Reconfigurable Message Traffic Filters
MEng Individual Project

Deryck Arnold (daa07)
Imperial College London
CID: 00469268

Supervisors:
Professor Alexander L. Wolf
Professor Wayne Luk






Abstract

In this report we discuss the problem of string matching performance in content-based routing.
We go on to describe and evaluate designs for reconfigurable hardware such as field-programmable
gate arrays (FPGAs) that can be applied to solving this problem.

The hardware designs presented in this project are estimated to give a 37 times speed up and
370 times power efficiency increase when running on a Xilinx Virtex6 FPGA over equivalent C
implementations on a 2.40GHz dual-core Intel Core i3 processor.

We present a highly-extensible compiler tool that can convert abstract content-based forwarding
rules into such designs for processing by further tools into working FPGA images.

Finally we discuss the potential applications and future developments of the work covered in
this project.
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Introduction

Since the conception of the internet, networked traffic over various protocols has been increasing
dramatically, increasing the pressure on the systems that process and route this traffic to do so
in a timely manner.

One such class of systems would be those involved in filtering out unwanted traffic, called network
intrusion detection systems, or NIDS for short. An analysis of the popular SNORT NIDS showed
that string matching was one of the major contributors to overall execution time, with 31% for 8.6
million packets totalling more than one gigabyte of network data spent on string matching [12]. It
is for this reason that there have been many studies in increasing string matching efficiency, with
many focussing on exploiting the unique nature of hardware over software [22, 19, 16, 4, 5, 12].

Hardware implementations are known to be faster than equivalent software implementations
for a variety of applications. This is due to the differing methods of operation [10]. One one side
of the scale there are application specific integrated circuits (ASICs) that are designed specifically
to solve a specific problem, however should that problem change, the chip needs to be redesigned
and refabricated. A more flexible approach on the other side of the scale is a standard micro-
processor that executes software instructions. By changing the instructions, a wide variety of
functionalities can be supported without requiring changes to the hardware itself. However, be-
cause this microprocessor is required to look up instructions and decode them before ultimately
executing them, operation can be much slower than a dedicated ASIC for the same task. In
the gap between the two types exists the area of reconfigurable computing. Devices such as
field-programmable gate arrays (FPGAs) can be configured to exhibit different behaviours by
programming the logic blocks that they consist of [3]. The flexibility and performance of recon-
figurable computing makes it attractive for string searching, and in this paper we will be looking
to apply such techniques to a different, but similar area: content-based routing.

Content-based communication is a relatively new area, where messages sent over a content-
based network aren’t routed based on a destination address, but rather by their content [8, 6].
It is typically implemented as an overlay network in the application layer, and like NIDS, there
is emphasis on increasing the efficiency of routing through this network.

One such implementation that focussed on increasing the efficiency of forwarding messages

through a content-based network would be the Siena Fast Forwarding (SFF) algorithm. It
presented a novel approach to forwarding by preprocessing messages to reduce overall processing
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time of the message, as well as other optimisations in areas such as string matching [7].

In this report we focus on possible hardware designs that can increase the performance of content-
based routing of messages with arbitrary string tags. We move onto the automatic generation of
these designs, both in software and hardware. This moves the responsibility of converting rules
from the user of the system to a compiler. In doing so, this reduces the number of errors that
can be introduced by building a design by hand and opens the rule synthesising process up to
optimisation.

Results from FPGA synthesis tools of outputted hardware designs estimate speedups to be,
on average, 30 times faster than equivalent software implementations. While static designs are
the focus of this project, through the automation of design production, prototypes may be gen-
erated quickly, providing the framework for future development in the field, capitalising on the
substantial performance gains hardware can provide over software.

One possible application identified by this project involves using the design processes and software
devised here for just-in-time (JIT) extensions of existing algorithm implementations such as SFF.
Another extension to this project discusses exploring the use of the software compiler to generate
configuration data for a self-reconfiguring hardware implementation. A self-reconfiguring design
would fully exploit the highly reconfigurable nature of FPGAs, giving such an implementation
an edge over an equivalent, but possibly faster ASIC design.

In summary, the contributions of this work are:

e High-performance hardware designs and techiniques for content-based multi-operator string
matching in messages. Estimates put the speedup at 37 times and power-efficiency of 370
times using a Xilinx Virtex6 FPGA over equivalent software running on a 2.40GHz dual-
core Intel Core i3. [Section 3.3]

e Abstraction of intent from implementation, utilizing the following two methods:

— An easy-to-use language, simple-string forwarding rules (SSFR), to specify tag-based
message filters. [Section 3.5.2]

— An extensible compilation framework that can translate SSFR into targeted hardware
and software designs that are self-validating. [Section 3.5.5]

We will begin by setting the scene in part 2 with related background research. In part 3, we will
lay the groundwork of the model and assumptions before describing the work undertaken. Part
4 covers the test setup and results of benchmarking equivalent software implementations against
hardware designs. Finally, we discuss the benefits and disadvantages of our implementation, as
well as future paths that could be explored in part 5.
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Related Work

Much work has been done in the fields of content-based networking, string matching and hard-
ware acceleration of string matching. In order to put our work into context, we will summarise
related work in these fields in this chapter.

We will touch on the concept of content-based networking, before moving on to string matching
in software and how equivalent hardware representations have been implemented. Finally, we
will cover the exciting topic of reconfigurable hardware and what advances have been made in
the field.

2. RELATED WORK 5 Reconfigurable Message Traffic Filters



2.1. CONTENT-BASED NETWORKING AND FORWARDING

2.1 Content-Based Networking and Forwarding

A content-based network differs to the traditional IP network (though it may be built on top of
one) in that nodes aren’t assigned unique network addresses. Instead, each node advertises a
recetver predicate, or r-predicate, which specifies what messages sent over the network the node
is interested in receiving [8]. An r-predicate doesn’t necessarily correspond to what the node
itself is interested in, but rather the node, may be part of a path to a node that is ultimately
interested in messages matching the r-predicate. This allows messages to be routed through a
network from various publishers to interested subscribers without requiring knowledge about the
individual subscribers themselves, just their interests which are propagated through the network.
The following is an example of an r-predicate:

first = john A last = smith V first = mary A title = mrs. V title = sir

Each routing node would maintain a set, or forwarding table of these r-predicates associated
with each interface it can forward messages to. If an incoming message matches an r-predicate
stored in this table, it is forwarded to the interface the predicate is associated with. Thus, this
forwarding function can be represented as the following [6]:

forward(m) = {i € I : m matches FwdTable(i)} where FwdTable : I — P

With large numbers of subscribers, these forwarding tables can get quite large, which can increase
filtering and forwarding speed [8]. Therefore emphasis is placed on reducing the size of these
forwarding tables, increasing the efficiency of the forwarding function and reducing the amount
of unecessary traffic flowing through routers [6]. This is where we move onto implementations
such as SFF, that will be discussed in 2.1.1.

2.1.1 Siena Fast Forwarding (SFF)

SFF was designed for fast forwarding of messages in a content based network. It was in particular
designed to scale well to situations where there are large numbers of complex predicate filters
and high volumes of messages being generated by content publishers [7].

For a particular message, not all the forwarding rules needed to be applied, as some can be
filtered out in an initial pre-processing step. Interfaces whose r-predicate attributes are not
found in a particular message can be ignored, therefore reducing the additional computation
that would have otherwise be spent on filtering on the interface’s constraints. This preprocessing
step can be performed a number of rounds, with the potential to remove an interface each round,
however the number of rounds performed is dependent on the benefit attained against the time
cost of the preprocessing itself. The higher the number of constraints, the more benefit is gained
from a large number of preprocessing rounds [7].

SFF uses a modified version of a ternary search tree (TST) to store search patterns and op-
erators. Each node in a TST is comprised of a partitioning value, such as a character in a search
string, as well as three pointers to further nodes in the TST. These pointers correspond to the
less-than, equals and greater-than operators on this partitioning value [2].

The SFF implementation uses the same structure as the standard TST with the following ex-
tensions:

e Multi-operator index for matching multiple operators.
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e Capability of matching partial strings for the prefix and substring operators.
e Greater than and less than constraints at TST leaf nodes are linked.

e Backtrack functions to transition between a partial match to the next closest complete
match.

To match the substring and suffix operators, the TST search is performed starting at each
character of an input string, with the prefix, equality, greater than and less than operator matches
disabled past the first character [7].

2.1.2 Content-Based Matching using GPUs

A recent implementation of a content-based forwarder involved using CUDA to exploit the highly
parallel nature of GPUs [15]. In a similar way to SFF, filters for the CUDA Content-based
Matcher (CCM) are composed of constraints. In this particular implementation the constraints
are not stored in CPU memory but instead in the GPU memory. The CPU selects constraints
to filter on for a particular message and copies this data to the GPU, which spawns thousands
of threads to perform the matching process. After this process, the vector of interface matches
is copied back into the CPU memory space.

The results from this showed that the CCM implementation achieved up to a thirteen times
speed up from a software SFF implementation running on a six-core CPU. The results give a
good idea of the potential benefits that can be obtained from parallelising the matching process
in content-based forwarding.
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2.2. STRING MATCHING - SOFTWARE TO HARDWARE

2.2 String Matching - Software to Hardware

Much work has been done in the field of string matching in both software and hardware. Because
our filters are built from predicates over arbitrary string tags, we will cover a few methods of
string searching in this section.

We will first cover simple methods of string searching in software, and how they have been
implemented in hardware in order to give some background into the translation of software
algorithms into hardware.

2.2.1 Brute-Force (BF) Approach

The simplest and possibly the most obvious way of matching a string pattern P of length m in
search text S of length n would be to use the brute-force method.

BF in Software

Searching for P involves starting a fresh search at every index of S until a full match is found.
This is shown in Listing 1.

Listing 1 BF algorithm
fori:=0ton—1do
for j :=0tom do
if j = m then

return match;
end if
if (i+7) =n or S[i + j] # P[j] then
break;
end if
end for
end for
return no match;

Due to the excess of character comparisons, for an arbitrary P of length m and arbitrary S of
length n the worst-case time complexity is O(mn), which is quite slow [9].

BF in Hardware

The BF method can be implemented on hardware as simple discrete comparators [11, 22] as
shown in Figure 2.2. This method allows matching of the full search string each cycle, with
character comparisons done in parallel. This results in high-performance, but with an increased
area cost on-chip [11]. We will further discuss the topic in 2.3 as it warrants more attention.

2.2.2 Knuth-Morris-Pratt (KMP)

The Knuth-Morris-Pratt algorithm is one of the most well known string-matching algorithms
and was devised for fast matching of single-pattern strings. The worst case time complexity
searching for an arbitrary P of length m and arbitrary S of length n becomes O(m + n) when
using KMP [9]. Its string matching procedure is represented as pseudo code [14] in Listing 2.
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Listing 2 KMP pattern matching algorithm
J=1
k:=0;
while j <m and k < n do
while j > 0 and S[k] # P[j — 1] do
J = next[jl;
end while
end while
if j = m then
return match;
else
return no match;

end if

This procedure relies on a precompiled table called next that references the next state to jump
to at j if a character does not match. If we take an example where P = “abac”’ we can compile
P into a set of j and next[j] states as shown in Table 2.1.

To match | nextlj]

=W N = O,
o 2 o

N O = O

Table 2.1: KMP table for “abac”

This can be represented as a finite state machine (FSM) as shown in Figure 2.1.

—— — —
v//f _Ia_“'a el ¢
Fon — N ' - _—
' :'.f‘ ) cyb—{}ﬁ gy E——-
—p—"
"-—-..__\_ . la_— ____,-o—""'

Figure 2.1: KMP Finite State Machine for “abac”

There have been several implementations of KMP in hardware in the past, one of which is
particularly interesting to us, as it takes advantage of the reconfigurable nature of the FPGA
considerably. It will be discussed in 2.4.
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2.3 Content-Addressable Memory (CAM)

In typical RAM, data is mapped with addresses, requiring the user to supply an address to
retrieve data. This is in contrast to content-addressable memory, or CAM, where the data is
supplied, resulting in an address [16]. This CAM search is typically performed in one clock cy-
cle, which makes it an ideal solution to bandwidth-heavy applications such as network intrusion
detection systems (NIDS) [4].

One of the downsides of the CAM design is its high power consumption. This is due to its
highly parallel nature, requiring a large amount of circuitry to be active every cycle, however
pipelining techniques can reduce this [17, 18].

2.3.1 Simple CAM Comparator Architecture

The simple CAM architecture as shown in Figure 2.2(a) shifts the input data through registers,
the outputs of which are distributed amongst pattern comparators. This results in a regular
pattern that can achieve high operating frequencies [11].

However, one of the main downsides of this design is the area cost, but this can be improved

by combining shared characters at the same index into one comparator, as illustrated in Figure
2.2(b).

b e |
8-bit wide shift u

registers \/
input 4’{ inputgf{ ‘ ‘

match “and”

-
—H

match “ann” match “ann”

| N a

v v L 4

(a) Simple CAM comparator (b) More area-efficient CAM comparator

Figure 2.2: Simple CAM comparator

2.3.2 Decoded CAM (DCAM)

Another CAM comparator design is the DCAM comparator [22], where the input shift registers
are removed, and comparators are fully shared by the AND gates. Extra registers are placed be-
tween the comparators and the AND gates to ensure partial matches are delayed appropriately.
This is illustrated in Figure 2.3.

The new registers used to delay the match signals are only one bit wide, in contrast to the
original input shift registers which were eight bits wide. This can result in massive area sav-
ings [22, 11] when coupled with the fact that fewer comparators are required to match the same
patterns if they share characters.
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2.3. CONTENT-ADDRESSABLE MEMORY (CAM)

input » 1-bit wide shift
decoder’J—‘_‘_\_‘—L‘a PP register

match “abc”

N—c -
I — &

match “hbd”

match “ann”

Pl

Figure 2.3: DCAM comparator

However one drawback is that the number of one-bit registers is proportional to the length and
number of the match patterns. This means should either grow too large, the area of the one-bit
registers may exceed the area of the eight-bit registers used in the simple design [22, 11].

2.3.3 Decoded Partial CAM (DpCAM)

Another variant of DCAM is decoded partial CAM, or DpCAM. This is where characters are
decoded in parallel to increase the processing throughput [11]. In a DpCAM with a parallelism
factor of two, two characters would be processed per cycle, requiring two decoders, one for each
character. Due to the extra decoder, a balance must be found between parallelism and area cost.

2.3.4 Ternary CAM (TCAM)

Up to this point, we have only been discussing binary CAM, where each character is represented
as a sequence of 0/1 bits. There is another variant, called ternary CAM where a third bit (we
will use X to represent it) is added that stands for don’t care [18, 5, 16]. Table 2.2 is a truth
table for the three types of values.

CAM Data | Input Data | Match
0 0 1
0 1 0
1 0 0
1 1 1
X 0 1
X 1 1

Table 2.2: Truth table for TCAM bit states

This would effectively allow wildcard characters to be implemented if we were to use TCAM for
string searching. The downside to this, however, is the the extra logic required to represent the
don’t care state. Another potential downside is that there can potentially be multiple matches
for a given input, which would require some sort of prioritisation by an encoder the TCAM
comparator would be fed into [16].
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2.4 Reconfigurable Hardware

Reconfigurable hardware is consists of configurable logic that is determined by data written into
configuration memory, which is typically SRAM. This allows the device logic to be changed by
modifying the data stored in the configuration memory.

Devices such as field-programmable gate arrays (FPGAs) are examples of reconfigurable hard-
ware, and it is this reconfigurability that gives them an advantage over application-specifc inte-
grated circuits (ASICs) for some applications.

This reconfigurability can be exploited at compile-time, i.e. before the device is operational,
but to gain the full effectiveness of this paradigm, reconfiguration can be done at run-time. This
allows the device to be configured with logic specific to the particular problem at hand. This is
known as instance-specific logic [21].

In order to take advantage of the increased execution performance from problem-specific logic,
reconfiguration must be performed in a timely fashion. Typically reconfiguration is performed by
an external device both at compile-time and run-time, which is a relatively slow process [20, 21].
In [21], Sidhu et al. discusses reconfiguration via an external device (Figure 2.4(a)) and self-
reconfiguration by the FPGA itself (Figure 2.4(b)).

.rr,- Problem ¢~ Prablem
L. instance L instance

e —— y " — h A
| 3 Map | | Map |
| o = problemto | ! TH i problem te | |
(- ,5_‘{ logic : ! | logic |
L __ ___ | '
| |
I I
Reconfigure T | Reconfigure | |
device ME device |
| |
| I ' :
s ) | = )
| Execute logic | Execute logic
I E I TE | E :
|- l '
L 1!, ___ O ____J-__ 1
-:r/_ Cutpist |'/_ Output |
a) External reconfiguration b Self-reconfiguration

Figure 2.4: Process flow for FPGA reconfiguration
The total time from receiving a problem instance to outputting a solution (77) is the sum of the
time it takes to map the problem to logic (T7), the time it takes to reconfigure the device (Ths)

and the time it takes to execute the logic (Tg).

Ty varies depending on the application and can range from minutes to several days, however it
is usually quite large, which can limit the effectiveness of reconfigurable computing [21]. Meth-
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ods have been tried to reduce this problem, such as using CAD tools offline to create a generic
template skeleton that is partially reconfigured at run time [13]. There is still the issue of Ty g
in this case if the partial reconfiguration is performed off-chip, as this is generally associated with
the speed of the connection between the host and the FPGA, as the delay may be too long for
most real-time applications. This can be overcome through self-reconfiguration on chip.

Following on from 2.2.2, there have been several implementations of the KMP algorithm utilising
self-reconfiguration. One implementation was based on calculating the KMP pattern FSM and
storing the state table on internal block RAM [19]. It used an embedded soft-core processor to
perform calculation of the various FSM states for string matching, and dedicated KMP logic to
process text based on the FSM states stored in memory.

Another implementation exploited using multiple contexts to achieve self-reconfiguration [21].

The FPGA would switch between contexts in order to calculate the KMP FSM and dedicated
logic and to perform the actual string searching.
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Accelerating Matching

The initial implementations focussed primarily on attaining a working Verilog prototype im-
plementation. These are covered in section 3.3. Alongside the Verilog, an equivalent software
implementation written in C was devised, which is described in section 3.4. The implementations
were developed on the assumptions and model outlined in section 3.1, and the predicate language
defined in section 3.2.

The choice of C as the software implementation language was primarily down to the low-level
nature of the language. Since C does not come with any built-in garbage collection, or any other
unpredictable sources of overhead, benchmarks can be more representative of the capabilities of
software.

For small sets of forwarding rules, this was adequate, as code can be translated easily by hand
from a rule specification. However for larger sets, writing the source code for forwarding rules
can be potentially time-consuming and error-prone. The solution was to implement a compiler
that could generate a software or hardware representation from a forwarding rule specification
input. The design of the compiler written is detailed in 3.5.
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3.1. NODE AND MESSAGE MODEL

3.1 Node and Message Model

In order to focus on the problem of implementing forwarding logic on hardware, it was important
to have a well-defined model with which we could base our solution on.

A general content based network is made up of many interconnected nodes. Each participant
node maintains a set of routing, or forwarding rules to forward messages from one point of the
network to another. The network may not be fully connected, so paths from any two nodes may
run through intermediate nodes.

For the purpose of this project, we have ignored the structure of the network, the process of
distributing forwarding rules between nodes and methods used to pass messages between nodes.
This left us with the local forwarding processes occurring at an individual, arbitrary node in an
arbitrary content-based network to form our model upon.

As described earlier, our model was based on an individual node within a network. A node
within this model is described to be made up of forwarding logic and a series of interfaces with
which the node communicates with the external network.

Node

i i Interfaces General Network
and forwarding logic

Figure 3.1: A simplified representation of a node
Messages are received on these interfaces and passed to the forwarding logic, which determines
the interface or interfaces to pass the message on to. We have assumed that messages received

are received whole, with clear distinctions between the components of a message.

The components that make up a particular message are simply modelled as string tags, which
are operated on by the forwarding logic using predicate rules described in the next section.
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3.2 Predicate Language

In our model, an interface is defined as a route to which a message may be forwarded to a node.
The routing logic for each interface is described as a disjunction of filter predicates. Each filter
is a conjunction of predicate terms, which are pairs of patterns and string operators. This is
similar to the SFF model, but with the omission of attribute keys and other datatypes. In order
to represent this model, we developed a predicate language that describes forwarding rules in
this environment in a concise manner.

To further describe this language, we will cover the different aspects in more detail in the following
subsections.

3.2.1 Operators

Table 3.1 describes the set of string operators we implemented in our predicate language. Here,
P stands for the corresponding pattern in a term, and T describes a tag in the message being
filtered. One important point of note is that though operators are represented as unary functions
in the forwarding rules, they operate over the term pattern P and every tag in a message in the
form of P is-op T.

Operator on P | True for string T if:
eq P is exactly equal to P
ss P is a substring of T'
pf P is a prefix of T
sf P is a suffix of T
It P is less than T'
gt P is greater than T’

Table 3.1: String operators implemented

The It and gt operators stand for lexicographically less than and lexicographically greater than.
This ordering is defined as the difference between the characters at the first offset into both
strings where characters are different. This means “aaaad” is less than “aaaba”, since the first
two different characters are “a” and “b”, and “a” is less than “b”. If one string is a prefix of
another, the shorter string is determined to be less than the longer string. Listing 3 shows the
operators in pseudocode format.
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Listing 3 > and < algorithm
for i := 0 to min(length(strl),length(str2) do
if (strl[i] — str2[i]) > 0 then
return strl > str2;
else if (strl[i] — str2[i]) < 0 then
return strl < str2;
end if
end for
if (length(strl) > length(str2)) then
return strl > str2;
else if (length(strl) < length(str2)) then
return strl < str2;
else

return strl = str2;
end if

3.2.2 Representation of Forwarding Rules

In Listing 4, a set of forwarding rules is described in the predicate language. The interfaces are
labelled as I; 5, with their filter definitions separated by logical ORs (V), made up of terms as
(operator, pattern) tuples, separated by logical ANDs (A).

Listing 4 A set of rules in the predicate language

I + ({eq, “john”) A {eq, “smith”}) V {eq, “sir”)

I + ((eq, smzth”) (eq, “mrs.”)) V {eq, “jane”)
I3 « (eq, “mr.”) V {egq, “sir”)

I « (ss, “james”) V ({pf, “mary”) A (sf, “bob”))
I5 « (It, “james”) V (gt, “mary”)

This may be made clearer as a table of forwarding rules in the form used by SFF. A forwarding
table for this set of rules is shown in Table 3.2.

3. ACCELERATING MATCHING 17 Reconfigurable Message Traffic Filters



3.2. PREDICATE LANGUAGE

Interface | Filter | Operator | Pattern
eq “john”
I i1 eq “smith”
fiz eq “sir”
eq “smith”
1'2 f2,1 eq “mrs.”
f2.2 eq “jane”
I fa1 eq “WT~”
f3.2 €q “sir”
I Jan 58 “james”
143 79
Fis pf mar;{
’ sf “bob
I J51 It “james”
f5.2 gt “mary”

Table 3.2: Forwarding table

Here, it is clear that interface I3 is composed of a disjunction between two filters, f5 1, which is
a conjunction of (egq, “smith”) A (eq, “mrs.”) and f; o, which is described as (eq, “jane”).

3. ACCELERATING MATCHING
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3.3 Hardware Design Implementations

Several iterations of hardware design were tried to find one that could implement all the desired
operators in our predicate language. Emphasis was also placed on a regular design that would
be simple enough to be generated from a forwarding rule specification.

3.3.1 CAM Design

The initial approach was a simple CAM design of a set of forwarding rules. The eq, pf operators
could easily be represented by a series of 8-bit comparators on each character of a pattern. The
It and gt operators were not considered at this stage as the mechanics of these operators are
different to the other operators.

Characters from an input message tag would be shifted into a buffer the length of the largest
pattern in the forwarding rule set plus one in bytes. If the tag was shorter than the shift buffer,
the additional length would be padded with zero bytes.

The eq operator was implemented as an AND logic gate over the series of comparators for
the pattern it was operating on. To prevent false-positives from partial matches, the positions in
the input shift buffer after the length of the pattern were compared against zero bytes, to ensure
that the input tag had ended. Figure 3.2 illustrates how this was done.

tag input reset
‘ ‘ ‘ ‘ ‘ ‘ Once set, these registers
stay high until reset

enable

!

match |;

match |,

) >-

fl,Z
fa D match I3

Figure 3.2: Simple CAM comparator implementation

The pf operator was implemented in the same manner as the eq operator, however no characters
in the input buffer past the length of the pattern were compared.

The results from these comparisons were saved in 1-bit registers that were only reset per message.

This tracked the state of which terms had matched in a particular filter, which were represented
as AND logic gates over their corresponding registers. Interfaces were represented as OR logic
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gates over their corresponding filters.

Because of the simplicity of the design, it was very regular. Additional interfaces could be
added with extra OR, gates over AND gate filters, with additional terms as extra 8-bit compara-
tors.

However for larger or more diverse sets of rules, many comparators would need to be used.
This is because each term used its own set of comparators, which could potentially increase the
total area cost. The sf and ss operators weren’t very well suited to this design, as comparisons
only occurred once the whole tag was shifted into the buffer.

3.3.2 DCAM Design

To solve the problem inherent to the simple CAM design, a decoded CAM (DCAM) design was
pursued. This reduced the number of 8-bit comparators in the design to the number of distinct
characters found in all patterns. Figure 3.3 shows the comparators and shift registers for the
DCAM version of the simple CAM design in Figure 3.2.

—

input

L n o] r

N\ L7
- AAEaER

Figure 3.3: DCAM comparators and shift registers

"

Each input character from a tag is shifted into a single register that forms the input to the
multiple 8-bit character comparators. Results from the comparators are passed through 1-bit
shift registers. The start and end of a message tag are indicated via separate 1-bit inputs into
the design. Terms are matched using AND gates on the outputs of the comparator shift registers
and on the tag start and tag end input wires.

Since comparisons occur while the input is shifted in, rather than once all the input has been
shifted in, which was the case with the simple CAM design, the ss operator is much easier to
implement with just a single AND logic gate.

The pf and sf operators are built on top of the ss operator output ANDed with, respectively,
the tag start input and tag end input. The eq operator is implemented by an AND gate on the
pf and sf outputs. Similar to the simple CAM design, the outputs of the operators are put into
registers that are only reset every message. Figure 3.4 shows the four operators on the word
“and.
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—
—TH -
— tag start o “and
] Bf "and"
— tag end o
imput | | J
] d n 4 5 and”
) D sf “and”

55 “and”

Figure 3.4: DCAM ss, pf, sf and eq implementation

3.3.3 Addition of the It and gt Operators

The designs discussed previously have all omitted the [t and gt operators. This is because while
the pf, ss, sf and eq operators just compare characters for equality, It and gt require less-than
and greater-than character comparisons respectively.

The lexicographical less-than and greater-than operators only take into account the first let-
ter difference between two strings. This requires the state to be tracked throughout matching,
which wasnt originally required for the earlier operators that were based purely on equality.
With equality, either all characters are equal to the comparison string or they arent, which can
be modelled with an AND logic gate and shift registers.

To overcome this problem, the greater-than and less-than state for a particular message tag
must be tracked for either operator. The DCAM design is extended with extra character com-
parators for the less-than and greater-than character operations. If either the [t or gt operator
is present for a particular pattern, for each distinct character in the pattern both less-than and
greater-than character comparators are added to the design.

Registers are then introduced to track whether the current tag is found to be less than or
greater than a search pattern. These introduce a delay of one clock cycle and allow the output
of a register to be controlled by the output of the opposite register. The less-than tag register
is set to high if any character in the incoming tag is found to be greater than (please note the
operator definition in 3.2.1) the corresponding character in the search pattern and the greater-
than tag register is not high. The converse occurs for the greater-than tag register. This ensures
that only the first different character is used for comparison, as once a difference is found, the
corresponding tag register blocks the opposite register from going high on subsequent differences.
These registers are reset for every new tag in a message, but their results are saved per message
in the same way the eq, ss, pf and sf results are saved.

To deal with the case where either the search pattern is a prefix of a message tag or a mes-
sage tag is a prefix of the search pattern, the tag end flag was incorporated into the greater than
operator logic. Should the tag end be encountered at an offset shorter than the search pattern
offset, and the less-than tag register isnt high, the greater-than tag register is brought high. Sim-
ilarly, if the tag end register isnt encountered by the end of the search pattern, the less-than tag
register is brought high, on the same condition that the greater-than tag register isnt already high.
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Because the [t and gt operators result in the addition of both less-than and greater-than char-
acter comparators, the equals character comparator for an included character can be elimi-
nated. Instead, the output of the equals comparator can be simulated using the less-than and
greater-than character comparators with not gates at their output. This models the condition
—“(a<b)A=(a>b)<>a=0.
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3.4 C Implementation

So we could contrast the difference between a software implementation and a hardware imple-
mentation on equal ground, we developed filtering software in C alongside the Verilog designs.

The C implementation involves building a ternary search tree (T'ST) to represent all the search
patterns in the rule set specified. The operators on each search pattern are then linked into the
tree before the tree is flattened into a finite state machine (FSM) representation.

The FSM is transitioned through the use of goto statements. To match the ss and sf operators,
the FSM is wrapped inside a loop, starting the search at every character of an input tag. After
the first character, the pf, eq, It and gt operators are ignored to prevent false positives occurring.

Filters are implemented as integers. Each term in a filter is assigned a bit offset into the filter
integer, which is toggled should the term be satisfied. Once each tag of a message has been
processed, interfaces are selected based on the filters that are true.

The forwarding function is inherently thread-safe, allowing it to be utilised by all the cores
on a multi-core CPU independently. This is down to the following reasons:

e The memory for each filter is allocated on the stack by the forwarding function.

e The responsibility for the allocation of memory for the interface match vector is delegated
to the thread using the forwarding function.

e No shared memory is required by the forwarding function to represent search strings as all
the required data is serialised into the FSM code.
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3.5 Automating Design Generation

To fully evaluate the capabilities of a hardware implementation of a forwarding rule specifica-
tion, it is necessary to have many sets of Verilog designs and equivalent C implementations.
This allowed the collection of enough data to compare the benefits and drawbacks of a hardware
implementation over a software implementation.

However, creating Verilog designs can be time consuming and possibly error-prone, due to the
low-level nature of the language and the inherent difficulty of debugging hardware. In order to
address this problem, an automated method of generating designs from a set of forwarding rules
was required.

The solution was a compiler that could take a set of rules as input and output both Verilog
designs and equivalent designs in C. This section will cover the various aspects of this software.

3.5.1 Compiler Overview

The compiler was designed to be modular, decoupling components into two main sections; the
frontend and backend. A frontend parses rules and passes them in an intermediate representation
to a backend to be converted into a usable output. Input can be taken from either the standard
input stream or from the filesystem. Output can also either be directed to the standard output
stream or to a file on the filesystem. This allows the compiler to be used interactively.

Verilag
| | | | Source
| | I e
| | [ |
SSFR | | Forwarding Rules |\, | —
Data B I p— | I
| | | C
\4& 2 S ggsmiTn, .. [ | | Source
{
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|
- |
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Test
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Frontend Intermedlate Backend
Data

Reprasentation

Figure 3.5: Overview of the compiler

The language chosen for the compiler was D, developed by Digtal Mars. The reasons behind the
choice is because D is:

e A multi-paradigm language, so supports object-oriented, functional and imperative pro-
gramming methods.

e A system programming language, designed for standalone applications.
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e Compiled, offering good performance, but still platform-agnostic.

e High-level, providing advanced features such as automatic garbage collection, delegates and
closure, allowing for concise intent-driven code.

The following subsections will discuss the key aspects of the compiler shown in Figure 3.5 in
further detail.
Intermediate Representation

To pass forwarding rule specifications from frontend to backend, a suitable data structure was
needed, both to ease the processing burden on backend modules and to reduce the memory
footprint. To do this, forwarding rules are split into several sets:

e A map of all string patterns in the rules to all the operators that affect the patterns.

e A set of terms used throughout the forwarding rule specification.

e A set of filters used throughout the forwarding rule specification as collections of terms.
e A map of interface names to collections of filters that comprise the interface rules.

Each element in a set is identified by their properties. For example, a filter would be deemed
as equal to another if their collections of terms were equal. This was a simple way of reducing
the amount of potential code duplication that could occur in the backend modules should two
identical filters be treated as separate.

Frontend

Two frontend modules were implemented. The first module can parse simple string forwarding
rules (SSFR) described in 3.5.2 into a forwarding rule specification. The second module can
parse a word list and generate a forwarding rule specification based on user input parameters.
Parameters cover the number of interfaces, the number of filters per interface, the number of
terms per filter and the word lengths used, as well as distinct filter, term and word counts.

Backend

Four backends were implemented to convert the forwarding rule specifications passed to them
into the following outputs:

e C source code.

e Verilog source code.

e SSFR data.

e Test message data in comma-separated value (CSV) format.

The test message data frontend can generate test message data to target filters in the forwarding
rule specification passed to it, or it can generate a set of random messages to check for false-
positives.

Both the Verilog and C source code frontends can take a test message file generated previ-
ously and include test bed data in their output to validate the designs against a set of generated
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test cases.

The SSFR backend was included to provide an output for the rule-generator frontend, however
rules can be generated straight to source code if desired.

3.5.2 Rule Format

The simple string forwarding rule (SSFR) language was designed to be as close to the predicate
language described in 3.2, but also to be simple to parse. The Backus-Naur Form (BNF) syntax
of the rules are given in Listing 5.

Listing 5 BNF syntax of SSFR

(rule) = (ident) ‘2 (filter) {’|” (filter)} ¢}’
(filter) == (term) {*,” (term)}

(term) ::= (op) (string)

(ident) == (‘a’..'z’ | ‘A7 | ‘0.9 | )+
(string) =" (/* all letters except ‘"’ */)+ <"’

The forwarding rules presented as a set of predicate rules in Listing 4 in 3.2.2 can be represented
in SSFR as shown in Listing 6. There is no need to include any brackets in SSFR since rules can
only be disjunctions of filters and filters can only be conjunctions of terms.

Listing 6 SSFR representation of Listing 4

il : eq"john", eq"smith" | eq"sir";

i2 : eq"smith", eq"mrs." | eq"jane";
i3 : eq"mr." | eq"sir";
i4 : ss"james" | pf"mary", sf"bob";

i5 : 1t"james" | gt'"mary";

3.5.3 Validation of Compiler Output

One of the most important processes in any implementation of a compiler is to ensure that the
output of the compiler is correct with regards to the input. This was achieved initially with the
introduction of static test harnesses that imported the output code of small hand-written rule
sets. Each filter in a rule was tested on a case-by-case basis, with hand-written sample messages.

While this approach was acceptable for small examples, it was impractical as rule set sizes in-
creased. In particular, it could not evaluate whether larger rule sizes could cause problems in the
generated code due to possible interactions between the portions of generated code for each term.

The design of the automated compiler presented a solution to the problem. By leveraging the
automatic code generation facilities provided by the compiler, test cases can be developed by a
specialised backend. The intermediate representation of rules sets are parsed into message data
targeted towards specific filters.
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The message data is then included in the code generation processes of the C and Verilog source
code frontends. The frontends evaluate each test message and produce a set of test cases with
expected results. These test cases are then packaged into either a main function for the C imple-
mentation, or a separate test bench module for the Verilog implementation, and included with
the forwarding logic.

This automatic test case generation, coupled with the forwarding rule generator frontend de-
tailed in 3.5.1, allowed multiple tests to be run with many diverse sets of test cases to ensure the
validity of both the C and Verilog forwarding logic.

3.5.4 The Users Perspective

Care was given to providing an easy-to-use user interface. The user is expected to provide input
as program arguments when invoking the compiler. The types of options required depend on the
frontend and backend used, but the basic syntax is:

[./Jcompiler[.exe] <input file> <output file> [OPTIONS]

The <input file> and <output file> arguments are required to be in the form of a filename,
with a valid extension supported by the compiler, or in the form of -<extension>. If the latter
form is presented in place of <input file>, then the standard input stream will be read, with
the frontend that handles <extension> file types parsing the input. If -<extension> is used for
the output file, then output will be written to the standard out stream, in the format selected
by <extension>. Valid file extensions are listed in Table 3.3.

Extension | Input/Ouput Type
c Output C source code.
data Output Test message data in CSV format, one message per line.
dict Input Dictionary word list, one word per line.
ssfr Both SSFR rules.
v Output Verilog source code.

Table 3.3: Options for the Verilog and C source code backends

The following invokes the compiler to process the SSFR file rules.ssfr as input and to output
Verilog source code to the standard out stream.

compiler rules.ssfr -v

When generating source code, an instance name is required to prefix function or variable names
in the code. This is usually inferred by the <output file>, but when outputting to the standard
out stream, such as in the previous case, an instance name must be provided manually as an
option. Table 3.4 lists the possible options for the C and Verilog code generator backends.

Flag | Req. | Args Description

-iname | YES* | 1 arg | Instance name to use (* may be be inferred).
-tb NO 1 arg Generate test bed code using file.
-nh NO | 0 args Do not generate header file (C only).

Table 3.4: Options for the Verilog and C source code backends
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As mentioned previously in section 3.5.1, the compiler comes with a forwarding rule generator
frontend. This reads a word list as its input and generates a set of forwarding rules, based on
the parameters the user provides. The available options are specified in Table 3.5.

Flag | Req. | Args Description

-fc NO | 1 arg Maximum unique filter count (default: no bound).

-fpr | YES | 2 args Minimum/maximum filters per rule/interface.

-op | YES | 1arg | Use given operator in SSFR format (may be used multiple times).
-rc | YES | 1arg Rule/interface count.

-rgs NO 1 arg Random seed to use for rule generation.

-tc NO 1 arg Maximum unique term count (default: max unique words).
-tpf | YES | 2 args Minimum/maximum terms per filter.

-wce NO 1 arg | Maximum unique word count (default: number of words available).
-wl YES | 2 args Minimum /maximum word length.

Table 3.5: Options for the dictionary rule generator frontend

3.5.5 The Developers Perspective

The extensibility of the compiler is one of the major features of the software. Custom input or
output languages, formats or generators can be added easily, so long as they are based around the
concept of forwarding rules. While the compiler software is documented with in-line comments,
to further ease the process of understanding, we will cover portions of the software in more detail.

Specifying User Input

The compiler framework was structured to be data-driven. Each frontend or backend can be
configured via the command-line by defining a set of possible configuration options, which may
be empty. These cover:

e Whether or not the configuration option is required.
e The number of arguments required for the option.

e How many times the option can be specified on the command line.

A user-friendly description of the option.

A delegate to handle the option if it is encountered. This can exploit closure to set instance-
variables within the frontend or backend.

A frontend or backend must also provide the file type they operate on, which allows for automatic
selection of the frontend or backend based on the file types encountered by the framework. The
compiler framework takes the option specifications of the selected frontend and backend and
processes command-line options using these specifications automatically, alerting the user to any
problems found.

Internal Structure

Listing 7 describes the elements used in the intermediate data structure to represent forwarding
rules. The Filter and Rule data structures are parameterised templates that contain a arrays
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of elements they are concerned with. The Filter structure contains pointers to all the Term
objects comprising the forwarding filter, whereas the Rule structure contains all the filters that
comprise the filtering rule.

Listing 7 Intermediate data structure members

string -> Operators : patterns
HashSet<Term> : terms

HashSet<Filter> : filters
HashSet<Rules> : rules

string -> Rule : interfaces

One aspect that may raise questions is the separation between Rules and interfaces. As men-
tioned in section 3.5.1, this serves a dual purpose. The use of HashSets to hold the interface
rule definitions means any duplicate interfaces are not replicated in memory. The interfaces
that do share the same rule will point to the same interface in this intermediate representa-
tion structure. This approach is taken with the filters in the forwarding rule set. Only one copy
of each distinct feature, no matter which interface(s) they belong to, will be contained in memory.

The HashSet structure is a template type that provides methods to add, remove and check
for the occurrence of an element. HashSet elements are checked for equality through the use of
an overridable boolean method, which in the case of Term, Filter and Rule structures, is their
semantic forwarding rule definitions.

Through the use of HashSet structures to save memory, the compiler can be fairly scalable
for large rule sets. It has been tested with rule files exceeding 230,000 lines or 30MB with no
problems occurring, apart from needing to be terminated early as over 20GB of C source code
was produced. Compilation of a 256MB C file with the popular compilation suite, the GNU
Compiler Collection (GCC), caused an out-of-memory error.

Extending the Compiler

To implement a new frontend, the Parser interface must be inherited. The main method from
this interface that must be overridden is the parse(Scanner s) method. This takes an input
scanner that can read from multiple sources, but most importantly implements the readLine ()
method to obtain input line-by-line.

The only requirement for the frontend implementation is that it either returns a ForwardingTable,
which is the intermediate data structure, or throw a ParserException if anything goes wrong.
This allows for much flexibility in terms of how the parser operates, or what the input format is,
whilst still providing a concise and safe API to use.

On the other side, a backend may be implemented in one of two ways. The first is to inherit the
Backend interface and implement the generate (ForwardingTable t, OutputTarget output)
method and auxiliary configuration methods. The second is to inherit the CodeGenerator ab-
stract class, which implements the Backend interface, but adds utility methods to read test bed
data and provides default configuration options.
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The second method simplifies the work required to implement a code-generating backend, but
for data-generation purposes, for example, the plain Backend interface should suffice. Again, like
implementing a frontend, the API has been designed to be concise, but easy to use. Output is
controlled by calling open() on the OutputTarget passed to the generate method, which returns
a Writer that performs automatic indentation and allows output to be written to various sources.

As an addition to being able to input and output to files and the standard input or output
stream, additional Scanner and OutputTarget types allow input or output to text buffers. If the
framework was modified, or if a new framework was written, different stages could be pipelined
through the use of text buffers. This is a prime example of the utility of the overall codebase.
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Evaluation

To benchmark the performance of the hardware designs we covered in the previous chapter, we set
up a series of test cases. We leveraged the rule and test data generation facilities of the compiler
to generate equivalent C and Verilog implementations for increasing numbers of interfaces over
different sets of filters per interface and terms per filter. The test setup is described in section 4.1.

The C source code was compiled into executable format and run to obtain readings, but the
Verilog code was timed by specialised FPGA software provided by Xilinx. Per-message and per-
character timings were obtained. The factor of speedup was calculated, and auxiliary data such
as executable size and power requirements was collected. The analysis and graphs of this data
are presented in section 4.2.
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4.1 Test Setup

To benchmark both the software and hardware implementations, a series of test cases were set
up. Test cases were generated automatically using the compiler described in 3.5. The parameters
used with the generator are described in Table 4.1.

Name Description Range | Range Step
I The number of interfaces. 5-100 5
FPI The number of filters per interface. 5-20 5
TPF The number of terms per filter. 5-20 5
WL The length of words used in term patterns. 5 N/A

Table 4.1: Test case constraints

The total number of cases is the power set of all the values within range for range step of (I x
FPI x TPF x WL). The number of test messages for each test case is the product of (I x FPI),
as each message is targeted to each filter in the set of rules.

4.1.1 C Implementation

The C source code was compiled with the x86_amd64 version of the Microsoft Visual C/C++
compiler and linker (cl.exe) from the Microsoft Visual Studio 2010 (version 10.0) Ultimate
development suite. The default optimisation level was used, as increasing the optimisation level
dramatically increased compile time for the larger source code sizes.

The executables were run from a bash 2.03 for Windows session with all non-essential appli-
cations and power saving features disabled on the following machine setup:

e Asus U35JC Notebook.
e Microsoft Windows 7 Professional 64bit SP1 (Version 6.1.7601).
e Dual Core Intel(R) Core(TM) i3 CPU M 370 with Hyperthreading.

— 2.40 GHz clock speed.
— 2 x 256 KB L2 cache.
— 3 MB L3 cache.

e 4.00 GB 1066 MHz DDR3 SDRAM.
e 2.5”7 Seagate Momentus 5400 RPM 320 GB hard drive.
Timing was performed using the QueryPerformanceCounter and QueryPerformanceFrequency

Win32 API calls for high-resolution timing. The granularity of the timings for this particular

case was to the closest of a second. The timing was performed over one thousand runs

1
2408271
on each set of messages. For each test message, the forwarding function was called, followed by

I x if statements to check the result of each interface.
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4.1.2 Verilog Implementation

The Xilinx Virtex6 xc6vIx75t-ff484-3 FPGA was used as a target for all compilation and routing
of the source code. The Verilog source code was compiled, mapped, placed and routed using the
Xilinx 64bit ISE Design Tools 13.1 suite on Microsoft Windows 7 Professional 64bit. The steps
followed to obtain a fully placed and routed design for timing were:

e xst with the ~opt_mode Speed -opt_level 1 flags passed to the run command.
e ngdbuild with timing constraints of 12ns HIGH 50%.

e map with options ol std -t 1 -xt O -register_duplication off -r 4 -global_opt
off -mt 4 -detail -ir off -pr off -lc off -power off.

e par with options -mt 4 -ol std.

Minimum clock period timings and resource utilisation counts were then obtained from the final
report given by the par command.

In addition to placing and routing, power estimates were obtained by using the Xilinx XPower
command-line tool, xpwr, with the flag -0l std.
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4.2 Results

4.2.1 Per-character Timings

The C experimental readings were based on one thousand runs of multiple messages each. To
obtain the per-character timings, the readings were first divided by one thousand, and then di-
vided by the number of total characters in the set of messages. The result was then adjusted
from millisecond units to nanosecond units to be on par with the Verilog readings.

The top four graphs in Figure 4.1 give the per-character times of the C implementation. Con-
trasting the C timings with the Verilog timings in the bottom four graphis in Figure 4.1, one
obvious feature to note is the different scales used. While the C timings range from 75.2ns to
421ns, the Verilog timings range from 2.21ns to 12.3ns.

The huge difference in the times can be mainly attributed down to the properties of the DCAM
architecture used in the Verilog implementation. The C implementation reduced the number of
possible character comparisons through the use of trie structures, but due to its single-threaded
nature, only one character comparison can be performed at a time. In addition to the multiple
character comparisons, the C implementation compares each tag in a message multiple times
starting at each character of a tag to match the sf and ss operators. In contrast, the DCAM
architecture uses multiple character comparators in parallel. This results in multiple charac-
ter comparisons per clock cycle. As a consequence, each character in an input message is only
required to be processed once, as shift registers deal with offsets of characters in a tag.

4.2.2 Per-message Timings

For the C implementation, there are fixed costs involved with calling functions and initialising
variables. While the unit of processing for the Verilog forwarding function is an input character,
the unit of processing for the C forwarding function is a whole message. This means for every
message, these fixed costs are applied to the C implementations execution time, so there is a
need to provide timings per message.

To adjust the Verilog per-character cycle timings to per-message timings, each cycle time was
multiplied by the number of characters in a potential test message with the FPI and TPF con-
straints specified. The top four graphs in Figure 4.2 give the per-message times for the C imple-
mentation, which can be compared with the bottom four graphs of the Verilog per-message times.

The Verilog per-message timings start off quite constant, before increasing after around 50 in-
terfaces. This could be due to the placer choosing less-than optimal designs to reduce placement
time in large search spaces. This would explain why the results for the lower FPI and TPF
counts are flatter and have less variation. Further testing over larger data sets would be required
to confirm this. The placer would also need to be set to high effort level when selecting routings.

The C per-message timings appear to be more or less linear, with equal spacing between the
TPF tiers. There are several spikes, most notably where FPI is 15 and interface count is 35.
These spikes could be caused by the selection of terms used. Again, the linearity would need to
be confirmed by using larger rule sets.
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Figure 4.1: Per-character times with C above the line and Verilog below
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Figure 4.2: Per-message times with C above the line and Verilog below
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4.2.3 Speedup

The graphs in Figure 4.3 describe the speedups from the C implementations to the Verilog im-
plementations. The speedup was calculated using the per-character times for the Verilog and C
benchmarks. The average speed up across all the ranges is 37.7 times, but higher numbers of
filters yield more speedup.

The data becomes slightly erratic past 50 interfaces. This is possibly due to the Verilog tim-
ings becoming inconsistent as the design sizes increase. Spikes can also be caused by the choice
of terms used in filters, due to the slight differences in the hardware designs compared to software.

Overall, the hardware implementation is estimated to be much faster than the software im-
plementation. Though the C source code was not compiled with high optimisations due to time
constraints, it would be unlikely to reach the speed the hardware designs would run at.
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Figure 4.3: Speedup per character from C to Verilog
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4.3 Resource Utilisation

4.3.1 Power Requirements

The estimated power requirements for the Verilog designs are shown in Figure 4.4. The power
requirements vary from around 1350mW to over 1800mW.
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Figure 4.4: Average total (quiescent and dynamic) power consumption against the number of
interfaces

Power requirements increase steadily until past about fifty interfaces, before starting to fluctuate.
This is similar to the cycle times recorded in Figures 4.1 and 4.2. As mentioned in section 4.2.3,
the placer may not have chosen the best routings for larger rule sets due to the larger problem
space it has to search. These effects are further exacerbated due to the placer searching for
routings optimised more for speed than power consumption.

One interesting point to note is that, though the software implementations ran on a low-power
notebook PC, the idle power requirements were around 20W, or 20,000mW, over ten times the
power requirements of a Virtex6 FPGA. If we assume an average speedup of 37.7 times from soft-
ware to hardware, the hardware implementation is over 370 times more efficient than a software
implementation on a per-unit-of-power basis.

4.3.2 Executable Size

The size of the executables increases exponentially as the number of interfaces increase. It is clear
from the graph in Figure 4.5 that with larger numbers of interfaces in the thousands, executable
file sizes will be extremely large. This is primarily due to the forwarding rules being compiled
into static code, which means an increase in data results in an increase of code and therefore
executable machine instructions.
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Figure 4.5: Average size of executables against the number of interfaces

The increased size can possibly be reduced by optimisation in the C code generation step by
reducing the FSM representation of the search pattern TST. This would reduce the number of
nodes that would need to be outputted as source code, indirectly reducing the executable size.
The C compiler that parses the code could then be optimised for size, possibly reducing the size
of the executable further.

4.3.3 FPGA Utilisation

Figure 4.6 show the percentage of slice registers and look-up tables (LUTs) used on the Xilinx
Virtex6 FPGA for the different rule sets. The results are percentages based on the following
measures:

o Slice registers used out of 93,120 available.
e Slice LUTSs used out of 46,560 available.

One important aspect of the data is the relatively low utilisation of both slice registers versus
slice LUTs. The reason for this would be the number of logic functions used in the filters. These
are translated into LUTs when synthesised, whereas registers are used as flip-flops and latches.
A possible method to lower LUT utilisation could be to analyse shared sets of terms between
filters and share the logic for those sets between the parent filters.

Another interesting point to note in this data is that for lower FPIs, the utilisation is roughly
linear, but as both FPI and TPF increase, the plot becomes more logarithmic. The reason for
this is possibly down to the DCAM architecture of the hardware designs. Increasing the number
of terms increases the chance that character-comparison comparators are shared. This means
LUTs will be more likely to be shared in this architecture. The logarithmic curve of the slice reg-
isters utilised could be explained by the sharing of shift registers on the outputs of comparators.
The more search patterns are introduced, the greater the likelihood that letters will be found at
the same offset or less than other offsets in different search patterns.
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4.4 Summary

The evaluations of both the Verilog and C implementations show that the Verilog implemen-
tations are much faster than the C implementations by a factor over 37 times. The estimated
power requirements also showed that the Verilog implementations consume much less power than
a traditional notebook PC. The findings highlight the potentially massive gains in both perfor-
mance and power-efficiency directed FPGA solutions have over conventional software solutions.

One point to note, however, is that the Verilog results are estimates by the Xilinx FPGA tools,
rather than experimental run-times recorded. We are confident that the timings will be accurate,
as unlike a traditional software set up, there are no additional processes to consider, which would
normally be found on a multi-tasking operating system.

It would nevertheless be preferable to validate the Verilog results on a physical FPGA in fu-
ture work, particularly in terms of power requirements, as environment can play a huge role in
overall results. Due to time constraints, larger rule sets could not be covered, but this could be
an area of future research to further expand the breadth of the data.
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Conclusions and Future Work

From the results it is clear that a hardware implementation on an FPGA is much faster than
an equivalent software implementation. The estimated average speed of a hardware solution
running in a Xilinx Virtex6 FPGA is around 37 times faster than an equivalent solution running
on a 2.40GHz dual-core Intel Core i3. The power efficiency statistics are even more exciting, as
with the higher performance and lower power consumption, the Xilinx Virtex6 is estimated to be
around 370 times more power efficient. However, one important part that was not covered was
the time taken to produce a working implementation from a set of rules. While the time taken
to compile a set of rules into either C or Verilog code was minimal, the time taken to compile
the C or to place and route the Verilog code increased substantially for larger problem sizes.

The main cause of the long compilation and routing times is down to how the source code
produced is a static schematic of the forwarding logic. The larger the set of rules, the larger the
overall source code will be. For the C code, the addition of more filters requires the addition
of more stack variables to hold the state of matching on those filters. The addition of more
matching terms requires additional states in the search pattern TST FSM. This requires more
time for a C compiler to parse, analyse and optimise the code and produce valid machine code.
The addition of more stack variables increases the likelihood that the stack size allocated to
the executable wont be large enough. Stack overflows occurred for the larger designs involving
greater than thirty thousand terms, or over two thousand filters, due to the large numbers of
filter stack variables used.

On the Verilog side, increases in rule sizes translate to increases in logic elements used. This
results in highly dense and difficult-to-route designs, which require extra time for placer software
to process. Large numbers of logic elements may also result in much higher timings, due to the
delays introduced by routing signals between logic elements. Routing some of the larger designs
occasionally took many hours for this reason.

Because of this drawback, both the concept of static hardware designs and the compiler software
are suited more towards smaller rule sets, or rule sets that are rarely updated. This presents two
viable avenues for future work. The first would be to investigate a more generalised solution.
The second would be to explore the potential speedups that can be obtained from using a static
design process as an extension to an existing solution such as Siena Fast Forwarding. These
alternatives will be discussed in the following sections of this chapter.
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Continuing on with the same design, there are optimisations that can possibly further increase
the overall speed of the hardware designs. One such optimisation is pipelining, where delay
registers are inserted between logic elements to break up long paths. This can potentially in-
crease clock speed by reducing the amount of routing delay in the design, thereby increasing the
potential overall speed of the design.

The C designs outputted by the compiler may be optimised further by exploring techniques
to reduce the FSM produced by the TST. Filter variables could also be moved off the stack into
a structure that is passed to the forwarding function as a parameter by the user. This would
allow the user to choose whether the temporary filter variables are allocated on the stack or
in the heap. Situations where this may be beneficial would be where there are many filters,
requiring a large chunk of stack space that may not be provided by the runtime environment.
This enhances the scalability of the system and provides the user finer-grained control over the
operation of the forwarding logic.
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5.1 Applications and Future Work

In this section we will two main possible applications and future developments of this project.
While it would have been desirable to have investigated these paths in this project, there was
insufficient time. Instead, this project hopes to have laid the groundwork by highlighting the
benefits of FPGA designs over software designs, and producing tools to assist with future devel-
opment of the ideas laid out here.

5.1.1 Generalised Design

This project focussed on producing static designs from rule sets. The cost of this method is
scalability and flexibility; however the results showed that FPGAs can achieve massive speedups
over software. A potential course that could be taken would be to diverge from static designs on
to dynamic designs.

A general design that would take configuration data to determine its operation can be writ-
ten by hand in Verilog. This could then be mapped, placed and routed to an FPGA chip with
maximum optimisations selected, as the design would not need to be changed once the routing
is complete. The compiler written for this project could then be adapted with a new backend to
produce configuration data for this hardware skeleton from a set of rules.

Whenever a rule set needs to be changed, the time taken from receipt of the new rules to a
hardware implementation of those rules would be greatly minimised from a static deployment.
Rules would just need to be translated to configuration data, which would then be sent to the
hardware, replacing the old configuration data.

A further expansion onto this would utilise the processes of self-reconfiguration explained in
2.4. This would make the most of the reconfigurability of FPGA hardware as the hardware
would truly be self-reconfiguring instead of merely reading a new set of configuration data as
instructions like a desktop CPU.

This approach could be combined with the technique detailed in the next section, just-in-time
compilation.

5.1.2 As a Just-in-Time (JIT) Extension

Substantial performance increases can be obtained by synthesising forwarding logic into hard-
ware. It was pointed out earlier that larger rule sets can be a problem with regards to the time
taken to synthesise a design. On its own, the designs do not take into account any concept of
key/value tags, so attributes that are a common feature of messages cannot be dealt with in a
conventional way. This means as a standalone system, a static design, such as one produced by
the rule compiler, may not be the best idea.

One avenue that could be explored would be to integrate both the compiler and the static
design process with a larger system such as Siena Fast Forwarding. Potential speed ups can be
obtained, as the static nature of both the software and hardware output of the compiler reduces
the memory lookups attributed with data-driven implementations such as SFF. However, since
the designs outputted by the compiler do not account for attribute keys, this process can be
offloaded onto the SFF implementation.
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One of the key features of SFF is the minimisation of the filtering workload through pre-processing
message attributes and discarding the filtering constraints that do not apply to the current mes-
sage. If one were to harness this feature and record which attributes are commonly selected for
filtering, the most commonly selected attributes may be identified.

With this list of commonly selected attributes, the search patterns and operators for these values
could be passed to the compiler which could produce either an optimised static C representation,
or a Verilog representation. This output could then either be compiled into software or synthe-
sised into hardware and used in place of the SFF filtering.

This is similar to Just-In-Time (JIT) compilation used by the Java Virtual Machine (JVM),
where directly interpretable representation (DIR) code is translated into directly executable rep-
resentation (DER) code. The Java HotSpot Server VM uses a mixed-mode JIT strategy that
involved compiling only the most-used portions of byte-code into native code, while still inter-
preting byte-code until it has completed [1].

With the SFF /static design software, a mixed-mode strategy could be pursued, where rules are
still processed by the default SFF forwarding logic until a hardware implementation is loaded
onto an FPGA, or a static software forwarding function is linked into the main executable. Due
to the modular nature of the compiler, it can be easily extended to a runtime compiler. Instead of
producing C output for software designs, new backends could be implemented to output machine
code specific to the machine architecture the SFF router is running on. This could bypass the
steps normally required and reduce the dependency on external compilers.

Since the constraints selected for JIT would be the forwarding rule “hotspots”, it is highly
likely that they would be the weakest link in terms of forwarding speed for the SFF algorithm
or any other this technique is applied to. By targeting these key areas, the overall throughput
for such an algorithm could be increased, enhancing the scalability of an implementation.

In this capacity, there could be infinitely many possible applications for this work. Good exam-

ples would be where there is a high volume of message traffic, such as in the financial industry
for routing market data, or e-commerce datacentres.
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