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Abstract

The aim of the project is to investigate the behaviour of a proposed heterogeneous system,
which combines a financial modelling and an on-line component. The application scenario
is the detection of triangular arbitrage opportunities in the Foreign Exchange spot market.
The approach taken is to separate the problem into arbitrage detection, market data
prediction and prediction checking. The constituent parts are implemented on different
hardware architectures, showing interaction between the CPU and Field Programmable
Gate Arrays (FPGAs).

A clear relationship was found between the amount of predictions and the number
of clock cycles required to execute prediction checking in hardware. This characteristic
allows for straightforward adjustments to the proposed model. Furthermore, the hetero-
geneous system provides a considerable reduction in latency ranging from 83% to 90%
for numbers of currencies most representative of the current market size.
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Chapter 1

Introduction

When discussing Financial Institutions one cannot understate the importance of Elec-
tronic Trading Systems. Indeed, these have considerably grown in importance over the
past decade, with key themes such as decreased costs, low-latency and high-frequency.
Although with a predominant presence in the equities markets, electronic trading has
played an important role in the Foreign Exchange space over the last 15 years. In 1995,
20 to 30 per cent of interbank trading in major currencies was executed electronically, with
the figure rising to over 90 per cent in 2001 [18]. As a matter of fact, some of today’s
trading systems are nearly completely automated, eliminating the need for employing
multiple traders for the same task.

There are multiple contributing factors which have led to the growth of Electronic
Trading. In equities for instance, decimalization, imposed by the Securities and Exchange
Commission in 2001 had a significant impact on pushing market participants to this
technology [18]. Moreover, these developments would not have been possible without
advances made in the field of computer science.

Companies are increasingly looking towards new technology to give them an edge over
their competition [31]. Graphical Processing Units (GPUs), Field Programmable Gate
Arrays (FPGAs) and Cell processors are some key technologies mentioned in this context.
Unfortunately, due to the secretive nature of the industry, it is virtually impossible to
tell the current status quo.

One might argue that replacing traders with computers might result in a less error
prone environment. Unfortunately, as witnessed by trading events on Wall Street on the
6th of May 2010, algorithmic trading can go wrong and with very severe consequences.
What was likely a result of a computing glitch caused the S&P index to fall 8.6 per
cent within five minutes and the value of Accenture’s stock to be traded at the price of
$0.01 [27]. Therefore, as Electronic Trading systems grow in significance, these events
emphasise how critical a role the correct and accurate implementation plays in realising
the systems potential and in minimising risk.

1.1 Foreign Exchange Market and Arbitrage

So why is the foreign exchange market an appropriate choice for this project? Crucially,
as I do not have a substantial background in the field of finance, it is important to choose
an area which is relatively easy to comprehend, hence not diverting too much energy from
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the main focus of the project. In essence, Foreign Exchange is not difficult to understand.
Most readers who have travelled abroad and exchanged money will already be familiar
with the basic principles such as exchange rates, transaction costs and the bid-ask spread
(further details are presented in Chapter 2).

The events of the financial crisis have shown what can happen when financial insti-
tutions take on too much risk. Therefore it is important to investigate possibilities for
less risky profit, with arbitrage transactions offering just that. Although there are some
who dispute the existence of arbitrage opportunities, I will discuss papers which negate
this claim (see Chapter 2). Moreover, a recent article by a partner at the TABB Group
provides further proof, estimating that the annual profits in low-latency arbitrage exceed
$21 billion (market aggregate) [23].

It is also interesting to note the resilience of the foreign exchange market in the times
of crisis, showing a 20 per cent increase in turnover since April 2007, to an astonishing
$3.98 trillion (one million million) average daily turnover (as of December 2010) [5].

1.2 Objective

The objective of this Individual Project is to investigate the collaboration between a
financial modelling engine and an on-line trading component. Presenting a simplified
view, these two elements have very different characteristics and are usually kept as sep-
arate systems. Financial modelling is computationally expensive, whereas the issue of
low-latency is key when it comes to electronic trading.

In this thesis, I propose a heterogeneous system for the detection of triangular arbi-
trage, which combines a modelling and on-line component. Due partly to the differences
in approach necessary when dealing with these modules, I have decided to develop the
heterogeneous model by implementing the constituent parts on different hardware ar-
chitectures. I primarily investigate the combination of a CPU and Field Programmable
Gate Arrays (FPGAs), although I also attempt to integrate Graphics Processing Units
(GPUs). A further motivation behind implementing the system components in this man-
ner, is to identify how the heterogeneous nature of the proposed model can map to a
collaborative approach between different hardware architectures.

As already mentioned, the application scenario I am concerned with focuses on Foreign
Exchange, specifically on detecting triangular arbitrage opportunities in the spot market.
However, there is no reason that the proposed system could not be adapted to search for
arbitrage in other markets.

Furthermore, as already hinted, the aim of the project is to investigate the behaviour
of the heterogeneous system and show how the problem of detecting triangular arbitrage
can be split into components across different hardware architectures. Most focus will be
given to achieving a reduction in latency for the proposed model, but the scalability and
profitability of the solution must also be evaluated.

The project is both challenging and interesting since, to the best of my knowledge, it
represents a novel idea in the field (or one that has gone unpublished). In an industry
where every millisecond of latency reduction can have a considerable impact on profit,
it is worthwhile to examine alternative systems that may be used to accomplish this
objective.
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The reader may already recognise, that the project sets out to deal with numerous
domains. Herein lies part of the complexity as multiple programming languages and
development procedures will need to be employed. The further challenge is in striking
the right balance between time spent on the in-depth development of the individual
components and considerations of the heterogeneous system as a whole.

As the scope of this thesis is quite broad, there will undoubtedly be areas requiring
further attention, that I will not be able to investigate. In these circumstances it must
be remembered that the main goal is to present the complete heterogeneous system.

1.3 Report Structure and Contributions

Having introduced the main motivation behind the Individual Project as well as the most
important objectives, I present the contributions made throughout this thesis and how
they relate to the report structure:

• Background: Firstly, I explain the basic details of the Foreign Exchange market,
introducing the concept of triangular arbitrage that will be used throughout the
project. Attention is given to hardware methods for accelerating computation with
major focus on using Field Programmable Gate Arrays. The chapter concludes
with an overview of the most relevant related work, discussing how it is associated
with the thesis. (Chapter 2)

• Heterogeneous Model: I introduce the particulars of the proposed heterogeneous
model, outlining a novel solution for the detection of arbitrage, by means of com-
bining modelling and on-line components using different hardware architectures.
After discussing issues surrounding the usage of market data, I present details on
the collaboration, outlining arbitrage detection, data prediction and predic-
tion checking. Along with the evaluation, these constituent parts form the further
contributions of my thesis and are discussed in separate chapters. Information re-
garding the arbitrage calculation is presented along with examples, focusing on
different approaches to incorporating transaction cost into the model. (Chapter 3)

• Arbitrage Detection: I give details as to the first major system component re-
sponsible for detecting arbitrage. After developing an initial recursive formulation
for the algorithm, I attempt different optimisations in order to improve the per-
formance of the CPU implementation. I make modifications to the core arbitrage
detection algorithm and try multi-threading. Moreover, I show how the algorithms
could be used in the heterogeneous model and conclude with details of an acceler-
ation attempt implemented on the GPU. (Chapter 4)

• Market Data Prediction: In this chapter I develop an algorithm for the predic-
tion of market data, based on the idea of weighting historical data points according
to their variability. An evaluation of the algorithm accuracy follows, by means of a
square difference method and by comparison with mean, perfect and random pre-
dictors. Furthermore, I discuss reasons for not allocating extra time to developing
more advanced prediction techniques. (Chapter 5)
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• Prediction Checking: In this chapter I document the implementation of the pre-
diction checking component on an FPGA. Further background material covering
the architecture and tools is provided. I describe an initial algorithm and sub-
sequently consider various performance optimisations, such as loop unrolling and
different RAM types. Special attention is given to the memory utilisation on the
FPGA device and modifications presented in order to reduce it. Furthermore, mi-
nor modifications are made to the design in order to facilitate a straightforward
evaluation process. I conclude with remarks concerning my experiences throughout
the design process. (Chapter 6)

• Evaluation: Continuing from the detailed explanation of the individual system
components in the previous chapters, I evaluate these under the condition of vary-
ing the number of currencies in the market (i.e. market size). The prediction
checking component is additionally evaluated by adjusting the number of predic-
tions and also, as the memory utilisation on the FPGA device nears 100%. Having
completed these steps, I evaluate the heterogeneous model as a whole, placing
emphasis on both synchronous and asynchronous approaches. Furthermore, the
proposed system is evaluated from the perspective of profitability, scalability and
crucially, latency. (Chapter 7)

• Conclusions and Future Work: In the last chapter I conclude with a brief
summary of my thesis. I revisit the project objectives and discuss what has been
achieved. Finally, I present future work and explain how the project could be
expanded and which areas are good candidates for further development. (Chapter 8)
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Chapter 2

Background

In this chapter, we will briefly introduce the most important background information
necessary to understand the project, with the key financial concepts being explained
assuming little prior knowledge. The topics that will be discussed include:

• Foreign Exchange Market: The basics of the Foreign Exchange market, covering
the concept of trading a currency pair and the relevance of the bid-ask spread.

• Arbitrage: A short description of arbitrage and triangular arbitrage, distinguish-
ing these from statistical arbitrage.

• Hardware Acceleration: A brief discussion of hardware acceleration techniques
including both FPGAs and GPUs, with more emphasis being put on the former.

• State-of-the-art: A summary of the most relevant related work.

2.1 Foreign Exchange Market

Firstly, we will consider the foreign exchange market. Most readers, especially those
who have had the misfortune of experiencing fluctuating exchange rates, will already be
familiar with the key points such as the bid-ask spread and transaction fees.

The foreign exchange market is a worldwide financial market for the trading of cur-
rencies. The sheer size of the foreign exchange market is staggering with an average daily
turnover of close to $3.98 trillion (as of April 2010) [5], making this the largest financial
market of all. To mention some of the unique characteristics, the majority of transac-
tions are executed from London and New York, but the market operates 24 hours a day
moving from one financial centre to another (closed on weekends). The other major hubs
are Tokyo, Hong Kong and Singapore [3, 20, 35].

The foreign exchange market serves one primary purpose, that is to allow for in-
vestment in global markets, as businesses are able to convert their domestic currencies
into foreign ones. The major participants in the market are Commercial banks, Central
Banks, Foreign exchange brokers, Investment Funds and Corporations, with high street
customers requiring foreign exchange services for the purpose of travel or money transfer
forming an insignificant part of the market [3].
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Figure 2.1: The EUR/USD trading pair, showing fluctuations in the exchange rate over
one day, the bid and ask prices are also quoted [45].

By its nature, the market is over-the-counter. This means that for the majority of
trades, there is no individual, physical market place, rather a collection of participants
and market makers.

The most important financial instruments traded are spots, forwards, futures, options
and swaps [35, 20]. For the purpose of this individual project we will be focusing on spots,
the simplest transactions in the market, an exchange of two currencies at the prevailing
market rate (also known as spot rate).

2.1.1 Currency Pair

In the market, currencies are traded against one another, with the value of one currency
being defined in terms of the second. All foreign exchange trades involve the simultaneous
buying of one currency and selling of another. However, the instrument which is actually
traded is called a currency pair. These are defined by concatenating two ISO currency
codes, three letters each. One of the most frequently traded currency pairs is EUR/USD,
which defines the exchange rate between the Euro and the US Dollar. The first currency
in the pair, the Euro in our example, is the base currency while the second is referred
to as the quote currency (also known as the counter currency). Currency pairs can be
thought of as a single unit that can be bought or sold. When purchasing a currency pair
one buys the base currency and sells the quote currency. Figure 2.1 shows fluctuation
in the value of the EUR/USD currency pair over a single day; also visible is the bid-ask
spread, which we will now cover [15, 35].

2.1.2 Bid-Ask Spread

When dealing with currency pairs, we must also consider the bid-ask spread. A clear
illustration of this concept is exchanging currencies on the high street. By definition, the
bid-ask spread is the difference between the value at which the broker, bank or market
maker is willing to sell the product and the value at which they are willing to buy the
product [14], thus ensuring they make a small profit. Revisiting our high street example,
when we want to exchange Pounds for Swiss Franc, the broker will charge a higher price
when we buy Francs; this is the ask price. Conversely, when we want to sell our Francs
to get Pounds, we will be quoted a lower price, referred to as the bid price.
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Revisiting the EUR/USD currency pair (see Figure 2.1), the latest exchange rate
value is 1.2908, with a bid price of 1.2906 and an ask of 1.2910. The ask price is the
price at which we can buy the currency pair from the broker. Therefore, if we buy the
EUR/USD currency pair, we will be paying 1.2910 (ask price) US Dollars for each Euro
we buy. Conversely, if we sell the pair, we will get 1.2906 (bid price) US Dollars for each
Euro we sell [7].

There are rules that need to be adhered to when formulating currency pairs and they
are based on the relative priorities of currencies (EUR, GBP, AUD, NZD, USD, CAD,
CHF, JPY). This is why the EUR/USD currency pair should never be listed in the reverse
order [33].

The bid-ask spread can be seen as a measure of transaction cost and is usually tighter
for currencies with high liquidity. The unit for the spread is percentage in point (pip)
and represents the smallest unit of a currency, with most currencies being priced to four
decimal places. In our EUR/USD example, the bid-ask spread is 4 pips.

The foreign exchange market is also unique in the number of factors that can affect the
FX rates. Chief amongst these are economic factors such as government policy, inflation,
unemployment, interest rates etc. Further influences include political conditions and
market psychology. However, these are not directly related to the project and therefore
we will not go into further details [35].

As already noted in the Introduction, the foreign exchange market has been growing
during the financial crisis [5], which reinforces its resilience.

2.2 Arbitrage

Having introduced the foreign exchange market, let us concentrate on the subject of
arbitrage, also highlighting the differences to statistical arbitrage.

The concept behind arbitrage is relatively simple, it is the practice of making money
by exploiting differences in price between different markets. In general terms, if you are
able to buy a product and then sell it at a higher price, you have made a profit. However,
a vital condition for arbitrage is that these transactions occur simultaneously, otherwise
the trader would be exposed to market risk. Therefore, at least in principle, arbitrage
offers the possibility of risk free profit [13].

With the development of electronic and algorithmic trading it is becoming increasingly
difficult to capitalise on arbitrage opportunities, with these occurring for short periods
of time [13], leading issues of latency to become pivotal in the process.

2.2.1 Triangular Arbitrage

A specific type of arbitrage, and one that will be considered in this project is triangu-
lar arbitrage. It is the process of converting currencies in order to exploit a state of
disequilibrium.

The process involves three exchange rates and takes advantage of differences in cross
rates between the currencies. Triangular arbitrage can be thought of as a means of
interaction between currencies [32].

Perhaps the easiest way of explaining triangular arbitrage is through the means of a
simple diagram (see Figure 2.2). In the example we hold Euro (EUR) and convert this to
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Figure 2.2: An example triangular arbitrage transaction between EUR, USD and GBP.

US Dollars (USD). The Dollars are then exchanged for Pounds (GBP) and finally Pounds
are sold for Euros, thus completing the transaction.

If there exists an imbalance between the cross exchange rates, the above mentioned
scenario may be profitable and present an arbitrage opportunity. A worked example
with real values is presented in the following chapter (see Section 3.3).

2.2.2 Statistical Arbitrage

While on the subject of arbitrage, it is worthwhile to note what differentiates statistical
arbitrage, which relies heavily on mathematical modelling techniques. Here a trader might
decide to execute a transaction based on the forecast from the model, which detects an
opportunity for profit. The degree of risk, however, is higher than in the arbitrage scenario
discussed previously, as the market is not guaranteed to behave in accordance with the
prediction [16].

2.3 Hardware Acceleration

Two hardware acceleration methods of greatest importance to the project are Field Pro-
grammable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs). Both repre-
sent solutions for accelerating computation.

2.3.1 Field Programmable Gate Arrays

In the field of computing, we are accustomed to dealing with problems in two different
ways, software and hardware.

The software approach is relatively simple and flexible, with the programmer being
able to make modifications to the code quickly. However, this method does not provide
the best possible performance.

On the other end of the spectrum we have hardware, i.e. integrated circuits or ASICs.
These offer a considerable increase in performance, but at the cost of greater development
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Figure 2.3: General architecture of an FPGA [6].

expense and time. Once a chip has been fabricated you cannot issue a bug fix like with
software, the hardware has been pre-configured and will do what it was designed for [10].

Field Programmable Gate Arrays offer the speed advantages of integrated circuits,
while also providing the ability to be re-programmed by the customer. Thus they attempt
to merge the boundaries between software and hardware.

The advantage to FPGAs is that they usually exhibit better power efficiency and per-
formance than software implementations, but this comes at a price of increased complexity
for developing the designs (programs) [10]. Techniques exist to simplify programming,
including C-to-hardware compilers. AutoPilot is one example and will be discussed in
greater detail in Section 6.1.1.

Fundamentally, there are two types of resources on FPGA devices; logic (i.e. arith-
metic, functions) and interconnections. Figure 2.3 presents a simplified view of an FPGA,
incidentally it is this array like structure where the name is derived from. As a quick side
note, the ”area dedicated to interconnect greatly dominates the area dedicated to logic”
with the ratio being quoted as 90% to 10% respectively [10].

In most general terms, hardware components can be created using truth tables, which
in turn can be implemented by look up tables (LUTs) and form the basic building blocks
of FPGAs. Logic blocks on an FPGA ”contain processing elements for performing simple
combinational logic as well as flip flops for implementing sequential logic.” [10]

In order to improve the performance of FPGAs we frequently find other components
on chip, such as adders, multipliers and memory, thus allowing the devices to implement
complex circuits. Hardware Description Languages (HDLs) such as Verilog or VHDL are
used during the implementation process.

The two main manufacturers of FPGAs are Altera and Xilinx [34]. The device which
has been considered in the implementation work carried out during the project belongs
to Xilinx’s Virtex-5 offering and is the XC5VLX330T-FF1738. This was chosen even
though more recent products exist, like the Virtex-6 and Virtex-7 families [43], as there
was a possibility of executing the optimised designs on real hardware at the University.

As running algorithms on the FPGA eliminates the overhead of an operating sys-
tem, these configurations can offer vast performance increases. Furthermore, it has been
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speculated that financial institutions have achieved notable speedup utilising these tech-
nologies [31]. FPGAs have also been the topic of research in the field of computational
finance [40, 17, 28].

More details as to the implementation process on FPGA devices is provided in Chap-
ter 6, where we consider additional background information (Section 6.1) and the hard-
ware implementation of the prediction checking algorithm.

2.3.2 Graphics Processing Units

As many readers up-to-date with recent developments in the computer industry will know,
Graphics Processing Units are no longer used exclusively for gaming.

In short, GPU computing allows programmers to take advantage of massively parallel
architectures with the aims of increasing program performance. The approach is not
without drawbacks, as issues such as data transfer to the GPU, memory alignment and
algorithm optimisation need to be considered to take full advantage.

NVidia’s CUDA architecture (Compute Unified Device Architecture) allows program-
mers to execute C and C++ kernels on the company’s graphics cards. AMD has a similar
offering called FireStream, whereas OpenCL has been introduced with the aim of unifying
the two platforms.

2.4 Related Work

Unfortunately, I have not been able to find research relating directly to the topic of
combining financial modelling with on-line trading. To the best of my knowledge, the
project represents a novel approach in this regard, or at least one that has gone unpub-
lished. Therefore, this section will focus on the topics of hardware acceleration, triangular
arbitrage and modelling the foreign exchange market.

An interesting paper regarding triangular arbitrage titled ”Triangular Arbitrage in
Foreign Exchange Rate Forecasting” [32] deals with the issue of forecasting future ex-
change rates. The paper presents a model based on Neural Networks. A discussion on
the existence of triangular arbitrage in the ”real-world” is also presented, as this is some-
times believed to be non-existent. Nonetheless, the paper substantiates the existence of
triangular arbitrage opportunities in the foreign exchange market, even when taking into
account the transaction costs. Finally, the paper discusses the vast range of transaction
cost estimates which have been provided by other researchers. A limitation of this ap-
proach is that bid-ask spread has not been considered when examining the data, as it
could have provided a more accurate representation of the transaction costs.

A further contribution to the field of market data prediction is made in the paper ”On
Uncertainty, Market Timing and the Predictability of Tick by Tick Exchange Rates” [24].
The work mentions disappointing results for predicting the foreign exchange market, but
shows that this can be done more effectively in the short-term. The heterogeneous system
presented in this project relies on the predictability of tick-by-tick market data, but this
is also only required for a few ticks into the future (i.e. short term). One limitation of
the paper is the market data used, which covers transactions executed in October 1998.
It is questionable, whether results obtained from this historical data are applicable to
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the current foreign exchange market. However, as the paper was published in 2008 this
underscores the problems with access to live (or even more current) market data in an
academic scenario.

The study ”The Mirage Of Triangular Arbitrage In The Spot Foreign Exchange Mar-
ket” [4] is very relevant for providing grounding in the model of triangular arbitrage.
Critically, the authors investigate triangular arbitrage opportunities in the foreign ex-
change spot market. The conclusion is that these do exist, although more than half with
durations of less than a second, emphasising the importance of co-location and latency
reduction. This is an important conclusion, as my thesis relies on the existence of trian-
gular arbitrage opportunities in the market. Moreover, the paper substantiates this claim
with the most recent market data (from October 2005) seen in any of the publications
mentioned, giving more credibility to the conclusions. Interesting is the magnitude of the
opportunities, which is frequently as low as one basis point.

The paper ”Triangular arbitrage as an interaction among foreign exchange rates” [2]
also provides evidence for the existence of triangular arbitrage opportunities, making the
assumption, that orders can always be filled at the bid-ask prices (The previous study [4]
puts to question the validity of this assumption). The authors present a model which takes
into account the interaction among three exchange rates, as previous approaches do not
consider the interaction between multiple prices, with the model successfully describing
the fluctuations in exchange rates. This is significant, as having a model of the underlying
market is a first step to being able to predict the market data.

The work is followed up by ”A microscopic model of triangular arbitrage” [1], building
on the previously introduced macroscopic model [2]. This approach is combined with a
microscopic model (i.e. two interacting ST models), which replicates the behaviour of
dealers in the market and can describe the underlying data better. Furthermore, the
relation between the microscopic and macroscopic models is explored through a spring
constant.

While on the topic of arbitrage and the discussion on whether it is profitable or if it
even exists, it must be noted that the ”TABB Group estimates that annual aggregate
profits of low-latency arbitrage strategies exceed $21 billion, spread out among the few
hundred firms that deploy them” [23], the author being a partner at the TABB Group.
This is a vital piece of information, as this Individual Project fundamentally deals with
introducing a heterogeneous system, one that searches for arbitrage opportunities using
a low-latency approach.

The paper titled ”Axel: A Heterogeneous Cluster with FPGAs and GPUs” [30] de-
scribes a heterogeneous computer cluster developed at the University. The core problem
discussed, N-body simulation, is not the subject of my work. However, the paper is
very much related, not only by providing a potential setting to deploy the code devel-
oped in the course of my project, but also by showing a successful collaboration between
FPGA, GPU and CPU architectures. The best performance acceleration is observed
on the FPGA architecture, but this comes at a price of the longest development time,
over a month as opposed to approximately one day for the GPU. In order to reduce
the FPGA development time for the Individual Project, it seems appropriate to look at
C-to-hardware compilers in order to simplify the process.

Although not directly related to the topic of the individual project, there has been
a considerable amount of research in the field of accelerating option pricing algorithms,
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which gives an idea of the performance that can be achieved on the FPGA architecture.
The paper ”Exploring Reconfigurable Architectures for Explicit Finite Difference Option
Pricing Models” [17] investigates using the GPU and FPGA as a means of accelerating
the finite difference method and provides implementation details for the two platforms
showing considerable speedup on the FPGA (x12) and GPU (x44). The paper also
briefly highlights the trade-off between development time and the performance of the
FPGA code. Interestingly, the collaboration between FPGA and GPU is mentioned as
possible future work, representing a direction that my project can explore.

The study titled ”Debunking the 100x GPU vs. CPU Myth” [19] provides much
needed perspective on performance improvements through the utilisation of GPUs, show-
ing that claims of speedups between 10x and 1000x are rarely justified. After performing
appropriate optimisations on the CPU architecture, the gap narrows to 2.5x on average.
The paper covers multiple algorithms (in the fields of Computational Finance, Linear
Algebra and Image Analysis to name a few) and describes in detail techniques used
to achieve speedup. These results lead me to consider more carefully the optimisation
process carried out on the CPU (the subject of Chapter 4) before declaring immense
performance increases on other architectures.

Stephen Wray’s Master’s Thesis on ”Exploring Algorithmic Trading in Reconfigurable
Hardware” [39], along with a conference publication of the same title [40] provide per-
spective into the field of accelerating electronic trading using the FPGA architecture.
The approach shows very promising results, with the hardware implementation being ap-
proximately 377 times faster than the software version and a reduction in latency of 6.25
times. This is particularly important, as the reduction in latency is a key consideration
for my project. The issue of run-time re-configuration is also investigated; however, this
will not be the subject of my work.

2.5 Summary

In this chapter we have presented the most important background information necessary
to understanding the work carried out throughout the project.

We began by giving an overview of the foreign exchange market and the key financial
concepts, focusing on currency pairs (i.e. how currencies are traded against one another)
and the bid-ask spread. Furthermore, we introduced the subject of arbitrage taking a
look at statistical and triangular arbitrage, the latter being the main focus of my
thesis.

Additionally, we provided an overview of hardware acceleration methods, concen-
trating mostly on Field Programmable Gate Arrays, noting that additional background
information will be discussed before details of the FPGA implementation are given in
Chapter 6. We also presented a brief overview of how Graphics Processing Units can be
used in the context of increasing the speed of computation.

We concluded with an exploration of the state-of-the-art, i.e. the most relevant re-
lated work. As it was challenging to find research directly related to the subject of my
thesis, the issues of triangular arbitrage, foreign exchange market modelling and hardware
acceleration have been presented.
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Chapter 3

Heterogeneous Model

In this chapter we present the proposed heterogeneous arbitrage detection model. The
collaboration between system components is outlined as well as key areas for further
investigation.

• Model Overview: We begin with a general overview of the model, taking a look
at the external components, specifically market data and the placement of orders
in the market.

• Model Details: An in-depth discussion of the model follows, describing the inter-
action between the financial modelling and on-line trading components. We further
subdivide the former, thus defining areas for investigation in subsequent chapters.

• Arbitrage Calculation: Here we focus on the calculations necessary for arbitrage
detection, presenting alternative ways of incorporating transaction cost into the
model.

• Selected Calculation: Finally, we present the arbitrage calculation which has
been chosen and provide the motivation behind this decision.

3.1 Model Overview

We first consider the general overview of the model being proposed. In simplest terms,
as can be seen in Figure 3.1, the model needs to cater for market data, which will be fed
into the proposed system. The result of the processing will be a set of orders which could
be sent out onto the market (possibly via an Electronic Trading component). The key
point to consider is the reduction in latency, the faster the system can respond to market
data, the greater the possibility of profit.

3.1.1 Market Data

Delivering market data is an important consideration for the project and we will be deal-
ing with the foreign exchange market, that is FX rates. Market data can be represented
by a square array with sizes equal to the number of currencies we are considering (n).
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Figure 3.1: Overview of the proposed model looking at the external components.

Figure 3.2: Generated Market Data with Bid-Ask spread.

Furthermore, we need one such array for each iteration (or time step) in the market that
we wish to simulate (market it, also market tick).

The most realistic solution would be to gather and feed real market data. However,
this approach presents a few drawbacks. Namely, getting access to live data would be
challenging and would increase the complexity of the proposed model. It is important to
keep in mind, that the purpose of this project is not to create a system using the most
state-of-the-art components, but rather to investigate the behaviour of the proposed
model.

A simpler approach, and incidentally one offering far greater flexibility, is to generate
random market data. This component has been provided by Dr. Thomas in the form of
Matlab/Octave code. Some modifications were necessary to get the code working reliably
with larger numbers of currencies. Namely, the initial matrix for the currencies was not
guaranteed to be positive definite which would cause errors. This was fixed by ensuring
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Figure 3.3: Generated Market Data with Bid-Ask spread.

that it is a covariance matrix (using built in Matlab functions).
The results from two different executions of the data generation algorithm are pre-

sented in Figure 3.2 and Figure 3.3. Both follow the evolution of a single exchange rate
taken from the generated market data. The values are plotted over time, taking into
account the bid-ask spread.

Moreover, I created a script to easily generate market data with varying numbers of
currencies and iterations. The files generated store one value of the market data per
line, with all the iterations being stored consecutively in this file. Although this does not
allow for great clarity when reading the files, it was found to be faster than generating
tab delimited arrays. Finally, it should be noted that when generating this data, Matlab
far outperforms Octave. I understand this to be related to the treatment of for loops by
both programs. As a result, Matlab has been chosen to generate the market data files
which will be used during the implementation phase.

3.1.2 Placing Orders

Continuing the discussion on the external components, the placement of orders will be
outside of the scope of this project. The most important consideration is the reduction
of latency for the detection of arbitrage opportunities, and I will not be considering
optimisations necessary for the order placing.

To rephrase, the proposed system will be responsible for generating market orders,
by providing the currencies (hence necessary information) that would form the trade.
However, sending and executing this on the market will not be the subject of further
investigation.
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Figure 3.4: A more detailed view of the proposed model showing the collaboration be-
tween different hardware architectures.

3.2 Model Details

Having presented the overview for the proposed system and having taken a look at the
external components, we can now focus on further details.

As mentioned in the Introduction (Chapter 1), the primary aim of the project is to
investigate the cooperation between financial modelling and on-line components. The
motivation is to allow the execution of higher complexity tasks (i.e. the modelling com-
ponent) on a CPU architecture, while allowing for some investigation of the GPU. The
comparatively simpler task of on-line arbitrage detection can be accomplished on the
FPGA architecture, to take advantage of its low latency characteristics. This scenario is
presented in Figure 3.4.

The system will attempt to identify arbitrage opportunities, with the FX rates (i.e.
market data) being fed into both system components. The modelling side will be re-
sponsible for making predictions on future market data, then checking to see if these
would present arbitrage opportunities before sending the values as recommendations to
the on-line arbitrage detection.

The on-line arbitrage component (implemented on an FPGA) can then iterate through
the predictions and evaluate these against the latest market data it has received. Upon
finding a profitable arbitrage opportunity, the system will output the order information.

Following this introduction into the model details, let us now consider the two core
components in greater depth.

3.2.1 Modelling Component

As already briefly outlined, the first step to be carried out by the modelling component
is to predict future market data. This will be referred to as data prediction and is
covered in Chapter 5.

The second stage is to search these predicted values for possible arbitrage opportuni-
ties. In order to achieve this, we will run an arbitrage detection algorithm (covered in
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Chapter 4). Finally, the arbitrage opportunities detected by this algorithm can be sent
to the on-line component executing on the FPGA.

Both data prediction and arbitrage detection will be implemented on the CPU ar-
chitecture, although some investigation is also offered into accelerating this computation
by using GPUs. It must be remembered in the case of the GPU, that while potentially
offering considerable speedup, we also need to take into account the time necessary to
transfer the data to and from the device.

Previous work in the field of modelling, has suggested using Neural networks for the
prediction of exchange rates [32]. However this was a long term prediction of the exchange
rates. In our case, we are more concerned with a few market ticks (iterations) into the
future. It must be noted at this stage, that the aim of the project is not to provide the
most advanced data prediction component, but to illustrate how one could be used in
the proposed model. This will be the subject of further debate in Chapter 5.

3.2.2 On-line Component

The on-line trading component will receive inputs from the financial modelling component
and has been implemented on the FPGA. Details of the algorithm, implementation and
optimisation process are provided in Chapter 6.

Core to this component is the prediction checking algorithm. In essence, this
is quite a straightforward algorithm that takes predictions generated by the modelling
component and evaluates them against the on-line (latest) market data available. The
predictions being transferred between the components are a list of currency triples.

3.3 Arbitrage Calculation

In order to detect arbitrage, we must first be able to calculate it. This section will examine
the approach to be taken. I will first present a simplified example with no bid-ask spread,
but refine this approach in the subsequent section.

Data provided in Table 3.1 has been gathered using Yahoo Finance [45] and will be
used for the purpose of the examples. Values were accessed on 11th January 2011, but
are not guaranteed to be quotes from precisely the same point in time. The table contains
the exchange rate along with both the bid and ask prices.

Currency Pair Average Bid Ask

EUR/USD 1.2973 1.2971 1.2975

EUR/GBP 0.8303 0.8303 0.8304

EUR/JPY 108.1750 108.1700 108.1800

USD/JPY 83.3750 83.3500 83.4000

GBP/USD 1.5619 1.5618 1.5621

GBP/JPY 130.2604 130.2239 130.2969

Table 3.1: Currency pairs listed with exchange rates, bid and ask prices.
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3.3.1 Simple Approach

The simple approach is to use just the quoted exchange rates, without considering the
bid-ask spread. We will see later, how this approach can be adapted.

The foreign exchange rates will be represented as follows:

FEUR/USD = 1.2973 (3.1)

As we are not taking into consideration the difference between the bid and ask prices,
we may also write the following (For information why the values of USD/EUR are not
usually quoted see Section 2.1.2):

FUSD/EUR =
1

FEUR/USD

=
1

1.2973
≈ 0.7708 (3.2)

These values have been calculated for the example data supplied and are presented
in Table 3.2. Please note that the row represents the base currency and the column
should be read as the quote currency. The values for currency pairs that were not
quoted in Table 3.1 have been filled in by taking the inverse, according to Equation 3.2.

USD EUR GBP JPY

USD 1.0000 0.7708 0.6402 83.3750

EUR 1.2973 1.0000 0.8303 108.1750

GBP 1.5619 1.2044 1.0000 130.2604

JPY 0.0120 0.0092 0.0077 1.0000

Table 3.2: Currency table with exchange rates calculated from currency pairs, not taking
into account bid-ask spread.

I will now show a sample calculation of triangular arbitrage based on converting USD
to GBP to EUR and back to USD. Remember that FGBP/USD represents the price of
Pounds in terms of US Dollars, which is why the inverse value needs to be taken when
calculating the final balance B, assuming an initial input of one.

B =
1

FGBP/USD

× 1

FEUR/GBP

× 1

FUSD/EUR

≈ 1.00035 (3.3)

Incidentally, the same calculation could be carried out using the inverse exchange
rates:

B = FUSD/GBP × FGBP/EUR × FEUR/USD ≈ 1.00035 (3.4)

As we can see, the above transactions if placed and filled correctly would result in
profit (however small). Of course, this calculation does not take into account transaction
costs and as such is unrealistic. In order to improve the approach, a transaction cost T
could be added to the equation, thus modelling the cost component. It is important to
note, that even when taking the transaction cost into account, it is possible to achieve
profit in this scenario.
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3.3.2 Bid-Ask Approach

We will now look at a more realistic representation of the market data and take into
consideration the bid-ask spread. The F a

EUR/USD and F b
EUR/USD notation will be used to

represent ask and bid prices accordingly. The currency pair ask values from Table 3.1 have
been used and the ask prices filled in where appropriate. Where the inverse rates were
necessary, these were calculated taking the inverse of the bid prices for the corresponding
currency pairs (see Equation 3.5). These final calculated values are presented in Table 3.3.

USD EUR GBP JPY

USD 1.0000 0.7710 0.6403 83.4000

EUR 1.2975 1.0000 0.8304 108.1800

GBP 1.5621 1.2044 1.0000 130.2969

JPY 0.0120 0.0092 0.0077 1.0000

Table 3.3: Currency table with exchange rates, having taken into account bid-ask spread.

We can now re-evaluate the arbitrage possibility as calculated in the previous section.
The results show, that having taken into account the bid-ask spread, this would not have
presented an arbitrage opportunity:

F a
USD/EUR =

1

F b
EUR/USD

(3.5)

B =
1

F a
GBP/USD

× 1

F a
EUR/GBP

× 1

F a
USD/EUR

≈ 0.99995 (3.6)

Just to be clear, this does not mean that other permutations of currencies will not
offer arbitrage opportunities under the bid-ask scenario. This can be assessed by checking
all the possibilities.

As a side note regarding implementation, storing the exchange rates in an inverse
manner to the one just presented would make the calculation slightly less computationally
intensive.

3.3.3 Arbitrage Condition

Taking three arbitrary currencies i, j and k (assuming that the cross exchange rates
between these exist and can be traded) we can formulate a condition that will evaluate
to true whenever there exists an arbitrage opportunity.

Acond =
1

F a
j/i

× 1

F a
k/j

× 1

F a
i/k

− 1 > 0 (3.7)

Which can be re-arranged to:

F a
j/i × F a

k/j × F a
i/k < 1 (3.8)

22



3.4 Selected Arbitrage Calculation

Ideally, I would have liked to use the Bid-Ask model for computing arbitrage opportu-
nities as it closer represents how trades are carried out in the market. However, having
implemented the arbitrage detection algorithm, there were no arbitrage opportunities
whatsoever in the data.

As a solution I have reverted to the Simple Model (Section 3.3.1). Therefore the data
generation scripts discussed earlier have been adapted to take this into account. The
modifications are not discussed in detail but are accomplished by ensuring the generated
market data is symmetric around the diagonal. To be precise, the values on opposite
sides of the diagonal are multiplicative inverses of each other.

In order to evaluate an arbitrage opportunity, we must now select an arbitrage
threshold (Equation 3.9). If a value is below this threshold, then we deem it profitable
and hence an arbitrage opportunity. This is a direct extension to the Simple Model,
as the threshold represents the transaction cost. Moreover, by modifying the threshold
value, we can adjust the transaction cost in our market.

F a
j/i × F a

k/j × F a
i/k < threshold (3.9)

It is important to note, that while representing a simplified model, the selected ap-
proach should not be seen as a disadvantage. This is because it offers similar, if not
greater, flexibility analytically. We are concerned with finding arbitrage opportunities
in the generated market data. Therefore all we require is that they represent a small
portion of all the possible currency trades. This can easily be achieved by manipulating
the threshold value. Furthermore, we do not need to generate new market data (with
bid-ask spread) to investigate a situation with a higher number of arbitrage opportunities.
Instead, we can simply adjust the threshold value.

As a result, the threshold value has been incorporated into the arbitrage detection
algorithms.

3.5 Summary

In this chapter we have given an overview of the proposed heterogeneous model. We
began by looking at the external components, covering the topic of random market data
generation.

We then presented the model in greater detail focusing on the two main components,
financial modelling and on-line trading. In the context of modelling, we introduced arbi-
trage detection and data prediction which will be the topic of further investigation.
We also noted the on-line component will be implemented on the FPGA and deals with
prediction checking.

Furthermore, we covered the various approaches to arbitrage calculation, looking at
both the Simple and Bid-Ask models. We note that a modification to the Simple model
has been selected for implementation, taking into account transaction cost in the form
of the arbitrage threshold. This was necessary as the generated market data did not
present arbitrage opportunities under the Bid-Ask approach.
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Chapter 4

Arbitrage Detection

In this chapter we turn our attention towards the implementation of the arbitrage
detection algorithm. We are primarily concerned with the CPU architecture, although
some consideration will also be given towards GPU acceleration.

• Preliminaries: We cover initial details such as the hardware and compiler used.
Furthermore, we discuss the issue of timing and the run configurations.

• Arbitrage Detection Algorithm: We introduce an initial recursive algorithm for
the detection of arbitrage. An alternative, optimised formulation is also explained,
followed by further performance considerations.

• Multi-Threading: We attempt to achieve further speedup by introducing multi-
threading. Two and eight thread variants are explored.

• Heterogeneous Model: The handling of predictions in the system is considered
and three modifications to the arbitrage detection algorithm are proposed.

• GPU Acceleration: We provide a concise explanation as to the implementation
process on the GPU.

4.1 Preliminaries

Before considering details of the algorithms developed and the implementation and op-
timisation processes involved, let us first discuss a few preliminaries, most notably the
hardware and compiler selected.

4.1.1 Hardware

Very briefly, I present details of the hardware used during the development and bench-
marking. A machine running Intel’s latest available processor micro-architecture has been
selected.

The specifications are outlined in Table 4.1. At this point one should also note that
although this is a quad-core processor, ”Hyper-threading” technology is enabled. This
means that a total of eight cores will be reported to the Operating System.
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Processor Intel Core i7-2600K

Clock Rate 3.40GHz
Cores 4

RAM Size 4096MB

Table 4.1: Hardware used during development.

4.1.2 Compiler

The code developed for the purpose of Arbitrage Detection has been written in C. This is
so, that it may be easily ported to other architectures considered throughout the course
of the project (NVidia’s CUDA uses an extension to the C/C++ language, whereas there
are C-to-hardware compilers available for the FPGA architecture).

What remains, is to select a suitable compiler. Based on advice from the ”Advanced
Computer Architecture (332)” course, I was keen to use the Intel C Compiler [12]. As this
tool is offered by the same company that delivers the processor, they clearly possess in-
depth knowledge about the architecture and can take advantage of this when optimising
code.

Unfortunately, the results when compiling code from this chapter were quite disap-
pointing. The performance was actually worse than that of the GNU C Compiler (GCC)
[22], even after experimenting with the compilation parameters.

As a result, the GCC compiler has been used throughout the project. Furthermore,
the ”O3” optimisation flag was used.

4.1.3 Environment Setup

In order to assess the performance of the different algorithms and optimised code versions,
I have executed these against generated market data (see Section 3.1.1). The algorithms
were wrapped in code responsible for reading market data from files.

Market data file sizes were kept in the region of approximately 500 to 1024MB, as
this allowed them to be stored in the cache, so that once in memory, the slower disk IO
would not become a bottleneck when benchmarking.

4.1.4 Run Configurations

The algorithms were executed using multiple iterations of the market data as to bet-
ter gauge their relative performance by increasing the run time. The parameters used
throughout the course of this chapter remain largely the same. We consider the num-
ber of currencies (n), number of market iterations (market-it) and the arbitrage limit
(arb-limit).

The number of market iterations is simply how many market data snapshots the
data has. We can also think of this as the number of times the arbitrage detection
algorithm will execute throughout the course of a run.

The arbitrage limit (also referred to as arbitrage threshold) has been selected to
limit the number of currency permutations that should be classed as profitable arbitrage
opportunities and is kept constant.
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Finally, we consider the average of three runs, each using different market data, al-
though randomly generated using the same parameters.

4.1.5 Timing

Although timing the execution of these runs might seem trivial at first, the situation is
actually a little more complex. Namely, there are different notions of time on Linux/Unix
systems. We distinguish between real, user and system time.

Real time, is defined as ”the elapsed time between invocation and termination” [11]
and is sometimes referred to as wall-clock time.

User time is ”the total amount of time spent executing in user mode” [21]. Occa-
sionally, the operating system will need to be called (requests such as IO, malloc, fork).
System time is ”the total amount of time spent executing in kernel mode” [21], required
to execute the requests to the operating system just mentioned.

The resource usage statistics utilised to retrieve timing information from the Operat-
ing System are accessible via ”getrusage” [21]. These provide details as to the user and
system time spent while executing the code.

Unless otherwise noted, the timing measure used through the course of this project
is the sum of user and system time, as this should be most representative of the total
execution time of the algorithms. Linux is an inherently multi-tasking operating system
which employs a scheduler. Therefore, we cannot be sure whether other process have been
scheduled during the execution of our code, rendering any wall-clock timing information
inaccurate. Hence real time is not a suitable measure.

4.2 Arbitrage Detection Algorithm

The papers I researched, dealing with the topic of triangular arbitrage, did not discuss
the specific algorithms used (see Section 2.4). Therefore, for the purpose of this project,
I have developed two possible approaches. Firstly, we look at a recursive algorithm. This
is not covered in much depth as the alternative (optimised) approach is presented later
on, offering considerable advantages.

4.2.1 Recursive Algorithm

A recursive algorithm seemed like the most logical first step towards solving the problem
and is also the first approach I tried. However, as we will see it has some disadvantages.

The aim is to find triangular arbitrage opportunities, that is to say instances
of profitable three-currency trades. If we consider a market with n currencies, then
we should iterate over the entire possible space (n3). This is not entirely the case, as
this space also contains permutations that are not valid under the triangular arbitrage
scenario. Namely, we have the requirement that all three currencies be distinct, therefore
our possible sample space is actually n(n− 1)(n− 2).

The recursive algorithm implemented will first loop through all n currencies calling a
recursive function to deal with the subsequent iterations. We keep track of the currencies
visited along this path to ensure that we only consider valid scenarios. Finally, the
algorithm terminates once all possibilities have been exhausted.

26



During execution, the product of the currencies visited is accumulated (for each per-
mutation) and the values found to be below the arbitrage limit are classed as arbitrage
opportunities.

Parameters Performance

n 100 run 1 [s] 148.96
market-it 5000 run 2 [s] 148.74
arb-limit 0.9 run 3 [s] 150.9

avg [s] 149.53

Table 4.2: Performance of initial recursive implementation.

The performance of this initial design is presented in Table 4.2. The parameters of
these runs have already been discussed and the performance figures over three different
runs give us an indication of speed.

It can immediately be observed that the performance of this approach is not entirely
satisfactory. This will become clearer once we discuss the performance of the revised
algorithm.

However, the disadvantage of recursive functions is not limited to their impact on
performance. Considering the heterogeneous aspect of this project, they are also harder
to map onto the FPGA and GPU architectures. As such it is advisable to investigate an
alternative approach, which would enable similar implementations on the other platforms.
This leads us to consider the alternative algorithm.

4.2.2 Alternative Algorithm

While dealing with the optimised algorithm let us first clarify the approach based on a
slightly simplified problem. We take the initial (first) currency as fixed and look for the
possible permutations of the second and third currencies.

Such an approach is presented in Figure 4.1. As mentioned, the initial currency is
fixed and we will use the index 0 (zero) to represent it. Following this, we can reasonably
look at values 1, 2, 3 etc. for the second currency. The arrows in the figure correspond
to paths which represent valid arbitrage scenarios (i.e. the three currencies are unique).
The reasoning for the third column is exactly the same. Finally, we need to convert back
to the original currency, hence the final column is once again ”First”. As seen in the
figure the transactions involve three different currency exchanges.

One of the requirements of this proposed algorithm is to allocate enough memory to
store the entire contents of the third column (referred to as the results array). This
represents a requirement which is order n2 with respect to the original number of curren-
cies. Immediately visible in Figure 4.1 is the number of cells that have no incoming or
outgoing arrows associated with them. These can be thought of as representing allocated,
but unused memory. While this may look substantial for the example provided, where
only 4 currencies are visible, the effect becomes less pronounced when we look at larger
number of currencies. In this example we access 37.5% of the entries, however, for a case
with 100 currencies, this would be 97.02%.

In the interest of avoiding random memory access, we also notice that the way in
which exchange rates from the market data need to be referenced is very structured.
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Figure 4.1: Outline of the approach used for the alternative algorithm.

This is mirrored in the storage of exchange rates in the market data, as one row and
column represent all the exchange rates for a given currency.

The proposed algorithm works in four steps. The outline of these is presented in
Listing 4.1. Please note, exact implementation details of the individual steps have been
omitted for brevity.

for ( n = 0 ; n < num currenc ies ; n++ ) {
populateFirstExchangeRate ( ) ;
populateSecondExchangeRate ( ) ;
populateThirdExchangeRate ( ) ;
determineArbi t rage ( ) ;

}

Listing 4.1: Alternative algorithm - overview

Initially, the algorithm populates the results array with exchange rates formed from
the first and second currencies. Notice, that we will store the same value for n consecutive
entries (this is evident from the ”Second” column in Figure 4.1).

The next step involves the ”Third” Column from Figure 4.1. This is the least struc-
tured memory access as we need to retrieve all possible combinations of two currencies
from the memory. Please note that the values retrieved are multiplied by those already
stored in the results array.

Now we can once again multiply all the entries in the results array, only this time
by the respective exchange rates that will convert back to the initial currency. This is a
structured memory access as one of the currencies in the exchange rate is fixed.
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Finally, having the products of all permutations stored in memory, the algorithm
iterates over this list and determines which ones represent an arbitrage opportunity by
comparing with the arbitrage limit (threshold). Only entries with a unique combination
of first, second and third currencies are considered in this process.

By splitting the computation up into stages and using a structured approach towards
memory access, this algorithm aims to improve on the performance of the initial imple-
mentation.

However, one last modification is necessary to allow this algorithm to carry out ar-
bitrage detection. We must iterate over all possible initial currencies (here we assumed
the initial currency was known). This is a simple modification facilitated by running the
alternative algorithm in a for loop, which iterates over all currencies.

Parameters Performance

n 100 run 1 [s] 27.50
market-it 5000 run 2 [s] 27.35
arb-limit 0.9 run 3 [s] 27.46

avg [s] 27.44

Table 4.3: Performance of alternative algorithm for Arbitrage Detection.

The performance figures for the algorithm are presented in Table 4.3 and the average
value over all the runs presents an approximately 82% decrease in computation time when
compared with the recursive algorithm.

4.2.3 Further Optimisation

Following the alternative formulation of the algorithm just described, with the compu-
tation split up into stages, I also investigated the performance when combining all these
steps into a single computation. That is to say, all the required exchange rates for one
entry in the results array were accessed simultaneously.

The performance figures for this optimisation are presented in Table 4.4 and represent
a further 28% reduction in computation time. This suggests, that the advantages to a
more structured memory access pattern are outweighed by reducing the total number
of iterations over, and hence memory accesses to, the results array (as implemented by
combining the stages).

Parameters Performance

n 100 run 1 [s] 19.58
market-it 5000 run 2 [s] 19.62
arb-limit 0.9 run 3 [s] 19.65

avg [s] 19.62

Table 4.4: Alternative prediction algorithm - Stages combined.

As a result of the performance figures, we will consider this version of the arbitrage
detection algorithm for further optimisation in the remainder of this chapter.
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4.3 Multi-threading

Another way of improving the performance of the arbitrage detection algorithm is by
introducing multi-threading. Considering the recent predominance of multi-core machines
this seems like a logical step.

Furthermore, when referring back to the alternative algorithm (see Listing 4.1), we
see that it is not too complicated to introduce multi-threading. As the computation is
already split by iterating over possible values for the initial currency, we can have multiple
threads concurrently processing different initial currencies.

We take a closer look at two approaches, firstly considering two threads and then
moving on to eight.

4.3.1 Two Threads

The dual threaded algorithm has been implemented by incorporating the modifications
outlined above. Two threads are launched simultaneously, one for odd, the other for even
initial currencies.

Parameters Performance

n 100 run 1 [s] 34.35
market-it 5000 run 2 [s] 33.37
arb-limit 0.9 run 3 [s] 33.82

avg [s] 33.85

Table 4.5: Performance of Dual-threaded arbitrage detection algorithm.

The results for this implementation are displayed in Table 4.5. This version of the
algorithm takes approximately 72% longer to complete than the previously optimised
code.

In contrast to previous time measurements, the values taken for this experiment are
”real time” (i.e. wall-clock). Although the ”user time” was similar to the values seen
before, the algorithm was taking noticeably longer to finish (even over multiple executions
and regardless of system load). Part of the problem can be attributed to the overhead in
creating and joining threads, exhibited in an observed increase in the ”system time”.

4.3.2 Eight Threads

In order to better understand the effects of multi-threading on this algorithm, I increased
the number of threads to eight. This was a maximum reasonable value, as the host ma-
chine was running a quad-code (hyper-threaded) processor, reported as eight processors
to the Operating System.

Table 4.6 shows the results when executing this algorithm. This is still approximately
30% slower than the single-threaded version. Once again, the ”real time” value had to be
used for timing, because the sum of ”system” and ”user” time was actually higher. This is
to be expected on a multi-core machine, however the discrepancy observed (approximately
20%) was quite low, suggesting that all cores were not being fully utilised. Incidentally,
this is similar behaviour to that observed in the dual-threaded approach presented earlier.
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Parameters Performance

n 100 run 1 [s] 23.34
market-it 5000 run 2 [s] 28.42
arb-limit 0.9 run 3 [s] 24.68

avg [s] 25.48

Table 4.6: Performance of Optimised Algorithm - Eight threads.

Figure 4.2: Processor utilisation for the multi-threaded optimisation (8 threads).
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As a matter of fact, this can be confirmed by looking at the CPU utilisation when
executing the code. A cut-down version representing the time during which the algorithm
was executing is shown in Figure 4.2. The different coloured lines represent the different
cores.

Although the performance has improved when increasing the number of threads, the
low CPU utilisation points to a bottleneck, which is likely the memory access to the
market data array, where all threads are competing. Given this problem, the results
of the multi-threaded optimisations are perhaps not so surprising. Indeed, based on
past experience from optimisation exercises during the ”Advanced Topics in Software
Engineering (475)” course, the best optimisations for an algorithm that was heavily reliant
on multiple memory accesses were single-threaded.

As multi-threading the previously optimised algorithm has not provided any perfor-
mance benefits, we will consider the initial single threaded approach in further discussions.

4.4 Heterogeneous Model Considerations

Before continuing with the implementation details, let us take a moment to reconsider
the Heterogeneous Model proposed and the direction that we should take.

The arbitrage detection algorithm is required for two main reasons. Firstly, we
need a version for the purpose of the evaluation, where we compare the performance of
the heterogeneous model with a CPU only implementation. Secondly, after predicting
future market data (we will look at details in Chapter 5), we need to run the algorithm
to check for arbitrage opportunities. Once these are found, they can be transferred to
the prediction checking algorithm (the subject of Chapter 6) for processing.

We now take a detailed look at modifications necessary for both these scenarios.

4.4.1 Single-Best Arbitrage Opportunity

Here we present details necessary for the later evaluation of the project. We require a
version of the arbitrage detection algorithm that will be used as a reference point and will
be executed on the CPU only (also referred to as the ”reference CPU implementation”)

The approach we take is to find a single best (most profitable) arbitrage opportunity,
so that this might be sent to the market. This particular method has been selected, as
it is equivalent to the one used in the FPGA implementation of the prediction checking
algorithm (see Chapter 6 - further reasons for the choice will be discussed here).

The necessary modifications to the code are very minor. We simply need to keep track
of the most profitable arbitrage opportunity and compare any new values against it. As
noted before, the single-threaded optimisation of the algorithm has been used.

The performance results for this modification are shown in Table 4.7. We observe a
roughly 4% increase in the computation time, which is to be expected given that we have
increased the complexity of the code slightly.

4.4.2 Trade Size Modification

We now turn our attention to modifications necessary when processing predicted market
data and sending the results to the prediction checking algorithm.
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Parameters Performance

n 100 run 1 [s] 20.39
market-it 5000 run 2 [s] 20.12
arb-limit 0.9 run 3 [s] 20.96

avg [s] 20.49

Table 4.7: Performance of Single Best Arbitrage Opportunity modification.

For the purpose of this Individual Project, the number of predictions to be sent for
processing is limited. Therefore, apart from checking for arbitrage opportunities we need
also to prepare the list of predictions. Furthermore, the three currencies involved in the
arbitrage opportunity are sufficient to represent the prediction.

One approach is to store a sorted list of length trade size representing the best
arbitrage opportunities encountered. Once we have iterated over all possible currency
permutations, this list can form our predictions.

Code modifications are required to keep track of this sorted list. Upon finding a
profitable arbitrage opportunity the entry is inserted into the appropriate place in the
sorted predictions array. The precise implementation will traverse the predictions array
searching for this position and moving the remaining entries down once it is found. I
appreciate, that when it comes to performance, this may not be the most optimal so-
lution. Optimisations could be found by using algorithms such as quick-sort or storing
the predictions in a different data structure. Unfortunately, I did not have the time to
explore these options.

TRADE SIZE 16 32 64 128 256 512

t all [s] 20.39 20.42 20.6 20.7 21.2 22.82
t [ms] 4.078 4.084 4.12 4.14 4.24 4.564

TRADE SIZE 1024 2048 4096 8192 16384 32768

t all [s] 27.57 40.23 68.58 124.66 241.41 546.07
t [ms] 5.514 8.046 13.716 24.932 48.282 109.214

Table 4.8: Evaluating the impact of different values of Trade Size.

What remains to be investigated is the implication of changing the trade size on
the performance of the algorithm. Data in Table 4.8 has been compiled by running the
algorithm with the same market data (run 1 configuration to be exact) but adjusting the
trade size. This is also shown in Figure 4.3. Please note, that both the x and y-axis use
a logarithmic scale. This scale was chosen, as alternatively, the lower trade size points
would be displayed on top of each other. Furthermore, execution time is plotted for a
single iteration of the algorithm (t in Table 4.8), rather than a sum of all the iterations
(t all in Table 4.8) as has been used for the performance tables.

What we observe, is that the algorithm is well suited to low trade size values (in
the region of 16 - 2048). Once we surpass these values, we pay a considerable penalty
for increasing the number of predictions further. The time to complete the computation
increases quadratically, although by considering the data, we could also look at fitting a
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Figure 4.3: Evaluating the impact of different values of Trade Size.

linear trend if we were only to consider data points above a trade size of 1024.

Parameters Performance

n 100 run 1 [s] 28.46
market-it 5000 run 2 [s] 28.26
arb-limit 0.9 run 3 [s] 26.61

trade-size 1024 avg [s] 27.78

Table 4.9: Algorithm Performance using a Trade Size of 1024.

Finally, the performance results for a trade size value fixed at 1024 (and in the conven-
tion used for this chapter) are presented in Table 4.9. The time necessary for execution is
over 40% longer than that of the most optimised algorithm presented before. Although
highly dependent on the quality of the prediction algorithm used, 1024 is a relatively
small number of predictions. As has been shown in Figure 4.3, the penalties for choosing
larger numbers are severe. This is why, we look towards an alternative.

4.4.3 Threshold Modification

The grounding for this alternative approach lies in the realisation that we do not necessary
need to keep an ordered list of predictions. Instead, we might simply store all values that
present a profitable arbitrage opportunity. In our model, we can do this by comparing
against a threshold arbitrage limit.
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Figure 4.4: Evaluating the impact of different values of Trade Size when using a threshold.

The disadvantage of this approach is that we run the risk of ignoring potentially better
opportunities by only storing the first trade size values found. This can be offset by
increasing the trade size number (i.e. maximum number of predictions stored).

The performance of this approach is examined in Figure 4.4. Please note that results
for a single iteration have been plotted, hence the time is presented in milliseconds. Two
different values for the arbitrage limit (threshold) have been selected, to show the effect
of filling up the prediction array (of length trade size). By setting the arbitrage limit
to one, we ensure that half of all possible currency permutations are classed as arbitrage
opportunities. Although this is a completely unrealistic scenario for the market, it ensures
that we fill our predictions array. This will increase the amount of writes to the predictions
array, where arbitrage opportunities are stored.

The conclusions that we draw from this data, are that we can use a substantially larger
number of predictions than in the sorted case described previously. When increasing the
trade size up to a value of 16 384 there are little performance implications. After this,
the performance does begin to degrade and is further deteriorated if the market presents
a number of arbitrage opportunities capable of filling the entire allocated array. However,
as a logarithmic scale has been used for the x-axis, this degradation is by no means severe.
If we increase the number of predictions (i.e. trade size) from 16 to 524 288 the time
necessary to execute the algorithm increases by little over 30%.

Finally, the performance figures for this modification are presented in Table 4.10. A
trade size value of 16 384 has been used, but the required execution time is only slightly
(approximately 1%) longer than the previous optimised algorithm (i.e. faster than the
sorted case).
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Parameters Performance

n 100 run 1 [s] 20.10
market-it 5000 run 2 [s] 19.58
arb-limit 0.9 run 3 [s] 19.86

trade-size 16384 avg [s] 19.85

Table 4.10: Algorithm Performance when using a threshold and Trade Size of 16384.

4.5 GPU Acceleration

An attempt was made at speeding up the arbitrage detection computation by execut-
ing on Graphics Processing Units. NVidia’s CUDA parallel computing architecture was
selected.

Unfortunately, after initial experimentation, the results were quite disappointing and
no speedup could be achieved. At best, even a simplified arbitrage detection algorithm
could only achieve performance similar to that of the CPU implementation.

One of the issues is the necessity of transferring data from the host (i.e. PC, CPU)
to the GPU device before computation and afterwards copying the results back. If an
algorithm shows considerable speedup when executing on the GPU, this disadvantage
can be overcome.

Core to the parallel computing in CUDA is the creation of multiple threads which are
executed concurrently on the device. Herein lies the greatest challenge when attempting
to implement the arbitrage detection algorithm. Although it is possible to devise a scheme
whereby we iterate over all possible currency permutations, the trouble arises when we
wish to compile a list of predictions.

A possibility is to store the entire sample space on the GPU and then sort it to find the
best predictions. Not only is this computationally expensive, but the memory resources
on the GPU are usually more restricted that those on the CPU.

A second option, similar to the approach we have taken on the CPU, is to limit the
number of predictions and select only those above a certain threshold (i.e. no sorting).
This approach also presents challenges during the implementation. The main problem I
faced was trying to keep track of a global (in respect to all the running threads) list of
predictions. Although I utilised atomic addition for a counter (as a means of referencing
the position in the prediction list), this was not sufficient to allow atomic access to a
shared memory and resulted in corrupted results.

This can be solved by using a single thread to accumulate the predictions once all
permutations have been computed. Naturally, this process is slow as we are effectively
scheduling the execution of a single thread, which is not where the GPU’s performance
advantages lie.

These issues arise as we cannot know beforehand, how many arbitrage opportunities
a certain thread will detect. A workable solution is to give each thread a limit for this.
We would effectively be defining a trade size, but for each thread individually. This
would solve the problem of atomic access to a global predictions array, as every thread
would have designated entries associated with it. The disadvantage of this method lies in
the definition of the individual trade sizes and would either limit the number of arbitrage
opportunities that can be detected, or increase the size of the necessary prediction array
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to be transferred back to the host (CPU).
A thorough investigation of a GPU acceleration process would be necessary to provide

a detailed view of the performance. As initial results were disappointing and time was
limited, more attention has been given towards optimisation on the CPU and FPGA
architectures instead.

However, based on the work completed, the conclusions are that given the choice of
CPU or GPU, the arbitrage detection algorithm should be executed on the former
for best performance. Moreover, arbitrage detection is just a single component of the
heterogeneous model proposed and this does not mean that a GPU could not be deployed
effectively when used for data prediction.

4.6 Summary

Throughout the course of this chapter we have discussed the implementation of the ar-
bitrage detection algorithm, primarily focusing on the CPU architecture.

After giving a brief introduction into the setup, run configurations and timing we
discussed algorithms for arbitrage detection. An alternative algorithm was proposed, as
the original recursive formulation did not offer the performance required and would not
be easily portable to other architectures.

We explored making the algorithms multi-threaded using both two and eight threads,
but this did not provide any performance advantages. Therefore the single-threaded code
has been used instead.

Moreover, we discussed how predictions would be handled by the arbitrage detection
algorithm and provided three different modifications. The Single-Best version will later
be used for evaluation, whereas the Trade Size and Threshold variants present two
alternative ways of accumulating predictions. The main difference was, that the former
represents a sorted approach.

Finally we discussed performance and implementation issues, when attempting to
accelerate the code by running it on the GPU. We concluded that the optimised arbitrage
detection algorithm is best suited to executing on the CPU.
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Chapter 5

Market Data Prediction

In this chapter we focus on the issue of data prediction. This is the first step nec-
essary when preparing a list of predictions for processing on the FPGA and has been
implemented on the CPU.

• Initial Thoughts: We present the key assumption for the data prediction compo-
nent along with a mention of the related work.

• Prediction Algorithm: Two alternative predictors are developed based on the
idea of weighting. Both a mean and exponential case are explored.

• Performance Evaluation: The performance of the proposed algorithms is evalu-
ated against perfect and random predictors.

5.1 Initial Thoughts

To begin with, let us state a key assumption. There will be someone highly specialised
in the field of quantitative finance and the foreign exchange market, capable of predict-
ing this data. Indeed, as already discussed in the Background (specifically Section 2.4),
approaches concerning the use of Neural Networks [32] have been proposed. Other pos-
sibilities include Genetic Algorithms, which have been successfully applied to foreign
exchange data to accomplish short-term predictability [24] (i.e. only a few data ticks into
the future).

A state-of-the-art modelling component can easily be substituted into the proposed
model. The only requirement is that we are able to transfer and store the market data
in a consistent fashion. Therefore, it is important to stress that the issue of market data
prediction is not central to the Individual Project.

What we must also take into consideration is the market data used throughout the
course of the project. As this is generated randomly, algorithms that behave well in this
context are not guaranteed to perform well on real foreign exchange values.

Nonetheless, it is important to provide a working prediction algorithm so that we
may demonstrate and evaluate the operation of the heterogeneous model as a whole.
Every effort has been made to ensure that the performance of the defined predictions is
reasonable and will be the subject of further discussion in this chapter.
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5.2 Prediction Algorithm

Before looking at details of the prediction algorithms investigated, let us reconsider the
entire model and where the prediction component fits in.

The data prediction algorithm is essentially a first step to providing arbitrage pre-
dictions, which will later be evaluated using the prediction checking algorithm. We
must take the most current market data available and predict how this is going to change
in the next iteration. After this step, the arbitrage detection algorithm can be executed
(already discussed in Chapter 4) in order to compile the list of arbitrage predictions.

The data prediction component has been implemented on the CPU with two alter-
native approaches being proposed. The same programming language has been used as
for the arbitrage detection code, that is C. This allows for simpler integration between
the components. In principle, however, any implementation (be it software or hardware)
could be used as long as it offers sufficient performance and can feed predicted market
data into the detection component.

It should come as no surprise that the primary technique we consider when trying to
predict future market data is turning to historical values. Indeed a prediction sample
has been defined which determines the number of past market data snapshots that are
considered when making a prediction. We now look at two alternative ways of using this
data.

5.2.1 Equally Weighted

The first approach is to equally weight the historical data points. This is essentially the
process of finding the mean value of the data points in the prediction sample. It must
be noted, that this operation is carried out separately for each entry in the market data
array. This is to say, for each point in the market data array, we look at its previous
values with the goal of predicting the next. The formula used is shown in Equation 5.1,
where N is the prediction sample.

Mean =
1

N

N∑
i=1

xi (5.1)

The weighted approach is not the most robust, as in principle, we could look for much
more complicated patterns and correlations in the data. Sadly, I did not have the time
to develop such predictors.

5.2.2 Exponentially Weighted

A more interesting strategy than looking at the mean is to experiment with different
weights for the historical data.

Here I investigate an approach which uses the variability of the data in order to
determine the weighting factors for the individual data points. The standard deviation
has been used as the measure (formula shown in Equation 5.2). Please note, that N
represents the prediction sample, whereas x̄ stands for the mean.
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σ =

√√√√ 1

N

N∑
i=1

(xi − x̄)2 [38] (5.2)

The weights of the individual data points will be adjusted based on this variabil-
ity measure (i.e. standard deviation). The method applied is known as ”Exponential
smoothing”, but regardless of what the name suggests can also be applied to forecasting
[37]. This approach represents an exponential weighting of the data points and can be
defined recursively:

s1 = x0, t = 1 (5.3)

st = αxt−1 + (1− α)st−1, t > 1 [8] (5.4)

The first equation (Equation 5.3) represents the base case, i.e. at the first point in time
we use the initial value x0 as our smoothing output. The second equation (Equation 5.4)
shows the definition of the recursive step with the most current data point (xt−1) being
multiplied by the smoothing factor α.

We can expand this recursive formulation to present this smoothing output using four
data points. This is presented in Equation 5.5.

s4 = αx3 + α(1− α)x2 + α(1− α)2x1 + (1− α)3x0 (5.5)

Furthermore, if we look only at the weights of the points (Equation 5.6), we notice
that these sum to one. This means that we need not normalise the smoothing output.

α + α(1− α) + α(1− α)2 + (1− α)3 = 1 (5.6)

Therefore, we need only to consider one input to the exponential smoothing (other
than the number of points), the smoothing factor. The effects of taking different values
for the smoothing factor are presented in Figure 5.1. Please note that the graph assumes
we have five data points (numbered from zero, i.e. x0, x1...). As we could expect from
the recursive formulation, when increasing the smoothing factor, the most recent points
are weighted considerably stronger than the previous value. This effect diminishes as the
value is decreased.

However, for points with smoothing factor less than 0.5, this formulation starts to
favour the initial data point most considerably. The effect is more pronounced for values
smaller than 0.3 and also has the unfortunate effect of decreasing and then increasing the
weights for the individual points (as can be seen for smoothing factor 0.3 in Figure 5.1).
We would like to avoid such behaviour in our predictor.

One final issue we have to consider is how to connect the exponential smoothing with
the variability measure. The assumption is made that most recent data points should
be favoured and the greater the variability of the data, the more pronounced this effect
should be in the computation of the prediction.

Therefore, the implementation takes a normalised number for the standard deviation
so that it ranges between zero and one (i.e. valid smoothing factor values). Normalisation
is accomplished by keeping track of the maximum standard deviation seen so far. This
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Figure 5.1: Exponential smoothing - Weight factors for individual data points when using
different smoothing factors (i.e. values of α).

value is then fed directly into the exponential smoothing in order to calculate a prediction
for the future market data point. In order to prevent the weights from decreasing and
then increasing (as seen for values smaller than 0.5), but also to avoid emphasising older
data points, the minimum smoothing factor has been set at 0.5. Furthermore, I have
experimented with different cut-off values in order to prevent extreme weighting of the
most recent point and found 0.9 to be a sensible value.

5.2.3 Initial Performance Measure

Having proposed two alternative solutions, we can now proceed to evaluating their relative
performance. This is best done by comparing the ”real” market data (i.e. most recent
iteration of the randomly generated data) with the predicted values. Computationally,
this means iterating over all points in the market data array and comparing real with
predicted values.

A suitable measure is the square difference and is defined in Equation 5.7, where n
represents the number of currencies.

D =
n∑ n∑

(xreal − xpred)2 (5.7)

As we want the prediction to be as accurate as possible, we look towards minimising
the square difference, D.

In order to test the performance, six different market data files have been selected
with different numbers of currencies and varying percentages of arbitrage opportunities
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in the data. This run configuration data is given in Table 5.1.

Run run 1 run 2 run 3 run 4 run 5 run 6

n 64 100 150 256 300 400
market-it 10000 5000 2000 750 500 300

Arb. Opport. [%] 0.408 0.378 0.292 0.270 0.279 0.258

Table 5.1: Run configurations used when comparing the performance of predictors.

Having explained the procedure, we can now run the comparison and results are shown
in Table 5.2. Please note, that as these values were quite large (executed over multiple
iterations), the results have been normalised so that the mean predictor equals 100%. The
results show that the weighted predictor performs much better when evaluated using the
Square Difference metric and reduces the difference between the real and predicted data.

Run run 1 run 2 run 3 run 4 run 5 run 6

Mean [%] 100.00 100.00 100.00 100.00 100.00 100.00
Weighted [%] 46.63 46.70 45.77 46.76 47.12 46.78

Table 5.2: Comparing the two predictors using the Square Difference measure.

5.3 Performance Evaluation

However, the initial performance measure is not the only evaluation method available. A
different approach is to compare the performance of both predictors with the behaviour
of a perfect as well as random predictor. The former represents a situation, where
all the arbitrage opportunities are predicted correctly. The latter is a case of sending
random predictions to the prediction checking algorithm and observing the performance.
What we would expect is for the predictors developed to lie within the bounds of these
two extreme cases.

First we discuss in greater detail the perfect and random predictors as well as an out-
line of the implementation necessary. This then leads onto an evaluation of the obtained
results.

5.3.1 Perfect Predictor

As already outlined, the perfect predictor represents a rather unrealistic scenario whereby
all the arbitrage opportunities in the data are predicted correctly. However, it enables us
to establish an upper bound on the performance of any predictor.

Fortunately, the implementation for this kind of predictor is quite straightforward.
We require to use the arbitrage detection algorithm, albeit with slight modifications.
These are necessary, so we do not search for arbitrage opportunities before the predictor
has filled its prediction sample of historical data and begun processing.
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5.3.2 Weighted Predictor

The situation is more complicated when it comes to checking the performance of the
weighted (mean and exponential) prediction algorithms proposed.

Once prediction sample historical data points have been loaded into the predictor,
we can execute the algorithm. After every iteration, the predictions must be checked
against the most current (i.e. next) market data and the number of arbitrage oppor-
tunities recorded. This process continues until we have consumed all the market data
available and enables us to establish how many of the predictions made were actually
correct.

This forms the outline of the implementation that was wrapped around the mean and
exponentially weighted predictors in order to evaluate them.

5.3.3 Random Predictor

Finally, the random predictor is similar in implementation to the weighted predictors we
have just discussed. The crucial difference is that the list of predictions sent for processing
is created randomly.

5.3.4 Results

We can now concentrate on the evaluation results obtained when executing all four pre-
dictors. At this point it must be noted that the values presented have been normalised,
so as to indicate 100% for the perfect predictor. This makes comparison easier and was
necessary due to large values obtained from the execution of the algorithms.

Firstly, we consider the number of predictions made by the algorithms (shown in
Table 5.3). We must remember that this number will vary as the algorithms will only
make a prediction when there is an arbitrage opportunity in the predicted data. This is
not exactly true for the random predictor, as it is essentially making guesses and hence
does not use the predicted data. The number of predictions for the random case has been
increased to allow the algorithm a greater chance of success.

The last column in Table 5.3 shows the average value obtained over the six runs exe-
cuted. What we observe from the data is that the mean algorithm makes less predictions
that the perfect case. In essence, at this point it is already destined to perform worse
than ”perfect”. This is not entirely surprising as calculating the mean makes any peaks
in the market data less pronounced, leading to a reduction in the number of arbitrage
opportunities (hence predictions).

With the exponentially weighted approach, on the other hand, we are boosting the
most recent data points, which leads to there being more arbitrage opportunities in the
predicted data (hence more predictions). The number of predictions made is increased
above both mean and perfect, immediately suggesting that some of these predictions
must be incorrect.

We now turn our attention to the correctness of the predictions. Table 5.4 shows the
percentage of predictions made that were correct with the first row once again underscor-
ing the behaviour of the perfect predictor.

The value that is perhaps most noticeable is the performance of the random predictor,
with only 0.46% (on average) of the predictions made being correct. This is not surprising
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Run run 1 run 2 run 3 run 4 run 5 run 6 Average

Perfect [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Mean [%] 95.77 95.78 95.40 95.65 95.59 93.39 95.26

Weighted [%] 106.48 105.83 106.45 107.29 104.19 104.85 105.85
Random [%] 175.48 164.21 198.59 194.16 181.23 178.78 182.07

Table 5.3: The number of predictions made by the tested algorithms. Results in percent-
ages.

considering the predictions were generated randomly.
More interestingly, we observe a high degree of accuracy in the mean predictor, with

approximately 86% being correct. However, before making any meaningful comparisons
with the exponentially weighted solution, we must remember that we are dealing with
different numbers of predictions.

Run run 1 run 2 run 3 run 4 run 5 run 6 Average

Perfect [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Mean [%] 85.39 84.99 84.07 87.58 88.82 87.19 86.34

Weighted [%] 76.77 77.00 75.70 78.59 81.36 78.31 77.96
Random [%] 0.67 0.56 0.37 0.36 0.42 0.40 0.46

Table 5.4: Percentage of predictions that were correct for each algorithm.

Taking this into account, we look at the results as a percentage of the performance of
the perfect predictor, that is to say we present the percentage of arbitrage opportunities
that were correctly detected (given in Table 5.5).

Not much has changed with regards to the random predictor. Having taken into
account the number of predictions made, the performance is still very poor. We also note
that the performance of both the mean and weighted predictors lies between that for the
random and perfect cases, although closer to perfect.

Run run 1 run 2 run 3 run 4 run 5 run 6 Average

Perfect [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Mean [%] 81.78 81.40 80.20 83.77 84.91 81.43 82.25

Weighted [%] 81.74 81.49 80.59 84.32 84.77 82.10 82.50
Random [%] 1.18 0.91 0.74 0.70 0.77 0.71 0.83

Table 5.5: Arbitrage opportunities detected as a percentage of perfect predictor.

However, the main comparison is between the mean and weighted predictors. Aver-
aged over six runs, the performance is very similar, with the weighted approach having a
slight edge. The first point to make is the difference in how these algorithms behave. The
mean approach makes less predictions, but these are more accurate. The exponentially
weighted calculation on the other hand increases the number of predictions, but they are
less accurate. In the end both solutions lead to similar results.

It would be interesting to experiment with different prediction sample sizes and
establish whether this has any impact on the relative performance of the algorithms.
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Sadly I did not have the time to complete this step.
When we look back at the initial performance measure (square difference) discussed

in Section 5.2.3, we recall that the weighted approach appeared to give predictions which
better represented the true data. This is interesting, given that both predictors behave
very similarly when taking into account the arbitrage opportunities detected.

In other words, even though we are making better predictions about the data, this
does not allow us to capture more arbitrage opportunities. This suggests, that in order
to improve the prediction algorithms we would need to place more emphasis on detecting
scenarios that can lead to arbitrage.

We could consider developing more complicated predictors that search for patterns
which may lead to arbitrage opportunities rather than concentrating solely on the most
accurate prediction of future market data. As mentioned earlier though, the development
of more complicated modelling techniques was not the main focus for this Individual
Project.

In conclusion, both the mean and weighted predictors offer good performance when
evaluated against a ”perfect” implementation, capturing above 80% of the arbitrage op-
portunities present in the data.

5.4 Summary

In this chapter, we have discussed the prediction of market data as part of the heteroge-
neous model. We also noted that the development of a state-of-the-art predictor is not
the main focus for the project. Nonetheless, with the aim of providing representative
results, two predictors were developed, mean and exponentially weighted. The latter
predictor bases its output on the variability of the underlying data which is fed into an
exponential smoothing calculation.

Furthermore, the suggested predictors were evaluated against the perfect and ran-
dom cases and demonstrated over 80% of the perfect predictor accuracy. The values
were also comfortably above the performance figures for the random case, which at best
managed to perform at 1.18%.

Although the initial performance measure (square difference) favoured the exponen-
tially weighted predictor, after evaluating the percentage of arbitrage opportunities de-
tected, both algorithms exhibited similar results. This suggests that alternative algo-
rithms could be looked at, which not only aim to minimise the square difference, but also
search for arbitrage patterns in the market data.
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Chapter 6

Prediction Checking

This chapter covers details of the implementation of the prediction checking algorithm
on the FPGA architecture. We are primarily concerned with the optimisations which
have been carried out, but also cover the following:

• Additional Background: We present additional details as to the tools used;
AutoPilot and Xilinx tools, as well as the implementation process.

• Prediction Checking Algorithm: An overview is given of the prediction check-
ing algorithm.

• Optimisation Process: Starting with the original algorithm, a memory wrapper
is introduced to produce more reliable results. Furthermore, loop unrolling and
different RAM types are considered.

• Compacting Data: The representation used for the predictions array is com-
pacted in order to reduce the memory utilisation on the device.

• Result Space Reduction: The number of arbitrage calculations stored after
computation is reduced, with two alternative approaches being compared.

• Evaluation Preparation: The design is adapted and prepared for evaluation.

• Design Remarks: Concluding remarks are presented, concerning experiences from
the design process for the FPGA architecture.

6.1 Additional Background

Before we go on to explain the implementation details on the FPGA and the optimisations
which have been made, let us first consider some additional background material for this
chapter. We first take a look at the tools which have been used during the optimisation
process. These are AutoPilot and the Xilinx tools.
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6.1.1 AutoPilot

AutoPilot is a tool that allows the compilation of C and C++ code into hardware and
supports execution platforms such as FPGA and ASIC chips [29].

Such a toolset forms a good starting point for users that are new to FPGAs (as was
my case), as at least in theory one can provide input in the form of C code and expect
to be able to implement the results on an FPGA. As physically running the design on an
FPGA circuit was not the main priority of this Individual Project, it seemed that a lot
of the work could be done at the higher level.

Unfortunately, matters are slightly more complicated. To allow the user to have
an input on the final design, the tool utilises a TCL script where the user can provide
details of the FPGA device, the clock period that should be achieved as well as further
information regarding the optimisation of the generated output and interfaces between
the function and its environment.

It is important to note, that this is a new tool and as such there was only a single
floating license available at the University for the vast majority of the project duration,
causing some problems. Understandably, there was not much expertise with regards to
this tool and the help from Dr. Tsoi and his guide to AutoPilot [29] was invaluable.

The tools provide output in various formats, most notably Verilog, which can then
be used by the Xilinx tools for the implementation. AutoPilot will also generate files for
Functional Simulation, which I have used to ensure the correctness of the designs during
the optimisation process.

The AutoPilot environment is not limited to providing output for Xilinx FPGAs and
supports other vendors. Incidentally, the company that developed AutoPilot (AutoESL
Design Technologies Inc.) has been acquired by Xilinx during the course of my Indi-
vidual Project [26]. In my opinion, this move holds great potential for the tools, as a
good integration with the Xilinx design environment could substantially speed up the
implementation process, but more on this later.

Originally I had planned to rely heavily on the AutoPilot tool for the purpose of
obtaining reliable performance results on the FPGA device. Initially, after examining
the output reports it seemed that the tool was generating all the necessary information.
AutoPilot reports the latency in terms of clock cycles as well as estimates for the clock
period, area and resource usage.

As I had no previous hands-on experience with FPGAs, I asked for advice regarding
the use of the AutoPilot estimates. Unfortunately, after discussions with Dr. Thomas
and Dr. Tsoi it became apparent, that these results could not be relied upon and only
a complete FPGA Implementation with the Xilinx tools would be able to provide the
accuracy required. This is described in detail in the following section.

6.1.2 Xilinx Design Flow

Since there was a possibility of running the design on Xilinx Virtex-5 devices, I used the
Xilinx tools for the process. This section will only give a very brief overview of the stages
involved, to illustrate this process to the reader. The two main aspects are synthesis
followed by implementation.

A diagram of the Xilinx Design Flow is presented in Figure 6.1 [42]. Starting with the
initial design (this would be the output of the AutoPilot tool), we need to run ”Design

47



Figure 6.1: Xilinx Design Flow [42]

Synthesis”, a process which will synthesise the HDL (Hardware Description Language),
Verilog in our case.

During the ”Design Implementation” stage, as we are looking at FPGA devices, there
are three aspects: Mapping, Placement and Routing. In this process (which is split up
amongst different programs in the Xilinx tool-chain) the design is mapped to the specific
hardware available on the device, connected and optimised. Only after all these steps are
complete, can the ”Timing Simulation” be executed, which can be used to derive reliable
timing estimates for the implemented design.

Once complete, the design can be represented as a Bitstream and uploaded to the
FPGA device.

As mentioned earlier, to achieve reliable results I had to follow the design flow all
the way to the Timing Simulation step. Due to the vast amount of configuration options
available for the process, the initial (sample) Makefiles provided to me were sometime
lengthier than the original C code implementation, adding to the challenge of the FPGA
Implementation.

When optimising any hardware design it is important to note, that the software will
cut out parts of the design, which it deems as not being used. Therefore it is crucial,
that all the parts of the design are connected correctly and are being used to achieve
the result of the computation. Otherwise, these will be removed and the synthesis will
produce inaccurate results.
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6.1.3 Complete FPGA Implementation Run

Unfortunately, I have not been able to carry out as many complete FPGA Implementation
runs (up until ”Timing Simulation”) as I would have ideally liked.

I will not present here all the details of the process, but there were multiple steps
involved to begin synthesis of the AutoPilot output. Amongst others, Floating Point
modules needed to be generated, Makefiles adapted, output files copied over, project files
generated and finally, providing an additional overhead, the memory wrapper files (as
discussed in the subsequent sections) modified.

6.2 Prediction Checking Algorithm

We now present an overview of the prediction checking algorithm. Having already gen-
erated and sent the predictions to the FPGA, the outline of this algorithm is purposefully
simple.

The precise code has been omitted for clarity. Suffice to say, that we need to iterate
over all the predictions which have been delivered. These are stored as currency triples
and contain all the information necessary for evaluating arbitrage. We use this informa-
tion to look up exchange rates between the first and second, second and third, and finally
third and first currencies (recall Figure 4.1).

We can then calculate the product of the three exchange rates to determine whether
the triangular arbitrage scenario is profitable. Similarly to the arbitrage detection
algorithm, this is done by comparing with an arbitrage threshold value.

6.3 Optimisation Process

This section builds on the explanation of the prediction checking algorithm. I now present
a detailed, step-by-step view of the optimisation process carried out for the FPGA im-
plementation.

To give an overview for readers wishing to skip the precise implementation details,
the optimisation stages are as follows:

• Original algorithm: The first step is to implement the original algorithm in
hardware.

• Memory wrapper: Building on this, a memory wrapper is introduced, to give a
more accurate representation of the performance of the device.

• Loop unrolling: As the device utilization is low and the number of loop iterations
high, loop unrolling is used to increase performance.

• Compacting data: The prediction data array is compacted to reduce the BRAM
utilization on the device.

• Result space reduction: The number of prediction results is reduced to save
BRAM resources and eliminate unnecessary overheads for selecting trades.
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• Evaluation preparation: The optimised algorithm is adapted slightly to prepare
for the evaluation.

6.3.1 Original Algorithm

The first step to an FPGA implementation is to start with a basic version of the original
algorithm.

We will refer to the algorithms implementation as the core function. As can be seen
in Listing 6.1, this function takes as input market data along with prediction data and
produces a set of results. All this data is stored as arrays.

void core (
f loat market data [M SIZE ∗ M SIZE ] , /∗ market data input ∗/
int pred data [ P SIZE ∗ P DEGREE] , /∗ p r e d i c t i on data input ∗/
f loat r e s u l t s [ P SIZE ] /∗ r e s u l t s output ∗/

)

Listing 6.1: Original Algorithm - function parameters.

The prediction array has dimensions which are P SIZE (number of predictions) by
P DEGREE (degree of arbitrage, in our case three). This algorithm will simply iterate
through the entire array using indexes for each currency as stored in the prediction data
and save the result of the computation in the output array. Unsurprisingly, the code
representing this algorithm is presented in Listing 6.2. Please note that this is an overly
simplified representation.

/∗ c y c l e through the p r e d i c t i on data ∗/
for ( i = 0 ; i < P SIZE ; i++ ) {

/∗ c a l c u l a t e a r b i t r a g e and s t o r e in r e s u l t s ∗/
r e s u l t s [ i ] = c a l c u l a t e a r b i t r a g e ( i ) ;

}

Listing 6.2: Original Algorithm - main loop.

The code used during the AutoPilot compilation is more complex than the excerpt
presented and has been left out for the sake of clarity. Specifically, the way of indexing
currencies in the market data array as well as the prediction data array have been adapted
to use single-dimensional arrays. This was necessary, due to limitations with the AutoPi-
lot tool, which would not automatically convert representations from two-dimensional
arrays.

Before discussing the results of the AutoPilot compilation and FPGA implementation,
we must first present a set of parameters that will be kept constant throughout most of the
optimisation process. These are n, the number of currencies in the market data (M SIZE

in Listing 6.1) and it, the number of predictions in the array (P SIZE in Listing 6.1). We
will start the investigation using 100 currencies and 10 000 predictions.

The results for this first FPGA implementation are presented in Table 6.1. The
parameter values have already been explained above.

With regards to the performance figures, the number of cycles is taken from the
AutoPilot report as this will remain constant after the FPGA implementation. The clock
period and frequencies are taken from the Xilinx tools. The timing report was generated
after the ”Place and Route” step in the design flow. Finally, t (in milliseconds) is the
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Parameters Performance

n 100 period [ns] 4.854
it 10000 freq [MHz] 206.02

# cycles 220001

t [ms] 1.068

Table 6.1: Initial algorithm in hardware - no memory.

time required to process all the prediction results and is calculated by multiplying the
clock period by the number of cycles.

6.3.2 Memory Wrapper

I sought advice as to the importance of introducing a memory subsystem and the likely
effects that this would have on the design. A discussion with Dr. Thomas confirmed
the possibility of significant performance impacts. Therefore, I have included a memory
wrapper in the FPGA implementation stage.

One of the shortcomings when working with the AutoPilot tool is that it does not
synthesise the required memory resources for the user. If we were to define a local array
used only by the function, then the AutoPilot tool would also generate the necessary
memories. Unfortunately, this is not the case with the prediction checking algorithm, as
we are accessing three arrays (market data, predictions and results) which are all external
(as seen in Listing 6.1). In this case, the user must provide an interface to the function by
specifying which types of memory the function is interfacing with (i.e. SPRAM, DPRAM
etc.). Furthermore, the implementation of these resources must also be specified.

To solve this problem, I took the core function being generated by AutoPilot and
wrapped it in a Verilog design containing the required memory resources. This was done
by adapting Dr. Tsoi’s examples of FPGA synthesis using AutoPilot, as I had no exposure
to Verilog prior to my Individual Project. The exact configuration of the RAM used is
”Single-Port RAM With Enable”, as specified by the Xilinx XST documentation [44].

After ensuring that the memory wrapper contained resources for the three data ar-
rays from the core function and these were correctly interfacing with each other, it was
possible to go ahead with the synthesis. To avoid any problems with the optimisation
step removing parts of the design I ensured that the market data and prediction arrays
could be written to by using global input pins. Furthermore, I implemented a switch
which controlled whether the FPGA memory resources were being accessed by the global
input or the core function. Finally, I connected the output of the core function to a global
output.

The results of the synthesis, when taking the memory implementation into account,
are presented in Table 6.2 and underline the importance of using this approach. The final
time to calculate the predictions is considerably longer (by approximately 68%) than the
original implementation.
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Parameters Performance

n 100 period [ns] 8.159
it 10000 freq [MHz] 122.56

# cycles 220001

t [ms] 1.795

Table 6.2: Hardware implementation with memory wrapper.

6.3.3 Loop Unrolling - SPRAM

Following the FPGA implementation of the complete design as described in the previous
sub-section, we can now discuss the resource utilisation on the device. This data is
presented in Table 6.3, specifically in the first row, Unroll factor 1. As seen, the device
utilisation at least in terms of Flip Flops, Look-up Tables and DSP48 slices is very low.

The analysis may not be specifically relevant when considering the Block RAM util-
isation, as a larger market data size or greater prediction array would be able to fill the
memory (indeed, this will be the subject of the evaluation in Chapter 7).

Unroll Cycles [#] DSP48 [%] FF [%] LUT [%]

1 220001 4 1 1
2 120001 2 1 1
4 72501 5 1 1
5 64001 5 1 1
8 53751 3 1 1

10 51001 3 1 1
16 46876 6 1 1
20 45501 4 1 1
25 44801 5 3 1
40 42751 5 4 3
50 42401 7 7 4

100 41201 209 18 7

Table 6.3: Loop unrolling using SPRAM.

The concept of ”loop unrolling”, perhaps more familiar to the field of optimising
compilers, is very applicable when it comes to compiling code for the FPGA. We can
think of a for loop as multiple executions of a single functional unit.

Perhaps it is best to illustrate this with a short example. Let us suppose we want
to add two arrays of length 100. We can solve this problem with a for loop, where each
iteration uses a single adder to sum two array elements and iterates over all elements.
If we ignore for the time being the necessary control logic, in hardware this could be
implemented using the same adder 100 times sequentially. Clearly, this is not the most
optimal solution when we consider performance. Looking at the other extreme, we could
use 100 adders and would then only require one iteration to compute the solution.

The former approach is actually how AutoPilot treats for loops by default. Specifically,
resources required to implement the for loop in hardware are allocated to a single iteration
of the loop and are then re-used during each iteration. The user can provide input to the
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Figure 6.2: Performance of the prediction checking algorithm when using loop unrolling
with Single Port RAM.

compilation stage about how many times the loop should be ”unrolled”. We therefore
have the option of using more resources on the device, with the aim of reducing the
number of clock cycles for the complete computation.

This approach is therefore particularly well suited to the algorithm being considered
as we have already established that the resource utilisation of the device is quite low and
the primary objective is to reduce the time required for the computation.

I ran AutoPilot compilations for various degrees of loop unrolling. The results are
presented in Table 6.3 and Figure 6.2 (no suitable trend-line could be found). Please note
that Single Port RAM has been used in the process. Moreover, apart from unrolling the
loop 100 times, all the other designs are small enough to fit onto the device.

Initially, as the loop unroll factor is increased, we see a sharp decrease in the number
of clock cycles. This is because more predictions can be checked simultaneously by using
the extra resources. Unfortunately, we also see that the returns to unrolling quickly
diminish and after a loop unroll factor of 16, we get very little performance improvement
from extra unrolling.

Although this approach produces good results, I had originally hoped for even better
performance gains. Indeed, it seems that the computation is becoming memory bound
and the additional resources are going to waste. This hypothesis will be explored in
greater depth in the next section.

For now, let us turn our attention to finding the optimal loop unroll factor for the
current scenario. We would like to choose a value that provides a good trade-off between
the number of clock cycles and the resources required. It is important to note, that
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the more complicated designs will likely result in increased clock periods in the finalised
FPGA implementation.

Looking at the data in Table 6.3, a loop unroll factor of 16 seems like a logical choice,
as any further increases in complexity see very minor returns with regards to performance.
It should also be noted, that the loop unroll factors have been chosen, so that they are
divisors of it (i.e. the number of predictions). This ensures that no extra logic needs to
be generated during the AutoPilot compilation phase, to check whether the algorithm
should terminate (in the middle of the unrolled for loop for instance).

Parameters Performance

n 100 period [ns] 9.408
it 10000 freq [MHz] 106.29

# cycles 46876

t [ms] 0.441

Table 6.4: FPGA implementation results for a loop unrolling factor of 16.

The results of the FPGA implementation executed for a loop unrolling factor of 16
are shown in Table 6.4. The number of clock cycles has been reduced by approximately
79% when compared with the original implementation.

This is offset slightly by the increase in the clock period (approx. 15%), which is to
be expected as we have increased the complexity of the design. However, the time to
complete the computation of all the prediction results has been reduced significantly to
0.441ms (by approx. 75%).

6.3.4 Loop Unrolling - DPRAM

In the previous section we dealt only with Single Port RAM and suspected that the
computation is memory bound. To check this hypothesis it is worth considering loop
unrolling in the context of a different memory system.

Dual Port RAM (or DPRAM in short) should improve the performance of the algo-
rithm further, as twice as many market data values and predictions should be readable
during the same clock cycle. Moreover, the BRAM resources on the FPGA device support
Dual Port access [44].

To achieve this, the AutoPilot configuration scripts have been adapted to generate
an interface for Dual Port RAM on all three data arrays of the function. The results of
these compilations are shown in Table 6.5.

By comparing the number of cycles with the implementation from the previous section
using Singe Port RAM (see Table 6.3), we can see that the number of clock cycles has
been further reduced. If we compare the number of cycles when unrolling the loop 40
times (42751 for SPRAM and 27751 for DPRAM), we see an approximately 35% decrease.

An important observation is that this value is close, but not equal to the 50% improve-
ment suggested by using Dual Port RAM. One possible explanation for this behaviour
is that the prediction data array contains three values to be read per iteration, thus the
first two can be read simultaneously, while the third one causes the memory to act as in
the SPRAM case. This problem warrants further investigation and would be dependent
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Unroll Cycles [#] DSP48 [%] FF [%] LUT [%]

1 210001 3 1 1
2 110001 6 1 1
4 60001 6 1 1
8 38751 8 1 1

16 31876 8 1 1
40 27751 14 6 3

Table 6.5: Loop unrolling using DPRAM.

Figure 6.3: Comparison of the prediction checking algorithm when using Single Port vs.
Dual Port RAM.
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on the exact implementation of the unrolled loop. Unfortunately, as this is a machine
generated output I will focus on alternative ways of optimising the code.

For an easy method of comparing the performance of the SPRAM and DPRAM
implementations please refer to Figure 6.3. The data series that have been discussed above
are SPRAM and DPRAM-All and are presented using curved lines to aid comparison.

Please note, that a third data series (DPRAM - Market) has also been introduced.
It represents performance of the system when using DPRAM only for the market data
array and predictably, sits between the two scenarios previously discussed.

Unfortunately, I have not had the time to run a complete FPGA implementation of
the DPRAM scenario, as this would involve heavy modifications to the memory wrapper
Verilog code and extra care to ensure the correct communication with the core func-
tion. Therefore we will explore further optimisation possibilities following the SPRAM
implementation.

In principle, however, there is no reason that the frequency of a Dual Port RAM design
should be lower to that of the SPRAM case. Therefore during FPGA implementation,
we would expect the timing results to be similar to the SPRAM case, hence allowing for
a further 25 - 35% speedup in the total computation time. These figures are based on
the reduction in DPRAM clock cycles when compared with SPRAM for unroll factors of
8 and above.

6.4 Compacting Data

Up until now, we have not directly considered memory utilisation on the device. We are
concerned with the Xilinx FPGA device, XC5VLX330T-FF1738, to be exact.

Number o f DSP48Es 13 out o f 192 6%
Number o f RAMB36 EXPs 64 out o f 324 19%

Number o f S l i c e s 1553 out o f 51840 2%
Number o f S l i c e Reg i s t e r s 3613 out o f 207360 1%

Number used as F l ip Flops 3613

Number o f S l i c e LUTS 4115 out o f 207360 1%
Number o f S l i c e LUT−Fl ip Flop pa i r s 5215 out o f 207360 2%

Listing 6.3: FPGA Place and Route Utilization Summary - SPRAM and loop unrolled
16 times.

The full results for the device utilisation after the FPGA implementation (Place and
Route stage) are presented in Listing 6.3. We will not consider all the results at this stage,
but we turn our attention to the memory utilisation. As observed (entry RAMB36 EXPs),
we are already using close to 20% of the resources available, even for a relatively small
number of predictions to be checked (it = 10 000).

As our memory utilisation is the highest amongst all other components considered,
it makes sense to optimise for it, as a reduction will allow the device to handle larger
market data arrays and/or more predictions. The value of 64 BRAM modules is consistent
with expectations, as memory with sizes equal to powers of two has been allocated, large
enough to fit the underlying data. Therefore, to fit market data (100 times 100 elements),
a memory size of 16K entries times 32bits is required (exchange rates stored as 32bit
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Figure 6.4: Compacting the predictions array.

floats). Since there were 10 000 predictions, a results array of 16K entries was allocated,
each also storing a float, hence 32bits. Finally, we need a predictions array and the size of
this may not be immediately obvious. Since triangular arbitrage concerns three different
currencies, we need to store predictions (10 000 of them) and each of the 3 currencies
(currently stored as 32bit ints) associated with the prediction. This makes 32K entries
of 32bit words. As the BRAM units on the device are configured as 36K [44], we require
a total of 64 units.

We would like to keep the RAM word size the same, that is 32 bits wide, but store
more predictions in this space. The effect will not only be a decrease in the memory
usage of the design, we should also see an increase in speed as a single memory access
will be sufficient to retrieve all the prediction data per iteration.

If we were to use a market data size of 1024, the memory usage would be more
than three times greater than that available on the device (this is not even considering
prediction data or the results). Therefore, a reasonable solution is to limit the maximum
number of currencies that can be stored in our system to 1024, requiring 10 bits.

The arrangement proposed is shown in Figure 6.4. We can assign the ten least signif-
icant bits to the third currency, the further 10 for the second and so on, leaving the first
two bits of the word unused. The advantage of this arrangement is that it is simple to
code (shift operations) and also maps easily to hardware, as we need only to connect the
wires from the 10-bit registers to the appropriate pins.

Parameters Performance

n 100 period [ns] 9.679
it 10000 freq [MHz] 103.32

# cycles 36251

t [ms] 0.351

Table 6.6: FPGA Implementation results when compacting the prediction data array.

As can be seen in Table 6.6, the clock period is only slightly increased (by 0.271ns)
when compared with the results for loop unrolling in the SPRAM case (Table 6.4). Cru-
cially, however, the number of clock cycles has been reduced (by 23%), leading to an
overall reduction in execution time by approximately 20%.

Furthermore, the primary objective of this step was to reduce the memory utilisation
of the design. Crucially, the results obtained during ”Place and Route” confirm this, as
the memory utilisation (Number of RAMB36 EXPs) has been reduced to ”47 out of

324 - 14%” (The full report has been omitted).
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6.5 Result Space Reduction

Following on with the theme of reducing the memory utilisation on the device, we notice
that the results array being used by the algorithm is not the optimal solution.

As it currently stands, the algorithm loops through all the prediction data and stores
the result of each arbitrage calculation in the results array. These would form the basis of
placing a trade, therefore we would need a separate algorithm to loop through the results
and select the best trade. This approach would be quite slow.

However, we can combine these two procedures into a single algorithm. A logical
approach is to limit the number of trades that can be placed during a single execution of
the prediction checking algorithm. This is convenient, since the output of our design
can be fed directly into an Electronic Trading platform, which would place the orders
calculated using our approach.

As the prediction checking algorithm will be running continuously and we are minimis-
ing the latency to the range of milliseconds, it should be acceptable to limit the number
of predictions, that can be sent for execution on the market, to a small number. For the
purpose of this Thesis, we consider a single best prediction and two best predictions.

6.5.1 Single Best Prediction

This is the most straightforward modification, with the aim of finding only the best
arbitrage opportunity from all the predictions iterated over. It also enables us to do
without the results array and represents a considerable memory saving. Furthermore, as
explained above, we do not need a second algorithm to iterate over the predictions to
place an order, so this version of the design could be considered as an initial complete
implementation, since the results could be sent directly to an Electronic Trading platform
for execution.

The necessary modifications to the code are quite simple, as we only need to keep
track of the best arbitrage opportunity. This can be represented by either the maximum
or minimum value depending on whether the exchange rates or their inverses are stored.
This will make no difference to the number of arbitrage opportunities found (as the data
in our case is symmetrical) or the complexity of the computation.

One important observation when implementing this design is that the comparison
variables (i.e. where the running best arbitrage opportunity is stored) should be kept local
to the function and not stored in the Block RAMs. Otherwise the AutoPilot compilation
results are very disappointing, resulting in considerable increases in the number of clock
cycles required.

Parameters Performance

n 100 period [ns] 10.43
it 10000 freq [MHz] 95.88

# cycles 44251

t [ms] 0.462

Table 6.7: FPGA Implementation results when finding the single best arbitrage oppor-
tunity.
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The results for the FPGA implementation are presented in Table 6.7. Initially, the
clock cycle values, when keeping the loop unroll factor at 16, were rather disappointing
(50626 cycles). This is why the factor has been increased to 40 for the above mentioned
synthesis. This has allowed us to keep the total number of clock cycles down to 44251,
without having a significant impact on the resource utilisation of the design (which is
presented in Listing 6.4).

Number o f DSP48Es 14 out o f 192 7%
Number o f RAMB36 EXPs 32 out o f 324 9%

Number o f S l i c e s 2670 out o f 51840 5%
Number o f S l i c e Reg i s t e r s 5682 out o f 207360 2%

Number used as F l ip Flops 5682

Number o f S l i c e LUTS 5452 out o f 207360 2%
Number o f S l i c e LUT−Fl ip Flop pa i r s 8588 out o f 207360 4%

Listing 6.4: FPGA Place and Route Utilization Summary - Single best arbitrage oppor-
tunity, loop unrolled 40 times.

The resource utilisation figures are comparable with the SPRAM Loop unrolling by
factor 16 case (Listing 6.3). Most importantly we observe increases in the number of
LUTs and Flip Flops as well as DSP48E slices. This is to be expected, since we have
increased the complexity of the design. In fulfilment of the objective for this section, the
memory utilisation has been reduced and is now at 9% (32% lower than the Compacting
Data case - Section 6.4).

Returning to the FPGA Implementation results (Table 6.7), we observe that the
clock period has been increased from 9.679 to 10.43, which again can be attributed to
the increase in design complexity, following the introduction of an extra step of finding
the best arbitrage opportunity. Unfortunately, as a result of the increase in the number
of clock cycles, the total time for the execution of the algorithm has increased to 0.462ms
(i.e. by approx. 32% over the unrolled case). This is not ideal, but we have saved
time required for the run of a separate algorithm to find the best arbitrage opportunity.
Moreover, we have managed to decrease the memory utilisation on the device.

6.5.2 Two Best Predictions

A logical extension to the above mentioned model is to increase the number of best
arbitrage opportunities we store. This could be increased to an arbitrary number, but
for the purpose of demonstrating the behaviour, we will stick to the two best values.
The advantage from the implementation point of view, is that the logic to find these
two values can be hard-coded to avoid any optimisation problems which may arise with
AutoPilot.

Although the resource utilisation report for this scenario has been omitted from this
write-up, the utilisation of LUT, Flip Flop and slices increases dramatically, to 9%, 11%
and 12% respectively (compared with 2%, 4% and 5% for the single best case).

Of greater significance, however, is the dramatic increase in the clock period for the
updated design, more than twice the time taken for the single best prediction. Part of
this increase can be attributed to the more complicated design. In fact, the effort during
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Parameters Performance

n 100 period [ns] 22.661
it 10000 freq [MHz] 44.13

# cycles 48002

t [ms] 1.088

Table 6.8: FPGA Implementation - Two best arbitrage opportunities, using loop unrolling
factor 40.

the ”Place and Route” phase of the Xilinx design flow had to be reduced, as even after
24 hours of computation the algorithm was nowhere near producing a finished design. It
should be noted, that the reduced effort still took over 10 hours to complete.

The substantial decrease in performance (as seen in Table 6.8) of this approach means
that we will look towards the single best prediction for the purpose of evaluation. Ideally,
the decreased performance of the two best predictions design should be examined, as
improving the design should be possible. A feasible approach would be to introduce
pipelining, as new arbitrage opportunities can be computed before the output tables (with
the best opportunities) are updated. To reiterate, we would expect the performance of
this approach to deteriorate when compared with the single best value, but not by factors
as significant as shown in this experiment.

Unfortunately, I have not had the time to implement and experiment with these
optimisations, mostly as a result of the dramatically increased time required for the
FPGA Implementation stage. A comparable process for the single best result case takes
in the region of 30 minutes, not taking into account preparation of the design and source
files.

6.5.3 Further Modifications

A particular advantage of the approach we have discussed when only keeping track of
the best arbitrage opportunities, is as follows. It is possible to interrupt the computation
at any time and immediately have a value representing an arbitrage opportunity, which
the system deems to be best at that particular point in time. Of course, there is no
guarantee, that this will be the best value once the algorithm has iterated through all the
predictions. Regardless, it allows a trading system to probe the current maximum value
and act by placing orders, for instance, when a pre-defined threshold has been exceeded.

6.6 Evaluation Preparation

As discussed in the previous section, we will continue our discussion based on the single
best arbitrage opportunity design, as this is substantially faster than the latter approach.
As we are primarily interested in the reduction of latency it is the logical choice.

In preparation for the evaluation, where different market sizes and numbers of predic-
tions will be considered along with the implications of reaching full memory utilisation,
we will consider a slightly revised model. As I have been allocating memory to arrays
using sizes that are powers of two, these will not always be fully occupied. This might
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lead to slightly erratic results, when going from one bounding memory size to the other.
In theory, the unused memory regions are optimised out during the FPGA Implementa-
tion stage, but in my experience this was not always the case. Therefore, I will present
a design which will use all of its allocated memory, hence we shall use market data and
prediction arrays that are powers of two.

A further consideration is the loop unrolling factor. As discussed previously, we wish
to avoid generating extra control logic when the number of loop iterations is not exactly
divisible by this factor. As a result, it is best to choose a value, which is easily divisible by
any number of iterations in the new scheme. Again, the choice is a power of two closest
to the previously used loop unrolling factor of 40.

The process of arriving at the new design has been split into three stages. First, we
look at adjusting the number of iterations of the loop, then increasing the market size
and finally finding the optimal unroll factor.

6.6.1 Adjusting Predictions

The number of iterations (i.e. predictions) has been increased from it = 10 000 in the
previous approach. The exact value of it used is 16 360. This is the closest value below
214 = 16 384, which is also divisible by 40 (the original unroll factor).

Thus modified, AutoPilot reports a clock cycle number of 72 394, which corresponds
to a predictable linear increase (72 394

44 251
≈ 1.636).

6.6.2 Adjusting Market Size

The following step is to increase the market data size, while keeping the number of
predictions at the newly established value as above (16 360). The clock cycle count is
actually decreased by approximately 0.5%, but this is not a significant reduction.

6.6.3 Loop Unrolling

The final step is to once again find the optimal loop unrolling factor. After running
AutoPilot compilations with unroll factors ranging from 1 to 128 (powers of two only),
the results have been plotted in Figure 6.5 (please note, no suitable trend-line could be
fitted to the data). The value 32 has been selected as the optimal, as it still provides
valuable performance increases over the unroll case 16. Please note, that for these runs the
number of iterations (i.e. size of prediction data array) has been changed to 214 = 16 384,
to ensure that it is divisible exactly by all the unroll factors under test.

6.6.4 FPGA Implementation

Now that all the parameters have been established, the final FPGA Implementation can
be carried out. The results are presented in Table 6.9.

We first consider the approximately linear increase in the number of clock cycles
for this implementation (only slightly increased due to the reduction of the loop unroll
factor). More significantly, however, we experience a reduction in the clock period, a
likely consequence of the decrease in loop unrolling. As a result, the time needed to
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Figure 6.5: Finding the optimal unroll factor with allocated memory fully occupied.

Parameters Performance

n 128 period [ns] 9.461
it 16384 freq [MHz] 105.70

# cycles 73729

t [ms] 0.698

Table 6.9: FPGA Implementation for the final configuration. Loop Unrolling factor 32
and all parameters are powers of two.
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compute all the iterations has risen less than the linear increase in the number of clock
cycles and now stands at 0.698ms.

Having explored different algorithm optimisations on the FPGA architecture, we have
reached a final design that will now form the basis of the evaluation in Chapter 7.

6.7 Design Remarks

I would like to take this opportunity to share some remarks regarding the design process
as described in this chapter.

With regards to the FPGA implementation process following the generation of Au-
toPilot output, I feel that this is by far the most error-prone part of the design. As
described earlier, multiple steps are necessary to prepare for the synthesis part using the
Xilinx tools.

I am encouraged by news that Xilinx plan to incorporate AutoPilot into their design
[26] flow. This move has great potential of reducing the amount of time and effort
necessary to get from an algorithm coded in C to a viable hardware implementation on
an FPGA. This could ideally lead developers to explore multiple optimisation options
easily, while getting reliable performance estimates.

When working with AutoPilot, I was slightly disappointed by the increased complexity
when designing algorithms using floating point numbers. I appreciate the increased com-
plexity of Floating Point ALUs, but feel that as more designs are tested and implemented
in hardware, this process could be made easier.

Having used the Xilinx tools mostly from the command line, I cannot comment on
design using the GUI. I will say however, that the sheer amount of configuration options
and the lengthy implementation process split up into multiple stages can be overwhelming
when working with the tools for the first time. Having had previous experience with GPU
architectures, specifically NVidia’s CUDA, I feel that some work could be done to simplify
this design process (possibly by hiding some of the more advanced functionality from
novice users). However, I do appreciate that the FPGA is a more specialised environment.

6.8 Closing Remarks

Although there was not enough time to upload and execute the generated designs on
physical FPGA devices, it must be noted that we have stopped just short of this step in
the Xilinx design flow.

To give readers a feeling for the tangibility of the designs achieved, attached in Fig-
ure 6.6 is a screenshot of how the design would look like once placed on the device. The
output has been generated using the FloorPlan tool (part of Xilinx tools) and shows an
early design of the original algorithm accompanied by the memory wrapper (red, green
and blue areas represent BRAMs allocated to the three arrays of the function).
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Figure 6.6: Implementation of the original algorithm on the Virtex-5 family FPGA.

6.9 Summary

In this chapter we have presented additional background material and information about
AutoPilot, the Xilinx design flow and the implementation procedure used to prepare
designs for the FPGA.

We have looked at the optimisation process carried out on the prediction check-
ing algorithm, taking into account the importance of synthesising the RAM by using a
memory wrapper. This is a more realistic approach, but takes longer to execute than
the original implementation. Moreover, we have shown how loop unrolling can be used
to increase the performance of the design and briefly explored using different types of
RAM (SPRAM and DPRAM).

Attention has also been given to reducing the amount of the FPGA’s BRAM resources
necessary for the execution of the algorithms and we have explored compacting the pre-
dictions array representation, as well as reducing the number of arbitrage calculations
that are stored in the system. Having investigated the performance of Single Best and
Two Best modifications, we observed disappointing results for the latter. Moreover, the
implementation process also took over 10 hours to complete, which supports our decision
to select the Singe Best version.

Finally, we have prepared the FPGA implementation for evaluation (Chapter 7) and
have remarked on the experience from the design process, also showing how the designs
would look like when placed on the physical device.
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Chapter 7

Evaluation

Continuing from detailed descriptions of the individual components, that is arbitrage
detection (Chapter 4), market data prediction (Chapter 5) and prediction check-
ing (Chapter 6), and their specific implementations, we can now concentrate on the
evaluation.

However, before focusing on the performance of the proposed heterogeneous model,
we revisit these components and analyse them from the point of view of varying market
sizes, i.e. different numbers of currencies.

• Evaluation Procedure: We begin with a brief overview of the evaluation proce-
dure for the individual system components.

• Arbitrage Detection: The arbitrage detection algorithms, Trade Size, Threshold
and the Reference CPU Implementation are evaluated against different market sizes.

• Data Prediction: A short description of the performance of the data prediction
algorithm follows, as the accuracy has already been established in Chapter 5.

• Prediction Checking: The FPGA prediction checking component is evaluated
against different market sizes, numbers of predictions and when approaching full
memory utilisation.

• Heterogeneous Model: After extrapolating the required data, the proposed sys-
tem is evaluated as a whole, with both synchronous and asynchronous models being
described. Moreover, we examine issues surrounding scalability, profitability and
latency.

7.1 Evaluation Procedure

Building on the initial evaluation procedure carried out on the accuracy of the data
prediction component (see Chapter 5), I have executed the algorithms we now consider
over a range of generated market data files with varying numbers of currencies. This
is to accomplish the goal of the evaluation, investigating the behaviour under different
market sizes. Throughout this chapter, we will omit the exact results gathered from all
the executions, but where appropriate will present the data in figures instead.
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Figure 7.1: Trade Size Modification - Performance under different Market Sizes

The procedure for the prediction checking algorithm (FPGA implementation) is
different as no market data files are used. However, the effects of varying market size are
still observed and will be discussed in greater depth.

7.2 Arbitrage Detection

Firstly, we recall the arbitrage detection algorithms introduced in Chapter 4. After
considering different implementation directions, three algorithms were selected: Single-
Best, Trade Size and Threshold modifications. We now present their more thorough
evaluation when varying the market size.

7.2.1 Trade Size

Let us begin with the Trade Size modification, which represents a sorted list of the best
predictions available (recall Section 4.4.2). The results are shown in Figure 7.1 and have
been collected for four different values of the Trade Size (i.e. number of best predictions
we consider). Values above and equal to 1024 were selected, as this is where the greatest
degree of variability lies.

In Figure 7.1, the data points for Trade Size values below 16 384 follow cubic trend-
lines. This is to be expected as the sample space for all arbitrage opportunities is cubic
with regards to the number of currencies. Furthermore, it is clear that increasing the
number of predictions has a negative effect on the speed of the algorithm.
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As the market data and the underlying arbitrage detection algorithm have been
kept the same when changing the Trade Size value, this suggests that the overheads we
are seeing (to increasing the trade size) are a result of the increased computation time
spent on sorting the gathered predictions.

The effects become even more pronounced for a trade size of 16 384 (trend-line has
been omitted), as we observe that the performance gap widens very quickly even for
relatively small market data sizes in the region of 200 and above. Therefore it would be
advisable to investigate the performance of alternative sorting algorithms, even though
this was not possible due to time constraints.

Finally, we notice that the data points for the market data size of 512 seem anomalous
and are below what we would have expected. After investigating this, I found the number
of arbitrage opportunities in the generated market data to be the lowest of the runs
used for evaluation. This directly impacts the performance of the algorithm, as only
permutations that are deemed arbitrage opportunities are considered for sorting.

7.2.2 Threshold

Now we recall the alternative approach that eliminates the need for sorting. In the
Threshold case (recall Section 4.4.3), only currency products above a certain threshold
are considered and are stored in a fixed length list. Before presenting the results of this
approach, let us first consider the final algorithm proposed.

7.2.3 Reference CPU Implementation (Max)

The last algorithm we look at is known as the reference CPU implementation (recall
Section 4.4.1), also referred to as the Max algorithm. In this case, only the best arbitrage
opportunity currently encountered is stored.

This approach has been taken to allow a reasonable comparison with the FPGA archi-
tecture, where a comparable algorithm was implemented (i.e. the ”Single Best Predictor”
- Section 6.5.1).

7.2.4 Results

Having briefly recalled the algorithms, let us now compare them under different market
sizes. Results are presented in Figure 7.2.

One of the higher trade size values of 8192 has been selected for comparison with the
Max and Threshold algorithms. Moreover, in the Threshold case we have enough space
to store 16 384 predictions.

We immediately notice that the data points for the Max and Threshold cases are vir-
tually identical (the triangles representing ”Threshold” are plotted on top of the squares
showing ”Max”). This reinforces the good performance of the Threshold algorithm, which
we saw when exploring arbitrage detection.

The ”Threshold” approach does present disadvantages when compared with the sorted
Trade Size implementation, because we cannot be certain that the best arbitrage oppor-
tunities will be captured in the list. Nonetheless, the performance difference between the
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Figure 7.2: Arbitrage Detection Algorithms - Performance under different Market Sizes

algorithms must be considered and an appropriate trade-off reached between execution
time and accuracy.

One final aspect to note, is that even the better performing ”Threshold” algorithm
still follows a cubic trend, which is representative of the complexity of the underlying
arbitrage detection algorithm and its sample space.

7.3 Data Prediction

We now move onto the next system component, the prediction of market data. The
accuracy of data prediction has already been evaluated in Chapter 5 (i.e. how well the
predictor performs when finding arbitrage opportunities under the heterogeneous model).
What we consider now is the execution time of the algorithm under varying market sizes.

Moreover, two alternative approaches were developed for data prediction: mean
and exponentially weighted. Here we will only consider the performance of the more
complicated approach, that is the exponentially weighted solution. Results are given in
Figure 7.3. Please note, that the values for the arbitrage detection algorithm (max)
have also been plotted to aid comparison between the components.

Firstly, we note that the exponential weighted predictor points follow a quadratic line
of best fit, which is representative of the underlying complexity i.e. we must iterate over
all the market data which is squared in respect to the number of currencies. This is one
degree less than for the arbitrage detection case already explained and can be seen in the
Figure 7.3 as the increasing performance gap when the market size is increased.

68



Figure 7.3: Exponentially Weighted Predictor - Performance under different Market Sizes

7.4 Prediction Checking

Before reasoning about the heterogeneous model, we consider the last individual compo-
nent, the prediction checking implementation in hardware, on the FPGA.

As a reminder, this portion of the system is responsible for checking predictions,
which were generated by the modelling component, to establish whether these form viable
arbitrage opportunities. In Chapter 6, we covered the optimisation process and concluded
with a design that should be well suited for the purpose of this evaluation.

Continuing the evaluation procedure presented for the previous two system compo-
nents, we consider the effect of changing the market data size. However, extra attention
must also be given to the effect of changing the number of predictions fed into the sys-
tem, directly influencing the number of iterations (of the prediction checking algorithm)
required.

Moreover, I would like to establish the performance of the system as the design ap-
proaches full device utilisation. As we have established the memory to be the limiting
factor, this will form the basis of the analysis carried out.

7.4.1 Evaluation Runs

In Chapter 6, it was noted that keeping market size (n) and the number of predictions (it)
as powers of two would be an optimal approach. Possible evaluation run configurations
for the FPGA are shown in Table 7.1, representing firstly the number of predictions as a
percentage of all the currency permutations (Pred %).

Moreover, the RAM sizes necessary have been calculated for both the market data
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(M-RAM) and prediction data (P-RAM). Please note that the compact representation
for prediction data has been used, so we only need 32bits for all three currencies that form
an entry in the predictions memory. Moreover we are using 32bit floats for the market
data. This ensures that both values fit within the Block-RAM resources, specifically the
36Kb blocks.

The device selected for these evaluation runs is the Xilinx XC5VLX330T (Virtex-5
family) and supports a maximum of 324 Block RAMs (of the 36Kb type) [44]. Therefore
the RAM sizes noted in Table 7.1 are given in terms of Block RAMs required.

The ”Total RAM” required is simply the sum of the market and prediction RAMs
and enables us to calculate the expected utilisation of RAM resources on the device,
considering the maximum number of available BRAMs being 324.

conf n it Pred % M-RAM P-RAM Total RAM Util [%]

1 32 16384 55.05 1 16 17 5.25
2 32 32768 110.11 1 32 33 10.19
3 64 8192 3.28 4 8 12 3.70
4 64 16384 6.55 4 16 20 6.17
5 64 32768 13.11 4 32 36 11.11
6 64 65536 26.22 4 64 68 20.99
7 64 131072 52.43 4 128 132 40.74
8 64 262144 104.86 4 256 260 80.25
9 128 16384 0.80 16 16 32 9.88

10 128 32768 1.60 16 32 48 14.81
11 128 65536 3.20 16 64 80 24.69
12 128 131072 6.40 16 128 144 44.44
13 128 262144 12.80 16 256 272 83.95
14 128 524288 25.60 16 512 528 162.96
15 256 16384 0.10 64 16 80 24.69
16 256 32768 0.20 64 32 96 29.63
17 256 65536 0.40 64 64 128 39.51
18 256 131072 0.79 64 128 192 59.26
19 256 262144 1.58 64 256 320 98.77
20 256 524288 3.16 64 512 576 177.78
21 512 16384 0.01 256 16 272 83.95
22 512 32768 0.02 256 32 288 88.89
23 512 65536 0.05 256 64 320 98.77
24 512 131072 0.10 256 128 384 118.52
25 1024 0 0.00 1024 0 1024 316.05

Table 7.1: FPGA - Evaluation run configurations showing expected memory utilisation
on the Xilinx XC5VLX330T device.

The various run configurations represent different market sizes (n) and numbers of
predictions (it) giving an indication of the expected device utilisation. Configurations
from this list will be selected during the evaluation of the FPGA implementation.

Let me mention again the reason for not using a greater number of data points for the
purpose of the evaluation. This is a direct result of the time required to produce accurate
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Figure 7.4: FPGA Implementation - Clock Period - adjusting the number of currencies.

FPGA implementation results, following modifications to the source code in AutoPilot.

7.4.2 Market Data Size

The first approach, mirroring the method for evaluating the CPU implementations is to
adjust the market data size, while keeping the number of predictions constant at 16 384.

Values used for market size range from 32 to 512 (all powers of two). No smaller
values have been considered, as having a market with 16 currencies is too small to be
considered relevant. Moreover, taking 16 384 predictions is more than 4 times the number
of all currency permutations possible for this market size. Finally, a market size of 1024
could not be considered as even without any prediction data, this would not fit on the
device (see Table 7.1, run config 25).

n 32 64 128 256 512

period [ns] 9.094 9.755 9.461 11.191 13.303
freq [MHz] 109.96 102.51 105.70 89.36 75.17

# cycles 73729 73729 73729 73729 73729

t [ms] 0.670 0.719 0.698 0.825 0.981

Table 7.2: FPGA Implementation timing results - keeping iterations constant at 16 384
and adjusting the market data size.

The timing results for this evaluation run are presented in Table 7.2 and Figure 7.4
(only Clock Period). Starting with the more obvious analysis, that is the number of
cycles, we observe that these stay constant for different number of currencies. This is to
be expected, as it is the number of predictions that governs the number of iterations the
algorithm needs to execute.

Much more interesting is the pattern the clock period follows for the above data. If
we look at the three rightmost points (Figure 7.4), these form a clear trend. The greater
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Figure 7.5: FPGA Implementation - Clock Cycles - adjusting the number of predictions.

the market size, hence greater memory utilisation (run configurations 9, 15 and 21 in
Table 7.1), the longer the clock period. This effect can likely be attributed to assembling
larger memories from the BRAM resources on chip. As these resources are limited, far
away regions of the chip must be connected, resulting in greater delays.

Unfortunately, results for market size of 32 and 64 appear to be anomalous, as they
do not follow the expected trend. Some reasons for this will be explored in the following
section.

7.4.3 Prediction Data Size

Now we shall keep the size of the market data constant (at n = 128) and adjust the
number of predictions which will be checked.

log2 (it) 12 13 14 15 16 17 18

it 4096 8192 16384 32768 65536 131072 262144

period [ns] 10.545 10.301 9.461 9.937 10.434 11.265 12.425
freq [MHz] 94.83 97.08 105.70 100.63 95.84 88.77 80.48

# cycles 18433 36865 73729 147457 294913 589825 1179649

t [ms] 0.194 0.380 0.698 1.465 3.077 6.644 14.657

Table 7.3: FPGA Implementation timing results - keeping n constant at 128 and adjusting
the number of predictions.

Results for this procedure are given in Table 7.3. The number of iterations has
been doubled for each consecutive data point starting with 212 = 4 096 and finishing at
218 = 262 144.

In Figure 7.5, as well as from the data just presented, we observe the relationship
between the prediction count and the clock cycles to be linear. This was to be expected,
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Figure 7.6: FPGA Implementation - Clock Period - adjusting the number of predictions.

as increasing the prediction size is directly proportional to the number of iterations of
the algorithm. Moreover, the data (and equation of the trend-line) indicate we require
4.5 clock cycles to compute one prediction.

Having established this relationship, we now concentrate on the clock period for the
design. This has been graphed in Figure 7.6. Taking, for the time being, log values of 14
and above, once again these points follow an expected trend, associating the progressively
larger memory utilisation (run configurations 9 to 13 in Table 7.1) with an increase in
the clock period.

Unfortunately, this cannot account for the prediction sizes of 4096 and 8192 (log values
12 and 13 respectively). According to the above reasoning, we would logically expect
these to follow the previous pattern and decrease. We also noted similar behaviour when
adjusting the market size, so there at least seems to be consistency in this respect.

There could be various reasons for this behaviour and I present a few hypotheses.
One possibility is optimising behaviour of the Xilinx tools used (map and place and
route), which might be generating sub-optimal output for very low device utilisation.
Furthermore, we also notice that where the clock periods are at a minimum, the BRAM
resources required for market data and predictions are equal. Moreover, It could be the
case that the optimisation carried out in Chapter 6 have led to a local maximum for best
performance. This could be checked by carrying out a similar procedure for these smaller
memories.

Even with these anomalies, if we were to plot the time necessary to execute the
algorithm (taking both clock period and the number of cycles), the linearly behaving
clock cycle trend would be the predominant factor.

7.4.4 Maximum Memory Utilisation

The last stage of the evaluation process for the FPGA is to determine the behaviour of
the design when the memory utilisation approaches 100%. Market data sizes of 64, 128,
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256 and 512 have been selected for this process, as other sizes (i.e. 16, 32, 1024) would
either not allow for close to full utilisation of the memory or simply would not fit on the
device (see Table 7.1 for clarification - run configurations proposed are 8, 13, 19 and 23).

Placement and Routing of the 64 and 128 market sizes posed little challenge as these
designs have memory utilisation in the region of 80% - 85% . This was not the case
for a market size of 256, where the process would fail with errors suggesting insufficient
resources on the device, despite Block RAM utilisation being approximately 98% (as
predicted). Errors during place and route indicated problems with the cascade, suggesting
that the BRAM modules could not be connected. The solution suggested by the tools
was to try an alternative placement algorithm, but this did not solve the problem. As
an alternative solution, I had to reduce the number of prediction iterations to 250 016 to
allow completion.

Finally, the process for the memory size of 512 was equally troublesome. I tried the
approach of reducing the number of currencies, but this did not provide compilable results
until a reduction to 450. This design was also characterised by a much increased clock
period of above 18ns, reinforcing the decision to investigate parameters with values of
powers of two. However, a workable solution was reached by reducing the number of
predictions to 49 152 (half way between the initial attempt and the prediction count for
the lower step of 215 = 32 768).

mem util [%] 80.25 83.95 98.77 88.89 98.77

n 64 128 256 512 512
it 262144 262144 250016 32768 49152

period [ns] 13.707 12.425 12.436 12.991 14.886
freq [MHz] 72.96 80.48 80.41 76.98 67.18

# cycles 1179649 1179649 1125073 147457 221185

t [ms] 16.169 14.657 13.991 1.916 3.293

Table 7.4: FPGA Implementation timing results - approaching full memory utilisation.

The results for the runs which successfully completed the ”Place and Route” stage are
given in Table 7.4, with the memory utilisation values taken from the ”Map” stage. The
clock period is consistently high for these designs and likely attributed to the increased
distances between the connected BRAM modules. Furthermore, experience from the
implementation stage suggests that memory utilisation values of above 95% should be
avoided, as it may not be possible to place them on the FPGA device.

7.4.5 Final FPGA Remarks

I now present a few points to quickly summarise the evaluation of the hardware imple-
mentation.

Taking the approach of using powers of two for the market and prediction array sizes
has been beneficial and allowed easier prediction of the memory resources necessary.
However, more experimentation would be necessary to evaluate the precise implications,
especially on performance, of using alternative size arrangements.
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The data consistently shows a linear relationship between clock cycles and the number
of predictions checked. This is an important property, as the algorithm can be tuned easily
by adjusting the number of predictions to suit needs, with the effect on performance easy
to foresee.

Care should be taken when selecting the market data size for the design. The safest
approach would be to re-run the attempted optimisations from Chapter 6 to ensure best
performance results for the desired size. However, we must remember that the number
of currencies would be changed less frequently than the number of predictions (that can
be used for tuning), presenting less of a disadvantage.

Finally, further optimisations to the design could be explored, with pipelining offering
the possibility of further improvements, especially in cases where we experienced large
clock periods.

7.5 Heterogeneous Model

Having analysed the individual components, we can now turn our attention to the eval-
uation of the proposed heterogeneous model as a whole.

There are three ways in which we will approach this evaluation, each one considered in
the following sections. Firstly, we compare the performance of the individual components
and assess their behaviour in a synchronous or asynchronous model. Secondly, we look
at the latency of the proposed system by comparing the prediction checking algorithm
on the FPGA with a reference CPU implementation. Finally, we comment as to the
profitability of the heterogeneous model.

Before we are in a position to carry out this evaluation, we must prepare the necessary
data through the process of extrapolation.

7.5.1 Assumptions

One more consideration centres around how market data is supplied to the system. As
explained in Chapter 3, the data is fed directly into both the CPU and FPGA components.
Here we make the assumption that the time necessary for the data to be updated in
memory is the same for both architectures. In other words, we evaluate the system from
the point in time at which the latest market data is already available in memory.

7.5.2 Procedure

We now briefly consider the evaluation procedure. I propose to carry out comparisons
on a range of market data sizes. Each one has associated with it a specific number of
currency permutations, n(n − 1)(n − 2) to be exact, referred to as the sample space.
The percentage of predictions used in the runs will be kept constant at approximately
0.8% in order to allow for fair comparison between the different numbers of currencies.

Table 7.5 presents the configuration runs with the number of predictions chosen in
order to keep an approximately constant percentage of all permutations.
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n 32 64 128 256 512

permutations 29760 249984 2048256 16581120 133432320
predictions 256 2048 16384 131072 1048576

% 0.86 0.82 0.80 0.79 0.79

Table 7.5: Heterogeneous Model - Evaluation Runs.

7.5.3 Arbitrage Detection Extrapolation

Unfortunately, the evaluation procedure for arbitrage detection did not contain all the
results necessary for our runs. We therefore extrapolate the required values. We also note
that the arbitrage detection implementation chosen is the ”Threshold” algorithm, as
it offered better performance when compared with the sorted approach.

The initial results have been taken from the evaluation of the arbitrage detection
algorithms (see Section 7.2.4 and Figure 7.2). Moreover, values from the arbitrage
detection implementation (see Chapter 4) have been used, specifically Figure 4.4 with
an arbitrage limit of 0.9.

We observed a constant performance for the ”Threshold” algorithm for values below
16 384 predictions. A trend-line was fitted to the points above this value and points
extrapolated as a percentage change above the baseline performance of the 16 384 case.
This is presented in the row ”correction” in Table 7.6.

n 32 64 128 256 512

t [ms] 0.31 1.37 7.09 43.33 325.80
correction [%] 0 0 0 3.75 37.78

detection [ms] 0.31 1.37 7.09 44.95 448.87

Table 7.6: Arbitrage Detection - extrapolated data.

Please note that no correction is necessary for the market data size of 128, as we
are using the original data point. Furthermore, as we observed the performance of the
”Threshold” algorithm to have a baseline for values below 16 384 (i.e. no performance
change for smaller values), no corrections need to be made for the two smallest market
data sizes.

After applying the correction to the original data, we obtain performance (timing)
results for arbitrage detection which correspond to the run configurations selected.

7.5.4 Prediction Checking Extrapolation

We need to apply a similar procedure to obtain prediction checking (i.e. FPGA im-
plementation) data.

The original values have been sourced from Table 7.2 and are presented with modifi-
cations in Table 7.7. The numbers in bold have been extrapolated.

ClockCycles = 4.5× Predictions+ 1 (7.1)
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n 32 64 128 256 512

period [ns] 9.094 9.755 9.461 12.436 14.886
freq [MHz] 109.96 102.51 105.70 80.41 67.18

# cycles 1153 9217 73729 589825 4718593

t [ms] 0.010 0.090 0.698 7.335 70.241

Table 7.7: Prediction Checking - extrapolated data.

We have already determined there is a linear relationship between the number of pre-
dictions and clock cycles (recall Figure 7.5). As a matter of fact, this can be represented
by Equation 7.1, which has been used to extrapolate the number of clock cycles. We note
that all the gathered FPGA implementation results followed this formula closely.

As we were either decreasing or keeping constant the number of predictions, the clock
periods for market sizes 32, 64 and 128 have been left the same. For data points 256 and
512, they were updated to the largest values seen, observed during the maximum memory
utilisation evaluation (see Table 7.4). If we recall this evaluation run, the maximum
number of predictions that could fit on the device with a market data size of 512 was
49 152. Therefore, we observe that the evaluation run for n = 512 would not fit on the
device.

What we would need to do, is either split the prediction checking across multiple
FPGAs (22 to be exact) or connect an external RAM to the device. In the former case,
were we to use the FPGA devices in sequence for iterating through all the predictions,
we could expect performance of the degree that has been extrapolated.

7.5.5 Synchronous Model

Having evaluated the individual components and collected all the necessary data, we can
finally discuss the performance of the heterogeneous model. A possible approach would
be to define a synchronous system.

Looking back at the individual components, we can execute the data prediction
algorithm, which will be followed by arbitrage detection. At this point, we must
transfer the predictions array to the FPGA, where prediction checking will be carried
out.

When defining a synchronous model, we would execute all the components except
prediction checking in sequence, with the summed execution time representative of
how frequently we can execute a complete re-computation of arbitrage opportunities. We
can think of this as the time required to prepare all the necessary data for the on-line
FPGA component to begin execution.

The results for the individual components are summarised in Table 7.8. The first two
rows contain data from the data prediction and arbitrage detection algorithms. The
time to transfer the predictions from the CPU to FPGA has also been computed (transfer
time). Since every prediction entry can be packed into a 32bit word, we know the size
of the predictions array and can estimate the transfer time. A bandwidth of 1000Mb/s
has been assumed and corresponds to the speed of the network interface present on the
device [44].
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n 32 64 128 256 512

prediction [ms] 0.24 0.98 3.90 15.56 62.35
detection [ms] 0.31 1.37 7.09 44.95 448.87

transfer [ms] 0.008 0.066 0.524 4.194 33.554

total [ms] 0.56 2.42 11.51 64.71 544.78

Table 7.8: Heterogeneous Model - Sum of components’ execution times.

Figure 7.7: Heterogeneous model - comparing the performance of system components.
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The results are shown in Figure 7.7 (please note both x and y axis use logarithmic
scale). Immediately, we observe that the arbitrage detection algorithm takes longest to
execute, with the value increasing quicker than the prediction portion of the model (with
increased market size). This is the case, as the sample space for arbitrage detection is
cubic, whereas for data prediction we iterate through the market data array, which is
squared with respect to the number of currencies.

Moreover, the transfer time is originally marginal compared with the two algorithms,
but becomes more pronounced as the market size increases, approaching the execution
time of the data prediction algorithm. It would be worthwhile therefore, to consider
optimisations possible for the transfer of data to the FPGA. Apart from looking at faster
transfer (i.e. different IO, PCI Express) we might optimise the process by starting the
prediction checking before all predictions have been transferred to the FPGA. This would
reduce the amount of time the FPGA needs to wait before beginning to process new
predictions and is possible, as the nature of access to the predictions array is inherently
sequential.

Furthermore, we see that the total time necessary to prepare the predictions for
execution (Table 7.8) increases sharply, especially when increasing the market size from
256 to 512. If we were to use the synchronous model, this would limit the frequency at
which we could execute a complete re-computation (see Table 7.9). Whereas for a market
size of 128, we could handle market updates 86 times a second, this is reduced to below
2 for a size of 512. The assumption here is, that upon receiving market data we always
execute a complete re-computation and afterwards run prediction checking on the FPGA.

Unfortunately, I have not been able to find data for the frequency of market ticks in
the foreign exchange market, or what an arbitrage detection system would need to cope
with. However, as we consider larger market size, clearly we would expect there to be
more activity. This necessitates more frequent updates, hence the performance of the
synchronous model scales very poorly.

n 32 64 128 256 512

model total [ms] 0.56 2.42 11.51 64.71 544.78
synch. freq. [1/s] 1776.86 413.99 86.87 15.45 1.84

fpga [ms] 0.01 0.09 0.70 7.34 70.24
checks till update 53.67 26.87 16.50 8.82 7.76

Table 7.9: Synchronous vs. Asynchronous Model.

7.5.6 Asynchronous Model

Thankfully, we are not restricted to running our system components in this synchronous
”lock step”. We now present a model for asynchronous interaction.

The idea is, we do not completely recompute the predictions after every market tick.
Instead, the same predictions are checked against live data multiple times. These are only
updated when there has been sufficient time to recompute. Table 7.9 presents how many
live prediction checks can be executed on the FPGA, before new updated prediction data
is ready (row ”checks till update”).
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With this approach, we can now handle market data updates as frequently as the
time it takes to execute the prediction checking algorithm on the FPGA. In the case
of a market size of 256, this would be approximately 7.34ms. If we need to react to
market data updates that come in more frequently than this, we might need to reduce
the number of predictions that are checked on the FPGA or think about splitting the
computation onto multiple FPGA devices. This could be accomplished by dividing the
predictions amongst all the FPGAs and concurrently executing the prediction checking
algorithm on the devices. There would be an extra overhead of comparing for the best
arbitrage opportunities between the FPGAs, but we would expect this to be offset by
the increase in performance. We must also note, that all devices would need to store the
same market data, as we cannot foresee which currencies will form a prediction. However,
it is feasible to develop more complicated methods of splitting the computation so that
certain currency market data and predictions are associated with a particular device.

Furthermore, the performance of the asynchronous model is closely related to the
accuracy of the data prediction. The component would likely need to be tuned to provide
predictions which span multiple market data ticks.

7.5.7 Latency

We noted that in the asynchronous case, the latency of the heterogeneous model can be
taken as the execution time of the prediction checking algorithm on the FPGA. We
now evaluate the latency of the proposed heterogeneous model, by comparing with an
optimised reference CPU implementation.

For this purpose, we use data from the evaluation of the reference CPU Implemen-
tation (see Section 7.2.3 and Figure 7.2). Table 7.10 compares this with the results of
the prediction checking algorithm running on the FPGA. The results have also been
plotted in Figure 7.8.

n 32 64 128 256 512

detection (max) [ms] 0.29 1.38 7.23 43.84 326.75
pred. checking (fpga) [ms] 0.01 0.09 0.70 7.34 70.24

reduction [%] 96.33 93.46 90.35 83.27 78.50

Table 7.10: Heterogeneous Model - Reduction in Latency.

The heterogeneous model exhibits a substantial reduction in latency, ranging from
approximately 90% for the case of 128 currencies to 78.5% for a market size of 512.
Latency is a critical part of the evaluation, as without achieving speedup in this respect
a model cannot possibly solve the problem of arbitrage (i.e. be the first one to fill
the order). Thankfully, as is the case with the proposed heterogeneous approach, a
considerable reduction has been achieved.

Furthermore, we observe that the performance gap between the FPGA and reference
CPU implementation narrows as the market size is increased. Nevertheless, this still
stands at 78.5% for 512 currencies.

It is also important to consider the current number of currencies. The list from
”XE.com” [41] shows 168 different currencies (ignoring expired ones). Furthermore, we
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Figure 7.8: Heterogeneous Model - Reduction in latency.

note that the proposed model performs well in the region of 128 to 256 currencies and
the implementation can also fit onto a single FPGA device.

The reduction in latency has been achieved by using the heterogeneous model, specif-
ically decreasing the sample space by creating a list of predictions. The second con-
tributing factor, is that these predictions are checked against live data using an FPGA
architecture, which is well suited to minimising response time.

7.5.8 Profit

Establishing latency reduction is not enough to show the profitability of the proposed
system. Here the predictor performance as well as market characteristics would need to
be taken into account.

Regrettably, I have not been able to evaluate the exact profit that the proposed
heterogeneous system could deliver. This is partly due to the underlying characteristics
of arbitrage, where the first person to execute the transaction gains all the profit (i.e.
winner takes all). The next person to execute will in the best case make no profit at
all, but could also take a loss. The difficulty lies with not having access to real market
data and not being able to assess where this cut-of point lies. If I were to come up with
a model for this behaviour, I feel that it would be too simplistic for the purpose of a
thorough evaluation.

In addition, we must also recall that the data available for this project has been ran-
domly generated, which provides a challenge to assessing the profitability of the system.
Given more time and access to real market data, a more thorough evaluation of the prof-
itability could be conducted. However, due to costs charged for the use of live market
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data, I appreciate that this may not be possible in an academic setting. Therefore, an
alternative solution would be to carefully develop a model for the behaviour of the foreign
exchange market in low latency (high frequency) environments. The profitability of the
proposed system could then be evaluated against this model.

However, I would not like to leave the reader without providing at least an estimate
of the expected profitability of the system. We turn to a study on low latency interaction
in the Equities space, where trading systems are responding to market activity within
2-3ms [9] and apply the data to Foreign Exchange.

We would expect that, as the response time increases, there will be a sharp drop-off
in the probability of executing an arbitrage trade. We might fit a model to this market,
extrapolated from our considerations of ”Exponential Smoothing”.

Probability Of Execution = (
1

2
)time (7.2)

Equation 7.2 estimates the probability of execution, based on the time (in millisec-
onds) elapsed since the arbitrage opportunity arose. Therefore, at the initial time step
one would expect to gather all the profit and the chance of successful execution decreases
exponentially, the longer we wait.

Now we take the average response time of 2.5ms and a 70% reduction in latency
(the lowest value from our evaluation was 78.5%, for a market size of 512). If we apply
these figures to the model suggested (in Equation 7.2), we would expect an increase in
the execution probability of approximately 3.25 times (1.62 times for 30% reduction in
latency).

The final step is to consider these values in the context of arbitrage. As already
noted, the ”TABB Group estimates that annual aggregate profits of low-latency arbitrage
strategies exceed $21 billion, spread out among the few hundred firms that deploy them”
[23]. Even if we estimate the market participants at 700, this means that an average firm
would expect to profit in the region of $30 million. We should also give a generous figure
for the development costs necessary to implement the heterogeneous system, at 20% of
the average profit.

Taking this information into consideration, we would expect an increase in revenue of
$61.5 million when reducing latency by 70%, ($12.6 million for 30% latency reduction). To
clarify, these figures are given for a firm, representative of the average market participant.

7.5.9 Final Remarks

Using the heterogeneous model as a starting point, there are multiple refinements that
could be made. One might consider an interruptible asynchronous solution, where the
prediction checking algorithm may, when its performance deteriorates, interrupt the
prediction and detection components and request updated (or at least partial) predictions.

Although the results show a reduction in latency, we might deem the comparison
between the CPU and FPGA architectures to favour the former. The processor used for
benchmarking is part of the latest Intel micro-architecture and is based on a 32nm process
[25]. The Xilinx FPGA on the other hand is part of the 65nm Virtex-5 family, representing
an older design [44]. A fairer comparison would use the latest FPGA architecture, that
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is the Virtex-7 (28nm) [43], and we would expect the performance gap between the CPU
and FPGA to increase.

We observed with the FPGA implementation, that the on board-memory becomes
constrained for a market size of 512. This problem could be solved by using devices with
more BRAM resources, such as the XC5VSX240T. Containing 516 36Kb Block-RAMs
[44], this would handle approximately five times more predictions than in our current
case. However, following Moore’s Law, the latest devices also come with more memory
(up to 85Mb on the Xilinx Virtex-7 [43]).

Furthermore, we observed that the performance of the system does not scale well for
larger market sizes. Considering the algorithms developed, this is understandable, as the
sample space is cubic with regards to the number of currencies. The reason lies partly
with our assumption that all possible currency pairs are tradable. This has had the effect
of increasing the number of currency permutations we look for, as in the foreign exchange
market not all currency pairs are listed as exchange rates (i.e. not all currencies can be
exchanged using one trade). Changes in this respect would allow us to speed up the
computation, but the underlying trend of considerably increased complexity for greater
market sizes should still hold.

We must also remember, that the algorithms can be adapted to search for arbitrage
opportunities in markets other than foreign exchange. As the number of traded products
increases and the trades are executed more frequently, this makes the problem of a com-
plete re-computation progressively harder considering the cubic order of the proposed
algorithms.

In order to solve this problem, we would need to look towards more complicated
arbitrage detection algorithms. An opportunity for reducing the sample space we
consider during each re-computation, is to search for arbitrage only in the currencies
(products) that have been traded (updated) since the last execution took place.

It is possible to extend the arbitrage problem, so that we search for opportunities
concerning four products [36], that is one dimension higher than we have considered in
the course of the project. When adapted to deal with this increased complexity, the
original detection algorithm would become O(n4). In this scenario it would be especially
important to look towards an alternative approach.

Finally, we must also remember, that the quality of the data prediction will likely
have a profound effect on the performance of the entire system, affecting the profitability
of the heterogeneous model. To remind the reader, it is assumed that experts in quanti-
tative finance would have access to such predictors and could then integrate their data
prediction algorithms into the proposed heterogeneous system, giving a better idea of
the profitability. As such, the core consideration for the Individual Project is a reduction
in latency, which has been achieved and is substantiated in our evaluation.

7.6 Summary

In this chapter we have presented an evaluation of the heterogeneous model, which has
been proposed for detecting triangular arbitrage. We proceeded primarily by evaluating
the impact of changing the market size (i.e. number of currencies). Initially we revisited
the individual system components to assess their performance under different market
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sizes, before continuing with the discussion on the heterogeneous model.
For arbitrage detection, we compared the performance of the Trade Size, Threshold

and Reference CPU Implementation and selected the Threshold modification for further
investigation, as it provided reduced execution times over the Trade Size approach.

Next, we briefly discussed the performance of the data prediction algorithm under
varying numbers of currencies, as the prediction accuracy had already been covered in
detail in Chapter 5.

Moreover, we looked at the prediction checking FPGA component and evaluated it
against different market sizes, while also considering the number of predictions. We found
a clear relationship between the number of clock cycles for the design and the amount of
predictions processed, providing a simple and predictable way of tuning the performance
of the algorithm. Additionally, we explored the effects of approaching full memory utili-
sation, which resulted in a longer clock period. We also noted that the maximum market
size than can fit on the considered Virtex-5 family device is 512 currencies, albeit with a
rather low number of predictions (i.e. 49 152).

After extrapolating the required results, we began the evaluation of the heterogeneous
model as a whole. We first discussed the performance of the model under a synchronous
scenario and found that it scales very poorly for larger market sizes. We also presented a
modified asynchronous approach which performed better in this regard, but relied on
reusing the same predictions over multiple executions.

Furthermore, we showed that when compared with a reference CPU implementation,
the heterogeneous model provides a reduction in latency in the range of 83% - 90%
for market sizes of 256 and 128 currencies. This is a critical characteristic for a system
dealing with arbitrage, as only the first system (person) to execute a trade can profit.

Additionally, we discussed how the profitability of the heterogeneous model could be
evaluated and reasons for not being able to complete this step for the purpose of the
project.

Finally, we ended our investigation of the heterogeneous model by concluding that
alternative arbitrage detection algorithms would need to be developed in order to
reduce the sample space under consideration and improve the scalability of the system
under increased market size or arbitrage of greater degrees (i.e. trading of four products).
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Chapter 8

Conclusions and Future Work

In this thesis I have presented a heterogeneous model for the detection of triangular arbi-
trage and shown how the collaboration between financial modelling and on-line systems
can be accomplished. The approach taken was to separate the problem into arbitrage
detection, data prediction and prediction checking.

I developed arbitrage detection algorithms and proceeded to optimise their implemen-
tations on the CPU architecture. This was done to ensure fair comparison with other
system components. Furthermore, I introduced two market data prediction approaches
and found them to perform at above 80% of the perfect predictor accuracy.

Together, the arbitrage detection and data prediction components formed the basis
of a modelling system and were responsible for generating predictions to be sent to the
FPGA. These recommendations were then processed by the prediction checking algo-
rithm, representative of the on-line system, as the predictions would be evaluated against
live market data.

Furthermore, I explained the heterogeneous model and how it could be formed from
the individual components. Additionally, I provided considerations as to the operation
under both synchronous and asynchronous scenarios and proceeded to evaluate the system
under varying market sizes.

8.1 Conclusions

I will now give the most important conclusions that can be drawn from my work, focus
on the results which have been delivered and discuss limitations.

On the subject of arbitrage detection, the recursive formulation of the algorithm
should be avoided, not only on the basis of performance, but also, because the optimised
version improves portability of the code for other architectures. I attempted to implement
the algorithms on a GPU, but could not draw any benefits from this transition, conclud-
ing that as presented, the arbitrage detection algorithm is best suited to execution on
the CPU. Moreover, it appears that multi-threading does not provide any performance
advantages for the algorithm.

I evaluated different approaches to gathering the predictions and found that the
”Threshold” modification performs just as well as the reference CPU implementation.
The alternative sorted approach, ”Trade Size”, scales poorly for larger numbers of pre-
dictions. However, its advantage is the guarantee that we get the best predictions out of
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all the possible currency permutations. Therefore, a trade-off can be observed between
execution time and prediction quality with the performance advantages of the ”Thresh-
old” version being favoured for a low-latency system.

Regardless of which modification is chosen (for storing/sorting the predictions), the
underlying arbitrage detection algorithm still scales poorly with increased market size
and is O(n3) with respect to the number of currencies, representative of the underlying
sample space. As market size or arbitrage degree increase, alternative arbitrage detection
algorithms should be considered in order to improve scalability.

I examined two data prediction approaches and found that under the arbitrage
detection scenario, predictor accuracy is not solely related to how closely the market
data is modelled. Based on results from the square difference calculation, I conclude that
the detection of patterns leading to arbitrage opportunities should also be considered
when developing a refined version of the predictor.

The implementation results of the prediction checking algorithms (FPGA architec-
ture) establish the importance of including memory resources in the optimisation process.
Additionally, performance of the design can be improved by loop unrolling and utilising
Dual-Port RAM.

I found a clear relationship between the amount of predictions and the number of
clock cycles required to execute prediction checking in hardware. This is an important
realisation as it allows for simple tuning of the heterogeneous model. The fundamental
advantage lies in the predictable effect on performance.

Upon evaluating the heterogeneous model, I found the performance of the synchronous
approach to scale poorly with increased market size, directly impacting the frequency at
which a full re-computation can be calculated. However, I noted that performance can
be improved when utilising an asynchronous model, but this comes at a cost of re-using
the predictions over multiple market ticks, which can reduce their effectiveness.

Fulfilling the main objective of this thesis, I showed that the heterogeneous system
provides a considerable reduction in latency, ranging from 83% to 90% for market sizes
of 256 and 128. This was achieved not only by the introduction of the modelling and
on-line components, but also by implementing the prediction checking on the FPGA.

One of the observations made during the project is the increased development time
necessary for FPGA designs, even when the underlying source-code is relatively simple.
However, I am encouraged by the prospect of the integration of AutoPilot into the Xilinx
tools, which has the potential of reducing the effort required. I understand that the
performance increases will only be as good as the intelligence of the optimisations carried
out by AutoPilot and will in all likelihood not surpass efforts of experienced hardware
engineers. Nevertheless, what must be considered is the trade-off between development
time and outright speed.

Regrettably, the project is not without limitations. Chief amongst these is that the
profitability of the heterogeneous model could not be established, a direct result of the
characteristics of arbitrage, where only the first system to execute can profit. A further
contributing factor, and hence shortcoming, is the use of randomly generated market data
for the purpose of evaluation.
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8.2 Future Work

The limitations of my work could be used as a starting point for further development.
Hereby, I present additional approaches for extending my project:

• Low-latency Arbitrage Model: A possible area for further work is to either
develop or integrate a financial model for low-latency arbitrage. The major focus
area should be to represent the amount of time arbitrage opportunities last, before
being executed by market participants. Such an approach would allow for a more
thorough evaluation of the profitability of the heterogeneous model.

• Real Market Data: The project could be extended by incorporating real market
data, adapting the algorithms to use the bid-ask model and re-running the evalua-
tion results. Ideally, live market data would be used with an aim of benchmarking
the system under representative load, as well as checking for arbitrage in the low
latency scenario.

• Increased Sample Space: Based on the idea of adapting the proposed model to
deal with different markets, the number of products (currencies) considered could be
increased, or the degree of arbitrage raised to four. In order to achieve scalable per-
formance under these conditions, alternative arbitrage detection algorithms would
need to be developed. A possible approach is to limit the sample space that is con-
sidered during a re-computation of the algorithm and could be achieved by keeping
track of changes in the market data.

• Data Prediction: There are two immediate ways of contributing to work done on
the data prediction component. The most straightforward approach is to modify
the ”prediction sample” sizes and evaluate how this effects the relative performance
of the mean and exponentially weighted predictors. A problem posing greater chal-
lenge, would be to develop more advanced data prediction algorithms, focused on
finding patterns and correlation in the market data, that lead to the formation of
arbitrage opportunities.

• GPU Acceleration: The topic of GPU acceleration has only briefly been discussed
in my thesis. Although initial results for the arbitrage detection algorithm were
disappointing, further investigation could lead to a GPU implementation of the
data prediction component. Alternatively, an existing prediction solution could be
adapted in order to integrate with the heterogeneous model.

• Hardware Implementation: A logical extension would be to run the generated
designs on physical FPGA devices. As already mentioned, the Axel Cluster [30]
could be used for testing. Further work should be done to implement the designs
on the latest FPGA devices (Virtex-7 Family [43]) and evaluate the effect on the
latency gap to the reference CPU implementation.

• Dual-Port RAM: Further development could confirm the effects of using Dual-
Port RAM on the performance of the prediction checking algorithm. Based on
AutoPilot results for the clock cycle count, this should allow for a further 25% to
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35% reduction in the computation time. However, the effects on clock period would
also need to be determined in order to establish the precise performance.

• FPGA Optimisation: Additional work could be carried out on the FPGA imple-
mentation, specifically dealing with the ”Two Best Predictions” approach, where
we observed decreased performance (by a factor of two) and considerably longer
times for the designs to ”Place and Route”. The approach of pipelining the de-
sign should be investigated, with the aim of narrowing the performance gap to the
”Single Best Prediction”.

• Medicine: More challenging further developments could look at ways of adapting
the heterogeneous model to applications outside the field of Finance. It is feasible
to implement any system that requires the combination of modelling and reduced
response time. A possible application scenario is the use of haptic devices in medi-
cal surgery, where the modelling component might predict and govern the surface
interactions. The on-line aspect could be realised by providing quick response time
to the surgical instrument.

These are just some of the issues that could be explored when expanding on the
subject of the heterogeneous model. As the scope of this thesis is relatively broad, there
could be numerous additional opportunities for future work.

88



List of Figures

2.1 The EUR/USD trading pair, showing fluctuations in the exchange rate
over one day, the bid and ask prices are also quoted [45]. . . . . . . . . . 9

2.2 An example triangular arbitrage transaction between EUR, USD and GBP. 11
2.3 General architecture of an FPGA [6]. . . . . . . . . . . . . . . . . . . . . 12

3.1 Overview of the proposed model looking at the external components. . . 17
3.2 Generated Market Data with Bid-Ask spread. . . . . . . . . . . . . . . . 17
3.3 Generated Market Data with Bid-Ask spread. . . . . . . . . . . . . . . . 18
3.4 A more detailed view of the proposed model showing the collaboration

between different hardware architectures. . . . . . . . . . . . . . . . . . . 19

4.1 Outline of the approach used for the alternative algorithm. . . . . . . . . 28
4.2 Processor utilisation for the multi-threaded optimisation (8 threads). . . 31
4.3 Evaluating the impact of different values of Trade Size. . . . . . . . . . . 34
4.4 Evaluating the impact of different values of Trade Size when using a thresh-

old. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Exponential smoothing - Weight factors for individual data points when
using different smoothing factors. . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Xilinx Design Flow [42] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Performance of the prediction checking algorithm when using loop un-

rolling with Single Port RAM. . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 Comparison of the prediction checking algorithm when using Single Port

vs. Dual Port RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4 Compacting the predictions array. . . . . . . . . . . . . . . . . . . . . . . 57
6.5 Finding the optimal unroll factor with allocated memory fully occupied. . 62
6.6 Implementation of the original algorithm on the Virtex-5 family FPGA. . 64

7.1 Trade Size Modification - Performance under different Market Sizes . . . 66
7.2 Arbitrage Detection Algorithms - Performance under different Market Sizes 68
7.3 Exponentially Weighted Predictor - Performance under different Market

Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.4 FPGA Implementation - Clock Period - adjusting the number of currencies. 71
7.5 FPGA Implementation - Clock Cycles - adjusting the number of predictions. 72
7.6 FPGA Implementation - Clock Period - adjusting the number of predictions. 73
7.7 Heterogeneous model - comparing the performance of system components. 78
7.8 Heterogeneous Model - Reduction in latency. . . . . . . . . . . . . . . . . 81

89



List of Tables

3.1 Currency pairs listed with exchange rates, bid and ask prices. . . . . . . 20
3.2 Currency table with exchange rates calculated from currency pairs, not

taking into account bid-ask spread. . . . . . . . . . . . . . . . . . . . . . 21
3.3 Currency table with exchange rates, having taken into account bid-ask

spread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Hardware used during development. . . . . . . . . . . . . . . . . . . . . . 25
4.2 Performance of initial recursive implementation. . . . . . . . . . . . . . . 27
4.3 Performance of alternative algorithm for Arbitrage Detection. . . . . . . 29
4.4 Alternative prediction algorithm - Stages combined. . . . . . . . . . . . . 29
4.5 Performance of Dual-threaded arbitrage detection algorithm. . . . . . . . 30
4.6 Performance of Optimised Algorithm - Eight threads. . . . . . . . . . . . 31
4.7 Performance of Single Best Arbitrage Opportunity modification. . . . . . 33
4.8 Evaluating the impact of different values of Trade Size. . . . . . . . . . . 33
4.9 Algorithm Performance using a Trade Size of 1024. . . . . . . . . . . . . 34
4.10 Algorithm Performance when using a threshold and Trade Size of 16384. 36

5.1 Run configurations used when comparing the performance of predictors. . 42
5.2 Comparing the two predictors using the Square Difference measure. . . . 42
5.3 The number of predictions made by the tested algorithms. Results in

percentages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Percentage of predictions that were correct for each algorithm. . . . . . . 44
5.5 Arbitrage opportunities detected as a percentage of perfect predictor. . . 44

6.1 Initial algorithm in hardware - no memory. . . . . . . . . . . . . . . . . . 51
6.2 Hardware implementation with memory wrapper. . . . . . . . . . . . . . 52
6.3 Loop unrolling using SPRAM. . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 FPGA implementation results for a loop unrolling factor of 16. . . . . . . 54
6.5 Loop unrolling using DPRAM. . . . . . . . . . . . . . . . . . . . . . . . . 55
6.6 FPGA Implementation results when compacting the prediction data array. 57
6.7 FPGA Implementation results when finding the single best arbitrage op-

portunity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.8 FPGA Implementation - Two best arbitrage opportunities, using loop un-

rolling factor 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.9 FPGA Implementation for the final configuration. Loop Unrolling factor

32 and all parameters are powers of two. . . . . . . . . . . . . . . . . . . 62

90



7.1 FPGA - Evaluation run configurations showing expected memory utilisa-
tion on the Xilinx XC5VLX330T device. . . . . . . . . . . . . . . . . . . 70

7.2 FPGA Implementation timing results - keeping iterations constant at 16 384
and adjusting the market data size. . . . . . . . . . . . . . . . . . . . . . 71

7.3 FPGA Implementation timing results - keeping n constant at 128 and
adjusting the number of predictions. . . . . . . . . . . . . . . . . . . . . 72

7.4 FPGA Implementation timing results - approaching full memory utilisation. 74
7.5 Heterogeneous Model - Evaluation Runs. . . . . . . . . . . . . . . . . . . 76
7.6 Arbitrage Detection - extrapolated data. . . . . . . . . . . . . . . . . . . 76
7.7 Prediction Checking - extrapolated data. . . . . . . . . . . . . . . . . . . 77
7.8 Heterogeneous Model - Sum of components’ execution times. . . . . . . . 78
7.9 Synchronous vs. Asynchronous Model. . . . . . . . . . . . . . . . . . . . 79
7.10 Heterogeneous Model - Reduction in Latency. . . . . . . . . . . . . . . . 80

91



Bibliography

[1] Yukihiro Aiba and Naomichi Hatano. A microscopic model of triangular arbitrage.
Physica A: Statistical and Theoretical Physics, 371(2):572 – 584, 2006.

[2] Yukihiro Aiba, Naomichi Hatano, Hideki Takayasu, Kouhei Marumo, and Tokiko
Shimizu. Triangular arbitrage as an interaction among foreign exchange rates. Phys-
ica A: Statistical Mechanics and its Applications, 310(3-4):467 – 479, 2002.

[3] Adrian Buckley. Multinational Finance. Prentice Hall, fourth edition, 2000.

[4] Daniel J. Fenn, Sam D. Howison, Mark McDonald, Stacy Williams, and Neil F.
Johnson. The mirage of triangular arbitrage in the spot foreign exchange market.
International Journal of Theoretical and Applied Finance (IJTAF), 12(08):1105–
1123, 2009.

[5] Bank for International Settlements. Report on global foreign exchange market ac-
tivity in 2010. http://www.bis.org/publ/rpfxf10t.pdf, December 2010.

[6] FPGA Central. FPGA - Field Programmable Gate Array. http://www.

fpgacentral.com/pld-types/fpga-field-programmable-gate-array, February
2008.

[7] fxTrade. Buying and Selling Currency Pairs. http://fxtrade.oanda.com/learn/

intro-to-currency-trading/conventions/currency-pairs, January 2010.

[8] Engineering Statistics Handbook. Forecasting with single exponential smooth-
ing. http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc432.htm,
April 2011.

[9] Joel Hasbrouck and Gideon Saar. Low-latency trading. http://pages.stern.nyu.
edu/~jhasbrou/Research/Working%20Papers/HS10-11-10.pdf, 2010.

[10] Scott Hauck and Andre DeHon. Reconfigurable Computing: The Theory and Practice
of FPGA-Based Computing. Morgan Kaufmann, 2008.

[11] Unix Help. Time. http://unixhelp.ed.ac.uk/CGI/man-cgi?time, June 2011.

[12] Intel. Intel compilers and libraries. http://software.intel.com/en-us/

articles/intel-compilers/, June 2011.

[13] Investopedia. Arbitrage Definition. http://www.investopedia.com/terms/a/

arbitrage.asp, January 2010.

92

http://www.bis.org/publ/rpfxf10t.pdf
http://www.fpgacentral.com/pld-types/fpga-field-programmable-gate-array
http://www.fpgacentral.com/pld-types/fpga-field-programmable-gate-array
http://fxtrade.oanda.com/learn/intro-to-currency-trading/conventions/currency-pairs
http://fxtrade.oanda.com/learn/intro-to-currency-trading/conventions/currency-pairs
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc432.htm
http://pages.stern.nyu.edu/~jhasbrou/Research/Working%20Papers/HS10-11-10.pdf
http://pages.stern.nyu.edu/~jhasbrou/Research/Working%20Papers/HS10-11-10.pdf
http://unixhelp.ed.ac.uk/CGI/man-cgi?time
http://software.intel.com/en-us/articles/intel-compilers/
http://software.intel.com/en-us/articles/intel-compilers/
http://www.investopedia.com/terms/a/arbitrage.asp
http://www.investopedia.com/terms/a/arbitrage.asp


[14] Investopedia. Bid-Ask Spread Definition. http://www.investopedia.com/terms/

b/bid-askspread.asp, January 2010.

[15] Investopedia. Currency Pair Definition. http://www.investopedia.com/terms/c/
currencypair.asp, January 2010.

[16] Investopedia. Statistical Arbitrage Definition. http://www.investopedia.com/

terms/s/statisticalarbitrage.asp, January 2010.

[17] Qiwei Jin, D.B. Thomas, and W. Luk. Exploring reconfigurable architectures for
explicit finite difference option pricing models. In Field Programmable Logic and
Applications, 2009. FPL 2009. International Conference on, pages 73 –78, September
2009.

[18] Kim Kendall. Electronic and Algorithmic Trading Technology: The Complete Guide
(Complete Technology Guides for Financial Services). Academic Press, July 2007.

[19] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty,
Per Hammarlund, Ronak Singhal, and Pradeep Dubey. Debunking the 100x gpu
vs. cpu myth: an evaluation of throughput computing on cpu and gpu. SIGARCH
Comput. Archit. News, 38:451–460, June 2010.

[20] Alexander Lipton. Mathematical Methods For Foreign Exchanges - A Financial
Engineer’s Approach. World Scientific, 2001.

[21] Linux Kernel Manual. Getrusage. http://www.kernel.org/doc/man-pages/

online/pages/man2/getrusage.2.html, June 2011.

[22] GNU Project. The gnu compiler collection. http://gcc.gnu.org/, June 2011.

[23] Lati Rob. The Real Story of Trading Software Espionage. http://

advancedtrading.com/algorithms/showArticle.jhtml?articleID=218401501,
July 2009.

[24] Mark Salmon and Roman Kozhan. On uncertainty, market timing and the pre-
dictability of tick by tick exchange rates. Technical report, Warwick Business School,
Financial Econometrics Research Centre, 2008.

[25] EE Times. Intel details Sandy Bridge at ISSCC. http://www.eetimes.com/

electronics-news/4213428/Intel-details-Sandy-Bridge-at-ISSCC, February
2011.

[26] EE Times. Xilinx buys high-level synthesis eda vendor. http://www.eetimes.com/
electronics-news/4212668/Xilinx-buys-high-level-synthesis-EDA-vendor,
June 2011.

[27] Financial Times. Trading goes wild on wall street. http://www.ft.com/cms/s/0/

0cbdcdc2-5966-11df-99ba-00144feab49a.html, May 2010.

93

http://www.investopedia.com/terms/b/bid-askspread.asp
http://www.investopedia.com/terms/b/bid-askspread.asp
http://www.investopedia.com/terms/c/currencypair.asp
http://www.investopedia.com/terms/c/currencypair.asp
http://www.investopedia.com/terms/s/statisticalarbitrage.asp
http://www.investopedia.com/terms/s/statisticalarbitrage.asp
http://www.kernel.org/doc/man-pages/online/pages/man2/getrusage.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/getrusage.2.html
http://gcc.gnu.org/
http://advancedtrading.com/algorithms/showArticle.jhtml?articleID=218401501
http://advancedtrading.com/algorithms/showArticle.jhtml?articleID=218401501
http://www.eetimes.com/electronics-news/4213428/Intel-details-Sandy-Bridge-at-ISSCC
http://www.eetimes.com/electronics-news/4213428/Intel-details-Sandy-Bridge-at-ISSCC
http://www.eetimes.com/electronics-news/4212668/Xilinx-buys-high-level-synthesis-EDA-vendor
http://www.eetimes.com/electronics-news/4212668/Xilinx-buys-high-level-synthesis-EDA-vendor
http://www.ft.com/cms/s/0/0cbdcdc2-5966-11df-99ba-00144feab49a.html
http://www.ft.com/cms/s/0/0cbdcdc2-5966-11df-99ba-00144feab49a.html


[28] A.H.T. Tse, D.B. Thomas, and W. Luk. Accelerating quadrature methods for option
valuation. In Field Programmable Custom Computing Machines, 2009. FCCM ’09.
17th IEEE Symposium on, pages 29 –36, April 2009.

[29] Kuen Hung Tsoi. Hitchhiker’s guide to the autopilot (2011). http://www.doc.ic.

ac.uk/~khtsoi/prj_autopilot/index.html, January 2011.

[30] Kuen Hung Tsoi and Wayne Luk. Axel: a heterogeneous cluster with FPGAs and
GPUs. In Proceedings of the 18th annual ACM/SIGDA international symposium on
Field programmable gate arrays, FPGA ’10, pages 115–124, New York, NY, USA,
2010. ACM.

[31] Wall Street & Technology. The High-Speed Arms Race on Wall Street Is Lead-
ing Firms to Tap High-Performance Computing. http://www.wallstreetandtech.
com/operations/198001925?pgno=2, March 2007.

[32] Feng Wang, Yuanxiang Li, Li Liang, and Kangshun Li. Triangular arbitrage in
foreign exchange rate forecasting markets. In Evolutionary Computation, 2008. CEC
2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on,
pages 2365 –2371, June 2008.

[33] Wikipedia.org. Currency Pair. http://en.wikipedia.org/wiki/Currency_pair,
January 2010.

[34] Wikipedia.org. Field-programmable gate array. http://en.wikipedia.org/wiki/

FPGA, June 2010.

[35] Wikipedia.org. Foreign exchange market. http://en.wikipedia.org/wiki/

Foreign_exchange_market, 2010.

[36] Wikipedia.org. Algorithmic trading. http://en.wikipedia.org/wiki/

Algorithmic_trading, June 2011.

[37] Wikipedia.org. Exponential smoothing. http://en.wikipedia.org/wiki/

Exponential_smoothing, June 2011.

[38] Wikipedia.org. Standard deviation. http://en.wikipedia.org/wiki/Standard_

deviation, June 2011.

[39] Stephen Wray. Exploring Algorithmic Trading in Reconfigurable Hardware. Master’s
thesis, Imperial College London, June 2010.

[40] Stephen Wray, Wayne Luk, and Peter Pietzuch. Exploring algorithmic trading in re-
configurable hardware. In Application-specific Systems Architectures and Processors
(ASAP), 2010 21st IEEE International Conference on, pages 325 –328, July 2010.

[41] XE. ISO 4217 Currency Code List. http://www.xe.com/iso4217.php, January
2010.

[42] Xilinx. Design flow overview. http://www.xilinx.com/itp/xilinx7/books/data/
docs/dev/dev0013_5.html, June 2011.

94

http://www.doc.ic.ac.uk/~khtsoi/prj_autopilot/index.html
http://www.doc.ic.ac.uk/~khtsoi/prj_autopilot/index.html
http://www.wallstreetandtech.com/operations/198001925?pgno=2
http://www.wallstreetandtech.com/operations/198001925?pgno=2
http://en.wikipedia.org/wiki/Currency_pair
http://en.wikipedia.org/wiki/FPGA
http://en.wikipedia.org/wiki/FPGA
http://en.wikipedia.org/wiki/Foreign_exchange_market
http://en.wikipedia.org/wiki/Foreign_exchange_market
http://en.wikipedia.org/wiki/Algorithmic_trading
http://en.wikipedia.org/wiki/Algorithmic_trading
http://en.wikipedia.org/wiki/Exponential_smoothing
http://en.wikipedia.org/wiki/Exponential_smoothing
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation
http://www.xe.com/iso4217.php
http://www.xilinx.com/itp/xilinx7/books/data/docs/dev/dev0013_5.html
http://www.xilinx.com/itp/xilinx7/books/data/docs/dev/dev0013_5.html


[43] Xilinx. Virtex-7 FPGA Family. http://www.xilinx.com/products/

silicon-devices/fpga/virtex-7/index.htm, June 2011.

[44] Xilinx. Xilinx DS100 Virtex-5 Family Overview. http://www.xilinx.com/

support/documentation/data_sheets/ds100.pdf, June 2011.

[45] Yahoo! UK & Ireland Finance. Currency conversion. http://uk.finance.yahoo.

com/, January 2010.

95

http://www.xilinx.com/products/silicon-devices/fpga/virtex-7/index.htm
http://www.xilinx.com/products/silicon-devices/fpga/virtex-7/index.htm
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://uk.finance.yahoo.com/
http://uk.finance.yahoo.com/

	Introduction
	Foreign Exchange Market and Arbitrage
	Objective
	Report Structure and Contributions

	Background
	Foreign Exchange Market
	Currency Pair
	Bid-Ask Spread

	Arbitrage
	Triangular Arbitrage
	Statistical Arbitrage

	Hardware Acceleration
	Field Programmable Gate Arrays
	Graphics Processing Units

	Related Work
	Summary

	Heterogeneous Model
	Model Overview
	Market Data
	Placing Orders

	Model Details
	Modelling Component
	On-line Component

	Arbitrage Calculation
	Simple Approach
	Bid-Ask Approach
	Arbitrage Condition

	Selected Arbitrage Calculation
	Summary

	Arbitrage Detection
	Preliminaries
	Hardware
	Compiler
	Environment Setup
	Run Configurations
	Timing

	Arbitrage Detection Algorithm
	Recursive Algorithm
	Alternative Algorithm
	Further Optimisation

	Multi-threading
	Two Threads
	Eight Threads

	Heterogeneous Model Considerations
	Single-Best Arbitrage Opportunity
	Trade Size Modification
	Threshold Modification

	GPU Acceleration
	Summary

	Market Data Prediction
	Initial Thoughts
	Prediction Algorithm
	Equally Weighted
	Exponentially Weighted
	Initial Performance Measure

	Performance Evaluation
	Perfect Predictor
	Weighted Predictor
	Random Predictor
	Results

	Summary

	Prediction Checking
	Additional Background
	AutoPilot
	Xilinx Design Flow
	Complete FPGA Implementation Run

	Prediction Checking Algorithm
	Optimisation Process
	Original Algorithm
	Memory Wrapper
	Loop Unrolling - SPRAM
	Loop Unrolling - DPRAM

	Compacting Data
	Result Space Reduction
	Single Best Prediction
	Two Best Predictions
	Further Modifications

	Evaluation Preparation
	Adjusting Predictions
	Adjusting Market Size
	Loop Unrolling
	FPGA Implementation

	Design Remarks
	Closing Remarks
	Summary

	Evaluation
	Evaluation Procedure
	Arbitrage Detection
	Trade Size
	Threshold
	Reference CPU Implementation (Max)
	Results

	Data Prediction
	Prediction Checking
	Evaluation Runs
	Market Data Size
	Prediction Data Size
	Maximum Memory Utilisation
	Final FPGA Remarks

	Heterogeneous Model
	Assumptions
	Procedure
	Arbitrage Detection Extrapolation
	Prediction Checking Extrapolation
	Synchronous Model
	Asynchronous Model
	Latency
	Profit
	Final Remarks

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work


