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Abstract

�e accurate representation and manipulation of real numbers is cru-
cial to virtually all applications of computing. Real number computa-
tion in modern computers is typically performed using �oating-point
arithmetic that can sometimes produce wildly erroneous results. An
alternative approach is to use exact real arithmetic, in which results are
guaranteed correct to any arbitrary user-speci�ed precision.
We present an exact representation of computable real numbers

that admits tractable proofs of correctness and is conducive to an e�-
cient imperative implementation. Using this representation, we prove
the correctness of the basic operations and elementary functions one
would expect an arithmetic system to support.
Current exact real arithmetic libraries for imperative languages do

not integratewell with their languages and are far less elegant than their
functional language counterparts. We have developed an exact real
arithmetic library, ExactLib, that integrates seamlessly into the C++
language. We have used template metaprogramming and functors to
introduce a way for users to write code in an expressive functional style
to perform exact real number computation. In this way, we approach
a similar level of elegance as a functional language implementation
whilst still bene�ting from the runtime e�ciency of an imperative C++
implementation.
In comparison to existing imperative and functional libraries, Ex-

actLib exhibits good runtime performance, yet is backed by proofs of
its correctness. By writing a modern library in a popular imperative
language we bring exact real arithmetic to a more mainstream pro-
gramming audience.
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chapter1
INTRODUCTION

1.1 Motivation
�e real numbers are inspired by our experience of time and space—or reality. �ey
play a crucial role in daily life in the practical as well as philosophical sense. Clas-
sical physics describes reality in terms of real numbers: physical space is conceived as
R3, for example, and the time continuum as R. Indeed we model the world around
us almost exclusively using the reals, measuring mass, energy, temperature, velocity
with values in R, and describing physical processes such as the orbits of planets and
radioactive decay via constructs from real analysis, like di�erential equations.

�e e�cient representation and manipulation of real numbers is clearly central
to virtually all applications of computing in which we hope to describe an aspect of
the real world. �e irrational nature of real numbers presents computer scientists
with a serious problem: how can an uncountable in�nity of numbers that do not all
have �nite descriptions be represented on a computer? It is perhaps disturbing to
learn that themajority of computer systems fail miserably tomeet this challenge.�ey
use a representation consisting of only �nitely many rational numbers, opting for a
practical solution through a compromise between breadth and precision of accuracy
and economy of e�ciency for the representation.
One such solution, �oating-point arithmetic, has become the de facto standard for

the representation of real numbers in modern computers, o�ering a su�cient com-
promise for most numerical applications. However, there are plenty of cases [24]
wherein �oating-point representations lead to unacceptable errors in calculations,
even when we use a high level of precision, such as 64-bit1 double precision. We
�nd an accumulation of small rounding errors can cause a large deviation from an
actual exact value. A well-known example is the following iteration, which starts at
the golden ratio, ϕ:

γ0 =
1 +

√
5

2
and γn+1 =

1
γn − 1

for n ≥ 0.

It is trivial using induction to show that γ0 = γ1 = γ2 = . . . such that (γn) converges
to ϕ. However, when we implement the iteration in C++ using the program listed

1It is perhaps sobering to note that even with 50 bits we can express the distance from the Earth to
the Moon with an error less than the thickness of a bacterium. [24]
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2 introduction

in Appendix A.1, we see the calculations of γi diverge quickly from their exact value.
A�er only 8 iterations, double precision �oating-point arithmetic delivers inaccurate
results, with the sequence seemingly converging to 1−ϕ, a negative number. Were we
to implement this iteration with a higher precision �oating-point representation, we
would �nd much the same problem, albeit with a slight delay before similar incorrect
behaviour is exhibited. Whilst our example may seem rather synthetic, there are cer-
tainly practical cases in which �oating-point computation leads to a wildly erroneous
results. On such example can be found in [24], wherein a sequence of deposits and
withdrawals of certain values on a bank account results in a hugely incorrect balance
when simulated using �oating-point arithmetic.

�e question arises whether or not we can develop a computer representation that
does not su�er this fate—whether an implementation of all the real numbers is pos-
sible.�e problem, of course, is that we cannot have a �nite description of every real.
However, it turns out one way to represent the inherent in�niteness of real numbers is
by specifying them step-wise, as in�nite data types, so that we can compute arbitrarily
close approximations to a real number’s exact value.�is approach of lazy evaluation
lends itself well to an implementation in a functional programming language, such
as Haskell or ML. Unfortunately the elegance and natural expressiveness a�orded by
a lazy approach implemented in a functional language comes at a price; namely the
o�en very poor runtime performance. Imperative approaches, on the other hand,
are generally more e�cient—CPUs themselves work in an imperative way, making it
easier to exploit all the possibilities of current CPUs—but make it harder to represent
mathematical concepts. Is there a way in which we can use the best parts of both pro-
gramming paradigms—the elegance of functional programming with the e�ciency of
imperative?

1.2 Aim
We aim to develop a library capable of exact real arithmetic for an imperative pro-
gramming language. �is library, which we shall call ExactLib, should integrate as
seamlessly as possible with the language it is designed for. In this sense, the data type
provided by the library to represent real numbers should aim to �t into the language as
though it were a built-in numeric type.�e library should feature a suite of functions
and operations2 for our exact real data type.�ese should include all those one would
expect from a real arithmetic library, from basic operations such as addition to more
complicated functions such as the trigonometric and exponential functions.
Arbitrary-precision arithmetic is typically considerably slower than �xed-bit rep-

resentations such as �oating-point. We aim for an imperative approach, using the
powerful C++ language, to maximise runtime performance. Implementation in an
imperative language also exposes exact real number computation to a world outside of

2We shall o�en refer to binary functions (e.g. the addition function, +) as operations and to unary
functions (e.g. sin) as simply functions.
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academia, where functional languages are o�en (unjustly) con�ned. However, func-
tional languages o�en provide elegant solutions to problems of amathematical nature,
such as real number computation. �ey are highly-expressive whilst remaining con-
cise. We aim to introduce a functional style of programming toC++ so that our library
can provide the user with the ability to write C++ in a functional style to perform exact
real arithmetic, whilst in the background implement the actual calculations in an e�-
cient imperativemanner. Of course, since we desire a library that integrates with C++,
the main focus of ExactLib should be a traditional imperative-style suite of functions
for exact real arithmetic. But we believe an experimental functional-esque extension
o�ers an interesting alternative to the user.
Along the way, we need to consider alternative representations of real numbers to

�nd a representation suitable for our purposes. Speci�cally, this is a representation
that is conducive to e�cient implementation and admits tractable proofs of correct-
ness for functions and operations. In this representation, we will need to develop rep-
resentations of a number of basic operations and, importantly, prove their correctness.
We aim to builld upon these to derive the Taylor series expansion for our representa-
tion of real numbers, since a variety of elementary functions can be expressed as series
expansions. Examples include the exponential function, trigonometric functions and
the natural logarithm.�ese operations are so prevalent in the majority of computa-
tion tasks that any implementation of an arithmetic system must provide them if it is
to be of any practical use.
Finally, we aim to design ExactLib’s core in a �exible way that makes it easy to

extend the library with new operation de�nitions in a uniform way. In particular, we
hope to deliver a design that allows proven mathematical de�nitions of functions and
operations over exact reals to be easily translated into code. Providing programming
idioms that help bring the code as close as possible to themathematical de�nition goes
some way to relaxing the need to prove the correctness of our code.

1.3 Contributions
�e following is a brief summary of the main contributions made during the under-
taking of this project.

• We consider existing alternative real number representations and present a rep-
resentation of the computable reals that admits tractable proofs of correctness
and is well-suited to e�cient imperative implementation.

• We illustrate a general method for proving correctness over this representation.
We use it to de�ne and prove the correctness of a number of basic operations
and elementary functions for our real number representation.

• We develop a C++ library, ExactLib, that implements our exact real operations
and functions using our representation. It introduces a data type called real
that is designed to integrate seamlessly into C++. �ere is a focus on ease of
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use and minimising the number of dependencies so that the library functions
standalone and is easy to import.

• We design ExactLib’s core using an object-oriented hierarchy of classes that
makes it easy to extend the library with new operations in a uniform way. Our
use of C++ functors makes it easy to translate proven mathematical de�nitions
of functions and operations into code.

• Using template metaprogramming, functors and operator overloading, we in-
troduce higher-order functions and endowC++with some functional program-
ming concepts. Our library can then o�er the user the ability to write code in
an expressive, functional language-like style to perform exact real arithmetic,
whilst in the background implementing the core in an e�cient imperativeman-
ner.

1.4 Outline
�is report comprises three main parts:

1. Analysis — explores existing approaches to real arithmetic and identi�es the
main issues involved in representing the real numbers. Two important types
of representation are considered in depth: lazy redundant streams and Cauchy
approximation functions. We choose the latter and de�ne basic operations for
this representation and prove their correctness. Building upon these, we do the
same for elementary functions.

2. Implementation—describes the design of our exact real arithmetic library, Ex-
actLib. In particular, we discuss how we have made it easy to extend our lib-
rary with new functions/operations, how our library simpli�es the translation
of mathematical de�nitions of these functions into code, and how we have ad-
ded simple functional programming idioms to C++.

3. Evaluation—we evaluate the project quantitatively by comparing the runtime
performance of our implementation to existing imperative and functional exact
real arithmetic libraries. Qualitatively, we re�ect on the design of our library,
evaluating its expressiveness, extensibility and functionality. We conclude by
suggesting possible future work.

1.5 Notation
Before we continue, a brief word on notation is needed.

• If q ∈ Q, then ⌊q⌋ is the largest integer not greater than q; ⌈q⌉ is the smallest
integer not less than q; and ⌊q⌉ denotes “half up” rounding such that ⌊q⌉ − 1

2 ≤
q < n + 1

2 .
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• �e identity function onA, idA ∶ A→ A, is the function thatmaps every element
to itself, i.e. idA(a) = a for all a ∈ A. For any function f ∶ A → B, we have
f ○ idA = idA ○ f = f , where ○ denotes function composition.

• �e set ofnaturalnumbers is denotedN and includes zero such thatN = {0,1,2,
. . .}, whereasN+ = {1,2,3, . . .} refers to the strictly positive naturals, such that
N+ = N ∖ {0}.

• �e cons operator “:” is used to prepend an element a to a stream α and the
result is written a ∶ α.

• Finally, we use ⟨⋅, ⋅⟩ to denote in�nite sequences (streams) and (. . .) to denote
�nite sequences (tuples).





PART I

ANALYSIS





chapter2
REPRESENTATIONS OF REAL

NUMBERS

2.1 Floating-point arithmetic
Floating-point arithmetic is by far the most common way to perform real number
arithmetic in modern computers. Whilst a number of di�erent �oating-point rep-
resentations have been used in the past, the representation de�ned by the IEEE 754
standard [32] has emerged as the industry standard.
A number in �oating-point is represented by a �xed-length signi�cand (a string

of signi�cant digits in a given base) and an integer exponent of a �xed size. More
formally, a real number x is represented in �oating-point arithmetic baseB by

x = s ⋅ (d0.d1 . . . dp−1) ⋅Be = s ⋅m ⋅Be−p+1

where s ∈ {−1,1} is the sign, m = d0d1 . . . dp−1 is the signi�cand with digits di ∈
{0,1, . . . ,B − 1} for 0 ≤ i ≤ p − 1 where p is the precision, and e is the exponent
satisfying emin ≤ e ≤ emax. �e IEEE 754 standard speci�es the values of these vari-
ables for �ve basic formats, two ofwhich have particularly widespread use in computer
hardware and programming languages:

• Single precision — numbers in this format are de�ned byB = 2, p = 23, emin =
−126, emax = +127 and occupy 32 bits.�ey are associated with the float type
in C family languages.

• Double precision—numbers in this format are de�ned byB = 2, p = 52, emin =
−1022, emax = +1023 and occupy 64 bits.�ey are associated with the double
type in C family languages.

Due to the �xed nature of the signi�cand and exponent, �oating-point can only rep-
resent a �nite subset (of an interval) of the reals. It is therefore inherently inaccurate,
since we must approximate real numbers by their nearest representable one. Because
of this, every time a �oating-point operations is performed, roundingmust occur, and
the rounding error introduced can produce wildly erroneous results. If several oper-
ations are to be performed, the rounding error propagates, which can have a drastic
impact on the calculation’s accuracy, even to the point that the computed result bears
no semblance to the actual exact answer.

9



10 representations of real numbers

We saw a poignant example of this in our introduction, where the propagation
of rounding errors through successive iterations of a �oating-point operation lead to
a dramatically incorrect result. Other well-known examples include the logistic map
studied by mathematician Pierre Verhulst [26], and Siegfried Rump’s function and
Jean-Michel Muller’s sequence discussed in [24], a paper that contains a number of
examples that further demonstrate the shortcomings of �oating-point arithmetic.
As shown in [22], we �nd that increasing the precision of the �oating-point rep-

resentation does not alleviate the problem; it merely delays the number of iterations
before divergence from the exact value begins. No matter what precision we use,
�oating-point arithmetic fails to correctly compute the mathematical limit of an in-
�nite sequence.

2.2 Alternative approaches to real arithmetic
As we have seen, there are cases in which �oating-point arithmetic does not work
and we are lead to entirely incorrect results. In this section we brie�y describe some
existing alternative approaches to the representation of real numbers (see [26] for a
more comprehensive account).

2.2.1 Floating-point arithmetic with error analysis

An extension to �oating-point arithmetic that attempts to overcome its accuracy prob-
lems is �oating-point arithmetic with error analysis, wherebywe keep track of possible
rounding errors introduced during a computation, placing a bound on any potential
error. �e representation consists of two �oating-point numbers: one is the result
computed using regular �oating-point arithmetic and the other is the interval about
this point that the exact value is guaranteed to reside inwhen taking into consideration
potential rounding errors.
Whilst this approach may allow one to place more faith in a �oating-point result,

it does not address the real problem. For a sequence like Muller’s [24], which should
converge to 6 but with �oating-point arithmetic converges erroneously to 100, we are
le� with a large range of values.�is is of little help, telling us only that we should not
have any faith in our result rather than helping us determine the actual value.

2.2.2 Interval arithmetic

With interval arithmetic a real number is represented using a pair of numbers that spe-
cify an interval guaranteed to contain the real number.�e numbers of the pairmay be
expressed in any �nitely-representable format (such that they are rational numbers),
for example �oating-point, and de�ne the lower and upper bounds of the interval.
Upon each arithmetic operation, new upper and lower bounds are determined, with
strict upwards or downwards rounding respectively if the bound cannot be expressed
exactly.
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It turns out interval arithmetic is very useful, but it unfortunately su�ers from the
same problem as �oating-point arithmetic with error analysis: the bounds may not be
su�ciently close to provide a useful answer—computations are not made any more
exact.

2.2.3 Stochastic rounding

In the previous approaches, rounding is performed to either the nearest representable
number or strictly upwards or downwards to obtain a bound.�e stochastic approach
instead randomly chooses a nearby representable number.�e desired computation is
performed several times using this stochastic rounding method and then probability
theory is is used to estimate the true result.

�e problem with stochastic rounding is that it clearly cannot guarantee the ac-
curacy of its results. In general, though, it gives better results than standard �oating-
point arithmetic [17], and also provides the user with probabilistic information about
the reliability of the result.

2.2.4 Symbolic computation

Symbolic approaches to real arithmetic involve the manipulation of unevaluated ex-
pressions consisting of symbols that refer to constants, variables and functions, rather
than performing calculationswith approximations of the speci�c numerical quantities
represented by these symbols. At each stage of a calculation, the result to be computed
is represented exactly.
Such an approach is particularly useful for accurate di�erentiation and integration

and the simpli�cation of expressions. As an example, consider the expression

6 arctan( 1√
3

sin2 (4
7
) + 1√

3
cos2 (4

7
)) .

Recalling the trigonometric identity sin2 θ+cos2 θ ≡ 1 and noting tan π
6 = 1

√

3 , we see
our expression simpli�es to π. It is unlikely we would obtain an accurate value of π if
we were to perform this calculation using an approximating numerical representation
like �oating-point arithmetic, and having the symbolic answer π is arguably of more
use.

�e main problem with symbolic computation is that manipulating and simplify-
ing symbols is very di�cult and o�en cannot be done at all. Even when it becomes
necessary to evaluate the expression numerically, an approach such as �oating-point
or interval arithmetic is required, such that we are again at the mercy of the inac-
curacies associated with arithmetic in the chosen representation. Symbolic computa-
tion is therefore rarely used standalone, and so although it is useful in certain applica-
tions, it is unfortunately not general enough as a complete approach to real arithmetic.
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2.2.5 Exact real arithmetic

Exact real arithmetic guarantees correct real number computation to a user-speci�ed
arbitrary precision. It does so through representations as potentially in�nite data
structures, such as streams. Exact real arithmetic solves the problems of inaccuracy
and uncertainty associated with the other numerical approaches we have seen, and is
applicable in many cases in which a symbolic approach is not feasible [26].

2.3 Exact representations of real arithmetic
2.3.1 Computable real numbers

Before we continue, we should consider which real numbers we can represent. �e
set of real numbers R is uncountable1 so we cannot hope to represent them all on
a computer. We must focus our e�orts on a countable subset of the real numbers,
namely the computable real numbers. Fortunately, the numbers and operations used
in modern computation conveniently all belong to this subset [31], which is closed
under the basic arithmetic operations and elementary functions.
Inmathematics, themost commonwayof representing real numbers is the decimal

representation. Decimal representation is a speci�c case of themore general radix rep-
resentation, in which real numbers are represented as potentially in�nite streams of
digits. For any real number, a �nite pre�x of this digit stream denotes an interval;
speci�cally, the subset of real numbers whose digit stream representations start with
this pre�x. For instance, the pre�x 3.14 denotes the interval [3.14,3.15] since all reals
starting with 3.14 are between 3.14000 . . . and 3.14999 . . . = 3.15.�e e�ect of each
digit can be seen as re�ning the interval containing the real number represented by
the whole stream, so that aB-ary representation can be seen to express real numbers
as a stream of shrinking nested intervals.

De�nition 2.1 (Computable real number). Suppose a real number r is represented
by the sequence of intervals

r0 = [a0, b0], . . . , rn = [an, bn], . . . .

�en r is computable if and only if there exists a stream of shrinking nested rational
intervals [a0, b0] ⊇ [a1, b1] ⊇ [a2, b2] ⊇ ⋯ where ai, bi ∈ Q, whose diameters con-
verge to zero, i.e. limn→∞ ∣an − bn∣ = 0. �us r is the unique number common to all
intervals:

r = r∞ = ⋂
n≥0

rn.

�e mapping r ∶ N → [Q,Q] is a computable function, as already de�ned by Turing
[30] and Church [9]. We see that real numbers are converging sequences of rational
numbers. From now on, unless otherwise stated, when we refer to real numbers we
shall actually mean the computable real numbers.

1Proved using Georg Cantor’s diagonal argument, in which it is shown R cannot be put into one-
to-one correspondence with N.
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2.3.2 Representation systems

Just as we can denote the natural numbers exactly in several ways, e.g. binary, decimal,
etc., there are several exact representation systems for the reals. Within one system
there are o�en several representations for one single real—for example 3.14999. . . and
3.15—similar to the rationals,Q, where 1

3 ,
2
6 and

962743
2888229 refer to the same quantity.

De�nition 2.2 (Representation system). A representation system of real numbers is a
tuple (S,π) where S ⊆ N → N and π is a surjective function from S to R. If s ∈ S
and π(s) = r, then s is said to be a (S,π)-representation of r.

As we require all real numbers to be representable, π is necessarily surjective, whereas
we do not require unique denotations of the reals such thatπ need not be injective. We
think of elements in S as denotations of real numbers. Elements of S are functions in
N → N since N → N has the same cardinality as R and captures the in�nite nature of
representation systems. In a computer implementation, we desire the ability to specify
a real number stepwise. A function s in N → N can be given by an in�nite sequence
(s(0), s(1), . . .) called a stream. Wedonot expect that we can overview a real number
immediately, but that we should be able to approximate the real number by rational
numbers with arbitrary precision using the representation.
In any approach to exact real arithmetic, the choice of representation determines

the operationswe can computably de�ne and implement. Indeed there are bad choices
of representations that do not admit de�nitions for themost basic of arithmetic opera-
tions. Di�erent approaches also confer wildly di�erent performances and design chal-
lenges when implemented as computer programs. With this in mind, the remainder
of this chapter illustrates some of the issues involved in exact representations for com-
putation, introduces the representation used in our work, and brie�y discusses some
of the other representations we considered.

2.3.3 Computability issues with exact representations

Although the standard decimal digit stream representation is natural and elegant, it
is surprisingly di�cult to de�ne exact real number arithmetic in a computable way.
Consider the task of computing the sum x + y where

x = 1
3
= 0.333 . . . and y = 2

3
= 0.666 . . .

using the standard decimal expansion. Clearly the sum x+y has the value 0.999 . . . =
1, but we cannot determine whether the �rst digit of the result should be a zero or a
one. Recall that at any time, only a �nite pre�x of x and y is known and this is the
only information available in order to produce a �nite pre�x of x + y. Suppose we
have read the �rst digit a�er the decimal point for both expansions of x and y. Do we
have enough information to determine the �rst digit of x + y? Unfortunately not: we
know x lies in the interval [0.3,0.4] and y in the interval [0.6,0.7], such that x+ y is
contained in the interval [0.9,1.1].�erefore, we know the �rst digit should be a 0 or
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a 1, but at this point we cannot say which one it is—and if we pre-emptively choose 0
or 1 as the �rst digit, then the intervals we can represent, [0,1] or [1,2] respectively,
do not cover the output interval [0.9,1.1]. Reading more digits from x and y only
tightens the interval [0.9 . . .9,1.0 . . .1] in which x + y lies in, but its endpoints are
still strictly less and greater than 1. Hence, we cannot ever determine the �rst digit of
the result, let alone any others.
Similarly, consider the product 3x. Again the result should have the value 0.999 . . . =

1, and if we know the �rst digit a�er the decimal point for the expansion of x, we know
x lies in the interval [0.3,0.4].�en the result 3x lies in the interval [0.9,1.2], and so
we encounter the same problem: we cannot determine whether the �rst digit should
be a 0 or a 1.
We see that when we perform computations with in�nite structures such as the

digit stream representation, there is no ‘least signi�cant’ digit since the sequence of
digits extends in�nitely far to the right. �erefore, we must compute operations on
sequences from le� (‘most signi�cant’) to right (‘least signi�cant’), while most opera-
tions in �oating-point are de�ned from right to le�; for example, consider arithmetic.
In general, it is not possible to determine an operation’s output digit without examin-
ing an in�nite number of digits from the input.�us the standard decimal expansion
is unsuitable for exact arithmetic.

2.4 Lazy representations
In this section we consider some existing lazy representations of exact real arithmetic.
We start by looking at the most-popular lazy representation, the redundant signed-
digit stream, before brie�y outlining two others. We �nish by discussing the problems
with lazy representations in general.

2.4.1 Redundant signed-digit stream

�e problem presented above in 2.3.3 can be overcome by introducing some form of
redundancy. In cases such as the one above, redundancy allows us to make an in-
formed guess for a digit of the output and then compensate for this guess later if it
turns out to have been incorrect.
One of themost intuitiveways to introduce redundancy is bymodifying the stand-

ard digit stream representation to admit negative digits.�is representation is termed
the signed-digit representation and is covered more extensively in [25] and [12]. While
the standard digit representation involves a stream of positive integer digits in baseB,
i.e. from the set {b ∈ N ∣ x < B} = {0,1,2, . . . ,B −1}, the signed digit representation
allows digits to take negative base B values, such that the set of possible digits is ex-
tended to {b ∈ Z ∣ ∣x∣ < B} = {−B +1,−B +2, . . . ,−1,0,1, . . . ,B −1}. For elements
di of this set, the sequence r = ⟨d1, d2, . . .⟩ then represents the real number

JrK =
∞

∑
i=1

di
Bi
.



2.4. lazy representations 15

in the interval [−B + 1,B − 1]. A speci�c case of signed-digit representation is that
of B = 2, called the binary signed-digit representation, or simply signed binary repres-
entation. In this representation, digits come from the set {−1,0,1} and can represent
real numbers in the interval [−1,1].
Consider again the example given in 2.3.3, where we attempted to compute the

sum x+ y for the numbers x = 0.333 . . . and y = 0.666 . . .. It should be clear how the
negative digits admitted by the signed-digit representation can be used to correct pre-
vious output. A�er reading the �rst digit following the decimal point, we know x lies
in the interval [0.2,0.4] and similarly that y lies in the interval [0.5,0.7] (the interval
diameters are widened since a sequence could continue −9,−9, . . .) such that their
sum is contained in [0.7,1.1]. We may now safely output a 1 for the �rst digit, since
a stream starting with 1 can represent any real number in [0,2]. If it turns out later
that x is less than 1

3 , so the result x + y is actually smaller than 1, we can compensate
with negative digits.

�e signed-digit representation we have presented can only be used to represent
real numbers in the interval [−B+1,B+1]. Compare this to the standard decimal ex-
pansion, where we can only represent numbers in the range [0,1]. To cover the entire
real line, we introduce the decimal (or, more generally, radix) point. �e radix point
serves to specify the magnitude of the number we wish to represent.�is is achieved
using a mantissa-exponent representation, where an exponent e ∈ Z scales the num-
ber. �erefore, we re�ne our signed-digit representation such that the sequence and
exponent pair r = (⟨d1, d2, . . .⟩, e) represents the real number

JrK = Be
∞

∑
i=1

di
Bi
.

�is representation now covers the entire real line, i.e. r can represent any computable
real number in [−∞,∞].

�e redundant signed-digit stream representation involves potentially in�nite data
structures that can be studied using the mathematical �eld of universal coalgebra.
A coinductive strategy for studying and implementing arithmetic operations on the
signed-digit stream representation is proposed in [19].�e signed-digit stream repres-
entation lends itself nicely to a realisation in a lazy functional programming language,
and the implementations are o�en elegant, but in practice they exhibit very poor per-
formance.

2.4.2 Continued fractions

Every real number r has a representation as a generalised continued fraction [10],
de�ned by a pair of integer streams (an)n∈N and (bn)n∈N+ such that

r = a0 +
b1

a1 +
b2

a2 + ⋱
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Some numbers that are di�cult to express closed-form using a digit notation can
be represented with remarkable simplicity as a continued fraction. For example, the
golden ratio ϕ = 1+

√

5
2 that we met in the introduction can be represented as a con-

tinued fraction de�ned simply by the sequences (an) = (bn) = (1,1,1, . . .).
A number of examples of transcendental numbers and functions are explored in

[33], including an expression of the mathematical constant π as the sequences

an = { 3 if n = 0
6 otherwise

bn = (2n − 1)2

and the exponential function ex as the sequences

an = { 1 if n = 0,1
n + x otherwise

bn = { x if n = 1
(1 − n)x otherwise.

�e continued fraction representation is incremental. However, a major disadvant-
age of continued fractions is that evaluation of the sequences is monotonic; once a
digit has been calculated it cannot be changed, such that some standard arithmetic
operations on the constructive reals are uncomputable with this representation. Jean
Vuillemin discusses the performance of an implementation of exact real arithmetic
with continued fractions in [31].

2.4.3 Linear fractional transformations

A one-dimensional linear fractional transformation (LFT)—also known as a Möbius
transformation—is a complex function f ∶ C→ C of the form

f(z) = az + c
bz + d

with four �xed parameters a, b, c, d satisfying ad − bc ≠ 0. In general these paramet-
ers are arbitrary complex numbers, but in the context of exact real arithmetic we only
consider LFTs with integer parameters. A two-dimensional linear fractional trans-
formation is a complex function g ∶ C ×C→ C of the form

g(z1, z2) =
az1z2 + cz1 + ez2 + g
bz1z2 + dz1 + fz2 + h

where a, b, c, d, e, f, g, h are �xed arbitrary complex parameters.
An advantage of linear fractional transformations is that they can be written as

matrices, allowing their composition (and application) to be computed using matrix
multiplication. �e one-dimensional LFT f and two-dimensional LFT g above are
represented as matricesM1 andM2 respectively, where

M1 = ( a c
b d

) , M2 = ( a c e g
b d f h

) .
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It is shown in [12] that any real number r can be represented as an in�nite composition
of LFTs with integer coe�cients applied to the interval [−1,1], such that

r = lim
n→∞

[(
n

∏
i=1
Mi)([−1,1])] .

With the right choice of LFTs, each element of the sequence is a better approximation
to r than the previous one. �at is, like continued fractions, linear fractional trans-
formations are incremental.

�e attractiveness of LFTs is thatmany of the concise continued fractions for tran-
scendental numbers and functions discussed in 2.4.2 and [33] can be directly translated
into in�nite products of LFTs, as demonstrated in [27].

2.4.4 Problems with lazy representations

�e apparent advantage of a lazy approach is that computation proceeds increment-
ally on demand. Subjectively, it is also an extremely elegant approach and highly con-
ducive to an implementation in a functional programming language. However, lazy
representations su�er from a serious problem, which we refer to as the problem of
granularity.

�is is a problem best explained with an example. Consider two real numbers
x and y represented as the redundant lazy streams ⟨2,1,4,5, . . .⟩ and ⟨3,3,3,3, . . .⟩
respectively, and suppose we wish to compute the sum x + y. We get ⟨5,4,7, ○ , . . .⟩
but cannot determine whether the last digit ○ should be 8 or 9 since we do not know
the ��h digits of the two summands. �us, to compute an approximation of x + y
accurate to four digits, we require approximations to x and y accurate to �ve digits.
Now consider evaluation of the expression x + (x + (x + (x + (x + x)))). By the
same reasoning, if we desire n digits of accuracy, the outermost addition will require
n+1 digits of accuracy from its arguments, the next outermost n+2, and so on, until
the innermost addition which requires n + 5 digits of accuracy. In general, if we are
to take advantage of the underlying machine’s arithmetic capabilities, we should use
machine words as the size of the digits in the representative lists for optimal e�ciency.
Suppose we use digits represented with 32 bits; then we are using 160 extra bits of
accuracy in each of the deepest arguments, when in fact it can be shown that only
⌈log2 6⌉ = 3 extra bits are required for a summation of six values: for a digit di that
we are unsure about, we can simply use a single additional bit to represent whether its
value should be xi + yi or xi + yi + 1.�e choice of representation means 157 digits
more than necessary are computed. Whilst relatively minor for addition, the problem
posed by coarse granularity is signi�cantly worse for more complex operations than
addition. For example, in the case of division, the number of extra digits calculated
at each level of an expression can unnecessarily grow exponentially with expression
depth [4], leaving us with an intractable computation.
Unfortunately granularity is not the only problem associated with lazy represent-

ations; other issues include:
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• �e large lists used to represent numbers require a lot of memory, leading to all
sorts of hardware bottlenecks.
• Reasoning about correctness, termination and resource consumption for lazy
representations seems to be quite di�cult.
• Functional languages operate at a high level of abstraction from the machine;
programs run slowly compared to their imperative counterparts.

Finally, one of our original project aims was to develop a library suitable for main-
stream programming audiences. As such, we chose C++ and so a lazy representation
is not appropriate for our purpose. Whilst it is possible to implement lazy evaluation
in an imperative language like C++, it is unnatural and simply not the right tool for the
job. Indeed it seems an exercise in futility: it is not likely our implementation of lazy
lists would come close to achieving the e�ciency of existing compilers for languages
like Haskell, which are the result of 30 years of functional compiler research.

2.5 Cauchy sequence representation
In classical real analysis, real numbers are traditionally represented as Cauchy se-
quences of rational numbers. �e real number de�ned by this sequence is the limit
under the usual one-dimensional Euclidean metric. We start by looking at the most
general case, the naïve Cauchy representation, in which no modulus of convergence2

is required.

De�nition 2.3 (NaïveCauchy representation). A naïve Cauchy representation of a real
number x is a function fx ∶ N→ Q such that, for all n ∈ N,

∣fx(n) − x∣ <
1
n
.

�is says that for any constructive real number x, there is a function fx that can
provide an arbitrarily close approximation to x. As n →∞, the maximum error 1/n
goes to 0.�is approach of implementing real numbers directly as functions on a �xed
countable set is referred to as a functional3 representation.
In practice, there are a number of disadvantages to using this representation. First,

the range of fx is over the rationals, and computation on rationals is itself expensive.
Second, potentially huge values of n are necessary to specify very accurate approx-
imations to x. For example, to calculate 100 digits of accuracy we would have to use
n = 10100, an extremely large number, which makes for very expensive computation.
Finally, since n takes integer values, it is not possible from fx to obtain an approxim-
ation to x that is less accurate than an error of ±1—a problem when x is very large,
such as x = 1050.

2If x1, x2, . . . is a Cauchy sequence in the setX , then amodulus of convergence is a functionα ∶ N→
N such that ∀k∀m,n > α(k).∣xm − xn∣ < 1/k that tells how quickly a convergent sequence converges.

3Not to be confused with functional programming languages.
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In [5], Boehm suggests the following representation, which we shall refer to as the
functional Cauchy representation or approximation function representation.

De�nition 2.4 (Functional representation 1). A functional Cauchy representation of
a real number x is a computable function fx ∶ Z→ Z such that, for all n ∈ Z,

∣B−nfx(n) − x∣ < B−n

whereB ∈ N,B ≥ 2 is the base used to specify precision.

�e result produced by fx is implicitly scaled so that it is possible to approximate a real
number x to arbitrary accuracy. Informally, the argument n speci�es the precision so
that fx(n) produces an approximation to x that is accurate to within an error ofB−n.
�e argument n is typically (but not necessarily) positive, indicating that the result
should be accurate to n places to the right of the decimal point.
It is easy to see that (fx/Bn)n∈N describes a Cauchy sequence of rational numbers

converging to x with a prescribed ratio of convergence. As a simple example, we can
represent the integer y = 5 as the approximation function fy(n) = Bny = Bn ⋅ 5 so
that it generates the sequence (5)n∈N.
Since n is now an exponent, specifying accurate approximations will no longer

require the extremely large values that make computations expensive. Also since pos-
itive n yields a tolerance greater than 1, we can compute results of any accuracy. We
need not store the scale factor B−n and, critically for space e�ciency, the size of the
scale factor grows linearly with the precision of the real number. Boehm suggests
B = 2 or B = 4 for e�ective implementation, with B = 4 simplifying mathematical
exposition andB = 2 providing optimal performance for scalingB−nfx(n). We shall
useB = 2 such thatB−nfx(n) generates a sequence of dyadic rationals.

�eorem 2.5. Every computable real number can be represented as a Cauchy approx-
imation function and vice versa.

Proof. Intuitively this seems obvious considering De�nition 2.1 of computable real
numbers. However, the proof is rather long and distracting, so we omit it here. It can
be found in a number of papers including [22, 16, 5].

2.5.1 Representing functions

De�nition 2.6 (Functional representation 2). A functional Cauchy representation of
a real function F ∶ R→ R is a function fF ∶ (Z→ Z)×Z→ Z that, for any x ∈ domF
and all functional Cauchy representations fx of x, satis�es

∣B−nfF (fx, n) − F (x)∣ < B−n.

De�nition 2.7 (Functional representation 3). A functional representation of a real
function F ∶ Rm → R is a function fF ∶ (Z → Z)m × Z → Z that, for any x⃗ =
(x1, x2, . . . , xm) ∈ domF and all fx⃗ = (fx1 , fx2 , . . . , fxm) representations of x⃗, sat-
is�es

∣B−nfF (fx⃗, n) − F (x⃗)∣ < B−n. (2.1)
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We de�ne4 approximation functions to represent operations. To prove a function’s
correctness we must show its de�nition is such that it satis�es (2.1). In Chapters 3 and
4 we de�ne operations and then use this method of proof to verify their correctness.
�e approximation functions we de�ne to represent operations return elements in Z.
Whilst in practice the argument to an approximation—also in Z—is relatively small,
the values returned are usually very large. �is de�ning of approximation functions
in terms of integer arithmetic means an implementation will require an arbitrary-
integer type. In practice, arbitrary-integer arithmetic libraries are relatively easy to
implement and verify—a large number of good are available and open-source. In a
sense we use easier-to-verify integer arithmetic to implement real number arithmetic.
�e remainder of our work assumes we have a veri�ably-correct integer arithmetic.

2.5.2 Implementing functions

As we shall see in Chapter 3, the addition operation can be de�ned as

fx+y(n) = ⌊fx(n + 2) + fy(n + 2)
B2 ⌉

It combines the functions for two real numbers x and y to give a functional repres-
entation of x + y. When called with an accuracy request of n, fx+y �rst invokes fx
and fy with n + 2 to compensate for the accuracy that will be lost in addition. It then
adds the resultant integers returned by fx and fy , before scaling the result by B2 so
that fx+y is scaled to n rather than n + 2.
We de�ne other mathematical operations in a similar way, evaluating the approx-

imation functions for their operands to some higher precision. Operations can be
applied to one another such that we form directed acyclic graphs (DAGs), or expres-
sion trees, of approximation functions. Computation with this style of representation
proceeds as in Figure 2.1. When the approximation function for an operation is called
with precision argument n, the accuracy required from each of its arguments is calcu-
lated.�ese higher accuracies are passed to the approximation function for each of its
arguments, and the process repeats.�is continues until a leaf node—i.e. an operation
whose approximation function does not invoke another, such as a constant value like
5—is reached, which simply returns its requested approximation. In general, when
the arguments to a function have returned the requested approximations, the func-
tion must compute its result by shi�ing away the extra precision that was required
to calculate an approximation for its arguments without round-o� error. Computa-
tion proceeds back up the expression DAG until the root function that requested an
approximation is reached.
In summary, computation �ows down from the original node to the leaves and

then back to the top. We see the requested precision passed to the original operation
(node) becomes larger and larger as it is passed further and further down into the ex-
pression tree. On the way back up, at each stage a calculation is performed followed by

4Later, we shall o�en refer to the function de�nition as an algorithm, since it is slightly confusing to
talk about proving a de�nition—one does prove de�nitions.
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n

⋮ ⋮ ⋮

n grows

Figure 2.1: Top-down propagation of accuracy growth.

a scaling operation that puts the intermediate node’s result into the appropriate form
for use by its parent, before �nally we reach the top and the requested approximation
is produced. We characterise this computation as top-down.

�e approximation function representation avoids the granularity problemassoci-
atedwith lazy representations. However, in general, functional representations cannot
make use of previously calculated results when asked to produce approximations to
higher5 precisions—it is not an incremental representation. Whilst some operations
have forms that are incremental, most have to start from scratch if they receive a re-
quest for an accuracy higher than any previously computed.�is can be particularly
problematic in certain situations. An alternative approach, used by Norbert Müller’s
extremely fast iRRAM library, uses precision functions and interval arithmetic to pro-
duce bottom-up propagation. Whilst this is more e�cient in a lot of situations, im-
portantly there is no proof for the correctness of its operations. Bottom-up exact num-
ber computation is also time-consuming to implement and not suitable given the time
constraints of an undergraduate project.
A�er careful consideration we settle on the top-down approximation function

(Cauchy sequence) representation for our exact real arithmetic library. It meets our
requirement of a representation that is conducive to e�cient implementation whilst
still admitting tractable proofs of correctness for functions and operations.

5We can, though, store a cache of the best yet approximation and use it provide a result if a lower
accuracy is requested, by scaling it down as necessary.





chapter3
BASIC OPERATIONS

In Chapter 2 we explored representations of real numbers and chose a representation,
the functional dyadic Cauchy representation, that will form the basis of our work. In
this chapter we develop the basic arithmetic operations, including some useful auxil-
iary functions, in our representation and prove their correctness using the method of
proof shown in section 2.5.1 and as seen in [16].

3.1 Auxiliary functions and preliminaries
3.1.1 Representing integers

Algorithm 3.1. We can represent an integer x by the approximation function fx that
satis�es

∀n ∈ Z . fx(n) = ⌊2nx⌉ .

Proof. By the de�nition of ⌊q⌉ for q ∈ Q,

2nx − 1
2
≤ fx(n) < 2nx + 1

2
⇔ x − 2−(n+1) ≤ 2−nfx(n) < x + 2−(n+1)

⇔ −2−(n+1) ≤ 2−nfx(n) − x < 2−(n+1)

⇔ ∣2−nfx(n) − x∣ ≤ 2−(n+1).

�erefore ∣2−nfx(n) − x∣ < 2−n such that fx represents the integer number x.

3.1.2 Negation

Algorithm 3.2. If a real number x is represented by the approximation function fx,
then its negation −x is represented by the approximation function f−x that satis�es

∀n ∈ Z . f−x(n) = −fx(n).

Proof. By the de�nition of fx, for all n ∈ Z, we have ∣2−nfx(n) − x∣ < 2−n ⇔
∣2−n(−fx(n)) − (−x)∣ < 2−n and f−x(n) = −fx(n) such that ∣2−nf−x(n) − (−x)∣ <
2−n.

23
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3.1.3 Absolute value

Algorithm 3.3. If a real number x is represented by the approximation function fx,
then its absolute value ∣x∣ is represented by the approximation function f∣x∣ that satis-
�es

∀n ∈ Z . f∣x∣(n) = ∣fx(n)∣.

Proof. By the de�nition of fx, for all n ∈ Z, we have
∣x − 2−nfx(n)∣ < 2−n

⇔ −2−n < x − 2−nf(n) < 2−n

⇔ 2−n(fx(n) − 1) < x < 2−n(fx(n) + 1).
�erefore, since fx(n) ∈ Z and 2−n > 0, if x ≤ 0 then fx(n) ≤ 0 so that ∣fx(n)∣ =
−fx(n) and ∣x∣ = −x. Similarly, if x ≥ 0 then fx(n) ≥ 0 so that ∣fx(n)∣ = fx(n) and
∣x∣ = x. Hence ∣2−n∣fx(n)∣ − ∣x∣∣ = ∣2−nfx(n) − x∣ < 2−n, and so ∣2−nf∣x∣(n) − ∣x∣∣ <
2−n.

3.1.4 Shi�ing

Algorithm 3.4. If a real number x is represented by the approximation function fx,
then its shi� 2kx, where k ∈ Z, is represented by the approximation function f2kx that
satis�es

∀n ∈ Z . f2kx(n) = fx(n + k)

Proof. From the de�nition of fx, we have

∣2−(n+k)fx(n + k) − x∣ < 2−(n+k)

so that multiplying through by 2k yields ∣2−nfx(n + k) − 2kx∣ < 2−n.�erefore f2kx

represents the real number 2kx.

3.1.5 Most signi�cant digits

De�nition 3.5. A function msd ∶ R → Z extracts the most signi�cant digits of a real
number. Given a real number x,msd(x) satis�es

2msd(x)−1 < ∣x∣ < 2msd(x)+1.

3.2 Addition and subtraction
3.2.1 Addition

Algorithm 3.6. If two real numbers x and y are represented by the approximation
functions fx and fy respectively, then their addition x + y is represented by the ap-
proximation function fx+y that satis�es

∀n ∈ Z . fx+y(n) = ⌊fx(n + 2) + fy(n + 2)
4

⌉ . (3.1)
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Proof. By the de�nition of fx and fy , for all n ∈ Z,

∣2−(n+2)fx(n + 2) − x∣ < 2−(n+2) and ∣2−(n+2)fy(n + 2) − y∣ < 2−(n+2).

We have

∣2−(n+2)(fx(n + 2) + fy(n + 2)) − (x + y)∣ (3.2)

≤ ∣2−(n+2)fx(n + 2) − x∣ + ∣2−(n+2)fy(n + 2) − y∣

< 2−(n+1).

By (3.1) and the de�nition of ⌊⋅⌉ overQ,

fx+y(n) −
1
2
≤ fx(n + 2) + fy(n + 2)

4
< fx+y(n) +

1
2

⇔ −1
2
≤ fx(n + 2) + fy(n + 2)

4
− fx+y(n) <

1
2

⇔ ∣fx+y(n) −
fx(n + 2) + fy(n + 2)

4
∣ ≤ 1

2

⇔ ∣2−nfx+y(n) − 2−(n+2)(fx(n + 2) + fy(n + 2))∣ ≤ 2−(n+1). (3.3)

�e triangle inequality states that ∣a− b∣ ≤ ∣a− c∣+ ∣c− b∣ for any a, b, c ∈ Q.�erefore,
by (3.3) and (3.2), we have

∣2−nfx+y(n) − (x + y)∣ < 2−(n+1) + 2−(n+1) = 2−n.

3.2.2 Subtraction

Since x−y = x+(−y) for any two real numbers x and y, we trivially de�ne subtraction
fx−y in terms of addition and negation, such that fx−y = fx+(−y).

3.3 Multiplication
Reasoning about multiplication is slightly more complicated than the previous oper-
ations we have seen and so deserves some discussion. If x and y are two real numbers
represented by the approximation functions fx and fy respectively, we seek an ap-
proximation function fxy representing the multiplication xy such that

∀n ∈ Z . ∣2−nfxy(n) − xy∣ < 2−n.

Naturally, the function fxy depends on fx and fy . We aim to evaluate the multiplic-
andsx and y to the lowest precision thatwill still allowus to evaluate themultiplication
xy to the required accuracy. However, when performing multiplication, the required
precision in one multiplicand of course depends on the approximated value of the
other. We consider the following two cases.
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Suppose we evaluate x to roughly half the required precision for the result xy. If
the approximation is zero, we evaluate y to the same precision. If the approximation
to y is also zero, the result xy is simply zero.
In the general non-zero case, we consider the error in the calculation’s result in

order to determine the lowest precision with which x and y need to be evaluated. As
we shall see in our proof, ifx is evaluatedwith error εx and ywith error εy , we �nd that
the overall calculation’s error ∣(x+εx)(y+εy)−xy∣ is bounded above by 2msd(x)+1∣εy ∣+
2msd(y)+1∣εx∣. If xy needs to be evaluated to precision n, by de�nition we require
2msd(x)+1∣εy ∣ + 2msd(y)+1∣εx∣ < 2−n. �erefore we choose ∣εy ∣ < 2−(n+msd(y)+3) and
∣εx∣ < 2−(n+msd(x)+3). �at is, we evaluate x to precision n + msd(x) + 3 and y to
precision n +msd(y) + 3.

Algorithm 3.7. If two real numbers x and y are represented by the approximation
functions fx and fy respectively, then their multiplication xy is represented by the
approximation function fxy that satis�es

∀n ∈ Z . fxy(n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if fx(n2 + 1) = 0 and fy(n2 + 1) = 0

⌊fx(n +msd(x) + 3)fy(n +msd(y) + 3)
2n+msd(x)+msd(y)+6 ⌉ otherwise.

Proof. In the �rst case, if fx(n2 + 1) = 0 and fy(n2 + 1) = 0, then by the de�nition of
fx and fy we have ∣x∣ < 2−(

n
2 +1) and ∣y∣ < 2−(

n
2 +1).�erefore if fxy(n) = 0, then

∣fxy(n) − xy∣ = ∣xy∣ ≤ ∣x∣∣y∣ < 2−(n+2) < 2−n.

We now consider the general case. For the sake of notational brevity, let

i = n +msd(y) + 3, j = n +msd(x) + 3, r = ⌊fx(i)fy(j)
2i+j−n

⌉ .

By the de�nition of fx, we have ∣2−ifx(i) − x∣ < 2−i. �us, at precision i we have
approximation error εx = 2−ifx(i) − x with ∣εx∣ < 2−i and write x + εx = 2−ifx(i).
Similarly, for fy at j we have approximation error εy = 2−jfy(j) − y with ∣εy ∣ < 2−j
and write y + εy = 2−jfy(j). We note that the error in the multiplication result is

(x + εx)(y + εy) − xy = xεy + yεx + εxεy
= (x + εx)εy + (y + εy)εx − εxεy
= 1

2
(xεy + yεx + (x + εx)εy + (y + εy)εx)

such that ∣(x + εx)(y + εy) − xy∣ = 1
2 ∣xεy + yεx + (x + εx)εy + (y + εy)εx∣. �ere-

fore the error is bounded by themaximum of ∣xεy+yεx∣ and ∣(x+εx)εy+(y+εy)εx∣,
i.e.

∣(x + εx)(y + εy) − xy∣ ≤ max(∣xεy + yεx∣, ∣(x + εx)εy + (y + εy)εx∣). (3.4)
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Now, again by the de�nition of fx we have ∣2−ifx(i) − x∣ < 2−i such that

2−i(fx(i) − 1) < x < 2−i(fx(i) + 1).

If x ≥ 0, then we require fx(i)+ 1 > 0 and so fx(i) ≥ 0 since fx(i) ∈ Z. Otherwise, if
x < 0, then fx(i) − 1 < 0 and so fx(i) ≤ 0 since fx(i) ∈ Z.�erefore

2−i(∣fx(i)∣ − 1) < ∣x∣ < 2−i(∣fx(i)∣ + 1).

Recalling that by de�nitionmsd(x) satis�es ∣x∣ < 2msd(x)+1, we have 2−i(∣fx(i)∣−1) <
∣x∣ < 2msd(x)+1.�us, ∣fx(i)∣−1 < 2msd(x)+1+i so that ∣fx(i)∣ ≤ 2msd(x)+1+i.�erefore
we obtain

∣x + εx∣ = ∣2−ifx(i)∣ = 2−i ∣fx(i)∣ ≤ 2msd(x)+1

and a similar derivation for y at precision j yields

∣y + εy ∣ = ∣2−jfy(j)∣ = 2−j ∣fy(j)∣ ≤ 2msd(y)+1.

By the de�nition ofmsd and remembering ∣εx∣ < 2−i, ∣εy ∣ < 2−j ,

∣xεy + yεx∣ ≤ ∣xεy ∣ + ∣yεx∣ ≤ ∣x∣∣εy ∣ + ∣y∣∣εx∣ < 2msd(x)+1 ⋅ 2−j + 2msd(y)+1 ⋅ 2−i

and

∣(x + εx)εy + (y + εy)εy ∣ ≤ ∣(x + εx)εy ∣ + ∣(y + εy)εy ∣
≤ ∣x + εx∣∣εy ∣ + ∣y + εy ∣∣εy ∣
< 2msd(x)+1 ⋅ 2−j + 2msd(y)+1 ⋅ 2−i.

�erefore,max(∣xεy + yεx∣, ∣(x + εx)εy + (y + εy)εx∣) is bounded by 2msd(x)+1−j +
2msd(y)+1−i. Recalling (3.4), we get ∣(x + εx)(y + εy) − xy∣ < 2msd(x)+1−j+2msd(y)+1−i.
Since (x+ εx)(y + εy)−xy = 2−(i+j)fx(i)fy(j)−xy and notingmsd(x) = j −n−3,
msd(y) = i − n − 3, we have

∣2−(i+j)fx(i)fy(j) − xy∣ < 2−(n+1) (3.5)

Now, rewriting r using the de�nition of ⌊⋅⌉, we obtain

r − 1
2
≤ fx(i)fy(j)

2i+j−n
< r + 1

2

⇔ ∣fx(i)fy(j)
2i+j−n

− r∣ ≤ 2−1

⇔ ∣2−(i+j)fx(i)fy(j) − 2−nr∣ ≤ 2−(n+1). (3.6)

Finally, by the triangle inequality with (3.6) and (3.5),

∣2−nr − xy∣ ≤ ∣2−nr − 2−(i+j)fx(i)fy(j)∣ + ∣2−(i+j)fx(i)fy(j) − xy∣

< 2−(n+1) + 2−(n+1)

such that ∣2−nr − xy∣ < 2−n. Hence fxy(n) = r represents the multiplication xy.
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3.4 Division
3.4.1 Inversion

Algorithm 3.8. If a real number x ≠ 0 is represented by the approximation function
fx, then its inverse x−1, i.e. 1

x , is represented by the approximation function fx−1 that
satis�es

∀n ∈ Z . fx−1 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if n < msd(x)

⌊ 22n−2msd(x)+3

fx(n − 2msd(x) + 3)⌉ otherwise.

Proof. We �rst consider the case when n < msd(x). By the de�nition ofmsd, we have
2msd(x)−1 < ∣x∣. Since 2msd(x)−1 > 0, we may deduce that

∣1
x
∣ < 1

2msd(x)−1 .

Because msd(x) > n, we have msd(x) − 1 > n − 1 so that msd(x) − 1 ≥ n since
msd(x) ∈ Z.�erefore

∣2−n ⋅ 0 − 1
x
∣ < 1

2msd(x)−1 ≤ 1
2n

and so fx−1(n) = 0 represents the real number 1
x for n < msd(x).

Let us now consider the second case. For the sake of notational brevity, we introduce
i = n − 2msd(x) + 3. Since n ≥ msd(x), we havemsd(x) + i ≥ 3. By the de�nition of
msd and fx,

2msd(x)−1 < ∣x∣ < 2−i (∣fx(i)∣ + 1)
⇔ 2msd(x)+i−1 < ∣fx(i)∣ + 1
⇔ 2 < 2msd(x)+i−1 < ∣fx(i)∣ + 1

such that ∣fx(i)∣ > 1. As we have seen before, by the de�nition of fx,

2−i(∣fx(i)∣ − 1) < ∣x∣ < 2−i(∣fx(i)∣ + 1). (3.7)

Since ∣fx(i)∣ > 1, we have 2−i(∣fx(i)∣ − 1) > 0, and clearly 2−i(∣fx(i)∣ + 1) > 0.
�erefore we can deduce from (3.7) that

2i

∣fx(i)∣ + 1
< 1

∣x∣ <
2i

∣fx(i)∣ − 1

⇔ 2−n 2n+i

∣fx(i)∣ + 1
< 1

∣x∣ < 2−n 2n+i

∣fx(i)∣ − 1
(3.8)

For any q ∈ Q we have ⌊q⌋ ≤ q ≤ ⌈q⌉ so that

2−n ⌊ 2n+i

∣fx(i)∣ + 1
⌋ < 1

∣x∣ < 2−n ⌈ 2n+i

∣fx(i)∣ − 1
⌉ .
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Now, let us write

α = 2n+i

∣fx(i)∣ + 1
, β = 2n+i

∣fx(i)∣ − 1
, ξ = ⌊ 2n+i

∣fx(i)∣
⌉ .

Clearly α < β and ⌊α⌋ ≤ ξ ≤ ⌈β⌉. Once again, by the de�nition of fx and msd, we
have

2msd(x)−1 < ∣x∣ < 2−i(∣fx(i)∣ + 1)
so that ∣fx(i)∣ > 2msd(x)+i−1 − 1. Since msd(x) + i ≥ 3, we get ∣fx(i)∣ ≥ 2msd(x)+i−1

and so

2n+i

∣fx(i)∣
≤ 2n+i

2msd(x)+i−1 = 22(msd(x)+i−1)−1

2msd(x)+i−1 = 2msd(x)+i−1

2
≤ ∣fx(i)∣

2
.

Now, by the de�nition of ⌊q⌉ for q ∈ Q,

ξ − 1
2
≤ 2n+i

∣fx(i)∣
< ξ + 1

2
⇒ ξ − 1 ≤ 2n+i

∣fx(i)∣
− 1

2
. (3.9)

�us we have

(ξ − 1)(∣fx(i)∣ + 1) ≤ ( 2n+i

∣fx(i)∣
− 1

2
)(∣fx(i)∣ + 1)

= 2n+i + 2n+i

∣fx(i)∣
− ∣fx(i)∣

2
− 1

2

≤ 2n+i − 1
2
< 2n+i.

so that

ξ − 1 < 2n+i

∣fx(i)∣ + 1
.

Similarly, using the ξ + 1
2 side of (3.9), we �nd

2n+i

∣fx(i)∣ − 1
< ξ + 1

and therefore ξ − 1 < α < β < ξ + 1. Multiplying through by 2−n, we obtain

2−n(ξ − 1) < 2−nα < 2−nβ < 2−n(ξ + 1).

We assume fx(i) > 0 such that ∣fx(i)∣ = fx(i), x > 0 and ∣x∣ = x. It is le� to the
reader to con�rm that equivalent reasoning holds if we instead assume fx(i) ≤ 0 such
that we replace ∣fx(i)∣ = −fx(i) and ∣x∣ = −x in our above formulation.�en, by (3.8)
with ∣x∣ = x, we have

2−n(ξ − 1) < 2−nα < 1
x
< 2−nβ < 2−n(ξ + 1)

⇒ 2−n(ξ − 1) < 1
x
< 2−n(ξ + 1)

⇔ −2−n < 1
x
− 2−nξ < 2−n
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such that fx−1(n) = ξ satis�es ∣2−nfx−1(n) − 1
x
∣ < 2−n for x > 0 and we �nd the same

holds for x ≤ 0.

3.4.2 Division

Since x/y = x ⋅ y−1 for any two real numbers x and y ≠ 0, we trivially de�ne division
fx/y in terms of multiplication and inversion, such that fx/y = fx⋅y−1 .

3.5 Square root
Algorithm 3.9. If a real number x ≥ 0 is represented by the approximation function
fx, then its square root

√
x is represented by the approximation function f√x that

satis�es
∀n ∈ Z . f√x = ⌊

√
fx(2n)⌋ .

Proof. By the de�nition of fx,

∣2−2nfx(2n) − x∣ < 2−2n. (3.10)

Since x ≥ 0, we have fx(2n) ≥ 0. If fx(2n) = 0, then ∣x∣ < 2−2n such that ∣√x∣ < 2−n.
Clearly f√x(n) = ⌊

√
fx(2n)⌋ = 0 and so ∣2−nf√x(n) −

√
x∣ = ∣√x∣ < 2−n. In the

other case, fx(2n) ≥ 1 and so by (3.10)

−2−2n < x − 2−2nfx(2n) < 2−2n

⇔ 2−2n (fx(2n) − 1) < x < 2−2n (fx(2n) + 1)
⇔ 2−n

√
fx(2n) − 1 <

√
x < 2−n

√
fx(2n) + 1.

We note that ∀m ∈ Z,m ≥ 1 we have ⌊√m⌋ − 1 ≤
√
m − 1 and

√
m + 1 ≤ ⌊√m⌋ + 1.

Since fx(2n) ≥ 1,

⌊
√
fx(2n)⌋ − 1 ≤

√
fx(2n) − 1 and

√
fx(2n) + 1 ≤ ⌊

√
fx(2n)⌋ + 1

so that

2−n (⌊
√
fx(2n)⌋ − 1) <

√
x < 2−n (⌊

√
fx(2n)⌋ + 1)

⇔ −2−n <
√
x − 2−n ⌊

√
fx(2n)⌋ < 2−2n.

Finally, because f√x(n) = ⌊
√
fx(2n)⌋ we have ∣2−nf√x(n) −

√
x∣ < 2−n.



chapter4
ELEMENTARY FUNCTIONS

In Chapter 3, we developed suitable algorithms for the basic arithmetic operations
over our real number representation. �is chapter builds upon these operations to
implement higher-level transcendental functions, and �nally we look at how we can
compare real numbers.
A transcendental function is a function that does not satisfy a polynomial1 equation

whose coe�cients are themselves polynomials, in contrast to an algebraic function,
which does so.�at is, a transcendental function is a function that cannot be expressed
in terms of a �nite sequence of the algebraic operations of addition, multiplication and
root extraction. Examples of transcendental functions include the logarithm and ex-
ponential function, and the trigonometric functions (sine, cosine, hyperbolic tangent,
secant, and so forth).

4.1 Power series
Many common transcendental functions, such as sin, cos, exp, ln and so forth, can
be expressed as power (speci�cally, Taylor) series expansions. Let F ∶ R → R be a
transcendental function de�ned by the power series

F (x) =
∞

∑
i=0
aix

bi .

where (ai)i∈N is an in�nite sequence of rationals. If x ∈ domF ⊆ R, then F (x)
is represented by the approximation function fFx = powerseries({ai}, x, k, n) that
satis�es

∣2−nfFx(n) − F (x)∣ < 2−n

assuming these conditions also hold:

1. ∣x∣ < 1,
2. ∣ai∣ ≤ 1 for all i,
3. ∣∑∞

i=k+1 aix
i∣ < 2−(n+1).

1A polynomial function is a function that can be expressed in the form f(x) = anx
n + an−1x

n−1 +
. . . + a2x

2 + a1x + a0 for all arguments x, where n ∈ N and a0, a1, . . . , an ∈ R.

31
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�e powerseries algorithm generates an approximation function Z → Z representing
the function application F (x)—that is, the partial sum of k terms from the power
series speci�ed by ai, bi, x representing F (x) to the given precision n. We aim to
specify powerseries and prove the correctness of the general power series it generates.
�is general approach means it is then trivial to prove the correctness of any function
expressible as a power series—we need only demonstrate that the conditions 1. and
2. hold.

�e �rst two conditions ensure suitably fast convergence of the series. �e third
condition ensures the series truncation error is less than half of the total required error,
2−n. We shall use the remaining 2−(n+1) error in the calculation of

k

∑
i=0
aix

i. (4.1)

Rather than calculating each xi in (4.1) directly with exact real arithmetic using our
previousmethods, we cumulatively calculate eachxi+1 using our previously calculated
xi. We construct a sequence (Xi) of length k + 1 estimating each xi to a precision of
n′, where n′ is chosen so that the absolute sum of the errors is bounded by 2−(n+1).
�en the error for the entire series is k ⋅2−n′ + ∣∑∞

i=k+1 aix
i∣ < 2−(n+1)+2−(n+1) = 2−n.

Clearly when estimating xi we need to evaluate the argument x to an even higher level
of precision, n′′, where n′′ > n′. Speci�cally, based on what we learnt in section 3.2.1
whilst reasoning about addition, we take n′′ = n′ + ⌊log2 k⌋ + 2. We can construct
(Xi) using only the value of fx(n′′) as

X0 = 2n
′′

, Xi+1 = ⌊Xi ⋅ 2−n
′′

fx(n′′)⌉ .

such that ∣2−n′′Xi − xi∣ < 2−n′ . Computing ∑ki=0 aix
i involves summing over k + 1

terms, each of have an error of ±2−(n+⌊log2 k⌋+2). �erefore the error in the sum is
bounded by±2−(n+1). So we haven′ = n+⌊log2 k⌋+2 and thusn′′ = n′+⌊log2 k⌋+2 =
n+2⌊log2 k⌋+4.�en we use the algorithm de�ned and proved in [16] where initially
we have T = ⌊a0X0⌉ for terms, S = T for our �nite sum of terms, and E = 2⌊log2 k⌋:

powerseries({ai}, x, k, n):
do

do
αi+1 = ⌊αi2−n

′′

fx(n′′)⌉;
i = i + 1;
T = ⌊aiXi⌉;

while (ai == 0 and i < t)
S = S + T ;

while (T > E)
return ⌊ S

2n+n′ ⌉
end

So the approximation function fFx = ⌊ S
2n+n′ ⌉.
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4.2 Logarithmic functions
4.2.1 Exponential function

�e exponential function ex, or exp(x), for any real number x can be de�ned by the
power series

ex =
∞

∑
i=0

xi

i!
= 1 + x + x

2

2!
+ x

3

3!
+⋯.

We represent expx for any real number x as the accuracy function

fexpx
(n) = powerseries({ai}, x, k, n)

where ai =
1
i!
for i = 0,1,2, . . .,

x = x,
k = max(5, n).

To prove the correctness of fexpx
, all we need do is show conditions 1, 2 and 3 from

the power series approximation de�nition hold. It is trivially clear that ∣ai∣ ≤ 1 for all
i ∈ N so that condition 1 is satis�ed. Assume for now that condition 2 holds so that
∣x∣ < 1. To show condition 3 is satis�ed, we note that the truncation error is less than
the k-th term, x

k

k! .�erefore, for k ≥ 5, we have

∣
∞

∑
i=k+1

xi

i!
∣ < ∣x

k

k!
∣ < 1

k!
≤ 1

2n+1 .

Let us return to condition 2. Rather than requiring ∣x∣ < 1, we shall enforce a stricter
restriction, ∣x∣ ≤ 1

2 , since the exponential series converges extremely quickly in this
range. For any real number x outside of the range [−1

2 ,
1
2], the identity exp(x) =

exp (x2 +
x
2) = (exp (x2))

2 allows us to calculate exp(x) using exp (x2). Clearly re-
peated application of this identity strictly scales the argument until it is in the range
[−1

2 ,
1
2], since there always exists a k ∈ N such that ∣ x2k ∣≤ 1

2 . �us, we can represent
the e�cient computation of exp(x) for any real number x in terms of exp ( x

2k), raised
to the power k. We refer to this technique as range reduction and make repeated use
of it in the remainder of this chapter.

4.2.2 Natural logarithm

�e natural logarithm lnx of a real number x > 0 can be de�ned in terms of the Taylor
series expansion of ln(1 + x):

ln(1 + x) =
∞

∑
i=1

(−1)i+1xi

i
= x − x

2

2
+ x

3

3
−⋯ for −1 < x ≤ 1.

We represent lnx for any real number ∣x∣ < 1 as the accuracy function

flnx(n) = powerseries({ai}, x, k, n)
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where ai =
(−1)i+1

i
for i = 1,2,3, . . .,

x = x,
k = max(1, n).

Again, it is clear that ∣ai∣ ≤ 1 for all i ∈ N so that condition 1 is satis�ed. To show that
condition 3 holds, we observe the truncation error is less than the k-th term, (−1)i+1

i .
�erefore, for k ≥ 1, we have

∣
∞

∑
i=k+1

(−1)i+1xi

i
∣ < ∣(−1)k+1xk

k
∣ < (−1)k+1

k
≤ 1

2n+1 .

For ∣x∣ < 1
2 ,�e series converges rapidly for ∣x∣ <

1
2 , and so we aim to scale the argu-

ment into this range. We consider a number of cases in order to fully de�ne lnx over
the positive reals in terms of this series:

1. If 1
2 < x < 3

2 , then
1
2 < x − 1 < 1

2 so that we may de�ne lnx = ln(1 + (x − 1)).

2. If x ≥ 3
2 , then there exists a k ∈ N such that 1

2 < x
2k < 3

2 . We note ln ( x
2k ) =

lnx − k ln 2 so that we can de�ne lnx = ln (1 + ( x
2k − 1)) + k ln 2.2

3. If 0 < x ≤ 1
2 , then

1
x ≥ 2 so that we can use the identity lnx = − ln 1

x and then
apply case 2 above.

4.2.3 Exponentiation

Since exp and ln are inverse functions of each other, and recalling the logarithmic
identity lnxy = y ⋅ lnx, we can de�ne the computation of arbitrary real powers of a
real number x as

xy = exp (y ⋅ lnx) .

Note how we could have de�ned the square root operation derived in 3.5 by setting
y = 1

2 such that
√
x = exp (1

2 lnx). More generally, we implement the nth root of a
real number x as the function n

√
x = exp ( 1

n lnx).

4.3 Trigonometric functions
4.3.1 Cosine

�e cosine of any real number x can be expressed as the Taylor series expansion

cosx =
∞

∑
i=0

(−1)i
(2i)! x

2i = 1 − x
2

2!
+ x

4

4!
− x

6

6!
+⋯.

2We de�ne the constant ln 2 later in section 4.4.2.
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We represent sinx for any real number x as the accuracy function

fcosx(n) = powerseries({ai}, x, k, n)

where ai =
(−1)i
(2i)! for i = 0,1,2, . . .,

x = x2,

k = max(2, n).

It is trivially obvious that ∣ai∣ ≤ 1 for all i ∈ N. To show condition 3 holds, we note
that the truncation error will be less than the absolute value of the k-th term, x2k

(2k)! .
�erefore, for k ≥ 2, we have

∣
∞

∑
i=k+1

(−1)i
(2i)! x

2i∣ < ∣ x
2k

(2k)! ∣ <
1

(2k)! ≤
1

2n+1

so that condition 3 holds. Finally, we can perform range-reduction to ensure the argu-
ment x falls in the range (−1,1) as required by condition 1. We use the double-angle
formula

cosx = 2 cos2 (x
2
) − 1.

4.3.2 Other trigonometric functions

We can de�ne and prove the correctness of the inverse sine function arcsin in a sim-
ilar way. �e same goes for most of the other trigonometric functions, whether they
are standard, inverse or hyperbolic. However, once we have de�ned some basic func-
tions, we can use trigonometric identities that involve these functions to determine
a number of additional trigonometric functions. �is saves us from deriving their
power series and proving their correctness. Table 4.1 overleaf lists a number of trigo-
nometric functions de�ned in terms of functions we have previously reasoned about.

4.4 Transcendental constants
4.4.1 Pi

It is well known that the arctan Taylor series expansion of the reciprocal of an integer

arctan 1
x
=

∞

∑
i=0

(−1)i
(2i + 1)x2i+1 , x ∈ Z, x ≥ 2

convergences very rapidly and it is easy to show that this expansion satis�es our three
conditions and so we can represent it. �is power series can be used to quickly and
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Function Identity de�nition

Hyperbolic sine sinhx = e
x − e−x

2

Hyperbolic cosine coshx = e
x + e−x

2

Hyperbolic tangent tanhx = sinhx
coshx

= 1 − 2
e2x + 1

Inverse hyperbolic sine arsinhx = ln (x +
√
x2 + 1)

Inverse hyperbolic cosine arcoshx = ln (x +
√
x2 − 1)

Inverse hyperbolic tangent artanhx = 1
2 ln 1 + x

1 − x
Tangent tanx = sinx

cosx
Sine sinx = cos (π2 − x)

Inverse cosine arccosx = π
2
− arcsinx

Inverse tangent arctanx = sgnx ⋅ arccos 1√
x2 + 1

Table 4.1: Trigonometric identities

easily compute π. We begin by noting π
4 = arctan 1. By the familiar double-angle

formulae,

tan 2θ = 2 tan θ
1 − tan2 θ

⇒ tan(2 arctan θ) = 2θ
1 − θ2

⇒ 2 arctan θ = arctan( 2θ
1 − θ2)

and recalling the di�erence identity,

arctanα − arctanβ = arctan( α − β
1 + αβ ) .

�erefore, we have

4 arctan(1
5
) = 2 arctan

⎛
⎝

2 (1
5)

1 − (1
5)

2
⎞
⎠
= arctan

⎛
⎝

2 ( 5
12)

1 − ( 5
12)

2
⎞
⎠
= arctan(120

119
)

and

arctan(120
119

) − arctan( 1
239

) = arctan
⎛
⎝

120
129 −

1
239

1 + (120
119) (

1
239)

⎞
⎠
= arctan 1.
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Hence, we can e�ciently compute π using the reciprocal integer Taylor series expan-
sion of arctan with

π = 16 arctan(1
5
) − 4 arctan( 1

239
) .

Alternatively, we could attempt to use the more-recent Bailey-Borwein-Plou�e (BBP)
identity

π =
∞

∑
i=0

1
16i

( 4
8i + 1

− 2
8i + 4

− 1
8i + 5

− 1
8i + 6

)

derived in [2], which has been shown to be more e�cient in terms of correct digits
calculated per second.

4.4.2 ln 2

We can compute the important mathematical constant ln 2 using the Taylor series
expansion for ln(1 + x) by noting that

7 ln(1 + 1
9
) − 2 ln(1 + 1

24
) + 3 ln(1 + 1

80
)

= ln(107 ⋅ 242 ⋅ 813

97 ⋅ 252 ⋅ 803 )

= ln 2.

4.4.3 e

Trivially, we may represent the constant e using our representation of the exponential
function from section 4.2.1. We have

e = exp(1) = (exp (1
2))

2
.

4.5 Comparisons
Comparison presents a slight problem, since it is undecidable on real numbers. If we
consider the equality comparison between two real numbers, both π, represented as
in�nite decimal streams, no algorithm that determines whether or not they are equal
will ever be able. We need a practical solution to this problem, in our implementation
we provide a comparison operator that identi�es two values as equal if they are within
a speci�ed tolerance. We refer to this as relative comparison and it is guaranteed to
terminate but not guaranteed to be correct. Alternatively, we provide a comparison
operator that always returns the correct result but could potentially loop forever.�is
is called the absolute comparison. Proofs for these comparisons can be found in [16].





PART II

IMPLEMENTATION





chapter5
THE EXACTLIB LIBRARY

5.1 Why C++?
One of the major aims of my project was to produce a library for exact real arithmetic
that could be easily imported and used by applications. We also wanted to bring exact
real arithmetic to a more mainstream programming audience, which ultimately lead
us to an imperative, rather than functional, language. Speci�cally, we chose C++, and
in this section we outline a number of reasons why.
It is well known that code written in C++ compiles to very e�cient executables.

Despite its e�ciency, C++ remains �exible, particularly through its extremely power-
ful template system and support of full object-oriented programming. Especially im-
portant to us is the technique of template metaprogramming, where templates are
used by the compiler to generate temporary source code before merging them with
the rest of the source code for compilation. As we shall see, this a�ords a degree of
power simply unachievable by a language such as Java. Unlike many popular lan-
guages, such as Java, C# and Python, C++ grants the programmer full control over
the heap.�is is useful when we come to optimise expression trees and enables future
work to perhaps improve performance.
A focus on ease of use means it is important for our library to seamlessly integrate

with the language. In fact, from a design point of view, we aim to produce a library
suitable for inclusion in the language’s standard library, as an alternative to using the
language’s �oating-point type(s). Seamless integration with the language means the
addition of two real numbers should look identical to the addition of two numbers
of a built-in integral or �oating-point type. C++ provides facilities such as operator
overloading that helps us achieve just this, allowing us to create data types that seam-
lessly integrate with the language. One of the major reasons for disregarding Java is its
complete lack of support for operator overloading. We believe integration is import-
ant, since most existing arithmetic libraries do not �t well at all with their respective
languages. For example, iRRAM [23], written in C++, requires explicit initialisation—
including setting precision levels—and release of the library before and a�er use, and
cannot use standard C++ streams for input and output. It would require tedious re-
writing to use iRRAM in an existing code base.
Finally, C++ is one of the most popular languages around today—if not themost

popular. Compilers exist for nearly every platform and its use is ubiquitous across
science, engineering and industry. So, not only will a library written in C++ have a
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large potential audience for its use, but it will also coexist in an active community of
trained mathematicians and programmers that may help further work on the library.

�e downside of C++ is that, from a design perspective, it is starting to show its
age. Newer languages likeC# and Java have amore �exible, cleaner and simpler syntax.
�ey �x many of the mistakes made during the design and evolution of C++, and are
generally a lot easier to use when working with a code-base of any substantial size.
C++ is also a notoriously large and complex beast—something I can attest to as I near
the end of my project!

5.1.1 Naming conventions

User code inmodern object-oriented languages, such as C++, C# and Java, commonly
follows a relatively standard naming convention for identi�ers. Pascal casing is used
for classes, namespaces, interfaces, and so forth, so that a class might be named Ex-
pressionFactory. Otherwise, Camel casing is used for local and instance variables,
parameters and methods—for example, a variable could be named isReadable, or a
function removeAll.

�e C++ standard library, called the Standard Template Library (STL), adheres
to a rather di�erent style, inherited from its C ancestry. Since we wish for ExactLib
to integrate nicely with C++, we follow the STL’s naming conventions. �e popular
Boost [11] collection of C++ libraries, a number of which are candidates for inclusion
in the upcoming C++0x standard, follow the same naming convention. Speci�cally,
we use a lowercase/underscore naming convention for nearly every identi�er apart
from template parameters, which use Pascal casing. For example, a class and function
might be called reverse_iterator and for_each, whilst a template parameter could be
UnaryFunction. Since primitive types such as int and double follow the same naming
convention, it would look out of place if we were to name our real number type Real.
Whilst it may be more aesthetically pleasing, it is nonetheless necessary to follow the
style of the STL if we wish for our library to integrate well.

5.2 Integer representation
Recalling our scaled functional representation fromDe�nition 2.4, a real number x is
represented by a function fx that satis�es

∣2−nfx(n) − x∣ < 2−n.

To evaluate a real number to a required precision, we pass fx an integer n specifying
the desired accuracy. We scale the value returned from fx(n) by dividing by 2n.�e
use of n as an exponent during scaling means that very large numbers can be achieved
for relatively small values of n.�erefore, in practice, we do not require more than a
32-bit integer to store n before computational time complexity becomes the restrictive
factor. In C++, a suitable type that we shall use is the built-in int. However, the integer
returned by fx(n) could potentially be huge. To achieve exact real arithmetic through
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theoretically1 in�nite-precision calculations, we shall require an arbitrary-precision
integer type.
Anumber ofC++ libraries providing arbitrary-precision integer arithmetic exist—

an up-to-date list can be found on Wikipedia. �e GNU Multiple Precision Library
(GMP) [18], actually written in C but for which a C++ wrapper is provided, is gen-
erally accepted as the fastest and most comprehensive. However, one of the major
objectives of ExactLib is independence—we desire a standalone library for ease of in-
stallation, with no dependencies other than the STL.�erefore, we provide our own
simple implementation of arbitrary-precision integer arithmetic, but allow the user to
specify a di�erent arbitrary-precision library—such as the more e�cient and stable
GMP—at compile-time if they have it installed. Our simple big-integer arithmetic is
based entirely on the C++ xintlib library, which crucially is based on solid theory that
proves its correctness [28]. In any non-trivial use, it is advisable to install and use the
GMP, but our simple implementation lowers the barrier of entry for quick and easy
use.
We implement our real arithmetic using an abstract class big_integer that acts as

an interface, specifying all the operations an arbitrary-precision integer representation
must support—addition, multiplication, absolute value, rounding up/down, and so
on. Two concrete classes simple_integer and gmp_integer inherit from big_integer,
with the former realising our simple implementation and the latter being a wrapper
for the GMP library. If a user wishes to use a di�erent arbitrary-precision integer
arithmetic library, all they need do is write one that realises the big_integer inter-
face or write a conforming wrapper for an existing library. For example, the provided
gmp_integer wrapper inherits big_integer and realises the operator+method using
GMP’smpz_add function to implement the addition of two GMP integers:

gmp_integer gmp_integer::operator+(const gmp_integer& rhs)
{

gmp_integer result;
mpz_add(result.value, this->value, rhs.value);
return result;

}

Here, the value�eld is anmpz_t object, which isGMP’s representation of an arbitrary-
precision integer.

5.3 Library overview and usage
Before we describe the internals of the ExactLib library, it helps to brie�y demonstrate
how the library is used.�is will provide scope for our later,more technical discussion.

ExactLib is packaged in the exact namespace and the main type it exposes is the
real type. A real object represents exactly a real number, and �nite approximations can
be taken to any precision the user desires. Wehave designed the real class to resemble a

1Limited only by time and hardware constraints.
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built-in primitive type as closely as possible—arithmetic operations and comparisons
on reals are supported as overloaded operators (+, ∗, <, >=, etc.) in much the same
way they are for built-in types like int and double. Similarly, functions like sin, abs
and exp are provided for reals in the same way they are for integral and �oating-point
types in the standard C++ cmath header �le. We support outputting and inputting to
and from C++ streams, so that we may write and read reals to and from the standard
input or some �le in the same way we would with any other variable.

5.3.1 Constructing real numbers

A real object representing a real number can be constructed in a number of ways:

• From an integer, e.g. real x = 10.�is is the most basic representation of a real
and uses Algorithm 3.1 for the functional representation of integers.

• From a string, e.g. real x = “45.678”.�is represents exactly the rational num-
ber 45.678 by parsing the string and expressing it as a fraction 45678/1000.�e
real created is the result of dividing two real integer objects, i.e. real(45678) /
real(1000).

• From an existing real, e.g. real x = y or real x(y). �is creates a deep copy of
the real object y, and the two variables are independent of each other.

• From a provided library constant, e.g. real::pi. �is is prede�ned by ExactLib
and exactly represents π as the series expansion derived in section 4.4.1. Tran-
scendental constants are de�ned as public static constants in the real class so
that they are not dumped unquali�ed in the global namespace.

• Via operations on reals, e.g. real(10) + real(5), and functions, e.g. real::sin(2).
Similarly to the transcendental constants, functions like sin are scoped to the
real class to prevent namespace clashes with their inexact namesakes de�ned in
C++’s cmath header �le.

5.3.2 Evaluating real numbers

�e real class provides a method evaluate(int n) that evaluates the real number to a
precision n and returns the approximation’s numerator as an unscaled big_integer.
However, this large integer value is of little use in terms of a outputting a user-friendly
representation. �erefore, our library overloads the << and >> operators so that real
objectsmay output to and read from the standardC++ input/output streams (iostreams).
�is allows us to print a decimal representation of a real number to a stream. By
default, numbers are outputted to 2 decimal places, but we support the use of the
iostream manipulator std::setprecision with reals to set the precision of the output.
Once a precision level has been set, this level will be used for the remaining output,
but we can use the std::precisionmanipulator mid-stream to switch between di�erent
numbers of decimal places. For example, the code
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real x;
real pi = real::pi;
real e = real::e;

std::cout << "> ";
std::cin >> x;

std::cout << x << std::endl
<< std::setprecision(40) << pi << std::endl
<< std::setprecision(20) << e << std::endl;
<< real::ln2 << std::endl;

will output the user-provided number to 2 decimal places, π to 40 decimal places, e
to 20 decimal places and ln 2 to 20 decimal places:

> 103.212
103.21
3.1415926535897932384626433832795028841972
2.71828182845904523536
0.69314718055994530942

Clearly providing an iostreammanipulator for reals over streams is a lot more �exible
and design-wise more appropriate than providing a static method on real that sets its
output precision.
In addition to evaluating a real number for output, we overload cast operators

so that a real number can be cast to double, float and signed/unsigned long and int
types. Naturally, the user should take care and be aware during casting due to the high
potential to lose precision.

5.3.3 Performing operations and comparing real numbers

�e real class overloads a number of arithmetic operators, allowing the same style of
arithmetic manipulation as the primitive types. Elementary functions are provided
as public static methods on the real class, e.g. real::sqrt(const real& x). �is pre-
vents namespace con�icts with the standard cmathmathematical functions, since we
must qualify our functions with the class scope real::. We discuss the operations and
functions on reals in detail in the following sections, since they arguably form the
centrepiece of our project.
As we explored in section 4.5, comparing real numbers is slightly cumbersome.

�ere are two types of comparison that can be performed: absolute and relative.�e
comparison operators <, >, ==, <=, etc. are overloaded for real objects and use the
static method real::comparisons_type(comparison t), where comparison is an enu-
meration type with two enumerators comparison::absolute and comparison::relative,
to set whether absolute or relative comparison should be performed by the overloaded
comparison operators. By default, we use absolute comparison since this is the most
practical and is �t for most purposes.
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5.3.4 Higher-order functions

Finally,ExactLib explores an alternativeway to represent computations over real num-
bers. Inspired by functional programming languages, we wrap our operations and
functions over the reals as C++ functors, so that they act as �rst-class citizens. To
prevent them clashing with their traditional namesakes, we place these functors in a
separate namespace, exact::lambda. To demonstrate, assume we have issued appro-
priate namespace using directives so that the functors can be used unquali�ed:

typedef function<real, real> real_function;

real_function f = compose(sin, sqrt);
real x = f(pi);

real_function logistic = 4 * id * (1 - id);
for (int i = 0; i < 20; ++i) {

x = logistic(x);
std::cout << x << std::endl;

}

�en a�er the �rst function application, x is the result of the equivalent traditional
computation real::sin(real::sqrt(real::pi)) and represents the exact real number sin

√
π.

�e function logistic represents the well-known logistic iteration xi+1 = 4 ⋅xi ⋅(1−xi)
and illustrates how ExactLibmakes performing iterations using exact real arithmetic
easy. Recall that we have seen �oating-point arithmetic fail whilst performing itera-
tions, so the ease of performing them instead using ExactLib’s concise higher-order
functions is particularly useful.

5.4 Library internals
5.4.1 real and base_real classes

�emain class exposed to users, real, is actually just a template specialisation in which
we use our simple_integer implementation for arbitrary-precision integer arithmetic
and the built-in int type for specifying precision:

template <class Result, class Arg = int>
class real { ... };

typedef base_real<simple_integer> real;

A user may choose to use the GMP integer library discussed earlier by changing the
�rst template argument to gmp_integer, or by de�ning additional typedefs so that
multiple real types with di�erent arbitrary-precision integer arithmetic libraries may
be used in the same application.�is generic approach is seen throughout C++’s STL
and the Boost libraries; for example, the ostream type, used for �le and standard out-
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put, is in fact a typedef for the generic basic_ostream class instantiated with template
argument char.

�e base_real class is a generic class in which we use C++ templates to specify the
arbitrary-precision integer type and precision argument type2 used in representing the
reals. For simplicity’s sake, in the remainder of this sectionwe shall refer simply to real,
although in general really we mean base_real.

�e real class is themain type that users interact with and represents real numbers
exactly. When an operation is performed upon a given real, a new real object is cre-
ated containing information about the operation and references to the real object(s)
representing the operation’s argument(s). No evaluation of the actual real number is
done—instead we build an expression tree, whose nodes represent operations, that
describes the computation. Only when the user requests an approximation of some
precision to the real number—either by calling themethod evaluate(int n) or output-
ting the real to a stream—is the real number evaluated. A number of constructors are
de�ned that allow users to construct real objects from int, float or string variables. A
default constructor that creates a real object representing zero is also provided.
Whilst the real class is employed by users to create real numbers and perform ex-

act calculations on them, it actually only provides an interface, or glue, between the
user and the expression tree of functions representing a real number. �e actual un-
derlying structure is based on the abstract class functional_real, which encapsulates
the notion of an approximation function as introduced in De�nition 2.4, and the hier-
archy of operations and functions its subclasses form. Every real object has a private
�eld internal that points to its underlying functional_real expression tree of approx-
imation functions. �e functional_real type and its subclasses comprise the core of
our real number representation and is described in section 5.4.2. All arithmetic oper-
ations and functions de�ned on real objects actually work with their internalmember
variable. For example, we overload the addition operator + for reals in the following
manner:

real operator+(const real& x, const real& y)
{

return real(new functional_add(x.internal, y.internal));
}

Here, functional_add is a concrete subclass of functional_real. �e result is a new
real object with its internal pointer set to a new expression tree constructed on the
heap. �is tree has the approximation-function representation of an addition, func-
tional_add, at its root and the trees of arguments x and y as children. Note the real
objects x and y are not a�ected—the new functional_add object links directly to their
internal pointers. In this way, the expression trees of x and y are le� unchanged and
intact.

2As we have seen, int su�ces and is the template parameter’s default type, but we allow the user to
specify otherwise for the purpose of generality.
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Similarly, updating the value of a real variable using the assignment operator =
should not cause the objects referenced in the assignee’s expression tree to be des-
troyed, unless no other expression tree references them.�is suggests we require some
form of reference-counted pointers to keep track of the operation nodes we have al-
located on the heap. Whilst on the surface this may suggest a language with built-in
garbage collection such as Java orC#might have beenmore suitable, having full power
over the heap means manipulation of expression trees to optimise evaluation may be
possible in future work. We discuss expression trees and reference-counted pointers
later in section 5.5.

5.4.2 functional_real and its subclasses

�e functional_real class and the hierarchy it admits form the core of our implementa-
tion. Its name refers to our functionalCauchy representation, introduced inDe�nition
2.4, of real numbers as approximation functions.�e functional_real class is abstract
and encapsulates the notion of an approximation function. Operations and functions,
like those de�ned in Chapters 3 and 4, are implemented as concrete subclasses of the
functional_real type. We package operations into classes that inherit functionality so
that the user can focus on providing the operation-speci�c function de�nition. Each
operation (+, ∗, etc.) or function (sin, exp, etc.) applied to functional_reals creates
a new object of the corresponding subclass type, e.g. functional_multiply. Since the
new object generated belongs to a class derived from functional_real, we can con-
tinue to apply operations and functions on the new object, representing more and
more complex expressions. In this sense, an expression tree—or directed acyclic graph
(DAG)—is built, where nodes correspond to subclass objects containing operation se-
mantics.
Since the functional_real class and its derivatives should embody the notion of a

function, we implement them as functors. AC++ function object, or functor, allows an
object to be invoked as though it were an ordinary function by overloading operator().
We begin by de�ning an abstract base class function3:

template <class Arg, class Result>
class function : public std::unary_function<Arg, Result>
{
public:

virtual Result operator()(const Arg& x) const = 0;
};

If f is an object of a concrete derivative of function, then f(n) invokes the operator()
method and returns an object of type Result given the argument n of type Arg. In our
case, Arg is the type used to specify the precision, i.e. int, and the result type Result
is an arbitrary-precision integer type, e.g. simple_integer. Subclasses then override
operator() to implement their class-speci�c functionality.

3Note std::unary_function is a base class from the STL that simply provides twopublic user-friendly
typedefs argument_type and result_type for Arg and Result.
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On top of function, we provide a subclass functional_real, also abstract and gen-
eric. It adds approximation function-speci�c features, such as the caching of approx-
imations which we discuss later, and forms the practical root of our hierarchy. A �-
nal abstract layer is de�ned and comprises two ‘helper’ classes that slightly simplify
creation of the speci�c concrete unary and binary approximation function classes,
e.g. square root and addition.�e binary helper has the following form:

template <class Arg, class Result>
class binary_functional : public functional_real<Arg, Result>
{
protected:

functor_ptr<Arg, Result> f1;
functor_ptr<Arg, Result> f2;

public:
binary_functional(const functional_real<Arg, Result>* p1,

const functional_real<Arg, Result>* p2)
: f1(p1), f2(p2) {}

};

and the unary class is similar.�e functor_ptr type is our reference-counted pointer
type. Internally, it contains a pointer to a functional_real and manages a static table
of these pointers to heap memory, with a count for the number of objects that link to
each tree node inmemory.�e functor_ptr class also provides some syntactic sugar: it
overloads operator() so that we do not have to get the internal pointer and dereference
it before calling operator() on the functional_real object it points to—that is, we can
write f1(n) rather than (*(f1.get()))(n).

�e virtual method operator()(int n) declared for the functional_real hierarchy
should be the main focus for subclasses. It is to be overriden by concrete subclasses
to compute an approximation to precision n for the real number represented by the
subclasses’ operation.�is method de�nes the implementation-speci�c semantics of
an operation. In Chapters 3 and 4 we proved the correctness of a number of basic
operations and elementary functions on real numbers in terms of integer arithmetic.
Implementation is then trivial using our class structure and the integer arithmetic
type Result, which should be a concrete subclass of big_integer, e.g. gmp_integer.
For example, given two functional representations fx and fy of the real numbers x
and y, we de�ned a functional representation fx+y of the addition x+ y as fx+y(n) =
⌊fx(n+2)+fy(n+2)

4 ⌉. It is very easy to implement this de�nition as a class functional_add
that inherits functional_real viabinary_functional andoverrides the operator()method
to provide the speci�c addition semantics:

template <class Arg, class Result>
class functional_add : binary_functional<Arg, Result>
{
public:

functional_add(const functional_real<Arg, Result>* x,
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const functional_real<Arg, Result>* y)
: binary_functional<Arg, Result>(x, y) {}

Result operator()(const Arg& n) const
{

return Result::scale(f1(n+2) + f2(n+2), -2);
}

};

Here we assume big_integer provides a scale(x, k)method that shifts4 an integer by
k (i.e. multiplies x by 2k) and rounds the result. f1 and f2 are functor_ptrs set to x
and y respectively, which are each an object of a concrete subclass of functional_real
that in turn implements its functional semantics through operator().
New operations on real numbers can be de�ned by �rst reasoning about their

correctness as we did in Chapters 3 and 4. ExactLib then makes it very easy to im-
plement this operation by deriving a class from a helper unary_functional or bin-
ary_functional that overrides the operator()method in order to realise the operation’s
speci�c semantics. In this way, we have a mechanism that simpli�es and standardises
the inclusion of new real operators/functions for us as the developers of the library or
indeed for users.

5.4.3 Hierarchy of functional_real subclasses

function

functional_real

unary_functional binary_functional

functional_neg, functional_abs,
functional_sqrt, functional_int,
functional_cos, functional_exp,
functional_ln, functional_arctan

functional_add, functional_multiply,
functional_inverse

Figure 5.1: Hierarchy of core operation subclasses

4Recall the shift function is de�ned in Algorithm 3.4.
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5.5 Expression trees
In this section, we address the problem of unnecessary growth due to common subex-
pressions during the formation of expression trees. We of course aim to minimise the
size of trees—as we noted in Chapter 2, trees can grow to be very large and this can be-
come quite memory intensive since we must store each node. Consider the following
example:

real x = real::sqrt(2);
for (int i = 0; i < 2; ++i)

x = x + x;

As addition operations are performed, a naive implementation might build a directed
acyclic graph for computation similar to that of Figure 5.2, where two edges emanat-
ing from a node connect to the addition operation’s operands. We have 7 nodes, but
really only 3 are unique and therefore necessary. Noting that nodes are duplicated, a
better implementation might form the expression tree in Figure 5.3, whereby multiple
references (pointers) may point to the same computations.

4x

2x 2x

x
x x

x

Figure 5.2: DAG with single references.

4x

2x

x

Figure 5.3: DAG with multiple references.

5.5.1 Reference-counted pointer type

We have already seen that each time an operation is encountered, we return a real
whose internal pointer references a newly created object of a functional_real subclass
type. To achieve the above optimisation, we wish to allow many objects of type real
to point to the same functional_real-derived object.�ese objects are created on the
heap and pointers are used to link them to real objects. However, C++ does not sup-
port garbage collection, and so we must keep track of our functional_real subclass
objects. If such an object has no pointer le� referencing it, it should be freed from the
heap. Otherwise, if at least one real object points to it, the object should of course stay
on the heap. �e functor_ptr type is our reference-counted pointer type. Internally,
it contains a pointer to a functional_real such that it can reference objects of any type
that inherits functional_real.�e class manages a static table of these pointers to heap
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memory, with a count for the number of objects that link to each tree node inmemory.
When the count falls to zero, we free the memory from the heap.

5.5.2 Caching

Finally, to improve performance, each functional_real stores a big_integer repres-
enting its best approximation known to date and the precision this was made at. If a
call to operator()(int n) requests a precision less than or equal to a computation we
have already performed, we simply return our cached big_integer numerator, shi�ed
as necessary; otherwise the call proceeds and the cache is updated.

�is is of particular bene�t to performance when we have a binary operation
whose operands are the same object (recall Figure 5.3). For most binary operations,
when an approximation is requested, it �rst computes an approximation to some pre-
cision of the �rst argument, and then an approximation to the second argument to the
same precision. Without caching, wewould needlessly perform the same computation
twice. With it, we

5.6 Higher-order functions
ExactLib explores a novel alternative to representing arithmetic computations over
real numbers in an imperative language.�is is inspired by functional programming
languages, where functions are considered �rst-class objects. Speci�cally, this means
they can be passed as arguments to other functions, returned as values from other
functions, and assigned to variables or stored in data structures.
Let us consider the example of function composition. Mathematically, given two

functions f ∶ Y → Z and g ∶ X → Y , their composition is a function f ○ g ∶ X →
Z such that (f ○ g)(x) = f(g(x)). In a functional language such as Haskell, the
composition operator (.) allows us to de�ne a composite function:

descending :: Ord a => [a] -> [a]
descending = reverse . sort

We can then apply descending to list arguments, which will �rst sort and then reverse
the given list. ExactLib provides similar higher-order function capabilities for func-
tions over reals. �e classes that support this functionality are found in the lambda
namespace of exact. Assuming we have issued namespace using directives for ex-
act::lambda::compose, exact::lambda::sqrt, etc., an example of usage might be:

function<real, real> safe_sqrt = compose(sqrt, abs);
real root = safe_sqrt(-2);

Clearly C++ cannot support quite the same level of syntactic conciseness a�orded by
Haskell, but our higher-order o�erings are still very useable and represent an interest-
ing alternative to the more traditional imperative style of arithmetic we have imple-
mented.
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AlthoughExactLib aims to integrate as well as possible with imperative C++ code,
we believe a functional-style approach to computation is a worthwhile addition. It is
reasonable to assume anyone using an exact real arithmetic library is doing so to per-
form mathematical calculations, and it is well known that functional languages and
function-style approaches are highly suited tomathematical endeavours. Calculations
written in are likely easier translated into a functional-style calculus. We bring the per-
formance bene�ts of C++ together with—at least some—of the elegance of functional
programming.

5.6.1 Implementing higher-order functions

Returning to the composition example, we can de�ne the higher-order function as

template <class Func1, class Func2>
class composition : public function<typename Func2::argument_type,

typename Func1::result_type>
{
private:

Func1 f;
Func2 g;

public:
composition(const Func1& x, const Func2& y) : f(x), g(y) {}

typename Func1::result_type
operator()(const typename Func2::argument_type& x) const
{

return f(g(x));
}

};

and we provide a user-friendly helper function for constructing composition function
objects:

template <class Func1, class Func2>
inline composition<Func1, Func2> compose(const Func1& f1, const Func2

& f2)
{

return composition<Func1, Func2>(f1, f2);
}

�e composition class supports the general composition of functions with di�ering
domains and ranges, but for our composition we shall only instantiate the template
with functions of type real_functor<real, real>. �e real_functor wraps a func-
tional_real subclass as a �rst-class object.�at is, a functor whose operator()method
applies the given real argument to the operation represented by the functional_real
subclass, thus returning a real number that is the result of a function application:
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template <class UnaryFunctional>
class real_functor : public function<real, real>
{
public:

real operator()(const real& x) const
{

return real(new UnaryFunctional(x.internal));
}

};

It serves the samepurpose as the static functions real::sin(const real&), etc.: it exposes
operations to the user as �rst-class objects so that they may be used in a higher-order
application such as the composition compose(sqrt, abs). For example, we expose the
square root and absolute value functions as real_functors like so:

namespace lambda
{

static real_functor<functional_sqrt<Arg, Result> > sqrt;
static real_functor<functional_cos<Arg, Result> > cos;
...

}

Returning to the composition class, it should now be clear how it works. Initialisa-
tion of a composition object with two real_functor real functions results in a functor
representing the their composition. When we apply the composition to a real argu-
ment x, its operator()method is invoked with the argument x. In turn, the operator()
method is called on the real_functor g. As we have seen, this has the e�ect of applying
the operation de�ned by g to x, thus creating a new real object g(x).�is real is then
similarly applied to the real function f and we return the real whose expression tree
represents the computation f(g(x)).

5.6.2 Other structural operators

In addition to composition, we have the following two structural operators:

• Product: given two functions f1 ∶ X1 → Y1 and f2 ∶ X2 → Y2, the product
f1×f2 is the function f1×f2 ∶X1×X2 → Y1×Y2 such that (f1×f2)(x1, x2) =
(f1(x1), f2(x2)).

• Juxtaposition: given two functions f1 ∶ X → Y1 and f2 ∶ X → Y2, the juxta-
position ⟨f1, f2⟩ is the function ⟨f1, f2⟩ ∶ X → Y1 × Y2 such that ⟨f1, f2⟩(x) =
(f1(x), f2(x)).

We implement these higher-order functions in a similar way to the composition func-
tor. It would take too long to present their classes so we instead list their helper func-
tion signatures to give the reader an idea of their usage:

function<std::pair<Arg1, Arg2>, std::pair<Result1, Result2> >
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product(const function<Arg1, Result1>& f1,
const function<Arg2, Result2>& f2);

function<Arg, std::pair<Result1, Result2> >
juxtaposition(const function<Arg, Result1>&,

const function<Arg, Result2>&);

5.6.3 Projections

Although we have only provided a unary functor, real_functor, functions of several
variables can be easily implemented using std::pairs or std::vectors to form tuples.
Typically, users only require binary operations, so we provide two specialised projec-
tions on std::pairs and a general one on the ith component of a std::vector of values:

function<Arg, Result1>
first(const function<Arg, std::pair<Result1, Result2> >& f);

function<Arg, Result2>
second(const function<Arg, std::pair<Result1, Result2> >& f);

function<Arg, Result>
projection(const function<Arg, std::vector<Result> >& f, int i);

5.6.4 Partial function application

�e following helper functions return functors with one of the parameters bound to
a value:

function<Arg2, Result>
bind_first(const function<std::pair<Arg1, Arg2>, Result> >& f,

const Arg1& x);

function<Arg1, Result>
bind_second(const function<std::pair<Arg1, Arg2>, Result> >& f,

const Arg2& x);

For example, assuming we have a real_functor wrapper add for the functional_add
addition operator, we could de�ne an increment function on real numbers:

function<real, real> increment = bind_first(add, 1)
std::cout << increment(real::pi); // 4.14159265...

5.6.5 Functional arithmetic operators

If arithmetic operations can be applied to the return type of a function (as we have for
any function that returns a real), then we can de�ne a higher-order addition function.
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For example, if we have two functions f1 ∶ X → Y and f2 ∶ X → Y with + de�ned
over Y , then f1 + f2 ∶X → Y such that (f1 + f2)(x) = f1(x) + f2(x). In the case of
function addition, we provide the following helper function:

function<Arg, Result> operator+(const function<Arg, Result>& f1,
const function<Arg, Result>& f2);

�en we can write

function<real, real> f = lambda::sin + lambda::cos;
real x = f(real::pi);

so that x represents exactly the real number sinπ + cosπ = −1.
Similarly, it is useful to overload arithmetic operators that mix functors and con-

stant values so that we can easily form functions like x↦ f(x) + 5 and x↦ 3 ⋅ g(x).
For example, we have the following helper function overloads for addition:

function<Arg, real> operator+(const function<Arg, real>& f,
const real& k);

function<Arg, real> operator+(const real& k,
const function<Arg, real>& f);
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chapter6
EVALUATION

In this chapter, we evaluate our project both quantitatively and qualitatively. Our
quantitative analysis consists of comparing the runtime performance of our work to
various existing libraries. Qualitatively, we consider the design of our library and its
suitability to exact real number computation.

6.1 Performance
To quantitatively evaluate our project, we compare ExactReal’s runtime performance
against existing exact real arithmetic systems, split into functional and imperative.
We also consider the performance di�erence between using our the libraries simple
arbitrary-precision integer type and the GNU GMP. All tests were performed on a
system with a 2.13 GHz Intel Core 2 Duo processor and 4 GB of RAM running Mac
OS X Snow Leopard.

6.1.1 Comparison to functional language implementations

We present our results in table 6.1. Clearly ExactLib performs comparatively very
well, with the GMP version running signi�cantly faster than our simple provision, as
expected. David Lester’sERA [21] performs the best amongst the functional languages.
�is is probably because, like ExactLib, it is based on a constructive representation of
real numbers, whereas the others use lazy representations. Abbas Edalat et al.’s ICReals
[13] and �urston and �ielemann’s NumericPrelude [29] perform the worst. Both
of these systems are based on lazy representations—IC Reals using linear fractional
transformations and NumericPrelude using a redundant signed digit stream—which
suggests that, despite their elegance, they are not particularly practical in terms of
performance.

6.1.2 Comparison to imperative language implementations

We present our results in table 6.2. Norbert Müller’s iRRAM [23] library is the clear
winner in terms of performance amongst the exact real libraries, and is the closest
match toC++’s �oating-pointdouble type. However, iRRAM uses a bottom-uppropaga-
tion constructive approach, for which we have no proof of correctness for operations.
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Expression ExactLib ExactLib Few Digits ERA IC Reals
(simple) (GMP)

π 1.241 s 0.444 s 9.129 s 4.341 s 7.366 s
logπ 1.984 s 0.692 s 14.543 s 7.654 s 9.918 s
e 3.301 s 2.312 s 19.445 s 14.143 s 17.988 s

sin(tan(cos 1)) 6.341 s 3.003 s > 1 m > 1 m > 1 m
exp(exp(exp(1/2))) 5.778 s 2.220 s ⋅ 47.004 s 27.783 s

π1000 3.135 s 0.789 s > 1 m 44.413 s 40.900 s
sin((3e)3) 5.931 s 2.232 s ⋅ > 1 m > 1 m

Table 6.1: Comparison to functional implementations

Expression ExactLib iRRAM XR CR double
(GMP)

π 0.444 s 0.0985 s 3.304 s 0.831 s 0.00098 s
logπ 0.692 s 0.112 s 5.872 s 0.583 s 0.0010 s
e 2.312 s 0.491 s 11.346 s 3.309 s 0.0028 s

sin(tan(cos 1)) 3.003 s 0.667 s > 1 m 4.131 s 0.0031 s
exp(exp(exp(1/2))) 2.220 s 1.283 s ⋅ 2.990 s 0.0022 s

π1000 0.789 s 0.164 s 18.761 s 0.459 0.0024 s
sin((3e)3) 2.232 s 0.646 s 47.788 s 11.431 s 0.0024 s

Table 6.2: Performance comparison

Hans Boehm’s Constructive Reals (CR) [7] is based on solid theory and proofs of cor-
rectness, and performs well. Whilst their constructive approach is similar, ExactLib
(GMP) is probably only slightly faster because it uses C++ and the GMP rather than
the slower Java and inferior java.math.BigInteger typeCR uses—switching to theGMP
would likely seeCR outperformExactLib since it has beenworked onover a number of
years. Keith Brigg’sXRC [8] performs by far theworst, and this ismost likely because it
uses a lazy representation.�is con�rms our concerns about the lazy approach: even
when using the extremely e�cient C language,1 its runtime performance is still poor.
It is clear that �oating-point arithmetic performs much better. As we have dis-

cussed, this is to be expected due to hardware optimisations and its �nite nature.
Norbert Müller’s iRRAM is the only library that can really compete, but is not without
its shortcomings. However, ExactLib performs well and seems to o�er a good balance
between reasonably-elegant proof and reasonable performance, all in a mainstream
language.

1�is is perhaps not fair: one could rightly argue that C is not at all suited to the implementation of
a lazy system; but the poor results of the functional implementations still stand.
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6.1.3 Empirical correctness

We return to the iteration presented at our introduction in Chapter 1. If we recall, the
iteration should converge to the golden ratio ϕ straight away but when use �oating-
point it strangely converges to 1−ϕ, a completely incorrect and indeed negative num-
ber. Appendix A.2 lists the code that implements this iteration using ExactLib to
perform exact real number computation. Setting the precision to 30, we obtain the
following output:

0: 1.618033988749894848204586834366
1: 1.618033988749894848204586834366
2: 1.618033988749894848204586834366
3: 1.618033988749894848204586834366
4: 1.618033988749894848204586834366
...

Comparing these results to the list of digits known to be correct2 suggests that our
library correctly performs exact real number computation.�is of course was one of
themajor aims and we have provided a solution to the problem presented at the outset
of our project.

6.2 Library design
In this section, we evaluate our project qualitatively. Recurring metrics are the ex-
pressiveness, ease-of-use and extensibility of our design.

6.2.1 Translation between theory and implementation

�e design of our library means it is trivial to implement exact real operations. �at
is, it is easy to translate our proven mathematical algorithms of Chapters 3 and 4, and
any new de�nitions, into code.
In section 5.4.2 we illustrated how we implement the addition operation. As an-

other example, consider the square root function de�ned in Algorithm 3.5. Recall if a
real number x ≥ 0 is represented by the approximation function fx, then the approx-
imation function f√x represents

√
x if it satis�es

∀n ∈ Z . f√x = ⌊
√
fx(2n)⌋ .

To implement this, we simply de�ne an operation class that inherits functional_real
via unary_functional and then overload its operator()method:

template <typename Arg, typename Result>
class functional_sqrt : unary_functional<Arg, Result>
{

2http://ja0hxv.calico.jp/pai/ephivalue.html
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public:
functional_sqrt(const functional_real<Arg, Result>* p)

: unary_functional<Arg, Result>(p) {}

Result operator()(const Arg& n) const
{

return Result::floorsqrt( f(2*n) );
}

};

�e overridden operator() method is the important thing to observe: it implements
the speci�c approximation function de�nition for f√x. Importantly, we note the se-
mantic and syntactic closeness to our mathematical de�nition that providing f as a
functor a�ords. �is suggests that we do not need to prove the correctness of our
code since it is so close to the proven mathematical de�nitions. Our use of functors
allows us to mimic the syntax of mathematical functions so that translating operation
de�nitions on reals to and from an implementation is easy and their use feels natural.
By de�ning an abstract base operation class and using polymorphism toworkwith

its hierarchy, any class that inherits functional_real can be used in an expression tree.
�is means users can extend the library with new operations in a uniform way, and
they will work seamlessly in computations with the other operations that have been
de�ned.

6.2.2 Ease-of-use and expressivity

From a user’s point of view, our library allows mathematical calculations to be ex-
pressed in a number of di�erent ways. We have seen two ways provided by ExactLib:
through traditional imperative functions, e.g. real::sqrt, and through functors suitable
for use with higher-order functions, e.g. lambda::sqrt.

�e latter is a particular expressive way for users to translate mathematical ex-
pressions into exact real computations. For example, returning to the golden ratio
iteration, we have:

γ0 =
1 +

√
5

2
and γn+1 =

1
γn − 1

for n ≥ 0. (6.1)

Using ExactLib, we can easily translate this into an exact real computation:

real x = (1 + real::sqrt(5)) / 2;
function<real, real> iteration = 1 / (lambda::id - 1);

std::vector<real> gamma;
for (int i = 0; i < 100; ++i) {

gamma.push_back(x);
x = iteration(x);

}
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Note the similarity of the �rst two lines to the recurrence relation (6.1).�is express-
ive power is made possible through our functional arithmetic operators (section 5.6.5)
and the identity functor lambda::id. Unfortunately, we cannot be quite as expressive
and elegant as a library written in Haskell, but our work is an improvement over ex-
isting imperative libraries.

�e core hierarchy of subclasses extending from functional_real form the internal
representation of computations as trees of approximation functions. As we have seen,
we provide a user-facing class, real, that allows users to build and execute this internal
tree. But this decoupled design means there is nothing to stop developers from ex-
tending the library with an alternative user-facing class to express the construction
and execution of exact real calculations in a di�erent style.

6.2.3 Functionality and �exibility

As we have discussed, the real type provided by our library is actually a specialisation
of the generic base_real type. �is allows the user to specify their own arbitrary-
precision integer type, so long as it implements the big_integer interface. Such a gen-
eric approach is unique amongst exact real arithmetic systems and means our library
can easily be made compatible with any new integer library that becomes available.
�is is important since the integer arithmetic used is a fundamental factor a�ecting
performance and correctness.
In terms of functionality, we have provided the major operations and functions

one would expect from a real arithmetic library. We have also made it easy for users
to extend the library with their own functionality.

6.3 Representation and paradigm
Whilst lazy representations such as the redundant signed digit stream are arguably
more elegant, we have seen that the time performance of their implementations leave
much to be desired. On the other hand, the performance of Norbert Müller’s iRRAM
is very good, but it is complicated to implement and more importantly there is no
proof of its correctness. We feel our approach of a solid representation theory, tract-
able proofs of correctness, and reasonable implementation performance strikes a good
balance.

�e power of C++’s templates and functors have fully validated our choice of lan-
guage over more modern alternatives such as C# and Java. �eir role in our devel-
opment of higher-order functions have resulted in a library that bene�ts from the
runtime e�ciency of C++ and approaches a similar level of elegance as a functional
language implementation of a lazy list representation.
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7.1 Conclusions
We have presented a representation of computable real numbers that admits tract-
able proofs of correctness and is well-suited to e�cient imperative implementation.
�e correctness of a number of basic operations and elementary functions have been
proved for this representation. A library, ExactLib, has been developed that imple-
ments our exact real arithmetic in C++. We have designed it to integrate seamlessly
with C++, de�ning a data type called real, and associated operations and functions,
that aims to behave in the same way as C++’s built-in numeric types. We have also
introduced a highly-expressive functional style of performing exact computations as
amore elegant alternative to the traditional imperative style usually o�ered.�is gives
the user the bene�t of being able to write code in a functional style to perform exact
real arithmetic, whilst in the background implementing the actual calculations in an
e�cient imperative manner. �e design of our library’s core is �exible and makes it
easy to extend the library in a uniform way. In particular, proven mathematical de�n-
itions of functions and operations can be easily translated into code and their close-
ness to the mathematics relaxes the need to prove the correctness of our code. Any
arbitrary-precision integer library can be used, provided we can supply an appropriate
wrapper—a generality that is important since this choice greatly a�ects performance.
A simple arbitrary-integer type is packaged with ExactLib so that it may be impor-
ted as a standalone library with no dependencies other than the standard C++ library.
We hope that by providing a standalone library in a high-performance mainstream
language like C++ will make performing exact real number computation easier.
During our research we investigated a number of lazy representations of the real

numbers. In retrospect, this was perhaps time not well spent, since we were aiming to
provide an implementation in an imperative language, C++. A�er experimentation at
the early stage, it quickly became clear that trying to implement a lazy approach in an
imperative language is simply using the wrong tool for the job.
On the other hand, we have been very pleased with our choice of using C++.

�e power a�orded by its template system, functors and operator overloading, among
others, has made it possible to produce a well-designed library that �ts the language.
Whilst it was unclear during the preliminary stages, we have realised C++ currently
best �ts the needs of an exact arithmetic library, with C slightly too low-level and not

65



66 conclusions & future work

expressive or elegant enough, and Java not quite being e�cient enough and with poor
support for generic types.
Whilst providing an arbitrary-precision integer type for standalone inclusion of

the library seemed a nice feature, we have seen that it is simply unwise not to use the
GNU GMP. Looking back, we should not have wasted time rewriting xintlib into a
suitable integer type.
Finally, we have seen that, although iRRAM’s bottom-up interval approach o�ers

the best runtime performance of exact real arithmetic libraries, the top-down Cauchy
approximation function representation can be implemented to provide very reason-
able performance, whilst still exhibiting tractable proofs of correctness. In terms of
elegance and ease-of-use, our experience has shown that it is possible to encourage
concise functionality in an imperative language.

7.2 Future work
Whilst C++o�ers somepowerful features—notably its template system, operator over-
loading and functors—that help us provide a more elegant library to users, there is
a de�nite limit to its expressiveness. We believe work using languages like C# and
Ruby or Python could be worthwhile in the future. C# is a mainstream language that
is compiled1 but o�ers generics—similar to C++ templates—and some native func-
tional features that could prove to be useful to a real arithmetic library. Ruby and
Python support more powerful metaprogramming features that make it easy to write
lightweight Domain Speci�c Languages (DSLs), which could be particularly useful
to provide users with a syntax close to mathematical notation for describing compu-
tations using exact reals. However, they are both interpreted2 rather than compiled,
which severely a�ects runtime performance.

�e most important factor a�ecting performance in all representations is hard-
ware optimisation. Floating-point arithmetic is particularly e�cient because it is im-
plemented in hardware on most computer systems. Future work that could propose a
representation similar in form to the approximation function representation but that
has elements that are candidates for hardware optimisation would represent an im-
portant step in imperative exact real number computation. Until an exact representa-
tion is found that is suitable for hardware optimisation we cannot match the perform-
ance seen with �oating-point arithmetic.

1Actually, it is just-in-time compiled, but in practice this is just as e�cient.
2Implementations of Ruby and Python targeting the Java Virtual Machine are under development

but are relatively immature as of writing.
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chapterA
CODE LISTINGS

A.1 Golden ratio iteration (�oating-point)

1 #include <iostream>
2 #include <iomanip>
3 #include <cmath>
4

5 int main()
6 {
7 const int max = 100;
8 double u = (1 + std::sqrt(5))/2;
9

10 std::cout << std::setprecision(13) << "u0\t" << u << std::endl;
11

12 for (int i = 1; i <= max; ++i)
13 {
14 u = 1/(u - 1);
15 std::cout << "u" << i << "\t" << u << std::endl;
16 }
17

18 return 0;
19 }

A.2 Golden ratio iteration (ExactLib)

1 #include <iostream>
2 #include <iomanip>
3 #include "exact.hpp"
4 using exact::real; using exact::function;
5

6 int main()
7 {
8 const int max = 100;
9

10 real x = (1 + real::sqrt(5)) / 2;
11 function<real, real> iteration = 1 / (lambda::id - 1);
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12

13 std::cout << std::setprecision(30) << "x0\t" << x << std::endl;
14 for (int i = 0; i < max; ++i)
15 {
16 std::cout << "x:" << i << "\t" << x << std::endl;
17 x = iteration(x);
18 }
19

20 return 0;
21 }


