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Abstract

Finite element and finite volume methods on unstructured meshes offer a power-
ful approach to solving partial differential equations in complex domains. It has
diverse application in areas such as industrial and geophysical fluid dynamics,
structural mechanics, and radiative transfer. A key strength of the approach
is the unstructured meshes flexibility in conforming to complex geometry and
to smoothly vary resolution throughout the domain. Adaptive mesh methods
further enhance this capability by allowing the mesh to be locally modified in
response to local estimates of simulation error. The ability to locally control
simulation error plays an important role in both optimally exploiting available
computational resources to achieve the most accurate solution feasible, or sim-
ulating a process to within design/safety guidelines for example.

This report focus on the anisotropic adaptive mesh operations of coarsening
and refinement on meshes of 2D simplexes. The novelty of this work centres on
recasting the coarsening and refinement algorithms, which were developed for
serial execution on CPU’s, into a form better suited to the massively parallel
nature of GPU’s. An impressive speedup has been achieved when compared
against the best known multi-threaded CPU implementation on top of the range
hardware.
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Chapter 1

Introduction

In order to solve problems in the field of computational fluid dynamics (CFD)
one popular technique is the finite element method (FEM) . FEM solves partial
differential equations (PDEs) across an element. The space in which the problem
lies is split into many elements, the combination of these elements is called a
mesh, FEM is then applied to each of these elements. The size and shape of these
elements is vital in producing an accurate result and computationally efficient
procedure. With a fine mesh of many small elements the result will be accurate,
but at high computational cost. Similarly, a coarse mesh of few large elements
will be computationally cheap, but will yield a poor result. The solution is to
tailor the mesh to the particular problem, with many small elements in areas of
high volatility and few large elements in areas with little change. This is where
mesh adaptivity comes in.

Mesh adaptivity is a process of locally altering a mesh to maintain solution
error estimates to within user specified bounds. Mesh adaptivity not only at-
tempts to achieve a good result by altering the size of elements within the mesh,
but also their shape and orientation. This thesis presents an investigation into
techniques for coarsening and refining, and their suitability for execution on
highly parallel architecture, mainly Nvidia graphics cards.

The very nature of coarsening and refinement is difficult for GPU computa-
tion. Coarsening and refinement involve topographical changes to the mesh in
an irregular manner. So far much of work done on GPU programming has been
of easily scalable, structured data computation done in a regular manner. The
suitability of GPUs for more complex tasks like this has not really been investig-
ated. This thesis explores this challenge and also provides some useful insight for
future work. Mesh adaptivity is expensive; this work has demonstrated a sub-
stantial performance improvement through using a manycore GPU accelerator
processor.
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1.1 Motivation and objectives

In CFD, FEM on an unstructured adaptive mesh is one of the more complicated
and exotic methods. It is not an easy problem to tackle and furthermore it is
not something which is simple to implement on a GPU, as it goes beyond much
of what has done before in GPU computation. For the many advantages GPU
computation can offer there are some limitations, most of these limitations will
be explored and solutions to overcome them in this particular problem.

1.2 Contributions

The completion of this project has led to the following notable contributions:

• High level of performance when compared against optimised multi-threaded
CPU code of best known performance on a 12 core Westmere-EP. A speed
up 40 times was achieved for a single pass of heavy coarsening on medium
and large sized meshes. A speedup of 55 times or more was achieved for
a single pass of heavy refinement on medium and large sized meshes. Av-
erage adaption time of just 0.18 micro-seconds per facet on a large mesh.
Moreover 50% of the execution time is accounted for by memory transfer
to and from the GPU, therefore the application is running within 50% of
the theoretical maximum performance of an algorithm that takes 0 time.

• Successful design and implementation of solutions to unstructured prob-
lems, somethings which has previously been considered unsuitable for
GPU computation due it the irregular memory access and high degree
of branching.

• Systematic evaluation of performance covering many aspects of CUDA
programming including thread divergence, coalesced memory access, pinned
memory, asynchronous memory transfer, occupancy and L1 cache.

• Adaptation of parallel coarsening and refinement algorithms to utilise
highly parallel architecture which avoids the need to maintain and col-
our large adjacency graphs. In the case of refinement only facet adjacency
graph needed to be coloured. In the case of coarsening colouring was
removed all together in favor of on the fly calculation of dependent oper-
ations.

• Decomposition of large serial tasks into smaller tasks which can be ex-
ecuted independently in parallel instead of the previously explored tech-
nique of larger tasks that achieve parallelisation through the use of thread
communication.
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1.3 Previous work

Mesh adaptation is a highly complex field, with many different techniques and
many different approaches and algorithms for these techniques. All of this will
be surveyed in chapter 2.

The Applied Modelling and Computation Group at Imperial College Lon-
don 1 has developed a CFD application called ”‘Fluidity”’. Fluidity is an open
source, general purpose, multi-phase computational fluid dynamics code cap-
able of numerically solving the Navier-Stokes equation and accompanying field
equations on arbitrary unstructured finite element meshes in one, two and three
dimensions 2. Fluidity is used in a number of different scientific areas including
geophysical fluid dynamics, computational fluid dynamics, ocean modelling and
mantle convection.

The complexity of modern CFD problems has lead to the need for thousands
of processors and many days of computation. Due to this an effort has been
made to implement mesh adaptivity on GPUs. The first stage of this effort has
been completed by Georgios Rokos is his MSc Thesis where 2D mesh smoothen-
ing has been implemented in CUDA [Rok10a]. This project continues directly
on from this work.

1.4 Statement of originality

This report represents my own work and to the best of my knowledge it con-
tains no materials previously published or written by another person for the
award of any degree or diploma at any educational institution, except where
due acknowledegment is made in the report. Any contribution made to this
research by others is explicitly acknowledged in the report. I also declare that
the intellectual content of this report is the product of my own work, except to
the extent that assistance from others in the projects design and conception or
in style, presentation and linguistic expression is acknowledged.

1.5 Report outline

The remainder of the report is organised as follows: Chapter 2 and 3 gives a
comprehensive description of the main principles and algorithms that govern
the topic of refinement and coarsening of unstructured meshes. More precisely,
chapter 2 gives an overview of graph colouring, a topic which is essential for
parallel execution of mesh adaptivity; the quality of a mesh, particularly the
local quality, and how this is evaluated and compares the tools available for
the development of highly parallel programming. Chapter 3 is a detailed look
at refinement and coarsening methods, including algorithms. Chapter 4 looks
at any related work that have been carried out prior or during the time frame

1http://amcg.ese.ic.ac.uk
2http://amcg.ese.ic.ac.uk/Fluidity
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of this project. Chapters 5 and 6 describes the design choices and the actual
implementation of the target application, the data structures used, and any
points of interest that were key to realising the project objectives. Chapter 7
presents performance optimisation made as well as a detailed analysis of the
implementation, a look at the scalability of the application and a comparison
against the best known mulit-threaded CPU equivalent. Finally, Chapter 8
summarises the main concepts, achievements, the experience gained throughout
this project and lists the topics that remain open for further study and future
work.
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Chapter 2

Background

This chapter will cover the background work to the project. Issues in graph
colouring have been explored as well as a few important graph structures. Tool
and programming languages used for parallel computation on GPUs has also
been studies and evaluated for use in the project.

2.1 Graph colouring

Graph colouring is performed to segregate the mesh into independent sets that
can be updated concurrently without creating data conflicts. To achieve this
each vertex in the graph is assigned a colour such that no adjacent vertices have
the same colour.

Different types of mesh adaptivity require different graphs to reflect data
dependence. Although the graph being coloured may represent different things,
the algorithm used to colour it can be the same. Described below are two
methods for graph colouring.

2.1.1 First fit colouring

First fit colouring, also known as greedy graph colouring considers the vertex
of a graph and assigns the first available valid colour to that vertex, creating
a new colour when required (Algorithm 1). First fit colouring often produces
results which are far from optimal (where an optimal colouring is a colouring
that uses the least number of colours) [WP67].

5



Algorithm 1 First fit colouring algorithm - Given a graph G(V, E) with vertex
set V = (v1, . . . , vn) and adjacency lists Aj find colours c(vj)

for j = 1→ n do
c(vj)← 0

end for
c(v1)← 1
for j = 2→ n do
c(vj)← min(k ∈ N|c(w) 6= k∀w ∈ Aj)

end for

With first fit colouring (Figure 2.1) the graph was coloured by traversing the
graph in node order (a, b, c, d, e), this resulted in using 4 colours. One way of
improving the outcome of first fit colouring is to carefully pick the order in which
the graph is traversed. Using the same algorithm as before, but traversing the
graph (b, c, e, a, d) we only use 3 colours (Figure 2.2). This now poses a new
problem, how do we determine a suitable order such that we get good results.
A randomly chosen order has a high probability of producing poor results for
certain graphs. [BLS99]

Figure 2.1: First fit graph colouring, coloured in order a, b, c, d, e
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Figure 2.2: First fit graph colouring, coloured in order b, c, e, a, d

The vertices of any graph may always be ordered in such a way that first fit
colouring produces an optimal colouring. Given a graph of optimal colouring,
one may order the graph by the colours. Then when one uses a greedy algorithm
with this order, the resulting colouring is automatically optimal. This is however
a trivial solution, as you need to know the optimal colouring first, making this
approach redundant. The graph colouring problem is NP-Complete, therefore
it is difficult to find an ordering that leads to a minimum number of colours.
For this reason, heuristics have been used which attempt to reduce the number
of colours but not necessarily guaranteeing an optimal solution. According to
Brooks’ theorem a graph such that the maximum number of adjacent vertices to
any given vertex is ∆, the graph can be coloured with ∆ colours except for two
cases, complete graphs and cycle graphs of odd length, for these ∆ + 1 colours
are needed. Brooks’ theorem is used to determine the chromatic number (the
smallest number of colours needed to colour a graph) of a graph. Using this, we
can evaluate the colouring [Bro41].

A popular ordering is to choose a vertex V of minimum degree (least number
of adjacent vertices), order the remaining vertices, and then place V last in the
ordering. With this ordering it will use at most ∆ + 1 colours, and is therefore
at worst one worse than Brooks’ colouring [Chv84].

2.1.2 Multi-level colouring

Multi-level colouring is an approach used to colour graphs in parallel. The first
step is to partition the graph. The graph connecting these partitions is then
coloured to form a top level colouring. Each partition or sub graph is then
coloured using a set of colours unique to the colour of that partition, these sub
graphs can be coloured concurrently. Multi-level colouring requires far more
colours than first fit colouring, but can be performed in a parallel manor. The
main issue with multi-level colouring is partitioning the graph, a non-trivial
problem [Wal01].
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2.1.3 Jones-Plassmann colouring

Jones-Plassmann colouring algorithm is another parallel colouring technique
(Algorithm 2). Initially every node in the graph is assigned a random number.
In parallel every node who’s random number is higher than all other uncoloured
adjacent nodes is coloured with the first available colour. This is repeated until
all nodes have been coloured [JP95].

Algorithm 2 Jones-Plassmann colouring, V being the set of all vertices in the
graph

U ← V
while (|U | > 0) do

for all vertices v ∈ U do in parallel do
I ← (v such that w(v) > w(u) ∀ neighbors u ∈ U)
for all vertices v’ ∈ I do in parallel do

S ← (colours of all neighbors of v)
c(v’) gets minimum colour not in S

end for
end for
U ← U - I

end while

2.1.4 Graph structures

There are several important graph structures required for mesh adaptivity [Rok10b].
Below is a description of the graph structured referred to in this report.

Vertex graph The vertex graph is the graph joining vertices. In essence the
mesh is defined as the vertex graph (Figure 2.3).

Element graph The element graph joins every adjacent element. In the case
of 2D every internal element in the graph has three neighbours, every
boundary element has two and the corner element have one (Figure 2.4).

Vertex-Element graph The vertex-element graph joins an element to the
three vertices which is consist of. Every element will be connected to
exactly three vertices, each vertex is connected to any number of elements
greater than two (Figure 2.5).
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Figure 2.3: Vertex graph on mesh

Figure 2.4: Element graph (shown in red) on mesh (shown in blue)
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Figure 2.5: Vertex-element graph (shown in red) on mesh (shown in blue)

2.2 Evaluating the mesh

Mesh adaptivity is a heuristic approach at altering a mesh to be not only con-
formant but also quality determined by some metric. Various types of metrics
can be used depending on the application and the type of adaptivity method
used. The quality of a mesh is evaluated against the metric tensor in metric
space and not in mesh space. Below are a few common quality metrics.

Size of element angles The size of the smallest angle in an element (the
largest the smallest angle the better). This metric is often used when
evaluating whether to flip an edge or not.

Length of longest edge The length of the longest edge (the smaller the bet-
ter). Often used for regular refinement.

Length of shortest edge The length of the shortest edge. Used to determine
whether or not to remove an element via coarsening.

Element side The area (2D) or volume (3D) of an element.

Lipnikov functional Proposed by Vasilevskii and Lipnikov [VL99] this takes
both element size and shape into account. This is used for smoothening.

10



2.3 GPU architecture

This section is brief as there is plenty of good sources documenting GPU ar-
chitecture, most of which can be found in CUDA Zone 1. The main challenge
of GPU programming is to fully utilise the GPUs many small processors. This
can be achieved by launching hundreds if not thousands of threads. GPUs are
also subject to more limitations than CPU and these limitations need to be well
understood before an successful application can implemented for a GPU. Every
thread in a warp (32 thread block) must either execute the same instruction
or no instruction at all, this means that code with a large amount of control
flow can be difficult to implement on the GPU. Another factor worth noting is
the cost of transfer data to and from the GPU. The GPU cannot access main
memory, therefore any data to be used by the GPU must first be transfer there
by CPU. For more information please consult the CUDA programming guide 2.

2.4 Tools for Parallel Computation

It is important to select the right language a tools for any software development.
Intelligent selection will help satisfy performance objects as well as reduce effort
and increase the chance of a successful outcome. Presented here is a selection
of the main options considered, evaluating each one.

2.4.1 OP2

OP2 is an open-source framework for the execution of unstructured grid applica-
tions on clusters of GPUs or multi-core CPUs. Although OP2 is designed to look
like a conventional library, the implementation uses source-source translation to
generate the appropriate back-end code for the different target platforms. OP2
continues on from the OPlus library which was developed more than 10 years
ago. The main motivation behind OP2 is to handle multi core architectures 3.

OP2 uses sets to describe unstructured grids; these sets could represent
different information, either nodes, vertices, elements, edges etc. Associated
with these sets are both data and mappings to other sets. All of the numerically-
intensive operations can then be described as a loop over all members of a set,
in this way you define something similar to a CUDA kernel, a function which is
executed for every iteration of the loop. With the limitation that the ordering
of which this function is applied does not affect the result, OP2 can parallelise
the execution.

When an application is written in OP2 it can then be built into three different
platforms: single threaded CPU, parallelised using CUDA for NVIDIA GPUs
or multi-threaded using OpenMP for multi core x86 systems. This ability to

1http://www.nvidia.co.uk/object/cuda_home_new_uk.html
2http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_

CUDA_ProgrammingGuide.pdf
3http://people.maths.ox.ac.uk/gilesm/op2/
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run the same code on different platforms could be extremely useful for this
application. It gives the developer the ability to compare the performance of
different aspects of the application on different architecture, without the need
to write new code.

The major drawback to OP2 is that you cannot have dynamic sets. If the
dimensions of a set are going to change, you have to re-declare that set (much like
an array in C). This makes any topological changes to the mesh very inefficient
in OP2, which is the reason why it is not a good candidate for this kind of mesh
adaptivity, despite its many strengths.

2.4.2 Galois

The Galois project aims to make it easy to write data-parallel irregular pro-
grams, and then efficiently execute them on multi core processors. Galois has a
programming model consisting of 4:

• Two simple syntactic concurrency constructs

• An object model which allows for increased concurrency during parallel
execution

• A run-time system which supports the concurrency constructs and object
model

Using the Galois system, a range of data-parallel irregular applications have
been parallelised, achieving significant speedups on algorithms which appear to
have too many sequential dependences to be parallelisable.

2.4.3 STAPL

STAPL (Standard Template Adaptive Parallel Library) is a C++ framework
for developing parallel programs. Its core is a library of ISO Standard C++
components with interfaces similar to the ISO C++ standard library. STAPL
includes a run-time system, design rules for extending the provided library code,
and optimization tools [RAO98].

STAPL aims to improve programmability and portability of performance
in parallel application. Programmability refers to abstracting away specifics
of parallel algorithms from the developer, making development of parallel ap-
plication easier and quicker, this is the goal STAPL shares with all the other
frameworks mentioned so far. Portability of performance is the idea that you can
execute the same code on different architectures and not suffer from perform-
ance degradation. Parallel algorithms are generally very sensitive to platform
architecture.

STAPL is divided into three levels of abstraction; the level required by the
developer depends on his needs, experience and time available.

4http://iss.ices.utexas.edu/galois.php
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Level 1 Application Developer

Level 2 Library Developer

Level 3 Run-Time System (RTS) Developer

The highest level of abstraction, Application Developer, STAPL gives the
developer interfaces to building blocks for parallel programs which they can
piece together to build an application. At this level no great understanding of
parallel programs is required. For a more experienced developer the next level
(Library Developer) offers greater flexibility and control. The developer can
define his own library functions either to extend the existing functionality or
add domain specific operations. The majority of STAPL development is done in
these two layers, but for greatest amount of control over the execution of parallel
programs a low level layer was added, the RTS Developer layer. In this layer you
have access to the implementation of the communication and synchronization
library, the interaction between OS, STAPL thread scheduling, memory man-
agement and machine specific features such as topology and memory subsystem
organization.

2.4.4 Liszt

Liszt is a domain specific language developed at Stanford University, designed
specifically for mesh based PDEs problems. Liszt can be complied into a variety
of different implementations including CUDA, OpenMP and MPI and promises
to add additional implementations in the future. Liszt code is written at a
high level, the abstraction allows the Liszt compiler to aggressively optimise the
code and automatically decide how to partition the mesh. The compiler is also
capable of changing the layout of memory to suite a particular architecture. The
project claims to offer many useful features, but is not yet complete so therefore
not available for this project 5.

2.4.5 X10

Although X10 is not specifically designed for use with unstructured meshes, it
is worth while looking into. The above are all frameworks for parallel programs
whereas X10 is a fully type safe, parallel orientated programming language. X10
is being developed by IBM and although it is a fairly new project, it is quickly
advancing. X10 not only aims to be able to write parallel applications easily,
but also distributed ones 6.

2.4.6 CUDA

CUDA (Compute Unified Device Architecture) is developed by Nvidia to be an
accessible GPU computing engine for Nvidia graphics cards. Developers use

5http://ppl.stanford.edu/wiki/index.php/Liszt
6http://x10-lang.org/
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”‘C for CUDA”’ which adds CUDA extension to the C (and C++) language.
These extensions allow developers to transfer data to and from device memory
(the device being the Nvidia graphics card) as well as execute code, known as
kernels, on the device. The vast majority of current GPU acceleration work has
been done using CUDA due to it’s flexibility and maturity when compared with
the alternatives 7.

2.4.7 OpenCL

Recently companies including Apple, Intel, AMD/ATI and Nvidia, have jointly
developed a standardised programming model, OpenCL. 8. Much like CUDA,
OpenCL defines a set of C/C++ language extensions which allow development
for highly parallel device code. OpenCL is a royalty free, open standard for cross
platform GPU programming. The reason why OpenCL has not yet overtaken
CUDA as the prominent GPU programming technology is because OpenCL
is still much more tedious to use, also the speed achieved in an application
written using OpenCL is much lower than the equivalent application written
using CUDA. GPU programming is primarily motivated by speed, therefore
we expect the majority of people to choose the most per formant technology
[KmWH10].

2.5 Summary

The initial necessary background has been explored as well as appropriate tools
this project. The next chapter will look into the algorithms that have been
proposed for mesh coarsening and refinement.

7http://www.nvidia.com/object/cuda_home_new.html
8http://www.khronos.org/opencl/
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Chapter 3

Mesh adaptivity algorithms

This chapter provides a literary review of a wide range of papers on mesh ad-
aptivity for coarsening and refinement. In particular close attention has been
put towards parallel algorithms for mesh adaptivity.

Mesh adaptivity can be separated into two main categories, topological ad-
aptivity and non-topological adaptivity. Non-topological adaptivity is achieved
by smoothening, a process of relocating vertices within a mesh. Topological
adaptivity is achieved by refining, coarsening and edge flipping. This work
focuses on coarsening and refinement. Various algorithms for refinement and
coarsening are described in this chapter. A combination of these topological
and non-topological techniques are used to alter the mesh and converge to an
acceptable result. One such way of combining various adaptivity methods to
achieve a suitable mesh is given in Algorithm 3 which was first proposed by
Freitag et al [FJP98].

3.1 Refinement

Mesh refinement is the process of increasing resolution locally to a mesh. Refine-
ment methods can be divided into two types, non-hierarchical and hierarchical.
Hierarchical refinement can be represented in a tree structure or hierarchy. The
top level of the mesh contains the original elements, additional levels are then ad-
ded to any element which is not yet good enough (Figure 3.1). Non-hierarchical
methods cannot be represented in such a way.

15



Algorithm 3 Framework for adaptive solutions of PDEs - Given a vertex set
V = (v1, . . . , vn) and element set T = (v1, . . . , vm)

k ← 0
Construct and initial mesh, M0

Improve M0, using flipping and smoothening, to form M
′

0

Solve PDE on M
′

0

Estimate the error on each element
while the maximum error on an element is larger than the give tolerance
do

Based on error estimated, determine a set of elements, Sk, to refine
Divide the elements in Sk, and any other element necessary to form Mk+1

Improve Mk+1, using flipping and smoothening, to form M
′

k+1

Solve the PDA on M
′

k+1

Estimate the error on each triangle
k ← k + 1

end while

Figure 3.1: Mesh before hierarchical refinement (left) Mesh after hierarchical
refinement on marked element (right)

3.1.1 Non-hierarchical methods

Bisection

Bisection is the process of dividing either an element in two or bisecting an
edge. These two approaches yield the same result, but the process is different.
Element bisection involves iterating over each element and evaluating firstly
whether the element is good enough; if it is not then you evaluate where to
bisect the element. There are three possible cases in 2 dimensions (Figure 3.2).
When an element has been bisected a non-conforming mesh is created, this is
because the neighbouring element contains four vertices. To rectify this, the
bisection needs to be propagated, how the bisection is propagated depends on
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how many neighbouring elements have been bisected (Figure 3.3).

Figure 3.2: Three possible element bisections

Figure 3.3: Bisection propagation

The process of propagating element bisections to achieve a conforming mesh
is very complicated as a lot of mesh connectivity information needs to be kept
and maintained (you need an edge element adjacency list, and element element
adjacency list as well as vertex information). All of this can be computationally
expensive. Edge bisection avoids the need to propagate bisections.

Performing edge bisection involves iterating over edges and deciding whether
to bisect the neighbouring elements. If an edge is bisected, the un-bisected edges
of the neighbouring elements need to be updated, as two of the four edges will
now be adjacent to a new element (Figure 3.4).
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Figure 3.4: Edge bisection, arrows show adjacent elements

Rivara described an algorithm for bisection, see Algorithm 4. Initially ele-
ments are marked for refinement based on a quality metric, non-conforming
elements created by the algorithm are subsequently marked for refinement (this
is how the algorithm propagates the bisection). The algorithm continues until
a conforming mesh has been constructed [Riv84].

Algorithm 4 Rivara’s longest edge bisection algorithm

Let T0 be the set of marked elements
i← 0
while Ti 6= ∅ do

Bisect elements in Ti across their longest edge
Let Ti+1 be the set of nonconforming elements
i← i+ 1

end while

Rivara proves that this algorithm will terminate, however no useful bound
exists for the number of times the while loop is executed [JP97a]. To resolve
this Rivara proposed variants of this algorithm including one which propagates
the longest edge bisection with a simple bisection [Riv84]. Simple bisection is a
bisection across any edge, not necessarily the longest. In this variant the marked
elements are first bisected along their longest edge, if any non-conforming ele-
ments are created, a simple bisection occurs (Algorithm 5). This algorithm is
used for the first refinement set, further steps must assign elements to Vi and
Ti based on whether the element originated from a longest-edge bisection or
not.
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Algorithm 5 Rivara’s modified bisection algorithm

Let T0 be the set of marked elements T will denote elements not yet refined
V0 ← ∅ V will denote children of refined elements
i← 0
while (Ti ∪ Vi) 6= ∅ do

Bisect elements in Ti across their longest edge
Bisect elements in Vi across a non-conforming edge
Let Vi+1 be the set of non-conforming elements embedded in ∪ij=0Tj
Let Ti+1 be the set of all other elements
i← i+ 1

end while

Parallel bisection

In order to execute bisection in parallel the usual method would be to colour the
mesh such that bisection of an element in a colour does not affect other elements
in that colour. This is the approach taken when parallelising other adaptivity
algorithms. However, in practice, the overhead associated with maintaining the
colouring outweighs the advantages of parallel computation. In response to this
Jones and Plassmann developed PRAM 1 adaptive refinement algorithm that
avoids the synchronisation problems that make maintaining colouring ineffective
(Algorithm 6). Synchronisation problems are avoided by simultaneously refining
element from independent sets. The independent sets used for refinement are
also used to update the colouring, this is required because the dual graph is
modified after the bisection of an element. Jones and Plassmann proved the
below algorithm avoids all possible synchronisation problems and has a fast run
time [JP97b].

1Parallel Random Access Machine - a shared memory abstract machine used by parallel
algorithm designers to model algorithmic performance (such as time complexity). The PRAM
model neglects such issues as synchronization and communication, but provides any (problem
size-dependent) number of processors. Algorithm cost, for instance, is estimated as O(time x
processor number) [KKT01].
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Algorithm 6 Jones and Plassmann’s parrallel refinement algorithm

i← 0
Let T0 be the set of marked elements
Each element in T0 is assigned a unique random number, ρ(tj)
The subgraph DT0 is coloured
V0 ← ∅
while (Ti ∪ Vi) 6= ∅ do
Wi ← Ti
while (Ti ∪ Vi) 6= ∅ do

Choose an independent set in D, I, from (Ti ∪ Vi)
Simultaneously bisect elements in I embedded in Ti across their longest
edge
Simultaneously bisect elements in I embedded in Vi across a non-
conforming edge
Each new element, tj , is assigned the smallest consistent colour, σ(tj),
and a new processor
Each processor owning a bisected element updates this information on
processors owning adjacent elements
Vi ← Vi (I ∩ Vi)
Ti ← Ti (I ∩ Ti)

end while
Let Vi+1 be the set of non-conforming elements embedded in ∪ij=0Wj

Let Ti+1 be the set of all other elements
i← i+ 1

end while

Jones and Plassmann went on to present a more practical version of the above
algorithm that rather than assigning a single element or vertex to each processor,
a set of vertices and elements is assigned to each processor. This algorithm will
not be shown in this report, but can be found in Jones and Passmann’s paper
”‘Parallel Algorithms for Adaptive Mesh Refinement”’ [JP97b].

3.1.2 Hierarchical methods

The most common type of hierarchical refinement is regular refinement. With
regular refinement any element which requires refinement is split into four new
elements (Figure 3.5). This now adds four new nodes below the element in the
hierarchy. The process is repeated until a satisfactory level of refinement in
each element is achieved (Figure 3.6). Much as in bisection, the changes are
propagated to neighbouring elements to remove any non-conforming element.
To prevent the need to propagate multiple bisection on the same edge, the condi-
tion of requiring all neighbouring elements to be at most one level of refinement
away is added.
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Figure 3.5: Regular refinement

Figure 3.6: 2 level regular refinement

Bank et al worked on developing an algorithm for regular refinement (Al-
gorithm 7). Initially elements are marked for refinement based on some metric.
These elements are refined using regular refinement. This is then propagated
by regularly refining all elements with at least two non-conforming edges and
bisecting all elements with one non-conforming edge. Before the next refine-
ment step, any bisected elements are merged [BSW93]. The resulting elements
are exactly the same shape (yet a different size) to their parent (except for the
elements bisected to create a conforming mesh), this means that this form of

21



refinement is isotropic.

Algorithm 7 Bank’s regular refinement algorithm

All bisected elements are merged
Let T0 be the set of marked elements
i← 0
while (Ti ∪ Vi) 6= ∅ do

Regularly refine elements in Ti

Let Ti+1 be the set of elements with at least two non-conforming edges
i← i+ 1

end while
Bisect remaining non-conforming elements across a non-conforming edge

3.2 Coarsening

Whereas mesh refinement locally increases the resolution of the mesh, coarsen-
ing reduces the local resolution of the mesh. There are several methods for
mesh coarsening, in general the method of mesh coarsening is dependent on
the method of mesh refinement as complementing refinement and coarsening
methods will help reduce complexity and computational cost.

3.2.1 Reversing hierarchical refinement

This method only works with hierarchical refinement for obvious reasons. On
the face of it reversing hierarchical refinement seems simple, just remove all
nodes below a particular point on the tree representing the mesh, but because
bisections are propagated more needs to be done. One of two things can be done
to combat this. In the case that the neighbouring element is at a higher level
or refinement and is not eligible for coarsening, then the current element needs
to be bisected in the same way as discussed in bisection propagation. If the
neighbouring element is of the same level of refinement as the current element
and is simply bisected, then this bisection can be removed (in the case that it is
bisected more than once, then the number of bisections can be reduced by one
(Figure 3.7). A limitation of this method is that you can only get as coarse as
the original mesh and no further.
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Figure 3.7: Removing bisection propagation

3.2.2 Edge collapse

Edge collapse involves reducing an edge to a single vertex and thereby removing
two elements. Edge collapse can be used in conjunction with any refinement
algorithm, but is best suited to edge bisection as it can be done in the same
iteration over edges (although when used with regular refinement it can provide
anisotropic adaptivity to an isotropic algorithm) and does not have to be a
separate step, Figure 3.8 demonstrates edge collapse. Element element and
edge element adjacency lists will need to be updated after an edge collapse. A
disadvantage of edge collapse is that resulting vertex is of higher degree than
either vertex of the now collapsed edge. This can pose problems in colouring,
potentially increasing the number of independent sets and thereby reducing
possible parallelisation in later optimisation steps.

Figure 3.8: Edge collapse

Li, Shepard and Beall presented an algorithm for coarsening (Algorithm 8).
This algorithm considers smoothening as a coarsening technique whereas for the
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purpose of this report it is considered a mesh adaptivity technique of its own.
The algorithms first initialises a dynamic vertex list with the end vertices of the
given short edge list. A tag process if used to determine if a vertex is already
in the list. It then iterates over this list and selects an appropriate coarsening
technique to improve the mesh, using edge length as a quality metric (Llow

being the lower bound for edges and Lmax being the upper bound) [LSB05].

Algorithm 8 Li, Shepard and Beall’s coarsening algorithm

for all edge in short edge list do
for all vertex that bounds the current edge do

if vertex is not yet tagger then
append vertex to dynamic list
tag vertex to be in dynamic list

end if
end for

end for
while vertices not tagged processed in dynamic list do

get an unprocessed vertex Vi from the list
get Ej , the shortest mesh edge in transformed space connected to Vi
if the transformed length Ej is greater than Llow then

remove Vi from the dynamic list
else

evaluate edge collapse operation of collapsing Ej with Vi removed
if the edge collapse would create an edge longer than Lmax then

evaluate relocated vertex Vi
else if the edge collapse would lead to flat/inverted elements then

evaluate the swaps(s)/collapse compound operation
end if
if any local mesh modification is determined then

tag neighbouring vertices of Vi in the dynamic list as unprocessed
apply the local mesh modification
remove Vi from the dynamic list if it is collapse

else
tag Vi as processed

end if
end if

end while

Parallel coarsening

Alauzet, Li, Seol and Shephard proposed an algorithm for parallel coarsening
(Algorithm 9). The algorithm works in a similar manner to the one above but
allows for parallel computation. To reduce the number of total mesh migrations,
prior to each traversal, a buffer is initialised on each partition to store desired
mesh modifications on partition boundaries [ALSS05].
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Algorithm 9 Alauzet, Li, Seol and Shephard’s parallel coarsening algorithm

while dynamic lists are not empty and there exists a vertex in the dynamic
list not tagged do

for all vertices in dynamic list on each partition do
determine a desired mesh modification operation to eliminate the current
vertex
if the element of the desired operation is fully on a partition then

apply the operation, update the dynamic list and tag/untag vertices
else

put the desired mesh operation into the local buffer
end if

end for
determine all requests to migrate mesh regions in terms of desired opera-
tions in local buffers
perform mesh migration and update each local dynamic list

end while

3.2.3 Element collapse

Element collapse is very similar to edge collapse except an element is reduced to
a single vertex. This will remove four elements. Element collapse is best using
with element bisection as it can be done in the same iteration. This method
also suffers from the problem of increasing the degree of vertices (Figure 3.9).

Figure 3.9: Element Collapse

3.3 Summary

Algorithms for coarsening and refinement have been explored, potential prob-
lems with the algorithms has also been noted. These algorithms help greatly in
the design of this project, but do not provide any guidance in terms of imple-
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mentation. The next chapter will look at related work in this field which will
help in the actual implementation of this project.
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Chapter 4

Related Work

Here we look at work that has been done, or is ongoing, that is shares common
elements this project. Similarities and differences with this project are noted as
well as any useful insights that has been gained from look at these projects.

4.1 Mesh adaptivity on the GPU

During the course of this project Timothy McGuiness at the University of Mas-
sachusetts Amherst has made some effort to implement some aspects of mesh
adaptivity on CUDA. The work looks at smoothening, partitioning and graph
analysis. Although the issues of coarsening and refining have not been visited
by this project it does provide some helpful information. One important conclu-
sion made from Timothy’s work was that although GPU execution did provide
some speedup over the CPU, it was overshadowed by the transfers times and
Message passing interface (MPI). This project is not concerned with distributed
computation, therefore MPI will not be a factor. The memory transfer times
between the main memory and GPU will be [McG11].

4.2 Generic adaptive mesh refinement

Generic adaptive mesh refinement (GAMeR) technique was created in LaBRI-
INRIA, University of Bordeaux. GAMeR is mesh refinement tool implemented
on the GPU. It is a single pass algorithm which takes a coarse mesh from the
CPU and uses pre-tessellated patterns to refine each element in the coarse mesh.
The level of refinement is determined by a per-vertex scalar value which indic-
ated the level of detail required near each vertex. GAMeR obviously is obviously
concerned with coarsening and the approach to use pre-tessellated patterns sim-
plifies matters considerable. The technique does work with any arbitrary initial
mesh and is used for real time applications therefore executes in short periods
of time. The success of GAMeR is promising and indicated that it will also be
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possible to also gain good performance in this project 1.

4.3 HOMARD adaptive meshing

The HOMARD package performs adaptation for finite element or finite volume
meshes with refinement and unrefinement. The technique they are using for
refinement is the same as will be used in this project, regular refinement with
edge splitting to for the purposes of conformity. Little is mentioned on the
process of unrefinement, but this can be assumed to be the process of reversing
refinement, meaning they store a hierarchy of refinement which can later be
reversed. This package as also done work on implementing adaptivity in 3D as
well as 2D, 3D mesh adaptivity is beyond the scope of this project, however the
scaling of 2D to 3D can be estimated from results of HOMARD 2.

4.4 Summary

Work relating to this project has been reviewed. The next chapter explains the
design of adaptivity application created for this project.

1http://http.developer.nvidia.com/GPUGems3/gpugems3_ch05.html
2http://www.code-aster.org/outils/homard/menu_homard.en.htm
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Chapter 5

Design

This chapter explores the design choices made and the justification behind those
choices. The main concern with the design is the choice of algorithms and how
these algorithms are put together to provide and complete coarsening and refine-
ment solution. The type of error metrics and process of colouring is described.
Issues with designing an application suitable for GPU computation are also con-
sidered. Finally we take a look at the main data structures for both CPU and
GPU.

5.1 Design objectives

The aim of the project is to develop an application for performing mesh coarsen-
ing and refinement on the GPU. The main criteria considered were:

Scalability The primary application of this will be high performance comput-
ing (HPC), a design space which has scalability at its heart. The solution
must have the ability to scale to larger problem sizes.

Comparable Implementations Both a multi-threaded CPU and GPU ver-
sion must be implemented in order to compare results. Both versions must
use the same adaptivity algorithms, although they may differ due to the
differences in design spaces, in order to get the most out of each version,
different approaches are taken.

Performance The motivation behind moving mesh adaptivity from the CPU
to the GPU is to improve performance and execution time. The final
solution must have a performance speed up when compared to the CPU
implementation.
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5.2 Algorithms chosen

The coarsening algorithm chosen is based on the parallel edge collapse described
in Algorithm 9. After an extensive study of adaptive mesh algorithms, this one
is the only one found that has been implemented in a parallel fashion, so it was
an obvious choice.

The choice of refinement algorithms was a little more involved. Initially
Jones and Plassmann’s parallel refinement algorithm was chosen (Algorithm 6).
This approach was rejected due to the additional need for creating maintain-
ing edges, something which was avoided in coarsening (discussed in the next
chapter). This algorithm is also designed to work with CPUs where each CPU
core would do a large amount of work whereas a more suitable algorithm for
the GPU would be where the work can be divided thousands of times so that
each thread only does a small percentage of the overall work. Along with the
coarse division of work, the algorithms relies on communication between threads,
something with is best avoided in GPU computation.

After ruling out Jones and Plassmann’s parallel refinement algorithm, Banks’
regular refinement [BSW93] was chosen (Algorithm 7). Although there is no
parallel version of this algorithm, it is easy enough to implement one (discussed
in the next chapter). This algorithm does not need to create or maintain edges
and can be implemented with one thread per element. The only issue with this
algorithm is that it is an isotropic refinement and therefore will not do anything
to correct badly shaped elements. This limitation is mitigated against with
the use of anisotropic coarsening, the coarsening step will remove badly shaped
elements while the refinement will improve the local resolution of the mesh.
Iterating over these two steps will quickly converge to an acceptable mesh.

5.3 Error metric

As mentioned in the background, the choice of error metric is dependent on the
method of adaptivity chosen. For edge collapse the only real concern is edge
length. The process of collapsing an edge removes two elements that are ill
formed. Using minimal edge length, ill formed is defined as having an element
with an edge length less than the lower bound, this elements are considered
slithers and can be removed. During the collapse it is important to be careful
not to create elements which have an edge length greater than the upper bound,
otherwise you may get into the situation where you are oscillating between
coarsening and refining and never converging. Similarly for refinement, because
the shape of the element cannot be altered as it is an isotropic refinement edge
length is the only thing worth considering. If the maximal edge length is greater
than the upper bound, then the element should be refined.

We now have an error metric that can be defined with an upper and lower
bound for edge length, Llow and Lup. Choosing suitable values for these is
problem dependent and should be set by the user, but it is useful to employ
some constraints on these values in order to prevent oscillations occurring. This
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very issue was invested by Shephard et at [ALSS05] equation 7, and as an
outcome, the lower bound is always set as half the upper bound. Llow = 0.5 *
Lup.

5.4 Adaptivity framework

The adaptivity framework controls what refinement techniques needs to be ex-
ecuted and in what order. It also performs the important job of terminating the
adaptivity. The framework designed was based on work done by Shephard et al
[ALSS05]. Algorithm 10 starts with an initial coarsening step, it then iterates
over refinement and coarsening until either convergence or MAX ITER loops,
which would only occur if something has gone seriously wrong.

Algorithm 10 Basic Framework

Coarsen Mesh
for i = 1→ MAX ITER do

Refine Mesh
Coarsen Mesh
if Maximal mesh edge length < Lmax then

return Success
end if
i← i+ 1

end for
return Error

5.5 High level procedure overview

Choice of algorithms is only one part of designing a solution. Exactly how
to execute these algorithms is a completely different problem. Which data
structures to use, what information needs to be maintained and to alter the
mesh in a consistent and concurrent manner all need to be considered.

The usual approach to parallel edge collapse and regular refinement is to
divide the mesh into independent sets and then perform each edge collapse or
regular refinement in parallel as one complete task. This is the approach taken
for the CPU implementation. For the GPU implementation the edge collapse
and regular refinement was broken down into many parts, each part was a
separate CUDA kernel. This approach meant that only a very limited number
of tasks needed to be performed as independent sets. It also achieved consistency
of parallel computation by placing barriers at the end of each of these kernel
invocations (discussed in more detail in the following chapter). Algorithm 11
is the high level coarsening algorithm. It first by marks every element which
contains an edge with length smaller than Llow. Adjacent collapses are deferred
if they are collapsing an edge larger than any adjacent collapse. This is done to
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prevent data conflicts. Each marked collapse is then tested as to whether it is
a valid collapse, a collapse is valid if it does not cause an element to invert and
does not create an element with edge greater than Lup. Next all valid collapses
are actually performed followed by updating references to vertices now removed
and updating of facet adjacency.

Algorithm 11 Coarsening Algorithm

repeat
evaluate minimal edge length of all facets and mark facets for coarsening
defer adjacent collapse that collapse larger edges
remove invalid edge collapses
collapse edge
update removed vertices
update facet adjacency

until mesh not changed
compact mesh

Algorithm 12 is the high level refinement algorithm, the lines marked with
an asterisk are the tasks which need to be computed in an independent set.
Tasks done on the CPU are also marked, all other tasks can be assumed to be
executed on the GPU. First the facet adjacency information is calculated, then
using this the mesh is coloured. Next every facet is evaluated as to whether it
should be refined or not. The propagation of these marking are calculated to
ensure a valid/conformant mesh, this propagation of markings continue until
there is no change to the mesh. The indexes (described in the next chapter) are
calculated for the new facets and vertices and then space is allocated for these
new items. Finally the new facets and vertices are populated.

Algorithm 12 Refinement Algorithm

create facet adjacency on CPU
colour mesh on CPU
evaluate maximal edge length of all facets and mark facets for refinement
repeat

propagate markings
until no change to markings
create new facet indexes
allocate space for new facets
mark vertices to be created*
create new vertex indexes
allocate space for new vertices
populate new vertices
populate new facets
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5.6 Framework and data structures

The code base for this is an adaptation of the code based used in Georgios
Rokos’s smoothening MSc project. For a more detailed description of the initial
framework please refer to Georgios’s thesis [Rok10a]. Much as in the original
code, the initial mesh is read in from a vtk file where the Vertices, Facets and
Discrete Linear Metric are created (see below). The mesh adaptivity procedures
are then called until convergence, i.e. no changes need to be made to to mesh
in order for it to conform to the user set bounds.

5.6.1 CPU data structures

Vertex Describes a mesh node. 1 vector containing two co-ordinates (i and j).

Facet Describes a mesh element. 3 Vertex IDs, 3 Adjacent Facet IDs.

Metric Describes the metric tensor. A regular grid of metric values, the size
of this grid depends on the inital mesh size.

Independent Sets A two dimensional array, the first dimension separating
each independent set the second separating the IDs of Facets in the set.

5.6.2 GPU data structures

The GPU contains all the above data structures excluding independent sets.

Facet Colour Used as an alternative to independent sets. Lists the colour of
the facets.

Marked Facets Represents whether a facet needs to be coarsened, regularly
refined or bisected.

New Facet Index Stores the indexes of the newly created facets.

New Vertex Index Stores the indexes of the newly created vertices.

Vertices To Remove Marks the vertices to be removed during coarsening.

5.7 Summary

The design choices have been presented along with a high level overview of the
solution. The reader should now have a sense of the overall application as far
as algorithms and data structures are concerned. The next chapter will look in
more detail at the implemented solution.
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Chapter 6

Implementation

In this chapter the specifics of the implementation are described. The issues
and challenges encountered are explored as well as how these were overcome. A
novel approach has been taken to port this onto the GPU, the various techniques
used for a successful port are described in detail.

6.1 Atomic operations

In the CPU implementation, the code will only be a handful of threads will
be running concurrently, furthermore it is possible to communicate between all
threads with the use of atomic operations, barriers and critical regions. As a
result these devices were used, notably when a new facet or vertex needed to
be created it would be added to a dynamic array, a data structure that has
been optimised over the years. To protect against corruption from concurrent
accesses, operations to this dynamic array were protected inside a critical block.
Porting this over to the GPU posed several problems, the first of which is there
is no dynamic array in CUDA so this had to be replaced with a standard array
which would need to be resized 1. Another limitation in CUDA is that you
cannot communicate with any thread outside your block, the only way to do so
is to use atomic operations on global memory, but because CUDA has hundreds
if not thousands of threads running concurrently, you have to be very careful
not to reduce your code down to a serial execution otherwise performance will
suffer greatly.

It was clear that the first task would be to calculate the new memory require-
ments and then allocate this memory in one go. After some investigation it was
also possible to calculate the IDs and therefore indexes of the new vertices and
facets to be added. Every facet is first evaluated against the error metric and
marked as to whether it needs to be refined or not. The propagation of this is
then calculated by marking every element with at least two neighbours that are

1You cannot resize arrays in CUDA, instead an array of the new size is created and the
old array is copied across.
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being regularly refined for regular refinement, and marking elements with only
one neighbour marked for regular refinement for bisection. This propagation set
is iterated over until there is no change to the marking. From this marking we
can calculate the memory requirements.

To calculate the memory requirements and new indexes an adaptation of
a value reduction 2 algorithm was used. Value reduction is used to calculate
things like the sum of an array. It works by first adding every pair together, then
adding every pair of pair, continuing in this fashion until the whole array has
been summed. With this never more than half the thread are active at any one
time, it is a popular technique as it can be massively parallelised. This algorithm
was adapted to create a running total from the array of marked elements. Every
node marked for regular refinement would require three new facets and every
node marked for bisection will require one. The marked elements array was
marked with this in mind, if that element required bisection, it was marked
with a one, if it required regular refinement it was marked with a three, for
example [3,1,1,3,0,0], this means that elements 0 and 3 need to be regularly
refined, elements 1 and 2 require bisection and elements 4 and 5 do not need to
be altered. If a running total of this array was then created and then each item
in the array was incremented by the current number of facets, you could then
use this to assign unique IDs to the new elements. In the above example you
would want to create an array like this, [8,9,10,13,13,13]. From this you could
not only deduce that you would have 14 elements, but that the IDs for the three
new elements needed to refine element 0 were 8, 7 and 6, likewise for the other
elements.

Creating this running total was done by first, every odd item would be in-
cremented by the previous element giving us [3,4,1,4,0,0] from the previous ex-
ample. Then every item which is odd when divided by two (i.e. 2,3,6,7,10,11 etc)
is incremented by the last element in the previous pair, giving us [3,4,5,8,0,0].
This is then repeated by every item which is odd when divided by four (i.e.
4,5,6,7,12,13,14,15) is incremented by the last element in the previous set of
four, giving us [3,4,5,8,8,8]. There is no need to continue to odd items when
divided by 8 as the array is smaller than 8. Finally every item is incremented
by the current number of elements minus one (to give us IDs), which gives us
[8,9,10,13,13,13]. This algorithm is shown in Algorithm 13.

6.2 Colouring and independent sets

In order for correct and consistent parallel execution of these algorithms certain
tasks need to be performed in independent sets. This way any modification to
the mesh is sufficiently far away from any other modification done concurrently
as to not cause any conflicts. Independent sets are produced by colouring the
graph. For the CPU implementation a simple first fit colouring technique was
used, this is a very serial technique and does not port well onto the GPU. The
initial design was to transfer the mesh up to the CPU for colouring and transfer

2http://supercomputingblog.com/cuda/cuda-tutorial-3-thread-communication/
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Algorithm 13 Reduction style running total algorithm

for all items in array do {Launches a parallel thread for each item in the
array, content of this loop is run concurrently}

blockSize ← 1
while blockSize < arraySize do

if itemID & blockSize 6= 0 then
array[itemID] += array[itemID - ((itemID & (blockSize - 1)) + 1)]

end if
sync threads
blockSize ← blockSize * 2

end while
end for

it back down again, the hope was that this could be done asynchronously as the
whole algorithm does not need these independent sets and by the time the GPU
was ready for the these sets they would already have been transfered down.
Unfortunately this did not transpire and the GPU was waiting a long time
before it could continue. As a result two alternative colouring methods were
considered. First we considered partitioning the mesh, colouring the nodes that
made up this partition, subsequently colouring the nodes inside each partition
in parallel. This is a two level colouring as surveying in the background section.
The issues with this approach is the initial partitioning of the mesh, the most
efficient way is to use a quad tree, but even this is very difficult on the GPU
and it is quicker to perform this on the CPU and then transfer down into GPU
memory. The second approach we considered is using the Jones-Plassmann
algorithm [JP95], described in the background. This can easily be implemented
solely on the GPU and far out performs a two level colouring. Furthermore
this algorithm has been experimentally tested for parallel execution [ABC+93].
Although the problem of colouring was not originally in the scope of the project,
a complete GPU colouring implementation was created using Jones-Plassman
algorithm.

6.3 Pseudo random number generation

In order to implement the colouring discussed in the previous chapter we need
to generate random numbers. The purpose of these random numbers is to give
an unordered (i.e. the order does not follow the geometric order of the ele-
ments in any way) ranking of all the elements, it also must have the property
of not repeating the same number. In W. B. Langdon’s paper an approach fast
pseudo random number generation on CUDA is presented along with an exper-
imental analysis [Lan09]. This is a CUDA implementation of Park and Miller’s
pseudo random number generator which not only produces a seemingly random
sequence of integers it uniformly samples the first 231 - 2 integers without repeti-
tion [PM88]. This fulfilled the requirements exactly and was therefore adopted.
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The whole implementation is now completely on the GPU, data only needed to
be transfered from the host at the start of execution and then transfered back
up again.

6.4 Maintaining adjacency information

The initial plan was to neglect the validity of adjacency information (the only
adjacency information required is element adjacency) during coarsening and
refinement operations and then recreate this information in much the same was
as it was initially created before the next coarsening or refinement operation.
The adjacency information was also created on the CPU as it only needed to
be executed prior to colouring (which as explained above was also initially on
the CPU). The performance implications of this were not fully realised until
they were tested. The re-creation of adjacency information accounted for 87%
(before the code was optimised) of the total execution time. This of course
needed to be addressed. To resolve this the adjacency information was instead
maintained during coarsening and refinement. Although the implementation of
this was rather complicated, it did resolve the performance problems, almost
completely eliminating the time for maintaining adjacency information.

6.5 Avoiding vertex-facet adjacency

The usual way to evaluate the validity of an edge collapse and update vertices
in an element during coarsening is to maintain a vertex facet adjacency graph.
Doing so gives you a list over every facet connected to each vertex. When an
edge has been marked for collapse, we mark one vertex for removal and the other
vertex, or target vertex, on that edge as the new vertex for any element which
will not be removed in the collapse to replace the removed vertex in elements.
The list of facets connected to a vertex is traversed, evaluating whether the
collapse is valid at each, if so then each facet replaces the vertex marked for
removal with the target vertex. The issue with having this information is not
only the overheads associated with its creation, storage, transfer to and from
GPU memory and maintenance but also the fact that each vertex is connected
to an undetermined and unbound number of facets. To effectively implement
this in CUDA a bound would have to be set as you cannot have dynamic data
structures in CUDA, so an array of sufficient size would have to be used. This
will therefore limiting the flexibility of the application as it would prevent certain
coarsening and refinement operations 3. It would also lead to a lot of wasted
space as the majority of vertices will not be connected to as many facets as has
been allowed for.

To combat this a novel approach was taken. A GPU does not have the
same overhead for launching new threads as a CPU, in fact they are designed to

3as discussed in the adaptivity algorithms chapter, an edge collapse will increase the degree
of vertices, and so will bisection
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launch thousands of threads. This fact was exploited by performing the validity
checking of an edge collapse for every element in the mesh concurrently. In
parallel every facet refers to an array containing information on which vertex
(if any) will replace a vertex, it does this for every vertex the element contains.
Using these new vertices it performs a validity check and removes the collapse
operation if it fails. Similarly every element is updated with the new vertex
information if the collapse was not removed in the previous step.

This avoided the need to maintain a potentially expensive adjacency graph
and demonstrates how GPU architecture can be exploited. This approach would
not be efficient on the CPU as it involves launching hundreds of thousands of
threads for even a medium sized mesh. The overheads associated with launch-
ing a new thread on a CPU would greatly degrade performance. A similar
style could however be adopted using OpenMP which would re-use threads and
therefore not suffer so much from the launching of new threads.

6.6 Shared new vertices

Due to the fact that refinement is parallelised on a thread per facet level, if a
facet is regularly refined, then each neighbouring facet is also refined (bisected
or regularly refined). A new vertex will be created along the edge connected the
two neighbouring facets. Both of these facets will need this vertex in creating
their children. One way to solve this problem is for every facet to create a new
vertex every time it is needed, and at the end of the refinement process all the
duplicate vertices are removed. This is extremely inefficient both in terms of
computation and memory usage. A better approach is to preform refinement in
independent sets, so that two adjacent facets are not refining at the same time,
the first facet to execute will inform the adjacent facet to the ID of the vertex
it has created along the bounding edge.

The actual approach taken was an adaptation of this. After it has been
calculated which edges of a facet will require a new vertex, in independent sets
each facet marks the internal ID of the new vertices (i.e. 1,2,3), which later
will be put together with all other facets to become the new unique vertex IDs.
Each facet will then mark the facet adjacent to the new vertices with their own
ID (the ID of the facet not the vertex as the vertex is only unique within that
facet). If a facet has been marked with another facets ID, it will not create a
new vertex, instead it will allow the other facet to create the vertex and obtain
a reference to the newly created vertex later in the refinement step.

This approach means that only a small graph (Facet adjacency graph) needs
to be colour. Another major advantage is that only the marking of new vertices
needs to be done in independent sets, the remainder of the algorithm can be
done completely in parallel.
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6.7 CUDA kernels

Below is a selection of information describing the different CUDA kernels which
made up the GPU coarsening (Table 6.1) and refinement (Table 6.2) functions.
The number of threads launched is denoted in terms of number of facets (prior
to any modification), number of new facets created, number of vertices (prior to
any modification) and number of colours (in the case of 2D this will always be
4). In coarsening, note that kernels marked with a ”*” are called every time the
main coarsening loop is executed (see Design chapter), other kernels are only
called once.
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Kernel Name Description Threads per
launch

addAdjacentFacetToVertex* Marks every vertex with a single
adjacent element.

1 * Facets

evaluateVertices* Evaluates every edge connected to
a vertex. From the initial adja-
cent facet it find the adjacent fa-
cet which is also connected to the
vertex being tested. If it reaches
a boundary element it terminates
and marks the vertex to not be
coarsened.

1 * Vertices

removeAdjacentCollapses* Defers collapses that would cause
conflicts if collapsed concurrently.

1 * Facets

removeInvalidCollapses* Removes collapses that would
either invert and element or cre-
ate an edge greater than the upper
bound.

1 * Facets

collapseFacets* Performs the collapse. 1 * Facets
updateFacetVertices* Replaces the removed vertices

with the target vertices.
1 * Facets

updateFacetAdjacency* Updates facet adjacency. 1 * Facets
propagateFacetUpdate* Propagates updates of facet adja-

cency in the case where two ad-
jacent facets were collapsed (adja-
cent facets can be collapsed if they
are not collapsing adjacent edges).

1 * Facets

reindexFacets Calculates new facet IDs when col-
lapsed facets have been removed.

1 * Facets

reindexVertices Calculates new vertex IDs when
collapsed vertices have been re-
moved.

1 * Vertices

compactFacets Copies facets not removed to a
new space, updating references to
vertices and adjacent facets.

1 * Facets

compactVertices Copies vertices not removed to a
new space.

1 * Vertices

Table 6.1: CUDA kernels used for coarsening
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Kernel Name Description Threads per
launch

pseudoRandomMarkFacets Assigns a pseudo random number
of every facet.

1 * Facets

colourFacets Colours the facets using Jones-
Plassman colouring. This is re-
peatedly called until all facets
are coloured, this usually takes
between 10 and 14 invocations on
a large mesh.

m * Facets

evaluateFacets Every facet is evaluated against
the metric tensor, it is marked for
refinement if it is not within the
user set maximum bound.

1 * Facets

markFacets This propagates the markings of
the facets, marking which ele-
ments need to be regularly re-
fined and which need to be bisec-
ted. This is called repeatedly until
propagation terminates.

n * Facets

memoryIndex Calculates the number of new fa-
cets that need to be created, also
assigns a unique ID to each of
these new facets.

1 * Facets

markVertices Called for each colour in turn, fa-
cets are marked as to whether they
require a new vertex to be created
or they will be referencing a vertex
owned by an adjacent facet.

Colours *
Facets

indexVertices Calculates the number of new ver-
tices that need to be created, also
assigns a unique ID to each of
these new vertices.

1 * Facets

populateVertices Populates the co-ordinates of the
newly created vertices.

1 * Facets

dereferenceVertexIndices Retrieves the vertex ID of vertices
referenced from adjacent facets.

1 * Facets

populateFacets New facets are created. 1 * Facets
updateFacetAdjacency Facet adjacency is recalculated. 1 * Facets +

New Facets

Table 6.2: CUDA kernels used for refinement
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6.8 Summary

In this chapter the challenges and complications faced with implemented the
application have been discussed. A suitable solution has been found for all
of these problems resulting in an application that can be analysed in depth,
optimised and finally evaluated, all of these are presented in the next chapter.
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Chapter 7

Evaluation and
improvements

This chapter describes how the project was tested and evaluated as well as any
optimisations made. Firstly the testing environment and method of analysis
is described, then an explanation of how any certain improvements were made
finally an analysis of the final work and a comparison against a CPU imple-
mentation.

7.1 Testing environment

All tests were carried out on machines with identical hardware. These machines
were managed by a portable batch system (PBS) queue system 1. The use of
PBS meant that it was assured that only one job was running on the machine
at any one time, this allowed us to achieve fair results during testing. Below is
the detailed specification of the testing environment (Table 7.1).

1http://linux.die.net/man/1/pbs
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CPUs 2 x Intel(R) Xeon(R) CPU
X5650 @ 2.67GHz

Total number of CPU cores 12 (24 with hyper threading)
CPU core Westmere-EP
CPUID 206C2h
CPU bus speed 3200MHz
CPU maximum thermal design
power

95W

CPU memory 24GB
CPU memory type DDR3-1333
CPU max memory bandwidth 32GB/s
Cache size 12288 KB
QPI speed 6.40 GT/s
Operating system Linux 2.6.18-238.5.1.el5
PCIe memory bandwidth 5.3GB/s
Graphics card Tesla M2050 Fermi
CUDA cores 448
Graphics Peak single precision
floating point performance

1030 Gigaflops

Graphics memory size 3GB
Graphics memory type GDDR5
Graphics memory bandwidth
(ECC off)

148 GB/s

GCC Version 4.1.2
GCC compiler flags -O3
CUDA SDK 3.1
CUDA compilation tools release 3.1, V0.2.1221
CUDA compiler flags -O2
nVIDIA Forceware driver 260.19.29

Table 7.1: Testing Environment

7.2 Timings

The work was timed using the CUDA event management module in the CUDA
Runtime API 2. The mesh is initially read in from a vtu file and the classes
required for the mesh is initially created, this is not included in the timings
as it is common to both GPU and CPU and does not relate to the problem
of mesh adaptivity. For the same reason the writing of the output mesh to
disk is also not included. Transfer time associated with copying the mesh to
and from the GPU memory is included. If not otherwise stated, the times or
performance increase figures were obtained by averaging 6 or more runs, 3 with
error bounds setup so that the mesh requires a lot of coarsening and 3 such

2http://www.clear.rice.edu/comp422/resources/cuda/html/group__CUDART.html
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that the mesh requires one refinement of every element. The timings between
section which at first might appear to be inconsistent are due to the overheads
of profiling and timings. Profiling was turned off whenever possible, and timings
not required for a particular test were also turned off. All timings taken in a
particular experiment were taken using exactly the same setup and therefore
the comparisons are justified.

7.3 Execution time breakdown

The below timings were achieved using an initial mesh of 1,000,000 vertices and
2,000,000 facets which is a fairly large mesh. A range of timings was taken
with different error bounds. With low error bounds little coarsening needs to
be done, but a large amount of refinement, similarly with high error bounds
a lot of coarsening has to be performed and little refining. The timings below
show times for a single round of refinement or coarsening (Table 7.2). Accuracy
has been reduced to 3 decimal places for readability, more accurate timings
will be used when necessary. The minimum time is achieved where no mesh
adaptivity has to be performed, this therefore represents the time to determine
if any adaptivity needs to be performed. The average time is a median average
time. The maximum time is the worst time achieved over the range of error
bounds tested.

Event Minimum Average Maximum

Copy mesh to GPU 0.176 0.176 0.176
Coarsening 0.142 120.535 121.047
Prepare mesh for refining 0.001 0.001 0.001
Refinement 0.001 0.344 0.723
Copy mesh to CPU 0.194 0.195 0.611
Total 1.308 121.078 121.080

Table 7.2: Application timings in seconds on initial mesh with 2,000,000 facets

7.4 Improving Coarsening

It is obvious from the above timings that there is a performance issue with
coarsening. Looking at coarsening on slightly smaller meshes and this problem
is not experienced. With smaller meshes (1,000,000 facets and fewer) the times
for coarsening are similar to those of refining (Table 7.3).
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Event Minimum Average Maximum

Copy mesh to GPU 0.073 0.074 0.074
Coarsening 0.075 0.075 0.880
Prepare mesh for refining 0.001 0.001 0.001
Refinement 0.020 0.151 0.274
Copy mesh to CPU 0.020 0.246 0.246
Total 0.547 0.547 0.995

Table 7.3: Application timings in seconds on initial mesh with 800,000 facets

The coarsening step works by continually collapsing small edged elements
until all small edged elements that would not invalidated the mesh if collapsed.
To avoid data conflicts adjacent collapses are deferred until such a time where
their neighbours have been collapsed. To achieve this, unlike refining where
elements are coloured and then each colour is handled, the exclusion of neigh-
bouring collapses has to be done on the fly as the adjacent elements changes
every round of collapses. After elements have been marked for collapse, if a col-
lapse is adjacent to another collapse, it is differed if it is collapsing an long edge
or if their edges are equal it is deferred if its vertex marked for removal has a
lower ID. It is in this procedure where the problem lies. In theory each iteration
may only collapse a single edge, which would therefore lead to an extraordin-
arily long execution time. This will happen if the vertex id were sequentially
increasing.

To test this hypothesis the number of times the coarsening procedure iterated
was recorded. For the smaller mesh (800,000 elements) the loop was executed
22 times, whereas for the longer running times in the larger mesh (2,000,000
elements) it was executed 978 times. This was strong evidence to support the
hypothesis.

The first thing done to tackle this problem was not to simply defer the
collapse with a lower ID, but to defer the collapse with a lower hashed ID. The
hope being that this will prevent sequentially increasing IDs from creating an
extraordinarily long execution time. This reduced the number of iterations from
978 to just 8 and the coarsening time from 120 seconds to 1.09 seconds.

7.5 Pinned memory

Page-locked or pinned memory is memory that cannot be swapped out to sec-
ondary storage by the operating system. If pinned memory is used by the host,
then the data transfered to and from the graphics card does not have to go
through the CPU and transfers can attain the highest bandwidth between host
and device The data is transfered by the graphics card using direct memory
access (DMA). On PCIe 16 Gen2 cards, for example, pinned memory can at-
tain greater than 5 GBps transfer rates 3. Data transfer to and from the GPU

3http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_

CUDA_BestPracticesGuide_2.3.pdf
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accounts for 30%-50% of the total execution time on a mesh with 2,000,000
elements. For this reason the data transfered to and from the GPU was pinned
on the host side 4. The results of using pinned memory are shown in Table 7.4
and Table 7.5.

Event Paged
memory
time
(seconds)

% of total ex-
ecution time

Pinned
memory
time
(seconds)

% of total ex-
ecution time

Copy mesh
to GPU

0.1770 10.904% 0.1747 7.619%

Copy mesh
to CPU

0.6120 37.697% 1.2747 55.575%

Total data
transfer

0.789 48.601% 1.4494 63.194%

Table 7.4: Results of using pinned verse paged memory on the host with a mesh
of 2,000,000 elements adapted to 8,000,000 elements

Event Paged
memory
time
(seconds)

% of total ex-
ecution time

Pinned
memory
time
(seconds)

% of total ex-
ecution time

Copy mesh
to GPU

0.1770 11.998% 0.1747 8.288%

Copy mesh
to CPU

0.1324 8.972% 0.2689 12.757%

Total data
transfer

0.3094 20.970% 0.4436 21.045%

Table 7.5: Results of using pinned verse paged memory on the host with a mesh
of 2,000,000 elements adapted to 1,600,000 elements

Looking at the experiment results the use of pinned memory has actually
degraded performance. Time for copying the mesh to the GPU is pretty much
unchanged, but time for copying the mesh back to the CPU has increased signi-
ficantly with the use of pinned memory. This can be explained by looking at the
system specification. The maximum memory bandwidth for this type of machine
is 32GB/s, much higher than previous generations architectures. This means
that the limiting fact is the PCIe bandwidth (5.3GB/s) and not the memory
bandwidth as it would be in other systems. This explains why no improvement
was achieved, but it does not explain the loss of performance when transferring

4It is important to be careful when using pinned memory as the host cannot swap this
memory out. You therefore need to leave enough system memory for the rest of the application
along with the opperating system.
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data back. Allocating pinned memory has certain overheads associated with it
as it needs to do a fair amount of reorganisation to ensure the data will not be
reallocated as well as applying multi-threading locks to avoid race conditions
5. These overheads are not observed when transferring data to the GPU as the
allocation of memory for the initial mesh is not recorded as it is part of reading
in the mesh from file and is common with the CPU implementation.

7.6 Comparison of memory allocation

After investigating the use of pinned memory the issue of memory allocation
was explored. The first step was to break down the time time taken for each
process involved in transferring data to and from the GPU. Transferring data
to the GPU is simply a matter of allocating the memory on the GPU, then
copying the data down. Transferring data back to the CPU means first deleting
the old mesh, allocating space for the new mesh and then transferring the data
to the CPU. Transfer time break down shown in Table 7.6. These were obtained
using a heavily refined large mesh (initially 2,000,000 elements, 8,000,000 after
adaptation).

Event time(seconds) % of total transfer
time

Allocate space on GPU 0.01815 2.31%
Transfer data to GPU 0.15783 20.07%
Create GPU only data
structures

0.00000 0.00%

Free initial mesh from
CPU

0.00682 0.87%

Allocate space for new
mesh on CPU

0.00001 0.00%

Transfer data to CPU 0.58301 74.15%
Free GPU memory 0.02046 2.60%
Total transfer 0.78628 100.00%

Table 7.6: Break down of transfer time with a mesh of 2,000,000 elements
adapted to 8,000,000 elements

The item with the greatest impact on the total transfer time are the actual
transfer of the data, which takes up almost 95% of the total transfer time,
rather than time spent allocating and freeing memory. However, because the
total transfer time impacts on the application greatly, improving 5% of this
time is still worth with. For this we looked at different ways to allocate and
free memory. The original implementation uses C-style malloc and free, we also

5http://www.cs.virginia.edu/~mwb7w/cuda_support/memory_management_overhead.
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looked at C++-style new and delete; malloc, realloc and free as well as pinned
memory for completeness. The breakdown of these timings are in Table 7.7.

Event C mal-
loc and free
time(seconds)

C++ new
and delete
time(seconds)

C mal-
loc, realloc
and free
time(seconds)

Pinned
memory
time(seconds)

Free initial
mesh from
CPU

0.00682 0.00712 N/A 0.06600

Allocate
space for
new mesh on
CPU

0.00001 0.28778 0.00689 0.47351

Total al-
loc/free

0.00683 0.2949 0.00689 0.53951

Table 7.7: Break down of transfer time with a mesh of 2,000,000 elements
adapted to 8,000,000 elements using different memory allocation techniques

These results show that the appropriate choice for memory allocation is
either C-style malloc and free, or C-style malloc, realloc and free, the difference
between these to is too low to differentiate accurately. The reason why the C++
new and free are so slow in comparison is because in addition to memory alloc-
ation type checking is also performed, the objects constructor and destructor
are also called for each item in the array.

7.7 Asynchronous memory copy

One useful feature of CUDA is the ability to execute kernels at the same time
as performing memory operations such as transferring data to and from the
CPU and allocating new space. If we were able to overlap some of the kernel
execution with memory transfers the time for these memory transfers could in
part be hidden from impacting overall performance. Unfortunately this cannot
be attempted in this application. The first kernel to be executed iterates over
every facet in the mesh (facets account for about 69% of the data transfered to
the GPU), this is executed in just 6 milliseconds on a large mesh, the next kernel
to be executed needs the vertex information (accounts for the remaining 31%
of data transfered to the GPU). Therefore a maximum of 6 milliseconds can be
hidden using asynchronous memory transfer to the GPU (ignoring any overheads
associated with asynchronous transfer). Looking at the transfer back to the
CPU, the algorithm terminates when it has determined the mesh lies within
the bounds. As soon as this has been determined the application has no more
work to do but transfer the mesh back up to the CPU, therefore asynchronous
memory transfer cannot be utilised.
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7.8 Occupancy

The multiprocessor occupancy is the ratio of active warps to the maximum
number of warps supported on a multiprocessor of the GPU. Each multipro-
cessor on the device has a set of N registers available for use by CUDA thread
programs. These registers are a shared resource that are allocated among the
thread blocks executing on a multiprocessor. The CUDA compiler attempts to
minimize register usage to maximize the number of thread blocks that can be
active in the machine simultaneously. If a program tries to launch a kernel for
which the registers used per thread times the thread block size is greater than
N, the launch will fail. The Tesla M2050 has 32K 32bit registers per multi-
processor. Maximizing the occupancy can help to cover latency during global
memory loads. The occupancy is determined by the amount of shared memory
and registers used by each thread block. To maximise the occupancy the size
of thread blocks needs to be adjusted 6.

To determine optimal occupancy the CUDA occupancy calculator was used
to analyse each kernel 7. The occupancy calculator uses the number of registered
required for the kernel as well as the amount of shared memory used. Originally
all kernels used 32 threads per block. Table 7.8 and Table 7.9 shows the newly
calculated optimum block size.

Kernel Name Used registers Bytes of share
memory used

Optimum occu-
pancy (number
of threads per
block)

addAdjacentFacetToVertex 14 0 256
evaluateVertices 48 0 96
removeAdjacentCollapses 25 0 400
removeInvalidCollapses 35 0 128
collapseFacets 12 0 256
updateFacetVertices 14 0 256
updateFacetAdjacency 17 0 256
propagateFacetUpdate 14 0 256
reindexFacets 14 4 256
reindexVertices 12 4 256
compactFacets 18 0 256
compactVertices 16 0 256

Table 7.8: Optimum block size to maximise occupancy for coarsening

6http://forums.nvidia.com/index.php?showtopic=31279
7http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.

xls
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Kernel Name Used registers Bytes of share
memory used

Optimum occu-
pancy (number
of threads per
block)

pseudoRandomMarkFacets 16 0 256
colourFacets 16 0 256
evaluateFacets 50 0 128
markFacets 12 0 256
memoryIndex 12 4 256
markVertices 13 0 256
indexVertices 16 4 256
populateVertices 21 0 272
dereferenceVertexIndices 15 0 256
populateFacets 21 0 272
updateFacetAdjacency 17 0 256

Table 7.9: Optimum block size to maximise occupancy for refining

Increasing occupancy will not necessarily improve performance. Performance
will only be improved if the kernel is bandwidth bound. If it is bound by
computation and not global memory accesses then increasing occupancy may
have no effect. To determine if improving the occupancy improves performance
accurate timings for each kernel were obtained using the CUDA SDK profiler.
The profiler records kernel execution time in microseconds. Table 7.10 and
Table 7.11 shows the effect of changing the block size from 32 to the the block
size calculated by the occupancy calculator on a large mesh (2,000,000 elements).

Kernel Name Original
execution
time(microseconds)

New execution
time(microseconds)

speedup

addAdjacentFacetToVertex 34,976 29,792 1.174
evaluateVertices 163,976 143,497 1.143
removeAdjacentCollapses 64,138 56,494 1.135
removeInvalidCollapses 36,324 31,104 1.167
collapseFacets 18,093 15,839 1.142
updateFacetVertices 48,826 42,493 1.149
updateFacetAdjacency 3,348 3,234 1.035
propagateFacetUpdate 83,105 59,573 1.395
reindexFacets 2,604 2,637 0.987
reindexVertices 664 669 0.993
compactFacets 19,285 19,312 0.999
compactVertices 1301 1301 1.000

Table 7.10: Effect of adjusting block size for coarsening
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Kernel Name Original
execution
time(microseconds)

New execution
time(microseconds)

speedup

pseudoRandomMarkFacets 896 422 2.123
colourFacets 46,054 27,479 1.676
evaluateFacets 7,129 3,489 2.043
markFacets 246 122 2.016
memoryIndex 2,333 1,114 2.094
markVertices 14,459 9,019 1.603
indexVertices 8,496 4,309 1.972
populateVertices 17,929 9,438 1.900
dereferenceVertexIndices 10,623 5,514 1.926
populateFacets 106,569 54,707 1.948
updateFacetAdjacency 153,906 98,293 1.566

Table 7.11: Effect of adjusting block size for refining

Almost all of the kernels benefited from optimising occupancy, especially
those used for refining.

7.9 Thread divergence

One of the ways GPU computation differs from CPU computation is that every
thread being executed in a warp (32 threads) much either be executing the
same instruction or no instruction at all. Branches in the code cause thread
divergence if all the threads do not execute the same branch. The nature of
coarsening and refinement requires a lot of branching, so there is bound to be a
large amount of thread divergence. This divergence is shown in Table 7.12 and
Table 7.13. Only kernels with significant divergence are shown.

Kernel Name Number of divergent branches within a warp.

evaluateVertices 23,055
removeAdjacentCollapses 5,655
removeInvalidCollapses 10,674

Table 7.12: Thread divergence for coarsening on a mesh with 800,000 elements

Kernel Name Number of divergent branches within a warp.

colourFacets 20,758
markVertices 8,377
dereferenceVertexIndices 8,510
updateFacetAdjacency 54,668

Table 7.13: Thread divergence for refining on a mesh with 800,000 elements
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Many of these divergences can be explained when looking at the purpose
of the kernel. It is also interesting to note that the longest running kernels
have the greatest thread divergence, this is strong evidence to suggest that
thread divergence is the major limiting factor in performance. First the biggest
offended, updating facet adjacency was more closely looked at in terms of thread
divergence. This kernel works by first checking that the adjacent facets are
correct, and if not it looks up what the correct adjacent facet should be and
then updates the current facet. The divergence arises because not every facet
will have incorrect adjacency, and it is impossible to group warps such that
those which require updating are executed together. One improvement however
was made. When correcting an adjacent facet original this was done by passing
to a function which takes as arguments the old facet ID and the new facet ID,
it then checks each of it’s adjacent facets for the one matching the old facet ID
and replaces it with the new facet ID. This function was replace by one what
takes the new facet ID as well as the position to put it in thus removing the
need to check each adjacent facet. This reduced the thread divergence from
54,668 divergence branches within a warp to 43,072, a reduction of 21.2%. This
improved performance of this kernel by just over 4%. Analysis of the other
kernels did not yield any change.

7.10 Coalesced memory access

An important performance consideration is coalescing global memory accesses
8. Global memory loads and stores by threads of a warp (half-warp for compute
capability 1.x devices) are coalesced by the device into as few as one transaction.
In order to achieve coalesced memory access in compute 1.0 and 1.1 devices the
k-th thread in a half warp must access the k-th word in a segment, however not
all threads need to participate. Compute 1.2 and 1.3 devices improved upon this
by coalescing any pattern of access that fits into a segment. This meant that
you did not need to be as careful when aligning global memory accesses. On
devices of compute capability 2.x, memory accesses by the threads of a warp are
coalesced into the minimum number of L1-cache-line-sized aligned transactions
necessary to satisfy all threads 9. Since we are using a compute 2.0 device it
is not possible to investigate to what degree global memory accesses are being
coalesces as the CUDA profiler does not monitor this for newer devices. Care
was taken during implementation for near by threads to access data close to
each other.

7.11 L1 cache

For devices of compute capability 2.x the same memory is used for both shared
memory and L1 cache. The maximum amount of shared memory used by any of

8http://www.scribd.com/doc/49661618/30/Coalesced-Access-to-Global-Memory
9http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_

CUDA_ProgrammingGuide.pdf
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the kernels for coarsening and refinement is 4bytes, therefore it makes sense to
use more of this memory for L1 cache to improve caching of global memory which
will better exploit data locality with more space. The default configuration is
48KB of shared memory and 16KB of L1 cache. This can be changed to 16KB
of shared memory and 48KB of L1 cache. This improvement improved the
performance of most kernel and gave a performance improvement of 36.67% for
coarsening 14.88% for refinement, and an overall performance improvement of
10.88% when tested with a large mesh initially of 2,000,000 elements.

7.12 Final breakdown of execution times

Presented here is a final break down of the execution times after all optimisations
have been done. These times were taken by start with a large mesh of 2,000,000
elements which was adapted to an range of different error bounds, an average
was then taken (Table 7.14).

Event Average time (seconds) % of execution time

Copy mesh to GPU 0.065034 9.91%
Coarsening 0.196306 29.92%
Prepare mesh for refining 0.001006 0.15%
Refinement 0.153593 23.41%
Copy mesh to CPU 0.240145 36.60%
Total 0.656202 100.00%

Table 7.14: Final breakdown of execution times on a mesh with 2,000,000 ele-
ments

7.13 Adaptation convergence

Adaptation convergence is how quickly adaptation leads to a mesh that is within
error bounds. The number of times the application executes the main adaptivity
loop is completely dependent on the metric tensor, error bounds and initial
mesh. Every coarsening step will remove every element it can that is below the
error bound in a single step, it will also never create an element what is above
the error bound. Refinement on the other hand may created elements that are
below the error bound when addressing elements above the error bound. If the
largest edge in the mesh is N times larger than the upper bound it will require
dlog2Ne refinement steps to bring it within the error bounds. As coarsening
will not put the mesh outside of error bounds, and it corrects every element
put outside error bounds by refinement in a single step the adaption will iterate
dlog2N + 1e times, the last iteration no adaptivity is performed, the mesh is
just evaluated.
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7.14 Scalability

Scalability is one of the main design objectives discussed in the design chapter.
To experimentally show the application is suitably scalable a range of different
initial mesh sizes were tested. These were tested using a range or error bounds,
from error bounds that require the mesh to be heavily coarsened to error bounds
that require at least two invocations of refinement. These were then averaged to
give the results in Table 7.15 and shown graphically in Figure 7.1 and Figure 7.2.

Mesh size (number of
facets)

Average time (milli-
seconds)

Average time per fa-
cet (microseconds)

6 1.6412 273.546
36 1.6682 46.340
140 2.1401 15.287
12,432 5.4395 0.437
50,142 13.4411 0.268
112,554 30.0362 0.266
313,344 91.2122 0.291
802,496 243.5656 0.303
2,000,000 361.7561 0.180

Table 7.15: Range of different sized meshes tested

Figure 7.1: Average execution time for different sized starting meshes
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Figure 7.2: Average execution time per facet for different sized starting meshes

From the evidence presented above the application is certainly scalable. The
design objective of scalability has been achieved to great effect.

7.15 Comparison with CPU

The two other design objectives are to implement a CPU version of the ap-
plication for comparison against the GPU version and achieve a good speedup
of GPU computation over the CPU computation. A multi-threaded CPU im-
plementation was developed using OpenMP, however during the course of this
project work done by Gerard Gorman on an adaptivity suite which included
coarsening and refinement was completed. Comparison with CPU was done
using this the coarsening and refinement elements of this suite.

To compare GPU and CPU implementations coarsening and refining were
analysed separately. The coarsening time represents a single round of heavy
coarsening, including the transfer times associated with transferring the mesh
to and from the GPU. The refinement time represents a single round of heavy
refinement, including the transfer times associated with transferring the mesh
to and from the GPU. This is shown in Table 7.16 and Table 7.17.
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Mesh size (num-
ber of facets)

CPU Average
time (milli-
seconds)

GPU Average
time (milli-
seconds)

GPU Speedup

140 1.9 2.8 0.67
12,432 144.8 9.3 15.54
50,142 677.7 17.6 38.58
112,554 1,569.0 37.7 41.59
313,344 4,531.1 116.1 39.04

Table 7.16: Range of different sized meshes tested against CPU and GPU im-
plementations for a single coarsening round

Mesh size (num-
ber of facets)

CPU Average
time (milli-
seconds)

GPU Average
time (milli-
seconds)

GPU Speedup

140 3.7 4.2 0.87
12,432 470.2 7.6 62.15
50,142 3,799.8 20.9 181.94
112,554 6,490.4 46.8 138.70
313,344 7,765.5 137.0 56.67

Table 7.17: Range of different sized meshes tested against CPU and GPU im-
plementations for a single refinement round

For very small meshes the GPU is slightly slower than the CPU, but these
are trivial cases where adaptivity is under 5ms. With coarsening, the GPU is
about 40 times faster than the CPU for meshes with more than 50,000 facets.
The refinement case is interested, the speedup peaks for medium sized meshes
(50,000 elements), this is likely to be due to the overheads associated with the
launching of new threads, for the smaller meshes it is unlikely that any multi-
threading is needed, so this overhead is not observed. The speed settles at about
55 times speedup for large meshes.

It is important to note that the tested case isolates a single round of coarsen-
ing or refinement, this this being the case the overheads of transferring data to
and from the GPU are exaggerated, more impressive speedups will be observed
when greater mesh adaptation is performed. The comparison was testes this
way because it is easy to ensure testing of like for like cases resulting in a fair
and valid test.

The speedup achieved for larger meshes is impressive and means that our
performance objectives have been achieved. In a real world application timings
and difference between CPU and GPU implementation can vary greatly. For
meshes that require very little adaptation, and speed up of around 15 times
can be expected, whereas for a large mesh which requires 3 refinement steps a
speedup in excess of 100 times is expected.
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7.16 Limitations

The application is subject to some constraints, this section explains these and
actions, if any, that can be taken to overcome them.

7.16.1 Adaptivity limitations

The choice of using isotropic refinement with anisotropic coarsening does bring
with it some limitations to what adaptivity can be done. In the case where
a badly formed element is surrounded by large elements it cannot be removed
by coarsening as it would create element(s) with edge lengths above the upper
bound and of course it cannot be removed though refinement. If a particular
metric tensor results in this type of scenario often occurring, this application
would be ill-suited to solving it. The addition of edge flipping (preformed once
per iteration) will help to fix a lot of these cases.

7.16.2 Thread limitations

In the current implementation a 1D grid is used. This limits the number of
blocks that can be run to 65,535, this means that the application can launch a
maximum of 8,388,480 threads per kernel invocation (6,291,360 threads for the
evaluateVertices kernel, but this is done over vertices which is generally half the
number of facets). The maximum number of threads launched for a single kernel
invocation is one thread per facet, therefore the maximum number of facets is
8,388,480. This limit applies before and after adaptivity has been preformed.
This limitation is easy to overcome. A simple change to used 2D grids would
solve this, raising the facet limit to 549,739,036,800. In the unlikely event that
this is not enough (impossible in fact due to memory limitations stated below)
then each kernel invocation could be wrapped in a loop, each iteration working
on a segment of the facets, this would completely remove the limit of maximum
threads.

7.16.3 Memory limitations

The current environment has 3GB of memory on the graphics card, the whole
mesh before and after adaptation needs to be held in this memory, along with
other data structures described in the design chapter. Facets occupy 32 bytes
each and vertices occupy 40 bytes each, there is usually twice as many facets
as vertices, for reasonably sized meshes this is always the case to within a few
percent, we can therefore say the mesh consists of 52 bytes per facet. Including
all the other data structures and addition 42 bytes per facet is required. When
the mesh size is increased or decreased (as it inevitably will be during coarsening
and refining) extra space is needed to store the old mesh as it is being coped
to the space allocated for the new mesh. New vertices and facets are created at
different times, and the temporary space required for the of copying one is freed
before the start of copying the other. This therefore adds an extra memory
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overhead of 32 bytes per facet. The total memory required on the graphics card
is 126 bytes per facet putting a limitation of 23,809,523 facets, this being the
maximum facets at any time during the execution of the application. One way
around this is to partition the mesh on the CPU and then adapt each partition
in turn on the GPU. These partitions will then have to be stitched together.
Partitioning a mesh is a non-trivial problem and is beyond the scope of this
project.

7.17 Summary

The performance of the application has been thoroughly analysed and evaluated.
The performance figures are beyond what was initially expected and are the key
to marking this project as a success. The following chapter will look at where to
go next in continuing this research, as well some final thoughts and reflections.
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Chapter 8

Conclusion

This chapter will conclude the report and look at interesting areas for future
work. A brief section is devoted to reflecting on any lessons learned and justify-
ing the success of the project. Finally the report is concluded with some closing
remarks.

8.1 Future work

There is a variety of topics which remain open for further study. Below the
most significant of these are listed.

• The most immediate item for further work is to integrate this work into a
common framework for GPU mesh adaptivity where it can be coupled with
work already completed on smoothening. This will provide a platform for
addition mesh adaptivity algorithms on the GPU such as edge flipping
and other coarsening and refinement techniques.

• Edge flipping is a mesh adaptivity technique that is the logical successor to
smoothening, coarsening and refinement. Implementation of edge flipping
coupled with the work presented in this thesis will lead to a complete suite
of mesh adaptivity.

• A new type of processor combining CPU style cores and GPU style cores on
a single chip is being developed by AMD, called an accelerated processing
unit (APU) [Bro10]. With the GPU core and CPU core on a single chip, as
well as access to a common memory the times associated with transferring
data to and from the GPU (which accounts for about 50% of the total
execution time) can be eleminated. The pure compute capailities of this
new chip are unlikely to be as powerful as a GPU, but the elimination
of transfer times might mean that performance can still be improved.
An APU implementation of this application and comparision against this
GPU application would be of great value.

60



• An obvious extension is to move from 2D to 3D. It is not a simple matter
of stating that this work can easily be generalised to the 3 dimensional
case and still maintain its performance advantage; some careful thought
needs to be taken. Firstly more colours will be required, in 2D only 4
colours are needed as each facet has 3 neighbours. In 3D the mesh would
consist of tetrahedrons, so 5 colours will be required, a slight degradation
of performance. Calculations such as evaluation of the metric tensor at
particular points will be more complicated, as well was calculating whether
a proposed collapse would invert an element. The extra computation cost
of these will be a factor less than 2. The memory footprint will also
increase slightly, as each facet will need to hold 4 vertices instead of 3
and 4 adjacent facets instead of 3. Each vertex will also need to hold an
additional co-ordinate. The other data structures will largely remain the
same. In 3D 164 bytes per facet will be needed an increase of 30% over
2D. There are also a number of other factors that are extremely dificult
to predict their impact such as the inevitable increase in the number of
register required for many of the kernels.

8.2 Reflection

Looking at the project in its entirety several reasons for its success become
apparent. The main reason for the success is the strategic approach taken to
the problem, the extensive background research completed, and the benefit of
building on Gerard Gorman’s experience of implementing mesh adaptivity on
multi-core systems.

This project can also benefited from the use of a very large number of
threads, several million threads per kernel and hundreds of millions per exe-
cution on a large mesh. GPUs do not suffer from the same overheads associated
with creating new thread as CPUs, good performance can only be achieved on
a GPU if the device is utilised by providing it with enough threads.

Another reason why this project is successful is how the procedures for
coarsening and refinement were broken down into many kernels (12 for coarsen-
ing and 11 for refinement) so that consistency is obtained by serial calling of
these massively parallel kernels. The decomposition of the adaptivity algorithms
to yield these different kernels was one of the greatest challenges of this project
and many novel techniques were employed in achieving it. This decomposi-
tion has an added effect of limiting the amount of work that has to be done
in independent sets. In previous work done on parallel mesh adaptivity the
vast majority of work was done on independent sets, whereas specifically for
refinement, only a very small proportion of this work done required the use of
independent sets.

The intelligent choice of data structures allowed for smaller graphs of de-
pendent elements, reducing the total number of independent sets. The careful
selection of data structures also reduced the amount of information that needed
to be maintained during mesh adaptivity as well as limiting the memory foot-
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print of the application.
Finally the efforts taken beyond the scope of the project to move all compu-

tation onto the GPU was vital in getting an high performing end to end solution.
In particular moving graph colouring from the CPU to the GPU meant the en-
tire computation is executed solely on the GPU.

8.3 Closing remarks

This project has been highly successful. Not only were the design objectives met
and surpassed, but the completed work will also be developed further as part of
Georgios Rokos PhD almost immediately after completion [Rok11]. The project
has shown that massive speedup can be achieved using GPUs for an application
with unstructured data, irregular memory access and complex algorithms. The
full extent to which this project has contributed to the field of computational
fluid dynamics will not be realised until some of the future work described above
has been completed. Great effort is being made to progress techniques for mesh
adaptivity on GPUs, and it is highly likely this work will make its way into high
performance fluid solvers in the near future. The potential applications of this
are extensive, from salt fingering to ocean modeling, the prospective influences
it will have on computation fluid dynamics are vast.
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