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Abstract

A hidden Markov model (HMM) is a bivariate Markov chain which encodes in-
formation about the evolution of a time series. HMMs can faithfully represent work-
loads for discrete time processes and therefore be used as portable benchmarks to
explain and predict the complex behaviour of these processes. This project intro-
duces the main concepts of HMMs for discrete time series including a summary of
HMM mathematical properties. A section of this report explains the motives behind
cluster analysis and the most efficient selection of the clustering algorithm when cre-
ating workload models. In the case of this project, an explanation is provided into the
benefits of the K-means clustering algorithm for data points in discrete time.

The main aims of this project are to: apply HMMs to two different scenarios to cor-
rectly analyse discrete time series; provide meaning to the underlying hidden states
of the HMMs in each case; and recreate representative traces for each application.
Firstly, the HMM is applied to Flash Memory data in the form of operation type
traces to achieve a workload model. Secondly, the HMM is used to decode a data
trace formed of hospital patient arrivals creating a Hospital Arrivals model. Both
of these models will be validated using averages from the raw and HMM-generated
traces and also by comparison of autocorrelation functions.

Another aim of the project is to create a novel adaptation of the Baum-Welch al-
gorithm using Flash Memory data. It is known that discrete HMMs can effectively
learn long sequences of observations such as workload access patterns in computer
storage systems. However, there is now increasing demand for systems which han-
dle higher density, additional loads as seen in storage workload modelling [1], where
workloads can be characterized on-line. Thus, we derive a sliding version of the
Baum-Welch algorithm, which constantly updates its observation set, discarding old
data points in the time series as it inputs new ones. We refer to a HMM with this
sliding Baum-Welch algorithm as a SlidHMM due to the fact that it slides across the
time series, updating its parameters ”on-the-fly”. The benefit of this novel approach
is to obtain a parsimonious model which updates its encoded information whenever
more real time workload data becomes available. The SlidHMM is also efficient in
keeping track of non-homogeneous processes because it updates the observation set
at different stages of the analysis, therefore analysing only the current portion of the
time series.

An analysis of an efficient process to identify the optimal number of hidden states
for a HMM is also discussed, but left mostly as future work. Also reserved as exten-
sions are: the choice of a different clustering algorithm for each model; and a new
approximation for the backward variables in the Baum-Welch algorithm to seek an
improvement on the SlidHMM.
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Chapter 1

Introduction

The hidden Markov model (HMM) has become one of the simplest and most widely
used statistical tools for modelling discrete times series. The HMM is not only effi-
cient, through its parameter estimation algorithm, but it is also flexible, with appli-
cations ranging from patient waiting times in hospitals to dysarthric Speech Recog-
nition and even automatic earthquake detection and classification. HMMs can often
supply answers to the future behaviour of time series and provide representation for
inputs of large, complex systems.

In this project, we explore the applicability of the HMM to two such systems,
namely instructions arriving at a specified server and patients arriving at a hospi-
tal. In chapter 2 we define a HMM and discuss some of its important mathemati-
cal properties. Then, we describe the three fundamental problems associated with
HMMs: firstly, to determine the likelihood of an observed sequence O given the
model λ = (A, B, π), which is written as P(O | λ); secondly, to maximize P(O | λ)
by adjusting the parameters A, B, π; thirdly, to find the optimal state sequence repon-
sible for producing the observation set. We attempt to solve these three problems by
using the Forward-Backward algorithm, the Baum-Welch algorithm and the Viterbi
algorithm, respectively. Next, a straightforward example is considered to explain
the formation of HMMs. Finally, after researching a wide range of applications of
HMMs, we examined the potential of these models for efficient problem solving and
information storing.

We dedicate chapter 3 to clustering algorithms as they provide the stepping stones
to creating the HMMs through the formation of an observation set. We will discuss
the purpose of clustering in general, summarising the advantages and disadvantages
for each type of clustering. Then, we explain the motivation behind choosing to im-
plement our K-means clustering when building our HMMs.

In chapter 4, we will apply HMMs to Flash Memory data to create a discrete
Markov arrival process (MAP), also known as a Flash Memory workload model.
We will describe how we use the raw trace of read and write commands to create a
binned trace. We then discuss how we used the K-means clustering algorithm and the
Baum-Welch algorithm to process the binned trace and obtain our MAP parameters.
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An analysis of the results for our Flash HMM will be carried out, notably summary
average statistics and autocorrelation functions.

One of the main contributions of this project with respect to novelty, is the cre-
ation of a sliding version of the Baum-Welch algorithm. This sliding HMM (which
we refer to as SlidHMM) is formed using our MAP parameters and the Flash Mem-
ory trace and incorporates the idea of a moving average on the observations. Es-
sentially, the SlidHMM parameters will be updated ”on-the-fly” as more workload
data becomes available and, as a result, SlidHMM can easily keep track of variable
time-dependent processes. More generally, this type of model is desirable in industry
for its potential of run time analysis and planning. As we shall see, an additional
benefit of SlidHMM is that it only needs to update variables for the new incoming
observations thus reducing the computational burden (space and time complexity) of
the Baum-Welch algorithm, especially for very large observation sets.

The main challenge with this type of model comes in the dependency of its pa-
rameters on all preceding data. As we will described later in more detail, this problem
requires an approximation on the new backward variables of the Baum-Welch algo-
rithm to save computing the terms for the accumulated observation set. In fact, the
difficulty in achieving an accurate approximation for the backward recurrence for-
mula might explain why very little work has been done in this domain in the last ten
years.

We continue this report by applying HMMs to hospital patient arrivals as will
be seen in chapter 5. This consists of creating the Hospital Arrivals model with sim-
ilar steps to our Flash Memory model, but focusing more on the use of the Viterbi
algorithm to reveal the identity of the hidden states. We will analyse the results of
the Baum-Welch and Viterbi algorithms by generating averages and also displaying
autocorrelation functions to compare raw and HMM traces. Finally, we investigate
the criteria needed to find the optimal number of hidden states for a HMM. This in-
volves the set up of many hidden states and the gradual merging of these states until
the HMM has optimal transition and emission probability matrices.

To complete this report, we evaluate our results in chapter 6 and provide justi-
fication of our models and choice of parameters. A comparison with exisiting work
in the field is also included to scale our achievements against industry standards.
Lastly, in chapter 7 we present a summary of our contributions along with possible
future work as a continuation of this project.
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Chapter 2

Background

In this chapter, we will go through what a hidden Markov model is, and define some
of its important properties. Then, we shall briefly discuss the fundamental problems
associated with hidden Markov models before moving on to a simple example ex-
plaining the main concepts of hidden Markov models. After that, we explain in detail
the solutions of the three fundamental problems of hidden Markov models. Finally,
we finish this chapter by explaining several applications where hidden Markov mod-
els are used in the real world.

2.1 What is a hidden Markov model?

A hidden Markov model (HMM) is a probabilistic model (more specifically, a bivari-
ate Markov chain) which encodes information about the evolution of a time series.
The HMM is made up of the following: a hidden Markov chain {Ck} (where k is an
integer) which has states that are not directly observable, and a discrete time stochas-
tic process {Ok}k≥0 which is observable. Putting those together, we get the bivariate
Markov chain {(Ck,Ok)}k≥0 where all the statistical inference is done on {Ok}, as {Ck}

is not observed. Another point worth mentioning is that Ck governs the distribution of
the corresponding Ok, and thus we assume that Ck is the only variable of the Markov
chain that affects the Ok distribution. We now give a formal definition of a HMM and
show some of its important properties.

Definition 1.1 Let {Ct}t∈N be a stochastic process belonging to state space S =

{1, . . . , r}. Then {Ct}t∈N is a Markov chain if

P(Ct+1 = ct+1 | Ct = ct,Ct−1 = ct−1, . . . ,C1 = c1) = P(Ct+1 = ct+1 | Ct = ct)

where c1, c2, . . . , ct+1 ∈ S .

Definition 1.2 Suppose we have a Markov chain {Ct}t∈N with state space S = {1, . . . , r},
transition matrix Q = (qcc′)c,c′∈S and an initial distribution υc(c ∈ S ). We also have
a stochastic process {Ot}t∈N which takes values in J = {1, . . . ,m}. Then, the bivariate
stochastic process {(Ct,Ot)}t∈N is a hidden Markov model if it is a Markov chain
with transition probabilities
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P(Ct = ct,Ot = ot | Ct−1 = ct−1,Ot−1 = ot−1) = P(Ct = ct,Ot = ot | Ct−1 = ct−1)

= qct−1ct gctot

where G = (gco)c∈S ,o∈J is a stochastic matrix.

We also use the property, which states that conditionally on {Ct}t=0,1,... we have
that {Ot}t=0,1,... are independent. In other words,

P(O0 = o0, . . . ,On = on | C0 = c0, . . . ,Cn = cn) =
∏n

i=0 P(Oi = oi | Ci = ci)

Now, we will prove the following proposition.

Proposition 1.2 P(Ot = ot | Ct = ct) = gct ,ot

Proof

P(Ot = ot | Ct = ct) =
P(Ot=ot ,Ct=ct)

P(Ct=ct)

= 1
P(Ct=ct)

∑
ct−1 P(Ot = ot,Ct = ct,Ct−1 = ct−1)

= 1
P(Ct=ct)

∑
ct−1 P(Ot = ot,Ct = ct | Ct−1 = ct−1)P(Ct−1 = ct−1)

= 1
P(Ct=ct)

∑
ct−1 pct−1ct gct ,ot P(Ct−1 = ct−1)

=
gct ,ot

P(Ct=ct)
∑

ct−1 P(Ct = ct,Ct−1 = ct−1)

=
gct ,ot

P(Ct=ct)
P(Ct = ct)

= gct ,ot

which is the RHS as required. �

We continue by expanding on the proofs (seen in [2]) used in the derivation of the
Baum-Welch algorithm. Note that, as the following proofs are longer and require
more space for each line, we will simplify the notation and replace the event Ot = ot

by Ot from now on.

Proposition 1.3 For all integers t and l such that 1 ≤ t ≤ l ≤ T

P(Ol,Ol+1, . . . ,OT | Ct, . . . ,CT ) = P(Ol,Ol+1, . . . ,OT | Cl, . . . ,CT )

Proof From the definition of conditional probability, we begin by writing the LHS as:

P(Ol,Ol+1, . . . ,OT | Ct, . . . ,CT )

8



= 1
P(Ct ,...,CT )

∑
c1,...,ct−1

P(Ol, . . . ,OT | C1, . . . ,CT )P(C1, . . . ,CT )

Now, using the fact that the random variables O1, . . . ,OT are independent, given
C1, . . . ,CT , and the distribution of any Ot only depends on Ct, we get

= 1
P(Ct ,...,CT )

∑
c1,...,ct−1

P(Ol | Cl) . . . P(OT | CT )P(C1, . . . ,CT )

= 1
P(Ct ,...,CT ) P(Ol | Cl) . . . P(OT | CT )

∑
c1,...,ct−1 P(C1, . . . ,CT )

= 1
P(Ct ,...,CT ) P(Ol | Cl) . . . P(OT | CT )[P(Ct, . . . ,CT )]

= P(Ol | Cl) . . . P(OT | CT )

= P(Ol, . . . ,OT | Cl, . . . ,CT )

which is the RHS as required. �

Proposition 1.4 For t = 1, 2, . . . ,T , we have

P(O1, . . . ,Ot | C1, . . . ,CT ) = P(O1, . . . ,Ot | C1, . . . ,Ct)

Proof Using again the fact that, given C1, . . . ,CT , the random variables are indepen-
dent and the distribution of each Ot only depends on Ct, we can write the LHS as
follows:

P(O1, . . . ,Ot | C1, . . . ,CT ) = P(O1 | C1) . . . P(Ot | Ct)

= P(O1, . . . ,Ot | C1, . . . ,Ct)

which is the RHS as required. �

Proposition 1.5 For t = 1, 2, . . . ,T − 1, we have

P(Ot+1, . . . ,OT | C1, . . . ,Ct) = P(Ot+1, . . . ,OT | Ct)

Proof We begin by writing the LHS as follows:

P(Ot+1, . . . ,OT | C1, . . . ,Ct)

= 1
P(C1,...,Ct)

∑
ct+1,...,cT P(C1, . . . ,CT )P(Ot+1, . . . ,OT | C1, . . . ,CT )

Applying Proposition 1.3 we get

= 1
P(C1,...,Ct)

∑
ct+1,...,cT P(C1, . . . ,CT )P(Ot+1, . . . ,OT | Ct, . . . ,CT )

=
∑

ct+1,...,cT P(Ct+1, . . . ,CT | C1, . . . ,Ct)P(Ot+1, . . . ,OT | Ct, . . . ,CT )

Using the Markov property of {Ct} we obtain
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=
∑

ct+1,...,cT P(Ct+1, . . . ,CT | Ct)P(Ot+1, . . . ,OT | Ct, . . . ,CT )

=
∑

ct+1,...,cT
P(Ct ,Ct+1,...,CT )

P(Ct)
P(Ot+1,...,OT ,Ct ,...,CT )

P(Ct ,...,CT )

=
∑

ct+1,...,cT
P(Ot+1,...,OT ,Ct ,...,CT )

P(Ct)

=
P(Ot+1,...,OT ,Ct)

P(Ct)

= P(Ot+1, . . . ,OT | Ct)

which is the RHS as required. �

We shall use the propositions above to prove some very useful properties of the
stochastic process Ot. These are listed below in Proposition 1.6:

Proposition 1.6

(i) For t = 1, 2, . . . ,T , we have

P(O1, . . . ,OT | Ct) = P(O1 . . . ,Ot | Ct)P(Ot+1, . . . ,OT | Ct)

(ii) For t = 1, 2, . . . ,T , we have

P(Ot, . . . ,OT | Ct) = P(Ot | Ct)P(Ot+1, . . . ,OT | Ct)

(iii) For t = 1, 2, . . . ,T − 1, we have

P(O1, . . . ,OT | Ct,Ct+1) = P(O1 . . . ,Ot | Ct)P(Ot+1, . . . ,OT | Ct+1)

(iv) For all integers t and l such that 1 ≤ t ≤ l ≤ T

P(Ol, . . . ,OT | Ct, . . . ,Cl) = P(Ol, . . . ,OT | Cl)

Proof

(i) We use the mutual independence of O1, . . . ,OT , given C1, . . . ,CT , to write the
LHS as:

P(O1, . . . ,OT | Ct)

= 1
P(Ct)

∑
c1,...,ct−1

∑
ct+1,...,cT P(C1, . . . ,CT )P(O1, . . . ,Ot | C1, . . . ,CT )

×P(Ot+1, . . . ,OT | C1, . . . ,CT )

Using the formula for conditional probability, we get

= 1
P(Ct)

∑
c1,...,ct−1

∑
ct+1,...,cT P(O1, . . . ,Ot,C1, . . . ,CT )

×P(Ot+1, . . . ,OT | C1, . . . ,CT )
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Using Proposition 1.3, we obtain

= 1
P(Ct)

∑
c1,...,ct−1

∑
ct+1,...,cT P(O1, . . . ,Ot,C1, . . . ,CT )

×P(Ot+1, . . . ,OT | Ct, . . . ,CT )

Summing this expression over the sum that spans {ct+1, . . . , cT }, we get

= 1
P(Ct)

∑
c1,...,ct−1 P(O1, . . . ,Ot,C1, . . . ,Ct)P(Ot+1, . . . ,OT | Ct)

Next, we evaluate the expression in the sum spanning {c1, . . . , ct−1} and we get

= 1
P(Ct)

P(O1, . . . ,Ot,Ct)P(Ot+1, . . . ,OT | Ct)

= P(O1, . . . ,Ot | Ct)P(Ot+1, . . . ,OT | Ct)

which is the RHS as required. �

(ii) We will sum the resulting expression of Proposition 1.6 (i) with respect to
{o1, . . . , ot−1} and the LHS becomes:

P(Ot, . . . ,OT | Ct)

=
∑

o1,...,ot−1 P(O1, . . . ,Ot | Ct)P(Ot+1, . . . ,OT | Ct)

= P(Ot | Ct)P(Ot+1, . . . ,OT | Ct)

which is the RHS as required. �

(iii) We write the LHS as

P(O1, . . . ,OT | Ct,Ct+1)

= 1
P(Ct ,Ct+1)

∑
c1,...,ct−1

∑
ct+2,...,cT P(C1, . . . ,CT )P(O1, . . . ,Ot | C1, . . . ,CT )

×P(Ot+1, . . . ,OT | C1, . . . ,CT )

Using Proposition 1.3 and the formula for conditional probability, we get

= 1
P(Ct ,Ct+1)

∑
c1,...,ct−1

∑
ct+2,...,cT P(O1, . . . ,Ot,C1, . . . ,CT )

×P(Ot+1, . . . ,OT | Ct+1, . . . ,CT )

Summing over the second sum (spanning {ct+2, . . . , cT }), we obtain

= 1
P(Ct ,Ct+1)

∑
c1,...,ct−1 P(O1, . . . ,Ot,C1, . . . ,Ct+1)P(Ot+1, . . . ,OT | Ct+1)

Summing over the remaining sum (spanning {c1, . . . , ct−1}), we get
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= 1
P(Ct ,Ct+1) P(O1, . . . ,Ot,Ct,Ct+1)P(Ot+1, . . . ,OT | Ct+1)

= P(O1, . . . ,Ot | Ct,Ct+1)P(Ot+1, . . . ,OT | Ct+1)

Finally, using the property of conditional independence where the distribution of Ot

depends only on Ct, we can evaluate our expression to

= P(O1, . . . ,Ot | Ct)P(Ot+1, . . . ,OT | Ct+1)

which is the RHS as required. �

(iv) We write the LHS as

P(Ol, . . . ,OT | Ct, . . . ,Cl)

= 1
P(Ct ,...,Cl)

∑
cl+1,...,cT

∑
c1,...,ct−1 P(Ol, . . . ,OT | C1, . . . ,CT )P(C1, . . . ,CT )

Using Proposition 1.3 we change our expression to

= 1
P(Ct ,...,Cl)

∑
cl+1,...,cT

∑
c1,...,ct−1 P(Ol, . . . ,OT | Cl, . . . ,CT )P(C1, . . . ,CT )

Evaluating the summation which spans {c1, . . . , ct−1}, we get

= 1
P(Ct ,...,Cl)

∑
cl+1,...,cT P(Ol, . . . ,OT | Cl, . . . ,CT )P(Ct, . . . ,CT )

Next, we bring in the denominator inside the summation:

=
∑

cl+1,...,cT P(Ol, . . . ,OT | Cl, . . . ,CT ) P(Ct ,...,Cl,Cl+1,...,CT )
P(Ct ,...,Cl)

Then, we use the formula for conditional probability and obtain

=
∑

cl+1,...,cT P(Ol, . . . ,OT | Cl, . . . ,CT )P(Cl+1, . . . ,CT | Ct, . . . ,Cl)

By the Markov property of {Ct} we have

=
∑

cl+1,...,cT P(Ol, . . . ,OT | Cl, . . . ,CT )P(Cl+1, . . . ,CT | Cl)

Again applying our well-known formulas for conditional probability our expression
becomes

=
∑

cl+1,...,cT
P(Ol,...,OT ,Cl,...,CT )

P(Cl,...,CT )
P(Cl+1,...,CT ,Cl)

P(Cl)

which cancels out to give

=
∑

cl+1,...,cT
P(Ol,...,OT ,Cl,...,CT )

P(Cl)
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Summing give us

=
P(Ol,...,OT ,Cl)

P(Cl)

= P(Ol, . . . ,OT | Cl)

which is the RHS as required. �

These properties have provided us with the mathematical background to carry
out our analysis of the three fundamental problems surrounding HMMs. But before
that, we define the joint probability and the likelihood functions.

The probability of joint processes C0,O0, C1,O1, . . . ,Cn,On, is vital to help us
calculate the probabilities associated with HMMs. This joint probability function can
be written as

Jv,n(c0, o0, . . . , cn, on) = P(C0 = c0,O0 = o0, . . . ,Cn = cn,On = on)

= P(C0 = c0,O0 = o0) ×

P(C1 = c1,O1 = o1 | C0 = c0) . . .
. . . P(Cn = cn,On = on | Cn−1 = cn−1)

= vc0gc0,o0

∏n
i=1 qci−1,cigci,oi

where the initial distribution of the chain vc0 = P(C0 = c0)

In fact, this is the full likelihood function which belongs to all random variables
(i.e. observed and unobserved). As defined in section 3.3 of [1], the likelihood func-
tion Lv,n(o0, o1, . . . , on) of observations o0, o1, . . . , on can be written as follows:

Lv,n(o0, o1, . . . , on) = P(O0 = o0,O1 = o1, . . . ,On = on)

Therefore, we can write

Lv,n(o0, o1, . . . , on) =
∑

c0,...,cn Jv,n(c0, o0, . . . , cn, on)

=
∑

c0,...,cn vc0gc0,o0

∏n
i=1 qci−1,cigci,oi

For the rest of this report, we shall use a different notation to represent the likeli-
hood function, as explained in the forward-backward algorithm. Essentially, we will
write Lv,n(o0, o1, . . . , on) as P(O | λ) (where O is the observation set o0, o1, . . . , on and
λ is the model) to better understand the terms of the algorithms used later on.

We have seen mathematically how to treat events where a certain observation
occurs (e.g. Ot = ot, for some t) given a state in the Markov chain. We will now il-
lustrate how the Markov chain and its different hidden states interact with the possible
observations:
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Figure 2.1: A directed acyclic graph (DAG) showing conditional independence rela-
tions for a HMM.

Above, 2.1 shows a directed acyclic graph specifying conditional independence
relations for a HMM. At the top of the diagram, we have the Markov chain with its
hidden states Ci. Each node in the Markov chain is conditionally independent from its
non-descendants given its parents. For example, given C1,C2, . . . ,Ct−1,Ct, we have
that Ct+1 is independent of C1,C2, . . . ,Ct−1 (which is the first Markov property). At
the bottom of the diagram, we have the observations Oi which are linked to Ci of the
Markov chain. We are only able to observe the Oi as they are not hidden to us.

When constructing a HMM, there are three main problems that need to be ad-
dressed. First, given the parameters of the model, we compute the probabilities of a
particular sequence of observations, which can be solved by the Forward-Backward
algorithm. This helps us compute the probability of the HMM generating a particular
sequence (i.e. the probability of that sequence under the model). Second, given a se-
quence of observations, we aim to find the most likely set of model parameters. This
may be solved by statistical inference through the Baum-Welch Algorithm, which
uses the Forward-Backward algorithm. Lastly, we need to find the path of hidden
states that is most likely to generate a sequence of observations. This is solved using
a posteriori statistical inference in the Viterbi Algorithm. We shall go through these
three problems after we introduce a simple example involving HMMs.

2.2 An example involving hidden Markov models

Suppose we wanted to determine the average annual rainfall of a particular region
in the UK over a period of time many years ago. Getting inspiration from a similar
example used in [10], we can make the problem simpler by looking at two measure-
ments, wet (W) and dry (D). Let us now assume that initially, in the first year of
analysis, the probability we had a wet year was 0.55 and the probability we had a dry
year was 0.45. A very simple matrix will show this
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( W D
0.55 0.45

)
(2.1)

To help us progress down the time period, we also have evidence that the proba-
bility of two consecutive wet years is 0.8 and the probability of two consecutive dry
years is 0.7. Then, we can summarise this information into the following matrix:

( W D
W 0.8 0.2
D 0.3 0.7

)
(2.2)

Notice how the matrix above has elements which are probabilities and the ele-
ments in each row sum up to 1. This type of matrix is called row stochastic.

Now, let us suppose that there is a relationship between the height of grass and
the type of rainfall in those particular regions. For the purpose of this experiment, we
can assume there are three types of grass heights: short (S), medium (M) and tall (T).
Therefore, the correlation between rainfall and grass height can be summarised by

( S M T
W 0.2 0.3 0.5
D 0.1 0.6 0.3

)
(2.3)

We denote the average annual rainfall as the state, which can be W or D. Notice
that moving from one state to the next depends solely on the probabilities in 2.2 and
on the current state. Therefore, the state transition is in fact a Markov process. Look-
ing at 2.3, we cannot directly observe our average annual rainfall states, so we label
(W and D) the ”hidden” states. However, we can observe the height of grass, which
provides us with selective information of the rainfall, indirectly. Hence, we denote
this type of system as a hidden Markov model (HMM).

We continue to use the observed information to learn more about our Markov pro-
cess, in an efficient manner. We now define some important notation for the system
we have been describing. Firstly, 2.1 will be known as the initial state distribution,
given by

π =
(
0.55 0.45

)
(2.4)

Secondly, 2.2 will be known as the state transition matrix

A =

(
0.8 0.2
0.3 0.7

)
(2.5)

Thirdly, 2.3 will be known as the observation matrix

B =

(
0.2 0.3 0.5
0.1 0.6 0.3

)
(2.6)
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Let us now consider a five-year period which we can analyse. The sequence of
grass heights are as follows: S,M,T,M,T and we let 0 represent S , 1 represent M and
2 represent T . The sequence we have observed over the five years is now

O = (0, 1, 2, 1, 2) (2.7)

From the information given in equation 2.7, we can use HMMs to find the most
likely state sequence of the Markov process. By ”most likely”, we mean the state
sequence which maximises the expected number of correct states.

Let us now introduce some notation, which will help us find the probability of a
possible state sequence. In the next section, we will use this notation to formulate the
solutions to our three fundamental problems regarding HMMs. We define our terms
as follows:

O = (O0,O1, . . . ,OT−1) = observation sequence
T = length of the observation sequence
Q = q0, q1, . . . , qN−1 = states of the Markov chain
N = number of states in the model
V = v0, v1, . . . , vM−1 = set of possible observations
M = number of observation symbols
π = initial state distribution
A = state transition probabilities
B = observation probability matrix

Note that Ot ∈ V for t = 0, 1, . . . ,T − 1. Also, we elaborate the definition of
π as

π = {πi}, πi = P(state qi at t = 0)

We also note that A is an N × N, row stochastic matrix such that

A = ai j = P(state q j at t + 1 | state qi at t)

and ai j are independent of t.

Similarly, B is an N × M row stochastic matrix such that

B = b j(k) = P(observation vk at t | state q j at t)

and b j(k) are independent of t.

Looking back at our DAG in Figure 2.1, we can use our newly defined matri-
ces (A and B) to explain the transitions in the graph. The state transition matrix A
helps us progress through the Markov chain from state Ct to state Ct+1. The observa-
tion matrix B gives us the observation Ot from its corresponding state Ct. Therefore,
the matrices A and B can create our entire graph in 2.1 provided we are given an
initial state distribution.
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Now, we have gathered sufficient notation to define a HMM by λ = (A, B, π). We
shall use this definition to solve the three fundamental problems regarding HMMs
(see next section). But first, suppose we were given the following generic informa-
tion:

X = (x0, x1, x2, x3, x4) = state sequence of length five
O = (O0,O1,O2,O3,O4) = corresponding observations
πx0 = probability of starting in state x0
bxt (Ot) = probability of observing Ot from state xt

axt ,xt+1 = probability of a transition from state xt to state xt+1

Therefore, what would the probability be of the given state sequence (i.e. P(X))?
To answer this question, we must start small to begin with. The probability of gener-
ating the initial state x0 is given by

πx0bx0(O0).

Then, the probability of generating the state sequence (x0, x1) is given by

πx0bx0(O0)ax0,x1bx1(O1).

Continuing in this manner, the probability of the entire state sequence X is

P(X) = πx0bx0(O0)ax0,x1bx1(O1)ax1,x2bx2(O2)ax2,x3bx3(O3)ax3,x4bx4(O4) (2.8)

Let us now return to our rainfall example where we analysed a five year period,
using the sequence from 2.7. We can formalise our specification for this problem
using the new notation:

O = (0, 1, 2, 1, 2)
T = 5
Q = W,D
N = 2
V = 0, 1, 2
M = 3
π = matrix from 2.1
A = matrix from 2.2
B = matrix from 2.3

Furthermore, given the observation sequence O = (0, 1, 2, 1, 2), we can use 2.8 to
find

P(WDWDW) = πWbW(0)aW,DbD(1)aD,WbW(2)aW,DbD(1)aD,WbW(2)

= (0.55)(0.2)(0.2)(0.6)(0.3)(0.5)(0.2)(0.6)(0.3)(0.5)

= 0.00003564

Similarly, we can calculate the probabilitiy of each of the possible state sequences

17



of length five (WWWWW, WWWWD, WWWDW, etc.). Note that there will be a to-
tal of 25 = 32 possible state sequences of length five because there are only two
choices for each state (W or D). We shall now move on to the three fundamental
problems of HMMs and attempt to solve them generically.

2.3 Solution of the three fundamental problems

2.3.1 The first problem

The first fundamental problem can be described as follows: Suppose that we have a
sequence of observations O = (O0,O1, . . . ,OT−1) and the model λ = (A, B, π). Our
aim is to find P(O | λ), the probability of the given sequence of observations given the
model. In doing this, we want to determine the likelihood of the observed sequence
O.

In a similar fashion to the solution in [5], we shall use the ”forward” part of the
Forward-Backward algorithm, which is called the α-pass. We can define αt(i) as the
probability of the observation sequence up to time t and of state qi at time t, given
our model λ. The mathematical notation is

αt(i) = P(O0,O1, . . . ,Ot, st = qi | λ) (2.9)

where i = 0, 1, . . . ,N − 1 and t = 0, 1, . . . ,T − 1

The solution of αt(i) is an inductive one and proceeds as follows:

1. to initiate the forward probabilities, for i = 0, 1, . . . ,N − 1, we have

α0(i) = πibi(O0).

2. then, for i = 0, 1, . . . ,N − 1 and t = 0, 1, . . . ,T − 2 we have

αt+1(i) = [
∑N−1

j=0 αt( j)a ji]bi(Ot+1)

where αt( j)a ji is the probability of the joint event that O0,O1, . . .Ot are ob-
served and there is a transition from state q j at time t to state qi at time t + 1.

3. it follows that

P(O | λ) =
∑N−1

i=0 αT−1(i)

where we use 2.9 to get αT−1(i) = P(O0,O1, . . . ,OT−1, sT−1 = qi | λ)

Similarly, we can define the backward variable, βt(i) as the probability of the obser-
vation sequence from time t + 1 to the end, given state qi at time t and the model λ.
The mathematical notation is

βt(i) = P(Ot+1,Ot+2, . . .OT−1 | st = qi, λ) (2.10)

The solution of βt(i) is inductive and is given by:
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1. to start with, for i = 0, 1, . . . ,N − 1, we have

βT−1(i) = 1.

2. then, for i = 0, 1, . . . ,N − 1 and t = T − 2,T − 3, . . . , 0 we have

βt(i) =
∑N−1

j=0 ai jb j(Ot+1)βt+1( j).

where we note that the observation Ot+1 can be generated from any state q j.

2.3.2 The second problem

Our second problem was, given the model λ = (A, B, π) and the observation sequence
O = (O0,O1, . . . ,OT−1), attempt to maximise P(O | λ) by adjusting the parameters
A, B, π. This problem can be solved using the Baum-Welch algorithm, which is an
iterative process.

Firstly, we define the probability of a path being in state qi at time t and making
a transition to state q j at time t + 1, given O and λ, as

ξt(i, j) = P(st = qi, st+1 = q j | O, λ)

Now, we describe the different parts of computing ξt(i, j). Firstly, the observations
O0,O1, . . .Ot finishing in state qi at time t are covered by αt(i). Then, the transi-
tion from qi to q j, where Ot+1 was observed at time t + 1, is represented by the
term ai jb j(Ot+1). Finally, the remaining observations Ot+2,Ot+3 . . .OT−1 beginning
in state q j at time t + 1 are covered by βt+1. Putting those together, and dividing by a
normalizing term (P(O | λ)) we have

ξt(i, j) =
αt(i)ai jb j(Ot+1)βt+1( j)

P(O | λ)
(2.11)

Let us now sum the terms in 2.11 over j and notice that we get the probability of
being in state qi at time t, given the observation sequence O and model λ. We define
this probability as follows:

γt(i) = P(st = qi | O, λ)

=
∑N−1

j=0 ξt(i, j)

If we sum the γt(i) over time t up to T − 1, then we get the number of times
we expect to visit state qi. This is the same, in fact, as the expected number of transi-
tions made from qi, summing up to T − 2 this time because we need to save one time
index for the transition. This is summarised below:∑T−1

t=0 γt(i) = Expected number of times state qi is visited.∑T−2
t=0 γt(i) = Expected number of transitions made from state qi.

In a similar fashion, we sum ξt(i, j) over t and the results are summarised as follows:
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∑T−1
t=0 ξt(i, j) = Expected number of times state qi, then state q j are visited.∑T−2

t=0 ξt(i, j) = Expected number of transitions made from state qi to state q j.

Using these terms, we now define the re-estimation formulas for our HMM parame-
ters (π, A, B):

1. Initially at t = 0, we have

π′i = γ0(i)

where i = 0, 1, . . . ,N − 1

2. For A, we have

a′i j =
∑T−2

t=0 ξt(i, j)∑N−1
j=0

∑T−2
t=0 ξt(i, j)

where we notice that this formula is just the expected number of transitions
from qi to q j divided by the expected number of transitions coming from qi.

3. For B we have

b j(k)′ =

∑T−1
t=0,Ot=k γt( j)∑T−1

t=0 γt( j)

where this is just the expected number of times state q j is visited and k is
observed divided by the number of times q j is visited.

Using these re-estimation formulas on a given model, λ, we can re-estimate our model
and obtain:

λ′ = (A′, B′, π′)

where A′ = {a′i j}, B′ = {b j(k)′} and π′ = {π′i}

We can use our new re-estimation model to check if P(O | λ′) > P(O | λ), which
would mean we found a model λ′ that is more likely to produce the observation se-
quence. We continue like this, replacing λ with λ′ if it gives us a higher probability,
until we have reached a limit. This limit could be the number of iterations, which
would tell us when to stop the re-estimation, or we find that the probability of ob-
serving O cannot be improved beyond some threshold.

2.3.3 The third problem

The third fundamental problem we had to solve was as follows: Suppose that we have
a sequence of observations O = (O0,O1, . . . ,OT−1) and the model λ = (A, B, π). Our
aim is to find an optimal state sequence for the underlying Markov chain and thus,
reveal the hidden part of the HMM λ. In other words, the criterion is to find the best
sequence of states (i.e. S = (S 0, S 1, . . . , S T−1)) such that
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S ∗ = argmaxS P(S | O, λ)

As P(O | λ) is independent of S , we have

= argmaxS P(S | O, λ)P(O | λ)

= argmaxS P(S ,O | λ)

The Viterbi algorithm will give us this optimal state sequence S ∗. At each step
(time t), the Viterbi algorithm allows S ∗ to retain all optimal paths that finish at the
N states. At the next step (time t + 1), the N optimal paths will be updated and S ∗

continues to grow in this manner.

Let S ∗t (i) be the optimal path ending in state S i for the observations O0,O1, . . . ,Ot.
Then we can define δt(i) = P(O0,O1, . . . ,Ot, S ∗t (i) | λ), which is the probability of
generating observations O0,O1, . . . ,Ot from path S ∗t (i). Finally, we use an array ψt(i)
to keep track of each t and i that has maximized the last δt(i).

The steps of the Viterbi algorithm are described below:

1. We initialise the following variables

δ0(i) = πibi(O0) for i = 0, 1, . . .N − 1

ψ0(i) = 0

2. We recurse for j = 0, 1, . . . ,N − 1 and t = 1, 2, . . . ,T − 1 on the variables as
follows

δt( j) = max0≤i≤N−1[δt−1(i)ai j]b j(Ot)

ψt( j) = argmax0≤i≤N−1[δt−1(i)ai j]

3. We terminate with

P∗ = max0≤i≤N−1[δT (i)]

S T = argmax0≤i≤N−1[δT (i)]

4. We backtrack through the state sequence for t = T − 2,T − 3, . . . , 0 as such:

S ∗t = ψt+1(i∗t+1)

21



2.4 Underflow

The solutions to the three fundamental problems, seen earlier, could be implemented
using any double point precision language (e.g. C) and produce convergent results for
a small sequence of observations. However, as we increase the number of points in
the sequence, the Baum-welch algorithm can succumb to underflow. This means that
as our sequences are larger, the probabilistic values in the algorithm get increasingly
small and after enough iterations become almost zero.

We will discuss how this problem can be solved for the Baum-Welch algorithm,
and then do the same for the Viterbi algorithm.

2.4.1 Normalized Baum-Welch algorithm

We will show how to normalize the αs and the βs of the Forward-Backward algorithm
and solve this issue of underflow. Note, the normalizing procedure which will be used
in this section is adapted from [13]. Firstly, we normalize α̂t( j) so that all the terms
(from 0 to N − 1) sum to 1: ∑N−1

i=0 α̂t(i) = 1

In other words, we have

α̂t(i) =
αt(i)∑N−1

i=0 αt(i)

=
P(O0,O1,...,Ot ,st=qi |λ)

P(O0,O1,...,Ot |λ)

=
P(O0,O1,...,Ot ,st=qi,λ)/P(λ)

P(O0,O1,...,Ot ,λ)/P(λ)

Cancelling out the P(λ) in the fraction gives us

=
P(O0,O1,...,Ot ,st=qi,λ)

P(O0,O1,...,Ot ,λ)

= P(st = qi | O0,O1, . . . ,Ot, λ)

Hence, the solution of α̂t(i) is the following:

1. to initiate the forward probabilities, for i = 0, 1, . . . ,N − 1, we have

α̂0(i) =
πibi(O0)∑N−1

j=0 π jb j(O0)
.

2. then, for j = 0, 1, . . . ,N − 1 and t = 0, 1, . . . ,T − 2 we have

α̂t+1(i) =
[
∑N−1

j=0 α̂t( j)a ji]bi(Ot+1)∑N−1
k=0 [

∑N−1
j=0 α̂t( j)a jk]bk(Ot+1)

For the β̂t(i)s, we use the same normalizers as those for the αs. However, unlike the
αs, the βs do not sum to 1 at any time t. Thus, the solution of β̂t(i) is given by:
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1. to start with, for i = 0, 1, . . . ,N − 1, we have

β̂T−1(i) = βT−1(i) = 1.

2. then, for i = 0, 1, . . . ,N − 1 and t = T − 2,T − 3, . . . , 0 we have

β̂t(i) =

∑N−1
j=0 ai jb j(Ot+1)β̂t+1( j)∑N−1

k=0 [
∑N−1

j=0 α̂t( j)a jk]bk(Ot+1)
.

Notice that we can write α̂t(i)β̂t(i) as:

α̂t(i)β̂t(i) =
αt(i)βt(i)∑N−1
i=0 αT−1(i)

=
αt(i)βt(i)
P(O|λ)

Therefore, the γt(i)s have the same formula because we can just divide by the nor-
malizers without changing the fraction, shown as follows:

γt(i) =
∑N−1

j=0 ξt(i, j)

=
αt(i)βt(i)∑N−1

j=0 αt( j)βt( j)

Dividing the numerator and the denominator by P(O | λ) we get

=
α̂t(i)β̂t(i)∑N−1

j=0 α̂t( j)β̂t( j)

where throughout we have t = 0, 1, . . . ,T − 1

However, the ξs are computed differently and are given by the following formula:

ξt(i, j) =
α̂t(i)ai jb j(Ot+1)β̂t+1( j)

[
∑N−1

k=0 [
∑N−1

j=0 α̂t( j)a jk]bk(Ot+1)][
∑N−1

j=0 α̂t( j)β̂t( j)]

By definition of γt(i), this gives us

=
γt(i)ai jb j(Ot+1)β̂t+1( j)

[
∑N−1

k=0 [
∑N−1

j=0 α̂t( j)a jk]bk(Ot+1)]β̂t(i)

The re-estimation formulas for our HMM parameters (π, A, B) now use the new γs
and ξs, but otherwise remain the same.

2.4.2 Logarithmic Viterbi algorithm

With the Viterbi algorithm, underflow can be avoided by using logarithms. As a
consequence, we sum the logarithms of the terms instead of multiplying them using
products. Note, that this could be used for the Baum-Welch algorithm. We could take
logarithms of the α and β values, but computing the γ values would require dealing
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with a sum of αt(i), a sum not in the logarithm domain.
Therefore, taking logarithms of our terms, the enhanced Viterbi algorithm be-

comes:

1. We initialise the following variables

δ0(i) = log(πibi(O0)) for i = 0, 1, . . .N − 1

ψ0(i) = 0

2. We recurse for j = 0, 1, . . . ,N − 1 and t = 1, 2, . . . ,T − 1 on the variables as
follows

δt( j) = max0≤i≤N−1[δt−1(i) + log(ai j)] + log(b j(Ot))

ψt( j) = argmax0≤i≤N−1[δt−1(i) + log(ai j)]

3. We terminate with

P∗ = max0≤i≤N−1[δT (i)]

S T = argmax0≤i≤N−1[δT (i)]

4. We backtrack through the state sequence for t = T − 2,T − 3, . . . , 0 as such:

S ∗t = ψt+1(i∗t+1)

2.5 Application of HMMs

HMMs were first used in the late 1960s in statistical papers by Leonard E. Baum
for stastical inference of Markov chains (Baum and Petrie [7]) and also for statistical
estimation of Markov process probability functions (Baum and Eagon [6]). As time
went on, it became clear that HMMs could be used in a number of diverse fields
ranging from Bioinformatics to Flash Memory. However, one of the first applications
of HMMs was speech recoginition in the 1970s.

2.5.1 Application of HMMs to Speech Recognition

HMMs can be applied to Speech Recognition (SR) as they are an important part of
statistically-based algorithms. They are computationally feasible to use and can be
trained automatically. More importantly, HMMs are linked to SR because a speech
signal is represented as a short-time stationary signal. Therefore, for stochastic pro-
cesses, speech can be seen as a Markov model.

Rabiner published papers about using HMMs for Speech Recognition in the late
1980s, where in one such paper he adapted a HMM to build an isolated word recog-
nizer [5]. In this paper, Rabiner and Juang use a fixed vocabulary of words, a training
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set of fixed tokens and an independent testing set. Firstly, they built a HMM for each
word in the vocabulary, and used token observations to estimate the parameters for
each word. Secondly, for each unknown word in the test set, they calculate its prob-
ability given the word model. Finally, they find the word whose model probability
is biggest. The calculations carried out were similar to those involved in solving the
three fundamental solutions of HMMs. Therefore, either the Viterbi algorithm or the
Forward-Backward algorithm can provide the required probability.

Another more recent application of HMMs to SR is where statistical-based SR
software is used to model variations in speech with automatic learning procedures.
Speech signals are viewed as short-time stationary signals meaning that speech can
be seen as a model for stochastic processes. In fact, the HMM would output a se-
quence of n-dimensional real-valued vectors, which consist of cepstral coefficients
(obtained from applying a Fourier transform on a sample of speech and then passing
this sample through the cosine transform). So, the HMM will have a likelihood func-
tion for each vector and thus each word will have a different output distribution. An
example is Speaker Independent Urdu Speech Recognition using HMMs [3], where
an acoustic model was used to interpret Urdu sounds and then evaluated using Word
Error Rate (WER). For example, a WER of 5% meant that there was an error of one
out of every twenty words.

2.5.2 Application of HMMs to Flash Memory

Attempts have been made to sort workloads at a Flash storage system at different
temporal scales. Researchers have aimed to create portable benchmarks in terms of
Markov arrival processes (MAPs). Such a paper which looked at MAPs was Stor-
age Workload Modelling by Hidden Markov Models: Application to FLASH Mem-
ory [1] and looked at Markov modulated Poisson processes (MMPPs) in particular.
These benchmarks can correctly represent the correlation and burstiness in multi-
application workloads and therfore optimize storage and access time. When anal-
ysed at the millisecond timescale, an aim is to represent the load at the Flash chip
level (Figure 2.2) as input to a fluid model which reproduces transaction response
time distributions [12].
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Figure 2.2: Flash chip and controller. [1]

We can see from Figure 2.2 that read and write rates change over time (even with
constant input workload rates). This supports the idea that real system workloads
contain sudden jumps in arrival rates.

In fact, a Markov chain can represent workload dynamics, and it’s important to
estimate its parameters and obtain the characteristics of the studied traces. HMMs can
model these traces (or time series) mainly when it’s known that the trace is subject
to switching between modes (represented by the hidden states of the HMM). This is
only a short description of the potential HMMs have for Flash Memory applications.
We shall elaborate on this in further detail in chapter (4) of this report.

2.5.3 Application of HMMs to Biology

In the late 1980s, HMMs were used to analyse biological sequences and consequently
their uses have stretched to many applications in Bioinformatics. One of the main
uses of HMMs in Bionformatics has been the prediction of protein coding regions
in genome sequences. Another use of HMMs has been to model common groups of
protein sequences (see [18] for further information), an important topic in computa-
tional biology.

HMMs have been also utilised to locate genes given an uncharacterized DNA se-
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quence. The GENSCAN HMM ([19]) has been used for Eukaryotic gene finding and
we give the model in the following diagram:

Figure 2.3: The general model of the structure of genomic sequences [19]. Note that
the hidden states of the HMM are represented by circles and diamonds.

The GENSCAN HMM models the length distribution and sequence composition

27



for each sequence type. To find the most probable path through the model for the se-
quence, we use the Viterbi algorithm. Note that the path which is returned by Viterbi
will contain the coordinates of the predicted genes. The accuracy of the GENSCAN
HMM is tested using metrics such as SENSITIVITY and SPECIFICITY of the data
examples used. These accuracy metrics are given below:

SENSITIVITY = T P
T P+FN SPECIFICITY = T N

T N+FN

where T P = True Positives, T N = True Negatives and FN = False Negatives.

These are just some possibilities of the uses of HMMs in Biology, which we
have covered here. Possible extensions include using classifying proteins given an
amino-acid sequence, modelling multiple sequences with pair HMMs, etc.
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Chapter 3

Clustering Algorithms

In this section, we will discuss the purpose of clustering in general and also with re-
spect to our Flash Memory and Hospital models. We will examine various clustering
algorithms, summarising the advantages and disadvantages firstly for each type of
algorithm and then secondly for cluster analysis in general. After this, we elaborate
on the motivation behind choosing to implement our K-means clustering for both of
our models. Finally, we discuss at the end of this chapter the possible ways that clus-
tering can provide extensions to this project, mainly through further statistical data
analysis.

3.1 What is Clustering?

Clustering can be defined as the process of partitioning data items into groups with
common attributes. Essentially, clustering is an unsupervised learning problem which
seeks to obtain a structure to some apparently randomly distributed set of data. It is
deemed ”unsupervised” because we are unaware of the class labels nor can we be
sure of the number of classes. One of the first goals of clustering is to ensure we have
assigned each point in our collection to a group (or cluster).

A cluster can be seen as one of these groups, where all the data points belonging
to it share a common feature. Also, all the data points belonging to a specific cluster
are different from any other point outside this cluster (i.e. points belonging to the
other clusters). In summary, we are looking for clusters where intra-cluster similarity
is high and inter-cluster similarity is low. Looking below at the two figures we can
see the effect that clustering can have on the same set of random points, giving a
clearer structure to the data after grouping.
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Figure 3.1: Before Clustering: A set of seemingly random data points without clear
structure.

Figure 3.2: After Clustering: A structured collection of points, organized into 5 dis-
tinct clusters.

The similarity criteria for the clusters in Figure 3.2 is geometrical distance, so
that each cluster contains points which are close to each other. In other words, it is
an example of distance-based clustering. Note that the similarity criteria can include
other measurements other than distance, such as conceptual clustering, and is another
important feature of cluster analysis.
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3.2 Why do we need Clustering Analysis?

Clustering enables us to give some logical grouping to unlabeled data. It can be used
to solve a number of large scale or small scale analytical problems. Below, we give
several examples of the various applications of clustering:

1. In Ecology, flora and fauna can be classified by using their features across
different communities in heterogenous environments.

2. In Bioinformatics, clustering algorithms can be used to assign genotypes (i.e.
the genetic makeup of an organism).

3. In Marketing, clustering can be used to discover distinct groups in the firm’s
customer databases and use this knowledge to develop their future marketing
programs.

4. In Seismology, the earthquake epicentres can be clustered to detect the most
likely zones which are to be affected.

5. In Criminology, ”hot spots” (i.e. areas where incidents of crime happen more
frequently) can be identified over a period of time using cluster analysis.

3.3 Clustering Algorithm Classification

The three main classifications of clustering algorithms we will explore are listed be-
low. Each classification type will have its own section where we elaborate on their
methodologies and possible drawbacks.

1. Hierarchical algorithms

2. Density-based algorithms

3. Partitioning algorithms

3.3.1 Hierarchical Clustering

Hierarchical clustering forms new clusters from the union of two existing clusters
which are closest to each other. The two types of hierarchical clustering algorithms
include:

1. Agglomerative (aka ”bottom-up”)- Clusters are merged iteratively until all ob-
jects are in one large cluster, which can be the termination condition. AGNES
(or AGlomerative NESting) was introduced by Rousseeuw and Kaufmann in
1990 [21] and merges nodes which have most in common with each other, un-
til all nodes belong to the same cluster. AGNES is implemented in statistical
analysis packages such as S+.
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2. Divisive (aka ”top-down”)- Clusters are split iteratively and successively smaller
clusters are formed until each cluster has one point in it. DIANA (or DIvisive
ANAlysis) [21] is essentially the inverse of AGNES and terminates when each
node forms a cluster comprising of itself. It is also implemented in the S+

package.

If we integrate hierarchical clustering and distance-based approach, we obtain
a data clustering method known as BIRCH [16] (Balanced Iterative Reducing and
Clustering using Hierarchies) which was written about in 1996. BIRCH uses Clus-
tering Feature tree and incrementally improves the quality of the sub-clusters.

One disadvantage of agglomerative clustering is that the time complexity for n
objects is O(n2) which means it does not scale well. Another is that once a step in the
algorithm has been carried out, it cannot be undone.

3.3.2 Density-based Clustering

Density-based clustering algorithms are essentially based on density-connected points.
It uses clusters as areas where the density of data points goes beyond a boundary.
Some important features of density-based clustering is the discovery of arbitrary-
shaped clusters and the abilitiy to handle noise. However, in order for the algorithm
to terminate, density parameters are needed as a termination condition.

DBSCAN (Density Based Spatial Clustering of Application with Noise) was pro-
posed by Sander, Kriegel, Xu and Sander in 1996 [20]. It is essentially a clustering
algorithm which uses the idea of density-reachability (i.e. a data point is within a
boundary distance or neighborhood of another point). A cluster is defined as a maxi-
mal set of density-connected points (i.e. data points x and y are density-connected if
they have a common point p such that x and p and also y and p are density-reachable).
If a data point is density-connected to any point of the cluster, then it also belongs to
that cluster.

DBSCAN has a runtime complexity of O(nlog(n)), for n objects, if an efficient
index structure is used. However, without this structure, the complexity becomes
O(n2), which is worse still. Below, we run through some advantages of DBSCAN:

1. DBSCAN takes noise into consideration.

2. Unlike K-means (see next section below), DBSCAN does not require the num-
ber of clusters as input.

3. DBSCAN can find clusters which are surrounded by other clusters and other
such arbitrarily shaped clusters.

A disadvantage of DBSCAN includes the fact that it relies heavily on the function
getNeighbours(P, ε) which contains the distance measure. With data given in many
dimensions, the distance metric becomes useless and thus it is difficult to find an
accurate value to assign to ε.
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3.3.3 Partitioning Clustering

The name ”partitioning” helps explain the concept of this type of clustering as data is
split between clusters. The idea of splitting can be seen on a two-dimensional plane,
where the points can be separated by a line, for example. Each data point in the
collection belongs to a definite cluster and therefore cannot be included in another
cluster. Another name for partitioning clustering is exclusive clustering.

The main type of partitioning clustering which we will discuss is K-means clus-
tering. First developed by MacQueen [17] in 1967, it assumes we have k clusters and
for each of the clusters we define a centroid. The centroid is just the mean point of
the cluster. The K-means algorithm follows these four simple steps:

1. Arrange the k initial centroids among the data points.

2. Assign each data point to the group with the closest centroid. Note that the
Euclidean distance measure is used here to find the closest centroid.

3. Once all the data points have been assigned, recalculate the positions of the k
centroids.

4. Repeat steps 2 and 3 until the centroids converge (i.e. stay in the same posi-
tion). Termination.

The strengths of K-means lie in its efficiency of O(ikn) where i is the number of
iterations, k is the number of clusters and n are the number of data points in the col-
lection. By increasing the number of iterations, we are also ensuring that the initial
randomly selected centroids do not affect the outcome of the algorithm. It is impor-
tant, nonetheless, to strategically place the initial centroids as far as possible from
each other.

Some disadvantages of K-means include: The number k must be specified before-
hand. It can be quite difficult to find the optimal k from the first try, thus requiring an
initial run of trial and error with the algorithm. K-means does not handle noisy data,
and is also quite sensitive to outliers.

3.4 Advantages of Clustering

The benefits of clustering are summarised below:

1. Clustering helps to review the data, revealing in the best cases any trends found
in the collection.

2. It provides a process of efficiently grouping a data set of variable size.

3. Clustering is parsimonious in the sense that it leads to fewer parameters when
applied to HMMs, for example.

4. A profile of individual data points can be created, classifying data in a clear
and logic manner.
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3.5 Disadvantages of Clustering

We have also compiled a list of the general negatives of clustering:

1. When dealing with a large set of data points, the process of clustering can be a
problem in terms of time complexity.

2. It is difficult to find that optimal number of clusters to give as input, which
yields the best results for your data, as is needed with k-means clustering.

3. Data points can only be characterized in one way because each point can only
belong to one cluster.

3.6 K-means for Flash and Hospital Models

The decision to use the K-means clustering algorithm for the two models was made
early on in the project timeline. Firstly, K-means was a relatively simple algorithm
to implement compared to the other types we discussed above. Secondly, the idea of
the Euclidean distance being a standard metric meant we could use it to distinguish
between a pair of data points, in our case the number of reads and writes per bin.
Thirdly, we could understand how to create the clusters from the collection of data
points by the simple iterative steps of the algorithm. By implementing the K-means
algorithm in Java, we were able to achieve this.

The only drawback we had to deal with was assigning the value for k, the number
of clusters. This required a degree of trial and error which included comparing the
raw and cluster-generated standard deviations to identify the best results given the
set of data points. The choice of k also depended on the size of the collection data
we used. For example, for the Flash Memory raw trace, there were several entries
with 1000+ reads per bin which meant our range of values was large. This required
more clusters and thus we decided to use k = 7 for the Flash HMM. For the Hospital
patient arrival data, we only used 3 clusters because the count of arrivals per bin only
ranged between 0 and 9.

In the Future Work section of this report, we discuss the possibility of using a
different clustering algorithm (e.g. DBSCAN) and then compare results with our
K-means algorithm. If we had more time, it would be feasible to investigate the suit-
ability of each type of clustering algorithm for each of our models (i.e. Flash and
Hospital) and summarise the results for the best clustering algorithm in each case.
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Chapter 4

Flash Memory Workload Model

In this section, we describe in great detail, how we obtained our Flash Memory work-
load model. Each subsection below is ordered in chronological fashion, beginning
with the raw trace. We then discuss how we obtained our binned trace, the set up
of our K-means clustering algorithm used to create the sequence of observations and
finally displaying the HMM parameters given by Baum-Welch algorithm. Finally,
we analyse the results of the Viterbi-generated state sequence and finish this sec-
tion with the results validating our HMM, including summary average statistics and
autocorrelation functions.

4.1 Raw Trace

We begin by analysing the raw trace that has been provided by my supervisor Peter
Harrison. This large raw trace has hundreds of thousands of entries, and was taken
from NetApp storage servers. A CIFS (Common Internet File System) network trace
(of about 750 GB) was collected from file servers at the NetApp headquarters, where
the servers were accessed mainly by Windows desktops and laptops using various
applications.

The trace we analysed for this HMM formed only a part of this network trace
(about 12 GB) and is made up of I/O commands (single CIFS reads and writes).
Each entry of the collected trace is of the form:

Cmd: Write
Timestamp: 2.4294339401
PID: 2520
IP: 10.58.48.58
Filename: 2C4F6E8245688F384DFEE31DE815D6850BC4A707
Size: 72
Offset: 0

For each of these entries displayed above, we check whether the command (Cmd)
is a ”Read” or ”Write” and also its ”Timestamp” (i.e. the time in seconds when the
command was made). The data itself was stored on a web page, which we transferred
into read and write arrays using an InputStreamReader by reading each line and de-
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ciding if it was a read or write command. Below, we go into more detail how this
was done and particularly how the Timestamp value was used to assign each entry to
a specific subsection of the time series or ”bin”.

4.2 Binned Trace

We partition the entries of the raw trace into uniform bins of a pre-defined size. These
bins are intervals of a constant size which split up the raw data into a discrete time
series. Each bin is made up of two values: the number of read entries and the number
of write entries which occur at that given time interval.

Choosing the size of the bin is important and depends on the timescale required
for the modelling exercise. For example, if the raw trace spans a time period of
several days, then we expect much larger bin sizes than if we had a raw trace spanning
a couple of hours. Also, the level of detail at which the raw trace is operating (e.g. at
the Application level) is also an important factor in determining the bin size.

After experimenting with the raw trace, we found that the best bin size was 1
second. This was appropriate given the observation time of the raw trace (lasting
about 6000 seconds). If the bin size was less, having tried 100 milliseconds, then we
would have too many time intervals that were empty. On the other hand, with a larger
time interval (i.e. 5 seconds) there were issues of missing out low-level, operation
sequence characteristics such as mode transitions. Also, we noticed a cyclical pattern
where every 4th second of the 5 was empty (i.e. had no reads or writes in that time
interval).

Therefore, we used this 1 second bin to our advantage. The number of reads and
writes were stored in arrays and each index of these arrays represented a unique bin.
In other words, each index held information about that particular second from the
data trace of I/O operations. For example, if the two arrays store values reads[3] =

20 and writes[3] = 2 then it means that in the 3rd second we counted 20 reads and 2
writes. So, using the Timestamp value when counting the number of reads or writes
per bin, we incremented the value at the corresponding index in our arrays. If no
Timestamp was present for that bin, then the value at that index was left empty, as
all the array entries were already initiated to 0. After this process was finished, we
obtained the complete binned trace in the form of our reads and writes arrays.

4.3 Clustering Algorithm

The next step was to apply a clustering algorithm to the binned trace and further
reduce the trace to a more manageable length (i.e. the observation trace). We im-
plemented the K-means clustering algorithm, which essentially grouped the data into
K clusters. Each cluster contains a pair of values representing the centroid (i.e. the
mean number of reads and mean number of writes for that group of points) and all
the data points belonging to that cluster (i.e. all the reads and writes in the group).
For each cluster, we also carry the standard deviation of all the data points, which
will be used later in the validation of the model.

The formation of the clusters was done by using a Euclidean-distance itervative
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algorithm which calculates cluster centroids over and over again until they become
fixed. As we inputted K manually, we chose a value of 7 clusters. This value was
agreed to be not too large (which gives surplus or even empty clusters) or too small
(missing out significant differences among clusters) for our data trace.

The seven clusters are listed below as vectors, with the centroid written as a pair
of values, the first value representing reads and the second value for writes. These
are essentially our seven observation values:

964.53 2.18
221.87 0.35
1.49 0.69

160.92 0.78
637.5 0.37
394.08 0.2
77.35 2.95


(4.1)

As we can see above in 4.1, observation values represent low writes with increas-
ing reads. The read values start off very low and progress to quite low, then medium,
high, and very high. It is expected that there are not many varying writes (i.e. medium
or high writes) in this read-dominated trace.

4.4 Baum-Welch algorithm

4.4.1 Initialization

We use a sequence comprising of observation values as defined in 4.1 to give to the
Baum-Welch algorithm as input. Choosing to use the I/O trace which observed the
system for 3000 seconds, our sequence will have a length of 3000. Initially, we set
the following parameters for the Baum-Welch algorithm:

1. We shall start by having two hidden states for our HMM (read and write).

2. For the initial state distribution, we assume an equiprobable distribution:

π0 = (0.5, 0.5)

3. For the transition probabilities, we shall assume the following distribution
based on the information from the read-dominated raw trace. Most of the time,
there will be a good chance of staying in the current state. The initial transition
probability matrix is given by:

A0 =

(
0.8 0.2
0.4 0.6

)
4. For the emission probabilities, we assume again an equiprobable distribution:

B0 =

(
0.14286 0.14286 0.14286 0.14286 0.14286 0.14286 0.14286
0.14286 0.14286 0.14286 0.14286 0.14286 0.14286 0.14286

)
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4.4.2 Results

From the sequence of 3000 observation values that we used, the Baum-Welch al-
gorithm produced the following transition probability matrix (approximated to 4
decimal places):

A =

(
0.9763 0.0237
0.0774 0.9226

)
(4.2)

The emission probability matrix can be seen below (to 4 decimal places):

B =

(
0.0006 0.0397 0.9185 0.0034 0.0083 0.0215 0.0080
0.2341 0.0957 0.0638 0.0451 0.3357 0.1909 0.0347

)
(4.3)

We can also calculate the initial state distribution:

π = (0.0, 1.0) (4.4)

From the results above, we can observe that initially, there is a certainty we will
start in the read state (state 2). The probability that we move into the write state (state
1) is 0.0774 and the probability that we stay in the read state is therefore 0.9226 (as
the rows in the transition probability matrix must sum up to 1). Once we are in the
write state, the probability we stay in this state is 0.9763 and therefore the probability
that we move back to the read state is 0.0237. Overall, matrix A 4.2 shows us that
once we find ourselves in a specific state, we will most likely stay in that state for
some time.

The emission probability matrix (4.3) shows us that in the write state (i.e. the
first row), we are most likely to obtain observation 3 (low reads and low writes), and
least likely to see any other observations. This supports our expected behaviour of
our read-dominated trace, where it is unlikely that we will observe medium or high
number of reads from the write state.

However, from the read state, there are lots of possible observations which could
occur. In this state, there is a more even spread than what we see in the write state.
Looking at the second row in matrix B, the most likely observations (or clusters)
are 1, 5, and 6 which all contain medium to high reads. So, as expected given the
read-dominated trace, we observe various levels of reads in this state.

4.5 Viterbi-generated Sequence of States

The next procedure we attempted was to generate a sequence of the states responsible
for producing our observation sequence (i.e. sequence with values 1-7). To produce
this sequence of states, we implemented the Viterbi algorithm, and gave as inputs the
HMM and the observations, expecting a list of states as output.

From our results (sequence of 3000 states is not shown here), we notice that
we initially are in the read state and continue to remain in this state until the 13th
observation when we move into the write state. We continue to oscillate between
these two states with the majority of the observations coming from the read state. One
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reason for this behaviour might be the lack of write entries seen in the I/O trace. When
the HMM was trained, it was given a read-dominated trace, and therefore missed a
sufficient level of variety of write values to analyse. In fact, most of the write entries
were empty, which left the reads to set the trends for the time series. Our HMM
generates more reads due to the emissions probability matrix (see 4.3) which informs
us that the read state is more likely to generate non-empty observations (i.e. observing
at least one read or one write). We can also deduce that the empty obervations most
likely were generated from the write state. Therefore, one expects to see more non-
empty observations than empty ones, meaning we are likely to observe more read
states than writes. Quite fittingly, the Viterbi algorithm generated 2286 reads and 714
writes out a total of 3000 observations.

4.6 HMM-generated Trace

Once we have obtained the three parameters for our HMM (i.e. initial state distri-
bution, transition probability matrix and emission probability matrix), we can use a
type of random simulation to produce our own sequence of observations. These ob-
servations will contain a value 1-7 as they will be based on the observation set we
obtained from clustering the binned trace.

With any simulation, there must be an element of randomness so that it is a fair
experiment. We used random numbers in our algorithm to decide two matters: firstly,
how the next state was chosen in the transition probability matrix; and secondly, how
the observation was chosen from that state in the emission probability matrix. After
we obtained the HMM-generated trace (of 3000 points, each belonging to one of the
7 clusters), we compared the means and standard deviations of the HMM and orig-
inal trace (i.e. the binned trace) to validate our model. Our results use the cluster
centroids to calculate the means and standard deviations and are summarised in the
table below:

Reads/bin Writes/bin
Raw Mean: 149.217 Raw Mean: 0.732
HMM Mean: 148.250 HMM Mean: 0.734
Raw Std Dev: 278.258 Raw Std Dev: 0.476
HMM Std Dev: 279.013 HMM Std Dev: 0.480

Figure 4.1: Statistics for raw and HMM Flash Memory traces of 3000 points

We can see from the means, these are very accurate results considering our rel-
atively large set of data of 3000 points. It appears the random distribution of the
HMM-generated trace has matched the raw trace well. The mean values for the raw
and HMM reads are in excellent agreement, as are the mean writes, which are equal
in value for 2 decimal places.

The standard deviations produce even more satisfying results, beginning with the
reads. The standard deviations for the raw and HMM-generated reads are almost
double of the means, but are closer to each other. The standard deviations for the
writes match as well, with the HMM producing an almost identical figure to match
the raw trace.
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4.7 Autocorrelation

The name autocorrelation comes from correlating data with itself (see [24]). More
specifically, autocorrelation is a computational method for comparing two time se-
ries, where the second series is a lagged version of the first time series over a number
of time periods. Hence, another name for autocorrelation is lagged correlation.

The result of autocorrelation between the time series and its lagged version is a
number between −1 and +1. If the result is −1 then we have a perfect negative cor-
relation, and if it is +1 then we have a perfect positive one. As there are similarities
between autocovariance and the formulas used to compute autocorrelation, these two
terms are sometimes used interchangeably in industry.

The autocorrelation function (ACF) for observations y1, y2, . . . , yN can be defined
as follows:

pk =
∑N−k

t=1 (yt−ȳ)(yt+k−ȳ)∑N
t=1(yt−ȳ)2

where ȳ is the mean of the observations y1, y2, . . . , yN .

One of the main purposes of the ACF is to find a desired time series model,
assuming the data is not random. Time series analysis helps us investigate the data,
looking specifically for some internal structure. Thus, another use of ACFs is to find
trends or cycles in the autocorrelated time series. In this section, we apply the ACF
(defined above) on the Flash data traces as follows: firstly, apply the ACF on the
raw, unclustered traces; secondly, apply the ACF on the HMM-generated traces. We
then compare the results for both of these time series and and attempt to explain our
findings.

We have chosen an observation set of 3500 points, which gives us a total of 1750
lags for our ACF. These lags will be used to find an appropriate time series model.
The first pairs of graphs below show how the autocorrelation of reads behaved for
increasing lags when comparing the raw trace with the HMM-generated trace.
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Figure 4.2: ACF for raw reads.

Figure 4.3: ACF for HMM-generated reads.

First of all, we can see that there is significant autocorrelation in both the raw
trace and the HMM-generated trace. The oscillations in the autocorrelation are quite
similar in both graphs, but are longer with greater magnitude in the raw reads (ranging
from values of 0.7 to -0.1). For the ACF of the HMM reads, the oscillations have
smaller magnitudes and occur more frequently, almost like bursts of correlation about
every 200 lags. An explanation of this difference might come from the smoothing
which is assumed by our clustering algorithm.

Below, we see the autocorrelation graphs for raw writes versus HMM-generated
writes.
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Figure 4.4: ACF for raw writes.

Figure 4.5: ACF for HMM-generated writes.

For the writes, there is very little correlation as most lags have a value very close
to zero. Perhaps this characteristic is brought about by the read-dominated trace
which we gave as input, meaning there were insufficient non-zero write entries to
correlate.

Given that our Flash HMM has given satisfying results through accurate statis-
tics (seen in 4.1) and ACFs, we now proceed to one of the main contributions of this
project.
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4.8 Sliding version of the HMM

4.8.1 Motivation behind Sliding version

The inspiration for a sliding HMM came from my supervisor, Peter Harrison, in the
FLASH paper [1]. In this paper, the authors discuss the possibility of handling infre-
quent, higher density, additional loads because they would like to use their methodol-
ogy for on-line characterization of workloads. Therefore, the availability of a HMM
that has its parameters updated ”on-the-fly” as more real time workload data becomes
available would help them achieve this. Another advantage of a sliding HMM is to
keep track of processes that change with time (i.e. changing the observation set at
different stages of the analysis). Yet another benefit is that the constant size of the
observation set helps reduce the space and time complexity of the Baum-Welch algo-
rithm, which now must only deal with the new observations.

Realising the benefits this would have on most HMM applications, we decided to
attempt to find an approximate sliding version of the HMM. Using our Flash HMM
Baum-Welch algorithm, we experimented the possibility of adding new data points to
our input trace without re-calculating all the parameters again, whilst simultaneously
discarding any ”outdated” observations points. The success of this could cut pro-
cessing times significantly, making HMMs more efficient and therefore workloads in
general computationally more cost effective.

4.8.2 Moving Average

A moving average or running average is a statistical technique where a set of data
points is split into subsets and averages are calculated on each of these subsets. For
a simple moving average (SMA), we select a fixed subset size (n) and keep shifting
along, subtracting old points from the summation as we add new points to it. For
example, if we begin with the data points {xt, xt+1, . . . , xt+n}, then we can work out an
average of these points:

ave =
xt + xt+1 + · · · + xt+n

n
(4.5)

Then from 4.5 we can create a SMA when we add one more data point (xt+n+1):

sma =
xt+xt+1+···+xt+n+xt+n+1−xt

n

=
xt+xt+1+···+xt+n

n +
xt+n+1

n −
xt
n

= ave +
xt+n+1

n −
xt
n

We shall apply this idea of SMA to HMMs for observation sets of fixed length.
We replace the data points in the simple example above by our model recurrence
terms such as αs, βs, etc. To begin with, an incremental version of the HMM (and
the Baum-welch algorithm in particular) is proposed, where we intend to a modify
the Forward-Backward algorithm to achieve this.
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4.8.3 Incremental version of the Baum-Welch algorithm

In order to create any form of incremental Baum-Welch algorithm, we must adopt
a new technique of storing existing α and β values and just calculate the new α and
β values for the new set of observations. For example, if we are given the observa-
tion set {OT+1,OT+2, . . . ,O2T } having an existing HMM defined on the observations
{O1,O2, . . . ,OT }, then the αs for the new set of observations will be updated as fol-
lows:

For T ≤ t ≤ 2T , we have

αt+1(i) = bi(Ot+1)
∑N

j=1 αt( j)a ji

However, we cannot compute the new β values incrementally for the new observa-
tion set {OT+1,OT+2, . . . ,O2T } without working out all the β values for the aggregate
observation set {O1,O2, . . . ,O2T }. Unlike the α values, the β values use a backward
recursion where we need to set β2T (i) to 1 (as O2T is our latest observation) and there-
fore modify all the β values before it using our backward recurrence formulas.

There exists a solution, or more specifically an approximation, of these unknown
β values for the new observation set {OT+1,OT+2, . . . ,O2T }. The technique used by
Stenger et al. in 2001 ([23]) assumes the following simple approximation:

For 1 ≤ i ≤ N, we have

βT (i) = βT+1(i) = βT+2(i) = · · · = β2T (i) = 1 (4.6)

However, from the knowledge of the traditional backward recurrence formula for
the β values, we can deduce that the sequence β2T (i), β2T−1(i), . . . , βT (i) decreases in
value, where β2T−1(i) is significantly less than β2T (i). Eventually, this decreasing se-
quence of β values should tend exponentially to zero. Therefore, setting all the new
β values to 1 as seen in 4.6 is not the most efficient solution.

We can attempt a more accurate approximation for the β values by assuming that
only β2T (i) = 1 and then use the normal β recurrence formula to update the terms:
β2T−1(i), β2T−2(i), . . . βT+1(i), βT (i). Note that we change βT (i) too as it can no longer
be equal to 1, because now we have that β2T (i) = 1.

So, we can write β2T−1(i) as follows:

β2T−1(i) =
∑N

j=1 ai jb j(O2T )β2T ( j)

=
∑N

j=1 ai jb j(O2T )

And using this we can write β2T−2(i) as:

β2T−2(i) =
∑N

k=1 aikbk(O2T−1)β2T−1(k)

=
∑N

k=1 aikbk(O2T−1)[
∑N

j=1 ak jb j(O2T )]
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We continue in this manner until we write βT (i) in terms of all the new β values we
calculated above. Once we have an approximate estimation of the αs and the βs, we
can work out the ξ values and the γ values for the observation set {OT+1,OT+2, . . . ,O2T }:

For T + 1 ≤ t ≤ 2T − 1 we have

ξt(i, j) =
αt(i)ai jb j(Ot+1)βt+1(i)∑N

i=1 αt(i)βt(i)

and for T + 1 ≤ t ≤ 2T we have

γt =
αt(i)βt(i)∑N

i=1 αt(i)βt(i)

However, we can only add these incrementally (i.e. one at a time) and therefore
we change the Baum-Welch algorithm firstly by incrementally adding one new term
for each new observation (in T separate steps). Hence, for each new observation
that is added, we can define the modified re-estimation formulas for our incremental
HMM parameters (π̂, Â, B̂):

Initially at t = 1, we have

π̂′i = γ1(i)

where i = 1, . . . ,N

For Â, we have

âT+1
i j =

∑T
t=1 ξt(i, j) + ξT+1(i, j)∑N

j=1
∑T

t=1 ξt(i, j) +
∑N

j=1 ξT+1(i, j)

=
∑T

t=1 γt(i)∑T+1
t=1 γt(i)

∑T
t=1 ξt(i, j)∑T
t=1 γt(i)

+
ξT+1(i, j)∑T+1

t=1 γt(i)

=
∑T

t=1 γt(i)∑T+1
t=1 γt(i)

âT
i j +

ξT+1(i, j)∑T+1
t=1 γt(i)

Therefore we only need to compute the new ξT+1(i, j) and γT+1(i) for the new ob-
servation. This is because we already store the ξt(i, j) values for 1 ≤ t ≤ T in the âT

i j
entry.

For B̂ we have

b̂ j(k)T+1 =

∑T
t=1,Ot=k γt( j) +

∑T+1
t=T+1,Ot=k γt( j)∑T

t=1 γt( j) + γT+1( j)

=
∑T

t=1 γt(i)∑T+1
t=1 γt(i)

b̂ j(k)T +

∑T+1
t=T+1,Ot=k ξT+1(i, j)∑T+1

t=1 γt(i)

where we only are required to update γT+1( j) (such that OT+1 = k) as we store all the
previously calculated γ values in the b j(k)T entries.

Under these modified parameters which are similar to those seen in [23], we
can create a HMM that has this incremental version of the Baum-Welch algorithm
(referred to as IncHMM). It requires only a partial computation of the forward and
backward variables and thus can converge to fixed results much quicker than the
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traditional Baum-welch algorithm (which has time and space complexity O(N2T ),
where T is the number of observations and N is the number of states [22]). We
shall test this hypothesis using various observation sets from the Flash Memory data
described earlier in this chapter.

4.8.4 Results of Incremental Baum-Welch algorithm

We shall take an observation set of 3000 points and incrementally add 100 new points.
The execution in Java for the IncHMM will be done as follows:

// Create a HMM with 2 hidden states and 7 distinct observations for 3000 points
HMM hmmFlash = new HMM(2, 7, 3000);

// Initialise the HMM by running the Baum-welch algorithm
hmmFlash.initFlash();

// Create an Incremental HMM that uses the previous HMM and adds 100 new points
IncHMM incHmm = new IncHMM(100, hmmFlash);

// Initialise the IncHMM by running the Incremental Baum-welch algorithm
incHmm.initIncFlash();

The results we obtained from the IncHMM Baum-Welch algorithm are as fol-
lows:

A =

(
0.9777 0.0223
0.0762 0.9238

)
(4.7)

B =

(
0.0005 0.0387 0.9199 0.0047 0.0087 0.0201 0.0075
0.2208 0.1163 0.0621 0.0385 0.3660 0.1587 0.0375

)
(4.8)

π = (0.0, 1.0) (4.9)

As we can see the initial distribution will stay the same (e.g. initially we are in
the read state.). The transition and emission probability matrices are very similar to
the ones generated by our standard Baum-Welch algorithm in our normal HMM (see
4.2 and 4.3). The means and standard deviations of the raw and IncHMM-generated
traces are shown below:

Reads/bin Writes/bin
Raw Mean: 151.038 Raw Mean: 0.782
IncHMM Mean: 147.905 IncHMM Mean: 0.788
Raw Std Dev: 279.507 Raw Std Dev: 0.436
IncHMM Std Dev: 277.136 IncHMM Std Dev: 0.445

Figure 4.6: Statistics for raw and IncHMM Flash Memory traces of 3000 points
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The results above in Figure 4.6 show that our IncHMM is a very good approxima-
tion of the raw means for both the reads and the writes. The raw standard deviations
are very well approximated by our IncHMM, with the reads being very similar and
the writes having almost identical values.

Let us for now refer back to the simple approximation of the β values discussed
earlier, where the new observation set is {OT+1,OT+2, . . . ,O2T } and for 1 ≤ i ≤ N,
we have

βT (i) = βT+1(i) = βT+2(i) = · · · = β2T (i) = 1

Note that for this approximation, the α values are calculated incrementally only for
the new observations, as mentioned before. We ran a simulation of a HMM having
this type of incremental Baum-Welch algorithm (referred to as IBW) using the same
inputs as above (i.e. an observation set of 3000 points and 100 new points). Below,
we present the means and standard deviations of IBW:

Reads/bin Writes/bin
Raw Mean: 151.038 Raw Mean: 0.782
IBW Mean: 118.333 IBW Mean: 0.763
Raw Std Dev: 279.507 Raw Std Dev: 0.436
IBW Std Dev: 249.409 IBW Std Dev: 0.379

Figure 4.7: Statistics for raw and IBW Flash Memory traces of 3000 points

The IBW mean for the reads does not match the raw mean, nor do the standard
deviations match for the reads. This is sufficient evidence to show that our IncHMM
has a more accurate β recurrence formula for the new set of observations than the
simple approximation presented in IBW. Once we established the most suitable re-
currence formulas for the Forward-Backward algorithm, our next step is to modify
our IncHMM into a Sliding HMM using the concept of simple moving average, as ex-
plained earlier. We shall modify the Baum-Welch algorithm yet again to incorporate
the sliding in the observation set and present our results in the usual format.

4.8.5 Sliding version of the Baum-Welch algorithm

One major difference between IncHMM and this new Sliding HMM (referred to as
SlidHMM) is the size of the observation set. For IncHMM, the observation set grows
because we are adding new data points for the model to train on. However, SlidHMM
will always keep the same size of observations as it shifts along any group of points
like a moving average. In a way, it is similar to a IncHMM which takes away (from
the front) as many observations as it adds (to the end).

For example, if we had an initial observation set {O1,O2, . . . ,O400}, we could
apply SlidHMM (of length 300) twice. The first pass would be a like a normal HMM
which receives the observation set {O1,O2, . . . ,O300}. The second pass (aka the 1st
slide) is a SlidHMM which receives the observation set {O101,O102, . . . ,O400}. We
would then have two sets of parameters, from each MAP. Ideally, we would take the
best set of results (i.e. one with the best match of means and standard deviations when
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compared to the raw trace). Alternatively, we take the most recent set of parameters
if the latest segment of the time series is of interest.

One obvious advantage of the SlidHMM approach is the time of computation is
decreased because each model has an observation set which is of smaller size (300
points) than the size of the initial set (400 points). It also stores the results of the
computations done on the first observation set, passing the information on to the next
model and its observation set, etc. We must also remember at each slide to discard
a fixed amount of old observations and with it the old α and β values. This is done
precisely to maintain a constant length of observations as we slide along, thus helping
to create a new updated model each time.

4.8.6 Results of the Sliding Baum-Welch algorithm

We shall take an observation set of 3000 points and slide across once, thus incremen-
tally adding 200 new points whilst discarding the first 200 points. The execution in
Java is:

// Create a HMM with 2 hidden states and 7 distinct observations for 2800 points
HMM hmmFlash = new HMM(2, 7, 2800);

// Initialise the HMM by running the Baum-welch algorithm
hmmFlash.initFlash();

// Create SlidHMM using hmmFlash and do 2 slides on a total of 3000 points
SlidHMM slidHmm = new SlidHMM(hmmFlash, 2, 3000);

// Initialise SlidHMM by running the Sliding Baum-welch algorithm
slidHmm.initSlidFlash();

The results we obtained from SlidHMM are as follows:

A =

(
0.9703 0.0297
0.1009 0.8991

)
(4.10)

B =

(
0.0042 0.0044 0.9568 0.0163 0.0 0.0164 0.0018
0.2663 0.1716 0.1155 0.0399 0.2081 0.1594 0.0392

)
(4.11)

π = (0.0, 1.0) (4.12)

The transition matrix has expected entries, very close to the original HMM. The
emission matrix is also well approximated for this new observation set. From these
new parameters, the SlidHMM generated a new observation trace. The means and
standard deviations of this SlidHMM-generated trace can be seen in the table below:
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Reads/bin Writes/bin
Raw Mean: 149.505 Raw Mean: 0.731
SlidHMM Mean: 149.993 SlidHMM Mean: 0.735
Raw Std Dev: 277.434 Raw Std Dev: 0.478
SlidHMM Std Dev: 276.140 SlidHMM Std Dev: 0.507

Figure 4.8: Statistics for raw and SlidHMM Flash Memory traces of 2800 points

As we can see above in Figure 4.8, there is sufficient evidence that the SlidHMM
behaves as expected and with excellent averages. Note that with two slides, the com-
putation involved is not too demanding for the 200 new observation points. In the
Further Work section of the report, we discuss extending the observation set and at-
tempting three or four slides over this set.
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Chapter 5

Hospital Arrival Model

In this section, we will explore the steps which helped us create our Hospital Arrivals
Model. We begin by describing the process of obtaining an accurate and realistic
raw trace of patient arrivals. Then, we discuss how we used the clustering algorithm
and the Baum-Welch algorithm to produce our model parameters. As with the Flash
workload model, we will analyse the results of the Viterbi-generated state sequence
and also display autocorrelation functions to compare raw and HMM traces.

5.1 Collecting the Hospital Arrival Trace

We obtained data for our patient arrival times from an internal DoC PostgreSQL
database called aesop artery. Within this database, we accessed the arrivals table
to extract the arrival times (from the ”time arrival” column and other information)
for a period of four weeks. This gave us a raw trace of about a thousand entries
and provided sufficient data to partition into bins and use this binned trace for our
clustering algorithm.

We extracted the data from time arrival using a simple SQL query (with a limit of
10, 000) and unloaded the entries into a file called hospitalData.csv. After importing
this file into an Excel worksheet, we then saved the patient arrival times into a text
file called TimePatientArrived.txt. Below we delve into the process of transforming
the raw trace into the binned trace.

5.2 Binned Trace

As with the Flash memory data, we used a InputStreamReader to read each line of
our TimePatientArrived.txt file. We begin with an array called arrivals which has size
1000 and all its entries set to zero initially. This array will store the number of patient
arrivals per hour (where each index represents an hour). We create a simple while
loop and set the termination condition to be the size of our array (i.e. 1000). As we
read each line of our text file, we check the time, focusing on the hour especially, and
increment our arrivals by 1 for that index. If the next line reads a different time, we
change our index to match the change in time, else we keep the same index as we are
in the same hour slot. Note that when iterating past midnight, we need to change our
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index by adding 24 hours to the difference (e.g. change in index from arrival (23:52)
to arrival (02:23) is 24 + 2 - 23 = 3). Once this process was done, we obtained our
complete array containing the number of patient arrivals per hour for the entire four
weeks we chose to observe.

We now analyse the number of patient arrivals per 60 minute interval which we
observed over our four-week period. The frequency of patient arrivals that we col-
lected for our observation period are presented in the bar chart below:

Figure 5.1: Frequency of various patient arrivals in 60 minute intervals.

Looking at the data above it is clear that more than a third of intervals we observed
were empty (i.e. no patients checked in). About a quarter of intervals experienced
1 patient, while about a sixth of all intervals received 2 patients. As we increase the
number of patients per interval we decrease the frequency and observe that only a
handful of intervals received more than 8 patients. We will see in the next section
how we can use our data distribution in 5.1 to help us choose the number of clusters
for our clustering algorithm.

5.3 Clustering Algorithm

As before we will use the well-known K-means clustering algorithm to apply to our
binned trace and further reduce it to the ”observation” trace. The centroid for each
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cluster in this case would be the mean number of patient arrivals for all the data points
belonging to that cluster. As stated earlier, the number of clusters K was chosen with
the help of some analytical background information from 5.1. The range of values is
only 9, so we do not expect many clusters to be formed. After trying 6 clusters, we
find that we had two empty clusters (i.e. with centroids 0.0) so we decided to aim for
a number smaller than 6.

Analysing the pie chart below (see 5.2) might help us understand why we must
seek less than 6 clusters for our clustering algorithm. We can see that the different
arrival patterns are divided into four main sections in the diagram, which suggests
that we may only need at most 5 clusters.

Figure 5.2: Division of the different frequency of arrivals based on same patient
arrival data.

As we inputted the value of K manually, we decided to use a value of 3 clusters,
as it gave closer means to the raw data when we compared them with our HMM-
generated data (see below). The three clusters are listed here and are essentially our
observation values: 4.99

0.39
2.4

 (5.1)

As we can see above in 5.1, observation values from top to bottom represent:
very frequent arrivals, very few arrivals and moderately frequent arrivals. Comparing
these values to the different sections in diagram 5.2, we see that the first cluster (with
centroid 4.99) represents more than 3 arrivals (i.e. the brown and green sections on
the pie chart). The cluster with centroid 0.39 will represent the blue section and some
of the red section. Finally, the last cluster in 5.1 with centroid 2.4 will use the yellow
section and some of the green section also. The observation trace is now represented
in terms of these three values and is inputted into the Baum-Welch algorithm.
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5.4 Baum-Welch algorithm

5.4.1 Initialization

We observe patient arrivals for 3000 hours and therefore can input an observation
trace of 3000 data points into the Baum-Welch algorithm. Note that we use the
sequence of observation values as defined in 5.1 to populate this observation trace.
As with the Flash HMM, we initially set the following parameters for the algorithm:

1. We shall start by having two hidden states for our HMM. The meaning of these
states will become clear when we analyse the output of the Viterbi algorithm
further on.

2. For the initial hidden state distribution, we have an equiprobable distribution:

π0 = (0.5, 0.5)

3. For the transition probabilities, we shall assume the following distribution
based on the patient arrival times seen in the raw trace. Most of the time, the
transition will not move to a different state. The initial transition probability
matrix is given as follows:

A0 =

(
0.8 0.2
0.3 0.7

)
4. For the emission probabilities, we assume again an equiprobable distribution:

B0 =

(
0.333 0.333 0.333
0.333 0.333 0.333

)

5.4.2 Results

Using the observation trace made up of 3000 points as input, the Baum-Welch algo-
rithm produced the following transition probability matrix for the HMM (approx-
imated to 4 decimal places):

A =

(
0.8772 0.1228
0.1348 0.8652

)
The emission probability matrix can be seen below (to 4 decimal places):

B =

(
0.0 0.9544 0.0456

0.2445 0.2625 0.4930

)
We can also calculate the initial probability distribution:

π = (0.0, 1.0)
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From the results above, we can observe that initially, there is a certainty we will
start in state 2. The probability that we move into state 1 is 0.1348 and the probability
that we stay in state 2 is 0.8652 (as the rows in the transition probability matrix must
sum up to 1). Once we are in state 1, the probability we stay in this state is 0.8772
and therefore the probability that we move back to the other state is 0.1228. Overall,
matrix A shows us that once we find ourselves in a specific state, we will most likely
stay in that state for some time. This is confirmed by our Viterbi-generated sequence
of hidden states (see the section below).

The emission probability matrix (B) shows us that from state 1 (i.e. the first
row), we are most likely to obtain observation 2, and unlikely to see observations
1 or 3. Therefore, from this state we expect to observe sparse patient arrivals, even
considering seeing no arrivals in the one hour interval. Seeing more than one arrival
from this state is unlikely as supported by the emission probabilities. We can gather
that this state is quite a sparse state where patient arrivals are rare. For now, we will
label state 1 as the sparse state.

On the other hand, looking in the second row of our emission matrix, we observe
various levels of patient arrivals which are all likely to occur. It seems that this state
(state 2) is more active in general, when it comes to receiving patients. On average,
we have a 75% chance of seeing at least 2.4 patients per hour in this state, which
represents a more dense distribution of patient arrivals than state 1. Therefore, we
label state 2 as the dense state.

5.5 Viterbi-generated Sequence of Hidden States

The next procedure was to generate a sequence of the hidden states responsible for
producing our observation sequence (i.e. sequence with values 1-3). To produce this
sequence of states, we implemented the Viterbi algorithm, giving the HMM and the
observations as inputs and expecting a sequence of states as output. Our aim was
to give meaning to what the hidden states could represent based on the observations
each state produced.

Analysing the sequence of 4800 states, we begin in the sparse state (state 1) and
after several observations in this state, we switch to state 2, the dense state. We
continue to oscillate between these two states until the end of the sequence. An ex-
planation can be formed from this result which could shed light on our oscillating
Viterbi state sequence as well as explain the different distributions (i.e. state 1 pro-
duced many arrivals, while state 2 produced very few). Our prediction is that state 1
represents day and state 2 represents night.

To test this claim, we analysed the Viterbi sequence of 4800 states, by counting
the number of times each state occured in this long sequence. Doing the computation,
we labelled state 1 as day and state 2 as night. The following results were obtained:

As we can see from Figure 5.3, our Viterbi algorithm has generated 52.77% of
the day states and 47.23% of night states. This is expected because a single 24 hour
day is split into 12 hours of day (e.g. 7am to 7pm) and 12 hours of night (e.g. 7pm
to 7am). Therefore we can be pleased for several reasons: firstly, the labelling of the
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Viterbi Sequence of 4800 States
Total number of Days: 2533
Total number of Nights: 2267

Figure 5.3: Distribution of Days and Nights produced by the Viterbi algorithm for a
sequence of 4800 states.

hidden states as ”day” and ”night” has proved accurate for this sequence of states;
secondly, the Viterbi algorithm has supported this theory based on the results in the
table above.

5.6 HMM-generated Trace

Once we have obtained the initial state distribution, transition probability matrix and
emission probability matrix, randomly generate produce our own sequence of obser-
vations using these three HMM parameters. Note, these observations will be contain
a value 1-3 as they will be based on the observation set. Similarly to the Flash model,
we ran a simulation, and obtained the HMM-generated trace of 3000 points. Then,
we compared the means and standard deviations of the HMM and original traces to
validate our model with the results presented in Figure 5.4 below:

Patient Arrivals per bin
Raw Mean: 1.483
HMM Mean: 1.461
Raw Standard Deviation: 1.565
HMM Standard Deviation: 1.551

Figure 5.4: Statistics for raw and HMM patient arrival traces of 3000 points

We can see from the table above that the bin-means match well, and more pleas-
ingly, the standard deviations are very similar indeed. We can conclude, from these
statistics alone, that our HMM faithfully reproduces meaningful representations of
out patient arrival times.

5.7 Autocorrelation

This section shows the results of autocorrelation functions (ACFs) carried out on the
raw, unclustered traces and then on the HMM-generated traces. The graphs below
show how the autocorrelation of patient arrival times behaved for increasing lags
when we compared traces.
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Figure 5.5: ACF for raw patient arrival times.

Figure 5.6: ACF for HMM-generated patient arrival times.

As we can see, the two graphs match well as they both show little autocorrelation.
The HMM-generated ACF shows less variation than the raw ACF, possibly due to the
clustering algorithm.

5.8 Optimal Number of Hidden States

In this section, we will investigate the general process of allocating an optimal num-
ber of hidden states to a HMM. As discussed in [14] there are two methods for finding
the optimal number of hidden states. The first is called top-down and is a binary split
scheme, where initially we have few states and iteratively split each state into two new
states, etc. We carry on in this fashion until no further improvement can be made.
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The second method is called bottom-up and can be seen in [15]. In this scheme, we
initialize the state number with a large value and during training, we merge states
together. Eventually, we will end up with a small, optimal number of states.

Therefore, we can choose between these two methods of finding the best number
of states to initialize the Baum-Welch algorithm with. There are ways of checking
whether we have an optimal amount of states if a HMM is already set up. One such
way being to observe the emission probabilities that are outputted from the Baum-
Welch algorithm. For example, if two rows in the emission matrix are very similar
(i.e. almost identical set of entries) then we have one too many states for our HMM.
Below, is an example of our emission matrix that was produced for the hospital pa-
tient arrival times which we gave to the Baum-Wlech algorithm. We used 3 d.p. for
the entries of the matrix: 

0.003 0.422 0.575
0.437 0.157 0.406
0.02 0.941 0.039
0.0 0.996 0.004


Notice that the third and fourth rows are too similar to be a coincidence. Either

our algorithm has not converged fully or, more likely, we have too many hidden states
and thus our HMM had not been optimally set up. It is easy to deduce now that the
Hospital HMM must take either two or three hidden states as input. Therefore, in
this case, the use of the top-down or bottom-up methods are not necessary for such
simple models.

After we apply our own method of analysing rows in the emission matrix, we
can compare our two remaining cases to find which number of hidden states helps
the HMM perform better. The comparison lies in the analysis of the entries in the
emission matrix, of course. In [14], a graph of directed accuracies is produced for
different hidden states, to pinpoint the exact moment when convergence is achieved:

Figure 5.7: Directed dependency accuracies given number of states [14].
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It seems that for this project the use of top-down or bottom-up techniques were
too complex for the simplicity of our HMM parameters. For example, the small
number of states and observation traces we used meant we could achieve the optimal
set up of our HMM without the need to merge states. Nonetheless, in the Further
Work section of this report, we explore an efficient bottom-up method of merging
hidden states for a HMM.
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Chapter 6

Evaluation

We evaluate the project in terms of our two models, giving justification for the use
of parameters in each case and assessing the success of the execution of the final
version. A comparison between our achievements in this project and the existing
work in this field will conclude this section.

6.1 Flash Model

6.1.1 Size of Bins

To begin with, the choice of 1 second for the bin size proved to be an advantage to this
model. This bin size was not too small, leaving too many intervals empty; nor was
it too large, missing out operation characteristics such as mode transitions. Another
advantage of this bin size was in the storing of the reads and writes in arrays. Each
index of the array was used as a bin and the number of reads and writes for each
bin translated to an integer in the appropriate index of each array. Therefore, if we
observed the system for 3000 seconds then we had 3000 intervals and corresponding
reads and writes arrays, each of size 3000.

6.1.2 Choice of Clustering algorithm

The use of the K-means clustering algorithm had the advantage of being relatively
simple to implement in Java. The algorithm used Euclidean distance as a means of
creating the clusters and then assigning each data point to a cluster, which seemed
the logical approach of organising integers ranging from 0 to over 1000 (represent-
ing the number of reads/writes per bin). As an extension of this project, we discuss
the possibility of implementing a different clustering algorithm in the Further Work
section in chapter 7.

One important decision for the K-means clustering algorithm was the input pa-
rameter: K (i.e. the number of clusters). An ideal number was required to correctly
classify all the data points in our observation set, whilst simultaneously grouping
similar points efficiently. With too many clusters, the danger becomes that the algo-
rithm assigns two similar data points to two different clusters, therefore losing trends
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in the data set. At the same time, if we have too few clusters for our collection of
data points, then we might miss out individual differences due to inefficient grouping.

Our choice of setting K=7 resulted in excellent results as simulated for the Flash
workload model for 3000 data points. Originally, we had set K to be 10 and observed
the system for 3000 seconds, which produced the following cluster centroids (for the
reads and writes, respectively) along with the means and standard deviations of the
raw and HMM-generated traces: 

967.41 2.22
465.55 0.12
658.17 0.42
213.93 0.31
332.13 0.34
146.15 1.54
176.62 0.46
31.15 13.92
103.81 0.0
0.91 0.28


Reads/bin Writes/bin
Raw Mean: 149.216 Raw Mean: 0.732
HMM Mean: 132.530 HMM Mean: 0.846
Raw Std Dev: 278.258 Raw Std Dev: 2.146
HMM Std Dev: 263.920 HMM Std Dev: 2.041

Figure 6.1: Clustered trace for 10 clusters and statistics for raw and HMM Flash
Memory traces.

We notice that for one of the cluster pairs (103.81, 0.0), we have an empty cen-
troid for the writes. This reflects the lack of write commands in the raw trace. It
also indicates that there are sufficient data points with many reads, but no writes, and
these points will be assigned to this cluster. However, this might be a case of creating
too many clusters, bearing in mind that an aim is to have all centroids of each cluster
with positive, non-zero values.

Despite the averages in Figure 6.1 being quite similar when we compare raw
values to HMM-generated values, they do not perform as well as our results in chap-
ter 4, where we used 7 clusters. The results above perform quite poorly in the means
where the HMM mean differs by more than 11% from the raw mean. The standard
deviation results were also quite disappointing in this case. Perhaps a value of 10
clusters gave us too many different groups of data points for which to assign the
reads to, explaining in the significantly lower values of the mean and standard devia-
tion produced by the HMM.

With a value of 5 clusters, we obtained poorer results than before. The set of
5 cluster centroids and the corresponding table of averages are presented below:
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
964.53 2.18
637.5 0.37
391.13 0.25
200.59 0.36
2.35 0.74


Reads/bin Writes/bin
Raw Mean: 149.217 Raw Mean: 0.732
HMM Mean: 192.762 HMM Mean: 0.746
Raw Std Dev: 278.057 Raw Std Dev: 0.392
HMM Std Dev: 309.603 HMM Std Dev: 0.453

Figure 6.2: Clustered trace for 5 clusters and statistics for raw and HMM Flash Mem-
ory traces.

In this case, we could deduce that with so few clusters, data points with high
centroid values were grouped together with lower centroid values. Therefore, when
the HMM generated its observation values, it’s possible each value was assigned to a
cluster (one of 5) with a much higher mean than its own. This might explain why the
HMM means and standard deviations in Figure 6.2 are so high.

Thus, we concluded that a value of 7 clusters was the optimal number to use in
the K-means algorithm. It certainly produced the closest averages to the raw trace
averages.

6.1.3 Read-dominated trace

Another issue we had to deal with in the Flash workload model was the using a read-
dominated trace. It is evident that this affected the structure of our set of observation
values and cluster centroids. Due to the lack of writes present in the raw trace, we
could only match varying reads with low writes. As a comparison to what our obser-
vation values might have looked like if we had a greater variety of writes, we look
at Peter Harrison’s paper on Flash Memory [1]. Below, we see their observed values
along with their centroids ((reads,writes)) for each cluster.

5.7 0.28
4.45 31.3
5.11 82.1
4.49 183.0
23.7 0.217
24.5 31.7
27.3 81.0
25.8 165.8


Figure 6.3: Eight centroids defining the set of observations values for the update-mix
[1].
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As we can see in Figure 6.3, the first four observation values represent low reads
and increasing writes. The last four observation values are high reads and increasing
writes. This symmetric variation in the read and write values contrasts our own ob-
servation values, where the centroids had very low write values. As we will discuss
in chapter 7, if we had an I/O trace with more write commands, we could reproduce
a more balanced set of observations as seen above.

6.1.4 Baum-Welch algorithm parameters

The parameters which the Baum-Welch algorithm outputs includs the initial transi-
tion distribution (π), the transition probability matrix (A) and the emission probability
matrix (B). The outcome of these depend slightly on the initial transition probabili-
ties matrix (A0) which was inputted into the Baum-Welch algorithm and we defined
as:

A0 =

(
0.8 0.2
0.4 0.6

)
After experimenting with the entries of A0, we decided that these values were the

best set-up to our Baum-Welch algorithm for the Flash workload model. However,
the following transition matrix was used as input and the same transition matrix was
outputted:

A0 =

(
0.8 0.2
0.2 0.8

)
= A

Also, the emission matrix that was ouputted had identical rows, meaning the
states were treated as being identical too. Therefore, we had to differentiate somehow
between our two hidden states. We did this through our distribution of the transition
matrix. This was enough information for the Baum-Welch algorithm to then identify
the different states and represent each of their behaviour in the emission matrix.

6.1.5 Three hidden states

When the decision was made to use two hidden states for the HMM, we chose to label
one hidden state as the read state and the other as the write state. However, this did
not imply that if we were in the read state, for example, then we only observed reads
and no writes. It was more an indication of what we expected to observe whilst in that
state. A decision was made to use the reads and writes labels since the entries in the
trace we analysed were only composed of these two commands. If there were a third
command in our raw trace (e.g. delete) then we might try running our HMM with
three hidden states. In fact, trying three hidden states gave us quite interesting results.
We initialised the initial distributions and emission probability matrix to equiprobable
entries (e.g. each matrix had the same value in every entry) and inputted the following
transition probability matrix:

A0 =

0.8 0.1 0.1
0.2 0.6 0.2
0.1 0.2 0.7


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As before, we used different probability distributions for each row, making sure
that there was a likely chance that a transition would not change the state (i.e. if we
were in state 1 there was an 80% chance we would stay in state 1, there was a 60%
chance we would not leave state 2, etc.). Given these inputs, the HMM produced the
following results:

π =
(
0.0 1.0 0.0

)
A =

0.9744 0.0248 0.0007
0.0607 0.9127 0.0266
0.0031 0.0425 0.9544


B =

0.0005 0.0016 0.9858 0.0004 0.0065 0.0011 0.0042
0.0197 0.1913 0.4975 0.0472 0.0409 0.1611 0.0422
0.3296 0.0292 0.0208 0.0088 0.4668 0.1362 0.0087


We notice that, initially, we will always be in state 2. The emission probability

matrix (B) reveals that given we are in state 1 (i.e. in the 1st row), we are almost 99%
sure to produce observation 3, which is the cluster with small reads and small writes.
This can be interpreted as the write state as it does not produce many reads. If we
are in state 2 (i.e. the 2nd row) then we are likely to observe mostly small reads and
small writes, but also medium reads and small writes. This can be interpreted as a
weak-read state, where we expect to see moderate writes and reads, but not too many
reads. Finally, the last state (row 3) shows that we are either expecting high reads or
very high reads, so we call this the strong-read state.

The use of three hidden states would fit this Flash workload model just as ef-
ficiently as our current two state model. It is quite acceptable to split our read state
into two different states: a weak-read state and a strong-read state. We can now dis-
tinguish between intensities of reads, brought about by this read-dominated I/O trace.

A disadvantage of having these three hidden states is that the states are not so
distinct as they were previously. There is also the issue of assigning boundary val-
ues to certain states, which raises questions. For example, what is the acceptable
boundary for deciding if an observation should be in the weak-read state or in the
strong-read state? Also, might some of the blame for this problem belong to the clus-
tering algorithm for not efficiently assigning observation values to each state? The
solution to these issues are left as possible extensions of this project.

6.1.6 Variations of Sliding HMM

There were a number of choices for approximating the β values with the sliding
Baum-Welch algorithm. One solution was to only update the α values for the new
observations, and to work out the β values all over again for the accumulated obser-
vation set. In other words, suppose we have the old observation set {O1,O2, . . . ,OT }

and the new observation set is {OT+1,OT+2, . . . ,O2T }. When updating the β values
(for i = 1, . . . ,N), we use the standard backward algorithm setting β2T (i) = 1 and
applying the recurrence formula
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βT−1(i) =
∑N

j=1 ai jb j(OT )βT ( j)

to calculate all the β values down to and including β1(i).
This would save about half of the computation time (only for the α values) of

our Sliding Baum-Welch algorithm. We attempted a simulation of this version of
the Sliding Baum-Welch algorithm similar to that seen at the end of chapter 4 and
achieved the following results:

A =

(
0.9681 0.0319
0.1269 0.8731

)
(6.1)

B =

(
0.0 0.0137 0.9564 0.0 0.0 0.0272 0.0027

0.1984 0.1786 0.1485 0.0100 0.0725 0.0813 0.3112

)
(6.2)

π = (0.0, 1.0) (6.3)

Reads/bin Writes/bin
Raw Mean: 149.505 Raw Mean: 0.731
SlidHMM Mean: 150.677 SlidHMM Mean: 0.764
Raw Std Dev: 277.434 Raw Std Dev: 0.478
SlidHMM Std Dev: 283.318 SlidHMM Std Dev: 0.492

Figure 6.4: Statistics for raw and SlidHMM Flash Memory traces for fully computed
β values

As we can see from the table in Figure 6.4, the HMM averages are very good
approximations for the raw Flash Memory trace. Despite receiving higher accuracy
by calculating the β values all over again, it added more recurrence in our algorithm
and therefore made it computationally more expensive. Nonetheless, it is still an
improved version of the incremental Baum-welch algorithm as suggested by Stenger
et al. in [23] which loses significant accuracy of the approximated β values for the
new observation set (as explained in chapter 4).

6.2 Hospital Model

6.2.1 Size of bins

For our Hospital model, we focused on hourly intervals when counting patient ar-
rivals. Logically, this made sense because choosing 30 minute intervals left too many
intervals empty (increasing the number of data points belonging to the empty clus-
ter). Also choosing less frequent intervals, for example 2 hour intervals, held too
many arrivals and mixed busy times with sparse times. For example, in one hour, no
patients arrived, then in the next hour, four patients arrived. With a 2 hour interval,
four patients would seem quite an average outcome (same as two patients per hour),
and thus we would lose the important trend of the sparse hour and the busy hour. We
also felt that 2 hours was too long a time to obtain sufficient empty intervals.
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6.2.2 Number of Clusters

From our statistical diagrams in chapter 5, we gathered that our trace of patient ar-
rivals has about 5 distinct groups or clusters at most. When first attempting to use 4
clusters for our K-means clustering algorithm, we obtained the following observation
values: 

1.0
4.99
2.4
0.0

 (6.4)

As we can see, there is now a cluster with a zero centroid. This observation set
mimics the different sections of diagram 5.2 where at least one third of all arrival
intervals are empty. Two clusters (with centroids 1.0 and 2.4) represent the low and
medium arrivals per interval, respectively. Finally, the last cluster (with centroid 4.99)
is most likely representing intervals with more than 3 arrivals.

When we ran the Baum-Welch algorithm for this observation set, the following
results were produced:

Patient Arrivals per bin
Raw Mean: 1.483
HMM Mean: 1.539
Raw Standard Deviation: 1.611
HMM Standard Deviation: 1.687

Figure 6.5: Statistics for raw and HMM patient arrival traces with 4 clusters

We have good results when we compare the HMM-generated statistics to the raw
ones. However, these are not as accurate as our results obtained in chapter 5 for 3
clusters. Above in Figure 6.5, we see the HMM mean is somewhat higher than ex-
pected, possibly due to an overestimation of frequent arrivals by our model.

Attempting the same process with 5 clusters, we obtained the following obser-
vation set: 

1.0
4.99
0.0
0.0
2.4


(6.5)

We immediately notice that two clusters have the same centroid values (0.0).
This is an indication that we have set too many clusters for our possible range of
observations, which in this case is 0 to 9 arrivals per hour. Therefore, our hospital
HMM with 3 clusters seems to be the most efficient out of all our tried models.
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6.3 Day and Night as hidden states

Based on our Viterbi algorithm results in chapter 5, we decided to label our two
hidden states as ”day” and ”night.” As mentioned in that chapter, the number of
arrivals categorized as day and night in the raw trace was compared to the sequence
of hidden states produced by the Viterbi algorithm. The results of the comparison
were very good, which proved that the day and night approximation was well made.

However, this is not the only possibility for the given arrival data. We could also
label our hidden states as ”busy” and ”idle” referring to many arrivals or very few
arrivals, respectively. One method of deciding the best label for the hidden states is
to analyse trends in the Viterbi algorithm. The following is a segment of 40 states
taken from a total sequence of 1000 states:

0000000000000011111111111110000000000000 (6.6)

We can split the sequence in 6.6 into three distinct groups of lengths 14, 13 and
13, respectively. One can now notice that each sequence is roughly the same length
as half a day (i.e. 12 hours) because each entry represents an interval of one hour.
Then, our interpretation of sequence 6.6 is now as follows: we are in state 0 for 14
hours, then we are in state 1 for 13 hours and finally we stay in state 0 for 13 hours. If
we treat state 0 as ”day” and state 1 as ”night”, our earlier interpretation is translated
to: we observe day for 14 hours, then move into night for 13 hours, then back into
day for 13 hours. This is a realistic description given that the hospital arrivals were
observed continuously over days and nights.

If we labelled state 0 as ”busy” and state 1 as ”idle”, then the sequence in 6.6
would not be a realistic segment of state transitions. For example, over the first 14
hours of observations we are in the busy state. Then, we notice a cyclic busy period
that lasts about 13 hours and reappears about every 13 hours. This is unrealistic be-
cause in any hospital the day brings both busy periods and idle periods, just as the
night is expected to have some patients arrive at random times.

Let us now analyse our Viterbi sequence later down the timeline. We notice
an interesting segment made up of the following sequence of states:

1111110001111111100000000 (6.7)

This segment in 6.7 lasts a total of 25 hours, but has four distinct periods of states:
we are in state 1 for 6 hours, then move to state 0 for 3 hours; after that we go back to
state 1 for 8 hours and finally we move to state 0 for 8 hours. It seems that labelling
the hidden states as day and night would not work here very well. However, using the
busy and idle labels we can make more sense of this sequence of states. Indeed, the
first 9 hours are made up of 6 busy periods then 3 idle periods, which can represent a
day that is initially busy then becomes less busy. The next 8 hours are all busy so can
represent a day and finally the last 8 hours are idle, so maybe can represent night.

Therefore, as a whole, our initial interpretation of day and night has become
somewhat unclear when analysing sequence 6.7. Despite this different result in our
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state sequence, we can still rely on the accurate results presented in chapter 5 for the
Viterbi sequence of length 4800. The entire sequence was approximately divided in
two parts, one for each state. Nonetheless, further work could be done on more obser-
vations to explore which interpretation best matches our Viterbi sequence. Perhaps
the result will be a mixture of labelling as shown in sequence 6.7, or we need to add
more states. For example, we could now have four mixed states: busy day, idle day,
busy night and idle night.

6.4 Comparisons with existing work

In the domain of HMMs in Flash Memory, the inspiration for the Flash workload
model was taken from my supervisor Peter Harrison and papers such as [1], which
help set the tone for constructing the HMM. Currently, a wide amount of research
is being done on applying HMMs to Flash Memory data, as HMMs are becoming
a popular method of building portable benchmarks. HMMs are just as accepted as
other time series analysis methods (e.g. Box-Jenkins [24]) and have the advantage
of using its hidden states to represent ”mode switching.” Indeed, further work has
been done on Markov modulated fluid processes, where a continuous version of the
Baum-welch algorithm was derived for two hidden states (see [26]).

The novelty of our Flash HMM lies in the derivation of an approximate slid-
ing verison of the Baum-Welch algorithm. The recurrence equation for the β values
in our sliding HMM is an improvement from the simple approximation presented by
Stenger et al. in [23]. The sliding HMM has not been attempted elsewhere in the
same way as we have presented in this project. It certainly adds to the potential of
the incremental HMM obtained by Hansen et al. in [22]. The constant slide of input
keeps up with the changing observation set as time goes on and is ideal for discov-
ering trends in time series. We obtain satisfying results for a two state sliding HMM
given our observation set, bearing in mind our read-dominated trace had limited ca-
pacity for analysis of trends for the write entries.

For our Hospital Arrivals model, we follow a similar approach based on the Flash
workload model, but focus more heavily on the Viterbi algorithm. Given the correct
MAP parameters, as validated by the techniques seen in chapter 5, we focus on the
trends highlighted by the Viterbi algorithm when outputting its sequence of hidden
states. By simply counting the number of occurences of each state in the sequence
and assigning each state to a category, we can make a judgement of the meaning of
the hidden states. The power, yet simplicity, of this process can lead to vast amounts
of decoding about the time series which we want answers from. Other applications of
the Viterbi algorithm seen in industry include speech recognition ([8]), biology([19]),
etc. These papers have tried similar decoding techniques using the Viterbi algorithm
as seen in this project, but for different applications.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The main aims we set at the beginning of this project were to apply HMMs to Flash
Memory data and hospital patient arrivals to correctly analyse discrete time series,
give meaning to the hidden states and help recreate representative traces.

To achieve this, we built portable benchmarks through our HMMs by firstly creat-
ing a binned trace of the raw time series. Through the use of the K-means clustering
algorithm, we then constructed an observation trace which helped generate the MAP
parameters using the Baum-Welch algorithm. Finally, the Baum-Welch algorithm
generates a sequence of observations comparable with the original binned trace. The
results we achieved in chapters 4 and 5 were very good and therefore the aims of this
project were met.

An approximation of a sliding version of the Baum-Welch algorithm was achieved
and produced meaningful results. For such a large observation set that was inputted
as a binned trace, the accuracy of the HMM-generated mean and standard deviation
compared to those of the raw trace was excellent. The power of this sliding HMM can
now be used to save computation time in the Baum-Welch algorithm and more im-
portantly, provide analysis for processes which change behaviour over discrete time.

For the Hospital HMM, we focused on the use of the Viterbi algorithm to re-
veal the identity of the hidden states and found that ”day” and ”night” provided an
accurate description. This supported our efficient set up of the HMM with optimal
parameters helping to generate a realistic trace of patient arrivals as observed over
many days.

In conclusion, we showed that HMMs can be applied effectively to Flash Mem-
ory data and hospital patient arrivals to facilitate run time analysis and planning.
Nonetheless, more can be achieved with these models and we present this as possible
extensions below.
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7.2 Future Work

7.2.1 New Raw Trace

Given more time, we would test our Flash workload model on a new set of observa-
tion values (i.e. use a different raw trace). More specifically, we would aim to use a
raw trace with more frequent writes. This would then give us a set of cluster centroid
pairs which have increasing reads and increasing writes. Since the I/O trace that was
inputted into our Flash workload model was very read dominated, our cluster cen-
troid pairs had very small write values. Thus we could not effectively identify the
trends of the behaviour of the writes, compared to the reads. Using a more balanced
I/O trace would give us different entries for our emission probability matrix as these
reflect the probability of getting an observation from a cluster for each state.

A possibility is to use a different I/O trace from [25] to create another Flash work-
load model. Then we could compare the HMM-generated traces produced by these
two different models with their respective raw traces.

7.2.2 Different Clustering Algorithm

One extension can be done on creating our binned traces for each model with a dif-
ferent clustering algorithm and then compare with existing results. The DBSCAN
algorithm has the advantage of being able handle noise and, unlike K-means, it does
not need the number of clusters as an input. If we use this density-based algorithm
to try and improve the results in this project, we must take care in implementing
the getNeighbours function, which includes the distance-measure for the algorithm.
Saying this, because we are clustering points with at most two dimensions (i.e. reads
and writes) this will not be a major obstacle for implementing and executing the DB-
SCAN algorithm.

7.2.3 Sliding HMM with new β values

With our sliding version of the HMM, we approximated the unknown β values for
the new observations by using the backward algorithm recurrence formula. Another
possibility for approximating the β values was to use a similar technique from the
2005 paper by Hansen et al. ([22]). In this paper, the authors assumed that decay
functions (i.e. ω(T − t, j)) could be used to approximate the β values in such a way
that for large sequence, these decay functions are equal. Therefore, when calculating
γ the decay functions cancel out in the fraction to give:

γt(i) =
αt(i)

∑N
j=1 ai jb j(Ot+1)∑N

i=1 αt(i)αt(i)
∑N

j=1 ai jb j(Ot+1)

for all values of t which form the new observations Ot,Ot+1, . . .

We know that be definition, γ can be written as

γt(i) =
αt(i)βt(i)∑N

i=1 αt(i)βt(i)

Therefore, we have the equation which calculates βt(i) for the new values of t:
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βt(i) =
∑N

j=1 ai jb j(Ot+1)

As stated by Hansen et al. this would make the Backward algorithm a fixed-lag
smoothing algorithm. Also, it seems that this would a better approximation for the β
values than assuming that βt(i) = βt+1(i) = · · · = βT (i) = 1. Therefore we can modify
our Sliding HMM to fit this β approximation and compare results with our original
Sliding model for convergence and for similarity of parameters.

7.2.4 Sliding HMM for continuous time

Our sliding HMM works for discrete time series and therefore the next step would
be to derive a sliding HMM for continuous time. This would require a continuous
version of the Baum-Welch algorithm, as seen in [26], which would then behave as
a sliding algorithm for a continuous time series. The intervals would not be obser-
vation points as in the discrete case, but rather fixed time intervals which slide along
the continuous time series. Therefore, a degree of accuracy is needed in choosing
the time intervals for the sliding HMM, perhaps to the nearest millisecond of the
timestamp to represent each boundary value, for example.

7.2.5 Merging version of the Baum-Welch algorithm

As mentioned in chapter 5, an optimal way of choosing hidden states in a HMM is
the bottom up technique. This approach starts off with many states and merges simi-
lar states together until the optimal number is achieved. Ideally, an extension to this
project would be to derive a systematic approach for this method which works in any
given scenario (e.g. Flash Memory, patient arrivals, etc.) and produces the optimal
number of hidden states in that scenario. This would involve analysis of the emission
probability matrix as a starting point to identify the effect of each state on the obser-
vation set. Then, a modification of the Baum-Welch algorithm needs to be executed
to merge the chosen states whilst keeping any information of transition probabilities
in the process. This would give us an approximation to the transition probability
matrix for optimal states. Finally, we can complete the Baum-Welch algorithm by
using the new transition matrix to construct the new emission proability matrix and
calculate the initial probability distribution.

Although our merging technique as described above, seems computationally ex-
pensive, it is advantageous to achieving an HMM with optimal states when contextual
information of the time series is not given. The power of this technique lies in the
identification of the ”most efficient set up” just by using the original HMM param-
eters of a less efficient set up. Therefore, this technique is entirely ”self-contained”
in the sense that the computations are limited within the bounds of the Baum-Welch
algorithm.
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