
Imperial College London
Department of Computing

Sentiment Analysis
-

A multimodal approach
by

Lucas Carstens

Submitted in partial fulfilment of the requirements for the MSc Degree in Computing Science,
Specialism Artificial Intelligence, of Imperial College London

September 2011

Abstract

Sentiment Analysis describes a Natural Language Processing problem that attempts to differentiate
opinionated text from factual text and, in case of opinionated text, determine its polarity. This
report presents A-SVM, a system that tackles the discrimination of opinionated text from non
opinionated text through means of both Machine Learning techniques and arguments acquired
via user feedback. The system has been used to investigate the potential merits of approaching
Sentiment Analysis in a multi faceted manner by comparing straight forward Machine Learning
techniques with this multimodal system architecture. All evaluations were executed using a corpus
of annotated text, purpose built during the project, and its classification performance was compared
to the performance of Support Vector Machines, which also constituted an integral building block of
the system itself. The classification of a test set of approximately 12,000 words yielded an increase
in classification precision of 5.6%, from 78.1% precision using Support Vector Machines to 83.7%
when classifying the same test set with the system developed in this project.

My greatest thanks belong to Dr. Francesca Toni who offered supervision, guidance and encour-
agement whenever needed and beyond.

Also, my deep appreciation to my parents who have made it possible for me to embark upon
the challenge and adventure that was Imperial College, London.

No less, I would like to thank Dr. Krysia Broda, Tobias Gierk, Ulrich Schaechtle and everyone
else who has made a contribution to this project in one way or another.

Contents

1 Introduction 7
1.1 Road Map . 9

2 Sentiment Analysis - The challenges 10
2.1 Sentiment Analysis in practice . 10
2.2 Linguistics and Natural Language Processing . 11

2.2.1 Linguistics . 11
2.2.2 Natural Language Processing . 13

2.3 Central challenges . 14
2.3.1 Gathering text . 14
2.3.2 Extracting opinionated content from text . 15
2.3.3 Determining polarity . 16
2.3.4 Summarising . 17

2.4 Peripheral challenges . 18
2.4.1 Determining strength and other degrees of opinion 18
2.4.2 Determining opinion holder and target . 20
2.4.3 Scope of context . 20

3 Machine Learning in Sentiment Analysis 22
3.1 Supervised Learning . 22

3.1.1 Support Vector Machines . 23
3.1.2 Other Supervised Learning techniques . 26

3.2 Unsupervised Learning . 27
3.3 Reinforcement Learning and Conditional Random Fields 29

4 Argumentation in Machine Learning and Sentiment Analysis 32
4.1 Defeasible Argumentation . 32
4.2 ABML . 34
4.3 From ABML to A-SVM . 36

5 Building a text corpus 38
5.1 Sources . 38

5.1.1 The MPQA corpus . 39
5.1.2 SentiWordNet . 40
5.1.3 TreeTagger . 42

5.2 Merging the sources into one . 44

6 The system 46
6.1 System architecture . 46
6.2 User feedback . 52

6.2.1 Generating arguments . 53
6.2.2 Direct and indirect user feedback . 53

5

7 System evaluation 56
7.1 SVM vs A-SVM . 56
7.2 User centred evaluation . 58

8 Conclusion and outlook 60
8.1 A critical reflection on A-SVM . 60
8.2 Future challenges . 62

8.2.1 On the polarity of opinions . 62
8.2.2 On the corpus and Natural Language Processing 65
8.2.3 On system features and performance . 67
8.2.4 On summarisation . 69
8.2.5 On adjustable parameters . 71
8.2.6 On Linguistics . 73
8.2.7 On Software Engineering aspects . 74

8.3 Conclusion . 75

Bibliography 77

A Questionnaire 83

B Mathematical background 87
B.1 Lagrange multipliers . 87
B.2 Karush-Kuhn-Tucker conditions . 87

6

1

Introduction

Language enters and profoundly shapes our lives every day, and as it does it comes in the most
different guises. We lead conversations, read newspapers, listen attentively to what our lecturer,
superior, or colleague has to say, and, today more than ever, we turn to electronic and interactive
media to supply us with information about every fathomable topic of potential interest. The con-
tinuous evolution of modern technology has shaped the way we acquire and deal with information
throughout the past decades and it has brought along with it a vast number of challenges, with
ever new issues arising as these technologies develop further. Today, web connectivity has reached
such a pervasive level that more than 51 Million UK citizens, over 82% of the entire population,
are connected to the internet [10]. This means that we are generally able to access information
about any topic, at any time and any place at our own convenience. Someone making use of this
connectivity not only has access to information, but at the very same time is able to contribute
and spread his or her own knowledge, wisdom, and opinions through various channels. This ever
growing user-generated content within the realms of the World Wide Web offers unprecedented
opportunities in dealing with information, but just the same, the immense pool of content emerging
from such a collaborative effort carries significant implications when it comes to putting this content
to use.

It has been the aim of this project to tackle one specific aspect of language and how it is used,
and utilise this within the setting of dealing with content distributed over the internet: Opinions.

Expressing opinions and sentiment towards an object, an individual, an idea, or an opinion it-
self constitutes one of the prime purposes language fulfils and today, websites allow the user to find
an opinion on virtually anything. Despite, or maybe because of this fact, it is very challenging to
process these opinions in a structured manner, be it manually or computationally. This is rather
intuitive for two reasons: For one, the distribution of opinions throughout the World Wide Web,
as is the case with any other content, rarely occurs within truly structured settings and if it does,
this structure is likely to be maintained only within the domain the opinion is published. Secondly,
it would be hard to imagine how to reliably deduce an opinion and its content from text at sheer
syntactic level. Going beyond syntax in text is an issue when it is done computationally, because
the ability to digest semantics, i.e. the meaning (here: the opinion) of text usually requires some
kind of actual understanding of its contents. A definition of understanding analogous to human
understanding of language may not seem feasible when applied to a machine today, but nonetheless
it is desirable to equip systems with the ability to process text in a way that would normally require
such an understanding. In Sentiment Analysis, we attempt to envision and realise such systems,
which encompasses a number of subproblems. These are explained in detail throughout the follow-
ing chapters, but before doing so, the term Sentiment Analysis requires a precise definition, as does
"opinion" itself. The WordNet [45] definition for an opinion reads as follows:

1. A personal belief or judgment that is not founded on proof or certainty

2. A message expressing a belief about something; the expression of a belief that is held with

7

confidence but not substantiated by positive knowledge or proof

For the remainder, though, the following definition is adopted:

3. An opinion denotes a personal, subjective belief, judgement, appraisal, or sentiment towards
an entity, an idea or another opinion that can not be proven by facts. It thus constitutes the
counterpart to factual information.

This is simply to explicitly include the differentiation between factual and opinionated text.
Opinions are the object of investigation within the discipline of Sentiment Analysis. We introduce
the following definition of Sentiment Analysis in order to cover the main aspects:

Sentiment Analysis, or Opinion Mining, describes a Natural Language Processing
problem that attempts to differentiate opinionated text from factual text and, once
text is assumed to be opinionated, classify it as expressing a negative opinion, a neutral
opinion, or a positive one. Another subproblem that closely relates to Sentiment Analysis
is that of representing opinionated content in a comprehensive manner.

Traditionally, efforts directed at extracting content from texts have mainly focused on acquiring
factual information about various domains, i.e. performing so called Information Extraction (IE)
(see, for example, [25] for more on IE). When developing applications for the specific tasks, the
difference that makes Sentiment Analysis generally more challenging is the fact that Information
Extraction can, in most cases, rely more heavily on syntactical features of the information that is
to be gathered. As explained above, due to the nature of the problem, this is generally not ap-
plicable to Sentiment Analysis. Syntactical information about the analysed text can mainly serve
the purpose of supplying heuristics to enhance an employed technique, but not provide sufficient
information on its own. This is explained in detail in section 2.4

The potential applications (see 2.1) of enabling a machine to discover, classify and process opinions
and sentiment from text are manifold and recent years have seen a spur of interest in this field.
[59] and [40] give thorough surveys of the field. Despite this, the effort directed towards this issue
is still very much contained at research level and this project has aimed not at supplying a ready
made solution to the problem but rather to propose a novel approach to dealing with some of the
arising issues and by doing so furthering the progress in the field. This approach adds logic based
arguments to probabilistic methods previously employed to solve Sentiment Analysis tasks. The
intuition underlying this approach is that combining substantially different ways of dealing with
written language computationally should allow an increase of general performance compared to
applying probabilistic methods by themselves. During the project I have developed both an an-
notated text corpus that was used as training data and a system that classifies text according to
its opinionatedness. The text corpus consists of approximately 13, 000 annotated n-grams that are
represented as feature vectors (see chapter 5). Comparing A-SVM, the system I have developed,
with a straight forward SVM classifier, I achieved an increase in classification precision of 5.6%,
from 78.1% to 83.7% (see chapter 7).

8

1.1. ROAD MAP

1.1 Road Map

I begin by presenting an overview of what the key aspects and main challenges in Sentiment Analysis
are and what they entail in chapter 2, accompanied by concrete examples. Chapters 3 and 4
cover further previous works relevant to the project. These are subdivided into Machine Learning
approaches to Sentiment Analysis, which constitute the foundation for the project, and approaches
to generally combining Machine Learning and Argumentation, which provide insight into some
basic principles of such efforts. In addition to that, chapter 4 also spans the bridge from elucidating
previous efforts in both fields described to the project itself by drawing on the ideas proposed by
the developers of ABML ([47]), one of the few algorithms today that combine Machine Learning
and Argumentation. Building upon the previous chapters, the efforts made within this project are
laid out in the two subsequent chapters, 5 and 6. First off, the development of the text corpus
is described, followed by a detailed description of the system and its building blocks. The second
to last chapter (7) reports on the evaluation of the program and the results that sprung from
both evaluations conducted, namely a straight forward performance analysis and a user centred
evaluation. The final chapter (8) discusses these results and, drawing upon them, presents an
account of future challenges that will need consideration when progressing within this field.

9

2

Sentiment Analysis - The challenges

Sentiment Analysis spans a number of different fields, most notably those of (Computational) Lin-
guistics & Natural Language Processing (NLP) and Machine Learning (ML) & Pattern Recognition.
Each of the fields brings with it a number of challenges that need to be addressed when working
within Sentiment Analysis. This chapter presents the theoretical background Sentiment Analysis
builds upon and what needs to be considered when developing systems in this area. Along with
this, a number of concrete applications of the concepts described are mentioned and explained to
illustrate the main issues.

2.1 Sentiment Analysis in practice

Before considering the challenges that Sentiment Analysis confronts us with and concrete techniques
that have been utilised in this field, let us motivate this discourse by considering a few areas in which
Sentiment Analysis has either found concrete applicability or where it may do so in the future. To
name but a few, Sentiment Analysis has contributed to the following areas or may do so in the
future:

• Structuring (customer) reviews

• Gathering business & governmental intelligence

• Political, or any other, discourse

• Enhancing other text processing technologies.

While the following account will limit itself to these examples, this does not imply absence of
other domains and areas in which Sentiment Analysis may find applicability.

Analysing and structuring (customer) reviews has been recognised as one of the main fields to
which Sentiment Analysis is able to contribute valuable insight and has thus received recognition by
a number of researchers (e.g. [50], [57], [58], [78]). Reviews lend themselves to Sentiment Analysis
due to their inherently opinionated nature. Accordingly, numerous research efforts have concerned
themselves with the issue of determining the polarity of a review, which is intuitively plausible
because generally a review will be either positive or negative rather than presenting an objective
account of a product, a movie, etc. The use of performing such analysis on reviews lies in the
motivation that normally goes with reading reviews. We access reviews to gather an impression of
people’s opinions who have watched the movie, used the product or listened to the music we are
interested in when consulting reviews. We are, in this scenario, generally less interested in a product
description, i.e. the facts, than we are in other individuals’ personal accounts. Sentiment Analysis
can simplify the process of digesting the wealth of opinions that can be found on most products we
might be interested in.

10

2.2. LINGUISTICS AND NATURAL LANGUAGE PROCESSING

It is not just individuals who consult other customers’ reviews of a product to assist their deci-
sion in buying something or refraining from a purchase. Generally, most areas of business are
interested in reviews and judgements of their products by customers, as well. Gathering business
intelligence about customers’ satisfaction and dissatisfaction can be a laborious and costly process,
thus mechanisms that simplify accessing and evaluating various measures of customer sentiment
can be highly valuable, i.e. cost saving, to almost any business. While businesses can be assisted
in measuring customer sentiment and assessing it, governmental bodies may have similar interest
in measuring various indicators of satisfaction and dissatisfaction that may be extracted from news
websites, blogging sites, micro blogging sites and other web presences. Twofold benefits of system-
atic Sentiment Analysis for governmental purposes come to mind. Firstly, having a clear picture
of public sentiment as expressed throughout the World Wide Web may allow more targeted pol-
icy making, campaigning, public relation handling etc. Secondly, effective Sentiment Analysis may
contribute to finding hostile exchanges that could prove harmful to the public’s interest and safety.

Closely related to the gathering of government intelligence is the issue that is of focus in this
project. It is not just governmental bodies who have an interest in gathering and disseminating sen-
timent with regards to political developments and issues related to them. This interest is shared by
individuals who follow political developments every day, accessing the most varied sources. Reading
the news is a process of accessing both factual and opinionated contents. The simplest distinction
that can be made here is between the content of regular reports and editorial ones. Where a news
report on events is generally of a non opinionated nature, editorial contributions to news reflect an
individual’s sentiment towards the issue he or she writes about. Nevertheless, either of these types
of news articles will generally contain both factual information and opinions. If this were not the
case, an analysis of the opinionatedness of news articles would be rendered futile because it would
suffice to analyse editorial articles with regards to their opinion polarity. Since such a clear cut
distinction is hardly feasible, especially when performing Sentiment Analysis below document level,
analysing the opinionatedness of the constituents of news articles can provide valuable information
for subsequent analysis tasks.

An integration of Sentiment Analysis as a sub-component technology has proven to be another
area where systems, their processes and their output can improve by analysing the sentiment of
text that is processed. One of these applications can be found in traditional Information Extraction
(IE). As pointed out in [57], expanding successful IE algorithms with Sentiment Analysis algo-
rithms can further improve the performance of such systems. Considering the previous description
of analysing news articles, enhancing search algorithms used by search engines with sub-components
and selection criteria that draw on Sentiment Analysis may improve search procedures for certain
domains, such as the ones discussed in this section.

2.2 Linguistics and Natural Language Processing

2.2.1 Linguistics

[The field of linguistics is concerned with] the systematic study of the structure and
development of language in general or of particular languages

This rather broad definition, taken from the Cambridge online dictionaries [63], allows us to
establish a straight forward relationship between linguistics, NLP and this project in particular.
NLP utilises computational techniques, technologies and algorithms to perform tasks of such sys-
tematic studies of structure and development of language. These tasks can concern themselves with
both spoken or written language and may deal with the most varied issues, ranging from speech
recognition to Part-of-Speech (POS) tagging. This project has at its focus an issue of linguistics, as
well. The expression of opinions constitutes an integral part of speech, both in written and spoken
form. Consequently, insights into the field of linguistics form a vital basis to the task of Sentiment
Analysis and may contribute to the workings of solutions in this field in various ways.

11

2.2. LINGUISTICS AND NATURAL LANGUAGE PROCESSING

The central benefit of linguistics we gather for this project is the knowledge about features that
words exhibit. Linguistics provide the framework for a structured analysis of features such as the
type of a word, its case, its tense etc. All these methodologically defined facts about constituents
of speech allow us to build collections of features along which we can compare and analyse parts of
speech in a systematic manner. Without the frameworks of linguistics that define language accord-
ing to a set of rules, such analyses would proof difficult to realise.

The utility of linguistics with regards to Sentiment Analysis goes beyond this generic benefit which
is applicable to any NLP task. Numerous insights provided by the study of linguistics can be trans-
lated into heuristics along which more efficient and more performant Sentiment Analysis systems
can be designed. In [15], Ding and colleagues propose four linguistic rules that may be used to
enhance the performance of a Sentiment Analysis system in one way or another:

1. Intra-sentence conjunction rule: A sentence expresses just one opinion orientation unless it
contains a but which changes the opinion orientation. Thus, if two sentences are conjoined by
an and, we assume the same opinion orientation for both sentences

2. Pseudo intra-sentence conjunction rule: Similar to rule one, except we try to find conjunctions
that are not expressed by an and

3. Inter-sentence conjunction rule: The same principle is applied as for rule one and two, only
that it is extended to analyse consecutive sentences.

4. Synonym and antonym rule: If a word is found to be positive in a context, its synonyms are
considered to be positive, as well. Its antonyms are considered to be negative, instead.

These rules do not give reasons on classifying certain groups of words according to features
they share. They are rather a generalisation of information about words or phrases that has been
obtained by some measure to other words or phrases that are in proximity. As is the case with
any heuristic, these rules do not hold in every scenario. Nevertheless, one valuable way of putting
heuristics to use lies in pruning the space of possible feature values that have to be considered in
analysing constituents of text. More such heuristics can be devised from linguistic insights and
further limit the effort needed to classify text according to whatever criteria are applied. Some
other heuristics are described in section 2.3.2. One of them builds upon evidence that collocations,
i.e. word combinations that appear more frequently than would be expected by chance, exhibit a
higher probability of being opinionated than collocations that appear less frequently. We see that
heuristics can be derived from various characteristics that text may exhibit. Syntactical features
such as the type, the tense or the case of words may also prove to carry some meaningful relation
to a word’s or phrase’s opinionatedness that could be exploited in the form of a heuristic.

Ding and colleagues define an opinion aggregation function and construct an algorithm that cate-
gorises the constituents of customer reviews applying both the rules explained above and the opinion
aggregation function. This function is applied to identify all product features F = (f1, ..., fn) and
the opinion O = (o1, ..., on) expressed on them in a sentence s. The algorithm thus returns a score
for each feature in a sentence, i.e. on the pair (fi, s). Sentence s is first segmented using but
words/phrases, i.e. but, except that, etc. For each segment sk of sentence s, a score is calculated,

score(fi, sk) =
∑

wj∈sk

wj .SO

d(wj , fi)
(2.1)

"where wj is an opinion word in sk which is the sentence segment that contains the feature
fi and the opinion word wj in sk. wj .SO is the semantic orientation of word wj ." [15] The value
assigned to wj .SO for a positive word is 1 and −1 for a negative word. The semantic orientation
of a word is established using a lexicon that has been developed beforehand. The distance measure
lessens the contribution of words to the score the farther they are away from fi. If the final score
(fi, s) is positive, the opinion on the feature is as well, if the score is negative, then so is the opinion

12

2.2. LINGUISTICS AND NATURAL LANGUAGE PROCESSING

on the feature. Those opinions that could be determined, i.e. those for which a semantic orientation
value is available, are then used to iteratively establish the orientation of more opinions, applying
the rules proposed. Starting out from the initial set of classified opinions, these are expanded to
include feature judgements. These are added to the list of known opinions and the rules are applied
again.

In this application, heuristics based on linguistic considerations are applied to widen the scope
of the knowledge available. They are used to generalise the information gathered on a word’s or
phrase’s opinionatedness to other text constituents surrounding the classified term. Along with the
above mentioned pruning of the search space, this is a second potential application of heuristics.

2.2.2 Natural Language Processing

In the introduction (1) we defined Sentiment Analysis as a NLP problem. Though not sufficient on
its own, this captures some of the main aspects of the field, some of which, relevant to the topic,
deserve mentioning to allow a more precise understanding of Sentiment Analysis. For more details
on NLP, refer to [31] or [43], from which the following points are adapted.

• Generally, Natural Language Processing can be applied to text in its raw format or in a
marked up format. This means that a text corpus may either be simply in human readable
format or it may be annotated with meta information about the text itself, such as the case or
gender of a word. In Sentiment Analysis, such mark up may, for example, explicitly identify
words as opinionated or factual. The question of whether one is dealing with sheer text or
marked up text is essential when deciding on how to analyse it. As elaborated in chapter 3,
techniques that are built upon corpora of annotated text generally apply Supervised Learning
algorithms, while unannotated data is, in most cases, processed using Unsupervised Learning
algorithms.

• NLP involves a number of low level formatting issues that need to be considered. The text
that is being analysed may contain formats the machine or system used cannot deal with, such
as document headers and separators, tables and diagrams, and various others. Such content
may need to be filtered out or be preprocessed before carrying out the actual analysis task.
Similarly, punctuation marks and other special characters may need preprocessing to be dealt
with adequately. For example, one issue may be whether or not it is essential to know where a
sentence ends. This would entail replacing punctuation marks such as full stops and question
marks by an identifier specifying the end of a sentence.

• The issue of tokenisation, i.e. the process of dividing the text corpus into units which can
later be analysed, needs to be considered during the early stages of any NLP task. Units
usually determined during this task are words, punctuation, et cetera. For certain analysis
tasks, including Sentiment Analysis, it may be an interesting option to build tokens including
more than just one word, so called n-grams, which allows consideration of a word’s context.
The word house on its own would be a 1-gram, the result of adding an article to form the
house is a 2-gram, and so on.

• Another central issue of NLP is the question of how to deal with the morphology of words,
for example tense and case. Should the verbs paint and painted be considered to be the same
during an analysis task or does the difference of tense carry information that needs to be taken
into account? Usually, the process of collapsing grammatically different instances of the same
word to its basic form is referred to as stemming.

There are far more issues that arise during NLP tasks, of which many are important to Senti-
ment Analysis, as well. The four chosen here are merely some of the most prominent and regularly
encountered problems one is faced with when dealing with natural language computationally. Also,
it should have become clear that, before actually digging into the issues that are characteristic to
Sentiment Analysis, and which are covered subsequently, one needs to consider the fact that there

13

2.3. CENTRAL CHALLENGES

is a rather large gap in need to be bridged between a human reading text and a machine reading text.

NLP has produced numerous practical applications that pervade our daily interaction with text.
One of the most prominent technologies has been POS tagging which is a constituent of many NLP
systems. Numerous techniques of probabilistic POS tagging have been proposed, one of which is
also part of the system I have developed during this project. POS tagging algorithms have been
offering high accuracy in annotating text with syntactical features for about 20 years (e.g. [4], [64],
[70]). I have used the TreeTagger [70] system to annotate both the text corpus developed and user
input during system execution (see chapters 5 and 6). Among the models that have been applied
to POS tagging we can find maximum entropy models [64], decision tree solutions [70] and Markov
models [4].

2.3 Central challenges

2.3.1 Gathering text

In order to allow systems to learn, many of them need to be supplied with some sort of training
input. The underlying learning processes that have been implemented in Sentiment Analysis are
explained in detail in chapter 3, but to make any such process possible in the first place, for many
techniques a knowledge base (KB) of examples has to be at hand (see [46] for an introduction).
A decision has to be made on what kind of knowledge base (KB) should be used and how it is
to be acquired. This is a non trivial issue not just because it affects the entire process following,
but because the gathering of text itself entails a number of challenges and as such, building an
extensive text corpus has been a substantial part of this project. The text corpus developed within
this project is described in detail in chapter 5.

The construction of a text corpus can generally be an automated process or a manual one, with
hybrid approaches with differing levels of emphasis on automation and manual annotation feasible,
as well. Depending on the task, the size of the corpus that is built and the resources at hand, either
of the two methods have their merits and demerits. Constructing corpora automatically is usually
a less expensive method than constructing corpora manually. The main workload for automatic
construction lies in finding an effective, and optimally efficient, algorithm that produces reliable
results that have to be only marginally proof read by a human. The main efforts in constructing
a corpus manually are divided into developing a practical annotation scheme that conveys all the
information desired and the workload carried by the human annotators. Despite the large effort
in manual annotation, such corpora are, up to this date, often preferred because they usually have
an advantage over automatically constructed corpora in regards to quality and reliability of the
annotations. Due to this trade off between work load and annotation quality, hybrid approaches
such as the one proposed in this project can be an adequate choice when constructing a corpus.

Using manually annotated text corpora has been among the more popular approaches to the problem
during past developments in Sentiment Analysis. Along with numerous annotated general purpose
corpora, a number of corpora tailored to the needs and demands of Sentiment Analysis are either
publicly available or available for a fee, the most widely used being the Multi-Perspective Question
Answering (MPQA) corpus described in [82], which has been incorporated into my own corpus, and
the TREC (Text REtrieval Conference) blog tracks ([42], [55]). While the MPQA corpus annotates
new articles and is described in detail in chapter 5, the TREC blog tracks utilise blog entries which
is motivated by recognising blogs as "created by their authors as a mechanism for self-expression"
[56]. This interpretation of blogs implies that one should find a large amount of opinionated con-
tents when analysing blog entries which would make blogs rather interesting to Sentiment Analysis.
The original TREC blog track (2006) was comprised of 100,649 unique blog entries and has been
extended subsequently. The TREC blog track entries are manually annotated by first identifying
targets of opinions and then evaluating whether a blog entry contains opinions on one of the rele-
vant targets. Thus, each blog entry is annotated in two steps, with the annotators only concerning
themselves with the nature of the whole entry, not single words or phrases contained in it. In the

14

2.3. CENTRAL CHALLENGES

first step the annotator identifies a blog entry as either not relevant or relevant, where relevant
entries contain an opinion about the target of concern and entries that are not relevant contain
information about the target, but no opinion. Those blog entries that are identified as relevant are
further annotated as either negative opinionated, mixed opinionated or positive opinionated.

Using corpora such as the MPQA corpus or the TREC blog tracks has the obvious upshot that
little effort has to be poured into the entire subject of amassing a knowledge base because it is avail-
able in a ready-to-use format. This leaves the developer with the task of implementing a learning
algorithm using this corpus according to the conventions and syntax of the corpus itself.

Using a manually annotated corpus gives rise to the potential issue that the resulting system may
not be easily transferred into a real life setting. This is due to the fact that in most cases manual
annotation relies on the judgements of a few participants annotating large sets of text. We can
argue that this process may be prone to exhibit bias towards the annotators’ own, in the case of
opinionatedness, partially subjective understanding of how guidelines for annotation are to be in-
terpreted and put to work. In addition to such problems potentially spoiling the quality of manual
annotations, the process itself is rather laborious and little of the content encountered within the
World Wide Web is annotated as needed for Sentiment Analysis. I have attempted to reconcile
both these issues by passing the responsibility of annotation directly to the user of a system. This
means that annotation is accomplished without burdening single individuals with large annotation
tasks and also, assuming a large number of different users supply annotation, without relying on
just a few sets of understanding of how opinionatedness manifests itself in text. More detail of these
potential benefits is provided in sections 6.2 and 8.2.3.

A step away from using one monolithic corpus of fully annotated text is taken with so called
Unsupervised Learning techniques. One of the Unsupervised Learning techniques applied in Senti-
ment Analysis takes a number of so called seed words as a starting point. A learning set is built
iteratively using seed word relations to other words or concepts determined by using, for example,
WordNet [45]. In [18] and [19], Esuli and Sebastiani describe building a training set from a small
number of seed words by iteratively exploiting lexical relations of words such as synonymy and
antonymy. In [2], Baroni and Vegnaduzzo use only a small set of manually selected seed nouns
and adjectives and use the Web-based Mutual Information (WMI) method developed by [75] to
build a large training set. While Unsupervised Learning techniques do not share the issues that
arise when using manually annotated text, other issues arise. The predominant problem that needs
consideration when annotating text in such a way is the development of a technique that is able to
produce quality annotations without, or with little, human intervention. Some of the Unsupervised
Learning algorithms used in Sentiment Analysis are covered in more detail in chapter 3.

2.3.2 Extracting opinionated content from text

Assuming a sufficiently documented and structured knowledge base is available a priori or one
has been constructed, we are in the position to tackle the first of two major challenges Sentiment
Analysis boils down to. Even if it is known that the analysed text is opinionated, generally the text
will still include some factual information. Unless the analysis is performed at document level, in
which case this task loses its relevance when the general nature of the text is known, the factual and
opinionated information have to be disentangled to allow a closer analysis of the opinionated parts
of the text. Basically, this results in a binary classification task that places parts of the text into the
category opinionated and others amongst the category non opinionated. Alternative definitions may
call these categories subjective and objective, but in certain cases this can be misleading because
even an objective statement may implicitly carry an opinion. Take the following sentence:

After I’d left, the agenda lost momentum. But the papers and the work are all there.

This is a quote of Tony Blair commenting on how his efforts on reforming the criminal justice
system during his time of administration were handled after he had left office. Though these two

15

2.3. CENTRAL CHALLENGES

sentence simply state that these reform efforts died down after the change in government, most
humans will read a clear negative connotation in these sentences, expressing a frustration with a
new government abandoning policy that had been pushed forward before. Despite these sentences
arguably being opinionated, one may be hard pressed to find clues for subjectivity in these two sen-
tences. Such cases appear more or less frequently in text and for this reason I deemed a definition
of opinionatedness more robust to such occurrences than one of subjectivity.

Like this project, a number of works have focussed on the issue of discerning opinionated text
from non opinionated text, such as [2], [5], [28], [35], [67], and [87]. In [81], Wiebe and colleagues
propose a number of clues to subjectivity, or opinionatedness, and test them one-by-one, as well as
in combination. Among those clues, i.e. heuristics, are

• Low-frequency words

• Collocations

• Certain adjectives and verbs identified using distributional similarity.

According to the definition used, low-frequency words are words that only appear once in a piece
of text. Wiebe and colleagues were able to show that such words exhibit a higher probability for
being opinionated, i.e. words that appear just once in a text indicate that the excerpts containing
them exhibit a heightened probability of being opinionated. Collocations define combinations of
words that appear in a text more often than it would be expected by chance. Analogously to low-
frequency words, collocations were shown to indicate a higher probability of the excerpt containing it
to be opinionated than those not containing any collocations. A third indicator for opinionatedness
identified byWiebe and colleagues estimates potential subjective elements (PSE) using distributional
similarity which judges words "to be more or less similar based on their distributional patterning
in text." [81]

The use of these clues is founded on linguistic considerations which have been elucidated in more
depth in 2.2. The issue of disseminating opinionated content from non opinionated content is dealt
with in more detail in chapter 6 where the system developed in this project is presented in its final
form and functionality.

2.3.3 Determining polarity

Once opinionated text is identified or when a text is assumed to be fully opinionated to begin with,
the second primary challenge of Sentiment Analysis is the identification of an opinion’s polarity. Po-
larity describes the nature of the sentiment, e.g., on a coarse level, whether it is negative or positive.
More fine grained differentiations are easily imaginable. Pang and Lee use a five star rating scale
for sentiment polarity in [58], i.e. they introduce three additional levels of polarity distinctions. A
number of works on this opinion classification task deals only with the binary distinction between
a positive opinion and a negative opinion ([14], [61], [76], [85]), but as Pang and Lee point out,
this may not cover the actual spectrum of opinions, even in a single text, sufficiently. The two
main issues arising when simple binary distinctions are applied are, for one, the inability to include
any notion of strength of opinion within one orientation, and secondly, the incapacity of covering
potential middle ground when an opinion is presented, but a clear leaning to the positive or negative
cannot be determined. Both these issues are investigated more closely in section 2.4.1.

To illustrate just one of the many possibly arising issues when determining text fragments’ polarity,
consider the following two sentence from the same editorial comment that the previous example was
drawn from:

[...] many of these people are from families that are profoundly dysfunctional, oper-
ating on completely different terms from the rest of society, either middle class or poor.
This is a phenomenon of the late 20th century.

16

2.3. CENTRAL CHALLENGES

The first sentence allows us to decide that the phenomenon talked about in the following sentence
is clearly a negative one. Without setting the sentence "This is a phenomenon of the late 20th
century" in this context, though, we would not be able to decide whether phenomenon carries a
positive or a negative connotation. The issue that arises from stripping such a sentence bear of
its surroundings holds not just for a machine processing this sentence, but for a human reader, as
well. The fact that even a human reader may run into trouble when classifying parts of speech (as
can also be seen in the experimental results in [36]) makes it rather easy to fathom that this is an
intricate task to be implemented on a machine.

To illustrate one of the many potential problems, consider a technique that is described in detail
in section 3.2. [8] lets a system build its own lexicon of opinionated words starting from a small
number of seed words. The synonyms of these seed words are then extracted from WordNet [45] and
added to the lexicon, classified as having the same polarity as the seed word itself. One of the seed
words may be fortune which most people would classify as unambiguously positive. According to
WordNet, phenomenon is is related fortune via hyponomy, i.e. via a type-of relation. It may thus
be incorporated in the lexicon as a positive word, depending on the inclusion criteria. This would
clearly render correctly classifying the sentence above using this lexicon at least problematic. Section
8.2.1 investigates how the problem of determining the polarity of an opinion may be approached,
both with regards to the system presented and in a more general manner.

2.3.4 Summarising

Irrespective of the fact that summarising content is not necessarily an issue characteristic just to
Sentiment Analysis, as it is part of manifold disciplines and issues unrelated to the field, it is
important enough in this context to be considered a major aspect of the field. Consider again, for
example, the MPQA corpus from [82]. This corpus is comprised of 378 news articles, a total of
10,657 sentences. This is, of course, the training set of a system, but even if the amount of text
analysed is considerably smaller (and it may just as well be bigger), the human reader may very
likely have a hard time digesting the analysed information. These troubles would not just arise from
the sheer size of analysed text but also from the, not necessarily human friendly, machine read and
produced format. Consider a short excerpt of MPQA corpus annotation syntax:

766 1722,1756 string GATE_on nested-source=”w” is-implicit=”” onlyfactive=”yes”

The corpus annotations are made up entirely of such lines, each line describing some character-
istic of an n-gram appearing in one of the annotated news articles. The meaning of this annotation
is explained in detail in chapter 5 and is not of much concern at this point. Merely the issue shall
be pointed out here that a human reader may be able to digest some of the information contained,
such as that we are dealing with information that is, by some definition, factual. Beyond some basic
comprehensibility, the value of information of the raw data is arguably rather low to the human
eye. This may mean that, without proper summarisation, the efforts of Sentiment Analysis and its
results may, in many cases, ultimately be rendered useless, simply by the lack of finding ways of
representing content in an intuitively understandable manner.

There have been two different approaches as to how opinionated text may be summarised and
represented. On the one hand, it has been suggested that an opinionated text may be represented
as a shorter, also textual, version of itself. By distilling out the parts of a text that convey the
central aspects of it with regards to its opinionated content and its orientation, and discarding the
rest, a more comprehensive and compact representation of the text’s contents may be attained.
Such textual summaries may take a number of shapes. One could aim at extracting keywords or
key phrases from the original text that provide an adequate summery of the text’s opinionated
contents. Another way might be to find a single excerpt which, according to classification results,
holds the most prominent or most characteristic opinion of the text as a whole.

The second, in Sentiment Analysis prevalent, approach that has been taken is to present the results

17

2.4. PERIPHERAL CHALLENGES

Figure 2.1: Example of graphical sentiment summarisation comparing two cameras (from [41])

of an analysis graphically, as described in [40] and [41]. Both techniques offer different qualities,
their value depending very much on the domain and topic that is to be summarised. An example in
[41] compares the sentiments towards two different cameras and their individual qualities taken from
customer reviews. This kind of setting naturally lends itself to a concise graphical presentations
of the sentiments because it allows the potential user of such information to effortlessly access the
desired content. Figure 2.1 shows the graphical representation suggested in [41]. In other domains
it may be more desirable to maintain a more complex, textual structure in order to retain important
aspects of the analysed text. Trying to summarise an extensive commentary on current interna-
tional affairs in a solely graphical manner may prove to be rather complicated or inappropriate for
the issue. As is often the case, choosing a hybrid approach utilising both textual and graphical
summarisation of analysis results may add to the value of a system’s output by unifying individual
qualities of the two different approaches to representation.

2.4 Peripheral challenges

The challenges described throughout the former sections may, as the title suggests, be viewed as the
central challenges of Sentiment Analysis, but they are by no means all encompassing when it comes
to the problems one faces when developing a system. There are numerous other problems that may
or may not arise and those most important by today’s standards are investigated below. Going
further in the development of the approach and system that have been proposed by this project,
and are described in detail in the subsequent chapters, would almost certainly mean tackling most
of the challenges touched upon in this section. Suggestions as to how one might accomplish digging
deeper into these not so imminent, but nevertheless vital, issues will be presented alongside potential
gains from doing so in chapter 8. This is why, in spite of the fact that the issues presented below
were generally only briefly touched upon during the project itself, elucidating upon these problems
is vital to gain a full and clear understanding of the complex field of Sentiment Analysis and what
is entailed by developing solutions within it.

2.4.1 Determining strength and other degrees of opinion

As discussed earlier in section 2.3.3, determining an opinionated text fragment’s polarity raises the
question of whether or not determining the strength of an opinion is a viable and valuable task.
By simply saying that a statement is a positive one, no information is conveyed about whether the
entity stating this opinion feels strongly about this particular statement or if it doesn’t. Also, a

18

2.4. PERIPHERAL CHALLENGES

positive and a negative opinion may very well have the same strength, just situated on opposing
ends of a scale. Thus, determining the strength of an opinion, in addition to its basic orientation,
may offer useful information contributing to achieving a more detailed understanding of the text
that is being analysed.

In [83], Wilson collects a number of different clues that suggest a high intensity of a particular
text passage and states that these high levels of intensities can, in turn, be used to find opinionated
content more effectively. Such clues include words and word combinations such as the following,
and many more:

• grown tremendously

• so exciting

• very definitely

• gross misstatement

Accordingly, this example shows that not only may a more fine grained categorisation of the
opinions encountered allow a more detailed understanding of the analysed text once it is classified
accordingly, but at the same time contribute to a higher quality of the classification process, as
well. Wilson also shows that inter-annotator agreement is significantly higher when comparing the
annotations of such high intensity words or phrases with words or phrases of lower intensity. This
suggests that analysing text constituents with respect to their intensity may allow us to employ
some judgement upon ambiguities we are potentially dealing with. We may invest more trust in
classification results if the text involves words or phrases of high intensity if we are confident that
they are indeed less ambiguous than less intense words and phrases.

As mentioned in section 2.3.3, in [58] Pang and colleagues introduce a rating scale for a word’s
or phrase’s sentiment that extends the basic notion of a binary classification as positive or negative.
Instead of extending this binary classification scheme to encompass, for example, weakly negative,
stronlgy negative etc., Pang and colleagues choose a rating scale with which one to five stars are
assigned to a word, phrase or document to judge it with regards to its positivity or negativity. Con-
sequently, this task is strictly speaking only marginally concerned with determining the strength
of an opinion, but rather aims at supplying finer distinctions between the degree of positivity. By
assigning a phrase one star, we supply a rather negative opinion, but give no information about
whether we feel strongly about this negative judgement.

Pang and colleagues propose three different classifiers, all based on Support Vector Machines (SVM)
(see section 3.1.1 for details). The first approach uses one versus all (OVA) SVM, a generalisation of
the original SVM specification, which handles binary problems, to multi class problems such as the
one at hand. "Training consists of building, for each label l, an SVM binary classifier distinguishing
label l from ’not-l’." [58] The second classifier uses regression, based on the assumption that "the
labels come from a discretisation of a continuous function g mapping from the feature space to a
metric space." [58] Viewing the problem in metric space is justified mainly with the assumption
that we can deduce some metric distance between the rating, e.g. that a rating of three stars is, by
some distance measure, closer to a rating of four stars than it is to one star.

A third algorithm used to solve this problem is metric labelling, which, as the name suggests, also
utilises the assumption of some distance measure separating the different star ratings. To perform
metric labelling, a "special case of the maximum a posteriori estimation problem for Markov random
fields" [58], we need to have an initial function determining label probabilities, π(x, l). These label
preferences may be determined using one of the previously described methods. With a measure d
denoting a distance of labels and nnk(x) signifying the k nearest neighbours of an item x according
to some similarity measure sim, we can find a mapping of instance x to label lx that minimises

∑
x∈test

[
−π(x, lx) + α

∑
y∈nnk(x)

f(d(lx, ly))sim(x, y)

]
(2.2)

19

2.4. PERIPHERAL CHALLENGES

where f is monotonically increasing and α is a trade-off and/or scaling factor. Through this,
classifications are penalised that assign divergent labels to similar classes.

For the evaluation of these three methods, the data set used by Pang and colleagues was collapsed
into two different versions, one of three classes, negative, middling and positive, and one of four
classes. The three class problem was chosen to enable performance comparison of the classifiers
on problems of differing complexity. A four class separation instead of the original five classes was
chosen due to the fact that using five classes yielded too few training instances for some of the classes.
"In the four-class case, regression performed better than OVA [...], but for the three-category task,
OVA significantly outperforms regression [...]." [58] In both the three-class and four-class cases,
metric labelling increased performance.

2.4.2 Determining opinion holder and target

In an application, the user may be interested in opinions on certain targets or objects, but not on all.
This issue gives rise to the necessity of considering not only whether or not a piece of opinionated
language is positive or negative and what its content is. Other parameters may carry significance, as
well. It may be crucial to determine who the source of the concerning opinion is, or who the opinion
is directed towards. Ruppenhofer and colleagues focus on this issue and highlight its importance in
[69]. They use so called Automatic Semantic Role Labelling (ASRL), developed by [23], as a base
for their developments. ASRL aims at identifying semantic relationships filled by constituents of a
sentence within a semantic frame, which is roughly what is intended when trying to identify a holder
or target of an opinion. ASRL identifies constituents of phrases according to the roles they take
based on the lexicon developed during the Berkeley FrameNet project [1]. The part of the lexicon
that is applied to ASRL is made up of frames, each of which which describes a family of lexical
items. A frame then contains those lexical items that are member of the family and relevant to
identify constituents of a sentence that take up a role. For example, the frame TRANSPORTATION
contains the frame elements MOVER(S), MEANS, PATH and the scene MOVER(S) move along
PATH by MEANS. Frames can also inherit other frames, e.g. the frame DRIVING inherits the
frame TRANSPORTATION. Using this construction of frames, their elements and inheritances,
ASRL identifies roles within phrases by assigning phrase constituents to frames and the according
roles they take within a frame.

Ruppenhofer and colleagues identify the following four issues that are not sufficiently covered
by ASRL and explain their implications:

• Attribution, i.e. the relation between beliefs and assertions expressed in text and their sources

• Referent identification, which becomes an issue when the entity or entities referred to are not
overtly expressed in the text

• Inferences concerning attitudes and their sources and targets

• Targets of a less studied subjectivity type: arguing

These four issues, in combination with the underlying principles of ARSL, roughly outline what
needs to be considered when attempting to identify an opinion holder or the target of an opinion.
The general goal is to break down sentences or other parts of text according to the relationships that
the constituents the text is made up of have to each other. By identifying such relations, one can
deduce which parts of a piece of, in this scenario opinionated, text represent the entity expressing
an opinion, which parts represent the receiver of an opinion and which the opinion itself.

2.4.3 Scope of context

An opinion is, in many cases, very much dependent on the context it is uttered in. Not only can
an utterance’s surroundings supply information about its content, holder or target, but often these
surroundings determine whether or not a text fragment can be classified as opinionated, in the first
place. Consider the following two sentence:

20

2.4. PERIPHERAL CHALLENGES

Due to the most recent developments, the oil price has steadily risen. This is clearly
very bad news for Britain’s drivers.

A human annotator would not be troubled by the task of properly identifying the rising oil prices
as something the author of the sentences appraises negatively. Without the second sentence, though,
identifying this expression as negative, or even opinionated, would arguably not be valid. Only by
considering the context of the statement, namely the sentence following it, can the classification be
carried out reliably.

The issue of an expression that is, on its own, seemingly void of any opinion, but when placed in
a certain context changes its property, frequently arises and has thus received recognition in efforts
to develop Sentiment Analysis systems. [5] proposes a number of features that, in unison, are to
identify opinions among factual information. One group of features, which the authors call lexical
features, aim specifically at taking into account the context when analysing a word. Each word is
successively considered in combination with the word occurring before and after it, and in the same
manner with two words, three words, and four words prior to and after it. Breck and colleagues use
two additional groups of features, one of which is based on POS tagging. All constituents of the
analysed text are tagged with an appropriate type identifier. For each word, POS tag features are
encoded by three values, prev, cur and next. These features hold the POS tag of the token preceding
the constituent of concern, the tag of the constituent itself and the tag of the token following it.
By encoding the POS tag features in such a manner, the context in which the tokens appear are
further taken into consideration.

Applying these two feature representations to the example above, though, it is arguable whether
limiting contextual considerations to the eight, or two, words closest to the term of interest always
suffices. At the same time it is rather obvious that, as the scope of contextual analysis is widened
further, analysing every possible combination of n-grams may become rather cumbersome. Take,
for example, a text of 200 words that is to be analysed. If only 1-grams, i.e. single words, are
considered, f1(200) = 200 1-grams need to be analysed. If each word is analysed by itself and also,
in turn, together with the word preceding it and the word following it, the number of fragments, f2,
in need of analysis rises to f2(200) = 200 + (2 ∗ 1 + 198 ∗ 2) = 598. Analysing f3(200) would mean
analysing f3 = 200 + (2 ∗ 1 + 198 ∗ 2) + (4 ∗ 1 + 196 ∗ 2) = 994 combinations. Generally, following
this pattern of analysis, whenever considering more than just 1-grams, we need to analyse

fn(N) = N +
n∑

i=2

2N − 2(i− 1) (2.3)

word combinations will have to be analysed, where N is the total number of analysed words and
n is the size of the largest n-gram that is considered. Issues may arise because, generally, signifi-
cantly larger text corpora may be analysed and the analysis of each n-gram is a process potentially
involving a number of subtasks in itself.

In [57], Pang and Lee propose cut-based classification, a technique that classifies words accord-
ing to two scores, individual scores and association scores. "Suppose we have n items x1, ..., xn to
divide into two classes C1 and C2" ([57]). Individual scores, indj(xi), are non-negative estimates
of each xi’s probability of belonging to one class or the other just based on xi’s value. Association
scores, assoc(xi, xk) estimate the importance of the two classes having the same class label. It is
then the aim of a classifier to both maximise an item’s individual score while penalising putting
closely related items in different classes. From these two objectives a partition cost is defined that
is to be minimised. By introducing the association score, Pang and Lee establish a relation be-
tween words appearing in a text that is not based on local proximity within the text, but rather
on proximity of meaning and thus propose an alternative to the approach of partitioning text into
n-grams.

21

3

Machine Learning in Sentiment Analysis

Having outlined the predominant challenges that arise when developing Sentiment Analysis systems
in chapter 2, this chapter offers an overview of the Machine Learning techniques that have been
deployed in this area. Generally speaking, the Machine Learning techniques that have been applied
within the field of Sentiment Analysis may be placed among one of three categories:

1. Supervised Learning (3.1)

2. Unsupervised Learning (3.2)

3. Reinforcement Learning (3.3)

Out of these three categories, Supervised Learning algorithms have been the most popular in
Sentiment Analysis and Reinforcement Learning techniques have only been considered in recent
years. Argumentation, which constitutes a significant part of this project, has not been used in
any Sentiment Analysis developments as of today and is not covered in this chapter, but rather
separately in chapter 4. Refer to [40] and [59] for additional examples and explanations of Machine
learning algorithms that have been applied to Sentiment Analysis but are not mentioned in the
following sections.

3.1 Supervised Learning

Some of the most predominant Supervised Learning techniques in Sentiment Analysis have been
SVM, Naive Bayesian Classifiers, and other, mostly binary, classifiers. The rise of interest in Su-
pervised Learning is largely owed to an increase in availability of labelled text corpora such as the
MPQA corpus ([80]) or the TREC blog tracks ([55], [42]), which are a basic prerequisite for using
Supervised Learning techniques. Before giving a detailed account of SVM, the algorithm of choice
for this project, and a less extensive overview of some other Supervised Learning algorithms, con-
sider the binary classifier described below that is do decide whether a text fragment is opinionated
or non opinionated. Considering the information provided throughout the previous chapters, it will
become obvious rather quickly that a classifier such as this, even in a case where it performs very
well, will only be able to solve the issue partially. Nonetheless, the issues that arise in designing
this classifier apply equally, or at least similarly, to other classification problems and this example
thus offers a reasonable starting point.

In [35], Kim and colleagues describe a simple method to distinguish opinion bearing sentences
from non-opinion bearing sentences using a Supervised Learning approach. As elaborated, having
access to labelled data is crucial in this setting, and Kim and colleagues test their learning algorithm
on four different text corpora:

1. WordNet ([45])

2. Editorial entries in Wall Street Journal (WSJ) ([35], [42])

22

3.1. SUPERVISED LEARNING

3. Columbia WordList ([85])

4. A combination of the above

Kim and colleagues propose two simple training algorithms. One classifies every sentence that,
according to the used data set, contains a number of opinion bearing words as an opinion bearing
sentence. The second approach is to search for what they call strong opinions and classify a sentence
as opinion bearing whenever it contains one of these strong opinion words. To determine whether an
opinionated word is also strongly opinionated they define a cutoff threshold λ which is determined
by means of comparison with human annotated text in regard to opinion strength.

A number of other Supervised learning algorithms have been proposed to tackle different issues
of Sentiment Analysis, some of which Pang and colleagues investigate in [61]. They use three
different classifiers for the task of classifying movie reviews at document level and compare the
performance of the following Machine Learning techniques:

• Naive Bayes classifier

• Maximum Entropy classifier

• Support Vector Machines (SVM)

The results presented by Pang and colleagues show that, for the particular task of classifying
movie reviews at document level, the best performance is achieved using SVM while the worst
performing method is the Naive Bayes classifier. At the same time, none of the three methods
achieves classification accuracy comparable to performance in classifying the reviews topics instead
of their sentiment.

Starting with SVM, all three algorithms are explained below.

3.1.1 Support Vector Machines

SVM, pioneered by Corinna Cortes and Vladimir Vapnik ([12]), have been one of the more popular
Supervised Learning algorithms not just in Sentiment Analysis, but various other fields, as well,
such as spam filtering (e.g. [16], [68]) or medical research (e.g. [6], [22], [27]). The system developed
in this project also integrates SVM and, accordingly, its performance is measured up against an
SVM classifier. SVM were originally developed as binary classifiers, which is the function they fulfil
both in the project and in most other applications in which they are used, but there have also been
efforts to extend the use of SVM beyond binary classification problems. The following account of
SVM and their works, which will limit itself to explaining binary classification with SVM, has been
adapted from [3], which may also be referred to for details on classification with SVM beyond binary
decision problems.

Consider a linear model describing a two class classification problem such as the one of deter-
mining opinionatedness. We can describe such a problem with linear model of the form

y(x) = wTφ(x) + b (3.1)

where φ(x) is a feature-space transformation of the data x where wT is a weight vector and b is
a bias. Transforming data into feature space can yield linear separability of data that is not linear
separable in the original data space. Figure 3.1 shows a simple example of how adding features may
achieve separability of data that is not linear separable in data space. A training data set consists
of N input vectors x1, ..., xN all of which have a class label C ∈ {1,−1} and new data is classified
according to the sign of y(x). If the training data is linearly separable in feature space, we can
perfectly split the data according to their class with one hyperplane in feature space. When this is
not the case, so called slack variables may be introduced which allow some of the training instances
to be misclassified. SVM find the hyperplane that not only separates the data but that maximises

23

3.1. SUPERVISED LEARNING

Figure 3.1: Example showing how linear separability of data can be achieved by adding features.
Graph 1 shows a two class data set with one feature that is not linearly separable. Graph 2 shows
the same data set with a second feature added, making the data linearly separable, as shown by the
red line.

Figure 3.2: "The margin is defined as the perpendicular distance between the decision boundary
and the closest of the data points" [3]. The support vectors are those data points that lie on the
decision boundaries.

24

3.1. SUPERVISED LEARNING

the margin, as well. This means, the separating hyperplane is placed in such a manner that the
distance between the separating plane and the nearest points of both classes is maximised. This is
illustrated in figure 3.2. The margin, i.e. a distance from point xn to the hyperplane is given by

tny(xn)

||w||
=
tn(wTφ(xn) + b)

||w||
. (3.2)

We wish to maximise the margin, i.e. the perpendicular distance, between the separating plane
and the point(s) xn closest to by optimising the parameters w and b. This maximum margin solution
is found by solving

argmax
w,b

{
1

||w||
min
n

[tn(wTφ(xn) + b)]

}
(3.3)

where 1/||w|| is taken outside the optimisation over n because w does not depend on n. Attaining
a direct solution of this problem would be very complex and thus some conversions of the problem
are needed. We can set

tn(wTφ(xn) + b) = 1 (3.4)

for the point that is closest to the separating plane and with this, all data points will satisfy the
constraints

tn(wTφ(xn) + b) ≥ 1, n = 1, ..., N. (3.5)

This is the so called canonical representation of the separating plane which leaves us to maximise
||w||−1 which is equivalent to minimising ||w||2. Thus, we optimise

argmin
w,b

1

2
||w||2 (3.6)

subject to the constraints given by equation (3.5). We introduce Lagrange multipliers (see
appendix B.1) an ≥ 0 with one multiplier an for each constraint to solve this optimisation problem,
which yields

L(w, b,a) =
1

2
||w||2 −

N∑
n=1

an
{
tn(wTφ(xn) + b)− 1

}
(3.7)

where a = (a1, ..., aN)T . Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero yields two conditions,

w =
N∑

n=1

antnφ(xn) (3.8)

0 =
N∑

n=1

antn. (3.9)

Using these two conditions to eliminate w and b from L(w, b,a) yields the dual representation
of the maximum margin problem we are trying to solve. We are thus maximising

L̃(a) =
N∑

n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm) (3.10)

with respect to under the constraints

an ≥ 0, n = 1, ..., N, (3.11)

N∑
n=1

antn = 0. (3.12)

25

3.1. SUPERVISED LEARNING

kernel type function
linear K(x, y) = xT y

polynomial K(x, y) = (γ ∗ xT + coef)p

RBF K(x, y) = exp(−γ ∗ |x− y|2)
sigmoid K(x, y) = tanh(γ ∗ xT ∗ y + coef)

Table 3.1: Kernel functions provided by libSVM

k(x, x′) represents the kernel function that is used in training the SVM. A number of kernels
applicable to SVM exist, libSVM ([7]), the SVM implementation used for the project, offers linear
kernels, polynomial kernels, radial basis function (RBF) kernels and sigmoid kernels (see table 3.1
for details on these kernels).

Using the trained SVM model as described above, we classify new data points by evaluating the
sign of y(x) in equation 3.5. We express equation 3.5 in terms of the paramters {an} and the kernel
function by substituting for w, using 3.8

y(x) =
N∑

n=1

antnk(x,xn) + b. (3.13)

This constrained optimisation problem satisifes the Karush-Kuhn-Tucker (KKT) conditions (see
appendix B.2), which ins this case requires that the following properties hold:

an ≥ 0 (3.14)
tny(xn)− 1 ≥ 0 (3.15)

an{tny(xn − 1} = 0 (3.16)

This means that for every data point we have either an = 0 or tny(xn = 1). All data points
for which an = 0 will not appear in the sum in equation 3.13. Thus they play no role in making
predictions for new data points. The data points that do appear are called support vectors, and they
satisfy tny(xn) = 1, i.e. they correspond to points that lie on the maximum margin separating plane
in feature space (see figure 3.2). This fact poses one of the crucial benefits of SVM because, once
the model is trained, we only retain the support vectors for subsequent classification and discard of
all other data points.

3.1.2 Other Supervised Learning techniques

The Naive Bayes’ Classifier assigns a given document d the class c∗ = argmaxcP (c|d) where,
according to Bayes’ rule

P (c|d) = P (c)P (d|c)
P (d)

(3.17)

in which P (d) is simply a normalising factor. The probability of a document belonging to one
of the possible classes, i.e. opinionated or non opinionated, is decided upon on the basis of a set of
m possibly occurring features, {f1, f2, ..., fm}. ni(d) then denotes the number of times fi occurs in
document d. Assuming conditional independence between all fi, equation 3.1 may be rewritten as

PNB(c|d) :=
P (c)(

∏m
i=1 P (fi|c)ni(d))

P (d)
(3.18)

Pang and colleagues’ training method consists of relative-frequency estimation of P (c) and
P (fi|c). This technique, despite being rather simple, often produces acceptable results.

Maximum Entropy Classifiers serve the basic idea that we should prefer the most uniform mod-
els that at the same time satisfy any given constraints. A model for classification must be found

26

3.2. UNSUPERVISED LEARNING

that satisfies any constraints imposed by the data that is used and at the same time makes as few
assumptions about this data as possible to allow a good degree of generalisation onto new data.
Probability estimates for assigning data to one of the possible classes, e.g. opinionated and non
opinionated, take the following form:

PME(c|d) :=
1

Z(d)
exp

(∑
i

λi,cFi,c(d, c)

)
(3.19)

where λi,c are weights, Z(d) is a normalisation function, Fi,c is a feature/class function for
feature fi and class ci defined as:

Fi,c(d, c
′) :=

{
1, if ni(d) > 0 and c′ = c
0 otherwise (3.20)

The parameters are then set to maximise the entropy of the induced distribution. The explana-
tions of Naive Bayes’ Classifiers and Maximum Entropy Classifiers were adopted from [61].

3.2 Unsupervised Learning

All approaches previously described build upon a set of fully annotated data, which is used to train
a classifier, with one technique or another. This classifier is then used to classify novel incoming
text. The obvious downside is that, despite more and more annotated text being available, often
this reliance on annotated text is going to restrict the general applicability of a system.

Unsupervised Learning techniques are applied in Sentiment Analysis to tackle this issue. Here,
one of the most popular approaches, which is explained in detail below, uses so called seed words
to automatically build a lexicon, or knowledge base, which is subsequently used to classify newly
incoming text. Building a lexicon from seed words is, for example, proposed in [2], [8], [17], [24],
[79], [85], [87], and also mentioned in [40], [59] and [81]. This technique based on seed words is, by
some authors, also referred to as a semi-supervised learning approach. This additional distinction
is employed because building a lexicon from seed words relies on the availability of a small initial
set of manually annotated data and is thus not strictly unsupervised.

Kim and Hovy [34] present a system for determining sentiment polarity which uses the concept
of seed words to construct a classification model. A small amount of seed words is collected which
are either unambiguously positive or negative and annotated accordingly. This list is then itera-
tively expanded using synonymy and antonymy relations in WordNet. Kim and Hovy assume that
synonyms of positive words should be positive, as well, and that antonyms of positive words should
be negative, with analogous relationships for synonymy and antonymy of negative words. Those
words found by this process in an iteration are added to the collection of words with their according
label and the process is repeated. Throughout, Kim and Hovy treat nouns, verbs and adjectives
separately. Starting from a seed list of 23 positive and 21 negative verbs and 15 positive and 19
negative adjectives, a large collection of classified verbs, 5880 positive and 6233 negative, and adjec-
tives, 2840 positive and 3239 negative, was constructed, with nouns added further along the process.
From this collection a number of words had to be removed because they were classified wrongly.
Also, some words appeared multiple times as both negative and positive. Due to this fact, Kim
and Hovy developed a measure of strength of sentiment polarity, trying to determine how strongly
a word is both negative and positive. Assigning each word a score allows dealing with ambiguities
resulting from such problems as multiple occurrences of the same word.

Using the constructed list of seed words and utilising the concept of a score that is calculated
according to the frequency and class distribution of words, new unseen words can be classified.
Given a new word, a collection of synonyms is collected from WordNet and the relation between
this new, unclassified, list and the list collected during training is evaluated by

argmax
c
P (c|w)=̃ argmax

c
P (c|syn1, syn2, ..., synn) (3.21)

27

3.2. UNSUPERVISED LEARNING

where c is a sentiment category (positive or negative), w is the unseen word and synn is the set
of synonyms of w as determined by WordNet. Two methods were used and compared to compute
this probability measure, the first being

argmax
c
P (c|w) = argmax

c
P (c)P (w|c)

= argmax
c
P (c)P (syn1, syn2, ..., synn|c)

= argmax
c
P (c)

m∏
k=1

P (fk|c)count(fk,synset(w)) (3.22)

"where fk is the kth feature (list word) of sentiment class c which is also a member of the synonym
set of w, and count(fk, synset(w)) is the total number of occurrences of fk in the synonym set of w.
P (c) is the number of words in class c divided by the total number of words considered." [34] This
method is rather simple to use because it does not require manually annotated data for training
and instead utilises the synonymy and antonymy relations of WordNet, which are already in place.
The second model to construct a classification starting from the seed words is shown below:

argmax
c
P (c|w) = argmax

c
P (c)P (w|c)

= argmax
c
P (c)

∑n
i=1 count(syni, c)

count(c)
(3.23)

The probability P (w|c) of word w given a class c the occurrences of synonyms of w in the list
of c are counted.

Either of the two methods yield scores of negativity and positivity for single words. Kim and
Hovy use these scoring methods for single words to construct a sentence sentiment classifier. The
structure they are interested in on sentence level is finding sentiment of a holder about a claim.
Based on results of manual analysis of text, the assumption is made that sentiments are found most
likely in close vicinity to the holder. As a simplification, Kim and Hovy assume the topic as given,
i.e. identify it through direct matching. The holder is identified using a Named Entity Recognition
(NER) system and a region around this holder is considered for sentiment extraction. Different
regions are defined and tested, e.g. full sentences or the words between holder and topic. The
sentiment is then derived by analysing the single words appearing in the region according to one of
the methods described above and joining the results into a single classification, either by counting
the signs in the region or by calculating harmonic or geometric mean. The best performance is
achieved when a window encompassing all words in a sentence following the holder is considered
and the signs in this region are counted.

There have been numerous systems proposed that fall into the category of Unsupervised Learning
that use other techniques than seed words. Some classifiers use heuristics, others apply bootstrap-
ping, which is similar to the technique described above. In [60], Pang and colleagues base their
classifier on the simple heuristic that words that frequently appear in, for example, a customer
review, have a tendency to be factual, and words that rarely appear, and especially words that
appear just once, exhibit a high likelihood to be opinionated. This heuristic is based on a previ-
ous empirical analysis of text. In [66], Riloff and Wiebe present a bootstrapping approach, which
employs a technique similar to, but more complex than in [8] that extracts patterns from training
text. These patterns may look as follows:

• <subj> passive-verb

• noun prep <np>

• infinitive prep <np>

28

3.3. REINFORCEMENT LEARNING AND CONDITIONAL RANDOM FIELDS

• et cetera

Initially, two high-precision classifiers are applied to unannotated text, one subjectivity classifier
and one objectivity classifier. Based on a collection of words and n-grams that have previously been
shown to be good subjectivity clues, sentences in the unannotated text are classified as either
subjective or objective, given that a classification can be made with confidence. For subjectivity
classifications this is the case whenever a sentence contains at least strongly subjective clues that
can be identified by the described collection. Clues are strongly subjective if the collection of words
and n-grams they are extracted from does not contain ambiguous classification results of this clue.
Sentences are classified as objective whenever strong subjectivity clues are entirely absent from a
sentence. Sentences to which neither of the two criteria apply remain unclassified at this stage.
Using this technique, classification accuracy of the subjectivity classifier lies at 91.5% with a recall
of 31.5% and the objectivity classifier yields accuracy of 82.6% at a recall rate of 16.4%. For
the subsequent learning process of extraction patterns from those sentences that were classified, a
learning algorithm based on AutoSlog-TS [65] is employed. The extraction distinguishes between
relevant extraction pattern, i.e. those of subjective phrases, and irrelevant extraction patterns, i.e.
those of objective phrases. The learning process consists of two steps. The first step extracts every
possible instantiation of all extraction pattern considered that appear in the text that is analysed.
For example, an instantiation of the extraction pattern <subj> passive verb may be <subj> was
satisfied. In a second step statistics are gathered for how often each of the learned extraction patterns
occurs in subjective versus objective sentences. The extraction patterns found and the frequencies
they occurred with are ranked using a conditional probability measure, i.e. the probability that a
sentence is subjective given that a specific extraction pattern appears in it:

Pr(subjective|patterni) =
subj freq(patterni)

freq(patterni)
(3.24)

where subj freq(patterni) is the frequency of patterni in training sentences that are subjective
and freq(patterni) is the frequency of patterni in all training sentences. As a last step, only those
extraction pattern are chosen to represent subjectivity that are larger than some threshold φ.

The extracted patterns are then added to the initial set of n-grams and the procedure is repeated,
using the now extended set of annotated training data. In this way, a collection of subjective and
objective patterns is iteratively built up to eventually form a lexicon comprised of n-grams of varying
length.

3.3 Reinforcement Learning and Conditional Random Fields

Up to this date, Reinforcement learning has sparsely been introduced to Sentiment Analysis. Among
more established Supervised learning and Unsupervised Learning algorithms, few scientists have
looked to Reinforcement Learning to provide algorithms that might solve problems in Sentiment
Analysis. Among a few others, a notable exception is marked by Conditional Random Fields (CRF),
which have been applied to the field by a number of scientists (e.g. [5], [9], [84], [88]). To provide
an intuition as to how Reinforcement Learning may be utilised within Sentiment Analysis, a short
account is presented of a CRF application developed by Yejin Choi and colleagues [9].

The following explanations of CRF are adapted from [38], [73] and [77]. CRF represent a con-
ditional distribution p(y|x) as undirected graphical models for building probabilistic models to split
and label sequence data.

Generally, when dealing with Markov models, we need to assume the Markov property to avoid
having to define the complete probability distribution, i.e. define probabilities for all combinations
of past and future events in a Markov chain, i.e.

Pr{st+1 = s′, rt+1 = r|st, at, rt, st−1,, r1, s0, a0} (3.25)

29

3.3. REINFORCEMENT LEARNING AND CONDITIONAL RANDOM FIELDS

Figure 3.3: Graphical representation of Markov decision process, where s=state, a=action,
r=reward.

where s is the current state, a are the actions available when in state s and r is the reward for
taking action a when in state s. In the context of text analysis such as Sentiment Analysis, we are
not concerned with time, but states are rather words at certain positions in text along which we
move as we would along states in a temporal sequence.

The Markov property states that an environment’s response at t+ 1 depends only on the state
st and the action at:

Pr{st+1 = s′, rt+1 = r|st, at} (3.26)

We thus assume that vertices, i.e. variables, not directly connected are conditionally indepen-
dent. In terms of the graph in figure 3.3 this means, we only consider maximally connected cliques
at each one time and thus we obtain one potential function for each maximally connected clique
contained in the graph. This ensures that problems remain tractable, but also limits the model in
not allowing long range dependencies of entities. This, however, is desired in tasks such as Sentiment
Analysis, since an assumption that a word’s sentiment depends only on its successor’s characteristics
is arguably not valid.

CRF offer reconciliation to this issue because, unlike other models, such as Hidden Markov mod-
els (HMM), they do not take a generative approach but are rather conditional models that specify
the probabilities of possible label sequences given an observation sequence. Therefore, the model
does not expend effort on modelling the observations, which are fixed at test time anyway.

Lafferty and colleagues define the probability of a label sequence y, e.g. a succession of opin-
ionated and non opinionated tags, given an observation sequence x, e.g. a collection of phrases, as
a normalised product of potential functions of the form

exp(
∑
j

λjtj(yi − 1, yi,x, i) +
∑
k

µksk(yi,x, i)) (3.27)

"where tj(yi−1, yi,x, i) is a transition function of the whole observation sequence and the labels
at positions i and i − 1 in the label sequence; sk(yi,x, i) is a state feature function of the label at
position i and the observation sequence." ([77]) The adjustable parameters λj and µk are estimated
from training data.

In [5], Breck and colleagues use CRF to distinguish opinionated text from non opinionated con-

30

3.3. REINFORCEMENT LEARNING AND CONDITIONAL RANDOM FIELDS

tent based on the MPQA corpus (see section 5.1.1) which has been used in this project for the
construction of the corpus. They also collect a number of features describing the text, among
which are syntactical features determined by a POS tagging system, and have a CRF algorithm
subsequently classify expressions according to those features.

Choi and colleagues [9] apply CRF not to identify opinions but rather to find sources of opinions.
Using various features that determine syntactic, semantic, and orthographic lexical characteristics
of text, as well as dependency parse features and opinion recognition features they train a CRF to
identify both sources of direct and indirect opinions. The features that were used include

• Capitalisation features: two boolean features to represent capitalisation, all-capital and initial-
capital

• POS features: Representing lexical categories, acquired using the GATE POS tagger ([13])

• Opinion lexicon features: A boolean value representing whether a word is included in a pre-
defined set of opinionated words

• Syntactic chunking: groups of words, i.e. chunks of the text, are identified and assigned
grammatical roles, e.g. subject, object, etc.

• Opinion word propagation: Identified chunks that contain a word that is member of the set
of predefined opinionated words are defined as opinionated altogether

• Dependency tree features: Encodes structural information between words and checks for gram-
matical relations to other opinionated words which is devised from the previous two items of
information

• Semantic class feature: Assigns words to one of seven classes identifying their semantic prop-
erties with regards to what sort of source the word represents. The classes are authority,
government, human, media, organisation_or_company, proper_name and other, where other
includes 13 semantic classes that cannot be sources, such as vehicle and time.

These features are conjoined by the CRF to generate a set of labels, X1, ...Xn with possible val-
ues ’S’, ’T’ and ’-’ for a sequence of tokens, Y1, ...Yn. ’S’ denotes the first token of a source, ’T’ is
assigned to non-initial tokens of a source and ’-’ is assigned to tokens that are not part of any source.

For a comprehensive introduction to Reinforcement Learning, see [73], for more on Conditional
Random Fields, refer to [38] or [72].

31

4

Argumentation in Machine Learning and
Sentiment Analysis

Argumentation has, to this date, not been used within the setting of Sentiment Analysis and has
to my knowledge neither, with few exceptions, been applied in unison with Machine Learning tech-
niques in other disciplines. The noted exceptions are [47], [48], [49], and [86]. The research described
in these publications has focused upon developing a technique named Argument Based Machine
Learning (ABML), in which classical Supervised Learning algorithms such as the CN2 algorithm
(see [11] for details) are combined with defeasible argumentation to enhance the performance of the
used algorithms. Before turning to a description of the ABML algorithm in the following, originally
described in [47], a brief introduction to defeasible argumentation is presented, which is described
in detail in [62].

4.1 Defeasible Argumentation

Prakken and Vreesvijk define defeasible argumentation as follows:

“Logic investigates patterns of correct reasoning. [’Defeasible argumentation’ de-
scribes] logics for a particular group of reasoning patterns, viz. those where arguments
for and against a certain claim are produced and evaluated, to test the tenability of the
claim.” [62]

Prakken and Vreesvijk present a broad conceptual sketch of logics systems for defeasible argu-
mentation followed by a more detailed description of features of such systems, as well as a number
of examples. This section will restrict itself to a summarised reiteration of what is presented on a
conceptual level in [62], followed by an example of just one of many possible syntactical represen-
tations.

Logics systems for defeasible argumentation are generally made up of five elements, not all of
which may be explicitly specified:

1. An underlying logical language

2. Definitions of an argument

3. Definitions of conflicts between arguments

4. Definitions of defeat among arguments

5. A definition of the assessment of arguments

The logical language underlying the system may be partially or fully unspecified, rather turning
the system into a framework than an actual system. An argument corresponds to a proof, or the
existence of a proof, in the underlying logic and may be in one of three forms:

32

4.1. DEFEASIBLE ARGUMENTATION

1. Arguments may be defined as a tree of inferences grounded in the premises

2. Arguments may be defined as a sequence of inferences as described in the previous point

3. Systems may define an argument as a premise-conclusion pair, implicitly handing over the
validation of a proof of the conclusion from the premise to the underlying logic

Conflicts, or, alternatively, attacks or counterarguments, in defeasible argumentation usually
come in one of two types:

1. Rebutting

2. Undercutting

Rebutting describes arguments that present opposing conclusions, for example “Tweety flies be-
cause it is a bird” versus “Tweety does not fly because it is a penguin”, thus describes a symmetric
conflict. Undercutting, on the other hand, presents asymmetric conflicts, which may take one of
two possible forms. In one case, a counterargument undercuts an argument by proving a state-
ment that is claimed not to be provable by the attacked argument. For example, the argument
“Tweety flies because it is a bird, and it is not provable that Tweety is a penguin” is undercut by
the argument “Tweety is a penguin”. Another way of undercutting an argument is to attack the
link between premises and the associated conclusion. This is only possible if the attacked argument
is non-deductive. For example, the inductive argument “Raven 101 is black since I observed that
ravens raven1, raven2, . . ., raven100 were black” is undercut by the argument “I saw raven102,
which was white”.

How an argumentation process is evaluated is captured by the definitions of defeat among ar-
guments and a definition of the assessment of arguments. Defeat may, for example, be defined
via a notion of comparing the strength of arguments attacking each other, i.e. a counterargument
defeats the attacked argument if it is, by some definition, stronger. The intensity of a defeat itself
may also be subdivided according to how definitive the defeat is. Finally, the assessment of an
argument does not exclusively depend on it being defeated once, because it may be reinstated at
a later stage of an argumentation process. Argument B, “Tweety does not fly because it is pen-
guin” may defeat argument A stating that Tweety is able to fly. But if argument C then defeats
argument B by disproving the argument that Tweety is a penguin, argument A is reinstated by ar-
gument C. Due to such and other cases, possibly arising during an argumentation process, the final
assessment of the arguments may not be carried out until all available arguments have been assessed.

One representation commonly used to construct rules from which arguments are deduced is the
following:

IF Complex THEN Class

where Complex is a conjunction of simple conditions, so called selectors. These selectors, in
turn, specify attribute values. Picking up the previous example about Tweety, an rule may take the
following form:

IF IsBird = true AND Species = penguin THEN CanFly = false

As we will see below, ABML creates arguments from rules that exhibit the syntax that is shown
above.

33

4.2. ABML

4.2 ABML

As explained above, Machine Learning and Argumentation have traditionally been rather disparate
fields of research and development. Not until recently have the potential merits of combining both
techniques been explored, when Argument Based Machine Learning (ABML) was introduced in [47].
This algorithm unifies Supervised Learning with argumentation as laid out above by constructing
arguments devised from rules of the form

IF Complex THEN Class

and influencing the classification procedure with those arguments. The syntax of the resulting
arguments is elucidated below. ABML uses the CN2 algorithm (see [11]), which is extended to form
the ABCN2 learning algorithm. Usually, Supervised Learning techniques take a preferably large
number of training examples and, using these, try to find a theory, or hypothesis, that adequately
explains the training examples and then correctly classifies new cases. Within the framework of
ABML, some of the training examples have associated with them an argument explaining the rea-
soning behind why an example is classified the way it is. Consider the following example of a bank
approving or denying credit, C(CreditApproved) ∈ (Y es,No), used by Mozina and colleagues. Ta-
ble 4.1 shows some training examples without the added arguments.

The CN2 algorithm takes such examples as input in the form of a pair E = (A,C), where A is
an attribute-value vector, e.g. (Name = Mrs Brown, PaysRegularly = No, Rich = Yes, HairColour
= Blond) and C is the class the example belongs to, e.g. (CreditApproved = Yes). The ABCN2
algorithm accepts such examples, as well, but in addition is also able to process examples of the
form AE = (A,C,Arguments), where Arguments is a set of arguments Arg1, Arg2, ..., Argn. Argi
can take one of two forms, either

C because Reasons

or

C despite Reasons

where Reasons may be a conjunction of reasons:

Reasons = r1 ∧ r2 ∧ ... ∧ rn. (4.1)

Each of the reasons ri may take one of five forms, given ri is part of a positive argument (the
explanations for negative arguments are exactly opposite):

1. X = xi: Value xi of attribute X is the reason why the example is a class as given. This is the
only form allowed for discrete attributes and will thus be the only of concern in the following.

2. X > xi(X >= xi): As the value of attribute X of the example is higher than (or equal to) xi,
this is the reason for the class value.

3. X < xi(X <= xi): The opposite to form 2.

4. X > (X >=): X is high; similar to form 2 with the difference being the lack of knowledge
about a threshold value which thus has to be found by the ABCN2 algorithm.

5. X < (X <=): X is low ; the opposite to form 4.

For the ABCN2 algorithm, the previous example may have the following form:

((PaysRegularly = no,Rich = yes, HairColor = blond),
CreditApproved = yes, {CreditApproved = yes because

Rich = yes ∧ CreditApproved = yes despite PaysRegularly = no})

34

4.2. ABML

Name PaysRegularly Rich HairColour CreditApproved
Mrs Brown No Yes Blond Yes
Mr Grey No No Grey No

Miss White Yes No Blond Yes

Table 4.1: Training Examples for ABCN2 learning algorithm

The example specifies a positive and a negative argument, e.g. because and despite. As seen,
Reasons is a conjunction of reasons, Reasons = r1 ∧ r2 ∧ ... ∧ rn, where each ri may take varying
forms, depending on the attributes of the examples that a reason refers to (see [47] for details).

The arguments, i.e. Reasons, described above are acquired via experts labelling the original
training data of the form E = (A,C) to form training data of which a subset has the form of
AE = (A,C,Arguments). This allows the development of reliable arguments which do not have to
be applicable to the entire domain, but rather just single training examples.

This is helpful because introducing arguments or rules that have to cover the entire training set
may be considerably harder, and a generalisation to newly incoming data may entail problems, as
well. Take, from the table above, Miss White: We could argue that she is approved credit because
she pays regularly i.e.

((PaysRegularly = yes,Rich = no, HairColor = blond),
CreditApproved = yes, {CreditApproved = yes because

PaysRegularly = yes})

The rule covers this particular example, but applied to Mrs Brown, this rule would fail because
there are other reasons for granting Mrs Brown credit, namely the fact that she is rich. Associating
arguments with just single training examples thus allows for covering reasons for classification in
a quite detailed manner. From this new collection of training examples, a classifier is learned in a
similar manner as by the CN2 algorithm. Roughly, in a first step rules are applied that cover, i.e.
explain, as many examples as possible.

The definitions of a rule covering training examples is where the ABCN2 algorithm differs from
the CN2 algorithm it is based upon. With the CN2 algorithm, "a rule covers an example if the
condition part of the rule is true for this example." [47] For the ABCN2 algorithm we say that a
rule has to AB-cover an example and it does so if three conditions are fulfilled:

1. All conditions in rule R are true for argument E. This is the the condition equivalent to the
CN2 algorithm.

2. Rule R is consistent with at least one positive argument of example E.

3. Rule R is not consistent with any of the negative arguments of example E.

Accordingly, the main difference between the CN2 and the ABCN2 algorithm is that the covering
process is more complex for the ABCN2 algorithm, since rules not only have to cover the features
of an example, but also have to agree with the arguments attached to the example. Whenever
examples are covered by a rule, these examples are removed from the training set. This process is
repeated until all examples are covered. This means that with each iteration a new rule is introduced
that covers as many of the examples as possible, argumented or not. Accordingly, the more diverse
the data set proves to be, the more rules are needed to cover the entire set of training examples
while a more homogenous training set needs fewer rules to be fully covered, i.e. explained.

One field Mozina and colleagues have applied their ABCN2 algorithm to is that of legal discourse.
In [48], ABCN2 is trained on a data set that is concerned with a fictional welfare benefits issue. [48]
defines the problem to be solved by the system as follows:

35

4.3. FROM ABML TO A-SVM

The benefit is payable if six conditions are satisfied. These conditions were chosen
to represent different kinds of condition that are found in the legal domain, so that we
can see whether the different form of conditions affects their discoverability. [...] These
conditions represent a range of typical condition types: [Two] are Boolean necessary
conditions [..., one] is a threshold on a continuous variable representing a necessary
condition, and [one] relates five Boolean variable, only four of which need to be true. [The
remaining two conditions] relate the relevance of one variable to the value of another.

2400 example cases were randomly split into a training set containing 70% of the cases and a test
set containing the remaining 30%. Half of the cases satisfied all conditions and the other half did not.
All cases were comprised of both data relevant to a decision on the conditions and irrelevant data.
From the training set, a first set of rules was generated using the CN2 algorithm, i.e. at this point
no arguments were involved in the generation process. In a second step, problematic examples, i.e.
outliers were identified and rules were added to them. These rules were then induced on the training
set using the ABCN2 algorithm. After this second iteration, new rules were added to more outliers
and the procedure was repeated. Thus each iteration following the first pass through the training
data left the features of the examples untouched, but introduced rules that provided a framework for
classifying a number of problematic cases correctly. Since the arguments were attached to training
examples that the CN2 algorithm was not able to classify correctly, the system’s performance
was increased by diversifying the sources of information about the training data upon which its
classification was based. After seven iterations of adding arguments and training, the accuracy on
the test set amounted to 99.8%.

4.3 From ABML to A-SVM

Though ABML and A-SVM differ significantly from one another, as the subsequent chapters will
show, some important parallels can be found and deserve mentioning to set the scene for the details
on A-SVM that follow. The basic training set of ABML consists of a large number of classified
entities that exhibit a certain combination of features. Recall the following example:

((PaysRegularly = yes, Rich = no, HairColor = blond), CreditApproved = yes)

Here, we have three feature variables and a class label, each of the four assigned with a value.
As will become apparent below, this representation is basically equivalent to the representation
chosen for the data processed by A-SVM. A-SVM is trained on a large number of feature vectors,
i.e. a collection of instances that have feature values and a class label associated with them. Both
in ABML and A-SVM, a human annotator reasons upon these combinations of feature values. The
annotator chooses one or more features that either rectify the class this instance is assigned to or
that indicate an opposite classification. In ABML the annotator chooses features one by one, as
many as he or she deems appropriate. In A-SVM, the annotator instead chooses a single combi-
nation of features, i.e. a succession of words appearing in the n-gram the user reasons upon. This
process is nevertheless very similar.

The main difference between the two algorithms can be found in the way of utilising the argu-
ments supplied by the user. For ABML, the arguments are attached to the training instances.
Subsequently, by means of the covering algorithm, these arguments are integrated into the train-
ing procedure to construct classification rules. Whenever a rule is proposed during training, it is
checked how many training instances this particular rule covers. This includes both the feature
values and the argument attached to the training instance. By these means, the training procedure
relies on whatever the human annotator has attached to the training instances. For A-SVM, on
the other hand, training the classifier and putting the arguments supplied by the annotator to use
are two separate processes. As explained in detail in chapter 6, A-SVM yields two classification
results, one after SVM classification and before argumentation and one after both processes have
been executed. Thus, instead of influencing the training of the classifier, or even the classification

36

4.3. FROM ABML TO A-SVM

procedure itself, the arguments in A-SVM fulfil more of a correcting function of SVM classification
results. The user provides reasoning upon a combination of words by classifying it and indicating
the part of the n-gram that he or she deems responsible for the chosen classification. In ABML,
the classification is given to the annotator. Accordingly, the annotator has no choice over the class
but rather performs a matching process between the predetermined class and the features that may
explain this classification.

37

5

Building a text corpus

In this project I have developed a system that employs different techniques in unison with the goal
of enhancing performance in comparison to a similar unimodal approach to Sentiment Analysis.
The classifier developed uses SVM, explained in section 3.1 , which are, as highlighted before, a Su-
pervised Learning technique. Any such technique in Machine Learning relies on a training set being
available. Upon this set the classifier is then trained according to the algorithm that is applied and,
once this training is completed, the classifier categorises new input following the structures found in
the training set. In accordance with this concept, the first and foremost task of the project was to
develop a training set that would allow training a classifier to an extent where it could subsequently
perform quality classification on new and unannotated text. This chapter describes the development
of an extensive text corpus of roughly 13,000 semi-automatically annotated n-grams which was then
used to train the SVM that classifies new text within the final system. The corpus was constructed
using a number of sources, each of which contributed either text, features annotating this text or
both. As explained, the resulting corpus is made up of n-grams, each of which is represented by a
vector of features. The classifier is trained on this collection of feature vectors.

The maximum length of n-grams in the corpus is five words. This value was chosen based on
the intuition that limiting the possible size of the n-grams too far would hamper the ability to grasp
the role that the context in which a word appears plays. At the same time, allowing n-grams that
are too large may have posed computational problems because the larger the n-grams are the larger
are the feature vectors and the more extensive is the subsequent classification procedure. Thus, the
maximum size of five words was chosen as a compromise, respecting the trade off between infeasible
computational demands that large n-grams may pose and hampering the corpus quality by only
allowing very short n-grams. Whether a maximum length of five words is an optimal choice of
parameter will have to be investigated further, along with a number of other adjustable parameters,
as is explained in section 8.2.5. Each n-gram is annotated with the following features:

• The size of the n-gram

• Three scores, one for positivity, one for neutrality and one for negativity

• All types of words that appear within an n-gram

Accordingly, each feature vector is comprised of up to nine features, one determining the size of
the n-gram, three representing scores and between one and five features representing the word types
that appear in an n-gram. The word types categorise all words within an n-gram according to their
lexical types, as discussed in section 5.1.3. In addition to the features, each line contains a class
label, c ∈ {1,−1}, for the particular n-gram, identifying it as either opinionated or non opinionated.

5.1 Sources

The development of the corpus was a task of taking a number of sources offering text and valuable
information about text and merging the content of these sources into a single corpus on which a

38

5.1. SOURCES

classifier could be trained. The following three sources of information and content were used to
build the corpus:

1. MPQA corpus [82]

2. SentiWordNet [20]

3. TreeTagger [70]

The rest of this chapter is devoted to first elaborating upon these three systems separately and
subsequently giving an account of how these sources have been brought together to form a large
collection of classified vectors containing different combinations of features.

5.1.1 The MPQA corpus

The MPQA corpus [82] is a collection of 378 news articles, comprising around 10,000 sentences, each
of which has been manually annotated with tags describing a number of subjectivity measures, as
well as sources and objects of opinions within the text. The annotation scheme, proposed by Wiebe
and colleagues, used to develop the MPQA corpus annotates the texts at word and phrase level. It
thus applies relatively fine grained information about the articles annotated. Wiebe et al. use the
term private state to describe expressions of opinion, which is a term common to the field. For their
annotation scheme, they propose a private state frame which assigns to each private state annotated
in the corpus a number of parameter values. These include the source of the private state, i.e. who
expresses the state, the target of this private state, i.e. who the sentiment is directed towards,
and "various properties involving intensity, significance, and type of attitude" [82]. The MPQA
corpus offers rather diverse annotations which is owed to the way the annotations were contrived.
All annotations were done manually and the annotators were given annotation guidelines that were
rather loose and left the annotators which large room of choice in their annotation. The resulting
annotations are highly valuable in regards to capturing many aspects of the subjectivity expressed
and especially paying tribute to the context. However, this intricacy brings with it a high demand
in processing and working with the corpus.

As the main focus of this project lay on investigating the merits of performing Sentiment Analysis
using a combination of input channels rather than finding ways of disseminating highly complex
annotations, as a first step, contents were extracted from the MPQA corpus into a more rudimen-
tary format, only retaining some of the annotations. The prime information that was provided
by the MPQA corpus were the n-grams themselves, each annotated with a label classifying it as
either opinionated or non opinionated. To extract the content needed from the MPQA corpus, it
was necessary to extract content from 756 different files, one file for each newspaper article and
one file for each of the articles’ annotations. The files containing the articles themselves were in
plain text, while the annotation files were comprised of a number of annotation lines, each of which
supplying information about an g-ram contained in the article. To illustrate the structure of the
MPQA corpus and how it was used in building a new corpus, take to following sentence, taken from
one of the news articles that the MPQA corpus is comprised of:

While President Chen Shui-bian has mellowed his stance on independence, he has
refused to bow to the "one-China policy", a precondition for dialogue.

A sentence such as this may have numerous annotations associated with it, i.e. the annotation
of this one sentence may span multiple lines in the annotation file. In the case of this sentence, one
of the annotations associated with it looks as follows:

1265 1258,1276 string GATE_on on-strength="high" nested-source="w, bian"
overall-strength="high" onlyfactive="no"

39

5.1. SOURCES

Annotation type Explanation
GATE_on The annotated n-gram is nestled within a direct private state

GATE_agent N-gram refers to sources of private states & speech events
GATE_expressive-subjectivity N-gram expresses private states indirectly

GATE_direct-subjective N-gram directly mentions private state
GATE_objective speech event N-gram does not express any private state

GATE_attitude N-gram contains attitude
GATE_target N-gram marks the target of an attitude
GATE_split Marks the end of an excerpt

Table 5.1: Annotation types found in the MPQA corpus

This annotation provides information about the part of the sentence which reads "...has refused
to bow...", i.e. an n-gram of length four. Let us consider all contents of this annotation one by one,
starting with the first four digits, 1265. This number is the ID of the annotation with which it can
be unambiguously identified. This ID, though, is only unique within a single annotation file and
thus looses its relevance once multiple annotation files are processed as one. The following digits,
1258,1276, are the span of the annotation. The digits preceding the comma signify the starting
byte of the n-gram within the original text, i.e. the example n-gram starts at byte 1258 in the text
file, and it ends at byte 1276, the digits following the comma. The item "string" describes the data
type of the annotated content, which is the same for all n-grams used within the newly constructed
corpus. "GATE_on" determines the annotation type, which can generally have one of eight types,
listed and explained in table 5.1. Each of the annotation types can have a number of attributes,
which make up the remainder of an annotation line. For a detailed description of all attributes that
each annotation type can have, refer to [21].

As mentioned, not all of the parameters contained within the annotations were used in con-
structing the new corpus. To construct the basis of the corpus I focused on the digits identifying
the position of the annotated n-gram in the original text as well as the annotation type and attribute
values. The latter two allowed me to determine the class of the n-gram while the position identifiers
made it possible to extract the n-gram itself from the original text file. Accordingly, processing each
annotation file, together with the file containing the appropriate news article, yielded a number of
n-grams annotated with a class label. Applying this to the example, the result would be as shown
below:

1 has refused to bow

This tells us that the n-gram "has refused to bow" is opinionated, which is all the information
that we need to extract from the MPQA corpus. The features, which make up the feature vectors
that are processed by the system, are added step by step using other sources, which are explained
below.

5.1.2 SentiWordNet

SentiWordNet, developed by Esuli and Sebastiani [20] is a lexical resource that has been specifically
designed for the purpose of aiding Sentiment Analysis. It is a lexicon based on and similar to
WordNet [45], but extended with lexical information about the sentiment of each synset contained
in WordNet. Synsets are groups of words that are synonymous to each other, thus express the
same idea, describe the same entity or carry the same meaning in another respect. The additional
information that is provided by SentiWordNet, but not present in WordNet, comes in the form
of three different values, positivity, objectivity and negativity, which sum to one and describe the
orientation of sentiment. Through these three measure, each synset in the lexicon is associated
with a fine grained categorisation of the nature of its sentiment. One of the resources provided
by the developers of SentiWordNet is a single text file containing the entire lexicon, including all
its annotations. For the project, this file was split into 26 smaller files, one for each letter in the

40

5.1. SOURCES

alphabet. Each file contains all words starting with the letter designated to this very file. Splitting
the lexicon in this way allowed faster search through the lexicon at later stages.

The developers of SentiWordNet chose the annotation of synsets over terms based on the assump-
tion that "different senses of the same term may have different opinion-related properties." [20]
This means that the same word may come up in the lexicon multiple times, specifically as often as
it is part of a synset. The process of building SentiWordNet was comprised of training a number
or ternary classifiers, i.e. classifiers that determine each training instance as belonging to one of
three classes, in this case positivity, neutrality and negativity. All classifiers used yielded similar
performance, i.e. classification accuracy, but exhibited different characteristics and qualities in their
classification. "Each ternary classifier differs from the other in the training set used to train it and
in the learning device used to train it, thus producing different classification results of the WordNet
synsets" [20] they were used to classify. The three scores that are associated with each synset, and
used for the project corpus, result from the normalised proportion of classifiers that have assigned
the according label to it. For example, if half of all classifiers have assigned a synset to the cate-
gory negative and the other half have assigned it to the category neutral, the scores would be the
following:

• Positivity: 0.0

• Neutrality: 0.5

• Negativity: 0.5

Each classifier is generated using semi-supervised learning techniques, meaning that a data set
is automatically built from a small set of manually annotated examples. The initial set of manually
annotated words is iteratively expanded by identifying the synsets of the words contained in the
current training set with the same class label as the word it was found through. In addition to that
all synsets that are connected to one of the synsets in the current training data via an antonymy
relation are added to the training data carrying the opposite class label. This procedure is used to
identify both positive and negative terms. All synsets found are then added to the training set and
the procedure is repeated. The procedure for finding objective, or non opinionated terms, differs
from the one described above. The set of objective terms is constructed from synsets that do not
belong to either of the other two categories, and to make this classification more robust, are also
"not marked as either positive or negative in the General Inquirer lexicon [71]." [20]

The training data sets acquired using this technique are then used to train standard supervised
learning algorithms. For each set of training data, two classifiers are trained, one distinguishing
between terms being positive and being not positive and the other classifier classifying terms as
either negative or not negative. The results of the two classifiers are combined to place each term
in one of three categories:

• Positive: both classifiers have classified the term as positive

• Negative: bot classifiers have classified the term as negative

• Objective: One classifier has classified the term as positive, the other as negative

The classifications that each classifier produces through this procedure are then accumulated and
normalised for all three values to form the final SWN score as it is represented in the SentiWordNet
lexicon. In addition to the simple text file that is described above and used for the purposes of the
project, the developers of SentiWordNet also offer a lexicon application that visualises the SWN
scores as it is shown in figure 5.1. We can see a triangle of which the outer corners denote the
extremes of SWN scores, i.e. placing the blue dot in the top left corner for a word sense would
indicate that this particular word, used in a particular sense, is entirely positive, i.e. has the
following SWN scores:

41

5.1. SOURCES

Figure 5.1: Graphical representation of SWN scores used in the SentiWordNet lexicon application
(from [20])

• Positivity: 1.0

• Neutrality: 0.0

• Negativity: 0.0

Upon searching the lexicon for all instances of a word, the user is presented with all senses of
the word, meaning every score of every synset that the searched word is a member of.

5.1.3 TreeTagger

The TreeTagger system [70] is a publicly available Part-Of-Speech (POS) tagging system that uses
decision trees for probabilistically selecting POS annotations. The aim of using decision trees in
tagging parts of speech is to allow taking the context into account in which the word that is tagged
appears. The leaf nodes of the decision tree mark the actual decision on how to tag the concerning
word or phrase while the higher nodes give information about the surrounding words. An example
of such a decision tree, adapted from [70], is shown in figure 5.2. We can see in this example that
at each level within the tree a decision is made whether or not the word of concern, its position
identified in relation to the word that is analysed by the subscripts of tag, is of a certain type. The
decision tree is constructed during a training phase and then, come time of tagging new text, passed
through to attain the appropriate tags for the new text at hand.

The TreeTagger offers a number of parameters text can be annotated with and for this project
the facilities of tagging words with their type, as explained in section 5.2, as well as their basic form
were utilised.

TreeTagger has been developed to overcome shortcomings of many techniques that apply Markov
models for POS tagging. "Because of the large number of parameters (particularly in the case of
trigrams), these methods have difficulties in estimating small probabilities accurately from limited
amounts of training data." [70] Both Markov models and TreeTagger estimate the probability of a
certain combination of words as

p(w1, ..., wn, t1, ..., tn) := p(tn|tn−2tn−1)p(wn|tn)p(w1, ..., wn−1, t1, ..., tn−1) (5.1)

but with TreeTagger, instead of estimating the transition probabilities via maximum likelihood
estimation (MLE), the transition probabilities are estimated according to a decision tree.

42

5.1. SOURCES

Figure 5.2: An example instance of a decision tree as used by TreeTagger

TreeTagger estimates probabilities of trigrams occurring in text and these probabilities are deter-
mined by following the appropriate path through a decision tree whose leave nodes hold probabilities
of the word of concern within the trigram being of one type or another.

The decision tree along which the system decides how to tag words is built recursively during
a training phase using a modified version of the ID3 algorithm (for details on ID3, see [46]). "In
each recursion step, a test is created which divides the set of trigram samples in two subsets with
maximal distinctness regarding the probability distribution of the third (predicted) tag. The test
examines one of the two preceding tags and checks whether it is identical to a tag t. A test has the
following form:" [70]

tag−i = t; i ∈ {1, 2}; t ∈ T (5.2)

where T is the tagset. At each recursion step, the node yielding the highest information gain
for all possible tests on the training data is expanded. The criterion determining the information
gain when comparing tests q is "the amount of information that is gained about the third tag by
making each test. Maximising the information gain is equivalent to minimising the average amount
of information Iq that is still needed to identify the third tag after the result of the test q is known:"
[70]

Iq = −p(C+|C)
∑
t∈T

p(t|C+)log2p(t|C+)− p(C−|C)
∑
t∈T

p(t|C−)log2p(t|C−) (5.3)

"Here, C is the context which corresponds to the current node and C+ (C−) is equal to C plus
the condition that test q succeeds (fails). p(C+|C) (p(C−|C)) is the probability that test q succeeds
(fails) and p(t|C+) (p(t|C−)) is the probability of the third tag t if the test succeeded (failed). These
probabilities are estimated from frequencies with MLE." [70] The resulting decision tree is pruned
to attain the final training result. When trained on trigrams, the TreeTagger achieves classification
accuracy of 96.06%.

43

5.2. MERGING THE SOURCES INTO ONE

Figure 5.3: Schematic view of the corpus construction, including the sources from which n-grams
and annotations are attained and the intermediate conversion results

5.2 Merging the sources into one

Each of the sources and systems described above contributed information to the construction of
feature vectors describing n-grams, which were constructed in six steps, in each step adding infor-
mation to an n-gram and finally attaining the final feature vector conforming to the syntax that is
needed to process the data with libSVM [7], the system used for this project.

1. Extract n-grams from the MPQA corpus files, including their classification, and merge them
into one file

2. Annotate the n-grams with lemmata and tokens using TreeTagger

3. Extract scores from SentiWordNet for each word in each n-gram of the corpus

4. Accumulate and normalise the scores within each n-gram

5. Count the number of words each n-gram is comprised of and add the result as a final feature

6. Convert the corpus resulting from the previous steps so that it is comprised entirely of nu-
merical values, allowing procession with libSVM

In the following, these steps are shortly described, with a detailed account of the equivalent
process of converting user input to feature vectors following in chapter 6. A schematic view of the
steps involved in constructing the corpus is presented in figure 5.3.

44

5.2. MERGING THE SOURCES INTO ONE

The extraction of n-grams from the MPQA corpus was predominantly a process of matching
content from the annotation files with content from the text files. This meant extracting those
parts of the text files pointed to by the byte specifications, discarding contents of the annotation
lines that would not be used in the corpus and finally creating a new annotation line containing
the n-gram and its class label, i.e. opinionated or non opinionated, as determined by the MPQA
annotations. Consider again the example given in section 2.3.4:

766 1722,1756 string GATE_on nested-source=”w” is-implicit=”” onlyfactive=”yes”

With all the components of this annotation explained in section 5.1.1, we are in a position to
digest the content of the annotation fully. The first digits, the identifier of the annotation, are of
no value at this stage because we do not consider single documents and as such, the identifier loses
its relevance, being unique only within a single document. The following digits allow us to retrieve
the exact n-gram from the original text that is described by this annotation. As it is the same for
all n-grams extracted, the data type, string, is of no relevance to us and is discarded accordingly.
The remainder of the annotation specifies characteristics of the n-gram, some of which allow us to
classify it as either opinionated or non opinionated. In the case of the example, the annotation
onlyfactive="yes" tells us that the n-gram specified by the byte identifiers is strictly factual. An
annotation such as onlyfactive="no" would indicate the opposite. A number of feature values and
annotation types were used to identify the opinionatedness of an n-gram. For example, if the label
of an annotation was GATE_expressive-subjectivity, it was classified as opinionated. In the case of
the example, we extract the n-gram from the original text, ranging in this case from byte 1722 to
1756, and assign it the class label −1, i.e. non opinionated. This process is repeated for every line
of annotation of every news article. Not all annotations contain information about the opinionat-
edness of an excerpt of the article that is annotated. These annotations were ignored as they did
not contribute to building a training corpus containing the information needed.

All these labelled n-grams ware stored in a single text file which is then further processed in the
next step. This further processing means passing the resulting file to the TreeTagger program de-
scribed above. Running the TreeTagger program on the collection of n-grams extracted from the
MPQA corpus provides twofold annotation. The first annotation following each word is the type
of the word, as determined by the TreeTagger. This type is one of 42 types, all of which developed
for the Penn TreeBank [44], an extensive linguistic project, used within many other settings and
developments since its release (e.g [4], [29], [70]). The second piece of annotation added to each
word that is provided by the TreeTagger program is the basic form of the word, which proves a
valuable information for a later step or processing, namely calculating the SWN score.

As described above, SentiWordNet offers, in addition to other lexical information, three scores
for every entry in the lexicon, a positivity score, a neutrality score and a negativity score. For each
word in each n-gram, the basic form of the word is searched for in the SentiWordNet data base. The
values are returned and accumulated for each n-gram. These scores are added and then divided by
the total number of words in the n-gram, i.e. they are normalised. The final feature that is added
is simply the length of the n-gram divided by ten, i.e. n is added as another feature.

The final step is not concerned with adding more features to the n-grams, but with converting
those features not yet numerical into a numerical representation. This is necessary to allow analysis
with the SVM, as the libSVM system demands a strictly numerical representation of the feature
vector.

The final corpus is thus available in two different formats. The first format is that in which the
final step of conversion has not been applied and the n-grams are still present in their worded form.
The second representation discards the n-grams themselves and represents combinations of features
and their class label. This second format is then used to train the classifier.

45

6

The system

With the basic mechanisms and sources of content in place, the next step in the project was building
a system that would integrate the parts described above into a single piece of software. This meant
constructing an architecture that interacts with a user and processes data according to the outcome
of this user interaction. This chapter presents A-SVM, a system that gathers text provided by a
user and subsequently analyses this text in two passes. The first pass sees the data classified by
the SVM while the second pass takes these results and adds to them arguments acquired via user
feedback.

The system was developed in C++, the same language libSVM [7] is written in. The GUIs
prompted during execution were written using Qt, a UI framework for C++ and other languages,
publicly available and distributed by Nokia [53]. Both TreeTagger and libSVM were, whenever
executed within the program, called as external procedures.

6.1 System architecture

Very broadly, the system is comprised of a succession of input gathering, input conversion and input
classification. A schematic view of a run through the system is given in figure 6.1.

A number of text files, all of which described in detail in chapter 5, are used repeatedly through-
out a run of the program. Among these files are all 26 SentiWordNet lexicon files and the text
corpus developed specifically for this system. In addition to these text files, a model file used by the
TreeTagger and a file containing the results of training the SVM on the text corpus, i.e. the support
vectors, are used within the system. The model file needed for using TreeTagger serves the same
purpose as the file containing the support vectors. It is a file containing the results of training the
TreeTagger system on a corpus, in this case a large collection adapted from the Penn TreeBank [44].
Both these files are used whenever either component, libSVM or TreeTagger, is called to classify or
annotate an excerpt of the text supplied by the user.

All intermediate results obtained throughout a system run as it is described below are stored
within text files. This has been done for the purpose of having access to all results after a run
has been executed, not just the final classification. This is more for illustrative and investigative
purposes than practical ones concerning the system execution. Were the system to be viewed as
a final, dispatch ready development, it might be both simpler and more efficient to discard this
measure of storing all intermediate results in text files (see section 8.2.7).

On execution, the system prompts the user with the first graphical user interface (GUI), which
is shown in figure 6.2. The user types or pastes the text he or she wants analysed into the text field.
Once the user has done so and presses the Analyse! button, the text is stored and submitted to the
first pass of analysis. The first stage of analysis consists of a number of steps, the final result being
the SVM classification of each possible n-gram within the text supplied by the user up to a length
of five words. To attain this result, the following actions are taken:

1. Split the cohesive text submitted by the user into lines of single words

2. Annotate the lines of words by running them through TreeTagger and formatting them

46

6.1. SYSTEM ARCHITECTURE

Figure 6.1: Schematic view of the system

47

6.1. SYSTEM ARCHITECTURE

Figure 6.2: GUI prompted to the user for text input

3. Calculate SWN scores for each word

4. Construct all possible n-grams up to a length of five words

5. Calculate SWN scores for each n-gram

6. Add n as a feature to each n-gram

7. Convert each line of now annotated n-grams to numerical values

8. Classify n-grams by running them through the trained SVM classifier

Before elaborating upon this process it is worth pointing out that the succession of analysis
steps is rather similar to the actions that were performed when building and training the text
corpus that is now used to classify the new text. This is the case, and intuitively sensible, because
the outset and the goal of the analysis are the same in both cases. When building the corpus,
n-grams were annotated and then analysed by the SVM. Now that new text is passed to the system
to be analysed, the same steps of annotation and conversion have to be performed in order to obtain
the same syntax for the user input and compare it to the result that sprang from training the SVM
on the original corpus.

The first step in processing the user input in a manner that allows analysis of it is to break it up
into single words, each of which is annotated on its own and then merged to form n-grams. The file
containing one word per line is passed to and annotated with TreeTagger which, considering again
the same n-gram as before, yields the following result:

has VHZ have
refused VVN refuse
to TO to
bow VV bow

Each line contains one word annotated with its type, or token, and its basic form, or lemma,
the word and its annotations separated by a tab. The result of formatting this result is as follows:

48

6.1. SYSTEM ARCHITECTURE

has<VHZ>(have)
refused<VVN>(refuse)
to<TO>(to)
bow<VV>(bow)

With the basic form of each word in the user input at hand, the SWN scores are extracted
from the SentiWordNet lexicon. A search procedure comprised of determining the correct lexicon
file to search and then finding the word at hand and its according annotations was executed for
each word. Whenever a word is found in the SentiWordNet lexicon, the according SWN scores
are returned and stored alongside the word and the annotations already present. A word that is
not found in the SentiWordNet lexicon is assigned with scores of zero, for we have no information
about this word’s SWN scores. Resulting from this search and annotate procedure are lines of single
words now bearing five features each, the word’s type and its basic form, together with scores for
positivity, neutrality and negativity:

0.0 1.0 0.0 has<VHZ>(have)
0.0 0.625 0.375 refused<VVN>(refuse)
0.0 1.0 0.0 to<TO>(to)
0.0 0.5 0.5 bow<VV>(bow)

For reasons explained throughout earlier chapters, we want to analyse n-grams, not single words.
Accordingly, the next step is the construction of these n-grams from the annotation result shown
above. This step constructs each possible n-gram contained in the user input up to a length of
five words. For the example, this means building ten n-grams. Generally, for any text larger than
three words, we obtain m = (n − 2) ∗ 5 n-grams when constructing n-grams up to a size of five
words. When constructing the n-grams, some consideration needs to be placed on the SWN scores.
Each n-gram that is constructed still has just one SWN score associated with it for positivity, one
for neutrality and one for negativity. To obtain these scores the individual scores of the words are
accumulated and normalised by dividing them by n. The result is, in part, as follows:

0.0 1.0 0.0 has<VHZ>(have)
0.0 0.8125 0.1875 has<VHZ>(have) refused<VVN>(refuse)
0.0 0.875 0.125 has<VHZ>(have) refused<VVN>(refuse) to<TO>(to)
0.0 0.78125 0.21875 has<VHZ>(have) refused<VVN>(refuse) to<TO>(to) bow<VV>(bow)
0.0 0.625 0.375 refused<VVN>(refuse)
0.0 0.8125 0.1875 refused<VVN>(refuse) to<TO>(to)
0.0 0.7083 0.2917 refused<VVN>(refuse) to<TO>(to) bow<VV>(bow)
...

Having constructed the n-grams, we can now add the final feature, i.e. the size of the n-gram:

1 0.0 1.0 0.0 has<VHZ>(have)
2 0.0 0.8125 0.1875 has<VHZ>(have) refused<VVN>(refuse)
3 0.0 0.875 0.125 has<VHZ>(have) refused<VVN>(refuse) to<TO>(to)
4 0.0 0.78125 0.21875 has<VHZ>(have) refused<VVN>(refuse) to<TO>(to) bow<VV>(bow)
1 0.0 0.625 0.375 refused<VVN>(refuse)
2 0.0 0.8125 0.1875 refused<VVN>(refuse) to<TO>(to)
3 0.0 0.7083 0.2917 refused<VVN>(refuse) to<TO>(to) bow<VV>(bow)
...

The final step before classifying the user input for the first time, using just the SVM, is a
conversion of any non numerical values to numerical values and the addition of a position identifier
for each feature:

49

6.1. SYSTEM ARCHITECTURE

1:0.1 2:0.0 3:1.0 4:0.0 5:0.9524
1:0.2 2:0.0 3:0.8125 4:0.1875 5:0.9524 6:0.8372
1:0.3 2:0.0 3:0.875 4:0.125 5:0.9524 6:0.8372 7:0.5581
1:0.4 2:0.0 3:0.78125 4:0.21875 5:0.9524 6:0.8372 7:0.5581 8:1
1:0.1 2:0.0 3:0.625 4:0.375 5:0.8372
1:0.2 2:0.0 3:0.8125 4:0.1875 5:0.8372 6:0.5581
1:0.3 2:0.0 3:0.7083 4:0.2917 5:0.8372 6:0.5581 7:1
...

To fully grasp how this final, numerical representation is processed, a few characteristics need
further explanation. First, notice how the first feature, the n has changed. The original values are
divided by ten. This is done because all values that are passed to the SVM should lie in the range
between zero and one. The values are divided by ten instead of five to make extending the program
to considering n-grams of a length of up to ten words an easy task, should this be considered in
future developments. The values that have replaced the words and their annotation represent one of
42 possible word types and have no relation to the words themselves. This is the case because we are
interested only in the features that describe the n-gram we are analysing, not the n-gram itself. Each
value is one of 42 values, ranging, equally spaced, from zero to one. The final change in comparison
to the previous representation that has been made is the addition of the aforementioned position
identifiers followed by a colon and the particular feature value. This representation conforms to
the syntax that we need to enable processing of the feature vectors by the SVM. The SVM used
generally demands such position identifiers because it is possible to process sparse feature vectors
with this SVM, as well. In the case of sparse data sets it is indispensable to signify which value
describes which feature.

The result of the SVM classifying the feature vectors as described is a text file containing one
class label, c ∈ {1,−1}, per line, thus classifying each n-gram as being either opinionated or non
opinionated. This concludes the first run of classification, upon whose results the second run is
built. The process of converting, annotating and classifying the user input takes place hidden from
user sight and accordingly the next step in the program execution is, to the user, the second step.
Just as the first run of classification starts with the user prompting input to the system, the second
run does the same. The user is presented with a second GUI through which he or she is asked to
provide the system with some, in the current version five, of their own classifications of randomly
selected n-grams. In addition to judging these n-grams on their being opinionated or non opinion-
ated, the user gives a justification as to why he or she classified each n-gram the way they did.
This justification is given in the form of arguments, one per n-gram, in a syntax as it is described
in section 4.2. Figure 6.3 shows this GUI. Once this feedback is submitted, the second run of
classification is executed, which builds upon the first run by reclassifying a number of the SVM
classification results according to the user feedback. As the process of reclassification based on the
user feedback is rather intricate, the following section is devoted to it to adequately elucidate how
the final classification result is attained.

As a last step in the program execution, the final classification result is presented to the user. As
explained in section 2.3.4, this is a crucial aspect of any system whose success builds on producing
results that are accessible to its user. Recall that there are two basic ways of summarising and
representing the results of an analysis process such as this. I have not explored textually representing
the outcome of the classification process during this project, though it may prove valuable in certain
areas upon further investigation. Instead, the system presents the results to the user in a graphical
manner by plotting scores that are kept for each word of the user input. These scores are devised
from the final n-gram classification. A graphical representation of the n-gram classifications has
been neglected for two reasons. Firstly, the n-grams multiply overlap and for this reason do not
lend themselves for an intuitively understandable graphical representation. Furthermore, the n-
grams do not represent the text in the same coherent manner in which the user passed the text to
the system in the first place. This may lead to confusion since the user is never informed about
the process of n-gram construction as it is followed by the system. Only when passing judgement

50

6.1. SYSTEM ARCHITECTURE

Figure 6.3: GUI prompted to the user for feedback input

on some n-grams is the user confronted with them, but at this stage, the n-grams are presented
in isolation from most of the other n-grams and thus appear to simply be an excerpt of the user’s
input.

For these two reasons portraying the final classification to the user in relation to each word
is a more intuitively understandable way and the process of accumulating the classification values
for single words is explained below. However, it shall not go unmentioned that this choice of
representation is just one of many fathomable for the sort of results that we obtain from this
program. Some of these ways may be more appropriate than the one chosen, since parts of the
information that may be garnered from the n-gram classifications are either left out or lost by
breaking the classification down to word level. Nevertheless, representing classifications for single
words and representing them in a graph is intuitively understandable for a user who is not familiar
with the inner workings of the system or even Sentiment Analysis itself and thus constitutes a
reasonable first choice at this point of the system’s development. Other techniques that may prove
to offer proper summarisation of the results are discussed in section 8.2.4.

In order to break down the n-gram classifications into single word classifications, for each word
we have to consider all n-grams in which it appears. For each time a word appears in the user input
it appears in up to 15 n-grams once the user input is split up. Each of these n-grams is classified
by the system and the word of interest contributes to each of the classifications of these n-grams.
For this reason I decided to accumulate the class labels of all n-grams a word appeared in, meaning
that each word is assigned a score ranging from −15 to 15. Whenever the word of interest appears
in an n-gram that is classified as opinionated the score of this word is increased by one, whenever it
appears in an n-gram that is classified as non opinionated it is decreased by one. This means that the
higher the score of a word the higher the certainty with which we can say that it is, in this context,
opinionated, and the lower the score the higher the certainty that it is non opinionated. Whenever
a score is closer to zero we can conclude that there have been ambiguities in the classification of
this word, i.e. some n-grams that contain this word were classified as opinionated and some were
classified as non opinionated. Figure 6.4 shows a graphical representation of both the classification
results of the SVM and of A-SVM of one of the user inputs given during the evaluation described
in section 7.2 (the result for the sentence shown in the GUIs above can be seen in figure 8.1):

Although I like sunny weather it often rains in the United Kingdom during the
winter.

A-SVM classifies the sentence as we might expect. The first few words express an opinion while
the remainder of the sentence states facts about the UK weather. The SVM classification, on the
other hand yields a rather ambiguous classification with a leaning towards opinionatedness for the
entire sentence. The information we gain from the user feedback about the first few words agrees

51

6.2. USER FEEDBACK

Figure 6.4: Plot showing classification results of an example user input for both SVM and A-SVM

with the SVM classification and consequently does not alter it while differences throughout the
remainder of the sentence reflect the disagreements between user feedback and SVM classification.
Thus, the arguments that the user provided correct the, in this case faulty or ambiguous, SVM
classification of the second half of the sentence.

When presenting the results to the user, only the A-SVM classification would be given in the
output since the SVM classification is not of interest to the user. Accumulating a score in this
manner for each word and plotting them in a similar manner to what is shown in figure 6.4 would
give the user a simple to understand representation of an abstraction of the classification results
without demanding any deeper understandings of the system’s works.

6.2 User feedback

As elucidated above, one of the central concepts of this project has been to incorporate arguments
into the process of text classification in order to enhance the performance of a straight forward SVM
classifier. The very basic question concerning this concept was how to acquire such arguments in an
efficient way, i.e. with low effort, without compromising the quality of the arguments acquired. In
order to accomplish this, I have developed a concept of user feedback which allows an individual to
construct a small numbers of arguments from which information is extracted that aides in classifying
not just those n-grams reasoned upon, but also those sharing features with these arguments. This
section describes the mechanism I have put in place to maximise the utility of a limited amount
of information in the form of arguments. It is important to emphasise that this limitation is of
purpose since it is, in most cases, not feasible to have a human user, i.e. annotator, construct a
large number of arguments or annotate a large amount of text manually. It is thus vital to find
ways of maximising the value of information at hand while at the same time minimising the effort
that is required of human annotators.

Gathering information through user feedback as is done here offers a compromise between clas-

52

6.2. USER FEEDBACK

sification that fully disregards human intervention in the classification process and straight forward
manual classification of contents. Automatic classification rids us of the need for time consuming
annotation processes, but it may, depending on the domain, be less reliable than manual annotation.
This has, up to this date, generally been the case in Sentiment Analysis. Considering that entirely
manual classification of contents, on the other hand, defeats the purpose of a system such as the
one presented here, I have proposed collecting user feedback that only demands a few seconds to
produce as a viable alternative.

6.2.1 Generating arguments

As shown in figure 6.3, the arguments that contribute to the final classification of all n-grams
extracted from the user input are generated by the user. Recall that the arguments acquired take
one of two possible forms,

C because Reason

or

C despite Reason

where C ∈ {1,−1} and the Reason, in this case is a succession of words appearing in the n-gram
that is judged. The user selects three values:

1. The class label, C ∈ {1,−1}, or opinionated versus non opinionated

2. the direction of reasoning, i.e. because or despite

3. The part of the n-gram that is most responsible for the user’s judgement

One resulting argument, reasoning about the n-gram we have used before, "...has refused to
bow...", may look as such:

"Opinionated" "because" "refused to bow"

In this hypothetical scenario the user has judged the n-gram to be opinionated and identifies
words two to four as the reason for his or her judgement. In the same manner, the user constructs
four additional arguments by passing judgement upon four other randomly selected n-grams and
providing reasons to support the decision. These judgements, together with the attached reasoning,
are then passed to the system and from them, two separate scores are calculated that change the
SVM classification results to what is the final classification. How these two scores are extracted
from the arguments and how and when the SVM classification result is changed according to these
scores is explained in the following section.

6.2.2 Direct and indirect user feedback

In order to maximise the gain of information taken from the user’s input, the arguments supplied
by the user are processed to yield twofold information about the user input, namely direct feedback
and indirect feedback. Direct feedback works in a rather straightforward manner while indirect
feedback is gained through a more intricate mechanism.

Direct feedback is constructed, as the name suggests, directly from the user feedback. The user
classifies five n-grams as either opinionated or non opinionated and adds reasoning to those clas-
sifications. Disregarding the reasons leaves a classification of five n-grams which overrules the
classification of the SVM for those particular n-grams. This overruling is done based on the choice
to trust the manual classification over the SVM classification. Whenever the manual classification
agrees with the SVM classification, the class label remains the same. When the user classifies an

53

6.2. USER FEEDBACK

n-gram differently, the class label of this particular gets changed according to the user’s judgement.
Accordingly, at most five class labels from the original SVM classification results get changed either
from −1 to 1 or from 1 to −1.

The indirect feedback utilises all three sources of information to obtain scores for all n-grams
that were originally obtained from the user input and is thus more far reaching than the direct user
feedback. Initially, each n-gram is assigned a score of zero and whenever one of the arguments given
by the user holds some information about one or more of the n-grams, their scores are changed
according to the content of this information.

Before constructing this score, though, some preprocessing has to be foregone with the argu-
ments. The first step in this preprocessing checks the direction of the justification, i.e. whether
the user classified the argument the way he or she did because of the reasons given or despite the
reasons given. Consider again the following example, an argument on the n-gram has refused to
bow :

"Opinionated" "because" "refused to bow"

A different judgement of another user may be as such:

"Non opinionated" "despite" "refused to bow"

Both these examples equally indicate that the succession of words refused to bow is an indicator
for the n-gram being opinionated. What is thus extracted from these two arguments is equivalent,
i.e. in case of the second argument we switch the class label from non opinionated to opinionated
and store the n-gram refused to bow associated with this label. In a second step of processing
the words are passed to the TreeTagger to extract their types, as was described in chapter 5.
Replacing the words themselves with their types when deducing the indirect feedback allows greater
generalisation when amassing indicators for text being opinionated or non opinionated. Having the
types as indicators for a class means that is suffices if a an n-gram in the text contains the same
combination of type labels as the n-gram that was used to construct the argument, the n-gram
doesn’t have to be exactly the same. Once this preprocessing is completed the arguments given
above would be represented in the following form:

1 VVN TO VV

What we are left with is the class label of the partial n-gram that was identified by the user
to be responsible for his or her chosen classification, as well as the types of the words contained
in the partial n-grams. The score is now accumulated in the following manner: Whenever one of
the n-grams extracted from the original user input contains a combination of types equivalent to
one of the combination of types determined through the arguments the score is either increased by
one or decreased by one. It is increased when the argument determined this combination of types
to be an indication for the n-gram being opinionated and it is decreased when it indicates that
the n-gram is non opinionated. Any n-grams whose score surpasses a threshold after all arguments
have been processed adapt the class label suggested from the scoring system, replacing the original
SVM classification. The remaining n-grams keep the label that was originally suggested. A score
surpasses the threshold if it is either larger than one or smaller than negative one. If it is larger than
one it means that at least two arguments have voted for this particular n-gram being opinionated,
if it is smaller than negative one, at least two arguments have voted for the n-gram not being
opinionated. If arguments supply conflicting suggestions, i.e. one argument votes for an n-gram
being opinionated and one votes for it being non opinionated, these votes cancel each other out and
the n-gram retains its original class label.

The final classification is thus a result of combining evidence from SVM and arguments provided
by a human user where the classification results of the SVM form the basis, with the arguments
overruling the SVM classification whenever the evidence supplied by them is deemed strong enough.
How this mechanism of deducing insight from user feedback and combining it with the SVM results
is put in place to form a functioning system is described in the following chapter.

54

6.2. USER FEEDBACK

The calculation of the final classification is summarised below in algorithm 1. Line ten checks
whether the current feature vector has the equivalent word type feature values as one of the n-
grams classified by the user feedback. If this is the case the class label lm is overwritten with the
user’s classification (line eleven). If this is not the case, we check whether the combination of of
words that the user chose as being responsible for his or her choice of classification is part of the
current n-gram’s features (line twelve). If this is the case, we either increase or decrease the feed-
back_val, depending on the class label of the sub n-gram (lines 13 to 16). After all F = {f0, ..., fm}
have been processed, all the n-grams whose indirect feedback value vj surpasses the threshold is
changed accordingly (lines 22 to 28).

Algorithm 1 Pseudocode describing the final classification procedure
1: let N = {n0, ..., n4} be the n− grams for user feedback
2: let U = {u0, ..., u4} be the user feedback class labels
3: let A = {a0, ..., a4} be the feedback reasons
4: let F = {f0, ..., fm} be feature vectors representing original user input′s wordtypes
5: let L = {l0, ..., lm} be the class labels determined for F = {f0, ..., fm} by SVM
6: let V = {v0 = 0, ...vm = 0} be the indirect feedback values for F = {f0, ..., fm}
7: counter ← 0
8: while counter < m do
9: for i = 0 to 4 do

10: if fcounter == ni then
11: lcounter ← ui
12: else if ai ∈ fcounter then
13: if lcounter == +1 then
14: vcounter ++
15: else
16: vcounter −−
17: end if
18: end if
19: end for
20: counter ++
21: end while
22: for j = 0 to m do
23: if vj ≥ 2 then
24: lj ← +1
25: else if vj ≤ −2 then
26: lj ← −1
27: end if
28: end for

55

7

System evaluation

The prime question I have tried to answer during this project has been whether adapting multimodal
approaches to Sentiment Analysis may prove valuable to the cause of furthering the development
of systems. To allow an answer to such a question, it is imperative to compare the system utilising
different modalities of analysis with a baseline classifier of similar structure. In the case of this
project, the most apt comparison has been to put the classification performance of the developed
system up against the classification performance of the SVM incorporated in the system, stripped
bare of everything but the SVM itself. In addition to this comparison of classification performance,
a user centred evaluation was conducted which aimed at complementing the results of the quanti-
tive evaluation with qualitative insight into the subjective impression users get from the system’s
performance. Such qualitative analysis has merits here because we are dealing with a topic that
is inherently subjective, itself. Many times, classifying text as opinionated or non opinionated is
a rather ambiguous process and depends on individual understanding of opinionatedness. It is
thus sensible to let the individuals who provide the arguments during a system run also judge the
classification results which depend upon these arguments.

7.1 SVM vs A-SVM

In order to evaluate the system’s classification performance, the corpus of n-grams, described in
chapter 5, was split into a training set and a test set. 2/3 of the corpus were used to train the SVM
classifier and 1/3 of the corpus was used as a test set. This division yielded a training corpus of
roughly 8,000 n-grams and a test corpus of around 4,000 n-grams. Due to the size of the data set, it
was not necessary to apply evaluation techniques such as cross validation or bootstrapping, which
are frequently applied when a data set is not sufficiently large to split it in the way done here. Before
evaluating the classifier’s performance and subsequently comparing it to the system’s performance,
it was necessary to obtain the optimal setting for all adjustable parameters that determine the
SVM’s performance. Accordingly, a gird search was executed for all parameters and the effect of
changing them. The parameters and the range of values tested during this search are listed in table
7.1.

Starting from a sparse grid to narrow down the search space of tested values, changing gamma
and the cost parameter turned out to yield the most significant improvement in performance. Thus,
a wider range of values was tested for these values. The different kernel functions are listed in figure
3.1 where we can also see the effects of the parameters. Some have no influence on the process

Kernel type Kernel degree gamma Kernel coefficient Cost C bias
linear 1 0.001 0 1 1

polynomial to to to to to
RBF 10 100 1 60 10

sigmoid

Table 7.1: parameter values tested for SVM training

56

7.1. SVM VS A-SVM

Kernel type Kernel degree gamma Kernel coefficient Cost C bias
RBF N/A 80 N/A 1 1

Table 7.2: parameter values yielding the best classification result on the test set

Precision Recall F1
SVM 78.1% 82.08% 80.04

A-SVM 83.7% 84.49% 84.09%

Table 7.3: Evaluation results of SVM and A-SVM

depending on which kernel function we choose. Using the Radial Basis Function (RBF) yielded the
best results:

K(x, y) = exp(−γ ∗ |x− y|2) (7.1)

We can see that both the kernel degree and the kernel coefficient do not influence the kernel
calculation using the RBF. The bias determines the offset of the separating plane from the origin
and is thus relevant regardless of which kernel function we choose. Recall that we expressed the
problem of SVM originally as

y(x) = wTφ(x) + b. (7.2)

In this formula, b is the bias. The values that produced the best classification performance of
the SVM on the test set is shown in table 7.2. Classifying the test set with the SVM trained with
these parameter settings yielded precision of 78.1%, recall of 82.08% for opinionated n-grams and
an F1 value of 80.04 (see table 7.3. This constituted the baseline which the system was compared
to.

In order to allow a comparison between the performance results of the SVM with the system
itself, the test set had to be treated as user input to the system and analysed accordingly. It was
not feasible to simply pass the full test set to the system as one text, because doing so would have
rendered the system’s potential benefits void. Consider the size of the test set, which consists of
roughly 4,000 n-grams with an average size of three words each. This means that the test set is
comprised of approximately 12,000 words. Were we to pass a text of this size to the system to
analyse it, it would be reasonable to assume that no significant differences could be found between
the classification resulting from the SVM classification and the classification results returned by
the system. Passing all words comprising the test set to the system as one would yield roughly
(12, 000 − 2) ∗ 5 = 59, 990 n-grams, only five of which would be reasoned about by the user. We
can see that a less brute way of comparison had to be employed to evaluate the system. This issue
of sheer size was conquered by splitting up the test corpus and executing multiple runs, each time
passing an excerpt of the text corpus to the system and storing the resulting classification. To find
an appropriate word count according to which the test set could be split, 20 randomly selected
news articles were extracted from web presences of two English speaking newspapers, namely the
Guardian [26] and the New York Times [74]. All articles were split according to their paragraphs
and the average word count of the paragraphs was calculated, which was 43.65. Using this word
count as a reference for paragraph size, the test corpus was split into 200 paragraphs, representing
roughly the size of 1.5 online news article paragraphs, each of which was analysed by the system on
its own.

The values proposed here were chosen rather heuristically and further investigation will need to
be employed to determine an optimal relation between word count and the number of arguments
that are used. This is further discussed in section 8.2.5.

The result of analysing all subparagraphs that make up the test corpus when it is divided in this
manner is the mentioned collection of roughly 60,000 n-grams. From these n-grams all those were
extracted that actually occur in the test set. These n-grams had, at this point been fully analysed
and classified by the system. It was thus possible to evaluate the classification performance of the

57

7.2. USER CENTRED EVALUATION

Figure 7.1: Excerpt from the questionnaire filled out by the evaluation participants

system from this result equivalently to the SVM classification results. The classification results
using the system as described above yielded precision of 83.7%, recall of 84.49% for opinionated
n-grams and an F1 value of 84.09 (see table 7.3). Using the system to classify paragraphs thus yields
a performance increase of 5.6% in precision, 2.41% in recall and 4.05 points for the F1 measure.

7.2 User centred evaluation

The previous section presented a quantitive evaluation of the system by comparing its classification
performance with that of an SVM on its own. This meant attaining straight forward and easy to
interpret performance measures upon which a judgement of the system’s quality could be based.
This provides valuable insight, but needs further support from a qualitative evaluation for two
reasons: Both the system and the SVM evaluation rely in their workings on qualitative judgements
that have either been passed during the development of the corpus or during the classification
process itself. In addition to this issue, analysing text with regards to its sentiment often involves
ambiguities that are owed not just to the context words and phrases are set in, but also the context
a pieces of text may be written or read in or who it is written or read by. Consider again, the same
comment made by Tony Blair that we have used before:

After I’d left, the agenda lost momentum. But the papers and the work are all there.

A person reading this sentence may just take it as a piece of factual information while the next
person reads a sarcastic remark showing the author’s animosity towards the issue. Equivalently,
while uttered by Tony Blair in this context the remark was intended as a snide comment on the
current government’s policies, another author may have meant to provide helpful information about
paperwork that is already in place. Additionally, one of the sentences preceding or following these
two may put them into clearer context. It is clear that we have to pay respect to numerous uncer-
tainties whenever we are trying to disseminate text according to its opinionatedness.

For this reason, complementing a quantitative evaluation such as the one described in the previ-
ous section with a qualitative evaluation allows us to gain a clearer understanding of whether or not
the system is performing in the way we wish it to. By asking a user to work with the system and
judge it afterwards, we can tackle both problems described above. The qualitative judgements, the
user feedback, that influence the final classification are provided by the same entity that evaluates
the evaluation result. This means that at least part of the qualitative input during the system
execution is measured by the same standard as the evaluation of the results. A problem that re-
mains and which will need further investigation (see section 8.2.5) is the fact that the annotations
from which the classifications of the the text corpus contents were devised have been made based

58

7.2. USER CENTRED EVALUATION

mean std
Run 1

The system was easy to use 4.667 0.516
It was easy to provide user feedback 4 0.655

I understand the benefit of the feedback 4.067 0.961
The classification results were appropriate for the input 3.867 0.561
The representation of...the results...was understandable 3.6 0.828

Automatic detection of opinions is useful 4.333 0.617
Run 2

The classification results were appropriate for the input 4.067 0.594
Providing feedback was cumbersome 1.8 0.561

Table 7.4: Evaluation results of all eight agreement questions asked in the questionnaire

on a different person’s understanding of opinionatedness. Optimally, though, the large size of the
corpus will diminish any potential issues arising from this. Furthermore, the judgement about the
system’s performance that a user evaluating it passes is based on his or her own understanding of
how the piece of text that is analysed should be classified. The user has its own idea of the context
the paragraph he or she passes to the system should appear in and what the context would entail
with regards to the classification. The same holds for language artefacts such as sarcasm and irony.
Accordingly, the user will judge the system’s classification by these standards and only when it
conforms to them will the user evaluate the system favourably.

Thus, the qualitative evaluation conducted and described below offers additional insight and
provides, together with the quantitative evaluation, a clearer picture of the system’s actual quality.

The user was asked to use the system twice, once analysing a piece of text that was provided
and once choosing his or her own text to be analysed. Having multiple users judge the same piece of
text meant attaining easily comparable results while having the users choose their own text allowed
an analysis of the system’s robustness to unexpected input. After each of the two system executions
the user was asked to judge a number of statements on a fivefold scale indicating how much the
user agreed with the statement made. Figure 7.1 shows an excerpt from the questionnaire, the full
questionnaire can be found in appendix A.

In addition to passing judgement on statements such as those shown in figure 7.1, the user
was also asked to store the general system’s quality on a scale from one to five, without giving
detailed instructions upon which this judgement should be based. This was asked of the user to
complement the more specific questions with a broader evaluation of the user’s confidence in the
system’s performance and output. The average score given to the system by this measure lay at
3.8 (std = 0.414) for the classification of the text that was given and at 3.667 (std = 0.408) for the
user’s own input. The results of the remaining questions are shown in table 7.4, with a value of five
representing full agreement and a value of one representing full disagreement with the statement.
The questions measuring user agreement are designed to evaluate both the user’s judgement of the
classification results and his or her opinion on the value of Sentiment Analysis, in general. Out of
the six questions asked after Run 1, only question four is asked again after the second run, since
the agreement with the other statements should not change from one run to the next. The second
question asked after Run 2 asks the as question two after Run 1 from a different perspective.
This is done to check the validity of the user’s answers and have a measure to check the answers’
consistency. Generally, the participants of the evaluation showed agreement with the statements
attributing positive characteristics to the system and disagreement with the one statement with an
opposite sentiment. The lowest agreement was shown with the statement evaluating the intuitive
understandability of the classification outcome’s representation. This was to be expected since
the graphical representation shown to the user was a very rudimentary one with much room for
improvement, as discussed in section 8.2.4. Both runs that each user executed yielded similar scores
of classification quality, suggesting that the system should be relatively robust to varying types and
genres of input.

59

8

Conclusion and outlook

Sentiment Analysis is a complex field, many of whose problems still offer many opportunities to
further improve upon, and the same holds for this project. By introducing a novel approach to
Sentiment Analysis I have aimed at providing insight into the potential benefits of tackling Senti-
ment Analysis in a way that goes beyond pattern recognition. Doing so has had a twofold effect:
The results have shown that following this path of bringing together Machine Learning, NLP and
Argumentation may prove to benefit future developments in the area. At the same time, new un-
knowns have been introduced which, in addition to the issues Sentiment Analysis was faced with
before, will need investigation when progressing in the field along the lines of multimodal solutions.
This chapter critically reflects on the outcome of this project, i.e. the developed system and the
evaluation results, and then goes on to present an overview of future challenges that will need to
be addressed when moving forward on both the approach I have taken during this project and
Sentiment Analysis, in general.

8.1 A critical reflection on A-SVM

In order to put the following discussion of the developed system into perspective, I will briefly review
what I have accomplished during the project. From a high level perspective, the project has been
concerned with three interrelated tasks:

1. Constructing a text corpus

2. Developing a Sentiment Analysis system that determines text’s opinionatedness

3. Evaluating the system’s performance based on the text corpus

The corpus was constructed from three different sources, the MPQA corpus [82], the TreeTagger
system [70] and SentiWordNet [20]. The result from extracting n-grams from the MPQA corpus
and annotating those n-grams with a number of features using TreeTagger and SentiWordNet was
a collection of roughly 13,000 feature vectors describing the same number of n-grams.

A system was then developed that classifies user input in two passes. The first pass yields a
classification of all n-grams contained in the user input up to a length of five words. This classifica-
tion is accomplished using an SVM classifier trained on the developed text corpus. The second pass
of classification joins together these results with user feedback in the shape of arguments. The final
results are presented to the user via simple plotting facilities. Comparing the system’s classification
performance with the classification performance of just the SVM used within the system yielded
an increase in classification precision of 5.6% and in two different runs, users gave the system’s
classification performance an average score of 3.8 and 3.667 on a scale from one to five.

The results of the evaluation show that both an increase in classification performance and a
fairly high degree of user confidence in the system have been achieved. This allows the conclusion
that investing the additional resources in development and computation time during the system’s

60

8.1. A CRITICAL REFLECTION ON A-SVM

Figure 8.1: Extreme case of low agreement between SVM and A-SVM, hinting towards a bias of
the SVM to classify text constituents as opinionated. The word number is a place holder replacing
numbers in user input for the original input, here 1997 and 2007

Figure 8.2: Extreme case of high agreement between SVM and A-SVM

61

8.2. FUTURE CHALLENGES

execution yield an improvement adequately compensating the added effort. As has been suggested
by results of other works in Sentiment Analysis, e.g. [61], using SVM as the Machine Learning
algorithm of choice seems to hold promise when developing Sentiment Analysis tools. Nevertheless
it is arguable that classification precision of 78.1% with the SVM may be improved upon by pouring
effort into developing algorithms tailored strictly to the purpose. By achieving a higher classification
performance through an improved classifier it may also be hoped to increase the total classification
precision after adding user feedback. Alternative formats for the feedback itself may prove to in-
crease the performance, as well, though this was not investigated during the project. Issues such
as this may be counted among those that pose additional questions to those that already stand
unanswered in Sentiment Analysis. In the following sections I discuss both issues that arise from
incorporating arguments to the process of sentiment classification and those issues that are vital to
Sentiment Analysis but that have not been tackled during the project. I thus provide insight on
both general issues that need close consideration in Sentiment Analysis and unaddressed challenges
characteristic to this project.

One further aspect of the classification results shall be mentioned, here. The SVM classification
seems to exhibit a bias towards classifying n-grams as opinionated. Evidence for this bias being
present can be gathered from comparing classification outcomes of the SVM with A-SVM. It seems
that currently the majority of corrections that take place through the user feedback occur on n-
grams that have falsely been classified as opinionated. Assuming such a bias is actually present, a
restructuring of the training corpus would be the most urgent prerequisite for further progressing
on the system’s performance. Figure 8.1 and 8.2 show example classifications of two extreme cases,
one opinionated sentence for which the two classification results agree almost completely and one
non opinionated sentence showing very little agreement in the classification results. For each sen-
tence, both the SVM classification results and the A-SVM classification results are shown. We can
see how, for the opinionated sentence, the classification results differ only slightly from each other,
whereas the classification results for the non opinionated sentence exhibit a clear correction through
the user feedback.

As further explained in section 8.2.2, such issues arising from a lack of robustness of the training
data may be conquered by introducing additional features that assist the training and classification
process.

8.2 Future challenges

The following account of challenges that are posed by Sentiment Analysis but have not been ad-
dressed during the project or demand improvement is subdivided according to the nature of the
problems that arise when dealing with these issues. Though I aim at providing information on the
most pressing issues and those closely associated with what I have worked on during the project,
the list of challenges is by no means all encompassing. This goes to show how much work still lies
ahead for researchers and developers working on Sentiment Analysis solutions.

8.2.1 On the polarity of opinions

In chapter 2 I have identified four central challenges of which Sentiment Analysis is comprised:

1. Gathering text

2. Discriminating opinionated text from non opinionated text

3. Determining the polarity of opinionated text

4. Summarising the results of analysing text’s sentiment

Throughout this project I have focused on gathering text and discriminating opinionated text
from non opinionated text, also touching upon the issue of summarisation. Determining the polarity

62

8.2. FUTURE CHALLENGES

Figure 8.3: Decision tree representation of using multiple binary classifications to determine fine
grained sentiment polarity

of opinionated text has not been of concern. This does not go to say that this issue is any less vital
to Sentiment Analysis than the others that were investigated, but is rather a reflection of limitations
in time and resources that had to be accounted for. This is equally valid for all challenges explained
subsequently.

Numerous approaches have been presented to address the issue of determining sentiment polarity,
e.g. [8], [61], [76], [85]. Some of these efforts have focused on sentiment polarity exclusively,
while others integrated their propositions within solutions that deal with the entire spectrum from
determining opinionatedness up to the summarisation of classification results. Generally, we can say
that a system that aims at performing Sentiment Analysis in a way that is valuable to a human user
in a day to day usage will need to successfully incorporate all three stages of the analysis process.

In light of this project, there are two basic ways how polarity determination may be integrated
into the system:

1. Add additional passes of binary decisions to the classification process

2. Develop a classifier that is able to make decisions on multiple classes at once

While the first alternative may prove to be a simpler solution than the second, it may bring with
it excessive computational demands and thus prove to be an unsustainable quick fix to the issue.
Let us nevertheless consider this approach first, as it will provide some intuition for the second,
more sophisticated approach. Following this approach encompasses an additional binary decision
for each subdivision that is implemented. Thus, distinguishing among the content that was classified
as opinionated which parts are negative and which are positive would involve one additional binary
decision. Were we to further subdivide these opinions into categories of high intensities and low
intensities, two additional stages of classification would be needed, one for negative content and one
for positive content. Such subdivisions can be viewed as a decision tree, as can be seen in figure 8.3
where we find the classification result at the leaf nodes. Such a method could be further subdivided
into more binary decisions, adding more levels to the decision tree and resulting in a finer grained
sentiment classification.

To incorporate such additional binary decisions into the system, two major adjustments would
have to be made, one to the text corpus and one to the system itself. Firstly, the text corpus would

63

8.2. FUTURE CHALLENGES

have to be further annotated, as for each additional classification another class label would have to
be attached to each of the feature vectors that make up the corpus. Recall the sample n-gram used
in earlier sections, "has refused to bow", which would be represented in the current corpus as

1 1:0.4 2:0.0 3:0.78125 4:0.21875 5:0.9524 6:0.8372 7:0.5581 8:1

or, in a non numerical representation

1 0.0 0.78125 0.21875 has<VHZ>(have) refused<VVN>(refuse) to<TO>(to) bow<VV>(bow)

The feature vector has attached to it a single class label, which tells us that the particular
n-gram, which the feature vector represents, is opinionated. No information is conveyed as to what
the polarity of the n-gram is. This information would have to be added to the corpus, since it is
what the classifier is trained on. Assuming that the example n-gram conveys a negative sentiment,
annotating the feature vector may yield the following:

1 -1 1:0.4 2:0.0 3:0.78125 4:0.21875 5:0.9524 6:0.8372 7:0.5581 8:1

An additional class label was attached to the feature vector, with C ∈ {1,−1} and −1 repre-
senting negative polarity and 1 signifying positive polarity. Annotating the corpus in such a manner
would demand twofold training of the SVM, as it presents one binary decision at a time. Accord-
ingly, we would either have to adjust the format in which the SVM takes input or create separate
corpora, one classifying each feature vector according to its opinionatedness and one subcorpus con-
taining just the opinionated feature vectors. Such a subdivision would have to be extended further
accordingly for each additional level of distinguishing the opinionated contents more finely grained.
In addition to adjusting the content of the corpus it would be necessary to apply some changes to
the system itself. The conversion of the user input to a numerical representation of the n-grams
that make up the input would have to be altered to cater to the changed syntax of the corpus upon
whose basis the input is classified. Subsequently, an extra pass of user input classification would
have to be implemented for each additional subdivision of the opinionated parts of the user input.
The user feedback would have to be extended to allow the user not just to judge upon an n-gram
being opinionated or not, but rather whether it is non opinionated, positive, negative, positive with
a high intensity, and so on. Lastly, the summarisation of the results as it is currently presented to
the user would have to be tailored to include the additional information in a manner that retains the
intuitive comprehensibility that the summarisation should provide. This could mean, for example,
presenting more than one plot or replacing the plot currently output with one showing not the
probability of the text being opinionated but rather plotting the development of opinion polarity
and intensity.

The second approach to integrating opinion polarity into the system’s concerns would require
more fundamental changes to the system architecture but may prove its benefits with regards to
computational efficiency. This approach would mean replacing the classifier entirely with a multi
class classifier. Though SVM have been extended beyond binary classifications, their prime purpose
and pedigree lies with such binary problems. Accordingly, choosing to implement a single multi
class classifier may demand the application of a different algorithm, entirely. The upshot of this
approach lies in avoiding multiple passes through the data, which is especially costly when the data
sets are large. Since large data sets are often vital in text analysis, utilising the advantage of fully
classifying the data in one pass may be crucial. As with the other solution proposed, both the
corpus and the system would have to be tailored to the new demands.

The class labels attached to each of the feature vectors within the corpus would have to be
changed from C ∈ {1,−1} for example to C ∈ {1, 0,−1}, where 1 signifies positivity, 0 represents
neutrality and −1 stands for negativity. Reflecting this adjustment onto the example, the class label
would be changed to yield the following:

-1 1:0.4 2:0.0 3:0.78125 4:0.21875 5:0.9524 6:0.8372 7:0.5581 8:1

64

8.2. FUTURE CHALLENGES

libSVM ([7]) offers facilities to extend SVM beyond binary classification, but applying these
may not be optimal due to two reasons. Firstly, the approach that is used when using SVM as a
multi class classifier is more or less to letting the classifier make multiple binary decisions, which
entails the same potentially negative effects as the approach described above. libSVM uses the
so called one versus all approach, for which the data set is divided into two parts once for each
class that can be found in the training set. Considering the current scenario, in a first step the
classifier would divide the training set into a set that contains all feature vectors that are annotated
as representing a positive n-gram and a set that contains all other feature vectors. After training
according to this subdivision, the classifier would then split the data into one set containing all
neutrally annotated feature vectors and a set containing all other data. This process is repeated
as many times as we have different classes. We can see that the training effort is virtually the
same as it is with multiple binary classifiers. A second reason for being sceptical about extending
SVM beyond binary classification lies in the fact that, as is pointed out in [30], how to effectively
extend it for multi class classification is still an ongoing research issue. Other algorithms, such as
feed-forward neural networks, have been studied more extensively for multi class problems and may
thus, at the current state of the art, provide better choices. The changes that would have to be
made to the collection of the user feedback would be similar to what was described above when
applying different algorithms.

8.2.2 On the corpus and Natural Language Processing

Section 2.2 discusses a number of NLP aspects that need to be taken into consideration when
developing a Sentiment Analysis program, or, as a matter of fact, any sort of NLP system. These
aspects entail system design choices at different stages of the development process. The choices
made during this project and what the potential benefit of exploring alternative routes may be is
discussed below.

At an early stage of annotation, all n-grams in the corpus and all n-grams of system input are
converted to their basic form and are subsequently processed in this manner. Underlying this is
the simplifying assumptions that tense, case etc. do not carry significant information about the
word and can thus be disposed of. There might be reason to doubt that this assumption holds in all
cases and accordingly there is merit in investigating potential differences between analysing only the
basic forms of all words the system deals with and leaving text in its original state and considering
all possible declinations, conjugations etc. of all words. There is an an obvious trade off between
the need for significantly larger corpora and lexica when analysing all words in their original form
and potentially loosing valuable information when stemming all words before analysing them. In
order to determine the value of paying the price of enlarged corpora and lexica to retain as much
information as possible, comparative analyses would have to be brought under way that concern
themselves not only with differences in classification performance, but also pay respect to potential
differences in domains and whether in some applications it might be worth putting in the effort
while in others it may not.

Tokenisation is another issue that needs to be addressed when analysing text. It is questionable
whether choosing to consider n-grams ranging from a size of a single word to a size of five words
is always an optimal choice of parameters. Additionally, it might be worth investigating whether a
division of text into overlapping sets of n-grams is the optimal choice, in the first place. Depending
also on the application and what the aimed for nature of the classification results is, different types
of tokenisation may prove either computationally more efficient or yield better classification results.
When the aim of a system lies in classifying text at document level, i.e. take a less fine grained
approach to identifying opinionatedness, it may suffice to analyse larger excerpts of the text at
hand and thus save computational costs. On the other hand, to gain more reliable results and put
higher emphasis on respecting the context, a larger number of n-grams may have to be extracted
and analysed.

Each n-gram contained in the corpus developed during this project is represented by a num-
ber of features, namely the size of n-gram, three SWN scores and all word types occurring in an

65

8.2. FUTURE CHALLENGES

n-gram. Various existing NLP techniques offer potential to deduce numerous additional features
and determine those for each n-gram in the corpus. Intuitively, generating more features should
enable a more accurate classification of new text, as we gather more information about it according
to which we can discriminate different types of n-grams. Other POS tagging systems such as the
TreeTagger are available (e.g. [4], [13]) and with them most syntactical features that words or
phrases exhibit can be determined automatically. Characteristics such as the tense of phrases or
their voice, i.e. active or passive, can all be determined more or less reliably by POS tagging systems.

As the application of SentiWordNet shows, it is not just POS tagging systems that can supply
valuable information about text that may be translated into features describing it. There is, for
example, a number of systems and algorithms other than SentiWordNet available which supply
different kinds of scoring facilities for words and phrases according to different measures. Some
of these have been used in Sentiment Analysis systems before and have contributed to developing
corpora in a similar manner as I have done within this project. In [50], Mullen and Collier train
SVM on data that is collected using a number of scoring methods for words and phrases. Their
method is based on the same intuition as the development process of the corpus in this project has
been. They use a number of sources that give different measures of words’ characteristics to build
feature vectors describing words and phrases. These feature vectors are then used to train an SVM
classifier which in turn classifies text according to its sentiment. Among a number of other features,
Mullen and Collier use the following two measures to construct their feature vectors, both of which
could be incorporated into the project’s corpus, as is explained below.

1. Semantic orientation (SO) with pointwise mutual information [51]

2. Osgood semantic orientation with WordNet [32]

SO "refers to a real measure of the positive or negative sentiment expressed by a word or phrase.
(...) The SO of a phrase is determined based upon the phrase’s pointwise mutual information (PMI)
with the words ’excellent’ and ’poor’. " ([50]) PMI is defined as

PMI(w1, w2) = log2

(
p(w1&w2)

p(w1)p(w2)

)
(8.1)

where p(w1&w2) is the probability that w1 and w2 co-occur. A phrase’s SO is deduced from the
PMI by calculating the difference between its "PMI with the word excellent and its PMI with the
word poor. The probabilities are estimated by querying the AltaVista Advanced Search engine for
counts. The search engine’s ’NEAR’ operator, representing occurrences of the two queried words
within ten words of each other in a text, is used to define co-occurrence." ([50]) Accordingly, we
calculate the SO as follows:

SO(phrase) = log2

(
hits(phrase NEAR ”excellent”)hits(”poor”)

hits(phrase NEAR ”poor”)hits(”excellent”)

)
(8.2)

Thus, we obtain values greater than zero for phrases with greater PMI with excellent while
values below zero are the result of a greater PMI with poor. A value of zero indicates a neutral
semantic orientation.

The second measure that Mullen and Collier use to build their feature vector is the result of a
method developed by Kamps and Marx ([32]) which uses WordNet relationships to deduce three
values describing the sentiment expressed by an adjective. As can be seen, strong parallels to what
SentiWordNet offers are found, here. The two main differences between SentiWordNet and this
method lie in the fact that only adjectives are annotated with these three scores and also that
the values ascertained carry different meanings in both methods. The values determined by this
method identify the adjective’s potency, i.e. strong or weak, its activity, i.e. active or passive, and
its evaluation, i.e. good or bad. These measures were introduced by Charles Osgood in his Theory
of Semantic Differentiation ([54]), hence the name. All three values are determined by measuring

66

8.2. FUTURE CHALLENGES

relative minimal path length (MPL) in WordNet between the word in question and certain other
words known to be characteristic for one or the other value potency, activity and evaluation.

Mullen and Collier go on to elucidate upon a number of other measures that they incorporate
to form the final feature vectors that they analyse. Most of these measures may be added to the
corpus as it is without need of changing any of its syntactical features. For the purposes of illus-
tration the measures described above suffice and those not further mentioned here could mostly be
implemented in an analogous manner. Recalling the structure of the text corpus, as described in
chapter 5 it should be clear that both measures explained above could be added to the corpus the
same way that the SWN scores were added to it. Assuming that both measures would be added
to each n-gram, we would extend each feature vector to contain an appropriate number of addi-
tional values, one signifying the SO of the n-gram and three values for each word, representing its
potency, activity and evaluation. We would only need one SO value for the same reason we only
need three SWN scores for an entire n-gram. The SO value is a real value that we could accumulate
and normalise analogously to the SWN score calculation procedure. This is not feasible for the
value obtained from Osgood semantic orientation method because these describe non numerical
characteristics of single words, such as a word being in active voice or passive voice. Accordingly,
these values would have to be added to the feature vector for each word contained in the n-gram
separately.

8.2.3 On system features and performance

As with any prototype of a system, a number of features could, with varying degrees of difficulty,
be implemented to enhance the system’s performance. We shall consider four examples that are
worth implementing and investigating:

1. Adaptable number of arguments provided by the user

2. Continuous learning after each system execution

3. Allowing the user to pass judgements upon an adjustable number of features

4. Variable degrees of trust in user feedback

The system’s current functionality in providing facilities for the user to create arguments is
limited to five arguments with each system execution. Accordingly, we pay no attention to how
large the amount of text the user passes to the system is when collecting arguments at a later
stage of the execution. This is arguably not optimal. Consider a case in which the user passes just
a short phrase of maybe four words to the system. With a maximum n-gram length of five this
would mean that the system produces and classifies ten n-grams. Out of those ten n-grams, five are
randomly selected and presented to the user. Not only may it very well happen that the user sees
the same n-gram turning up for argumentation more than once, but also does the relation between
ten n-grams and five arguments not seem to stand up to the entire purpose of the system: Attaining
user input at a rate that is beneficial to the outcome, but also economical, as in maintaining low
effort in comparison to the benefit. The workload and the benefit do not seem to be in appropriate
relation, here, as it may be argued that annotating four words entirely manual may be quicker than
providing five arguments about these four words. On the other hand, consider the issue that was
pointed out in section 7.1. Here we discussed that providing five arguments for a large amount of
text would arguably have no significant effect on the final classification. A remedy for this issue
may lie in introducing a component that dynamically adjusts the amount of arguments constructed
by the user in relation to how many words the user passes to the system in the first place. We could
introduce multiple word count thresholds and with each threshold that is surpassed have the user
construct more arguments. Through testing, optimal thresholds could be found and implemented,
maintaining a similar relation between word count and number of arguments regardless of how much
text is analysed by a single system execution.

67

8.2. FUTURE CHALLENGES

The second suggestion listed above relies on the system being used frequently. Consider a sce-
nario in which many runs of the system are executed, each time storing the classification results of
both the SVM and after the user feedback. In this case, we could amass information over time which
can be utilised whenever new classifications are being made. To gain an intuition, consider again the
Unsupervised Learning technique of building classifications automatically from a small number of
seed words (see section 3.2). This technique starts out with a small number of manually annotated,
using these to iteratively build up an ever growing collection of classified words. A similar approach
could be taken to utilise user feedback in a more lasting manner than simply to enhance one run
of classification as is the case at this point of the system’s development. Each time the user gives
feedback about a number of n-grams, the classification of the feature vectors underlying the n-grams
that the user judges are adjusted accordingly. We thus gain insight from the user feedback about
the sentimental nature of those feature combinations that goes beyond the SVM classification. The
SVM classification strictly relies on the results of training on the feature vectors contained in the
training set. These do not change and thus the gain from adjusting classification according to SVM
classification results may arguably be low. This is not the case for user feedback. The user judges
not the feature vectors, but rather the words from which they are constructed. This means that,
as the same feature vectors are, over the course of multiple executions, reoccurring represented by
different words, the user may, through his or her feedback, introduce a sensitivity in classification
to subtleties in the feature combinations opinionatedness that are not picked up by the straight
forward feature analysis of the SVM. The basic prerequisite for utilising user feedback to improve
the classification results of not just one execution, but rather increasing it over the course of multiple
executions, is that the user feedback be stored in a manner that allows easy access and incorporation
of it at subsequent runs. Thus, let us assume that we have available a collection of all arguments
provided by previous system executions. A number of ways can be envisaged how to put such a
collection to use in order to improve classification results. One of those ways might be a simple
scoring algorithm that, whenever a certain combination of features is reasoned upon by the user,
this combination is either added to the collection with the appropriate class label or, if this feature
combination has been encountered before, either a score for being opinionated or one for being non
opinionated is increased. We could then use such a score, in addition to the current user feedback,
to overrule SVM classification results whenever such a score is large enough and we believe it to
be representative for all occurrences of this particular feature combination. Other solutions may
include more intricate scoring techniques taking into account the SVM classification, the current
user feedback and the feedback history in unison to deduce the final classification of an n-gram.

Another approach to utilising user feedback history may result in a non random selection of n-
grams that are given to the user to reason about. Instead of randomly selecting one from the entire
collection of n-grams that make up the user input, a preprocessing step may be introduced to rule
out certain n-grams because enough information has been accumulated about this combination of
features during previous runs. Such a preprocessing step may allow a more efficient use of the user
feedback by avoiding gathering information about feature combinations that have been classified
many times before and are left with little ambiguity.

The user currently builds arguments by passing judgement about what part of the n-gram he or she
is presented with is the most discriminative in deciding upon the n-gram’s opinionatedness. this
means that the user implicitly judges which types of words indicate a text being either opinionated
or non opinionated. It may be valuable to build arguments that provide information about features
other than the word types. The main issue here would arguably be the question of how to represent
feature values other than word types to the user in a manner that is intuitively understandable. For
some features this would be simpler than for others. Were we, for example to incorporate features
such as the n-gram’s tense or voice, this could simply be presented to the user as it is and he or
she could judge the feature’s responsibility. The issue is not as straightforward when it comes to
presenting any of the scores presented in section 5.1.2 and section 8.2.2 to the user. Allowing a user
to pass judgement on numerical values such as the SWN scores would, in some cases demand more

68

8.2. FUTURE CHALLENGES

or less lengthy explanations about their meaning before the user could provide an educated decision.
Such explanations would increase the time needed by the user to construct arguments considerably,
which is what we are trying to avoid in order to retain the value of the entire procedure. Thus,
in order to allow the user judgement on such scores, a way would have to be found to represent
those values in an intuitively understandable manner without compromising the information that
the value actually holds. This may be accomplished by devising a conversion of the numerical values
into a worded representation through which these measures would be represented in a syntax closer
to the features already used in the current version.

The system currently incorporates direct user feedback in a straight forward manner. Whenever
user and SVM classification of an n-gram disagree, the SVM classification is simply overruled to
conform to the user feedback. This means that we trust the user over the SVM classification. As
progress is made in the classification quality of the algorithm applied, we might want to consider
a less brute way of processing disagreements in classifications between the classifier and the user
feedback. One way of doing this could be through the introduction of two measures of trust, one
for the classifier and one for the user. These trust measures would then be compared whenever
disagreements arise and the classification result of the entity carrying the higher trust value would
be the one accepted as the final classification.

Figure 8.4 recapitulates the system’s architecture as it is described in chapter 6 and figure 6.1
with instances of the suggestions made above added to the procedure. Three additions are made
from figure 6.1 to figure 8.4:

1. Additional features and an n-gram count are extracted from the user input to construct GUI2

2. A trust score influences the outcome of the indirect and direct feedback and is influenced by
them reciprocally.

3. Together with the scoring algorithm, stored classification results, collected from previous runs,
decide upon the final classification.

8.2.4 On summarisation

When considering summarisation in Sentiment Analysis, we generally concern ourselves with merg-
ing the original data we have analysed with the data that is the outcome of the analysis. The aim
is to produce an output and present it to the user that allows him or her to digest the opinionated
contents and the information that goes with it more easily than it would have been possible from
the original input. As explained in section 2.3.4 this may be done either in a textual or a graphical
manner.

During the project I have only briefly addressed the issues that come with appropriately summaris-
ing the classification results provided by the system. This means that we are left with considerable
room for improvement and some aspects shall be pointed out, here. Recall that the graphical output
that serves as a summary of the system’s classification results is a simple plot showing the system’s
confidence in single words being opinionated or non opinionated. The most fundamental issue that
this choice of representation prompts is the fact that it does not show the actual classification
results, but rather a simplification of them. The classification of the text that is supplied by the
user concerns itself with analysing n-grams of varying sizes, not single words. The classification of
n-grams which the system returns is abstracted to a single word classification in a rather rudimen-
tary manner. By accumulating the scores of all n-grams in which a word appears to yield a single
word score for opinionatedness it is arguable whether or not the amount of insight provided by
the n-gram classifications is retained. A second reason that emphasises the worth of investigating
alternative summarisation techniques is the fact that not only do we represent the classification
results by means of a gross simplification, but we also leave out information that might be valuable

69

8.2. FUTURE CHALLENGES

Figure 8.4: Schematic view of the system with additional features as described in section 8.2.3. The
added features are highlighted in green.

70

8.2. FUTURE CHALLENGES

to the user entirely. For user input that consists of n words, we attain two sets of classifications,
each comprised of m = (n− 2) ∗ 5 n-grams in the case of a maximum n-gram size of five. Both sets
are available in two different representations, one comprised of n-grams with class labels and one
made up of feature vectors with class labels. In addition to that, we obtain five arguments attached
to five randomly selected n-grams. We can see that we obtain a wealth of information about the
user input that is either left out of the representation of only partially represented.

Below we shall consider advances in summarisation with regards to the project in two stages.
Firstly, we shall investigate some approaches to incorporating more information into summarisa-
tion to achieve a richer summary while maintaining an intuitive comprehensibility of the summary.
Secondly, some implications of further developing the system itself to the issue of summarisation
are pointed out. For example, what are implications for summarisation that would spring from
integrating polarity detection into the system, as described in section 8.2.1.

One of the central issues that will have to be addressed is the question of how we can maximally
utilise the fact that we have at our disposal multiple classifications of the same word in different
contexts. To some extent this is already done. The final score for each word output in the plot that
the user sees basically reflects the system’s confidence of classifying a word as either opinionated
or non opinionated. Recall that the score is obtained starting from a value of zero, increasing it by
one whenever the word is member of an n-gram that was classified as opinionated and decreasing
the value by one whenever the word is included in an n-gram whose class label identifies it as non
opinionated. This value is then divided by the number of n-grams this particular word has appeared
in. Thus, if all n-grams in which the word appears have the same class label, the final score for
the word is either one or negative one, indicating a high confidence of the system in the word’s
classification. Nevertheless, it should be possible to make better use of the information provided to
us by the full set of classified n-grams.

As discussed above, multiple ways of summarising and presenting classification results are imag-
inable. Some of these solutions portrait the same information to the user by different means of
representation. At the same time, some of the approaches not only differ in appearance, but also
represent either different information garnered from the classification outputs or represent infor-
mation with a different emphasis. At this point of the system’s execution, the user has already
been involved in the classification’s outcome by providing arguments. Through a similar measure
the user could provide additional judgement during the process of summarisation. We may present
multiple of the different interpretations discussed in a manner that allows the user to compare them.
The most basic realisation of this concept would be to present to the user both the original SVM
classification and the classification adjusted according to the user’s feedback. The user could then
choose which of the two classification results he or she deems to be more accurate or, in a more
advanced setting, determine different excerpts of the text where one or the other result produces the
more apt result. An additional benefit to gain from this solution would be an evaluative one. Only
if the user chooses the classification result based on the feedback significantly more frequently than
the original SVM classification result would the extra effort of reclassification be justified. Other
scenarios involving a second run of collecting user feedback during summarisation could be devised
without yielding excessive demands to the user. For example, we might present the user with a
similar plot as the one currently used during system execution, but allow him or her, once pre-
sented with this plot, to adjust it per mouse drag at places where the user deems the classification
result inappropriate. The two proposals made above to introduce user feedback at this stage are
by no means the only ways imaginable how this may be achieved, but they suffice to illustrate that
considering this concept may yield further improvements in the system’s performance.

8.2.5 On adjustable parameters

Throughout the system’s execution, but also during the corpus’ development, many parameters
influence the eventual text classification that is the system’s output. In the following, potential
benefits, but also risks, of changing some of these parameters are discussed. Consider a non-
exhaustive list of adjustable parameters below:

71

8.2. FUTURE CHALLENGES

• SVM parameters

• TreeTagger parameters

• n-gram extraction criteria

• Maximum length of n-grams considered

As explained in section 7.1, training the SVM classifier meant testing various combinations of
parameters in order to find an optimal combination. This need for extensive parameter testing is
generally needed when using SVM and will have to be, to a certain extent, be repeated should some
of the developments described in this chapter be realised. The current setting of SVM parameters
yields the best possible classification performance on the test set, given the current form of the
corpus. This means, were we to add more features to to the feature vectors, i.e. change the both
the data that the SVM is trained on and the data it then classifies, the necessity would arise to
reevaluate the current parameter settings.

For the application of TreeTagger, I have used the default settings of both the model data used
for tagging and the parameters. Similarly to libSVM, TreeTagger offers both a training algorithm
and a classification algorithm. We can train TreeTagger by supplying it with a lexicon and a set
of hand annotated data. Training TreeTagger would thus entail a process that is analogous to the
development of the data set that was constructed for SVM training, with differences in the syntax
of the training data and an additional lexicon. Since TreeTagger, along with those algorithms,
provides a readily trained model file that is based on the Penn TreeBank data, we are already
given a high quality model file and investing the effort in constructing a model file from scratch
was thus unnecessary. At the same time, one could expect that constructing both the lexicon and
the training data for TreeTagger on the same grounds as the training data for the SVM instead of
on a separate set of data may yield more accurate tagging results. Whether or not constructing
such training data for TreeTagger and basing training on it subsequently would improve the results
was not investigated due to the limitations of the project’s scope. Both during training and during
classification, a number of parameters can be adjusted to the data and to each other. Thus, training
TreeTagger would entail an investigation of optimal parameter settings, which was of no concern
during this project. Some of these parameters are concerned with the tagging procedure itself, such
as:

• Setting tokenisation options

• Including heuristics in the tagging procedure

• Including an auxiliary lexicon

• Dealing with non word content

Other options determine the output that is written to the file once the tagging has been exe-
cuted, such as the content that is stored or probability thresholds that have to be exceeded in order
to store certain information. Some of the options available in TreeTagger may prove to yield more
reliable tagging results when set to certain values or when providing certain additional information.
This may in turn improve the classification results of the data annotated using TreeTagger.

The very first step in constructing the text corpus described in chapter 5 was to extract n-grams up
to a length of five words together with their classification as being either opinionated or non opin-
ionated. The decisions upon the class label of the n-grams and which n-grams should be extracted
in the first place, were made based on the n-grams features, determined by the annotations. The
annotation scheme used to construct the MPQA corpus provides a number of features that let us
decide whether an n-gram annotated in such a manner is opinionated or non opinionated. For ex-
ample, an n-gram whose annotation contains the feature-value combination onlyfactive="no" may

72

8.2. FUTURE CHALLENGES

unambiguously be identified as opinionated and stored in the corpus with the according class label.
A number of other features such as this have been used during the extraction of the n-grams from
the MPQA corpus. However, this procedure did not result in an extraction of all n-grams contained
within the MPQA corpus, despite the fact that it should be possible to assign any n-gram to one
of the two categories. This means that by improving some of the extraction criteria and allowing
a more holistic extraction result, we may be able to obtain a larger text corpus. Assuming that
the n-grams additionally extracted are of the same quality and their classifications are as reliable,
attaining a larger corpus may further improve the subsequent training and classification procedures.

A rather heuristic parameter setting has been employed in choosing the maximum length of n-
grams that are processed by the system. Setting the maximum length of n-grams to five words was
seen as a compromise between to aspects that seem to be mutually exclusive. On the one hand,
we want to capture as many interrelations between words within a text. As discussed previously,
often times opinions are not expressed by single words and can, in many cases, not be identified by
analysing single words. This is the basic motivation for using n-grams rather than a bag-of-words
approach during the analysis. Considering that the opinionatedness of a word may very well rely
on a phrase that is positioned numerous words later, we could argue that the larger the n-grams we
consider for our analysis, the better the chances of identifying opinions in general; but dealing with
an ever increasing size of n-grams poses one crucial problem. Computationally, it might turn out
to be infeasible to increase the maximum size of n-grams by a large number. As explained, if we
split up user input into all possible n-grams up to a length of five words, we obtain m = (w− 2) ∗ 5
n-grams, where w is the number of words we are analysing. Generalising the n-gram count to any
maximum n-gram length we get

m = (w − n+ 1) ∗ n+
n−1∑
i=1

i (8.3)

given that w > n, where n is the maximum n-gram length. Consider, for example, a text of 50
words. Considering all n-grams of a length up to five words would yield 240 n-grams. Extending the
analysis to a maximum n-gram length of eight words would mean analysing 372 n-grams. Despite
a moderate increase of n and a relatively small number of words that are to be analysed we have
an increase in number of n-grams of 55%. When running the program, each n-gram is parsed
multiple times in order to obtain the syntax needed for analysis. This included extensive search
procedures, meaning that a large increase in analysed n-grams means a rather significant increase
in computation, as well. We see that there is trade off between potential benefit in using larger
n-grams to pay respect to dependencies among words and increased computational demands in
processing larger and larger n-grams. Accordingly, we will have to investigate whether we could
gain higher classification accuracy by considering larger n-grams. Equivalently evaluation is needed
of whether we can achieve the same quality of results as we do now when analysing n-grams, say,
just up to a maximum length of four words. Comparing the classification outcomes of different
maximum n-gram lengths entails changing both some of the system’s procedures and the corpus
itself. The corpus will need to include all n-grams found in the MPQA corpus up to the n-gram
length specified while the system will need to split the user input into a larger, or smaller, amount
of n-grams.

8.2.6 On Linguistics

In section 2.2.1, two contributions of insights from linguistics to NLP and Sentiment Analysis have
been pointed out.

1. The automatic procession of text along a fixed set of linguistic rules

2. The use of heuristics to prune search space or increase the contribution of a priori knowledge

While the first aspect constitutes a significant part of the realisation of the A-SVM system, the
second does not. The entire process of extracting, annotating and classifying data relies on the

73

8.2. FUTURE CHALLENGES

application of rules such as those determining the type of a word or its basic form. On the other
hand, heuristics have neither been used to try and increase the efficiency of any procedures nor have
they contributed to maximising the impact of information in any significant manner. Accordingly,
incorporating heuristics may offer room for improvement in a twofold manner. It may be used to

1. Increase classification efficiency and accuracy

2. Increase the impact of gathered information

To increase classification efficiency and accuracy, a similar approach to that taken by Ding
and colleagues [15] as described in section 2.2.1 may offer valuable improvements. Using either
results from an evaluative study preceding the system’s further development or evidence accumu-
lated through multiple system executions, indicators for certain combinations of words and features
being opinionated or non opinionated could be amassed to influence future classifications. If strong
evidence for a certain succession of features being, say, opinionated are already available and we are
confident in the value of these indicators, we may not ask the user to provide any more arguments
on these specific feature combinations and instead allocate valuable user feedback to feature com-
binations we have less information about.

Similarly, the information gathered may be generalised to encompass other combinations of fea-
tures of which we know, by some measure, that they are likely to be equally classified. Consider the
following example: We have encountered two distinct combinations of features many times and each
time a user classified both these features, he or she assigned them to the same class. During another
run, both feature combinations appear in the analysed text, but the user provides feedback on only
one of the two. If we trust the evidence collected during previous run, suggesting that whenever
these two feature combinations appear together, they are assigned the same class label, we could
generalise the user feedback to the second feature combination without the user ever judging it.

8.2.7 On Software Engineering aspects

A-SVM has been implemented in C++, using Qt for the GUI deployment. Some comments shall
be made here about the way the system was implemented and how improvements may be achieved
in the future. Two main aspects to point out are:

• The integration of external programs

• The handling of data storage in text files

During the system’s execution, two external executable files are called:

• TreeTagger

• libSVM

These two processes fulfil a function that is crucial to the system as a whole and thus calling
these procedures during run time poses a necessity. However, an improvement may be achieved
by changing the method of integration of these components. Both these external systems could, in
one way or another, be integrated into the system’s execution in a less expensive manner. Some
additional programming effort should enable an integration of those components’ functionalities as
regular calls within the programs environment, instead of having to call an external executable twice
during a single system run. Parts of the two systems are available as CPP files and thus the basis
for achieving this integration is already provided.

The second aspect we shall consider is the way how data is handled during system execution.
The system’s execution involves the generation and use of a number of text files. The information
needed for conversion and classification is partially provided by text files such as the SWN lexicon,

74

8.3. CONCLUSION

Figure 8.5: Example of input/output streaming as it is used during the system’s execution to either
convert intermediate results (as in the example) or add new features

the MPQA model file and the TreeTagger model file. In addition to that, each conversion step yields
a text file that contains the representation of the user’s input at that current stage. Storing the
results of each intermediate step during the analysis process was mainly born from the motivation
of retaining these outcomes for illustrative purposes. With regards to efficiency this solution is not
optimal, since every step of processing involves streams for reading text and writing text to the files
containing the results of each processing steps (see figure 8.5). Storing the results in vectors and
passing them on from one processing step to the next, may for example be one choice that is more
efficient.

As this project’s focus lay rather on evaluating the propositions made with regards to their
final outcome than on developing a highly performant system with regards to resource utilisation,
their is likely to be room for improvement with regards to efficiency. These are, at the current
stage of the system’s development not necessarily crucial to its success, as all processing is executed
at a reasonable speed. Nonetheless, considering some of the propositions made in this chapter,
for example an increase of n-grams that are analysed at each system run, evaluating potential
improvements in the system’s efficiency may prove to be vital during further developments.

8.3 Conclusion

Sentiment Analysis is still a young research field, but throughout the past decade, progress has
been made on all issues that this field entails. Nevertheless, there is much ground to be covered
and it has been my motivation to make a contribution to this progress by means of this project. By
providing both the theoretical foundation and motivation, and subsequently achieving measurable
improvements compared to a unimodal pattern recognition procedure, I believe to have made a
rather substantial case for the potential benefits of going beyond pattern recognition algorithms in
Sentiment Analysis. As has been suggested by some, e.g. by Pat Langley in [39], co-founder of
Machine Learning journal, it may prove to be necessary in the future to shift the focus away from

75

8.3. CONCLUSION

sheer statistical analysis back to more complex tasks as envisioned when Machine Learning was still
a very young and emerging field. As Langley puts it:

I do not believe that we should abandon any of the computational advances that
have occurred in the [past] 25 years [...]. Each has been a valuable contribution to our
understanding of learning. However, I think it is equally important that we not abandon
the many insights revealed during the field’s early period, which remain as valid today
as when they initially came to light. The challenge for machine learning is to recover
the discipline’s original breadth of vision [...].

The suggestion of viewing Machine Learning as an experimental science that builds solutions
upon a combination of statistical analysis and symbolic representations of knowledge reflects the
basic motivation of this project. By including both a Support Vector Machine algorithm and logic
based arguments to represent the knowledge amassed by the system, and subsequently evaluating the
system both quantitively and qualitatively, I have made the attempt to pay respect to the inclination
of broadening the view on one particular Machine Learning problem: Sentiment Analysis.

76

Bibliography

[1] C. Baker, C. Fillmore, and J. Lowe. The berkeley framenet project. In Proceedings of the 36th
Annual Meeting of the Association for Computational Linguistics and 17th International Con-
ference on Computational Linguistics-Volume 1, pages 86–90. Association for Computational
Linguistics, 1998.

[2] M. Baroni and S. Vegnaduzzo. Identifying subjective adjectives through web-based mutual
information. In Proceedings of KONVENS, volume 4, pages 17–24. Citeseer, 2004.

[3] C. Bishop. Pattern recognition and machine learning, volume 4. Springer New York, 2006.

[4] T. Brants. Tnt: a statistical part-of-speech tagger. In Proceedings of the sixth conference on
Applied natural language processing, pages 224–231. Association for Computational Linguistics,
2000.

[5] E. Breck, Y. Choi, and C. Cardie. Identifying expressions of opinion in context. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), 2007.

[6] M. Brown, W. Grundy, D. Lin, N. Cristianini, C. Sugnet, T. Furey, M. Ares, and D. Haussler.
Knowledge-based analysis of microarray gene expression data by using support vector machines.
Proceedings of the National Academy of Sciences, 97(1):262, 2000.

[7] C. Chang and C. Lin. Libsvm: a library for support vector machines. http://www.csie.ntu.
edu.tw/~cjlin/libsvm/, 2001. [Online; accessed 31-August-2011].

[8] Y. Choi and C. Cardie. Learning with compositional semantics as structural inference for
subsentential sentiment analysis. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 793–801. Association for Computational Linguistics, 2008.

[9] Y. Choi, C. Cardie, E. Riloff, and S. Patwardhan. Identifying sources of opinions with con-
ditional random fields and extraction patterns. In Proceedings of the conference on Human
Language Technology and Empirical Methods in Natural Language Processing, pages 355–362.
Association for Computational Linguistics, 2005.

[10] CIA. World fact book. https://www.cia.gov/library/publications/
the-world-factbook/geos/uk.html, 2011. [Online; accessed 31-August-2011].

[11] P. Clark and T. Niblett. The CN2 induction algorithm. Machine learning, 3(4):261–283, 1989.

[12] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.

[13] H. Cunningham. Gate, a general architecture for text engineering. Computers and the Human-
ities, 36(2):223–254, 2002.

[14] K. Dave, S. Lawrence, and D. Pennock. Mining the peanut gallery: Opinion extraction and
semantic classification of product reviews. In Proceedings of the 12th international conference
on World Wide Web, pages 519–528. ACM, 2003.

[15] X. Ding and B. Liu. The utility of linguistic rules in opinion mining. In Proceedings of the
30th annual international ACM SIGIR conference on Research and development in information
retrieval, pages 811–812. ACM, 2007.

77

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.cia.gov/library/publications/the-world-factbook/geos/uk.html
https://www.cia.gov/library/publications/the-world-factbook/geos/uk.html

BIBLIOGRAPHY

[16] H. Drucker, D. Wu, and V. Vapnik. Support vector machines for spam categorization. Neural
Networks, IEEE Transactions on, 10(5):1048–1054, 1999.

[17] K. Eguchi and V. Lavrenko. Sentiment retrieval using generative models. In Proceedings
of the 2006 conference on empirical methods in natural language processing, pages 345–354.
Association for Computational Linguistics, 2006.

[18] A. Esuli and F. Sebastiani. Determining the semantic orientation of terms through gloss
classification. In Proceedings of the 14th ACM international conference on Information and
knowledge management, pages 617–624. ACM, 2005.

[19] A. Esuli and F. Sebastiani. Determining term subjectivity and term orientation for opinion
mining. In Proceedings the 11th Meeting of the European Chapter of the Association for Com-
putational Linguistics (EACL-2006), pages 193–200, 2006.

[20] A. Esuli and F. Sebastiani. Sentiwordnet: A publicly available lexical resource for opinion
mining. In Proceedings of LREC, volume 6, pages 417–422. Citeseer, 2006.

[21] J. W. et al. Mpqa readme file. http://www.cs.pitt.edu/mpqa/databaserelease/Database.
2.0.README, 2011. [Online; accessed 31-August-2011].

[22] T. Furey, N. Cristianini, N. Duffy, D. Bednarski, M. Schummer, and D. Haussler. Support vector
machine classification and validation of cancer tissue samples using microarray expression data.
Bioinformatics, 16(10):906, 2000.

[23] D. Gildea and D. Jurafsky. Automatic labeling of semantic roles. Computational Linguistics,
28(3):245–288, 2002.

[24] N. Godbole, M. Srinivasaiah, and S. Skiena. Large-scale sentiment analysis for news and
blogs. In Proceedings of the International Conference on Weblogs and Social Media (ICWSM).
Citeseer, 2007.

[25] R. Grishman. Information extraction: Techniques and challenges. Information Extraction A
Multidisciplinary Approach to an Emerging Information Technology, pages 10–27, 1997.

[26] T. Guardian. Latest news, comment and reviews from the Guardian. http://www.guardian.
co.uk/, 2011. [Online; accessed 31-August-2011].

[27] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using
support vector machines. Machine learning, 46(1):389–422, 2002.

[28] V. Hatzivassiloglou and J. Wiebe. Effects of adjective orientation and gradability on sentence
subjectivity. In Proceedings of the 18th conference on Computational linguistics-Volume 1,
pages 299–305. Association for Computational Linguistics, 2000.

[29] J. Hockenmaier and M. Steedman. Ccgbank: a corpus of ccg derivations and dependency
structures extracted from the penn treebank. Computational Linguistics, 33(3):355–396, 2007.

[30] C. Hsu and C. Lin. A comparison of methods for multiclass support vector machines. Neural
Networks, IEEE Transactions on, 13(2):415–425, 2002.

[31] D. Jurafsky, J. Martin, A. Kehler, K. Vander Linden, and N. Ward. Speech and language pro-
cessing: An introduction to natural language processing, computational linguistics, and speech
recognition, volume 163. MIT Press, 2000.

[32] J. Kamps, M. Marx, R. Mokken, and M. de Rijke. Words with attitude. Citeseer, 2001.

[33] W. Karush. Minima of functions of several variables with inequalities as side conditions, 1939.
Master thesis.

78

http://www.cs.pitt.edu/mpqa/databaserelease/Database.2.0.README
http://www.cs.pitt.edu/mpqa/databaserelease/Database.2.0.README
http://www.guardian.co.uk/
http://www.guardian.co.uk/

BIBLIOGRAPHY

[34] S. Kim and E. Hovy. Determining the sentiment of opinions. In Proceedings of the 20th inter-
national conference on Computational Linguistics. Association for Computational Linguistics,
2004.

[35] S. Kim and E. Hovy. Automatic detection of opinion bearing words and sentences. In Com-
panion Volume to the Proceedings of the International Joint Conference on Natural Language
Processing (IJCNLP), 2005.

[36] L. Ku, Y. Liang, and H. Chen. Opinion extraction, summarization and tracking in news and
blog corpora. In Proceedings of AAAI-2006 Spring Symposium on Computational Approaches
to Analyzing Weblogs, pages 100–107, 2006.

[37] H. Kuhn and A. Tucker. Nonlinear programming. In Second Berkeley symposium on mathe-
matical statistics and probability, volume 1, pages 481–492, 1951.

[38] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Machine Learning - International workshop then
conference, pages 282–289. Citeseer, 2001.

[39] P. Langley. The changing science of machine learning. Machine Learning, 82:275–279, 2011.

[40] B. Liu. Sentiment analysis and subjectivity. Handbook of Natural Language Processing, 2, 2010.

[41] B. Liu, M. Hu, and J. Cheng. Opinion observer: Analyzing and comparing opinions on the
web. In Proceedings of the 14th international conference on World Wide Web, pages 342–351.
ACM, 2005.

[42] C. Macdonald, I. Ounis, and I. Soboroff. Overview of the TREC 2007 blog track. In Proceedings
of TREC 2007, 2007.

[43] C. Manning, H. Schütze, and MITCogNet. Foundations of statistical natural language process-
ing, volume 59. MIT Press, 1999.

[44] M. Marcus, M. Marcinkiewicz, and B. Santorini. Building a large annotated corpus of english:
The penn treebank. Computational linguistics, 19(2):313–330, 1993.

[45] G. Miller. WordNet: a lexical database for English. Communications of the ACM, 38(11):39–41,
1995.

[46] T. Mitchell. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 1997.

[47] M. Mozina, P. Tolchinsky, and U. Cortes. Project N002307 ASPIC, 2004.

[48] M. Mozina, J. Zabkar, T. Bench-Capon, and I. Bratko. Argument based machine learning
applied to law. Artificial Intelligence and Law, 13(1):53–73, 2005.

[49] M. Mozina, J. Zabkar, and I. Bratko. Argument based machine learning. Artificial Intelligence,
171(10-15):922–937, 2007.

[50] T. Mullen and N. Collier. Sentiment analysis using support vector machines with diverse
information sources. In Proceedings of EMNLP, volume 4, pages 412–418, 2004.

[51] T. Nasukawa and J. Yi. Sentiment analysis: Capturing favorability using natural language
processing. In Proceedings of the 2nd international conference on Knowledge capture, pages
70–77. ACM, 2003.

[52] K. Nigam, J. Lafferty, and A. McCallum. Using maximum entropy for text classification.
In IJCAI-99 workshop on machine learning for information filtering, volume 1, pages 61–67.
Citeseer, 1999.

79

BIBLIOGRAPHY

[53] Nokia. Qt - a cross-platform application and ui framework. http://qt.nokia.com/, 2011.
[Online; accessed 31-August-2011].

[54] C. Osgood, G. Suci, and P. Tannenbaum. The measurement of meaning. University of Illinois
Press, 1971.

[55] I. Ounis, M. De Rijke, C. Macdonald, G. Mishne, and I. Soboroff. Overview of the TREC-2006
blog track. In Proceedings of TREC, volume 6. Citeseer, 2006.

[56] I. Ounis, C. Macdonald, and I. Soboroff. On the trec blog track. In Proceedings of the Inter-
national Conference on Weblogs and Social Media (ICWSM), 2008.

[57] B. Pang and L. Lee. A sentimental education: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of the 42nd Annual Meeting on Association
for Computational Linguistics, page 271. Association for Computational Linguistics, 2004.

[58] B. Pang and L. Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics, pages 115–124. Association for Computational Linguistics, 2005.

[59] B. Pang and L. Lee. Opinion mining and sentiment analysis. Foundations and Trends in
Information Retrieval, 2(1-2):1–135, 2008.

[60] B. Pang and L. Lee. Using very simple statistics for review search: An exploration. In Pro-
ceedings of the International Conference on Computational Linguistics (COLING). Citeseer,
2008.

[61] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?: sentiment classification using machine
learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural
language processing-Volume 10, pages 79–86. Association for Computational Linguistics, 2002.

[62] H. Prakken and G. Vreeswijk. Logics for defeasible argumentation. Handbook of philosophical
logic, 4:218–319, 2002.

[63] C. U. Press. Cambridge Dictionary Online. http://dictionary.cambridge.org/, 2011. [On-
line; accessed 31-August-2011].

[64] A. Ratnaparkhi et al. A maximum entropy model for part-of-speech tagging. In Proceedings of
the conference on empirical methods in natural language processing, volume 1, pages 133–142,
1996.

[65] E. Riloff. Automatically generating extraction patterns from untagged text. In Proceedings of
the national conference on Artificial Intelligence, pages 1044–1049, 1996.

[66] E. Riloff and J. Wiebe. Learning extraction patterns for subjective expressions. In Proceedings
of the 2003 conference on Empirical methods in natural language processing-Volume 10, pages
105–112. Association for Computational Linguistics, 2003.

[67] E. Riloff, J. Wiebe, and T. Wilson. Learning subjective nouns using extraction pattern boot-
strapping. In Proceedings of the seventh conference on Natural language learning at HLT-
NAACL 2003-Volume 4, pages 25–32. Association for Computational Linguistics, 2003.

[68] G. Rios and H. Zha. Exploring support vector machines and random forests for spam detection.
In Proceedings of the First Conference on Email and Anti-Spam (CEAS), pages 284–292, 2004.

[69] J. Ruppenhofer, S. Somasundaran, and J. Wiebe. Finding the sources and targets of subjective
expressions. In Proceedings of LREC. Citeseer, 2008.

[70] H. Schmid. Probabilistic part-of-speech tagging using decision trees, 1994.

80

http://qt.nokia.com/
http://dictionary.cambridge.org/

BIBLIOGRAPHY

[71] P. Stone, D. Dunphy, and M. Smith. The General Inquirer: A Computer Approach to Content
Analysis. MIT Press, 1966.

[72] C. Sutton and A. McCallum. 1 An Introduction to Conditional Random Fields for Relational
Learning. Introduction to statistical relational learning, page 93, 2007.

[73] R. Sutton and A. Barto. Reinforcement learning: An introduction, volume 116. Cambridge
Univ Press, 1998.

[74] T. N. Y. Times. The New York Times - Breaking News, World News & Multimedia. http:
//www.nytimes.com/, 2011. [Online; accessed 31-August-2011].

[75] P. Turney. Mining the web for synonyms: PM-IR vs LSA on TOEFL. Proceedings of ECML’01,
pages 491–502, 2001.

[76] P. Turney. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classifi-
cation of reviews. In Proceedings of the 40th Annual Meeting on Association for Computational
Linguistics, pages 417–424. Association for Computational Linguistics, 2002.

[77] H. Wallach. Conditional random fields: An introduction. Rapport technique MS-CIS-04-21,
Department of Computer and Information Science, University of Pennsylvania, 50, 2004.

[78] C. Whitelaw, N. Garg, and S. Argamon. Using appraisal groups for sentiment analysis. In Pro-
ceedings of the 14th ACM international conference on Information and knowledge management,
pages 625–631. ACM, 2005.

[79] J. Wiebe. Learning subjective adjectives from corpora. In Proceedings of the National Con-
ference on Artificial Intelligence, pages 735–741. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 2000.

[80] J. Wiebe, E. Breck, C. Buckley, C. Cardie, P. Davis, B. Fraser, D. Litman, D. Pierce, E. Riloff,
T. Wilson, et al. Recognizing and organizing opinions expressed in the world press. In Working
Notes-New Directions in Question Answering (AAAI Spring Symposium Series), 2003.

[81] J. Wiebe, T. Wilson, R. Bruce, M. Bell, and M. Martin. Learning subjective language. Com-
putational linguistics, 30(3):277–308, 2004.

[82] J. Wiebe, T. Wilson, and C. Cardie. Annotating expressions of opinions and emotions in
language. Language Resources and Evaluation, 39(2):165–210, 2005.

[83] T. Wilson. Fine-grained subjectivity and sentiment analysis: Recognizing the intensity, polarity,
and attitudes of private states. PhD thesis, Citeseer, 2008.

[84] T. Wilson, P. Hoffmann, S. Somasundaran, J. Kessler, J. Wiebe, Y. Choi, C. Cardie, E. Riloff,
and S. Patwardhan. OpinionFinder: A system for subjectivity analysis. In Proceedings of
HLT/EMNLP on Interactive Demonstrations, pages 34–35. Association for Computational Lin-
guistics, 2005.

[85] H. Yu and V. Hatzivassiloglou. Towards answering opinion questions: Separating facts from
opinions and identifying the polarity of opinion sentences. In Proceedings of the 2003 conference
on Empirical methods in natural language processing-Volume 10, pages 129–136. Association
for Computational Linguistics, 2003.

[86] J. Zabkar, M. Mozina, J. Videcnik, and I. Bratko. Argument based machine learning in a
medical domain. In Proceeding of the 2006 conference on Computational Models of Argument:
Proceedings of COMMA 2006, pages 59–70. IOS Press, 2006.

[87] M. Zhang and X. Ye. A generation model to unify topic relevance and lexicon-based sentiment
for opinion retrieval. In Proceedings of the 31st annual international ACM SIGIR conference
on Research and development in information retrieval, pages 411–418. ACM, 2008.

81

http://www.nytimes.com/
http://www.nytimes.com/

BIBLIOGRAPHY

[88] J. Zhao, K. Liu, and G. Wang. Adding redundant features for CRFs-based sentence sentiment
classification. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 117–126. Association for Computational Linguistics, 2008.

82

Appendix A

Questionnaire

83

Instructions

Dear evaluation participant,

I would like to thank you for taking your time to participate in the evaluation study that I am
conducting as part of Individual Master Project at Imperial College, London.

You will be evaluating a system that performs Sentiment Analysis. It is the purpose of the
system to disseminate text according to it either being opinionated or non opinionated.

The purpose of this evaluation is to collect a personal impression and user experiences of
working with the prototype of the system you are about to evaluate.

As mentioned the system is a prototype which is still in the early stages of its development.
The evaluation you are participating in is the first one in a development and evaluation cycle.
These so called Usability evaluations aim, on the one hand, at testing the current state of the
art. The actual focus lies on collecting data and information as to how the system may be
improved upon in the further development.
You are asked to test the system twice, once entering a piece of text that is provided below
and once entering a sentence of your own choosing.

Handling the system is mostly self explanatory. Should any problems occur nonetheless,
please do not hesitate to ask for assistance.

Please start the system now. When you are prompted to enter text, please type the following
sentence and hit the Submit! button. Disregard the numbers when typing the text, they are
given to understand the classification output more intuitively.

1 2 3 4 5 6 7 8 9 10
The former prime minister warns that rash talk of a

11 12 13 14 15 16 17 18 19 20
broken society threatens to harm the country ‘s reputation abroad

Once you have finished the first run executing the program from start to finish, please fill out
page 2 of this questionnaire. After you have done so, execute the program for a second time,
this time entering a sentence of your own choosing when asked to provide text.

After finishing this second run, please fill out page three of the questionnaire.

Thank you again for your time,

Lucas Carstens

Figure A.1: Questionnaire page 1: Instructions

84

completely
agree

agree

neutral

don´t
agree

completely
disagree

The system was easy to use

It was easy to provide user feedback

I understand the benefit of the feedback

The classification results were appropriate
for the input

The representation of the classification
results was intuitively understandable

Automatic detection of opinions is useful

On a scale from 1 to 5, please rate the quality of the system output with regards to the
correctness of classification: _______

Figure A.2: Questionnaire page 2: Questions following Run 1

85

completely
agree

agree

neutral

don´t
agree

completely
disagree

The classification results were appropriate
for the input

Providing feedback was cumbersome

On a scale from 1 to 5, please rate the quality of the system output with regards to the
correctness of classification: _______

Figure A.3: Questionnaire page 3: Questions following Run 2

86

Appendix B

Mathematical background

The explanations of Lagrange multipliers and the Karush-Kuhn-Tucker conditions are adapted from
[3], where more detailed examples can also be found.

B.1 Lagrange multipliers

Lagrange multipliers are used to determine the stationary points of a function of multiple variables,
subject to one or more constraints. Consider a D-dimensional variable x with x1, ..., xD. We then
set a constraint equation g(x) = 0 to represent a D − 1 dimensional surface in the x-space. We
then find a point x∗ on this constraint surface that maximises f(x). The point x∗ that maximises
f(x) has the property that the gradient ∇f(x) is orthogonal to the constraint, because f(x) could
otherwise be increased by moving along the constraint surface. This means that the gradients of
f(x) and g(x) are parallel, or anti-parallel, vectors. Thus we know that the exists a parameter λ
for which

∇f + λ∇g = 0 (B.1)

where λ 6= 0 is the Lagrange multiplier. The Lagrangian function is denoted by

L(x, λ) ≡ f(x) + λg(x). (B.2)

B.2 Karush-Kuhn-Tucker conditions

Above, we have considered maximising f(x) the equality constraint equation g(x) = 0. When
instead maximising f(x) subject to the inequality constraint g(x) ≥ 0, we obtain two kinds of
possible solutions instead of one.

• The constrained stationary point may lie within a region where g > 0. In this case, the
constraint is inactive.

• The constrained stationary point may lie on the boundary where g = 0. In this case, the
constraint is active.

In the case where the constraint is inactive, the function g(x) has no relevance and the stationary
condition is just ∇f(x) = 0, i.e. λ = 0 in equation B.1. When the constraint is active, we have
λ 6= 0, instead. The difference to the equality constraint in this case is that the sign of the Lagrange
multiplier may not be either positive or negative, because the function f(x) will only be at its
maximum if its gradient is oriented away from the region g(x) > 0. It is therefore imperative that

∇f(x) = −λ∇g(x) (B.3)

87

B.2. KARUSH-KUHN-TUCKER CONDITIONS

fore some value of λ > 0. For both cases we have that λg(x) = 0. "Thus the solution to the
problem of maximising f(x) subject to g(x) ≥ 0 is obtained by optimising the Lagrange function
B.1 with respect to x and λ subject to the conditions

g(x) ≥ 0 (B.4)
λ ≥ 0 (B.5)

λg(x) = 0 (B.6)
(B.7)

These are known as the Karush-Kuhn-Tucker (KKT) conditions ([33], [37])." ([3]).

88

	Introduction
	Road Map

	Sentiment Analysis - The challenges
	Sentiment Analysis in practice
	Linguistics and Natural Language Processing
	Linguistics
	Natural Language Processing

	Central challenges
	Gathering text
	Extracting opinionated content from text
	Determining polarity
	Summarising

	Peripheral challenges
	Determining strength and other degrees of opinion
	Determining opinion holder and target
	Scope of context

	Machine Learning in Sentiment Analysis
	Supervised Learning
	Support Vector Machines
	Other Supervised Learning techniques

	Unsupervised Learning
	Reinforcement Learning and Conditional Random Fields

	Argumentation in Machine Learning and Sentiment Analysis
	Defeasible Argumentation
	ABML
	From ABML to A-SVM

	Building a text corpus
	Sources
	The MPQA corpus
	SentiWordNet
	TreeTagger

	Merging the sources into one

	The system
	System architecture
	User feedback
	Generating arguments
	Direct and indirect user feedback

	System evaluation
	SVM vs A-SVM
	User centred evaluation

	Conclusion and outlook
	A critical reflection on A-SVM
	Future challenges
	On the polarity of opinions
	On the corpus and Natural Language Processing
	On system features and performance
	On summarisation
	On adjustable parameters
	On Linguistics
	On Software Engineering aspects

	Conclusion

	Bibliography
	Questionnaire
	Mathematical background
	Lagrange multipliers
	Karush-Kuhn-Tucker conditions

