
Imperial College London

Department of Computing

ProbPoly - A Probabilistic Inductive Logic Programming

Framework

with Application in Learning Requirements

by

Călin-Rareş Turliuc

Submitted in partial fulfilment of the requirements for the MSc Degree in
Computing Science / Artificial Intelligence of Imperial College London

September 2011

Acknowledgements

I would like to thank my supervisor Dr. Alessandra Russo for her continuous assistance
and support, for long, challenging and inspiring discussions, and for invaluable feedback and
evaluation of my work.

I would also like to thank my second marker Dr. Krysia Broda for an excellent collabo-
ration for my ISO project and incommensurable help and advice.

I am thankful for the edifying meetings and unconditional aid of Dalal Alrajeh and
Domenico Corapi.

On a personal note, I am grateful for the discussions with Alexandru Marinescu and his
suggestions, and immensely indebted for my parents’ love and financial support.

Abstract

The focus of this project has been on developing a novel Probabilistic Inductive Logic
Programming Framework (PILP) called ProbPoly. The methodology is based on the se-
mantics of Stochastic Logic Programs (SLPs), and by using probabilistic examples and an
adequate score function to learn probabilities of clauses. Many limitations of existing learn-
ing methods for SLPs are overcome, such as non-recursiveness. We also offer a natural
extension for incorporating negation as failure, as well as for learning multiple clauses. Our
representation of predicted probabilities of examples is a (multivariate) polynomial, whose
constrained minimization ensures that the predicted probabilities are close to the observed
ones. The minimization task is performed using specific mathematical techniques of relax-
ation, and in case we can’t ensure a global optimum, we use a state-of-the-art metaheuristic
– particle swarm optimization.

PILP has been successfully applied in numerous areas of research, such as bioinformatics
and natural language processing. We aim to apply it in a software engineering context, with
the purpose of learning requirements. We review related systems, and show how we can use
ProbPoly in conjunction with the PRISM probabilistic model checker to learn probabilities
of a simple discrete time Markov chain, such that the new model satisfies a list of properties.
To our knowledge, an experiment of learning requirements involving PILP and probabilistic
model checking has never been done before.

Our conclusions are that ProbPoly is a promising idea for PILP, with a well founded the-
oretical background, and spanning numerous directions for improvement, both in theoretical
and technical aspects.

Contents

1 Introduction 1

2 Background 2

2.1 Logic and Logic Programming . 2

2.2 Inductive Logic Programming and Probabilistic ILP 3

2.3 Distribution Semantics . 4

2.4 Stochastic Logic Programs and Their Semantics . 6

2.5 Polynomials . 9

I ProbPoly - a new PILP framework 12

3 Related Work in (Probabilistic) Inductive Logic Programming 13

3.1 TopLog . 13

3.1.1 Top Directed Hypothesis Derivation . 13

3.1.2 Mode Declariations and Hypothesis Generation 13

3.1.3 Obtaining a Final Theory . 15

3.2 Stochastic Logic Program Learning . 16

3.3 ProbFOIL - a PILP system in ProbLog . 17

3.3.1 ProbLog . 17

3.3.2 ProbFOIL . 19

4 ProbPoly 21

4.1 A Simple Score for Probabilistic Facts in TopLog . 21

4.2 A Probabilistic Hypothesis Interpreter . 22

4.3 Learning SLPs in ProbPoly . 25

4.3.1 Non-recursive SLPs . 26

4.3.2 Recursive SLPs . 28

4.3.3 Negation as Failure . 30

4.3.4 Multiple Clauses . 31

4.3.5 True/False Positive/Negatives in SLPs . 34

4.4 Conclusions . 34

5 Implementation 35

5.1 The MatLab Package Interface . 35

5.2 PSOpt . 35

5.3 Architecture . 36

5.4 The Impact of Negation as Failure . 37

II Towards Learning Probabilistic Requirements 38

6 Related Work in Learning Requirements 39

6.1 Learning Requirements using ILP and Model Checking 39

CONTENTS

6.2 Connectionist Systems for Learning Requirements 40
6.3 Automated Verification of Systems using L* . 42

6.3.1 The L* Algorithm . 42
6.3.2 The Original Framework . 44
6.3.3 Verification in a Probabilistic Context . 46

6.4 The KAOS framework and related methods . 46
6.4.1 Introduction and Inference of Requirements Specifications from Scenarios . . 46
6.4.2 Conflicts and Obstacles in Goal-Driven Requirements Engineering 48
6.4.3 LTS synthesis based on End-User Scenarios 49

6.5 The I* Approach . 51

7 Modelling and Verification. Probabilistic Model Checking. 52
7.1 Probabilistic Model Checking. PRISM. 52
7.2 Learning A Simple Discrete Time Markov Chain . 56
7.3 Conclusions . 58

8 Future Work 59

9 Conlcusions 62

A Code Listings 63

Chapter 1

Introduction

Probabilistic Inductive Logic Programming (PILP) is a prominent area of research which aims
to combine the expressiveness of learning clauses in a first-order logic language with the uncertainty
of real-world data, quantified by probabilities. PILP has been successfully used in bioinformatics
and natural language processing, and still presents many challenges for researchers interested in
probabilities, logic and machine learning.

Probabilities have also been introduced in the verification of systems. The development of
probabilistic model checkers, which verify probabilistic properties for probabilistic models such as
Markov chains, has opened the possibility of designing new methods which learn requirements in a
probabilistic setting.

The main contribution of our thesis is the creation of an original framework for PILP. We
combine elements from Stochastic Logic Program (SLP) learning, which has been studied only for
non-recursive programs and non-probabilistic positive examples, and learners based on distribution
semantics, which use probabilistic examples. The aim of such learners is to learn probabilities
and/or rules which satisfy certain criteria defined using the probabilities in the background knowl-
edge and of the examples.

The merits of our framework are that it allows learning on SLPs with probabilistic examples
with recursive programs, which is a significant improvement. We further extend our methodology
to include negation as failure, as well as learning probabilities for multiple clauses simultaneously.
We also reason about negative examples in the context of SLPs and about various quantitative
measures used in information retrieval - true/false positives/negatives, and adapted to SLPs.

The main challenge of our approach for learning probabilities will be the constrained minimiza-
tion of a multivariate polynomial, a problem overcome by using two state-of-the-art methods. In
the case of non-recursive programs or when learning a single clause for a recursive program, we
find the probabilities using the analytical method of gradient descent. In the multivariate case,
initially we try to find a global minimum using a tool called GloptiPoly, designed specifically for
optimization of polynomial functions. If we don’t succeed, we fall back on the clever metaheuris-
tic of Particle Swarm Optimization, which is believed to converge faster than other methods of
evolutionary computation.

In the second part of our thesis we analyse the possibility of using PILP in conjunction with
a probabilistic model checker in order to learn new probabilities of an initial model, such that the
properties which are not satisfied in the initial are valid in the new model. An experiment is carried
out on a simple model and proves successful.

Finally we identify the possible directions of future research, which include extending the learn-
ing of SLPs to multiple predicates, learning with proofs of infinite length, and combining our
method with an ILP system to in order to interleave the process of learning the logical clauses with
that of learning their associated probabilities.

1

Chapter 2

Background

This chapter will introduce elementary concepts from different areas of mathematics, logic and
computer science, which are necessary for the understanding of the rest of the thesis. Since the
main contribution is a probabilistic inductive logic programming framework, we begin our discussion
with the topics of logic and logic programming in Section 2.1, and learning using logic: inductive
logic programming and probabilistic inductive logic programming in Section 2.2. As we shall see,
probabilistic inductive logic programming is a paradigm in which the definition of probabilities with
respect to logic programming has a crucial impact. We treat two of perhaps the most popular views
on semantics of probabilities: distribution semantics in Section 2.3 and stochastic logic programs
in Section 2.4. We will adopt the latter in our novel framework.

Finally, our framework relies on the manipulation and, most importantly, the constrained op-
timization of (multivariate) polynomials, so we introduce relevant aspects of such fundamental
mathematical expressions in Section 2.5.

2.1 Logic and Logic Programming

We assume familiarity with the syntax and semantics of propositional and first-order logic,
unification and resolution. We also assume knowledge about Linear Temporal Logic (LTL), which
extends first-order logic with operators for temporal sequences; however, we will explain intuitively
the required operators when they are introduced. We also assume knowledge of the Prolog notation,
which we will use throughout the thesis (atoms and predicates start with lower-case letters, variables
start with upper-case letters, we use ”:-” with the same meaning as logical ”←”). In the remainder
of the section we introduce in a semi-formal manner a minimal amount of concepts from first-order
logic and logic programming. The presentation is inspired by the first part (especially chapters 2
and 7) of [Nienhuys-Cheng and Wolf, 1997], which deals with these matters formally and at length.

A predicate is also called an atom, or, when referring to logic programming, a goal, and can be
assigned truth values (true or false).

A literal is an atom or a negated atom. Usual operations on literals include conjunction (∧),
disjunction (∨), negation (¬), implication (→, and its inverse, the conditional ←) and equivalence
(↔).

A clause is a disjunction of literals (l1 ∨ l2...∨ ln). An empty clause is denoted by [] or �, and
its truth value is false.

A Horn clause C is a clause with at most one positive literal. It will be written in the form
q ← l1, ..., ln with n ≥ 0, where q is an atom and all li with 1 ≤ i ≤ n are atomic literals, and q,
or C+, is called the head and l1, . . . , ln, or C−, is called the body of the clause. Clause bodies are
understood to be conjunctions of literals.

If all li are atoms a clause is called definite. If we allow negation, i.e. li = not A, where A is an
atom, a clause is called normal. A denial clause is a clause of the form ← l1, . . . , ln. The number
of literals in the body of a clause is called the length of the clause.

A (normal logic) program P is a finite set of (normal) clauses and a definite logic program is a
finite set of definite clauses.

2

2.2 Inductive Logic Programming and Probabilistic ILP

An interpretation maps predicates to true or false. We will usually identify an interpretation
with the set of predicates which it maps to true (the rest are implicitly assumed to be false). An
interpretation is extended to literals, clauses and programs in the usual way.

A model of a clause C is an interpretation I which maps C to true (in symbols: I
 C). A
model of a program P is an interpretation which maps every clause in P to true.

Let Σ be a set of Horn clauses, and C be a Horn clause. An SLD-derivation of length k of C
from Σ is a finite sequence of Horn clauses R0, . . . , Rk, and Rk = C, such that R0 ∈ Σ and each
Ri, i = 1, k, is a binary resolvent of Ri−1 and a definite program clause Ci ∈ Σ, using the head of
Ci and a selected atom in the body of Ri−1 as the literals resolved upon.

An SLD-derivation of the empty clause [] from Σ is called an SLD-refutation of Σ. A goal is a
clause.

Let P be a definite program, and G a definite clause. An SLD-tree for P ∪ {G} is a tree
satisfying the following:

� Each node of the tree is a (possibly empty) definite goal.

� The root node is G.

� Let N =← A1, . . . , As, . . . , Ak, k ≥ 1, be a node in the tree, with As as selected atom. Then,
for each clause C in P such that As and (a variant of) C+ are unifiable, the node N has
exactly one resolvent of N and C, Bs, as a child. The node has no other children for the
same As and C.

� Nodes which are the empty clause [] have no children.

Negation as Failure (NaF) is a method that allows us to introduce negated atoms, and thus
working with normal logic programs rather than definite logic programs. The essential idea is that
for a definite goal G, we assume that ¬G is proven if G finitely fails. Let P be a definite program,
an SLD-tree for P ∪ {G} is called finitely failed if it is finite and contains no success branches.

SLD-resolution that takes into account negation as failure is called SLDNF-resolution, which is
the standard resolution technique used in logic programming. However, we will leave out all the
technical details about SLDNF-trees and SLDNF-resolution, because they are beyond the scope of
this thesis.

2.2 Inductive Logic Programming and Probabilistic ILP

Inductive Logic Programming (ILP) is a field related to Logic, Logic Programming and Machine
Learning, which aims at learning a (normal logic) program, referred to as theory or hypothesis H,
based on domain knowledge, encoded as background knowledge, language bias, which is essential
to reduce the search space, especially when learning complex predicates, and a set of positive and
negative examples, the quality of which is crucial to the success of the learning.

The usual setting of ILP, as defined in [Nienhuys-Cheng and Wolf, 1997], is: given a set of
clauses B (background knowledge) and sets of clauses E+ and E− (positive and negative examples),
find a theory (i.e. a set of clauses) H such that H ∪B is correct with respect to E+ and E−, which
we will denote by H ∪B |= E. A set of clauses P is correct with respect to positive examples E+

if: P |= e, ∀e ∈ E+. A set of clauses P is correct with respect to negative examples E− if: P 2 e,
∀e ∈ E−. It can be proven that we can transform examples into ground examples, since we make
the Closed World Assumption (CWA), that is, everything which is not asserted to be true by our
program is implicitly false.

As an example, consider:
B = { parent(bob, alan), parent(mia, kate),

male(bob),male(alan),
female(mia), female(kate)},

and examples E+ = {has daughter(mia)} and E− = {has daughter(bob)}.
Furthermore, assume H = {has daughter(X) ← parent(X,Y), female(Y)}. This is the in-

tuitive ”human” definition of the has daughter predicate, and in this case H ∪ B |= E. Now

3

2. BACKGROUND

let us make H = {has daughter(X) ← parent(X,Y)}, which would correspond to the ”in-
tuitive” has children predicate, then H ∪ B 2 E, because H ∪ B |= has daughter(bob), and
has daughter(bob) ∈ E−. Finally, we may learn a theory such as H = {has daughter(X) ←
parent(X,Y), female(X)}, which again corresponds to the ”intuitive” is mother predicate, but
we have H ∪ B |= E, so the learned theory is ”correct”. This can be seen as an ILP case of
overfitting, and as mentioned earlier, we must have either an intuition about the predicate we want
to learn, to generate appropriate examples, or have an oracle generate a large number of examples,
to precisely guide the search towards the correct theory.

We also mention the task of abductive logic programming ([Kakas et al., 1993]). An ALP task,
as defined in [Corapi et al., 2010], is based on 〈g, T,A, I〉, where g is a ground goal, T is a normal
logic program, A is a set of ground facts called abducibles, and I is a set of denial clauses called
integrity constraints. The output of the abductive procedure is a subset of A, called abductive
solution – ∆, such that T ∪∆ is consistent, T ∪∆ |= g and T ∪∆ |= I.

Probabilistic Inductive Logic Programming (PILP) is a branch of ILP which aims at combining
the expressiveness of inductive logic learning with probabilistic reasoning, motivated by the uncer-
tainty inherent in data. An excellent review can be found in [Raedt and Thon, 2010], which distin-
guishes between learning from entailment, interpretations and proofs, and proposes an adaptation
of FOIL [Quinlan and Cameron-Jones, 1993] for probabilistic learning from entailment. However,
unlike ILP, there is no general consensus as to what the task of PILP should be. This is due to
the various semantics of probabilities in logic programming. We will overview two perspectives on
the semantics of probabilities in Sections 2.3 (Distribution Semantics) and 2.4 (Stochastic Logic
Programs Semantics).

2.3 Distribution Semantics

It is fundamental for PILP to have a theoretically founded semantics. Sato’s distribution se-
mantics, introduced in [Sato, 1995], assigns a probability for each formula over an infinite Herbrand
universe, such that the probability axioms of Kolmogorov hold. The three axioms are:

1. Any probability is a non-negative real number.

2. The probability of an elementary event to occur over a sample space is 1. Intuitively, this
means that we take into consideration all possible events in the sample space.

3. In the case of pairwise disjoint events, the probability of all the events is the sum of the
probabilities of the individual events.

Sato considers definite clause programs DB of the form: DB = F ∪ R, where F is the set of
facts, and R is the set of rules. The key idea is to initially define a probability distribution over F ,
PF , and to extend it over the whole program DB, thus obtaining PDB, in a process influenced by
the set of rules R. DB is assumed to be ground, denumerably infinite, and satisfying the disjoint
condition, i.e. no fact in F unifies with the head of a rule in R.

Assume that A1, A2, . . . , An are atoms in F , P
(n)
F is the joint probability over the first n variables

in F , i.e. A1, A2, . . . , An, and that x1, x2, . . . , xn are 0 or 1 (corresponding to false or true, i.e.
Ai = 1 means that atom Ai is true in the current interpretation). The existence of PF is proved
by ensuring that the following conditions hold:

1. 0 ≤ P (n)
F (A1 = x1, A2 = x2, . . . , An = xn) ≤ 1

2.
∑

x1,x2,...,xn

P
(n)
F (A1 = x1, A2 = x2, . . . , An = xn) = 1

3.
∑
xn+1

P
(n+1)
F (A1 = x1, A2 = x2, . . . , An+1 = xn+1) = P

(n)
F (A1 = x1, A2 = x2, . . . , An = xn)

4

2.3 Distribution Semantics

The first condition ensures that the values of the probabilities defined are valid. The second
condition is motivated by the need of completeness of the sample space (in this case, the proba-
bilities over all interpretations must sum up to 1). The third condition, called the compatibility
condition defines an additive property of probabilities, and is related to the completeness problem
(an interpretation must be either true or false, so marginalizing over these two possibilities must
sum up to 1).

The probability PDB is constructed from PF by considering all the interpretations I for which,
their least models (LM(I)) logically imply the atoms in F . PDB is then defined as PF over the set
of such interpretations:

[Ax11 ∧ A
x2
2 ∧ · · · ∧ Axnn]F

def
= {I | LM(I) |= (Ax11 ∧ A

x2
2 ∧ · · · ∧ Axnn)} , where Axii is A if xi = 1

or ¬A if xi = 0.
The formal definition of PDB is:

P
(n)
DB(A1 = x1, A2 = x2, . . . , An = xn)

def
= PF ([Ax11 ∧A

x2
2 ∧ · · · ∧Axnn]F)

However, we don’t know how to compute a probability over a set of interpretations. Proposition
2.1 from [Sato, 1995] provides an answer to this problem. Let:

ϕDB(x1, x2, . . . , xn) =< y1, y2, . . . , yk > iff
∀I (I |= A1, . . . , An → LM(I) |= B1, . . . , Bk)
Then the whole distribution is:
PDB(A1, . . . , An, B1, . . . , Bk) ={

PF (A1, . . . , An) if ϕDB(x1, x2, . . . , xn) =< y1, y2, . . . , yk >

0 otherwise

The intuition behind this definition is that the probabilities of the interpretations over DB
should be in fact the probabilities of the interpretations over F , but taking care that the rest of the
atoms in the interpretations over DB should be assigned the correct values (obtained by induction
of these atoms using the interpretations over F and the rules R).

The distribution over the head atoms is computed by summing (or marginalizing) over the
probabilities of the interpretations that are consistent with B1, . . . , Bk:

PDB(B1, . . . , Bk) =
∑

ϕDB(x1,x2,...,xn)=<y1,y2,...,yk>

PF (A1, . . . , An)

The easiest way to understand distribution semantics is via an example.

Example 2.1. Let DB = F ∪R, F = {X,Y },
and R = { A← X,

B ← X,
B ← Y ,
C ← X,Y }

Assume PF is defined as:

〈xX , xY 〉 PF (xX , xY)

〈0, 0〉 0.2

〈1, 0〉 0.4

〈0, 1〉 0.1

〈1, 1〉 0.3

others 0

Then, PDB will be:

〈xX , xY , xA, xB, xC〉 PDB(xX , xY , xA, xB, xC)

〈0, 0, 0, 0, 0〉 0.2

〈1, 0, 1, 1, 0〉 0.4

〈0, 1, 0, 1, 0〉 0.1

〈1, 1, 1, 1, 1〉 0.3

others 0

5

2. BACKGROUND

Suppose we now want to compute PDB(A = 1). This reduces to a simple marginalization over
PF (xX , xY , xA, xB, xC):

PDB(A = 1) = PDB(1, 0, 1, 1, 0) + PDB(1, 1, 1, 1, 1) = 0.7

In the same way:

PDB(B = 1) = PDB(1, 0, 1, 1, 0) + PDB(0, 1, 0, 1, 0) + PDB(1, 1, 1, 1, 1) = 0.8

Finally, we mention a probabilistic logic programming language called PRogramming In Statis-
tical Modelling (PRISM1) described in [Sato and Kameya, 2001]. In this language we can specify
logic programs which simulate the behaviour of Turing Machines, Bayes Networks, Markov Chains
(e.g. Hidden Markov Models (HMMs)) etc. The authors also design an Expectation Maximization
(EM) algorithm to evaluate P (A1, ..., An) if we know P (B1, ..., Bk), and which subsumes the specific
version of EM for different models.

2.4 Stochastic Logic Programs and Their Semantics

Stochastic Logic Programs are introduced in [Muggleton, 1996], as a way to represent Stochastic
(or Probabilistic) Context Free Grammars (SCFG or PCFG) in logic programming, and are defined
as a set of stochastic clauses. A stochastic clause p : C is a pair of a probability p ∈ [0, 1] and a
range-restricted clause C. A clause is range-restricted if every variable in the head of C is found
in the body. Moreover, the set of stochastic clauses must satisfy the property that for all clauses
containing q as the predicate of the head, the probabilities of these clauses must sum up to 1. It
is easy to transform any logic program consisting of only range-restricted clauses annotated with
probabilities into a SLP by normalization.

A Stochastic SLD (SSLD) refutation consists of the SLD refutation of the logic program (ig-
noring probabilities). Then, the probability of a derivation of a goal g is defined as the product
of probabilities on the branches of the SLD tree, and the probability of goal g is the sum of the
probabilities of all the derivations of g. Formally, we have:

Definition 2.1 (The Probability of a Derivation of a Goal). The probability of a derivation (in a
successful case called a proof or refutation) proof of a goal g (given background knowledge B and
hypothesis H) is :

P (g|B ∪H, proof) =
∏

p:c∈proof
p

Definition 2.2 (The (Total) Probability of a Goal). The total probability of a goal g (given back-
ground knowledge B and hypothesis H) is :

P (g|B ∪H) =
∑

proof∈SSLD(g,B∪H)

P (g|B ∪H, proof)

=
∑

proof∈SSLD(g,B∪H)

∏
p:c∈proof

p

Consider the following example from [Chen et al., 2008]:

Example 2.2. SSLD derivation of s(X).
0.4 : s(X) :- p(X), p(X).
0.6 : s(X) :- q(X).

0.3 : p(a).
0.7 : p(b).

0.2 : q(a).
0.8 : q(b).

1We won’t use the abbreviation due to a name clash with the probabilistic model checker.

6

2.4 Stochastic Logic Programs and Their Semantics

We reproduce the SSLD derivation tree with annotated probabilities in Figure 2.12:

Figure 2.1: Example of SSLD derivation tree.

Notice that there are 6 derivations with 4 refutations and 2 fail-derivations. So, the (total)
probability of goal s(X):

P (s(X)) =
∑

r∈Refuations(s(X))

P (r)

= 0.4 ∗ 0.3 ∗ 0.3 + 0.4 ∗ 0.7 ∗ 0.7 + 0.6 ∗ 0.2 + 0.6 ∗ 0.8

= 0.036 + 0.196 + 0.12 + 0.48

= 0.832

A nice property is that in the context of SLPs, the probability of all derivations, i.e. refutations
as well as failed derivations, of any goal is 1, due to the fact that for any clauses with the same
predicate in the head, the sum of the annotated probabilities must be 1.

We have mentioned that SLPs were designed for representing Probabilistic Context Free Gram-
mars (PCFG) in a logic programming context. Let us define PCFGs formally and then provide a
small example from Natural Language Processing (NLP), inspired by [Manning and Schütze, 1999].

Definition 2.3 (Probabilistic Context Free Grammar). A PCFG G consists of:

� A set of terminals, {wk}, k = 1, . . . , V

� A set of nonterminals, {N i}, i = 1, . . . , n

� A designated start symbol, N1

� A set of rules, {N i → ζj}, (where ζj is a sequence of nonterminals)

� A corresponding set of probabilities on rules such that:

∀i
∑
j

P (N i → ζj |N i) = 1

Consider the following PCFG3:

Example 2.3. Simple PCFG example.
S → NP VP 1.0 NP → NP PP 0.4
PP → P NP 1.0 NP → astronomers 0.1
VP → V NP 0.7 NP → ears 0.18
VP → VP PP 0.3 NP → saw 0.04
P → with 1.0 NP → stars 0.18
V → saw 1.0 NP → telescopes 0.1

2Figure 1(b) in [Chen et al., 2008].
3Table 11.2 from [Manning and Schütze, 1999].

7

2. BACKGROUND

We can directly model this PCFG into an SLP, by just considering probabilistic clauses of the
form: 1 : s ← np, vp for the first rule in the PCFG, and so on. When considering (graphical)
representations of PCFG we have the following result: for every PCFG there exists an equivalent
Pushdown Automaton (PDA). However, it is convenient to represent a particular derivation of a
string by the grammar using parse trees. Let us consider sentence S = [astronomers, saw, stars,
with, ears], which can be parsed in two ways by the grammar in Example 2.3. The parse tree for
the two derivations are shown in Figure 2.2.4

Figure 2.2: The parse trees for sentence [astronomers, saw, stars, with, ears] using the PCFG from
Example 2.3.

The probability of a derivation is the product of all the probabilities in its parse tree, and is
equivalent to the probability of a derivation of a goal in Definition 2.1, if we consider the goal to
be the string that is parsed, and the logic program the representation of the grammar. In a similar
manner, the probability of a string being derived by a PCFG is the sum over the probabilities of
all derivations, which is again reflected in the (total) probability of a goal in Defintion 2.2, under
the same circumstances as the ones mentioned above.

Note that this PCFG can in fact be represented in a logic programming language such as
Prolog, as shown in Listing 2.1.5 However, it is worthy to mention the problem of left recursion,
which appears for rules of the form R → R.... If we don’t transform the parsing in an acceptable
recursive paradigm (boundary condition and recursive case), we end up with an infinite loop in the
execution.6 By adequately querying the system after program compilation, we get the expected
parse trees and the correct probabilities, as shown in Listing 2.2.

Listing 2.1: Prolog definition of PCFG in Example 2.3.

0 s (P0 , s (NP , VP)) −−> np (P1 , NP) , vp (P2 , VP) , { P0 i s 1 .0* P1*P2 } .

np (0 . 1 , np (astronomers)) −−> [astronomers] .
np (P0 , np (astronomers , Rest)) −−> [astronomers] , nptail (P1 , Rest) , {P0 i s P1 *0 . 1} .
np (0 . 1 8 , np (ears)) −−> [ears] .

5 np (P0 , np (np (ears) , Rest)) −−> [ears] , nptail (P1 , Rest) , {P0 i s P1 *0 . 1 8} .
np (0 . 0 4 , np (saw)) −−> [saw] .
np (P0 , np (saw , Rest)) −−> [saw] , nptail (P1 , Rest) , {P0 i s P1 *0 . 0 4} .
np (0 . 1 8 , np (stars)) −−> [stars] .
np (P0 , np (np (stars) , Rest)) −−> [stars] , nptail (P1 , Rest) , {P0 i s P1 *0 . 1 8} .

10 nptail (Acc , np (NP , PP)) −−> pp(P2 , PP) , np (Acc1 , NP) , {Acc i s 0 .4* P2*Acc1 } .
nptail (Acc , PP) −−> pp(P2 , PP) , {Acc i s 0 .4* P2 } .

4Reproduced from figure 11.1 in [Manning and Schütze, 1999].
5The code is inspired by the simpler example at http://w3.msi.vxu.se/~nivre/teaching/statnlp/pdcg.html

(accessed 01.09.2011).
6See http://www.cs.sfu.ca/~cameron/Teaching/383/DCG2.html(accessed 01.09.2011) for details and a more ac-

cessible example.

8

http://w3.msi.vxu.se/~nivre/teaching/statnlp/pdcg.html
http://www.cs.sfu.ca/~cameron/Teaching/383/DCG2.html

2.5 Polynomials

pp(P0 , pp (P , NP)) −−> p (P1 , P) , np (P2 , NP) , {P0 i s 1 .0* P1*P2 } .

15 vp (P0 , vp (V , NP)) −−> v (P1 , V) , np (P2 , NP) , { P0 i s 0 .7* P1*P2 } .
vp (P0 , vp (vp (V , NP) , Rest)) −−> v (P1 , V) , np (P2 , NP) , vtail (P3 , Rest) ,{ P0 i s 0 .7* P1*P2*P3 } .
vtail (P0 , PP) −−> pp(P1 , PP) , {P0 i s 0 .3* P1 } .
vtail (P0 , VP) −−> vp (P0 , VP) .

20 p (1 . 0 , p (with)) −−> [with] .
v (1 . 0 , v (saw)) −−> [saw] .

Listing 2.2: Results of the query to compute the parse trees and their probabilities.

0 ?− s (P , T , [astronomers , saw , stars , with , ears] , []) .
P = 0.0009072 ,
T = s (np (astronomers) , vp (v (saw) , np (np (stars) , pp (p (with) , np (ears))))) ? ;
P = 0.0006804 ,
T = s (np (astronomers) , vp (vp (v (saw) , np (stars)) , pp (p (with) , np (ears)))) ? ;

5 no

2.5 Polynomials

Polynomials are fundamental mathematical expressions which use constants and one (in which
case we shall call them univariate) or more variables (in which case we shall call them multivariate).
The constants, as well as the variables, are usually defined over the well known sets: N, Z, R, or
more generally C.

For the moment, assume we discuss univariate polynomials over C. A polynomial of this type
is written as:

p(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0, with n ∈ N, x, a0, a1, . . . , an ∈ C and an 6= 0.
n is the degree of the polynomial p(x). If n = 0, then the polynomial is a constant function

p(x) = a0. A value x0 is called a root of the polynomial p(x) if p(x0) = 0.

Property 2.1. x0 is a root of p(x) of degree n ≥ 1 i.f.f. there exists polynomial q(x) of degree
n− 1 and p(x) = q(x)(x− x0).

The proof of the above property is straightforward:
⇐: If we have p(x) = q(x)(x− x0), then p(x0) = 0, so, by definition x0 is a root.
⇒: By the remainder theorem, we have: p(x) = q(x)(x− x0) + c, c ∈ C. However, x0 is a root,

so p(x0) = c = 0.

Theorem 2.1 (Fundamental Theorem of Algebra). Let p(x) be a polynomial of degree n ≥ 1.
Then, p(x) always has a root x0 ∈ C.

By using the fundamental theorem of algebra, and Property 2.1, we can inductively prove the
following result:

Property 2.2. Let p(x) be a polynomial of degree n ≥ 1. Then, p(x) has at most n complex roots.

The reason why we use ”at most” and not ”exactly” is due to multiple roots, e.g. p(x) = (x−1)2,
with root 1 being a multiple root (of order 2).

Among the many observations that can be made about polynomials, we shall mention mainly
the following:

� if p(x) has root x0 = a+ ib, then the complex conjugate of x0, x0, is also a root. Informally,
complex roots come in pairs.

� the derivative of a polynomial p(x) of degree n ≥ 1 is a polynomial q(x) of degree n− 1.

� there exist efficient algorithms to determine the real roots of polynomials, among the most
recent being [Rouillier and Zimmermann, 2004].

9

2. BACKGROUND

� we can find the minimum (or maximum) of a polynomial p(x) in an interval [a, b], by inspecting
the real roots of the derivative in [a, b], which are either local maxima or minima, and the
values of p(a) and p(b), and keeping the minimum (or maximum).

We will also use multivariate polynomials, which have the general form:

p(x1, ..., xk) =

n∑
i=0

aix
p(1,i)
1 x

p(2,i)
2 . . . x

p(k,i)
k , with n ∈ N, k ∈ N∗,

ai ∈ C, ∀i = 0, n,

xj ∈ C, ∀j = 1, k, and

p(j, i) ∈ N, ∀i = 0, n,∀j = 1, k

The degree of a multivariate polynomial is max
i

k∑
j=1

p(j, i), and a root is a vector [x01, ..., x
0
k] such

that p(x01, ..., x
0
k) = 0.

The problem of finding the roots of a multivariate polynomial or of minimizing a multivariate
polynomial (eventually, under certain constraints) is a difficult task in general. In some cases, the
roots of multivariate polynomials can be found using Gröbner bases. The problem of solving sets
of multivariate equations has been given attention due to the development of multivariate public
key cryptography, which was motivated by the fact that quantum computers can perform integer
factorization in polynomial time, and potentially break (univariate) public key cryptosystems such
as the commonly used RSA.7

To minimize a multivariate polynomial under constraints, we use a special numerical method,
implemented in MatLab, called GloptiPoly ([Henrion and Lasserre, 2002], [Henrion et al., 2007]).
However, since it is not always reliable, and it is scalable only up to a certain extent, we can
also treat this problem as a general function optimization problem, and use metaheuristics such as
simulated annealing, genetic algorithms, ant colony optimization or particle swarm optimization.
The disadvantage of metaheuristics is that we lose the guarantee of a global minimum, and the
computation can be just as, or even more expensive.

To give an example, one of the well known functions used to test minimization problems is the
Six Hump Camel Back function8, which is a multivariate polynomial of 2 variables and of degree
6, given in Listing 2.3.

Listing 2.3: MatLab Definition of Six Hump Camel Back Function

0 f unc t i on [out] = sixhump (x)
out = (4−2.1*x (1)ˆ2+x (1)ˆ4/3)* x (1)ˆ2+x (1)* x(2)+(−4+4*x (2)ˆ2)* x (2) ˆ 2 ;
end

If we consider the constraints: −2 ≤ x1 ≤ 2 and −1 ≤ x2 ≤ 1, then the function has two
global minima (and 4 local minima), f(x1, x2) = −1.0316, for (x1, x2) = (−0.0898, 0.7126), or
(0.0898,−0.7126). We illustrate the function in Figure 2.3. The two dark blue valleys correspond
to the two global minima.

7See [Ding et al., 2006] for details.
8For example, it is mentioned in the GEATbx MatLab toolbox (http://www.geatbx.com/docu/fcnindex-01.

html (accessed 01.09.2011)).

10

http://www.geatbx.com/docu/fcnindex-01.html
http://www.geatbx.com/docu/fcnindex-01.html

2.5 Polynomials

Figure 2.3: Plot of the Six Hump Camel Back Function.

Finally, we mention two theorems which allow us to compute polynomials raised to a power.

Theorem 2.2 (Binomial Theorem). The expansion of (x + y)n is: (x + y)n = C(n, 0)xny0 +
C(n, 1)xn−1y1 + · · ·+ C(n, n− 1)x1yn−1 + C(n, n)x0yn, with x, y ∈ R, and n ∈ N∗

C(n, k) are binomial coefficients, and:
C(n, k) = n!

k!(n−k)! , n ∈ N∗, and 0 ≤ k ≤ n
A more general result is the multinomial theorem.

Theorem 2.3 (Multinomial Theorem). The expansion of (x1 +x2 + · · ·+xm)n is: (x1 +x2 + · · ·+

xm)n =
∑

k1+k2+···+km=n

(C(n; k1, k2, . . . , km)
m∏
t=1

xktt)

C(n; k1, k2, . . . , km) are multinomial coefficients, and:
C(n; k1, k2, . . . , km) = n!

k1!k2!...km!
Note that for binomial and multinomial coefficients although we give the usual definitions based

on the factorials, the implementation uses very fast MatLab functions.

11

Part I

ProbPoly - a new PILP framework

12

Chapter 3

Related Work in (Probabilistic)
Inductive Logic Programming

This chapter presents the (P)ILP frameworks which have inspired us to develop ProbPoly. In
Section 3.1 we briefly introduce the idea of top directed hypothesis derivation, illustrated by TopLog.
In the next chapter, we will adapt the TopLog scoring using probabilistic facts and examples, based
on SLP semantics. In Section 3.2 we continue the discussion on SLPs, introduced in Section 2.4,
with an emphasis on learning SLPs, which is also the main goal of ProbPoly. Finally, Section
3.3 succinctly describes a popular probabilistic logic programming language, ProbLog, based on
distribution semantics, introduced in Section 2.3, and ProbFOIL, a PILP system implemented in
ProbLog, based on the ILP FOIL system [Quinlan and Cameron-Jones, 1993].

3.1 TopLog

3.1.1 Top Directed Hypothesis Derivation

TopLog is an Inductive Logic Programming system which illustrates the theoretical framework
of Top-Directed Hypothesis Derivation (TDHD), described in [Muggleton et al., 2008]. The key
idea of TDHD is to build a top theory > from the background knowledge and based on a set of
non-terminal symbols NT . The predicates in NT must be new predicates, different from the ones
in the background knowledge B. The top theory > is a general logic program from which the
hypotheses H is be derived. > must contain as the head of the first clause the target predicate,
and as heads of the other clauses in >, non terminal symbols in NT .

We reproduce Example 1 from [Muggleton et al., 2008]. Let:

NT = {ntBody}
B = b1 = pet(lassy)←
e = nice(lassy)←

Then, > could be written as:

>1 : nice(X)← ntBody(X)

>2 : ntBody(X)← pet(X)

>3 : ntBody(X)← friend(X)

3.1.2 Mode Declariations and Hypothesis Generation

The top theory can also be constructed from mode declarations.

13

3. RELATED WORK IN (PROBABILISTIC) INDUCTIVE LOGIC
PROGRAMMING

Definition 3.1 (Mode Declaration). A mode declaration, as defined in [Corapi et al., 2010], is
either a head (modeh(s)) or a body declaration (modeb(s)), where s is called a schema, which is
a ground literal containing placemarkers. Placemarkers are either inputs (+type), outputs(−type),
or ground terms (#type).

Consider the following example1:

Example 3.1. Learning the uncle predicate.
B = {

b1 : male(tom)
b2 : male(bob)

b3 : parent(tom, mary)
b4 : parent(tom, bob)
b5 : parent(tom, betty)
b6 : parent(mary, ann)
b7 : parent(joyce, susan)

}
E = {

ID Example clause Example weight

e1 : uncle(bob, ann) +10
e2 : uncle(bob, susan) −10
e3 : uncle(betty, ann) −10
e4 : uncle(tom, betty) −10
e5 : uncle(joyce, ann) −10
e6 : uncle(tom, mary) −10

}

Assume the following mode declarations:
M = {

modeh(uncle(+person))
modeb(male(+person))
modeb(parent(+person, -person))
modeb(parent(-person, +person))

}
We might build > as :
> = {

>1 : uncle(X,Y)← ntBody(X), ntBody(Y)
>2 : ntBody(X)←
>3 : ntBody(X)← male(X), ntBody(X)
>4 : ntBody(X)← parent(X,Z), ntBody(X), ntBody(Z)
>5 : ntBody(X)← parent(Z,X), ntBody(X), ntBody(Z)

}
Once we have built >, the generation of the hypotheses set H is based on iterating on the

positive examples E+: starting with H = ∅ for each positive example e ∈ E+, we consider the
refutations r of e using B and >, and based on the refutations we build the hypotheses He and
merge them with H.

For the above example, we may have many hypotheses hi ∈ H, such as:

h1 : uncle(X,Y).

(not(uncle(bob, ann)),>1, | >2, | >2)

h2 : uncle(X,Y) :- male(X).

(not(uncle(bob, ann)),>1, | >3, b2,>2, | >2)

h3 : uncle(X,Y) :- parent(Z,X).

1For the examples, a positive weight denotes a positive example, and a negative one – a negative example.

14

3.1 TopLog

(not(uncle(bob, ann)),>1, | >5, b4,>2,>2, | >2)

h4 : uncle(X,Y) :- parent(Z.Y).

(not(uncle(bob, ann)),>1, | >2, | >5, b6,>2,>2)

. . .

In brackets we show the corresponding derivation of the (only) positive example e1. We have
used | to mark the beginning of the refutations for each argument of >1. Notice that for example
the hypothesis uncle(X,Y) :- parent(X,Z). cannot be generated, since bob isn’t anyone’s parent in
B. Now let us consider more complex hypotheses, among which we will find the ”correct” definition
of the uncle predicate (h7):

. . .

h5 : uncle(X,Y) :- male(X), parent(Z, Y).

(not(uncle(bob, ann)),>1, | >3, b2,>2, | >5, b6,>2,>2)

h6 : uncle(X,Y) :- male(X), parent(Z1, X), parent(Z2, Y).

(not(uncle(bob, ann)),>1, | >3, b2,>5, b4,>2,>2| >5, b6,>2,>2)

h7 : uncle(X,Y) :- male(X), parent(Z1, X), parent(Z1, Z2), parent(Z2, Y).

(not(uncle(bob, ann)),>1, | >3, b2,>5, b4,>2,>4, b3,>2,>4, b6,>2,>2| >2)

h8 : uncle(X,Y) :- parent(Z1, X), parent(Z1, Z2), parent(Z2, Y).

(not(uncle(bob, ann)),>1, | >3,>5, b4,>2,>4, b3,>2,>4, b6,>2,>2| >2)

. . .

3.1.3 Obtaining a Final Theory

After the generation of all hypotheses, the TopLog system computes the final theory T , which
is a subset of the derived hypotheses H. Initially, T is empty, and hypotheses from H are added
according to a greedy heuristic, more specifically at each iteration hypothesis h ∈ H is added to T
if it gives the maximum score of T ∪ h (relative to the other existing hypotheses). The score of T
is computed as:

S(T) =
∑

e∈ECT

weight(e)−
∑
h∈T
|h|

We use ECT to denote the set of examples covered by the hypotheses in T , and by weight(e)
the weight of an examples (a positive value for a positive example and a negative value otherwise).
|h| is the number of literals in hypothesis h. Thus, the two components of the score account for
the maximization of the weights of the examples (the first sum), while penalizing complex rules
(the second sum), which is an ILP way of implementing the Minimum Description Length (MDL)
principle.

Again, consider the example of hypotheses h5–h8, and assume T = ∅. We compute the following
scores, for weight(e) = 10 for a positive example and −10 otherwise:

S(T ∪ h5) =

e1︷︸︸︷
10 +

e2︷ ︸︸ ︷
(−10) +

e4︷ ︸︸ ︷
(−10) +

e6︷ ︸︸ ︷
(−10)−

literals︷︸︸︷
3 = −23

S(T ∪ h6) =

e1︷︸︸︷
10 +

e2︷ ︸︸ ︷
(−10)−

literals︷︸︸︷
4 = −4

S(T ∪ h7) =

e1︷︸︸︷
10 −

literals︷︸︸︷
5 = 5

S(T ∪ h8) =

e1︷︸︸︷
10 +

e3︷ ︸︸ ︷
(−10)−

literals︷︸︸︷
4 = −4

It is clear that in the first iteration we will add h7 to T . Also, since every other hypothesis will
contribute a negative score, we can anticipate that in the second iteration no hypothesis will be
added to T and the final theory will be T = {h7}, as we would expect.

15

3. RELATED WORK IN (PROBABILISTIC) INDUCTIVE LOGIC
PROGRAMMING

3.2 Stochastic Logic Program Learning

The problem of learning probabilities of an SLP is addressed in [Muggleton, 2002]. We must
learn a set of probabilistic clauses H such that the SLP S = B∪H |= E (B is also an SLP and E is
a set of ground positive non-probabilistic examples). Additionally, the probabilities of the clauses
in the SLP S maximize P (E | S) . An ILP system which learns one (range-restricted) clause c at
a time (like FOIL) is considered, and it is assumed that B ∪ H ′ |= E, where H ′ = H ∪ c. The
problem reduces to finding the probability x of c. Then, the other clauses y1 : h1, . . . , yn : hn with
the target predicate as head predicate can be normalized by multiplying each yi, ∀i = 1, n with
(1− x).

Since we assume structure learning (i.e. clause c for each step, and in the end H without
annotated probabilities) to be similar to ILP, we are left with parameter learning (i.e. probability
X of clause c, and in the end the probabilities of each clause in H). The choice of x (such that
0 ≤ x ≤ 1) is seen as a maximization problem of the function P (E|B ∪H), defined as:

P (E|B ∪H) =
∏
e∈E

P (e|B ∪H)

=
∏
e∈E

∑
proof∈SSLD(e,B∪H)

P (proof)

=
∏
e∈E

∑
proof∈SSLD(e,B∪H)

∏
p:c∈proof

p

By SSLD(g, S) we denote the SSLD derivation of goal g using the SLP S, and p : C is a
probabilistic clause used in the SSLD derivation tree.

The author provides a solution for the case of non-recursive programs, by observing that any
probability of a proof will either be:

� a constant const, if the example can be derived without using H (this is a trivial case – it
means that the example can proven directly from the background knowledge),

� const× x if the derivation of the example uses the new clause C,

� const× (1− x) if the derivation uses a previously learned clause hi.

This means that P (e|B ∪H) will be of the form x(c1 + c2 + . . .) + (1−x)(d1 + d2 + . . .) + c(e). By
computing sumc = c1 + c2..., sumd = d1 + d2... and k1(e) = sumc − sumd, k2(e) = sumd + c(e),
we get
P (e|B ∪H) = k1(e)x+ k2(e).

Instead of maximizing P (E|B ∪H), the author considers the maximization of ln(P (E|B ∪H)),
which is equivalent to the initial formulation due to the monotony of ln. The function becomes:

ln(P (E|B ∪H)) = ln(
∏
e∈E

P (e|B ∪H))

=
∑
e∈E

ln(P (e|B ∪H)))

=
∑
e∈E

ln(k1(e)x+ k2(e))

The problem of finding x as argmax
x

P (E|B∪H) is solved analytically, by setting the derivative

of ln(P (E|B ∪H)) to 0:

16

3.3 ProbFOIL - a PILP system in ProbLog

∂ln(P (E|B ∪H))

∂x
=

∑
e∈E

1

k1(e)x+ k2(e)

∂(k1(e)x+ k2(e))

∂x

=
∑
e∈E

k1(e)

k1(e)x+ k2(e)

= 0

Thus, by considering k(e) = k2(e)
k1(e)

, we get x by computing the solution of
∑
e∈E

1

x+ k(e)
= 0. In

the case of two examples, x is −k(e1)+k(e2)
2 . The author also shows a numerical method to compute

x for an arbitrary number of examples.
Let us consider a simple example, based on the one in [Muggleton, 2002], which corrects an

error in the refutations, but doesn’t keep the program normalized. However, in this particular
context, it doesn’t affect the purpose or validity of the example.

Example 3.2. Un-normalized SLP to match refutations in [Muggleton, 2002] Program S:
x : p(X,Y) :- q(X,Z), r(Z,Y). [A]

1-x : p(X,Y) :- r(X,Z), s(Y,Z). [B]

0.3 : q(a,b). [C]
0.4 : q(b,b). [D]
0.3 : q(c,e). [E]

0.4 : r(b,d). [F]
0.6 : r(e,d). [G]
0.6 : r(c,f). [H]

0.9 : s(d,d). [I]
0.1 : s(e,d). [J]
0.1 : s(d,f). [K]

Examples E:
p(b,d). [e1]
p(c,d). [e2]

Then, the SSLD proofs are:

SSLD(e1, S) = {[A,D,F], [B,F, I]}
SSLD(e2, S) = {[A,E,G], [B,H,K]}

The equation for p(E|S) is the polynomial:
p(E|S) = [x(0.4)(0.4) + (1− x)(0.4)(0.9)]× [x(0.3)(0.6) + (1− x)(0.6)(0.1)]
For e1 we get c = c1 = (0.4)(0.4) and d = d1 = (0.4)(0.9), and we can compute k1(e1), k2(e1)

and k(e1). In a similar way, for e2 we get c = c1 = (0.3)(0.6) and d = d1 = (0.6)(0.1), and again

compute k1(e2), k2(e2) and k(e2). x will be −k(e1)+k(e2)
2 , and in this instance, 0.65. The result can

be verified visually by plotting p(E|S) as a function of x (it is, in fact, a second degree polynomial).
In conclusion, in SLP learning, we are given as input an SLP (B ∪H) and we aim to learn the

probability of a clause to be added to H, such that the probability of the examples, which can only
be positive, is maximized. This is done in a Maximum-Likelihood (ML) fashion, by deriving an
analytical expression, for non-recursive SLPs.

3.3 ProbFOIL - a PILP system in ProbLog

3.3.1 ProbLog

ProbLog is a probabilistic extension of Prolog, implemented in Yet Another Prolog (YAP,
[Costa et al., 2011]). The theoretical and practical aspects of ProbLog are presented in the PhD
report of A. Kimming [Kimming, 2010].

17

3. RELATED WORK IN (PROBABILISTIC) INDUCTIVE LOGIC
PROGRAMMING

The formal foundation for extending logic programming with probabilistic elements is the dis-
tribution semantics, described in [Sato, 1995] and introduced in Section 2.3.

In ProbLog, each probabilistic fact f is treated as an independent random variable and is
written as p :: f , where p is a probability of the standard Prolog fact f . ProbLog rules have the
form: h : −b1, ..., bn, where h is a positive literal not unifying with any probabilistic fact and each
bi is either a probabilistic fact f , the negation of f with f ground, or a positive literal not unifying
with any probabilistic fact. This allows the extension of each interpretation of the probabilistic
facts into a unique minimal Herbrand model of the program.

A ProbLog program is defined as T = {p1 :: f1, ..., pn :: fn} ∪ BK, where BK is a set of rules
as defined above. The logical facts of T , LT , consists of the set of all the possible groundings of all
fi. Inference in ProbLog implies two basic steps:

1. Computation of explanations of a query q using the logical part of the theory (BK ∪ LT).
The explanations are stored as a DNF formula.

2. Computation of the probability of the formula.

ProbLog relies on binary decision diagrams (BDDs) as data structures to represent a boolean
formula (result of step 1 of the inference). BDDs are binary trees in which each node represents a
propositional variable, and the edges from that node represent the assignment of true or false value
to that variable. BDDs can be compressed by using reduction operators such as :

� subgraph merging, in which the edges going into a subgraph g1 are redirected to an isomorphic
subgraph g2 and g1 is deleted, and

� node deletion, in which a node n1 whose edges go to the same node n2 can be deleted and
the edges going into n1 are connected to n2.

Maximal compression of a BDD depends on variable ordering, which was proven to be a coNP-
complete problem.

One of the advantages of ProbLog is that it is the first probabilistic programming system using
BDDs as a basic data structure for efficient probability calculation.

Let us consider a very small example, based on the ProbLog tutorial:2.
Probability :: Clause

0.9 :: edge(1, 2).
0.5 :: edge(2, 6).
0.7 :: edge(1, 6).

Assuming we have specified the definition of a path/2 predicate, we can query the system for
probabilities related to paths in the graph, e.g.

Query to find the maximum probability:

0 ?− problog_max (path (1 , 6) , Prob , FactsUsed) .
FactsUsed = [dir_edge (1 , 6)] ,
Prob = 0.7

Query to find the exact probability:

0 ?− problog_exact (path (1 , 6) , Prob , Status) .
Prob = 0.835 ,
Status = ok

The value for the exact probability might seem strange at first, but recall that we are working
in distribution semantics, so the logic behind the computation is:

2http://dtai.cs.kuleuven.be/problog/tutorial-inference.html (accessed 04.09.2011)

18

http://dtai.cs.kuleuven.be/problog/tutorial-inference.html

3.3 ProbFOIL - a PILP system in ProbLog

〈edge(1, 2), edge(2, 6), edge(1, 6)〉 path(1, 6)

〈0, 0, 1〉 1

〈0, 1, 1〉 1

〈1, 0, 1〉 1

〈1, 1, 1〉 1

〈1, 1, 0〉 1

others 0

So we have:

P (path(1, 6)) = 0.1 ∗ 0.5 ∗ 0.7

+ 0.1 ∗ 0.5 ∗ 0.7

+ 0.9 ∗ 0.5 ∗ 0.7

+ 0.9 ∗ 0.5 ∗ 0.7

+ 0.9 ∗ 0.5 ∗ 0.3

= 0.835

ProbLog allows using k-best proofs, sampling, and even parameter learning. Learning aims at
estimating parameters of ProbLog programs using examples with annotated probabilities and is
accomplished by minimizing a mean square error (MSE) function.

3.3.2 ProbFOIL

ProbFOIL is described in [Raedt and Thon, 2010]. It uses ProbLog to evaluate probabilities
of examples given a learned hypothesis P (H ∪ B |= e), based on probabilistic facts and non-
probabilistic rules. P (H ∪ B |= e) has the same semantics as the probability of a goal (given
a background knowledge and a hypothesis), written as P (e|B ∪ H), from Definition 2.2. The
probabilities of the examples P (e) represent the desires explanation probability, so the goal is to
find a theory H such that P (H ∪ B |= e) are close to P (e). Similar to a regression setting, the
function used to evaluate the quality of learning is a loss function:

Loss(H) =
∑
e∈E
|P (e)− P (H ∪B |= e)|

The goal is to find: argmin
H

Loss(H), so the learning continues until the inner loop of FOIL

doesn’t produce a clause c which can minimize Loss(H∪c). For the inner loop, the authors consider
an adapted definition of the traditional Information Retrieval (IR) quantities: true/false positives,
true/false negatives. Consider pi the probability of an example, ni = 1− pi and ph,i the predicted
probability, nh,i = 1− ph,i. The following quantities are introduced, for each example ei:

� the true positive part tpi = min(pi, ph,i)

� the true negative part tni = min(ni, nh,i)

� the false positive part fpi = max(0, ni − tni)

� the false negative part fni = max(0, pi − tpi)

Consider also the definitions of true/false positive/negative parts over the whole set of examples:

TP =
∑
ei∈E

tpi, TN =
∑
ei∈E

tni, FP =
∑
ei∈E

fpi, FN =
∑
ei∈E

fni,

Let us consider a small example where pi = 0.5 and ph,i = 0.3. We illustrate the above-defined
quantities in Figure 3.1. Note that the false positive part is in this case 0.

19

3. RELATED WORK IN (PROBABILISTIC) INDUCTIVE LOGIC
PROGRAMMING

Figure 3.1: True/false positive/negative parts for pi = 0.5 and ph,i = 0.3.

Based on these quantities, the authors define generalized information retrieval (IR) measures
such as precision, recall, accuracy etc. Such a measure (called m-measure, similar but more robust
than precision) is used to define a local score in the process of generating clause c to be added to
H:

localscore(H, c) = m− estimate(H ∪ {c})−m− estimate(H)
Finally, the stopping criterion is defined as:
localstop(H, c) = (TP (H ∪ {c})− TP (H) = 0) ∨ (FP ({c}) = 0)
Informally, this means that the search stops when there are no more false positives, or if the

refined clauses doesn’t contribute to the increase in the true positive part. The authors also propose
a post-pruning of the refined rules.

To summarise, ProbFOIL performs learning of ProbLog programs based on probabilistic exam-
ples, in the context of distribution semantics, using a FOIL-like approach, which aims at minimizing
the error between the observed and predicted probabilities of the examples, while guiding the re-
finement process according to generalized IR inspired measures.

20

Chapter 4

ProbPoly

After establishing a background in PILP and reviewing some of the most significant systems
in the field, we now focus on developing a new framework for PILP. This is the main theoreti-
cal contribution of our thesis. We extend learning SLPs to learning with probabilistic examples,
overcome the important limitation of learning only non-recursive programs, establish a way to in-
terpret negation as failure, and extend learning to multiple clauses. Recall that SLPs were initially
meant to represent PCFGs, which are recursive in almost all real-world applications. Learning
probabilities for multiple clauses is crucial as well, since PCFGs are defined by a large number
of parameters. Due to the powerful optimization mechanisms behind ProbPoly, we almost always
manage to obtain very good learning results, given an adequate structure.

This chapter is organized as follows: Section 4.1 defines a probabilistic score for the TopLog
system, which is not actually part of the ProbPoly idea, and hasn’t been implemented, but is
an introductory experiment in PILP. The meaning of the probabilities are similar to the usual
weights: they are meant to quantify the quality of the examples, i.e. the trust we place in them.
In Section 4.2 we describe the adaptation of a simple iterative deepening Prolog meta-interpreter
to the probabilistic context of SLPs. The focus is on clarity of ideas rather than efficiency. In the
concluding Section 4.3 we present the main theoretical results behind ProbPoly accompanied by
small, but hopefully illustrative examples.

4.1 A Simple Score for Probabilistic Facts in TopLog

This section is a direct continuation of Section 3.1, so we assume implicit the notation convention
and the context of TopLog learning.

In the context of probabilistic facts in B and probabilistic examples in E, we could use the
derivation of H, but adapt the score used for generating the final theory to take into account
probabilities. A simple solution for such a score would be:

Sprob(T) =
∑

e∈ECT

weight(e)L(e|T)P (e).

We will consider the weight of the examples 1 for a positive example and −1 otherwise, and
for simplicity, we assume complete certainty for all examples (P (e) = 1, ∀e ∈ E). L(e|T) is the
likelihood that example e is derived from theory T , and is computed as the sum of an example
being derived from any hypothesis:

P (e|T) =
∑
h∈T

P (e|h).

Let RF (e, h) (RF – Refutation Facts) be the set of probabilistic facts in the refutation of e
by h, denoted b (of course, taken from the background knowledge B). P (e|h) is computed as the
product of the probabilities of the facts appearing in the refutation of e by h:

P (e|h) =
∏

b∈RF (e,h)

P (b).

Under this assumption, we consider that each example has a single refutation by any one
hypothesis. To generalize to multiple refutations, we can assume P (e|h) is equivalent to P (e|B ∪

21

4. PROBPOLY

{h}), and P (e|T) to P (e|B ∪ {T}) from Definition 2.2.
We illustrate the computation of this score on the uncle toy dataset, by annotating the back-

ground knowledge facts with probabilities:

Example 4.1. Learning the uncle predicate with probabilistic facts.
B = {

b1 : male(tom). :: 0.8
b2 : male(bob). :: 0.3

b3 : parent(tom,mary). :: 0.7
b4 : parent(tom, bob). :: 0.5
b5 : parent(tom, betty). :: 0.9
b6 : parent(mary, ann). :: 0.6
b7 : parent(joyce, susan). :: 0.4

}

The probabilistic scores for hypotheses h5–h8 will be:

Sprob(T ∪ h5) =

e1︷ ︸︸ ︷
0.3︸︷︷︸

P (male(bob))

∗ 0.6︸︷︷︸
P (parent(mary, ann)

∗ 1︸︷︷︸
P (e1)

∗ 1︸︷︷︸
weight(e1)

+

e2︷ ︸︸ ︷
0.3 ∗ 0.4 ∗ −1 +

e4︷ ︸︸ ︷
0.8 ∗ 0.9 ∗ −1 +

e6︷ ︸︸ ︷
0.8 ∗ 0.7 ∗ −1

= −1.22

Sprob(T ∪ h6) =

e1︷ ︸︸ ︷
0.3 ∗ 0.5 ∗ 0.6 ∗ 1 +

e2︷ ︸︸ ︷
0.3 ∗ 0.5 ∗ 0.4 ∗ −1

= 0.03

Sprob(T ∪ h7) =

e1︷ ︸︸ ︷
0.3 ∗ 0.5 ∗ 0.7 ∗ 0.6 ∗ 1

= 0.063

Sprob(T ∪ h8) =

e1︷ ︸︸ ︷
0.5 ∗ 0.7 ∗ 0.6 ∗ 1 +

e3︷ ︸︸ ︷
0.9 ∗ 0.7 ∗ 0.6 ∗ −1

= −0.168

Although the results are very much influenced by the probabilities we have chosen, we notice
that h7 is still the hypothesis with maximum score. However, we also find a positive hypothesis in
h6, because we are more certain on mary being ann’s parent (0.6), then on joyce being susan’s
parent(0.4), which clearly gives more weight to the positive example. Another important aspect of
this choice of score is that, although simple, it implicitly incorporates the Minimum Description
Length (MDL) principle, because a longer hypothesis will need additional facts in the refutation,
and consequently there will be more probabilities to compute in the product of P (e|h), and since all
P (b) are real probabilities (P (b) ∈ (0, 1]), they will diminish the score of the particular derivation.

4.2 A Probabilistic Hypothesis Interpreter

The core of a probabilistic logic programming environment is the hypothesis interpreter (we will
also refer to it as prover). Unlike the sophisticated prover of ProbLog (briefly described in Section
3.3), we have developed one based on the prover for the (mini)HYPER ILP system described in
[Bratko, 2000], shown in Listing 4.1.1

HYPER (Hypothesis Refiner) and miniHYPER are two small ILP systems presented in the
ILP chapter of [Bratko, 2000]. HYPER uses the best first strategy to search a refinement graph
according to the cost of hypothesis H:

1The code is available online at the book’s website.

22

http://www.pearsoned.co.uk/highereducation/resources/bratkoprologprogrammingforartificialintelligence3e/

4.2 A Probabilistic Hypothesis Interpreter

Cost(H) = w1 ∗ Size(H) + w2 ∗NegCover(H),
where w1 and w2 are tunable weights, NegCover(H) is the number of negative examples covered

by H and Size(H) is:
Size(H) = k1 ∗#literals(H) + k2 ∗#variables(H)
HYPER is able to learn multiple clauses in H, thus actually searching over a refinement forest.

The search is performed in a top-down manner, usually starting from the clause with the head
predicate as a fact and applying a range of refinements. Variables can be typed and language bias
is specified via predicates such as backliteral, prolog predicate and start clause.

Examples of predicates that can be learned using HYPER include the definition of a path in a
graph and insert sort.

Listing 4.1: Hypothesis Interpreter from [Bratko, 2000].

0 % Figure 19 .3 A loop−avo id ing i n t e r p r e t e r f o r hypotheses .

% In t e r p r e t e r f o r hypotheses
% prove (Goal , Hypo , Answ) :

5 % Answ = yes , i f Goal d e r i v ab l e from Hypo in at most D s t ep s
% Answ = no , i f Goal not d e r i v ab l e
% Answ = maybe , i f s earch terminated a f t e r D s t ep s i n c o n c l u s i v e l y

prove (Goal , Hypo , Answer) :−
10 max_proof_length (D) ,

prove (Goal , Hypo , D , RestD) ,
(RestD >= 0 , Answer = yes % Proved
;
RestD < 0 , ! , Answer = maybe % Maybe , but i t l ooks l i k e

15 % in f . loop
) .

prove (Goal , _ , no) . % Otherwise Goal d e f i n i t e l y cannot be proved

20 % prove (Goal , Hyp , MaxD, RestD) :
% MaxD al lowed proo f length , RestD ' remaining l ength ' a f t e r proo f ;
% Count only proo f s t ep s us ing Hyp

prove (G , H , D , D) :−
25 D < 0 , ! . % Proof l ength overstepped

prove ([] , _ , D , D) :− ! .

prove ([G1 | Gs] , Hypo , D0 , D) :− ! ,
30 prove (G1 , Hypo , D0 , D1) ,

prove (Gs , Hypo , D1 , D) .

prove (G , _ , D , D) :−
prolog_predicate (G) , % Background pr ed i c a t e in Prolog ?

35 call (G) . % Cal l o f background pr ed i c a t e

prove (G , Hyp , D0 , D) :−
D0 =< 0 , ! , D i s D0−1 % Proof too long
;

40 D1 i s D0−1, % Remaining proo f l ength
member (Clause /Vars , Hyp) , % A c l au s e in Hyp
copy_term (Clause , [Head | Body]) , % Rename va r i a b l e s in c l au s e
G = Head , % Match c l au s e ' s head with goa l
prove (Body , Hyp , D1 , D) . % Prove G us ing Clause

As shown in the listing, the prover is simply a Prolog predicate which, given a goal Goal and
an hypothesis Hypo, should always succeed and bind answer Answ to ’yes’ if Goal is provable with
Hypo (and the Background Knowledge – whose predicates are encoded via prolog predicate/1),
’maybe’ if after D steps the search hasn’t terminated (where D is a parameter specified by
max proof length(D), and the steps are counted by the use of predicates in Hypo), or ’no’ if
Goal is not derivable.

In an ILP context, the top goal of the prover will always be an example. In HYPER, the prover
is used to test if all positive examples are covered and if none of the negative examples are covered.
An example is covered by a hypothesis H if we B ∪ H |= e, and in HYPER this relation can be

23

4. PROBPOLY

verified by calling prove(Example,H,Answer), assuming Example is bound to e. The quantities
of covered positive examples and negative examples are used in virtually all ILP systems either in
the definition of termination criteria or in the design of scores to evaluate the quality of (partial)
hypotheses.

The hypothesis Hypo is encoded as a list of clauses, and each clause is encoded as a Clause/V ar
pair, where Clause is a ordered list of predicates (e.g. the first one is the head of the rule), and V ar
is the list of variables in Clause. For example, the clause p(X,Y) :– r(X,Z), s(Y, Z) is encoded as:
[p(X, Y), r(X, Z), s(Y, Z)]/[X, Y, Z].

Our probabilistic hypothesis interpreter should function the same as the prover discussed, how-
ever the clauses, both in the background knowledge and in the hypothesis Hypo will have proba-
bilities, and the answer Answ will be the probability of a proof (or refutation) of Goal, as defined
in Definition 2.1, or 0 in the case of a failed derivation or incomplete search. In fact, in the case
of an incomplete search, the probability is not necessarily 0 (which is a worst case assumption),
rather it could be in the interval [0, P (Goal|B ∪H, proof)), where proof is the partial derivation
where the search has stopped. We will explore this idea further in Section 4.3.

The stochastic clauses p : C are specified in the background knowledge as: pc(p, C), and that
the hypothesis Hypo consists of clauses of the form: Clause/V ar, where Clause = [p, head,
body1, . . . , bodyn], and p denotes the probability of the clause. A probabilistic prover is given in
Listing 4.2.

Listing 4.2: A simple Probabilistic Hypothesis Interpreter

0 % === prove /3
% === prove (Goal , Hypo , Answ) − un l i k e the usua l prover ,
% in which Answ i s yes i f a proo f o f Goal us ing Hypo i s found ,
% no i f the d e r i v a t i on f a i l s ,
% or maybe i f i t i s n ' t found at depth<=D (from max proo f l ength (D)) ,

5 % Answ i s a p r obab i l i t y :
% the p r obab i l i t y o f the proo f found in s t ead o f yes
% 0 in s t ead o f maybe
% 0 in s t ead o f no
prove (Goal , Hypo , Answ) :−

10 max_proof_length (D) ,
prove (Goal , Hypo , D , _RestD , Answ , 1) .

prove (_Goal , _ , 0) . % Otherwise Goal d e f i n i t e l y cannot be proved

15 % prove (Goal , Hyp , MaxD, RestD) :
% MaxD al lowed proo f length , RestD ' remaining l ength ' a f t e r proo f ;
% Count only proo f s t ep s us ing Hyp

prove (_G , _H , D , D , 0 , _PAcc) :−
20 D < 0 , ! . % Proof l ength overstepped

prove ([] , _Hyp , D , D , P , P) :− ! .

prove ([G1 | Gs] , Hypo , D0 , D , P , PAcc) :− ! ,
25 prove (G1 , Hypo , D0 , D1 , P1 , PAcc) ,

prove (Gs , Hypo , D1 , D , P , P1) .

prove (G , _Hyp , D , D , P , PAcc) :−
prolog_predicate (G) , % Background pr ed i c a t e in Prolog ?

30 pc (Prob , G) ,
P i s PAcc*Prob ,
call (pc (_P , G)) . % Cal l o f background pr ed i c a t e

prove (G , Hyp , D0 , D , P , PAcc) :−
35 D0 =< 0 , ! , D i s D0−1 % Proof too long

;
D1 i s D0−1, % Remaining proo f l ength
member (Clause /_Vars , Hyp) , % A c l au s e in Hyp
copy_term (Clause , [Prob , Head | Body]) , % Rename va r i a b l e s in c l au s e

40 G = Head , % Match c l au s e ' s head with goa l
PAcc1 i s PAcc*Prob ,
prove (Body , Hyp , D1 , D , P , PAcc1) . % Prove G us ing Clause

In the probabilistic case, it is useful to also compute the total probability of a goal, defined in

24

4.3 Learning SLPs in ProbPoly

Definition 2.2, and this is easily accomplished by considering the sum of all the solutions to the
probabilistic prover, as illustrated in Listing 4.3

Listing 4.3: Predicate for Computing the Total Probability of a Goal

0 % === to ta l p r ob /3
% === to ta l p r ob (G, Hyp , Prob) −
% fo r goa l G and thoery Hyp , f i nd the t o t a l p r obab i l i t y
% o f G being proved by Hyp by summing a l l the p roo f s
total_prob (G , Hypo , Prob) :−

5 f i n d a l l (P , prove (G , Hypo , P) , Probs) ,
sum_list (Probs , Prob) .

In the next section we will explore learning probabilities, and consequently the representation for
the prover and its result will change (due to unknown probabilities), however the general structure
will be identical with that of the probabilistic prover in Listing 4.2.

4.3 Learning SLPs in ProbPoly

The learning framework proposed in this section combines the two PILP approaches discussed
in Sections 3.2 and 3.3. Our aim is to learn SLPs based on probabilistic examples

After reviewing the methods in Sections 3.3 and 3.2, the idea of combining the two methods
seemed a reasonable improvement, that is to develop a framework in which SLPs are learned based
on probabilistic examples, and the aim of the learning process is to have an SLP that explains the
examples optimally.

ProbPoly has as input: an SLP B, a set of probabilistic clauses H, one (or in the multi-clause
case more) clauses with unknown probability/probabilities with the same head as the clauses in
H and a set of probabilistic examples. The goal is to learn the probabilities of the clauses, thus
obtaining H ′ such that the SLP given by B ∪ H ′ proves examples E with a probability close to
that observed.

But what does the probability of an example mean in this situation? If we recall the initial use
of SLPs as PCFGs, then if the example is a string produced from the grammar, the probability of
the example is the probability of the string being generated by the grammar, and in fact it is the
probability of a goal, where the goal is the example itself, from Definition 2.2.

Initially, the setting will be the same as in Section 3.2, but we will change the way we perform
parameter learning. Rather than maximizing p(E|S), we will aim at minimizing an error function
Err(E|S), which acts like a loss function in the global score of ProbFOIL. However, instead of:∑

e∈E
|P (e)− P (H ∪B |= e)|,

we will choose the least squares error function, commonly used in machine learning when training
neural networks (e.g. [Mitchell, 1997], Chapter 4, equation (4.2)) or solving regression tasks (e.g.
[Bishop, 2007], Chapter 1, equation (1.2)):

Err(E|S) = 1
2

∑
e∈E

(P (e)− P (e|S))2

P (e) are the probabilities of the examples, and P (e|S) is the total probability of explaining
example e with the SLP S, and it is the same as P (B ∪H |= e), used in Section 3.2, if we consider
S = B ∪H.

A natural question is: what happens to negative examples? The approach for learning SLPs
presented in Section 3.2 considers only positive examples, and in distribution semantics the negative
equivalent of p :: e is simply 1 − p :: e. Nevertheless, the answer isn’t hard to find, because by
going back to the PCFG analogy, a counterexample for a grammar should be a string that can’t be
produced by the grammar, so a negative example should be one that can’t be derived by an SSLD
derivation, and in this case it’s probability is 0.

Although the fact that negative examples are, in our formalism, examples annotated with 0
probability, seems just a special case, it is in fact important when we consider the optimization of
the error function over the examples. It is clear that the difference between an example having

25

4. PROBPOLY

0.8 observed and 0.9 predicted probability and an example having 0.0 observed and 0.1 predicted
probability (or viceversa) is crucial. However our error function doesn’t distinguish this case, since
(0.8− 0.9)2 = (0.0− 0.1)2 = 0.1. We will see in Chapter 5 how we can enforce the constraint that
for negative examples P (e) = P (e|S) = 0.

Moving on from the special case of negative examples, we now proceed to gradually generalize
our approach, starting from non-recursive SLPs, then making an important leap to recursive SLPs,
after which we deal with the minor but noteworthy subject of integrating negation as failure, and
finally we describe the problem in which we want to learn probabilities for multiple clauses in one
step of the learning process.

4.3.1 Non-recursive SLPs

A non-recursive SLP is a program S consisting of a set of probabilistic clauses forming the
background knowledge B and a set of probabilistic clauses with the same head predicate h the
hypothesis H such that any clause in the hypothesis cannot have in its body predicate h. We
usually don’t allow h to be the head of a clause in B, because in every SLP clauses with the same
head need to be normalized (i.e. their probabilities must sum up to 1). Moreover, non-recursive
SLPs cannot have a clause in B whose body contains h.

Due to the constraints mentioned above, we have P (e|S) = k1(e)x + k2(e), with the same
meaning from Section 3.2. We can prove there is an analytical solution to:

(arg)min
x

1

2

∑
e∈E

(P (e)− k1(e)x− k2(e))2

Note that we use (arg)min to denote the fact that we are interested in both the solution x and
in the minimum value of the error function.

Taking the derivative we get:

∂Err

∂x
=

1

∂x

1

2

∑
e∈E

(P (e)− k1(e)x− k2(e))2

=
∑
e∈E

(P (e)− k1(e)x+ k2(e))
1

∂x
(P (e)− k1(e)x− k2(e))

=
∑
e∈E

(P (e)− k1(e)x− k2(e)) · (−k1(e))

=
∑
e∈E

(k1(e)
2x+ k1(e)k2(e)− k1(e)P (e))

Setting it to zero yields:

x =

∑
e∈E

k1(e)P (e)−
∑
e∈E

k1(e)k2(e)∑
e∈E

k1(e)
2

In a simpler vector notation k1 = [k1(e1), . . . , k1(en)], and similarly k2 = [k2(e1), . . . , k2(en)]
and P = [P (e1), . . . , P (en)], we get the solution:

x = P ·k1−k1·k2
k1·k1

Example 4.2. Un-normalized SLP example Program S:

26

4.3 Learning SLPs in ProbPoly

Hypothesis H

X : p(X,Y) :- q(X,Z), r(Z,Y). [A]
1-X : p(X,Y) :- r(X,Z), s(Y,Z). [B]

Background Knowledge B

0.5 : q(a,b). [C]
0.3 : q(b,b). [D]
0.4 : q(c,e). [E]

0.1 : r(b,d). [F]
0.8 : r(e,d). [G]
0.5 : r(c,f). [H]

0.4 : s(d,d). [I]
0.5 : s(e,d). [J]
0.3 : s(d,f). [K]

Examples E

0.6 : p(b,d). [e1]
0.3 : p(c,d). [e2]

The example is similar to Example 3.2, however notice that the examples have probabilities.
The refutations are the same:

SSLD(e1, S) = {[A,D,F], [B,F, I]}
SSLD(e2, S) = {[A,E,G], [B,H,K]}

We will have:

� for e1 – X(0.3)(0.1) + (1−X)(0.1)(0.4) = −0.01 ∗X + 0.04, so k1(e1) = −0.01, k2(e1) = 0.04;

� for e2 – X(0.4)(0.8) + (1−X)(0.5)(0.3) = 0.17 ∗X + 0.15, so k1(e2) = 0.17, k2(e2) = 0.15.

A simple computation reveals that X is ' 0.6862. We present in Figure 4.1 the error function
plotted against X. Our method returns:

X = 0.6862068965517237,
Err = 0.1612222413793103,
which seems to be a good result. Note that the results presented in the next subsections are

more general, so we get the same solution using techniques for recursive or non-recursive programs.

(a) Complete plot. (b) Detail of the same plot.

Figure 4.1: Example plot of the error function against probability X for Example 4.2.

27

4. PROBPOLY

4.3.2 Recursive SLPs

Due to the fact that limiting ourselves to non-recursive programs is a very strong constraint,
we find it highly desirable to overcome this problem. In the general case, a proof of an example
using an SLP is of the form:

cxn(1− x)m, c ∈ R+ and n,m ∈ N,

where n+m is the total recursive depth of the target predicate.

To compute the total probability of an example P (e|S), we need to sum up polynomials of
the form cxn(1 − x)m, which yields another polynomial2, of maximal degree n + m, denoted by
Poly(e, S). Consider DPoly(e, S) the polynomial equal to the (first order) derivative of Poly(e, S)
with respect to x. The minimization problem is the same:

argmin
x

1
2

∑
e∈E

(P (e)− Poly(e, S))2,

but Err = 1
2

∑
e∈E

(P (e)− Poly(e, S))2 will be a polynomial in x, Err(x).

Taking the derivative:

∂Err

∂x
=

1

∂x

1

2

∑
e∈E

(P (e)− Poly(e, S))2

=
∑
e∈E

(P (e)− Poly(e, S))
1

∂x
(P (e)− Poly(e, S))

=
∑
e∈E

(P (e)− Poly(e, S)) · (DPoly(e, S))

=
∑
e∈E

(DPoly(e, S)P (e)− Poly(e, S)DPoly(e, S))

However, DPoly(e, S)P (e)−Poly(e, S)DPoly(e, S) is also a polynomial, because it is the differ-
ence of two polynomials: DPoly(e, S) multiplied by a scalar P (e) and DPoly(e, S) multiplied with
Poly(e, S), which yields a polynomial. Furthermore, by summing up all the polynomials we get a
polynomial, of maximal degree (n + m) ∗ (n + m − 1), so we can assert that: ∂Err

∂x = SolPoly(x),
with SolPoly a polynomial. Setting the derivative to zero is equivalent to finding the roots of
polynomial SolPoly. Having found the roots of the derivative of the polynomial, and recalling that
our objective is to minimize Err(x), for x ∈ [0, 1], all we need to do to find the optimum is:

1. discard complex roots and real roots not in [0, 1];

2. check for each root r Err(r) against the current minimum and keep the lowest value for
Err(x) together with the solution x.

3. check Err(0) and Err(1), the limits of the interval, against the current minimum and keep
the lowest value for Err(x) together with the solution x.

Optionally, we could check for convexity, that is evaluate the second order derivative of Err(X),
in order to discard local maxima.

Due to uncertainty in the size of the list of roots, we also consider direct minimization of
Err(x) via the free MatLab solution GloptiPoly (versions 2 and 3, [Henrion and Lasserre, 2002]
and [Henrion et al., 2007]), which specializes in finding the global optimum of (multivariate) poly-
nomials.

Let us again consider an example:

Example 4.3. Un-normalized recursive SLP example Program S:

2We use the binomial theorem to compute (1− x)m, when m > 0.

28

4.3 Learning SLPs in ProbPoly

Hypothesis H

X : path(X,X). [A]
1-X : path(X,Y) :- link(X,Z), path(Z,Y). [B]

Background Knowledge B

0.5848 : link(a,b). [C]
0.5848 : link(b,c). [D]
0.5848 : link(c,d). [E]

Examples E

0.2 : p(a,d). [e1]

We have a single refutation:

link(a,b)︷ ︸︸ ︷
(1−X) ∗ 0.5848 ∗

link(b,c)︷ ︸︸ ︷
(1−X) ∗ 0.5848 ∗

link(c,d)︷ ︸︸ ︷
(1−X) ∗ 0.5848 ∗

path(d,d)︷︸︸︷
X .

Thus, we get the polynomial:

Poly(e1, S) = (1−X)3 ∗X ∗ 0.58483

= (−X4 + 3 ∗X3 − 3 ∗X2 +X) ∗ 0.58483

The error function will be:

Err = (0.2− Poly(e1, S))2

And the derivative:

∂Err
∂x = ((X4 − 3 ∗X3 + 3 ∗X2 −X) ∗ 0.58483 + 0.2) ∗

∗ (4 ∗X3 − 9 ∗X2 + 6 ∗X − 1) ∗ 0.58483

The first term has only complex roots, and the second one ((4∗X3−9∗X2+6∗X−1)∗0.58483)
has complex roots and the real root 0.25.

Running our algorithm we get:

X = 0.25,

Err = 0.0160037918242096.

The graphical illustration of the error function in Figure 4.2 seems to confirm this theoretical
result. The example chosen is quite simple, because otherwise the computation of polynomials
and of the error function would have been much more cumbersome. However, the method has
been tested on more complex examples, and although it is hard to manually compute the error
polynomial and its derivative, the graphical illustration has confirmed the validity of our approach.

29

4. PROBPOLY

(a) Complete plot. (b) Detail of the same plot.

Figure 4.2: Example plot of the error function against probability X for Example 4.3.

4.3.3 Negation as Failure

Negation as failure (NaF) is treated based on the definition of the not predicate in Prolog
[Bratko, 2000]:

not(G) :- G, !, fail.
not(G).

In the standard hypothesis interpreter G either succeeds or fails (or the computation is infinite).
In a probabilistic hypothesis interpreter, G succeeds if it has a probability greater than 0. Since we
can always normalize an SLP, we ensure this condition to be able to conclude that the sum of the
probabilities of all the derivations (irrespective of whether they are refutations or failed derivations)
is 1. Since the total probability of G takes into account only derivations, it is natural to consider:

not(G,NP) :- totalProbability(G,P), NP is 1− P.
The value NP represents the sum of all the failed derivations of G. There is still the case of com-

putation not finishing under certain thresholds which needs to be integrated. In this circumstance,
we can only evaluate an upper-bound for the probability.

In the case of computing the probabilities using new clauses, P becomes a polynomial, and the
probability NP of not(G) will be the polynomial 1− P .

Let us consider an artificial example:

Example 4.4. Un-normalized recursive SLP example Program S:
Hypothesis H

X : p(X) :- q(X). [A]
1-X : p(X) :- r(X), not(s(X)). [B]

Background Knowledge B

0.4 : s(X) :- t(X, Y), u(X, Y). [C]
0.1 : s(X) :- v(X). [D]
0.3 : q(a). [E]
0.5 : r(a). [F]
0.7 : t(a, x). [G]
0.9 : u(a, x). [H]
0.2 : v(a). [I]

30

4.3 Learning SLPs in ProbPoly

The total probability of the goal p(a) is computed as follows:

P (p(a)|S) =

p(X):-q(X)︷ ︸︸ ︷
X ∗ 0.3 +

p(X) :- r(X), not(s(X))︷ ︸︸ ︷
(1−X) ∗ 0.1 ∗ (1− (0.4 ∗ 0.7 ∗ 0.9︸ ︷︷ ︸

s(X) :- t(X, Y), u(X, Y)

+ 0.1 ∗ 0.2︸ ︷︷ ︸
s(X) :- v(X)

))

= ...

Integrating negation as failure into the probabilistic prover has consequences on the represen-
tation of the polynomials, but such implementation details will be further discussed in Chapter
5. The final version of the probabilistic prover for single-clause learning which takes into account
negation as failure and rules in the background knowledge is shown in Listing A.2.

4.3.4 Multiple Clauses

Learning multiple clauses is the final generalization step we apply to our framework. Although
we may simulate multiple clause learning by just learning one clause at a time, we find it desirable
to be able to learn multiple probabilities simultaneously. The task is much more difficult than
learning a single probability. However, the advantage is that we may overcome local minima in the
error function evaluated over all clauses. Note that due to normalization of the old clauses, we can
basically tune the old clauses in any way we want. This way, the whole theory H ”adapts” to the
new learned clause. The problem that still remains is that in incremental single clause learning,
once we have learned at least 2 clauses out of n, n > 2, with probabilities pi and pi+1, then pi

pi+1

will be the same until the end of the learning, because all ”old” clauses are normalized by the
same quantity (in the case of single clause learning (1− x)). In this circumstance, the proportion
pi
pi+1

is determined by the error on clauses c1, c2, . . . , ci+1, but there is no reason to assume that
clauses ci+1, ci+2, . . . , cn don’t influence the dynamics of pi and pi+1. Multiple clause learning takes
advantage of the clauses learned and computes a global minimum over the probabilities of all the
clauses.

The problem we aim to solve is:

Given background knowledge SLP B, probabilistic examples E, and
H = {

p1 : c1
p2 : c2

. . . : . . .
pn : cn
x1 : cn+1

x2 : cn+2

. . . : . . .
xk : cn+k
}

We know c1, . . . , cn+k and p1, . . . , pn, and we want to find [x1, x2, . . . , xk] such that Err(E|B∪H)
is minimized. We may refer to the error function also as Err(x1, x2, . . . , xk), to emphasize the
parameters that we have to learn.

As usual, we ask ourselves how does the probability of the derivation of an example might look
like, and the answer is easy to find, considering H. We will have P (e|B ∪H, proof), according to
Definition 2.1, ∀e ∈ E, of the form:

c · xm1
1 · x

m2
2 · · · · · x

mk
k , where c ∈ R+, m1,m2, . . . ,mk ∈ N

This is a multivariate polynomial with one term, at most k variables, and of degree
k∑
i=1

mi.

Then, the total probability of example e, P (e|B ∪H) will be, according to Definition 2.2 and
considering that proofs are the SSLD refutations of e by B ∪H, and |proofs| is the size of proofs:∑

i∈|proofs|

ci · xmi1
1 · xmi2

2 · · · · · xmik
k

31

4. PROBPOLY

This is also a multivariate polynomial, of degree max deg goal = max
i∈|proofs|

mi1 +mi2 + · · ·+mik.

Let S = B ∪H and MPoly(e, S) = P (e|B ∪H), then the error function becomes:

Err(x1, x2, . . . , xk) = 1
2

∑
e∈E

(P (e)−MPoly(e, S))2

The error function is a multivariate polynomial of degree 2 ·max deg goal. At this point, we
will no longer adopt the gradient descent methodology, instead we will minimize the error function
directly, using Gloptipoly.

As usual, after learning, we normalize the learned probabilities by multiplying each of them
with (1− x1 − · · · − xk).

An important remark is that this is a case of constrained optimization, because we need to
ensure the following inequalities hold:

0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1

. . .
0 ≤ xk ≤ 1

x1 + x2 + · · ·+ xk ≤ 1

Ideally we don’t allow non-strict inequalities. Consider the following situations:

� in the case that xi = 0, 1 ≤ i ≤ k, the clause cn+i is of no use and should be discarded, i.e.
we have learned an irrelevant clause.

� in the case that xi = 1, 1 ≤ i ≤ k, the clauses c1, . . . , cn and cn+j , 1 ≤ i ≤ k, and j 6= i are
of no use and should be discarded, i.e. clause cn+i is the only relevant clause.

� in the case that x1 + x2 + · · · + xk = 1, the clauses c1, . . . , cn are of no use and should be
discarded, i.e. the old clauses are irrelevant.

However, since, as in the case of single clause learning, we may perform multiple clause learning
incrementally (learn k clauses at a time), the clauses which are assigned 0 probability might be
discarded later. Even if we would delete the clauses and rely on the ILP system to recover them
and learn new, hopefully non-zero or one probabilities, this seems extremely wasteful in terms of
time complexity. For this reason, it is desirable to enforce strict inequalities.

Let us consider a small example to illustrate the technique. We will learn only two clauses,
so that we can represent the error function graphically. Unlike in the previous sections, we now
consider a very simple grammar, which generates a list of a symbols of arbitrary length, shown in
Figure 4.3. The text on the edges is a pair of p, s, where p is the transition probability and s is the
symbol generated. We assume [] to be the null symbol (because it is the Prolog notation for the
empty list).

Figure 4.3: Graphical illustration of the simple grammar we aim to learn.

The experiment is the following:

Example 4.5. Simple grammar for multiple clause learning
Program S:

32

4.3 Learning SLPs in ProbPoly

Hypothesis H

x1 : p([]). [A]
x2 : p([a — T]) :- p(T). [B]

Background B

∅

Examples E

0.7 : p([]). e1
0.063 : p([a,a]). e2

0.0057 : p([a, a, a, a]). e3

Note that the probabilities of the examples are consistent with the grammar from Figure 4.3.
The output of ProbPoly is:

Err = 2.56837472178972e− 07,
NewH = [[0.700033877366904, p([])]/[], [0.29996612246858, p([a| T]), p(T)]/[]]
As expected, the learning was successful, the error is very low and the clauses have the correct

probabilities. However, we feel that introducing the first example is almost like cheating, so we test
it using only e2 and e3. The output of ProbPoly is:

Err = 2.5580553827129e− 07,
NewH = [[0.700044460210975, p([])]/[], [0.299955539764937, p([a| T]), p(T)]/[]]
This is a reassuring result, confirming that the prover correctly computes the polynomials and

that the correct constraints are generated. Now consider an even more extreme case, in which we
learn based only on e2. The output of ProbPoly is:

Err = 5.00295134005409e− 07,
NewH = [[0.700036139128606, p([])]/[], [0.299963860847507, p([a| T]), p(T)]/[]]
Due to the simple structure of the grammar, one example is sufficient to learn the correct

probabilities. An interesting phenomenon is that we actually get 2 global solutions from GloptiPoly,
the second one is:

[0.0733568737802477, 0.926643125628242]
To verify this, we plot the error function and the line x1 + x2 − 1 = 0 in Figure 4.4. Due

to the shape of the polynomial, our best effort is to plot the area where the error is less than
10−5. It is easy to observe that the intersections of this line with the low error area are around
[x1, x2] = [0.7, 0.3] and [x1, x2] = [0.07, 0.93]. This is a clear confirmation that our program has
the correct behaviour.

Figure 4.4: Example plot of the error function against probabilities [x1, x2] for Example 4.5.

33

4. PROBPOLY

4.3.5 True/False Positive/Negatives in SLPs

Recall the measures defined in Section 3.3 in the context of ProbFOIL. We adapt them to the
context of SLP semantic, in the search of a suitable local score function for learning SLPs.

Let us assume that p(ei) is the observed probability of an example and p(ei|S) is the predicted
probability of an example. We distinguish between the following cases, keeping in mind that
negative examples have 0 probability:

� p(ei) 6= 0, p(ei|S) 6= 0, then the over-explained part of ei is max(0, p(ei|S) − p(ei)), the
under-explained part of ei is max(0, p(ei) − p(ei|S)), and the true positive part of ei is
min(p(ei), p(ei|S)).

� p(ei) 6= 0, p(ei|S) = 0, then the false negative part of ei is p(ei).

� p(ei) = 0, p(ei|S) 6= 0, then the false positive part of ei is p(ei|S).

� p(ei) = 0, p(ei|S) = 0, then the true negative part of ei is 1.

We define these measures over the whole example set E as the sum of the corresponding measure
for each example. Due to time constraints, we haven’t developed any IR scores such as precision
or recall, but we believe that further investigation in this direction might lead to useful statistics
about the learned hypothesis, which may be used to guide the ILP search process, thus combining
structure and parameter learning.

4.4 Conclusions

It would be valuable to evaluate our system in comparison with the SLP learning framework
[Muggleton, 2002] and with ProbFOIL [Raedt and Thon, 2010]. Unfortunately, it is impossible
to compare ProbPoly with ProbFOIL due to different semantics: the SLP semantics and the
distribution semantics. In the current implementation of ProbPoly, it is also impossible to compare
our results with those obtained in [Muggleton, 2002]. Recall from Section 3.2 that the approach
used there aims to maximize the product of the examples, while our approach minimizes the
difference between the observed and predicted probabilities over all the examples. Even if we set
all the probabilities of the non-probabilistic examples in SLP learning to 1, this cannot ensure that
the product of the learn probabilities is maximal. We could consider our error function of the
form −p(E|S) (p(E|S) is the score defined in Section 3.2), but this would lead to an increase of
the degree of the error function polynomial to a maximum of |E| · 2 · (max

i
max deg goal(goali)),

where i ∈ 1, . . . , |E|. In fact, this is the advantage of ProbPoly over SLP learning: in SLP learning
the complexity increases with the number of examples, while in ProbPoly the complexity increases
with the number of parameters learned and with the recursion depth, keeping in mind the fact that
SLP learning always learns one probability, and doesn’t allow recursion.

To conclude, in this chapter we have introduced a new method for learning SLPs with proba-
bilistic examples. Starting from the non-recursive case considered in [Muggleton, 2002] with non-
probabilistic examples, we have adapted it to probabilistic examples, and further extended our
approach to recursive SLPs, SLPs with negation as failure, and finally, we have succeeded in learn-
ing probabilities for the context in which we learn more than one clause at a time. This completes
the theoretical presentation of ProbPoly. In Chapter 5 we will consider implementation issues, and
in Chapter 8 we discuss essential directions for improving and/or extending the framework.

34

Chapter 5

Implementation

5.1 The MatLab Package Interface

The need for numerical solutions in our approach implies using both Prolog and MatLab.
Unfortunately, this is feasible only in the YAP system, where we have the MATLAB Package
Interface. In this manner, we can perform numerical tasks in MatLab, without thinking of how to
implement them efficiently in Prolog. For example, consider the problem of finding the value of
binomial coefficients C(n, k) for a given n and k, which is necessary when computing (1− x)n.

Instead of computing the binomial coefficients in Prolog, via the predicate given in Listing
A.4, we simply call the (more efficient) MatLab function, via the MATLAB Package Interface, as
shown in Listing A.5. Note that ml init/0, given in Listing A.3, simply initializes MatLab, and
the operator < −− denotes a call to MatLab function on the right-hand-side, with the result in
the left-hand-side.

Unfortunately, due to the limitations of the MatLab Package Interface, it is a little difficult to
pass complex structures from Prolog, or evaluate MatLab commands of great length. We overcome
these difficulties by generating MatLab code in Prolog, writing it into MatLab files (scripts or
functions), and then calling the scripts or functions.

5.2 PSOpt

PSOpt is a MatLab toolbox for Particle Swarm Optimization, and its main advantages over
other variants is that it allows constraints to be specified in a format compatible with the rest of
the functions in the Optimization toolbox.

The reason we need Particle Swarm Optimization is that GloptiPoly cannot always ensure global
optimality, and worse than that, in particular circumstances it will not return any solution. We
find it unacceptable to simply give up in such a circumstance, so we trade-off the global optimality
condition and the efficient methods of GloptiPoly for the certainty of finding a solution.

Particle Swarm Optimization (PSO), proposed in [Kennedy and Eberhart, 2002], is a meta-
heuristic, or a method of evolutionary computation, which aims at minimizing a parametrized
function. Unlike algorithms such as randomized search, gradient descent with repeated restarts,
simulated annealing, or even genetic algorithms, PSO uses a strategy which often leads to very fast
convergence.

The Basic PSO Algorithm is:

Start with a population of random parameters (or generated using a heuristic). Each individual
or particle of the population is characterized by a position vector (which is given by the values of
the parameters) and a velocity vector. Both are updated over all individuals in the population, and
a discrete time steps are considered in the evolution of the population. The algorithm terminates
based on a convergence criterion, e.g. the value of the best solution hasn’t improved with more
than ε in the last x time steps.

The update rules for each individual i are:

vi(k + 1) = vi(k) + γi1(pi − xi(k) + γi2(G− xi(k)), and

35

5. IMPLEMENTATION

xi(k + 1) = xi(k) + vi(k + 1),

where k is a discrete time index, x is the position of the particle, v is the velocity, pi is the best
value found by particle i in its history, G is the global best (i.e. over the whole population) and
γi1, γi12 are random numbers between [0, 1] generated for each particle.

The intuition behind the update rule for velocity is that vi(k) represents inertia, which may
enable the particle to overcome local minima (the same idea is used in some versions of weight
updates in artificial neural networks), the second term, γi1(pi − xi(k), ensures local exploitation,
meaning that particles are attracted to the best value of the objective function they have found,
while the third term, γi2(G− xi(k))), ensures exploration (it may draw particles away from being
stuck in a personal best minimum) as well as exploitation, since particles are attracted to the best
solution found in the entire population.

To conclude, even though Particle Swarm Optimization doesn’t guarantee global optimality, it
will always produce a solution, and it is believed to converge faster than other metaheuristics.

5.3 Architecture

In this section we give an overview of the current architecture of the ProbPoly implementation.
In Figure 5.1 we show the main components used by our application, and their interaction.

Figure 5.1: General overview of the ProbPoly architecture.

The most intuitive way to understand the logic of the architecture is to analyse it from the
top-level, that is from the user’s perspective. The user provides an input file to the system, which
is a Prolog file containing the background knowledge and the examples. The main predicate,
probpoly/4, takes as input a set of probabilistic clauses, either learned from a previous run or
known a-priori, OldH, and a set of non-probabilistic clauses, NewC, whose probabilities must be
learned. The output presented to the user is the new theory consisting of NewH = OldH∪NewC ′,
where NewC ′ are the clauses NewC annotated with probabilities, and the value Err of the error
function of NewH. The predicate code is shown in Listing A.1.

The ProbPoly module computes a polynomial of total probability for each example using the
prover and predicates defining operations on polynomials. The polynomials, together with the

36

5.4 The Impact of Negation as Failure

probabilities of the examples are then used to compute the error function, which is also a polynomial.
Then, this polynomial, and the constraints discussed in Section 4.3 when learning multiple clauses
are sent to MatLab. For Gloptipoly, we generate a MatLab script which creates the Gloptipoly
objects needed as input for the solver:

� the polynomial object,

� the objective function, i.e. the error function

� the list of constraints

An example is given in Listing A.7.
For PSOpt, we generate two MatLab function files, specifying the objective function, e.g. Listing

A.8 and the list of constraints A.9.
After the generation of these files, we start and set up MatLab1 using the MatLab Package

Interface available in YAP. Then, we call a function which tries to find the global minima with
GloptiPoly, and in case of failure, uses the particle swarm optimization toolbox PSOpt to search
for global minima. We show the function in Listing A.10.

GloptiPoly uses SeDuMi, ”a software package to solve optimization problems over symmetric
cones. This includes linear, quadratic, second order conic and semidefinite optimization, and any
combination of these”2, written in MatLab and C.

We believe that the current architecture is a good design choice since we can solve tasks of
symbolical computation in Prolog, and we can use MatLab to handle numerical problems.

5.4 The Impact of Negation as Failure

Allowing negation as failure means that in the derivation of a goal, we may have to compute
the total probability of a negated goal. This forces the representation of the probability of a goal
as a polynomial.

If we don’t incorporate negation as failure, and consider single clause learning, we can represent
the probability of a goal as a tuple:

[c, n,m], corresponding to
c ∗ xn ∗ (1− x)m.
This way, during the proof we simply collect [c, n,m] and when we compute the total probability

of a goal we use Theorem 2.2 for (1− x)m.
A similar situation occurs in the case of multiple clause learning. We can represent the proba-

bility of a goal as a tuple:
[c, p1, . . . , pk, pk+1], corresponding to
c ∗ xp11 . . . xpkk ∗ (1− x1 − ...− xk)pk+1 .
Again, during the proof we collect only [c, p1, . . . , pk, pk+1] and when evaluating the total prob-

ability of a goal we use Theorem 2.3 to compute (1− x1 − ...− xk)pk+1 .

1The most important operation is to add the MatLab folder and its subfolders to the MatLab path.
2Quote from the FAQ of SeDuMi (http://sedumi.ie.lehigh.edu/ – accessed 08.09.2011)

37

http://sedumi.ie.lehigh.edu/

Part II

Towards Learning Probabilistic
Requirements

38

Chapter 6

Related Work in Learning
Requirements

It is essential to have an overview of the state-of-the-art systems used in modelling and learning
requirements, in order to be able to develop a solution for models which incorporate probabilities.
In Section 6.1 we briefly present a system which uses ILP and a model checker in a learner-teacher
paradigm. A similar approach, which uses artificial neural networks adapted for linear temporal
logic instead of ILP, is described in Section 6.2. Automated verification and learning assumptions
for models is the topic of Section 6.3, and the studied system uses the L* algorithm as a learner,
with counterexamples provided by a model checker. Finally, we review two robust frameworks
which have been developed for a long time, the KAOS and i* approaches to modelling and learning
requirements in Sections 6.4 and 6.5. KAOS and i* don’t take into account uncertainty in the
form of probabilities, so it is important to study them to research the possibility of integrating
probabilistic reasoning in their models and methods.

6.1 Learning Requirements using ILP and Model Checking

In [Alrajeh et al., 2006], a novel method of learning requirements from scenarios is presented.
The problem is to automate the process of requirement elicitation, which is a crucial part of the
requirements engineering process. The raw input represents a narrative which partially describes
the requirements of the system-to-be. This is processed into a formal representation, which relies on
Linear Temporal Logic (LTL) to define requirements specification Spec as a LTL theory consisting
of axioms(two initial state axioms, two persistence axioms and two change axioms) and event
precondition axioms. A scenario is a specific type of an LTL formula. Scenarios can be desirable or
undesirable. The solution to the problem become finding a set of event precondition axioms Pre
such that all desirable scenarios are true and all undesirable scenarios are false:

� Spec ∪ Pre |=M ¬Pu, for each undesirable scenario Pu ∈ Und.

� Spec ∪ Pre 2M ¬Pd, for each desirable scenario Pd ∈ Des.

Und and Des are the sets of undesirable and desirable scenarios. M is an LTL model of the form
〈T, V 〉, where T is a Label Transitioning System (LTS), and V is a valuation function.

In order to accomplish this, specifications and scenarios are translated using an Event Calculus
(EC) framework into normal logic programs. Two transformation methods are presented: one for
the specification, and one for the specification together with the sets of desirable and undesirable
scenarios. The result is a background knowledge B (which includes four EC core axioms), and a
set of positive and negative examples E. This is the standard input to an ILP algorithm, and in
the system described XHAIL (Extended Hybrid Abductive and Inductive Learning) is applied in
order to learn hypotheses H. These are shown, for a case study of a mine pump control system, to
correspond to the correct event precondition axioms.

The work in [Alrajeh et al., 2009b] extends the framework presented in the previous subsection
(based on [Alrajeh et al., 2006]). The main difference represents the fact that the latter is able to

39

6. RELATED WORK IN LEARNING REQUIREMENTS

handle trigger axioms, as well as precondition axioms in the LTL formalism of defining a specifica-
tion, and thus the newer system is able to learn trigger conditions. This is not a trivial extension of
the previous system, and in what follows we will briefly present the changes this extension implies.
First of all, since we need a new predicate, called ”triggered”, we must define additional EC core
axioms which describe properties of triggered events, e.g. if an event is triggered at one point in
time, then all other events must be impossible at that point1. The specification LTL theory is
enriched with trigger-condition axioms, similar in structure with the pre-condition axioms, denoted
in [Alrajeh et al., 2006] as event precondition axioms. The way to define positive and negative
scenarios is also slightly different.

Since the solution will consist of trigger-condition axioms, in addition to pre-condition axioms,
we will have to find the sets of axioms Pre and Trig such that Spec ∪ Pre ∪ Trig |=M ¬Pu and
Spec∪Pre∪Trig 2M ¬Pd. The translation into an EC normal logic program is naturally extended
to Trig axioms. Some theoretical results are also presented (Theorems 3.1 and 3.2), one (3.2)
suggesting that we may perform the inverse translation of H into LTL formulas corresponding to
axioms (due to the inverse of the translation function τ−1). Also, the examples are fewer than in
[Alrajeh et al., 2006], and more hypotheses are generated, both correct with respect to the learning
task. It is up to the engineer to choose one more appropriate, or more easily to interpret.

The system proposed in [Alrajeh et al., 2009a] represents a further improvement of the previous
work in [Alrajeh et al., 2006] and [Alrajeh et al., 2009b]. The essential novelty is the fact that
counterexamples are generated by using the LTSA model checker (in a semi-automated process).
First of all, the input changes: we now have only a partial specification which needs to be refined,
and a set of goals such that the learned specification will be able to satisfy all the given goals.
This is only a semi-automated procedure because, based on the trace given by the model checker,
we still have to manually develop a negative scenario. In the same manner, positive scenarios are
elaborated, in the case that the model checker doesn’t return a goal violation. These, as usual, will
be translated into a normal logic program, which is fed to the ILP learner. The result of the ILP
module is a set of hypotheses which are finally translated back into requirements from which the
engineer selects the adequate ones (although all are formally correct from the ILP perspective) to
be added to the specification.

6.2 Connectionist Systems for Learning Requirements

In [Borges et al., 2010b], the authors propose a new framework for knowledge representation,
reasoning and learning, which is applied to the task of learning requirements from scenarios, inspired
from [Alrajeh et al., 2009b]. The premises and goals are essentially the same, and the case study
and main example of the article is the mine pump system, but the ILP part is replaced with
a connectionist system. In this connectionist system, illustrated in Figure 6.1 (reproduced from
figure 1 in [Borges et al., 2010b]), the model description is translated into a neural network, which
is trained using examples from the observed system and from the specified properties. The next
step involves extracting knowledge from the trained network in the form of state diagrams, which
can be translated into logic programs.

1EC core axiom (6) in [Alrajeh et al., 2009b].

40

6.2 Connectionist Systems for Learning Requirements

Figure 6.1: Learning framework for the connectionist system.

The representation of knowledge is based on Linear Temporal Logic (without event calcu-
lus, unlike [Alrajeh et al., 2009b]). The inputs of the network are states or inputs of the system,
and the main role of the network is to learn given states s1, s2, ..., sn and inputs i1, i2, ..., im,
the temporal logic next state operator e, i.e. es1, es2, ..., esn. The input nodes of the net-
work consist of a corresponding node for each state and input, respectively, and the output
nodes represent es1, es2, ..., esn. If the model description consists of rules of the type: esi ←
s1, s2, ..., sk, i1, i2, ..., il, where the states or inputs may be negated, then for each such rule a hidden
neuron is added to the network, with inputs connections from s1, s2, ..., sk, i1, i2, ..., il and output
connection to esi. The idea resembles the core method translation algorithm for networks sim-
ulating propositional logic programs (the algorithm can be found in the proof of Theorem 3.2 in
[Hitzler et al., 2004]).

The training using input/output patterns is simple, however in the case where learning is
accomplished by presenting properties to the system, the authors propose a method of defin-
ing the output of the network based on a list of active properties, which is in turn determined
by the values of the current states and inputs. The example given for this step however is
not completely clear. After training, knowledge is extracted in a greedy manner: each tuple
〈s1, s2, ..., sn; i1, i2, ..., im; es1, es2, ..., esn〉 appearing in the network increases the count of the same
transition, and transitions are filtered according to their counts. Each transition can be then rewrit-
ten into a set of rules to obtain a logic program.

The experiments carried out on the mine pump example suggest that the framework is successful
in learning in the absence of background knowledge, and the authors argue that their method is a
viable alternative to the one proposed in [Alrajeh et al., 2009b] because the connectionist system
is able to correct eventual errors in the initial description.

An extension of this system, described in [Borges et al., 2010a] incorporates the NuSMV model
checker, probably inspired by the framework in [Alrajeh et al., 2009a], An important idea is that
the initial knowledge may or may not be incorporated in the adaptation process. In the case
when initial knowledge is given, it is represented as a NuSMV model, which is translated into
a logic program, and finally, the temporal logic program is used to create a neural network, via
the Sequential Connectionist Temporal Logic tool. Otherwise, the system will adapt based on the
observed system behaviour, only through examples fed into the network. After the network is
trained, its output representing a symbolic model is verified against the model checker. If there are
any properties not satisfied by the model, at least one counterexample is generated, and this can
be used in a similar way to examples for the neural network to adapt. The framework is shown in
Figure 6.2, which is reproduced from figure 1 in [Borges et al., 2010a].

41

6. RELATED WORK IN LEARNING REQUIREMENTS

Figure 6.2: Learning framework for the connectionist system incorporating the NuSMV model
checker.

The process of adaptation to counterexamples is very similar to learning from properties: based
on sequences of states and inputs, the system determines which inputs would generate property
violations at the next state, and doesn’t allow these inputs to activate in the network. Knowledge
extraction is performed in a similar way as in the previous framework. The main example remains
the mine pump system, and it is reported that even without initial knowledge, the connectionist
system can be successfully trained and adapted to learn the correct model.

6.3 Automated Verification of Systems using L*

6.3.1 The L* Algorithm

In [Angluin, 1987], the L∗ algorithm for learning regular sets is proposed. The algorithm is the
Learner in a Teacher-Learner framework, because it depends on information given by a (minimally
adequate) teacher regarding membership queries and conjectures. The teacher must be able to
answer whether a string is a member of the set or not (i.e. answer to a membership query), and
must be able to compare the learned set S (i.e. make a conjecture) with the unknown language,
and its answer must be yes in the case they are equal, or no otherwise. In the latter case, the
teacher must also give a counterexample, that is a string which is in S but not in the unknown
language.

L∗ relies on an observation table (S,E, T), consisting of a set of candidate strings S, a set of
distinguishing experiments E and a mapping T : (S ∪ S ·A) ·E → {0, 1}, where A is the alphabet
over which the strings are defined. By row(s) we will denote T (s · e). Based on an observation
table (S,E, T) we define a deterministic finite-state acceptor M(S,E, T):

, where Q is the state set, q0 is the initial state, F are the accepting states, and δ is the transition
function.

Two properties of observation tables are relevant: closure and consistency. An observation table
is closed if for each t in S ·A there exists a state s in S such that row(s) = row(t). An observation
table is consistent if for states s1 and s2 in S, and row(s1) = row(s2), then for all a in A we have
row(s1 · a) = row(s2 · a).

We now present the L∗ algorithm in Figure 6.3 (Figure 1 in [Angluin, 1987]). After initialization,
in which the candidate states S and the distinguishing strings E are both the null string λ, the
main loop of the algorithm has three important parts:

42

6.3 Automated Verification of Systems using L*

� assure that the observation table (S,E, T) is closed consistent, which is performed using
membership queries.

� define, as described above, the deterministic finite-state acceptor M = M(S,E, T).

� make the conjecture M , and if the teacher replies with no, update the observation table
according to the counterexample provided, otherwise halt and return M .

Figure 6.3: The L∗ algorithm.

An important practical issue with the algorithm is the verification of the conjecture. This
query might prove infeasible in general languages. To overcome this problem, the author proposes
a different method to perform the conjecture query: assuming there is a probability P on the set
of all strings of alphabet A, then the query will consist of sampling a number of strings from A
according to P , and if any of the sampled strings are in the unknown language U and not accepted
by M(S,E, T) or vice versa, then the answer is no, and the counterexample is the corresponding
string.

We will briefly cover an improvement of L∗ for the case in which we are not allowed to ”reset”
the finite-state-machine, i.e. we are not allowed to execute sequences from the initial state, but
only from the current state. The algorithm is described in [Rivest and Schapire, 1989] and relies
on two important ideas. The first one is that the finite state automaton has a finite number of
equivalence classes, defined by the equivalence relation t1 ≡ t2, which means sequences t1 and t2
have the same value at every state.

The second idea is to define a homing sequence as ”an action sequence h for which the state
reached by executing h is uniquely determined by the output produced”2. The output produced
means the vector of values with the same length as h, where the i-th component means the value
after executing the prefix of length i of h. The algorithm will only execute homing sequences, and
based on their output, it will create a separate L∗ learner, or if one already exists, it will execute
the next query. By using a different learner for each output, we essentially simulate L∗ for multiple
starting states (corresponding to the ones defined by the output of executing the homing sequence).

In Figure 6.43 we reproduce the algorithm for finding a homing sequence given a finite state
automaton, and in Figure 6.54 we show the algorithm for inferring the finite state automaton given

2Definition 2 in [Rivest and Schapire, 1989].
3Figure 3 in [Rivest and Schapire, 1989].
4Figure 5 in [Rivest and Schapire, 1989].

43

6. RELATED WORK IN LEARNING REQUIREMENTS

access to it, and a homing sequence. The authors also provide a slightly more complicated variant
of the algorithm, in which the homing sequence is constructed simultaneously with the inference
procedure. They also propose algorithms for stochastic inference (infer U with probability 1− δ),
algorithms which use explicitly the equivalence classes of the finite state automaton and similar
inference algorithms for permutation automata.

Figure 6.4: Algorithm for finding a homing sequence.

Figure 6.5: Algorithm for inferring a finite state automaton using a homing sequence.

6.3.2 The Original Framework

In this subsection we will discuss the framework in [Păsăreanu et al., 2008] which aims at veri-
fying systems in an automatic way, using L∗ as a learner and the LTSA model checker as part of the
teacher. The fundamental principle is to verify that all the system components satisfy some prop-
erties under certain assumptions, and use parallel composition to prove that the safety property
holds for the whole system.

Let us introduce a few notions. A labelled transition system (LTS) is a four-tuple M =
〈Q,αM, δ, q0〉, where Q is the set of states, αM is the alphabet of the LTS, δ is the transition
relation consisting of a source state, an action, and a destination state, and q0 is the initial state.
The parallel composition of two labelled transition systems M1 ‖M2 is also an LTS. A safety LTS
is a LTS which doesn’t contain an error state. A safety property is ”a safety LTS P whose language
L(P) defines the set of acceptable behaviors over αP”. Based on a property, we define an error
LTS, Perr, which extends P so that all the transitions which are not in the LTS lead to an error
state. The purpose of this is to detect violations of the safety property. Finally, an assume guaran-
tee formula is a triple 〈A〉M〈P 〉 in which M is a component (in this case an LTS), P is a property
(as defined above), and A is an assumption about the environment of M (typically a conjecture
learned by L∗).

An important theoretical result is Thoerem 1 of [Păsăreanu et al., 2008], which states that:
〈A〉M〈P 〉 is true if and only if the error state is unreachable from A ‖ M ‖ Perr. The assume
guarantee formulas are used to make rules which guarantee the satisfaction of a property by the
system. In Figures 4 and 5 (reproduced from [Păsăreanu et al., 2008]) we have two such rules.
The first rule, ASYM, states that if the property A should hold for a component, and if the other
component satisfies property P under the assumption of A, then the system satisfies P . This rule
can be generalized such that it incorporates circularity between n components (it is described as
rule CIRC-N in [Păsăreanu et al., 2008]). The second rule states that if each component satisfies

44

6.3 Automated Verification of Systems using L*

P under its own assumption, and if the languages of the complements (coAi) of the assumptions
are a subset of the language of P , then the system satisfies P . The complement of an LTS M is
an LTS which accepts the complement of M ’s language.

Figure 6.6: Rule ASYM.

Figure 6.7: Rule SYM.

To complete the presentation, we show an algorithm for rule ASYM in Figure 6.8 (Figure 4
from [Păsăreanu et al., 2008]). The top box of the Teacher represents the membership query to
L∗, and the three bottom boxes of the Teacher represent the conjecture query. In the latter case,
the oracles illustrate methods to check the premises of ASYM. Notice that if the second premise
is false, the counterexample is not immediately returned to L∗, instead further counterexample
analysis is performed, and if the counterexample is valid, than a real error trace is returned to the
user, otherwise the Teacher returns to L∗ the correct conjecture.

Figure 6.8: Alogrithm for rule ASYM.

The reason we are interested in L∗ and more importantly the application briefly described is
that extracting requirements is similar to system verification in the sense that the property to be
satisfied represents the fact that the learned requirements must not violate system constraints.
Moreover, both techniques have made use of a model checker, with the same goal of generating
counterexamples, however L∗ has not been tried as a method to learn requirements, and this
provides a novel direction of research.

45

6. RELATED WORK IN LEARNING REQUIREMENTS

6.3.3 Verification in a Probabilistic Context

The probabilistic extension of assume-guarantee reasoning is introduced in [Feng et al., 2011].
The same authors developed PRISM - a probabilistic model checker which is used to verify proba-
bilistic properties. We will describe probabilistic model checking, its properties and models in the
next chapter, however we exemplify a few properties, since they are used to parametrize assump-
tions. In a probabilistic context we can verify more expressive properties such as5:

� security properties like: ”the probability of an airbag failing to deploy within 0.02 seconds is
at most 0.0001”,

� timeliness properties like: ”expected time for a successful transmission of a data packet”

Properties of the type G: �¬fail become 〈�¬fail〉≥0.98. Adversaries (also known as strategies,
schedulers, policies) are possible ways to incorporate non-determinism in probabilistic models, and
are generally defined as functions which given a state, produce an action.

Let us assume a model like an LTS, with the difference that once an action is chosen, in a state,
the next state is determined probabilistically. A model M satisfies property 〈G〉≥pG (M |= 〈G〉≥pG)
if PrσM (G) ≥ pG for all adversaries σ. The assume guarantee triple becomes 〈A〉≥pAMi〈G〉≥pG ,
with Mi a model, and 〈A〉≥pA , 〈G〉≥pG are safety properties whose extension would lead to bad
traces.

The key idea of the learning process is to reduce the probabilistic checking of properties to the
problem of learning a non-probabilistic assumption, by exploiting properties of the adapted ASYM
rule and using a variant of the L* algorithm.

We leave out the technical details because we will define probabilistic models in the next chapter,
and, for our purposes, the important aspect of this system is the use of a probabilistic model checker
in conjunction with a learner to generate properties of probabilistic models.

6.4 The KAOS framework and related methods

6.4.1 Introduction and Inference of Requirements Specifications from Scenarios

KAOS is a methodology which enables the modelling of requirements and automatic generation
of requirements based on goals or scenarios6. This brief introduction to KAOS and the rest of the
subsection is based on [van Lamsweerde and Willemet, 1998], which shortly describes the KAOS
system, starting from its ontology:

� Object - can be an entity, relationship or event, characterized by attributes and invariant
assertions.

� Operation - input/output relation between objects, characterized by pre-, post- and trigger-
conditions. The pre- and post-conditions are classified into domain and required condition,
the former being general constraints, while the latter capture additional conditions.

� Agent - a type of object which is allowed to perform certain operations on other objects.

� Goal - an objective the system should meet. Goals are usually refined in AND/OR graphs (a
goal is satisfied if all the sub-goals are satisfied in an AND-refinement, or it is satisfied if at
least one sub-goal is satisfied in an OR-refinement). Goals involve certain Objects, and may
conflict with each other.

� Requisite, requirement, assumption. A requisite is a goal which can be controlled by an indi-
vidual agent. Refinements must transform the initial goal into a set of requisites. Require-
ments are requisites assigned to software agents, while assumptions are requisites assigned to
environmental agents.

5Examples are reproduced from [Feng et al., 2011].
6For an extensive list of publications see: http://www.info.ucl.ac.be/~avl/ReqEng.html (accessed 08.09.2011).

46

http://www.info.ucl.ac.be/~avl/ReqEng.html

6.4 The KAOS framework and related methods

In what follows, we will give examples of some of these concepts. In Figure 6.9 (reproduced from
section 2.1.2) we can see a goal specification. We notice object instantiation, the objects involved
in the goal definition, the informal definition, which is implemented in the system in the context of
a semantic net, the goals which refine the initial goal (it is the case of an AND-refinement), and the
formal definition, which expresses the same idea as the informal one, but in the syntax of temporal
logic.

Figure 6.9: Goal specification.

For an example of an operation we refer to Figure 6.107. Notice the input instances of objects
”Card” and ”Amount-$”, and the output object ”Cash Delivered” (of type event). It was estab-
lished that operations are performed by agents, so the definition must specify it, in this case, an
instance of the ”ATM” object. Finally, the domain pre- and post-conditions are shown. However,
taking into account the goal specification, we also need to add required pre-post conditions. A
possible pre-condition would be to check if the password is entered correctly.

Figure 6.10: Definition of an Operation.

In what follows, we will briefly present the KAOS specification elaboration method starting from
high-level goals, and some aspects of the goal-inference procedure from scenarios. The method of
specification elaboration consists of several steps:

1. Goal elaboration - this steps involves goal refinement until requisites, as previously defined,
are reached.

2. Object and operation capture - identifies relevant objects and operations to the goal formula-
tions.

3. Operationalization - generates additional conditions for operations in order to satisfy the
requisites obtained after goal elaboration.

4. Responsibility assignment - this final step is concerning the management of requisites, their
distribution among agents, solving conflicts caused by the different goals of the stakeholders
etc.

This framework has been enriched to allow scenarios as input, besides or instead of goals, and
such a change gave rise to the problem of inferring goals from scenarios. Scenarios are given in the
form of event trace diagrams, and can be positive or negative. Initially, scenarios are pre-processed
in order to aggregate events, eliminate irrelevant events to the software agents, or to some scope of
interest. The goals inferred may be of two types:

7Reproduced from section 2.1.2 of [van Lamsweerde and Willemet, 1998].

47

6. RELATED WORK IN LEARNING REQUIREMENTS

� Achieve/Cease - formally P ⇒ ♦Q (where ♦ means at some point in the future, and ⇒
expresses a usual implication that holds irrespective of the time, formally P ⇒ Q iff �(P →
Q), and � means always in the future).

� Maintain/Avoid - formally P ⇒ Q W R, where W means always in the future unless

The goals inferred should cover all positive scenarios and exclude all the negative ones, similarly
to the ILP learning setting. The most important steps of the inference method (presented in section
4.1 and detailed in sections 4.2 - 4.7 of [van Lamsweerde and Willemet, 1998]) are the collection of
progress facts (formally, Pre−State→ ePost− state, where Pre−State and Post− state are the
states before and after the event), and invariance facts (formally, R ∧ ST → (R W N), where R is
a condition that remains true from state transition ST until another condition N becomes true).
Subsequently, progress facts and invariance facts are generalized. We will focus on generalization
over time and over instances. In generalization over time, implications (→) are generalized over all
states into⇒, and for progress facts, the next state operator (e) is generalized into some time in the
future (♦). In generalization over instances, the ground assertions are generalized in a weak manner
by introducing existentially quantified variables or in a strong manner by introducing universally
quantified variables.

To conclude, although there are more steps in the scenario elaboration process, we believe that
the inference process is a crucial one. The final output of the system depends entirely on the goals
inferred, and consists of specifications formally represented by temporal logic formulas involving
agents, objects and operations.

6.4.2 Conflicts and Obstacles in Goal-Driven Requirements Engineering

This subsection briefly highlights the key ideas regarding how the KAOS system handles
goal conflicts and obstacles, based on the work published in [van Lamsweerde et al., 1998] and
[van Lamsweerde and Letier, 2000]. The detection and resolution of conflicts is integrated in the
scenario elaboration framework in relation with goal elaboration. After conflicts are detected based
on current goals, several solutions generate, modify or delete goals. There are also solutions in
which conflicts are resolved by assigning the responsibilities to different agents, so there is also a
connection between responsibility assignment and conflict resolution.

Inconsistencies can be of different types and relate to different aspects of requirements specifica-
tions. Inspired by [van Lamsweerde et al., 1998], we will mention here only the notions of conflict,
divergence and obstruction:

� Conflict - occurs between assertions A1, ..., An in a domain Dom if:

1) (Dom,∧1≤i≤nAi) ` false and

2) ∀i, 1 ≤ i ≤ n, (Dom,∧j 6=iAj) 0 false.
The first condition states that there must be an inconsistency between the assertions in
the domain, and the second condition enforces minimality, that is if we remove any of the
assertions, there remaining assertions in the domain do not cause a conflict.

� Divergence - occurs between assertions A1, ..., An in a domain Dom if there exists a boundary
condition B, such that:

1) (Dom,B,∧1≤i≤nAi) ` false,
2) ∀i, 1 ≤ i ≤ n, (Dom,B,∧j 6=iAj) 0 false and

3) ∃ scenario S and a time position i such that (S, i) � B.

The boundary condition B is a particular circumstance generated by scenario which gives
rise to a conflict when taken together with assertions A1, ..., An.

� Obstruction - represents the limiting case of a divergence when n = 1, i.e. we have only one
goal assertion. Then, the boundary condition B is called an obstacle to the goal assertion A.

48

6.4 The KAOS framework and related methods

In [van Lamsweerde et al., 1998], the authors focus on detecting and resolving divergences,
while in [van Lamsweerde and Letier, 2000] the main point of interests represents the analysis of
obstacle identification and resolution. Although there are significant differences between divergence
and obstacle detection, the general methods are the same in both situations: regressing negated
assertions, using patterns and identification heuristics.

Informally, regressing negated assertions means negating an assertion, and then unifying it with
another rule. The resolvent is the boundary condition. The formal method is given in section 4.1
of [van Lamsweerde et al., 1998], and reproduced in Figure 6.11.

Figure 6.11: Method for regressing negated assertions.

Patterns provide an effective shortcut to the regression method, by using known and commonly
encountered derivations of boundary conditions. An important aspect when dealing with obstacles
is the fact that, unlike divergences, obstacles can be AND/OR-refined, such that obstacle refinement
identifies both obstacles and domain properties. Finally, heuristics avoid any formal approach, and
represent general rules of thumb helping to identify divergences or obstacles.

The problem of solving divergences and obstacles, although handled in a different way for
divergences and obstacles, has common solving ideas. These relate to creating, deleting or modifying
goals, or objects. We mention strategies such as:

� avoid boundary condition - can be realized by introducing a new goal of the form P ⇒ e¬B,
where B is the boundary condition. The equivalent idea for obstacles is obstacle prevention.

� anticipate conflicts / obstacle anticipation - detect a circumstance which will lead at some
point into the future to a conflict.

� goal weakening / goal deidealization - refine goal in order to cover the boundary condition

� alternative refinements to goals - which might avoid the conflicts/obstacles

� object/agent refinement - specializes the object/agent type, or reassign different responsibil-
ities to agents in order to avoid conflicts

The ideas presented are only a subset of the broad analysis covered by the cited work, and
are meant to provide a short description of the problem of managing conflicts in the context of
requirements specifications elaboration process in the KAOS framework.

6.4.3 LTS synthesis based on End-User Scenarios

In [Damas et al., 2005], the authors present a system that accepts end-user scenarios as input,
and provides a labeled transitions system (LTS) as output. There some restrictions for the input, the
most significant being that end-user scenarios are communicated in the form of message sequence
charts (MSC), no other information can be submitted to the system, and the scenarios supplied
must contain at least one positive and one negative scenario. Positive scenarios describe desired
behaviours of the system, while negative scenarios are expressed by a pair 〈p, e〉, where p is a positive
MSC, called precondition, and e is a prohibited subsequent event. How can we relate the MSC
input with an LTS representation? The answer is not a complex one: ”An MSC timeline defines a
total order on its input and output events. Therefore, it defines a unique finite LTS execution that
captures a corresponding agent behavior.” (quote from section 2.2, [Damas et al., 2005]).

The general outline of the method can be defined by three crucial steps:

49

6. RELATED WORK IN LEARNING REQUIREMENTS

1. Submitting an initial set of positive and negative scenarios.

2. Generating scenario questions and synthesizing agent LTS.

3. Generating state invariants to document the generated state machines.

The first two steps are detailed in the algorithm in Figure 6.12 (reproduced from figure 11 from
[Damas et al., 2005]). We will refer to the automaton A in the algorithm as an LTS, keeping in
mind the difference that in an LTS all states are accepting states, while in an automaton only a
subset of the possible states contains accepting states. The LTS is initialized such that it covers
all positive scenarios, by constructing a prefix tree acceptor PTA(S+), that is the largest DFA
(deterministic finite-state acceptor) that accepts the strings from S+. This DFA will be generalized
by merging a pair of states chosen according to a lexicographical order, and a potential update
(Anew) of the LTS is created by merging 8 the two states. First of all, the potential update LTS
has to be compatible with the negative scenarios (S−), i.e. every string in S− has to be rejected
by Anew.

If Anew is compatible with S−, the system will follow step 2, i.e. it will interact with the user
through a series of questions, which essentially try to determine whether extensions of sequences
accepted by A which are accepted by Anew are correct positive scenarios. As we can see in the
figure below, in the if CheckWithEndUser branches, if the answer is affirmative, then the extended
sequence is added as a new positive scenario, otherwise as a new negative scenario, and in this
latter situation, the potential update DFA Anew is no longer an acceptable update.

Figure 6.12: Algorithm for LTS generation based on end-user scenarios.

Step three involves generating state invariants from fluent definitions. We will not describe the
process here, but we mention it is an important step to help visualize the final LTS. To conclude,
two potential directions of investigation shall be hinted. Is it possible to learn without initial
negative scenarios from the end-user? Even in the current framework, negative scenarios can be
generated by a negative answer to an end-user question, but perhaps a possibility would be to use
the model-checking to generate negative scenarios. Another improvement might concern the choice
of merging states, depending on the answer to the question: is there an ”intelligent” way to choose
the states to be merged?

8Merging is not a trivial process: the resulting DFA, called a quotient automaton, might not be deterministic, and
further merging of states would be necessary.

50

6.5 The I* Approach

6.5 The I* Approach

The i* methodology proposes an alternative perspective on modelling requirements. Instead
of focusing on scenarios or goals, the fundamental unit of its philosophy is the intentional agent,
equipped with individual goals, beliefs, abilities and other properties, which are not always known
or controllable. Agents depend on each other to reach their goals, share or trade resources and
so on. Modelling a system as a complex interaction between agents is one of the reason i* is also
referred to as social modelling.

Intentionality is either explicit, via goals which are decomposed into subgoals, or into means-
ends alternatives, an idea which is similar to the AND/OR graph decomposition in KAOS. Inten-
tionality expressed by agents is called implicit, because we might not have access to their internal
goals, and is manifested thorough links between agents, which are called dependencies.

Dependencies are classified into:

� goal dependencies - are typically assertions, with no preference for the way of ensuring them;

� task dependencies - indicate precise activities which are expected from an agent

� resource dependencies - model the dynamics of entities which can be shared or transmitted
between agents

� soft-goal dependencies - are similar to goal dependencies, with the mention that they claim a
quality of the interaction, rather than a precise, binary assertion. This type of dependencies
is used to model non-functional requirements.

Unfortunately, i* affords only a qualitative analysis of requirements, so the task of integrating
quantitative measures such as probabilities remains a challenge which we hope to address in future
work.

51

Chapter 7

Modelling and Verification.
Probabilistic Model Checking.

In the previous part we have presented out contribution to PILP using SLPs, the ProbPoly
framework. In this chapter we aim to show how we might adapt a methodology for learning
requirements using model checking and ILP to the probabilistic context, using probabilistic model
checking and PILP, and more specifically, ProbPoly. To our knowledge, this is an unexplored
area of research, and the most relevant system which learns probabilistic assumptions is the one
reviewed in Section 6.3, but it uses probabilistic model checking in conjunction with an modified
version of L*. We demonstrate our novel approach of combining probabilistic model checking and
logic learning as a teacher-learner method on a small example.

After the previous reviews of a range of relevant systems which focus on modelling and some also
on learning requirements in Chapter 6, we introduce the main challenge of learning requirements,
and begin to reason on how we may overcome it by using ProbPoly. Section 7.1 establishes the
premises of our approach, so that we are able to offer a simple, yet representative example in
Section 7.2. Finally, in Section 7.3 we discuss the main questions which motivate directions of
future research.

7.1 Probabilistic Model Checking. PRISM.

Probabilistic model checking is a framework for the verification and analysis of probabilistic
finite-state models, which are checked against probabilistic properties, e.g. formulas in probabilistic
extensions of temporal logic. Unlike traditional model checking, the probabilistic extension can
analyse properties of quantitative nature, e.g. ”the system will reach a fail state in at most k time
units with a probability less than 0.02”. In this example, the probability can be computed based on
the probabilities of the model, and the k time units is expressed in terms of costs (or equivalently
rewards).

The result of checking a property is a truth value, expressing whether the property is satisfied
or not. In the case that the property holds, additional output may consist of a lower and/or an
upper bound on the probability of the respective property. In the case that the property isn’t
satisfied, a counterexample should be given, that is a set of traces through the model which violate
the property. The definition and computation of counterexamples in probabilistic model checking
is an active research topic among software engineers. We will give an intuitive definition of what
we believe is the best counterexample in Section 7.2.

Probabilistic model checking must have efficient data structures (e.g. BDDs) and numerical
algorithms for computation of the different quantities, in order to allow large-scale models. To
gain a better understanding of probabilistic model checking, let us look at what type of models are
commonly used in the field.

The fundamental problem of designing a system that learns requirements is the representation
of the domain and of the software system. We believe that the LTS, as presented in Section 6.3,
is a state-of-the-art representation for systems which don’t incorporate probability, and in the

52

7.1 Probabilistic Model Checking. PRISM.

probabilistic context perhaps the most popular models are:

� Discrete Time Markov Chains (DTMCs),

� Continuous Time Markov Chains (CTMCs), also known as Continuous Time Markov Pro-
cesses,

� Markov Decision Processes (MDPs), which are almost equivalent to Probabilistic Automata
(PA). We will use the latter in our terminology.

The simplest model is a DTMC:

Definition 7.1 ((Discrete Time) Markov Chain). A Discrete Time Markov Chain, as defined in
[Manning and Schütze, 1999], is a sequence of random variables X = (X1, . . . , XT) taking values
in some finite set S = {s1, . . . , sN}, the state space and satisfies the Markov Properties:

� Limited Horizon:
P (Xt+1 = sk|X1, . . . , Xt) = P (Xt+1 = sk|Xt)

� Time invariant (stationary):
P (Xt+1 = sk|Xt) = P (X2 = sk|X1), where ∀t, t+ 1 ∈ 1, . . . , T and ∀k ∈ 1, . . . , N

The time invariance condition is sometimes omitted, or mentioned as a property of a special
case of Markov Chains (time-homogeneous or stationary), and is usually defined in a more intuitive
way:

P (Xt+1 = sk|Xt = sl) = P (Xt = sk|Xt−1 = sl)

A DTMC is described by a stochastic transition matrix A with entries:

aij = P (Xt+1 = sj |Xt = si), with

aij ≥ 0, ∀i, j ∈ 1, . . . , N and
N∑
j=1

aij = 1, ∀i ∈ 1, . . . , N .

Usually, Markov chains are also characterized by the probabilities on the initial states:

πi = P (X1 = si), with
N∑
i=1

πi = 1.

However, we can always add an extra ”start” state, such that P (X1 = start) = 1, and therefore
the probabilities πi are pushed into the transition matrix A. We will indeed choose to characterize
a DTMC only by matrix A.

Let us exemplify a DTMC which illustrates a fair six-sided die. This example is considered as a
case study in the probabilistic model checker PRISM (which we will discuss a little later) and was
originally presented in [Knuth and Yao, 1976].

Example 7.1 (Fair Six-Sided Die DTMC). The transition matrix for this DTMC is sparse, so we
will represent it as such1:

1A list of 〈i, j, p〉 tuples such that i, j ∈ 1, . . . , N , aij = p, and for all omitted pairs k, l, with k, l ∈ 1, . . . , N ,
akl = 0.

53

7. MODELLING AND VERIFICATION. PROBABILISTIC MODEL CHECKING.

From To Transition Probability

0 1 0.5

0 2 0.5

1 3 0.5

1 4 0.5

2 5 0.5

2 6 0.5

3 1 0.5

3 7 0.5

4 8 0.5

4 9 0.5

5 10 0.5

5 11 0.5

6 2 0.5

6 12 0.5

7 7 1

8 8 1

9 9 1

10 10 1

11 11 1

12 12 1

Although this is an acceptable mathematical and computational representation, we understand
DTMCs much easier if they are expressed graphically in Figure 7.1:

Figure 7.1: DTMC for a Fair Six-Sided Die. The dashed lines and die images are included to relate
the model to its semantics; they are not part of the DTMC.

CTMCs are essentially DTMCs with continuous indexes instead of discrete ones. We don’t
treat them formally since we haven’t done any experiments involving CTMCs yet.

Probabilistic Automata (PA) combine DTMCs and LTSs in an expressive way: from every state
we must choose an action, in a non-deterministic fashion, similar to the LTS case, however, we aren’t
guaranteed to reach a single destination state. Instead, we have a function trans : N ×M ×N →
[0, 1], where N is the number of states, and M is the set of actions, such that:

N∑
j=1

trans(i, a, j) = 1, ∀i ∈ 1, . . . , N, a ∈M .

In Figure 7.2 we show two PA from [Kwiatkowska et al., 2010]. Similar to LTSs, a parallel
composition operator can be defined on PA, but we leave out the formal details because we haven’t
tested our methods on compositions of PA.

54

7.1 Probabilistic Model Checking. PRISM.

Figure 7.2: Two Probabilistic Automata from [Kwiatkowska et al., 2010].

Finally, we would like to mention that we have chosen to perform our experiments in the
PRISM probabilistic model checker2 introduced in [Hinton et al., 2006]. PRISM has a very intuitive
language for describing models, for example let us write the two models from Figure 7.2. 3 The
result is shown in Figure 7.3.

Figure 7.3: Prism Model of the PA in Figure 7.2.

Properties are defined in a separate file. Figure 7.4 is a snapshot of a property file loaded into
PRISM and checked against the model from Figure 7.3.

Figure 7.4: Prism Properties checked against the model from Figure 7.3.

2http://www.prismmodelchecker.org (accessed 07.09.2011).
3When multiple models are defined in a single file, PRISM always considers their composition.

55

http://www.prismmodelchecker.org

7. MODELLING AND VERIFICATION. PROBABILISTIC MODEL CHECKING.

The first property checks the maximum probability that can be reached in state t3. The formula
true U t = 3 means that the probability must be checked at each time step until (U) we are in
state t3. The second and third properties are similar to the first one: they simply check a given
probability as a lower/upper bound for a certain state.

7.2 Learning A Simple Discrete Time Markov Chain

In this section we present the learning process of the probabilities for a six-sided die, so that
two basic properties hold in the new model. Let us formalize our task:

Given: an initial model as a DTMC, and a list of properties which need to be satisfied,

Learn: new parameters for the DTMC such that all the properties are satisfied.

First of all notice that we only learn the parameters, and not the structure of the DTMC.
The method of learning the parameters is ProbPoly, and as detailed in the first part of the thesis,
ProbPoly learns a new predicate based on counterexamples, which should be generated by the
model checker4. We mentioned at the beginning of the chapter the issue of counterexamples in
probabilistic model checking. What should be a counterexample in the case of a DTMC?

Fortunately this problem has been addressed, so we adopt the definition of a counterexample
from [Han and Katoen, 2007]. The cited publication defines the strongest evidence as a path in
the model which has a maximum probability. The evidence may or may not be a counterexample
based on the value of the evidence and the upper bound of a probabilistic property (of the form
P<p(. . .)) that the model is checked against.

We will use the term counterexample when referring to the strongest evidence in the case that
is a counterexample, unless there is ambiguity. The key idea of computing the strongest evidence
on a DTMC is by transforming it into a weighted digraph and solving the problem of kth-shortest
path. The authors also define the smallest counterexample as the counterexample with the shortest
path, and maximum probability.

Consider the following setting:

Example 7.2 (Six-sided die). The initial model is the fair six-sided die from Example 7.1. Its
PRISM model is:

The desired properties are:

1. P < 0.15 [true U s = 7 & d = 1], i.e. the probability of obtaining a die value of 1 is less
than 0.15,

2. P < 0.02 [true U s = 7 & d = 5], i.e. the probability of obtaining a die value of 5 is less
than 0.02.

The model is not a straightforward translation of the DTMC from Example 7.1. States 7-12 of
the DTMC from the previous section are absorbed into state 7, and we use a separate variable d

4The current version of PRISM (4.0.2) has no counterexample generation options, and it seems incompatible with
the DiPro tool http://www.inf.uni-konstanz.de/soft/dipro/ (accessed 08.09.2011)

56

http://www.inf.uni-konstanz.de/soft/dipro/

7.2 Learning A Simple Discrete Time Markov Chain

to encode the value of the die in s7. This is possible because states 7-12 are all terminating states,
i.e. extending a path from them is an loop of the same state with probability 1.

We may think of the die as a very simple system, and that obtaining die value 1 is an error situ-
ation, and obtaining a die value of 5 is a critical error state of the system. They are checked against
the initial model, and both properties aren’t satisfied, so we consider generating counterexamples
for each one.

It is obvious that the counterexamples with the highest probability are:

� for the first property: c1 = [s0, s1, s3, s7, d1]. This path has a probability of 0.5 · 0.5 · 0.5 =
0.125. This probability is smaller than 0.15, but take into account that the total probability
of reaching d1 is c1 and the infinite number of paths obtained by looping n (n → ∞) times
through [s3, s1, s3]. Its value for the initial model is, as expected, 1/6 = 0.1(6).

� for the second property: c2 = [s0, s2, s5, s7, d5], with the same probability as c1.

The next step in our approach is to remodel the DTMC in Prolog, because at the moment we
are unfamiliar with the implementation details of PRISM. The initial model is represented as a
background knowledge file in Listing A.6. Notice that each predicate has corresponds to a state,
and we omit s7 and simply specify di. The counterexamples for the properties are encoded as prob-
abilistic examples for ProbPoly. We can’t ensure strict inequality with the current implementation
of ProbPoly, due to the fact that if we get a very small global minimum for the error function, the
probabilities tend to be equal. An important observation is also that unlike the probabilistic model
checker, we can’t handle infinite recursion5, so we compute an incomplete probability.

The current version of ProbPoly can’t learn the probabilities of multiple predicates at the same
time, since we enforce the constraint that the probabilities of the new clauses must sum up to one
when there are no previously learned clauses, so our approach is the following:

Algorithm 1 Learn new DTMC parameters using ProbPoly

IN: initial model file BK0, N number of states
OUT: final model BKN

for i = 1→ N do
BKi ← BKi−1 \ {Pi−1 : Ci−1 | C+

i−1 = si−1}
H ← Ci−1
P ′i−1 : C ′i−1 ← ProbPoly(BKi, H)
BKi ← BKi−1 ∪ {P ′i−1 : C ′i−1}

end for

In Algorithm 1, we are given the initial model file, and we process it according to a certain
order of the states: the probabilistic clauses for each state are removed from the background file
and added without probabilities to the theory we want to learn. Then, the new probabilistic clauses
are re-added to the background file and we continue with the next state.

The output of the learning process for Example 7.2 is illustrated in Figure 7.5.

Finally, we translate the new model into PRISM and the model checker successfully verifies the
initial properties.

5The maximum recursion depth is controlled by the max proof length/1 predicate.

57

7. MODELLING AND VERIFICATION. PROBABILISTIC MODEL CHECKING.

Figure 7.5: Graphical illustration of the learned model.

7.3 Conclusions

To conclude this chapter, we present some observations about our learning procedure. First
of all, due to the fact that, at the moment, we learn the probabilities of each state, this forces
us to use an initial model as input, and to perform learning incrementally. This is very similar
to the Expectation Maximization (EM) paradigm. However, Expectation Maximization can only
guarantee to reach a local maximum, determined by the initial parameters.

By minimizing the mean squared error function for the probabilities of each state, we get a
greedy algorithm, e.g. consider the probabilities of transition from s2 in the learned model. This
strategy might output probabilities that simply can’t be enforced in the system. Thus, one of our
goals is to learn a model which is as close as possible to the initial one. This is somewhat similar
to the regularization idea of parametric models, e.g. weight decay in artificial neural networks. A
possible way to implement it is by modifying the error function such that each example is penalized
by adding (since our task is minimization) a value proportional to the difference between the initial
value of the probability and the learned value.

We believe that our current strategy could be redefined in a formal EM paradigm; more impor-
tantly, we are confident on the fact that minor implementation modifications will allow ProbPoly
to learn multiple predicates, since it is only a matter of redefining constraints for sets of variables
corresponding to the same clause head. In this context, we could learn the parameters based on
a purely structural initial model. We also speculate that using ILP in conjunction with ProbPoly
might allows to combine structure learning and parameter learning for probabilistic models.

Finally, an important theoretical and practical challenge is to adapt ProbPoly to infinite paths
in the model. This is equivalent to the multivariate constrained minimization of the sum of a series
of polynomials, an area which we haven’t researched yet.

58

Chapter 8

Future Work

Using the conclusions we have drawn from the two parts of the thesis, we can formulate a list
of interesting directions to pursue in future work.

Learn probabilities for refined clauses

It is possible to perform learning in the case that clause c exists in H – let us refer to it as
yj : hj – and it is refined into clause c′. This is the case in the cover loop algorithm (e.g. in FOIL
[Quinlan and Cameron-Jones, 1993]) or in the ILP system HYPER, presented in [Bratko, 2000],
where we consider refinements over a forest, each tree corresponding to the refinement of a clause.
In this case, we could delete the clause to be refined yj : hj from the SLP and normalize the other
clauses by

y′i =
yj∑

i∈1,n\{j}

yi

for hi, ∀i ∈ 1, n \ {j}. Then, the problem is the same as adding clause x′ : c′, i.e. the refined
clause, to the normalized clauses y′i : hi.

1

Use probabilistic quantities as scores that guide the ILP search

The fusion or at least interaction of structure learning and parameter learning is a promising
idea which might allow to improve the quality of the learning process. We intend to use the value
of the computed error function as a selection criterion for choosing a particular refinement, perhaps
combined with traditional ILP scores.

We also plan to define measures such as precision, recall etc. for SLPs based on the quantities
we introduced in the last subsection of Section 4.3. These measures could also be used to guide the
search, as proven in [Raedt and Thon, 2010].

Extend ProbPoly to learning multiple predicates simultaneously

Learning multiple predicates simultaneously is the next generalization step in the development
of ProbPoly. We already have a precise idea on what should be implemented.

Recall that the input of ProbPoly is the set of probabilistic clauses OldH and the set of non-
probabilistic clauses NewC. First we will add variables to NewC. Then we will partition the set
OldH ∪ NewC into l partitions based on the head predicate of the clause, assuming we have l
different head predicates in OldH ∪ NewC. For each partition we will generate the appropriate
constraints (the sum of all probabilities in that partition must be 1). After this step, the method will
be the same as in the multi-clause case: we will build the error polynomial, generate the additional
constraints for valid probabilities and negative examples, and run the optimization function.

1Note that after learning x′ we need to normalize again clauses yi by (1− x′).

59

8. FUTURE WORK

By making this modification to the implementation, we will be able to learn all the probabilities
of a DTMC in one run of ProbPoly, and without relying on an initial model. However, in the context
of larger models, this might be infeasible for GloptiPoly and we don’t know how efficient Particle
Swarm Optimization will be. This is because the number of states in the model is the number of
predicates in the Prolog representation, and the number of transitions from one state is the number
of clauses for the corresponding predicate. We might still want to rely on incremental learning.

Explore the advantages of learning using negative examples

Although we have formally defined negative examples as simply goals which have 0 probability,
we haven’t yet tested cases in which we learn from them. In a PCFG context, a negative example
represents a string that can’t be parsed by the grammar, so it is possible that the learning algorithm
will essentially delete (from the point of view of the probabilities, and not the clause structure)
transitions by assigning them a very low probability.

Develop techniques for learning from infinite proofs

Even in simple DTMC models infinite loops may occur. Our current framework can consider
only a recursion depth of k on a certain state, where k is a parameter. However, this cannot be
used for highly recursion models, since some states may accumulate significant probability for paths
with more than k occurrences of unknown transitions.

We believe the methods used in probabilistic model checking might be valuable in allowing
learning from infinite proofs. A better mathematical understanding on how to tackle the problem
infinite polynomials is also required.

Validate ProbPoly by integrating it into ILP systems

We have made minor efforts so far in integrating ProbPoly in Hyper and TAL systems. We need
to run additional experiments and allow ProbPoly to learn predicates such as equality (X = Y)
or append (append(L1, L2, L)), which should always have a probability of 1, since they are purely
logical.

Make the implementation scalable

Although we haven’t yet implemented a method of ensuring that the products of probabilities
doesn’t produce underflows, we propose two ways of achieving this:

� transform the probabilities by using log(p) or log(p−1) instead of p.

� design a method based on scaling factors, inspired by the example of hidden Markov models
(HMMs).

Address the problem of multiple solutions of the optimization

As shown in Example 4.5, it is sometimes the case that we might have more than one set of
parameters which ensure the global minimum of the error function. In the current implementation,
we assign the clauses the first learned solution. However, this is a completely random choice,
without any formal reason to motivate it. In the case of incremental learning, discussed in Secion
7.2, it might prove useful to establish a backtracking structure based on the multiple possibilities we
can assign probabilities to newly learned clauses, and explore it in order to find the most suitable
solution, i.e. the choice of parameters for which the error function over the completely learned

60

model is minimum.

Consider larger discrete time Markov chains (DTMCs)

Experiments on larger models, and on models other than DTMCs are essential if we wish to
develop a robust learning framework using ProbPoly and PRISM. We also need to design improved
learning mechanisms, based on updates of PorbPoly and the types of probabilistic models and
properties we use.

61

Chapter 9

Conlcusions

In the first part of our thesis, we have formulated the learning task of computing probabilities
for newly learned clauses in SLPs based on probabilistic examples. We managed to overcome the
limitations of the initial learning paradigm, and we believe that through our examples we have
illustrated the correctness of our approach. Although in the multi-clause case we cannot always
guarantee an analytical solution to the optimization problem, we use particle swarm optimization
to still be able to learn the desired probabilities, allowing non-optimality.

The design of a robust framework for learning requirements using probabilistic model checking
and PILP is one of the major tasks that need to be achieved. However, we have taken some
preliminary steps in this direction by designing a simple method for learning the parameters of a
model in order to meet a list of properties, which proved successful on a simple example.

Overall, we are pleased with the results obtained, especially due to the fact that in almost all
of the experiments the correct output was anticipated based on theoretical considerations. One
of the surprising results was in the experiment for Example 4.5, in which learning based on only
one example string (”aa”) proved to be optimal for two solutions. As we mention in our list of
directions for future work, the problem of choosing between the two optimal solutions arises in the
case of incremental learning, proposed in Secion 7.2, in which we learn based on a partially learned
model, with the non-learned probabilities assigned as in the initial model.

To conclude, we believe that PILP and probabilistic model checking are relatively new areas
of research in computer science, so we have to permanently keep up with the dynamics of both
subjects, and at the same time to continue to extend and improve the ProbPoly framework, in a
sustained effort to achieve results on real-world examples comparable to the state-of-the-art .

62

Appendix A

Code Listings

Listing A.1: ProbPoly main predicate

0 % === probpoly mc /4
% === probpoly mc(+OldH , +NewClause , −NewH, −Err) −
% OldH i s a l i s t o f p r o b a b i l i s t i c c l ause s ,
% NewClauses i s a l i s t o f non−p r o b a b i l i s t i c c l ause s ,
% NewH i s the theory obta ined by l e a rn i ng a p r o b a b i l i t i e s f o r NewClauses

5 % and updating the o the r s
% Err i s the value o f the e r r o r func t i on f o r NewH on the examples
probpoly_mc (OldH , NewClauses , NewH , Err) :−

r e t r a c t a l l (mpoly_nvar (_)) ,
l ength (NewClauses , LenNC) ,

10 a s s e r t z (mpoly_nvar (LenNC)) ,
add_probs (NewClauses , EvalNewClauses , 1) ,
append (OldH , EvalNewClauses , EvalH) ,
(OldH=[] −>
Equal = true

15 ;
Equal = false

) ,
rec_sol (EvalH , Equal , X , Err) ,
(X = [] −>

20 Val i s 1/LenNC ,
list_gen (LenNC , Val , L) ,
add_vals (NewClauses , UpNewClauses , L) ,
sum_list (L , SumL) ,
updateH (OldH , UpOldH , SumL) ,

25 append (UpOldH , UpNewClauses , NewH)
;
sum_list (X , SumX) ,
updateH (OldH , UpOldH , SumX) ,
add_vals (NewClauses , UpNewClauses , X) ,

30 append (UpOldH , UpNewClauses , NewH)
) ,
r e t r a c t a l l (mpoly_nvar (_)) .

63

A. CODE LISTINGS

Listing A.2: A Probabilistic Hypothesis Interpreter for Learning a Single Clause

0 % === prob prove /3
% === prob prove(+Goal , +Hypo , −Poly) − f o r a g iven Goal and
% a p r o b a b i l i s t i c hypothes i s Hypo , Poly i s the polynomial
% corre spond ing to a proo f o f Goal us ing Hypo (and background knowledge)
prob_prove (Goal , Hypo , Poly) :−

5 max_proof_length (D) ,
prob_prove (Goal , Hypo , D , _RestD , Poly , [(1 , 0)]) .

prob_prove (_Goal , _Hypo , []) . % Otherwise Goal d e f i n i t e l y cannot be proved

10 prob_prove (_G , _H , D , D , [] , _PolyAcc) :−
D < 0 , ! . % Proof l ength overstepped

prob_prove ([] , _Hyp , D , D , Poly , Poly) :− ! .

15 prob_prove ([G1 | Gs] , Hypo , D0 , D , Poly , PolyAcc) :− ! ,
prob_prove (G1 , Hypo , D0 , D1 , P1 , PolyAcc) ,
prob_prove (Gs , Hypo , D1 , D , Poly , P1) .

prob_prove (G , _Hyp , D , D , Poly , PolyAcc) :−
20 prolog_predicate (G) , % Background pr ed i c a t e in Prolog ?

pc (Prob , G) ,
mul_by_const (PolyAcc , Prob , Poly) ,
call (pc (_Prob , G)) . % Cal l o f background pr ed i c a t e

25 prob_prove (G , Hyp , D0 , D , Poly , PolyAcc) :−
prolog_predicate (G) , % Background pr ed i c a t e in Prolog ?
pc (Clause /_Vars) ,
copy_term (Clause , [Prob , Head | Body]) , % Rename va r i a b l e s in c l au s e
G = Head ,

30 mul_by_const (PolyAcc , Prob , PolyAcc1) ,
prob_prove (Body , Hyp , D0 , D , Poly , PolyAcc1) . % Cal l o f background pr ed i c a t e

prob_prove (not (G) , Hyp , D , D , Poly , PolyAcc) :−
total_prob (G , Hyp , NPoly) ,

35 inverse_poly (NPoly , NPoly1) ,
add_poly (NPoly1 , [(1 , 0)] , NPoly2) ,
mul_by_poly (PolyAcc , NPoly2 , Poly) .

prob_prove (G , Hyp , D0 , D , Poly , PolyAcc) :−
40 D0 =< 0 , ! , D i s D0−1, % Proof too long

Poly=[]
;
D1 i s D0−1, % Remaining proo f l ength
member (Clause /_Vars , Hyp) , % A c l au s e in Hyp

45 copy_term (Clause , [Prob , Head | Body]) , % Rename va r i a b l e s in c l au s e
G = Head , % Match c l au s e ' s head with goa l
(ground (Prob) −>

mul_by_const (PolyAcc , Prob , PolyAcc1) , % mul by Prob
mul_by_poly (PolyAcc1 , [(−1 ,1) , (1 , 0)] , PolyAcc2) % mul by (1−X)

50 ;
mul_by_poly (PolyAcc , [(1 , 1)] , PolyAcc2) % mul by X

) ,
prob_prove (Body , Hyp , D1 , D , Poly , PolyAcc2) . % Prove G us ing Clause

64

Listing A.3: Predicate for MatLab Initialization

0 % === ml i n i t /0
% === ml i n i t − i n i t i a l i z e matlab environment
ml_init :−

matlab_on , ! .
ml_init :−

5 getcwd (D) ,
cd (' . . / MatLab ') ,
start_matlab ('matlab −nojvm −nosp lash −nod i sp lay ') ,
matlab_eval_string (' path (path , genpath (pwd)) ') ,
cd (D) .

Listing A.4: Predicate for Computation of Binomial Coefficients

0 % === binom coe f f /3
% === binom coe f f (+N, +K, −Val) computes the value Val
% o f the combinat ions o f N elements in groups o f K
% (N) n !
% = () =

5 % (K) k ! (n−k !)

binom_coeff (N , K , Val) :−
K>=0,
N>=K ,

10 NK i s N−K ,
(K>NK −>

binom_coeff (N , K , Val , 1 , 1) ;
binom_coeff (N , NK , Val , 1 , 1)

) .
15

binom_coeff (_N , K , Val , Val , K1) :− K1 i s K+1, ! .

binom_coeff (N , K , Val , ValAcc , Counter) :−
ValAcc1 i s ValAcc * (N−Counter+1)/(Counter) ,

20 Counter1 i s Counter + 1 ,
binom_coeff (N , K , Val , ValAcc1 , Counter1) .

Listing A.5: Predicate for Computation of Binomial Coefficients using MatLab Package Interface

0 % === ml binom coe f f /3
% === ml binom coe f f (+N, +K, −Val) computes the value Val
% o f the combinat ions o f N elements in groups o f K
% (N) n !
% = () =

5 % (K) k ! (n−k !)
ml_binom_coeff (N , K , Val) :−

ml_init ,
matlab_vector (1 , [N] , n) ,
matlab_vector (1 , [K] , k) ,

10 val <−− nchoosek (n , k) ,
matlab_get_variable (val , [Val]) .

65

A. CODE LISTINGS

Listing A.6: Prolog File Representing the Six-Sided Fair Die DTMC from Example 7.1

0
% PREDICATES TO BE EVALUATED BY PROLOG
prolog_predicate (s0 (_)) .
prolog_predicate (s1 (_)) .
prolog_predicate (s2 (_)) .

5 prolog_predicate (s3 (_)) .
prolog_predicate (s4 (_)) .
prolog_predicate (s5 (_)) .
prolog_predicate (s6 (_)) .

10 % PROBABILISTIC CLAUSES
pc ([0 . 5 , s0 ([s (0) | T]) , s1 (T)] / []) .
pc ([0 . 5 , s0 ([s (0) | T]) , s2 (T)] / []) .
pc ([0 . 5 , s1 ([s (1) | T]) , s3 (T)] / []) .
pc ([0 . 5 , s1 ([s (1) | T]) , s4 (T)] / []) .

15 pc ([0 . 5 , s2 ([s (2) | T]) , s5 (T)] / []) .
pc ([0 . 5 , s2 ([s (2) | T]) , s6 (T)] / []) .
pc ([0 . 5 , s3 ([s (3) | T]) , s1 (T)] / []) .
pc ([0 . 5 , s3 ([s (3) , d (1)])] / []) .
pc ([0 . 5 , s4 ([s (4) , d (2)])] / []) .

20 pc ([0 . 5 , s4 ([s (4) , d (3)])] / []) .
pc ([0 . 5 , s5 ([s (5) , d (4)])] / []) .
pc ([0 . 5 , s5 ([s (5) , d (5)])] / []) .
pc ([0 . 5 , s6 ([s (6) | T]) , s2 (T)] / []) .
pc ([0 . 5 , s6 ([s (6) , d (6)])] / []) .

25
%EXAMPLES
pex (0 . 1 , s0 ([s (0) , s (1) , s (3) , d (1)]) , 1) .
pex (0 . 0 1 , s0 ([s (0) , s (2) , s (5) , d (5)]) , 1) .

66

Listing A.7: MatLab Script for GloptiPoly generated when learning the probabilities in Example
4.5 (with all three examples)

0 c l e a r
mpol x 2 ;
g0=(+ 0.500000* x (1)ˆ2* x (2)ˆ8 . . .

+ 0.500000* x (1)ˆ2* x (2)ˆ4 . . .
+ −0.005700*x (1)ˆ1* x (2)ˆ4 . . .

5 + −0.063000*x (1)ˆ1* x (2)ˆ2 . . .
+ 0.500000* x (1)ˆ2 . . .
+ −0.700000*x (1)ˆ1 . . .
+ 0.247001 . . .
) ;

10 K = [0 <= x (1) , x (1) <= 1 , . . .
0 <= x (2) , x (2) <= 1 , . . .
x (1)+x (2) == 1] ;

Listing A.8: MatLab Objective Function for PSOpt generated when learning the probabilities in
Example 4.5 (with all three examples)

0 f unc t i on f = polyfcn (x)
i f strcmp (x , ' i n i t ')

f . PopInitRange = [0 ; 1] ;
e l s e
f = + 0.500000* x (1)ˆ2* x (2)ˆ8 . . .

5 + 0.500000* x (1)ˆ2* x (2)ˆ4 . . .
+ −0.005700*x (1)ˆ1* x (2)ˆ4 . . .
+ −0.063000*x (1)ˆ1* x (2)ˆ2 . . .
+ 0.500000* x (1)ˆ2 . . .
+ −0.700000*x (1)ˆ1 . . .

10 + 0.247001 . . .
;
end

Listing A.9: MatLab Constraint Function for PSOpt generated when learning the probabilities in
Example 4.5 (with all three examples)

0 f unc t i on [c , ceq] = confun (x)
c = [] ; ceq = [x (1)+x (2) −1] ;
end

Listing A.10: MatLab Function to Optimize a Polynomial using GloptiPoly or PSOpt

0 f unc t i on [xmin , polymin , allsol] = mpoly_gloptipoly3 (x , g0 , K)
P = msdp (min (g0) , K) ;
[status , obj] = msol (P) ;
i f (status == 1)

polymin = obj ;
5 allsol = double (x) ;

xmin = allsol (: , : , 1) ;
e l s e

nvar = length (x) ;
[xmin , polymin] = pso (@polyfcn , nvar , [] , [] , [] , [] , . . .

10 z e ro s (1 , nvar) , ones (1 , nvar) , @confun) ;
allsol=xmin ;

end
end

67

Bibliography

[Alrajeh et al., 2009a] Alrajeh, D., Kramer, J., Russo, A., and Uchitel, S. (2009a). Learning oper-
ational requirements from goal models. In Proceedings of the 31st International Conference on
Software Engineering, ICSE ’09, pages 265–275, Washington, DC, USA. IEEE Computer Society.

[Alrajeh et al., 2009b] Alrajeh, D., Ray, O., Russo, A., and Uchitel, S. (2009b). Using abduction
and induction for operational requirements elaboration. Journal of Applied Logic, 7(3):275 – 288.
Special Issue: Abduction and Induction in Artificial Intelligence.

[Alrajeh et al., 2006] Alrajeh, D., Ray, O., Russo, R., and Uchitel, S. (2006). Extracting require-
ments from scenarios with ilp. In Proceedings of the 16th International Conference on Inductive
Logic Programming, pages 63–77.

[Angluin, 1987] Angluin, D. (1987). Learning regular sets from queries and counterexamples. Inf.
Comput., 75:87–106.

[Bishop, 2007] Bishop, C. M. (2007). Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer, 1st ed. 2006. corr. 2nd printing edition.

[Borges et al., 2010a] Borges, R. V., d’Avila Garcez, A., and Lamb, L. C. (2010a). Integrating
model verification and self-adaptation. In Proceedings of the IEEE/ACM international conference
on Automated software engineering, ASE ’10, pages 317–320, New York, NY, USA. ACM.

[Borges et al., 2010b] Borges, R. V., Garcez, A. D., and Lamb, L. C. (2010b). Representing, learn-
ing and extracting temporal knowledge from neural networks: a case study. In Proceedings of the
20th international conference on Artificial neural networks: Part II, ICANN’10, pages 104–113,
Berlin, Heidelberg. Springer-Verlag.

[Bratko, 2000] Bratko, I. (2000). Prolog Programming for Artificial Intelligence. Addison Wesley,
3rd edition.

[Chen et al., 2008] Chen, J., Muggleton, S., and Santos, J. C. A. (2008). Learning probabilistic
logic models from probabilistic examples. Machine Learning, 73(1):55–85.

[Corapi et al., 2010] Corapi, D., Russo, A., and Lupu, E. (2010). Inductive logic programming as
abductive search. In ICLP (Technical Communications), pages 54–63.

[Costa et al., 2011] Costa, V. S., Damas, L., and Rocha, R. (2011). The yap prolog system. CoRR,
abs/1102.3896.

[Damas et al., 2005] Damas, C., Lambeau, B., Dupont, P., and van Lamsweerde, A. (2005). Gen-
erating annotated behavior models from end-user scenarios. IEEE Transactions on Software
Engineering, 31:1056–1073.

[Ding et al., 2006] Ding, J., Gower, J. E., and Schmidt, D. S. (2006). Zhuang-zi: A new algorithm
for solving multivariate polynomial equations over a finite field.

[Feng et al., 2011] Feng, L., Kwiatkowska, M., and Parker, D. (2011). Automated learning of
probabilistic assumptions for compositional reasoning. In Proceedings of the 14th international

68

BIBLIOGRAPHY

conference on Fundamental approaches to software engineering: part of the joint European con-
ferences on theory and practice of software, FASE’11/ETAPS’11, pages 2–17, Berlin, Heidelberg.
Springer-Verlag.

[Han and Katoen, 2007] Han, T. and Katoen, J.-P. (2007). Counterexamples in probabilistic model
checking. In TACAS, pages 72–86.

[Henrion et al., 2007] Henrion, D., bernard Lasserre, J., and Löfberg, J. (2007). Gloptipoly 3:
moments, optimization and semidefinite programming.

[Henrion and Lasserre, 2002] Henrion, D. and Lasserre, J. (2002). Gloptipoly: Global optimization
over polynomials with matlab and sedumi. ACM Trans. Math. Soft, 29:165–194.

[Hinton et al., 2006] Hinton, A., Kwiatkowska, M., Norman, G., and Parker, D. (2006). PRISM:
A tool for automatic verification of probabilistic systems. In Hermanns, H. and Palsberg, J.,
editors, Proc. 12th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’06), volume 3920 of LNCS, pages 441–444. Springer.

[Hitzler et al., 2004] Hitzler, P., Hölldobler, S., and Seda, A. K. (2004). Logic programs and con-
nectionist networks. Journal of Applied Logic, 2:2004.

[Kakas et al., 1993] Kakas, A. C., Kowalski, R. A., and Toni, F. (1993). Abductive logic program-
ming.

[Kennedy and Eberhart, 2002] Kennedy, J. and Eberhart, R. (2002). Particle swarm optimization.
In Neural Networks, 1995. Proceedings., IEEE International Conference on, volume 4, pages
1942–1948.

[Kimming, 2010] Kimming, A. (2010). A Probabilistic Prolog and its Applications. PhD thesis,
Katholieke Universiteit Leuven.

[Knuth and Yao, 1976] Knuth, D. and Yao, A. (1976). Algorithms and Complexity: New Directions
and Recent Results, chapter The complexity of nonuniform random number generation. Academic
Press.

[Kwiatkowska et al., 2010] Kwiatkowska, M., Norman, G., Parker, D., and Qu, H. (2010). Assume-
guarantee verification for probabilistic systems. In Esparza, J. and Majumdar, R., editors, Proc.
16th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’10), volume 6105 of LNCS, pages 23–37. Springer.

[Manning and Schütze, 1999] Manning, C. D. and Schütze, H. (1999). Foundations of statistical
natural language processing. MIT Press, Cambridge, MA, USA.

[Mitchell, 1997] Mitchell, T. M. (1997). Machine learning. McGraw Hill series in computer science.
McGraw-Hill.

[Muggleton, 1996] Muggleton, S. (1996). Stochastic logic programs. In New Generation Computing.
Academic Press.

[Muggleton, 2002] Muggleton, S. (2002). Learning structure and parameters of stochastic logic
programs. In ILP, pages 198–206.

[Muggleton et al., 2008] Muggleton, S., Santos, J. C. A., and Tamaddoni-Nezhad, A. (2008).
Toplog: Ilp using a logic program declarative bias. In ICLP, pages 687–692.

[Nienhuys-Cheng and Wolf, 1997] Nienhuys-Cheng, S.-H. and Wolf, R. d. (1997). Foundations of
Inductive Logic Programming. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

69

BIBLIOGRAPHY

[Păsăreanu et al., 2008] Păsăreanu, C. S., Giannakopoulou, D., Bobaru, M. G., Cobleigh, J. M.,
and Barringer, H. (2008). Learning to divide and conquer: applying the l* algorithm to automate
assume-guarantee reasoning.

[Quinlan and Cameron-Jones, 1993] Quinlan, J. R. and Cameron-Jones, R. M. (1993). Foil: A
midterm report. In ECML, pages 3–20.

[Raedt and Thon, 2010] Raedt, L. D. and Thon, I. (2010). Probabilistic rule learning. In ILP,
pages 47–58.

[Rivest and Schapire, 1989] Rivest, R. L. and Schapire, R. E. (1989). Inference of finite automata
using homing sequences. In Proceedings of the twenty-first annual ACM symposium on Theory
of computing, STOC ’89, pages 411–420, New York, NY, USA. ACM.

[Rouillier and Zimmermann, 2004] Rouillier, F. and Zimmermann, P. (2004). Efficient isolation of
polynomial’s real roots. J. Comput. Appl. Math., 162:33–50.

[Sato, 1995] Sato, T. (1995). A statistical learning method for logic programs with distribution
semantics. In IN PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON
LOGIC PROGRAMMING, pages 715–729. MIT Press.

[Sato and Kameya, 2001] Sato, T. and Kameya, Y. (2001). Parameter learning of logic programs
for symbolic-statistical modeling. Journal of Artificial Intelligence Research, page 454.

[van Lamsweerde et al., 1998] van Lamsweerde, A., Darimont, R., and Letier, E. (1998). Managing
conflicts in goal-driven requirements engineering. IEEE Transactions on Software Engineering,
24:908–926.

[van Lamsweerde and Letier, 2000] van Lamsweerde, A. and Letier, E. (2000). Handling obstacles
in goal-oriented requirements engineering.

[van Lamsweerde and Willemet, 1998] van Lamsweerde, A. and Willemet, L. (1998). Inferring
declarative requirements specifications from operational scenarios. IEEE Transactions on Soft-
ware Engineering, 24:1089–1114.

70

	Introduction
	Background
	Logic and Logic Programming
	Inductive Logic Programming and Probabilistic ILP
	Distribution Semantics
	Stochastic Logic Programs and Their Semantics
	Polynomials

	I ProbPoly - a new PILP framework
	Related Work in (Probabilistic) Inductive Logic Programming
	TopLog
	Top Directed Hypothesis Derivation
	Mode Declariations and Hypothesis Generation
	Obtaining a Final Theory

	Stochastic Logic Program Learning
	ProbFOIL - a PILP system in ProbLog
	ProbLog
	ProbFOIL

	ProbPoly
	A Simple Score for Probabilistic Facts in TopLog
	A Probabilistic Hypothesis Interpreter
	Learning SLPs in ProbPoly
	Non-recursive SLPs
	Recursive SLPs
	Negation as Failure
	Multiple Clauses
	True/False Positive/Negatives in SLPs

	Conclusions

	Implementation
	The MatLab Package Interface
	PSOpt
	Architecture
	The Impact of Negation as Failure

	II Towards Learning Probabilistic Requirements
	Related Work in Learning Requirements
	Learning Requirements using ILP and Model Checking
	Connectionist Systems for Learning Requirements
	Automated Verification of Systems using L*
	The L* Algorithm
	The Original Framework
	Verification in a Probabilistic Context

	The KAOS framework and related methods
	Introduction and Inference of Requirements Specifications from Scenarios
	Conflicts and Obstacles in Goal-Driven Requirements Engineering
	LTS synthesis based on End-User Scenarios

	The I* Approach

	Modelling and Verification. Probabilistic Model Checking.
	Probabilistic Model Checking. PRISM.
	Learning A Simple Discrete Time Markov Chain
	Conclusions

	Future Work
	Conlcusions
	Code Listings

