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Abstract

Over the past few years, computer vision and modern games have been increasingly
crossing paths. Virtual reality has hit consumer markets on modern, camera-wielding smart
phones while critically-acclaimed innovations, such as the Microsoft Kinect, have meant that
games consoles have started to forgo traditional game-pad input devices, and moved into the
realm of using the player themselves as input.

However, no research has been done into applying computer vision on the games them-
selves. Many bold statements have been said about the progress computers have made in
challenging human players. Fundamentally however, they are flawed, as they all assume the
AI can interact with the game through pre-built interfaces - an abstraction level not available
to people.

In this project I plan to level the playing field. I create a framework that allows the user
to easily write software with the ability interface with games in the same way as humans - by
observing the screen. It provides a platform-independent way to parse game state through
the use of computer vision and input commands using the game’s traditional methods - game-
pads or keyboards/mice. The project aims to showcase the feasibility of such an approach
and I demonstrate this with a number of working examples.
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Chapter 1

Introduction

1.1 Objective

The high-level objective for GameScripter is to create a framework which can interact with
games like a human, for the purpose of playing the game, or augmenting the users actions in
the game.

Unlike all current implementations of AI for games, which interact with the game through
an application programming interface (API), this system will strive to interact with the game
in exactly the same way as a human user. It will see the game in the same way as a human
user; it will try to derive meaning from the output on the screen. It will also interact with
the game in the same way; not through an interface provided by the game, but through an
imitated mouse and keyboard on the PC, or an imitated game pad if on a console.

The idea behind the framework is to provide the user a system, controlled through a simple
scripting language, which will allow them to create ”GameProfiles” which run alongside the
game. These will allow the user to write ”rules” on how the system should parse the game
state and react to game events.

1.2 Motivation

The greatest motivations of this project is that something like this has never been tried before.
There have been only a limited number of successful projects creating software which is able
to play games - the only viable projects are the variety of poker bots in existence which are
designed to just play poker. However, as will be discussed in chapter 2:Background, these
are of very limited scope and very prone to small changes in the game design. By using more
advanced computer vision and machine learning techniques I hope to achieve a single piece
of software that will be more adaptable and completely platform independent - it will work
with PCs, games consoles, and in fact any games hardware.

The main area of research of this project involves computer vision alongside some machine
learning. With the rise of powerful hardware and better algorithms, both these areas are
rapidly expanding into exciting new fields, moving out of the 2 or 3 industries which they
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have been prevalent in the past decade: medical imaging, machine vision in industry and
military applications.

• Google revealed it has been testing self-driving cars on public roads for over a year now.
These make extensive use of video cameras, which are complemented by radar sensors
and lasers, to pilot the cars in busy traffic.

• CCTV is common-place now and there are commercial systems available that analyse
the images and inform users of potential threats such as unattended bags.

• Movie studios are using computer vision to capture actor expressions and translate
them into animated character expressions.

• Even the rapid rise of smart-phones has led to novel new ways to use computer vision
to exploit on-board cameras and processing power. Augmented reality applications
such as Layar can overlay 3D images over the terrain in real-time. Other applications
are more useful and provide a valuable tool to their users, such as Word Lens which
is able to read written text, translate it and then super-impose the translated text in
real-time1.

The motivation behind applying computer vision and machine learning to games instead
of the real environment are:

• Computer games are a more constrained environment - you no longer have to worry
about the deficiencies and imperfections of cameras and camera lenses.

• You can set up the environment as you want it; consistent and easily reproduce-able.

• Getting data to test on from a computer game is far simpler than having to use cameras
and film. This is important when I will be investigating machine-learning which will
require large datasets.

• All this makes automated testing and analysing results easier for evaluation

This project could bring a lot interesting possibilities further down the line. As the
software will interact with games in an identical way to humans, then in theory it would
be impossible to detect. Unlike other tools used by people who wish to cheat and boost
their gaming ability, such as aim-bots (see subsection 2.1.3:Cheating in Modern Games), this
software will not exploit bugs in the games or modify them in anyway. The credibility of
scores in online games would diminish as nobody will be sure they have been achieved without
the help of any tools. This would be true even on the traditional safe-havens; consoles. At
the moment cheating through the use of 3rd party tools is rare on consoles, as they are vendor
locked down and only manufacturer-approved and signed applications can be run on them.
The only way to run 3rd party home-brew applications is to modify the consoles, either in
software or often physically with a mod-chip2. Often this results in the banning of consoles
from playing online, due to possible piracy and cheating.

1http://questvisual.com/
2http://www.gamerlaw.co.uk/2010/01/are-modchips-illegal.html
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1.3 Challenges and issues to be solved

As will be discussed in the background section, there is very little research into the area
of software playing games, so I believe this project is breaking new ground. The project is
very open-ended, and with no comparisons available, I decided to take an iterative approach.
I started from simple 2D games and built towards creating a framework that will be able
to handle complicated, photo-realistic 3D games. I have managed to produce a framework,
which I believe shows that this goal is certainly possible, for at least a subset of some of the
most popular games available.

The project relies much on computer vision and investigates the use of machine learning,
so I was able to refer to papers on these subjects. However, the task is not a simple one - there
exist entire PhD papers on matters which I need to be able to solve efficiently - e.g. object
detection. Throughout the project I tried to gather and effectively use as many of these
existing resources, usually choosing to use or implement an existing algorithm rather than
designing my own. This has resulted in a wide-variety of tools available to a GameScript,
which helps increase capability of the tool to work over a wider variety of games.

I also had to take into consideration performance. The best performing algorithms in
terms of accuracy, tend to be the slowest too. For turn-based games this may be less of an
issue, but most games are real-time where reaction speed counts! Where applicable I tried to
investigate, and test various algorithms, often switching between multiple algorithms when
necessary.

Throughout the report I will also discuss what type of games lend themselves to computer
vision analysis, and which ones are more difficult.

The software also aims to be completely platform-independent. It works well on it’s
development platform - a standard PC, but it should also work with consoles such as the
Nintendo Wii and Sony Playstation 3. GameScripter runs on the PC, but with the ability
to connect the output from the console to the PC (in the form of video, usually connected
to a TV) game state can be parsed in the same way as if the game was running on the host
platform. I chose to use the Playstation 3 as a proof of concept.
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Chapter 2

Background

My project is pretty unique in that there is little research available in the area of computers
observing and playing games through the use of computer vision. While there is vast amounts
of research on the use of machine-learning and AI in games, it all involves the use of low-level
API access to the game, where the AI has easy access game state. Research in computer
vision in games is limited to actually observing the player themselves rather than the game,
and using that as input to the game. The widely successful Microsoft Kinect1 uses this
concept.

I will investigate the techniques used in the real world and see their applicability to 2D
and 3D games. The project has a few very distinct areas which I have split up into their own
sections:

• Existing solutions

• Domain Specific Languages

• Platforms

• Computer Vision and Machine Learning

I have put background information on computer vision and machine learning under sepa-
rate, smaller background sections in chapter 4:GameProfiles. I felt that there, they provided
more clarity and context.

2.1 Existing Solutions

2.1.1 AI in games

Many games appear to have very advanced AI, however most of the time, this is just an
illusion[1]. AI built into games has the advantage of being able to access all possible game-
state, including state unavailable to a human opponent. In many cases this gives them a

1http://www.xbox.com/en-GB/kinect
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massive advantage over a human player. Some games take it further and actually cheat the
game mechanics; e.g. giving themselves more money than human players. Finally, as the AI
is constricted to a single game, it tends to be very scripted through the use of finite state
machines and decision trees where every the action needs to programmed for all possible
scenarios[2]. It will be unrealistic for my system to just ”learn” how to play any games with
complex rules; like AIs in industry, this will have to be scripted too.

2.1.2 Poker Bots

Poker-bots share a subset of my project’s goals. Poker-bots such as OpenHoldemBot2 are
programs which automatically play poker (usually Texas Holdem) on online poker sites. As
the use of these bots is virtually always against terms and conditions of the companies that
run the websites (their legal status is disputed) they do not use any API to connect to the
poker games. Instead they have to interact with the games in the same way as humans to
avoid detection. This means they usually use screen-capture to gain information about game
state, and mouse/keyboard imitation to interact with the game. In fact, as they are becoming
a major problem on online sites, many websites search your computer for the existence of
these bots, but this is usually unsuccessful as these bots can run on isolated virtual machines
to avoid detection. In this sense they fulfil my requirements of playing the game as a human
would, but similarities end there.

Poker-bots are reasonably simple programs. You log into your poker website online, join
a table and then run the program, specifying the coordinates of where the web-browser is
positioned. The screen is then captured and custom-made table maps are applied to interpret
game state (see figure 2.1). These table maps have to be custom built for every online poker
website - they define where state can be parsed from - such as where every player is sitting,
which bit of text corresponds to which player’s pot and where the cards are laid out. Apart
from the use of optical character recognition to read size of the pot, there is no real computer
vision or machine-learning used. The need for modifications of the table-map are frequent -
when the website decides to change the look of the table, often even colour or texture changes
will require a modification of the table map.

The second part of poker-bots is the AI itself. Once game state has established using
table-maps, it is fed to the AI which can calculate the next move of the player. The poker-
bots then imitate mouse/keyboard inputs to fulfil the AI’s requests, based on the areas to
click defined by the table maps.

2.1.3 Cheating in Modern Games

Undoubtedly, running a GameProfile that can play a game, or give the player an advantage
can be classified as ”cheating”. However, unlike current cheats, my system does not exploit
or modify the game in any way.

For example, one of the most popular cheats is an aimbot - used in first-person shooter
(FPS) games to assist the player in target acquisition - usually achieved by moving the weapon

2http://code.google.com/p/openholdembot/
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cross-hair towards the enemy. All current aimbots use one of the following techniques[3]3:

• Client Exploitation. These work by modifying the executable on the client machine,
or by directly patching the instruction cache. This means program flow can be manually
redirected in order to give the player an advantage.

• Colour Aimbots. These were once very popular aimbots in earlier FPS games. They
work by skinning the enemy players to give them a distinct colour (e.g. giving them
a pink uniform). On each frame, each pixel is scanned until the right colour value
is found, identifying an enemy. However this is not used much in modern games, as
skinning tends to be banned, and state-of-the-art visual lighting effects severely distort
colour recognition accuracy.

• Graphic driver-based Aimbots. These hijack the graphical APIs such as DirectX
and OpenGL. Simple analysis on the polygon models can be performed which is used
to determine enemy positions.

• Network Exploitation. In many online games, game state is shared through the
internet. By analysing the incoming/outgoing packets, game state can be deduced,
giving the player an advantage. Even the presence or absence of encrypted internet
traffic can give away some information about game state.

3http://en.wikipedia.org/wiki/Aimbot

Figure 2.1: Creation of a Table Map using the OpenScrape framework of OpenHoldemBot.
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2.2 Domain Specific Languages

Computer Vision and imitated keyboard/game-pad input will provide the means for Game-
Scripter to play a game, however the aim of the project is to provide a framework which
is easily accessible to users wishing achieve this. They will want to create game-specific
GameProfiles, which they can easily tweak and modify until they get the results they wish.
Therefore, forcing them to code in a general-purpose-programming language, such as Java,
or in this case C++, is not optimal. I would like a system, that would run in the background,
scripts can be written quickly & easily, dynamically run without needed compile/restart
phases, and be very simple and intuitive. There are many systems out there that require
these same requirements, and these are usually solved with the use of some kind of Domain
Specific Language (DSL).

Domain Specific Languages are programming languages which are specific to the domain
of the problem that a system has been created to solve. By having their functionality tied to
a particular system, they allow solutions or problems to be expressed much more clearly than
existing languages. Looking at the code should convey information about what the code is
doing rather than just providing the functionality of actually doing it. Once a DSL has been
defined, developers and end-users can spend more time thinking about the problem itself and
less time on code.

2.2.1 Internal vs External DSLs

There are two types of domain-specific languages: internal (or embedded) languages and
external languages. An internal DSL is using ones own defined language within another
language (the host language). This includes ideas as simple as naming methods and variables
sensibly, using certain design patterns and custom types. External DSLs are completely
custom languages, where the syntax, grammar, keywords and semantics must all be defined.
External DSLs give maximum flexibility but involve a big upfront effort, which includes
writing your own tools such as a parser.

2.2.2 External DSLs in Industry

Logo is one of the simplest examples of a domain-specific language, one with which many
children are introduced to programming. It provides a way to interact with the program
moving a robot without using a GUI. The following program is written in LOGO and is
incredibly simple to understand.

PENUP

FORWARD 50

LEFT 140

PENDOWN

FORWARD 100

LEFT 90
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It’s very concise, with no ”boiler-plate” code, no need to worry about any memory man-
agement or any complicated language specific issues. This is what I want to achieve for my
DSL - ”GameScript”.

Another popular tool, which is often seen as a DSL is SQL. It’s sole purpose is for
managing data in relational database management systems (RDMS). It has been far more
successful than the original system it was designed for (System R) and is used in virtually
every relational database in existence. It is much more powerful than Logo, supporting
many advanced programming constructs such as user defined functions, arithmetic, loops
and recursion, but it has retained it expressibility and conciseness.

SELECT *

FROM Book

WHERE price > 100.00

ORDER BY title;

2.2.3 Extension Languages

There is a lot effort involved to create your own DSLs, and as a result, there is a growing
trend to use an alternative instead: extension languages. A number of languages have been
designed so that they are easily embeddable in application programs, while retaining DSL-like
characteristics. Examples include AngelScript, MEL and Lua. These are languages on their
own can be classified as general-purpose-programming languages, but have features that lend
themselves to being used as extension languages, not least easy interfacing with other more
mainstream languages such as C, C++ and Java.

2.2.4 Lua

Lua is described by its creator Roberto Ierusalimschy, as ”the language of choice for anyone
who needs a scripting language that is simple, efficient, extensible and portable”[4] It was
designed from the beginning to be integrated with software written in C and other conven-
tional languages. It does not try to do what languages like C already do well, such as achieve
good pure performance, but instead gives the user a simple high-level language with dynamic
typing, automatic memory management and high order functions, so that the user can ex-
press their problems in a much more natural way. It is also seen as glue language in that it
can easily glue together existing high-level components, usually written in more mainstream
compiled languages, such as C or C++[4].

Lua is a ”multi-paradigm” language, providing a very small set of features that can be
extended to fit different problem types. For example, Lua does not contain explicit support for
object orientation or inheritance, but these can be easily implemented using Lua metatables.
This allows Lua to be tailored to suit the application, keeping it small and efficient.

Due to these features, Lua seems like an ideal candidate for my project. In fact, Lua has
had great success in industry too, with many applications using it as their main application
scripting language. Examples include Adobe Photoshop Lightroom4, which uses Lua for

4http://www.adobe.com/devnet/photoshoplightroom.html
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its user interface, or Cisco, which uses Lua to implement Dynamic Access Policies[5] on it’s
routers. However the real proponent of Lua is the games industry itself where it has become
the most dominant scripting language5. Hundreds of modern games solely use Lua to script
various in-game elements - such as player animations, game AI and GUI scripting.

Lua can be used in two ways - as extension language and as a extensible language. When
used as an extension language, the core of the program has the control and Lua is the
library; hence the core is application code. When used as an extensible language, Lua has
the control and the core is the library. Here the core is called library code. As will be seen in
section 3.1:GameScript as a Domain Specific Language using Lua, I plan to use a mixture of
both these concepts in GameScripter.

SpringRTS

SpringRTS is an open-source game engine for real-time strategy games, and it heavily relies
on Lua for its core functionality 6. It shares a lot of common requirements with my project, so
it is a useful resource to investigate. A Lua script in SpringRTS is called a widget and can be
dynamically loaded & unloaded while spring is running. All performance-heavy algorithms
are implemented in C++, and it uses a simple system of call-ins and call-outs to allow them
to affect behaviour of the game.

• Call-outs - functions defined in your script that Spring Engine calls when a determined
event takes place. For example, the gadget:Initialize() call-in is run by Spring
when the widget is loaded.

• Call-ins - functions defined in the Spring engine (in C++) which you can run at what-
ever moment you desire. For example, calling Spring.GetUnitTeam(unitID), returns
the team of the unit identified by unitID.

SpringRTS uses call-outs so that the developer can run their own code when any in-game
event happens. For example when a new unit that has been created and leaves a factory,
any loaded script that has the appropriate UnitFromFactory call-out will be invoked (see
figure 2.2). Spring.GiveOrderToUnit() is an example of a call-out.

function widget:UnitFromFactory(unitID, unitDefID, unitTeam,

factID, factDefID, userOrders)

Echo("A unit has left the factory")

Spring.GiveOrderToUnit(unitID, CMD.freeRoam)

end

Figure 2.2: When a new unit has been created, an order is given telling the unit to freely
roam, looking for enemies

5http://www.satori.org/2009/03/the-engine-survey-general-results/
6http://springrts.com
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The Spring object (in fact it’s a Lua table) is initialised with all functionality that Spring
provides to script-writers upon loading the script. In this case, Spring provides an method
to give orders to units.

2.3 Platforms

As my system will interact with games just like a human, in theory it should be possible
to make it completely platform-independent. The only pre-requisites for a platform to be
supported are as follows:

1. A way to plug the output of the platform device into the computer running the software
so that it can be analysed

2. A way for GameScripter to send input and interact with the platform device.

The platforms I intend to target are personal computers and the major consoles. However
there is nothing stopping the software being used elsewhere, e.g. on mobile phones, so long
as there is a way to achieve the 2 above requirements.

Personal Computers

This is the platform which I concentrated on, and on which the software will actually run
on. Most of the testing was be done on this platform but there is no reason why everything
tested here should not work with any other platform.

Sony Playstation 3

The second platform I tested on is the Sony Playstation 3 (PS3). The PS3 is a console
released by Sony in 2006. Like most other consoles, to play it you need to connect it’s video
output to a television. This is the output that will need to be analysed by the system. There
are 2 possible ways to do this: through the multitude of possible analogue outputs (such as
component) or through HDMI. HDMI is the preferred choice as it is a digital connection so
there will be no need to deal with noise (however small), as would be the case with analogue
outputs.

The controller used by the PS3 is the Sixaxis controller and it communicates with the PS3
over bluetooth. Sending input to the PS3 can be achieved by spoofing a sixaxis controller -
i.e. the computer pretends to be the Controller so it is able to communicate directly with the
PS3. To make it possible for my software to analyse the user’s inputs to the system, a man-
in-the-middle attack could be implemented as shown in Figure 2.3. The sixaxis controller
is actually connected via bluetooth to the computer. The computer receives input from
the users’ PS3, analyses it and then passes them on directly to the PS3, augmenting it if
necessary.

As mentioned in the introduction, what makes it very interesting to target a console such
as the PS3, is that consoles are usually regarded as not susceptible to cheating.
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Figure 2.3: Man In Middle Attack on Sixaxis Controller

Nintendo Wii

The Wii was released by Nintendo in November 2006, and is the best selling current generation
console.

Unfortunately the Wii does not have a digital output; the best quality is given through
an analog, 480p (853x480) output. Although the picture may have some noise to it, the
algorithms used in the software should be affected very little; however this assumption would
need to be tested. The advantage of having such a low resolution (2.2x lower) is that perfor-
mance will be less of an issue as most vision algorithms’ performance decreases in line with
increases in resolution.

Like the PS3, the controllers use a bluetooth protocol to communicate with the console.
This should make it simple to spoof a Wii controller on a computer, and implement a similar
man-in-the-middle attacks as described above.

Microsoft Xbox 360

The Xbox 360 is a console released by Microsoft in 2005. Newer Xbox 360s also have a HDMI
output, so this would be the input of choice (it also runs at the same 720p resolution as the
PS3). However the controllers use a proprietary 2.4 GHz protocol, which would need to be
reverse-engineered so that it could be intercepted. Another other option would be to use
Xbox wired controllers, which run a proprietary protocol over standard USB plugs. The final
resort would be to take apart a controller and physically connect the appropriate switches in
the controller to a microprocessor (e.g. an arduino). This could then interface with a PC,
and trigger button presses.
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Chapter 3

Design and Implementation

3.1 GameScript as a Domain Specific Language using Lua

GameScript is the name I have chosen for the language GameProfiles are to be written
in. It was an unrealistic goal for me to write my own complete DSL from ground-up, so I
decided to use an extension language as the core language of GameScript, specifically Lua
(see 2.2.4). Although the GameProfiles are parsed using a Lua interpreter, I was able to
tweak the language so that it acted very much like a DSL, while retaining all the benefits of
using an existing, heavily tested programming language.

• I can use existing Lua language constructs in GameProfiles - everything from simple
variable assignments, for loops and functions to advanced features such coroutines and
closures.

• GameProfiles can build upon other GameProfiles without needing them to be rewritten
or copied by using the Lua loadlib() command, which loads other Lua files.

• GameProfiles can load lua modules (libraries) which provide further functionality. These
can be written in any language conforming to the Lua library specification. For exam-
ple a GameProfiles could load a networking library with a single line loadlib(httpd)

and now a GameProfile has access to networking utilities. I foresee this feature be-
ing used extensively to load external artificial intelligence needed to play games, with
GameProfiles being used just to parse the game state.

Communication between Lua and C++ will use the Lua C API - a set of functions that
allow C code to interact with Lua:

• Functions to read and write Lua global variables.

• Functions to run pieces of Lua code.

• Functions to register C functions so that they can later be called by Lua code.
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This is done through an omnipresent virtual stack. All data exchange between Lua and
C, such as arguments to functions and function results, will pass through this stack. This
solves the impedance mismatches between Lua and C[4]:

1. Lua is garbage collected while C is not.

2. Lua is dynamically type while C is statically typed.

I took inspiration from the Lua scripting in the Spring Engine (see subsection 2.2.4:Lua)
for the way GameProfiles communicate with the rest of the program. Firstly scripts can be
dynamically loaded and unloaded during run-time. This is especially useful for testing, as
GameProfiles can be modified and then reloaded at the press of a button without any need for
down-time or recompilation. Similarly to the Spring Engine, there are 3 classes of functions
in GameScript: call-ins, call-outs, local functions.

Call-ins There are two classes of call-ins - input call-ins which interact with the game itself
such as input.moveCursor() and vision call-ins which interact with the vision core
of GameScripter such as vision.startBackGroundSubtraction().

Call-outs Call-outs are functions which will be invoked upon by the the core of GameScripter
when events happen in-game. Examples include callouts.newFrame() which is called
on every new frame or callouts.buttonsPress(button), which is called every-time a
button is pressed on the keyboard or game-pad. The button string (e.g. ’A’ or ’Up’) is
passed in as an argument.

Local functions These are the same as functions in virtually any other language - user-
defined functions that can be used anywhere in a GameProfile, and have no connection
with the core of GameScripter.

In this kind of setup I’m using Lua as both extension language and as an extensible
language (subsection 2.2.4. The core of GameScripter cannot easily be placed in the realm of
application code or library code, as although the C++ core has the overall thread of control
(this will be explained in section 3.2, all functionality of what GameScripter does is defined
by the GameProfiles.

Apart from call-ins and call-outs, there is also a third method of sharing information
between the core and GameProfiles, although it’s only uni-directional. We can access the
global state of a GameProfile from within the core, so we are able to set global variables as
configuration parameter, which are loaded on start-up:

targetFPS = 30

screenZeroCoordinate = {x=100,y=200}

screenSize = {500, 600}

This script will try to run at 30 frames per second, and only analyse a subset of the
screen, defined by the screenZeroCoordinate and size. Technically it would be possible to
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expose many low-level parameters of the computer vision algorithms, however I have actively
tried to avoid this situation. The main aim of GameProfiles should be that they are simple
to write. Exposing individual parameters to the end-user would require them to know the
inner-workings of the algorithms involved, which is undesired.

The full power of GameProfiles, written in GameScript will be shown in the the next
section. There, most call-ins and call-outs will be described, however for a full list of all
call-ins, call-outs and configuration parameters please see Appendix C.

One nice feature of using the Lua C API, is that all state for the Lua interpreter is held
in a single structure (of type lua_State). The Lua library is fully re-entrant - there are
no global variables. This means that it is very easy to open up multiple Lua files at the
same time as each has their own state encapsulated in a single instance of lua_State. I have
designed all functions that communicate between the C++ core and the GameProfiles to take
a lua_State as an argument - hence adding the ability to actually run multiple GameProfiles
concurrently.

17



3.2 Overview of System Architecture

Figure 3.1: High Level representation of System Architecture

From the start I designed the system to be extensible and open to new platforms. All
the computer vision and machine learning algorithms have been implemented in C++, and
reside in a collection of classes encompassed by the ”Core Vision and Learning” node. The
IGameInput and IGameOutput interfaces provide a modular way of supporting new game
machines. A concrete implementation of these interfaces is all that is required for each game
console, isolating the rest of the system - including all vision algorithms and GameScript
call-ins/call-outs (see section 3.1:GameScript as a Domain Specific Language using Lua),
from any kind of dependency of the platform type. The default concrete implementation for
the IGameInput is X11Input, for the IGameOutput is X11Output, and IGameInputMonitor

is X11InputMonitor as described in section 3.3.

IGameOutput A concrete implementation will provide an interface with which one can
access the output provided by the game - e.g. the video produced. It provides functions
such as: getCurrentImage() which returns the current image produced by the game.
In the future, this can be extended to expose sounds created from the game too.
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IGameInput This provides a platform-independent way to send commands to the games
console. It provides functions such as moveCursorTo(x,y), pressButton(Button)

IGameInputMonitor The concrete implementation will run in a separate thread to the
program logic of the rest of the program. It monitors the users interaction with the
game, processes them, and forwards them to the appropriate GameScript call-ins. It
needs to run in a separate thread, as actions performed by the user may need to be
acted on immediately. If a computationally-expensive computer vision task is running,
we cannot wait until it has finished before processing user input.

3.2.1 Thread of control

GameProfiles, written in GameScript, define the functionality of the program through the
use of call-ins & call-outs like described in section 3.1, but they do contain the main thread
of control. This is done by the Control class, which controls the core cycle that can be seen
in figure 3.1. It is not explicitly in the figure.

Below is a summary of what the tasks Control class does:

Initialisation Initialises all the necessary classes and the default concrete classes.

GameScript Choice Parses the working directory for GameProfile and displays a GUI to
allow the user to select the profile.

Initialising Chosen GameProfile It performs the following tasks on the chosen Game-
Profile:

• Checks the GameProfile for syntax errors.

• Parses the GameProfile and runs it using the Lua interpreter, so that all initiali-
sation code is run

• Accesses the GameProfile state to load parameters such as TargetFPS, MaxFPS,
and screen region of interest.

At this point, the IGameInputMonitor thread is started so that user input can be
monitored.

Main loop of program Control also handles the main program loop. Each iteration of the
loop analyses only one frame from the game.

• Get a new image from IGameOutput which is the frame to analyse.

• Informing the Vision & Machine Learning classes that a new frame available so
that they are able to per-frame tasks (e.g. if they are in the process of learning
the background model, that would be done at this point).

• Calculate the current FPS, and inform the Vision & Machine Learning classes of
this, so that they can adapt to try and hit the target FPS.

• Call the newframe() call-out of the GameProfile.
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• If the TargetFPS < currentFPS, slow the program down, by delaying the time
before the next iteration.

• Listen to user-input for commands such as pausing the program or shutting it
down.

Deallocation of Resources Once the main program loop has been stopped, the
closeGameProfile() call-out is called and all resources are deallocated.

For an empty GameProfile, the main loop will run as follows. It will loop indefinitely,
each frame it will take a new snapshot of the game image, and inform the vision modules that
there exist new frames. However these will have no tasks to do (as none have been defined
in the GameProfile), so nothing will be done. The program will end when the user presses
the exit key (by default this is ”Escape”).

One interesting feature of GameScripter is that it can run in 2 modes - normal or debug.
Debug mode gives the user feedback on what the application is doing at any-time through
the use of debug windows. For example if GameScripter is running background subtraction
and finding foreground objects, windows will pop-up showing the result of any operations
Other information such as current FPS will also be available to the user. The Control class
controls the mode by listening to user input - by default one can turn on debug mode by
pressing Alt-D.

Of-course, many of these debug windows require extra processing and drawing to the
screen, so performance takes a hit (5%-30% depending on GameProfile), however it can be
very useful for the user to see the results of the computation to gain an insight into how the
algorithms are performing.
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3.3 X11 Input/Output

My default development platform was a linux system1. To be able to interact with games
within linux, I needed GameScripter to be able to interact with the system linux uses to
display graphical user interfaces - the X Window System. This was done by implementing
the 3 simple interfaces described above. This however it proved to be a harder task than I
initially envisaged. X Windows implements a client-server model. The server communicates
with clients, handles requests for graphical output (e.g. display this window) and sends back
user input (from the mouse or keyboard).

Requirements

GameProfiles have have the requirements to run alongside the games, without interfering
with the ability to play the game, unless specifically scripted to do so. In other words, it
should be possible to write a profile that records what the user sees and how they react (i.e.
mouse movements, key presses) without the user being necessarily aware of this happening.
Unfortunately these are also the exact same requirements that many security compromising
tools also strive for, such as key loggers. The X Window System (or just ”X” for short) was
designed with security in mind, and as a security feature allows only 1 application at a time
to listen to keyboard commands at any one time. This does not impede in daily use with
the computer - only one application is ”in focus” at any one time, and only that application
receives commands from the keyboard.

The reason why some shortcuts seem to work across all applications, such as alt-tab, is
because an application actually registers interest in only a subset of the keys. This allows
the keys that haven’t been registered, to be passed up the window hierarchy safely, without
ever being intercepted.

Simulating keyboard presses is also impossible with standard X. For an application to be
able to send key events to the server, it usually needs to ”grab” the keyboard (or a subset
of keys). However only one application can grab a keyboard at any one time, hence this
methodology is not suitable for GameScripter.

Solution

There exist 2 extensions to the X windows system that provide a solution: XRecord2 and
XTest3.

XRecord supports the recording and reporting of all core X protocols within the X
server itself. It provides a mechanism for capturing all events, including input device events
that do not go to any clients. X11InputMonitor uses this extension extensively to record
the users actions. The basic principle is that a client (in my case GameScripter) creates a
XRecordContext structure, specifying what type of events it is interested in, and then requests

1My linux distribution of choice is Ubuntu 10.10
2refspecs.freestandards.org/X11/recordlib.pdf
3www.x.org/releases/X11R7.5/doc/Xext/xtestlib.pdf
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the XServer to be informed of any of those. Protocol data that interest was expressed in is
recorded and returned to the recording client via a callback with a XRecordInterceptData
object. This contains all the relevant information of the event - e.g. if it was a buttonRelease
event, it would specify the x, y coordinates, the button that has been released, as well as
other information such as what window it occurred in.

XTest was designed as a minimal set of client and server extensions required to com-
pletely test the X11 server with no user intervention. It provides limited synthesis of
input device events, almost as if a cooperative user had moved the pointing device or
pressed a key or button. The X11Input class makes full use of this extension to synthe-
size ”FAKE EVENT TYPE” input events to the X11 server such as KeyPress, KeyRelease,
ButtonPress, ButtonRelease, MotionNotify.

Problems

Unfortunately these 2 extensions have been plagued with problems. At the time of start-
ing my project, both XTest and XRecord had critical bugs with the latest version of X,
rendering them unusable. Instead I tried to adopt a different approach: Polling the special
device files under /dev/, corresponding to the keyboard and mouse (i.e. /dev/input/mouse0,
/dev/input/kb). I had 2 problems with this approach:

1. To be able to access these device files, I required root privileges. Although this would
be OK for this project, it would be unsatisfactory in a final polished version

2. I was reading the raw data. This would have to be parsed and translated into something
that made sense.

I eventually abandoned this methodology due to unsatisfactory results and the time-
consuming task of having to decipher the raw data. Instead I downgraded my to a version of
X that would work correctly with the XRecord and XTest extensions. It was also necessary
to set up the X server to run in a multi-threaded environment as the X11InputMonitor and
X11Input ran in separate threads, otherwise X would often crash.
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Chapter 4

GameProfiles

I chose to use an iterative technique for writing GameScripter, basing it on real-world games,
rather than speculate in advance what functionality I would need. In this section I document
some of the games that have helped mould GameScripter into the state it is today. Each game
builds upon the previous ones; extending the functionality of the GameScript language and
the core vision techniques themselves. For each game, I will try to document the following:

• The game itself.

• The desired GameProfile I aimed for playing this game.

• Background on existing vision and machine learning techniques for solving similar prob-
lems.

• Implementation

• Results and possible improvements.

All benchmarks have been taken on my development machine:

Processor : Intel Core i7, with 4 cores (8 logical) running @ 2.66 GHz.

RAM : 6 GB DDR3 SDRAM running @ 1333 MHz

GPU : Nvidia GTX 570 with 480 CUDA cores running @ 1464 MHz.

GPU Memory 1280MB GDDR5 running @ 1900 over a 320-bit interface.
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4.1 Whack-a-mole

Introduction

Whack-a-mole is one of the simplest games in existence. The idea is that there are a number
of holes from which ”moles” (or any in general, any creature) can pop out and the players
task is to whack these moles, usually by clicking on them. Scoring usually remains constant
across implementations - the aim of the game is to hit as many moles as possible. Most of
the games have a time limit, during which you try and score as many points as possible, but
some have a limited number of lives. These are lost when a mole manages to pop-out then
pop back into the hole, without being hit.

It was a good, simple game to start my iterative approach on.

Figure 4.1: Whack - a simple online Whack-A-Mole game
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Desired GameProfile

function ca l lOut s . newframe ( )
x , y = v i s i o n . matchImage (” mole . png ”)
input . c l ickOn (x , y )

end

Here we introduce 1 call-out - callOuts.newFrame() and 2 input call-ins - input.clickMouse()
and vision.matchImage().

callOuts.newFrame() is called every new frame. Note that this not every new frame of
the game itself, but every time 1 iteration of the control loop has finished, and a new image
has been received from the game. (see subsection 3.2.1:Thread of control)

input.clickOn(x,y) - this call-in moves the cursor to position x,y and then clicks there.
As described in section 3.2:Overview of System Architecture it uses the IGameInput interface,
and so is not tied to any particular platform. In this case however, we are using X11Input
and so this moves the mouse and clicks there.

input.matchImage("picture") - This returns the x,y coordinates of the best match of
the file named ”picture”, or nil if no match is found. In this particular GameProfile, there is
pre-made screenshot of how the mole looks called ”mole.png”.

Background

Here, I am interested in algorithms to implement input.matchImage("picture").

Object Detection and Recognition

One of the most researched subjects in computer vision, and indeed the most fundamental one
required for my project, is ”object detection”; the process of detecting instances of objects
of a certain class in an image (e.g. faces or cars). A solid implementation of object detection
is necessary in my project; being able to recognise and distinguish objects is required for
virtually all games, from the simplest online web-browser games to advanced 3D first person
shooters.

My hypothesis is that different games will suit different object detection techniques. For
example techniques that can be used in simple 2D games, with 2D sprites will be unsuitable
for 3D games. However, if possible, I wish to create a generic technique which works well
across as many games as possible. Techniques can be evaluated under the following criteria[6]:
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1. Recall
Number of correct positives

Total number of positives in dataset

Recall gives us the proportion of objects that are detected.

2. Precision

Number of correct positives

Number of correct positives +Number of false positives

Precision gives us the number of false detections relative to the total number of detec-
tions made by the system.

3. Training sample size

The number of positives (images displaying the object) and the number of negatives
(images without an object) will greatly affect the recall and precision rates. Different
techniques will require different quantities of samples.

4. Training Speed

The speed with which a particular classifier/detector learns from the sample set.

5. Detection Speed

This signifies the speed with which a particular technique can find objects in a image.
This statistic is vital to the project, the faster the detection speed, the more video
frames it can analyse, increasing the efficacy of the system.

Template Matching

This is the simplest technique for object recognition, but one that could be potentially very
useful for 2D games. The basic premise is simple, you have an image of the object (a
template) you wish to find, and then you ”slide” this template over the input image, at each
point calculating the accuracy of the match [7]. The method to calculate the accuracy of the
match can vary, but they all involve cross-correlating the corresponding pixels.[8]

This technique can produce very accurate matches if you have a template that is virtually
identical to the objects in the input image. This is true for the case of most 2D games, as
the objects are always identical (being just an image, that may have been replicated multiple
times and/or are moving). Although this technique is translation invariant, it is not invariant
to scale and rotation, which is necessary for other games. Performance is also an issue, as
you need iterate through the entire image. Lets say the image has a resolution of X ∗ Y
and at each point has to evaluate the difference between each pixel of the template (M ∗N),
resulting in a complexity of O((X −M) ∗ (Y −N) ∗M ∗N) (taking into account that pixels
near borders will not need to be evaluated).

There is research into increasing the performance of template matching and tackling
scale/rotation invariance. A well-known approach is to evaluate an image pyramid for the
template and the input image and to perform the comparison by a top-down search [9].

26



Figure 4.2: Template matching in practice - the template is swept across the image, calcu-
lating correlation at each point.

In pyramidal structures several versions of the same image at different resolution levels are
available, and the solution is refined successively step by step towards the base. This is
discussed in section 4.2:Image Pyramids. Other techniques concentrate on using a subset of
the templates or use a coarsely spaced grid first, then iterate until a better match is found[7].

One interesting solution is the use of point correlation, where certain points are selected
from the template[10]. These points represent the ”most important” points in the template,
which are found using a set of heuristics. From test results given, the authors found the
accuracy of point correlation vs template matching to be virtually identical on images with
little noise (in noisy images there are significant differences due to less points being used,
however this does not apply to my project as games are noise-free). Varying the amount
of points directly correlated with the performance boost, but they found that 50 points was
sufficient to provide nearly the same accuracy as the entire template (of over 300 points).
This technique can be used side-by-side with pyramidal structures, or course grids.

Rotation invariance is a harder technique to achieve with template matching. There
have been various approaches taken to achieving rotation invariance such as graph match-
ing [11], geometric hashing[12], geometric moment-based matching[13], generalised Hough
transform[14] and orientation codes [15].

Template matching is a simple object detection mechanism. It only requires a single
positive image, no training is needed, can have fast detection speed and in many cases,
achieves excellent recall and precision rates. However it usually performs very badly in 3D
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environments where an objects template can differ greatly depending on which angle you
look at them from. More advanced techniques will be needed for any reasonable accuracy.

Implementation

The implementation I chose to use is the matchTemplate implementation from OpenCV1.
The Open Source Computer Vision is a library of programming functions with a strong focus
on real time computer vision.

This implementation does not use any of the techniques described in the background
section, and does matching in the frequency domain instead of the spatial domain. As cor-
relation is much faster to do in the frequency domain (as it is simply a multiply), Fourier
transforms of both the template and the image are taken (using a discrete fast Fourier trans-
form implementation). In order to multiply the two images in the frequency domain, they
must be the same size, therefore the template is padded with black pixels (i.e. zero-padding).

This means it only requires O(N2logN) operations for NxN images, instead of the usual
0(N4) for straight-forward cross correlation.

The images are 3-channel colour images, so this template matching was done on each
channel separately resulting in three 1-channel images, and then averaged together at the
end into a single 1-channel image. Each pixel represents the quality of the match at that the
particular point by the following correlation equation:

Rccorr(x, y) =
∑
x‘,y‘

[T (x‘, y‘) · I(x+ x‘, y + y‘)]2 (4.1)

where R denotes the resulting image, I denotes the input image and T denotes the
template.

As you can see, this is not normalised, so a perfect match will be very large, and a bad
match will be small or 0. The position of best match can be found by iterating through the
image, and finding the pixel with the largest intensity in the resulting 1-channel image. When
an object is guaranteed to exist in the image at any point in time, then this position can be
returned without any further processing. However this is not the case for every game. With
Whack-a-mole, there may be no moles in view at a particular point in time. This means a
certain threshold needs be applied to this point, below which it is classified as ”no-match”.

This causes problems with the previous correlation equation, as it is not normalised; larger
templates will always return larger numbers. I solved this by using a normalised correlation
such as:

Rnormed(x, y) =
Rccor(x, y)√∑

x‘,y‘ T (x‘, y‘)2 ·
∑

x‘,y‘ I(x+ x‘, y + y‘)2
(4.2)

Figure 4.3 shows the template matching in action. The right image displays the correlation

1http://opencv.willowgarage.com/wiki/
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matrix (inverted for display purposes) - the blacker the pixel, the better the correlation. You
can clearly see 2 spots of high correlation where the 2 moles have appeared.

Figure 4.3: Whack-A-Mole script, with the debug view on

Results and Improvements

I tested my GameProfile on 2 whack-a-mole style games: Whack2 and whac-a-mole3.

Keeping with my iterative design schedule, I kept this implementation of matchimage()
incredibly simple. It is neither scale or orientation invariant because it does not need to be,
as the moles are all of the same size and always upright. Also it does not take into account
multiple matches, returning just the single, highest quality match. For Whack-a-mole this is
fine, as once a mole has been whacked, it will retreat back into it’s hole.

Here are the results:

Game Recall Precision Image Resolution Template Size FPS

Whack 97% 100% 500x500 74x73 10.6
whac-a-mole 90% 100% 500x500 82x70 10.1

Note, that recall & precision have been calculated in an in-game situation - if a mole
pops-up and hides before it is hit, I have counted that as a positive in the dataset, but not
a correct positive.

Interesting to note was that recall was not 100% like I expected it to be. In the first game,
Whack, often multiple moles would pop-up at the same time. As the template matching
returns only 1 result, only one of these moles would be hit in a single frame (which takes

2http://upchucky.com/flash-games-whack.html
3http://www.gamepoetry.com/blog/4k-flash-whac-a-mole-4k/
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about 100ms). Towards the end of the game, the moles pop-up and in and incredible speed,
where they are only out for a few 100ms, during which they may be missed be the hammer
because other moles were prioritised before!

In whac-a-mole precision dropped further. As well as the reason above, this game having
a large hammer as it’s cursor as can be seen in figure 4.4. This often obscured the moles.
The solution to this was simple - once you have whacked a mole, move the cursor out the
way! This was just a single extra line in the GameProfile:

function ca l lOut s . newframe ( )
x , y = v i s i o n . matchImage (” mole . png ”)
input . c l ickOn (x , y )

+ input . moveCursor (0 , 0 )
end

This increased precision to 98%.

Figure 4.4: Whac-a-mole - a Whack-a-mole game with custom cursor

Performance

The performance of the template matching was disappointing. Even using the discrete Fourier
Transform method, we were getting about 10 FPS for both games. It is interesting that whac-
a-mole was slower by about 4.9%. The only difference between the two was a small difference
in template size - about 5.6%. I investigated this further, and my results can be seen in figure
4.5.

The graph shows some peculiar behaviour. Most interesting was the sudden 100% perfor-
mance increase going from 7000 (∼84x84) pixels to 8000 (∼89x89) pixels. Unfortunately
I could not get to the bottom of why this happened. The OpenCV implementation of
matchTemplate is over 400 lines long and the discrete Fourier transform implementation
is over 600 lines. They both contain many low level optimisations and are designed for pure

30



Figure 4.5: A graph showing the performance scaling as template size changes using
OpenCV implementation

performance rather than legibility (no comments). For example they have hard-coded array of
1650 elements called optimalDFTSizeTab[] which is used in the method getOptimalDFTSize

to return the optimal size the DFT matrix of the image. From my investigation, it seems to
be due to the implementation of DFT rather than the template matching implementation.

Future Improvements

However from this investigation, I did learn many possible ways to dramatically improve the
speed of template matching. Between frames, the image of the template does not change -in
fact, I have optimised it so that the image is stored in memory for the entire duration, and
only read once from the file - something the user does not need to worry about when using
GameScript. On each call to matchTemplate(), the DFT of the template is recalculated -
this is necessary. Doing this only once, storing the result and associating it with the original
image should reduce computation time.

Although this will not effect this particular GameProfile, storing the DFT of the current
frame can also lead to significant performance improvements. In the next section, Generic
Whack-a-mole, there will be multiple template-matches per frame. As will be shown, using
the naive implementation of using matchTemplate() on each template kills performance. By
storing the results DFT of both the current frame and templates, template matching can be
reduced to just 3 DFTs (1 per channel) and 3 matrix multiplies (1 per channel) per template,
per frame.4

4This is a simplification - OpenCV actually works out an optimal ”block” size and does many small block-
wise matrix multiplications for correlation rather than a single large multiply for performance reasons
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4.2 Generic Whack-a-mole

Introduction

This builds upon the previous game. The idea is to have a single script that will work with
all whack-a-mole games, regardless of how the ”moles” look or hole placement (figure 4.6).
This means there should be no need for having a pre-taken image(s) of the mole(s) like in
the previous GameProfile.

Figure 4.6: GraveDigger - This game looks very different from the others, but follows the
same whack-a-mole style template. The moles are now creatures, and there’s more than 1
type.

Desired GameProfile

The basic idea behind this GameProfile is that instead of having pre-made templates, the
templates can be made on the fly by observing the player play. Here is a simple example of
such a script, which collects images that the user clicks on, and then when the user clicks
a predefined key (in this case ”s”), it starts playing the game in a similar manner to the
previous script.

images = {}
s t a r t P l a y i n g = fa l se

function ca l lOut s . newframe ( frame )
i f s t a r t P l a y i n g == true then

for i , v in i p a i r s ( images ) do
x , y = v i s i o n . matchImage ( v )
input . c l ickOn (x , y )

end
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end
end

function ca l lOut s . buttonRelease (x , y )
images [#images +1] = v i s i o n . getImage (x−30, y−30, 60 , 6 0 ) ;

end

function ca l lOut s . keyRelease ( key )
i f key == ’ s ’ then

s t a r t P l a y i n g = true
end

end

Here we introduce 2 new call-outs and 1 input call-in:

callOuts.buttonRelease(x, y, button) gets called, every-time a button is released
(it’s counterpart is buttonPress(x, y, button)). In this case, we are on a PC, so this is
called every time a button on the mouse is released. It passes in the coordinates where the
button was released and which button it was. Like all functions defined in GameProfile, these
are all optional arguments, so if the user does not care about which button or coordinates,
buttonRelease() can be used instead.

callOuts.keyRelease(key) gets called every-time a key is released. In this case it is a
keyboard key, and a string of the key pressed is passed in - e.g. ’A’ or ’Up’

vision.getImage(x, y, width, height) this gets a subset of the image, defined by
the 4 arguments. It returns a ”handle” to the image, which can be used in any GameScript
function that accepts images. For example, the matchImage() has been extended to accept
these handles as well as strings.
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Background

Image Pyramids

An image pyramid [16] is a data structure was originally designed to support efficient scaled
convolution through reduced image representation, but has found applications in a wide
variety of vision applications. It consists of a sequence of copies of the original image that
are successively down-sampled (usually in regular steps).

Figure 4.7: A simple Image pyramid

There are two types of image pyramids - the Gaussian pyramid and the Laplacian pyramid.
The Gaussian pyramid is used to repeatedly filter and sub-sample the images to generate the
sequence of reduced resolution images G0, G1, G2 etc... The Laplacian pyramid is required
when we want to reconstruct an up-sampled image from an image lower in the pyramid, e.g.
reconstruct G1 from G2.

Gaussian Pyramids G0 is the original image, at the bottom of the image pyramid. To
produce level Gi + 1 from Gi, we first convolve Gi with a Gaussian kernel and then remove
every even-numbered row and column thereby producing an image 1/4 of the area.

Gl(i, j)
∑
m

∑
n

w(m,n)Gl−1(2i+m, 2j + n) (4.3)

w(m,n) is called the ”generating kernel” and is usually Gaussian. We shall call this
process as a REDUCE operation:

Gl = REDUCE[Gl−1] (4.4)
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The reverse process of REDUCE operation doubles the the size of the image in each
dimension, with the new (even) rows filled with 0s. Afterwards, a convolution is performed
with the filter derived from w(m,n) (it’s twice the dimensions, and normalised to 4) to fill in
the values of the missing pixels. We can call this an EXPAND operation. Let Gl, k be the
image obtained by expanding Gl k times. Then Gl, k = EXPAND[G Gl,k−1]

Gl,k(i, j) = 4
∑
m

∑
n

Gl,k−1(
2i+m

2
,
2j + n

2
) (4.5)

Of course this process is just an approximation; it does not result in the original image as
information is lost in the REDUCE stage. In order to restore the original image, we would
require access to the information that was discarded by down-sampling. This is what forms
the data of the Laplacian pyramid.

Laplacian Pyramids The most important property of the Laplacian pyramid is that it is
a complete image representation: the steps used to construct the pyramid may be reversed
to recover the original image exactly. The ith layer of the Laplacian pyramid is defined by:

Ll = Gl − EXPAND[Gl+1] (4.6)

Another more intuitive way of defining the Laplacian pyramid (where the filter is a 5-by-5
Gaussian) is defined by the relation[17]:

Li = Gi − UPSIZE(Gi+1)⊗ G5x5 (4.7)

Here the UPSIZE operator up-sizes the mapping of each pixel in location (x,y) in the
original image, to pixel(2x+1,2y+1) in the destination image.
⊗ signifies convolution and G5x5 is the 5-by-5 Gaussian kernel.

Uses Usually transforming an image from one representation to another is done for two
reasons[16]:

• Transformation may isolate critical component of the image pattern so that they are
more directly accessible to analysis

• Transformation may place the data in a more compact form so that they can be stored
more efficiently

Laplacian pyramids serves both these objectives. Construction tends to enhance image
features such as edges. Pyramid representation can also compress the data, however I am
not interesting in this particular case.

Pyramid methods may be applied to achieve some level of template-matching scale inde-
pendence. The template is convolved with each level of the image pyramid. As all levels of
the pyramid combined contain just one third more nodes than there are pixels in the original

35



image - the cost of searching for a pattern at many scales is just one third more than that
of searching the original image alone. This is much more efficient than scaling the template
itself and searching the original image each time!

If the relative scale is too large between images, variants exist which can easily be defined
with square root or smaller steps. However this of-course come at the cost of computational
complexity.

Pyramid methods are also used in the estimation of properties within local image regions
- for example image segmentation. These algorithms use fast initial segmentation which is
done on the low-resolution images in the pyramid, then refined and further differentiated
level by level.

Another class of analysis operations concerns fast course-fine search techniques. As was
shown in section 4.1:Results and Improvements, template-matching is very slow. Rather
than attempting to convolve the full template with the image, both the template image and
the target image are made into Laplacian pyramids. The search can begin by convolving
the low-resolution images in the pyramid, where rough estimates can be found. Higher-
resolution copies of the pattern and image are used to provide more accurate estimates
through subsequent convolutions. Substantial computational savings are achieved as search
neighbourhoods are restricted to points identified at the coarser resolution.

The last use for Laplacian pyramids are image enhancement techniques such as noise
reduction or sharpening[16]. The images from games are perfect and noise-free so this is of
not much interest for GameScripter.

Implementation

The implementation of vision.getImage() was simple - all it does, is extract a region of
interest from the current frame and stores it in the C++ core. A handle is passed back to the
GameProfile, that can be used as a parameter whenever an image is expected. This ”handle”
is really a Lua lightUserData structure that contains a raw pointer to the C++ object that
encapsulates the image.

As will be discussed in the evaluation (section 5.2), this in hindsight, was a poor choice
as all the C++ core now has the responsibility of memory management, and does not know
when it can be reclaimed.

Threading Issues

I remind the reader that IGameInputMonitor, which handles all the call-outs such as
callOuts.buttonRelease(), runs in a separate thread (see section 3.2). This means that
all call-outs need to be thread safe - including vision.getImage().

The time it takes to query the X server for an image is about 5ms - this is what limits the
FPS of the program, even when using an empty GameScript (see figure 4.8 with 0 templates).
If during these 5ms, a call-in (such as vision.getImage()) was made, it was possible to crash
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the program. Therefore I had to put mutexes and locks in all appropriate places for call-ins5

GPU implementation of template matching

The experimental version of OpenCV provides an early implementation of GPU accelerated
template matching. It uses the same algorithm outlined as the CPU version, but it runs on
a CUDA enabled, Nvidia GPU. As I already owned a fairly top of the range card (the GTX
570) and having never used it for any kind of kind of general-purpose computing on graphics
processing units (GPGPU) tasks, I was interested in the performance gains I could achieve.

Implementation was fairly simple, as the interface was similar to the CPU version. As
well as the template matching itself, I also ported all the other helper functions to the GPU
- such as converting the colour space and finding the point of maximum correlation in the
resulting single-channel matrix. I wanted to make the switching between the two easy for the
user, so I associated a key that would switch between CPU and GPU acceleration at runtime
(by default Alt-G).

The first implementation was simple - it followed the same principle as the CPU version.
Performance increased massively, but not as much as I expected. When I profiled the code, I
realised that act of moving the template and current frame onto the GPU memory actually
took up over 60% of the processing time. Although I do not have any benchmarks for
the original naive GPU implementation, performance improved significantly, especially with
increasing amounts of templates.

Figure 4.8 shows the performance difference between the GPU and CPU versions. Both
techniques have an approximately logarithmic decrease in performance with every new tem-
plate added. This is to be expected as each call to match template will take the same amount
of time, regardless of the number of templates. Through-out, GPU remains a constant 8.5x
faster. This is an impressive performance boost, and makes a big difference as it it keeps fps
in double figures below 12 templates, during which time the CPU struggles to get even 1 fps.

Results and Improvements

The script is successful in it’s task. It was able to play both Whack-a-Mole games from the
previous section, as well as many others I tested, including the GraveDigger game (figure 4.6
in the introduction). However there are a number of issues:

Performance Even with the massive performance boost due to GPU acceleration, FPS
went down to single digits after only 12 templates. This was satisfactory for all games I
played, as even the most complicated game, GraveDigger, had only 3 mole-types, and only
1 image was needed per mole. As I was satisfied with the results from the GPU accelerated
template matching, I moved on to other areas of the project without implementing a version
with image pyramids (although pyramids are used in other areas of the project, like optical
flow section 4.6).

5For those interested, this was eased by the use of the boost threading library - http://www.boost.org/
doc/libs/1_46_1/doc/html/thread.html
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Figure 4.8: Graph comparing performance of CPU template matching vs GPU template
matching. It was taken with a 500x500 image, and templates of size 60x60

However I believe I could achieve a order of magnitude better performance, using the
techniques already discussed:

• Not recalculating the DFT of the templates each frame.

• Not recalculating the frame DFT between template matches in the same frame

• Using the image Pyramids discussed above

Image Sizes As you can see from the GameProfile code, the size of the image taken has
been hard-coded (in this case it is 60x60). This means, the user needs to guess an appropriate
size for template - something that should be avoided. Getting the template size wrong has
two consequences:

Image too small If the image is too small, template match precision can take a hit as the
template may not have enough information to uniquely identify the object

Image too large If the image is too large, template match recall can take a hit, because
the template may contain too much background. This is not a problem in the whack-
a-mole games describe in section 4.1:Results and Improvements as the background is a
constant colour, but in GraveDigger, each hole looks different.
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User manually stops learning period At the moment, the user has to press S to stop the
learning phase. It would be ideal to have the system itself infer when it is finished learning,
and take-over automatically. I have implemented a prototype of this in GameScript itself,
although it is anything but user-friendly. In principle it is very simple - it runs the template
matching in parallel to the learning phase and whenever the user whacks a mole, it checks if
it would have predicted a match in the close vicinity too (I used a 20 pixel radius). Once it
has predicted x clicks in a row (I chose 5), it takes over playing the game.

This works reasonably well, the major problem being template matching performance
(which as discussed, can be solved). However I do not believe this type of learning can be
placed into the core C++ because it is not generic enough. It is easy to define when to
stop learning for Whack-A-Mole type games, however how do we extend this to the games
discussed later such as Breakout, Tetris or advanced 3D games?

User Friendliness In this script there are two statements I dislike and think could be
made more user friendly - the for loop and the images array.

• In the for loop: for i,v in ipairs(images) do the user is required to know the
ipairs iterator (which iterates over arrays) and that it returns 2 variables - the index
(i) and the value (v).

• The images is an array, and requires the user to know the length function # to append
values to the end.

Fortunately both are easily solved as Lua is a fully featured programming language. We
can create a new Lua library called GameScripterLibrary, and there we can create new
functions and objects that can be used in GameProfiles. I have created simple containers
and iterators so that the users can use them as follows:

for image in images:allImages() do

....

...

images:add(image)

...

Rather than requiring the user to import this file - i.e. loadlib(GameScripterLibrary)
I have chosen to load the library automatically for them from within GameScripter.

The containers could have been implemented in the C++ core, however I felt it was a more
elegant (and a lot less coding!) to keep the C++ core cohesive and deal with performance-
intensive vision tasks only, while the GameScripterLibrary added user friendliness.
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4.3 Breakout

Introduction

Breakout is originally an arcade game from the the late 1970s. In the game, a layer of bricks
lines the top half of the screen. A ball travels across the screen, bouncing off the top and side
walls of the screen. When a brick is hit, the ball bounces away and the brick is destroyed.
The player loses a turn when the ball touches the bottom of the screen. To prevent this from
happening, the player has a movable paddle (controlled by the mouse) to bounce the ball
upward, keeping it in play.

Figure 4.9: An breakout clone. The player controls the paddle at the bottom of the screen
using the mouse

Desired GameProfile

A game-specific GameScript can be written using the already discussed functionality, by
using template matching to find the ball position and moving the mouse (which controls
the paddle movement) to x coordinate to where the ball is found. We also introduce the
input.moveCursor call-in.

function ca l lOut s . newframe ( )
x , y = v i s i o n . matchImage (” b a l l . png ”)
input . moveCursor (x , n i l )

end

input.moveCursor(x,y) - moves the cursor. If x is nil, moves just in the y direction and
vice-versa.
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Results and Improvements

In the first game I tested on, Breakout by 2DPlay6 I managed to get a 95% hit ratio. The
times the paddle did not manage to rebound the ball was because the ball speed was too fast;
the program ran at 19 FPS which at times was not fast enough to keep up with the ball.
The simple solution was to switch on GPU accelerated template matching, which increased
FPS to over 120. However a more interesting solution was to change the script itself and add
some very simple ball trajectory estimation:

lastXPos = 0 // g l o b a l v a r i a b l e s t o r e the prev ious p o s i t i o n s

function ca l lOut s . newframe ( )
x , y = v i s i o n . matchImage (” b a l l . png ”)
input . moveCursor ( x + ( x − lastXPos ) , n i l )
lastXPos = x

end

The ball trajectory is a simple line, so assuming the GameScripter runs at a constant
fps (which it does in this case, as the computation per frame is constant), one can calculate
where the ball be in the next frame with:

current x position + distance moved in x direction in 1 frame

This starts to show the power of GameScript being a fully fledged programming language,
rather than a simple Domain Specific Language and results in a GameProfile which can play
a perfect game of breakout!

The second game I test was Bounce Back7. Here I hit a snag - the GameProfile was too
good. The mechanics of the game are different to the one in the first link, as the angle the
ball bounces back from the paddle is not based on the angle of incidence, but actually on
where ball hits the paddle. Both the simple GameProfile as well as the predictive one often
get to a state after a few bounces where the ball always hits the middle of the paddle. This
results in the ball just going straight vertically up and down ad infinitum. (see figure 4.10)

The simplest way to solve this would be to add some randomness to the script. The
following example will move the mouse to a random position within 10 pixels of the ball.

input . moveCursor ( x + math . random(−10 ,10) , n i l )

A more interesting solution would be to actually use this game mechanic to your advan-
tage. One could find the position of any block and the paddle (using matchImage() again)
and then calculate the position on the paddle where the ball should hit so that it rebounds
with the correct angle so that it flies perfectly towards the target block. This is perfectly
possible using the current framework, although FPS will take a hit due to the large number
of calls to matchImage().

6http://www.play.vg/games/10-Breakout.html
7http://www.agame.com/game/bounce-back.html
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Figure 4.10: Bounce Back - here the ball stays never deviates outside the highlighted
corridor

Further Improvements Although the GameProfile in this form is able to play the game,
it does not take full advantage of all the features in the game. When destroyed, some blocks
drop a power-up (or power-down) which usually take the form of a color-coded pill shaped
object. If the paddle collects one of these power-ups, it will affect it in some way. Examples
include, a larger/smaller paddle, multiple balls or guns which can shoot down blocks. Using
the current framework with the simple matchImage() function and the powerful programming
ability of GameScript allows us to create a GameProfile that uses these most of these features.

To tackle the case of multiple balls, I created the matchMultipeImages() function to
return multiple matches. It also takes as an (optional) parameter ”numberOfMatches” which
causes the function to return only the best numberOfMatches number of objects. The results
are returned as a simple array, each containing a table containing information about the
object. The table structure remains constant between all functions that return multiple
results, to keep the interface consistent (see Appendix D:GameScript Standard Object Table).
A simple example is given below:

function ca l lOut s . newframe ( )
matches = v i s i o n . matchTemplate (” b a l l . png ”)
for i , obj in i p a i r s ( matches ) do

pr in t (”Found a b a l l at : (” . . obj . x . . ” ,” . . obj . y . . ” ) ” )
p r i n t (”Match Accuracy : ” obj . matchAccuracy )
p r i n t (” Object s i z e : ( ” . . obj . width . . ” ,” . . obj . he ight . . ” ) ” )

end
l owestObject = lowestYcoord inate ( matches )
input . moveCursor ( lowestObject . x , n i l )
lastXPos = x
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end

This handles multiple balls perfectly, by always tracking the lowest ball in the game. It
also demonstrates that the print command works from within GameProfiles if the user wishes
to print out information.

The MatchAccuracy field is always normalised to be between 0 and 1 for all matching
types (such as histogram/contour matching in later GameProfiles).
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4.4 Generic Breakout

Introduction

This is an improvement on the previous script; a single script that is be able to handle any
breakout game.

Desired GameProfile

The common factor in every breakout game is that there is a ball that is moving. By
segregating the objects into background (stationary) and foreground (moving) objects, we
should be able to pin-point the ball position, regardless of how the ball looks. The desired
GameProfile looks as follows:

function ca l lOut s . newframe ( frame )
o b j e c t s = v i s i o n . getForgroundObjects ( )
i f ( isNotEmpty ( o b j e c t s ) ) then

smal l e s tObj = s m a l l e s t ( o b j e c t s )
input . moveCursor ( smal l e s tObj . x , smal l e s tObj . y )

end
end

This introduces one new call-in: vision.getForgroundObjects()

vision.getForgroundObjects(numberOfObjects, minArea) Returns an array of ob-
jects found to be moving. Has 2 optional arguments: the first specifies the maximum number
of objects to return (ordered by size). The second specifies the minimum area needed for the
object to be considered.

smallest(table) and isNotEmpty(table) are helper functions defined in the Game-
ScripterLibrary.

Background

Background Subtraction

Background subtraction is a way for detecting and isolating moving objects from the rest of
the image. Implementing a good background subtraction algorithm into my framework will
be very useful; instead of using the entire game ”screen-shot” to run object detection, object
detection can be confined to only moving objects. It can also provide an easy way to collect
data to train classifiers on. In some cases, it also provides the basis of object tracking, which
is another feature that could be useful.

In order to perform background subtraction, you first have to ”learn” a model of the
background. Once learnt, this model can be compared against the current frame, and so
all known background parts can be subtracted away. Everything that is left is a foreground
object - usually signifying a moving object.
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The simplest background subtraction methods involve just subtracting one frame from
another and then any difference past a certain threshold is classified as foreground.[17].

|framei − framei−1| > threshold (4.8)

Usually this is not enough as the background may be moving too (e.g. trees swaying
in the wind) and illumination changes may distort the results. This requires more advanced
techniques where we keep statistics about means and average differences of pixels in the scene.
This is usually done for about 30 to 1000 frames, using only a few frames a second. More
advanced methods are often based on fitting a Gaussian distribution (µ, σ) over the image
histogram.[18] This gives use the background probability density function (PDF) which is
update using a running average:

µi+1 = αFi + (1− α)µi (4.9)

σ2i+1 = α(Fi − µi)2 + (1− α)σ2i (4.10)

Therefore to test if a pixel is in a background or not:

|F − α| > threshold (4.11)

where threshold is usually a multiple of the standard deviation ( kσ)

The background model does not need to be constant, it should be kept regularly updated
so as to adapt to varying luminance conditions and geometry settings. This is a valid need
for 3D games with advanced lighting and features such as weather, but for 2D games will
most probably be unnecessary.

Massimo Piccardi in his 2004 ”Background Subtraction Techniques” [18] outlines the fol-
lowing most popular background subtraction techniques:

• Running Gaussian average

• Temporal median filter

• Mixture of Gaussians

• Kernel density estimation

• Sequential kernel density approximation

• Co-occurrence of image variation

• Eigenbackgrounds

These are the conclusions that were found from his results:
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• Gaussian averaging and median filters offered high frame rates, with little memory
requirements, at the expense of model accuracy.

• Kernel density estimation and mixture of Gaussians had high memory requirements;
in the order of at least 100 frames, but much better model accuracy. Sequential kernel
density approximation was nearly as accurate, but had lower time complexity and
memory requirements by order of magnitude.

• Co-occurrence of image variation offered good accuracy and memory complexity, while
explicitly addressing spatial correlation.

Ideally it would be useful to have background subtraction which allows arbitrary camera
motion. This would be incredibly useful for 3D games, where the player is moving around,
within a 3D scene. By using techniques based on ego-motion compensation and background
estimation [20] one can achieve accurate foreground segmentation with a moving video, how-
ever this is probably out of the scope of the project.

Connected Component labelling

Background subtraction results in a similar image to the one given in figure 4.12. This is
usually a binary image; the white areas represent foreground objects and the black represents
the background. In it’s simplest form, connected component labelling (also often known in
computer vision as blob extraction) is a way of grouping together pixels into components
based on pixel connectivity and pixel proximity - i.e. all pixels in a a connected component
share similar intensity values and there exists a path of adjacent pixels between every pixel in
a component. The resulting images from background subtraction are binary, so the measure
of pixel similarity is easily solved - white pixels are similar to other white pixels. All other
combinations are not similar.

A simple connected component labelling algorithm is defined below[21]. It works well on
binary images (for each pixel, it’s intensity value, V = {1} or V = {0}) and can be used with
both 4-connectivity or 8-connectivity. The connectivity level defines the neighbourhood that
is taken into account when defining if pixels are connected or not:

For pixel p with coordinates (x,y), the set of pixels defining the 4-connectivity neighbour-
hood is given by:

N4(p) = {(x+ 1, y), (x− 1, y), (x, y + 1), (x, y − 1)} (4.12)

The 8-connectivity neighbourhood includes the diagonals:

N8(p) = N4 ∪ {(x+ 1, y + 1), (x+ 1, y − 1), (x− 1, y + 1), (x− 1, y − 1)} (4.13)

The connected components labelling operator scans the image by iterating along a row
until it comes to a pixel p with V = {1}. It then examines the four neighbours of p which
have already been encountered in the scan (i.e. the neighbour to the left of p, above it, and
the two upper diagonal terms). Based on this information, the labelling of p occurs as follows:
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Figure 4.11: Examples of the different techniques above. The bottom right is the code-book
method, which shall be discussed in the implementation. Picture taken from [19]
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• If all four neighbours have V = {0} - assign a new label to p

• If only one neighbour has V = {1} - assign the neighbour’s label to p

• If more than one of the neighbours have V = {1} - assign one of the labels to p and
make a note of the equivalences.

After completing the scan, the equivalent label pairs are sorted into equivalence classes
and a unique label is assigned to each class.

Contour Extraction

Another way of extracting connected components from images is to trace the outline of objects
to create contours. A popular method for contour retrieval is outlined by Suzuki[22]. The
principle is simple and is similar to the component labelling algorithm listed above. The main
difference is that it is a border following algorithm - the iteration doesn’t expand ”inwards”
into the the component itself. There is also a labelling operator, except instead of labelling
components, it labels borders.

The contour retrieval technique used by Suzuki results in a contour that has a point for
every border pixel. This is very inefficient and often results in contours much bigger than they
need to be. For example, a simple square only needs 4 contours to be represented perfectly,
but with the previous method results there will be as many points as perimeter pixels.

Therefore there is a need to remove unnecessary points from the contour. Simple al-
gorithms include compressing horizontal, vertical and diagonal segments, leaving only their

Figure 4.12: Background Subtraction - The woman is classified as foreground and so shows
up white in the resulting image
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ending points. There also exist some approximation algorithms such as Freeman Chain Codes
[23] and Teh-Chin chain approximation[24].

Figure 4.13: An example of Polygon approximation using Teh-Chin. The number of vertices
has been reduced to only 18 from hundreds, while keeping error low

The Teh-Chin chain approximation algorithm guarantees approximation within a devia-
tion threshold. It’s approach is to use a monotonically increasing function of chord and arc
length to form the initial set of approximation points. This is followed by a merging of those
points. An example is shown in figure 4.13.

Freeman Chain Codes are interesting because they are a representation of the shape in
terms of a sequence of lines where, each line is of a fixed length and in one of 8 directions
(i.e: 0◦,45◦,90◦..). Each step can be represented by a number 1-7, resulting in polygon rep-
resentations that are compact and easy to compare - e.g. {1,6,7,3,4,4,4}. However, Freeman
approximation often suffers from quantization errors, missed points and redundant points[25].
(see Figure 4.26:Contour Matching with Moments for an example).
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Implementation

Frame Subtraction

During implementation, I tested 3 background subtraction techniques. The first was simple
frame-to-frame subtraction . For the purpose of tracking the ball in Breakout, this methodol-
ogy sometimes actually produced better results than the other 2, much more computationally
expensive & advanced techniques. This is because the background in Breakout is completely
static, the usually the only thing that changes between frames is position of the ball and the
position of the paddle. For the single frame after a block is destroyed, there will be also a
difference. However using the assumption that the ball is smaller than blocks (which is true
for all Breakout games I encountered), it was easy to find the ball.

There were however 2 disadvantages. Because of the computational simplicity of frame
subtraction, the program was able to run much faster than the X server refreshed (the refresh
rate was 60Hz, while my program could run at over 100fps). This meant that sometimes,
frames were identical - subtraction would result in an empty matrix. This was easily solved
by setting the targetFPS variable to something reasonable like 30 fps.

The other problem is that all this method does, is indicate regions of motion. If the ball
in the first frame overlaps with the ball in the second frame, we actually highlight the sides
of the ball (figure 4.14). This is because the pixels in the middle of the ball have not changed
between frames. This is especially true for paddle, which always resulted in 2 disjoint areas
of movement.

Figure 4.14: Background Subtraction using frame subtraction. Here the ball in frame 1
intersects, with the ball in frame 2. White signifies areas of difference

On the other hand, if the frame rate was too low or the ball moved too fast, the ball in
the 1st frame did not overlap with the ball in the 2nd frame. This meant we actually got 2
balls in the image (figure 4.15). Here is no easy way to distinguish between the two - we do
not know which area of movement corresponds to the balls current position as we have no
background model.
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Figure 4.15: Background Subtraction using frame subtraction. Here the ball in frame 1
does not intersect, with the ball in frame 2. White signifies areas of difference

Mixture of Gaussians

The major problem was that frame subtraction does not generalise to 3D games. Like de-
scribed in the background section, for effective background models in an environment where
there is periodic movement and changing lighting conditions we need to learn a background
model. I therefore started testing the generalised mixture of Gaussians (MOG) implementa-
tion provided by the OpenCV library.

Mixture of K Gaussians (αi, σi, ωi) is a advancement on the running Gaussian average
described in the background Section[18] to be able to cope with multi-modal backgrounds.
The number of modes is arbitrarily pre-defined (I used 5). Every frame, the weight ωi of each
Gaussian is updated - the Gaussians that match the current value (e.g. have distance < 2.5
σi - i.e. the 99% confidence interval) have their αi, σi updated by the running average.

This method actually models both foreground and the background. To be able to dis-
tinguish between which distributions only model the background, all the distributions are
ranked according to ωi

σi
and the first X are chosen to represent background. Another alterna-

tive, is to use all distributions with a ratio above some threshold (this is what I used, with a
ratio of 0.7).

With this I got some satisfactory results for breakout, and 2D games in general. As will
be discussed in section 4.6:First Person Shooter, this also works reasonably well in 3D games.
One disadvantage with this technique is that background with fast variations cannot be
accurately modelled with just a few Gaussians. This causes problems for sensitive detection
which as will be discussed later, which inspired me to write my own implementation, based
on the paper ”Background Modelling and Subtraction by Codebook Construction”[19].

I also felt that using a continuous distribution to model 2D games, where pixels often
differ by large steps is not optimal. For example in breakout, the background is a uniform
blue and the ball silver - the change between blue and silver is instantaneous between pixels.
This is not necessarily true in the real world (and 3D games), where lighting creates many
gradients and shades, and often there is a smoother between background and foreground (due
to camera blurriness in real-life or anti-aliasing in games).

In interests of coherence, I shall give an overview of my implementation here.
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Code Book Background Subtraction

CB adopts a quantization/clustering technique to encode and construct the background a
pixel by pixel basis. Each pixel has 3 sets of codewords, which can be though of as a ”box”
with 2 thresholds: a minimum value min and maximum value max (see figure 4.16). Each set
is associated with a single channel - I chose to use RGB as this removes the need to convert
the images to a different representation. Together they comprise of a code book for that pixel.
This is similar to the MOG implementation above, except that has Gaussian distributions
instead of boxes.

Figure 4.16: Codebook formation. The codewords expand to cover nearby values or new
codewords are spawned if the there are none nearby. Taken from [17]

Background Subtraction Once trained, background subtraction with CB this is very
simple and done on a pixel-by-pixel basis. For each channel we look at it’s value and try to
find a codeword that fits the following rule ({min,max}Mod are arbitrary thresholds):

(min - minMod) < value < (max + maxMod)

If such a codeword exists for all 3 channels, then this pixel is accepted as background,
otherwise it is foreground.
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Training Each Codebook for each pixel channel is initiated with an empty set of codewords.
For each pixel channel in the training set:

• If there exists a codeword such that:

min < value < max

Do nothing

• If there exists a codeword such that:

min < value < (max + learnHigh)

set max to be value

• If there exists a codeword such that:

(min - learnLow) < value < max

set min to be value

• Otherwise create new codeword with:

min, max = value

We also keep track of every time a codeword satisfies one of the above conditions, and
record the frame that happened - i.e. this is the last access time. This is used periodically to
remove seldom-used ”stale” codewords. This is what gives the CB algorithm good training
performance with moving foreground objects.

The paper states the following advantages:[19]:

• Unconstrained Training allows moving foreground objects in the scene during the
training period. When compared to MOG and Kernel density estimation, the CB
method was able to obtain the most complete background model, when trained on a
video with many moving people.

• Training Speed CB was 4.72x faster than MOG, but 0.04x slower than Kernel

• Background subtraction CB was 2.53x faster then MOG and 2.76x faster than
Kernel once trained.

• Adaptive and compressed background models - The quantized codewords are very
compact and take less memory than other techniques. They found on average they
needed only 6.5 codewords per pixel for a 5 minute video at 30fps. This means that CB
background models can be trained over many 1000s of frames, while others can only
have a limiter number of frames in memory.
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Figure 4.17: 3 Different types of background subtraction i) frame subtraction ii) MOG iii)
Codebook

I also chose to analyse the 3 implementations I used. A drawback of the paper is that it
only tested on 1 simple scene. I chose to test it on 2 scenes - 1 with lots of movement, the
other with less.

Fairly stationary scene:

Method Training Speed Detection Speed
Frame Subtraction n/a 140
MOG 47 65
CodeBook 72 74

Lots of movement:

Method Training Speed Detection Speed
Frame Subtraction n/a 140
MOG 44 64
CodeBook 50 53

As you can see, my results did not match the paper’s. Training-wise, Codebook was only
53% faster than MOG with a fairly stationary scene, but went that went down to only 14%
faster when there was lots of movement. CB performance fell dramatically, because during
the initial training period, it does not clear stale entries. This means that there are lots
of stale codewords still hanging about, which means lots of comparisons and a performance
decrease. Detection speed-wise, CB had 14% faster detection for a stationary scene, but
actually 12% slower than MOG. This is because, when there is lots of movement, there is a
higher number of codewords that are stored.

How much of these performance differences can be attributed to OpenCV’s highly opti-
mised implementation, I can’t tell. Efficacy-wise, both implementations were about equal for
2D games.

Blob Detection

To find entire connected components in the resulting background subtraction image, I chose
to use border-following method of Suzuki described in section 4.4. I then approximated these
contours using Teh-Chin approximation for the final contours.
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Figure 4.18: Background Subtraction, followed by closing, opening

However as you can see in figure 4.18, background detection produces some noise (white
isolated spots) and we will see this feature prominently in 3D games. This means, we needed
to do some preprocessing to remove noise. This was achieved using a combination of mor-
phological operators - dilation and erosion.8

Dilation Dilation is a convolution of the image with a local maximum operator. This
means the image pixel under the anchor point is replace with the maximal value in the kernel.
Dilation causes the white areas of the image (i.e. foreground) to expand, and is usually used
connect multiple components together.

Erosion Erosion is the opposite - it is a local minimum operator and causes areas of
white to contract. Multiple iterations of erosion are often used to eliminate lone outliers -
i.e. noise that is only a few pixels in size as these will disappear after the convolution.

Closing This is X dilations followed by X erosions.

Opening This is X erosions followed by X dilations.

Initially I tested erosions followed by dilations, under the impression that I should remove
noise first, then restore the area of objects left. This worked well with CB subtraction, but
caused problems with MOG background subtraction. This is because, objects were often
”patchy” (figure 4.19)- lots of smaller areas of white covered the object, rather than 1 large
”blob”). The dilation caused often caused these to disappear or severely distorted the shape
or size.

Instead I settled on 3 iterations of closing (3 dilations followed by 3 erosions) and then 3
iterations of opening (i.e. 3 erosions followed by 3 dilations) with a 3x3 kernel. The closing
served to connect nearby areas into larger blobs so they wouldn’t disappear, and the opening
served to eliminate elements that arose purely from noise. Both these are approximately area
preserving, so the resulting image is mostly noise-free, while preserving outlines of moving
objects (figure 4.19).

8http://www.mathworks.com/help/toolbox/images/f18-12508.html
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Figure 4.19: The image on the left is the result from MOG background subtraction, once
it has started to accumulate the paddle into the background. The image on the right is once
it has been closed then opened

Results and Improvements

After some tweaking, generic Breakout worked great with every game I tested on. Some-
times, when the paddle stayed in a single position for an extended period of time, it would
start ”blending” into the background if MOG or CB background subtraction was used with
constant learning. This was easily solved with a number of possible solutions. The first and
simplest is just framing the game, so that the paddle is not seen by the GameProfile. This is
valid for breakout, as the paddle follows the mouse x coordinates regardless.

The second was similar to framing, except this was done in code. The following call-in
was added:

vision.excludeRegion(x, y, width, height) This excludes all vision algorithms from
computation on the rectangular region defined by the arguments. This includes matchImage(),
getForegroundObjects(), matchShape(), matchColours() and getTrackedObjects()

The third was to stop the background subtraction from learning (i.e. the background
model stays fixed). The following call-ins were added:

vision.stopBGSLearning()

vision.startBGSLearning()

stopBGSLearning() could be called after X number of frames, or when the user feels fit
by adding associating a key with it:

function ca l lOut s . keyRelease ( key )
i f key == ’ s ’ then

v i s i o n . stopBGSLearning ( )
end

end
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4.5 Generic Tetris

Introduction

Tetris is a puzzle video game released in 1984. It has become one of the most popular games
of the 20th century and rarely needs an introduction. Nevertheless, here is a short description
taken from the internet9

”A random sequence of tetrominoes (see figure 4.20); shapes composed of four square blocks
each fall down the playing field (a rectangular vertical shaft, called the ”well” or ”matrix”).
The objective of the game is to manipulate these tetrominoes, by moving each one sideways
and rotating it by 90 degree units, with the aim of creating a horizontal line of ten blocks
without gaps. When such a line is created, it disappears, and any block above the deleted

line will fall. With every ten lines that are cleared, the game enters a new level. As the
game progresses, each level causes the tetrominoes to fall faster, and the game ends when
the stack of tetrominoes reaches the top of the playing field and no new tetrominoes are

able to enter. Some games also end after a finite number of levels or lines.”

Figure 4.20: The seven one-sided tetrominoes in their Tetris Worlds colors. Top row, left
to right: I, J, L, O. Bottom row: S, T, Z.

Desired GameProfile

Here the idea is to parse Tetris game-state. To simplify the GameProfile, the only important
part is actually the type, rotation and position of the falling Tetrimino. This is because the
GameProfile can internally store all blocks that have fallen (i.e. the blocks at the bottom).
This however does mean that unlike the previous games, this GameProfile cannot start mid-
game.

The AI for Tetris is out of scope for this project. In theory however, once we have a
GameProfile that can parse state correctly, we could plug this state into the AI. The AI
would find the best next move, and the GameProfile would act on this to move the Tetris
blocks by using call-ins.

9http://en.wikipedia.org/wiki/Tetris
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Figure 4.21: An online clone of the original Tetris game

The GameProfile needs to know about the pieces themselves. Rather than having code
that represents Tetriminos, this can be achieved by taking images of each one and storing
them in a table:

p i e c e s = {”Z . png ” , ”BZ. png ” , ”Cube . png ” , ”Long . png ” , ”L . png ” ,
”BL. png ” , ”T. png”}

A simple solution would be to use the matchImage() function. Unfortunately, there are
2 + 4 + 4 + 1 + 2 + 4 + 2 = 18 different permutations of the possible orientations the pieces
could be in. With the current template matching algorithm, this would run slowly.

We can apply the background subtraction techniques to identify the contour of the falling
piece. Now, we know the bounding box of the tetrimino, can constrain template matching to
a single iteration - it would be extremely fast and simple!

However, hopefully by now you may have realised that I am trying to get the GameProfiles
as generic as possible. Template matching is less useful in such a situation, as the colours of
both the pieces and the background will differ (remember, at the moment template matching
is done on the entire bounding box, not just the contour). Also the sizes might be different,
although this is not much of a problem, as we know the scale now, so template could be
scaled to the same size before matching.

Instead I have decided to match the contours of the shapes. This will work with any
tetris game, as the tetriminoes are always the same shape. This gives rise to the following
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vision call-in:

vision.matchShape(image, image) Returns 2 values: The first is a value between 0 and
1 that indicates how well the shapes in the two images match. 1 indicates a perfect match,
while 0 indicates no match. The second is the rotation difference between the shapes. It is
between 180 and -180 degrees.

This results in the following GameProfile, which prints out the shape and the rotation:

p i e c e s = {”Z . png ” , ”BZ. png ” , ”Cube . png ” , ”Long . png ” , ”L . png ” ,
”BL. png ” , ”T. png”}

shapeAccuracy = {}
r o t a t i o n = {}

function ca l lOut s . newframe ( frame )
o b j e c t s = v i s i o n . getForgroundObjects (1 )
i f o b j e c t s ˜= n i l then

handle = v i s i o n . getHandle ( o b j e c t s [ 1 ] )
for i , v in i p a i r s ( p i e c e s ) do

countourResu l t s [ i ] , r o t a t i o n R e s u l t s [ i ] = v i s i o n . matchShape (v , handle )
end
maxValue , maxIndex = findMax ( contourResu l t s )
p r i n t (”Found ob j e c t : ” . . p i e c e s [ maxIndex ] . .

” with r o t a t i o n : ” . . r o t a t i o n [ i ] ) ;
end

end

The GameProfile finds the largest moving object (the falling tetrimino). It then compares
it with every stored tetrimino using matchShape() and prints out the result of the best match
and it’s rotation. Now that it knows what object is falling, it can pass this onto the AI, which
will tell it which position to move it into. Then using input.PressKey() it can rotate and
move the tetrimino into position.

vision.getHandle(object) - This call-in returns a ”handle” to an object, which can be
used in all GameScript call-ins, where an image is expected (e.g. matchShape()) . This is
the same type of handle that getImage() returns (see section 4.2)

findMax is a GameScripter library function that returns the maximum value in an array,
and it’s index.
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Background

Histogram Creation and Matching

On a general level, histograms are simply collected counts of underlying data organized into
a set of predefined bins. The bins can be populated by counts of features computed from the
data, in our case from the colour.

It is usually best to first convert the image from an RGB image to a HSV image as this
is more useful interpretation of colour. An RGB image splits the image into 3 channels for
the amount Red/Green/Blue each pixel has. Our aim is to match colour which means we
would need to take into account all 3 channels, as what we see, is a combination of these 3
base colours.

Converting to a HSV image gives each channel its own properties:

Figure 4.22: HSV Representation

Hue this can be thought of as the base colour of the object. The angle in the diagram.

Saturation is the perceived intensity of a colour. The radius in the diagram.

Value corresponds to the amplitude (or ”intensity) of the colour (reflects the subjective
brightness perception of a colour for humans along a lightness-darkness axis). The
vertical axis in the diagram.

For 2D games, this particular representation does not provide us with much benefit over
RGB, as colour of objects usually does not change for the duration of the game. However
in 3D photo-realistic games, we need to take into account variable lighting conditions and
shadows. In the HSV representation, shadows have no effect on hue or saturation, just the
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value. Specular reflections will have constant hue (though different saturation and intensity).
Therefore it is easier to design algorithms for histogram matching using HSV.

The first task of matching histograms, is to normalize them. This is an important step as
it enables us to match objects of different sizes and match only based on the distribution of
colour. The normalized count is the count in a particular bin, divided by the total number of
observations (multiplied by the class width - but in our case all widths are the same so this
can be ignored). If we didn’t normalise, an identical object that is twice the size will have
twice as many counts and so distort most matching algorithms even though the distribution
of counts across the bins is identical.

The ability to compare to histogram in terms of some specific criteria for similarity is
outlined by Schiele and Crowley[26]. There are a number of possible distance metrics:

Correlation (perfect match = 1, total mismatch = -1):

dcorrelation(H1, H2) =

∑
iH

‘
1(i) ·

∑
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‘
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‘2
1 (i) ·

∑
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‘2
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where H ‘
k(i) = H1(i)− (1/N)

(∑
j Hk(j)

)
and N equals number of bins in the histogram.

Chi-Square (perfect match = 0, total mismatch = unbounded):

dchi−square(H1, H2) =
∑
i

(H1(i)−H2(i))
2

H1(i) +H2(i)

Bhattacharyya (perfect match = 0, total mismatch = 1):

dbhattacharyya(H1, H2) =

√√√√1−
∑
i

√
H1(i) ·H2(i)√∑
iH1(i) ·H2(i)

The problem with Schiele and Cowley’s algorithm is that changes in lighting conditions
can shift the histogram left or right as follows:

Figure 4.23: Histogram Matching
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Our algorithm would give very poor matches for the two above histograms as it does bin
for bin (represented by columns) matching (e.g. bin3 for A = 14 and bin3 for B = 0, therefore
the match is very poor).

Earth movers distance Algorithm [27] can be informally described as the amount of work
needed to change histogram 1 to histogram 2 through the process of shovelling dirt between
bins. The further the shovelled dirt needs to move the higher the cost. This means that this
measure would be more appropriate for cases like this as the amount of shovelling needed is
quite small, even if the bins do not match very well.

Edge Detection

Edges occur at boundaries between two different regions in an image, where there is significant
change in image intensity. Edge detection examines the rate of change of intensity near the
pixel - sharp changes with steep gradients are good evidence of an edge, while slow changes
suggest the contrary.

Usually, edges can be classified into the following categories as shown in figure 4.24:

Step Edges - image intensity abruptly changes from one value to a different values

Line Edges - image intensity abruptly changes value, but then changes back again soon
after.

Roof Edges - in real images, there is usually a smoothing effect causing roof edges, which
have less of an abrupt change in value.

Figure 4.24: Types of Edges

An edge detector is an algorithm that produces a set of edge points from an image.
Most edge detection techniques have been around for decades. They involve convolution
operators that estimate the 1st or 2nd order derivatives in an image. Most have multiple
convolution masks to find edges in vertical, horizontal and diagonal directions. 1st order
derivative operators include: Roberts, Sobel, Prewitt, Robinson, Kirsch - which are all 3x3
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matrices except Roberts which is 2x2. The Laplacian operator is a commonly 3x3 used 2nd
order derivative operator. The 2D version, diagonally discriminating version is given below
as an example:

1 1 1
1 −8 1
1 1 1

(4.14)

Figure 4.25: Example of edge detection. Taken from http://en.wikipedia.org/wiki/

File:EdgeDetectionMathematica.png

A more advanced and interesting edge detector was proposed by J. Canny[28]. The
Canny edge detector builds upon the previous detectors and tries to assemble individual
edge candidate pixels into complete contours (a sequence of points, usually closed). There
are 2 main steps:

First Derivatives The 1st derivatives are computed in x and y and then combined into four
direction derivatives. Like in the simpler edge detectors, points where these directional
derivatives are local maxima are candidates for assembling into edges.

Contour Construction Instead of using a single threshold at which a given intensity gradi-
ent switches from ”edge” to ”not-edge”, Canny uses thresholding with hysteresis. This
requires 2 thresholds - high and low. The following rules are applied to each pixel:

• If a pixel has a gradient larger than the high threshold - it is accepted

• If a pixel has a gradient below the low threshold - it is rejected

• If a pixel has a gradient between high and low thresholds, it is accepted only if it
is connected to a pixel that is above the high threshold.

This leads to a simple algorithm that ”traces” object boundaries, with more accuracy
than the other operators as it is not affected as much by noise and blurriness in the im-
ages. These boundaries can then be treated as polygons for further processing (usually
they are simplified with techniques described in section 4.4:Contour Extraction)
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Contour Matching with Moments

We need a way to summarize the shape of an object so that it can easily be compared to
another, invariant of both size and rotation. One way to achieve this is by using Hu invariant
moments. [29]

A moment is a gross characteristic of the contour computed by integrating over all the
pixels of the contour. i.e:

mp,q =

n∑
i=1

I(x, y)xpyq

A central moment is the same as the moments mentioned above except that the value of x
and y are displaced by mean values.

µp,q =
n∑
i=0

I(x, y)(x− xavg)p(y − yavg)q

This then needs to be normalised so that the moments are size invariant and also coordinate
system invariant. This is done by diving by mX

00, where X is the power needed for the
resulting normalised moment to be independent of scale:

ηp,q =
µp,q

m
(p+q)/2+1
00

Hu invariant moments of a contour are linear combinations of central moments. They are
invariant under translation, changes in scale and rotation. Therefore they a perfect tool for
comparing contours. Please refer to Appendix A.1 for full list of Hu invariant moments. We
are able to compare 2 shapes by comparing each Hu moment individually and then combining
these into a single figure with which summarizes the quality of the match.

We could also use other discriminants, based on geometric features[30], for matching.
For example, number of vertices, distance of each vertex from the centre of gravity, angle
subtended by the vertices at the centre of gravity or convexity defects.

Freeman Chains (as described in Figure 4.4:Contour Extraction) can also be used to
match contours by using pairwise geometrical histograms. Histograms, quantised into 8 bins,
are created by counting the number of each kind of line in the freeman chain code. The
standard Histogram matching techniques (described in section 4.5:Histogram Creation and
Matching) can be used to match these histograms. The problem with this is even though
shapes give perfect histogram matches when rotated by a multiple of (360/x)◦, when they
are in-between these rotations matching gets very inaccurate.
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Figure 4.26: Freeman Chain approximation and matching. Matching is very accurate when
rotations in multiples of 45◦
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Implementation

Tetrominoes are only ever rotated in 90◦ degrees, so if was going to implement a tetris
specific algorithm, I would probably use Freeman chain approximation matching as it would
be fast and efficient. However, in the general case it is inadequate, so instead I chose to
use Hu Moments. Finding the contours for the stored images is roughly the same as for the
foreground segmentation objects, except there is a need for edge detection.

Edge detection To find the edges in the colour images I chose to use the OpenCV imple-
mentation of the most effective edge detector - Canny. I had the choice of either applying
Canny on each colour channel separately, or combine all the channels into a grayscale image
and use Canny on that. The latter methodology would work fine in this case as the stored
tetriminoes are on a perfectly white background, however I planned for the general case and
decided to do it on each colour separately.

To combine the results of the 3 resulting edge maps, I simply added them together. I felt
this gave me the best results I kept as much information in the final edge map as possible.
Other possible choices were:

• Use the average of the gradients.

• Use a weighted average based on the quantity of each color at each location.

Contour Finding For the stored images, the Canny edge map is used for contour finding
and follows the same algorithm as the connected component labelling (see section 4.4:Blob
Detection) i.e. Suzuki border-following algorithm, followed by Teh-Chin approximation. The
contour for the foreground object has already been found in the process of connected com-
ponent labelling.

The contours are now stored together with associated image so that they do not have to
be calculated again10.

Contour matching The approximate polygons can now be compared using Hu Moments.
All 7 of the Hu moments are calculated for both polygons and then compared as follows:

match(A,B) =

7∑
i=1

|m
A
i −m8

i

mA
i

| (4.15)

where

mA
i = sign(hAi ) · log|hAi |

mB
i = sign(hBi ) · log|hBi |

10This is encapsulated in the GenericObject class in the source-code. This is used for objects found using
all of the techniques described in this report

66



and hAi and hBi are the Hu moments of A and B respectively (see section A.1).

This means that a perfect match would be 0 and the worse the match the higher the
number.

We can find the orientation of an object can also be found using the following combination
of moments:

angle = 0.5 · tan
(

2 ∗m1,1

m2,0 −m0,2

)
(4.16)

In this case, we want to find the relative orientation of the matched objects, so we calculate
the orientation for both and subtract on from the other.

Results and Improvements

From my testing on 3 online tetris games, the profile was able to identify the falling blocks
with 100% accuracy and the rotation with 100% accuracy. Colour information was not
needed; contours were enough to uniquely identify each shape. This means that if the script
was hooked up to an intelligent AI, it would be able to play with great efficiency!

The contour matching done here was very simple - I wanted to investigate how effective it
would be on more complicated shapes. I created a quick test program that took in a picture
and rotated it in steps of 1 degree, and calculated the rotation. Here is an extract of the
table produced (using the outline of a car, Figure 4.27):

Degrees Rotated Degrees Estimated Match Quality
83 82.9401 0.994307
84 83.9819 0.992483
85 84.9635 0.99487
86 85.9753 0.994044

The average error for rotation was a tiny 0.02 degrees, while the match quality was on
average 0.994.

Figure 4.27: The image was rotated in steps of 1 degree, and rotation/match quality was
calculated using moments
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Removing the hard-coded playing field size

In the GameProfile, the horizontal size of the Tetris field is hard-coded to 10 squares. However
this can be calculated from the image - divide the width of the playing field in pixel, by the
width of the shortest side of the falling object. All tetriminoes have a 2 square, shortest side.
The exception to the rule is the I Tetrimino, which is 1, but this can easily be tested for.

To find the width of the field I have implemented a new vision call-in:

vision.findSquares(maxNumber, minSize) returns a list of objects representing squares.
Returns maxNumber or less of squares (ordered by size), with a minimum size of minSize.

This allows us to find the largest square on screen, which 99% of the time, is the boundary
of the game. It works as follows:

• Use pyramids (see section 4.2) to down-scale then upscale image to filter out any noise.

• Blur the image with a median Blur. I found this reduces any textures that interfere
with the latter stages, while keeping edges sharp.

• Do canny edge detection (section 4.5) on all channels of the image and a grayscale
version. This works better than just on the grayscale as finds it squares in all colour
planes.

• Find contours using Suzuki algorithm and approximate with Teh-Chin (section 4.4).

• Iterate through contours with 4 edges. Calculate angles between edges - if all angles
within some threshold (I used 5 degrees) count contour as square

• Sort found squares by size and set return objects in the GameScript standard object
table.(Appendix D)

The alternative was to use a Hough line transform11 to find the straight lines parts of
the edge map instead of the Suzuki border-following algorithm. I found however the above
worked extremely efficiently, using methods I had already implemented, so I stuck with that.

Now we can find the border of any game, and set the GameScripter to only parse that
part of the game:

function f indAndSetBorder ( )
squares = f indSquare s (1 )
i f squares ˜= n i l then

v i s i o n . setGameBorder ( squares [ 1 ] . x , squares [ 1 ] . y
squares [ 1 ] . width , squares [ 1 ] . he ight )

end
end

This is a method I added to the GameScripter library.

11http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
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Other Flash Games

Other than the ones documented here, I have a tested a number of other 2D games, such
as with online pool (mostly used template and histogram matching). The call-ins/call-outs
provided above, serve their purpose and provide the necessary tools to parse game state.
However many are puzzle-based, so the AI is most involved part of the GameProfile. For
example, very popular games like Bejewelled and chess are easily parsed, but writing a good
AI is complex.
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4.6 First Person Shooter

Introduction

”Does it play Quake yet?”

Chris Emery

A first-person shooter12 is a video game genre where the player experiences the action
through a first-person perspective - i.e. through the eyes of a protagonist. Game-play usually
centre around combat with the protagonist’s gun, with enemies varying between games -
anything from terrorists to zombies and flying robots.

Popular games include Doom, Quake and lately the Call of Duty games - which is valued
as one of the largest entertainment franchises in the world.

Figure 4.28: First-Person Shooters - Doom (1993) is on top, Call of Duty Black Ops (2010)
is on the bottom

12http://en.wikipedia.org/wiki/First-person shooter
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Desired GameProfile

In an ideal situation, the GameProfile we would like:

function ca l lOut s . newframe ( )
x , y = v i s i o n . matchObject ( EnemyPlayer )
input . c l ickOn (x , y )

end

Here, the idea is exactly the same as the original whack-a-mole - you find the enemy
player on screen, and move your cursor there to click (or in this case that will mean shoot).
However, how do we define the variable EnemyPlayer? It can’t just be a single image like we
did for 2D games, as a single image is not enough to define what an enemy looks like. This
brings us to object detection frameworks

Background

Object Detection Frameworks

Paul Viola and Michael J. Jones report on ”Rapid object detection using a boosted cascade
of simple features” [31] sets out a great framework for real-time object detection, especially
relevant in for my project. Although it concentrates on face recognition (like a lot of object
detection papers), it applies to all object detection.

Unlike some other object-detection procedures[32], this one uses features rather than
pixels directly. There are 2 reasons for this: using features is faster, and features can encode
ad-hoc domain knowledge that is difficult to learn using a finite quantity of training data.
The features they use are in figure 4.29.

Figure 4.29: Example rectangle features shown relative to the enclosing detection window.
The sum of the pixels which lie within the white rectangles are subtracted from the sum of
pixels in the grey rectangles. Two-rectangle features are shown in (A) and (B). Figure (C)
shows a three-rectangle feature, and (D) a four-rectangle feature. [31]

The features are very primitive compared to alternatives such as steerable filters [33]
as they only work in 2 orientations: vertical and horizontal. However they trade-off this
flexibility and potential loss of accuracy, with a significant computational efficiency.
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Conventionally a detector is created using features which can be scanned over the input
image. However to try and retain some scale-invariance, these fixed size detectors have to
be run on different resolutions of the image; usually facilitating the need to create an image
pyramid. The creation of this pyramid is computationally intensive and prohibitive in a
real-time scenario.

To combat this P. Voila and M. Jones introduce a new intermediate representation called
an ”integral image” with which rectangular features can be easily computed. Essentially they
are a summed area table 13 which can be computed in one pass over the original image. The
benefit is that any rectangular sum can be computed in four array references, which greatly
speeds up the calculation of rectangular features.

In any given image, the complete set of rectangular features exceeds the number of pixels,
so learning these features outright using techniques such as support vector machines[34] or
neural networks[32] would be incredibly slow. Instead, they propose using a variant of the
AdaBoost[35] learning algorithm to find a small amount of features which can combine to form
an effective classifier. The idea behind AdaBoost is simple; the learning process is split into a
series of rounds, and at each round, the feature classifier with the highest correct classification
rate is chosen. In the subsequent round, the weights of each incorrectly classified example
are increased so that that they are favoured. This results in a technique where training error
approaches zero exponentially with the number of rounds [36].

However AdaBoost is not the only technique for feature selection. Other possibilities
such as feature variance[37] and Winnow exponential perception learning[38] are possible,
although they are left with larger number of features than AdaBoost.

The final innovative technique they used was the use of an attentional cascade, which
also was one of the reasons for choosing AdaBoost as the learning algorithm. Rather than
running all classifiers simultaneously, one can construct a cascade of classifiers which achieves
increases detection performance while greatly reducing computation time. The cascade can be
thought of as a ”pipeline” where smaller, more efficient classifiers are evaluated first, gradually
increasing in complexity, until last come the more complex many-feature classifiers which are
there to achieve low false positive rates (and therefore not sacrificing on Precision). If at any
point in the pipeline a classifier is negative the sub-window is immediately rejected. For tasks
such as object detection, where the negatives far outnumber positives, this technique works
extremely efficiently. The cascade was constructed using AdaBoost, starting with a two-
feature strong classifier, however this could be applied to other machine-learning algorithms
too, like neural networks[32].

Combined, these techniques produce a very efficient object detection framework; on a
700mhz pentium III processor, a frame-rate of 15 was achieved on 384x288 image with a
77.8% recall rate. Since then, processing power has increased by an order of magnitude, and
so by using a similar technique, object detection speed should not be an issue. In most cases,
classifiers with more features will achieve higher precision and recall rates, so it is easy to
tweak this procedure by tweaking the number of classifier stages and the number of features
of each stage.

The major downfall of this report, and this technique in general, is that it concentrates

13http://en.wikipedia.org/wiki/Summed_area_table
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on detection speed and ignores the consequences on training speed and training sample sets.
They used 4916 positives and 10,000 negatives. This is a fairly large sample set size - it
would take a while to get such a large sample size in a game, however not unreasonable if
playing the game for extended periods of time. More importantly, the training time for a
32 layer detector was in the order of weeks on a single 466Mhz AlphaStation XP900. Even
with the rapid increase in computing power, performance improvements in this aspect of
this procedure would have to be taken to be applicable to my project, as one of the key
requirements is real-time learning.

Tracking and Motion

All the previous techniques discussed such as template matching and cascade classifiers are
applicable only to single images - we isolate particular shapes on a frame-by-frame basis.
Tracking is a related problem - we use inter-frame relationships to track objects which do not
have to necessarily be identified. Tracking and optical flow is a very large and fast-moving
field of research in computer vision as of this moment. In this background section, I will
only concentrate on the areas of optical flow that are directly related to the implementation
of GameScripter; I forgo going into any detail of some vast areas of research such as dense
optical flow, although I may mention them when necessary.

Lukas-Kanade Method

Optical flow Optical flow is the distribution of apparent velocities of movement of bright-
ness patterns in an image. [39] It is caused by relative motion of objects and the viewer.

In Dense optical flow, a velocity or displacement is associated with each pixel in the
frame. The simplest form of dense optical flow is block matching - attempting to match
windows around each pixel from one frame to the next[17].

In Sparse optical flow algorithms, velocity or displacement is associated with only a
small subset of pixels in the frame. These pixels usually have desirable properties that allow
them to be as unique as possible and therefore easily identified between frames.

Although dense optical techniques are usually more accurate, they are extremely compu-
tationally expensive. This is because each individual pixel must have a velocity associated
with it - however not many pixels can be easily identified between frames. For example, pix-
els in the centre of a large blank wall cannot be distinguished from each other. This means
that the surrounding pixels, and their associated velocities must also be taken into account,
leading to costly computation. Sparse optical techniques have the advantage that only a
subset of points need to be associated velocities - these points rely only on local information
that is derived from some small windows around them. Lukas-Kanade is an example of one
of these techniques, and it’s derived pyramidal version[40].

Finding Invariant Features The first task is to find points which can easily be found
between frames. Edges found using the edge detectors discussed are not suitable, because
they usually only have a gradient in 1 direction. This is because of the aperture problem,
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which is demonstrated in figure 4.30. As you can see, in the left image, the square is travelling
right, but at the points highlighted, we can only detect motion diagonally.

Figure 4.30: The Aperture Problem

If however we tracked the corners of the square, we could track the object in all directions.
This means that ideal points, are ones with strong derivatives in 2 orthogonal directions - or
corners.

The most common definition of a corner is provided by Harris[41] and relies on the matrix
of second-order derivatives of the images. Second-order derivatives are used because they
ignore uniform gradients. Informally, Harris corners are places in the image where the there
is a texture or edge going in at least 2 separate directions, centred at that point. For a
excellent explanation of the maths behind Harris Corners, I refer the reader to Utkarsh
Sinha’s online explanation.14

Sub-pixel Corners Now that we can find corner locations on a raster image, it is useful
to refine these locations to sub-pixel level for greater accuracy. This can be done in several
ways, but the simplest is through the use of a set of dot product equations15:

• First take two points p and q. q is the estimate integer corner position (i.e. in this
case the Harris corner). p is a any other point around q.

Point q is a good estimate of the corner, so lies very close to it. p can only lie at one
of two places:

1. A flat region

2. On an edge

• If p lies on a flat region, the gradient at p is zero. Therefore the dot product of the
gradient at p, and the vector q-p will also be 0, regardless off the position of q:

14http://www.aishack.in/2010/04/harris-corner-detector/
15http://www.aishack.in/2010/05/subpixel-corners-increasing-accuracy/
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< ∇I(p), q − p >= 0

Figure 4.31: Point p is on a flat regions

• If the p lies on the edge, the gradient at p will be some defined vector. However this
gradient will be perpendicular to the vector q-p. This therefore means we have the
same dot product equation again:

< ∇I(p), q − p >= 0

Figure 4.32: Point p is on a gradient

• We can now assemble many such pairs of gradients and form a system of equations.
Each equation equals 0 and if you solve for q, you get a sub-pixel estimate of the corner!

Assumptions The Lukas-Kanade method has 3 major assumptions:
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Brightness Constancy Image measurements (usually image properties such as brightness)
in a small region remain the same, although their location may change:

I(x+ u, y + v, t+ 1) = I(x, y, t)

Spatial Coherence .

• Neighbouring points in the scene typically belong to the same surface and so
therefore typically have similar motions

• They also project to nearby points in the image so we expect spatial coherence in
image flow

Temporal Persistence The image motion of a surface patch changes slowly over time - i.e.
objects do not move much between frames.

These assumptions can lead us to an effective tracking algorithm. The maths has been
extremely well documented, and so I refer the reader to the LearningOpenCV[17] book for
the best explanation.

Gaussian Pyramid Application Lukas-Kanade uses small local windows to decrease
computational complexity, however large motions can move points outside the local window.
One can increase the window size however this causes a significant performance hit (the
extent is investigated in the implementation section). Instead, we can make use of image
pyramids (section 4.2) and tracking can start at the highest level of the pyramid (with the
lowest detail) and work down to lower levels (highest detail).[40]

K-Means Clustering

The K-means algorithm attempts to find clusters in the data. In it’s most general form, a set
of N data points is grouped into k clusters in I-dimensional space.[42]. K-means is a very
simple iterative refinement process and consists of the following steps:

1. User input is N , I-dimensional data points, and a chosen k for the number of clusters

2. Randomly assign cluster centre locations for the initial iteration

3. Assign each data point to cluster k̂(n) with the closest mean:

k̂(n) = argmink(distance(m
(k), x(n))) (4.17)

4. Update the clusters’ centres (mean) to be the centroid of their associate data points:

m(k) =

∑
xi∈k̂(n)

|k̂(n)|
(4.18)

5. Repeat steps 3-4 until centroids stop moving (i.e. convergence has been achieved)
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Problems Although the K-means algorithm is an effective clustering algorithm it has it’s
problems[17]:

• K-means is not guaranteed to find optimal solution. (Although it does always converge
to some solution)

• The number of cluster centres have to be chosen in advance; the algorithm does not
specifying the optimal number of clusters.

• K-means does not take into account the covariance in the I-dimensional space.

My solutions to these problems will be discussed in the implementation section.

Figure 4.33: Result of KMeans clustering with 4 cluster points. The points are colour coded
with the cluster they belong to
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Implementation and results

Application of previous techniques

Template Matching As I have shown in previous games, template matching is a very
simple and easy way to find objects. Unfortunately, it only works well on 2D games, where
objects are only seen from 1 perspective. In 3D games, where objects can be close (and there-
fore large), far away, rotated, observed from any angle and affected by lighting conditions,
template matching is completely ineffective. One would have to use templates of varying
scale, angles and lighting conditions, which would be computationally infeasible..

Contour Matching This has more potential as I have shown that there are effective
rotation and scale invariant matching techniques. However, once again we are not matching
a single image, but a 3D object which will have a different contour from every angle (see
figure 4.6).

Histogram Matching (Back-projection) Back-projection builds upon the histogram
matching techniques discussed int the previous section. It is a way of recording how well
patches of pixels (or a single pixel) fit the distribution in the histogram, by sliding this patch
across the image in a similar way to template matching. This has more potential than the
previous techniques and is often used in real world applications such as skin-tone detection.

Enemies in FPS games tend to have a similar colour distribution from all angles and it
tends to be fairly uniform (e.g. the legs are the same about the same colour as the upper body
and so on). This suggests using a small patch with back-projection. However, very often the
games try to be as photo-realistic as possible, and so enemies actually wear camouflage -
severely reducing the effectiveness of the methodology.

Background Subtraction The background subtraction techniques were directly transfer-
able to a 3D environment without needing much tweaking with the (major) drawback - the
viewpoint of the user cannot move. The algorithms used work on a pixel-by-pixel basis, and
are not designed to cope with any kind of relative motion between the camera and the view
(as discussed in the Background section). A rudimentary GameProfile could be written to
find moving foreground objects and then shoot that position. ( The player would have to
be stationary and wait for enemies to come to him (figure 4.35) and the act of moving the
weapon cross-hair towards the enemy will mean that the background will change (figure 4.36
and the model will usually have to be re-learnt before the script is effective again. This is
not an effective solution.
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Figure 4.34: Can you spot the enemy players from the Edge Maps? Using Canny edge
detector with varying thresholds
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Figure 4.35: Background subtraction in 3D environment. The Enemy has quite clearly
been identified. However the viewpoint cannot move.
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Figure 4.36: Background subtraction in 3D environment when the player is moving. Re-
sulting image is indecipherable

Object Detection Frameworks

One area I originally had high hopes for, was using the Viola-Jones’ boosted rejection cascade
technique outlined in the background. I created a GameScript that would observe the player
- when they shot, an image of what they shot at was recorded and this were used as a positive.
When they weren’t shooting, images were periodically taken and used as negatives. These
images were then trained using a modified version of OpenCVs provided cascadeTraining
facility, which implements an extension of the Viola-Jones’ technique to include diagonal
features/citeLienhart02anextended. The modification was to modify the tool to be able to
run on images ”as they become available”, instead of having to have the whole data-set
available immediately.

Unfortunately this completely failed - I was not able to build any classifiers that had any
kind of analysable results. I believe the problem with this approach has 2 main problems:

1. It required a large, high quality data set - such as those often used for face detection[31]

2. The use of only one classifier is not enough, when considering object detection from all
angles.

Problem 1 was gathering data was a harder task than I initially thought. My technique
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of taking images everywhere where the person shot created a large number of images, but
quality was insufficient for object detection training. This is because:

Not every image contained an enemy In my findings, I found often players would shoot
speculatively hoping to hit an enemy - e.g. shooting at popular areas where enemies
usually hide. Other times, players used features of the game-mechanics shooting at
doors or boxes instead of enemies themselves, knowing that bullets are able to pass
through them, hitting the enemy player. Having even a small number of these images
can poison a data-set quite easily, although the solution is equally simple - just ask the
player to refrain from speculative shooting where the enemy is not in view.

Many enemies where partially hidden Often enemies were partially obscured by boxes,
cars or even other players.

Scale of enemies in images greatly varied Enemies sometimes were very far away, some-
times close. For a classifier to work, the training set of the enemies should be normalised
to the same size.

Not all enemies were equal Not everyone who was shot at was an enemy player. In some
games there were tanks and helicopters. These of course, would need another classifier.

Even if all the problems listed above were solved, (i.e. have a large set of perfectly cropped
images of enemies), the 2nd major hurdle is the use of only 1 classifier. The reason why object
recognition frameworks work is because they find common invariant features in the dataset
which can be used in the detection stage[31]. Combining images of enemies from all angles is
undesired, as then we are trying to find invariant features from all sides. In face recognition,
separate classifiers are used for frontal face, right profile of the face & left profile of the face
(which is usually just the mirror of the right profile). Each classifier is very different from
the other - for example the frontal face often has very strong features resulting from the
placement of both eyes; such as the fact there are 2 of them, of very similar size, at a similar
horizontal level. Trying to train a classifier on enemies from all angles is akin to trying to
train a classifier of all 3 face types simultaneously; the resulting classifier would be useless.

Optical Flow

I was eager to try and get a prototype GameProfile for a first-person shooter, without any
of the drawbacks of background subtraction or the need for hand-compiled training sets. I
wanted a system that could do foreground/background segmentation with arbitrary camera
motion and in real-time. A quick bit of research showed that solutions are still very much
in their infancy and it is currently a major area of research in computer vision. Time was
limited, so I took the approach of using whatever tools were provided by OpenCV and easily
accessible.

The idea was to model the average apparent motion of the visual scene and then find
areas areas of the image that differed. OpenCV provides a 1 sparse optical flow algorithm
(Lukas-Kanade) and 3 dense optical flow algorithms - Block Matching, Horn-Schunck and
Farneback. The 1st two are fairly old techniques that are slow and not suited to real-time
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systems. Farneback is newer and uses image pyramids to speed up performance. It can be
customized with parameters such as number of pyramid levels, the scale between pyramid
levels, window size and iterations which would give me a lot of manoeuvrability to tweak it
to run well in a real-time environment.

However I decide to stick with optical flow I had researched and understood - Lukas-
Kanade (LK) (section 4.6). Anything I learnt from testing with LK could be transferred to
a dense optical flow algorithm in the future.

Implementation

In the first frame, I find the initial Harris corners that I wish to track, on a grayscale image. I
chose the maximum number of points to find as the square-root of the image area (therefore I
will try to find 500 points in a 500x500 image), as I felt this was a good starting point. Points
within 10 pixels of each others were rejected in favour of a more uniform distribution. The
coordinates of these points were then improved upon, using the sub-pixel cornering algorithm
(discussed in section 4.6) and implemented in opencv by cornerSubPix()

I used the pyramidal LK algorithm provided by calcOpticalFlowPyrLK with a window
size of 10x10 and 3 levels of pyramids. In the second frame, I use the corners in the first
frame as the input into the LK algorithm, and as a result, get back a list of positions where
the corners have moved to. The size of this list is equal to, or smaller than the original corner
list as some corners may not have been found due to rapid changes in lighting, movements
or occlusion by other objects. An error is also calculated for each point - it is equal to the
difference between the patch around the point in the 1st frame and the patch around the
corresponding tracked point in the second image. I use this to prune away points whose local
appearance has changed too much.

The process can then be re-started for each frame - the resulting tracked points are fed
back into the LK algorithm on the 3rd frame , matched then fed into the 4th and so on. This
gives us a nice optical flow at about frames per second for 500 points in an 500x500 image.

Finding new Harris Corners

As the player pans around, these points will quickly move out of frame, and therefore are no
longer matched. These need to be replaced with new points. I first tried to brute-force it -
every single frame, I cleared all the points, and found new Harris corners. Unsurprisingly,
this killed performance - Performance slowed to 10 frames per second.

The elegant solution would be to find areas with a low density of corners, and then search
those areas for new corners. However, the engineer in me spotted that the fps was about half,
which meant the two tasks took about the same amount of time. Instead I took the simple
option of threading the workload - new corners were found on one CPU, while optical flow
was performed on the other. Performance increased by 80% to 18 fps.

Interestingly, the main reason why I didn’t get a better performance boost, is because of
Intel Turbo Boost16 technology, which increases the CPUs frequency depending on the load

16http://www.intel.com/technology/turboboost/
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on the CPU. When a single core of the CPU is running at a 100%, turbo boost was able to
boost the core’s frequency to 3.04GHz, but with 2 cores, it only went up to 2.66GHz (up
from the standard 2.4GHz rating).

Estimating flow

To first see if this was a viable technique, I decided to tackle lateral flow first -i.e. when the
player is still and moves the cursor left and right to pan the screen. As you can see from figure
4.37, the vector directions are pretty uniform, opposite to the direction of movement. To find
vectors which did not behave in this manner, I calculated the average vector in a frame. All
points with vectors that differed more than some threshold were marked as ”suspect” (for
the curious reader, skip ahead to figure 4.40 to see the results)

Figure 4.37: Panning - vectors are pretty uniform

Although games do not use a physical real world camera they still have image distortion
”programmed” in. There are two types of distortions[17]:

Radial Distortion This arises as a result of the shape of the lens. A perfect lens should be
a parabola, but in practice are not perfect parabolas. This causes radial distortions -
rays farther from the center of the lens.

Tangential Distortions These arise from the assembly process of the camera as a whole

Games are of course not prone to tangential distortions. Radial distortion however, is
more often than not, present in games as it is deemed a ”feature”. It is usually called Field
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of View within games and frequently is user adjustable. The larger the Field of View, the
larger the distortion (figure 4.38)

Figure 4.38: The left is the image when the FOV is selected to be a minimum, the right is
the maximum. The player position has not changed!

The simplest and most commonly used camera model, is the pinhole camera model. Light
enters through a tiny hole and is projected onto the image surface. The perpendicular distance
from the hole to the image plane is the focal length. This can be modelled with the following
equation:

− x = f
X

Z
(4.19)

where f is the focal length, Z is the distance from the camera to the object, X is the
length of the object, and x is the object’s image on the imaging plane.

With radial distortion, the distortion is 0 at the centre of the image. Therefore it can be
modelled with the first few elements of the Taylor series expansion around r = 0:

xcorrected = x(1 + k1r
2 + k2r

2 + k3r
6)

ycorrected = y(1 + k1r
2 + k2r

2 + k3r
6)

where xcorrected is the non-distorted location of x, on the original distorted image.

Ideally we would like to correct this. There is research into the estimation of radial
distortion, but most of the methods use some pre-defined object in the view (e.g. a chessboard
or a line of LEDs). With games, we don’t have this option17. Others are semi-automatic -
they require user input (usually select lines the image that should be straight).[43]

Intuitively I believe it should be possible. We know the distortion is 0 at the centre, and is
perfectly radial, and we have a well-defined optical flow. If we say, constrict the movement to

17At least without creating ”in-game” chessboard!
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the x axis, and over a number of frames, use an iterative process to minimise the variance of
vector radial distortion by modifying the parameters above, I believe we could easily converge
to a good approximation of a minimum. However this is pure speculation.

As this was still classified as a prototype, to temporarily solve this problem, I chose
to instead ignore vector magnitude and concentrate on direction instead. This was done by
averaging the normalised vectors, and all comparisons were done on normalised vectors. This
means that it won’t be able to distinguish between enemies moving in the same direction as
the general flow, even if moving at wildly different speeds.

K-Means

Now I had a set of points which didn’t ”fit” with the rest, I needed to group them into
clusters, with each cluster representing a separate moving object. I use the highly effective
but simple K-means algorithm outlined in the Background (section 4.6).

To solve the problems outlined in the background section:

No guarantee of best possible solution - I run the algorithm 5 times (with each cluster
count), with different random initial starting positions, then select the solution with the
lowest variance.

Not knowing how many clusters to use - I run the algorithm with 1 cluster point, up
to 10 cluster points. I record the best variance recorded at each cluster count. If you plot
the total variance curve, you will get an ”elbow”. To find the point where this elbow occurs,
I draw a line from the origin, to the last point (i.e. with 10 clusters) and find the variance
point that is furthest away from the line. To do this, I use the ”distance from a point to a
line” formula:18.

Assuming a point (m,n) and a line ax+ by + c = 0:

distance =
|am+ bn+ c|√

a2 + b2
(4.20)

I use the cluster count which produced this variance point (see figure 4.39).

Does not take into account the covariance in the I-dimensional space. - this does
not effect me, as the variance in both directions in an image can be treated as equal.

Once I have found the clustering, I filter out any clusters that have a low number of points
(I was using 3 at the time of writing, but once again, this is an arbitrary number and should
be based on other parameters such as the total number of LK points in the image and maybe
image size).

18Here is a proof of this formula, using very basic maths: http://www.intmath.com/plane-analytic-
geometry/perpendicular-distance-point-line.php
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Finally, I draw bounding boxes around the clustered points, take a ”snapshot” of the image
at that point, and finally return the results back to the GameProfile, using the GameScript
standard object table format (Appendix D).

Figure 4.39: Finding the elbow of a graph, using the shortest distance from a point to a
line mathematical basis. Here, 2 cluster points are chosen

Results

When stationary, the algorithm works better than background subtraction. There is no need
for any learning, and so has no ”down-time”. Single ”rogue” vectors that sometimes appear,
are filtered out by the minimum cluster size threshold. (see figure 4.40)
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Figure 4.40: An enemy is tracked. The green dots signify vectors that don’t fit within a
threshold of the average

When panning, we get a pretty uniform optical flow. Enemies that run into view are most
often identified and clustered, however we still get some false positives (see figure 4.41). This
I found this often was because the corners used are not high quality enough - they often have
1 gradient is a lot stronger than the other, so often jump around along straight edges (e.g.
the green vector on the tree - the sides of the trees are not great ”corners” as they suffer from
the aperture problem). Precision can be increased by requiring better quality Harris corners,
but this goes hand in hand with reducing recall, due to less points being used. However from
preliminary testing this doesn’t seem to be too much of an issue, as Harris corners are usually
much higher quality on enemies, due to well define edges.
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Figure 4.41: Foreground/Background segmentation

When moving, this entire algorithm stops working. This is because vectors are no longer
parallel to each other, but all point to a ”Focus of Expansion”. Moving foreground objects
also have their own focus of expansion - the focus of expansion is the single point on the
projected image where the object appears to be coming from. (figure 4.42

Figure 4.42: Focus of expansion - all (accurate) vectors on an object should all point to a
single point in the image plane
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Another interesting movement is the ”lean left”, ”lean right” movement. This rarely
features on newer FPS games, but it actually provides vectors that ”rotate” around the
middle of the image, as can be seen in figure 4.43. This is the gives the same effect as camera
rotation in real-life.

Figure 4.43: F

Further improvements

Performance

One issue I came across was that game-play in FPSs is very fast, and panning speed is often
too fast for the LK algorithm used. This means that during period of fast panning, most
Harris corners have been lost, and the few that remain are usually anomalous (figure 4.44).
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Figure 4.44: Fast panning - most Harris points are lost and the ones that remain are
anomalous

To solve this, we can do 2 things:

• Increase the window size for LK matching.

• Increase the frames per second that GameScripter runs at.

The problem with the first choice is that increasing the window size for LK matching
actually made it worse. This is because the matching is not done ”offline”, but in real-time.
Increasing the window size, decreased the fps that GameScripter ran at and consequently,
the time (and therefore translation) between the consecutive images increased. Increasing
the window size from 10x10 to 15x15, increases the search space by 225%, so theoretically
performance should decrease by the same amount. A pixel can now travel 5 pixels further
before being lost - this is only a 50% increase. This is counter-productive as in a uniform
panning motion, the pixel will travel 225% further in a single frame, but can only be matched
at distances 50% higher only! A similar argument can be used to justify decreasing window
size to increase the tracking accuracy.

In practice, I found that the speed limiting factor was actually the finding of Harris
corners. I remind the reader that in my implementation these are done in parallel and so
the fps is the minimum of these 2 task. Decreasing the the number of corners resulted in a
speed benefit for LK tracking, but none in corner finding. Fortunately both these tasks lend
themselves to parallelism, as they assume that the points are independent. Therefore, both
tasks should be gain linear performance benefits with the number of cores, by splitting the
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image into sections (with overlapping sizes equal to window size) and running the algorithms
concurrently. Results can be then merged together without needed to worry about conflicts.

Arbitrary Motion - Speculative Future work

Using average vectors clearly doesn’t work in the general case. Instead we need to find the
focus of expansion (FOE), and then we can mark all vectors that do not pass through this
point as ”suspect”. I can think of 2 ways of achieving this:

Voting in Hough Space Finding the intersection of many lines reminds me of the process
of voting in 2 dimensions when implementing the Hough transform19 in m − c space.
Of-course this has the same drawbacks - the parameter space is infinite. Therefore we
could do it in r − θ space, where parameters a constrained.

K-Means with pair-wise vector intersection We find the points of intersection of all
combinations of vectors. Then we can apply K-Means clustering, and find the largest
cluster to be the FOE. Also has the benefit that smaller clusters may be indications of
other objects, moving in a different direction!

Both the above methods are very slow, and unlikely to be able to run well in real-time. For
example, for the K-means method, there are nC2 points, which must be found, then clustered
(for 500 points this is 124750 points!). However for the purposes of an FPS, we are not trying
to get very good accuracy - we only need an estimate of the FOE as we are using arbitrary
thresholds anyway to mark vectors as ”suspected”. Therefore I believe a probabilistic version
of either of the 2 methods listed above would work well, where we only sample a small part
of the population until we have a good enough estimate (i.e. a low enough variance).

Arbitrary Motion - The GameScripter Way

The above are numerical techniques, with a basis in mathematics to find the FOE. I however
think the most exciting and novel way to find the FOE is to not use the optical flow itself,
but calculate it from the players movement. This should be completely possible from within
the GameScripter environment, and does not require API access to the game. We can record
the players actions since the X frames, and estimate where the FOE should be!

There are 3 assumptions:

1. The in-game protagonists movement in relation to the game world is defined only by
the players input actions

2. The in-game protagonists movement is deterministic.

3. The fps is fast enough so that cursor movement between frames can be approximated
by a single line. This assumption is there to simplify the algorithm, rather than a
necessity.

19http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
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The above assumptions are pretty major, and there are obvious flaws. For point 1, a player
could pushed by another player, and therefore movement that hasn’t been recorded through
the IGameInputMonitor. For point 2, the terrain has a big say to the players movement - if
a player is trying to walk into a wall, he/she of course will not get anywhere. However in the
general case, where the player is walking/running on the ground, these assumptions should
hold.

Let’s for example take a simple case where at frame i we wish to find the FOE. We
inspect at all input data between frame i − 1 and i and find during that time, the user has
held the ”w” key pressed (which represents forward movement), with no other input. We
can immediately identify the FOE - the centre! No extra processing is necessary! If the
inter-frame time is short, it may be necessary to hold more history of the user input, but this
does not change the idea.

The next example uses assumption 3 - Since frame i− 1, the cursor position has changed
by the vector (x, y). This therefore means the optical flow vectors should have a direction of
(x, y). If there is no radial distortion, all vectors should also have a magnitude of ω ·

√
x2 + y2.

ω is a weight that could be found very simply by experiment - in a single frame, divide the
average of n optical flow vector magnitude, by the cursor magnitude |~vc|:

ω =
1

n

∑n
i |~v|
|~vc|

If ω is not linear (i.e. it is a function of the cursor vector magnitude), more experimen-
tation can be done over many frames to estimate the function. This is often the case in FPS
games as they use what is called ”mouse acceleration”, where small movements give accurate
small cursor changes, but larger movements give very large cursor changes, so that players
can quickly turn around in-game.

Lastly, and most interestingly, it should be relatively easy to handle both simultaneous
keyboard and cursor movement. The FOE could be calculated by the addition of vectors,
which we have shown can be calculated from the users input. This is shown in figure 4.45
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Figure 4.45: Adding together the vector from moving forward and the vector resulting from
cursor movement (the dotted arrows) results in the vector towards the FOE

Even if it turns out that this technique is not completely accurate (or mathematically
sound), it could be used in unison with the aforementioned Hough space and K-Means tech-
niques, to reduce the search space.
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4.7 Real-world Application

In this section, I investigate the use of GameScripter not on games, but on the real world.
Modifying the software to work with a camera was extremely simple because of my mod-
ular design - all that was needed was a concrete implementation of IGameOutput (sec-
tion 3.2:Overview of System Architecture) that supplied images from the camera rather than
from a games console. Of course a concrete implementation of IGameInput was also needed,
but the functions all just threw an error - you can’t control real life from GameScripter!20.

Task

As a short demonstration, I chose a task that is an active area of research right now in
computer vision - car counting in computer vision. I chose this because data was easy to
come by - I was able to take a video from my bedroom window.

Desired GameProfile

The idea behind the profile is that once we identify a car, we track its movement through the
frame so as not to count it again. The identification of a car uses background subtraction -
all the foreground objects larger than a certain size are assumed to be cars (the smaller ones
usually were caused by people walking past).

numOfCars = 0

function ca l lOut s . newframe ( )
o b j e c t s = v i s i o n . getForgroundObjects ( )
for i , obj in i p a i r s ( o b j e c t s ) do

i f obj . area > 5000 and obj . i sTracked == fa l se then
v i s i o n . t rackObject ( obj )
numOfCars = numOfCars + 1
pr in t (”Found new car , running t o t a l : ” . . numOfCars )

end
end

end

We introduce a new call-in :

vision.trackObject(obj) - Tracks the object passed in the argument. This object
which can then be queried at any time using vision.getObjectPosition(obj).

I also added another call-in (although it is not used in the script):

vision.getObjectPosition(obj) - Returns the GameScripter standard object table
(Appendix D) if obj is a tracked object, otherwise nil

20(yet)
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Implementation

I chose to build upon already existing techniques in implementing vision.trackObject(obj).
The algorithm is very rudimentary, based on my own experiences with computer vision, not
on any papers or mathematical basis. It assumes the object does not change much between
frames, but tries to adapt over longer periods of time to an object’s changing appearance
(such as colour, shape or size).

Initialisation On the initial call to vision.trackObject(obj), corners are found within
the objects boundary and are associated with the object as the object’s ”tracking points”. A
colour histogram of the object, it’s contour and it’s size is recorded.

Every Frame For each object that is to be tracked:

• Using Lukas-Kanade, try to match the inner-corners to the new frame. Record the
number of corners found A, and the average error B

• Test T: Perform background subtraction. If there exists a connected component at the
mean position of all A corners:

– Find the ratio between the size of the last recorded size and the current size (C)

– Match new histograms using techniques already described with the last recorded
histogram. D

– Match new contour using techniques already described with the last recorded
contour. F

Now we work out a measure of how well the LK optical flow has matched the object (i is
the current frame):

ω1
Ai−1
Ai

+ ω2B (4.21)

Each ω1 and ω2 are a predefined weight. If this is below some threshold, we can say that
we have successfully tracked the object, otherwise we have lost it, and remove the object
from the tracking queue.

If test T fails, we just keep track of the inner-corners and use their average position for
object position.

If test T passes, check if C < someThreshold before carrying on. This is checking if the
object is still about the same size as it was before. If there is a massive jump, it is likely that
it has overlapping with another foreground object.

If C < someThreshold then match histograms and contours. Calculate the following:

ω3D + ω4F > someThreshold (4.22)
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This threshold should be quite high, so we can be sure it’s a good match. If this test
passes we are pretty sure this is the same object. This means we can redo initialisation -
i.e. find new inner-corners, update the stored size, update the stored histogram, update the
stored contours.

Results

Figure 4.46: The car is tracked using LK and corners. The middle is the raw background
subtraction while the right is the closed then opened version

The script was successful. In a 25 minute video I took from my bedroom window, it attained
67/67 cars - a 100% accuracy rating 21. The re-initialisation part of the algorithm meant
that it didn’t matter if some of the feature points that were tracked were lost (or ”attached”
themselves to background instead), as they were often reset.

For the algorithm to work well, I found that I needed to set the contour matching weight
very low. Contours deform quite a bit between frames, and are especially deformed by the
closing/opening morphological operators. In the future, it would be interesting to investi-
gate some machine learning algorithms, to dynamically adjust the weights, or even use an
alternative to the weighting system! This is discussed in section 6.2:Future work

However there are many obvious flaws with the algorithm. When two cars pass each other,
the closer one often occludes a portion of the other one. When this happens, the algorithm
resorts to using just feature points to track the objects. Often, the algorithm recovers once
the silhouettes become disjoint again because the sizes of the vehicles haven’t changed much,
which triggers a re-initialisation step. However this is only true because of the angle of the
test video. From a lower angle, one car could completely cover the other one, and tracking
would be lost as the algorithm relies only on tracking between adjacent frames.

Overall, I don’t think this algorithm will generalise well. I would have have liked to test
more advanced tracking techniques such as mean-shift, but time was short. I believe I would
be able to get better results than this my home-grown algorithm.

Overall, I think it was a success in demonstrating that algorithms that have been devel-
oped on games can be transferred into real-life!

21Yes I watched it all... not the most interesting 25 minutes of my life
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Chapter 5

Evaluation

I have the discussed the GameScripter’s efficacy and user-friendliness on a game-by-game
basis in chapter 4:GameProfiles. In this section I try to summarise the points conveyed in
the that section, and review the success of the project as a complete application, including
it’s strengths and weaknesses. Like in the previous section I try to add some quantitative
analysis, but with nothing to compare against, this is difficult.

5.1 Case-study

One of major project goals was making GameScripter easy and accessible to end-users. No
evaluation would be complete without testing this theory in real world, hence I recruited
of two of my friends: Jack, a seasoned Imperial College DoC student, also in his fourth
year and James, a musician who doesn’t understand the difference between google and the
internet, let alone written a single line of code. I gave them the task to create a bot that
could play a game called Volley Brawl . The rules of the game a very simple and can
be figured out from Figure 5.1. You control a simple character, and you have 4 controls
- up/down/left/right (although the key-scheme is W/A/S/D) and are playing a game of
volleyball against a computer opponent (or another human player).
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Figure 5.1: Volley Brawl: a ”slime” volleyball game

I left Jack on his own, with the documentation in the appendices of this report, but I sat
by James so I could answer any of his questions, but refrained from giving him direct help.
The different approaches taken were interesting:

James

• James’s biggest problem was that he didn’t know where or how to start. When I
provided him with a skeleton file, defining the parsing box boundary and a few other
finished examples, he had no problem in proceeding.

• At first I though James was going to take a simple template-matching scheme, because
he was taking screenshots of the slimes and the ball. But what he did instead is only
use template matching to find the initial positions of the ball and then actually used
vision.trackObject() to track resultant object. When I asked him afterwards why
he didn’t keep template matching every frame to find location of the ball and slimes,
he said it was more ”natural” to track it, as he could just query the object’s location
at any point.

• James didn’t use any user defined functions or other call-outs - everything was done in
callouts.newframe()

• The control scheme was very rudimentary - but surprisingly effective - he followed the
ball everywhere, but tried to keep 15 pixels to the left of it, so that the ball hits the
side of the slime when it falls (thereby pushing it over the net instead of straight up).

Controlling the slime is more complicated than just moving a mouse, as you need to
keep track of the slime too. The main problem was the call keyPress(). James at
first thought that it meant a key press and a key release. When he wanted the slime to
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change direction, he never released the key, and so the slime wouldn’t respond. Once
he figured it out though, he had said it was not a nice solution, having to ”remember”
which keys had been pressed and not yet released.

Jack

• Jack went for an entirely different technique for tracking the ball and slime -
getForegroundObjects(). However instead of using relative sizes of the objects to
classify the objects (as I did with Breakout - section 4.4), he used relative positions -
the ball will always be higher than the slime. The clouds you see in the figure are not
stationary - they actually move at a very slow pace. Jack filtered these out using the
minimum size criteria (as because they moved so slowly, most of the clouds actually
blended into the background, with only the edges coming up in background subtraction)

• Jack also used vision.excludeRegion() to exclude the region where the opposition
slime was in, so that it didn’t come up in the background subtraction.

• Jack went a step further than James and tried to predict the trajectory of the ball,
however this was not too successful, because the ball’s trajectory was not linear. In the
end, he settled for a similar control scheme to James, except with an extra if statement
that would make the slime jump if it was in a certain position in relation to the slime.
He also complained about the control scheme of releaseKey() and pressKey(). He
wanted to be able to specify how long to press the key, before releasing (in milliseconds).

• 1 really good idea Jack had was used the callouts.keyPress() to bind keys to in-
crement and decrement variables in his program, such as the ideal height of the ball
at which the slime should jump. This meant that he could watch how they affected
game-play, rather than having to change the number in the GameProfile and reloading
every time.

Both scripts faired well the early stages of the game, however as the game progresses and
the ball speed increases. In these situations, Jack’s GameProfile was better, as it was able to
jump to intercept balls, whereas James’s slime was not always fast enough to follow the ball
along the ground.

All in all, I think I learnt from this experience. The current documentation, combined
with some examples, is just about acceptable for people with programming experience, but a
good tutorial would be useful for those without. The pressKey() and releaseKey() call-ins
were not well thought out, and need some modification (to include an optional timed release).
Also the idea of using increment, decrement keys I thought was a great idea, and I believe
I could take this a step further, by providing a language construct that simplifies the task -
bind(key, variable, increment).

Lastly, I hope that you can see that using a DSL has made the software more accessible
than it would ever have been with a more complicated programming language.
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5.2 GameScript

The key success of this project was the use of a Domain Specific Language. GameScript
is what moved the project from being just a piece of exploratory programming, into a full
featured product that can be used by an end-user.

GameScript makes GameProfiles surprisingly effective and very easy to write. Users
usually know what they want to achieve, but not sure how. The call-in, call-out structure
makes it intuitive, as it guides the user through the process. They do not need to worry
about any complicated language features such as type systems or memory management.
Even simple concepts such as variables do not need to be explained more than ”places where
you can store stuff”, as I did with James.

Another major advantage of GameProfiles are kept completely separate from the core
program - they are just text files. There is no compilation phase and they can be dynamically
loaded and unloaded, without shutting down the application. They can be modified while
running, and then reloaded at the press of a button, giving way to a very fast iterative
scripting style and fast feedback. This is very important to the end-user and even benefited
me, the developer, because it meant that I could batch test many scripts quickly and easily
when testing for regressions.

GameScript vs C++ Comparison

Here, I compare the speed of a sample GameProfile written in GameScript with one written
in pure C++.

I have chosen Generic Breakout and Whack-A-Mole as the benchmarks. As with most
GameProfiles, no performance-heavy algorithms are executed in the GameProfiles themselves
unless the user decides to implement a complicated AI in GameScript itself. Therefore this
example should be indicative of overall performance loss of using interpreted code and passing
values and calling through the Lua stack (see section 3.1:GameScript as a Domain Specific
Language using Lua).

I ran both version 10 times, each time taking the average of 1000 frames.

Whack-A-Mole Breakout

Game Average FPS Standard Dev. Average FPS Standard Dev.

GameScript 10.31 0.04 34.52 0.10
C++ 10.31 0.04 34.56 0.11

Improvement (%) 0 - 0.12 -

These results show that there is a negligible difference in performance using GameScripts
and pure C++. This is unsurprising, since there is not much communication through the
Lua Stack - per frame there is only 1 call-out, and 1 or 2 call-ins. The overhead of this is tiny
compared to the very performance heavy computer vision algorithms. Even the apparent
0.12% speed increase is dubious, and is within experimental error (interesting to note that
although S.D. was low between runs, S.D. between frames was high - 0.38 for Whack-A-Mole
and 3.0 for Breakout).
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Disadvantages

There is however much room for improvement. The major disadvantage of GameScript is the
upfront cost of implementation. Each new piece of functionality that I added to GameScripter
needed to be wrapped around in code to correctly expose it to GameScript. This often was not
a trivial task, involving the design of new types and more complicated memory management.
This is because I could not discard data that a GameProfile may still wish to use.

On the plus side, all the extra work of wrapping code made GameScript more reliable and
safer to use. This code isolates the GameProfiles from the core C++ code which means the
user is not be able to crash the program as a result of bad coding. Instead the Lua interpreter
fails to interpret the GameProfile correctly, leaving the core functioning correctly and can
inform the user of the error. There is no need to worry about problems like segmentation
faults or null pointer exceptions.

Memory Management I made the incorrect decision to have memory management fully
managed by the C++ core. At the moment we have call-ins such as vision.getImage() or
vision.getHandle() that return a handle. The core however, has no way of tracking which
handles are still in use so that the memory can be reclaimed - it has to keep all of them in
memory. This has not been a problem, as these are called sparingly, but an inexperienced
end-user may have a faulty GameProfile that can quite easily cause GameScripter to run out
of memory by having a loop that makes thousands of handles.

The solution is to place memory management in hands of the Lua interpreter, which is
garbage collected and use Lua userData. The handles are then no longer just pointers, but
areas of memory, where full objects that can reside and can be manipulated from both Lua
and C++. When the GameProfile no longer uses one of these objects (i.e. there no longer
exists a reference to them), they can be easily garbage collected.

GUI support Another, smaller disadvantage is the loss of GUI-based help during coding.
Integrated Development Environments such as eclipse1 help the user by providing auto-
complete hints and documentation on demand. This would be very useful for an end-user
with GameScripter, as it lessens the need to refer to documentation.

5.3 Efficacy of vision

5.3.1 2D Object recognition

The individual efficacy of the vision techniques used in GameScripter has been extensively
covered in chapter 4:GameProfiles. Overall, in 2D games, object recognition has often
achieved 98+% recall rates while keeping precision rates at 100%. This is entirely due to
the nature of 2D games. 2D games usually have very simple visuals, with no lighting changes
or motion blur. Objects are often just images that are just translated across the screen,

1http://www.eclipse.org/
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making finding them very easy using extremely simple techniques such as template match-
ing (section 4.1) Sometimes, some objects can be rotated (Figure 4.21) or a scaled larger or
smaller. As these transformations do not actually change the object shape or colour - they
can still be easily detected, the only difference is the search space explodes rapidly leaving
techniques such as template matching computationally too slow. This means further tech-
niques such as background subtraction (section 4.4), edge detection (section 4.5) and contour
matching (section 4.5) can be employed in unison to produce scale and rotation independent
ways of matching objects in real-time.

5.3.2 3D Object recognition

3D object detection becomes much harder; my initial attempts to use object cascade classifiers
were unsuccessful (section 4.6). This is not an indication that real-time object detection is
impossible - there have been numerous successful demonstrations of these techniques working
successfully in real-world situations. However these all used very good training sets, often
hand-sorted and verified - something I could not do.

I hypothesise that, with the use of some preprocessing, Voila-like cascade classifiers could
be adapted to be of use in a 3D game environment. Positive images gathered during game
play could be segmented into separate classes based on other features before training phases,
with each class having it’s own classifier. Edge detection and watershed2 techniques could be
used to find the object’s outline contour, leading to correct and consistent cropping of images.
Images could also then be classed by contour similarity before being trained on. For example
the profile of a helicopter from the front would be vastly different from a side contour. The
question is that if we are already able to segregate images well into these separate classes, is
there any need for cascaded object detection in the first place?

5.3.3 Background/Foreground Segmentation

Background/Foreground segmentation in 2D was a relatively simple task, with even simple
frame subtraction working well(section 4.4) for 2D games. The more advanced codebook and
mixture of Gaussians also worked well in 2D, but had the advantage that they also worked
well in 3D environments with little to no changes needed (section 4.6). However neither were
of any use when the viewpoint was moving. Although there seems to be research into the field
of background subtraction with arbitrary camera motion, I did not have time to investigate
this area.

5.3.4 Optical flow

The prototype I created showed that it is possible to get some decent background/foreground
segmentation using sparse optical flow, in a real-time environment (section 4.6). My imple-
mentation was flawed, as it could only deal with lateral movement - not forward or backward
movement. However I explained why and proposed a number of solutions, including a novel
algorithm to calculate the focus of expansion without the use of optical flow.

2http://cmm.ensmp.fr/~beucher/wtshed.html
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I also used optical flow as the core of my novel object tracking algorithm (section 4.7:Real-
world Application). It was a combination of many of the researched techniques in this report,
and tried to use the best characteristics of each algorithm, while avoiding the drawbacks.

5.4 Performance

I have already discussed in-depth the performance of many of the features as they were
introduced. Overall, most algorithms were single-threaded and performance was satisfactory
for most tasks. Only when it came to optical flow was I slightly hindered by performance.
Part of the reason may stem from the fact I chose algorithms in advance I knew could be
used in a real-time environment (e.g. sparse optical flow vs dense optical flow 4.6). Adding a
GPU gave an order of magnitude increase in performance in areas they were implemented in
(section 4.2:Implementation). That said, I feel there massive performance gains that could
be attained by tuning algorithms to be more suitable for GameScripter. Many areas were
outlined, but template matching was one I believe could be most improved (section 4.2),
along with parallelising the LK implementation.

5.5 Game Applicability

For GameScripter to be successfully used on a game, it needs to be able to accurately and
easily parse the game state and game events. In the GameProfiles section, I have shown that
for many games this is possible. The reason for this is that all the game state (or at least
the game-state we care about) is displayed to the player - in Breakout, all game state can
be parsed in a single screen-shot, the same being true for Tetris. There is little advantage of
having an API hooked into the game, as state through vision produces near identical results.
However this is not true for many other game, which leads to difficulties.

The simplest game I can think of where game-state cannot be parsed simply, but requires
”memory” is Concentration3 (also often know as Pairs). This is a card game in which
cards are laid face down on a surface and the players take turns to flip face up 2 cards. If
the cards match, they are removed from the playing field, otherwise they are turned back
over. The object of the game is to remove all pairs of cards from the table. Here game-state
cannot be parsed at any one point in time by scraping the screen. For this game it would be
fairly simple to write a GameProfile, as GameScript supports the saving of objects, and their
positions through function such as vision.getImage() or handles, however it demonstrates
the need of having to store game-state in the GameProfile itself. As games get more complex,
this need gets to a point where vision technique severely fall behind API access.

Real-time strategy (RTS) games are an example where parsing game-state just through
vision is all but impossible. In an RTS, players position and manoeuvre units and structures
under their control around areas of the map usually with the aim to destroy their opponents’
assets. The player only has a small window of view of the entire playing field at any one-time
(see figure 5.2). Some state be parsed fairly simply, such as building and unit positions, but

3http://en.wikipedia.org/wiki/Concentration (game)
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only relative to the current view-point. Getting the absolute position on the playing field is
considerably harder although could be achieved to a certain extent through the use of mini-
maps. If you refer to figure 5.2, you can see the mini-map in the bottom-left hand corner.
The little trapezium displays your current view onto the entire playing field. By parsing the
current view with reference to where this trapezium is, one can get rough estimate of the
absolute coordinates of buildings and units in view

However, this is a tiny portion of state in the entire game. How do we parse unit way-
points, a building’s current production queue or even the terrain itself. These problems
are usually a non-issue with a game API, where these can easily be queried through simple
functions such as getBuildQueueForBuilding(buildingID). Even if we do not take into account
the fact that game AI severely falls behind human players at such games already[44], I predict
that a computer’s ability to play games such as these through vision techniques will not be
viable in the near future.

Figure 5.2: Starcraft 2 - currently the world’s most popular RTS. Only a subset of the
entire field can be seen at any point in time. The mini-map is displayed in the bottom left
corner
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Chapter 6

Conclusions

I have shown that, by exposing computer vision techniques with a simple domain specific
language, I have been able to successfully produce an novel, easy to use tool to parse game
state and script game-play. Many 2D games can be scripted in less than 10 lines by people
with little programming experience and play the game perfectly (section 5.1). I have also
shown that this approach can be extended to augment some 3D games (section 4.6). However,
I have also investigated the limitations of such an approach - not all games are susceptible
to parsing of game state with vision, because much of may be ”hidden” from the player.

The use of the simple scheme of call-ins and call-outs, has provided a friendly way of
guiding a less technical user in writing GameProfiles. The up-front cost of implementing
such a system is easily mitigated in the long run, both to the end-user and the developer
(section 5.2). The end-user benefits as it allows them to think about the problem itself,
rather than worry about writing any boiler-plate code or the need to know any complicated
programming theory such as type systems or memory management. Any errors in GamePro-
files are usually the result of faulty program logic rather than misunderstanding of language
nuances. By removing the need for a compilation stage, even the developer benefits during
testing. All this is achieved without sacrificing performance 5.2. I can see this technique
being extended to other applications in a similar fashion, exposing functionality in a safe and
simple manner.

I believe I have done something that no-one else has done before, and apply vision tech-
niques on games themselves rather than on tangible, real-world images. Through this, I
have demonstrated that computer vision techniques used in the real-world can be very easily
modified to be used in computer games. In fact many algorithms can be slightly simplified
as you no longer have to worry about imperfections in cameras and camera lenses or poor
data, resulting in a quicker (and more enjoyable) development. Although on the face of it,
the usefulness of in-game vision to research is not obvious, in section 4.7 I believe I have
also shown that techniques learnt from vision in games can be adapted back to real-world
scenarios.
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6.1 Things I have learnt

Through-out this project I have come to appreciate the value of thorough background research
as it helped me make full use of existing solutions that were indirectly related. I benefited
greatly from getting a overall ”feel” of the major areas of computer vision before starting
implementation. I needed to do this because nothing existed even closely similar to my
project, which I could base development on, or compare to. When I came across a new
problem, I was quickly able to narrow down applicable areas of computer-vision to research.
I made excellent use of the open-source OpenCV library allowing me to have prototype
algorithms working very quickly, aiding my iterative approach to programming. This, as a
result, vastly broadened the scope of my project. It has surprised me how many very simple
ideas, such as image thresholding, blurring and image subtraction can be built upon each
other to get really impressive results.

6.2 Future work

In this section I outline possible future work. First, I would go about tackling a lot of the
limitations, such as performance and the GameScript shortcomings outlined in the Evaluation
and GameProfiles, before going to implement new features. The particular part of the project
I would most savour working on, would be to implement and test some of the outlined optical
flow techniques from the first-person shooter GameProfile section (4.6). It was unfortunate
that this was but a small part of my project, and I could not put more time into that area.
Now that the GameScripter framework is well established and standardised, I would be able
to concentrate more on the underlying algorithms and less on the framework itself.

6.2.1 New Features

There are also a number of new features I would like to see in GameScripter:

Hook-ins At the moment we have call-ins and call-outs - I propose a 3rd type of interface
- Hook-ins. This is a method of associating a GameProfile function with an event. Instead of
having a single function that is called when an event happens (e.g. callouts.newframe()),
we can split up game logic into separate functions. This has the benefit of making Game-
Profiles more modular; one script can easily build upon another without having to modify
the original GameProfile. An example is given below, which can extend any GameProfile to
support pausing and starting of background subtraction, without modification to the original
profile.

l o a d S c r i p t (” O r i g i n a l P r o f i l e ”)

hookins . a s soc ia teKeyPres s (”p” , pauseBackgroundSubtraction ( ) )
hookins . a s soc ia teKeyPres s (” s ” , s tartBackgroundSubtract ion ( ) )

function pauseBackgroundSubtraction ( )
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v i s i on−>pauseBGS ( )
end

function s tartBackgroundSubtract ion ( )
v i s i on−>startBGS ( )

end

Higher layer of abstraction At the moment there exist many ways to match objects
- contours, histograms & templates - the user must decide on the best methodology (or a
combination of methods). I would like to add another level of abstraction on top of this, and
amalgamate all these techniques into a single ”super” findWithFB() call-in, which stands for
”find with feedback”.

This would use a weighted combination of all the above techniques, with the possibility of
background subtraction and cascade classifiers too, to find the object. Of course the system
would not know what weighting to use, so initially it would have a default weighting which
would then be refined by actually getting feedback from the user. This would be in the form
of a simple pop-up window that would display side-by-side the candidate object, and the
object it wants to match it with. The user would then quickly press keys to say match or
no-match (e.g ’y’ or ’n’). This builds up a training set of positives and negatives which can
be used to adjust the weighting for all the different methods.

Of-course there is no reason why with a good training set we should be limited to just a
simple weighting. We can now use supervised learning techniques for a better detection rates
such as decision trees or Bayesian networks.

Algorithms adapting to real-time Although I have a TargetFPS variable that can be
set, and is propagated through-out the program, many algorithms do not use it. In the future,
I would like to see all the algorithms to adapt to this parameter in a transparent manner to
the end-user.

Support for Sound Some games rely on sound as a integral part of game-play mechanics
- something GameScripter cannot handle right now. I would be interested to investigate how
accurate one could locate an enemy in an First-person shooter, by listening to footsteps from
the 5 sound channels all modern games provide. This is not a simple task as it requires a
whole investigation into a whole new field of research - sound recognition.

Testing Framework Robust testing was something that was missing in my iterative design
process. I sometimes broke previous GameProfiles due to changes to the framework interface,
or added performance regressions. The testing framework would be very simple - it would
consist of a new call-in setTestVideo(), that can set the ”game” to instead be a pre-recorded
video or image. Then a series of asserts could be used, to make sure the code is doing the
correct thing. Below is an example of how I imagine a single testProfile would look like,
testing both the accuracy and the performance of the matchImage() function:
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setTestVideo (” myVideo . mp4”)

function c a l l o u t s . newFrame( frame , deltaTime )
i f frame == 1 then

x , y = matchImage (” testImage . jpg ”)
a s s e r t ( x == 301 and y == 234)
a s s e r t ( deltaTime < 50)

else i f frame == 2 then
x , y = matchImage (” testImage . jpg ”)
a s s e r t ( x == 305 and y == 230)
a s s e r t ( deltaTime < 50)

end
end

6.2.2 Hindsight

”Before, you are wise; after, you are
wise. In between you are otherwise”

David Zindell (The Broken God)

With the benefit of hindsight, I would have done the following things differently:

Too open ended Although I am very happy with what I have achieved, I believe the project
had too much ”breadth”. I feel that although GameScripter is capable of a lot of things,
it doesn’t do any of them to the best of my ability. I would have liked to narrow the
scope of the project in order to concentrate on a few less features. For example, I
would have liked to improve the performance of template-matching based on the ideas
discussed in the report, but I lacked time. I also think the jump from 2D games to
3D games was a bit too large, and it would have nice to been to concentrate just on a
single 3D game (e.g. an FPS) to get much better results.

Test-Driven Development As described in the previous section, I would have taken a
more test-driven approach to minimise regressions, especially when testing multiple
algorithms.

Memory-Management As described in section 5.2, I would have moved some of the mem-
ory management to the Lua environment, where it can be managed by the Lua garbage
collector, and remove the need for handles.

6.3 Closing Remarks

I hope that through this report you can see that the novel approach of using a domain
specific language has decreased the barriers of entry for users to use advanced computer
vision techniques, in a completely new & unexplored field. The techniques applied during
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development enabled rapid prototyping of algorithms, provided easy access to the large data-
sets that games provide and fast testing. These could then be applied back into real-life
scenarios. Most importantly, through this project I have managed to excite and enthuse my
peers at university with computer vision, by providing an accessible tool that encroaches into
a field that many of them genuinely care about - games.
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Appendix A

Additional Figures

A.1 Hu Invariant Moments

Figure A.1: Hu Invariant Moments
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Appendix B

GameScript Variables

These are set at the global level of the GameProfile - i.e. anywhere in the script

rootX - the x coordinate of the top-left corner of the parsing window

rootY - the y coordinate of the top-left corner of the parsing window

width - the width of the parsing window

height - the height of the parsing window

targetFPS - the desired speed at which the script will run

maxFPS - the maximum speed at which the script will run
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Appendix C

GameScript call-outs

For all these call-outs, the arguments passed in are optional. Therefore you can only use
them without no parameters, 1, 2 or 3 parameters.

callOuts.newFrame(frameNumber, deltaTime) is called every new frame. Note that
this not every new frame of the game itself, but every time 1 iteration of the control loop has
finished, and a new image has been received from the game. It passes in the frameNumber

and deltaTime - the time in ms since the last call to newframe()

callOuts.buttonRelease(x, y, button) gets called, every-time a button is released.
It passes in the coordinates where the button was released and which button it was.

buttonPress(x, y, button) gets called, every-time a button is pressed. It passes in the
coordinates where the button was released and which button it was.

callOuts.keyRelease(key) gets called, every-time a key is released. A string of the key
pressed is passed in - e.g. ’A’ or ’Up’

callOuts.keyPress(key) gets called, every-time a key is pressed. A string of the key
pressed is passed in - e.g. ’A’ or ’Up’

callouts.cursorMovement(startX, startY, endX, endY, motionTime) gets called ev-
ery time there is some cursor movement. It passes where the coordinates where the motion
started from, where it ended, and how long it took in ms.

callouts.closeGameProfile() gets called just before GameProfile shuts-down.
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Appendix D

GameScript Standard Object Table

For all call-ins which contain multiple object results, the same structure of table is used.
The table returned is an array, indexed from 1, with a number of field

centreX - the centre X coordinate of the object

centreY - the centre Y coordinate of the object

x - the top left hand corner X coordinate of the object

y - the top left hand corner Y coordinate of the object

width - the width of the object, in pixels

height - the height of the object, in pixels.

matchAccuracy - context sensitive - if there was no matching involved, this would be -1,
otherwise it is the quality of the type of matching technique used. E.g. if the result is from
template matching, this will hold the quality of the template match. 0 signifies a bad match,
while 1 is a perfect match.

isTracked - boolean if the object is being currently tracked or not.
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Appendix E

GameScript call-ins

For all call-ins, the arguments passed in are optional. Therefore you can only use them
without no parameters, 1, 2 or 3 parameters.

E.1 Input call-ins

input.moveCursor(x,y) - moves the cursor to coordinates (x,y) If x or y is nil or absent,
the movement is constrained to only the 1 axis - e.g. if x is nil the cursor moves to the
specified y coordinate.

input.PressButton(button) - presses button at the current cursor coordinate. If button
is not specified, it uses the default button for your platform

input.ReleaseButton(button) - releases button at the current cursor coordinate. If
button is not specified, it uses the default button for your platform (e.g. left mouse button
for a PC)

input.PressKey(keyString) releases the key keyString (e.g. ”a” would release key a,
whereas ”A” would release shift-A)

input.ReleaseKey(keyString) - releases the key keyString

input.clickOn(x,y, button) - moves the cursor to position x,y and then clicks there,
using the button specified. If button is not specified, it uses the default button for your
platform . If x or y is nil or absent, the movement is constrained to only the 1 axis - e.g. if
x is nil the cursor moves to the specified y coordinate, before clicking.

input.click(button) - a shortcut for input.clickOn(nil,nil, button)
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E.2 Vision call-ins

input.matchImage(image) - image can either be a string or a handle. This returns the x,y
coordinates of the best match, or nil if no match is found. Uses template matching.

input.matchMultipleImages(image) - \verbimage— can either be a string or a han-
dle. Returns the GameScripter standard object table (Appendix D)

vision.getHandle(object) Returns a handle for the object passed in. This handle can
then be used by any call-in that accepts an image.

vision.getImage(x, y, width, height) this gets a subset of the image, defined by
the 4 arguments. It returns a handle to the image, which can be used in any GameScript
function that accepts images.

vision.getForgroundObjects(numberOfObjects, minArea) Returns the GameScripter
standard object table. If the background model learning has not started, this will start it
too. Has 2 optional arguments: the first specifies the maximum number of objects to re-
turn (ordered by size). The second specifies the minimum area needed for the object to be
considered. Uses background subtraction.

vision.getForgroundObjectsOpticalFlow(numberOfObjects, minArea) Returns the
GameScripter standard object table. Uses optical flow to return foreground objects. Has 2
optional arguments: the first specifies the maximum number of objects to return (ordered by
size). The second specifies the minimum area needed for the object to be considered. Uses
background subtraction.

vision.learnBackground(numberOfFrames) - learns a background model over the next
numberOfFrames number of frames. Uses code book method.

vision.startBGSLearning() Starts running learning the background model.

vision.stopBGSLearning() Stops learning the background model.

vision.excludeRegion(x, y, width, height) This excludes all vision algorithms from
computation on the rectangular region defined by the arguments. This includes matchImage(), getForegroundObjects(), matchShape(), matchColours()

and
getTrackedObjects()

vision.matchColours(image, image) Returns a value between 0 and 1 that indicates
how well the colours in the two images match. 1 indicates a perfect match, while 0 indicates
no match. Uses colour histogram matching.

116



vision.matchShape(image, image) Returns 2 values: The first is a value between 0 and
1 that indicates how well the shapes in the two images match. 1 indicates a perfect match,
while 0 indicates no match. Uses Hu moment contour matching. The second is the rotation
difference between the shapes. It is between 180 and -180 degrees.

vision.findSquares(maxNumber, minSize) returns list of objects representing squares.
Returns maxNumber or less of squares (ordered by size), with a minimum size of minSize.

vision.startTracking() Starts tracking optical flow. Uses Lukas-Kanade optical flow

vision.trackObject(object) - Tracks the object passed in the argument.

vision.getObjectPosition(object) - Returns the GameScripter standard object table
(Appendix D) if obj is a tracked object, otherwise nil

vision.setGameBorder(x, y, width, height) - GameScripter will only screen-scrape
the part of the image of defined by the parameters.
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