grandfathers and
their grandchildren, also as logic programs, allows us to infer a relationship such as the follow-
ing:

H = parent(X,Y )← mother(X,Y ).

The hypothesis can be constructed by navigating the search space effectively and by adding
relevant language bias to minimise the computational effort searching the hypothesis space. It
is noteworthy to say that the resulting hypothesis is not a result of the background knowledge,
B and the negative evidence, E− (prior satisfiability) but instead is an explanation of E+ with
respect to B (posterior sufficiency). More details about navigating the search space can be
found in Section 2.3.2.

2.2.6 Non-monotonic ILP

Normal ILP differs from non-monotonic ILP in that the former targets the problem of in-
ductive construction of a general theory from examples and background knowledge and clas-
sifies new instances based on rules, whereas the latter aims at representing incomplete knowl-
edge [Sak01].

In general, non-monotonic ILP does not guarantee that the newly-learned hypothesis preserves
the consequence of the previously learned hypothesis. Referring back to Example 2.2, consider
the default assumption that “birds can fly”. Consequently, if an animal is known to be a bird and
nothing else is known we can assume that it can fly. However, the default assumption will have to
be retracted if we find out, at a later point in time, that this animal is a penguin. We know that
penguins can’t fly and therefore what was true before no longer holds anymore. The addition
of this new fact caused the non-monotonic reasoner to retract the previous conclusion.

2.2.7 Evaluation and relevance

Learning techniques such as artificial neural networks, are said to mimic human learning by
minimising the cost function using some form of gradient descent. However, unlike neural
networks, ILP systems output rules which are easily understood by people and are suitable for
automated analysis. We believe that the use of an ILP system will be most appropriate to
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compute user behaviour rules from data which could then be easily processed and translated to
the user for system validation.

However, presently, most ILP systems [DM94] require that all mode and type information be
provided by the user but these could potentially be derived automatically from analysis of the
background knowledge. In addition, ILP systems do not cater for noisy training data and they
have rather limited facilities for handling numerical data [BM95] as opposed to other machine
learning techniques. Finally, a large hypothesis space makes it intractable to calculate all ac-
ceptable hypotheses, even though acceptable solutions exist. TAL, an in-house tool developed
at Imperial College has managed to overcome some of these limitations and is described in detail
below.

2.3 Top-directed Abductive Learning (TAL)

Until recently, there have been no implementations of ILP systems which overcome the complete-
ness problems but also the expressiveness and learning in the context of normal logic programs.
Most systems limit the expressiveness of the language as well as the possible outcome of the
learning. TAL [CRL10], a tool developed here at Imperial College London, is the first system
that allows background theories and hypotheses to be normal logic programs.

In particular TAL handles negation during the learning process and has the ability to learn
non-monotonic hypotheses. TAL is complete, meaning that it is able to find a solution if one
exists. Moreover, it allows expressive language bias specifications, performs non-observational
and multiple predicate learning and makes use of constraint solving techniques. It can also be
used to perform theory revision, can use configurable heuristics in the search some of which are
outlined in more detail in Section 3.6.

Its main difference from available ILP systems lies in its applicability to derive rules by handling
large datasets and perform a complete search over a large search space and infinite domains.
This project relies heavily on TAL and its suitability for this project is exactly for this reason;
the ability to handle a very large domain whereby we can learn mobile user behaviours.

In order to understand how TAL works, it is necessary to introduce Abductive Logic Program-
ming, the semantics and the theory behind it.

2.3.1 Abductive Logic Programming (ALP)

Abductive Logic Programming [KKT93] is concerned with computing a set of hypotheses that
together with some knowledge, T , implies the given observation, E. It is a form of non-monotonic
reasoning because each explanation is consistent with one state of a knowledge base and may
become inconsistent with the addition of new information. In fact, multiple explanations is
an important property of abductive reasoning. In contrast with ILP, ALP systems construct
hypotheses in the form of ground literals of some predicates (abducibles) whereas ILP systems
compute rules that are able to discriminate between positive and negative examples.

We can restrict abduction by making use of integrity constraints. Integrity constraints are
useful when there is a perfectly valid explanation to reject irrelevant abducible explanations.
Referring back to the example in Definition 2.1, if we add a constraint rule in theory T , which
says that “it is impossible that it rained last night and the sprinkler was also on” (i.e. ←
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rained last night∧sprinkler was on) then one of the previously candidate explanations would
no longer be a candidate.

Definition 2.9. ALP task
Given a set of sentences T (a theory presentation), a sentence G and a set I of integrity con-
straints, then we can represent an abductive task as the problem of finding a set of sentences 4
(abductive explanation for G) such that:

• T ∪4 |= G,

• T ∪4 satisfies I,

• T ∪4 is consistent.

More formally, an ALP tasks is defined as < g, T,A, I > where the theory T (a set of rules) is
a normal logic program, A is a set of abducible facts, I is a set of integrity constraints and g is
the ground goal1.
4 ∈ ALP < g, T,A, I > is an abductive solution for the ALP task, if4 ⊆ A, T ∪4 is consistent,
T ∪4 |= g and T ∪4 |= I.
ALP < g, T,A, I > denotes the set of all abductive solutions for the given ALP task.

Sometimes we wish to reduce the number of possible explanations. This can be achieved by
imposing some restriction requirements. These requirements can be the following:

• An explanation must be basic. This effectively says that an explanation should not be
explained by another. This can easily be avoided by not allowing abducible predicates to
appear as heads of a rule R in theory T .

• An explanation must be minimal. This means that a possible explanation should not be
subsumed by a smaller set.

• An explanation must satisfy all of the integrity constraints.
Example 2.5.

T =


citizen(x)← born in(x, usa).
citizen(x)← born in(x, y), y 6= usa, resident(x, usa), naturalised(x).
citizen(x)← born in(x, y), y 6= usa,mother(y, x), citizen(y), registered(x).
mother(mary, john).
citizen(mary).

I =
{
false← resident(john, usa).

A =


born in(x, usa).
born in(x, y), 6= usa.
resident(x, usa).
naturalised(x).
registered(x).

G =
{
citizen(john).

4 =
{
born (john, usa).
born (john, Y ), Y 6= usa, registered(john).

1The goal does not necessarily need to be ground with the ALP procedure used in TAL
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Example 2.5 [SSK+86, KC03], above, illustrates how using the following clauses together with
the five abducible predicates, “is born in the USA”, “is resident of the USA”, “is naturalised”,
“is registered” and the integrity constraint false← resident(john, usa), the goal citizen(john)
has two abductive solutions, one of which is born in(john, usa) and the other of which is
born in(john, Y ), Y 6= usa, registered(john). The potential solution of becoming a citizen
by residence and naturalisation fails because it violates the integrity constraint.

Evaluation and relevance

Abductive Logic Programming can be used to deal with incomplete theories and negation as
failure offering wider expressiveness of the language and better outcome of the learning. In this
project, abductive logic programming is used through TAL, discussed in detail in Section 2.3.2,
which translates an ILP task into an ALP problem whose, in turn, solution is translated back
into a solution of the original ILP problem. TAL relies on the semantics of the underlying
abductive proof procedure [KKT93] and allows us to deal with negation and learn non-monotonic
hypotheses.

2.3.2 TAL

We have seen in Section 2.2 and 2.3.1 how an ILP and an ALP task is defined and their set
of solutions respectively. TAL translates an ILP task into an ALP one which is eventually
translated back into a solution of the original problem. This allows TAL to handle negation
within the learning process and learn non-monotonic hypotheses using the semantics of ALP.
Since the space of possible solutions is very large there is a need to restrict the hypothesis search
space.

TAL provides three ways to impose constraints on the space by defining:

1. Some background knowledge B.

2. Some languages bias, S.

3. Some integrity constraints, I.

The bias is useful in cases where we know how to structure our hypothesis in which case the
hypothesis space will decrease considerably. The background knowledge is usually defined as a
normal logic program whereas the language bias is specified using a set of mode declarations, M ,
to explicitly define the head and body declarations. Integrity constraints are used at times where
pairs of literals are not meant to appear together in the body of a rule. This prevents TAL from
searching that part of the search space and therefore speeding up the process of learning.

To limit the search space, TAL imposes an upper bound on the inductive solution by setting
a mapping M , of mode declarations into a top theory >. The set of M mode declarations is
transformed into the top theory > as shown in Listing 2.1. With the theory defined, Prolog
attempts to select clauses using the standard selection rule, in order of appearance [SS86].

Learning parameters

TAL uses a number of parameters to suit the learner’s needs and these can be specified in the
learning file using option(name, value). We list the most important ones here and a brief

15



CHAPTER 2. BACKGROUND

explanation for each.

option(max body literals, N)
Specifies N ∈ [0, inf [ the maximum number of body literals allowed in a rule.

option(max num rules, N)
Specifies N ∈ [1, inf [ the maximum number of rules allowed in a solution.

option(max depth, N)
Specifies N ∈∈ [1, inf [ the maximum depth of the proof procedure.

option(timeout, MS)
Specifies MS ∈ {false} ∪ [1, inf [ the timeout for the learning task in milliseconds. false
disables the timeout.

option(number of solutions, N)
Specifies N ∈ [1, inf [ the number of solutions required before the task terminates. This
parameter is used in the termination component of the heuristics, so the effect is dependent
on the specific implementation.

option(strategy, ST)
Specifies ST ∈ {progol, breadth, ...} the strategy used. Some of the strategies are explained
in Chapter 3.

option(single seed, B)
Specifies B ∈ {true, false} if the single seed strategy is used or not.

option(single seed ratio, N)
Specifies N ∈ [1, inf [ the ratio for the single seed case. Intuitively each seed is taken to
represent N examples.

option(solution pool, N)
Specifies N ∈ [1, inf [ the number of solutions that are traced in the learning process. This
is the number of solutions that appear in the final solution file and also the solutions that
are considered in the post learning phase of the single seed case.

option(xvalidation folds, N)
Specifies N ∈]− inf, inf [ the number of folds used for cross validation. If less than 1 cross
validation is not performed.

option(ic check, B)
Specifies B ∈ {true, false} if the integrity constraints are checked for each hypotheses.
See Section 2.3.1 for details.

option(cover loop, true)
Specifies B ∈ {true, false} if the cover loop approach is to be used.

option(loop treshold, N)
Specifies N ∈ {−1, 0} and is used only if the cover loop approach is used. It specifies that
solutions should only be considered if they score above N.

All of the options refer to the learning over a seed in the case of single seed learning.

The search in TAL is performed by an abductive logic programming system. Therefore each
state in the derivation process corresponds to a full abductive state which includes a set of
goals, a set of integrity constraints and a set of abducibles. Of these states, some correspond
to the derivation of an inductive solution, in some cases already derived in other parts of the
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tree and in other cases brand new. These states are called partial hypothesis states. All of these
states are linked to a score as a tuple of (phs, s). phs is 0 for all the states that are not partial
hypothesis states and set to a different number phsstrategy otherwise. This number depends on
the particular strategy adopted and is usually set to 1. s depends on the strategy and only
changes in partial hypothesis states.

The reason why a pair is used is to allow strategies to evaluate the score only whenever the
current open states are only partial hypothesis states, thus choosing what solution to refine
whenever no abductive steps can be performed. In Chapter 3, we talk about the different
heuristic strategies we opted and in Chapter 6 we explain how these parameters were altered to
achieve maximum performance.

Top Theory and learning file

Example 2.6, below, demonstrates how TAL transforms the learning file in Listing 2.2, further
below, consisting of the background knowledge, the mode declarations and the training examples,
M , into top theory >. Since no head of clause in B unifies with the positive examples, the
derivation uses one of the rules defined in >.

Example 2.6. Learning the family relation of uncle(X,Y ).

M =


m1 : modeh(uncle(+male, +person))
m2 : modeh(brother(+person, +person))
m3 : modeb(male(+person)
m4 : modeb(parent(+person, +person)
m5 : modeb(brother(+person, -person))

E+ =
{
uncle(tim, ann)←
uncle(bob, ann)←

E− =

 uncle(betty, ann)←
uncle(susan, ann)←
uncle(joyce, ann)←

B =



brother(X,Y )← male(X), parent(Z,X), parent(Z, Y ), X = / = Y.
male(bob)←
male(tim)←
male(tom)←
female(ann)←
female(susan)←
female(betty)←
female(joyce)←
parent(tom,mary)←
parent(tom, bob)←
parent(tom, tim)←
parent(mary, ann)←

Each head in > checks the typed arguments defined, associates itself with a rule id and attempts
to unify with one of of the body literals, using the standard Prolog selection rule. For example,
m1 is the head declaration for uncle(+male,+person). Consequently in >, the first clause is
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that of uncle(X,Y ) and is defined by unifying X to male, Y to person, and the body literal to
one of the three possible clauses.

The selection of the body literal from the rule results in three derivation branches in the search
tree; one for each of the three body clauses whose head unifies with it. The derivation process
continues until a rule is computed which is consistent with all the positive and negative examples.
The rule computed under the top theory, shown in Listing 2.1, below, is as follows:

uncle(X,Y )← male(X), parent(Z, Y ), brother(X,Z))

1 uncle(X, Y )← male(X), prule(RId, [(m1, [], [])]),
2 rule id(RId), person(Y ),
3 body(RId, [X, Y ], [(m1, [], [])]).
4
5 brother(X, Y )← person(X), person(Y ),
6 prule(RId, [(m2, [], [])]),
7 rule id(RId), [X, Y ], [(m2, [], [])]).
8
9 body(RId, Inputs, Rule)← append(Rule, [(m3, [], Links)], NRule),

10 prule(RId, NRule), link variables(X, Inputs, Links),
11 male(X), person(X), body(RId, Inputs, NRule).
12
13 body(RId, Inputs, Rule)← append(Rule, [(m4, [], Links)], NRule),
14 prule(RId, NRule), link variables([X, Y ], Inputs, Links),
15 person(X), person(Y ), body(RId, Inputs, NRule).
16
17 body(RId, Inputs, Rule)← append(Rule, [(m5, [], links)], NRule),
18 prule(RId, NRule), links variable([X, Y ], Inputs, Links),
19 person(X), person(Y ), append(Inputs, Y, Outputs),
20 body(RId, Outputs, NRule).

Listing 2.1: Top Theory > for the uncle example

Listing 2.2, below, shows how we can encode a learning task in TAL using Prolog to learn prop-
erties relations that were previously unknown. The file consists of a set of options, a set of
mode declarations (head and body), our background knowledge and a set of training examples.
Since this is a toy problem, the default strategy was used, in this case Progol. The values for all
the other options were set to their default values as they wouldn’t impact the solution of this
problem.

1
2 /∗ Options ∗/
3
4 opt ion ( max body l i t e ra l s , 3) .
5 opt ion ( max num rules , 1) .
6 opt ion ( max depth , 100) .
7
8 /∗ Mode de c l a r a t i on s ∗/
9

10 modeh( unc le (+male , +person ) ) .
11 modeb( male(+person ) ) .
12 modeb( parent(+person , +person ) ) .
13 modeb( brother (+person , −person ) ) .
14
15 /∗ Background knowledge ∗/
16
17 brother (X,Y) :− male (X) , parent (Z , X) , parent (Z , Y) , X =/= Y.
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18
19 male ( bob ) .
20 male ( tim ) .
21 male ( tom) .
22
23 female ( ann ) .
24 female ( susan ) .
25 female ( betty ) .
26 female ( j oyce ) .
27
28 parent (tom , mary ) .
29 parent (tom , tim ) .
30 parent (mary , ann ) .
31 parent (tom , bob ) .
32
33 person ( ) .
34
35 /∗ Examples − Both p o s i t i v e and nega t i v e ∗/
36
37 example ( unc le ( tim , ann ) , 1) .
38 example ( unc le ( bob , ann ) , 1) .
39 example ( unc le ( betty , ann ) , −1) .
40 example ( unc le ( susan , ann ) , −1) .
41 example ( unc le ( joyce , susan ) , −1) .

Listing 2.2: The learning file for learning the relation uncle

2.4 Statistical Machine Learning

In this section, we present a subset of machine learning techniques that are concerned with
applying information theory and statistics to obtain a quantitative output [HTF09] that we
wish to predict based on a set of features. We have a training set of data with which we can
measure the outcome for a set of objects. With the data, a prediction model, the learner, can
be constructed which predicts the outcome for new instances.

2.4.1 Association Rule Learning

Association rule learning [AIS93] can be used as a data mining technique to infer previously
unknown relations between variables in large datasets. A famous example of such an association
rule is the following supermarket purchase rule:

{bread, butter} → {milk}

This says that the people who buy bread and butter at a supermarket, will also buy milk. Bread
and butter is said to be the antecedent and the milk is said to be the consequent.

Agrawal et al. define this problem in terms of a transaction set, T = {t1, t2, ..., tn} called the
database and a set of binary attributes, I = {ι1, ι2, ...., ιn}, called items. Each transaction, t,
within the database is represented as a binary vector, with t[k] = 1 if t satisfies item Ik, and
t[k] = 0 otherwise. If X is a set of items in I, then t satisfies X if for all items Ik in X,
t[k] = 1.

A rule is defined as an implication of the form X =⇒ Yj where X is a set of some items in I and
Yj is a single item in I that is not present in X. More formally, this is defined as X,Yj ⊆ I and
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X
�

Y = ø. Each rule is accompanied with a confidence factor c which signifies the probability
of the rule being correct. The rule X =⇒ Yj is satisfied in the set of transactions T with the
confidence factor 0 ≤ c ≤ 1 iff at least c% of transactions in T that satisfy X also satisfy
Ij .

Example 2.7, below, shows how we can encode a rule when dealing with the Reality Mining
dataset.

Example 2.7.
A set of items could be I = {video, game, phone, signal, nosignal} and example rules inferred
from D could be {video, game} =⇒ {nosignal} and {phone,music} =⇒ {signal}.

The algorithm

Although there exists more than one algorithms for mining association rules like Eclat [Zak00]
and FP-Growth [HPY00] we maintain our focus on the Apriori [AS94] algorithm which is the
best known algorithm for rule learning.

In plain English, the algorithm looks for frequent item-sets. These are item-sets whose support
count is greater than a minimum support threshold (N). For each item in the database, we
calculate its support and check to see whether it qualifies. If it passes, then we iteratively
continue to find frequent item-sets with cardinality from 1 to k (k-item-set). Termination of the
algorithm occurs where there are no more item-sets having support N .

Example 2.8, below, illustrates how the algorithm is used in practice with a simple example.

Example 2.8. Algorithm demonstration
Consider a database of transactions consisting of the sets {1, 2, 3, 4}, {1, 2}, {2, 3, 4},
{2, 3}, {1, 2, 4}, {3, 4} and {2, 4} with minimum support count required 4 and confidence factor
70%. We begin by creating a co-occurence (frequency) table, called the support, of each member
item as follows:

1→ 3
2→ 6
3→ 4
4→ 5

where A → B denotes item A having support B. We compare the candidate support with the
minimum support count and remove candidates which do not qualify. In our case all item-sets
pass. Our next step is to generate a 2-item-set frequency table and again compare candidate
support with minimum support. In our example, the support for 2-item-sets is as follows:

{1, 2} → 3
{2, 3} → 3
{2, 4} → 4
{3, 4} → 3

In this our example only the 2-item-set {2, 4} qualifies. If more than one qualified then we would
have to repeat iteratively to find frequent item-sets with cardinality from 1 to k.

{1, 2, 3} → 1
{2, 3} → 3
{2, 4} → 4
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{3, 4} → 3

To generate association rules from frequent item-sets we need take all of their non-empty subsets.
These are {2} and {4}. The resulting association rules are shown below each listed with their
confidence:

• R1: {2} → {4} with confidence
Support({2, 4})
Support({4})

=
4
6

= 67%

• R2: {4} → {2} with confidence
Support({4, 2})
Support({4})

=
4
5

= 80%

Since our confidence factor is 70%, R1 is rejected and R2 is accepted.

Constraints

When generating rules there are some constraints that we need to adhere to:

• Syntactic Constraints: These constraints impose certain restrictions on the items that
can appear in a rule. For example we may be interested in specific items appearing in the
antecedent or the consequent. In an ILP setting this can be thought of as the language
bias which sets an upper bound on the search space.

• Support Constraints: These constraints involve the number of transactions in T that
support a rule.

Evaluation and relevance

Association rule learning makes it difficult to find frequent item-sets in a dataset because it
involves searching for all the possible item combinations. This is the power set I and has size
2n − 1. The power set grows exponentially and so an efficient search algorithm is important to
allow for the discovery of all the frequent item-sets. In addition, searching for many possible
associations, for sets of items that appear to be associated, carries the risk of finding many
associations which do not provide any additional value to the data because their frequency in
the data is so small.

Nevertheless, this technique can provide us with strong rules discovered in datasets using dif-
ferent measures of interestingness. We can use these rules as background knowledge in TAL to
potentially improve the ILP learning accuracy.

2.4.2 Decision Tree Learning

Decision Tree learning is a method for approximating discrete classification functions using a
tree-based representation. We can make use of this method to inductively infer [Mit97] unknown
relations within our dataset. The trees can also be represented as sets of if-then rules, making
the transition to an ILP setting almost seamless.

A learned decision tree is able to classify a new instance by sorting it down the tree, beginning
from the root to some leaf node which is able to classify the new instance. Every node in the
tree tests some attribute value of each new instance, and the branches of each node represent a
possible value for that attribute.
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Figure 2.2, below, depicts a very simple decision tree for the concept hasSignal. In the tree we
can see that there are two attributes, namely audio and vision. The former takes the values
phone, withVision, music and the latter the values video, game. An example is then classified
by sorting it through the tree to the appropriate leaf node, then returning the classification
associated with this leaf, in our case either of {yes, no}. The tree classifies whether mobile
phones with instances of these two attributes have reception or not.

Figure 2.2: A simple decision tree for the concept hasSignal

The algorithm

One of the most commonly used algorithms for decision tree learning is the ID3 algorithm which
employs a top-down greedy search through the space of possible solutions.

The general approach to implementing the algorithm is as follows:

1. Perform a statistical test of each attribute to determine how well it classifies the training
examples when considered alone. This is often called the information gain and determines
how well it classifies the training examples.

2. Select the attribute that performs best (the one with the highest information gain) and
use it as the root of the tree.

3. Determine the node for each branch by sorting the training examples with respect to the
value related to the current branch and recurse to repeat the process in steps 1 and 2
respectively.

To calculate the information gain precisely, we need to calculate its entropy, that characterises
how pure a collection of examples is. The higher the entropy value of this collection the higher
its impurity. The entropy of a collection of examples, S is calculated, relative to a n-wise
classification, as follows:

Entropy(S) =
n∑

i=1

−p(xi)log2p(xi)

where p(xi) is the proportion of S belonging to class i. Now that we can calculate the entropy of
a collection of examples, we can define a measure which signifies the effectiveness of an attribute
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in classifying the training data. In other words, how well alone, an attribute can classify the
data. The information gain, is the reduction in entropy caused by partitioning S according to
an attribute A. Formally, the information gain can be defined, and used to calculate the value
for each of attributes as follows:

IG(S,A) = Entropy(S)−
∑

v∈V alues(A)

|Sv|
|S|

Entropy(Sv)

where V alues(A) is the set of all possible values for attribute A, and Sv is the subset of S for
which attribute A has value v.

Example 2.9. An example calculation2

Suppose we are working with a set of examples, S = {s1, s2, s3, s4} such that s1 is classified
(binary classification) as positive and the rest as negative. We want to calculate the information
gain of an attribute A which can take values {v1, v2, v3}. Let s1...s4 take the following values:

• s1 takes value v2 for A

• s2 takes value v2 for A

• s3 takes value v3 for A

• s4 takes value v1 for A

To work out the information gain for A relative to S (i.e. IG(A,S)), we first need to calculate
the entropy of S.

Entropy(S) = −1
4
log2(

1
4

)− 3
4
log2(

3
4)

) = 0.5 + 0.311 = 0.811

Next, we need to calculate the weighted Entropy(Sv) for each value of v = v1, v2, v3, v4 , noting

that the weighting involves multiplying by
|Svi|
|S|

where Sv is the set of examples from S which

have value v for attribute A.
|Sv1|
|S|
∗ Entropy(Sv1) =

1
4
∗ (−0

1
)log2(

0
1

)− 1
1
log2(

1
1

) = 0

|Sv2|

|S|
∗ Entropy(Sv2) =

2
4
∗ (−1

2
)log2(

1
2

)− 1
2
log2(

1
2

) =
1
2

|Sv3|
|S|
∗ Entropy(Sv3) =

1
4
∗ (−0

1
)log2(

0
1

)− 1
1
log2(

1
1

) = 0

We now have all the required values to apply the information gain formula, defined further
above, as follows:

IG(S,A) = 0.811− (0 +
1
2

+ 0) = 0.311

Evaluation and relevance

Decision trees are suitable for discrete classification functions. For this reason, the ID3 learning
algorithm will never search for an incomplete hypothesis space. The algorithm uses statistical
properties to make decisions on training examples which makes the resulting search much less

2Adopted from: http://www.doc.ic.ac.uk/~sgc/teaching/v231/lecture11.html
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sensitive to errors. On the other hand, every decision tree determines a single hypothesis and
not a set of hypotheses. The algorithm is unable to find more than one hypothesis consistent
with the data which means there could be more than one decision tree classifying the data
correctly.

2.5 Tools

2.5.1 Waikato Environment for Knowledge Analysis (WEKA)

WEKA3 [HFH+09] is a collection of machine learning algorithms for data mining tasks. A
programmer can either apply the algorithms directly to a dataset suited to WEKA, adhering
to the .arff format, or directly from Java through the use of their API4 . WEKA contains tools
for data pre-processing, classification, regression, clustering, association rules, and visualisation.
It is also well-suited for developing new machine learning schemes. Our choice for WEKA
was mainly based on two reasons: (1) it implements a wide range of popular machine learning
algorithms suited to our needs and (2) the scope of our project relies upon an investigation
of machine learning algorithms suited to our problem rather than their detailed and pedantic
implementation.

For these two reasons, we think it is the best choice available. The main application is made of
up of panels, the most important being:

• The pre-processing panel responsible for importing data. The application can either take
a flat file as input or access a database query using Java Database Connectivity (JDBC)
and process the result.

• The classify panel which is the most important panel. It enables us to apply classification
and regression algorithms to the corresponding dataset and estimate the accuracy of the
inferred model.

• The associate panel provides access to association rule learners which attempt to identify
relationships between attributes.

• The cluster panel which gives access to clustering techniques.

• The select panel which provides methods for identifying the most informative attributes.

2.5.2 The Android Software Development Kit (SDK)

In this project, we make use of the Android SDK and its APIs as proof of concept. We choose the
Android Platform as opposed to the iOS SDK because of the learning curve required to become
experienced in Objective-C. The Android SDK provides the necessary tools and APIs to allow
the development of applications on the Android platform using Java as the main programming
language. We put our learning framework into practice by developing our own data collection
application. Figure 2.3, on the following page depicts the Android architecture. Each layer uses
the services provided by the layers below it.

Some of the SDK’s main features/layers our application will use are as follows:

3WEKA: http://www.cs.waikato.ac.nz/ml/weka/
4API: Application Programming Interface
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• Android Runtime: This layer, includes the Dalvik Virtual Machine and the core Java
libraries. These slightly differ from the Java Standard Edition.

• Activity Manager: The Activity Manager controls the life cycle of applications and
maintains the so-called activity stack for user navigation.

• Notification Manager: The Android Notification Manager is responsible for alert-
ing/notifying the user for any event/appointment/alert.

• Location Manager: The Android Location Manager is responsible for retrieving the
user’s location.

• Resource Manager: The Android Resource Manager is responsible for loading up static
resources such as images and layout.

• SQLite: The Android includes the lightweight SQLite database engine. It is the most
widely used database engine for mobile devices and compact applications. It is most
appropriately used for structured data storage.

• Bluetooth, EDGE, 3G and WiFi: An Android device can connect to the internet with
a number of different connectivity components as provided by the Linux Kernel.

• GPS, Light sensor: These are hardware dependent components, meaning that they are
not available in every device.

Figure 2.3: The Android Architecture [Goo11]
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Activities

An activity represents a single screen with a user interface. Each application contains a finite set
of activities which can make up the flow of the application. Even though activities work together
to form a cohesive user experience, each one is independent of the others. A ListActivity is a
special kind of activity that allows representation of lists in a user friendly manner.

Services

A service is a component that runs in the background to perform long-running operations or to
perform work for remote processes. It has a similar notion to that of Thread or a Unix daemon.
A service does not provide a user interface. Taking into account our own application, a service
might log the user’s location while the user is in a different application or it might fetch results
over the network without blocking user interaction within an activity.

Broadcast Receivers

A broadcast receiver is a component that responds to system-wide broadcast announcements.
Most broadcasts originate from the system, for example a broadcast announcing that there is
an incoming phone call or that the device is about to be switched off. Broadcast receivers do
not display a user interface per se, however using the Notification Manager they may create a
status bar to alert the user that an event has occurred.

For more information on the Android platform, we refer the reader to [Bur08, Goo11].

2.6 Summary

We have covered a range of useful techniques that will prove useful during the design and im-
plementation phases of our system. Asides from a quick introduction to logic programming
notation and a thorough overview of inductive and abductive logic programming we have ad-
ditionally focussed our interest on machine learning techniques that we believe can be coupled
with ILP such as decision tree and association rule learning. To form a complete image, we have
provided the reader with a thorough examination of TAL; the learning tool that forms the basis
of our project.
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3
A Learning Framework

In this chapter we propose and define a formal framework for learning mobile user behaviours.
We give a brief overview of the steps we carry out in the project, followed by a formal definition
of our domain, the background knowledge and the modelling components suitable to our prob-
lem. We explain how an appropriate language bias is formalised, what constitutes our training
examples and we additionally show how the data are extracted and formatted as required by
Prolog and TAL. We discuss the heuristic strategies most appropriate to our problem and how
the cover loop approach performs considerably better. Further, we describe how our results are
cross validated enabling us to perform a full receiver operating characteristic analysis followed
by a discussion on rule refinement and revision. Lastly, we discuss whether the use of statistical
machine learning has enabled us to improve learning.

3.1 Overview

Figure 3.1, below, illustrates diagrammatically the steps and processes we employ in the project.
We first start off with a phase of domain modelling to allow for the definition of background
knowledge and associated language bias.

We have already seen in Section 2.2 how ILP systems can be used to infer previously unknown
relations. In order to be able to achieve this, we need to first understand the type of data we
have, what there is available, how this information is accessed and consequently what we can
learn through this type of information. More specifically, we cover how the data is defined and
structured and what information can be included for each rule we wish to learn. We examine
the possibility whereby this process is fully automated to speed up the entire process.
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Figure 3.1: A high-level view of the project

For any learning task, we look for patterns in sets of data. In general, we have a large set of data
that allows us to solve the learning problem. The data are typically in the form of a relational
database (or other forms) which consists of several tables where each table corresponds to some
entity.

Most data-mining techniques assume that the data are available in one table and refer to its
columns as a set of attributes. For this reason, pre-processing of multiple tables is essential
to form an integrated table before learning algorithms can be applied. The result is usually
a propositional rule that classifies the data according to the class attribute. However, this
integration usually results in loss of information which may introduce noise to the data.

In an ILP task, we are concerned with transforming this set of data into logic programs. Apart
from dealing with data stored in multiple tables directly, ILP has the ability to infer relationships
from other relationships by taking into account background knowledge given as a logic program.
As an example, if we know how to encode the relations mother and father, we can easily define
the relations grandmother, grandfather, brother and sister.

If we consider Table 3.1, which lists attributes of people classified as either rich or not rich,
then we can automatically extract two rules. The first being a propositional rule and the second
being a relational rule.

• Propositional rule: if hair == blond && smart == no then rich = Yes

• Relational rule: isRich(X, Hair, Body, Pose, Smart) ← married to(X, Y) ∧
people(Y, H, B, P, S, Ir) ∧ H = blond ∧ S = no.
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id hair body pose smart isRich
1 blond thin arrogant no yes
2 brown thin natural yes no
3 blond plump goofy no yes
4 black thin arrogant no yes
5 blond plump natural yes no
... ... ... ... ... ...

Spouse1 Spouse2
1 2
2 1
3 4
4 5
... ...
... ...

Table 3.1: A relational database with two tables; People and MarriedTo

The applicability of ILP to our problem is mainly based on three things; (a) our data are not
being integrated into a single table, (b) we have a very large domain and (c) we don’t have a
formal set of attributes to choose from. However, the usability of ILP is limited because of the
difficulty in transforming the data in an automated manner over time. One of our main aims is
to develop a generic and flexible framework that requires a minimal amount of change. We aim
to address this issue, in the following sections.

3.2 Domain of discourse

To be able to learn mobile user behaviour rules through inductive reasoning, we first of all need
to define a domain over which we are going to learn. The domain definition is necessary since
writing a program in Prolog consists of listing out the facts and rules of the system which will
be used to construct the domain for the problem.

The possibilities are endless. However, we can limit the domain by considering important aspects
of user behaviour in general. For example, the location of the user at a certain time-point is
important as it can be used in path prediction. The user’s location can be inferred from GPS1

coordinates or from the area and cell tower id the user’s device is currently registered to. Using
Bluetooth enabled devices we can infer proximity from repeated Bluetooth scans.

The project has mainly focussed on the definition of a domain for the computation of the rule
of accepting/rejecting phone calls. This is by no means an exclusive domain, and the majority
of the rules/facts can also be used for the computation of other user behaviour rules.

We refer to these behaviours as events since they all have a temporal element within them.
Events of particular interest to us, are communication events. These are phone calls that the
user accepts or rejects. For each phone call, we are particularly interested in the time-point the
event takes place, its duration, the direction of the call (i.e., whether it is an incoming or an
outgoing call), the contact name/id/number.

There are also other events which we, in our opinion, believe are factors in the decision-making
process of accepting/rejecting calls. We define these events as follows:

(a) Activity events: These represent the activity of the user on the phone.

(b) Application usage events: These indicate the time the user is using a particular appli-
cation on the phone.

(c) Battery charging events: These events signify the period in which the phone’s battery
is being charged.

1GPS: Global Positioning System
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(d) Device events: Indication that Bluetooth enabled devices are scanned in the user’s vicinity.

(e) Location events: The user’s transition from one location to another.

3.3 Background Knowledge

The element of background knowledge to construct explanations is a distinctive feature of ILP.
The work carried out in [QCJ93] for learning list processing logic programs suggests that the
performance of an ILP system is sensitive to the type and amount of background knowledge
provided. Therefore, for a large problem domain such as ours, irrelevant background knowledge
may not only, unnecessarily, take more time to compute a hypothesis due to a large search
space, but it may also hinder the ILP’s system ability to guide the search towards a converging
solution.

In Prolog, the background knowledge usually consists of facts and rules. Facts are predicate
expressions that make a declarative statement about the problem domain. These are usually
defined once, and for this reason they are often termed as static domain-specific properties.
There are also dynamic domain-specific properties which change over time.

For our framework, we consider both type of properties. Static properties refer to some fact
which remains intact throughout the learning process, such as the level of brightness which is a
number between 0 and 255. On the other hand, dynamic properties are used when incremental
learning is involved and refer to facts which change periodically, like newly seen device names
or new contact numbers.

Rules are predicate expressions that use the logical implication (:-) to describe a relationship
among facts. Most of our background knowledge rules in our framework are concerned with
modelling relations with respect to time. This contradicts with our definition above, since our
rules do not describe relationships among domain-restricted facts. The next sections describe
how we construct and encode rules as well as facts to allow TAL to converge to a solution
faster.

3.3.1 Modelling date and time

The concept of time plays an unprecedented role in defining behaviour. All user behaviours
occur in terms of time. We answer phone calls at a particular point in time, we are at location
Y at time-point X and so on. This is why all of our events are modelled in terms of a timestamp
span. A timestamp span has a start-time and an end-time. In order to introduce time in our
events, we start by defining basic elements of date and time. These are:

• year/1, month/1 and day of month/1.

• hour/1, minute/1 and second/1.

• date/1, timex/1.

We use timex instead of time because some Prolog solvers conflict with the word time. List-
ing 3.1 illustrates how they are encoded in Prolog. Each of them accepts a range of values,
allowing Prolog to succeed only when those values are satisfied.
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For date and time, their respective arguments are checked against their corresponding literals
in the body of each rule.

year (Y) :−
Y in 2 0 0 0 . . 2 0 1 1 .

month(M) :−
M in 1 . . 1 2 .

day of month (D) :−
D in 1 . . 3 1 .

date ( [D, M, Y] ) :−
year (Y) ,
month(M) ,
day of month (D) .

hour (H) :−
H in 0 . . 2 3 .

minute (M) :−
M in 0 . . 5 9 .

second (S) :−
minute (S) .

timex ( [H, M] ) :−
hour (H) ,
minute (M) .

Listing 3.1: Elements of date and time in the background knowledge.

Date and time relations

The above definitions are only preliminary to enable us to define date and time relations. Date
relations provide information about two time events. For instance, we might be interested in a
date, say [D, M, Y], that is before or after another date, say [D1, M1, Y1]. For dates, there are
three possibilities for each relation, each modelled as a different logic rule.

One where the year Y is less that year Y1, another where Y and Y1 are the same but month
M is less than M1, and finally, in the case where Y, Y1 are the same and M and M1 are also
the same but day D is less than D1. Similarly, we do the same for checking whether one date is
after another. For example, date before([ 5, 6, 2011], [5, 7, 2011]) succeeds, whereas
date after([ 5, 6, 2011], [5, 7, 2011]) fails.

In the same way, time relations provide information about two distinct time events. For time,
the are two possibilities for each relation and constructed by the same argument explained
above. For example, time before([10, 55], [23, 52]) succeeds, whereas time after([10,
55], [23, 52]) fails.

Having defined these, we can introduce two concepts in the context of date and time. That of
before, and that of after. Listing 3.2, below, shows the final rules that we compute using the
relation definitions from above. We achieve this by checking whether the two dates are either
before or after the other. If they are the same, we determine whether their respective times are
before or after one other.

be f o r e ( [D,M,Y] ,T , [ D1 ,M1, Y1 ] , T2) :−
timex (T) ,
timex (T2) ,

d a t e b e f o r e ( [D,M,Y] , [ D1 ,M1, Y1 ] ) .

b e f o r e ( [D,M,Y] ,T , [ D,M,Y] , T2) :−

date ( [D,M,Y] ) ,
t imex be fo r e (T, T2) .

a f t e r ( [D,M,Y] ,T , [ D1 ,M1, Y1 ] , T1) :−
timex (T) ,
timex (T1) ,
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d a t e a f t e r ( [D,M,Y] , [ D1 ,M1, Y1 ] ) .

a f t e r ( [D,M,Y] ,T , [ D,M,Y] , T1) :−

date ( [D,M,Y] ) ,
t i m e x a f t e r (T, T1) .

Listing 3.2: Time relations

3.3.2 Duration spans

A duration span is a term we use that defines specific knowledge we can extract from our data.
All of them have a starting point and an ending point, both defined in terms of time and
date.

In terms of background knowledge we have specified the following:

• Activity span: Corresponds to the period whereby the user is doing something on the
phone.

• Application span: Denotes the period as well as the type of application a user is using a
particular mobile application. Since each application is typed, our background knowledge
also consists each type of application as a fact.

• Device span: Represents the period for which a device is present in the user’s vicinity.
Each device seen by the phone is typed and is also included as background knowledge.

• Cell span: Indicates the period for which the user is at a certain location. All locations
traversed by the user are also typed and are also used in the background knowledge.

• On span: Shows the period that the phone is switched on.

As explained before, there are two types of background knowledge we have. Unless we perform
learning once, all spans and their respective types form the dynamic component of background
knowledge which is accumulated on each data collection session. A full definition of our back-
ground knowledge definitions can be found in Appendix A.

3.4 Language bias

We have previously described the definition of language bias in Chapter 2. To remind ourselves,
in short, the language bias is the structure/language of the hypotheses that a typical ILP system
may return. In simple words, the bias defines a valid combination of each head of the rule with
conditions that we get for the body of each rule. In TAL, the language bias is encoded as first-
order logic clauses and written in terms of mode declarations which we discuss below.

3.4.1 Mode declarations

Mode declarations [Mug95] serve as a convenient way of constraining the hypothesis space and
are based on the notions of types and modes. The arguments of the predicates can be typed
and have an input (+), output (-) or constant mode (#). In this way, every variable that occurs
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as input argument for a literal in the body must occur either as an output argument or as an
input argument in the head literal of a clause.

There are two types of mode declarations. The head declarations and the body declarations. In
TAL, these are identified as modeh and modeb respectively.

In TAL and our context, modeb(weekend(+date), [name(weekend)]) is a mode declaration
that is allowed to appear in the body of a rule and modeh(accept(+date, +time, +contact))
is a mode declaration that can appear in the head of a rule. Since that is our only head
declaration, then we only really have one type of rule defining the single predicate head, but
with varying conditions in the body depending on our examples and background knowledge.
The full list of mode declarations can be found in Appendix A.

3.4.2 Refining date and time

Having defined a formal model of date and time in Section 3.3 we can now define a more high-
level view of date and time. For instance, a date can be defined in terms of a weekday or
weekend. Time, on the other hand, can be defined in terms of certain time periods during the
day, namely, morning, afternoon and evening.

Listing 3.3 shows how we categorise date and time into a more meaningful representation. For
weekday/1 and weekend/1, we first need to check that each argument in the two predicates
is a list representing a date. Using our day of week/4 rule, we can use these arguments as
input. the rule will output X, which denotes a weekday if it’s in the range of 1 and 5, and a
0 if the date is a Sunday or 6 if it’s a Saturday. For times, we check if the list arguments are
valid time points and then we check the range of hours that define morning/1, afternoon/1
and evening/1 respectively. Finally, we model the notion of answering calls before or after
a particular hour of the day with the time before h/2 and time after h/2 predicates (not
shown, due to layout purposes).

weekday ( [D, M, Y] ) :−
date ( [D, M, Y] ) ,
day of week (D,M,Y,X) ,
X in 1 . . 5 .

weekend ( [D, M, Y] ) :−
date ( [D, M, Y] ) ,
day of week (D,M,Y X) ,
X = 0 .

weekend ( [D, M, Y] ) :−
date ( [D, M, Y] ) ,
day of week (D,M,Y,X) ,
X = 6 .

morning ( [H, M] ) :−
timex ( [H, M] ) ,
H #< 12 ,
H #> 6 .

a f t e rnoon ( [H, M] ) :−
timex ( [H, M] ) ,
H #> 11 ,
H #< 19 .

evening ( [H, M] ) :−
timex ( [H, M] ) ,
H #> 18 ,
H #< 23 .

Listing 3.3: High-level representation of date and time

For these defined predicates to be used as part of our language bias, we need to include the
following:
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• modeb(weekday(+date), [name(weekkday)]).

• modeb(weekend(+date), [name(weekend)]).

• modeb(evening(+time), [name(evening)]).

• modeb(morning(+time), [name(morning)]).

• modeb(afternoon(+time), [name(afternoon)]).

Since TAL has the ability to handle negation during the learning process we also add the negation
of these (e.g., modeb(\+afternoon(+time), [name(afternoon)]).

3.4.3 User activity

Our definition of user activity is simple. The activity span from the background knowledge tells
us the time frame whereby the user is active.

For each activity span we have from the background knowledge, we can find out whether a
user is active at a particular point in time, simply by checking that this time point is after the
activity start time but before the activity end time. The same principle is followed and applied
for charge events, application usage events and on events (i.e., the period that the phone is
switched on). Listing 3.4, below, demonstrates our formal definition in Prolog.

During the modelling phase we have made an important observation. People don’t usually
answer calls when they are in the middle of another call. We model this with the in call/2
predicate which checks the time span of all our phone calls. Again, negation of these predicates
is handled by TAL so we only need to declare them in the mode body declarations.

u s e r i s a c t i v e (D,T) :−
a f t e r (D,T, D1 , T1) ,
b e f o r e (D,T, D2 , T2) ,
a c t i v i t y s p a n (D1 , T1 , D2 , T2) .

phone charg ing (D,T) :−
a f t e r (D,T, D1 , T1) ,
b e f o r e (D,T, D2 , T2) ,
chargespan (D1 , T1 , D2 , T2) .

phone on (D,T) :−
a f t e r (D, [H,M] , D1 , T1) ,
b e f o r e (D,T, D2 , T2) ,
onspan (D1 , T1 , D2 , T2) .

phone on (D,T) :−
u s e r i s a c t i v e (D,T) .

u s e r i s u s i n g a p p (D,T,A) :−
appspan (D1 , T1 , D2 , T2 ,A) ,
a f t e r (D,T, D1 , T1) ,
b e f o r e (D,T, D2 , T2) .

i n c a l l (D, T) :−
a f t e r (D, T, D1 , T1) ,
b e f o r e (D, T, D2 , T2) ,
c a l l s p a n (D1 , T1 , D2 , T2 , . . . . ) .

Listing 3.4: Representing user activity

3.4.4 User location and device proximity

Intuitively, we know that location, and especially the people you are with, play a crucial role in
defining mobile user behaviours. We don’t have information about the user’s surroundings but
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we have sufficient information about the user’s transitions from one place to another. Listing 3.5,
below, shows our definition for location in Prolog.

We define that the user is at location X, at time [D, T] if we there exists a location span such
that [D,T] is after [D1, T1] but before [ D2, T2] indicating the user is at location X. For device
proximity, we check if there exists a device span and perform the same check as for the location.
Another important aspect is to find out whether the user is at particular location by introducing
a time window of two hours. For example, we say that the user has been at location X at [3, 6,
2011], [16, 13] if and only if there exists a cell span on [3, 6, 2011] and hour 16 is less than the
span’s end time + 2 hours, but bigger than the span’s start-time.

nearDevice (D,T, DevID) :−
a f t e r (D,T, D1 , T1) ,
b e f o r e (D,T, D2 , T2) ,
dev icespan (D1 , T1 , D2 , T2 , DevID) .

not nearDev ice (D,T, DevID) :−
a f t e r (D,T, D1 , T1) ,
b e f o r e (D,T, D2 , T2) ,
dev icespan (D1 , T1 , D2 , T2 , DevID1 ) ,
DevID =/= DevID1 .

at (D,T, Cel l ID ) :−
a f t e r (D,T, D1 , T1) ,

b e f o r e (D,T, D2 , T2) ,
c e l l s p a n (D1 , T1 , D2 , T2 , Cel l ID ) .

not a t (D,T, Cel l ID ) :−
a f t e r (D,T, D1 , T1) ,
b e f o r e (D,T, D2 , T2) ,
c e l l s p a n (D1 , T1 , D2 , T2 , Cel l ID1 ) ,
Cel l ID =/= Cel l ID1 .

u s e r b e e n i n (D1 , [ H1 ,M1] ,C) :−
c e l l s p a n (D1 , [ H2 ,M2] , D1 , [ H3 ,M3] ,C) ,
H1 #< H3 + 2 ,
H1 #> H2 .

Listing 3.5: Representing user location

3.5 Training examples and format definition

We classify each phone call as a positive example when its duration (in seconds) is higher than
0 and as a negative example when its duration is 0. There are two different scenarios for
classification, when:

1. Incoming phone calls are our training examples.

2. Outgoing phone calls are our training examples. In this case, however, the concept of
accepting/rejecting calls is somehow distorted because outgoing calls is about making
phone calls. So an outgoing phone call can loosely be considered the same as an incoming
call.

TAL requires training examples to be encoded as follows: example(instance, class) where
class denotes that the example is positive or negative. Positive examples are identified with a
number greater than zero.

Conversely, negative examples are identified with a number less than zero. The instance can
be any of the mode head declarations defined. In our case, since we are only concerned with
observed predicate learning we are only dealing with one type of rule and therefore there can
only be one type of example.
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Our format definition relies on two data sources; the Reality Mining dataset and data we di-
rectly obtained from ULearn. Extraction of information with the Reality Mining dataset is not
as direct as one would expect and this is showcased in Chapter 4. Our training examples and
formatting of facts with the Reality Mining dataset vary slightly with ULearn. However, the
definition and format of duration spans in the background knowledge isn’t any different. The
spans are encoded in both cases as follows:

1 /∗ dynamic background knowledge ∗/
2 . . .
3 a c t i v i t y s p a n ( [ 1 5 , 10 , 2004 ] , [ 1 1 , 4 6 ] , [ 1 5 , 1 0 , 2 0 0 4 ] , [ 1 1 , 4 8 ] ) .
4 a c t i v i t y s p a n ( [ 1 5 , 10 , 2004 ] , [ 1 2 , 2 9 ] , [ 1 5 , 1 0 , 2 0 0 4 ] , [ 1 2 , 3 1 ] ) .
5 . . .
6 chargespan ( [ 2 2 , 7 , 2004 ] , [ 1 0 , 5 3 ] , [ 2 2 , 7 , 2004 ] , [ 1 3 , 3 8 ] ) .
7 chargespan ( [ 2 6 , 7 , 2004 ] , [ 2 1 , 5 2 ] , [ 2 6 , 7 , 2004 ] , [ 2 3 , 5 1 ] ) .
8 . . .
9 c e l l s p a n ( [ 2 1 , 7 , 2004 ] , [ 1 9 , 4 9 ] , [ 2 1 , 7 , 2004 ] , [ 1 9 , 5 3 ] , 5119 .408110) .

10 c e l l s p a n ( [ 2 1 , 7 , 2004 ] , [ 1 9 , 5 3 ] , [ 2 1 , 7 , 2004 ] , [ 1 9 , 5 4 ] , 5119 .407930) .
11 . . .
12 dev icespan ( [ 1 9 , 7 , 2004 ] , [ 1 6 , 5 8 ] , [ 1 9 , 7 , 2004 ] , [ 1 7 , 4 ] , 961024891) .
13 dev icespan ( [ 1 9 , 7 , 2004 ] , [ 1 7 , 4 ] , [ 1 9 , 7 , 2004 ] , [ 1 7 , 1 0 ] , 971198156) .
14 . . .
15 on ( [ 2 6 , 7 , 2004 ] , [ 1 5 , 1 8 ] , [ 2 8 , 7 , 2004 ] , [ 9 , 2 8 ] ) .
16 on ( [ 2 8 , 7 , 2007 ] , [ 1 0 , 8 ] , [ 2 8 , 7 , 2004 ] , [ 1 9 , 2 ] ) .
17
18 d e v i c e i d (961024891) .
19 d e v i c e i d (971198156) .
20
21 /∗ contac t 42 ∗/
22 contact (42) .
23 /∗ unknown contac t ∗/
24 contact (−1) .
25
26 /∗ area id & tower id ∗/
27 c e l l (5119 .408110) .
28 c e l l (5119 .407930) .

Listing 3.6: Similarities in the encoding of background knowledge

3.5.1 Reality Mining dataset

The Reality Mining dataset doesn’t come with a lot of contextual information. In this case, our
head of the rule is defined with three prominent arguments, namely, date, time and contact.
We define the mode head declaration as modeh(accept(+date, +timex, +contact)). Positive
and negative examples are defined respectively as follows:

example(accept([25, 7, 2004], [14, 38], 42), 1).
example(accept([29, 7, 2004], [10, 59], -1), -1).

3.5.2 ULearn

In Section 3.1 we mentioned that one of our main aims is to devise a learning framework that
is partly immune to applications of different datasets. For ULearn, the changes made to the
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framework were significant enough (see Chapter 6 for details) to improve learning, but small in
terms of changes in the background knowledge and language bias. This shows that a transition
from one set of data to another is possible with our learning framework. Our application, on
the other hand, records a number of attributes when a phone call takes place. We take this to
our advantage and encode the mode head declaration as follows:

modeh(accept(+date, +time, +contact, +volume, +vibrator, +battery_level,
+screen_brightness,+headset,+screen_status,+light_level,+battery_charging)).

In contrast to the Reality Mining dataset, the head declaration has been extended considerably.
We think that these arguments contribute towards the user’s decision in accepting/rejecting
calls and therefore are key factors in the decision-making process. Listing 3.7, below, illustrates
background knowledge we are only able to define using data from ULearn because of richness
and availability.

1 example ( accept ( [ 1 9 , 3 , 2 0 1 1 ] , [ 1 2 , 1 1 ] , −1 , 7 , 2 , 4 6 , 2 5 5 , 0 , 1 , 1 0 . 0 , 0 ) ,1 ) .
2 example ( accept ( [ 1 9 , 3 , 2 0 1 1 ] , [ 1 4 , 6 ] , 3 2 3 , 7 , 2 , 2 2 , 2 5 5 , 0 , 0 , 6 4 0 . 0 , 1 ) ,−1) .
3 . . .
4 /∗ dynamic background knowledge ∗/
5 . . .
6 appspan ( [ 1 8 , 3 , 2 0 1 1 ] , [ 1 1 , 0 0 ] , [ 1 8 , 3 , 2011 ] , [ 1 1 , 1 0 ] , ’ skype ’ ) .
7 appspan ( [ 1 8 , 3 , 2 0 1 1 ] , [ 1 1 , 0 3 ] , [ 1 8 , 3 , 2011 ] , [ 1 1 , 0 4 ] , ’ ca l endar ’ ) .
8 . . .
9 c a l l s p a n ( [ 1 9 , 3 , 2 0 1 1 ] , [ 1 2 , 11 ] , −1 ,7 ,2 ,46 ,255 ,0 ,1 ,10 ,0 ) .

10 c a l l s p a n ( [ 1 9 , 3 , 2 0 1 1 ] , [ 1 4 , 6 ] , 323 , 7 , 2 , 22 , 255 , 0 , 0 , 640 , 1 ) .
11 . . .
12 app ( ’ skype ’ ) .
13 app ( ’ ca l endar ’ ) .
14 . . .
15 l i g h t l e v e l ( 0 . 0 ) .
16 l i g h t l e v e l ( 2 2 5 . 0 ) .
17 l i g h t l e v e l ( 2600 . 0 ) .
18 . . .
19 /∗ s t a t i c background knowledge ∗/
20 . . .
21 volume (0) .
22 volume (1) .
23 . . .
24 v i b r a t o r (2 ) .
25 v i b r a t o r (3 ) .
26 . . .
27 b a t t e r y l e v e l (11) .
28 b a t t e r y l e v e l (12) .
29 b a t t e r y l e v e l (13) .
30 . . .
31 s c r e e n b r i g h t n e s s (76) .
32 s c r e e n b r i g h t n e s s (77) .
33 . . .
34 s c r e e n s t a t u s (0 ) .
35 s c r e e n s t a t u s (1 ) .
36 ba t t e ry cha rg ing (0 ) .
37 ba t t e ry cha rg ing (1 ) .
38 headset (0 ) .
39 headset (1 ) .

Listing 3.7: Background knowledge exclusive from data through ULearn
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3.6 Heuristics

Heuristics are used in search-space problems to direct the search more quickly to a solution.
Heuristics enable us to discard some parts of the space that would have otherwise been explored.
In any ILP system, especially in large domain problems, the use of heuristics becomes essential.
Moreover, when dealing with noisy datasets the task of computing expressive rules is even
harder. The use of a covering loop together with a strategy performs considerably better both
in terms of accuracy and richness in the rules. TAL supports the cover loop and has a number
of heuristic strategies each suitable to different problem domains.

3.6.1 Strategies

A number of predefined strategies already exist within TAL. We list them below and explain
each one of them briefly:

• Breadth first search: This strategy uses the depth of the derivation tree as its score.
The learning process terminates once d solutions are found, where d is the depth of the
tree and defined in the learning file as an option.

• Progol: This strategy is similar to the one Progol [Mug95, Mug97] uses where the score
of each solution is defined as the number of positive examples covered/entailed minus the
number of negative examples covered/entailed minus the complexity of the solution which
is given as the number of literals in the rule i.e., #positive examples covered − #negative
examples covered −#complexity. Termination is achieved after a complete search.

• Accuracy based: This strategy is the same as the accuracy that can be derived from a
traditional confusion matrix. It is defined as the sum of true positive examples (entailed/-
covered examples) and number of true negative examples (non-entailed/non-covered neg-
ative examples) over the total number of examples; i.e., acc = (TP +TN)/(P +N)). The
accuracy based strategy does not terminate until a complete search has been carried out.
It is therefore advisable, to use a timeout to denote the amount of time we want TAL to
run for Progol and Accuracy based strategies.

• Custom strategies: This is a placeholder for strategies that can be implemented and
used by the user and should be included in the file user/custom strategies.pl

The breadth first search strategy is ideal for problems that have a small to medium domain.
The hypothesis space will be small enough to be searched completely and therefore a solution
will be obtained whether we either reach the depth or no more solutions can be found.

Both the Progol and accuracy based strategies are ideal for large domain problems. Both give
good results given enough time. Nevertheless, Progol considers the complexity of a solution.
Over fewer examples this strategy becomes more dominant. Even if we discard complexity we
can see how one case could prefer a solution by seeing a graph of the solutions.

In the first case we would have score = TruePositive − FalseNegative and in the second
score = (TruePositive + TrueNegative)/Total. In the second case the false negatives are
completely irrelevant whilst in the first case the true negatives are completely irrelevant. Both
strategies do not terminate until a complete search has been performed and for a large domain
problem this could mean that the search could potentially take hours or even days before it is
complete.
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It also does not necessarily mean that the result would be any better had the search been inter-
rupted or stopped half-way through. The results we obtain will vary between different strategies
both in terms of the solution and score. The score for the accuracy based strategy is more in-
tuitive and understandable by the user as opposed to the score for the Progol strategy.

3.6.2 Cover Loop approach

An efficient coverage computation is crucial for the performance of an ILP system [FCS+03].
The cover loop incrementally constructs a hypothesis using one uncovered example at a time,
and we repeatedly search for a rule covering as many positive examples and none of the neg-
ative examples. The positive examples covered are then deleted and the process is repeated
until the algorithm terminates. TAL implements this approach and is activated by setting
option(cover loop, true).

It performs best on monotonic problems, however it does not necessarily mean that its use
with non-monotonic problems is completely ineffective. We start with the full set of positive
examples. We specify a number of iterations, N , and at each iteration we select one of these
positive examples as the example seed used for learning. The standard TAL algorithm is then
used and terminates if one of the following conditions is met:

• A timeout occurs.

• The termination condition of the selected strategy is met.

This approach terminates if the score of the current solution is below a threshold we specify as
option(loop threshold, t) where t is a negative number between -1 and 0. Whenever the
score given by the seed example is lower than this threshold, a new iteration is started. In this
case, the current solution, which didn’t score considerably well is appended to the background
knowledge and the examples entailed by this solution are removed.

It is notable to say that solutions which are non-monotonic at any iteration do not have an
impact on the subsequent iterations. In other words, if there are negated literals in the body of
a rule, then there is no effect on the learning and the process works as a monotonic problem.
However, If the solution is recursive (e.g., “accept if accept ...”) or we have more than one type
of rule or some form or dependency in the rules, then it will have a direct impact. The final
solution is a conjunction of the best hypotheses resulted after N iterations.

3.7 Cross Validation and Receiver Operating Character-
istic

3.7.1 Cross Validation

Cross validation is a concept very closely related to machine learning. It is primarily used to
estimate how accurate a classifier is on newly unseen instances. Once a learning algorithm is
trained using some set of examples, then it is largely assumed that it will also be able to classify
the new examples correctly. However, there might be cases where learning was performed for
too long which will result in overfitting or the examples were not representative of the learning
problem. In such situations, the learner will classify the example(s) wrongly.
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To avoid overfitting, we can use the concept of cross validation which provides us with the means
to make our learning system less prone to error. In cross validation, we partition the examples
into subsets (folds) such that the learning is initially performed on a single subset, while the rest
are retained for subsequent use to confirm and validate the initial learning. The initial subset is
often termed as the training set and the rest of the subsets as validation or testing sets.

In our case, our training examples are split as above. The training examples are used to compute
a solution with TAL. The validation examples are then used to calculate the accuracy of the
solution/classifier. The accuracy is simply calculated by the number of examples correctly
classified divided by the total number of examples.

Figure 3.2: N-fold cross validation

Figure 3.2, above, depicts the cross validation process. The data is split each time into training
and testing datasets. At each run, the error is calculated and is accumulated to divide by the
total number of times run as the mean average error. The total error estimate is then given by
the following formula:

ê =
1
N

N∑
i=1

ei

In TAL, we perform cross validation as follows:

• We split our training examples (both positive and negative) intoN distinct folds, randomly.
We first determine how many examples each fold should consist of by dividing our number
of examples by the number of folds. We then randomly select examples for each fold
ensuring that those which have already been sampled are not resampled. Listing 3.8,
below, demonstrates how this is achieved.

• For each fold, the TAL algorithm is run (with our specified parameters) and common
performance metrics, derived from the confusion matrix, are calculated.

1 g e t f o l d s ( Examples ,N, Folds ) :−
2 length ( Examples , L) ,
3 D i s integer (L/N) ,
4 g e t f o l d s x ( Examples ,D, Folds ) .
5
6 g e t f o l d s x ( Examples , Dim, [ Sampled | Folds ] ) :−
7 length ( Examples , L) ,
8 D2 i s D∗2 ,
9 (L >= D2 −>

10 get examples ( Examples ,D, Sampled , Remaining ) ,
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11 g e t f o l d s x ( Remaining ,D, Folds )
12 ;
13 Sampled = Examples ,
14 Folds = [ ]
15 ) .
16
17 sample examples ( Examples , NE, Sampled , Remaining ) :−
18 r n d s e l e c t ( Examples , NE, Sampled , Remaining ) .

Listing 3.8: Splitting the training examples into folds

To enable cross validation we use the option option(xvalidation folds, N) where N is the
number of validation folds.

3.7.2 Receiver Operating Characteristic analysis

A receiver operating characteristic (ROC) graph is a technique for visualising and selecting
classifiers based on their performance [Faw06].

In our setting, we perform ROC analysis on each cross validation fold. Further, we are only
concerned with two classes; our positive and negative examples. Thus, given a hypothesis and
an instance, there are four possible outcomes:

1. If the instance is positive and classified as positive, it is counted as a true positive (TP).

2. If the instance is positive and classified as negative, it is counted as a false negative (FN).

3. If the instance is negative and classified as negative, it is counted as a true negative (TN).

4. if the instance is negative and classified as positive, it is counted as false positive (FP).

Figure 3.3: The confusion matrix for two class problems

Taking into account the above, Figure 3.3, above, shows the confusion matrix from which we
can compute common performance metrics. To measure the accuracy (acc) of a rule with
respect to the training examples, we simply have to sum the number of true (entailed) positive
examples and the true (not entailed) negative examples and divide this sum by the total training
examples.

41



CHAPTER 3. A LEARNING FRAMEWORK

This metric gives us how accurate our hypothesis is with respect to the examples. The error is
simply calculated as 1− acc. Other popular metrics which we calculate, include, the true/false
positive rate also known as recall and the positive predictive value also known as the precision
rate. Listing 3.9, below, illustrates how the ROC metrics are computed for each validation fold.
As part of our evaluation (see Chapter 6), we only make use of the accuracy, error and positive
predictive metrics as they are the ones with a more intuitive meaning to the reader.

1 measures ( OutTest , Performance ) :−
2 . . . omitted . . . .
3 length ( ListPosExamples , Pos ) ,
4 length ( ListNegExamples , Neg) ,
5 . . . omitted . . . .
6 length ( ListProvedPosExamples , PPos ) ,
7 length ( ListProvedNegExamples , PNeg) ,
8
9 /∗ ROC ana l y s i s ∗/

10
11 TruePos i s PPos ,
12 TrueNeg i s Neg − PNeg ,
13 FalsePos i s PNeg ,
14 FalseNeg i s Pos − PPos ,
15
16 /∗ h i t−rate , r e c a l l ∗/
17 ( Pos = 0 −> S e n s i t i v i t y = NaN ; S e n s i t i v i t y i s TruePos/Pos ) ,
18
19 /∗ f a l s e−p o s i t i v e ra t e ∗/
20 FallOut i s F a l s e P o s i t i v e /Neg ,
21 ( ( Total i s ( Pos + Neg) , Total = 0) −> Accuracy = NaN ;
22 Accuracy i s ( TruePos + TrueNeg ) / ( Total ) ) ,
23
24 /∗ true−nega t i v e ra t e ∗/
25 S p e c i f i c i t y i s 1 − FallOut ,
26
27 /∗ p o s i t i v e p r e d i c t i v e va lue ∗/
28 ( (Temp2 i s ( TruePos + FalsePos ) , Temp2 = 0) −>
29 P r e c i s i o n = NaN;
30 P r e c i s i o n i s TruePos / ( TruePos + FalsePos ) ) ,
31
32 /∗ save in Performance l i s t ∗/
33 Performance = [
34 roc ( totpos , Pos ) ,
35 roc ( totneg , Neg) ,
36 roc ( tp , TruePos i t ive ) ,
37 roc ( tn , TrueNegative ) ,
38 roc ( fp , F a l s e P o s i t i v e ) ,
39 roc ( fn , Fa l seNegat ive ) ,
40 roc ( tpr , S e n s i t i v i t y ) ,
41 roc ( fpr , FallOut ) ,
42 roc ( acc , Accuracy ) ,
43 roc ( spc , S p e c i f i c i t y ) ,
44 roc (ppv , P r e c i s i o n ) ] .

Listing 3.9: Calculating the confusion matrix metrics
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3.8 Rule refinement and revision: A user’s perspective

Rule refinement adds flexibility to the user. Let’s say a user is unhappy about the rules the
system has proposed. Then with the use of integrity constraints rules can be transformed to
suit the user’s needs. On the other hand, if there are certain rules that the user has favoured,
we can use this to our advantage to perform theory revision. The two concepts are described
below together with how our framework utilises them.

3.8.1 Integrity Constraints

When the problem domain is large it is necessary to have sufficient language bias to guide
the search. With the use of integrity constraints the search space can be reduced considerably
relieving some of the computational efforts. There are times where certain literals in the body of
a rule do not make much sense together. The notion of “sense” is sometimes dependent on the
current user. In Chapter 5 we describe how we take the user’s feedback into account to apply
integrity constraints. We ask them to choose pairs of conditions that are personally undesirable
to them. We then encode them, as required by TAL (see Listing 3.10).

TAL requires the option(ic check, true) to take integrity constraints into account. Consider
the following scenario. The battery level of the user’s mobile is at 10% and there exists a rule
that rejects phone calls from a particular contact when the battery level is at 10%. Assuming
that this contact is a very important person, we would like to override the contents of this rule.
The listing demonstrates how this is achieved so that the two conditions can appear separately
but not together.

i c :−
pr ( , R) ,
member ( ( b a t t e r y l e v e l , , ) ,R) ,
member ( ( contact , , ) ,R) .

i c :−
pr ( ,R) ,
member ( ( b a t t e r y l e v e l , , ) ,R) ,
member ( ( s c r e e n s t a t u s , , ) ,R) .

Listing 3.10: Structure of integrity constrains. The first argument in member denotes a name
we assign to each mode declaration.

Evaluation of integrity constraints can be problematic. This refers to the problem of floundering,
which occurs when an argument is not ground. In other words, a variable is required to have
a value in order for the transformation to proceed, but there is nothing that makes use of this
value. It is usually, but not always, associated with negation. Consider the following rule in
Prolog with facts man(a), man(b) and married(a):

bachelor(X):- not(married(X)), man(X).

If we construct its derivation tree we will see that the query will give no answers. To fix this we
need to make X ground by changing the order in the body. Unfortunately, the current version
of TAL does not check for floundering when evaluating integrity constraints meaning that the
computed rules may not be “evaluable”.
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3.8.2 Rule alterations

From a user perspective, rules should define part of their personal behaviours. Therefore the
ability of taking control of the rules is essential. Manually, we can accomplish this by changing
the arguments in the head. On a mobile phone phone such as our own, the user has the freedom
to choose which arguments to include in the head of the rule. Essentially, this becomes a
different ILP learning task, but to the user it is a different rule that excludes some meaningless
arguments. Construction of new rules is also possible and is fully described in Chapter 5 where
it is implemented.

3.8.3 User theory revision

To allow for revision of rules, learning must be incremental. As examples and background
knowledge of user behaviour are continuously added, periodic revision is necessary of the rules
already learned to account for the new instances that are not necessarily covered by the pre-
viously learned rules. Theory revision is concerned with the task of computing a new theory
T ′ from theory T that correctly accounts for newly acquired examples. We make use of the
algorithm presented in [CRR+08]. The algorithm involves three phases. The pre-processing
phase where the user’s top theory is transformed suitable for learning exceptions, the learning
phase where learning is performed as before, and the post-processing phase that generates a
revised user theory that is consistent with our current examples. Listing 3.11, below, illustrates
the syntactical transformation of a rule during the pre-processing phase.

Pre-processing phase

We initially start with a set of rules that the user considers revisable. Each literal in the body of
each rule is rewritten by the atom try(i, j, bi,j) where i is the index of the rule we are considering
for revision, j is the index of the body literal in the current rule and b is the body literal as
from before. Additionally, the literal ¬exception(i, hi) is added to the body of the rule where i
is as before and hi is the head of the rule.

For each transformed body of each rule, the following three rules are added:

1. try(i, j, bi,j)← use(i, j), bi,j

2. try(i, j, bi,j)← ¬use(i, j)

3. use(i, j)← ¬del(i, j)

accept (D, ,C) :−
weekend (D) , C=123.

/∗ a f t e r pre−proces s ing phase ∗/
accept (D, ,C) :−

t ry (1 , 1 , weekend (D) ) ,
t ry (1 , 2 ,C=123) ,
\+except ion (1 , accept (D, ,C) ) .

t ry (1 , 1 , weekend (D) ) :−
use (1 , 1 ) ,
weekend (D) .

t ry (1 , 2 , C=123) :−
use (1 , 2 ) ,
C=123.

Listing 3.11: Pre-processing transformation.
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Head mode declarations are added for exception and del to allow for the computation of excep-
tion cases for already existing rules and identify where body literals need to be deleted.

Learning and post-processing phase

The learning algorithm largely remains unchanged and outputs a set of hypotheses, H. There
are two notable differences. First, it determines which of the revisable rules need to be revised
as well as which literals need to be deleted for and second, the body of each exception rule is
computed with body declarations literals that are derivable from T .

The post-processing phase generates a revised user theory consistent with the current training
examples. For each del(i, j) rule, we delete the corresponding body literal j from rule i in the
user theory. For each exception rule in H, the rule in the user theory is replaced with n new
rules, where n represents the number of body literals in the rule. Each new rule, will be of the
form hi ← c,¬cn where c represents all the body literals present in the original rule, and cn
represents one of the body literals in the exception rule.

3.9 Discussion

An interesting point of investigation, as part of this project, is the investigation of two machine
learning approaches to gain a deeper understanding of the data to enrich our background knowl-
edge. With the use of WEKA we first encode the data in the .arff format as required and run
the decision tree and association rule learning algorithms.

As we have previously mentioned, conventional machine learning algorithms require the data to
be formatted in a relational manner with a number of attributes as features and an attribute
serving as the classification attribute.

We have used the following list of attributes:

• Date/Time: The date and time each phone call took place.

• Contact: The contact number/id of each inbound/outbound call.

• Volume:† The volume setting at the time of each call.

• Battery level:† The phone’s battery level at the time of each call.

• Screen brightness:† The phone’s screen brightness level at the time of each call.

• Headset:† Whether the user is using the headset at the time of each call.

• Charge status: Whether the phone’s battery is being charged during each phone call.

• Screen status: Whether the user is active at the time of the phone call.

• Nearby device: The closest device nearby at the time of the call. If there were any.

• Location: The phone’s last beamed location at the time of the call.

• Classification: Yes/No depending on whether the phone is accepted/rejected. The basis
of accepting/rejecting phone calls is determined by the duration of each phone call.

†Only used with the data gathered from ULearn.
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In both cases, the rules we have obtained turned out to be extremely trivial/disappointing. They
did not add any value to the data and at times there were no no rules at all. We believe the
main reason for this lies in the primary difference between ILP and attribute-based methods.
It is widely thought that ILP is useful in learning hypotheses where attribute-based methods
fail [Rov05]. In particular ILP allows for capturing relationships between objects rather than
only their attributes and it can be exposed to a much wider range of problems, especially
problems with large domains and large datasets.

3.10 Summary

In this chapter we have mostly focussed on theory specifics and their use to define a learning
framework for mobile user behaviours used in an ILP setting. More specifically, we have specified
a language bias suitable to the context of accepting/rejecting calls and shown how our training
examples and background knowledge is defined and formatted. We have also presented the
different heuristics strategies that can be used with TAL and the ones suitable to our problem
domain. We have also presented the implementation of a full cross validation process that allows
us to evaluate our results based on a full ROC analysis. Our focus then shifted towards the
users’ needs and how their feedback can be incorporated into refining/revising rules. In the
last section, we explained how we used two statistical machine learning methods to improve our
learning results and we justified why we failed.
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4
Application of the learning framework to existing

data

In this chapter, we present the use of our learning framework detailed in Chapter 3 using an
existing, widely used, dataset. We explain the necessary steps taken to extract and encode
the data as defined by our framework and TAL respectively, as well as some of the challenges
we have encountered due to the rigidness of the data. The data come with an unprecedented
amount of noise making the task of extraction highly non-trivial.

4.1 The Reality Mining dataset

The Reality Mining dataset1 [EPL07] currently represents the largest mobile phone experiment
ever attempted in the academic world. The Reality Mining project group at MIT collected a
large amount of data on human behaviour and group interactions that have been anonymised
and made available to the general public. The dataset was collected using one hundred Nokia
6600 smart phones with pre-installed software developed at the University of Helsinki.

The mobile phones were given to students and staff during the academic year of 2004-2005.
During this period, the information collected includes call and message logs, Bluetooth devices
in proximity of approximately five meters, cell tower IDs, application usage and phone status
(i.e. active or idle). The dataset tracks the movements of a hundred subjects using mobile
phones pre-installed with special software that records and sends the data to researchers.

1The Reality Mining Dataset:http://reality.media.mit.edu/dataset.php
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4.1.1 Understanding the Data

The first step towards our goal is to examine the type and structure we have available through
the data. The dataset comes as a large MATLAB2 data file (approximately 50MB) with .mat
as its file extension.

Once the data file is loaded, each subject can be accessed with s(n) where n is indexed from 1
to 106, and each number represents a random individual. Each s(n) is a MATLAB structure,
each containing the following:

• s(n).comm : A struct array with fields for each communication event. Fields include
time/date, the direction of the call (incoming or outgoing), the duration of the call in
seconds (0 indicates that neither party picked-up).

• s(n).charge : The date and time the phone is charging or unplugged, denoted by 1 and
0 respectively.

• s(n).locs: Time-stamped tower transitions (0 indicates no signal).

• s(n).all locs: The unique set of towers seen by the subject.

• s(n).cellnames: An array of towers, each mapped by a unique string the user named
the location

• s(n).apps: The time each application is started, and the total number of times each
application is used. Applications on the device include the browser, the video and music
player, the camera, the calendar et.c. As an example if we wish to see how many times
the camera was used for some random subject A, then we would access this information
with s(A).apps.camera date. This would return an array with size [timesUsed× 1 double]
with timesUsed representing the number of times the camera was used and 1 representing
the time/date the camera was used every time it was used.

• s(n).places: The distribution of times the subject is at home, at work, elsewhere and
with no signal.

• s(n).device {names, macs, date}: The names, mac addresses of every device and
time/date discovered on each Bluetooth scan.

We can already see that from the data available to us, there are some large gaps between the
raw data and the form we want them to be in. Most of the events are single time-stamped,
meaning that we don’t know how long they last. Furthermore, a large number of subjects
did not participate for a significant amount of time during the study deviating from a normal
distribution and introducing inconsistencies. What’s more, the data certainly do not come
without noise. The custom logging software used on the phone would crash occasionally. This
has lead to missing data not only because of lack of participation but also from data corruption
and powered-off devices.

4.2 The need for pre-processing

For the purposes of this project, we have placed emphasis on the rule of accepting/rejecting
calls. That is to say, attempt to compute a rule which determines, for a particular user, the

2MATLAB: The language of technical computing
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conditions under which, they will accept or reject a phone call. Here, the word reject has a
broader meaning; that of not picking up the phone since we have no information when a user
actually rejects a phone call.

There are two types of phone calls based on the direction of the call. We can either pick incoming
calls, outgoing calls, or a mixture of both, although the combination of the two wouldn’t be very
meaningful in terms of the rule computed. For example, an ILP system would find it very hard
to generalise if there are hardly any negative examples to distinguish differing cases. Negative
examples are identified as phone calls with 0 duration and vice versa for positive examples.

Filtering involves selecting the appropriate type of calls. Since unknown parts of the data are
incomplete/inconsistent, we first identify which users have a satisfactory number for examples
and that the proportion of negative examples with respect to the positive examples is max-
imised. For each of these users, we randomly pick one and filter through their communication
events. Figure 4.1, below, shows how communication events are processed to suit our learning
needs.

Having these phone calls as the basis of our learning task, we need to uncover other events that
not only can take place at the same time but are somewhat correlated to use as background
knowledge.

 date: 732162.65994213
 event: 299 
 contact: 23 
 description: 'Voice Call'
 direction:'Incoming' 
 duration: 0

Raw data: A phone call 

 example(accept([3,8,2004],[15,50],23),-1)

Processed data: A phone call 

Figure 4.1: An example of raw data to processed data

As we wanted to strictly abide by our framework definition the data required a round of pre-
processing. For location, we know that it represents the user roaming/transitioning from one
cellular tower to the other. We use this piece of information to our advantage and iterate
through all locations pair by pair and use the start-time of the second element in the pair as
the end-time of the first element in the pair. All locations are also defined by the user and they
can be inferred in terms of home, work or other. Because we pick a user at random, inferring
the high-level location has proved problematic since not all of them are defined.

Similarly for devices, the process is iterative. At each scan, there exist a number of them. Since
each device is uniquely identified, we iterate through pairs of scans. Those in the first scan
which are no longer present in the second scan, are assumed to have gone out of the user’s range
and therefore their end-time is recorded with the minimum of all timestamps in the second
scan.

We apply the same principle for the user being active. We make the following observation: If
at a particular point in time, the user’s phone is active, then the following event shows it as
inactive. We observe that every activity event is followed by an inactivity event. This can only
mean one thing; each pair of events represents the time the phone goes active and the time it
becomes inactive. We also do the same for charging events and application usage events. We
are now in a position to use the processed data in our learning framework.
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Listing 4.1, below, shows part of the code that transforms the raw data into the format required
by our framework.

1 /∗ use r s i s a l i s t o f u s e r s with a high propor t ion o f negat ive examples ∗/
2 for j =1: s ize ( users , 2)
3 user = use r s ( j ) ;
4 commEvents = s ( user ) . comm; /∗ r e t r i e v e phone c a l l s ∗/
5 columns = s ize ( commEvents , 2) ;
6 contac t s = [ ] , d e v i c e s =[ ] , c e l l s = [ ] ; /∗ used to s t o r e for f a c t s ∗/
7 f i d = fopen ( ’ output . txt ’ , ’w ’ ) ; /∗ wr i t e to a f i l e ∗/
8 for i =1: columns /∗ i t e r a t e through t r a i n i n g data ∗/
9 commEvent = commEvents ( i ) ;

10 i f strcmp ( commEvent . d i r e c t i o n , ’ Incoming ’ )
11 &&strcmp ( commEvent . d e s c r i p t i o n , ’ Voice c a l l ’ )
12 [ contact , acceptRe jec t ] = outputCal l sToFi l e ( f i d , commEvent) ;
13 contac t s = [ contac t s contact ] ;
14 end
15 end
16 /∗ output the r e s t o f the events ∗/
17 c e l l s = outputLocat ion ( f id , s , use r ) ;
18 de v i c e s = outputDevices ( f i d , s , use r ) ;
19 outputChargingEvents ( f i d , s , use r ) ;
20 outputActiveEvents ( f i d , s , use r ) ;
21 outputOnEvent ( f i d , s , random ) ;
22 outputAppTimeStamp ( f id , s , use r ) ;
23 outputTypes ( f i d , contacts , dev ices , c e l l s ) ;
24 fc lose ( f i d ) ;
25 /∗ use our l e a r n i n g framework and copy i t to a new f i l e ∗/
26 c o p y f i l e ( ’ c a l l s t e m p l a t e m a t l a b . p l ’ , ’ c a l l s m a t l a b . p l ’ )
27 /∗ wr i t e the contents o f output . txt to c a l l s m a t l a b . pl , ready for TAL ∗/
28 f i d = fopen ( ’ output . txt ’ , ’ r ’ ) ;
29 A = fread ( f i d ) ;
30 f i d 2 = fopen ( ’ c a l l s m a t l a b . p l ’ , ’ a ’ ) ;
31 fwrite ( f id2 , A) ;
32 fc lose ( f i d ) ;
33 fc lose ( f i d 2 ) ;
34 end

Listing 4.1: From raw data to a learning file

4.3 Process automation and analysis

One of the most important aspects of learning mobile user behaviour is the automation of this
process so that systems can autonomously operate without anyone’s intervention. Using this
dataset, our framework and the data mining procedures described above, we can choose an
arbitrary number of users from the dataset, process the data and output corresponding learning
files, use the file as input with TAL and output rules for each user. This process is also fully
automated when the user uses our own developed application.

The result of this process is exhibited in Listing 4.2, below. The listing shows only results for
one user as this is just an extract of results from a number of users. A full discussion and
analysis of our results is given in Chapter 6.
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1 Number o f p o s i t i v e examples : 727 , Number o f negat ive examples : 176
2 Proport ion o f negat ive w. r . t to p o s i t i v e examples : 0 .242091
3 New best s o l u t i o n
4 accept ( , B, C) :−
5 C= −1,
6 t ime be f o r e h (B, 9) .
7 S :78
8
9

10 New best s o l u t i o n
11 accept ( , , C) :−
12 \+C=25.
13 S :72
14
15
16 New best s o l u t i o n
17 accept ( , , C) :−
18 \+C=2.
19 S :88
20

Listing 4.2: Rules for one user

The main idea behind automation in this project is to allow us to perform a number of experi-
ments to find answers to three questions:

– How rich are the rules computed? Can we do better?

– How can the accuracy of the rule improve by tweaking parameters?

– Does changing the language bias affect already learned rules?

Figure 4.2, below, attempts to explain diagrammatically, the steps that need to be undertaken
to provide the results outlined above.

Load dataset
Filter relevant 
data and pre-

process

Create file 
with Learning 

framework

Learn, Cross 
Validate and 
Store Results

                                Continuous learning

Figure 4.2: The steps involved for automating the task of learning

Most of our experiments have focussed on changing the background knowledge by widening the
gaps of each span in an attempt to find a better solution. To do this we first define two rules
that, given a certain time as an argument they are able to add/subtract a certain number of
minutes.

These two rules are added in the background knowledge as follows:

51



CHAPTER 4. APPLICATION OF THE LEARNING FRAMEWORK TO EXISTING DATA

1 at (D, T, Cel l ID ) :−
2 l o c a t i o n (D1 , T1 , D2 , T2 , Cel l ID ) .
3 subtractTime (T1 , 60 , T3) ,
4 addTime(T2 , 60 , T4) ,
5 a f t e r (D, T, D1 , T3) ,
6 be f o r e (D, T, D2 , T4) .

Listing 4.3: Increasing the span of location by 60 minutes

4.4 Summary

The main challenge of this case study has lied in the difficulty of trying to make sense of
arbitrary and noisy data to achieve the desired result. In this chapter we have made an attempt
to overcome this challenge. We have seen how the Reality Mining dataset finds an application
in our learning framework, have introduced the data available to us and described how they
are extracted to our suited representation. Finally, we have demonstrated how automation is
possible given a dataset and a learning framework.
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5
Application of the learning framework to data

collected on Android

In this chapter, we give a thorough description regarding the implementation of ULearn on
the Android OS1 platform. The infrastructure we have used for the scope of this project is
fully provided by the Android platform. We list and provide an explanation of the different
components that make up ULearn and how they are integrated together with the back-end
server to form a solid platform for presenting rules to the user. The front-end is a stand-
alone application capable of recording data. Since the application is completely decoupled from
the back-end server it can easily be integrated into another back-end service to perform other
related tasks such as predicting user movement using GPS locations. Finally, we explain the
different steps undertaken on the server that make use of the learning framework we discussed
in Chapter 3.

5.1 ULearn client

The ULearn client application is implemented as an Android application. It mainly consists of
five core components:

1. The User Interface, which allows users to initiate data collection and specify the number
of hours (time window) the current session will last for. Users can view the learned rules
by swiping to the right of the main screen where they can choose to enforce any of the
rules and ask for theory revision or rule refinement. Users also have the ability to put their
own conditions in the body of a rule. Using the Android Notification Manager the user
will be notified when the time window has finished and will be asked to send the recorded
data to the ULearn server.

1Android OS: http://www.android.com/
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2. The Data Collector Services which are responsible for monitoring phone calls, recording
the location of the user, scanning for nearby devices via Bluetooth and recording other
events (more in Section 5.5) which are stored in a relational database.

3. The Result Polling Service which is responsible for fetching the learned rules from the
server after the user sends the data for processing. The results are then translated into
English using the Rule Translator and then presented to the user.

4. The Phone Call Interceptor which communicates with the Android Telephony API and
automatically accepts or reject calls based on the condition(s) of the rule which the user
has enforced. The enforced rule is parsed with the Rule Parser to allow the Phone Call
Interceptor and the Telephony API to validate and verify the necessary circumstances
under which the mobile device should automatically accept or reject calls.

5. The Rule Creator, which lists the language bias used in our learning framework, enables
the user to create their own customised rule. The rule is translated both into Prolog and
English and is given an accuracy of 100%. Any of the custom rules are available to view
through the user interface and can equally be used for theory revision, allowing TAL to
bias towards such a solution.

5.2 ULearn server

The ULearn server makes use of Apache Tomcat 7.02 and implements two modules:

1. The Data Processor which is responsible for processing the raw data when sent by the
client and transforms them into learning files accordingly.

2. TAL, an abductive learning system which takes as input the processed learning files,
performs the learning and outputs the solution onto the server.

5.3 Architecture and Design

Before we give an in-depth discussion of implementation of each of the different components, we
present an overview of the design and system architecture.

5.3.1 System architecture

Figure 5.1 below, illustrates how the aforementioned components interact with each other to
form a complete system. Both client and server have been modularised to some extent for
extensibility purposes. As mentioned previously, nothing stops us from changing the back-end
server with some other conventional learning system.

The single point of entry in the system is maintained by the ULearn GUI. It enables the user
to initiate data collection for a specified period of time, view, enforce and/or revise rules. The
GUI itself has references to a repository which maintains the user’s preferences.

2Apache Tomcat: http://tomcat.apache.org/
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Figure 5.1: The ULearn client-server architecture

The Data Collector Services are services which run in the background and collect the various
contextual information we are interested in. The data are stored in an SQLite3 database on the
device.

Once the specified period of time elapses, the Android Notification Manager notifies the user by
asking them to send the raw data onto the server for processing and learning. An HTTPRequest
is initiated that sends the data onto the server where the Data Processor takes control and
prepares the learning file to be used by TAL.

In the meantime, after the user sends the data, the Result Polling Service polls the server at a
specified time interval to determine whether TAL has finished processing the learning file. If so,
the rules are sent back to the device and are translated by the Rule Translator. At this point,
the user is notified for the last time that the results can be viewed.

To complete the architectural overview, the user may choose to enforce a rule on the phone. The
RuleParser parses the corresponding rule according to the specifications of the PhoneCallInter-
ceptor. For the rule enforced, the PhoneCallInterceptor monitors the call state of the phone and
intercepts each phone call appropriately based on the conditions of each rule.

3SQLite: An ACID-compliant embedded relational database management system
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Figure 5.2: GUI Activities in ULearn Client

5.3.2 Software engineering design

We were keen to make ULearn as modular and extensible as possible. Bearing this in mind
from the beginning we have chosen the appropriate modelling tools and kept them throughout
the implementation phase. To model our system from a software engineering perspective we
have made use of UML4 diagrams. We start by presenting an overview of the system and its
different modules. The following designs are considerations we have taken into account to build
our system, along with a short description of each one.

Figure 5.25, above, shows the different GUI activities that there exist within our system. The
single entry point of the application is the Learning class. From there, the user can choose
to view rules. This is handled by the ResultView which inherits Android’s ListActivity
class which in turn inherits from Android’s traditional Activity class. The ResultView is also
responsible for allowing the user to enforce any of the rules.

The IntegrityConstraints and ModeDeclarations classes are responsible for allowing the user
to specify integrity constraints and change the head of the rule respectively. Other Activity
classes include various dialogues within the application that ask/notify the user for certain
events. One such class is the SendDatabaseDialog class which is triggered when the user
proceeds to send the data to the ULearn server for processing and learning. These are all
handled by click and gesture events on the device.

Figure 5.3 below, shows the different classes we use to model the data of interest to us. We
model each event in terms of a duration span. That is, each span consists of a start time and

4UML: Unified Modelling Language
5The UML diagrams were created using an online tool called yuML.me. More details can be found on their

website at http://yuml.me
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Figure 5.3: Modelling the data in Java

an end time to milliseconds precision. Some events, such as the duration of time in which the
phone is active, or the amount of time the phone’s battery is being charged for can be modelled
by the superclass Span.

Other events such as device proximity and application usage, require additional information.
These are modelled by the DeviceSpan and ApplicationSpan classes respectively. The former
models the amount of time the user is near Bluetooth enabled devices and captures the device
name and MAC6 address of each device. The latter, on the other hand, models the amount
of time the user spends using an application. In this case, additional information includes the
application name as well as the type of the application being used.

The CellSpan class contains information about the location, in geographical and GSM7 coordi-
nates, of the user at a particular time. A set of CellSpan represents user transitions from one
location to the other.

Lastly, the most important event of all is what we refer to as CallSpan. This models every
phone call received or made by the user. For each phone call we record a number of attributes.
The most important being, the direction of the call (i.e., Incoming or Outgoing), the volume
setting, the duration of the call (-1 indicates a missed call), whether there is any activity at the
time of call, battery charge status and level, location status and screen brightness level. The
complete list of information recorded is shown in Table 5.1.

Figure 5.4, below, models the components that are necessary to perform data collection on
the phone. For this reason, two Services are continuously running on the phone. The
BackgroundService class has references to two additional classes; PhoneEvents which mon-
itors phone call state and identity and RecordEvents which monitors all other events. The
AppLaunchDetector class is responsible for monitoring the user’s application activity on the
phone and requires its own service (more in Section 5.5). The former has indirect references
to the DBAdapter class, which carries out all the necessary operations to write the data in the
SQLite database, whereas the latter has a direct reference to the class.

6MAC Address: Media access control address uniquely identifies a network device such as WiFi or Bluetooth.
7GSM: Global System for Mobile Communications
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Figure 5.4: The components that allow the collection of data in ULearn
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Figure 5.5: This diagram attempts to explain the interdependencies between the different com-
ponents that model the process where the user is awaiting for the rules after they send the data
on the server. GetResultService, of type Service, polls the ULearn server at a pre-determined
interval to check whether TAL has output the rules for the specified run. If so, the service trans-
forms them into Rule objects which are translated into English using the RuleTranslator class.
If the user chooses to enforce one of the rules, the RuleParser class is used to parse the selected
rule into conditions which are later used by the PhoneCallInterceptor to intercept phone calls.
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5.3.3 Database design

We used Entity Relationship diagrams to model the relational database used in the ULearn
Client. The ER Diagram is shown below.

Figure 5.6: The ER diagram for the database used in our system

5.4 Graphical User Interface

To enable the user to interact with our system we have a designed a front-end user interface for
ULearn. A screenshot of the interface is shown in Figure 5.7, below. This is developed in Java
using Android’s Widget Interface.
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Figure 5.7: ULearn’s main screen

It contains four main components that we describe in brief below.

• ULearn view: This is the starting point of the application. It contains the necessary
controls to perform data collection, and a countdown timer which provides the remaining
time of data collection.

• Result view: To view the results of each recording session output by TAL we store the
rules in the database and can be viewed in this screen. It contains operations such as
enforcing, deleting and revising rules.

• New rule view: This adds a new level of flexibility to the user. Users are able to create
their own rules by adding any combination of conditions in the body of each rule. There
are some restrictions of course. For example, a time condition, such as weekend cannot
appear together with its negated form (i.e., not weekend), otherwise they would contradict
with each other.

• Integrity Constraints view: To enable theory revision by means of integrity constraints,
in this screen, we allow the user to select pairs of literals to be excluded from appearing
together, that would have otherwise been considered, in the body of the rule.

• Mode Declarations view: This view enables the user to change the actual head of the
rule by excluding some of the arguments, although not all. Date & Time, as well as the
Contact cannot be excluded.
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These are the four main components. However, there are several other smaller components
which are also considered as “Views” and these include interactive and/or information-only
dialogues.

5.4.1 GUI representation

In Android, the user interface (UI) can either be designed procedurally or declaratively. This
goes against the Java paradigm of GUI applications. In Java we create and manipulate user
interface objects procedurally. Android gives us the option to do both. We opted for the latter,
because of its clarity and minimal representation. A UI specified declaratively requires no code
that is executed at run-time reducing code complexity. To represent a UI in this way, we make
use of the XML mark-up language which allows entities and attributes to be specified.

1 <TextView a n d r o i d : i d=”@+id / i c 1 ”
2 andro id : l ayout w id th=” f i l l p a r e n t ” a n d r o i d : l a y o u t h e i g h t=” wrap content ”
3 a n d r o i d : t e x t=”IC1” />
4 <TextView a n d r o i d : i d=”@+id / i c 2 ” andro id : l ayout w id th=” f i l l p a r e n t ”
5 a n d r o i d : l a y o u t h e i g h t=” wrap content ”
6 a n d r o i d : t e x t=”IC2” />
7 <CheckBox a n d r o i d : i d=”@+id /cb” andro id : l ayout w id th=” wrap content ”
8 a n d r o i d : l a y o u t h e i g h t=” wrap content ” />

Listing 5.1: Partial representation of the Integrity Constraints view

Listing 5.1, above, partially shows how we can represent an item of the Integrity Constraints
view.

5.4.2 Time flexibility

We wanted to give the user the flexibility to change the time window which signifies the duration
of data collection. Figure 5.12b, below, shows how users can make a custom selection. Users
can choose from a minimum of 48 hours to a maximum of 999 hours, the default being 72 hours.
Anything less than 48 hours is risky, especially the first time, as their usage data will not be
sufficient enough to allow for the computation of meaningful rules.

5.4.3 State recovery & GUI thread synchronisation

When the user clicks on the “Start the learning” button to begin the learning process, the GUI
enters a state where it is impossible to begin another session on top of the other. In addition
to this, a new session cannot be started unless an old one is completely finished. A session
completely finishes when the data for that session are sent to the ULearn server for processing.
The application also provides a countdown timer to inform the user of the remaining time to end
a session. Since we cannot control the user’s actions on the mobile phone, we need to save the
GUI state but also somehow keep track of the remaining time so that the timer not only resumes
but is displaying the correct amount of time left. The second image in Figure 5.8b, below,
illustrates the GUI state when the application is running with a remaining time countdown
timer. In addition, on any unexpected event, such as when the mobile switches off, ULearn is
able to recover gracefully without having to ask for the user’s intervention therefore minimising
intrusiveness.
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(a) Selecting the appropriate time-window (b) Remaining time

Figure 5.8: The data collection time-window

5.5 Data collector services

We wanted to minimally intervene with the user’s day to day activities. Additionally, once
the user initiated a new data collection session the system should still be able to capture data
even when the user is using another application or the phone is in sleep/lock mode. The
main responsibility of these services is to collect information from the device about hardware
component settings and user activity (e.g., application usage). In this section we talk in detail
about how this information is gathered and stored according to the needs of our relational
database before it is processed on the ULearn server. One of the fundamental requirements
of this application is to try and make the data as rich and consistent (i.e., minimal noise) as
possible. This has proven challenging at times due to the restrictions imposed by the mobile
phone architecture.

We have previously introduced the term service (refer to Section 2.5 for more details), which
is Android’s way of performing background tasks. Thus, our two services are implemented
as dedicated threads in the context of background services. These had to be implemented as
services to enable the user to freely interact with the phone (e.g., move to another application)
without imposing any restrictions.

Before we set out to explain the details of the data collected, we remind ourselves that each
event is modelled in terms of a duration span and has both a start-time and an end-time. From
these two times, the duration for that event can be extracted. Figure 5.9, below, illustrates two
additional GUI views in our application. The first shows how the results are presented to the
user and the second demonstrates how integrity constraints can be specified by the user.

63



CHAPTER 5. APPLICATION OF THE LEARNING FRAMEWORK TO DATA
COLLECTED ON ANDROID

(a) The Result View (b) The IntegrityConstraints View

Figure 5.9: The Result and IntegrityConstraints view

5.5.1 Application usage

We thought it would be a good idea to keep track of the user’s application usage. While this
sounds like it should be a simple task it, unfortunately, proved to be a little more complicated
than what we had originally thought. As a result, the Android SDK does not provide a way,
through its API, to detect the time at which an application is launched, for obvious security
reasons. To overcome this problem, we take a different approach. The Android Activity Manager
logs every application launch event by its package name. For example, com.android.camera
suggests that the user is using a the phone’s camera.

Therefore, to allow our application to detect application launch events and their duration, we
use Java’s Runtime class to execute the command logcat ActivityManager:I *:S. Logcat, is
Android’s own console application that allows access to logs at run-time. We then obtain an
InputStreamReader and continuously filter events as they arrive.

We put some thought into this to avoid duplicate entries. Like we have previously mentioned,
each application consists of a finite set of activities and all reside within the same package.
Consequently, if an application has displayed two activities, Android’s Logcat prints the package
name twice. To circumvent this, we ignore entries with the same package name within a period
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of 10 milliseconds.

Furthermore, there is no way to tell that the user has left the application. What we know instead,
is that the user has pressed the home key which triggers Logcat to print com.android.launcher.
This time, to minimise data inconsistencies, we obtain the last entry in the database and update
it accordingly. (i.e., the entry for which the end-time has not yet been specified).

Table 5.1, below, lists the contextual information collected via the Data Collector in the ULearn
client.

Type Representation Description
Application Application name

as a String
Currently used application

Battery
charging

0-1 Whether the phone is being charged

Battery level 0-100 Current battery level as a percentage
Devices Device name, MAC

address
Nearby devices

Headset 0-1 Whether a headset is plugged on the device
Light level Number Current light level in lux7

Location Cell Tower id Location defined by currently registered GSM
tower

Location Geographical
coordinates

Collected through device’s GPS

Location Full address Collected through Google Geocode
Ringer mode Silent, Vibrate or

Normal (0,1,2)
Current Ringer Setting

Phone status 0-1 Whether the phone is on or off
Phone in use 0,1 Whether the phone is in use

Screen
brightness

0-255 Numerical representation of the screen bright-
ness

Screen
status

0-1 Whether the phone’s screen is on or off

Phone calls Date, Time,
Direction, Contact

etc.

Values corresponding to the time/date of the
phone call for everything listed in this table

Table 5.1: Type of information collected in ULearn client

5.5.2 Battery information

We monitor two different pieces of information with regards to the phone battery. Firstly, the
duration time for which the phone battery is on charge for, and secondly, the battery level.
The SDK does not provide a way to query the status of these two events. Luckily for us, it
provides the concept of a broadcast receiver, a component that responds to system-wide broadcast
announcements. In other words, it provides a relatively easy way to receive information for
events that we are interested in.

9Lux: The SI unit of illuminance and luminous emittance measuring luminous power per area
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For the first task, we are interested in the ACTION POWER CONNECTED and ACTION POWER -
DISCONNECTED events. The former informs us that the device has been put on charge, and
the latter provides the exact opposite information. The combination of the two is exactly what
we need for modelling a charge span.

For the second task, we are interested in the ACTION BATTERY CHANGED event which is triggered
every time the battery level rises or drops down. This event also comes with two additional
attributes, the actual battery level and its scale (e.g., level is 23 and scale is 100).

5.5.3 Nearby devices

Modern mobile phone devices are equipped with Bluetooth technology and we can use that
to our advantage to detect devices within the vicinity of the user (approximately a 10 meter
radius). Our application asks the user to enable Bluetooth, as illustrated in Figure 5.10, below,
at the beginning of each recording session to allow for scanning of devices.

Figure 5.10: The enabling Bluetooth dialogue

We scan for devices at regular intervals. To achieve this, we perform a scan approximately
every 15 minutes. As en example, if Device A and Device B are found in Scan 1, and Device
B is only found in Scan 2, then Device A’s end-time is updated. For the interval, we make of
Java’s native Timer class which allows us to to schedule tasks that inherit from TimerTask. The
task makes a call to BluetoothDiscoverer.scanforNearbyDevices() which initiates recovery
using Android’s BluetoothAdapter.startDiscovery().

For every device found, a broadcast event is sent and is identified by the event ACTION FOUND
which additionally includes the information we need for each device (i.e., name and MAC ad-
dress). When the scan is complete an ACTION DISCOVERY FINISHED event is sent by the broadcast
receiver which signifies the end of the process.

At this point, we check against the devices found in the previous scan and consider the inter-
section of both for the next scan. The rest of the devices are updated and this marks the device
span of a device.
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5.5.4 Location

We store location information in three different ways. We make use of GPS technology to store
geographical coordinates, we also use the cell tower id provided by GSM towers and lastly,
using the GPS coordinates we obtain the actual address collected using Google’s Geocoding
API10.

Android provides us with the PhoneStateListener interface which allows us to listen for events
regarding the state of the phone. We subscribe to LISTEN CELL LOCATION using Android’s Tele-
phony Manager and override the PhoneStateListener.onCellLocationChanged() method.
This method is called every time the device registers to a different GSM tower implying that the
user’s location has also changed. This way, at the same time, we can also capture the longitude
and latitude by implementing Android’s LocationListener and use it as input to obtain the
full address using the Geocoding API.

5.5.5 Phone status and screen information

The idea behind this is to monitor the status of the phone (i.e., is it on? or switched off?) and
the current state of the screen as well as the brightness level of the screen. Using the state of
the screen as information, we can make the inference that when the screen is on the user is
active.

Again, through the use of a broadcast receiver we listen for two separate events ACTION SCR-
EEN ON and ACTION SCREEN OFF that the system broadcasts. The former corresponds to the
screen being turned on and the latter corresponds to the screen being turned off. We mon-
itor these two events separately which allows us to determine an activity span. To retrieve
the brightness, a system call to Settings.System.getInt(context.getContentResolver(),
Settings.System.SCREEN BRIGHTNESS) returns a value between 0 and 255, with 0 signifying a
dark screen and 255 signifying the maximum brightness.

5.5.6 Phone state

This is arguably the most important step in the process of data collection. We observe the
user’s phone activity in terms of both incoming and outgoing calls. Special care is taken to
ensure minimisation of inconsistencies. To allow the system to listen for call state events, we
have to listen for LISTEN CALL STATE events which listen for changes to the device call state,
using Android’s TelephonyManager.

There are three operation modes for the state of the phone. Our PhoneEvents class ex-
tends PhoneStateListener and overrides the PhoneStateListener.onCallStateChanged(int
state, String incomingNumber) method.

The state of the listener can be in one of three operation modes:

• CALL STATE IDLE: The phone sate is currently idle and there is no activity.

• CALL STATE OFFHOOK: The phone state is currently in off-hook mode, meaning that either
an incoming or outgoing call is in place.

10Google Geocoding API: http://code.google.com/apis/maps/documentation/geocoding/
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• CALL STATE RINGING: The phone state is set to ringing, meaning that incomingNumber
is calling.

When the phone state is in off-hook mode, we don’t know the call direction. It is vital to know
the direction of each call as this portion of data would serve as our training examples. There
are two possible sequences of states. The first being ringing → off-hook → idle and the second
being off-hook → idle.

The value of incomingNumber is non-null only when the callback state is set to ringing. To
overcome this problem we introduce two boolean flags. The first, which allows us to tell whether
the phone previously rang before it is set to the off-hook state. The second, which allows us
to determine whether the call is an outgoing call. In either case, we add a new entry to the
database with the start-time and direction.

When the state is idle we update the last entry with the end-time as well as calculate the duration
of the call. We also have to make sure that a duration of 0 is assigned to missed/unanswered
calls as this how our negative examples are obtained.

Furthermore, the API would not allow us to retrieve the phone number in the case of outgoing
calls. The only way to retrieve the number is through the phone log calls but the log is not
updated until after the call is finished. So to get around this, although not neatly, we obtain
the top-most number from the phone log a short-while after the state of phone is in idle mode
and provided the call is an indeed an outgoing call.

For each of these phone calls, we also record a number of other attributes at the time of each
call, some which are listed in Table 5.1.

5.5.7 Other information

In addition to the above, we record a number of other values the majority of which are query-
based. These include the current light level using the phone’s light sensor, the phone’s ringer
mode (i.e., loud, silent, vibrate) and the ringer volume of the device. The light sensor wastes
a lot of battery so we are only retrieving the value at infrequent intervals to minimise batter
usage.

We also wanted to infer whether the user had company (i.e., was with someone else). For
example, a meeting entry in the user’s calendar would suggest that they are not alone. This way
we can model the behaviour of has company(Date) ← calendar entry(Date). Unfortunately,
we have found no way of retrieving the user’s calendar entries to do this but it serves as an idea
for future work in data enrichment.

5.5.8 User permissions and data anonymisation

Recording the daily behaviour of a user on a continuous basis over an extended period of time
imposes remarkable privacy implications and is considered a major concern for any user. While
this application has not been developed for public use, we ensure that all personal data such as
phone numbers are one-way hashed using the SHA111 algorithm, generating unique ids used for
processing and learning. Because this application is only used by the author of the thesis and
his sister, data anonymisation is disabled to allow for thorough evaluation.

11SHA1: Secure Hash Algorithm
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In the help section of the application, we provide information about the type of information
that is captured and instructions on how to temporarily disable the application from logging
data while it is running. Table 5.2, further below, lists the permissions, their type and a short
description for each. These permissions are required for ULearn to function appropriately and
have to be accepted by the user before installation.

5.6 Result Polling Service and Rule Translator

The role of the polling service is to approximately run every 15 minutes to check whether TAL
has finished computation. The service is only triggered when the user sends the results to the
server. When the results are fetched, the Rule Translator takes over and translates the results
into English.

The data are sent to the server via a traditional HttpRequest using the HttpFileUploader class.
Figure 5.11, below, illustrates how the user interacts with the system during this process.

Figure 5.11: Send the data dialogue

5.6.1 Result Polling Service

We make use of Android’s AlarmManager that allows us to set an “alarm” to check whether the
results have been published on the server. On the server each user is identified by (a) the device’s
unique id, (b) the time the collection session started and (c) the time the collection session ended.
Every 15 minutes, our GetResults class fires an HttpRequest with the parameters mentioned
above. There are two cases. Either the results are sent back in a JSON12 format, parsed and
entered into the database, or the results are still not ready in which case, we reset the Android’s
AlarmManager to re-check for results 15 minutes later.

5.6.2 Rule Translator

Translation of rules into English involves a language bias mapping to English sentences. In addi-
tion, we also have to take into account the fact that the user can remove some of the arguments

12JSON: JavaScript Object Notation
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Permission Type Description
ACCESS COARSE LOCATION Location Ability to retrieve Cell-ID, WiFi

location
ACCESS FINE LOCATION Location Ability to retrieve GPS coordi-

nates
ACCESS NETWORK STATE Network Allows applications to access in-

formation about the current net-
work state

BLUETOOTH ADMIN Connectivity Allows applications to discover
and pair bluetooth devices

BROADCAST STICKY Notification Allows an application to broad-
cast sticky intents

GET TASKS System Ad-
min

Allows applications to get infor-
mation about currently running
tasks

INTERNET Data Ability to access the Internet
MODIFY PHONE STATE Phone calls Allows modification of the tele-

phony state
PROCESS OUTGOING CALLS Phone calls Allows an application to monitor

or abort calls
READ PHONE STATE Phone calls Ability to monitor calls
READ CONTACTS Address

book
Access to user’s address book

READ LOGS System Ad-
min

Allows applications to read low-
level system logs

RECEIVE SMS Messaging Monitor receipts of SMS
VIBRATE Notification Allows access to the vibrator
WAKE LOCK Power Prevent the processor from sleep-

ing

Table 5.2: Permissions required for ULearn client
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from the head of the rule and thus the translation should have to be immune to these changes.
Each solution can contain more than one rule. Listing 5.2, below, shows how each solution is
given by TAL.

1 s o l u t i o n ( 0 . 8 2 , [ ( accept ( ,B, , , , , , , , , ) :−\+afte rnoon (B) ) ,
2 ( accept (A,B, , , , , S , , , , ) :−
3 \+ u s e r i s a c t i v e (A,B) ,
4 \+S=255 ,
5 not nearDev ice (A,B, ’D0154A45DEFE ’ ) ) ] ) .

Listing 5.2: Solution output by TAL and the English translation

From the listing above we see that we first need to distinguish the number of rules contained
in each solution, and for each of the rules, identify which of these arguments are “dont-cares”.
These are the arguments which are denoted by a single underscore and are termed as anonymous
variables which can take any value.

Following that, we use Java’s Pattern class to retrieve the body of each rule. Consider the fol-
lowing body in one of the rules: C=75,user is active(A,B),user is using app(A,B),D=78.
Splitting this string with commas would not work entirely. This is because the arguments A,B
in user is active and user is using app would be separated.

We need a clever regular expression that would split on a comma, that isn’t followed by a closing
bracket before an opening bracket. The regular expression that splits the String according to
our needs is given in Listing 5.3 below.

As a last step, for each of the literals, we apply the mapping from our language bias as defined in
Chapter 3 using our own customised dictionary. The result of the entire process with reference
to Listing 5.2 is as follows:

Accept calls: not during the afternoon, OR when you are not active, when your screen is fully
bright, and when you are not near device ’DevA’.

5.7 Rule Parser and Phone Call Interceptor

The Rule Parser is responsible for parsing the solution so that the Phone Call Interceptor
can check against each condition and automatically accept/reject phone calls. Much of the
functionality that’s been developed by the Rule Translator is re-used and only minor changes
were required to parse the solution to the standard specified by the interceptor.

The Phone Call Interceptor makes use of Android’s Telephony interface. The said interface has
two functions: (a) to provide call functionality and (b) to provide data services on top of the
mobile network. Unfortunately, the Android SDK does not provide a public API to manipulate
calls programatically but we can obtain access to this interface using reflection13.

Using Android’s broadcast receiver we are able to listen on the event PHONE STATE without the
application necessarily having to run. The event listens for both incoming and outgoing calls.
The interceptor first checks whether there exists an enforced rule and then validates the current
contextual conditions of the phone against the conditions defined in the rule. If the outcome of

13Reflection allows an executing program to examine or “introspect” upon itself and manipulate, internal
properties of the program.
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1 Pattern p = Pattern . compi le ( ”:−” ) ;
2 Matcher m = p . matcher ( s o l u t i o n ) ;
3 Lis t <Integer > beginIndexOfEachBody = new ArrayList<Integer >() ;
4 while (m. f i n d ( ) ) {
5 beginIndexOfEachBody (m. end ( ) ) ;
6 }
7
8 Lis t <Str ing> bod ie s = new ArrayList<Str ing >() ;
9 for ( int i = 0 ; i<numBodies ; i++) {

10 int s t a r t = beginIndexOfEachBody ( i ) ;
11 int end = −1;
12 try {
13 end = s o l u t i o n . indexOf ( ” ) , ( ” , s t a r t ) ;
14 }catch ( StringIndexOutOfBoundsException e ) {
15 }
16 // there i s only one s o l u t i on so ge t the end o f the body
17 //by ) ]
18 i f ( end == −1) {
19 end = s o l u t i o n . l a s t IndexOf ( ” ) ] ” ) ;
20 }
21 St r ing body = s o l u t i o n . su b s t r i ng ( s ta r t , end ) ;
22 bod ie s . add ( body ) ;
23 }
24
25 for ( S t r ing body : bod ie s ) {
26
27 St r ing [ ] l i t e r a l s = body . s p l i t (
28 ” (? x ) , # Verbose regex : Match a comma\n” +
29 ” ( ? ! # u n l e s s i t ’ s f o l l owed by . . . \ n” +
30 ” [ ˆ ( ] ∗ # any number o f c h a r a c t e r s except (\n” +
31 ” \\) # and a ) \n” +
32 ” ) # end o f lookahead a s s e r t i o n ” ) ;
33 }

Listing 5.3: Retrieval of literals in the body of the rule

1 public void onReceive ( Context context , In tent i n t e n t ) {
2 Bundle b = i n t e n t . getExtras ( ) ;
3 S t r ing ac t i on = i n t e n t . getAct ion ( ) ;
4 // ge t the te l ephony i n t e r f a c e us ing r e f l e c t i o n
5 ITelephony te lephony = g e t T e l e S e r v i c e ( context ) ;
6 //has the user enforced any o f the r u l e s ?
7 i f ( i n t e r c ep to r I sEnab l ed ) {
8 i f ( ac t i on . equa l s ( In tent .ACTION PHONE STATE CHANGED) ) {
9 St r ing s t a t e = b . g e t S t r i n g ( TelephonyManager .EXTRA STATE) ;

10 i f ( s t a t e . equa l s ( TelephonyManager .EXTRA STATE RINGING) ) {
11 St r ing number = b . g e t S t r i n g (EXTRA INCOMING NUMBER) ;
12 boolean accept = eva luateContextua lCondi t ions ( number ) ;
13 i f ( accept ) {
14 te lephony . answerRingingCal l ( ) ;
15 }
16 else {
17 te lephony . endCal l ( ) ;
18 }
19 }
20 }
21 }
22 }

Listing 5.4: The Phone Call Interceptor in action
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these conditions is evaluated as true, we automatically accept the call, otherwise we reject it.
Listing 5.4, above, shows hows the interceptor programmatically accepts or reject calls.

5.8 Rule Creator

The main task of the Rule Creator is to provide flexibility to the user. Using our pre-defined
language bias from Chapter 3 we allow the user to choose as many literals as they like. However,
since TAL will never compute a rule that is inconsistent with all of the examples, we also don’t
allow the user to choose the negation of an already chosen literal. In an ILP setting this preserves
consistency and ensures that the rule can be later used for revision. For literals which require
values, such as screen brightness or a contact, we ask the user to input a value choosing from
an appropriate range (the range is given to the user).

Due to time restrictions, however, we are unable to allow the user to add literals regarding
location and/or device proximity. Firstly, the user finds it very hard to specify a location in
terms of GSM coordinates. Secondly, specifying a device in terms of a network address is not
an easy task for the average user. Additionally, if such a rule is enforced with the use of our
Phone Call Interceptor, it is very hard for us to accurately check whether the current location
matches the location specified by the user in the rule. Even if we cache the location, most of
the times it would only be an approximation and hence the validation would fail. For devices,
it becomes even harder because determining whether the corresponding device specified in the
rule is nearby in near-zero time is impossible. Location and device detection typically take
approximately around 5 to 15 seconds to complete - as they are asynchronous calls - making it
impossible for our task; given that such a period of time does not exist when validating such
conditions in real-time.

The Rule Creator works in two steps as follows:

• Step 1: We accumulate each body condition in the rule provided by the user and map
it precisely according to our language bias. For conditions where a value is required, a
pop-up dialog prompts the user for appropriate input.

• Step 2: We determine and identify the arguments to be used in the head of the rule by
“merging” pairs of Strings together. Literals and their corresponding values are attached
with an “=” relation and finally the rule is displayed to the user for confirmation.

Figure 5.12, below, depicts how a user would go about creating a rule. The rule may then be
used as all the others, that is, for revision and enforcement. In fact, for revision it proves to be
useful as TAL can potentially bias towards similar solutions.

5.9 Server

The primary reason for using a server is owed to the fact that, presently, there aren’t any popular
Prolog interpreters implemented/ported on the Android platform. Additionally, mobile devices
are still resource constrained in terms of computational power and memory and our problem
domain requires a large amount of memory to allow for the computation of rich and expressive
rules.
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(a) Adding values for specific literals (b) Inserting the rule into the database

Figure 5.12: Creating a new rule

Our server is implemented using Apache Tomcat. We have come to the decision of using a
readily available server for powering our back-end services for two main reasons:

1. We were already aware with the technology and therefore its set up and use would be
trivial.

2. The back-end server lies outside the main scope of this project and therefore its importance
is questionable. Nevertheless, it is extremely scalable allowing for fast development and
good performance.

Figure 5.13, below, depicts the interaction between the server and our client application. The
client sends an HTTP Request to the web server. Tomcat, converts the request into an
HttpServletRequest and dispatches it to the appropriate servlet. This object is then han-
dled by our servlet which performs the task in question. An HTTPServletResponse object is
generated. In turn the web server converts this object to an HTTP response and returns it to
the client.
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Figure 5.13: Java web Request/Response handling in Tomcat

5.9.1 Services

We have implemented two services on the server, each responsible for:

1. Uploading the data from the Android client and pipelining it to the Data processor for
extraction.

2. Retrieving the results from TAL and sending them to the client in an appropriate format.

We have made the communication between the client to server as minimal as possible. Every
request is associated with one response. The request-response protocol does not allow for any
processing to take place after the response has been consumed (i.e., sent to the client). In other
words, we can not inform the client that the data has been uploaded before processing of data
and learning takes place.

As there is a substantial amount of data processing, we tackle the problem by creating an
asynchronous task using Quartz14. Quartz allows us to create simple schedules to execute tasks
that suit our purposes. Hence, we receive the data from the client, schedule a Quartz job and
inform the user that the data have been sent successfully.

Our file name scheme follows a simple convention which guarantees unique identification of each
user’s data and learning files. Each mobile device is uniquely identified by an IMEI15 number.
Each recording session is identified by a start time and an end time which uniquely identify
the period which the phone is recording data. As there could be a large number of recording
sessions, each file is identified as follows: imei starttime endtime.

Using our naming convention, the CreateLearningFile job is responsible for retrieving the
data from the server and process the data to a learning file. When processing the data into a
learning file we take into account the following:

14Quatrz: http://www.quartz-scheduler.org/
15IMEI: International Mobile Equipment Identity
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1 Proce s sBu i lde r pb = new Proce s sBu i lde r ( ) ;
2 pb . d i r e c t o r y (new F i l e ( t a l D i r e c t o r y ) ) ;
3
4 /∗ add arguments f o r the process and our s c r i p t ∗/
5
6 Lis t <Str ing> args = new ArrayList<Str ing >() ;
7 args . add ( ”/ bin / sh” ) ;
8 args . add ( ”run . sh” ) ;
9

10 /∗ s p e c i f y f i l e name ∗/
11 args . add ( ”−f ” ) ;
12 args . add ( f i leName ) ;
13
14 /∗ s p e c i f y t imeout ∗/
15 args . add ( ”−s ” ) ;
16 args . add ( ”400000” ) ;
17
18 /∗ s p e c i f y depth ∗/
19 args . add ( ”−v” ) ;
20 args . add ( ”500000” ) ;
21
22
23 pb . command( args ) ;
24 Process p roc e s s = pb . s t a r t ( ) ;
25
26 /∗ l o g output to s e rve r ∗ /
27 exhaustStreams ( process ) ;
28
29 /∗ b l o c k u n t i l TAL has computed a ru l e ∗/
30 int te rminat ion = proce s s . waitFor ( ) ;
31
32 /∗ i f t erminat ion was s u c c e s s f u l ∗/
33 i f ( te rminat ion == 0) {
34 /∗ copy TAL so l u t i on us ing our naming convent ion ∗/
35 St r ing command = ”cp ” + t a l D i r e c t o r y+”temp/ s o l u t i o n . txt ” +
36 p r e f i x+” r e s u l t s /”+use r Id+” ”+startTime+” ”+endTime+” . txt ”
37 Runtime . getRuntime ( ) . exec (command) ;
38 }

Listing 5.5: Execution of TAL on the server

1. Whether the user has specified the use of integrity constraints.

2. Whether the user has removed some of the arguments in the head of the rule, essentially
creating a new learning task.

3. Whether the user has requested theory revision using a selection of previously learned
rules.

With any learning file, we make use of Java’s ProcessBuilder class which allows us to create
an operating system process. Using our own developed script, we run TAL with a number
of specified arguments such as the learning file, the search space depth and the time to run.
Listing 5.5, above, shows part of this process.
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5.10 Summary

In this chapter, we have presented an architectural overview of the system and the necessary
details required for understanding, maintaining and re-engineering ULearn. We have introduced
to the reader the Graphical User Interface which consists of different views and demonstrated
how it interacts with the rest of the system components. A big part of the chapter was dedicated
for describing the data collection process and the information we store that we use in our
learning framework, discussed in Chapter 3. Another part of the chapter described the rule
translating/creating process and, finally, with the aid of the Android Telephony Interface we
have given an explanation of how rules are parsed so that phone calls are intercepted to suit our
purpose of automatically accepting/rejecting phone calls.
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6
Results & Evaluation

In this chapter we evaluate our learning framework as well as the ULearn application to de-
termine both successes and weaknesses with a consideration of existing work. We provide the
results we have obtained on both existing and newly-collected data and how our learning pa-
rameters were tweaked to achieve maximum performance in terms of rule expressiveness and
richness. Additionally, we examine both quantitative and qualitative aspects of ULearn through
data gathered from several experiments we carried out. Finally, an analysis of a suitability
survey we produced is discussed and we explain the relevance of our results with respect to the
overall vision of the work presented throughout this report.

6.1 Results

The results that follow are largely obtained on an Apple Macbook Pro Intel Core 2 Duo 2.5GHz
with 4GB RAM. Our results are based on two data sources; the Reality Mining and the data we
have obtained through ULearn. In this section, we present and contrast the results from both
sources taking into account their similarities and differences.

6.1.1 Reality Mining

We present some of the best solutions for 4 random users. These users have been selected
so that they have the highest proportion of negative examples with respect to the positive
examples. This is important to allow ILP to distinguish differing cases between positive and
negative examples. If the number of negative examples is limited then an ILP system may face
difficulties in computing a decent hypothesis. Furthermore, each learning file is cross validated
using (5 folds) and ROC analysis is performed on each fold that allows us to compute the total
error estimate. For cross validation and ROC analysis the best solution, in terms of accuracy, is
used. In cases where two solutions have the same accuracy, the first one in order of appearance
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is used. In TAL, the lower the score achieved, the better. For the Reality Mining dataset, the
Progol strategy has been used throughout. The scoring function is defined in Section 3.6.

User #5

User #5 has a total number of 544 positive examples and 89 negative examples. Average error
estimate turned out to be 13.8%. Listing 6.1 illustrates the best solutions while Table 6.1 shows
some of the performance metrics of the ROC analysis.

solution (−452 , [( accept ( , ,C) :−\+C=60) ] )
solution (−451 , [( accept ( , ,C) :−\+C=47) ] )
solution (−450 , [( accept ( ,B, ) :− t imex be fo r e h (B, 2 1 ) ) , ( accept ( , ,G):−\+G=60) ] )
solution (−450 , [( accept ( ,B, ) :−\+evening (B) ) , ( accept ( , ,G):−\+G=60) ] )

Accept ca l l s : not from contact 60
Accept ca l l s : not from contact 47
Accept ca l l s : b e f o r e 21 :00 o ’ c lock , OR not from contact 60
Accept c a l l s : except in the evening , OR not from contact 60

Listing 6.1: Results for User #5

Fold Accuracy Error Precision(PPV)
Fold 1 0.8640 0.1360 0.8640
Fold 2 0.9040 0.0960 0.9040
Fold 3 0.7920 0.2080 0.7920
Fold 4 0.8640 0.1360 0.8629
Fold 5 0.8837 0.1163 0.8837

Table 6.1: Performance Measure Results for User #5

User #11

User #11 has a total number of 362 positive examples and 79 negative examples. Average error
estimate turned out to be 17.1%. Listing 6.2 illustrates the best solutions while Table 6.2 shows
some of the performance metrics of the ROC analysis.

solution (−283 , [( accept ( , ,C) :−\+C=75) ] ) .
solution (−281 , [( accept ( ,B, ) :− t imex a f t e r h (B, 3 ) ) , ( accept ( , ,G) :− \+G=75) ] )
solution (−281 , [( accept ( , ,C) :−\+C=271) ] )
solution (−280 , [( accept (A, ,C) :−\+C=75,weekday (A) ) , ( accept ( , ,H) :−\+H=75) ] )
solution (−280 , [( accept ( ,B,C):−\+C=75,\+morning (B) ) , ( accept ( , ,H) :−\+H=75) ] )

Accept ca l l s : not from contact 75
Accept ca l l s : a f t e r 03 :00 o ’ c lock , OR not from contact 75
Accept c a l l s : not from contact 271
Accept c a l l s : not from contact 75 , when i t ’ s a week−day , OR not from contact 75
Accept ca l l s : not from contact 75 , except in the morning , OR not from contact 75

Listing 6.2: Results for User #11
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Fold Accuracy Error Precision(PPV)
Fold 1 0.7674 0.2326 0.7674
Fold 2 0.8372 0.1628 0.8372
Fold 3 0.8605 0.1395 0.8588
Fold 4 0.8372 0.1628 0.8372
Fold 5 0.8444 0.1556 0.8444

Table 6.2: Performance Measure Results for User #11

User #33

User #33 has a total number of 191 positive examples and 31 negative examples. Average error
estimate turned out to be 14%. Listing 6.3 illustrates the best solutions while Table 6.3 shows
some of the performance metrics of the ROC analysis.

solution (−154 , [( accept ( ,B,C):−\+C=33,\+morning (B) ) , ( accept ( , ,H) :−\+H=16) ] )
solution (−154 , [( accept ( ,B,C):−\+C=31,\+afte rnoon (B) ) , ( accept ( , ,H):−\+H=16) ] )
solution (−154 , [( accept ( ,B,C):−\+C=25, t imex be fo r e h (B, 2 1 ) ) , ( accept ( , ,H) :\+H=16) ] )
solution (−154 , [( accept (A,B, ) :− u s e r i s a c t i v e (A,B) ) , ( accept ( , ,H) :−\+H=16) ] )

Accept ca l l s : not from contact 33 , except in the morning , OR not from contact 16
Accept ca l l s : not from contact 31 , except in the afternoon , OR not from contact 16
Accept ca l l s : not from contact 25 , be f o r e 21 :00 o ’ c lock , OR not from contact 16
Accept c a l l s : when you ’ re act ive , OR not from contact 16

Listing 6.3: Results for User #33

Fold Accuracy Error Precision(PPV)
Fold 1 0.8837 0.1163 0.8837
Fold 2 0.9302 0.0698 0.9302
Fold 3 0.8604 0.1396 0.8604
Fold 4 0.8372 0.1628 0.8514
Fold 5 0.7872 0.2128 0.7872

Table 6.3: Performance Measure Results for User #33

User #96

User #96 has a total number of 142 positive examples and 35 negative examples. Average error
estimate turned out to be 19.2%. Listing 6.4 illustrates the best solutions while Table 6.4 shows
some of the performance metrics of the ROC analysis.

solution (−106 , [( accept ( , ,C) :−\+C=200) ] )
solution (−104 , [( accept (A,B, ) :−not nearDevice (A,B,413 ) ) , ( accept ( , ,H):−\+H=200) ] )
solution (−104 , [( accept ( , ,C) :−C= −1) , ( accept ( , ,G):−\+G=200) ] )

Accept ca l l s : not from contact 200
Accept ca l l s : when you ’ re not near dev i ce 413 , OR not from contact 200
Accept c a l l s : when the contact i s not in your address book , OR not from contact 200

Listing 6.4: Results for User #96
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Fold Accuracy Error Precision(PPV)
Fold 1 0.8571 0.1429 0.8529
Fold 2 0.9429 0.0571 0.9429
Fold 3 0.7143 0.2857 0.7143
Fold 4 0.6857 0.3143 0.6857
Fold 5 0.8378 0.1622 0.8378

Table 6.4: Performance Measure Results for User #96

Overall, we can see that the majority of the rules have one or two literals in the body. The best
solutions are always the negation of a contact. With this in mind, we conclude that the majority
of users accept/reject calls based on who the caller is. The result is largely intuitive. Accuracy
is the proportion of true results (both true positives and true negatives). The accuracy of such
rule lies between 70% and 95%, a measure which is very promising.

On the other hand, precision is defined as the proportion of the true positives against all positive
results (both true positives and false positives). In many cases, precision is equal to accuracy
meaning that our results are both accurate and close to each other. Intuitively, this means that
in each fold, the user’s behaviour does not change much, and therefore the difference in both
accuracy and precision of the results is minimal.

Figure 6.1, below, portrays the ROC space for a given set of users.
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Figure 6.1: The ROC space for a set of users using the Reality Mining dataset

The upper left corner is a match for perfect classification while the lower left corner represents
a classifier which has no false positives but gives no true positives. In the ROC space, a point -
in our case a user behaviour - is “better” (in terms of classification) than another if it is to the
northwest of the first (true positive rate is higher, false positive rate is lower, or both) [Faw06].
The diagonal line y = x represents a random guess strategy. Therefore, any classifier that
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appears in the lower right triangle performs worse than random guessing. Taking the above into
account and the graph altogether, a user’s rule classifies the examples reasonably well. There
are very few cases where the solutions perform poorly.

Figure 6.2, below, depicts that the users’ predictive accuracy follows a normal distribution. Both
the Jarque-Bera test and Kolmogorov-Smirnov confirm that the accuracies come from a normal
distribution with an unknown mean and variance with 95% confidence. On a broader scale,
this indicates that our learning framework together with the TAL algorithm classify instances
reasonably well.
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Figure 6.2: The predictive accuracy of users using the Reality Mining dataset
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Figure 6.3: Accuracy of users over increasing time windows using the Reality Mining dataset

In addition to the above, we have run tests with increasing time windows (refer to Chapter 4
for more details) to allow more flexibility with regards to the results we obtained. Figure 6.3,
above, illustrates the accuracy of users over increasing time windows. We can see that for each
user the accuracy remains unchanged. From this we can conclude that the majority of users are
consistent with respect to their behaviour no matter what.
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6.1.2 The ULearn dataset

We collected data from two users over a period of approximately 2 months. Here we present
the best solutions for both users and also show how the results immediately improve when the
cover loop approach is used. For this dataset, we also list the Prolog solutions in English as
a result of our translation mechanism implemented in ULearn and show by example that the
translation is 100% precise. The score for each solution represents the accuracy of each rule as
defined in Section 3.6.

User #1

solution ( −0 .6739 , [ ( accept (A,B, , , , , , , , , ) :−\+ u s e r i s a c t i v e (A,B) ) ] )

Accept ca l l s : when you ’ re not a c t i v e

Listing 6.5: Best solution obtained without Cover Loop

solution (−0.7065 , [
( accept ( , , , , , F , , , , , ) :−F=80) ,
( accept ( , , , , , , , , ,V, ) :−V=225.0) ,
( accept ( , ,A1 , , , , , , , , ) :−A1=1200490800) ,
( accept ( , ,M1, , , , , , , , ) :−M1=447515692890) ,
( accept (W1,X1 , , , , , , , , , ) :−\+ u s e r i s a c t i v e (W1,X1) )

] )

Accept ca l l s : when your phone ’ s batte ry l e v e l i s at l e v e l 80 , OR when the l i g h t
l e v e l i s 225 .0 , OR from contact 1200490800 , OR from contact 447515692890 ,
OR when you ’ re not a c t i v e

Listing 6.6: Best solution obtained with Cover Loop

User #2

solution (−0.7065 , [
( accept (P,Q,R, , , , , , ,Y, ) :−\+ u s e r i s a c t i v e (P,Q) ,\+R=7517429133 ,\+Y=1280) ,
( accept (A,B,C, , , , , , , , ) :−\+ u s e r i s a c t i v e (A,B) ,\+C=7517429133 , t imex a f t e r h (←↩

B,10 ) )
] )

Accept ca l l s : when you ’ re not act ive , not from contact 7517429133 , a f t e r 10 :00
o ’ c lock , OR when you ’ re not act ive , not from contact 7517429133 , not when
your phone ’ s l i g h t l e v e l i s 1280

Listing 6.7: Best solution obtained without Cover Loop

solution (−0.7717 , [
( accept (A,B, , , , , , , , J , ) :−not at (A,B,1071 .8253461) , J=225) ,
( accept ( , ,Q, , , , , , , , ) :−Q=1200490800) ,
( accept ( , ,C1 , , , , , , , , ) :−C1=447515692890) ,
( accept ( , , , , , , , ,U1 , , ) :−U1=0) ,
( accept (Y1 , Z1 ,A2 , , , , , , ,H2 , ) :−\+ u s e r i s a c t i v e (Y1 , Z1) ,\+A2=7517429133 ,\+H2←↩

=1280)
] )

Accept ca l l s : anywhere un l e s s you ’ re at 1071.8253461 , when your l i g h t l e v e l i s
225 , OR from contact 1200490800 , OR from contact 447515692890 , OR when
your sc r e en i s o f f , OR when you ’ re not act ive , not from contact 7517429133 , not
when your l i g h t l e v e l i s 1280

Listing 6.8: Best solution obtained with Cover Loop
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Immediately we can see the difference between the richness of rules computed with our dataset
compared to the rules we have obtained using the Reality Mining dataset. We attribute the
differences observed to the following reasons:

• The ULearn dataset is largely noise-less in contrast to the Reality Mining data set which
comes with noise and a number of inconsistencies.

• Our learning framework has been predominantly developed prior to the development of
ULearn and therefore we knew exactly how to capture data. The Reality Mining dataset
required a pre-processing phase.

• The cover loop approach was non-existent during the Reality Mining phase.

• Our dataset is much richer than the Reality Mining dataset, but this does not necessarily
mean richer rules, because the domain immediately becomes larger and the search for a
richer hypothesis becomes even harder.

Figure 6.4, below, depics the ROC space for the ULearn dataset without the cover loop approach.
It represents the classification strategy over the two sets of users. Figure 6.5, on the other hand,
represents the strategy with the cover loop approach during the learning process. We can clearly
see that the second diagram outperforms the first one in terms of classification accuracy.
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Figure 6.5: The ROC space for the ULearn dataset with cover loop enabled

6.2 Performance evaluation

In this section we assess how the performance of the TAL algorithm varies as it is used to
solve problems with increasingly large domains. We assess the performance of the algorithm in
terms of the results we obtain based on the language bias, learning parameters, rule revision
and present the combinations of these which we believe the algorithm performs best.

Before we evaluate the performance, it is crucial we understand how complex the hypothesis
search space is and why it is both a computational and memory intensive task. To illustrate
how large the search can be, Figure 6.6, below, depicts a very small part of the search space for
computing a relatively simple hypothesis of the following form:

penguin(A)← bird(A),¬canfly(A).

Domenico Corapi’s PhD thesis which is due to appear in late 2011, dedicates an entire section
outlining the complexity of the search space mathematically. The complexity of the hypothesis
solution relies to a great extent on the learning parameters used in the system. In Chapter 2,
we outlined what each parameter represents. In a subsequent section we justify why certain
combinations of parameters outperform others.
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Figure 6.6: Part of the search space for computing the penguin hypothesis

6.2.1 Fixed language bias

We have run two sets of experiments to determine which combination of learning parameters
performs best in the context of our domain. Table 6.5 illustrates the four settings we have used.
The two sets differ in only one parameter; the cover loop approach being enabled/disabled. In
all experiments, the language bias is fixed and the full set can be found in Appendix A. For a
full explanation of the learning parameters, refer to Section 2.3.2.

Setting A Setting B Setting C Setting D
max depth 5000 10000 50000 500000

max num rules 1 1 1 1
max body literals 4 4 4 4

timeout 5000ms 30000ms 80000ms 900000ms
number of solutions 1 1 1 1

strategy progol accuracy progol accuracy
single seed true true true true

single seed ratio 100 50 20 10
solution pool 1000 1000 1000 1000

xvalidation folds 5 5 5 5
cover loop false/true false/true false/true false/true

loop threshold N/A / -0.4 N/A / -0.5 N/A / -0.6 N/A / -0.7

Table 6.5: The learning parameters used in our experiments
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Best solution for each setting without Cover Loop

• Setting A:

solution(-14, [
(accept(_,B,_,_,_,_,_,_,_,_,_):-

timex_after_h(B,10))
])

Translates to: Accept calls after 10:00 o’clock

• Setting B:

solution(-0.6732, [
(accept(_,B,_,_,_,_,_,_,_,_,_):-

morning(B)),
(accept(M,N,_,_,_,_,_,_,_,_,_):-

\+user_is_active(M,N))
])

Translates to: Accept calls: during the morning, OR when you’re not active

• Setting C:

solution(-19, [
(accept(_,B,C,_,_,_,_,_,_,_,_):-

timex_after_h(B,10),
\+C=99676196)

])

Translates to: Accept calls after 10:00 o’clock, when contact is not 99676196

• Setting D:

solution(-0.7391, [
(accept(A,B,C,_,_,F,_,_,_,_,_):-

\+user_is_active(A,B),
\+F=35,
timex_after_h(B,0),\
+C=7517429133),

(accept(Q,R,S,_,_,V,_,_,_,_,_):-
\+user_is_active(Q,R),
\+V=35,
timex_after_h(R,10),
\+S=7517429133)

])

Translates to: Accept calls: when you’re not active, not when your phone’s battery is at
level 35, after midnight, not from contact 7517429133, OR when you’re not active, not
when your phone’s battery is at level 35, after 10:00 o’clock, not from contact 7517429133
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Best solution per setting with Cover Loop

• Setting A:

solution(-17, [
(accept(_,_,C,_,_,_,_,_,_,_,_):-

C=447515692890),
(accept(M,N,_,_,_,_,_,_,_,_,_):-

\+user_is_active(M,N))
])

Translates to: Accept calls: from contact 447515692890, OR when you’re not active

• Setting B:

solution(-0.7065, [
(accept(_,_,_,_,_,F,_,_,_,_,_):-

F=80),
(accept(_,_,_,_,_,_,_,_,_,V,_):-

V=225.0),
(accept(_,_,A1,_,_,_,_,_,_,_,_):-

A1=1200490800),
(accept(_,_,M1,_,_,_,_,_,_,_,_):-

M1=447515692890),
(accept(W1,X1,_,_,_,_,_,_,_,_,_):-

\+user_is_active(W1,X1))
])

Translates to: Accept calls: when your phone is fully charged, OR when your light level
is 225.0, OR from contact 1200490800, OR from contact 447515692890, OR when you’re
not active

• Setting C:

solution(-21, [
(accept(_,_,C,_,_,_,_,_,_,_,_):-

C=2088811551),
(accept(_,N,O,_,_,_,_,_,_,_,_):-

timex_after_h(N,10),
\+O=99676196)

])

Translates to: Accept calls: from contact 2088811551, OR after 10:00 o’clock, not from
contact 99676196

• Setting D:

solution(-0.7936, [
(accept(_,_,_,_,_,_,_,_,I,_,_):-

I=0),
(accept(M,N,O,_,_,_,_,_,_,V,_):-

\+user_is_active(M,N),
\+O=7517429133,
\+V=1280.0)
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])

Translates to: Accept calls: when your screen is off, OR when you’re not active, not from
contact 7517429133, not when your light level is 1280.0
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Figure 6.7: The score obtained for each learning parameter setting

Discussion

To a large extent, we can see that Setting D, with or without the cover loop being used,
yields the best results. Figure 6.7, above, confirms this. This is mainly attributed to the
learning parameters we have chosen for that setting. In particular, what allows for such powerful
expressibility in the solution is the max depth parameter which represents the depth of the
abductive proof procedure. We can see this as a set of operators that rewrite a state in one
or more logically equivalent states. The actual number amounts to the number of times an
operator is used to obtain this hypothesis. Intuitively, some of the abductive operators result in
changing the current inductive solution. If we increase the depth then we are allowing for more
changes so we are exploring more solutions.

Additionally, we have selected a very long timeout. The timeout parameter denotes the com-
putation time for the learning task. If the single seed strategy parameter is enabled, then the
timeout parameter is used for each seed selected. The single seed ratio parameter specifies the
number of seed examples to use. For example, if we have 100 examples, and the ratio is 50, then
2 examples will be randomly picked. This means that the ILP learning task will run once but
with both examples used as goals (the seeds). The final solution will result in the conjunction
of the two hypotheses; one for each seed. In Setting D we used the lowest ratio. Effectively, the
number of seed examples chosen was maximised. When the cover loop is enabled, this effect is
duplicated, since the learning task runs at each iteration with seed examples as goals.

Nevertheless, a domain such as ours, with learning parameters similar to the ones we used for
Setting D takes hours to compute. From a user perspective this is undesirable, however, the
search space cannot, inevitably, get any smaller. Unless we restrict the domain or the language
bias used in the hypothesis space, exploring all states remains a computationally intensive
task.
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On the whole, our findings suggest that the accuracy strategy seems to compute much richer
rules as opposed to the progol strategy. They also lead to the conclusion that the cover loop
approach finds both the most accurate and the richest solution. The use of the loop threshold
parameter enabled us to discard solutions with less than 70% accuracy. The threshold allows us
to present to the user the most representative solutions that best describe their behaviour.

Lastly, it is worth noting that a fixed number for solution pool enabled us to view a number of
solutions. With a domain such as ours, there are many more available and equivalent solutions
which we could have easily output.

6.2.2 Fixed learning parameters

In this section, we assess the level of impact the language bias has on a fixed set of learning
parameters. The learning parameters used are the same as the ones in Setting C in Table 6.5
with two modifications. We changed the strategy to accuracy and increased the max depth
to 80000. There is no need to use Setting D or the cover loop approach, because here we are
trying to assess the effect of the language bias on the learning (i.e., what language bias is most
useful in defining mobile user behaviour). For brevity, we informally divide the language bias
into 6 relevant categories. A full list of mode declarations used for each setting can be found in
Appendix B.

Bias A Bias B Bias C Bias D
Date/Time 4 7 4 7

Contact 7 4 4 7

Location 4 7 4 4

User activity 7 4 7 4

Battery/Brightness/Light 4 7 7 7

Volume/Vibrator 7 4 7 4

Table 6.6: The changes made in the language bias for our experiments

Best solution for each language bias category

• Bias A:

solution(-0.5847, [
(accept(_,B,_,_,_,F,G,_,_,J,_):-

time_after_h(B,10),
\+F=34,
\+G=7,
\+J=160)

])

Translates to: Accept calls: after 10:00 o’clock, not when your phone’s battery is at level
34, not when screen brightness is 7, not when your light level is 160

• Bias B:†

†There were plenty of best equivalent solutions. Here some of the most interesting ones.
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solution(-0.6087, [
(accept(A,B,C,_,_,_,_,_,_,_,_):-

\+C=99676196,user_is_active(A,B)),
(accept(_,_,Q,_,_,_,_,_,_,_,_):-

\+Q=99676196)
])
solution(-0.6087, [
(accept(_,_,C,_,_,_,_,_,_,_,_):-

\+C=99676196,C=1614517551),
(accept(_,_,P,_,_,_,_,_,_,_,_):-

\+P=99676196)
])
solution(-0.6087, [
(accept(A,B,C,_,_,_,_,_,_,_,_):-

\+C=99676196,
\+in_call(A,B))

])
solution(-0.6087, [
(accept(_,_,C,D,_,_,_,_,_,_,_):-

\+C=99676196,
\+D=0)

])

Translates to:
Accept calls: not from contact 99676196, when you’re active, OR not from contact
99676196
Accept calls: not from contact 99676196, from contact 1614517551, OR not from contact
99676196
Accept calls: not from contact 99676196, when you’re not in call
Accept calls: not from contact 99676196, not when your phone is on silent

• Bias C:†

solution(-0.6956, [
(accept(_,B,C,_,_,_,_,H,_,_,_):-

time_after_h(B,10),
H=0,
\+C=99676196,
\+morning(B)),

(accept(_,Q,R,_,_,_,_,_,_,_,_):-
time_after_h(Q,1),
\+R=99676196)

])

Translates to: Accept calls: after 10:00 o’clock, when you don’t have your headset on, not
from contact 99676196, except in the morning, OR after 01:00 o’clock, not from contact
99676196

†There were plenty of best equivalent solutions
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• Bias D:

solution(-0.6435, [
(accept(_,_,_,D,E,_,_,_,_,_,_):-

\+E=0,
\+D=0)

])

Translates to: Accept calls: not when your phone is off vibrate,not when your phone is on
silent
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Figure 6.8: The accuracy of each solution obtained from each language bias setting

Discussion

While all different language bias settings have computed satisfying results, our experiments
reveal that the concept of date/time, contact, together with user activity (Bias C) yield both
the most meaningful and accurate rules. Figure 6.8 illustrates the accuracies obtained with each
language bias setting. Location, and volume settings come second. This is both in terms of
applicability and from a user perspective. We have learned that the recording of information
such as the battery level, the screen brightness or the light level from the phone’s light sensor
are meaningless to the user. Even though these can be associated with a rule, they provide no
significant value to the rules.

Furthermore, the accuracy of the hypotheses seems to be higher when these categories are part of
the language bias. A survey we conducted validates these results to some extent. One of the ques-
tions asked users to list 4 factors that influence their decision-making process on accepting/re-
jecting calls. The user’s current activity turns out to be the most important factor, together
with the caller’s identity. More details about the survey can be found in Section 6.4.

92



6.2. PERFORMANCE EVALUATION

6.2.3 Rule revision

We present a subset of training examples for two consecutive recording sessions. Listing 6.9
illustrates part of this process. We show a subset of the examples that highlight the difference.
In the first session, the user accepts calls from anyone, before 15:00, when the phone is off charge
and when the phone is not on silent mode.

Ses s i on 1 :
. . .
example ( accept ( [ 18 ,3 , 2011 ] , [ 11 ,49 ] , 447515692890 ,7 , 2 , −1 ,30 ,0 , 1 , 160 , 0) ,1 ) .
example ( accept ( [ 18 , 3 , 2011 ] , [ 14 , 8 ] , 447515692890 ,5 , 2 , −1 ,30 , 0 , 0 , 1280 .0 , 0 ) ,1 ) .
example ( accept ( [19 ,3 ,2011 ] , [ 15 ,18 ] , −1 ,0 ,0 , −1 ,30 ,0 , 0 ,640 , 1) ,−1) .
example ( accept ( [ 19 ,3 , 2011 ] , [ 15 ,47 ] , −1 ,0 ,0 , −1 ,30 ,0 ,0 , 225 ,1 ) ,−1) .
. . .

Revisable solution :

accept ( ,B, ,D, , , , , ,K):−\+D=0,\+K=1, t ime be f o r e h (B, 15 ) .

Accept ca l l s : not when your phone i s on s i l e n t , not when your phone i s charging ,
be f o r e 15 :00 o ’ c l o ck

Listing 6.9: Examples and solution for Session 1

In the second session, the two new examples indicate that the user has not accepted a call from
neither contact 447515692890 or contact -1 (a contact not in the user’s address book) later in
the evening. Additionally, the phone was neither on silent mode nor on charge when the two
phone calls took place, yet they were unanswered.

There are more than two revised solutions. However, we only present two in Listing 6.10 below.
The first revised solution asks us to delete all the literals from the body of the rule. Neither
the volume level nor the charge status of the mobile device serve as factors in answering phone
calls. A new hypothesis is computed that states that phones are being answered if the caller is
447515692890 and the call does not take place in the evening.

The second revised solution asks us to delete the first two literals from the body. The rule states
that all calls are answered any time before 15:00 o’clock.

Ses s i on 2 :
. . .
example ( accept ( [ 20 ,3 , 2011 ] , [ 19 , 45 ] , 447515692890 ,7 , 2 , −1 ,30 ,0 , 1 , 160 ,0 ) ,−1) .
example ( accept ( [ 20 ,3 ,2011 ] , [ 21 ,28 ] , −1 ,5 ,2 , −1 ,30 ,0 ,0 ,1280 ,0 ) ,−1) .
. . .

Revised solutions :

( de l ( 1 , 1 ) ) , ( de l ( 1 , 2 ) ) , ( de l ( 1 , 3 ) ) , ( accept ( ,B,C, , , , , , , , ) :−C=447515692890 ,
\+evening (B) ) .
Accept ca l l s : from contact 447515692890 , except in the evening

( de l ( 1 , 1 ) ) , ( de l ( 1 , 2 ) ) , ( accept ( ,B,C, , , , , , , , ) :− t ime be f o r e h (B, 1 5 ) ) .
Accept ca l l s : b e f o r e 15 :00 o ’ c l o ck

Listing 6.10: Examples and solution for Session 2

6.2.4 Observational accuracy

We have spent a large amount of time on the development of ULearn to make it as robust as
possible and eliminating any possibility of down-time. While the application is recording data,
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we have made no observations that the phone crashes due to any abrupt usage. Even if the
phone abruptly shuts down or runs out of battery while a recording session is in place, the
application picks up where it last left off thereby eliminating any inconsistencies both in terms
of usage and in terms of data loss.

6.3 Usability evaluation

One of the aims of this project is to produce an application which would perform data acquisition
on a mobile device, make use of our learning framework and prompt the learning results to the
user. The use of ILP techniques to model mobile user behaviours has not been explored before
and our application extends its implicit use to a larger audience.

The application is designed for non-technical users and as such issues of human computer inter-
action are important in any graphical user interface environment. To make a valid assessment
of our application, we evaluate it against Nielsen’s heuristics [NM90]. We describe how ULearn
obeys each heuristic and score each heuristic accordingly.

6.3.1 Nielsen’s heuristics

There are ten general principles for user interface design. The term “heuristics” is used because
they are more in the nature of rules of thumb than specific usability guidelines. We compare
our system with these defined principles as follows:

1. Visibility of system status: The system should always keep users informed about what
is going on, through appropriate feedback within reasonable time.

Feedback is a key feature for any application that engages the user somehow. ULearn
copes well with providing feedback to the users at all times. Whenever we ask the user’s
involvement, we provide simple informative dialogues. An example of these dialogues is
seen in Figure 6.9 below.

Figure 6.9: Informing the user that a rule is about to be deleted.

Additionally, we have managed to prompt learning results on screen quickly, taking into
account the computational power required for such task.

Evaluation: ‘Good’

2. Match between system and the real world: The system should speak the users’ lan-
guage, with words, phrases and concepts familiar to the user, rather than system-oriented
terms. Follow real-world conventions, making information appear in a natural and logical
order.
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We have done our best to minimise misconceptions. We like to think that our system
conveys simple and comprehensive instructions that will reduce user misinterpretation
and annoyance.

Evaluation: ‘Adequate’

3. User control and freedom: Users often choose system functions by mistake and will
need a clearly marked “emergency exit” to leave the unwanted state without having to go
through an extended dialogue. Support undo and redo.

Our application partially sticks to this standard. It is just as easy to exit the application,
much like the way you access it. Currently, users do not have the ability to control the type
and frequency of data being collected but its importance is acknowledged and is a feature
which can be added in future versions. Due to time constraints, we have concentrated on
the core functionality of this application; prompting rules to the users.

Evaluation: ‘Poor’

4. Consistency and standards: Users should not have to wonder whether different words,
situations, or actions mean the same thing. Follow platform conventions.

ULearn does not introduce any ambiguity at any time. User confusion should not arise
at all when using the system. The Android platform allows us to comply with mobile
interface standards and validate against them to ensure a smooth transition from one
view to the other. For example, all action controls for each associated view are performed
through the use of the menu button. In cases, where actions can be performed on items
of a list, a long click event pops a context menu to the user. Help/Error/Informative
messages all use the same language throughout imposing a consistent environment across.
An example of an Options menu is shown in Figure 6.10 below.

Figure 6.10: Each view is associated with an Options menu

Evaluation: ‘Good’

5. Error prevention: Even better than good error messages is a careful design which pre-
vents a problem from occurring in the first place. Either eliminate error-prone conditions
or check for them and present users with a confirmation option before they commit to the
action.

The possibility of errors in the system as a result of the user is relatively small. We
have taken extra care to prevent users from mishandling the system. In cases where the
user’s input was required, limitations have been imposed by validating the input before
continuing. This prevents the users from any undesired frustration but also prevents
problems from occurring in the first place making it a valuable asset in our attempt to
evaluate the system.

Evaluation: ‘Good’
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6. Recognition rather than recall: Minimise the user’s memory load by making objects,
actions, and options visible. The user should not have to remember information from one
part of the dialogue to another. Instructions for use of the system should be visible or
easily retrievable whenever appropriate.

The user’s thinking should be effortless. We have made a tremendous effort to diminish
the steps one needs to bring the system into a usable state. We believe that there are no
stages in the application whereby a user has to think for performing a task. For example,
when creating a new rule, users are given a list of all the options available, so the syntax
or the literals do not have to be remembered. All icons in the system have text next to
them, thus reducing the memory load for remembering what each icon represents.

Evaluation: ‘Good’

7. Flexibility and efficiency of use: Accelerators - unseen by the novice user - may
often speed up the interaction for the expert user such that the system can cater to both
inexperienced and experienced users. Allow users to tailor frequent actions.

Our system is efficient enough as it is, and hence there is no need to favour experienced
users. We have not included any accelerators in our system as Nielsen likes to call them.
Our system treats all users, both novices and experts, equally and does not provide any
shortcuts.

Evaluation: ‘Good’

8. Aesthetic and minimalist design: Dialogues should not contain information which is
irrelevant or rarely needed. Every extra unit of information in a dialogue competes with
the relevant units of information and diminishes their relative visibility.

This is probably one of the most important principles. Keeping things simple suggests
that it will appeal to the majority of a system’s user-base. We have tried to avoid the
use of fancy graphics and design that will boast the appearance of the system. Whilst
the initial thoughts of users may be positive and enthusiastic for such dazzling effects, the
purpose of the system is somehow lost and its functionality becomes insignificant.

9. Help users recognise, diagnose and recover from errors: Error messages should be
expressed in plain language (no codes), precisely indicate the problem, and constructively
suggest a solution.

We have constructed clear and informative messages should an error occur. No error/warn-
ing messages that require the knowledge of an expert are passed onto the user. The system
intends to foster a safe, user-friendly environment that detracts from the user any concerns
which emerge from such behaviour.

Evaluation: ‘Adequate’

10. Help and Documentation: Even though it is better if the system can be used without
documentation, it may be necessary to provide help and documentation. Any such infor-
mation should be easy to search, focussed on the user’s task, list concrete steps to be carried
out, and not be too large.

Although, our application is as simple and straightforward as it can be, there exists a User
Guide within the application which eliminates the gap between “thinking of knowing” and
understanding. It provides detailed, yet simple, instructions on how to use the application,

96



6.4. SUITABILITY STUDY

taking into account the range of users; from novices to experts. It also provides details on
what it does and how it is used.

Evaluation: ‘Adequate’

6.4 Suitability study

We have conducted a survey1 over a period of approximately three weeks. The main purpose
for this survey is to identify whether this type of application can be rendered as a popular
application that users would find it useful enough to become part of their lives. Throughout
the three week period we have collected approximately 60 responses with a mixture of results,
interesting enough to include in this report.

We have split the evaluation of the survey into three parts:

1. Understanding the user.

2. User confidence on data collection.

3. User confidence on mobile device autonomy.

6.4.1 Understanding the user

To evaluate the situation objectively, we first take a look at the people who have filled in the
survey. From the three questions below we can see that the majority receive calls occasionally
to very often and rarely reject phone calls. We immediately see that the benefits of a mobile
application automatically rejecting phone calls are somewhat lessened.

We have also asked the users to indicate the level of importance for key factors that influence
the user’s decision on rejecting phone calls. We find that the user’s current activity is the most
important factor followed by who the caller is. The user’s location also plays a considerably
important factor in the decision-making process. Furthermore, the surrounding people the user
is with is also another factor, but not as effective as the rest.

Never 0
Rarely 2
Occasionally 25
Very often 20
All the time 6

11%

38%
47%

4%

Never Rarely Occasionally Very often
All the time

Figure 6.11: How often do you receive calls?

1The survey can be found online at: http://www.surveymonkey.com/s/5RZJZTK
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Never 1
Rarely 36
Occasionally 15
Very often 0
Always 1

2%

28%

68%

2%

Never Rarely Occasionally Very often
Always

Figure 6.12: Of these phone calls, how often do you reject them?

Not at all importantSlightly important Fairly important Quite important Very important

Who you are with 7 20 7 13 6

The importance of your location 6 10 16 13 8

Who the caller is 3 11 7 14 18

Your current activity 1 4 10 18 20

0

15

30

45

60

Not at all important Fairly important Very important

Who you are with The importance of your location
Who the caller is Your current activity

Figure 6.13: On what basis do you reject incoming phone calls? What’s their importance?

Finally, our survey is biased towards the people between the age of 18 to 30. While this means
we were unable to model the importance of phone calls in other age categories, the category
most of our users fall in is the most accustomed one with smart phones in general.

6.4.2 User confidence on data collection

We were very keen to capture how comfortable users would be with themselves if an unprece-
dented amount of data was collected, with their permission. Data they might or might not have
control over. The majority of the users are very concerned that data would be collected and
stated that would not own such an application.
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Uncomfortable 15
Concerned, but would NOT own such application 20
Concerned, but would own such application 8
Indifferent/Don’t mind 5
Comfortable 5

9%
9%

15%

38%

28%

Uncomfortable
Concerned, but would NOT own such application
Concerned, but would own such application
Indifferent/Don’t mind
Comfortable

Figure 6.14: How comfortable would you be if you owned an Android/iPhone app which records
your day-to-day activities implicitly? (e.g., phone activity, location, phone settings, phone call
state et.c.)

6.4.3 User confidence on mobile device autonomy

We were also interested to see how such an application would cope had it been available for
download. We were particularly curious to find whether the use of such an application would
be prevalent for a while to become popular. Unfortunately the majority of the users stated that
such an application would not be suitable to them.

Yes 6
No 42
Other 5

9%

79%

11%

Yes No Other

Figure 6.15: Consider an example where a mobile phone application would be able to automat-
ically accept or reject phone calls for you based on your mobile phone behaviour. Would you
use it?
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Some of the survey takers made the additional notable comments:

• “I would use it given that I had accepted the people and times for which the application
would reject my calls”.

• “Accepts yes, but not reject”.

• “Only if I could override it, if necessary”.

• “I may use it, depending on location, caller and nature/purpose of call”.

• “What if I don’t hear the phone and it picks up?”

While this project has principally concentrated on one mobile user behaviour, it seems that if
we generalise this notion and ask users of their opinion about an application executing specific
tasks for them (with their consent), it turns out that the majority would use it. Some have
stated that it would highly depend on the tasks.

Yes 32
No 14
Other 7

13%

26%
60%

Yes No Other

Figure 6.16: Would you use a mobile phone application which carries out specific tasks for you
(with your consent)?

6.4.4 Discussion

We can see that survey we have conducted has a variety of implications. On the whole, it is
notable that data acquisition and automatic execution of some tasks are major issues concerning
the users’ privacy considerably. While such an application seeks to minimise intrusiveness, it may
be the case that there exists an inverse relationship between minimising the user’s involvement
but maximising user concerns over privacy and autonomy issues. A more thorough survey over
a larger variety of user demographics would have certainly been preferred for a more insightful
feedback. Nevertheless, as the work in the field is relatively new, there is no indication whether
or not such applications can be successful in the future. This may depend on the elimination of
the two major concerns mentioned above, and is simply a matter of time.
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6.5 Summary

In this chapter we have evaluated and summarised our work throughout the entire duration of
the project. Our results have shown that the use of ILP is applicable for defining mobile user
behaviours. We have presented a number of meaningful rules with the level of accuracy obtained
for each user. We have then shown how the rules differ in terms of richness from the data collected
with the ULearn application. We have subsequently explained the effects of learning when using
fixed learning parameters and fixed language bias and concluded with a combination which we
believe achieves maximum performance. Finally, a user interface evaluation was carried out
taking into account Nielsen’s heuristics followed by a detailed survey about the applicability of
the ULearn application in the mainstream market.
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Conclusion

To conclude our work, we summarise our achievements both in terms of deliverables and in
terms of learning. We further outline future work and extensions relevant to the project and
finally draw an end with a touch of reflection. Using our learning framework and ULearn we
have successfully shown that all the requirements are met:

• The development of a learning framework for learning mobile user behaviours by means
of Inductive Logic Programming.

• The applicability of the framework to large, existing and inconsistent data.

• The applicability of the framework to data collected from our own developed Android
application.

• The automated extraction of mobile user behaviour rules through data acquisition.

• The development of an end-to-end system able to collect, extract and process data, and
present the learning results to the user to confirm or reject the proposed rules.

• The effect of revision, learning parameters and the language bias in the context of learning
rich and meaningful rules.

Throughout this report we have demonstrated that ILP is applicable for defining mobile user
behaviours. With the appropriate definition of a relevant domain of discourse, language bias
and background knowledge our evaluation results indicate that ILP performs well when dealing
both with large domains and large amount of data. We have ascertained that ILP is better at
learning hypotheses where attribute-based methods fail. Our investigation on whether statistical
machine learning can provide structures in the data, that would have otherwise been hidden, has
established that ILP performs remarkably better when dealing with multi-relational data. As a
result of the two applications of our learning framework, detailed in Chapter 4 and Chapter 5
respectively, we have shown that it is, to a great extent, immune to major changes when exposed
to different datasets. However, this does not, by any means, imply that each dataset is identical;
some amount of work is required to extract the data specified by our framework. Finally, TAL,
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the in-house tool utilised throughout the project, has proven to be a powerful non-monotonic
ILP system that tolerates noise and scales extremely well with large domains and data.

7.1 Future work

• Enriching the background knowledge/language bias: We have captured enough
information with ULearn that we unfortunately do not use in a very interesting way. Our
background knowledge can be enhanced further by defining the user’s location, user’s
habits et.c., in terms of user-defined categories. Our system can then prompt the user for
such information at the beginning of each recording session. Subsequently, some of these
predicates are added to the language bias to make the language of the hypotheses even
more meaningful.

• More than one rule: In this project, we have chiefly concentrated on one type of rule.
Other rules can also be defined. This requires additional constructs in the background
knowledge and language bias to allow for such rules. Some examples include application
usage characteristics, how the user changes the sound settings on the phone and how the
user moves between locations.

• Location prediction: A very interesting extension to this project is the usage of location
data by means of GPS coordinates to predict the user’s next location in T ′ time units given
the user is at location X at time T . The following steps enable us to achieve this. First, we
cluster location in terms of some arbitrary grouping. The clustering algorithm provides us
with the centroids of the clusters which are then encoded in Prolog as facts. A predicate
of the form belongstoCluster/3 can be constructed that given a location, outputs the
cluster it belongs to. Second, our positive examples consist of cases where the user is
moving. Negative examples consist of cases where the user is either not moving at all, or
the distance traversed is less than a desirable threshold.

• Resampling: Due to the time constraints, we have only been able to cross validate our
results and perform ROC analysis. A potential improvement to the accuracy/richness of
the rules constructed is through the use of resampling. We can achieve this with two
different methods. Given a training set D of size n, bagging generates m new training
sets Di each of size n′ <= n by sampling examples from D uniformly and with replace-
ment. This kind of sample is known as a bootstrap sample. The m samples are then used
separately in an ILP setting and their respective solutions are then combined by voting.
Alternatively, we can sample a bootstrap set, test this set with our learning algorithm
and increase the probability of selection for misclassified examples in further bootstrap
samples. This technique is known as boosting.

• Additional datasets: So far we have only focussed on learning rules from two different
datasets; one existing, one collecting. The project can benefit from exposure to additional
datasets relevant to our work. This allows us to compare the datasets and rules in terms
of accuracy and richness. A valid conclusion can then be drawn based on our findings.

• Preventing concept drifting: Mobile user behaviours unquestionably change over time
in unforeseen ways. This often becomes problematic because the predictive accuracy of our
rules decreases as time passes. To prevent deterioration of prediction accuracy over time
we can do a number of things. We can either re-run the algorithm by using only the most
recent training examples or add new background knowledge which may result in explaining
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the causes of concept drift. Unfortunately, the latter requires the user’s intervention and
one of our main aims is to identify such behaviour with minimal intervention.

• Use of sensors: While we have made use of the light sensor when collecting data with
the ULearn application, we haven’t modelled the recorded light level data in a clever
way. Using a number of mobile sensors, we can create models which enable us to uncover
interesting information that is not provided by the phone itself. Such information includes,
whether the user is at home (there is not too much noise), the user is outside (there is
too much noise), the phone is in the user’s pocket/bag (light level is very low), the phone
is upside down (gyroscope information) et.c. Our language bias can then be enriched
significantly and the context can be even more relevant to the user.

• Data control: From a user’s perspective, ULearn captures almost everything triggered
by the user. An interesting extension that can be added to the application is to allow
the user to control what information is captured. This provides a sense of control and
flexibility to the user. Because of this control, rules are customised specifically to the
user’s needs; a direct implication of this extension that adds a whole new dimension of
possibilities.

7.2 Closing remarks

We hope that our innovative idea of learning mobile user behaviours through the use of ILP can
be used as a starting point for future work in the area. Learning rules is a only a preliminary step.
Our evaluation demonstrates evidence of promising rules based on results we have obtained. The
primary use of such rules is within frameworks that allow the learning of privacy policy rules
from past usage in an automated fashion and adapt the system to the user’s needs. This poses
as the real challenge and rule adaptive systems may soon emerge as the new trend in mobile
devices that make people’s lives easier and far more controlled.

104



Bibliography

[AHK+03] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter. EPAL 1.1. 2003.
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A
Partial learning file

1
2 :− m u l t i f i l e opt ion /2 , b u i l t i n /1 .
3 :− dynamic accept /11 .
4
5 b u i l t i n ( subtractTime ( , , ) ) .
6 b u i l t i n ( addTime ( , , ) ) .
7 b u i l t i n (dow( , , , ) ) .
8 b u i l t i n ( divmod ( , , , ) ) .
9 b u i l t i n (member( , ) ) .

10 b u i l t i n ( u s e r i s a c t i v e ( , ) ) .
11 b u i l t i n ( at ( , , ) ) .
12 b u i l t i n ( nearDevice ( , , ) ) .
13 b u i l t i n ( not nearDevice ( , , ) ) .
14 b u i l t i n ( not at ( , , ) ) .
15
16 /∗
17 ∗ Learning parameters
18 ∗/
19
20 opt ion ( max body l i t e ra l s , 4) .
21 opt ion ( max num rules , 1) .
22 opt ion ( number o f so lu t ions , 1) .
23 opt ion ( s i n g l e s e e d r a t i o , 50) .
24 opt ion ( s o l u t i on poo l , 100) .
25 opt ion (max depth , 50000) .
26 opt ion ( s i n g l e s e e d , true ) .
27 opt ion ( s t rategy , custom accuracy based ) .
28 opt ion ( x v a l i d a t i o n f o l d s , 5) .
29 opt ion ( i c check , true ) .
30
31 /∗
32 ∗ Mode dec lara t ions
33 ∗/
34
35 /∗ names and no ground constants have been omitted for layout reasons ∗/
36
37 modeh( accept (+date , +timex , +contact , +volume , +vibrator , +ba t t e r y l e v e l ,
38 +sc r e en b r i gh tne s s , +headset , +s c r e en s t a tu s , +l i g h t l e v e l , +bat t e ry cha rg ing ) ) .
39
40 modeb(=(+contact , #contact ) ) .
41 modeb(\+(=(+contact , #contact ) ) ) .
42 modeb(=(+volume , #volume ) ) .
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43 modeb(\+(=(+volume , #volume ) ) ) .
44 modeb(=(+vibrator , #v ib ra to r ) ) .
45 modeb(\+(=(+vibrator , #v ib ra to r ) ) ) .
46 modeb(=(+ba t t e r y l e v e l , #b a t t e r y l e v e l ) ) .
47 modeb(\+(=(+ ba t t e r y l e v e l , #b a t t e r y l e v e l ) ) ) .
48 modeb(=(+ sc r e en b r i gh tne s s , #s c r e en b r i g h tn e s s ) ) .
49 modeb(\+(=(+ sc r e en b r i gh tne s s , #s c r e en b r i g h tn e s s ) ) ) .
50 modeb(=(+headset , #headset ) ) .
51 modeb(\+(=(+headset , #headset ) ) ) .
52 modeb(=(+ sc r e en s t a tu s , #s c r e e n s t a t u s ) ) .
53 modeb(\+(=(+ sc r e en s t a tu s , #s c r e e n s t a t u s ) ) ) .
54 modeb(=(+ l i g h t l e v e l , #l i g h t l e v e l ) ) .
55 modeb(\+(=(+ l i g h t l e v e l , #l i g h t l e v e l ) ) ) .
56 modeb(=(+batte ry charg ing , #bat t e ry cha rg ing ) ) .
57 modeb(\+(=(+batte ry charg ing , #bat t e ry cha rg ing ) ) ) .
58
59 modeb(weekday(+date ) ) .
60 modeb(\+weekday(+date ) ) .
61 modeb(weekend(+date ) ) .
62 modeb(\+weekend(+date ) ) .
63 modeb( evening(+timex ) ) .
64 modeb(\+evening(+timex ) ) .
65 modeb( morning(+timex ) ) .
66 modeb(\+morning(+timex ) ) .
67 modeb( a f te rnoon (+timex ) ) .
68 modeb(\+afte rnoon (+timex ) ) .
69 modeb( i n c a l l (+date , +timex ) ) .
70 modeb(\+ i n c a l l (+date , +timex ) ) .
71 modeb( at(+date , +timex , #c e l l ) ) .
72 modeb( not at (+date , +timex , #c e l l ) ) .
73 modeb( nearDevice(+date , +timex , #dev i ce ) ) .
74 modeb( not nearDevice (+date , +timex , #dev i ce ) ) .
75 modeb( neighbourhood(+ c e l l , #c e l l ) ) .
76 modeb( u s e r b e en in (+date , +timex , +c e l l ) ) .
77 modeb( u s e r i s a c t i v e (+date , +timex ) ) .
78 modeb(\+ u s e r i s a c t i v e (+date , +timex ) .
79 modeb( phone charging(+date , +timex ) ) .
80 modeb(\+phone charging(+date , +timex ) ) .
81 modeb( phone on(+date , +timex ) ) .
82 modeb(\+phone on(+date , +timex ) ) .
83 modeb( u s e r i s u s i n g app (+date , +timex , #app ) ) .
84 modeb(\+ us e r i s u s i n g app (+date , +timex , #app ) ) .
85 modeb( t imex be fo r e h (+timex , #hour ) ) .
86 modeb( t imex a f t e r h (+timex , #hour ) ) .
87
88
89 /∗
90 ∗ I n t e g r i t y Constraints
91 ∗ b a t t e r y l e v e l , contact and screen s ta tus are names we dec lare
92 ∗ in the mode dec lara t ions .
93 ∗ e . g . , modeb(=(+contact , #contact ) , [name( conact ) ] .
94 ∗
95 ∗/
96
97 i c :−
98 pr ( , R) ,
99 member ( ( b a t t e r y l e v e l , , ) , R) ,

100 member ( ( contact , , ) , R) .
101
102 i c :−
103 pr ( , R) ,
104 member ( ( b a t t e r y l e v e l , , ) , R) ,
105 member ( ( s c r e en s t a tu s , , ) , R) .
106
107
108 /∗
109 ∗ Background knowledge
110 ∗/
111
112 /∗ Dates ∗/
113
114 year (Y) :−
115 Y in 2000 . . 2 0 11 .
116
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117 month(M) :−
118 M in 1 . . 1 2 .
119
120 day of month (D) :−
121 D in 1 . . 3 1 .
122
123 date ( [D, M, Y] ) :−
124 year (Y) ,
125 month(M) ,
126 day of month (D) .
127
128 /∗ computes date of the week given D, M, Y ∗/
129 dow(G,A,Y, Is im ) :−
130 A < 3 ,
131 I i s A+12,
132 M i s Y−1 , ! ,
133 dow(G, I ,M, Is im ) .
134
135 dow(G,U,K,H) :−
136 A i s U+1,
137 I i s K//400 ,
138 J i s K//100 ,
139 T i s K//4 ,
140 L i s I+T+6+K−J ,
141 P i s A∗26 ,
142 O i s P//10 ,
143 R i s L+O+G,H i s R mod 7 , ! .
144
145 da t e be f o r e ( [D, M, Y] , [D1 , M1, Y1 ] ) :−
146 date ( [D, M, Y] ) ,
147 date ( [D1 , M1, Y1 ] ) ,
148 Y #< Y1 .
149
150 da t e be f o r e ( [D, M, Y] , [D1 , M1, Y1 ] ) :−
151 date ( [D, M, Y] ) ,
152 date ( [D1 , M1, Y1 ] ) ,
153 Y = Y1 ,
154 M #< M1.
155
156 da t e be f o r e ( [D, M, Y] , [D1 , M1, Y1 ] ) :−
157 date ( [D, M, Y] ) ,
158 date ( [D1 , M1, Y1 ] ) ,
159 Y = Y1 ,
160 M = M1,
161 D #< D1 .
162
163 d a t e a f t e r ( [D, M, Y] , [D1 , M1, Y1 ] ) :−
164 date ( [D, M, Y] ) ,
165 date ( [D1 , M1, Y1 ] ) ,
166 Y #> Y1 .
167
168 d a t e a f t e r ( [D, M, Y] , [D1 , M1, Y1 ] ) :−
169 date ( [D, M, Y] ) ,
170 date ( [D1 , M1, Y1 ] ) ,
171 Y = Y1 ,
172 M #> M1.
173
174 d a t e a f t e r ( [D, M, Y] , [D1 , M1, Y1 ] ) :−
175 date ( [D, M, Y] ) ,
176 date ( [D1 , M1, Y1 ] ) ,
177 Y = Y1 ,
178 M = M1,
179 D #> D1 .
180
181 /∗ Time ∗/
182
183 hour (H) :−
184 H in 0 . . 2 3 .
185
186 minute (M) :−
187 M in 0 . . 5 9 .
188
189 second (S) :−
190 minute (S) .
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191
192 timex ( [H, M] ) :−
193 hour (H) ,
194 minute (M) .
195
196 t imex be fo r e ( [H, M] , [H1 , M1] ) :−
197 timex ( [H, M] ) ,
198 timex ( [H1 , M1] ) ,
199 H #< H1 .
200
201 t imex be fo r e ( [H, M] , [H1 , M1] ) :−
202 timex ( [H, M] ) ,
203 timex ( [H1 , M1] ) ,
204 H = H1 ,
205 M #< M1.
206
207 t imex a f t e r ( [H, M] , [H1 , M1] ) :−
208 timex ( [H, M] ) ,
209 timex ( [H1 , M1] ) ,
210 H #> H1 .
211
212 t imex a f t e r ( [H, M] , [H1 , M1] ) :−
213 timex ( [H, M] ) ,
214 timex ( [H1 , M1] ) ,
215 H = H1 ,
216 M #> M1.
217
218 be f o r e ( [D, M, Y] , T, [D1 , M1, Y1 ] , T2) :−
219 timex (T) ,
220 timex (T2) ,
221 da t e be f o r e ( [D, M, Y] , [D1 , M1, Y1 ] ) .
222
223 be f o r e ( [D, M, Y] , T, [D, M, Y] , T2) :−
224 date ( [D, M, Y] ) ,
225 t imex be fo r e (T, T2) .
226
227 a f t e r ( [D, M, Y] , T, [D1 , M1, Y1 ] , T1) :−
228 timex (T) ,
229 timex (T1) ,
230 d a t e a f t e r ( [D, M, Y] , [D1 , M1, Y1 ] ) .
231
232 a f t e r ( [D, M, Y] , T, [D, M, Y] , T1) :−
233 date ( [D, M, Y] ) ,
234 t imex a f t e r (T, T1) .
235
236 /∗ Used for adding/ sub t rac t ing time ∗/
237 divmod (D, S ,Q,R) :−
238 D<S ,
239 Q i s 0 ,
240 R i s S−D.
241
242 divmod (D, S ,Q,R) :−
243 D>=S ,
244 divmod (D−S , S ,Q1,R) ,
245 Q i s Q1+1.
246
247 /∗Time T in minutes ∗/
248 addTime ( [H, M] , T, [H1 , M1] ) :−
249 M + T < 60 ,
250 H1 i s H,
251 M1 i s M + T.
252
253 addTime ( [H, M] , T, [H1 , M1] ) :−
254 M + T >= 60 ,
255 DIFF i s 60−M,
256 REM i s T − DIFF ,
257 divmod (REM,60 ,Q,R) ,
258 H1 i s H+Q+1,
259 M1 i s R.
260
261 subtractTime ( [H, M] , T, [H1 , M1] ) :−
262 M − T >= 0 ,
263 H1 i s H,
264 M1 i s M − T.
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265
266 subtractTime ( [H, M] , T, [H1 , M1] ) :−
267 M − T < 0 ,
268 DIFF i s T − M,
269 divmod (DIFF , 60 , Q, R) ,
270 H1 i s H−1−Q,
271 M1 i s 60−R.
272
273 /∗
274 ∗ Language b ias
275 ∗/
276
277 weekday ( [D, M, Y] ) :−
278 date ( [D, M, Y] ) ,
279 dow(D,M,Y,X) ,
280 X in 1 . . 5 .
281
282 weekend ( [D, M, Y] ) :−
283 date ( [D, M, Y] ) ,
284 dow(D,M, Y, X) ,
285 X = 0 .
286
287 weekend ( [D, M, Y] ) :−
288 date ( [D, M, Y] ) ,
289 dow(D,M, Y, X) ,
290 X = 6 .
291
292 morning ( [H, M] ) :−
293 timex ( [H, M] ) ,
294 H #< 12 ,
295 H #> 6 .
296
297 a f te rnoon ( [H, M] ) :−
298 timex ( [H, M] ) ,
299 H #> 11 ,
300 H #< 19 .
301
302 evening ( [H, M] ) :−
303 timex ( [H, M] ) ,
304 H #> 18 ,
305 H #< 23 .
306
307 t imex be fo r e h ( [H, M] , H1) :−
308 timex ( [H, M] ) ,
309 H #< H1 ,
310 member(H1 , [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 0 ] ) .
311
312 t imex a f t e r h ( [H, M] , H1) :−
313 timex ( [H, M] ) ,
314 H #> H1 ,
315 member(H1 , [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 0 ] ) .
316
317 phone on (D, T) :−
318 a f t e r (D, [H, M] , D1 , T1) ,
319 be f o r e (D, T, D2 , T2) ,
320 onspan (D1 , T1 , D2 , T2) .
321
322 phone on (D, T) :−
323 u s e r i s a c t i v e (D, T) .
324
325 u s e r i s a c t i v e (D, T) :−
326 a f t e r (D, T, D1 , T1) ,
327 be f o r e (D, T, D2 , T2) ,
328 a c t i v i t y span (D1 , T1 , D2 , T2) .
329
330 phone charging (D, T) :−
331 a f t e r (D, T, D1 , T1) ,
332 be f o r e (D, T, D2 , T2) ,
333 chargespan (D1 , T1 , D2 , T2) .
334
335
336 at (D, T, Cel l ID ) :−
337 a f t e r (D, T, D1 , T1) ,
338 be f o r e (D, T, D2 , T2) ,
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339 c e l l s p an (D1 , T1 , D2 , T2 , Cel l ID ) .
340
341 not at (D, T, Cel l ID ) :−
342 a f t e r (D, T, D1 , T1) ,
343 be f o r e (D, T, D2 , T2) ,
344 c e l l s p an (D1 , T1 , D2 , T2 , Cel l ID1 ) ,
345 Cel l ID =/= CellID1 .
346
347 nearDevice (D, T, DevID) :−
348 a f t e r (D, T, D1 , T1) ,
349 be f o r e (D, T, D2 , T2) ,
350 devicespan (D1 , T1 , D2 , T2 , DevID) .
351
352 not nearDevice (D, T, DevID) :−
353 a f t e r (D, T, D1 , T1) ,
354 be f o r e (D, T, D2 , T2) ,
355 devicespan (D1 , T1 , D2 , T2 , DevID1) ,
356 DevID =/= DevID1 .
357
358 u s e r i s u s i n g app (D, T, A) :−
359 appspan (D1 , T1 , D2 , T2 , A) ,
360 a f t e r (D, T, D1 , T1) ,
361 be f o r e (D, T, D2 , T2) .
362
363 /∗ X i s in the neighborood of Y ∗/
364 neighbourhood (X, Y) :−
365 X #< Y + 100 ,
366 X #> Y − 100 .
367
368 u s e r b e en in (D1 , [H1 , M1] , Cel l ID ) :−
369 c e l l s p an (D2 , [H2 , M2] , D3 , [H3 , M3] , Cel l ID ) ,
370 H1 #< H3 + 2 ,
371 H1 #> H2 .
372
373 i n c a l l (D, T) :−
374 a f t e r (D, T, D1 , T1) ,
375 be f o r e (D, T, D2 , T2) ,
376 ca l l s pan (D1 , T1 , D2 , T2 , , , , , , , , , ) .
377
378 /∗Par t ia l output from here onwards ∗/
379
380 /∗
381 ∗ Examples − po s i t i v e and negat ive
382 ∗/
383 example ( accept ( [ 1 9 , 3 , 2 011 ] , [ 1 2 , 8 ] , 3 5799199361 , 7 , 2 , 4 7 , 255 , 0 , 1 , 1 0 . 0 , 0 ) ,−1) .
384 example ( accept ( [ 19 , 3 , 2011 ] , [ 1 2 , 11 ] , −1 , 7 , 2 , 46 , 255 , 0 , 1 , 10 . 0 , 0 ) ,1 ) .
385 example ( accept ( [ 19 , 3 , 2011 ] , [ 1 3 , 37 ] , 07952231440 , 7 , 2 , 23 , 255 , 0 , 1 , 2600 . 0 ,0 ) ,1 ) .
386 example ( accept ( [ 1 9 , 3 , 2011 ] , [ 1 4 , 6 ] , 0 7942467850 , 7 , 2 , 22 , 255 , 0 , 0 , 6 40 . 0 , 1 ) ,−1) .
387
388 /∗
389 ∗ S ta t i c background knowledge
390 ∗/
391
392 s c r e e n s t a t u s (0 ) .
393 s c r e e n s t a t u s (1 ) .
394
395 ba t t e ry cha rg ing (0) .
396 ba t t e ry cha rg ing (1) .
397
398 volume (0) .
399 volume (1) .
400 volume (2) .
401 volume (3) .
402 volume (4) .
403 volume (5) .
404 volume (6) .
405 volume (7) .
406
407 v ib r a t o r (0 ) .
408 v ib r a t o r (1 ) .
409 v ib r a t o r (2 ) .
410 v ib r a t o r (3 ) .
411
412 headset (0 ) .
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413 headset (1 ) .
414
415 b a t t e r y l e v e l (99) .
416 b a t t e r y l e v e l (100) .
417 . . .
418
419 s c r e e n b r i g h tn e s s (1 ) .
420 s c r e e n b r i g h tn e s s (3 ) .
421 . . .
422
423 /∗
424 ∗ Dynamic background knowledge
425 ∗/
426
427 . . .
428 a c t i v i t y span ( [ 3 , 4 , 2 0 1 1 ] , [ 1 1 , 5 3 ] , [ 3 , 4 , 2 0 11 ] , [ 1 1 , 5 6 ] ) .
429 a c t i v i t y span ( [ 5 , 4 , 2 0 1 1 ] , [ 1 1 , 5 8 ] , [ 5 , 4 , 2 0 11 ] , [ 1 2 , 0 ] ) .
430 . . .
431
432 . . .
433 appspan ( [ 1 8 , 3 , 2 0 1 1 ] , [ 0 , 5 0 ] , [ 1 8 , 3 , 2 0 1 1 ] , [ 1 , 8 ] , ’ skype ’ ) .
434 appspan ( [ 1 8 , 3 , 2 0 1 1 ] , [ 0 , 5 1 ] , [ 1 8 , 3 , 2 0 1 1 ] , [ 0 , 5 2 ] , ’ goog l e s ea r ch ’ ) .
435 . . .
436
437 . . .
438 ca l l s pan ( [ 18 , 3 , 2 011 ] , [ 1 1 , 49 ] , [ 1 8 , 3 , 2 011 ] , [ 1 1 , 53 ] , 0 7942467850 , 7 , 2 , −1 , 30 , 0 , 1 , 1 60 . 0 , 0 ) .
439 ca l l s pan ( [ 19 , 3 , 2 011 ] , [ 1 5 , 47 ] , [ 1 9 , 3 , 2 011 ] , [ 1 5 , 47 ] , 3 5799199361 , 5 , 2 , −1 , 30 , 0 , 1 , 3 20 . 0 , 1 ) .
440 ca l l s pan ( [ 20 , 3 , 2 011 ] , [ 1 6 , 19 ] , [ 2 0 , 3 , 2 011 ] , [ 1 6 , 25 ] , 0 7952231440 , 5 , 2 , −1 , 30 , 0 , 1 , 3 20 . 0 , 1 ) .
441 . . .
442
443 . . .
444 c e l l s p an ( [ 1 9 , 5 , 2 0 1 1 ] , [ 1 5 , 2 8 ] , [ 1 9 , 5 , 2 0 1 1 ] , [ 1 5 , 3 0 ] , 1 1 2 3 . 9 4 9 7 971 ) .
445 c e l l s p an ( [ 1 9 , 5 , 2 0 1 1 ] , [ 1 5 , 3 5 ] , [ 1 9 , 5 , 2 0 1 1 ] , [ 1 5 , 4 1 ] , 6 5 1 . 3 1 6 5 ) .
446 c e l l s p an ( [ 2 0 , 5 , 2 0 1 1 ] , [ 1 0 , 0 9 ] , [ 2 0 , 5 , 2 0 1 1 ] , [ 1 1 , 3 8 ] , 1 0 7 8 . 9 6 8 8 643 ) .
447 . . .
448
449 . . .
450 chargespan ( [ 2 6 , 3 , 2 0 1 1 ] , [ 1 6 , 5 1 ] , [ 2 7 , 3 , 2 0 1 1 ] , [ 3 , 1 ] ) .
451 chargespan ( [ 2 7 , 3 , 2 0 1 1 ] , [ 1 2 , 1 6 ] , [ 2 7 , 3 , 2011 ] , [ 1 9 , 4 2 ] ) .
452 . . .
453
454 . . .
455 devicespan ( [ 1 8 , 3 , 2 0 1 1 ] , [ 1 0 , 2 9 ] , [ 1 8 , 3 , 2 0 1 1 ] , [ 1 0 , 52 ] , ’ 0021D17B77D7 ’ ) .
456 devicespan ( [ 1 8 , 3 , 2 0 1 1 ] , [ 1 0 , 5 1 ] , [ 1 8 , 3 , 2 0 1 1 ] , [ 1 0 , 54 ] , ’ 0023F172C4BC ’ ) .
457 . . .
458
459 . . .
460 onspan ( [ 4 , 4 , 2 0 1 1 ] , [ 9 , 2 3 ] , [ 4 , 4 , 2 0 1 1 ] , [ 1 8 , 1 ] ) .
461 onspan ( [ 3 1 , 3 , 2 0 1 1 ] , [ 1 0 , 1 1 ] , [ 1 , 4 , 2 0 1 1 ] , [ 7 , 4 3 ] ) .
462 . . .
463
464 . . .
465 app ( ’ goog l e s ea r ch ’ ) .
466 app ( ’ skype ’ ) .
467 . . .
468
469 . . .
470 c e l l (1123 .9497971) .
471 c e l l ( 651 .3165) .
472 c e l l (1078 .9688643) .
473 . . .
474
475 . . .
476 contact (07952231440) .
477 contact (35799199361) .
478 contact (07942467850) .
479 . . .
480
481 . . .
482 dev i ce ( ’ 0021D17B77D7 ’ ) .
483 dev i ce ( ’ 0023F172C4BC ’ ) .
484 . . .
485
486 . . .
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487 l i g h t l e v e l ( 2 25 . 0 ) .
488 l i g h t l e v e l ( 2600 . 0 ) .
489 . . .

Listing A.1: A partial learning file
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B
Language bias settings

Language Bias A

1 /∗ Bias A: Date & Time , Location , Battery /Br igh tness /Ligh t ∗/
2
3 /∗ Head Dec larat ion ∗/
4 modeh( accept (+date , +timex , +contact , +volume , +v ibrator , +b a t t e r y l e v e l ,
5 +s c r e e n b r i g h t n e s s , +headset , +s c r e e n s t a t u s , +l i g h t l e v e l , +ba t t e ry cha rg ing ) )
6
7 /∗ Body Dec lara t ions ∗/
8
9 /∗Date & Time ∗/

10 modeb( weekday(+date ) ) .
11 modeb(\+weekday(+date ) ) .
12 modeb( weekend(+date ) ) .
13 modeb(\+weekend(+date ) ) .
14 modeb( evening(+timex ) ) .
15 modeb(\+ evening(+timex ) ) .
16 modeb( morning(+timex ) ) .
17 modeb(\+morning(+timex ) ) .
18 modeb( a f t e rnoon (+timex ) ) .
19 modeb(\+ afte rnoon (+timex ) ) .
20 modeb( t ime be f o r e h (+timex , #hour ) , [ no ground constants ] ) .
21 modeb( t i m e a f t e r h (+timex , #hour ) , [ no ground constants ] ) .
22
23 /∗ Location ∗/
24 modeb( at(+date , +timex , #c e l l ) ) .
25 modeb( not a t (+date , +timex , #c e l l ) ) .
26 modeb( nearDevice(+date , +timex , #dev i ce ) ) .
27 modeb( not nearDevice (+date , +timex , #dev i ce ) ) .
28 modeb( neighbourhood(+ c e l l , #c e l l ) ) .
29 modeb( u s e r b e e n i n (+date , +timex , +c e l l ) ) .
30
31 /∗ Battery and Br igh tness and Ligh t ∗/
32 modeb(=(+ b a t t e r y l e v e l , #b a t t e r y l e v e l ) , [ no ground constants ] ) .
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33 modeb(\+(=(+ b a t t e r y l e v e l , #b a t t e r y l e v e l ) ) , [ no ground constants ] ) .
34 modeb(=(+ s c r e e n b r i g h t n e s s , #s c r e e n b r i g h t n e s s ) , [ no ground constants ] ) .
35 modeb(\+(=(+ s c r e e n b r i g h t n e s s , #s c r e e n b r i g h t n e s s ) ) , [ no ground constants ] ) .
36 modeb(=(+ l i g h t l e v e l , #l i g h t l e v e l ) , [ no ground constants ] ) .
37 modeb(\+(=(+ l i g h t l e v e l , #l i g h t l e v e l ) ) , [ no ground constants ] ) .
38 modeb(=(+ bat te ry charg ing , #bat t e ry cha rg ing ) , [ no ground constants ] ) .
39 modeb(\+(=(+ batte ry charg ing , #bat t e ry cha rg ing ) ) , [ no ground constants ] ) .
40 modeb( phone charg ing(+date , +timex ) ) .
41 modeb(\+ phone charg ing(+date , +timex ) ) .

Listing B.1: Language bias A
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Language Bias B

1 /∗ Bias B: Contact , User Ac t i v i t y , Volume/Vibrator ∗/
2
3 /∗ Head Dec larat ion ∗/
4 modeh( accept (+date , +timex , +contact , +volume , +v ibrator , +b a t t e r y l e v e l ,
5 +s c r e e n b r i g h t n e s s , +headset , +s c r e e n s t a t u s , +l i g h t l e v e l , +ba t t e ry cha rg ing ) )
6
7 /∗ Body Dec lara t ions ∗/
8
9 /∗ Contact ∗/

10 modeb(=(+contact , #contact ) , [ no ground constants ] ) .
11 modeb(\+(=(+contact , #contact ) ) , [ no ground constants ] ) .
12
13 /∗ Volume/Vibrator ∗/
14 modeb(=(+volume , #volume ) , [ no ground constants ] ) .
15 modeb(\+(=(+volume , #volume ) ) , [ no ground constants ] ) .
16 modeb(=(+ vibrator , #v i b r a t o r ) , [ no ground constants ] ) .
17 modeb(\+(=(+ vibrator , #v i b r a t o r ) ) , [ no ground constants ] ) .
18
19 /∗ User Ac t i v i t y ∗/
20 modeb( i n c a l l (+date , +timex ) ) .
21 modeb(\+ i n c a l l (+date , +timex ) ) .
22 modeb( u s e r i s a c t i v e (+date , +timex ) ) .
23 modeb(\+ u s e r i s a c t i v e (+date , +timex ) ) .
24 modeb( phone charg ing(+date , +timex ) ) .
25 modeb(\+ phone charg ing(+date , +timex ) ) .
26 modeb( phone on(+date , +timex ) ) .
27 modeb(\+phone on(+date , +timex ) ) .
28 modeb( u s e r i s u s i n g a p p (+date , +timex , #app ) ) .
29 modeb(\+ u s e r i s u s i n g a p p (+date , +timex , #app ) ) .
30 modeb(=(+ s c r e e n s t a t u s , #s c r e e n s t a t u s ) , [ no ground constants ] ) .
31 modeb(\+(=(+ s c r e e n s t a t u s , #s c r e e n s t a t u s ) ) , [ no ground constants ] ) .

Listing B.2: Language bias B
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Language Bias C

1 /∗ Bias C: Date/Time , Contact , Location , ∗/
2
3 /∗ Head Dec larat ion ∗/
4 modeh( accept (+date , +timex , +contact , +volume , +v ibrator , +b a t t e r y l e v e l ,
5 +s c r e e n b r i g h t n e s s , +headset , +s c r e e n s t a t u s , +l i g h t l e v e l , +ba t t e ry cha rg ing ) )
6
7 /∗ Body Dec lara t ions ∗/
8
9 /∗Date & Time ∗/

10 modeb( weekday(+date ) ) .
11 modeb(\+weekday(+date ) ) .
12 modeb( weekend(+date ) ) .
13 modeb(\+weekend(+date ) ) .
14 modeb( evening(+timex ) ) .
15 modeb(\+ evening(+timex ) ) .
16 modeb( morning(+timex ) ) .
17 modeb(\+morning(+timex ) ) .
18 modeb( a f t e rnoon (+timex ) ) .
19 modeb(\+ afte rnoon (+timex ) ) .
20 modeb( t imex be fo r e h (+timex , #hour ) , [ no ground constants ] ) .
21 modeb( t i m e x a f t e r h (+timex , #hour ) , [ no ground constants ] ) .
22
23 /∗ Contact ∗/
24 modeb(=(+contact , #contact ) , [ no ground constants ] ) .
25 modeb(\+(=(+contact , #contact ) ) , [ no ground constants ] ) .
26
27 /∗ Location ∗/
28 modeb( at(+date , +timex , #c e l l ) ) .
29 modeb( not a t (+date , +timex , #c e l l ) ) .
30 modeb( nearDevice(+date , +timex , #dev i ce ) ) .
31 modeb( not nearDevice (+date , +timex , #dev i ce ) ) .
32 modeb( neighbourhood(+ c e l l , #c e l l ) ) .
33 modeb( u s e r b e e n i n (+date , +timex , +c e l l ) ) .

Listing B.3: Language bias C
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Language Bias D

1 /∗ Bias D: Location , User a c t i v i t y , Volume/Vibrator ∗/
2
3 /∗ Head Dec larat ion ∗/
4 modeh( accept (+date , +timex , +contact , +volume , +v ibrator , +b a t t e r y l e v e l ,
5 +s c r e e n b r i g h t n e s s , +headset , +s c r e e n s t a t u s , +l i g h t l e v e l , +ba t t e ry cha rg ing ) )
6
7 /∗ Body Dec lara t ions ∗/
8
9 /∗ Location ∗/

10 modeb( at(+date , +timex , #c e l l ) ) .
11 modeb( not a t (+date , +timex , #c e l l ) ) .
12 modeb( nearDevice(+date , +timex , #dev i ce ) ) .
13 modeb( not nearDevice (+date , +timex , #dev i ce ) ) .
14 modeb( neighbourhood(+ c e l l , #c e l l ) ) .
15 modeb( u s e r b e e n i n (+date , +timex , +c e l l ) ) .
16
17 /∗ User Ac t i v i t y ∗/
18 modeb( i n c a l l (+date , +timex ) ) .
19 modeb(\+ i n c a l l (+date , +timex ) ) .
20 modeb( u s e r i s a c t i v e (+date , +timex ) ) .
21 modeb(\+ u s e r i s a c t i v e (+date , +timex ) ) .
22 modeb( phone charg ing(+date , +timex ) ) .
23 modeb(\+ phone charg ing(+date , +timex ) ) .
24 modeb( phone on(+date , +timex ) ) .
25 modeb(\+phone on(+date , +timex ) ) .
26 modeb( u s e r i s u s i n g a p p (+date , +timex , #app ) ) .
27 modeb(\+ u s e r i s u s i n g a p p (+date , +timex , #app ) ) .
28 modeb(=(+ s c r e e n s t a t u s , #s c r e e n s t a t u s ) , [ no ground constants ] ) .
29 modeb(\+(=(+ s c r e e n s t a t u s , #s c r e e n s t a t u s ) ) , [ no ground constants ] ) .
30
31 /∗ Volume/Vibrator ∗/
32 modeb(=(+volume , #volume ) , [ no ground constants ] ) .
33 modeb(\+(=(+volume , #volume ) ) , [ no ground constants ] ) .
34 modeb(=(+ vibrator , #v i b r a t o r ) , [ no ground constants ] ) .
35 modeb(\+(=(+ vibrator , #v i b r a t o r ) ) , [ no ground constants ] ) .

Listing B.4: Language bias D
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