
Imperial College London

Department of Computing

Portfolio Optimization as Stochastic

Programming with Polynomial Decision Rules

by

Miha Troha

Supervisor: Dr. Daniel Kuhn

Second Marker: Professor Berç Rustem

Submitted in partial fulfilment of the requirements for the MSc Degree in Computing Science
(Computational Management) of Imperial College London

September 2011





Abstract

Multistage stochastic programming provides a general framework for modelling real-life decision
problems that involve uncertainty. However, it is computationally very demanding, even when only
medium-accuracy solutions are required. Different approximation methods have been proposed in
order to tackle multistage stochastic programming problems. In this work, we analyze two, namely,
scenario tree approximation and decision rule approximations. The latest attracted most of the
attention in the recent years. The main idea is to limit the characterization of the decisions from
all measurable functions to only certain functional forms. We focus on the most recent polynomial
decision rules, which were introduced in the stochastic programming framework by Bampou [7],
where decisions are modeled as polynomial functions of the uncertain parameters. We propose
two extensions of this work. We release the assumption that polynomial decision rules must be
characterized by even degrees polynomial functions and extend it to polynomial functions of all
degrees. Moreover, we release the assumption that the recourse matrix does not depend on the
uncertain parameters and instead model recourse matrix by polynomial functions of the uncertain
parameters.

The last extension is needed in order to tackle a special case of multistage stochastic program-
ming problems termed portfolio optimization. Portfolio optimization is the problem of allocating
capital over different assets in order to maximize the return on the investment and at the same time
minimize its risk. In the stochastic programming framework, one wants to maximize the expected
return of the investment, while minimizing a specific characterization of risk. The first portfolio
optimization problem was introduced by Markowitz, where the variance of the return was used to
characterize risk. However, variance is not a good risk measure, because it penalizes both profits
as well as losses. This contradicts the reality, where investors want to minimize only the possibility
of losses. In this work we present general properties, i.e. coherency proposed by Artzner and time
consistency, that a good risk measure must satisfy. We prove that one of the most popular risk
measures termed conditional value at risk violates time consistency and propose its time consistent
alternative.
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Chapter 1

Introduction

Optimization is concerned with the problem of optimizing, i.e, minimizing or maximizing, an ob-
jective function subject to some given constraints. Under one of many different classifications,
optimization problems can be divided into deterministic optimization problems and optimization
problems under uncertainty.

As the name suggests deterministic optimization problems deal with deterministic variables.
Consider for example a company that produces two products, X and Y, at known costs. Each
of these products is produced in a number of steps in which different machines are used. Some
machines might be used for the production of both products. The company has some materials
needed for the production of the products on stock. Imagine that the company just obtained a
new customer that demanded more X and Y products than the company is able to produce. The
company would like to invest some of its savings to meet at least some of the new demand. How
much should the company invest into new machines, how much in the working labour and how
much in the new materials? Which machines should be upgraded or replaced? What effect does
the upgrade of a certain machine have on the overall profit? These kind of problems can be solved
with deterministic optimization techniques. The objective function represents the profit, i.e., the
difference between the income from selling the products and all the costs and investments needed
to produce the products. The constraints of this problem are the capacity of the machines, the
available working labour, money to invest, time, materials etc.

Now consider a similar problem, where the demand for the products is not completely known in
advance. Only some estimates are available. Also machines could break down and workers might
get ill. Materials are not always delivered at the preagreed time. Such problems clearly involve
uncertain parameters and therefore belong to the group of the optimization problems under uncer-
tainty. In such problems, one would like to maximize the expectation of the profit. Optimization
problems under uncertainty that involve expectation in the objective function are termed stochastic
programming problems. Similarly, also other, more risk averse objective functions are possible. In a
special case, one could want to maximize the profit under the worst-case realisation of the uncertain
parameters. This kind of optimization problems under uncertainty are termed robust optimization
problems. In the above problem not all the uncertain parameters are revealed at once. They are
revealed sequentially and after each revelation some decisions, as reactions to the observed uncertain
parameters, are made. These kind of problems are termed multistage optimization problems.

In order to grasp optimization problems, the classification to deterministic and nondeterministic
optimization problems is not enough. Clearly, in both groups there are some very difficult and some
less difficult settings. Less difficult settings are considered those, where the optimal solution can
be found in polynomial time. In reality, this means that problems that involve millions of variables
and constraints can be solved efficiently. Deterministic linear programming problems, where the
objective function and the constraints are all linear functions of the decision parameters is one of
such problems. Another example is semidefinite programming, where a linear objective function is
optimized over the intersection of an affine space with the cone of positive semidefinite matrices.

On the other hand, linear optimization problems under uncertainty are much more difficult.
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2 1 Introduction

Even linear two-stage stochastic programming problems are #P-hard [6]. Moreover, as claimed
by Saphiro and Nemirovski [11], multistage stochastic problems are generally computationally in-
tractable even when only medium-accuracy solutions are required. Different approximation methods
have been proposed in order to tackle them. The most intuitive method is scenario tree approxi-
mation. It involves discretizing outcomes of the uncertain parameters in each stage. This approach
approximates the computationally intractable multistage stochastic programming problem by a
tractable linear programming problem. However, the complexity of the linear programming prob-
lem grows exponentially with the number of stages of the original stochastic programming problem
[14]. Therefore another approach, termed decision rule approximations, has been proposed by Ben-
Tal [19]. The main idea is to keep the distribution of the uncertain parameters unchanged, but only
limit the characterization of the decisions to certain functional forms. By such approach, an upper
bound of the optimal solution is obtained. Linear [11] and piecewise linear [29] functional forms at
first attracted most of the attention.

By considering only specific functional forms of decision rules, the approximated solutions may
be very suboptimal. In order to estimate suboptimality of solutions, Kuhn [3] proposed a tractable
lower bound approximation by approximating the functional form of the dual decision rules as
linear functions of the uncertain parameters. Georghiou [30] applied a similar approach also in the
context of piecewise linear decision rules. Both the upper and the lower bound approximations are
written as tractable linear programs, but the suboptimality of solutions make them unuseful for
many problems.

In order to improve accuracy of solutions, polynomial decision rules have been proposed, first in
the robust optimization framework by Bertsimas [31], and then applied to stochastic programming
problems by Bampou [7]. However, polynomial decision rule approximations do not lead to a
tractable linear program, but instead to an intractable semi-infinite programming problem, having
finitely many decision variables, but infinitely many constraints. Constraints involve checking non-
negativity of a polynomial on a compact bounded semi-algebraic set. Only in the recent years, it
has been shown that such problems can be approximated (sometimes even solved precisely) by a
tractable semidefinite programming problem [2, 23]. Bampou showed that even polynomial decision
rules of small degrees outperform the piecewise linear decision rules. However, her formulation is
only applicable for polynomial decision rules of even degrees and problems where the recourse matrix
does not depend on the uncertain parameters. In this work we approximate the primal and the
dual stochastic programming problems with polynomial decision rules, while releasing Bampou’s
assumptions. The formulation holds for polynomial decision rules of all degrees and the recourse
matrix is modeled by polynomial functions of the uncertain parameters.

Our extension was needed in order to tackle a special case of multistage stochastic programming
problems termed portfolio optimization. Portfolio optimization is the problem of allocating capital
over different assets in order to maximize the return on the investment and at the same time
minimize its risk [48]. Since portfolio returns are uncertain, one usually wants to maximize the
expected return of the investment. Characterization of the risk is a more difficult problem. The
first portfolio optimization problem was introduced by Markowitz [34], where the variance of the
return was used to characterize risk. However, the main disadvantage of the variance as a risk
measure is that it penalizes both profits as well as losses, since it is a measure of the dispersion of
the values of the random variable around its expected value. In reality, investors want to minimize
only the possibility of losses. Artzner [32] therefore proposed some general properties that a good
risk measure must satisfy. Rockafellar [33] showed that a measure termed conditional value at risk
satisfies those properties for one period portfolio optimization. However, when applied to multistage
portfolio optimization problems, it violates an important property termed time consistency [39]. In
this work we propose a time consistent version of the multistage conditional value at risk.

This work develops as follows. In Chapter 2 we present some basic concepts that were used
throughout this work. We introduce some deterministic programming approaches, measure the-
ory and optimization of polynomials. We start Chapter 3 by introducing stochastic programming
problems and later show two approximation approaches used in order to tackle them. The first is
scenario tree approximation and the second is decision rule approximations. In Chapter 4 we analyze
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portfolio optimization problems as a special case of stochastic programming problems. We examine
different risk measures and construct a time consistent version of the multistage conditional value
at risk. In Chapter 5 we present numerical results on two special stochastic programming problems.
The first is electricity capacity expansion and the second is multistage portfolio optimization. This
work is concluded in Chapter 6, where we also give some directions for the future work.

1.1 Contributions

The main contributions of this work are:

• We investigate polynomial optimization techniques proposed by Parrilo [2], Putinar [1], Lasserre
[23], Schmüdgen [27] etc. and analyze the assumptions in order to determine the context, in
which they can be applied.

• We investigate decision rule approximations, where most of the work is focused on the most
recent polynomial decision rules proposed by Bampou [7]. Her formulation was only applica-
ble for even degrees polynomial decision rules and problems where the recourse matrix does
not depend on the uncertain parameters. We release Bampou’s assumptions and formulate
tractable upper and lower bound approximations, which hold for polynomial decision rules
of all degrees while the recourse matrix is modeled by polynomial functions of the uncertain
parameters.

• We critically assess and compare two alternatives, namely scenario tree approximation and
decision rule approximations, as means of approximating multistage stochastic programming
problems.

• We apply decision rule approximations on the electricity capacity expansion problem and show
that they outperform the piecewise linear decision rules.

• We investigate single-stage and multistage portfolio optimization problems and the corre-
sponding risk measures. We describe coherent [32] and time consistent [36] risk measures.
Moreover, we show that multistage conditional value at risk is not time consistent and pro-
pose its time consistent alternative.

• We present that, under our extension in the second point, optimal solutions of portfolio opti-
mization problems can be approximated by polynomial decision rule approximations. More-
over, we give some guidelines for this approximation.

• We evaluate multistage time consistent risk measure proposed in the fourth point relative to
the existing single-stage alternatives.



4 1 Introduction



Chapter 2

Important concepts

In this chapter general concepts that are needed to understand this work are presented. We first ex-
amine some deterministic optimization problems [24], continue with the measure theory, techniques
for optimization over polynomials and finish with the function approximation theory.

2.1 Linear Programming

A Linear Programming (LP) problem is defined as a problem of maximizing or minimizing a linear
function subject to linear equality and inequality constraints. If n represents the number of decision
variables and m the number of constraints, then the standard LP problem is defined by

min
x

c�x

s.t. Ax ≥ b

(2.1)

where c ∈ Rn, x ∈ Rn, b ∈ Rm, and A ∈ Rm×n.
The LP is called feasible, if its feasible set F = {x|Ax−b ≥ 0} is nonempty. A point x ∈ F is

then called a feasible solution. The LP is bounded below, if it is either infeasible, or its objective
function c�x is bounded from below on F . For a feasible bounded from below LP, the quantities
c∗ ≡ inf

x∈F
c�x and x∗ ≡ argmin

x∈F
c�x are the optimal value and its corresponding optimal solution of

the problem, respectively.
The problem defined above is called primal. Every LP has also its dual formulation, which is

defined by

max
y

b�y

s.t. A�y = c
y ≥ 0

(2.2)

where c ∈ Rn, y ∈ Rm, b ∈ Rm, A ∈ Rm×n.
Two theorems connect the optimal values of the primal and the dual problem. Weak duality theorem
states that b�y ≤ c�x and strong duality theorem states that b�y∗ = c�x∗.

Many efficient approaches (e.g. Simplex algorithm [43], interior point methods [44]...) have been
proposed to solve LP problems. Solutions of LP problems can be found in a polynomial time.

2.2 Conic Programming

A significant part of the nice features from the LP originates from the properties of the inequality.
For the LP the inequality Ax ≥ b is defined as a comparison of the “coordinate-wise” vector elements.
It has the following properties:

5



6 2 Important concepts

• Reflexivity: a ≥ a;

• Anti-symmetry: if a ≥ b and b ≥ a, then a = b;

• Transitivity: if a ≥ b and b ≥ c, then a ≥ c;

• Compatibility with linear operations:

– Homogeneity: if a ≥ b and λ is a non-negative real number, then λa ≥ λb;
– Additivity: if a ≥ b and c ≥ d, then a+ c ≥ b+ d

The coordinate-wise inequality is not the only definition of the “inequality” that fits the axioms
above. It is possible to define a generic optimization problem that looks exactly the same as an
LP, where the inequality is replaced with a different ordering. Specifying properly the ordering of
vectors, one can obtain generic optimization problems covering many important applications which
cannot be treated by the standard LP.

It is possible to show that a set K that satisfies the above axioms must be a pointed convex
cone, i.e. satisfy the following conditions:

1. Pointed: If a ∈ K and −a ∈ K, then a = 0.

2. Nonempty and closed under addition: If a, a� ∈ K, then a+ a� ∈ K.

3. Conic set: If a ∈ K and any λ ≥ 0, then λa ∈ K.

The partial ordering induced by this cone is denoted by ≥K . There are many cones that satisfy the
above conditions. LP can be understood as a special case where K = Rm

+ .
Let K be a pointed, closed, convex cone with nonempty interior on a set E. A general conic

program (CP) is then defined as

min
x

c�x

s.t. Ax ≥K b

(2.3)

where c ∈ Rn, b ∈ E, and x is a linear mapping x �→ Ax : Rn → E.
Define the dual cone K∗ as

K∗ = {λ ∈ E : �λ, a� ≥ 0 ∀a ∈ K} (2.4)

and conjugate operator A∗ of the linear mapping x

�y,Ax� = �A∗y, x� ∀(y ∈ E, x ∈ Rn). (2.5)

In order to derive the dual of problem 2.3 the Lagrangian duality [45] can be applied. We define
the Lagrangian function as

L(x, λ) = c�x− λ� (Ax− b) (2.6)

where λ ∈ K∗. Consider now the following function

g(λ) = inf
x

L(x, λ) = inf
x

�
c�x− λ� (Ax− b)

�
(2.7)

and the optimization problem
max

λ
g(λ)

s.t. λ ≥K∗ 0.

(2.8)

Due to the definition of the dual cone 2.4 �λ, (Ax− b)� ≥ 0. Thus, the optimal solution of problem
2.8 clearly provides a lower bound for the optimal solution of problem 2.3. By using the conjugate
operator A∗ as defined by 2.4, problem 2.8 can be rewritten as
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max
λ

b�λ

s.t. A∗λ = c
λ ≥K∗ 0

(2.9)

where λ ∈ K∗. Problem 2.9 represents the dual of problem 2.3.

2.3 Semidefinite Programming

Semidefinite Programming (SDP) is a special case of the CP, where the ordering is defined on the
semidefinite cone K = Sm+ in the space E = Sm of m×m symmetric matrices. The primal is given
by

min
X

�C,X�

s.t. �Ai, X� = bi
X � 0

(2.10)

where X ∈ Sn is a decision variable, b ∈ Rm and C, Ai ∈ Sn are given symmetric matrices.
Since SDP is convex, it is also possible to define the dual, which is given by

max
y

�b, y�

s.t.
�m

i=1 yiAi � C

(2.11)

where y ∈ Rm.
Weak and strong duality theorems exist also for the SDP. The optimal value of the primal is

always bigger than or equal to the optimal value of the dual. Strong duality holds if the primal
(dual) problem is bounded from below (above) and strictly feasible. Equality then holds when both
solutions are optimal.

Most algorithms for solving SDP are based on the interior point methods. Solutions of SDP
problems can also be found in polynomial time [19].

2.4 Sets

Sets are an important concept that we deal a lot with in this work. In this section, we review all
the definitions needed.

Definition 2.1: A set A ⊆ Rn is open if, for all points a ∈ A, there exists an �-neighbourhood
V�(a) ⊆ A.

Example 2.1: An example of an open set in R is (1, 2).

Definition 2.2: The point x is a limit point of a set A, if every �-neighbourhood V�(x) of x
intersects the set A in some point other then x.

Example 2.2: For the set (1, 2) in R the limit points are 1 and 2.

Definition 2.3: A set A ⊆ Rn is closed if it contains its limit points.

Example 2.3: An example of an closed set in R is [1, 2].



8 2 Important concepts

Definition 2.4: The complement of a set A ⊆ Rn is defined as the set

AC = {x ∈ Rn |x /∈ A} . (2.12)

Example 2.4: The complement of (1, 2) in R is (−∞, 1] ∪ [2,∞).

Definition 2.5: A set A ⊆ Rn is compact if every sequence in A has a convergent subsequence
that converges to a limit in A.

Example 2.5: All in R:

• Set [1, 2] is compact. Every sequence in this set must be bounded and thus have a convergent
subsequence (due to the Bolzano Weierstrass theorem1). The set [1, 2] is closed and hence it
contains all limit points of the convergent subsequences in A.

• Set [1, 2) is not compact, because, for example, the sequence an = 2− 1
n as n → ∞ converges

to 2. Also every subsequence of it must converge to 2. Since 2 is not included in the set, it
can not be compact.

Definition 2.6: A set A ⊆ Rn is bounded if there exists a vector Mn > 0 such that |ai| ≤ Mi for
all ai ∈ A and i = 1, ..., n.

Example 2.6: Set (1, 2) in R is bounded for M = 2.

Definition 2.7: A subset of Rn is a semi-algebraic set, if it can be written as {ξ ∈ Rn : f(ξ) > 0}
and {ξ ∈ Rn : g(ξ) = 0}, where f and g are real polynomials in ξ.

Example 2.7: An example of a semi-algebraic set in R2 is
�
ξ ∈ R2 : f(ξ1, ξ2) = 1− ξ21 − ξ22 > 0

�
.

2.5 Measure Theory

A measure can be understood as a generalization of the interval length in R or the area and the
volume of subspaces in R2 and R3, respectively. The generalization is needed in order to enable the
integration over arbitrary sets.

Example 2.8: The volume of an n-dimensional cuboid Q = {x ∈ Rn : ak ≤ xk ≤ bk, k = 1, ..., n}
is

n�

k=1

(bk − ak). (2.13)

Algebra: Given a set S and a collection S of the subsets of S, S is an algebra of the subsets of
S if

1. S ∈ S

2. S is closed under the complementation: if X ∈ S, then its complement XC ∈ S.

3. S is closed under the finite union: if X1, X2 ∈ S, then X1 ∪X2 ∈ S.

Note that due to points 2 and 3, S is also closed under the finite intersection since

X1 ∪X2 ∈ S =⇒ (X1 ∪X2)
C ∈ S =⇒ XC

1 ∩XC
2 ∈ S =⇒ X1 ∩X2 ∈ S. (2.14)

1More on the Bolzano Weierstrass theorem at http://home.iitk.ac.in/~psraj/mth101/lecture_notes/lecture3.pdf
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σ-algebra: The σ-algebra S is a collection of the subsets of a set S that is closed under countable
set operations, i.e., the complement of a member (or a subset) and the union or the intersection
of countably many members. Formally, an algebra S of the subsets of a set S is a σ-algebra, if S
contains the limit of every monotone sequence of its sets

X1, X2, ... ∈ S =⇒ ∪∞
i=1Xi ∈ S. (2.15)

The pair (S, S) is then a measurable space and the sets in S are said to be measurable.

Borel algebra and Borel Sets: The Borel algebra of a set S is the minimal σ-algebra that
contains all the open sets (or closed sets) on the real line. The elements of the Borel algebra are
called Borel Sets. σ-algebras, specially Borel algebras, allow us to concentrate on certain important
properties of sets and thus define the concept of a measure on seemingly arbitrary sets.

Measure space, measurable sets and measure: A function µ : S −→ R ∪ +∞ defined on a
σ-algebra S of the subsets of S is called a measure if:

• it is non-negative, i.e., µ(X) ≥ 0 for all X ∈ S,

• µ(∅) = 0,

• and µ is countably additive, i.e.,

µ(X) =
∞�

i=1

µ(Xi), (2.16)

where X ∈ S; X = ∪∞
i=1Xi; Xi ∩Xj = 0.

The triplet (S, S, µ) represents a measure space, the sets of S are called measurable sets and the
function µ is called a measure.

Every measure µ satisfies the following properties:

• monotonicity: µ(X1) ≤ µ(X2) for all X1, X2 ∈ S and X1 ⊂ X2,

• it is continuous from below: if Xi ∈ S, i ∈ N and X1 ⊂ X2 ⊂ ..., then µ(∪∞
i=1Xi) =

limi−→∞µ(Xi).

If µ(S) = 1, then the measure space is called a probability space and µ is a probability measure. The
sets are termed events. One says that a property holds almost everywhere, if the set for which the
property does not hold is a null set or a set with measure 0. In the probability theory, analogous to
almost everywhere, almost certain or almost sure means except for an event of probability measure
0.

Example 2.9: An example of a probability measure is the Dirac measure δa. Let (S, S) be a
measurable space and a ∈ S, then the Dirac measure δa is defined as

δa(X) =

�
1 a ∈ X

0 a /∈ X
(2.17)

for any measurable set X ⊆ S. The function δa is concentrated on the point a. In terms of
probability, it represents the almost sure outcome a in the sample space S.

2.6 Polynomial Optimisation

In this section, we outline two important approaches for finding a global optimum of a polynomial
p(ξ) : Rk −→ R over a compact semi-algebraic set. The first approach involves a sum of squares
decomposition and the second is the problem of moments.
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Notation: A polynomial p(ξ) of a degree at most d in variables ξ = [ξ1, ξ2, ..., ξk] is a finite
linear combination of monomials, where the sum is taken over a finite number of k-tuples α =
(α1, α2, ..., αk), αi ∈ N0.

p(ξ) =
�

α∈Ld

pαξ
α =

�

α∈Ld

pαξ
α1
1 ξα2

2 ...ξαk
k , pα ∈ R. (2.18)

We define |α| =
�k

i=1 αi and the set Ld :=
�
α ∈ Nk

0 : |α| ≤ d
�
.

Let the set of all polynomials in ξ1, ξ2, ..., ξk with real coefficients be R [ξ1, ξ2, ..., ξk]. We denote
by Rd [ξ] the set of polynomials of a degree at most d and by

Bd(ξ) :=
�
1, ξ1, ξ2, ..., ξk, ξ

2
1 , ξ1ξ2, ..., ξ1ξk, ξ

2
2 , ..., ξ

d
k

�
, (2.19)

whose dimension is s(k, d) =
�k+d

d

�
, its canonical basis.

Given a real-valued polynomial p(ξ) : Rk −→ R we are interested in solving the following
problem

p∗Ξ = min
ξ∈Ξ

p(ξ). (2.20)

Ξ is a compact semi-algebraic set defined by the polynomial inequalities

Ξ =
�
ξ ∈ Rk : wr(ξ) ≥ 0, r = 1, ..., R

�
, (2.21)

where each of the polynomials wr(ξ) is of a degree dr.
For the further argumentation we define

d̃r =

�
d− dr

2

�
, (2.22)

and the polynomial

Σ�(Ξ) =
�

R [ξ]2 +
R�

r=1

wr

�
R [ξ]2 . (2.23)

If we set w0 = 1 only to simplify notation, then

Σ�(Ξ) =
R�

r=0

wr

�
R [ξ]2 . (2.24)

Moreover, we define the polynomial Σ(Ξ) by

Σ(Ξ) =
�

R [ξ]2 +
�R

r=1wr
�

R [ξ]2 +
�R

r1=1

�R
r2=1wr1wr2

�
R [ξ]2 + ...+ w1w2...wR

�
R [ξ]2

= Σ�(Ξ) +
�R

r1=1

�R
r2=1wr1wr2

�
R [ξ]2 + ...+ w1w2...wR

�
R [ξ]2 .

(2.25)
An important concept in the polynomial optimization are sum of squares (SOS) polynomials.

An SOS polynomial is every polynomial p(ξ) that has a sum of squares decomposition

p(ξ) =
�

R [ξ]2 =

�
p ∈ R [ξ] ; p =

g�

i=1

p2i , pi ∈ R [ξ] for some g ∈ N
�
. (2.26)

Let Pk,2d(Ξ) (Pk,2d) denote the cone of polynomials of degree 2d in k variables, that are non-
negative on Ξ (globally non-negative). Similarly, let Σk,2d(Ξ) (Σk,2d) denote the cone of polynomials
of degree 2d in k variables, that are non-negative on Ξ (globally non-negative) and have an SOS
decomposition.
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2.6.1 Sum of squares decomposition

Globally non-negative polynomials

It is clear that SOS polynomials are non-negative. Is it possible to claim also that every non-negative
polynomial has an SOS decomposition?

Proposition 2.1: Let p ∈ R [ξ], ξ ∈ R. Then p(ξ) ≥ 0, ∀ξ ∈ R if and only if p ∈ Σ1,2d for some
d ∈ N.

Proof:

1. ⇐=: It is clear that every SOS is non-negative.

2. =⇒: If p(ξ) ≥ 0, ∀ξ ∈ R then all its real roots are of even degree, because otherwise p(ξ)
would have a different sign when approaching the root from the left and from the right. We
denote with λi each of the roots of the degree ni, i = 1, ..., l. Complex roots of p(ξ) can be
arranged in the conjugate pairs aj + ibj and aj − ibj , j = 1, ..., h. Since the complex roots
are in pairs and the real roots are of an even degree, it is clear that p(ξ) must be of an even
degree.

p(ξ) = K
�l

i=1(ξ − λi)2ni
�h

j=1((ξ − aj)2 + b2j )

= K
�l

i=1

�h
j=1




�
(ξ − λi)

ni(ξ − aj)� �� �

�2

vij(ξ)

+

�
(ξ − λi)

nibj� �� �

�2

uij(ξ)





= K
�l

i=1

�h
j=1

�
vij(ξ)2 + uij(ξ)2

�

(2.27)

Note that the expression in the last line is an SOS polynomial since K ≥ 0 and products of
the SOS polynomials are also SOS polynomials.

If one tries to generalize the above proposition to multivariate polynomials, he sees that it does not
hold. Hilbert investigated it more in details and provided the following theorem.

Theorem 2.2: Σk,2d ⊆ Pk,2d holds with equality only in the following cases:

• Bivariate forms: k = 2

• Quadratic forms: d = 1

• Ternary quadratic forms: k = 3 and d = 2

Until now, we have not discussed why are we interested in the SOS decomposition. The main reason
is that checking the global non-negativity of a polynomial is hard (for polynomials of degree 4 is
NP-hard [8]). On the other hand, in [25] it was shown that checking whether a polynomial has a
SOS decomposition is equivalent to solving an SDP.

Theorem 2.3: The existence of a SOS decomposition of a polynomial in k variables of a degree
2d can be decided by solving a semidefinite programming feasibility problem, where the dimensions
of the matrix inequality are s(k, d)× s(k, d).
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Proof: [25].

The reasoning behind this theorem is that if f(ξ) is a polynomial of degree 2d and has a SOS
decomposition, it can be written as

f(ξ) = Bd(ξ)
�QBd(ξ),

where Q is a constant and positive semidefinite matrix.
We have now analyzed the relationships between a global polynomial non-negativity and a SOS

decomposition. We will continue with checking non-negativity of polynomials on general semi-
algebraic sets.

Non-negativity of polynomials on semi-algebraic sets

The central theorem that can be used for this purpose is the Stengles’s Positivstellensatz. For our
purpose we define a slightly simplified version.

Theorem 2.4: Let Ξ be the semi-algebraic set as defined by 2.21 and p(ξ) ∈ R [ξ]. Then

p(ξ) > 0 ∀ξ ∈ Ξ ⇐⇒ ∃f1, f2 ∈ (R [ξ]2 ∪ wr, r = 0, ..., R) pf1 = 1 + f2. (2.28)

Proof: [26].

The above theorem characterizes positive polynomials on semi-algebraic sets. Note that nothing
is known about the degree of the polynomials f1 and f2. However, we know that if the degree bound
is chosen to be large enough, the solution obtained by solving the above problem will be correct.

We will continue and analyze non-negativity on compact semi-algebraic sets.

Non-negativity of polynomials on compact semi-algebraic sets

Important theorems for this problem have been proposed by Schmüdgen and Putinar.

Theorem 2.5: Let Ξ be the compact semi-algebraic set as defined by 2.21 and p(ξ) ∈ R [ξ]. Then

p(ξ) > 0 ∀ξ ∈ Ξ ⇐⇒ p(ξ) ∈ Σ(Ξ). (2.29)

Proof: [27].

Under some additional assumptions it is possible to simplify the above theorem.

Assumption 2.1: Polynomial Σ�(Ξ) is an archimedean, i.e. N−
�k

i=1 ξ
2
i ∈ Σ�(Ξ) for some N ∈ N.

Theorem 2.6: If p(ξ) ∈ R [ξ] , such that for ∀ξ ∈ Ξ p(ξ) > 0 and Σ�(Ξ) is an archimedean, then
p ∈ Σ�(Ξ).

Proof: [1].

It is clear that Theorem 2.6 gives a stricter characterization of p(ξ) than Theorem 2.5 since
p(ξ) ∈ Σ�(Ξ) ⊆ Σ(Ξ).
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Example 2.10: We will apply Theorem 2.6 to the following example:

Ξ =
�
ξ ∈ R2 : w(ξ1, ξ2) = 1− ξ21 − ξ22 ≥ 0

�
(2.30)

and p(ξ1) = 2ξ1 + 3 > 0 on Ξ.
It is clear that Σ�(Ξ) is an archimedean since

1− ξ21 − ξ22 = 02 + 12w(ξ1, ξ2). (2.31)

Due to Theorem 2.6, p(ξ) ∈ Σ�(Ξ). Note that

p(ξ1) = 2ξ1 + 3 = (ξ1 + 1)2 + ξ22 + 1 + (1− ξ21 − ξ22). (2.32)

Putinar’s Theorem 2.6 still does not successfully characterize all the polynomials that are non-
negative on Ξ due to two reasons:

• Assumption that Σ�(Ξ) is an archimedean is not always fulfilled.

• It only holds for the polynomials that are positive on Ξ, but not for the non-negative ones.

However, keeping that in mind, we can still use it for solving problem 2.20. Under Assumption 2.1,
p(ξ) ∈ Σ�(Ξ) and p(ξ) can thus be written as

p(ξ) =
R�

r=0

wrsr, sr ∈ Σ2d̃r
(Rk), r = 0, ..., R , (2.33)

for some d ∈ N (Equation 2.22). Problem 2.20 can then, under the above considerations, be solved
by

Ud
Ξ






inf −a

s.t. a ∈ R
p(ξ)− a =

�R
r=0wrsr

sr ∈ Σ2d̃r
(Rk)

�
r = 0, ..., R

(2.34)

for some d ∈ N large enough.
Note, that the above problem is formulated as an SDP and can thus be solved in polynomial

time.

2.6.2 The problem of moments

Another approach to address problem 2.20 is to adopt a dual point of view and solve the equivalent
problem

minµ∈B(Ξ)
´
p(ξ)µ(dξ) (2.35)

where B(Ξ) is the space of the finite probability Borel measures on Ξ.
This optimization problem is closely related to the problem of moments, where given a sequence

y = (yα)α∈Nk , we attempt to find a Borel measure µ ∈ B(Ξ) supported on Ξ such that yα is the
α-th moment of µ. Before we start with the solution of the problem of moments, the concept of
moment and localizing matrices must be introduced.
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Moment matrix

Definition 2.8: Given a sequence y := {yα} of length s(k, 2d), which confirms with the ordering
of the polynomial basis 2.19, we define the moment matrix Md(y) of a dimension s(k, d)× s(k, d) as

Md(y)(1, i) = Md(y)(1, i) = yi−1 i = 1, ..., k + 1

Md(y)(1, j) = yα
Md(y)(1, i) = yβ

�
⇒ Md(y)(i, j) = yα+β

(2.36)

Example 2.11: The moment matrix Md(y) for k = 2 is a block matrix {Mi,j(y)}0≤i,j≤2d given
by

Mi,j(y) =





yi+j,0 yi+j−1,1 · · · yi,j
yi+j−1,1 yi+j−2,2 · · · yi−1,j+1

...
... . . . ...

yj,i yi+j−1,1 · · · y0,i+j




(2.37)

where yi,j represents the (i+ j)-order moment
´
ξiyiµ(d(ξ, y)) for some probability measure µ. For

d = 2 and k = 2 we obtain

M2(y) =





1 | y1,0 y0,1 | y2,0 y1,1 y0,2
− − − − − − − −
y1,0 | y2,0 y1,1 | y3,0 y2,1 y1,2
y0,1 | y1,1 y0,2 | y2,1 y1,2 y0,3
− − − − − − − −
y2,0 | y3,0 y2,1 | y4,0 y3,1 y2,2
y1,1 | y2,1 y1,2 | y3,1 y2,2 y1,3
y0,2 | y1,2 y0,3 | y2,2 y1,3 y0,4





. (2.38)

Similarly, the moment matrix Md(y) for k = 3 is given through blocks
{Mi,j,l(y)}0≤i,j,l≤2d.

Proposition 2.7: Let y := {yα} be a sequence of moments up to the order 2d of some probability
measure µy. Then Md(y) � 0.

Proof: Let f(ξ) ∈ Rd [ξ], then

�f,Md(y)f� =
�

α

f2
αyα =

ˆ
f(ξ)2µy(dξ) ≥ 0. (2.39)

Note that non-negativity is one of the properties of a measure listed in the previous section.

Localizing matrix

Definition 2.9: Let wr(ξ) : Rk −→ R be any of the real-valued polynomials defined by 2.21 with
a coefficient vector wr ∈ Rs(k,dr). If the entry (i, j) of the moment matrix Md(y) is yβ and β(i, j)
denotes the subscript β of yβ , then Md(wr, y) is the localizing matrix

Md(wr, y)(i, j) =
�

α

[wr]α y{β(i,j)+α}. (2.40)
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Example 2.12: If we are given

M1 =




1 y1,0 y0,1

y1,0 y2,0 y1,1
y0,1 y1,1 y0,2



 (2.41)

and

wr(x) = a− bx1 − cx1x2 (2.42)

then the localizing matrix M1(wr, y) is given by

M1(wr, y) =




a− by1,0 − cy1,1 ay1,0 − by2,0 − cy2,1 ay0,1 − by1,1 − cy1,2

ay1,0 − by2,0 − cy2,1 ay2,0 − by3,0 − cy3,1 ay1,1 − by2,1 − cy2,2
ay0,1 − by1,1 − cy1,2 ay1,1 − by2,1 − cy2,2 ay0,2 − by1,2 − cy1,2



 . (2.43)

Proposition 2.8: Let y := {yα} be a vector of moments up to the order 2d of some probability
measure µy. Then Md(wr, y) � 0.

Proof: Let f(ξ) ∈ Rd [ξ], then

�f(ξ),Md(wr, y)f(ξ)� =
ˆ

f(ξ)2w(ξ)µy(dξ) ≥ 0. (2.44)

Note that wr ≥ 0, r = 0, ..., R by definition in the beginning of this section.

Theorem 2.9: Let the closed semi-algebraic set Ξ defined by w1, ..., wR ∈ R [ξ] be compact. Then
a sequence y = (yα)α∈Nk is a Ξ-moment sequence if and only if Md((yα)α≤2d) � 0 for all r ∈ N
and Md(((wi1 ...winy)α)α≤2d) � 0 for all possible choices i1, ..., in of pairwise different numbers from
{1, ..., R} and for all d ∈ N.

Proof: [23].

This theorem characterizes infinite moment sequences. However, in real life problems infinitely
many moments of an unknown distribution are not known. Instead only moments up to an order
d are given. Moreover, even if infinitely many moments are known, dealing with them is not
computationally tractable. The theorem above is in this case only necessary, but not sufficient to
characterize moment sequences.

Under Assumption 2.1 p(ξ) ∈ Σ�(Ξ) and p(ξ) can thus be written as

p(ξ) =
R�

r=0

wrsr, sr ∈ Σ2d̃r
(Rk), r = 0, ..., R (2.45)

for some d ∈ N (Equation 2.22). The theory of moments states that under this assumption problem
2.35 can be approximated by a sequence of problems

Qd
Ξ

�
infy

�
α pαyα

s.t. Md−d̃r
(wr, y) � 0

�
r = 0, ..., R

. (2.46)

Lasserre [23] showed that if d is chosen to be large enough then minQd
Ξ = p∗Ξ.

However, if Assumption 2.1 does not hold then we can only claim that as d −→ ∞ then
inf Qd

Ξ ↑ p∗Ξ.
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2.7 Function approximation

Weierstrass theorem tells us that any continuous function on a closed and bounded interval can be
uniformly approximated on that interval by polynomials to any degree of accuracy.

Theorem 2.11 (Weierstrass): Let f be a continuous real-valued function on Ξ. Then for any
� > 0 there exists a polynomial p on Ξ such that

|f(ξ)− p(ξ)| < � (2.47)

for all ξ ∈ Ξ.

2.8 Notation

2.8.1 Multidimensional matrix

Multidimensional matrix operations are defined in [9]. In this work only a multiplication of a
multidimensional matrix with a vector is needed. Multiplication of a matrix Ad1×d2×...dk×...×dn and
a vector Bdk over k-th dimension k ∈ {1, ..., n} is denoted by A ·(k) B. It is calculated by the
following expression

ai1i2...ik−1ik+1...in =
dk�

j=1

ai1i2...ik−1ijik+1...in · bj (2.48)

Multiplication is only possible if the length of the k-th dimension of A matches the length of B.

2.8.2 Polynomial multiplication

We have two polynomials p(ξ) = p�Bd1(ξ) and q(ξ) = q�Bd2(ξ) with degrees d1 and d2, respectively.
Vectors p and q contain coefficients of the polynomials. Multiplication of polynomials is defined by

p(ξ)q(ξ) = (p ∗(d1,d2) q)
�Bd1+d2(ξ). (2.49)

The result is a polynomial of degree d1+ d2. If k = 1, i.e. p(ξ) and q(ξ) are univariate polynomials,
then coefficients of the product are calculated as

�
p ∗(d1,d2) q

�
r
=

r�

i=0

pr−i · qr+i ∀r = {0, ..., d1 + d2} . (2.50)

Operator ∗(d1,d2) in this work denotes a multiplication of polynomials p(ξ) and q(ξ) with degrees d1
and d2, respectively.



Chapter 3

Stochastic Programming

In the previous chapter we considered deterministic optimization problems. However, real life
problems are almost never deterministic. They may include uncertain parameters that arise due
to future events, measurement errors, lack of reliable data etc. Two approaches to handle the
uncertainty have been proposed:

• When the uncertain parameters are known only within certain bounds, one approach to tackle
such problems is called robust optimization. Here the goal is to find a solution which is feasible
for all data and optimal in the view of the worst-case realization of the uncertainty.

• When the probability distributions governing the data are known or can be estimated, one
tackles such problems with stochastic programming. The goal in this case is to find some policy
that is feasible for all (or almost all) possible data instances and maximizes the expectation
of some function of the decisions and the uncertain parameters.

Stochastic programming has been successfully applied to many different areas [5] (e.g. Capacity
planning, Energy, Finance, Production Control, Scheduling, Telecommunications, Sports etc.).

In this chapter we discuss general settings of stochastic programming [4], state of the art solutions
and our extensions to one of the existing approaches.

3.1 General formulation and assumptions

Consider the stochastic program 3.1, where ξ is a random vector varying over a set Ξ ⊂ Rk, x ⊂ Rn is
a decision variable and bi(ξ) : Rk −→ R, i = 1, ...,m. Uncertainty is modeled by a probability space
(Rk,B(Rk),P). Borel σ-algebra B(Rk) represents the set of events that are assigned probabilities
by the probability measure P. We assume that the functions gi(x, ·) : Ξ −→ R for all x, are random
variables themselves, and that the probability distribution is independent of x.

min g0(x, ξ)

s.t. x ∈ X ⊂ Rn

gi(x, ξ) ≤ bi(ξ) i = 1, ...,m

(3.1)

If we think of taking decision on x before knowing the realisation of ξ, then problem 3.1 is not
well defined, because the meaning of min as well of the constraints is not clear at all. Problem 3.1
thus needs two additional clarifications:

1. Objective function: Minimization of a function of the uncertain parameters can be understood
in different ways. One might want to minimize the function in respect to the worst-case
realisation of the uncertain parameters ξ. This is the case in the robust optimization. However,
one might also want to minimize the expectation of a function of the uncertain parameters
and decisions, i.e. E(g0(x, ξ)). This is the case in the stochastic programming.

17
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2. Constraints: Since constraints are functions of the uncertain parameters, it is not clear when
each constraint has to hold. One might want it to hold always, no matter what the outcome
of the uncertain parameters is. On the other hand, one might want it to hold only with a
certain probability α.

Based on the above observations we can reformulate problem 3.1 into the following well defined
problem

min E(g0(x, ξ))

s.t. x ∈ X ⊂ Rn

P ({ξ |gi(x, ξ) ≤ bi(ξ)}) ≥ αi i = 1, ...,m

(3.2)

Problems at the form 3.2 are complex and difficult to tackle even theoretically and most of the
work in the stochastic programming introduces some simplifications. In this work we investigate
stochastic programming problems under the following assumptions:

Assumption 3.1: The objective function and the constraints are linear functions of the decision
variables, i.e.

g0(x, ξ) = c(ξ)�x (3.3)

for some c(ξ) : Rn×k −→ Rn, and

P ({ξ |gi(x, ξ) ≤ bi(ξ)}) ≥ αi = P ({ξ |ai(ξ)x ≤ bi(ξ)}) ≥ αi (3.4)

for some ai(ξ) : Rn×k −→ Rn, i = 1, ...,m.

Assumption 3.2: Constraints are almost always satisfied. In other words, for all ξ ∈ Ξ the
constraints hold with probability 1 (i.e. αi = 1 for i = 1, ...,m). As a consequence, we also require
Ξ to be a bounded compact set.

For the further investigation it is convenient to simplify the notation of constraints

P ({ξ |ai(ξ)x ≤ bi(ξ)}) = 1 ⇐⇒ ai(ξ)x ≤ bi(ξ) P− a.s.. (3.5)

Under the Assumptions 3.1 and 3.2, we can rewrite problem 3.2 as

inf E(c(ξ)�x)

s.t. x ∈ X ⊂ Rn

A(ξ)x ≤ b(ξ) P− a.s.

(3.6)

In the discussion above, it is assumed that the decisions x are made before the realisation of the
uncertain parameters ξ. However, it is also possible that the decisions x are made after the uncertain
parameters ξ are revealed. In this case, one would like to know how will the future decisions depend
on the realisation of the uncertain parameters ξ. Decisions are thus modeled as functions of the
uncertain parameters. A model that describes this situation is the following

inf E(c(ξ)�x(ξ))

s.t. x ∈ Lk,n

A(ξ)x(ξ) ≤ b(ξ) P− a.s.

(3.7)
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where Lk,n denotes the space of all Borel measurable functions from Rk to R that are bounded on
compact sets (Assumption 3.2). When the decisions x are modeled as functions of the uncertain
parameters ξ, they are termed decision rules, strategy or policy.

For the further argumentation, it is useful to introduce a functional slack variable s ∈ Lk,m and
transform inequality constraints in problem 3.7 to equality constraints as

inf E(c(ξ)�x(ξ))

s.t. x ∈ Lk,n, s ∈ Lk,m

A(ξ)x(ξ) + s(ξ) = b(ξ)

s(ξ) ≥ 0




P− a.s.

(3.8)

Above we have analyzed two special cases, where the uncertain parameters ξ are revealed before
or after the decisions are made. A more general case is when the uncertain parameters are revealed
sequentially and after each revelation some decisions are made. Consider for example one month
portfolio optimization, where we have an opportunity to rebalance the portfolio daily. In this case,
we would like to start with an initial investment and then alter it daily, based on the stock returns
observed in the previous days.

Models that allow us to investigate such problems are called recursive models. They are examined
more in details in the next section.

3.2 Recourse problems

Recourse problems are a broad and widely applied class of stochastic programming problems. Re-
course is the ability to take corrective actions after some realisation of the uncertain parameters.
The simplest case of recourse problems have two stages:

1. in the first stage we make a decision

2. in the second stage we observe a realisation of the uncertain parameters of the problem, but are
allowed to make further decisions to avoid the constraints of the problem becoming infeasible.

Note that in the second stage the decisions that we make will depend on a particular realisation of
the uncertain parameters we observed.

Example 3.1: To illustrate a simple two-stage recourse model consider the following simplified
production planning problem. We have a company that produces product X with the production
costs of £2/unit. We have to produce enough X to meet the customer demand in the next time
period. However, demand D is stochastic with only two possible outcomes S1 and S2. Demand D
is given by the following discrete probability distribution

D =




S1 S2

0.6 0.4
40 20



 (3.9)

where the first line denotes the outcome, the second line its probability and the third line the
realisation of the demand.

We also have the flexibility to buy X at any time from an external supplier, but this costs us
£3/unit. How much should we choose to make now, before we know what customer demand is?

One way to think of this two-stage model is:

1. Decide on the amount to produce

2. Observe the real demand (realisation of the scenario S1 or S2)
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3. If demand is not met, buy the remainder of the products from the external supplier.

Let x ≥ 0 be the number of units of X to produce now (at the first stage). Uncertain parameters
are modelled with two scenarios s ∈ {S1, S2}, where each occurs with probability ps. The number
of products bought from the external supplier at the second-stage is denoted by ys ≥ 0 when the
uncertain realisation of the demand is Ds. Constraints ensure that the demand is always satisfied,
i.e.

x+ ys ≥ Ds s ∈ {S1, S2} . (3.10)

Note that we must have ≥ here, since the amount of x we produce may exceed customer demand.
We wish to minimize cost given by

E(2x+ 3y) = 2x+
�

s∈{S1,S2}

3psys. (3.11)

The optimal strategy is thus the solution of the following optimization problem

min 2x+
�

s∈{S1,S2} 3psys

s.t. x ∈ R, ys ∈ R s ∈ {S1, S2}

x+ ys ≥ Ds

x, ys ≥ 0




 s ∈ {S1, S2}

(3.12)

Note that this is actually a deterministic program. However, in many cases the uncertain
parameters are not discrete and thus an exact deterministic program with finitely many constraints
does not exit.

The idea of the two-stage recourse can be extended to more stages. The uncertain parameters
are now represented as ξ = (ξ1, ..., ξT ), where subvectors ξt ∈ Rkt are observed at time points
t ∈ T := {1, ..., T}. The history of the observations up to time t is denoted by ξt := (ξ1, ..., ξt) ∈ Rkt ,
where kt :=

�t
s=1 ks. Et(·) denotes the conditional expectation with respect to P given the uncertain

parameters ξt. Note that a one-stage model can be understood as a special case of the multistage
model where ξT = ξ and kT = k.

The decision xt(ξt) is made at time t after uncertain parameters ξt have been revealed, but
before any future outcomes {ξs}s>t have been observed. The objective is to find a sequence of
the decision rules xt ∈ Rkt,nt

, t ∈ T that is feasible for problem 3.13 and minimizes its objective
function. The requirement that xt depends only on ξt reflects the idea that decisions can not depend
on the unknown future parameters.

inf E(
�T

t=1 ct(ξ
t)�xt(ξt))

s.t. xt ∈ Lkt,nt
∀t ∈ T

�t
s=1Ats(ξt)xs(ξs) ≤ bt(ξt) P− a.s., ∀t ∈ T

(3.13)

For the further argumentation we introduce a sequence of non-anticipative (i.e. the decision at
a given stage does not depend on the future realization of the uncertain parameters) slack variables
st ∈ Lkt,mt

, t ∈ T and rewrite problem 3.13 as
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inf E(
�T

t=1 ct(ξ
t)�xt(ξt))

s.t. xt ∈ Lkt,nt
, st ∈ Lkt,mt

∀t ∈ T

�t
s=1Ats(ξt)xs(ξs) + st(ξt) = bt(ξt)

st(ξt) ≥ 0

�
P− a.s., ∀t ∈ T

(3.14)

Linear multistage stochastic programming problems are very hard to solve. Even linear two-stage
stochastic programming problems are #P-hard [6] and thus approximation methods are needed in
order to tackle them. Analytical solutions are computable only for very small problems. In the next
sections, we will examine two different approximation methods of stochastic programs scenario tree
approximation and decision rule approximations.

3.3 Scenario Tree Approximation

Scenario tree approximation is the most widely used approach when dealing with multistage stochas-
tic problems. It involves discretizing outcomes of the uncertain parameters ξ in each stage t ∈ T.
Generation of a scenario tree is described in [4, 13]. In this work, we follow formulation proposed in
[12]. It was developed for portfolio optimization problems, but can be applied to general one and
multistage recourse problems.

A scenario is defined as a possible realisation of the uncertain parameters ξT . A set of scenarios
NT in the last stage (t = T ) corresponds to the set of leaves of a scenario tree. Nodes in the tree
Nt at a level t (t = 1, ..., T − 1) correspond to a possible realisation of ξt. Each node is denoted by
e = (s, t), where s is a scenario and t is the level of the node in the tree. For example, the root node
is 0 = (s, 1), where s can be any scenario, since all the scenarios have the same root node. The
ancestors of the node e = (s, t) are denoted by ai(e) = (s, i), i = 1, ..., t− 1, where at−1(e) denotes
the parent of node e = (s, t). The branching probability pe is the conditional probability of the
event e = (s, t), given its parent event at−1(e). The path to the event e is a partial scenario with
probability Pe =

�
pe along that path. Note that probabilities Pe sum up to 1 across each level of

the tree nodes Nt for all t ∈ T. Each node at the level t corresponds to a decision xt(ξt), which
must be determined at time t. Finally, by ξ̃te we denote the realisation of the uncertain parameters
ξt that must occur in order to get to the node e.

In order to obtain a tractable approximation of the recourse problem by the scenario tree ap-
proximation, one must discretize the uncertain parameters ξ. All possible realizations of ξ are thus
approximated by a discrete set of scenarios. The entire set of scenarios can be represented by a
scenario tree. An example of a scenario tree with three time periods and a two-three branching
structure is depicted in Figure 5.1.

3.3.1 One-stage Scenario Tree Approximation

Scenario trees can be used to obtain a tractable approximation of problem 3.8.

Proposition 3.1: Problem 3.15 represents a tractable approximation of problem 3.8.

min
�

∀e∈N2
Pe c(ξ̃e)�x(ξ̃e)

s.t. x(ξ̃e) ∈ Rn, s(ξ̃e) ∈ Rm ∀e ∈ N2

A(ξ̃e)x(ξ̃e) + s(ξ̃e) = b(ξ̃e)

s(ξ̃e) ≥ 0




 ∀e ∈ N2

(3.15)
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Figure 3.1: An example of a scenario tree with three time periods and two-three branching structure.

Proof: In order to obtain a tractable approximation of problem 3.8 scenario trees can be applied.
One must first approximate the objective function.

E(c(ξ)�x(ξ)) ≈
�

∀e∈N2
Pe c(ξ

���ξ̃e )�x(ξ
���ξ̃e )

=
�

∀e∈N2
Pe c(ξ̃e)�x(ξ̃e)

(3.16)

In a similar manner it is also possible to approximate the constraints by

A(ξ)x(ξ) + s(ξ) = b(ξ)
s(ξ) ≥ 0

�
P− a.s.

=⇒
A(ξ

���ξ̃e )x(ξ
���ξ̃e ) + s(ξ

���ξ̃e ) = b(ξ
���ξ̃e )

s(ξ
���ξ̃e ) ≥ 0




 ∀e ∈ N2

⇐⇒ A(ξ̃e)x(ξ̃e) + s(ξ̃e) = b(ξ̃e)
s(ξ̃e) ≥ 0

�
∀e ∈ N2

(3.17)

By combining 3.16 and 3.17 we obtain problem 3.15. The approximation is clearly tractable, since
problem 3.15 is formulated as a LP.

As the number of the scenarios increases, the solution of problem 3.15 converges to the optimal
solution of 3.8[28].

3.3.2 Multistage Scenario Tree Approximation

A similar reasoning can also be used to obtain a tractable approximation of the multistage stochastic
programs.

Proposition 3.2: Problem 3.18 represents a tractable approximation of problem 3.14.

min
�T

t=1

�
∀e∈Nt

Pect(ξ̃te)
�xt(ξ̃te)

s.t. xt(ξ̃te) ∈ Rn, st(ξ̃te) ∈ Rm ∀t ∈ T ∀e ∈ Nt

�t
s=1Ats(ξ̃te)xs(ξ̃

s
as(e)

) + st(ξ̃te) = bt(ξ̃te)

st(ξ̃te) ≥ 0





∀t ∈ T, ∀e ∈ Nt

(3.18)
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Proof: In order to obtain a tractable approximation of problem 3.14 scenario trees can be applied.
One must first approximate the objective function.

E(
�T

t=1 ct(ξ
t)�xt(ξt)) ≈

�T
t=1

�
∀e∈Nt

Pe c(ξt
���ξ̃te )�x(ξt

���ξ̃te )

=
�T

t=1

�
∀e∈Nt

Pe c(ξ̃te)
�x(ξ̃te)

(3.19)

In a similar manner it is also possible to approximate the constraints by

�t
s=1Ats(ξt)xs(ξs) + st(ξt) = bt(ξt)

st(ξt) ≥ 0

�
P− a.s., ∀t ∈ T

=⇒
�t

s=1Ats(ξt
���ξ̃te )xs(ξs

���ξ̃sas(e) ) + st(ξt
���ξ̃te ) = bt(ξt

���ξ̃te )

st(ξt
���ξ̃te ) ≥ 0




 ∀t ∈ T, ∀e ∈ Nt

⇐⇒
�t

s=1Ats(ξ̃te)xs(ξ̃
s
as(e)

) + st(ξ̃te) = bt(ξ̃te)

st(ξ̃te) ≥ 0

�
∀t ∈ T, ∀e ∈ Nt

(3.20)

By combining 3.19 and 3.20 we obtain problem 3.18. The approximation is clearly tractable, since
problem 3.18 is formulated as a LP.

As the number of scenarios increases, the solution of problem 3.18 converges to the optimal
solution of 3.14[28].

3.3.3 Advantages and disadvantages

Scenario trees have some advantages and disadvantages. One of the main advantages is that SP
problem is approximated as a LP, which has been an important area of research for a long time.
Many open source and commercially available solvers exist and thus LP problems can be solved
efficiently. Another important advantage, which we have already discussed, is that the optimal
value of problem 3.18 converges to the optimal value of problem 3.14 as discretizations are made
finer.

The main disadvantage is the so called curse of dimensionality. Computational complexity of
problem 3.18 grows exponentially with the number of stages. Even though it is often possible
to reduce the number of scenarios [16], the exponential growth is unavoidable. In [14], it was
shown that the number of branches starting from each node must be larger than the number of the
uncertain parameters observed at that node because otherwise, arbitrage opportunities could arise.
This clearly dictates the exponential growth.

The curse of dimensionality can be avoided by a different approach, referred as decision rule
approximations.

3.4 Decision Rule Approximations

Decision rule approximations approach is an alternative to the scenario tree approximation when
solving multistage stochastic problems. Instead of discretizing the distribution of the uncertain
parameters, one can restrict the functional form of the decisions.

3.4.1 Decision Rule Overview

Decisions in problems 3.8 and 3.14 can be characterized by any Borel measurable function from
Rk to R that is bounded on the compact sets. This broad characterization make the multistage
SP problems intractable. In the previous section, we obtained a tractable approximation with a
discretization of the uncertain parameters. We found optimal decisions for each possible discrete
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outcome. Another approach is to keep the distribution of the uncertain parameters unchanged,
but only limit the characterization of the decisions to certain functional forms. Linear, piecewise
linear and polynomial functional forms have attracted most of the attention. As we have already
mentioned, the decisions are in this context termed decision rules. In this section we give an overview
of a such approach.

Since decision rule approximations can be applied in both robust and stochastic optimization
problems, both fields evolved in parallel. Linear decision rules were first introduced by Ben-Tal
[19] in the robust optimization setting. Shapiro [11] then applied a similar idea to the stochastic
programming. His formulation gave a tractable upper bound approximation on the optimal value
of problem 3.14. However, by considering only linear decision rules, the approximated solutions
may be very suboptimal. Therefore, a computationally tractable approach to estimate the degree of
suboptimality was needed. Kuhn [3] proposed a lower bound approximation by approximating the
functional form of the dual decision rules as linear functions of the uncertain parameters. Primal
approximation, via limiting decision rules to linear functions, underestimates the decision maker’s
flexibility and thus only an upper bound of the optimal solution is obtained. However, the primal
problem can be transformed to the Lagrangian dual problem (remember description in Section 2.2),
which represents a lower bound for the optimal value of the primal. Remember that the dual problem
is defined as maximization and thus it approaches the optimal solution from below. If decision rules
of the dual problem are approximated by the linear functions, this again underestimates the decision
maker’s flexibility. However, since flexibility is underestimated on the dual, this leads to a lower
bound approximation. The main advantage of using linear decision rule approximations is that
both the primal and the dual SP can be approximated by tractable linear programs. However, the
resulting problems most of the times lead to very suboptimal solutions.

In order to improve the approximation quality, Chen [29] proposed the use of the piecewise linear
decision rules. Georghiou [30] formulated also the dual problem to estimate the approximation error.
Piecewise linear decision rules are proved to be superior relative to the linear decision rules. However,
they involve multiple design parameters and are thus cumbersome to use.

A way to avoid multiple design parameters from the piecewise linear decision rules is to limit
characterization of decision rules to polynomial functional forms, where the only design parame-
ter is the degree of the polynomial functions. However, such approximation does not lead to a
tractable linear program, but instead to an intractable semi-infinite programming problem, having
finitely many decision variables, but infinitely many constraints. Constraints involve checking a
non-negativity of a polynomial on a compact bounded semi-algebraic set. We have already seen in
Section 2.6 that this can be approximated (sometimes even solved exactly) by an SDP through SOS
decomposition or the problem of moments. SOS decomposition gives an upper bound on the opti-
mal solution, while its dual, the problem of moments, gives a lower bound on the optimal solution.
By such approach, we can formulate tractable primal and dual approximation. Polynomial decision
rule approximations have been proposed in the robust optimization framework by Bertsimas [31].
Bampou [7] applied them to the stochastic programming problems by formulating the primal and
the dual problem. The approximation error even for the polynomials of small degrees was lower
than for the piecewise linear decision rules. However, the formulation was only applicable for even
degrees polynomial decision rules and problems where the recourse matrix A does not depend on
the uncertain parameters.

In this work we approximate the primal and the dual stochastic programming problems with
polynomial decision rules, while releasing Bampou’s assumptions. The formulation holds for poly-
nomial decision rules of all degrees while the recourse matrix is modeled by polynomial functions
of the uncertain parameters.

In the rest of this section we will first examine primal and dual one-stage approximations and
then extend them to the multistage problems.
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3.4.2 One-stage Primal Polynomial Decision Rules

Before we start with the description of our method, some assumptions under which the reasoning
below holds must be defined. We require Assumptions 3.1 and 3.2 to be true. Moreover, some
additional constraints need to be added.

Assumption 3.3: The objective function coefficients and the constraint functions depend polyno-
mially on the uncertain parameters ξ. Namely, c(ξ) = CBθ(ξ) for some C ∈ Rn×s(k,θ), b(ξ) = BBθ(ξ)
for some B ∈ Rm×s(k,θ) and A(ξ) = A ·(3) Bη(ξ) (remember the definition of the multidimensional
matrix multiplication in Section 2.8.1) for some A ∈ Rm×n×s(k,η) for all ξ ∈ Ξ. Note that the
requirement that both polynomials in c(ξ) and b(ξ) share the same degree is nonrestrictive, but
simplifies the notation.

Assumption 3.2*: The support Ξ of the probability measure P is a compact semi-algebraic set
with nonempty interior defined by polynomial inequalities 3.21, where wr ∈ Rdj [ξ], r = 0, ..., R and
w0 = 1.

Ξ =
�
ξ ∈ Rk : wr(ξ) ≥ 0, r = 0, ..., R

�
(3.21)

Note that this assumption extends Assumption 3.2 where only a bounded compact set was assumed.

Example 3.2: This example is used to show that Assumption 3.3 is nonrestrictive. Let p1(ξ) =
3ξ + 5 and p2(ξ) = 2ξ2 + ξ + 2. We would like both polynomials to be of the degree 2. We write

p1(ξ) = 5 + 3ξ =
�
5 3 0

�
B2(ξ)

p2(ξ) = 2 + ξ + 2ξ2 + ξ =
�
2 1 2

�
B2(ξ)

(3.22)

It is clear that this kind of construction is always possible.
In the rest of this chapter, we first discuss how to obtain computationally tractable approxima-

tion of one-stage problem 3.8, whose solution constitutes an upper bound on the value of problem
3.8.

Approximation P1: In order to derive a conservative approximation for problem 3.8, we reduce
the set of admissible decision rules from the space of all continuous measurable functions to the
space of polynomial functions of a degree d− η. We set

x(ξ) = XBd−η(ξ) for some X ∈ Rn×s(k,d−η)

s(ξ) = SBd(ξ) for some S ∈ Rn×s(k,d) (3.23)

and require that d ≥ max {η, θ, d0, d1, ..., dR}.
Note, that Approximation P1 is supported by the Weierstrass theorem and as d −→ ∞ the

above formulation characterizes all continuous measurable functions.
Based on Approximation P1 and Assumption 3.3, the objective function in 3.8 can be rewritten

as
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E(c(ξ)�x(ξ)) = E((CBθ(ξ))�XBd−η(ξ))

= E((CTθ,d−ηBd−η(ξ))�XBd−η(ξ))

= E(tr(CTθ,d−ηBd−η(ξ)Bd−η(ξ)�X�))

= tr(CTθ,d−ηE(Bd−η(ξ)Bd−η(ξ)�)X�)

= tr(CTθ,d−ηMd−ηX�)

= tr((CTθ,d−ηMd−ηX�)�)

= tr((Md−ηX�)�(CTθ,d−η)�)

= tr((CTθ,d−η)�(Md−ηX�)�)

= tr(T�
θ,d−ηC

�XM�
d−η)

= tr(T�
θ,d−ηC

�XMd−η)

(3.24)

where Md−η denotes a moment matrix. A truncation operator Td1,d2 : Rs(k,d2) → Rs(k,d1) which
maps a monomial basis Bd2(ξ) to the reduced basis Bd1(ξ) was introduced.

By substituting 3.23 and 3.24 into problem 3.8 we obtain the following problem

inf tr(T�
θ,d−ηC

�XMd−η)

s.t. X ∈ Rn×s(k,d−η), S ∈ Rn×s(k,d)

(A ·(3) Bη(ξ)) · (XBd−η(ξ)) + SBd(ξ) = BTθ,dBd(ξ)

SBd(ξ) ≥ 0




P− a.s.

(3.25)

It is possible to formulate problem 3.25 in a more convenient form, by rewriting the constraints.

(A ·(3) Bη(ξ)) · (XBd−η(ξ)) =





a11(ξ) a12(ξ) · · · a1n(ξ)
a21(ξ) a22(ξ) · · · a2n(ξ)

...
... . . . ...

am1(ξ) am2(ξ) ... amn(ξ)









x1(ξ)
x2(ξ)

...
xn(ξ)





=





�n
i=1 a1i(ξ)xi(ξ)�n
i=1 a2i(ξ)xi(ξ)

...�n
i=1 ami(ξ)xi(ξ)





=





�n
i=1 a1i ∗(η,d−η) xi�n
i=1 a2i ∗(η,d−η) xi

...�n
i=1 ami ∗(η,d−η) xi




Bd(ξ)

= (A ∗(3)(η,d−η) X)Bd(ξ)

(3.26)
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In the last step a new operator ∗(d3)(d1,d2)
as a combination of the multidimensional matrix multiplica-

tion and the polynomial multiplication (remember the definition in Section 2.8.2) was introduced
in order to keep the formulation in a matrix form. Note that d1 and d2 denote the degree of
polynomials and d3 the dimension for the multidimensional matrix multiplication.

By inserting 3.26 into problem 3.25, the following problem is obtained.

inf tr(T�
θ,d−ηC

�XMd−η)

subject to X ∈ Rn×s(k,d−η), S ∈ Rn×s(k,d)

(A ∗(3)(η,d−η) X)Bd(ξ) + SBd(ξ) = BTθ,dBd(ξ)

SBd(ξ) ≥ 0





P− a.s.

(3.27)

Proposition 3.3: For problems 3.8 and 3.27 following holds: inf 3.27 ≥ inf 3.8.

Proof: As problem 3.27 is obtained from 3.8 by Approximation P1, the feasible set of 3.27 is
smaller than the feasible set of 3.8. It is thus clear that the solution of problem 3.27 provides an
upper bound on the optimal value of problem 3.8. The feasible sets, and thus the solutions of
problems 3.8 and 3.27, are in general equal as d −→ ∞ due to the Weierstrass theorem.

Problem 3.27 involves finitely many decision variables if d is finite. However, there are still
infinitely many constraints, since they must hold for each possible realisation of the uncertain
parameters ξ ∈ Ξ. Thus, constraints in 3.27 require a vector-valued polynomial to vanish identically
on a set with nonempty interior Ξ. This is possible if and only if all the coefficients of the polynomial
vanish. The equality constraint in problem 3.27 is thus equivalent to

A ∗(3)(η,d−η) X + S = BTθ,d (3.28)

The inequality constraint in 3.27 requires that each component of a vector-valued polynomial
s(ξ) is non-negative on Ξ (i.e. belongs to Pd(Ξ)). We have already discussed characterization of
such polynomials in Section 2.6.1. A reasonable approach would be to apply Theorem 2.5.

Approximation P2: For every polynomial si(ξ) , i = 1, ...,m positive on Ξ, 3.29 holds due to
Theorem 2.5, if d is chosen to be large enough.

∀ξ ∈ Ξ si(ξ) > 0 ⇐⇒ si(ξ) ∈ Σ(Ξ). (3.29)

Note that at least d ≥ max
�
η, θ,

�R
r=0 dr

�
must hold.

Real life problems usually involve many constraints wr(ξ), r = 0, ..., R that define the semi-
algebraic set Ξ and thus the minimum required degree d as defined by Approximation P2 can be
relatively large. Our experience presented in Chapter 5.1 will show that current computers can not
handle most of such problems. One possible way to get around this problem is to require Assumption
2.1 to hold. In this case, Theorem 2.6 can be applied and we can thus replace Approximation P2
with Approximation P2*.

Approximation P2*: For every polynomial si(ξ), i = 1, ...,m positive on Ξ, 3.30 holds under
Assumption 2.1 due to Theorem 2.6, if d is chosen to be large enough.

∀ξ ∈ Ξ si(ξ) > 0 ⇐⇒ si(ξ) ∈ Σ�(Ξ). (3.30)

Note that at least d ≥ max {η, θ, d0, d1, ..., dR} must hold.
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This approximation is more reasonable for real life problems. The minimal degree d also coincides
with the requirement in Approximation P1. Note, however, that Assumption 2.1 is sometimes
violated and in this case Approximation P2* does not characterize sufficiently all the polynomials
positive on Ξ even as d −→ ∞.

For the further argumentation, we define Σ
�
d in terms of degrees of the SOS polynomials by 3.31.

Remember that d̃r =
�
d−dr
2

�
.

Σ�
d(Ξ) =

�
s ∈ Rd [ξ] :

s(ξ) =
�R

r=0 sr(ξ)wr(ξ)
sr ∈ Σ2d̃r

(Rk), r = 0, ..., R

�
(3.31)

Theorem 2.3 states that checking membership of a polynomial in Σ2d̃j
(Rk) is equivalent to solving

an SDP problem. Thus, it is clear that also checking membership in Σ�
d(Ξ) can be formulated as

an SDP problem.

Proposition 3.4: Assume that Ξ is defined as in 3.21. Then, for any s ∈ Rd [ξ] the following
statements are equivalent.

1. s ∈ Σ
�
d(Ξ)

2. There exist positive semidefinite matrices Y r ∈ Ss(k,d̃r), r = 0, ..., R, such that s =
�J

r=0 Λ
∗
j (Y

r),
where Λ∗

r : Ss(k,d̃r) → Rs(k,d) is a linear operator defined through

[Λ∗
r(Y

r)]α = �Qr
α, Y

r� , α ∈ Ld (3.32)

and Qr
α ∈ Ss(k,d̃r) is a real symmetric matrix defined through

[Qr
α]βγ =

�
[wj ]δ if α− β + γ = δ

0 otherwise
(3.33)

Proof: A similar proof has been proposed in [1, 7]. We introduce the linear operators Λr :

Rs(k,d) −→ Ss(k,d̃r), r = 0, ..., R by

Λr(Bd(ξ)) =
�

α∈Ld

Qr
αξ

α = Bd̃r
(ξ)Bd̃r

(ξ)�w�
r Bdr(ξ). (3.34)

We also define the operators Λ∗
r such that they are adjoint to Λr according to equation 2.5.

�Y r,Λr(Bd(ξ))� = �Λ∗
r(Y

r),Bd(ξ)� (3.35)

1. =⇒: Assume that s ∈ Σ
�
d(Ξ). Then:

s(ξ) =
�R

r=0 sr(ξ)wr(ξ) sr(ξ) ∈ Σ2d̃r
(Rk)

=
�R

r=0 Bd̃r
(ξ)�Y rBd̃r

(ξ)w�
r Bdj (ξ) Y r � 0

=
�R

r=0

�
Y rBd̃r

(ξ)�,Bd̃r
(ξ)w�

r Bdj (ξ)
�

Y r � 0

=
�R

r=0 �Y r,Λr(Bd(ξ))� Y r � 0

=
�R

r=0 �Λ∗
r(Y

r),Bd(ξ)� Y r � 0

(3.36)

Since sr(ξ) ∈ Σ2d̃r
(Rk), then Y r � 0, r = 0, ..., R according to Theorem 2.3.
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2. ⇐=: Assume that 2. is true and define the polynomial s(ξ) =
�R

r=0 �Λ∗
r(Y

r),Bd(ξ)�. A reverse
reasoning to the one for =⇒ is applied. Since Y r � 0, then sr(ξ) ∈ Σ2d̃r

(Rk), r = 0, ..., R
according to Theorem 2.3.

Above proposition shows that Σ�
d(Ξ) has a tractable characterization.

Σ�
d(Ξ) =

�
s ∈ Rd [ξ] :

s(ξ) =
�R

r=0 Λ
∗
r(Y

r)�Bd(ξ)

Y j � 0, j = 1, ..., J
(3.37)

It is convenient to define cones Pm
d (Ξ) and Σm

d (Ξ) as the sets of all m× s(k, d)-matrices whose
rows are all elements of Pd(Ξ) and Σd(Ξ), respectively.

Problem 3.25 can then be approximated by the following computationally tractable problem

inf tr(T�
θ,d−ηC

�XMd−η)

s.t. X ∈ Rn×s(k,d−η), S ∈ Rn×s(k,d)

A ∗(3)(η,d−η) X + S = BTθ,d

S ∈ Σm
d (Ξ)





P− a.s.

(3.38)

Proposition 3.5: For problems 3.27 and 3.38 the following holds: inf 3.38 ≥ inf 3.27.

Proof: As problem 3.38 is obtained from 3.27 by Approximation P2*, the feasible set of 3.38 is
smaller than the feasible set of 3.27. It is thus clear that solution of problem 3.38 provides an upper
bound on the optimal value of problem 3.27. The feasible sets, and thus the solutions of problems
3.27 and 3.38, are in general equal under Assumption 2.1 if d is chosen to be large enough due to
Theorem 2.6.

Problem 3.38 represents a tractable upper bound approximation of problem 3.8. In the next
section we will focus on the tractable lower bound approximation.

3.4.3 One-stage Dual Polynomial Decision Rules

A similar approach as used for the upper bound approximation, can also be applied to the lower
bound approximation. A related approach has been proposed in [3, 7].

We denote by infx,s the infimum operator over all x ∈ Lk,n and over all s ∈ Lk,m that are almost
surely non-negative, by supy the supremum operator over all y ∈ Lk,m and by supY the supremum
operator over all Y ∈ Rm×s(k,d).

By applying the Lagrangian duality (remember definition in Section 2.2) to problem 3.8 the
following equivalent problem is obtained

inf
x,s

sup
y

E(c(ξ)�x(ξ) + y(ξ)�(A(ξ)x(ξ) + s(ξ)− b(ξ))) (3.39)

Approximation D1: Consider only dual decision rules that are representable as polynomial
functions of the uncertain parameters of a degree at most d, i.e. y(ξ) = Y Bd(ξ) for some matrix
Y ∈ Rm×s(k,d). We also require that d ≥ max {µ, θ, d0, d1, ..., dR}.

Note, that Approximation D1 is supported by the Weierstrass theorem and as d −→ ∞ the
above formulation characterizes all continuous measurable functions.
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Using Approximation D1, we write

inf
x,s

sup
y

E(c(ξ)�x(ξ) + y(ξ)�(A(ξ)x(ξ) + s(ξ)− b(ξ))) ≥

inf
x,s

sup
Y

E(c(ξ)�x(ξ) + (Y Bd(ξ))� · (A(ξ)x(ξ) + s(ξ)− b(ξ)))
(3.40)

Carrying out the inner maximization in the objective function, the following semi-infinite prob-
lem is obtained.

inf E(c(ξ)�x(ξ))

s.t. x ∈ Lk,n, s ∈ Lk,m

E((A(ξ)x(ξ) + s(ξ)− b(ξ))Bd(ξ)�) = 0

s(ξ) ≥ 0 P− a.s.

(3.41)

Proposition 3.6: For problems 3.8 and 3.41 following holds: inf 3.41 ≤ inf 3.8.

Proof: By comparison of problems 3.8 and 3.41 it is obvious that any (x, s) that is feasible in
problem 3.8 will also satisfy the less restrictive constraints of problem 3.41. Thus, problem 3.41
is a relaxation of problem 3.8 and its optimal value provides a lower bound on the optimal value
of problem 3.8. Remember also that the Lagrangian dual problem is defined as a maximization
problem and thus it approaches the optimal solution from below. If decision rules of the dual
problem are approximated by polynomial functions, this limits the feasible set and clearly leads to
a lower bound approximation. Since only Approximation D1 was applied, equality in general holds
as d −→ ∞ due to the Weierstrass theorem.

Problem 3.41 involves finitely many equality constraints, but involves a continuum of decision
variables and inequality constraints. In order to obtain a tractable representation for problem 3.41,
we introduce new decision variables X ∈ Rn×s(k,d−η) and S ∈ Rm×s(k,d), which are defined through
the following constraints

XMd−η = E(x(ξ)Bd−η(ξ)�)

(A ∗(3)(η,d−η) X)Md = E(A(ξ)x(ξ)Bd(ξ)�)

SMd = E(s(ξ)Bd(ξ)�)

(3.42)

Note, that decision variables X ∈ Rn×s(k,d−η) and S ∈ Rm×s(k,d) are uniquely determined by decision
rules x ∈ Lk,n and s ∈ Lk,m, since moment matrix is invertible (Proposition 3.7). Moreover, note
that the first constraint does not imply the second constraint or vice versa.

Proposition 3.7: Md � 0 and invertible.

Proof: Md � 0 due to Proposition 2.7. Let f(ξ) ∈ Rd [ξ] with non-zero coefficients, then

�f,Md(y)f� =
ˆ

f(ξ)2µy(dξ) ≥ 0. (3.43)

Since Ξ has non empty interior1 (Assumption 3.2*), equality holds only when all coefficients of f
are 0. Thus Md � 0 and invertible.

1Remember that also interval [0, 0] has a non empty interior in R.
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Using 3.42 we rewrite the objective function.

E(c(ξ)�x(ξ)) = E((CBθ(ξ))�x(ξ))

= E((CTθ,d−ηBd−η(ξ))�x(ξ))

= E(tr(CTθ,d−ηBd−η(ξ)x(ξ)�))

= tr(CTθ,d−ηE(x(ξ)Bd−η(ξ)�)�)

= tr(CTθ,d−η(XMd−η)�)

= tr((CTθ,d−ηM�
d−ηX

�)�)

= tr((M�
d−ηX

�)�(CTθ,d−η)�)

= tr((CTθ,d−η)�(M�
d−ηX

�)�)

= tr(T�
θ,d−ηC

�XMd−η)

(3.44)

Using 3.42 and the fact that Md is invertible, the equality constraints in problem 3.41 can be written
as

E((A(ξ)x(ξ) + s(ξ)− b(ξ))Bd(ξ)�)

= E(A(ξ)x(ξ)Bd(ξ)� + s(ξ)Bd(ξ)� −BBθ(ξ)Bd(ξ)�)

= (A ∗(3)(η,d−η) X)Md + SMd −BTθ,dMd

= A ∗(3)(η,d−η) X + S −BTθ,d

(3.45)

Due to 3.44 and 3.45 we can reformulate problem 3.41 to problem 3.46.

inf tr(T�
θ,d−ηC

�XMd−η)

s.t. X ∈ Rn×s(k,d−η), S ∈ Rn×s(k,d)

A ∗(3)(η,d−η) X + S = BTθ,d

∃x ∈ Lk,n :






XMd−η = E(x(ξ)Bd−η(ξ)�)

(A ∗(3)(η,d−η) X)Md = E(A(ξ)x(ξ)Bd(ξ)�)






∃s ∈ Lk,m :






XMd = E(s(ξ)Bd(ξ)�)

s(ξ) ≥ 0 P− a.s.






(3.46)

Lemma 3.8: The penultimate constraint in 3.46 is redundant and can be omitted without affecting
the problem’s feasibility set.
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Proof: It is clear that for any A ∈ Rm×n×s(k,η) and X ∈ Rn×s(k,d−η), decision rule x(ξ) =
XBd−η(ξ) satisfies the penultimate constraint.

• 1. equation:
E(x(ξ)Bd−η(ξ)�) = E(XBd−µ(ξ)Bd−η(ξ)�)

= XE(Bd−µ(ξ)Bd−η(ξ)�)

= XMd−η

(3.47)

• 2. equation:

E(A(ξ)XBd−η(ξ)Bd(ξ)�) = E((A ·(3) Bη(ξ))(XBd−η(ξ))Bd(ξ)�)

= E((A ∗(3)(η,d−η) X)Bd(ξ)Bd(ξ)�)

= (A ∗(3)(η,d−η) X)E(Bd(ξ)Bd(ξ)�)

= (A ∗(3)(η,d−η) X)Md

(3.48)

In the second line relationship 3.26 was used.

The last constraint in problem 3.46 involves the solution of m multidimensional moment problems.
Let Md(Ξ) denote the cone of moment sequences with a representing measure supported on Ξ,

where N denotes the set of non-negative Borel measures supported on Ξ.

Md(Ξ) :=

�
y ∈ Rn×s(k,d) :

∃µ ∈ N
y =
´
Ξ Bd(ξ)µ(dξ)

�
(3.49)

Similarly, we define the cone

M+
d (Ξ) :=

�
y ∈ Rn×s(k,d) : Λr(y) � 0 r = 0, ..., R

�
(3.50)

where the mappings Λr are defined as in Proposition 3.4.

Proposition 3.9:

1. Pd(Ξ) and Md(Ξ) are dual to each other.

2. Σ�
d(Ξ) and M+

d (Ξ) are dual to each other.

3. Md(Ξ) ⊆ M+
d (Ξ).

Proof: Proof is in [7, 10]. Points 1 and 2 follow from the duality theory:

1. If p ∈ Pd(Ξ) and y ∈ Md(Ξ) then

p�y =

ˆ
Ξ
p�Bd(ξ)µ(dξ) =

ˆ
Ξ
p(ξ)µ(dξ) ≥ 0. (3.51)

Note that by definition p(ξ) ≥ 0 on Ξ and that µ(dξ) ≥ 0 since it is a Borel measure. It is
clear that the above reasoning holds for all p ∈ Pd(Ξ) and y ∈ Md(Ξ).

2. If p ∈ Σ�
d(Ξ) and y ∈ M+

d (Ξ) then

p�y =
R�

r=0

�Λ∗
r(Y

r), y� =
R�

r=0

�Y r,Λr(y)� ≥ 0. (3.52)

Note that Y r � 0, r = 0, ..., R since p ∈ Σ�
d(Ξ) according to Proposition 3.4. Λr(y) � 0,

r = 0, ..., R is true according to definition 3.50 of M+
d (Ξ).
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3. It is clear that Σ�
d(Ξ) ⊆ Pd(Ξ). Due to duality we can see that Md(Ξ) = (Pd(Ξ))∗ ⊆

(Σ�
d(Ξ))

∗ = M+
d (Ξ).

By observing problem 3.46, we note that the last constraint requires each component si(ξ), i =
1, ...,m, of the vector-valued function s(ξ) to be the density function of a measure µi ∈ N whose
moments coincide with the i-th row of SMd. Thus i-th row of SMd must be contained in Md(Ξ).
Verifying the membership of si(ξ), i = 1, ...,m in the cone Md(Ξ) is NP-hard [8]. However, we have
shown in Section 2.6 that verifying the membership of si(ξ), i = 1, ...,m in the cone M+

d (Ξ) can be
solved through a tractable SDP.

Approximation D2: Verifying membership of Md(Ξ) can be approximated by verifying mem-
bership of M+

d (Ξ).
As we discussed in Section 2.6, the above approximation was justified by Lasserre.
It is convenient to define Mm

d (Ξ) and Mm+
d (Ξ) as the cones of all m × s(k, d)-matrices whose

rows are all contained in Md(Ξ) and M+
d (Ξ), respectively. Based on this reasoning, we approximate

problem 3.46 by the following tractable problem

inf tr(T�
θ,d−ηC

�XMd−η)

s.t. X ∈ Rn×s(k,d−η), S ∈ Rn×s(k,d)

A ∗(3)(η,d−η) X + S = BTθ,d

SMd ∈ Mm+
d (ξ)

(3.53)

Proposition 3.10: For problems 3.46 and 3.53 the following holds: inf 3.53 ≤ inf 3.46.

Proof: Problem 3.53 is obtained from 3.46 by Approximation D2. We know that the feasible
set of problem 3.53 is bigger than the feasible set of problem 3.46 since Md(Ξ) ⊆ M+

d (Ξ) due
to Preposition 2.10. It is thus clear that solution of problem 3.53 provides a lower bound on the
optimal value of problem 3.46. Lasserre showed that under Assumption 2.1 equality holds for a
d chosen to be large enough. However, if Assumption 2.1 is not satisfied then equality holds as
d −→ ∞.

Problem 3.53 represents a computationally tractable approximation of problem 3.8. In the next
section, we will focus on multistage stochastic problems.

3.4.4 Multistage Primal Polynomial Decision Rules

In this section, polynomial decision rules will be extended to obtain computationally tractable ap-
proximations of multistage stochastic programs. The goal is to formulate two tractable semidefinite
programs, obtained by restricting the primal and the dual decision rules to the polynomial functions,
which, when solved, provide an upper and a lower bound on the optimal value of the stochastic
program.

Assumption 3.4: We require that the objective function coefficients and constraint functions
depend polynomially on the uncertain parameters ξt. Namely, ct(ξt) = CtPθ,tBθ(ξ) for some Ct ∈
Rnt×s(kt,θ), bt(ξt) = BtPθ,tBθ(ξ) for some B ∈ Rmt×s(kt,θ) and Ats(ξt) = Ats ·(3) Pηs,tBηs(ξ) for some
Ats ∈ Rmt×ns×s(k,ηs). In order to keep the notation in a matrix form we introduced truncation
operators Pd,t : Rs(k,d) −→ Rs(kt,d) for any t ∈ T and d ∈ N0 that map the monomial basis Bd(ξ)
to the reduced basis Bd(ξt). We defined ηs := max

�
ηts

�
, t = s, ..., T , for all s = 1, ..., T , where ηts
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corresponds to the actual degree of the polynomial Ats(ξt). A visual representation is given below

η11

η21 η22

...
... . . .

ηT1 ηT2 · · · ηTT

− − − −
η1 η2 · · · ηT

(3.54)

Note that this assumption is equivalent to Assumption 3.2 for one-stage stochastic problems.

Approximation MP1: We approximate the decision rules of problem 3.14 by polynomial func-
tions of a degree at most d, where d ≥ max {ηs, θ, d0, ..., dR}, s = 1, ..., T . The decision and
slack variables can thus be written as xt(ξt) = XtPd−ηt,tBd−ηt(ξ) for some Xt ∈ Rnt×s(kt,d−ηt)

and st(ξt) = StPd,tBd(ξ) for some St ∈ Rmt×s(kt,d). To ensure that this approximation leads to a
tractable program, we require that Et(Bd(ξ)) is essentially polynomial in ξt, that is, Et(Bd(ξ)) =
MtPd,tBd(ξ) P-a.s for some matrix Mt ∈ Rs(k,d)×s(kt,d) for t ∈ T.

Note, that Approximation MP1 is supported by the Weierstrass theorem and as d −→ ∞ the
above formulation characterizes all continuous measurable functions.

By applying Approximation MP1 to the objective function of problem 3.14 we obtain

E(
�T

t=1 ct(ξ
t)�xt(ξt)) = E(

�T
t=1(CtPθ,tBθ(ξ))�XtPd−ηt,tBd−ηt(ξ))

= E(
�T

t=1(CtPθ,tTθ,d−ηtBd−ηt(ξ))
�XtPd−ηt,tBd−ηt(ξ))

= E(
�T

t=1 tr(CtPθ,tTθ,d−ηtBd−ηt(ξ)Bd−ηt(ξ)
�P�

d−ηt,tX
�
t ))

=
�T

t=1 tr(CtPθ,tTθ,d−ηtE(Bd−ηt(ξ)Bd−ηt(ξ)
�)P�

d−ηt,tX
�
t )

=
�T

t=1 tr(CtPθ,tTθ,d−ηtMd−ηtP
�
d−ηt,tX

�
t ).

(3.55)

Similarly, by applying Approximation MP1 to the constraints we obtain

�t
s=1Ats(ξt)xs(ξs) + st(ξt) = bt(ξt)

⇐⇒
�t

s=1(Ats ·(3) Pηs,tBηs(ξ))XsPd−ηs,sBd−ηs(ξ) + StPd,tBd(ξ) = BtPθ,tBθ(ξ)

⇐⇒
�t

s=1(Ats ∗(3)(ηs,d−ηs) XsPd−ηs,sP�
d−ηs,t)Pd,tBd(ξ) + StPd,tBd(ξ) = BtPθ,tTθ,dBd(ξ)

⇐⇒
�t

s=1(Ats ∗(3)(ηs,d−ηs) XsPd−ηs,sP�
d−ηs,t)Pd,t + StPd,t = BtPθ,tTθ,d

(3.56)

Note that XsPd−ηs,sP�
d−ηs,t maps the basis Bd−ηs(ξt) to the basis Bd−ηs(ξs). This is needed

because the polynomial multiplication is defined for polynomials in the same basis. In the penul-
timate step there are infinitely many constraints, since it must hold for each possible realisation
of the uncertain parameters ξ ∈ Ξ. Thus, a vector-valued polynomial must vanish identically on a
set with nonempty interior Ξ. This is possible if and only if all the coefficients of the polynomial
vanish.

By combining 3.55 and 3.56, the following problem is obtained.
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inf
�T

t=1 tr(CtPθ,tTθ,d−ηtMd−ηtP
�
d−ηt,tX

�
t )

s.t. Xt ∈ Rnt×s(kt,d−ηt), St ∈ Rnt×s(kt,d)

�t
s=1(Ats ∗(3)(ηs,d−ηs) XsPd−ηs,sP�

d−ηs,t)Pd,t + StPd,t = BtPθ,tTθ,d

StPd,tBd(ξ) ≥ 0





P− a.s., ∀t ∈ T

(3.57)

Proposition 3.11: For problems 3.14 and 3.57 the following holds: inf 3.57 ≥ inf 3.14.

Proof: As problem 3.57 is obtained from problem 3.14 by Approximation MP1, the feasible set
of problem 3.57 is smaller than the feasible set of problem 3.14. It is thus clear that the solution
of problem 3.57 provides an upper bound on the optimal value of problem 3.14. The feasible sets,
and thus the solutions, are in general equal as d −→ ∞ due to the Weierstrass theorem.

Formulation 3.57 is not yet tractable because the inequality constraint requires that each compo-
nent of a vector-valued polynomial StPd,tBd(ξ), t = 1, ..., T is non-negative on Ξ. We have already
showed in the one-stage model how to handle such constraints.

We could apply Theorem 2.5, but the resulting degree could be too high. Thus, we again set
that Assumption 2.1 holds and apply Theorem 2.6.

Approximation MP2*: For every polynomial [StPd,tBd(ξ)]i, t = 1, ..., T and i = 1, ...,mt posi-
tive on Ξ, 3.58 holds under Assumption 2.1 due to Theorem 2.6, if d is chosen to be large enough.

∀ξ ∈ Ξ [StPd,tBd(ξ)]i > 0 ⇐⇒ [StPd,tBd(ξ)]i ∈ Σ�(Ξ). (3.58)

Note that at least d ≥ max {ηs, θ, d0, d1, ..., dR}, s = 1, ..., T must hold.
The minimal degree d also coincides with the requirement in Approximation MP1. Note, how-

ever, that Assumption 2.1 can sometimes be violated and in this case Approximation MP2* does
not characterize sufficiently all the polynomials positive on Ξ even as d −→ ∞.

By applying Approximation MP2*, we can rewrite problem 3.57 as

inf
�T

t=1 tr(CtPθ,tTθ,d−ηtMd−ηtP
�
d−ηt,tX

�
t )

s.t. Xt ∈ Rnt×s(kt,d−ηt), St ∈ Rnt×s(kt,d)

�t
s=1(Ats ∗(3)(ηs,d−ηs) XsPd−ηs,sP�

d−ηs,t)Pd,t + StPd,t = BtPθ,tTθ,d

StPd,t ∈ Σm
d (Ξ)





∀t ∈ T

(3.59)

Proposition 3.12: For problems 3.14 and 3.59 the following holds: inf 3.59 ≥ inf 3.57.

Proof: As problem 3.59 is obtained from problem 3.57 by Approximation MP2*, the feasible set
of problem 3.57 is smaller than the feasible set of 3.59. It is thus clear that the solution of problem
3.59 provides an upper bound on the optimal value of problem 3.57. The feasible sets, and thus
the solutions, are in general equal under Assumption 2.1 if d is chosen to be large enough due to
Theorem 2.6.

Problem 3.59 represents a tractable upper bound approximation of problem 3.14. In the next
section we discuss how a lower bound approximation for multistage stochastic problems is formu-
lated.
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3.4.5 Multistage Dual Polynomial Decision Rules

In order to obtain a tractable lower bound approximation of problem 3.14, we first rewrite it as a
min-max problem similar to the Lagrangian dual presented in Section 2.2. An equivalent approach
for linear decision rules has been proposed in [46]. For the t-th equality constraints t ∈ T, we
introduce a non-anticipative decision rule yt ∈ Lkt,mt

. Problem 3.14 can thus be replaced by an
equivalent problem

inf
xt,st ∀t∈T

sup
yt ∀t∈T

E
��T

t=1 ct(ξ
t)�xt(ξt) + +yt(ξt)�(

�t
s=1Ats(ξt)xs(ξs) + st(ξt)− bt(ξt))

�
.

(3.60)

Approximation MD1: Consider only dual decision rules that are represented as polynomial
functions of the uncertain parameters of a degree at most d, i.e. yt(ξt) = YtPd,tBd(ξ) for some
Yt ∈ Rmt×s(kt,d) for all t ∈ T.

Note, that Approximation MD1 is supported by the Weierstrass theorem and as d −→ ∞ the
above formulation characterizes all continuous measurable functions.

After Approximation MD1, we write

inf
xt,st ∀t∈T

sup
yt ∀t∈T

E
��T

t=1 ct(ξ
t)�xt(ξt) + yt(ξt)�

��t
s=1Ats(ξt)xs(ξs) + st(ξt)− bt(ξt)

��
≥

inf
xt,st ∀t∈T

sup
yt ∀t∈T

E
��T

t=1 ct(ξ
t)�xt(ξt) + (YtPd,tBd(ξ))

� ��t
s=1Ats(ξt)xs(ξs) + st(ξt)− bt(ξt)

��

(3.61)
Carrying out the inner maximization in the objective function, we obtain the following semi-infinite
problem

inf E(
�T

t=1 ct(ξ
t)�xt(ξt))

s.t. xt ∈ Lkt,nt
, st ∈ Lkt,mt

∀t ∈ T

E((
�t

s=1Ats(ξt)xs(ξs) + st(ξt)− bt(ξt))Bd(ξ)�P�
d,t) = 0

st(ξt) ≥ 0




P− a.s., ∀t ∈ T

(3.62)

Proposition 3.13: For problems 3.14 and 3.62 the following holds: inf 3.62 ≤ inf 3.14.

Proof: By comparison of problems 3.14 and 3.62 it is obvious that any (xt, st), t = 1, ..., T
that is feasible in problem 3.14 will also satisfy the less restrictive constraints of problem 3.62.
Thus, problem 3.62 is a relaxation of problem 3.14 and its optimal value provides a lower bound
on the optimal value of 3.14. Remember also that the Lagrangian dual problem is defined as a
maximization problem and thus it approaches the optimal solution from below. If decision rules of
the dual problem are approximated by polynomial functions, this limits the feasible set and clearly
leads to a lower bound approximation. Since only Approximation MD1 was applied, equality in
general holds as d −→ ∞ due to the Weierstrass theorem.

Problem 3.62 involves finitely many equality constraints, but involves a continuum of decision
variables and inequality constraints. In order to obtain a tractable representation for problem 3.62
we introduce new decision variables Xt ∈ Rnt×s(kt,d−ηt) and St ∈ Rmt×s(kt,d), t ∈ T which are
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defined through the following constraints

XtPd−ηt,tMd−ηt = E(xt(ξt)Bd−ηt(ξ)
�)

(Ats ∗(3)(ηs,d−ηs) XsPd−ηs,sP�
d−ηs,t)Pd,tMd = E(Ast(ξt)xs(ξs)Bd(ξ)�)

StPd,tMd = E(st(ξt)Bd(ξ)�)

(3.63)

In the following lemma we proof that the new constraints 3.63 do not restrict the choices of xt ∈
Lkt,nt

and st ∈ Lkt,mt
.

Lemma 3.14: For any given xt ∈ Lkt,nt
and st ∈ Lkt,mt

there exist unique matrices Xt and St

satisfying 3.63.

Proof:

1. Define St ∈ Rmt×s(kt,d) through

E(st(ξt)Bd(ξ)
�)P�

d,t = StPd,tMdP
�
d,t (3.64)

Since Pd,tMdP�
d,t is a principal submatrix of Md, it is invertible. Thus, St is uniquely defined

by

St = E(st(ξt)Bd(ξ)
�)P�

d,t(Pd,tMdP
�
d,t)

−1 (3.65)

Recall that Et(Bd(ξ)) = MtPd,tBd(ξ) P-a.s. We write

E(st(ξt)Bd(ξ)�) = E(st(ξt)Et(Bd(ξ))�)

= E(st(ξt)Bd(ξ)�)P�
d,tM

�
t

= StPd,tMdP�
d,tM

�
t

= StE(Pd,tBd(ξ)Bd(ξ)�P�
d,t)M

�
t

= StE(Pd,tBd(ξ)Et(Bd(ξ)�))

= StPd,tE(Bd(ξ)Bd(ξ)�)

= StPd,tMd

(3.66)

2. A similar argumentation holds also for xt ∈ Lkt,nt
.

Due to 3.63 the following existence constraints appear.

∃xt ∈ Lkt,nt
:






XtPd−ηt,tMd−ηt = E(xt(ξt)Bd−ηt(ξ)
�)

(Ats ∗(3)(ηs,d−ηs) XsPd−ηs,sP�
d−ηs,t)Pd,tMd = E(Ast(ξt)xs(ξs)Bd(ξ)�)





(3.67)

∃st ∈ Lkt,mt
:






StPd,tMd = E(st(ξt)Bd(ξ)�)

st(ξt) ≥ 0 P− a.s.




 (3.68)
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Lemma 3.15: Constraint 3.67 is redundant and can be omitted without affecting the problem’s
feasibility set.

Proof: It is clear that for any Ats ∈ Rmt×ns×s(k,ηs) and Xt ∈ Rnt×s(kt,d−ηt), the decision rule
xt(ξt) = XtPd−ηt,tBd−ηt(ξ) ∈ Lkt,nt

satisfies it.

• 1. equation:
E(xt(ξt)Bd−ηt(ξ)

�) = E
�
XtPd−ηt,tBd−ηt(ξ)Bd−ηt(ξ)

��

= XtPd−ηt,tE(Bd−ηt(ξ)Bd−ηt(ξ)
�)

= XtPd−ηt,tMd−ηt

(3.69)

• 2. constraint
E
�
Ast(ξt)xs(ξs)Bd(ξ)�

�

= E
�
(Ast ·(3) Pηs,tBηs(ξ))(XsPd−ηs,sBd−ηs(ξ))Bd(ξ)�

�

= (Ats ∗(3)(ηs,d−ηs) XsPd−ηs,sP�
d−ηs,t)Pd,tE(Bd(ξ)Bd(ξ)�)

= (Ats ∗(3)(ηs,d−ηs) XsPd−ηs,sP�
d−ηs,t)Pd,tMd

(3.70)

Note that XsPd−ηs,sP�
d−ηs,t maps the basis Bd−ηs(ξt) to the basis Bd−ηs(ξs). This is needed

because the polynomial multiplication is defined for polynomials in the same basis.

Using equations 3.63, we can rewrite the objective function of problem 3.62 as

E(
�T

t=1 ct(ξ
t)�xt(ξt)) = E(

�T
t=1(CtPθ,tBθ(ξ))�xt(ξt))

= E(
�T

t=1 tr(CtPθ,tBθ(ξ)xt(ξt)))

= E(
�T

t=1 tr(CtPθ,tTθ,d−ηtBd−ηt(ξ)xt(ξ
t)))

=
�T

t=1 tr(CtPθ,tTθ,d−ηtE(Bd−ηt(ξ)xt(ξ
t)))

=
�T

t=1 tr(CtPθ,tTθ,d−ηt(XtPd−ηt,tMd−ηt)
�)

=
�T

t=1 tr(CtPθ,tTθ,d−ηtMd−ηtP
�
d−ηt,tX

�
t )

(3.71)

and the equality constraints as

E((
�t

s=1Ats(ξt)xs(ξs) + st(ξt)− bt(ξt))Bd(ξ)�P�
d,t)

= E(
�t

s=1Ats(ξt)xs(ξs)Bd(ξ)�P�
d,t + st(ξt)Bd(ξ)�P�

d,t −BtPθ,tBθ(ξ)Bd(ξ)�P�
d,t)

=
�t

s=1(Ats ∗(3)(ηs,d−ηs) XsPd−ηs,sP�
d−ηs,t)Pd,tMdP�

d,t + StPd,tMdP�
d,t −BtPθ,tTθ,dE(Bd(ξ)Bd(ξ)�)P�

d,t

=
�t

s=1(Ats ∗(3)(ηs,d−ηs) XsPd−ηs,sP�
d−ηs,t)Pd,tMdP�

d,t + StPd,tMdP�
d,t −BtPθ,tTθ,dMdP�

d,t

(3.72)
It is possible to additionally simplify 4.7 by taking into account also some properties of the operators
Pd,t, t ∈ T and d ∈ N.
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1. Pθ,tTθ,d = Pθ,tTθ,dP�
d,tPd,t. Note that Pθ,tTθ,d : Rs(k,d) −→ Rs(k,θ) −→ Rs(kt,θ) and Pθ,tTθ,dP�

d,tPd,t :

Rs(k,d) −→ Rs(kt,d) −→ Rs(k,d) −→ Rs(k,θ) −→ Rs(kt,θ). It is clear that the right hand side
operator is always lossless with respect to the left hand side operator.

2. Pd,tMdP�
d,t is a principal submatrix of Md and thus invertible.

3. (Pd,tMdP�
d,t)

−1 = (Pd,tMdP�
d,t)

−1Pd,tP�
d,t. This clearly holds because I = Pd,tP�

d,t.

Having the above properties in mind, we can multiply the last line in 4.7 from the right by
(Pd,tMdP�

d,t)
−1Pd,tP�

d,t. We will analyze each part separately

�t
s=1(Ats ∗(3)(ηs,d−ηs) XsPd−ηs,sP�

d−ηs,t)Pd,tMdP�
d,t

=
�t

s=1(Ats ∗(3)(ηs,d−ηs) XsPd−ηs,sP�
d−ηs,t)Pd,tMdP�

d,t(Pd,tMdP�
d,t)

−1Pd,tP�
d,t

=
�t

s=1(Ats ∗(3)(ηs,d−ηs) XsPd−ηs,sP�
d−ηs,t)Pd,tP�

d,t

(3.73)

and

StPd,tMdP�
d,t = StPd,tMdP�

d,t(Pd,tMdP�
d,t)

−1Pd,tP�
d,t

= StPd,tP�
d,t

(3.74)

and
−BtPθ,tTθ,dMdP�

d,t = −BtPθ,tTθ,dMdP�
d,t(Pd,tMdP�

d,t)
−1Pd,tP�

d,t

= −BtPθ,tTθ,dP�
d,tPd,tMdP�

d,t(Pd,tMdP�
d,t)

−1Pd,tP�
d,t

= −BtPθ,tTθ,dP�
d,tPd,tP�

d,t

= −BtPθ,tTθ,dP�
d,t

(3.75)

By combining 3.73, 3.74 and 3.75 together, we obtain the following problem

inf
�T

t=1 tr(CtPθ,tTθ,d−ηtMd−ηtP
�
d−ηt,tX

�
t )

s.t. xt ∈ Lkt,nt
, st ∈ Lkt,mt

∀t ∈ T

�t
s=1(Ats ∗(3)(ηs,d−ηs) XsPd−ηs,sP�

d−ηs,t)Pd,tP�
d,t + StPd,tP�

d,t −BtPθ,tTθ,dP�
d,t = 0

∃st ∈ Lkt,mt
:






StPd,tMd = E(st(ξt)Bd(ξ)�)

st(ξt) ≥ 0 P− a.s.






(3.76)

We can see that the last constraint in problem 3.76 requires each component
�
st(ξt)

�
i
, t = 1, ..., T

and i = 1, ...,m, of the vector-valued function st(ξt) to be the density function of a measure
[µt]i ∈ N whose moments coincide with the i-th row of StPd,tMd. Thus i-th row of StPd,tMd must
be contained in Md(Ξ). Verifying the membership of

�
st(ξt)

�
i
, t = 1, ..., T and i = 1, ...,m in the

cone Md(Ξ) is NP-hard [8]. However, we have shown in Section 2.6 that verifying the membership
of

�
st(ξt)

�
i
, t = 1, ..., T and i = 1, ...,m in the cone M+

d (Ξ) can be solved through a tractable SDP.

Approximation MD2: Verifying membership of Md(Ξ) can be approximated by verifying mem-
bership of M+

d (Ξ).
As we discussed in Section 2.6, the above approximation was justified by Lasserre. This approx-

imation is described in Proposition 3.9, which is applicable due to the following lemma.
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Lemma 3.16: For any given St ∈ Rmt×s(kt,d) the constraint 3.68 is equivalent to 3.77.

∃s̃t ∈ Lk,mt :






StPd,tMd = E(s̃t(ξ)Bd(ξ)�)

s̃t(ξ) ≥ 0 P− a.s.




 (3.77)

Proof:

1. =⇒: Since ξt ⊆ ξ, t = 1, ..., T constraint 3.76 implies the more general constraint 3.77.

2. ⇐=: Assume that 3.77 holds and define st(ξt) = Et(s̃t(ξ)). Then

E(st(ξt)Bd(ξ)�) = E(Et(s̃t(ξ))Bd(ξ)�)

= E(s̃t(ξ)Bd(ξ)�)P�
d,tM

�
t

= StPd,tMd

(3.78)

By using the above lemma, problem 3.76 can be approximated by the following semidefinite program

inf
�T

t=1 tr(CtPθ,tTθ,d−ηtMd−ηtP
�
d−ηt,tX

�
t )

s.t. Xt ∈ Rn×s(k,d−ηt), St ∈ Rn×s(k,d)

�t
s=1(Ats ∗(3)(ηs,d−ηs) XsPd−ηs,sP�

d−ηs,t)Pd,tP�
d,t + StPd,tP�

d,t = BtPθ,tTθ,dP�
d,t

StPd,tMd ∈ Mm+
d (Ξ)





P− a.s.,
∀t ∈ T

(3.79)

Proposition 3.17: For problems 3.76 and 3.79 the following holds: inf 3.79 ≤ inf 3.76.

Proof: Problem 3.79 is obtained from problem 3.76 by Approximation MD2, which increases the
feasible set since since Md(Ξ) ⊆ M+

d (Ξ) due to Preposition 2.10. It is thus clear that solution of
problem 3.79 provides a lower bound an the optimal value of problem 3.76. Lasserre showed that
under Assumption 2.1 equality holds for a d chosen to be large enough. However, if Assumption
2.1 is not satisfied then equality holds as d −→ ∞.

Problem 3.79 represents a computationally tractable lower bound approximation of problem
3.14.

3.4.6 Advantages and disadvantages

The main advantage of decision rule approximations is that the problem grows only quadratically
with the number of decision stages. SP problem can be approximated by a tractable SDP which
can be solved in polynomial time. Another important advantage is that under Assumption 2.1 the
exact solution is obtained as d −→ ∞. If Assumption 2.1 is not satisfied than this holds only for the
lower bound approximation. In contrast to the scenario tree approximation, it is possible to define
the upper and the lower bound approximation, what gives us a tractable procedure to estimate the
suboptimality of solutions. This is very important when solving real life problems.

An important disadvantage is that complexity grows exponentially with the degree of the poly-
nomial decision rules d. Polynomial decision rules of the degree d > 5 are thus for real life problems
at the current state of the art technology not feasible. Another disadvantage, that we encountered
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when solving real problems, is that not many fast and robust SDP solvers exist. This is expected,
because SDP problems are an important area of the research only in the recent years. When the
SDP solvers evolve, we will be able to approximate SP problems much more precisely.
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Chapter 4

Portfolio Optimization

Portfolio optimization is the problem of allocating capital over different assets in order to maximize
the return on the investment and at the same time minimize its risk [48]. Since portfolio returns are
uncertain, one usually wants to maximize the expected return of the investment. Characterization
of the risk is a more difficult problem. The first portfolio optimization problem was introduced
by Markowitz [34], where the variance of the return was used to characterize risk. Many other
characterizations were proposed later on.

In the first part of this chapter, we consider one-stage portfolio optimization problems, which
are in the second part extended to the multistage portfolio optimization problems. We present
state of the art characterizations of the risk and construct a risk measure with desirable properties.
Finally, we explain how portfolio optimization problems can be approximated with scenario tree
approximation and decision rule approximations presented in the previous chapter.

4.1 One-stage portfolio optimization

4.1.1 Problem description

Suppose there are I assets available and denote by ξ := [ξ1, ξ2, ..., ξI ] their random returns. Returns
are modeled in a probability space (RI ,B(RI),P), where the Borel σ-algebra B(RI) represents the
set of total returns that are assigned probabilities by the probability measure P. Suppose we have
the amount W0 to invest. In one-stage portfolio optimization, we have to decide on the amount wi

that should be invested in each of the assets i, i = 1, ..., I such that
�I

i=1wi = W0. We denote
w := [w1, ..., wI ] and the total portfolio return rp can be calculated as rp = w�ξ.

The two main characteristics that describe each investor are greediness and risk-aversion. Every
investor tries to maximize the expected portfolio return while minimizing its risk.The expected
rates of returns are E(ξ) = [E(ξ1),E(ξ2), ...,E(ξI)] and thus the expected portfolio return rp is
rp = w�E(ξ). Description of the risk is more extensive and thus described in the next section.

4.1.2 Risk measures

Risk could be understood as the variability of the portfolio return due to market changes and
uncertain events. There are many ways to describe risk of an investment. A good risk measure
must reflect our preferences of what risk of an investment is and how it should behave.

Coherent risk measures

Some general properties of a good risk measure have been defined in [32].
Consider a general probability space (Ω,F ,P) and a linear space of measurable functions Z :=

{Z : Ω −→ R}. Let the functional ρ : Z → R be a risk measure. The number ρ(Z), when positive,
is interpreted as the minimum extra cash the investor has to add to the risky position Z and invest

43
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it in a risk free asset to be allowed to proceed with his plans, i.e., have risk with value 0. Similarly,
if the number ρ(Z) is negative, then cash amount -ρ(Z) can be withdrawn from the position.

The functional ρ is a coherent risk measure for Z, if it satisfies the following axioms:

• Translation invariance:

If α ∈ R and Z ∈ Z, then ρ(Z + α) = ρ(Z) − α. In words, adding a risk free amount α to
the initial position Z, decreases the risk by α. Note, that if α = ρ(Z) then ρ(Z + ρ(Z)) = 0,
which follows our interpretation of ρ(Z) given above.

• Sub-additivity:

If Z1, Z2 ∈ Z, then ρ(Z1 +Z2) ≤ ρ(Z1) + ρ(Z2). In words, the risk of two separate portfolios
can not be smaller than the risk of having both portfolios together (diversification principle).

• Positive homogeneity:

If α ≥ 0 and Z ∈ Z, then ρ(αZ) = αρ(Z). In words, if an investment in a portfolio is
increased (decreased), the risk increases (decreases) by the same factor.

• Monotonicity:

If Z1, Z2 ∈ Z and Z1 ≤ Z2, then ρ(Z1) ≥ ρ(Z2). In words, if a portfolio Z1 has worse values
than portfolio Z2 under all realisations, then the risk of Z1 should be greater than the risk of
Z2.

Proposition 4.1: Coherent risk measures are convex functions.

Proof: Let Z1, Z2 ∈ Z. We have to proof that, for any λ = [0, 1],

ρ(λZ1 + (1− λ)Z2) ≤ λρ(Z1) + (1− λ)ρ(Z2). (4.1)

We write
ρ(λZ1 + (1− λ)Z2) ≤ ρ(λZ1) + ρ((1− λ)Z2) = λρ(Z1) + (1− λ)ρ(Z2), (4.2)

where the inequality holds due to sub-additivity and the equality due to positive homogeneity
property.

Variance

One of the first measures used to describe a portfolio risk is the variance σ2
p of the portfolio.

Given the variance of each individual asset i (σ2
i ) and the covariance between assets i and j (σij),

i, j ∈ {1, ..., I}, the variance of the portfolio is defined as

σ2
p = E

�
(rp − rp)2

�

= E
���I

i=1wiξi −
�I

i=1wiE(ξi)
�2

�

= E
���I

i=1wi (ξi − E(ξi))
���I

i=1wi (ξi − E(ξi))
��

= E
��I

i,j=1wiwj (ξi − E(ξi)) (ξj − E(ξj))
�

=
�I

i,j=1wiwjσij

= w�Σw.

(4.3)

In last line we used matrix notation, where Σ represents a covariance matrix.
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The main disadvantage of the variance as a risk measure is that it penalizes both profits as well
as losses, since it is a measure of the dispersion of the values of the random variable around its
expected value. In reality, investors want to minimize only the possibility of losses.

Value at Risk

Value at Risk (VaR) is a risk measure that eliminates the major drawback of the variance. It is
defined as a threshold loss value α ∈ R that is, by the end of the investing period, only exceeded
with a probability level 1− β ∈ R (Figure 4.1).

Let f(w, ξ) be the loss associated with the decision vector w ∈ RI and the random vector ξ ∈ RI .
The underlying probability distribution of ξ ∈ RI has a density denoted by p(ξ). The probability
of f(w, ξ) not exceeding a threshold α is given by

Ψ(w,α) =

ˆ
f(w,ξ)≤α

p(ξ)dξ. (4.4)

The β-VaR values for the loss random variable associated with w and any specified probability level
β ∈ (0, 1) is denoted by αβ(w) and defined by the following equation

αβ(w) = min {α ∈ R : Ψ(w,α) ≥ β} . (4.5)
Value at Risk is in general not a coherent risk measure, because it does not satisfy the sub-

additivity axiom [32]. This, as a consequence, has two major drawbacks:

• It is not necessary convex (Proposition 4.1) and thus, due to the existence of local minimums,
difficult to optimize.

• It does not encourage diversification and sometimes even penalizes it.

Moreover, VaR does not take into account the distribution of the loss, if it exceeds the VaR value
(threshold α). To eliminate these drawbacks, conditional value at risk was proposed.

Conditional Value at Risk

Conditional Value at Risk (CVaR) is a coherent risk measure [32, 33], which takes into account the
conditional expected value of loss, under the condition that it exceeds the VaR value (Figure 4.1).
Mathematically, it is defined by

φβ(w) = (1− β)−1
ˆ
f(w,ξ)≥αβ(w)

f(w, ξ)p(ξ)dξ. (4.6)

By comparing the definitions of CVaR and VaR, we can see that CVaR is a more conservative risk
measure than VaR since αβ(w) ≤ φβ(w).

For the further argumentation we define the function Fβ(w,α) : RI × R −→ R by

Fβ(w,α) = α+ (1− β)−1
ˆ
ξ∈RI

[f(w, ξ)− α]+ p(ξ)dξ = α+ (1− β)−1E([f(w, ξ)− α]+), (4.7)

where [x]+ = x if x ≥ 0 and 0 if x < 0. Rockafellar [33] proved the following theorem.

Theorem 4.2: As a function of (w,α), Fβ(w,α) is convex and continuously differentiable. The
β-CVaR of the loss associated with any w ∈ RI can be determined by

φβ(w) = min
α∈R

Fβ(w,α). (4.8)

Moreover, minimizing the β-CVaR of the loss associated with w over all feasible w ∈ RI is equivalent
to minimizing Fβ(w,α) over (w,α) ∈ RI × R, in a sense that

min
w∈RI

φβ(w) = min
(w,α)∈RI×R

Fβ(w,α). (4.9)
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Figure 4.1: VaR and CVaR.

Proof: [33].
The most important finding in the above theorem is that Fβ(w,α) is convex and thus much

easier to optimize with respect to the non-convex risk measures (e.g. VaR). Moreover, CVaR can be
calculated directly, without first calculating VaR, even though the definition of CVaR depends on
VaR. Rockafellar even showed that VaR can be calculated as a byproduct of the CVaR calculation.

Representation of Fβ(w,α) needs to be altered when applied to the optimization context. We
introduce a function z ∈ L∞

I,1 such that f(w, ξ)−α ≤ z(ξ) and 0 ≤ z(ξ). The problem of minimizing
Fβ(w,α) can thus be written as

min α+ (1− β)−1E (z(ξ))

s.t. α ∈ R, w ∈ RI , z ∈ L∞
I,1

z(ξ) ≥ 0

z(ξ) ≥ f(w, ξ)− α,

(4.10)

where L∞
k,n denotes the space of all Borel measurable functions from Rk to R in n variables.

This representation can be used directly in portfolio optimization problems, where the loss
f(w, ξ) can be defined as the negative total portfolio return

f(w, ξ) = −r̄p = −w�ξ. (4.11)

4.1.3 Mean-variance Efficient Portfolio

As described in the beginning of this chapter, portfolio selection is the optimization problem, in
which we minimize our risk exposure subject to the requested expected portfolio return. The
first portfolio optimization problem was formulated by Markowitz [34]. He used variance as a
risk measure. The corresponding optimal portfolio for a given expected return is thus called the
mean-variance efficient portfolio.

The mean-variance efficient portfolio characterizes portfolios with minimal variance given the
required expected return r̄p. It is formulated as the following optimization problem
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min σ2
p = w�Σw

s.t. w ∈ RI

w�e = W0

w�E(ξ) ≥ r̄p.

(4.12)

If one plots the standard deviation σp of the solutions of problem 4.12 for all possible values of
r̄p, an efficient frontier is obtained (Figure 4.2). Portfolios that lie on the efficient frontier have the
minimal variance for a given expected return r̄p.

Bounds
�
rmin
p , rmax

p

�
for all possible values of r̄p can be obtained by solving two special portfolio

optimization problems. In order to obtain the upper bound rmax
p , the maximal value of the total

expected return must be found without considering risk. If w∗ is the optimal solution of such
problem,

max w�E(ξ)

s.t. w ∈ RI

w�e = W0,

(4.13)

then rmax
p = w∗�E(ξ).

Similarly, in order to obtain the lower bound rmin
p , the minimal value of the variance must be

found without imposing a target expected return in the constraints of the problem. If w∗ is optimal
solution of such problem,

min w�Σw

s.t. w ∈ RI

w�e = W0,

(4.14)

then rmin
p = w∗�E(ξ).

If one then solves problem 4.12 for all r̄p ∈
�
rmin
p , rmax

p

�
, an efficient frontier similar to the one

on Figure 4.2 is obtained.

4.1.4 Mean-CVaR Efficient Portfolio

In a similar manner, the efficient frontier of other risk measures can be constructed. The mean-CVaR
Efficient portfolio [33, 35] is the solution of the following optimization problem

min α+ (1− β)−1E (z(ξ))

s.t. α ∈ R, w ∈ RI , z ∈ L∞
I,1

z(ξ) ≥ 0

z(ξ) ≥ −w�ξ − α

w�e = W0

w�E(ξ) ≥ r̄p,

(4.15)

where L∞
k,n denotes the space of all Borel measurable functions from Rk to R in n variables.
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Figure 4.2: Example of the efficient frontier with rmin
p = 0.0058 and rmax

p = 0.0163

4.2 Multistage portfolio optimization

In the previous section we have discussed one-stage portfolio optimization. However, this simplified
model does not reflects the reality, where investors dynamically rebalance their portfolio in time.
This is the motivation to define multistage portfolio optimization problems.

4.2.1 Problem description

The classical one-stage portfolio optimization problem can be extended to multistage problems. The
goal of the multistage portfolio optimization problem is to determine the optimal portfolio for a
given finite investment horizon T defined by a set of stages T := {1, ..., T}. After making an initial
investment at time t = 1, the portfolio can be rebalanced at times t = 2, ..., T − 1, and redeemed at
the end of the last period t = T .

Consider a filtered probability space (Rk,F , (F)t∈T,P). Total returns are represented as ξ :=
(ξ1, ..., ξT ), where sub vectors ξt ∈ Rkt are the total returns at time t ∈ T. The history of all the
total returns up to time t is denoted by ξt := (ξ1, ..., ξt) ∈ Rkt , where kt :=

�t
s=1 ks. The decision

about the investment wt(ξt) is made at time t after total returns ξt have been revealed, but before
any future outcomes {ξs}s>t have been observed. We associate with the process of revealing ξt the
corresponding filtration F1 ⊂ ... ⊂ FT of σ-algebras on Rk. Finally, we denote by Pt the probability
distribution of ξt. Note that, the one-stage model can be seen as a special case of the multistage
model where ξT = ξ and kT = k.

We have already mentioned the two main characteristics that describe each investor, greediness
and risk-aversion. Every investor tries to maximize the expected portfolio return while minimizing
its risk. The expected return of a multistage portfolio r̄p could be calculated as the average wealth
at the stage t = T − 1, multiplied by the average returns in the last stage ξT , i.e.,

r̄p = E
�
w�
T−1(ξ

T−1)ξT
�
. (4.16)

Under the assumption that the total returns are stage-wise independent, the expected return can
be written as

r̄p = E
�
w�
T−1(ξ

T−1)
�
E(ξT ). (4.17)
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A much harder problem is the characterization of risk, which we discuss in the following section.

4.2.2 Risk measures

We have already discussed various risk measures for one-stage portfolio optimization problem. We
have seen that good risk measures must satisfy the axioms of coherency. In this section, we will first
extend one-stage coherent risk measures to the multistage coherent risk measures and then present
an additional requirement for characterization of good risk measures termed time consistency.

In the description below, we consider a filtered probability space (Ω,F , (F)t∈T,P) with F1 =
{∅,Ω}. We associate with the process of revealing ξt the corresponding filtration F1 ⊂ ... ⊂ FT

of σ-algebras on Ω. We denote by L∞
t := L∞

T (Ω,F t,P), t ∈ T, the vector space of all bounded
Ft-measurable random variables. Moreover, we define Zt as a space of all Ft-measurable functions
Zt := {Z : L∞

t −→ R}.
Risk in the multistage setting is given by a sequences of mappings ρt : L∞

T −→ L∞
t , t =

1, ..., T − 1, where ρt(X), X ∈ L∞
T , can be understood as an assessment of the downside risk of

position X conditional on the information ξt available at time t.
We will present multistage coherent risk measures through the concept of conditional convex

risk measures.

Conditional convex risk measure: A mapping ρt : L∞
T −→ L∞

t is called a conditional convex
risk measure if it satisfies the following properties. For each X1, X2 ∈ L∞

T :

• Conditional cash invariance: for all mt ∈ L∞
t

ρt(X1 +mt) = ρt(X1)−mt. (4.18)

• Monotonicity: X1 ≤ X2 =⇒ ρt(X1) ≥ ρt(X2).

• Conditional convexity: for all λ ∈ L∞
t , 0 ≤ λ ≤ 1,

ρt(λX1 + (1− λ)X2) ≤ λρt(X1) + (1− λ)ρt(X2). (4.19)

• Normalization: ρt(0) = 0.

Coherent risk measure: A conditional convex risk measure is coherent if it has in addition the
following property:

• Conditional positive homogeneity: for all λ ∈ L∞
t , λ ≥ 0,

ρt(λX1) = λρt(X1). (4.20)

Dynamic convex risk measure: A sequence (ρt)t∈T is called a dynamic convex risk measure if
ρt is a conditional convex risk measure for each t ∈ T.

Time consistent risk measure: A dynamic convex risk measure (ρt)t∈T is time consistent if
any of the following equivalent conditions hold:

• for all t = 1, ..., T − 1 and all X1, X2 ∈ L∞
T

ρt+1(X1) ≥ ρt+1(X2) =⇒ ρt(X1) ≥ ρt(X2). (4.21)

In words, if a portfolio X1 is riskier than portfolio X2 at time t + 1, then the portfolio X1

must be riskier than the portfolio X2 also at time t.
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• for all t = 1, ..., T − 1 and for all X1, X2 ∈ L∞
T

ρt+1(X1) = ρt+1(X2) =⇒ ρt(X1) = ρt(X2). (4.22)

In words, if a portfolio X1 is equally risky as portfolio X2 at time t+1, then the portfolio X1

must be equally risky than the portfolio X2 also at time t.

• (ρt)t∈T is recursive: ρt = ρt(−ρt+s) for all t, s ≥ 0 such that t, t+ s ∈ T.
To illustrate this definition, let us consider a multistage optimization problem and for sim-
plicity we assume that the uncertain parameters are discrete and can be described with the
scenario tree of Figure 3.1. Imagine that we are at the stage t = 2 and at the node 1. It is
clear that all the decisions we make at that node, will only depend on nodes 3, 4 and 5. At
node 1 we already know that it is not possible to reach nodes 6, 7 and 8, and thus we should
not consider them. The same idea holds for all the nodes in the scenario tree. Decisions in
each node must only depend on scenarios that are reachable from the current node.

Even though, the idea of time consistency is quite intuitive, many measures do not satisfy it. A
simple example and comparison of the decisions made with a time consistent and a time inconsistent
risk measure is given in [36]. Note that neither multistage VaR nor multistage CVaR satisfy time
consistency.

The last definition of time consistency is especially useful for construction of time consistent
multi-period risk measure ρ�t from one-period risk measure ρ. Construction is summarized in the
following recursive procedure.

1. ρ�T−1 := ρ

2. For all t = 1, .., T − 2 ρ�t := ρ(−ρ�t+1)

We will use this procedure to construct a time consistent version of CVaR in the next section.
Another approach to introduce time consistent risk measures is through the Bellman’s principle

[40]. It is known that the Bellman’s principle imply time consistency [39].

Bellman’s principle: Let us assume that in every stage t = 1, ..., T we can calculate real valued
loss function ft(xt(ξt), ξt) and objective function Ft(Zt, ..., ZT

��ξt ) : Zt × ... × ZT × Rkt −→ R. To
slightly simplify the notation we denote xt := xt(ξt), t ∈ T. In every stage t ∈ T of a multistage
model, we would like to minimize all the losses that might occur from the current stage t to the
last stage T given the information on all the realisations of the uncertain parameters ξt at time t.
In other words, in every stage t = T, we would like to solve the following optimization problem

min
xt,...,xT

Ft
�
ft(xt, ξt), ..., fT (xT , ξT )

��ξt
�
. (4.23)

It is important to note that each decision rule xτ (ξτ ), τ = t, ..., T is a function of the parameters
ξτ conditional on all the revealed parameters ξt up to time t.

The first stage model t = 1 is defined by

min
x1,...,xT

F1
�
f1(x1, ξ1), ..., fT (xT , ξT )

��ξ1
�
, (4.24)

where we included ξ1 = 1 for consistency. Similarly, the last stage model t = T is defined by

min
xT

FT
�
fT (xT , ξT )

��ξT
�
. (4.25)

The optimal value Vt
�
xt−1, ξt

�
of problem 4.23 is a function of ξt and last decision xt−1. Let us

reformulate problem 4.23 to the following equivalent problem

min
xt

�
inf

xt+1,...,xT

Ft
�
ft(xt, ξt), ft+1(xt+1, ξt+1), ..., fT (xT , ξT )

��ξt
��

. (4.26)
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Proposition 4.2: Optimization problem 4.26 satisfies time consistency if for t = 1, ..., T , the
optimal value inside the parenthesis can be formulated in the form

φt
�
ft(xt, ξt), Vt+1(xt, ξ

t+1)
��ξt

�
, (4.27)

where φt(·, · |·) is a real valued function.
Under Proposition 4.2, problem 4.26 can be formulated as

min
xt

φt
�
ft(xt, ξt), Vt+1(xt, ξt+1)

��ξt
�
. (4.28)

The corresponding dynamic programming equation for last stage t = T is

VT (xT−1, ξ
T ) = inf

xT

FT
�
fT (xT , ξT )

��ξT
�
. (4.29)

Similarly, for t = T − 1, ..., 1 the dynamic equations are

Vt(xt−1, ξ
t) = inf

xt

φt
�
ft(xt, ξt), Vt+1(xt, ξ

t+1)
��ξt

�
. (4.30)

Example 4.1: An example of a time consistent problem is the risk neutral multistage stochastic
programming problem. Consider the following general formulation

min
x1

f1(x1, ξ1) + E
�
inf
x2

f2(x2, ξ2) + ...+ E
�
inf
xT

fT (xT , ξT )

�
...

�
(4.31)

where ξ1 = 1 is written for consistency in the general stochastic programming formulation. The
above optimization problem must be understood in the following way: for a stochastic process
ξ1, ξ2, ..., ξT , in each stage t, we solve the problem

Ft(Zt, ..., ZT

��ξt ) := E
�
Zt + Zt+1 + ...+ ZT

��ξt
�
. (4.32)

By following Proposition 4.2, we can formulate

φt
�
ft(xt, ξt), Vt+1(xt, ξ

t+1)
��ξt

�
:= E

�
ft(xt, ξt) + Vt+1(xt, ξ

t+1)
��ξt

�
. (4.33)

Consequently, the dynamic programming equations are for t = T

VT (xT−1, ξ
T ) = E

�
inf
xT

fT (xT (ξ
T ), ξT )

��ξT
�

(4.34)

and for t = 2, ..., T − 1

Vt(xt−1, ξ
t) = E

�
inf
xt

ft(xt, ξt) + Vt+1(xt, ξ
t+1)

��ξt
�
. (4.35)

Since it is possible to formulate dynamic equations that satisfy Proposition 4.2, the risk neutral
multistage stochastic programming problems in the form 4.31 are time consistent.

4.2.3 Transaction costs

In multistage portfolio optimization, investors are allowed to rebalance their portfolio in every stage.
However, the rebalancing is not free. Thus, the transaction costs (e.g. [12, 42]) must be taken into
account. Imagine that in each stage t, t = 1, .., T − 1, the asset vector wt(ξt) denotes the current
wealth, bt(ξt) the assets bought in this stage and st(ξt) the assets sold in this stage. Without
transaction costs, the portfolio balance can be calculated as

wt(ξ
t) = ξtwt−1(ξ

t−1) + bt(ξ
t)− st(ξ

t). (4.36)
Transaction costs are calculated as a fixed percentage cb (cs) of the assets bought (sold) in each
time period. By including this to equation 4.36, the portfolio balance must satisfy

wt(ξ
t) = ξtwt−1(ξ

t−1) + (1− cb)bt(ξ
t)− (1 + cs)st(ξ

t). (4.37)
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4.2.4 Mean-Variance Efficient Portfolio

If the risk of a portfolio is modeled by its variance, the multistage mean-variance optimization
problem [12] is given as

min w�
T−1(ξ

T−1)ΣwT−1(ξT−1)

s.t. wt ∈ Wt, st ∈ St, bt ∈ Bt t = 1, ..., T − 1

E
�
w�
T−1(ξ

T−1)ξT
�
≥ r̄p

1�b1(ξ1)− 1�s1(ξ1) = W0

(1− cb) b1(ξ1)− (1 + cs) s1(ξ1) = w1(ξ1)

1�bt(ξt)− 1�st(ξt) = 0 t = 2, .., T

wt−1(ξt−1)ξt + (1− cb) bt(ξt)− (1 + cs) st(ξt) = wt(ξt) t = 2, .., T

(4.38)

where the input parameter W0 denotes an initial wealth to invest. We introduced sets

Wt :=
�
wt ∈ Lkt,n : wmin ≤ wt(ξt) ≤ wmax

�
,

St :=
�
st ∈ Lkt,n : 0 ≤ st(ξt) ≤ smax

�
,

Bt :=
�
bt ∈ Lkt,n : 0 ≤ bt(ξt) ≤ bmax

�
,

where bmax ∈ RI and smax ∈ RI denote the maximal amount of assets bought and sold, respectively.
Similarly, wmax ∈ RI and wmin ∈ RI denote the maximal and minimal wealth allowed in each of
the assets, respectively. If short-selling is not allowed, then we must set wmin ≥ 0.

4.2.5 Time Inconsistent Mean-CVaR Efficient Portfolio

The one-stage mean-CVaR portfolio optimization problem can be extended to the multistage setting.
A naive approach for this extension is, instead of considering just loss in one period, to consider the
cumulative loss in all investment periods. Such model can be expressed as the following optimization
problem
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minimize α(ξ1) + (1− β)−1E
�
z(ξT )

�

subject to wt ∈ Wt, st ∈ St, bt ∈ Bt t = 1, ..., T − 1

α ∈ Lk1,1, z ∈ Lk,1

−w�
T−1(ξ

T−1)ξT − α(ξ1) ≤ z(ξT )

0 ≤ z(ξT )

E
�
w�
T−1(ξ

T−1)ξT
�
≥ r̄p

1�b1(ξ1)− 1�s1(ξ1) = W0

(1− cb) b1(ξ1)− (1 + cs) s1(ξ1) = w1(ξ1)

1�bt(ξt)− 1�st(ξt) = 0 t = 2, .., T − 1

wt−1(ξt−1)ξt + (1− cb) bt(ξt)− (1 + cs) st(ξt) = wt(ξt) t = 2, .., T − 1

(4.39)

where we used the definitions of Wt, St and Bt, t = 1, ..., T − 1 from the previous section.

Proposition 4.3: Problem 4.39 is not time consistent.

Proof: In order to proof time inconsistency, we will apply Proposition 4.2. Let us first write the
dynamic programming equations of the problem. For the last investment stage t = T − 1, the value
function VT−1([wT−2, α] , ξT−1) is defined by the optimal value of problem

min (1− β)−1E
��

−w�
T−1(ξ

T−1)ξT − α(ξ1)
�+�

s.t. wT−1 ∈ WT−1, sT−1 ∈ ST−1, bT−1 ∈ BT−1, α ∈ Lk1,1

E
�
w�
T−1(ξ

T−1)ξT
�
≥ r̄p

1�bT−1(ξT−1)− 1�sT−1(ξT−1) = 0

wT−2(ξT−2)ξT−1 + (1− cb) bT−1(ξT−1)− (1 + cs) sT−1(ξT−1) = wT−1(ξT−1).

(4.40)

Similarly, for t = T − 2, ..., 2, value functions Vt([wt−1, α] , ξt) are defined by the optimal value of
problems

min E
�
Vt+1

��
wt(ξt), α(ξ1)

�
, ξt+1

��

s.t. wt ∈ Wt, st ∈ St, bt ∈ Bt, α ∈ Lk1,1

1�bt(ξt)− 1�st(ξt) = 0

wt−1(ξt−1)ξt + (1− cb) bt(ξt)− (1 + cs) st(ξt) = wt(ξt)

(4.41)

and in the first stage t = 1, the corresponding problem is
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min α(ξ1) + E
�
V2

��
w1(ξ1), α(ξ1)

�
, ξ2

��

s.t. w1 ∈ W1, s1 ∈ S1, b1 ∈ B1, α ∈ Lk1,1

1�b1(ξ1)− 1�s1(ξ1) = W0

(1− cb) b1(ξ1)− (1 + cs) s1(ξ1) = w1(ξ1)

(4.42)

Note, that α(ξ1) is a first stage variable. Since the decisions in the last investment stage T − 1
depend on α(ξ1), it is impossible to formulate φt(·, · |·) as required by Proposition 4.2. Note, that
Proposition 4.2 requires that the optimal value in stage T − 1 depends only on decision rules from
stage T − 2, i.e., wT−2, sT−2 and bT−2.

In the next subsection we construct a time consistent version of problem 4.39.

4.2.6 Time Consistent Mean-CVaR Efficient Portfolio

We have already described a procedure to formulate a multistage time consistent risk measure from
one-stage risk measures. In this section, we apply this procedure in terms of dynamic equations.

For the last investment stage t = T − 1, the value function VT−1(wT−2, ξT−1) is defined by the
optimal value of problem

min αT−1(ξT−1) + (1− β)−1EPT

��
−w�

T−1(ξ
T−1)ξT − αT−1(ξT−1)

�+�

s.t. wT−1 ∈ WT−1, sT−1 ∈ ST−1, bT−1 ∈ BT−1, αT−1 ∈ LkT−1,1

E
�
w�
T−1(ξ

T−1)ξT
�
≥ r̄p

1�bT−1(ξT−1)− 1�sT−1(ξT−1) = 0

wT−2(ξT−2)ξT−1 + (1− cb) bT−1(ξT−1)− (1 + cs) sT−1(ξT−1) = wT−1(ξT−1).

(4.43)

If we follow the procedure for the construction of time consistent risk measures, then the value
functions Vt(wt−1, ξt), t = T − 2, ..., 2 are defined by the optimal value of problems

min αt(ξt) + (1− β)−1EPt+1

��
Vt+1

�
wt(ξt), ξt+1

�
− αt(ξt)

�+�

s.t. wt ∈ Wt, st ∈ St, bt ∈ Bt, αt ∈ Lkt,1

1�bt(ξt)− 1�st(ξt) = 0

wt−1(ξt−1)ξt + (1− cb) bt(ξt)− (1 + cs) st(ξt) = wt(ξt),

(4.44)

and in the first stage t = 1 the corresponding problem is

min α1(ξ1) + (1− β)−1EP2

��
V2

�
w1(ξ1), ξ2

�
− α1(ξ1)

�+�

s.t. w1 ∈ W1, s1 ∈ S1, b1 ∈ B1, α1 ∈ Lk1,1

1�b1(ξ1)− 1�s1(ξ1) = W0

(1− cb) b1(ξ1)− (1 + cs) s1(ξ1) = w1(ξ1).

(4.45)
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By combining dynamic equations 4.43, 4.44 and 4.45 into one model and introducing variables zt(ξt),
t = 2, ..., T to avoid expressions [x]+ appearing in the objective function, we obtain the following
problem

min α1(ξ1) + (1− β)−1EP2

�
z2(ξ2)

�

s.t. wt ∈ Wt, st ∈ St, bt ∈ Bt, αt ∈ Lkt,1 t = 1, ..., T − 1

zt ∈ Lkt,1 t = 2, ..., T

E
�
w�
T−1(ξ

T−1)ξT
�
≥ r̄p

1�b1(ξ1)− 1�s1(ξ1) = W0

(1− cb) b1(ξ1)− (1 + cs) s1(ξ1) = w1(ξ1)

−w�
T−1(ξ

T−1)ξT − αT−1(ξT−1) ≤ zT (ξT )

zt(ξt) + αt−1(ξt−1) ≥ αt(ξt) + (1− β)−1EPt+1

�
zt+1(ξt+1)

�
t = 2, ..., T − 1

zt(ξt) ≥ 0 t = 2, ..., T

1�bt(ξt)− 1�st(ξt) = 0 t = 2, .., T − 1

wt−1(ξt−1)ξt + (1− cb) bt(ξt)− (1 + cs) st(ξt) = wt(ξt) t = 2, .., T − 1.

(4.46)

Proposition 4.4: Problem 4.46 is time consistent.

Proof: Since problem 4.46 is obtained from dynamic equations 4.43, 4.44 and 4.45, we have to
show that they satisfy Proposition 4.2. For each stage t = 1, ..., T−2, we can formulate the objective
function as

φt
�
ft(wt, ξt), Vt+1(wt, ξ

t+1)
��ξt

�
= αt(ξ

t
��ξt ) + (1− β)−1EPt+1

��
Vt+1(xt(ξ

t), ξt+1)− αt(ξ
t)
�+ ��ξt

�
.

(4.47)
Thus, problem 4.46 is time consistent.

4.3 Portfolio optimization as stochastic programming

Since portfolio optimization problems are stochastic programs, they can all be approximated with
scenario tree approximation and polynomial decision rule approximations.

Scenario tree approximation

Multistage mean-variance portfolio optimization with scenario tree approximation has been ad-
dressed in [12] and time inconsistent mean-CVaR in [15]. We have not found any work addressing
time consistent mean-CVaR with scenario tree approximation.

Decision rule approximations

Instead of using scenario tree approximation, it is also possible to use polynomial decision rule
approximations. Note, that the recourse matrix A depends on the uncertain parameters ξ and thus
our extension from Chapter 3 is needed to tackle such problems. Portfolio optimization problems
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discussed in this chapter do not satisfy Assumption 3.2*, which is required for polynomial decision
rule approximations. In order to avoid this problem, we have to determine bounds on each uncertain
parameter ξ (i.e. return). We propose two approaches:

1. Under the assumption that returns are normally distributed, we can define the bounds as the
γ and 1− γ percentiles of the return distribution.

2. If historical data is available, we can define the bounds as the minimal and the maximal return
observed in the history.

Denote by ξmin
i and ξmax

i the minimal and the maximal value of the uncertain parameter ξi i =
1, ..., k obtained with any of the above approaches, respectively. We can then formulate a compact
semi-algebraic set Ξ in two ways.

1. For each ξi, i = 1, ..., k, we define two constraints, ξi − ξmin
i ≥ 0 and ξmax

i − ξi ≥ 0. In this
case, the functions that define the compact semi-algebraic set Ξ are all linear. By considering
equation 2.22, we can see that this definition of constraints is most useful when the degree of
the polynomial decision rules d is odd. In this case d− dr, r = 1, ..., 2k, is always even and no
degree is lost by the floor function.

2. For each ξi i = 1, ..., k we define one constraint (ξi − ξmin
i ) (ξmax

i − ξi) ≥ 0. In this case,
the functions that define the compact semi-algebraic set Ξ are all quadratic functions. By
considering equation 2.22, we can see that this definition of constraints is most useful when
the degree of the polynomial decision rules d is even. In this case d−dr, r = 1, ..., k, is always
even and no degree is lost by the floor function.

Another deviation from the stochastic programming problems in Chapter 3 is the existence of
expectation in the recourse matrix. This can be solved by replacing elements of the monomial
vector Bd(ξ) that include expectation with the corresponding elements of the moment matrix Md.



Chapter 5

Numerical evaluation

In this chapter we evaluate the models we developed in the previous chapters for two concrete
problems. The first problem is an electricity capacity expansion problem and the second is the
portfolio optimization problem.

We have discussed in the previous chapters that the approximation of the solution of every
stochastic programming problem is obtained in two steps:

1. Approximation of an SP problem with a tractable SDP problem (preprocessing): Preprocess-
ing was implemented in Matlab 2010b while using optimization toolbox Yalmip [41].

2. Solving the SDP problem: Two state of the art solvers SDPT3 [20, 21] and Sedumi [22] were
used for this purpose.

For both concrete problems, Monte Carlo Simulation [47] was used to evaluate the moment matrix
Md. All numerical evaluations were conducted on a 3.20GHz, Intel Core i5 CPU 650 machine with
8GB of RAM.

Let us now focus on each of the concrete problems separately.

5.1 Electricity capacity expansion model

5.1.1 Problem description

Electricity capacity expansion model is the first concrete problem that we tested the polynomial
decision rule approximations on. The model is taken from [30]. Imagine that we are given five
regions R = {1, 2, 3, 4, 5} with uncertain electricity demand δr, r ∈ R. In each of the regions 1, 3
and 5 there is one power plant denoted by N = {1, 2, 3}, respectively. Each of the power plants can
produce up to gn units of energy at uncertain costs ζn, n ∈ N . In order to distribute energy among
the regions, some directed transmission lines M = {1, 2, 3, 4, 5} with maximal capacity of fm units
of energy are used (Figure 4.2).

The problem that we would like to solve is designed as a two-stage stochastic model. In the
first stage, we have to decide which of the existing power plants and transmission lines should be
extended. Each power plant N = {1, 2, 3} can be extended by a factor 1 + un, un ∈ [0, 1], at unit
cost cn. Similarly, each of the transmission lines M = {1, 2, 3, 4, 5} can be extended by a factor
1 + vm, vm ∈ [0, 1], at unit cost dm. In the second stage, after the uncertain parameters, i.e. the
demand for each region δr, r ∈ R and the operating costs for each power plant ζn, n ∈ N , are
revealed, the power plants are put into operation. Thus, we must decide on the number gn of units
of energy each power plant N ∈ {1, 2, 3} must produce and on the number fm of units of energy that
will be transmitted through each transmission line M∈{1, 2, 3, 4, 5} in order to satisfy the demand
for each region R = {1, 2, 3, 4, 5} almost surely.

The objective is to minimize the expectation of sum of all the expansion and the operating costs.
Model that mathematically describes the reasoning above is given by

57
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Figure 5.1: Electricity capacity expansion model.

Parameter Value Parameter Value
gn 3.5, ∀n ∈ N δ1 [0.3, 1.5]
fn 3.5, ∀n ∈ M δ2 [0.36, 1.8]
c1 1.0 δ3 [0.42, 2.1]
c2 0.4 δ4 [0.48, 2.4]
c3 1.5 δ5 [0.54, 2.7]
d1 5.0 ζ1 [0.2, 1]
d2 0.2 ζ2 [0.2, 0.5]
d3 0.4 ζ3 [1, 2]
d4 0.6
d5 0.1

Table 5.1: Model parameters.

min
�

n∈N cnun +
�

m∈M dmvm + E(
�

n∈N ζngn(ξ))

s.t. u ∈ R3, v ∈ R5, g ∈ L8,3, f ∈ L8,5

0 ≤ un ≤ 1 ∀n ∈ N

0 ≤ vm ≤ 1 ∀m ∈ M

0 ≤ gn(ξ) ≤ gn(1 + un) ∀n ∈ N

0 ≤ fm(ξ) ≤ fm(1 + vm) ∀m ∈ M

g1(ξ) + f1(ξ) ≥ f2(ξ) + δ1

f2(ξ) + f4(ξ) ≥ δ2

g2(ξ) ≥ f1(ξ) + f3(ξ) + δ3

f3(ξ) + f5(ξ) ≥ f4(ξ) + δ4

g3(ξ) ≥ f5(ξ) + δ5






P− a.s.

(5.1)

where ξ = (δ, ζ). Values for each parameter are shown in Table 5.1.
The objective function sums up power plant and transmission lines expansion costs and costs
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Degree LB preproc. LB solving UB preproc. UB solving
1 2 s 1 s 4 s 1 s
2 2 s 16 s 5 s 8 s
3 10 min 21 s 1h 57 min 29 s 1 min 20 s 14 min 4 s
4 10 min 25 s / 1 min 23 s 28h 34 min 50 s

Table 5.2: Preprocessing and solving time.

to produce the demanded amount of energy. The first two constraints limit the maximal possible
expansion of the power plants and transmission lines. The third constraint ensures that production
of each power plant does not exceed its capacity. Similarly, the fourth constraint ensures that energy
transmitted through each of the transmitting lines does not exceed its capacity. Note that energy
can only be transmitted in one direction. The last five constraints ensure that for each region the
inputs of electricity are bigger than or equal to the sum of outputs and consumption.

5.1.2 Results

We approximated the electricity capacity expansion model for different degrees of polynomial de-
cision rules d with both state of the art solvers, SDPT3 and Sedumi. The results obtained from
each solver and the time needed to solve the problem were not significantly different. Thus, we will
not make any distinction between the solvers. However, for the upper bound approximation with
polynomial decision rules of the degree d = 4, we only obtained a result with Sedumi. SDPT3, after
a few iterations, reported numerical problems and was not able to give a reasonable solution. None
of the solvers was able to give a reasonable lower bound approximation for polynomial decision rules
of the degree d = 4.

In Table 5.2 we present the time needed to approximate the SP problem with a tractable SDP
problem (preprocessing) and the time needed to solve the problem. We noticed that the increase
of the preprocessing time is much smaller than the increase in solving time, as the size of the input
parameters increases.

We present Table 5.2 in a graph (Figure 5.2). Note, that we used an exponential scale to
represent time. We can clearly see the exponential growth of the solving time for both the upper
and the lower bound approximation as the degree of the polynomial decision rules d increases.
Moreover, we can see that the preprocessing time changes significantly only every odd degree. The
most time consuming part in the preprocessing is the construction of matrices Y (the definition in
Proposition 3.4), which only change size every odd degree.

Table 5.3 shows the optimal solutions for the lower and the upper bound approximation for each
degree d. The error is calculated by the following equation

Errord =
UBd − LBd

0.5(UBd + LBd)
. (5.2)

Since we did not obtain a lower bound solution for d = 4, we used the lower bound solution from
d = 3, for the purpose of the error calculation, instead. The same problem has been approximated
with linear and piecewise linear decision rules and an error of 41% and 16%, respectively, was
reported in [30]. We can thus see that, for this example, even the quadratic polynomial decision
rules outperform the piecewise linear decision rules.

Figure 5.3 depicts the optimal solutions for each degree d in a graphical form. We can clearly see
how increasing the degree d improves the approximation of both, the lower and the upper bound,
problems.

In all calculations we used the findings described in the end of the previous chapter. If the degree
of the polynomial decision rules d was odd, then compact semi-algebraic set Ξ, was defined by linear
functions. Similarly, if the degree of the polynomial decision rules d was even, then the compact
semi-algebraic set Ξ, was defined by quadratic functions. Without this approach, approximations
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Figure 5.2: Preprocessing and solving times.

Degree Lower bound Upper bound Error
1 2.024 3.053 41%
2 2.398 2.737 13%
3 2.483 2.717 9%
4 / 2.663 7%

Table 5.3: Optimal solutions.
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Figure 5.3: Optimal solutions.
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US stocks Int stocks Corp bnd Gvnt bnd Cash
Mean 10.80 10.37 9.49 7.90 5.61
STD 15.72 16.75 6.57 4.89 0.70

US stocks Int stocks Corp bnd Gvnt bnd Cash
US stocks 1.00 0.601 0.247 0.062 0.094
Int stocks 0.601 1.00 0.125 0.027 0.006
Corp bnd 0.247 0.125 1.00 0.883 0.194
Gvnt bnd 0.062 0.027 0.883 1.00 0.27

Cash 0.094 0.006 0.194 0.27 1.00

Table 5.4: Expected return, standard deviations and correlation matrix.

US stocks Int stocks Corp bnd Gvnt bnd Cash
Minimal value -70.93 -76.72 -25.16 -17.52 1.97
Maximal value 92.53 97.46 43.16 33.32 9.25

Table 5.5: Bounds for the returns.

would only improve for every even (in case of the quadratic formulation) or every odd degree (in
case of the linear formulation).

5.2 Portfolio optimization

In this section we validate single and multistage portfolio optimization problems. Based on our
experience from the previous section, we expect that it would be illusionary to expect to obtain
precise solutions when tens of assets are included in the portfolio. Thus, instead of using stocks and
bonds directly, we decided to use indexes to represent the assets. We used real data obtained from
[49]. Stock were divided into US stocks (represented by the MSCI US index) and international stocks
(represented by the MSCI EAFE&C index). Bonds were similarly, grouped into US Corporate Bonds
(represented by the Salomon Brothers US Corp Bnd index) and US government bonds (represented
by the Salomon Brothers US Corp Bnd index). We used 3 month Treasury notes (represented by
the GP Morgan US 3M index) for cash. For the further argumentation, we assume that returns are
normally distributed. Expected return, standard deviation and correlation matrix for all the assets
are given in Table 5.4.

Transaction costs cb and cs are set to 1%. In order to get bounds for each of the uncertain
returns, the first approach described in Section 4.3 was applied with parameter γ = 10−7. Bounds
for each asset are given in Table 5.5. In all the following calculations, we used the findings described
in Section 4.3. If the degree of the polynomial decision rules d was odd, then compact semi-algebraic
set Ξ, was defined by linear functions. Similarly, if the degree of the polynomial decision rules d
was even, then the compact semi-algebraic set Ξ, was defined by quadratic functions.

5.2.1 Single-stage Portfolio Optimization

We start our discussion with a single-stage mean-CVaR portfolio optimization problem. We first
show how the approximation error changes with a degree of polynomial decision rules d, requested
portfolio return r̄p and parameter β (equation 3.72). In Table 5.6 we first present errors for β = 0.9,
r̄p = 0.1 and all possible degrees d that we were able to obtain a reasonable solution for. We can
see that polynomial decision rules significantly improve the solution, i.e., from an error of 24% for
d = 2 to an error of 5%. A similar result was obtained for β = 0.95, r̄p = 0.1 and all possible degrees
d that we were able to obtain a reasonable solution for. Note, however, that in case of β = 0.95,
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Degree Lower bound Upper bound Error
2 4.89 -20.93 25.82
3 1.28 -16.39 17.67
4 -6.24 -10.93 4.69

Degree Lower bound Upper bound Error
2 0.02 -34.96 34.94
3 -1.24 -25.97 24.73
4 -7.86 -15.45 7.59

Table 5.6: Errors for r̄p = 0.1 and β = 0.9 (left) or β = 0.95 (right).

Degree Lower bound Upper bound Error
2 5.51 -4.13 9.64
3 4.69 -2.73 7.42
4 2.82 0.01 2.81

Degree Lower bound Upper bound Error
2 4.33 -10.06 14.39
3 3.24 -6.66 9.90
4 2.82 -2.44 5.26

Table 5.7: Errors for r̄p = 0.08 and β = 0.9 (left) or β = 0.95 (right).

the error is bigger than for β = 0.9. This can be explained through the VaR values which in our
case correspond to the 1−β percentiles of the normal distribution. For β > 0.5, the larger β is, the
more its change affects the VaR value and consequently the CVaR value. Thus, it is more difficult
to find a good approximation.

In Table 5.7, a similar test was performed for portfolio returns r̄p = 0.08. We see that by
decreasing the expected portfolio return r̄p, also the error decreases. It is clear that a portfolio
with smaller expected return consists of less risky assets and consequently has tighter bounds for
the portfolio return. Tighter bounds and smaller standard deviation of the return lead to a more
precise result.

In the rest of this section, we only focus on polynomial decision rules of degree d = 4, since they
give the best results we were able to obtain. Figures 5.4, 5.5 and 5.6 show efficient frontiers for
β = 0.9, β = 0.95 and β = 0.99, respectively.

Note that only the upper bound solution is feasible and can therefore be implemented. From
the definition of CVaR in Section 4.1.2, it is expected that a higher β will have higher CVaR values.
This is clearly visible in Figure 5.7. Moreover, note that CVaR increases as the required expected
return increases. The main reason for this phenomena is that CVaR is a risk averse measure, which
increases if standard deviation of the portfolio increases. It is clear that investing in assets with
higher standard deviation leads to more risky portfolios.

In order to investigate the errors more in detail, we have to consider the nature of the function
used to calculate the CVaR value. The function inside the expected value is a piecewise linear
function in Rk, where the kink appears as the function reaches 0. Parameter α(ξ1) is a constant
and thus only shifts the function up or down. To graphically support this reasoning, we plot z(ξ)
for a simplified problem where only two assets (US stocks and International stocks) are available
as shown in Figure 5.9. Similarly, Figure 5.9 shows z(ξ) from the top, where colours are used to
represent the values of z(ξ). From those figures it is clearly visible that z(ξ) is a piecewise linear
function with a kink approximately at ξ1 = 1.92 − ξ2. Piecewise linear functions are difficult to
approximate by polynomial functions of low degrees and this is the main reason for relatively high
errors even for the single-stage portfolio optimization problem. Note, however, that polynomial
decision rules gave us a good approximation for the kink. Detection of the kink is very important
if piecewise linear decision rules are used. Thus, a combination of polynomial decision rules and
piecewise linear decision rules could lead to good approximation results. We list this idea as one of
the directions for the future work.
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Figure 5.4: Mean-CVaR efficient frontier for β = 0.9.
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Figure 5.5: Mean-CVaR efficient frontier for β = 0.95.
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Figure 5.6: Mean-CVaR efficient frontier for β = 0.99.
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Figure 5.7: Upper bound approximations for β = {0.9, 0.95, 0.99} .
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Degree LB UB Error LB - single UB - single Error
2 9.36 -57.68 67.04 4.57 -34.95 39.52
3 / -26.40 35.76 / -14.20 18.77

Degree LB UB Error LB - single UB - single Error
2 8.11 -66.92 75.03 3.98 -42.48 46.46
3 / -40.03 48.14 / -22.56 26.54

Table 5.8: Errors for r̄p = 0.1 and β = 0.9 (top) or β = 0.95 (bottom).

Degree LB UB Error LB - single UB - single Error
2 10.89 -17.6 28.49 5.30 -9.23 14.52
3 / -5.04 15.93 / -2.55 7.85

Degree LB UB Error LB - single UB - single Error
2 10.94 -22.16 33.10 5.32 -11.77 17.09
3 / -11.76 22.70 / -6.06 11.38

Table 5.9: Errors for r̄p = 0.08 and β = 0.9 (top) or β = 0.95 (bottom).

5.2.2 Multistage portfolio optimization

Analysis of the numerical results for the multistage portfolio optimization problems is structured in
a similar way. We were only able to obtain results for multistage portfolio optimization problems
with two investment periods, i.e. T = 3, because portfolio optimization problems with more stages
turned out to be infeasible for polynomial decision rules of small degrees.

We first show how the approximation error changes with a the degree of polynomial decision
rules d, requested portfolio return r̄p and parameter β (equation 3.72). In Table 5.8 we present
errors for β = 0.9, r̄p = 0.1 and all possible degrees d, for which we were able to obtain a reasonable
solution. Note that only solutions of degree 2 for the lower bound and up to degree 3 for the upper
bound approximation were obtained. For higher degrees, SDP solvers reported numerical problems.
We can again see that polynomial decision rules of higher degrees significantly improve the solution,
i.e., from an error of 67% for d = 2 to an error of 36% for d = 3. A similar result was obtained
also for β = 0.95, r̄p = 0.1 and all possible degrees d, for which we were able to obtain a reasonable
solution. The values were expected and a similar reasoning than in the previous section can be
applied.

Since CVaR is calculated for two investment periods, we have to calculate the corresponding
one-stage CVaR, in order to compare solutions from the single and multistage portfolio optimization
problems. The corresponding one-stage CVaR r1 is calculated from the multistage CVaR r2 as

r1 =
√
1 + r2 − 1. (5.3)

The corresponding lower and upper bound values are shown in Tables 5.8 and 5.9. We can see that
the errors for the multistage portfolio optimization problem are much bigger than the corresponding
single-stage errors. Note, that we obtained error smaller than 10% only for β = 0.9 and r̄p = 0.08.

In the rest of this section we only focus on polynomial decision rules of the degree d = 3 for the
upper bound and polynomial decision rules of degree d = 2 for the lower bound approximation, since
they gave us the best approximations we were able to obtain. The efficient frontiers for different β
are shown on Figures 5.10, 5.11 and 5.12. The shape of the functions is similar to one-stage portfolio
optimization problems. Note, however, that the lower bound approximation is worse, because the
degree of the polynomial decision rules d = 2 is very small.
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Figure 5.10: Mean-CVaR efficient frontier for β = 0.90.
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Figure 5.11: Mean-CVaR efficient frontier for β = 0.95.
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Figure 5.12: Mean-CVaR efficient frontier for β = 0.99.

On Figure 5.13 all upper bounds are shown together. We can again, as expected, see that higher
βs lead to higher CVaR values.

In order to explain the main reasons for the errors obtained, we again have to consider the nature
of the function used to calculate CVaR and the constraints. The objective function of the multistage
stage problem is equal to the objective function of the single-stage problem. Note, however, that in
the multistage case additional constraints

zt(ξ
t) + αt−1(ξ

t−1) ≥ αt(ξ
t) + (1− β)−1EPt+1

�
zt+1(ξ

t+1)
�

(5.4)

t = 2, ..., T − 1 appear. Functions zt(ξt) are thus general piecewise functions and not piecewise
linear functions as in the single-stage case. Side view and the top view of the function z2(ξ) for a
simplified problem where only two assets, US stocks and International stocks, are used, and two
investment periods, i.e. T = 3, are considered, is given on Figures 5.14 and 5.15. We know that
α1(ξ1) ∈ R. The side and the top view of the function α2(ξ2) is shown on Figures 5.16 and 5.17,
respectively. The kink in the function z2(ξ) is again clearly visible. Since we do not know anything
else about the optimal functions zt(ξt), it is thus difficult to estimate the error from this source
more precisely. Based on the figures presented, one could argue that the error must be relatively
small, because functions z2(ξ2) and α2(ξ2) clearly resemble the piecewise linear and linear function,
respectively, even though the degree of polynomial decision rules is high enough to allow more
flexibility. However, this is only a speculation, because there is no theoretical evidence to support
this reasoning.

Consider now the constraints

wt−1(ξ
t−1)ξt + (1− cb) bt(ξ

t)− (1 + cs) st(ξ
t) = wt(ξ

t), (5.5)

where t = 2, .., T − 1. Note that all decision rules in this equation are of degree d − 1 due to
Assumption 3.4. Thus, the first term is the only term of degree d and all other therms are of
degree d− 1. Since the polynomial equality must hold for all ξt ∈ Ξ, the vector-valued polynomial
must vanish identically on a set with nonempty interior Ξ. This is possible if and only if all the
coefficients of the polynomial vanish. Since only the first term is of degree d and the other terms
are of degree d− 1, all coefficients of degree d− 1 of the decision rule wt−1(ξt−1) must be 0. Thus,
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Figure 5.13: Upper bound approximations for β = {0.9, 0.95, 0.99} .

wt−1(ξt−1) is actually of degree d − 2. By recursively applying a similar reasoning, we can see
that decision rule wt−2(ξt−2) is of degree d − 3 etc. In case of multistage portfolio optimization
problems with two investment periods, for example, w1(ξ1) is of degree d − 2 and w2(ξ2) is of
degree d − 1. Note, that for portfolio optimization problems with three investment periods, the
minimal degree d = 3 of polynomial decision rules is needed in order to obtain a feasible problem.
This explains the infeasibility detected for the multistage portfolio optimization problem with three
investment periods, i.e. T = 4, which we mentioned in the beginning of this section. Since the
degree of polynomial decision rules actually decreases in each stage, this has severe effects on the
approximation quality. Lower bound solutions presented in this section are, for example, actually
constants, i.e. polynomial functions of degree 0, which clearly does not give enough flexibility to
obtain good approximations.
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Figure 5.14: Optimal function z2(ξ) when only two assets, US stocks and International stocks, are
used - side view.
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Figure 5.15: Optimal function z2(ξ) when only two assets, US stocks and International stocks, are
used - top view.
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Figure 5.16: Optimal function α2(ξ) when only two assets, US stocks and International stocks, are
used - side view.
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Figure 5.17: Optimal function α2(ξ) when only two assets, US stocks and International stocks, are
used - top view.
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Chapter 6

Conclusions

We started this work by introducing tractable deterministic optimization problems, namely linear
programming and semidefinite programming. We analyzed polynomial optimization techniques pro-
posed by Parrilo, Putinar, Lasserre, Schmüdgen etc. in order to determine their assumptions and
consequently their usability for stochastic programming problems. Two approximation techniques
for tackling multistage stochastic problems were analyzed. We showed that scenario tree approxima-
tion leads to a tractable linear programming problem, but its complexity grows exponentially with
the number of stages of the original stochastic programming problem. Moreover, there is no means
for estimating the suboptimality of solutions. On the other hand, decision rule approximations
grow only quadratically with the number of stages of the original stochastic programming problem,
and Kuhn’s lower bound approximation formulation, gives a tractable approach to estimate the
approximation error. Linear decision rule approximations lead to a tractable linear programming
problem and polynomial decision rules lead to a tractable semidefinite programming problem. Un-
fortunately, the existing, state of the art semidefinite programming solvers are still not robust and
relatively slow. Thus, they are considered to be a bottleneck when stochastic programming with
polynomial decision rules is applied on real-life problems. In this work we proposed an extension,
which widens the spectrum of problems that can be solved by polynomial decision rule approxima-
tions. We released an assumption that the recourse matrix must be independent of the uncertain
parameters and instead model it as polynomial functions of the uncertain parameters. This en-
ables polynomial decision rule approximations to be applied on some important problems, such as
portfolio optimization. Moreover, we released Bampou’s assumption that polynomial decision rules
must be of an even degree and formulate upper and lower bound approximations, which hold for
polynomial decision rules of all degrees.

We then described single and multistage portfolio optimization problems, where the main focus
was on the risk measures. We explained axioms of a coherent risk measure and listed the advantages
and disadvantages of the most used risk measures, such as variance, value at risk and conditional
value at risk. We then extended single-stage risk measures the the multistage setting. We showed
why time consistency is an important property of the risk measures and proved that multistage
conditional value at risk is not time consistent. Additionally, we also proposed its time consistent
alternative.

We then showed how polynomial decision rule approximations perform on electricity capacity
expansion problem. An approximation error of 6% was obtained, which is precise enough for many
real life applications. We numerically evaluated also single and multistage portfolio optimization
problems. An approximation error of a few percents was obtained for the single stage and an
error around 20% for the multistage setting. Since multistage stochastic problems are generally
computationally intractable even when only medium-accuracy solutions are required [11], this is a
relatively small approximation error, even though it is still not good enough for real life applications.
We explained the main sources of the error and suggest how a combination of polynomial and
piecewise linear decision rules could be used together in order to obtain even better approximations.
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6.1 Future Direction of Research

In this section we present some possible extensions of this work.

• Weierstrass theorem tells us that any continuous function on a closed and bounded interval
can be uniformly approximated on that interval by polynomials to any degree of accuracy.
Approximation theory claims that the orthogonal polynomials approximate functions better
than the polynomials with an ordinary basis. If f(ξ) ∈ Lk,n and p(ξ) : Rk −→ R a real valued
polynomial, then our goal is to minimize the approximation error |f(ξ)− p(ξ)|. It is known
that one can obtain polynomial p(ξ) very close to the optimal one by expanding the function
f(ξ) in terms of Chebyshev polynomials. We thus believe that by using orthogonal Chebyshev
polynomials, one could obtain better approximations. The biggest challenge of this extension
is to determine multivariate orthogonal polynomials over a bounded closed semi-algebraic set
Ξ. Such orthogonal polynomials would then replace the current vector of monomials Bd(ξ).
Note, that this approach does not at all change the computational complexity of the problem
and a better approximation is obtained for free.

• Another approach that could improve the approximation quality for some problems is using
trigonometric decision rules instead of polynomial ones. If the optimal solution of the stochas-
tic programming problem is a periodic function, then it can be approximated by a sum of a
set of trigonometric functions as given by the Fourier series. This approximation also leads to
a tractable semidefinite programming problem.

• We showed that single-stage CVaR is a piecewise linear function and thus, we expect piecewise
linear decision rules to outperform polynomial decision rules, if the parameters of the piecewise
linear decision rules are chosen precisely. Polynomial decision rules turned out to be useful for
the kink detection, which is one of the most cumbersome parameters when piecewise linear
decision rules are applied. We believe that such combination of a polynomial decision rules
are piecewise linear decision rules could lead to better approximations of single-stage portfolio
optimization problems.

• We showed that multistage CVaR is a piecewise function and thus, it is expected that piecewise
polynomial decision rules would outperform the ordinary polynomial decision rules, if the
parameters of the piecewise polynomial decision rules are chosen precisely. The main challenge
in this extension is to formulate upper and lower bound approximations by using piecewise
polynomial decision rules and determine good input parameters of such piecewise polynomial
decision rules.
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