
Learning and discovering norms in the context of

multi-agent systems

Duangtida Athakravi

Supervisor: Dr. Alessandra Russo
Second Marker: Dr. Krysia Broda

June 21, 2011



Abstract

The normative framework, also known as institutions, is a way to formally model
social rules and conventions of agent’s organisation. These rules coordinate the
overall behaviour of agents and describe their effects on the organisation. Just
like any models, it can contain errors and consequently does not correctly reflects
the system as intended by the designer.

The aim of this project is explore how such partial models may be improved
using a revision method centred around use cases for capturing the model’s be-
haviour. Past work have shown how Inductive Logic Programming (ILP) can
be used to find revision suggestions from a partial model and use case. The
complete model is then built up iteratively, by revising the partial model using
the output of the learner, and then using the revised model in another revision
cycle for learning revision suggestions, based on another use case capturing a
different behaviour from the other previously one. However, as the learner can
give many alternative ways for revising the model, the designer must choose be-
tween all the revision suggestions for the one that they think is most appropriate
for the system.

This selection process can be confusing for the designer as it may not be
obvious how the revised model will behave, judging by the revision suggestion
alone. This project is aimed to find a method that the designer could employ
to find differences between each revision suggestion, to provide them with a
criteria to use for deciding between the suggestions.
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Chapter 1

Introduction

1.1 Motivation

Between the transition of a system specification to its implementation, models
provide a high-level abstraction of the system without the complexity of the
implementation details. It is a powerful tool that can be used for reasoning
about the system, as it can be model checked for the satisfiability of given
properties, and for estimation of the performance of the implemented system.
Thus, for it to be of any use, it is important that the model correctly reflects
the system specification.

We are interested in models for describing an organisation in a multi-agent
system, the normative framework, also known as norms or institutions. In par-
ticular, how a partial normative framework can be revised to create a more
complete one with respect to the system specifications. Previous work [1] have
shown how normative frameworks declared in a formal declarative language can
be revised using inductive learning through ASPAL, an Answer Set Program-
ming (ASP) implementation of the inductive learning algorithm TAL.

In addition to its semantic and syntactic compatibility to the model of the
normative framework and the learning framework, the non-monotonic nature
of ASP’s allows for the designer to avoid having to provide a fully specified
description of the framework to the learner. Thus only the essential behaviour
is needed to be captured in the use case, making it a more intuitive method for
describing the system’s behaviour.

The normative framework revision is carried out through an interactive pro-
cess, where the designer supplies the use case, constructed from the specifica-
tions, and the partial framework to the learner. The learner then find ways to
revise the framework so that it exhibit the behaviour from the use case. These
revision suggestions are returned to the designer, who then decides which sug-
gestion should be applied to the partial model. The revised model can then be
used with another use case to gradually build up the complete model.

Seeing as the learning process is heavily dependent upon the use cases, we
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studied test generation, originally hoping to use it for generating use cases.
However, this idea was not suitable for the the method we have devised for
generating tests, as it would imply that the designer knew beforehand how the
normative framework should be revised. Instead, we have found it suitable to
use in an additional step following the learning, to address the problem faced
by the designer in selecting the most suitable revision suggestion.

Reasoning about the difference in the revision suggestions to find the right
one can be time consuming, as the suggestions would create a different revised
model. As each version of the revised model is guaranteed to exhibit the be-
haviour of the use case, the designer must find a new criteria for differentiating
each suggestion. Our test generation method can be employed by the designer
to tackle this problem, as it is able to find the relevant literals that could be used
to discriminate the revision suggestions. Thus they would provide the designer
with the new criteria that would help them decide on a revision suggestion for
the partial model.

1.2 Objectives

The main aim of this project is to improve the procedure used to revise nor-
mative frameworks. We have found a way to achieve this by integrating test
generation as a post-learning process to help the designer select the most suit-
able revision suggestion for their model. This can be broken down into steps as
follows:

• Identifying the characteristics that define relevant literals. This charac-
terisation is needed so that we have the means for differentiating between
literals that could effect the hypothesis space from ones that are irrelevant.

• Find a method for generating literals that satisfy the characterisation of
relevant literals to produce a set of literals that we could that we know
are potential criteria in discriminating the revision suggestions.

• Define a criteria for ranking the relevant literals in order to find one most
critical for discriminating the hypotheses. This to identify the critical
criteria so that the designer is be able to quickly dismiss the unwanted
revision suggestions.

• Integrate the our study on relevant literals to apply it to use cases and
normative framework revision.

1.3 Contributions

The main contribution of this project is a reasoning method for differentiating
different model revisions. The method that we have described allows for di-
rect comparison between each possible revision, without having to implement
the different revised models. Furthermore, it is compatible for implementation
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in ASP, making it highly integrable with the existing procedure for revising
normative frameworks.

The following list outlines the contributions made in the development of this
project:

• We have identified the characteristics of relevant literals and apply it to
use case for normative framework revision.

• We have describe how to formulate ASP program to abductively generate
answer sets containing relevant literals.

• We have defined an algorithm for extracting relevant literals from answer
sets, and described a scoring method for ranking the extracted literals ac-
cording to the number of revision suggestions they reject, thus identifying
the most critical literal for discarding hypotheses.

• We have shown through our case study how to integrate test generation
into normative framework revision, as means for finding the criteria to
differentiate the revision suggestions from each other.

In addition the original objectives, we also made further contributions on
the ASP implementation of TAL. Although implementing TAL in ASP has
great benefits in terms of compatibility with the normative framework model
and our test generation procedure, the ASP implementation of TAL used in [1]
used extremely high computation time to generate answers, and in some cases
was unable find solutions due to the memory overflow caused by the instance
explosion when grounding a program. This is a common problem for any ASP
implementations of ILP problems.

We have explored alternative implementations of TAL in ASP through dif-
ferent translations of TAL’s top theory, and identified an implementation that
can quickly solve the problem of learning revision suggestions.

1.4 Report Structure

The following is the brief outline of the report:

• In chapter 2 we provide the necessary technical background knowledge
for our work. These include an explanation on the normative framework,
and a formalisation that is compatible to answer set programming. We
summarise the relevant topics on abductive test generation and test char-
acterisation, followed by explanations on inductive logic programming and
answer set programming, as well as some descriptions of tools that were
used for the project and their features.

• In chapter 3 we discuss the current procedure for normative framework
revision and how we will add to it. We explain each addition we have
proposed, relevant literals generation and extraction from answer sets,
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and scoring method for the relevant literal, and demonstrate how each of
these work using simple test programs.

• In chapter 4 we provide the alternative formalisations for inductive learn-
ing’s mode declarations in ASP. For each alternative we explain the reason
why we took such approach, give provide example of the implementation,
and discuss their performance.

• In chapter 5 we show the result of our work through the use of a case
study, stepping through each stage of the normative framework revision,
and evaluate the performance of our approach when applied to normative
framework.

• In chapter 6 we summarise our work in terms of what have been achieved
and its limitations. We then discuss the further work and possible exten-
sions to our study.
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Chapter 2

Background

2.1 Preliminary Notations and Terminologies

The following is the list of notations and terminology that we will be using
throughout this chapter:

• Literal: A statement that do not have any logical connectives, apart from
negation, in it. For example, l and ¬l are literals of the propositional
symbol l.

• Horne Clause: A clause containing disjunction of literals with at most
one positive literal.

• Logic Programs: We will be assuming the conventional logic program
notation. A program consists of Horn clauses expressed as rules of the
form H ← L1, . . . , Ln. Where the head of the rule H is an atom and the
body L1, . . . , Ln represents a conjunction of literals L1 to Ln, with n ≥ 0.

It is also assumed that each rule is universally quantified, thus the rule
H(X)← L1(X1), . . . , Ln(Xn) is assumed to be equivalent to
∀X,X1, Xn(H(X)← L1(X1), . . . , Ln(Xn))

• Integrity Constraints: A set closed formulae that must be satisfied
by a a logic program. Programs P with a set integrity constraints IC
is satisfiable if all integrity constraints are derivable by the program,
∀ci ∈ IC : P � c

• Negations: We will be using not for indicating negation as failure, while
¬ represents logical negation.

2.2 Normative Framework

A multi-agent system is made up of rational agents interacting with each other.
The term rational agent is based on the description given in [7], as an agent
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that can observe and learn from its environment. The agent can then use what
it has learnt from its observation, together with its background knowledge, to
reason about the best course of actions to take in order to achieve its goal.

The normative framework is used to describe the social rules of the organi-
sation. Agent’s actions are seen as events that occurred within the organisation.
Although agents are autonomous and thus can initiate any event at any time,
the normative framework acts as a constraint on “unsociable” events by admin-
istering sanctions upon the agent that evoked them. In this way, the normative
framework can help to direct the behaviour of agents within the organisation.

Another concept captured by the normative framework is conventional gen-
eration [2], where the organisation creates institutional events, events with cer-
tain implication in the context of the organisation, as a result of observable
events, those that represent the agent’s actions. For example, shooting some-
body and murder.

The effects of events on the organisation is represented by fluents, these are
properties of the organisation, brought about or terminated at some instants by
events. In the case of shooting someone of a neighbouring country, in time of
peace could result in dispute and unrest between the two countries.

As fluents represent certain properties of the organisation, their presence can
be used to identify unique states of the organisation.

2.2.1 Social Constraints

The social constraints permission, physical capabilities and institutionalised
power are concepts that the normative framework aims to express. The con-
straints are explained further in the following bullet points, as adapted from
[6]:

• Events may have institutional effect, depending on the state of the system
and the agent performing it. Thus, if the agent has the institutional power,
then they are empowered to change the state of affairs in the organisation
by performing certain events. This may also depend on the state of the
organisation. For example, a prime minister and cabinet taking a country
to war.

• Permitted or prohibited events, and obligation are specific to the domain
of the system and will allow the characterisation of an agent’s behaviour as
“acceptable” or “unacceptable”. Hence, an agent performing a prohibited
event or not complying with its obligation will result in its behaviour being
considered “unacceptable”. Consequently, this allows for the system to
also be characterised as “acceptable” or “unacceptable”, depending on the
majority of its agents’ behaviour. It is also important that the specification
for permission and obligation is not inconsistent, as an agent should be
able to perform the necessary events for completing its obligation.

• Sanctions and enforcement deals with “unacceptable” behaviour of agents,
defining when is an agent sanctioned and what penalty must it endure.
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Penalties could be handed out when agents perform forbidden actions or
if they do not carry out their obligations. Different state of the system
could create different kinds of sanction for the same event. For example, a
soldier shooting an opposing soldier at war will have different consequence
to shooting them when at peace.

2.2.2 Modelling the Normative Framework

We will be following the model described in [2] for representing normative frame-
works. This formalisation is designed to be easily translated into answer set pro-
gram, which is useful for bottom-up specification verification and compatible to
the learning tool ASPAL.

The framework is modelled as a quintuple I :=< E,F,C,G, S0 > of:

• Institutional events E = Eobs ∪ Einst

The types of events that may occur in the framework are observable events
Eobs and institutional events Einst = Einstact∪Eviol, the latter containing
institutional actions Einstact and violations Eviol.

• Fluents F = D ∪W ∪M ∪O
Properties of the institution that may hold at certain time of execution,
the conjunction of these is used for describing the state of the institution.

– Domain fluents D
Describes the domain in which the organisation operates

– Institutional powers W
Each pow(e), where e ∈ Einstact, denotes the capabilities of some
event to be generated

– Event permissions M
Each permission perm(e), where e ∈ Einstact ∪ Eobs, denotes the
permission for the event to be brought about.

– Obligations O
Each obligation obl(e, d, v), where e ∈ E, d ∈ E, v ∈ Einst, denotes
that the event e should be brought about before the occurrence of
the event d, else be subjected to the violation v.

• Consequence relation C : X × E → 2F × 2F

Consisting of descriptions of how fluents are initiated Cint or terminated
Cterm, depending on certain state φ of the organisation and the the event
e occurring in it.

• Event generation relation G : X × E → 2Einst

Describes how the occurrence of one event under certain conditions (state)
can generate other events inside the organisation.

• Initial state S0

The set of fluents that holds when the organisation is initialised.
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2.3 Test

This following section on test is based on the paper [11]. A test has the form of
a pair (A, o), where A is a conjunction of achievable literals, the initial condition
specified by the tester, o is an observable, the outcome (o or ¬o) to be decided
by the tester.

The outcome a of the test confirms a hypothesis H with respect to a back-
ground knowledge Σ if and only if Σ ∧A ∧H is satisfiable and Σ ∧A � H ⊃ a.
The outcome a refutes H with respect to Σ if and only if Σ∧A∧H is satisfiable
and Σ ∧A � H ⊃ ¬a.

2.3.1 Test Generation using Abduction

This section summarises the idea of test generation as it will be used later for
finding relevant literals that can eliminate revision suggestions. Test generation
can be used for reasoning about models against a set of hypotheses. These
hypotheses could represent the specification of the model, and finding tests
for them could identify inconsistencies within the model. In this project we
will use the set of hypotheses to represent the different suggestions revisions
that were learn and using test generation to identify literals that represents
the inconsistencies between the revision suggestions, as their truth value could
redefine the hypothesis space if it reject some of them.

Tests are generated to meet certain reasoning objective regarding a set of
hypotheses HY P with respect to a background theory. These objectives could
be to confirm or dismiss certain hypotheses, or for discriminating a hypothesis
space.

This problem can be solved using abduction (Section 2.4.1) to find the test
that once added to Σ will remove certain hypothesis H from HY P , in other
words test (A, o) such that Σ ∪A ∪ o � ¬H.

We concentrate on finding tests that rejects hypotheses as this would redefine
the hypothesis set, while confirming tests will not lead to any changes of the
hypothesis space.

2.3.2 Test Characterisation

As described in Section 2.3.1 test generated are aimed to have certain objective.
For this project the tests that we want are ones that will discriminate the
hypothesis space. Here we will describe characteristics of tests that can be
used as objection for this type of test generation.

In the following sections on test characterisations Σ represents the the back-
ground knowledge, HY P is a set of hypotheses, and (A, o) is a test.

Discriminating Tests

Discriminating tests have the following characteristics:

1. Σ ∧A ∧H is satisfiable for all H ∈ HY P
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2. A ∧ o is an abductive explanation for
∨

Hi∈HY P ¬Hi

3. A ∧ ¬o is an abductive explanation for
∨

Hi∈HY P ¬Hi

4. Σ 2
∨

Hi∈HY P ¬Hi (For mutually exclusive tests, there is no need to
discriminate them)

Thus, by the second and third condition, regardless of whether o or ¬o is
observed, the hypothesis space will be discriminated.

Relevant Tests

The conditions for discriminating test can often be too strong, thus it is often
the case that such tests cannot be found. The characterisations below describes
relevant tests. This type of tests ensure that hypothesis space can be narrowed
down if a is observed, but does not guarantee the same for ¬a.

1. Σ ∧A ∧H is satisfiable for all H ∈ HY P .

2. A ∧ o is an abductive explanation for
∨

Hi∈HY P ¬Hi (Some hypotheses
from HY P are be rejected by the test)

3. Σ 2
∨

Hi∈HY P ¬Hi (The hypotheses are rejected by the test and not the
background theory)

4. A∧o is not an abductive explanation for ¬Hi, ∀Hi ∈ HY P (There remains
some hypotheses approved by the test)

Example

We will be using a general example to illustrate the difference between discrim-
inating and relevant test. Taking a hypothesis set HY P = {p, q, r}, and the
following background knowledge:

p← s
q ← ¬s
r ← ¬t

The test ({}, s) is a discriminating and relevant as if it is observed to be true
then q is rejected, while if it is false p is rejected. ({}, t) on the other hand can
only reject r if it is observed to be true and does not reject any hypotheses if it
is observed to be false.

2.4 Abduction

The definitions that we are using for abduction is adapted from [8]. Abduction
was first introduced by Charles S. Pierce, an American philosopher, as part of
his trichotomy of inference, consisting of deduction, induction and abduction.
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In his definition abduction is understood as inferring plausible explanation E,
for some observation O and that the presence of E implies O.

In artificial intelligence, abduction is better associated with the definition
given by Gilbert Harman, another American philosopher, as:

“The inference to the best explanation”

This takes into account the fact that there could be many possible hypotheses
for an observation. Therefore it is important to be able to select the hypothesis
that is the best explanation for the observation, before making the inference.

In logic programming, abductive reasoning can be formalised in a logic pro-
gramming abductive framework [8].

2.4.1 Abductive Logic Programming (ALP) Framework

This is a triplet < P,A, IC > where:

• P is a logic program.

• A is the set of abducible predicate symbols. These represent the form of
the plausible hypotheses.

• IC is the integrity constraint, a set of closed formulae. It is the condition
that must be made true by the hypothesis.

The computation for the abductive explanation of a logic program with such
a framework, using negation as failure and not classical negation can then be
explained using stable models.

2.4.2 Stable Model

For a logic program P and M , which is a set of all possible grounded clauses
from the set of all possible atoms. Let PM be the set of ground Horn clause
from grounding P and deleting:

• Any clause with the literals of the form not l in its body, where l ∈M

• All literals of the form not l from the body of clauses, where l /∈M

M is then the stable model for P if M is the minimal model (one without
any negation) of PM .

Example

Take for example, the following program P :

p(X,Y )← q(X,Y ), not r(X)
q(2, 1)
q(2, 2)
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r(1)

The grounded instances of P are:

p(1, 1)← q(1, 1), not r(1)
p(1, 2)← q(1, 2), not r(1)
p(2, 1)← q(2, 1), not r(2)
p(2, 2)← q(2, 2), not r(2)
q(2, 1)
q(2, 2)
r(1)

Taking M = {q(2, 1), q(2, 2), r(1)}, we can construct PM as:

p(1, 2)← q(1, 2)
p(2, 2)← q(2, 2)
q(2, 1)
q(2, 2)
r(1)

Thus M is the stable model of P as it is the minimum model of PM .

2.4.3 Generalised Stable Model

For a logic programming abductive framework < P,A, IC > and a set of ab-
ducibles ∆ ⊆ atoms(A). The set M(∆) of ground atoms is a generalised stable
model for < P,A, IC > if and only if it is a stable model for the logic program
P ∪∆ and the integrity constraint IC, where ∆ = A ∩M(∆).

2.4.4 Abductive Explanation

Given a logic programming abductive framework < P,A, IC >, ∆ is an abduc-
tive explanation for an unit clause observation q, if there is a generalised stable
model M(∆) in which q is true.

2.5 Inductive Logic Programming (ILP)

Inductive Logic Programming is a merge between inductive learning and logic
programming. Logic programming is used for its expressive power to represent
the background knowledge, positive and negative examples, and the hypothesis,
while inductive learning is used to find the hypothesis, given the background
knowledge and examples.

The hypothesis H derived by the program is required to be complete with
respect of the background knowledge B and the positive examples E+, and
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consistent with respect to the background knowledge and negative examples
E−.

2.5.1 Inductive Learning with Background Knowledge

This explanation of inductive learning is adapted from the description given in
chapter 1 of [3]. Given a set of background knowledge B, a set E+ of positive
and a set E− of negative training examples, find a hypothesis H expressed
in some description language L, such that H is complete and consistent with
respect to the background knowledge B and the training examples E+ ∪ E−:

• Every positive example e ∈ E+ is covered by H ∪B

• No negative example e ∈ E− is covered by H ∪B

The hypotheses are rules of the form r ← l1, . . . , ln where r is the head of
the rule is an atom, and l1, . . . , ln is the body, a conjunction of literals l1 to ln,
with n ≥ 0.

Example

Consider this example from [4], with the following background knowledge B and
training example sets E+ and E−:

B = {net(s(X))← nat(X),
even(0),
nat(0)}

E+ = {odd(s(s(s(s(s(0))))))}

E− = {odd(s(s(0))), odd(s(s(s(s(0)))))}

Adding the hypotheses odd(X)← X = s(Y ), even(Y ) and even(X)← X =
s(Y ), odd(Y ) to the background knowledge would ensure that odd(s(s(s(s(s(0))))))
is covered by the new background knowledge, while odd(s(s(0))) and odd(s(s(s(s(0)))))
are not.

2.5.2 Mode Declarations

The mode declarations, or language biases, specifies how the hypothesis of the
learning problem could be constructed by declaring a schema for the hypothesis
head and body. As well as defining the structure of the hypothesis, it also
narrows the search space of the hypothesis.

The definition that we are using to describe mode declarations is from [4].
The mode declarations consists of head declarations modeh(s) and body dec-
larations modeb(s), corresponding to the allowable formats for the head and
body of the rule. s is a schema, a ground literal containing placemarkers. A
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placemarker can be of the form ‘+type’, ‘-type’ and ‘#type’, corresponding to
input, output and constants respectively, where type is a constant.

The rules can be generated by combining instances of the schemas, obtained
by replacing each placemarkers p1, . . . , pn by a variable or a constant of the
expressible type. More specifically each placemarker pi, where 1 ≤ i ≤ n, can
be replaced by:

• A variable Xi of type t that occurred in the head of the rule if pi = +t

• A variable Xi of type t that either occurred in the head of the rule or any
proceeding literal of the body if pi = −t

• A constant c of type t if the pi = #t

Example

For the rules odd(X)← X = s(Y ), even(Y ) and even(X)← X = s(Y ), odd(Y )
to be derivable, the mode declarations required are:

m1 : modeh(odd(+nat))
m2 : modeh(even(+nat))
m3 : modeb(odd(+nat))
m4 : modeb(even(+nat))
m5 : modeb(+nat = s(−nat)))

The rule odd(X) ← X = s(Y ), even(Y ) is constructed by using the head
declaration m1 and body declarations m4 and m5. The variable X is the input
variable from the rule head, while Y is the output from m5, as specified by the
mode declaration with the type of both X and Y being natural number.

2.5.3 Inductive Logic Programming Framework

A framework for an inductive logic program, can be seen as a triplet< E,B,M >
where:

• E is the set containing all positive examples E+ and negative examples
E−

• B is the background knowledge of the program

• M is the set of mode declarations defining the hypothesis space

2.5.4 TAL and ASPAL

TAL (Top-directed Abductive Learning) is an inductive learning tool that uses
abductive search to find hypotheses [4]. We use it indirectly through its ASP
implementation ASPAL (ASP Abductive Learning) [1]. This is done through
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translating the ILP problem into an abductive logic programming problem, ASP
can then be used to implement the abductive framework for solving the problem.

The ASP implementation retains the benefits from the previous system,
such as the ability to reason about negation during the learning process and
multiple predicate learning, as well as making the problem compatible to the
ASP representation of the normative framework.

Unlike TAL, ASPAL will not produce rules as results, but would output
instead literals which are an encoding of the rule. For example, the encoding of
the rule odd(X)← X = s(Y ), even(Y ) in ASPAL would be:

rule(0, 0, (m1, (e), (e), (0))).

rule(0, 1, (m5, (e), (0), (1))).

rule(0, 2, (m4, (e), (1), (e))).

Where e represents an empty list. This literals above corresponds to the
following format:

rule(RId, Level, (ModeName, Constants, InputV ars, OutputV ars)).

Where RId is the identification number for the rule and Level defines the or-
dering of predicates in the rule, ModeName correspond to a unique name of the
mode declaration used to construct the predicate, Constants is the list of con-
stants values in the rule (for example if the predicate is gender(X, female), then
the constant list would be (female)). The two lists InputV ars and OutputV ars
contains the index of the input and output variables of the predicate as or-
dered by their addition to the rule from left to right, thus in odd(X) ← X =
s(Y ), even(Y ), the variable X has the index 0 while Y has the index 1.

The transformation of an ILP problem into an ALP one is discussed later
in Chapter 4 where we will be looking at alternative ASP implementations of
TAL.

2.6 Answer Set Programming (ASP)

Answer Set Programming is a form of declarative problem solving paradigm
that has emerged from the fields of reasoning, knowledge representation, and
logic programming. It is aimed to be used for representation and reasoning
tasks. Problems are solved by constructing a grounded instance of the program,
then answer sets are constructed by solving the grounded program for stable
models.

We will be using an ASP system, iClingo, for learning revision suggestions
of a normative framework, as well as in test generation for generating answer
sets containing relevant literals.

For the test generation, as we would like to identify all relevant literals to
find the one that is most relevant, its bottom-up approach for solving problem
is suitable for this task. Furthermore, it is a powerful constraint solver which
makes it suitable for solving the abductive tasks in this project.

18



Its compatibility to the representation used for the normative framework
and the learning task are also beneficial to the project as there would be less
complications when transforming the program used for the learning task into
the one used for test generation.

2.6.1 iClingo

iClingo is an incremental ASP system, part of the “Potsdam Answer Set Solving
Collection”, a set of tools for ASP programming developed at University of
Potsdam. Both grounder and solver operates incrementally. At each state,
the grounder will produce ground rules from the current state while avoiding
the previously ground rules, the solver then accumulate the ground rules and
computes the stable set from them.

2.6.2 Input Language of iClingo

The input language has various features and is explained in detail in the user’s
guide [10]. Here we will highlight the features that are relevant to the project.

Rules, facts, and integrity constraints are defined in the following format:

Rule A :- L1,...,Ln.
Fact A.
Integrity Constraint :- L1,...,Ln.

The head of the rule, A, is an atom. Each L in the body is a literal of
the form B or not B, and ‘,’ represents a conjunction. Facts are rules with
empty body. Anonymous variable can be defined using ‘ ’, and each individual
occurrence of such variable is treated as a fresh variable (for example rain(D)

:- after( ,D), will be treated as rain(D) :- after(X,D)). Rules must be
safe, with all variables in the rule’s head expected to appear in at least one
positive literal in the body. Intuitively, for the integrity constraint to hold,
L1, ..., Ln must be false as it represents ⊥ ← L1, ..., Ln, a rule where the head
is false.

Note that negation of an atom expressed as not B is default negation
(negation as failure). Thus not B will hold if B is not in the stable model.
Classical negation may also be expressed by adding ‘-’ in front of an atom
then adding an integrity constraint so that B and -B cannot both be true.

The choice rule can be declared in the following form:

{a,b}.

This indicates that two atoms a and b can be arbitrarily chosen to be in-
cluded in the answer set. Furthermore, cardinality constraint and rule body
may be added:

0 {a,b} 1 :- c.

The code above indicate that if c is true then from the set of atoms a and
b, either one of them must true, else neither of them are.
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2.6.3 Other features of interest

Since the stable model contains all atoms that are true, it will be useful to
be able to select the subset of the answer that we are interested in, making the
result easier to understand. This can be done using #hide and #show statements
as illustrated in the next example:

#hide.

#hide owner/2.

#show person/1.

In the code above #hide will suppress all atoms in the answer set, while
#hide owner/2 will suppress all owner/2 atoms. On the other hand #show person/1

will include all person/1 atoms to the answer set. So using the following code
for the base program:

person(pam).

person(pop).

pet(X) :- cat(X).

pet(X) :- fish(X).

cat(neo).

fish(chip).

fish(gon).

owner(neo,pam).

owner(chip,pam).

owner(gon,pop).

Should no #hide and #show statements are added to the program, the
grounded instances of all clauses in the program will be included in the an-
swer set as follows:

{ person(pam), person(pop),

cat(neo),

fish(chip), fish(gon),

owner(neo,pam), owner(chip,pam), owner(gon,pop),

pet(neo), pet(gon), pet(chip) }

Should the statements #hide and #show person/1 be added to the program,
then we will only have two literals in the answer set:

{ person(pam), person(pop) }

Conditions may also be added to #hide and #show statements, as shown in
the following code:
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#hide owner(X,Y): fish(X).

#show owner(X,Y): cat(X).

Here, all fish owners will be hidden, while the cat owners will be shown.
Note that in this case if X satisfies both fish(X) and cat(X), then the atom will
be included to the answer set. For example, if we make cat(gon) true, then
adds the statements above as well as #hide to our base program, the answer
set produced will be:

{ owner(neo,pam), owner(gon,pop) }

Note that one-line comments in ASP is preceded by the symbol ‘%’, while
multi-line comments are enclosed within ‘%*’ and ‘*%’.
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Chapter 3

Norms Revision

3.1 Overview

3.1.1 Current Procedure

As illustrated in Figure 3.1, the framework described in [1] revise norms by
capturing the expected behaviour of the system through use cases. These use
cases are used in an ILP learning task < E,B,M > where:

• E is the use cases that must be covered by the revised framework

• B is the partial normative framework

• M is the mode declaration defining all possible forms a revision suggestion
can take

This is then fed to the learner to compute all revision suggestions for the
normative framework. The revisions could be in terms of introducing new rules,
and removing or changing the conditions of existing rules. These revision sug-
gestions are returned to the designer, who will choose one of them to apply
to the normative framework. The process can then be repeated using the re-
vised norms and new use cases until the designer is satisfied with the normative
framework.

The approach however, does not provide the designer with any information
on the differences between each revision suggestions. While each revision will
ensure that the revised normative framework acquires the behaviour captured
by the use cases, each one can also implies additional behaviours, intended or
not by the designer.

3.1.2 Modified Procedure

To address the problem of selecting one revision suggestion over other results
from the learner, we returned to the idea of capturing the behaviour of the
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Figure 3.1: Current procedure for norms revision using use cases

Figure 3.2: Proposed procedure for norms revision allowing literals to be added
to the use cases after the learning has been applied
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system through use cases. As the use cases supplied by the designer is often
incomplete, we can find within the undefined literals, relevant literals that can
be used to reject some revision suggestions. By enquiring the designer about
the truth value of these literals, they can be used as a selection criteria query
for the different suggestions learnt by the learner.

This idea has resulted in the proposed framework shown in Figure 3.2, where
the designer can expand their use cases after the learning has been applied.
This is done iteratively as shown by the dotted line in Figure 3.2. Results
from the learner are used to generate relevant literals. These are literals the
can be added to the use cases while at the same time their truth value may
be used for dismissing some but not all revision suggestions, in effect acting
as tests for potentially rejecting the revision suggestions. This is so we do not
ask the designer about literals whose truth value have no effect on the revision
suggestions.

In addition to identifying the relevant literals, we need to rank them in
order of number of revision suggestions it can reject. This is to ensure that as
much information is gained from asking about the literal as possible, resulting
in the most discriminated revision suggestions. This will also keep the number
of enquiry needed to be answer by the designer at a minimum, to ensure that
the procedure is carried out efficiently. The answer from the designer can then
be used to determine if any of the revision suggestions will be discarded.

The steps needed to be taken to identify the most relevant is illustrated in
Figure 3.3. Firstly, the revision suggestions from the learner must be trans-
formed into hypotheses so that we can use them for specifying objective for the
relevant literals generation. This program is then fed into an ASP solver to gen-
erate all answer sets containing relevant literals. Some post processing is then
required to extract the relevant literals and associate them to the hypotheses
they reject. Lastly, by knowing all the hypotheses rejected by each relevant
literal, they can be ranked against each other to find the most relevant literal.

3.2 Relevant Literal

Use cases (T,O) [1] for a normative framework revision consist of a trace T
of observable events caused by the agents, and set O of violations (Eviol in
Section 2.2.2). Following the definition of relevant tests in Section 2.3.2, we will
characterise the relevant literal l, such that for a partial normative framework
Σ and set HY P of hypotheses describing revision suggestions:

1. Σ ∧ T ∧ O ∧ H is satisfiable for all H ∈ HY P (All revision suggestions
exhibit the behaviour conveys be the use case)

2. T ∧ O ∧ l is an abductive explanation for
∨

Hi∈HY P ¬Hi (l can falsify at
least one revision suggestion)

3. Σ ∧ T ∧ O 2
∨

Hi∈HY P ¬Hi (All revision suggestions are consistent with
the the normative framework and use case)
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Figure 3.3: Steps for finding the most relevant literal
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4. A ∧ O ∧ l is not an abductive explanation for ¬Hi, ∀Hi ∈ HY P (Not all
revision suggestions are rejected by l)

Note that the first and third condition is already satisfied by the correctness
of the learner, thus the conditions that we need to add as objectives for abducing
relevant literals are the second and fourth conditions.

3.3 Relevant Literals Generation

As seen in Section 2.3.1 we can form an abductive problem for generating rel-
evant literal, using our characterisation of the literals as the objective of the
problem. However, we now have the question of how to translate the revision
suggestions into a set of hypotheses for the computation of relevant literals. Us-
ing a simple, non normative framework as an example to illustrate our proposed
approach, shown in Listing 3.1:

1 %----------------BACKGROUND ------------------%

2 bean(b1).

3 bean(b2).

4 bean(b3).

5

6 bag(whitebag).

7 bag(blackbag).

8

9 colour(white).

10 colour(black).

11

12 beancolour(b1 , white).

13 beancolour(b2 , black).

14 beancolour(b3 , white).

15

16 special(b1).

17 special(b2).

18

19 poisonous(b2).

20 poisonous(b3).

Listing 3.1: Example background

The program in Listing 3.1 contains background facts about three white
or black beans. In addition to colour, each bean can have addition properties
of some being special or poisonous. The background also contain information
about two bags and their colours.

There are three way to modify the program, to ensure that in(blackbag,b2)
is true. This is can be done by adding one of the following rules to the program:
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1. in(blackbag,B)← beancolour(B, black)

2. in(blackbag,B)← special(B)

3. in(blackbag,B)← poisonous(B)

The question now is to find the literals that can discriminate between these
suggested changes, to find the criteria for discarding each one of them. We
should form for each hypothesis to represent cases where the revision would be
false. Thus, for each rule in Hi of the form rulej(v1, . . . , vm)← l1, . . . , ln where
n ≥ 1, we can add to the given partial model the following two rules:

• ¬hyp(i)← not rulej(v1, . . . , vm), condi,j(v1, . . . , vm)

• condi,j(v1, . . . , vm)← l1, . . . , ln

Where i distinguish one revision suggestion from another, j for indexing
rules within the revision suggestion, and v1, . . . , vm are for linking variables in
the rule head to its conditions, with m ≥ 0.

For the example and the three rules addition, this would result in the pro-
gram segment in Listing 3.2 given:

1 %-----------------HYPOTHESES ------------------%

2 hyp_id (1).

3 hyp_id (2).

4 hyp_id (3).

5

6 hyp(H) :- hyp_id(H), not -hyp(H).

7

8 % H1: Black beans are in the blackbag

9 % in(blackbag , B):- beancolour(B, black).

10 -hyp (1) :- not in(blackbag , B), cond_1(B).

11 cond_1(B) :- beancolour(B, black).

12

13 % H2: Special beans are in the blackbag

14 % in(blackbag , B) :- poisonous(B).

15 -hyp (2) :- not in(blackbag , B), cond_2(B).

16 cond_2(B) :- special(B).

17

18 % H2: Poisonous beans are in the blackbag

19 % in(blackbag , B) :- special(B).

20 -hyp (3) :- not in(blackbag , B), cond_3(B).

21 cond_3(B) :- poisonous(B).

22

23 %-----------------ABDUCIBLES ------------------%

24 % A bean can be in one bag only

25 0 { in(BAG , BEAN) : bag(BAG) } 1 :- bean(BEAN).
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26

27 -in(BG ,B) :- bag(BG), bean(B), not in(BG ,B).

Listing 3.2: Program segment of possible rules to add to background

Note that lines 2-4 in Listing 3.2 are auxiliary information that are for rea-
soning about these hypotheses, they represent the unique identifying number
for each hypothesis. Closed world assumption is also added for the hypotheses
by the rule in line 6. The last three lines is needed to make the literals in/2

abducible so we can generate all the relevant literals. We also added closed word
assumption for it, as this is will make it easier for us to extract relevant literals
that are negative instances of in/2.

We can add the constrains on the hypotheses to ensure that the answer
acquired will contain relevant literals, as shown in our relevant literal charac-
terisation in Section 3.2.

As mentioned earlier, we will ignore the fist and third condition as they
are satisfied through the correctness of the learner. So the main conditions for
relevant literals are:

1. T ∧O ∧ l is an abductive explanation for
∨

Hi∈HY P ¬Hi

2. A ∧O ∧ l is not an abductive explanation for ¬Hi, ∀Hi ∈ HY P

These can be added as integrity constraints in ASP as shown in the following
Listing 3.3:

1 %------------------CONSTRAINT -------------------%

2

3 :- hyp (1), hyp (2), hyp (3).

4 :- -hyp (1), -hyp (2), -hyp (3).

5

6 %-----------------------------------------------%

7

8 #hide.

9 #show in/2.

10 #show -in/2.

11 #show hyp /1.

12 #show -hyp /1.

Listing 3.3: Hypothesis objective

Note that lines 8-12 in Listing 3.3 are additional clauses for readability of the
results, hiding all predicates whose definition remains unchanged. Running the
completed program in iClingo will produce answer sets with relevant literals.
The first three answer sets from this program is shown in Listing 3.4. Although
each answer set contains relevant literals for rejecting the falsified hypotheses,
not all literals in the set are relevant, for example literals in/2 with whitebag
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as its predicate are irrelevant as the rule changes have no effect on them. This
shows that we will still need to carry out some post processing of these results
to identify the most relevant literals. Furthermore, we have only considered the
addition of rules in this example while there are more ways in which a model
could be revised.

1 Answer: 1

2 in(blackbag ,b3) in(blackbag ,b2) -in(blackbag ,b1)

3 -in(whitebag ,b3) -in(whitebag ,b2) -in(whitebag ,b1)

4 -hyp (2) hyp (3) hyp (1)

5

6 Answer: 2

7 in(blackbag ,b3) in(blackbag ,b2) in(whitebag ,b1)

8 -in(blackbag ,b1) -in(whitebag ,b3) -in(whitebag ,b2)

9 -hyp (2) hyp (3) hyp (1)

10

11 Answer: 3

12 in(blackbag ,b2) in(blackbag ,b1) -in(blackbag ,b3)

13 -in(whitebag ,b3) -in(whitebag ,b2) -in(whitebag ,b1)

14 -hyp (3) hyp (2) hyp (1)

15

16 ...

Listing 3.4: Example result of relevant literals generation

3.4 Relevent Literals Generation and Norms Re-
vision

There are three ways of refining the normative framework:

1. Adding a new rules.

2. Deleting an existing rules.

3. Adding or deleting conditions of existing rules.

Our method of describing revision suggestion as an hypothesis in Section
3.3 can only handle the first case of adding new rules. For deleting or changing
conditions of existing rules, we need to take into consideration the rules that
will not be in those revision suggestion but can be in all other ones that do not
delete or modify them.

To handle the last two cases, we can treat the deleted or modified rules as new
rules for all other revision suggestions that do not modify them, representing
how they remain unchanged in those revision suggestions. By removing the rule
from the original background knowledge, the revision suggestions that modify
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the rule can treat its revised version as new rules to add to the model. For
example, suppose the rule R1 was in the the background knowledge in Listing
3.1:

R1: in(whitebag,B)← special(B), beancolour(B,white)

Then if we want to choose between these two possible revisions such that
in(whitebag,b2) is true:

• Changing R1 to: in(whitebag,B)← special(B)

• Adding a new rule: in(whitebag,B)← poisonous(B)

From the background knowledge Σ we remove from it all deleted or modify
rules R (in this case only R1). Σ′ = Σ−R1 represents the core background that
is common to all revision suggestions for the program. Any revision suggestions
that modified or kept R1 unchanged can add the respective versions of it as new
rule addition by the suggestion.

The hypotheses representation for these example revision suggestions are
shown in figure 3.5, with R1 deleted from the background (thus the background
remains the same as in Listing 3.1), and added to the second revision suggestion
as a new rule. This makes it possible to keep the translation to hypotheses the
same, while at the same time making it possible to generate use cases for all
types of revisions.

Note that should there be another revision suggestion which simply deletes
R1 from the hypothesis without adding or modifying any rules, then Σ′ already
represents the program as revised by the revision.
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1 %-----------------HYPOTHESES ------------------%

2

3 % H1: Modifying rule

4 -hyp (1) :- not in(whitebag , B), cond_1(B).

5 cond_1(B):- special(B).

6

7

8 % H2: Add new rule

9 -hyp (2) :- not in(whitebag , B), cond_2_1(B).

10 cond_2_1(B) :- poisonous(B).

11

12 % Deleted rule added to hyp (2)

13 -hyp (2) :- not in(whitebag , B), cond_2_2(B).

14 cond_2_2(B) :- special(B), beancolour(B, white).

Listing 3.5: Example hypotheses for modifying existing rule

The Listing 3.6, shows the answer sets produced by the hypotheses in Listing
3.5, using the background knowledge in Listing 3.1. There were only four answer
sets produced and thus it can be worked out that hyp(1) is falsified whenever
in(whitebag,b3) and -in(whitebag,b1) holds, while hyp(2) is falsified when
-in(whitebag,b3) and in(whitebag,b1) holds.

1 Answer: 1

2 in(whitebag ,b3) in(whitebag ,b2) -in(blackbag ,b3)

3 -in(blackbag ,b2) -in(blackbag ,b1) -in(whitebag ,b1)

4 -hyp (1) hyp (2)

5 Answer: 2

6 in(whitebag ,b3) in(whitebag ,b2) in(blackbag ,b1)

7 -in(blackbag ,b3) -in(blackbag ,b2) -in(whitebag ,b1)

8 -hyp (1) hyp (2)

9 Answer: 3

10 in(whitebag ,b2) in(whitebag ,b1) -in(blackbag ,b3)

11 -in(blackbag ,b2) -in(blackbag ,b1) -in(whitebag ,b3)

12 -hyp (2) hyp (1)

13 Answer: 4

14 in(blackbag ,b3) in(whitebag ,b2) in(whitebag ,b1)

15 -in(blackbag ,b2) -in(blackbag ,b1) -in(whitebag ,b3)

16 -hyp (2) hyp (1)

Listing 3.6: Example result for relevant literals generation with rule modifying
hypotheses
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3.5 Finding Relevant Literals

To be able to score and rank the relevant literals, they need to be extracted
from the answer sets of the relevant literals generation. Furthermore, for them
to have any meaning, we also need to know what revision suggestions they
eliminate.

As iClingo allows us to specify what predicates symbols are included in the
answer sets it produce. As shown in Section 3.3, we can choose for only the
hypotheses predicates HY P , and the abducible predicates, and their negations,
to be included in the answer set results ANS. Finding relevant literals for
hypothesis h ∈ HY P can be done by subtracting answer sets where h is not
rejected from the ones that do reject it, as described in Algorithm 1.

In Algorithm 1, the set subtraction must be done one by one as we do
not want to miss the case where two or more literals are needed to reject a
hypothesis. However, the resulting sets will still have irrelevant literals in them,
thus we need to find distinct minimal subsets of the differences before combining
it to the result of the algorithm. The returned result is a set containing sets of
relevant literals for the given hypothesis. We took this approach, rather than
returning a set of literals, so that we can distinguish between literals that is
powerful enough to reject the hypothesis by itself, and those that need additional
literals to do so.

For example if we take the answer sets in the Listing 3.6 as an example for
ANS, and hyp(1) for h, and HY P = { hyp(1), hyp(2) } to find the relevant
literals for h using the Algorithm 1. We first go through each answer set to find
one that includes -hyp(1) (line 4-5).

Taking the first answer set S1 where the hypothesis is falsified, we then find
the answer sets that do not falsify the hypothesis (line 10-11), for each of such
answer set (S3 and S4), union it with the set of predicates that were used for
identifying hypotheses and their negation (line 13), then add the set difference
between S1 and the union sets to DIFF .

The two sets in DIFF after line 16 would be:

S1 − S3 ∪HY P ∪ {¬h : HY P} = {in(whitebag, b3),¬in(whitebag, b1)}
S1 − S4 ∪HY P ∪ {¬h : HY P} = {in(whitebag, b3),¬in(whitebag, b1)}

Thus the smallest subsets in DIFF found after line 26 is only
{in(whitebag, b3),¬in(whitebag, b1)}, and applying the algorithm to S2 would
produce the same result thus this set of two literals are the only relevant rel-
evant literals for hyp(1), and as they are returned in the same set, it is their
conjunction which is required to reject hyp(1).

Although the constraints added to the relevant literals generation program
prevent answers where none of the hypotheses is rejected to be produced (to
ensure that all answer sets in the result contain relevant literals), when using
this algorithm to identify relevant literals, in some case it is beneficial to relax
the constraint so that there are more answer sets for comparison. For example,
in the case where only one hypothesis can be rejected. If we use the same
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Algorithm 1 Finding relevant literals of a hypothesis

Input: answer sets ANS, hypothesis predicate h, and the set of hypothesis
predicates HY P

1:

2: REV = ∅
3:

4: for all Si ∈ ANS do
5: if ¬h ∈ S then
6:

7: {Find the difference between Si and other answer sets that do not
contain relevant literals of h}

8: DIFF = ∅
9:

10: for all Sj ∈ ANS do
11: if ¬h /∈ S then
12:

13: NREV = Sj ∪HY P ∪ {¬h : HY P}
14: DIFF = DIFF ∪ {Si −NREV }
15: end if
16: end for
17:

18: {Find the smallest subsets of the sets in DIFF}
19: LIT = ∅
20:

21: for all D ∈ DIFF do
22: LIT = LIT − {L : LIT |L ⊃ D}
23: if D /∈ LIT and @L : LIT (L ⊂ D) then
24: LIT = LIT ∪ {D}
25: end if
26: end for
27:

28: {Add this set of relevant literals to the result}
29: R =

⋃
Li∈LIT Li

30: REV = REV ∪ {R}
31: end if
32: end for
33:

34: return REV
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background knowledge as in Listing 3.1, and try to find the differences between
two revision suggestions, each one adding one of the following rules:

• in(whitebag,B)← beancolour(B,white).

• in(whitebag,B)← beancolour(B,white), special(B).

The answer sets produced from the relevant literals generation to differenti-
ate the addition of these rules are shown in Listing 3.7. While hyp(1) can be
falsified, its relevant literals cannot be found as there is no answer sets where
hyp(1) is true that can be used for the set comparison when applying the Algo-
rithm 1. However, the algorithm would be able to identify the relevant literals
should the condition placed on the relevant literals generation is relaxed to in-
clude answer sets where both hyp(1) and hyp(2) are true.

1 Answer: 1

2 in(blackbag ,b2) in(whitebag ,b1) -in(blackbag ,b3)

3 -in(blackbag ,b1) -in(whitebag ,b3) -in(whitebag ,b2)

4 -hyp (1) hyp (2)

5 Answer: 2

6 in(whitebag ,b1) -in(blackbag ,b3) -in(blackbag ,b2)

7 -in(blackbag ,b1) -in(whitebag ,b3) -in(whitebag ,b2)

8 -hyp (1) hyp (2)

9 Answer: 3

10 in(whitebag ,b2) in(whitebag ,b1) -in(blackbag ,b3)

11 -in(blackbag ,b2) -in(blackbag ,b1) -in(whitebag ,b3)

12 -hyp (1) hyp (2)

13 Answer: 4

14 in(blackbag ,b3) in(blackbag ,b2) in(whitebag ,b1)

15 -in(blackbag ,b1) -in(whitebag ,b3) -in(whitebag ,b2)

16 -hyp (1) hyp (2)

17 Answer: 5

18 in(blackbag ,b3) in(whitebag ,b1) -in(blackbag ,b2)

19 -in(blackbag ,b1) -in(whitebag ,b3) -in(whitebag ,b2)

20 -hyp (1) hyp (2)

21 Answer: 6

22 in(blackbag ,b3) in(whitebag ,b2) in(whitebag ,b1)

23 -in(blackbag ,b2) -in(blackbag ,b1) -in(whitebag ,b3)

24 -hyp (1) hyp (2)

Listing 3.7: Example relevant literal generation output with where relevant
literals cannot be extracted
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3.6 Scoring and Ranking Relevant Literals

We want to narrow down the hypothesis space by asking the designer about
the truth value of the relevant literals. It would be preferable that as much
information as possible is gained from each answer from the designer. Thus the
literal that is picked for questioning the designer should be able to reject as many
revision suggestions as possible. Ideally, it should have the similar characteristics
of discriminating test, being able to reject some revision suggestions regardless
of its truth value.

To decide which literal to pick, we will need a way to score and rank them.
We will be adopting a greedy approach by identifying the literals that reject the
maximum number of suggested revisions independently of their truth value.

Thus, for each relevant literal l with that rejects number of n revision sug-
gestions when it is true, and rejects m suggestions when it is false, the score
minimum(n,m) will be used to compare it to other literals. This minimum
between the two values is used to ensure that our scoring gives discriminating
literals higher score than those that are as discriminating.

For a set L of positive of relevant literals and set S of scores, with each li ∈ L
and corresponding set of scores si ∈ S, where si = minimum(ni,mi), the most
relevant literal is the a literal l whose score s is equal to the maximum score of
S, thus: s = maximum({si|si ∈ S}).

For example, consider the answer sets shown in Listing 3.8 which are some
the output of literals generation where the each revision suggestion adds the
following rule to our bean and bag example:

• Revision Suggestion 1: in(whitebag,B)← notbeancolour(B,white).

• Revision Suggestion 2: in(whitebag,B)← poisonous(B).

• Revision Suggestion 2: ¬in(whitebag,B)← beancolour(B,white).

1 Answer: 1

2 in(blackbag ,b2) -in(blackbag ,b3) -in(blackbag ,b1)

3 -in(whitebag ,b3) -in(whitebag ,b2) -in(whitebag ,b1)

4 -hyp (1) -hyp (2) hyp (3)

5 Answer: 2

6 in(blackbag ,b2) in(blackbag ,b1) -in(blackbag ,b3)

7 -in(whitebag ,b3) -in(whitebag ,b2) -in(whitebag ,b1)

8 -hyp (1) -hyp (2) hyp (3)

9 Answer: 3

10 in(blackbag ,b3) in(blackbag ,b2) -in(blackbag ,b1)

11 -in(whitebag ,b3) -in(whitebag ,b2) -in(whitebag ,b1)

12 -hyp (1) -hyp (2) hyp (3)

13 Answer: 4

14 in(blackbag ,b3) in(blackbag ,b2) in(blackbag ,b1)

15 -in(whitebag ,b3) -in(whitebag ,b2) -in(whitebag ,b1)

16 -hyp (1) -hyp (2) hyp (3)
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17 ...

Listing 3.8: Example result from relevant literals generation

Applying our algorithm for identifying relevant literals we can find out the
literals required for rejecting each hypothesis:

• hyp(1) rejected by ¬in(whitebag, b1)

• hyp(2) rejected by ¬in(whitebag, b3)

• hyp(2) rejected by ¬in(whitebag, b2)

• hyp(3) rejected by in(whitebag, b1)

Then we give each literal a score based on the number of hypotheses it
rejects, treating the cases of positive and negative separately:

• in(whitebag, b1): 1.0

• ¬in(whitebag, b1): 1.0

• in(whitebag, b2): 0.0

• ¬in(whitebag, b2): 1.0

• in(whitebag, b3): 0.0

• ¬in(whitebag, b3): 1.0

Then the minimum score for each literal will be:

• in(whitebag, b1): 1.0

• in(whitebag, b2): 0.0

• in(whitebag, b3): 0.0

Thus, the literal that would be chosen as the most discriminating from these
three would be in(whitebag, b1) as whatever its truth value is, it will reject one
hypothesis, while the other two will only reject a hypothesis when they have
certain truth values.

We also use fractions when score literals that are needed in conjunction to
discriminate a hypothesis. For example if instead if being able to discriminate
hyp(2) by itself, ¬in(whitebag, b3) and ¬in(whitebag, b2) are needed in con-
junction with each other to have enough power to reject hyp(2). Then we
would give each one of them a score of a half, to represent their strength in
reject the hypothesis.
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Chapter 4

ASP implementation of
TAL

4.1 Preliminary Notations

These are the notations that were used in [1] for mode declarations. We will
be using them in this chapter for the translation of mode declaration into top
theories.

Given a head declaration modeh(s) or body declaration modeb(s):

• id is the unique identification of the mode declaration

• sv is the literal obtained from s by replacing all of its placemakers with
different variables X1, . . . , Xn

• type(sv) is the sequence of literals t1(X1), . . . , tn(Xn) where each ti is the
type of variable Xi

• con(s∗) is the list of the variables that replace constant placemarkers
‘#type’ in s, in order of appearance from left to right

• inp(s∗) is the list of the variables that replace input placemarkers ‘+type’
in s, in order of appearance from left to right

• out(s∗) is the list of the variables that replace output placemarkers ‘-type’
in s, in order of appearance from left to right

For example, for the mode declaration
modeb(move(+block,+location,−location,#fuel,−time)):

• id could be any unique name for identifying the mode declaration from
other mode declarations, for example if the predicate is not used in an-
other mode declaration then move could be used for identifying this mode
declaration.
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• If sv is the literal move(X1, X2, X3, X4, X5)

• type(sv) would be the sequence of literals block(X1), location(X2), location(X3),
fuel(X4), time(X5)

• con(s∗) would be the list of variables (X4)

• inp(s∗) would be the list of variables (X1, X2)

• out(s∗) would be the list of variables (X3, X5)

4.2 Overview

Inductive Logic Programming (Section 2.5) is used to learn the revision sugges-
tions of the normative framework. The ILP learning tool TAL [4] is implemented
using Prolog. In [1], to make it compatible to representation of the normative
framework, the ILP task < E,B,M > (Section 2.5.3) is translated to a Abduc-
tive Logic Programming task < P,A, IC > (Section 2.4.1).

The example set E can be intuitively translated into integrity constraint IC.
The mode declarations M , however, is translated into a top theory T . The top
theory is constructed via the translation in [1] as follows.

• For each head declaration modeh(s) and its unique identifier id, add the
following rule to T

sv ← type(sv),
rule(RId, 0, (id, con(s∗), ())),
rule id(RId),
body(RId, 1,out(s∗))

• The following rule is in T (this acts as a marker for the end of the rule,
for terminating the recursion)

body(RId, L, )← rule(RId, L, last)

• For each body declaration modeb(s) and its unique identifier id, add the
following rule to T

body(RId, L, Inputs)← type(sv),
rule(Rid, L, (id, con(s∗), Links)),
link variables(inp(s∗), Inputs, Links),
sv,
level(L),
level(L+ 1),
body(RId, L+ 1, (out(s∗), Outputs))

rule id(RId) and level(L) are used to specify how many rules and rule con-
ditions (levels) can be abduced, and
link variables((a1, . . . , am), (b1, . . . , bn), (o1, . . . , om)) is true if for each ai there
exist bj such that unifies with ai, and oi = j. link variables/3 is used to links
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the input variables of the predicate to the list of variables from previous mode
predicates in the rule. For example, if an instance of the partial rule being con-
structed is aunt(susan, rob) ← sister(susan, jane), and we are trying to add
mother(+person,+person) to the end of the rule, then the list of inputs that
will be given to link variables/3 is (susan, rob, jane). Should we want to match
jane to the first argument of mother(+person,+person) and rob to the second
argument, then link variables((jane, rob), (susan, rob, jane), (2, 1)), assuming
the first index to be 0, must be true.

T and the background knowledge B now fit into the abductive framework
as the logic program P = T ∪B, and rule/4 and rule/3 are the only abducible
predicate symbols in A. By implementing this in ASP, the rule is constructed
by abducing the rule/4 atom associated to the rule head, then test out each
definition of body/3 atom, trying to one where it can abduce other rule/4 atoms
that can be added to the rule body.

4.2.1 Limitations

This representation of the of the mode declarations can very easily leads to an
explosion in the number of grounded instances of clauses in the program, which
takes a great amount of time and space to ground and can lead to the solver
giving up on the program completely.

The problem is present in any implementation of ILP problems using ASP, as
rules that are learnt have to be encoded by the literals abduced. This requires a
large amount of information to be added to the program for encoding the rules.

For large problems such as the normative framework, the explosion of grounded
instances often make the program unsolvable. To reduce the grounded instances
and make the program solvable, the program would need to be simplified. For
example, in some cases by removing the argument RId completely from the
program, the ASP solver was able to generate the learning results. However,
such removal of information not only makes it impossible to work out what rule
head does each body literal corresponds to, it can also limits the search space
(by removing RId, the number of rules abducible would decreases, as RId is
used for specifying the number of rules abducible).

To address the problem of state space explosion, we considered alternative
ways to implement the top theory of TAL in order to find the one that will
reduce the grounding needed as much as possible.

4.3 List Approach

In order to make the result easier to interpret, we tried to represent the partial
rules as a lists, and construct the new rule by adding bodies to the list. We
change the translation of mode declarations to top theory such that:

• For each head declaration modeh(s) and its unique identifier id, add the
following rule to T
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sv ← type(sv),
body(out(s∗), (id, con(s∗), ()))

• The following rule is in T (similarly to the original translation, this acts
as the base case to terminate the rule construction)

body(Inputs, PRule)← rule(PRule)

• For each body declaration modeb(s) and its unique identifier id, add the
following rule to T

body(Inputs, PRule)← type(sv),
link variables(inp(s∗), Inputs, Links),
sv,
append body(PRule, (id, con(s∗), Links), NewPRule),
append variables(Inputs,out(s∗), Outputs),
body(Outputs,NewPRule)

Keeping the transformation of the ILP task into an ALP one, with the excep-
tion of only rule/1 being in the only abducible predicate symbol, append body/3
and append variables/3 both adds elements to the end of the partial rule and
variables list respectively, while link variables/3 retains the same function as
in the original translation.

By using a list to represent the rules, we remove the need of using rule id(RId)
and level(L). Limiting the length of the rule is done by utilities functions, such
as limiting append body/3 to only being able to add new bodies to partial rules
of certain length, and specifically defining the allowed formats of the partial
rules.

As lists are not included in the language for ASP, we have to define the list
representation and operations ourselves. A too general definition of lists, such
as ones of unlimited length, would only result in more instances explosion, thus
we defined lists of all allowable sizes explicitly. For example, for rules of with up
to two body literals, the following rules needed to added to the ASP program
for representing the partial rule list and how to append body literals to them:

%-Partial rule

partial_rule((H)) :- head_lit(H).

partial_rule((H, B0)) :- head_lit(H), body_lit(B0).

partial_rule((H, B0, B1)) :- head_lit(H), body_lit(B0),

body_lit(B1).

%-Append rule body literal

append_body(B0, (H), (H, B0)) :- head_lit(H), body_lit(B0).

append_body(B1, (H, B0), (H, B0, B1)) :- head_lit(H), body_lit(B0),

body_lit(B1).

Similar rules are used to define the variable lists, as well as additional rules
needed for looking up indexes of variables within the list:

40



%-Variable Lists

vars(V0) :- v(V0).

vars((V0,V1)) :- v(V0), v(V1).

vars((V0,V1,V2)) :- v(V0), v(V1), v(V2).

append_var( V1, (V0), (V0,V1) ) :- v(V1), v(V0), vars((V0,V1)).

append_var( V2, (V0,V1), (V0,V1,V2) ) :- v(V2), vars((V0,V1,V2)).

%---Variables Index lookup

link( V0, (V0, V1, V2), 0 ) :- vars((V0, V1, V2)).

link( V1, (V0, V1, V2), 1 ) :- vars((V0, V1, V2)).

link( V2, (V0, V1, V2), 2 ) :- vars((V0, V1, V2)).

link( V0, (V0, V1), 0 ) :- vars((V0, V1)).

link( V1, (V0, V1), 1 ) :- vars((V0, V1)).

link( V0, (V0), 0 ) :- vars(V0).

The output of this implementation is aimed to be easier for interpretation
as each rule is represented by a single list and do not need to be constructed by
different predicates.

4.3.1 Limitations

Although it is easier to read off the result from this approach, it leads to an even
greater state space explosion problem. This is due to the increase in the search
space of the rule, as a consequent of using a list to represent it. If we compare it
to the original representation, for a number of r values for RId, l values for rule
levels, n total instances for the pair of link indexes and constants lists, then for
h and b numbers of head and body declarations, the number grounded rule/4
instances (ignoring the end of rule marker) is:

(h+ b) · (r · l · n)

As the format of the predicate is rule(RId, Level, (id, Constants, Indexes)),
thus there would be a total (h+ b) possible values for id, and per each id there
are a total n instances for the two lists in (id, Constants, Indexes), each of such
instance can be at any level in the rule body with any rule id (RId).

However, with this list representation, if the maximum number of body
literals in the rule is k, then the number of grounded instances of this list is:

(h · n) · (
∑k

i=1(b · n)i)

For each head declaration, there are the total of n number instances due
to the constant and index lists for representing the head literal of the list, and
each head instance could be combined with any combinations of instances of
body literals. Just like for each head declaration, each body will have n number
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of instances, and they could be arranged in any permutation after the head
literal and there is no restriction on whether each instance can be repeat, or
any ordering restrictions, so for each length len of the list of body predicate,
there are (b · n)len permutations of the instances that could be added to the
head literal.

This leads to an extremely steep increase in the number of grounded atom
as the maximum length of the rule increases. Furthermore, this will also create
in a chain of increases in grounded instances of other predicates as the partial
rule is used as part of predicates such as body/2 and append body/3.

4.4 Double Negation Approach

We describes here the translation from [15], which employs double negation for
rule learning. The top theory is constructed from the mode declarations using
the following translation.

• For each head declaration modeh(s) and its unique identifier id, add the
following rule to T

sv ← type(sv),
head lit(id, RId, con(s∗)),
not body(b1, (id, RId),out(s∗),out(s∗b1)),
not body(b2, (id, RId), (out(s∗),out(s∗b1)),out(s

∗
b2
)),

. . .
not body(bn, (id, RId), (out(s∗bn-2)),out(s

∗
bn-1)),out(s

∗
bn
))

Where each bi is the unique identifier of each body declaration and sbi
corresponds to the schema of the body declaration with unique identifier
bi.

• For each body declaration modeb(s) and its unique identifier id, add the
following rule to T

body(id, (idhead, RId), Inputs,out(s∗))← type(sv),
link variables(inp(s∗), Inputs, Links),
body lit(id, (idhead,RId), con(s∗), Links),
not sv

Again the only difference between this method and the other previous ones is
the translation for the top theory and the set of aducible predicate symbol. With
this approach two predicate symbols head lit/3 and body lit/4 are abducible.

We slightly modify the translation given in [15] by passing the id of the head
literal as input to body/4. This makes it easier to match up the rule bodies to
their respective head. This representation also allows smaller values to be used
for RId as each rule head can be uniquely identified by the combination of its
id and RId, while each rule body can be identified by their their id, RId, and
its rule head’s idhead. Thus, Rid can be used here to specify the number rules
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allowed with the same head. This helps decrease the search space as smaller
values can be used for RId.

If the repetition of a rule body with the same body declaration is allowed,
then more not body clauses can be added to he chain in the head declaration
translation.

This approach allows greater restriction on the search space, for example,
different sets of rule body can be associated to different rule heads. Further-
more, in most cases where repetition of bodies from the same body declaration
is not allowed, this method will not generate redundant result from different
permutations of the bodies in the rule.

4.4.1 Limitations

Consider the translation of each head declaration:
sv ← type(sv),
head lit(id, RId, con(s∗)),
not body(b1, RId,out(s

∗),out(s∗b1)),
not body(b2, RId, (out(s

∗),out(s∗b1)),out(s
∗
b2
)),

. . .
not body(bn, RId, (out(s

∗
bn-2)),out(s

∗
bn-1)),out(s

∗
bn
))

As the input of each body/2 atom is constructed from outputs of previous
two atoms, should any mode declarations have output variables they must be
given priority to be the first in such a chain. This is to ensure that subsequent
atoms are not missing any variables that could decide if body lit/4 predicate is
abduced or not. This would also mean that if there are more than one body
declarations with output variable, then this clause for the head declaration must
be repeated for different permutations of such bodies.

4.5 Other Optimisations

• The problem of redundant results due to permutations of rule bodies can
be avoided by forcing an ordering on them. This works well when all body
declarations only have constants and input variables, but is not so straight
forward when some have output variables, as the ordering could make the
literals with outputs be forced behind others that need them as inputs.

• One of the main reason for the problem of the state space explosion is
the constants, variables and indexes lists. For example, in the original
approach, for a number of r values for RId, l values for rule levels, n
indexes for linking variables, and k possible constants, suppose there is no
restriction on the length of the constants and index lists, the number of
grounded rule/4 instances per mode declaration is:

r · l ·
∑n

i=1 n
i ·

∑k
i=1 k

i
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As the number of constants possible is n, the maximum length for the
list must also be n, and for each length len of the list there are nlen

permutations of constants, this reasoning also apply for the indexes list.
Each constants list could be associated with any of the indexes lists, thus
the total number of instances from these lists are

∑n
i=1 n

i ·
∑k

i=1 k
i. Each

one of such lists combination could have any RId and be at any level of
the rule.

These lists also increases the instances of other predicates, such as body/3,
link variables/3, and any other utility functions needed for constructing
or editing such lists. Thus, a more rigid representation for these would
help with reducing the number of grounded instances of the program.
For example, by imposing a fixed size on the list which would reduce the
number of instances permutations from

∑n
i=1 n

i to nlenmax .

4.6 Examples

We will use each approach to solve the same problem in order to show the dif-
ference in their encoding and the results produced. For the ILP problem that
we will be solving, we will be using the bean and bags example in Listing 4.1.
The background contains facts describing three black and white beans, two bags
with the colour black or white.

1 %-----------------Background -----------------%

2 bean(b1).

3 bean(b2).

4 bean(b3).

5

6 bag(whitebag).

7 bag(blackbag).

8

9 colour(white).

10 colour(black).

11

12 bagcolour(whitebag ,white).

13 bagcolour(blackbag ,black).

14

15 beancolour(b1 , white).

16 beancolour(b2 , black).

17 beancolour(b3 , white).

18

19 poisonous(b1).

20 special(b1).

Listing 4.1: Example background knowledge of ILP task
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The example set contains a negative in(whitebag, b2) example and a pos-
itive example in(whitebag, b1). In all approaches, this will be added as an
integrity constraint, as shown in Listing 4.2.

1 %-----------------Example -----------------%

2 example :- in(whitebag , b1), not in(whitebag ,b2).

3 :- not example.

Listing 4.2: Positive example to be covered by the learning result

Lastly, we will be using the following mode declarations:

• in: modeh(in(+bag,+bean))

• bgc1: modeb(bagcolour(+bag,−colour))

• bgc2: modeb(bagcolour(+bag,#colour))

• bec: modeb(beancolour(+bean,+colour))

These are chosen to show the difference between mode declarations with
different types of placemarkers.

4.6.1 Using Original Method

The Listing 4.3 shows the top theory constructed using the first translation from
Section 4.2.

1 %----------------Top Theory ---------------%

2 %modeh(in(+bag ,+bean))

3 in(BG ,BE) :- bag(BG), bean(BE), rule_id(RId),

4 rule(RId , 0, (in , (e), (e))),

5 body(RId , 1, (BG ,BE)).

6

7 body(RId ,L,Inputs) :- vars(Inputs), rule(RId , L, last)

.

8

9 %modeb(bagcolour (+bag ,-colour))

10 body(RId ,L,Inputs) :- link( BG , Inputs , I0 ),

11 bag(BG), colour(CO),

12 bagcolour(BG , CO),

13 append_var(CO , Inputs , Outputs),

14 rule(RId , L, ( bgc1 , (e), (I0))),

15 body(RId , L + 1, Outputs).

16

17 %modeb(bagcolour (+bag ,# colour))

18 body(RId ,L,Inputs) :- link( BG , Inputs , I0 ),
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19 bag(BG), colour(CO),

20 bagcolour(BG , CO),

21 rule(RId , L, ( bgc2 , (CO), (I0))),

22 body(RId , L + 1, Inputs).

23

24 %modeb(beancolour (+bean ,+ colour))

25 body(RId ,L,Inputs) :- link( BE , Inputs , I0 ),

26 link( CO , Inputs , I1 ),

27 bean(BE), colour(CO),

28 beancolour(BE , CO),

29 rule(RId , L, ( bec , (e), (I0 ,I1))),

30 body(RId , L + 1, Inputs).

Listing 4.3: Example top theory constructed using the original approach

The main difference between the format of each mode declarations in the top
theories depends on their placemarkers, such as needing to add output variables
to the existing variable lists if there are output placemarkers, and keeping adding
the constants or linking indexes to the abduced rule/3 according to the constant
and input placemakers of the mode declaration.

The Listing 4.4 shows the abducible predicate symbol added to the program.
We specify for precisely four of these predicates to be abduced as it is the min-
imum rule length needed for the program to produce any solution.

1 %----------------Abducibles ---------------%

2 4 { rule( RId , L, PRULE ) : rule_id(RId) : level(L) :

prule(PRULE) } 4.

Listing 4.4: Abducible predicate symbol for the ALP task

The results of the completed program is shown in Listing 4.5, e is the symbol
used for empty lists, and variable indexes starts from zero. This result can be
translated to the rule in(BG,BE)← bagcolour(BG,CO), beancolour(BE,CO)
by comparing the output to the mode declarations, and matching the value of
each variable index to the order in which the variables are added to the rule.
In these representation, the indexes used for the variables starts at 0, thus the
indexes one and two in rule(1,2,(bec,e,(1,2))) refers to the second and
third variables in the rule.

1 Answer: 1

2 rule(1,3,last)

3 rule(1,2,(bec ,e,(1 ,2)))

4 rule(1,1,(bgc1 ,e,0))

5 rule(1,0,(in ,e,e))

Listing 4.5: Result of learning using the original approach
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4.6.2 Using the List Approach

Following the translation of the mode declarations that was defined in Section
4.3, the result is the top theory in Listing 4.6.

1 %----------------Top Theory ---------------%

2 %modeh(in(+bag ,+bean))

3 in(BG ,BE) :- bag(BG), bean(BE),

4 body( (BG ,BE), (in , (e), (e)) ).

5

6 body(Inputs , PRule) :- vars(Inputs), rule(PRule).

7

8 %modeb(bagcolour (+bag ,-colour))

9 body(Inputs , PRule) :- link( BG , Inputs , I0 ),

10 bag(BG), colour(CO),

11 bagcolour(BG , CO),

12 append_var(CO , Inputs , Outputs),

13 append_body ((bgc1 , (e), (I0)), PRule , NewPRule),

14 body(Outputs , NewPRule).

15

16 %modeb(bagcolour (+bag ,# colour))

17 body(Inputs , PRule) :- link( BG , Inputs , I0 ),

18 bag(BG), colour(CO),

19 bagcolour(BG , CO),

20 append_body ((bgc2 ,(CO),(I0)), PRule , NewPRule),

21 body(Inputs , NewPRule).

22

23 %modeb(beancolour (+bean ,+ colour))

24 body(Inputs , PRule) :- link( BE , Inputs , I0 ),

25 link( CO , Inputs , I1 ),

26 bean(BE), colour(CO),

27 beancolour(BE , CO),

28 append_body ((bec ,(e),(I0 ,I1)), PRule , NewPRule),

29 body(Inputs , NewPRule).

Listing 4.6: Example top theory constructed using the list approach

The abducible predicate symbol is added in a similar manner to the previous
approach as shown in Listing 4.7

1 %----------------Abducibles ---------------%

2 0 { rule( R ) : interm_rule(R) } 1.

Listing 4.7: Abducible predicate symbol for the ALP task

As this approach produce a an extremely large search space compared to
the other two, to make this program terminate, a lot of optimisation is needed.
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This includes a strict ordering on the lists of variables, Inputs and Outputs, as
well as the rule bodies. Unfortunately, this was not enough and one of the mode
declarations, bgc2, was removed to make the program terminate.

1 Answer: 1

2 rule (((in ,e,e),(bgc1 ,e,0) ,(bec ,e,(1 ,2))))

Listing 4.8: Result of the ILP task using the list approach

The translation from the result is Listing 4.8 to a rule can be done in a
similar manner as the last approach, by comparing each rule body to the corre-
sponding mode declaration and building up a variable list for figuring out how
the variables in the rule are linked to each other.

4.6.3 Using Double Negation Approach

Lastly, using the translation of Section 4.4, we can translate the mode declara-
tions to acquire the top theory in Listing 4.9.

1 %----------------Top Theory ---------------%

2

3 %modeh(in(+bag ,+bean))

4 in(BG ,BE) :-

5 bag(BG), bean(BE), rule_id(RId),

6 head_lit(in , RId , (e)),

7 not body(bgc1 , (in , RId), (BG ,BE), (CO)), colour(

CO),

8 not body(bgc2 , (in , RId), (BG ,BE ,CO), (e)),

9 not body(bec , (in , RId), (BG ,BE ,CO), (e)).

10

11 %modeb(bagcolour (+bag ,-colour))

12 body(bgc1 , (HId , RId), Inputs , (CO) ) :-

13 link( BG , Inputs , I0 ),

14 bag(BG), colour(CO),

15 body_lit(bgc1 , (HId , RId), (e), (I0)),

16 not bagcolour(BG , CO).

17

18 %modeb(bagcolour (+bag ,# colour))

19 body(bgc2 , (HId , RId), Inputs ,(e)) :-

20 link( BG , Inputs , I0 ),

21 bag(BG), colour(CO),

22 body_lit(bgc2 , (HId , RId), (CO), (I0)),

23 not bagcolour(BG , CO).

24

25 %modeb(beancolour (+bean ,+ colour))
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26 body(bec , (HId , RId), Inputs ,(e)) :- link( BE , Inputs ,

I0 ),

27 link( CO , Inputs , I1 ),

28 bean(BE), colour(CO),

29 body_lit(bec , (HId , RId), (e), (I0 ,I1)),

30 not beancolour(BE , CO).

31

32 %----------------Abducibles ---------------%

33

34 0 { head_lit( ID , RId , CLIST ) : head_id(ID) : rule_id

(RId) : cons(CLIST) } 1.

35

36 0 { body_lit( ID , (HId , RId), CLIST , ILIST ) : id(ID)

: head_id(HId) : rule_id(RId) : cons(CLIST) :

indexes(ILIST) } 2.

Listing 4.9: Example top theory constructed using the double negation approach
and abducible predicate symbols

The answer set acquired from this program is shown in listing 4.10. This has
the same translation as the results from the previous approaches, in(BG,BE)←
bagcolour(BG,CO), beancolour(BE,CO).

1 Answer: 1

2 head_lit(in ,1,e)

3 body_lit(bec ,1,e,(1 ,2))

4 body_lit(bgc1 ,1,e,0)

Listing 4.10: Result of learning using the double negation approach

4.7 Evaluation

While all three approaches can learn the same rule, there is a significant dif-
ference in their performance. We compare each implementation approach using
the examples implemented.

So that the comparison reflects the difference between each implementation
of the top theory, we the same mode declarations were used in all implemen-
tations, the order in which they are added to the program are also kept the
same. All implementations share the following utility functions to make the
comparison fair:

%---Variables

v(BG) :- bag(BG).

v(BE) :- bean(BE).

v(CO) :- colour(CO).
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%---Variables Lists

vars(V0) :- v(V0).

vars((V0,V1)) :- v(V0), v(V1).

vars((V0,V1,V2)) :- v(V0), v(V1), v(V2).

append_var( V1, (V0), (V0,V1) ) :- v(V1), v(V0), vars((V0,V1)).

append_var( V2, (V0,V1), (V0,V1,V2) ) :- v(V2), vars((V0,V1,V2)).

%---Variables Links

link( V0, (V0, V1, V2), 0 ) :- vars((V0, V1, V2)).

link( V1, (V0, V1, V2), 1 ) :- vars((V0, V1, V2)).

link( V2, (V0, V1, V2), 2 ) :- vars((V0, V1, V2)).

link( V0, (V0, V1), 0 ) :- vars((V0, V1)).

link( V1, (V0, V1), 1 ) :- vars((V0, V1)).

link( V0, (V0), 0 ) :- vars(V0).

%---Indexes Lists

index(0..2).

indexes(e).

indexes(I0) :- index(I0).

indexes((I0, I1)) :- index(I0), index(I1).

%---Constants Lists

cons(CO) :- colour(CO).

cons(e).

We base our comparison on the time taken by the solver to ground each
program, we did not consider the solving time as for all programs that were
successfully grounded the time taken to solve each one is at most 0.2 seconds.

iClingo provides a command line option for for printing out statistical data
on successful termination of the solver, we use this to find out the number of
grounded atoms in each implementation. We also varied the number of mode
declarations to observe how it effects the complexity of the program.

In the Table 4.2 we were not able to find out the number grounded atoms
and rules when using four mode declarations in with the list implementation.
This is due to the program interruption that we had to use on the solver so that
it does not use up all memory of the machine.

From the three tables, Table 4.1, and 4.2, it is clear that the ASP imple-
mentation using double negation is the most efficient approach, while the list
implementation fares extremely poorly in efficiency. Although we have expected
for the list implementation to have poorer results compared to the other two,
the dramatic increase in number of grounded atoms from 23234 to 1340865,
more than fifty times increase, and the state space explosion that resulted from
using only four mode declarations highlights how the approach is not practical
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Time taken to ground program (s)

Implementation Used
Number of mode declarations

2 3 4
Original 0.19 0.26 0.43
List 0.37 32.58 > 102.06
Double Negation 0.06 0.08 0.08

Table 4.1: Time spent on grounding of different ASP implementation of TAL

Number of atoms in program

Implementation Used
Number of mode declarations

2 3 4
Original 4998 5506 6014
List 23234 1340865
Double Negation 2824 3089 3490

Table 4.2: Number of grounded atoms in different implementation of TAL

to use.
The tables also shows that the double negation approach is much more effi-

cient than the original, as reflected in the extremely small increase in grounding
time as the number of mode declarations increases, due to the small number of
grounded atoms it has.
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Chapter 5

Evaluation: Normative
Framework Case Study

5.1 Overview

We use the revision problem from [1] as a case study to evaluate the perfor-
mance of our approach of for finding relevant literals when applied to normative
framework revision.

The normative framework that we use is described in by following specifica-
tion:

• It consists of active agents, each one having ownership of some digital
blocks of data that form parts of larger files.

• An agent must share a copy of its blocks of data before being allowed to
download another block from another agent.

• Initially, there is only one copy of each block within the agent population,
and each one is owned an agent within the population.

• Agents with V IP status can download blocks without any restriction.

• Violations and misuse of an agent are generated when an agent requests for
a download without sharing one of its blocks after its previous download.

• A misuse terminates the agent’s empowerment to download blocks.

5.2 Normative Framework Revision

To be able to delete or revise rules within the partial normative framework N ,
it is divided into two parts N = NB ∪NT , where NB is parts of the framework
that is not revisable and NT is the part containing the revisable theory. As
described in [1], a pre-processing phase is needed so that a standard ILP learner
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is able to learn hypotheses at the meta-level, so that exceptions of the rules can
be learnt. This pre-processing phase consists of:

1. For each rule in NT , replace its body literals cij , where i is the rule in-
dex and j is the index of the body literal within the rule, by the atom
try(i, j, cij).

2. Add the condition not exception(i, ri, vi) to all rules ri in NT , where vi is
an optional list of additional variables appearing in the body.

3. For each try(i, j, cij) atom added to a rule, define it to be true either if

del(i, j) is true, else it is true when ever the condition cij is true.

4. By adding head declarations for del(i, j) and exception(i, ri, vi), if del(i, j)
is included in the learning result then it indicates the condition cij to
be removed from revised framework, while any hypotheses of the form
exception(i, ri, vi)← c1, . . . , cn learnt indicates conditions that need to be
added as exceptions to rule ri. These exceptions are added by replicating
the ri into n new rules, adding one of the condition ck, 1 ≤ k ≤ n, to each
one.

For example, the Listing 5.1 demonstrates how the rule 5 is transformed by
this pre-processing phrase.

1 %---rule 5

2 %---occurred(myDownload(X,B),I) :-

3 $--- occurred(download(Y,Y,B),I),

4 %--- holdsat(hasblock(Y,B),I)).

5

6 occurred(myDownload(X,B),I) :-

7 try(5, 1, occurred(download(Y,Y,B),I)),

8 try(5,2, holdsat(hasblock(Y,B),I)),

9 not exception(5, occurred(myDownload(X,B),I), Y).

10

11 try(5, 1, occurred(download(Y,Y,B),I)) :-

12 not del(5,1),

13 occurred(download(Y,Y,B),I).

14

15 try(5, 1, occurred(download(Y,Y,B),I)) :-

16 del(5,1).

17

18 try(5, 2, holdsat(hasblock(Y,B),I)) :-

19 not del(5,2),

20 holdsat(hasblock(Y,B),I).

21

22 try(5, 2, holdsat(hasblock(Y,B),I)) :-

23 del(5,2).
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Listing 5.1: Revisable rule 5 transformed to allow learning at meta-level

Thus, if del(5,1) is learnt, then the literal occurred(download(Y,Y,B),I)
will be removed from the rule, while if exception(5, occurred(myDownload(X,B),I),

Y) ← isVIP(X) is learnt, then not isVIP(X) will be added as another body
literal of rule 5.

5.3 Learning Revision Suggestions

We are using the same case study from the paper [1], but modifying it to fit our
purpose of generating multiple revision suggestions for the normative framework.
We kept the set of revisable rules NT to remain the same, consisting of:

• Rule 1

initiated(hasblock(X, B), I) :-

occurred(myDownload(X, B) , I).

• Rule 2

initiated(perm(myDownload(X, B)), I) :-

occurred(myShare(X), I).

• Rule 3

terminated(pow(extendedfilesharing, myDownload(X, B)), I) :-

occurred(misuse(X), I).

• Rule 4

terminated(perm(myDownload(X, B2)), I) :-

occurred(myDownload(X, B), I).

• Rule 5

occurred(myDownload(X, B), I) :-

occurred(download(Y, Y, B), I),

holdsat(hasblock(Y, B), I).

• Rule 6

occurred(myShare(X), I) :-

occurred(download(Y, X, B), I),

holdsat(hasblock(X, B), I).
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Consequently, the mode declarations contain the head declarations needed
for revising these rules as discussed in Section 5.2. Other mode declarations
that are included are as follows:

• modeh(occurred(misuse(+agent),+instant))

• modeb(occurred(myDownload(+agent,+block),+instant))

• modeb(notoccurred(download(+agent,+agent,+block),+instant))

• modeb(isV IP (+agent))

• modeb(notholdsat(hasblock(+agent,+block),+instant))

• occurred(viol(myDownload(+agent,−block)),+instant)

The trace of the system and the set of expected violations for the use case,
are defined as follows.

T = {observed(start, i00),
observed(download(alice, bob, x3), i01),
observed(download(charlie, bob, x3), i02),
observed(download(bob, alice, x1), i03),
observed(download(charlie, alice, x1), i04),
observed(download(alice, charlie, x5), i05),
observed(download(alice, bob, x4), i06)}

O = {viol(myDownload(alice, x4), i06)} ∪
{not viol(myDownload(a, c), i)|a ∈ Agents, b ∈ Blocks, i ∈ Instances,
i 6= i06}

From the trace and system specification, the only violation that should occur
is the download by alice at time i06. This is because alice failed to share any
of her data block with other agents after the previous download at time i05.
The agent charlie, however, does not have the same restriction placed on him
as charlie is a V IP agent. Domain facts regarding the agents and data blocks
within in the system, as well as any agent’s V IP status are included in the fixed
portion of the of the partial normative framework.

We used the double negation translation of the mode declarations to produce
the top theory for for the learning task, as this size of this problem is great
enough that at times the top theory from the translation in [1] may fail to
produce any results.

Below were the revision suggestions learnt by the learner:

• Revision suggestion 1:

%---Rule 4

terminated(perm(myDownload(X, B2)), I) :-
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occurred(myDownload(X, B), I),

not isVIP(X).

%---Rule 5

occurred(myDownload(X, B), I) :-

occurred(download(X, Y, B), I),

holdsat(hasblock(Y, B), I).

• Revision suggestion 2:

%---Rule 4

terminated(perm(myDownload(X, B2)), I) :-

occurred(myDownload(X, B), I),

not occurred(viol(myDownload(X,B3)),I).

%---Rule 5

occurred(myDownload(X, B), I) :-

occurred(download(Y, Y, B), I),

holdsat(hasblock(Y, B), I).

%---Rule 7 (added)

occurred(misuse(X),I) :- isVIP(X).

5.4 Generating Relevant Literals

Following the steps in Section 3.3 and Section 3.4, we converted each revision
suggestion into a hypothesis and transform the partial normative framework
accordingly. The hypotheses are shown in Listing 5.2.

1 %-Sugesstion -1---------------------------

2

3 % Revise rule 4

4 -hyp (1) :- not terminated(perm(myDownload(X,B)),I),

5 cond_1_1(X,B,I).

6 cond_1_1(X,B,I) :- occurred(myDownload(X,B2),I),

7 not isVIP(X).

8

9 % Revise rule 5

10 -hyp (1) :- not occurred(myDownload(X,B),I),

11 cond_1_2(X,B,I).

12 cond_1_2(X,B,I) :- occurred(download(X,Y,B),I),

13 holdsat(hasblock(Y,B),I).

14

15 %-Sugesstion -2----------------------------

16
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17 % Revise rule 4

18 -hyp (2) :- not terminated(perm(myDownload(X,B)),I),

19 cond_2_1(X,B,I).

20 cond_2_1(X,B,I) :- occurred(myDownload(X,B2),I),

21 not occurred(viol(myDownload(X,B3))

,I).

22

23 % Revise rule 5

24 -hyp (2) :- not occurred(myDownload(X,B),I),

25 cond_2_2(X,B,I).

26 cond_2_2(X,B,I) :- occurred(download(X,Y,B),I),

27 holdsat(hasblock(Y,B),I).

28

29 % Add new rule

30 -hyp (2) :- not occurred(misuse(X),I),

31 cond_2_3(X,I).

32 cond_2_3(X,I) :- isVIP(X), instant(I).

Listing 5.2: The revision suggestions as hypotheses for relevant literals
generation

Unlike in simpler example where only one predicate symbol is abducible, as
the use case have wide effects on the partial model, the head of all changed rules
need to be abducible in the program, these as shown in Listing 5.3.

1 0 { occurred(misuse(X),I) } 1 :-

2 agent(X), instant(I).

3 0 { occurred(viol(myDownload(X,B)),I) } 1 :-

4 agent(X), block(B), instant(I).

5 0 { occurred(myDownload(X,B),I) } 1 :-

6 agent(X), block(B), instant(I).

7 0 { terminated(perm(myDownload(X,B)),I) } 1 :-

8 agent(X), block(B), instant(I).

Listing 5.3: The abducible predicates for the case study

5.5 Identifying Relevant Literals

Using the exact method from Section 3.3 to generated all possible combinations
of relevant literals lead to an explosion in the number of answer sets in the
solution.

Nevertheless, there is still ways of finding relevant literals. In order to handle
the problem of state explosion, the optimisation tools of iClingo can be used.
This works by specifying which predicate should have the smallest or largest
number of instances in the answer set as possible. This could be used on the
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abducible predicates to limit the number of answer sets they generate. In this
case, the number of answer sets reduced from 30,000+ to less than 200. However,
as this does not guarantee that all combinations of hyp(X) and ¬hyp(X) will
be in these answer sets, we cannot use set comparison to extract the relevant
literals.

Seeing as we cannot rely on the solver to generate all combinations of hyp(X)
and ¬hyp(X) when applying optimisation, we have to direct the search ourselves
through constraints on the hypotheses. For example, we can go through each
hypothesis one by one, solving the program once for the answer sets that will
eliminate the hypothesis and then again to find those that will not eliminate it,
before comparing the answers for the relevant literals.

However, such approach will not guarantee that all relevant literals are gen-
erated, and in some case the sets comparison will not eliminate all literals that
are not relevant. This method can be used as approximation at best, as many
answer sets are not included in the result due to the optimisation applied, re-
sulting in a loss of much information.

On the other hand, from the state space explosion, it is clear that the method
that we are using in Listing 5.3 for generating all potential relevant literals and
heads of the revised or new rules is too general and can disregard the trace
in the use case completely. For example, occurred(myDownload(X,B),I) can
be abduced even if no download have been observed in the trace given by the
designer, furthermore the only occurred(misuse(X),I) that actually have any
meaning to us is the one that can be generated from the new rule in the second
revision suggestion, and lastly, occurred(viol(E),I) already already defined
as rules in the unchanged part of the framework.

This suggests that we can impose further restriction on our generation
method, by taking into account the common conditions on the abducible lit-
erals in all of the revision suggestions. For each rule head hi revised by some
revision suggestions from the set REV , to find the conditions that we could
impose for abducing each hi we can find the intersection of all of its conditions
in the revision where it is included

⋂
cj∈bi,(hi←bi)∈REV ci, as this would be the

common conditions on hi in all suggestions.
How to treat literals such as occurred(viol(myDownload(X,B)),I) is de-

batable, as although they are used in the use case, their definition in the nor-
mative framework remain unchanged. So with respect to our original objective
of building up the use case, they should not have further constraints placed
on them, as their value should be defined by the designer. However, unlike the
learning stage, where they are used for finding exceptions within the framework,
we are trying to find the differences implied by each revision suggestion. Thus,
even if some of these literals can reject some hypotheses but is not derivable
by their existing rule, then they neither be derivable by the revised framework.
For example, if we have the following hypothesis for the revised rule r:

hyp(1) :- not -hyp(1).

-hyp(1) :- not r(X), cond(X).

cond(X) :- p(X,const)
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With the following rule as background knowledge:

p(X,const) :- int(X), even(X).

int(2).

int(3).

If the hypothesis is rejected on the grounds that p(3,const) is chosen to
be true and r(X) is false, if the rules for p/2 is not changed by any revision
suggestion, then p(3,const) would still not be derivable in the revised theory.
Thus any such predicate with unchanged definition should be removed from the
abducible set. This would give us a new specification for generating literals in
Listing 5.4.

1 0 { occurred(misuse(X),I) } 1 :-

2 agent(X), instant(I), isVIP(X).

3 0 { occurred(myDownload(X,B),I) } 1 :-

4 agent(X), block(B), instant(I),

5 occurred(download(X,Y,B),I), agent(Y).

6 0 { terminated(perm(myDownload(X,B)),I) } 1 :-

7 agent(X), block(B), instant(I),

8 occurred(myDownload(X, B2), I).

Listing 5.4: The revised abducible predicates for the case study

Using the new set of abducible literals, we are able to restrict the number of
answer sets generated to only 1152 sets. Applying our algorithm on these sets
will identify the following literals:

occurred(myDownload(charlie, x1), i04)
occurred(myDownload(charlie, x3), i02)
¬occurred(misuse(charlie), i00)
¬occurred(misuse(charlie), i01)
¬occurred(misuse(charlie), i02)
¬occurred(misuse(charlie), i03)
¬occurred(misuse(charlie), i04)
¬occurred(misuse(charlie), i05)
¬occurred(misuse(charlie), i06)

If the designer choose any one these to be true, then the second revision
suggestion can be rejected, thus they are all equally relevant.

5.6 Summary

From this case study, we adapted our work to problems of larger domain with
normative framework revision. Regarding our addition to the framework re-
vision, our initial attempt has shown us the consequence of approaching the
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problem naively. By giving the answer solver free reign over abducing literals,
the amount of answer sets produced was too much to be processed.

We have discussed whether iClingo’s optimisation feature could be used to
address the state explosion problem. While this would give us a workable num-
ber of answer sets, we concluded that the answers are at best approximation,
as too much informative would have been lost.

Lastly, we have shown how the the literal generation can be controlled by
restricting the abducible literals to those effected by the revised or new rules
only. This provided us a reasonable number of answer sets, from which we were
able to identify the relevant literals.

We also identified another weakness in our first attempt of generating rel-
evant literals. By including literals, whose definitions are not changed by any
revision suggestion, into the set of abducibles, the relevant literal identified may
not be derivable by the framework or any its revisions, thus dismissing revisions
based on such literals could be misleading.

For the learner, the program used for learning was implemented using the
approach from Section 4.4. In an average from of five runs, the learner took
6.26 seconds to produce the solutions, which is an improvement from using the
previous implementations that will lead to a memory overflow.
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Chapter 6

Conclusion and Future
Work

In this project, we have taken the idea of test abduction and applied it for gen-
erating criteria that can be used for dismissing hypotheses of an ILP learner.
Although we have directed this project to address a problem raised by a spe-
cific past work on normative framework revision, it could also be applied to
other types of learning problems. For revising models, we have described how
to form hypotheses to represent possible changes in the model by the revision
suggestions, and the characterisations needed for a literals to relevant in dis-
missing these hypotheses. These are then used to form an abductive problem
of generating relevant literals and implemented using ASP. We also described
an algorithm that can be used to extract the exact relevant literals from the
answer set results of relevant literal generation, identifying the hypotheses each
one can reject and they can be ranked against each other to find most relevant
literal.

In our case study, we applied our work on test generation, and ASP imple-
mentation of TAL, to use with normative framework revision. This case study
highlights some problems with our method, and we were able to identify ways
of improving our method. However, even if we were able to overcome the state
explosion in this use case, it still shows how easily can such a problem arise.
For example, should there be no common constraints that can be used to re-
strict the literals generation, then we would have no means of avoiding the state
explosion.

Furthermore, during the investigation of the case study, it was apparent that
for a well defined problem TAL learns very few hypotheses. This brings up the
question of whether it is important to identify the most relevant literal, as it
could be more practical to to ask the user about any of the relevant literals
found, as this could also avoid the computational cost of finding all relevant
literals.
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6.1 Future Work

These are some work that we were hoping to explore on normative framework
revision and test generation.

6.1.1 Multiple Normative Framework

There is another answer set compatible representation that allows for reasoning
with many frameworks. It would be of interest to see if our work could also be
applied to such representation and what results would it produce. This could
potentially explore the limits of normative framework size that our method
would be able to handle.

6.1.2 Generate Use Case From Social Constraints

Initially we wanted to use test generation for creating use cases for the learner,
though describing properties by a set of hypotheses. However with the method
we have taken for test generation we though that it would not be appropriate to
follow through with this approach, as it would imply that the changes needed
for the framework is already known, defeating the point of learning the revision
suggestions.

As described in Section 2.2.1, normative frameworks have certain social con-
straints that they try to express. These could be studied and generalised into
properties that should be exhibited by all frameworks, for example for empow-
ered agents never raising certain exceptions.

Alternatively a language could be created based on concepts of social con-
straints, for example we could use a predicate to describe that agents of certain
type are not permitted to perform certain actions prohibited(Type,Action).
The same could be applied for other constraints such as institutional effect,
obligation, and violation, as they are common to all normative frameworks.
These could be used for the designer to to describe the behaviours they want in
the normative system, with each concepts having a predefined translation into
hypotheses such that they could be used by our test generation to produce use
cases.

6.1.3 Method for Generating Relevant Literals

Considering the state space explosion problem we had when a revision suggestion
revise many rules, we should explore ways to improve our method, or find look
at complete different ways for generating relevant literals. This could be by
exploring different reasoning techniques and tools. For example, instead of
from bottom-up reasoning, could we find all relevant tests using a top-down
approach, and would it overcome the problem that we have experienced in the
use case.

In our approach with ASP, the grounding of literals was not the main prob-
lem, but simply from the number of answer sets it produce. Many of these
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answer sets have the same relevant literals, thus a way to avoid such redun-
dancy would possibly avoid any state space explosion from occurring.

Another approach could be reasoning at the meta-level to find the differences
in the revision suggestions. For example, in the case study, the program was
transformed so that the learner can learn rules at the meta-level. By reasoning
with the transformed model, the learner is able to find exceptions to the rules.
Thus could similar reasoning not be applicable for finding relevant literals, as
we are searching for literals that are exceptions for the revision suggestions to
use for dismissing them.

6.1.4 Normative Framework Revision Tool

We have concentrated on the theory and method for revising normative frame-
work, one clear extension of this project would be to implement a tool for
interactive revision of the normative framework. The system should be able to
question the user for further information after learning the revision suggestions
to help the user dismiss any unwanted revision suggestions.
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