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Abstract

Object Oriented Programming hoped to solve many of the issues faced in pro-
cedural programming languages, by allowing a more natural description of the
world in code through the use of objects. Code written in OOP is generally
seen as often having superior modularity, reusability and readability compared
to an equivalent procedural program.

Just as OOP concepts hoped to add a dimension to programming that would
naturally solve some of the problems of procedural oriented programming tech-
niques, so AOP hopes to naturally solve some of the issues faced by OOP, namely
tangling and scattering that arise in a wide range of non-trivial OO programs.

Thorn is a new OO programming language targeted at the JVM, which currently
has no AOP implementation. This work extends the language by modifying the
Thorn interpreter to support AOP, utilising load time weaving with instantiable
aspects. Further, we explore the idea of transparently distributed aspects, whose
goal it is to make it easier to write aspect-oriented programs in distributed
applications, by using a mechanism akin to a distributed heap.
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Chapter 1

Introduction

Thorn is a young language produced as a joint venture between IBM and Purdue
University. It joins a growing trend of languages which target the Java Virtual
Machine as the runtime environment.

Thorn is an object-oriented, imperative language, which uses the Erlang mech-
anism of no shared state for concurrency, utilising message passing of immutable
objects between isolated components (processes running on separate JVM in-
stances) for concurrent and distributed computations.

Furthermore, it uses a gradual typing system, which allows programmers to
prototype dynamically typed, script-like programs that can be gradually evolved
into statically typed �industrial grade� applications.

The gradual typing mechanism allows programmers to write applications in
which it is possible to quickly adapt parts (i.e. parts without static annotations)
which are often subject to frequent change, while bringing the maintainability
and e�ciency associated with static languages to design-stable parts of the
application.

Thorn is very much a language which tries to understand the pressures faced
by developers in real world projects, with tight deadlines and rapid evolution of
requirements.

As most OO languages, Thorn su�ers from the problems of scattering and
tangling, as the OO paradigm cannot properly encapsulate certain concerns
of an application using simply methods, classes and packages. This prevalence
of scattering and tangling in OO programs can have a severely detrimental e�ect
on modularity, which can often create a maintenance headache.

Aspect-oriented programming is widely regarded as a viable solution to decreas-
ing the encapsulation limitations of the OO paradigm. If we think of procedural
programs as one dimensional, we can think of OO as adding the second dimen-
sion, while AOP adds a third dimension. AOP is not a replacement to OO,
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it is meant as a supplement or partner to the OO paradigm, just as the OO
paradigm was a supplement to procedural programming.

Within this project, there were 3 key requirements, ordered from the least to
most esoteric.

The �rst requirement was to implement AOP constructs which are broadly
common and available in existing popular AOP systems, such as AspectJ, Spring
AOP or PostSharp.

The second requirement was to explore the idea that unlike in most AOP suites,
aspects are no longer a layer above classes in a program. While it appears that
early during the development of AOP it seemed as if aspects should be a layer
above classes in the sense that classes cannot reference or instantiate aspects
(i.e. aspects can modify how objects run, but not vice versa), the inclusion of
certain features such as object being able to reference aspect instances in suites
such as AspectJ, can be seen as strong evidence that this original layered design
philosophy broke down as AOP became more well understood.

We make aspects not only referenceable, but also instantiable from objects.
Furthermore, we explore the idea of selective and unselective aspects, which
prove to give higher levels of control to a programmer who wishes aspect in-
stances to apply to certain class instances. This e�ectively allows aspects to be
turned on and o� at runtime for a set of objects without resorting to clunky
syntax. We have only found a single previous treatment of these ideas, in a
research language called Ptolemy, which evolved out of a paper which discussed
a mechanism known as Classpects[39], which uni�es aspects with classes.

Finally, we explored the idea of aspects that apply to distributed programs.
AOD-Thorn aspect instances are capable of communicating across separate
JVM instances (including on separate machines), so that a programmer does
not have to use any networking mechanisms in his aspects when the programmer
wishes to advise a distributed system. For example, aspects are widely used for
tracing a program execution and using our mechanism the same aspect can be
used to trace the execution of a distributed application without the need for
any modi�cations. We have not found any previous work emulating this idea.

The novelty of the project comes from:

1. Adding an AOP mechanism to Thorn

2. Transparently distributed aspects, which utilise an RMI like mechanism
to advise objects in separate processes

Having said this, the requirement of user isntantiable, selective aspects is so
rarely found in AOP suites that it may be classed as �novel�, even though we
were beaten to the idea.

Almost all the ideas explored in this project can be utilised in AOP suites for
other OO languages. If the language already has an AOP framework, it is likely
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that it does not allow the programmer to instantiate aspects and more likely
that it does not allow programmers to use aspects in a distributed setting as
easily as has been seen in this project.

1.1 Report structure

Chapter 2 should give a basic grasp of features of aspect-oriented program-
ming (abbreviated as AOP) relevant to the project, as well as some ap-
proaches that are undertaken already. It also gives a description of the
problem that AOP solves. Where appropriate, the chapter cites materials
which the reader may �nd useful in order to learn more about AOP and
the approaches to AOP.

Chapter 3 introduces some of the new features introduced in AOD-Thorn into
Thorn, as well as some example scenarios of where these may be useful.
This chapter should not be seen as a tutorial on AOP, so use cases did
not receive a lot of attention (the reader is forwarded in chapter 2 to
excellent literature on AOP use cases). As such, the examples provided
are often minimal, simply showing o� the language contructs introduced
in AOD-Thorn.

Chapter 4 goes into some of the details of the implementation. However, it
will only convey the main ideas, and will not go through all the complexity,
as this is unlikely to be useful to the reader who will probably not want to
go into line by line descriptions of how the implementation works. Some
operational semantics of AOD-Thorn can be found here.

Chapter 5 evaluates the work done as part of the project. It attempts to
describe both the strengths and weaknesses of the project.

Note The interpreter is a relatively large and complicated codebase, and prob-
ably the most di�cult task during the implementation of the project was to
understand the main architecture of the interpreter and then the understanding
of how the most important tasks are done(such as how method invocation or
�eld read and write is implemented).

The main di�culty came from the fact that the interpreter codebase has almost
non existent documentation, and there isn't an active community around Thorn
to ask questions of (in fact, at the time of writing, IBM who were developing
the interpreter decided to stop developing Thorn).

As such, the report often links to speci�c parts of code (such as the package
and class name) implementing functionality, so that this may serve as some
kind of documentation to people who may work on the interpreter in the future
(although it does not replace purpose built documentation, it should go a long
way, and the author certainly wishes that previous projects had done this).
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These links are assuming the commit numbered 3840 on the SVN repository
where the source resides, dating from December 2010. At the time of writing,
there are a further 10 commits, which were extremely minor, and therefore the
links still hold (in fact, most the commits dealt with writing code in Thorn,
rather than modi�cations to the interpreter).
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Chapter 2

Background

2.1 Aspects

Separation of concerns is a phrase that is attributed to E.W.Dijkstra, after
he mentioned it in a paper called "On the role of scienti�c thought"[13]. In
the paper Dijkstra says: "It is what I sometimes have called �the separation
of concerns�, which, even if not perfectly possible, is yet the only available
technique for e�ective ordering of ones thoughts, that I know of. This is what I
mean by �focusing ones attention upon some aspect": it does not mean ignoring
the other aspects, it is just doing justice to the fact that from this aspect's point
of view, the other is irrelevant.�.

The use of the word aspect within this quotation is chie�y what gives rise to the
phrase "aspect-oriented" programming, i.e. focusing only on a certain aspect
of a program. Separation of concerns is an important principle widely in use
in software engineering. Unfortunately, it is relatively rare to �nd a non trivial
application written in an OOP language, which does not violate this principle
repeatedly, that is, unless it uses some form of aspect-oriented programming.

Aspect-oriented programming[24] has gained some traction in industry, as a
technique to decrease the issue of SoC violation in OOP programs. The idea
is that code that makes up an application can be classed as solving the core
concern or the cross-cutting concern of the application.

Core concern Code solving the core concern is said to be solving the problem
that the application is being written for, directly dealing with the prob-
lem domain. For example, in a �nancial analysis application, the code
which retrieves data, applies �nancial formulae and then outputs to some
medium (such as the screen or the printer) is all code that deals with the
core concern of the application. Functionality such as input validation is
not a core concern, because it does not help us solve the problem that the
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application is being written for (�nancial analysis), even though it is an
essential part of the application.

Cross-cutting concern A very signi�cant portion of real world applications
contain code which solves problems other than what can be classed as core
concerns of the application. This can be, for example, security, logging,
transaction handling, input validation and so on. When these pieces of
code

Tangling A system with unnatural dependencies between its various modules
is referred to as a tangled system. For example, business logic code which
refers to the logging system has a tangle, as there is no natural link between
business logic and logging.

Scattering Scattering refers to e.g. code duplication, where some piece of code
is placed into many di�erent places in the codebase. Note here that this
code may be duplicated in terms of broad functionality, rather than duplic-
ated completely. For example, logging code may be scattered throughout
a codebase, each time logging di�erent parts of it, but nevertheless encom-
passing only the concept of logging. In OOP programs such duplication
can cause severe problems throughout the lifetime of the application.

One of the strongest characteristics of code that deals with cross-cutting con-
cerns is that is often scattered throughout code that deals with core concerns,
often in ways that violate the �DRY� (don't repeat yourself) principle, simply
because it is sometimes di�cult to encapsulate certain functionality within nor-
mal OOP languages. This is also known as the �tyranny of the dominant
decomposition: the program can be modularised in only one way at a time,
and the many kinds of concerns that do not align with that modularisation end
up scattered across many modules and tangled with one another�[44]

While most introductory articles on aspect-oriented programming uses logging
as the example for how aspect-oriented programming can help alleviate SoC
infringements, this is in reality only a �hello world� application of what can be
achieved with aspects. It has been noted that to truly demonstrate how aspects
can help with real world applications, relatively long pieces of code need to
be used as examples. This implies that while the advantages of the jump from
OOP to AOP are not quite as quickly noticeable as the jump from procedural to
OOP, it is nevertheless a signi�cant one that can especially help with large code
bases. Several books have been written on utilising Aspect oriented languages
in real projects[21, 26, 42].

2.1.1 Examples

2.1.1.1 Common crosscutting concerns

There exists a signi�cant body of research that catalogues common crosscutting
concerns[31, 16]. There also exists signi�cant research on aspect mining[30, 52,
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7] (identi�cation of code that would bene�t from being aspectized) techniques
as well as automatic refactoring techniques[52, 51, 63] to aid programmers in
improving their architectures using aspects.

Authors experience with AOP The author had very limited experience
with AOP prior to the project. However, he had seen AOP used in the following
ways:

1. To reduce scattering / tangling in a large package of Java classes that
representing the domain model (e.g. classes called Customer, Employee,
Approver, etc..). There was a requirement to audit changes to objects of
this package and previous developers had taken the route of simply adding
logging code as the �rst line of every setters. This shows both scattering
and tangling.

(a) Scattering because there is a lot of repetition of calls to the logging
subsystem (most of the logging statements were the same). Taking
out the logging code and placing it into an aspect reduced scattering,
as there was no need to repeat what was pretty much the same logging
call every time. The code became more readable, as the program-
mer could concentrate on the business ideas, rather than non-core
concerns such as logging.

(b) Tangling because all these domain classes had a dependency on the
logging subsystem. Moving the logging code out of the domain classes
into the aspects increased modularity. The domain classes were used
by other teams, who had di�erent logging subsystems, or did not care
about logging.

2. To enforce a rule across the application. The application had several
hundred SQL queries, and used JDBC (Java DataBase Connectivity) to
connect to a database and run the queries there.

(a) The application had a per site policy, in that, each site (i.e. a bank
branch) where the application was deployed should only see data for
that particular site. They used a WHERE Site = site clause in the
SQL for this. Sometimes people forgot to add the WHERE clause or
somebody would incorrectly hard code the value of the site, and the
application would break.

i. AOP was used to intercept the calls to the JDBC library, and
the SQL queries were modi�ed to include the correct WHERE
clause. This was a great scattering reduction as the where clause
was no longer scattered throughout the queries.
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2.1.2 Join points

A join point, in AOP terminology, is simply a �point in the control �ow of a
program�[59]. In other words, a join point is some event that happens during
the execution of a program that we may wish to intercept and give advice to
(advice on how to evaluate).

The various aspect-oriented platforms provide support for di�erent types of join
points, and which join points are provided depend on the underlying language
as well as the languages used to implement aspecting. Nevertheless, the author
identi�es some joinpoints which are seen common to most AOP frameworks.

2.1.2.1 Common join points

Method call: A method call join point speci�es that the joinpoint should be
matched whenever a method is called, at the site of the callee rather than
the caller. This means that the joinpoint context (context information
about the jointpoint, e.g. which piece of code made the method call) will
have a reference to code that made the call to the target method, rather
than a reference to the target method itself.

Method execution: Similar to a method call, except that the joinpoint con-
text has a reference to the target method, rather than the callee.

Constructor call: Similar to method call, but speci�cally for constructors.

Constructor execution: Similar to method execution, but speci�cally for
constructors.

Object �eld read: Speci�es that the joinpoint should be matched whenever
a �eld matching some pattern has been read from. For example, we may
write a diagnostic Aspect that counts the number of times a �eld is read
during the execution of our application, and we can use the joinpoint
context to �nd out which pieces of code do the reads and how often.

Object �eld write: Speci�es that the joinpoint should be matched whenever
a �eld matching some pattern has been assigned a new value. Similarly
to the example for object �eld reads, we may write an aspect to �nd out
which pieces of code are writing to a �eld, and how often (as well as the
values that they are assigning).

Scope: It is common to see joinpoint languages have some sort of mechanism
for de�ning scope for joinpoints. In Java, we may wish to only match
joinpoints which are in a certain package, class or method. For example,
we may wish to log the invocation of any setter methods for domain classes
de�ned in a certain package.
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2.1.3 Pointcuts

A pointcut is a �set of join points�[56] that describe when advice should be
executed. In other words, a pointcut is a disjunction of predicates, which if true
at a point T in the execution of the program, prompts the execution of advice
at time T.

2.1.4 Advice

Advice is code that can run before, after, or around (instead of) the joinpoint.
In other words, we are able to intercept a joinpoint, and then inject code before
or after the code that the joinpoint references, or we can completely replace
the code that the joinpoint references. The following are some examples of the
usefulness of the 3 types of advice:

• Before / after advice: we may wish to enforce some pre- or post-
condition. We can do this by injecting the appropriate code before or
after the join point. We may also

• Around advice: we may wish to completely replace how certain func-
tions work. Around advice can be used to aid in refactoring existing code,
or it may be used in more sophisticated ways. For example, [53] demon-
strates the rather elegant use of around advice coupled with Java annota-
tions and re�ection to make methods annotated with �@Asynchronous�
to be executed asynchronously (i.e. the method is executed in a separate
thread), which resulted in signi�cant code simpli�cation.

� A second example may be to pro�le a method. The around advice
would specify that a timer is to be started just before the method
starts executing, and then the timer would be stopped just after
the method �nishes. In some programs (e.g. single thread), around
advice can be emulated using a before / after pair of advices.

2.1.5 Aspect precedence

Non trivial applications utilising aspects may run into situations where multiple
pointcuts match a given joinpoint. The correctness of a program may depend
upon the order in which aspects are executed, making it an important concern
for the programmer while writing the aspecting code. There has been work
on solving this problem, with AspectJ following a certain set of conventions
(e.g. if multiple pointcuts in the same aspect match a joinpoint, the �rst to be
de�ned will advise the joinpoint �rst), as well as giving explicit priorities [35].
There has also been some work on parallelising advice (when it does not a�ect
correctness)[64] as well as generally adding more �exibility to what is o�ered by
i.e. AspectJ precedence rules[9].
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In the project, an advice precedence model akin to AspectJ was adapted, i.e. it
can be explicitly stated + conventions.

2.1.6 Weaving

An aspect weaver is a �tool used for integrating aspects with classes�[38]. In
other words, the weaver is what combines code de�ned in aspect code with the
core code. For example, when we write an aspect that provides e.g. before
advice to a method, the aspect weaver will match the pointcut in the aspect
with the method, and then somehow inject the advice before the code for the
method.

There are two main types, compile/load time and run time (or dynamic) weavers.

How advice is weaved into the core code has signi�cant performance implications
on the applications, so it is important to get this right. The AspectJ team (which
uses a bytecode level weaver, i.e. it reads JVM bytecode and modi�es it) has
stated: �We aim for the performance of our implementation of AspectJ to be
on par with the same functionality hand-coded in Java. Anything signi�cantly
less should be considered a bug�[46]

2.1.6.1 Compile / load time weavers

Compile time weavers modify the bytecode of the application during the com-
pilation stage (sometimes referred to as o�ine weavers). In Java, a compile
time weaver such as the one found in AspectJ modi�es the bytecode of .class
�les[19]. For this to happen, it needs to go through several stages:

1. Compile aspects to bytecode

2. Compile classes to bytecode

3. Match points in the control �ow of the program with the pointcuts in the
aspect de�nition �les

4. Inject inlined advice bytecode, or a reference to advice bytecode, through
i.e. a function call

Load time weavers do something similar, however they modify the classes while
they are being loaded by the JVM. Obviously, load time weaving has a penalty
on the time it takes for a class to be loaded, which has implications on the
application startup time.
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2.1.6.2 Run time weavers

Run time weavers, such as found in frameworks like JBossAOP or AspectWerkz,
weave classes that have already been loaded by the JVM. In other words, a
programmer can �dynamically plug and unplug an aspect in / from running
software�[43]. As such, run time weaving brings with it functionality to the
AOP world that static weavers do not have.

The biggest winner from the run time weaver movement is software that cannot
go down (to be recompiled) but may require aspects to be loaded and unloaded.

[43]gives an interesting example. Lets say we have a critical web application
that cannot go down, but that we wish to pro�le under heavy loads, when it
starts to slow down. The static way to do this would be to write advice that
checks the load of the application, and if it has reached some threshold, to start
logging data. Unfortunately, this method adds a performance overhead onto
parts of the application to be pro�led at all times (instead of just when we log
data), due to continuously having to check some predicate in order to decide
whether to proceed or not. Clearly restarting to insert aspect code is not an
option, as we may lose the state that caused the application to behave in a way
that required pro�ling.

The run time solution to this problem is to simply not weave the pro�ling aspect
until it is required. In other words, we plug in the pro�ling aspect when the
load reaches a certain threshold. This should mean that the overhead when we
are not pro�ling will be eliminated.

There has been signi�cant work in utilising JIT compilation (by e.g. making
modi�cations to the JVM) with run time weaving to bring the performance to
as good as static weaving or even better performance, e.g. [17].

2.1.6.3 How dynamic weaving works

There are two main approaches towards dynamic weaving on the JVM, class
reloading and proxies.

Class reloading On the JVM it is possible to, at runtime, modify the byte-
code of a class and then reload that class, without having to restart the application[1].
Using this, we could use traditional bytecode weaving techniques (i.e. inject
bytecode of advice before / after / around bytecode of joinpoint), and then ask
the JVM to reconsider the de�nition of the woven class.

Proxies This is largely an approach taken by libraries (such as SpringAOP)
as opposed to compilers like AspectJ. To weave advice into an object, the JVM
re�ection API is used to create an object with the same interface, which however,
has before / after / around advice (in essence, Java classes are generated by the
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library and objects of the generated class are used as proxies for other objects).
For example, if a class has method foo(){ X }, then a proxy with before advice
would have method foo(){beforeAdvice(); X}. This type of weaving can cause
signi�cant overhead[25] (i.e. there is a level of indirection, a method call, which
may not have been required before), however, this may be low relative to the
code being advised (i.e. a method call is insigni�cant compared to database
write, which may be advised).

A further, and more signi�cant (and for some applications, crippling) limitation
is that certain joinpoints cannot be implemented using proxies. For example, in
Java it is not possible to write a proxy which intercepts �eld writes / accesses,
or one that intercepts constructors (a proxy needs the object it is to be a proxy
for to be constructed already).

2.2 Aspect oriented languages and frameworks

Before proceeding, it is important to note that much of the research and work
on aspect oriented programming was done for Java, with the most mature AOP
suites belonging to Java. The maturity of these meant that the work on this
project is most heavily in�uenced by Java AOP frameworks. Having said this,
some languages such as Fred[36] came with aspect-oriented features already
built in, although these languages tend to be largely for research purposes and
are generally not used in practice.

2.2.1 Two distinct types of AOP

There are 2 main distinct approaches to implementing aspect orientation on the
JVM:

1. As a language extension

(a) Translate code in extended language into underlying language (e.g.
meta-AspectJ which translates to normal Java [20])

(b) Modify the bytecode of the underlying language (e.g. AspectJ)

(c) Optionally, make changes to the JVM to optimise it for AOP aware-
ness (experimental versions of AspectJ[17])

2. Use features of the existing language (e.g. libraries like AspectWerkz,
JBossAOP, SpringAOP)
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2.2.1.1 Language extension

AOP implementations that are built as a language extension typically require
a custom compiler.

Programs which utilise AOP technology implemented as a language extension
need to be compiled (or translated) with the custom compiler (or translator)
(e.g. ajc for AspectJ) rather than the standard one (e.g. javac for Java). As
such, all existing programs written in the underlying language are typically valid
programs in the derivative AOP language, but not vice versa. For example, all
Java programs are valid AspectJ programs but not all AspectJ programs are
valid Java programs (due to the language constructs of AspectJ).

While we can utilise runtime weaving with the language extension approach, it
has traditionally been the case that such extensions relied on static weaving,
as they did not want to lose the compile time type checks. Usually, language
extensions can �enable better static checking�[20].

Using a language extension approach is that we can completely tailor the syntax
to aspects. Using existing language features (such as annotations) may result
in code which is more verbose than necessary (i.e. language extensions can lead
to more concise code).

Finally, a language extension may be able to perform better optimisations than
a runtime library[20].

Unfortunately, implementing aspects as a language extension also has draw-
backs.

1. Higher learning curve - the programmer needs to learn new syntax.

2. Modi�cations to the build process - this appears to concern some
developers, although sometimes for seemingly irrational reasons (e.g. the
author was once told �its outside the convention we use in the company,
no real other reason�).

3. Lock into language extension - AspectJ is not a language extension
which translates into Java, but instead its a bytecode modi�er.

4. Complicating the language implementation - software projects are
notoriously susceptible to collateral damage, i.e. breaking something that
is seemingly unrelated to the feature being implemented. Adding new
language features can break existing functionality. For example, in this
project joinpoints were modi�ed (i.e. the way methods run), which caused
the interpreter to be more complicated. Further, if the language extension
is not o�cially supported by the vendor of the runtime (i.e. if AOD-
Thorn was not supported by the main developers of Thorn), then the
extension must always be updated to the changes made by the vendor.
People may be put o� by this, as they may not trust that the extension
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will be maintained as readily as the underlying language. For extensions
not supported by the underlying runtime vendor, translators may be the
better idea, as a programmer can remove a translator at any point and
perform changes to translated code by hand.

2.2.1.2 Use existing language features (i.e. library approach)

In Java, there are implementations such as JBossAOP (or later versions of
AspectJ) which utilise existing language features (namely annotations). One
can simply annotate classes using an annotation identifying aspects, and then
annotate methods as advice. Annotations or external �les (e.g. XML) can be
used to de�ne pointcuts and so on.

The advantages of the library approach are the same as the disadvantages of
the extension approach, and vice versa. However, we should take some notes:

1. Lower learning curve - programmers do not need to learn less new syn-
tax, and they can use concepts (e.g. annotations) that they are already
familiar with. This reduces the load on the programmer who is new to
AOP, as opposed to language extension approaches. Having said this,
things like joinpoints will require new syntax for the programmers to learn,
and things like the XML schema for JBossAOP are almost like new lan-
guages anyway.

2. No need for an external compiler - one of the biggest complaints
from programmers using language extensions is the need to modify their
build, which can be a relatively complicated process for large existing
applications. A further problem is that language extensions are usually
mutually exclusive, with users not wanting to lock themselves down to
a single extension for the lifetime of the projects. Not using a language
extension means it becomes possible to aspectize code without using an
extra compiler, however, a preprocessor may still be used, for example for
static type checking.

2.2.2 AspectJ

AspectJ was publicly released in 2001 by researchers from PARC[23] (Palo Alto
Research Center, a division of Xerox) and several universities, including Gregor
Kiczales who was one of the authors of the original Aspect-Oriented Program-
ming paper [24]. It is seen by practitioners as the most popular method for
using aspects in Java (or the JVM as a whole).

AspectJ was at �rst purely a language extension of Java. The language extension
has very good IDE support (as described in section 2.2.2.1). As a language
extension, AspectJ has a complete syntax of its own, however, it is also able
to function completely through annotations, without having to resort to the
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language extension. This �exibility, as well as the large body of research work
that has gone into AspectJ (a very signi�cant portion of research that goes into
aspect oriented programming in general used AspectJ in some way, and made
extensions to it), is probably what makes AspectJ currently the most popular
AOP implementation.

While AspectJ was originally at PARC, it later on moved to the Eclipse found-
ation, and has been heavily developed by Spring Source[50].

2.2.2.1 Tooling support - AJDT

AJDT[10] (AspectJ Development Tools) provides a multitude of functionality
designed to make it easier to write aspect-oriented programs on Eclipse.

Some of the functionality that AJDT provides:

1. Outline view[?] - show which pieces of code are a�ected by a pointcut.

2. Annotations - link from code back to aspects that advise it

3. Aspect visualiser - visually represent how the aspects are a�ecting the
codebase (i.e. when editing a method, it would show which aspects are
going to advise it at runtime)

4. Debugger - debugger that allows to step through advice code

5. Aspect aware refactoring support - e.g. type renaming within Eclipse
is a trivial exercise. However, when joinpoints have e.g. wildcards, this
becomes more problematic. AJDT tries to alleviate these problems, by
letting the programmer know when pointcuts which used to match the
refactored joinpoint no longer match them.

One of the biggest issues with the takeup of AOP in industry is that code can be
somewhat harder to read for developers not used to AOP, because it becomes
di�cult to understand the program �ow if, encapsulated units of computation
such as methods, are no longer in a single place (but rather, methods would have
their de�nition alongside of advice, which may lie inside complicated pointcuts).

Clearly tool support like provided by AJDT is very useful, and possibly vital
for the uptake of a language that supports AOP.

2.2.2.2 AspectJ example

The author provides a �hello world� type example written in AspectJ, which
should give the reader a taste of the syntax employed by AspectJ. Comments
about how the aspecting works are inlined with the aspect code.
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Listing 2.1: Employee.java

1 package com . company . employeebeans ;
2

3 pub l i c c l a s s Employee {
4

5 pub l i c long employeeId ;
6 pr i va t e S t r ing name ;
7 pr i va t e S t r ing address ;
8

9 pub l i c Employee ( long employeeId , S t r ing name ,
10 St r ing address ){
11 t h i s . employeeId = employeeId ;
12 t h i s . name = name ;
13 t h i s . address = address ;
14 }
15

16 pub l i c void setAddress ( S t r ing address ){
17 t h i s . address = address ;
18 }
19

20 pub l i c S t r ing getAddress ( ){
21 re turn address ;
22 }
23 }

Listing 2.2: Address.java

1 package com . company . employeebeans ;
2

3 pub l i c c l a s s Address {
4

5 pr i va t e S t r ing f i r s t L i n e ;
6 pr i va t e S t r ing secondLine ;
7 pr i va t e S t r ing c i t y ;
8 pr i va t e S t r ing postcode ;
9

10 pub l i c Address ( S t r ing f i r s t L i n e ,
11 St r ing secondLine , S t r ing c i ty ,
12 St r ing postcode ) {
13 t h i s . f i r s t L i n e = f i r s t L i n e ;
14 t h i s . secondLine = secondLine ;
15 t h i s . c i t y = c i t y ;
16 t h i s . postcode = postcode ;
17 }
18 }
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Listing 2.3: LoggingAspect.aj

1 package com . company . employeebeans ;
2

3 import org . apache . l o g 4 j . ConsoleAppender ;
4 import org . apache . l o g 4 j . Logger ;
5 import org . apache . l o g 4 j . SimpleLayout ;
6

7 pub l i c aspect LoggingAspect {
8

9 pr i va t e Logger l og = Logger . getLogger (
10 LoggingAspect . c l a s s ) ;
11

12 pub l i c LoggingAspect ( ){
13 l og . addAppender (
14 new ConsoleAppender (new SimpleLayout ( ) ) ) ;
15 }
16

17 // match whenever we have a s e t t e r method in
18 // any c l a s s
19 // in the com . company . employeebeans package
20 po intcut beanSet te rCa l l ed ( ) : execut ion (∗ ∗ . s e t ∗ (∗ ) )
21 && within (com . company . employeebeans . ∗ ) ;
22

23 // a f t e r beans e t t e r i s c a l l ed , l og the arguments
24 // the s e t t e r was c a l l e d with
25 a f t e r ( ) : beanSet te rCa l l ed ( ){
26 Class<?> beanClass = th i s Jo inPo in t .
27 getThis ( ) . g e tC la s s ( ) ;
28

29 St r ing signatureName = th i s Jo inPo in t .
30 ge tS ignature ( ) . getName ( ) ;
31

32 Object [ ] a rgs = th i s Jo inPo in t . getArgs ( ) ;
33

34 l og . i n f o ( beanClass . t oS t r i ng ( ) + " has executed "
35 + signatureName + " with arguments "
36 + s t r i n g i f yA r g s ( args ) ) ;
37 }
38

39 pr i va t e S t r ing s t r i n g i f yA r g s ( Object [ ] a rgs ){
40 St r i ngBu i l d e r sb = new St r ingBu i l d e r ( ) ;
41 f o r ( Object arg : args ) {
42 sb . append ( arg ) ;
43 sb . append (" " ) ;
44 }
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45 sb . deleteCharAt ( sb . l ength ()−1) ;
46 re turn sb . t oS t r i ng ( ) ;
47 }
48

49 }

2.2.3 JBossAOP

JBossAOP was one of the �rst aspect-oriented frameworks for the Java platform
to purely work as a library rather than a language extension. While it is a mainly
marketed as a library, it also supports compile / load time weaving (using the
aopc compiler). Aspect code (including advice) is written in plain .java �les,
either through extending an interface in the framework or not, which in�uences
the amount of con�guration that has to be done later. Pointcuts are de�ned
using XML, or they can be de�ned using annotations.

JBossAOP has two main work�ows, one that uses XML �les and the second
that uses annotations[49].

2.2.3.1 Interceptor

The easiest way to de�ne advice in JBossAOP is to extend the Interceptor
interface.

1 import org . j b o s s . aop . adv ice . I n t e r c ep t o r ;
2 pub l i c i n t e r f a c e MyInterceptor extends In t e r c ep t o r {}

The interceptor interface is as follows:

1 package org . j bo s s . aop . adv ice ;
2 import org . j b o s s . aop . j o i npo i n t . Invocat ion ;
3

4 pub l i c i n t e r f a c e I n t e r c ep t o r
5 {
6 pub l i c S t r ing getName ( ) ;
7 pub l i c Object invoke ( Invocat ion invoca t i on )
8 throws Throwable ;
9 }

The invocation will have contextual information on the joinpoint, similar to the
�thisJoinPoint� keyword in AspectJ, for example, the name of the method called
or the arguments being passed into the method (when dealing with a execution
/ method call pointcut).

For the following examples, we use the same Employee.java and Address.java
as in the AspectJ example, however, we replicate the functionality of Loggin-
gAspect.aj using JBossAOP techniques.
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The �rst way to replicate the LoggingAspect.aj functionality is through extend-
ing the Interceptor class as follows:

Listing 2.4: LoggingInterceptor.java

1 pub l i c c l a s s Logg ing Inte r cepto r implements I n t e r c ep t o r {
2

3 pr i va t e Logger l og = Logger . getLogger (
4 Logg ing Inte r cepto r . c l a s s ) ;
5

6 pub l i c Logg ing Inte r cepto r ( ){
7 l og . addAppender (new ConsoleAppender
8 (new SimpleLayout ( ) ) ) ;
9 }
10

11 @Override
12 pub l i c S t r ing getName ( ) {
13 re turn " Logg ing Inte r cepto r " ;
14 }
15

16 @Override
17 pub l i c Object invoke ( Invocat ion invoca t i on )
18 throws Throwable {
19

20 MethodInvocation mi = (MethodInvocation ) invoca t i on ;
21 Class<?> beanClass = mi . getTargetObject ( ) . g e tC la s s ( ) ;
22 St r ing methodName = mi . getActualMethod ( ) . getName ( ) ;
23 Object [ ] a rgs = mi . getArguments ( ) ;
24

25 // s t r i n g i f y args as be f o r e
26 l og . i n f o ( ( beanClass . t oS t r i ng ( ) + " has executed "
27 + methodName + " with arguments "
28 + s t r i n g i f yA r g s ( args ) ) ;
29

30 re turn nu l l ;
31 }
32 }

We can see from this example that the advice is given in pure Java and pointcut
de�nitions are externalised, with no need to extend the de�nition of a class in
order to support AOP.

The XML work�ow The �rst approach, common to many frameworks in
Java, is to externalise con�guration information into an XML �le. We can
think of the pointcuts as the con�guration and the execution of advice as the
thing needing the parameters in the con�guration.
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1 <aop>
2

3 // Def ine the po intcut f o r
4 // s e t t e r method c a l l s in a l l c l a s s e s in
5 // the employeebeans
6 // package
7 <pointcut name="EmployeePkgFieldSet "
8 // the expr e s s i on i s a s t r i n g
9 // the XML schema cannot v e r i f y
10 // whether i t s c o r r e c t syntax .
11 expr="execut ion ( pub l i c ∗ com . company .
12 employeebeans.∗−>
13 s e t ∗ ( . . ) )"/ >
14

15 // when the po intcut EmployeePkgFieldSet
16 <bind po intcut="EmployeePkgFieldSet">
17 <in t e r c e p t o r
18 c l a s s="com . company . employeebeans .
19 Logg ing Inte r cepto r"/>
20 </bind>
21 </aop>

Annotations Pointcut con�guration can also be done using annotations, in-
side Java classes. For example, the interceptor is annotated with with the @Bind
annotation.

1 @Bind( po intcut="execut ion " +
2 "( pub l i c ∗ com . company . employeebeans.∗−>se t ∗ ( . . ) ) " )
3 pub l i c c l a s s Logg ing Inte r cepto r implements I n t e r c ep t o r {

XML vs Annotations The real (more general) argument here is whether to
add aspecting information (such as @Bind) along with the core code, or whether
to externalise this information out of core code, i.e. into an external �le.

The argument may really be whether we are willing to accept the pollution of
code by aspecting constructs. For example, if we have an interceptor that we
wish to reuse in another program, it is most likely impractical to use as is, the
annotations will have to be changed (if a di�erent team uses our code, they need
to branch it, giving them a maintenance task).

However, it is relatively tedious to keep a completely separate �le, and may
reduce programmer productivity (or they may simply not use the AOP if they
feel it slows them down too much).
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2.2.4 Alternative approaches to separation of concerns

There are a number of alternative approaches to separation of concerns, which
do not necessarily involve an explicit AOP methodology / framework.

Many dynamic languages have features which make it easier to write code that
can separate the crosscutting concerns out of the core concern code. Further,
languages with �rst class functions can also make this separation easier.

For example, in Python, a relatively small amount of syntax is required to
emulate before, around or after advice for functions, since it is a dynamic lan-
guage with �rst order functions, simply wrap a function in another function.
Something similar can be done in Java, using re�ection, but it is much more
syntactically expensive. Of course this approach still su�ers from the problems
of proxies in Java, an extra level of indirection as well as not being able to in-
tercept e.g. �eld accesses, although there is no longer the problem of not being
able to intercept constructors, as we're not wrapping entire objects but methods
only. However, there is still a need for writing code that will do the wrapping
(i.e. checking objects for joinpoints etc), along with writing the advice etc.

The general point from the Python example we can take away is that while it
is possible to emulate AOP using commonly, non AOP speci�c features of the
language, it may not be as purpose made / easy to use as if we make a tailor
made AOP implementation. �Advanced separation of concerns techniques are
feasible and useful for dynamic, lightweight languages� [12]

In Python, several AOP frameworks (e.g. AOPY[33], aspects.py[22]), have ap-
peared, which mostly utilise the wrapper approach, but making it easier to do
so

An interpreted language, AspectLua (an extension of Lua), was also developed[11],
without modi�cations required to the interpreter (the project also works on an
interpreter). The interpreted nature of Lua (which is a dynamic, �rst class
functions language) meant it was relatively easy to extend it for AOP. More in-
terestingly, the interpreted nature of the language meant that it was very simple
to implement dynamic weaving (i.e. rede�ne or add new aspects at runtime).
However, it should be noted that by attempting to extend Lua without modi-
fying, they were restricted to the features available in Lua, which had no viable
mechanism for intercepting �eld writes. It is not always realistic to expect users
to use the setters and getters for �elds in the same class. Generally, there are
AOP features which are di�cult or impossible to implement using language
extensions for most languages, which is why bytecode modi�cation (e.g. As-
pectJ) / runtime system modi�cation (e.g. this project, a modi�cation of the
interpreter) are sometimes required.

2.2.4.1 Metaclasses

A metaclass is �a class whose instances are classes�[60]. A metaclass α, in
essence, allows us to de�ne the behaviour of a class β, without us changing the
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code of β, and not requiring the use of the inheritance mechanism to achieve
this. De�ning the behaviour of β through the use of metaclasses is more �exible
than doing so through inheritance, as αcan modify the behaviour of any class,
rather than its superclasses (as is the case with inheritance), although what
behaviour can be changed by αis highly language dependent.

A metaclass can be thought of as a class factory, which takes as input a class
and produces another class, whose instances we can create. They can therefore
implement aspect oriented programs in a similar manner as proxies, in the sense
that a class with the same methods / �elds is produced, however, methods are
modi�ed with advice. However, they generally have no need to introduce the
indirection associated with proxies, and do not su�er some of the limitations
that proxies have, i.e. not being able to advise constructors, although they
still su�er from limitations such as not being able to intercept �eld accesses (as
has been the case with all the alternative approaches we have seen, as this is
generally not a language feature), unless the language automatically gives us
setter / getter methods for �eld accesses, i.e. when we write a setter / getter, it
is merely overriding the �eld access, as opposed to adding a new way to access
those �elds where the �elds can still be accessed directly.

2.3 Thorn

Thorn was developed mainly at IBM and Purdue university. The Thorn lan-
guage speci�cation isn't �nalised and was under heavy discussion before the
language was abandoned. Thorn targets the JVM platform, the interpreter is
written in Java.

The interpreter is named Fisher, which was actively developed up until winter
of 2010 (after which it was abandoned at IBM) and a bytecode compiler which
was developed until 2009 (according to SVN logs where the source for Thorn
lives).

Given that the interpreter had features described in the newest language specs
(and was still being developed when the project started, therefore was more
likely to get support from the developers), it was chosen instead of the compiler.
Unfortunately, the main developer working on the Thorn interpreter made his
last SVN commit near the end of December 2010, with some extremely minor
changes being made by his replacement for the next 3 months, after which no
further work was done.

2.3.1 Thorn interpreter structure

2.3.1.1 Parser

Strictly speaking, a parser is a module which takes as input a string, and pro-
duces as output a set of tokens, which are de�ned in the grammar of the lan-
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guage. One can then check that the tokens follow a grammar speci�cation, place
them into an AST and �nally evaluate the AST to get results from the code
contained within the input string.

The �sher parser is de�ned in a JavaCC1 grammar and the AST nodes are
de�ned by a Python script. While the AST classes could have been generated
by Javacc, the �sher developers chose to build their own Python script for it.

JavaCC grammar de�nition The Thorn grammar is speci�ed in the �sher.parser
package in a �le called grammar-�sher.jj. This �le is passed to JavaCC, which
generates most of the classes in that package, including FisherParser (the main
parser), Token and so on. The �sher.parser package de�nes the parser, however,
AST nodes are de�ned in the �sher.syn package. The majority of the �sher.syn
package is generated by a Python script de�ned in /src/syntax/ast-�sher.py.

When the parser runs on a given .th �le (the �le extension for Thorn source
�les) or on an input string given in the REPL environment, it produces an AST
whose nodes are de�ned in the �sher.syn package. Once the AST is generated
from the input, it is visited by visitors in the �sher.syn.visitor package. The
visitors preprocess and evaluate the program.

The majority of the rules in the grammar only require a lookahead of 1, how-
ever, some rules have this lookahead (locally, for that rule only) set to higher
lookahead values, up to 5 to avoid ambiguities in the grammar.

The JavaCC input �le is relatively easy to understand for someone coming from
a Java background. Lets look at an example section of the grammar de�nition
�le:

1 I f /∗&∗/ I f ( ) :
2 { Token s ta r t , end ;
3 Cmd tes t , thenarm , e l searm=nu l l ;
4 boolean r e a l l yUn l e s s = f a l s e ;
5 }
6 {
7 ( s t a r t = <IF> { r e a l l yUn l e s s = f a l s e ; }
8 | s t a r t = <UNLESS> { r e a l l yUn l e s s = true ; }
9 )
10

11 <LPAREN>
12 t e s t = BiggishExp ( )
13 <RPAREN>
14 thenarm = Stmt ( s t a r t . image , nu l l ) {end = thenarm . end ; }
15 [
16 // We' ve got a dangl ing−e l s e problem here .
17 // JavaCC ' s d e f au l t behavior i s to do the r i gh t th ing .

1http://javacc.java.net/ - described as a �Java compiler compiler�

35



18 // But i t p r i n t s a warning because o f the ambiguity .
19 // c f . https : // javacc . dev . java . net /doc/ lookahead . html
20 LOOKAHEAD(1)
21 <ELSE>
22 e l searm = Stmt ( s t a r t . image , " e l s e "){ end = elsearm . end ; }
23 ]
24 {
25 re turn new I f ( s ta r t , end , t e s t , thenarm ,
26 elsearm , r e a l l yUn l e s s , f a l s e ) ;
27 }
28 }

It should be fairly obvious about how the above listing works. Provided below
are some notes:

If /*&*/If(): De�ne how the If statement is parsed. If() is called from other
de�nitions when they wish to consume an If statement. Upon consuming
an if statement, the parser will return an AST instance of type �sher.syn.If
, which could be used in another AST.

{Token start, end;...} The �rst pair of braces are used for variable declara-
tions that will be used in the rest of the de�nition. In this example, the
Java code in the second pair of braces (Java code is enclosed by curly
braces in the second pair of braces of the de�nition) may refer to Token
objects called start and end.

<LPAREN> Try to consume a LPAREN token de�ned earlier as �(�. The
token can be speci�ed using a regular expression, rather than just as a
literal.

[...] Indicates optional tokens, so in the above listing, the else part is optional.

return new If(start,end,test,thenarm,elsearm,reallyUnless,false); This
returns an instance of the If AST

AST tree / Python script The /src/syntax/ast-�sher.py Python script gen-
erates the classes in the �sher.syn and �sher.syn.visitor packages. The code
generating script includes a class CLS, instances of which get turned into the
Java classes found in �sher.syn package.

When the parser has produced an AST, it is visited by the �sher.syn.visitor
visitors. Following this, the AST is evaluated by �sher.eval.Evaller (one per
each thread).

The Evaller has di�erent strategies on how to handle an AST node depending
on the node type. If the node type is a subclass of �sher.syn.Cmd (most major
pieces of syntax are) then the nodes are visited by an instance of �sher.eval.Computer.
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The Computer object is asked to visit the nodes and is supplied with a Frame-
like object which contains environmental information required to evaluate an
AST, such as variables (and their values) in the current scope.

2.3.1.2 Seals / sealant

The sealant is one of the visitors in the interpreter. The purpose of the sealant is
to give seals to nodes of the AST. Every identi�er in Thorn has a Seal associated
with it (and therefore, every method, variable, class and so on).

A seal has a few important uses in the interpreter:

1. It serves as a unique ID for each AST node. For example, an object
in Thorn is represented in the ObjectTh class. An ObjectTh has �elds,
to which we can assign values. To do this, we need to unambiguously
identify the �eld of the ObjectTh. The seal of the �eld can give us this
unambiguity, as the sealant will produce a seal for each �eld when it visits
the class declaration in the AST (and subsequently, the �eld AST nodes).

2. Gives some scoping information - each seal has a reference to the seal
of the static thing which encloses the identi�er. For example, in module
Mod { var x; }, the seal of the container of variable x is the seal of
module Mod (and the seal for Mod also has a back reference to all seals
that it is the container for). This helps in scope checking. For example,
(a highly simpli�ed example) if we have code of the formmodule Mod {
var x; println(x);}, then we can quickly check whether x in the println
statement is a variable in the scope of Mod by asking Mod if it is the
container for that variable.

Seals have been described (in a previous project on Thorn) as similar to the De
Bruijin index[37], although this is not quite correct, as the De Bruijin indexes[8]
are mainly used to check for α-equivalence in λ-calculus, while a Seal is a far
more general purpose entity.

2.3.1.3 Frames

A �sher.eval.Frame is essentially a stack frame. The root frame contains a
reference to Prede�nedIdenti�ers, which is an enum class that has seals for
some built in functions (that don't need to be imported, e.g. println) or built in
variables, such as argv (command line arguments passed into the Thorn script
upon startup). For example, during method calls, frames are used to store an
implicit this parameter, as well as the values of arguments to a method call.
Its interesting to note that this approach is one of the thing that makes the
interpreter much slower than the compiler, as the creation of frame objects is
far slower than creating a stack frame on the JVM.
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2.3.1.4 Evaller / Computer

The Evaller and Computer are two important visitors.

An Evaller basically evaluates the AST tree to give results. For example, the
expression 1 + 1 would have 3 nodes on the AST tree, and the Evaller will
modify the tree to replace the 3 nodes with one node, i.e. the value 2. In the
interpreter, there is one Evaller object for each thread. This is useful, as the
di�erent threads do not have shared state (after all, the whole language has no
shared state). This gives the JVM some opportunity to take some advantage of
parallelism, as the problem of evaluating separate AST trees is embarrassingly
parallel.

The Computer is what traverses the main AST, and then passes subtrees of the
AST to the Evaller to be evaluated.

2.3.1.5 Pre-de�ned functions

As mentioned in the section on Frames, Thorn has a number of prede�ned
functions, which do not need to be imported in order to be used.

For example, it is perfectly legal to have a .th �le as follows:

Listing 2.5: Legal.th

1 module M{
2 p r i n t l n (" He l lo world ! " ) ;
3 }

Notice here that, unlike languages such as Java, we do not import the println
function. This is because the constructor of the root frame will traverse the
Prede�nedIdenti�ers enum, which has the seals of all prede�ned functions (in-
cluding println). This means that the evaluator (which uses frames during
evaluation) will always be able to refer to the the println seal and thus execute
it.

It is relatively easy to add new pre-de�ned functions.

For example, the entry for the println function in Prede�nedIdenti�ers is as
follows:

Listing 2.6: Prede�nedIdenti�ers.java

1 . . .
2 // make the s e a l f o r p r in t ln , the s e a l
3 // should po int to the PrintlnBIF c l a s s
4 prede f (" p r i n t l n " , SealMaker . ofPredefFun (" p r i n t l n ") ,
5 PrintlnBIF . c l a s s ) ,
6 . . .
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If we look at PrintlnBIF.java, it should become obvious how all of this comes
together:

Listing 2.7: PrintlnBIF.java

1 pub l i c c l a s s PrintlnBIF extends BuiltInFunctionTh {
2

3 // apply i s in BuiltInFunctionTh
4 // a Thing i s the Thorn equ iva l en t o f java . lang . Object
5 @Override
6 pub l i c Thing apply (Thing [ ] args , Framel ike ignoredFrame ,
7 Eva l l e r e v a l l e r , Syntax s r c ) throws FisherExcept ion {
8 // j o i n the arguments passed in to p r i n t l n
9 // and pr in t out the r e s u l t i n g St r ing to the conso l e
10 System . out . p r i n t l n (Bard . sep ( args , " " ) ) ;
11 System . out . f l u s h ( ) ;
12 re turn nu l l ;
13 }
14 }

This shows that we can very quickly add new prede�ned functions simply by ap-
pending to the Prede�nedIdenti�ers and then extending the BuiltInFunctionTh.
This approach was used throughout the project for prototyping new functional-
ity (for example, adding objects to aspect instances). There do not seem to be
any rules in Thorn for what is a good candidate for a prede�ned function and
what should be built into objects (i.e. using e.predefFun(...) syntax).

2.3.1.6 Thing / ObjectTh

An ObjectTh is basically a Thorn object. It has a reference to a ClassDynamic
(which contains information about the class of the object, i.e. method AST
trees), as well as a map Map<String, Frameable> �elds, mapping from �eld
names to �eld name values (a Frameable is an interface for things which can
be placed in a Frame). It is worth noting here that while the map uses String
keys explicitly, implicitly it uses Seals. This is because the toString() version of
a Seal is used as the key into the �elds map.

A Thing is what all runtime Thorn objects derive from. Note that in Thorn, we
do not only have ObjectTh instances as runtime objects, however, we also have
such objects as Javaly function objects. These do not derive from ObjectTh (as
they are not Thorn objects), however they are runtime objects.

2.3.1.7 Javaly

Javaly is the mechanism which Thorn uses to bridge between it and Java, so
that it may make calls to libraries written in Java. This type of functionality
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is useful for languages targeting the JVM, as they do not need to implement
an entire API themselves. Instead, they can write API wrappers which can use
the extensive and mature API of Java. We can get an idea of how the Javaly
mechanism works just by looking at the constructor of the JavalyFunImpl class:

Listing 2.8: JavalyFunImpl.java

1 . . .
2 import java . lang . r e f l e c t . Method ;
3 . . .
4 // Java method , us ing r e f l e c t i o n
5 pub l i c f i n a l Method method ;
6

7 // an AST t r e e r ep r e s en t i ng a
8 // j ava ly func t i on
9 pub l i c f i n a l JavalyFun dec l ;
10

11 pub l i c f i n a l i n t a r i t y ;
12

13 pub l i c JavalyFunImpl (Method method , JavalyFun dec l )
14 throws FisherExcept ion {
15 super ( ) ;
16 // check whether the running s c r i p t a l l ows
17 // j ava ly funct i ons , g ive an e r r o r i f not
18 Secur i ty . sandbag ("No java ly funs a l lowed . " ) ;
19 t h i s . method = method ;
20 t h i s . d e c l = dec l ;
21 t h i s . a r i t y = dec l . f o rmal s . s i z e ( ) ;
22 }
23 . . .

Javaly works through the use of re�ection (in the method call case, through
the use of java.lang.re�ect.Method). The interpreter also has a sandbox mode
(switched on through a command line argument), which prevents it from calling
Javaly code.

2.3.1.8 Components

Thorn follows the philosophy that shared state should not be allowed in concur-
rent programming, and follows the Actors model, i.e. it achieves concurrency
through message passing.

A Thorn actor is called a Component, and it is implemented by the �sher.runtime.ComponentTh
class. Components are ran on di�erent JVM instances, and they communic-
ate to each other through sockets (and serialising messages through the use of
java.io.ObjectOutputStream).
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Having Components run on di�erent JVM instances was originally intended to
improve system robustness by �isolating failures�[6] (following the ideas of Er-
lang), although the robustness a�orded is somewhat limited without a replica-
tion mechanism. One of the design ideas with running components on separate
VMs was that if a Component goes down, it may be restarted by a super-
visor process[28] (as in Erlang), although this functionality isn't implemented
in Thorn.

However, Thorn follows an �evolve as you go along� philosophy. The Compon-
ents mechanism is a good �t for the philosophy, as it allows one to move from
a concurrent system to a distributed system with minimal e�ort, as one can
simply run the components on di�erent machines. Since the components com-
municate through sockets even when running on the same machine, moving to
a distributed architecture requires no programmer e�ort and adds no overhead
other than the overhead latent to distributed systems, namely communication
latency over the network.
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Chapter 3

The language

This chapter introduces the extensions to Thorn that were made as part of
AOD-Thorn. The section assumes a familiarity with Thorn (possibly gained by
studying the Thorn OOPSLA 2009 paper[6]), although the examples should be
straightforward to read with even minimal (or no) knowledge of Thorn.

3.1 Aspect-orientation (vanilla)

The �rst step of the project was to add aspect orientation to Thorn. The author
decided to focus on simple method calls and �eld accesses (reads and writes), as
these are possibly the most important features in any AOP language, and in fact,
there aren't many more, except some rarely used features such as intercepting
certain patterns of executions, i.e. by looking at the call stack.

There are many sources showing elegant solutions to problems in software en-
gineering (some excellent sources for inspiration:[35, 18, 26, 27, 42, 21]). As
such, the author assumes that the reader is familiar with the solutions that
AOP can provide to a project (even if such familiarity is limited to a speci�c
framework such as AspectJ, the project was not about researching AOP use
cases after all), so no complicated and long examples will be provided (which
is where AOP really shines), but merely somewhat trivial (easy to understand)
examples that should showcase how to use the aspecting extensions.

3.1.1 Motivation

Just as in other OO languages without aspects, Thorn applications are vulner-
able to tangling and scattering due to the di�culty in separation of concerns.

The project �rst started out as an investigation on adding fault-tolerance fea-
tures into the language, through the use of checkpointing certain variables at
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given points. The original requirements were to add syntax into the language
that would ensure that annotated variables were periodically checkpointed onto
the local disk, however, the author argued that this could be an inferior ap-
proach to writing a library that utilised Aspects that intercepted �eld writes
and then checkpointed them to the disk, as this would:

1. Not require the pollution of checkpointed classes with the non-core concern
of checkpointing (a large scattering and tangling problem)

2. Not require the addition of further keywords to the language. Fault toler-
ance is a bit of a niche, and to add it as a language feature would require
signi�cant thought in order to be made as �exible as possible, for e.g.
di�erent checkpointing algorithms (the user may for example, decide that
checkpointing should output to an xml �le), which would be di�cult if it
was a language feature instead of having multiple competing libraries to
do the job in a way tailored for a speci�c domain. However, languages
such as Erlang do have built in features for fault tolerance. It was really
the authors wish to build something more general, which would complic-
ate the interpreter less, and allow the language community to build such
features as fault tolerance more easily.

It is easy to see how one could write a checkpointing library that used �eld
write interception, and advised that the �elds are written to the local disk,
from where the values for the �elds could be read from when needing to restore
a checkpoint.

Such an example should show why Aspect orientation should prove to be useful
in Thorn, i.e. making it easier for the users of Thorn to implement certain
types of frameworks (and tools), which could have a profound in�uence on how
Thorn evolves (for example, Ruby on Rails was a framework which had a huge
in�uence on how Ruby was perceived in the market).

Certain types of tooling also bene�t from aspecting technology, i.e. diagnostic
/ monitoring, debuggers and pro�ling tools can be implemented much more
easily[4] if the language has AOP functionality (diagnostic / monitoring: simply
give advice to joinpoints to log parts of the programs in need to be monitored,
pro�lers: inject timing code to joinpoints, debuggers: i.e. inject code which will
report the values of �elds when asked to by the debugger). Making it easier to
write tools like this increases the chances of the tools being written, which in
turn increase the chance of the language being marketable.

3.1.2 Vanilla aspecting

The vanilla aspecting portion of the project consists of intercepting method calls
and �eld accesses and then injecting code (advice) at the given points, with
some attention paid to the e�ciency of implementation (although the Thorn
interpreter is by no means high speed).
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3.1.3 Scope

When de�ning joinpoints, it is often useful to be able to narrow down the
joinpoint to a certain scope, i.e. a package or a class. For example, we may
wish to log all setter methods in a given package which contains our business
objects.1

This type of scoping is achieved through the use of regular expressions, in the
same �avor as those used in the standard Java regex API2, although it is slightly
modi�ed for the pointcut domain. Since every identi�er (and therefore, every
method / variable) has a seal (as described in section 2.3.1.2) attached to it, we
can use regular expressions on the String representation of the seal to do scope
checking. The seal has a toString() method, which simply returns a cached copy
of the string representation of the location of the identi�er (location here means
the scope, i.e. the the package, class, identi�er name) in the format of package-
name.classname.identi�er (for example com.company.businessobjects.Employee.setSalary
for the method setSalary(..)).

This allows us to use wildcards to match parts of the seal string. For example,
if we wish to write a joinpoint that matches all the setter methods in every class
of the package com.mycompany.businessobjects then we can use a joinpoint of
form:

1 (com .mycompany . bu s i n e s s ob j e c t s . ∗ . s e t ∗)
2 // no t i c e here that we use . i n s t ead o f \ .
3 // as would be expected i f we were us ing pure
4 // Java regex pat t e rns

When processing the regex pattern, in AOD Thorn all '.' characters are replaced
by �\.�. This is to avoid matching e.g. comXmycompany (in the above regular
expression), without needing to escape the '.' characters. This was done because
the '.' character is most often used in its literal form, rather than as a wildcard
when de�ning pointcuts.

3.1.4 Method interception

To intercept a method call, we need only 4 entities:

1. Advice location - can be before, after or around. Advice location speci�es
where the advice code should be injected: before the joinpoint, after the
joinpoint or instead (around) of the joinpoint (although around advice can
still execute the original joinpoint).

1A business object is a �type of an intelligible entity being an actor inside the business
layer in a n-layered architecture of object-oriented computer programs.�[55]

2please see the javadoc for java.util.regex.Pattern at
http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
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2. A pointcut - with a set of joinpoints, which describe when advice should
be executed.

3. The arguments passed into the advice, i.e. method arguments

4. The advice - a set of statements that de�ne the code to be injected

Learning by example is an e�cient method to learn a new language, so lets
look at an illustrative example that shows how to use method interception in
AOD-Thorn:

1 aspect SensorLog{
2

3 va l alarmThreshold = 0 ;
4 va l emergencyThreshold = 2 ;
5

6 var a larmsAct ivated := 0 ;
7

8 de f l og (msg) = p r i n t l n (msg ) ;
9

10 be f o r e : exec jp [ ( com . s en so r s . tempsensors . IRSensor . s ense ) ]
11 jp [ ( com . s en so r s . tempsensors . ThermoCoupleSensor . s ense ) ]
12 args ( arg ){
13 azpct . l og ( t h i s . name + " sensed : " + arg ) ;
14 i f ( arg > azpct . alarmThreshold
15 && arg <= azpct . emergencyThreshold ){
16 t h i s . act ivateAlarm (" Not i fy a u t h o r i t i e s " ) ;
17 azpct . a larmsAct ivated++;
18 } e l s e i f ( arg >= azpct . emergencyThreshold ){
19 t h i s . act ivateAlarm (" Evacuate immediately ! " ) ;
20 azpct . a larmsAct ivated++;
21 }
22

23 // here f o r i l l u s t r a t i o n only :
24 p r i n t l n (" sense c a l l e d on : " + th i s . name +
25 " by : " + o r i g i n . name ) ;
26 }}

The above aspect corresponds to a �ctional situation, where we have two sensor
classes (infrared and thermocouple) that both have a method on them called
sense (with a single argument). For some reason we are not allowed to modify the
sensor classes nor override the sense method (lets forget about why for now3), so
instead we use the advice de�ned above. Lets go through the interesting points:

3this illustrative example only shows the features of AOD-Thorn, not when to use aspects.
Infact, actions such as activating an alarm would be classed as one of the core concerns of the
class, and thus not classically what we would put into an aspect).
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before: exec - this piece of syntax basically says �execute the advice before
one of the methods in the set of joinpoints are executed�

jp[(regex1)] jp[(regex2)] - a joinpoint is de�ned by the keyword jp followed
by a regular expression within square brackets. As noted before, a pointcut
is a set of joinpoints, and therefore the language allows a list of joinpoints
to be de�ned for a pointcut. It is worth noting here that as the full Java
regular expression syntax is allowed, we could de�ne a set of joinpoints
using a single regular expression (i.e. through the use of the | operator),
however the author felt that this would not be as readable as explicitly
writing out the joinpoints (although the previous option is still available)

args(arg) - the args keyword, followed by a set of identi�ers within round
brackets, specify the arguments of the method being called. These argu-
ments are available to the advice code.

azpct.log(...) - the azpct keyword is like the this keyword, however it refers
to the aspect object rather than the object where the joinpoint is located.
This particular expression calls the log method within the aspect object.

this.name - the this keyword refers to the object where the joinpoint is located.
Infact, it is as if had written the this keyword in the original method that
we are intercepting (the keyword is injected). 4This particular expression
refers to the name �eld of the this object.

origin.name - the origin keyword refers to the object which referenced the
joinpoint. In other words, if object αhas a reference to objectβ, and
αcontains code of the form β.meth(, , , ) or β.field, then we refer to βas
the target (referenceable by the this keyword from within advice), and we
refer to αas the origin. The expression origin.name evaluates to the name
�eld of the origin object.

3.1.4.1 Some notes

exec The exec keyword tells us that we want to match on method calls, and is
re�ered to as a pointcut primitive. Other pointcut primitives include set / get ,
used for �eld access interception.

3.1.5 Field access

Intercepting a �eld access is very similar to intercepting a method call.

4It should become apparent from this that the azpct and this keyword imply a mechanism
of cooperation between the aspect object and the object with the joinpoint. This is because
advice inside the aspect object can always refer to the object containing the joinpoint method
through the this keyword, while the object which has had advice injected into it has a reference
back to the aspect object where the advice comes from (how this is achieved will be revealed
in the implementation section).
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Example:

1 be f o r e : s e t jp [ ( ∗ l ogged ∗ ) ] a rgs ( va l ){
2 p r i n t l n (" Set on logged var in ob j e c t : " + th i s . name
3 + " by : "
4 + o r i g i n . name +".\n
5 Var now has value : " + va l ) ;
6 }

It should be fairly obvious what the code does from the section on method inter-
ception, with the exception of the set pointcut primitive. For �eld interception,
we have set and get, which refer to the assignment to a �eld and the read of a
�eld respectively. The argument passed into the advice is the new value that
the �eld will be set to.

3.1.6 Aspect precedence

If an object has several aspects that give it advice, there is sometimes a need
to explicitly order the aspects. Otherwise they are ran in the order that the
interpreter reads them (this is in line with other popular AOP suites).

To give an ordering to the aspects, we include the precedence syntax for it
(although with hindsight, this syntax appears a bit super�uous and it should
be made more succinct):

1 module Aspects {
2

3 aspect precedence {
4 precedence : Aspect1 , Aspect2 , Aspect3 ;
5 }
6

7 aspect Aspect2 { . . . }
8 aspect Aspect1 { . . . }
9 aspect Aspect3 { . . . }
10

11 }

The above precedence syntax will make sure that during the weaving process,
Aspect1 will be the �rst to be added to the ad visors of a joinpoint, then Aspect2
and lastly Aspect3.

This wasn't a particularly interesting part of the project, so not much further
work was done on it.

47



3.2 OOP and AOP uni�cation in AOD-Thorn

3.2.1 Motivation

In most AOP systems, there is a disparity between aspects and normal classes.
Firstly, in language extensions such as AspectJ, aspects are generally an ex-
tension of classes, in that they can have methods, �elds, as well as joinpoint
/ pointcut / advice de�nitions. Secondly, in AOP systems implementing AOP
as a library, aspects tend to have advice de�ned in the target language, and
pointcuts / joinpoints de�ned in some external language or DSL 5.

All of these systems can de�ne advice that can refer to objects / classes (and
it would be very silly if they couldn't), and aspects can interact with objects
in all the ways that a class can (instantiate, access a �eld, call a method, etc).
However, the same does not apply the other way round.

Most signi�cantly, there exists a class of languages, lets call it class θ, which
includes most of the popular Java ones, where aspects can instantiate objects
but objects have no control over the instantiation of aspects, the AOP system
controls aspect instantiation.

It has been argued that this is in general an undesirable asymmetry[40], as some
scenarios can be made more complicated needlessly.

3.2.1.1 Sidenote: Classpects by Hridesh Rajan et al.

While work on this part of the project started as an idea by the author, it
later turned out that a treatment of the idea had already been applied to the
.NET platform by Hridesh Rajan and Kevin Sullivan, with a construct called
a classpect, which modi�es de�nitions of classes include pointcuts and advice
(and therefore removes the distinction between an aspect and a class) and allows
programmer controlled aspect instantiation. The authors of classpects have the
following claims for their work:

�First, we can realise a uni�ed design without signi�cantly compromising the
expressiveness of current aspect languages. Second, such a design improves the
conceptual integrity of the programming model. Third, it signi�cantly improves
the compositionality of aspect modules, expanding the program design space
from the two-layered model of AspectJ-like languages to include hierarchical
structures.�[39]

3.2.1.2 Problems with the θ class of languages

The θclass of languages can cause problems for certain applications.

5for example in JBossAOP we use annotations / XML for joinpoints / pointcuts, and
advice is de�ned in Java
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Firstly, since the θ aspects cannot be instantiated by classes, there exists no path
between the standard program entry point (... main(String args[]) in Java)
and code which can instantiate θ aspects. Given this, the technique used to
instantiate aspects is to have the programming environment do it (we look at
how AspectJ instantiates aspects in section 3.2.1.3), instead of the programmer.

Section A.1 in the appendix describes an experiment that shows the aspect in-
stantiation behaviour of aspects in AspectJ. We can see from this that something
akin to lazy instantiation is utilised by AspectJ for aspect instantiation. This
kind of instantiation mechanism can make reasoning about correctness harder,
for example in the the case the constructor has side e�ects. In AspectJ, there is
a restriction that an aspect may only use the default constructor, because it is
called by the framework which does not have access to objects (which would be
used as arguments to a non-default constructor) outside of what the framework
uses.

More importantly than the constructor issue is how to reference an aspect from
an object. Many θ languages (including AspectJ) allow objects to reference
(not construct) aspect instances, but since objects cannot instantiate aspects,
aspect instances need to inject references to themselves into objects which need
to interact with them. This isn't the type of thing one expects to need to
do in order to interact with an aspect instance, as it seems long winded and
unnecessary. Not only is it long winded, but it requires that Aspects know
about the objects that will need them. This asymmetry can lead to unnatural
designs.

On the other hand, one may argue that dependency injection (i.e. Spring frame-
work) is a popular trend in the OO world, so aspects having to inject references
to themselves into objects isn't such a bad idea. However, building a DI frame-
work for Thorn that could handle injecting aspects would require that the DI
framework can instantiate the aspects, which would again be di�cult in the θ
class of languages.

3.2.1.3 Instantiation models in AspectJ

Apart from the singleton instantiation model, AspectJ (as well as many other
AOP frameworks such as JBossAOP) supports four more instantiation models.
They are described as follows:

perthis According to the AspectJ documentation, a perthis model is de�ned
as follows: �If an aspect A is de�ned perthis(Pointcut), then one object of
type A is created for every object that is the executing object (i.e., "this")
at any of the join points picked out by Pointcut. The advice de�ned in
A will run only at a join point where the currently executing object has
been associated with an instance of A.�[45] In other words, if a class β
contains a joinpoint de�ned in a pointcut in the aspect α which has the
perthis instantiation model, then every instantiation of β will cause an
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instantiation of α which is bound only to the instance of β which caused
α to be instantiated.

pertarget �Similarly, if an aspect A is de�ned pertarget(Pointcut), then one
object of type A is created for every object that is the target object of
the join points picked out by Pointcut. The advice de�ned in A will run
only at a join point where the target object has been associated with an
instance of A.�[45] In other words, if an object of class β performs an
operation on an object of class δ , and the operation performed by β is a
joinpoint de�ned in the pointcut in the aspect α, then an instance of α is
created whenever an object of β performs the joinpoint and this instance
is bound to the δ object which is the target of the operation.

perc�ow perc�owbelow �If an aspect A is de�ned perc�ow(Pointcut) or per-
c�owbelow(Pointcut), then one object of type A is created for each �ow
of control of the join points picked out by Pointcut, either as the �ow of
control is entered, or below the �ow of control, respectively. The advice
de�ned in A may run at any join point in or under that control �ow. Dur-
ing each such �ow of control, the static method A.aspectOf() will return
an object of type A. An instance of the aspect is created upon entry into
each such control �ow�[45]In other words, this is a dynamic pointcut, in
the sense that we need to look at what has taken place in the program (by
i.e. checking the stack) before we decide whether the pointcut has been
matched.

These are sometimes seen as conceptually complicated (OO programmers are
used to , and cannot implement some functionality in a straightforward manner
(i.e. singleton is too coarse, perthis / pertarget / perc�ow is too granular). If
for example, we have a group A of objects of class C, and group B of objects of
class C, these instantiation models do not support an aspect instance per group
very intuitively. Further, turning an aspect on / o� for an object/group is also
relatively di�cult, as described in section 3.2.3.

3.2.2 Example scenario - why we need referenceable as-
pects + user instantiable aspects

Lets say we have a webserver, which we wish to pro�le when it experiences
high loads (i.e. we wish to �nd out which parts of the server to optimise when
we experience real high loads). We can clearly do this using aspects, pro�ling
is a typical application of aspect oriented programming. But how do we only
pro�le when experiencing high loads? Lets say we have an object α that knows
about the load being experienced by the server, i.e. its some kind of monitoring
object, and our language had a restriction that objects could not reference aspect
instances. This could be achieved by advice to pro�led joinpoints �rst asking α
about the load and whether the load is high, and then changing the control �ow
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of the pro�ling advice accordingly. This appears a somewhat contrived solution
to the problem.

Firstly, does it really make sense to ask α on each time the joinpoint is reached?
The predicate check could be expensive (it will always be more than zero, also
the AOD-Thorn interpreter is slow!), and while the expense could be reduced
(i.e. caching answers), the programmer will still have the burden of adding this
predicate check to each advice in the aspect, introducing scattering.

Secondly, does it really express what the programmer wants / encourage good
design? If the application usually takes some sort of action whenever it starts
experiencing high loads (for example, emailing an administrator), the set of such
actions are likely to be made in a location referenced by α. For example, an
object β which is referenced from α may have a method like the following:

1 . . .
2 highLoadExperienced ( ){
3 emai lAdminis t rator ( ) ;
4 // other a c t i on s to take when
5 // high loads exper i enced
6 }
7 . . .

Then, with non referenceable aspects, we β may take one set of actions, while
the aspect instance would take another set (i.e. start pro�ling). Clearly, it
might be neater if β could have code like this:

1 . . .
2 highLoadExperienced ( ){
3 emai lAdminis t rator ( ) ;
4 p r o f i l i n gAsp e c t . s t a r t P r o f i l i n g ( ) ;
5 // other a c t i on s to take when
6 // high loads exper i enced
7 }
8 . . .

There is a clear need for core code to be able to reference aspect instances, so
this functionality was included in AOD-Thorn, much as it is included in other
AOP frameworks.

The process for the core code to obtain a reference to an aspect instance should
be made as easy as possible, hence the addition of user instantiable aspects in
AOD-Thorn.

3.2.3 Selective vs unselective

AOD-Thorn aspect instances can be selective or unselective; we discuss the
di�erences.
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Most θ languages have a singleton aspect instance by default (with extra mech-
anisms for instantiation, such as perthis or pertarget), with an implicit reference
to the aspect instance when executing advice.

The case of having a singleton aspect usually lends itself to the concept of
unselective aspects, in that the advice is applied to all instances of the types
that contain the joinpoints, and therefore the advice is executed during the
execution of joinpoints in these types.

For many cases, especially where the aspect has no state, this is an adequate
mechanism. However, it is often inconvenient to have a singleton instance of an
aspect which applies to all instances of the joinpoint containing type, as seen
in the example scenario . Where aspect instances have a state, we may wish to
give di�erent advice to di�erent sets of objects of the same type, based on the
aspect instance state. Using unselective aspect instances, we can achieve this
by using a table method. For example, we can have two tables of form:

ObjectLookup : Object→ SetID

FieldLookup : SetID → {Field}

A �eld is of form field = fieldId× type× value.

Then, given an object O, we can retrieve the value of a �eld f ∈ {Field} for O by
applying the two table lookups, i.e. (FieldLookup(ObjectLookup(O))[f ] ↓3(↓3
gets the value, i.e. the 3rd value of the tuple).

. It is easy to see why this is seen as inconvenient.

The situation is simpli�ed if we only have a requirement that the advice is
applied to a subset of all the instances of a type.

3.2.3.1 De�nitions (simpli�ed, informal)

ID is overloaded

pointcut π = {joinpointRef}
joinpointRef µ = methId ∪ fieldId
method = methodId× type× arity ×methBody
field = fieldId× type× value
joinpoint = method ∪ field
joinpoints = {joinpoint | joinpoint ∈ Program}
ID : methId→ method
ID : fieldId→ field

We refer to a class C as C and the set of instances of C in the program at some
point in time as inst(C). A pointcut π is a member of pointcuts Π de�ned in an
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aspect. Every advice has one pointcut and every pointcut has one advice. An
aspect includes a set of <pointcut, advice> pairs, i.e. aspect = (..×(π×advice)).

Then, if we have the requirement that a set of advices with pointcuts Π are only
given to O : O ⊆

⋃
{inst(c)|µ ∈ π ∧ π ∈ Π ∧ ID(µ) ∈ c}(i.e. some subset of

objects which are instances of classes which contain the joinpoints referenced in
the pointcuts of the advices, in other words, we wish to apply the advice only to
some objects that match the pointcuts of the given aspect), we have a simpler
solution.

The �rst step for an advice only applied to O will be to check if the object o
under consideration of being given advice to is ∈ O (O would be a set held in
the aspect instance), and if it isn't, to abort the execution of the advice.

So in other words, we could have something like the following (in pseudocode):

1 aspect asp{
2 Set<Object> advi sedObject s
3

4 po intcut {
5 i f ( j o i npo i n t in adv i sedObject s )
6 g ive adv ice
7 }
8 }

However, this approach has some major faults:

1. It requires the programmer to to explicitly code this functionality into
their aspects

2. All advices must have the o ∈ O check, resulting in code scattering, against
the principles of AOP. We need to either live with it, or give advice to
advice, increasing the conceptual burden on the programmer.

3. There is always an advice invocation, even if an object will not be ad-
vised. Depending on the implementation of the AOP system, this may be
relatively expensive (i.e. some AOP systems which create a large number
of objects on each advice invocation).

4. In the θ languages, either the aspect instance has to inject a reference to
itself into objects so that objects may tell the aspect instance which objects
to bind to (which is somewhat long winded), or the aspect instance will
have to be what creates the advised objects (which can be very confusing).

Clearly, table / set based methods like this leave a lot to be desired. While we
have perthis / pertarget, these may spawn too many aspect instances. We may
wish to bind an aspect instance to a single object which whose class contains
the joinpoints in the aspects pointcut but not bind an aspect instance to each
instance of the class that contains joinpoints de�ned in the pointcut (as would
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happen with perthis / pertarget), or, we may wish to bind an aspect instance
to a group of objects.

Selective aspects can help us here.

Selective aspects A selective aspect instance, speci�ed by adding the select-
ive keyword after the aspect keyword, will declare that the aspect instance will
only advise objects added to it using the addToAsp(ObjectTh, AspectObject)
function, which is equivalent to switching an aspect on for an object at runtime
(switching it o� at runtime is equally simple, simply use delFromAsp(ObjectTh,
AspectObject) ). This removes the need for the programmer to explicitly build
this into their aspect, reducing the need for each advice to have to check every
time it is ran.

Further, as execution of Thorn code is slower than execution of Java code, mov-
ing this check into the interpreter should result in faster joinpoint evaluation,
as the execution of a joinpoint is not slowed down as much as if Thorn code
was used for the inclusion check (the implementation chapter has more details
on this).

Finally, it removes the scattering inside the advices, as there is no need for each
piece of advice inside the selective aspect to check whether the object is to be
advised.

Of course, selective aspects have problems of their own:

1. something needs to pass it the objects that the selective aspect instance is
to bind to, which may decrease modularity as there must be a reference to
the aspect instance. The core code may not be completely oblivious to the
aspects solving the cross-cutting concerns, however, aspects still remain
useful.

2. as selective aspects can only bind to already constructed objects, they
cannot give advice to an objects during the initialisation phase (i.e. to
constructors). This should not be much of an issue. Simply keep the
advice to constructors in an unselective aspect. Proper tooling should
downplay fears of spreading the advice to a class across several aspects
(and thus making it harder for the developer to work out / understand
program �ow).

3.3 Transparently distributed aspects

Local aspect-oriented programming is relatively straight forward. We insert
advice at joinpoints which match predicates (pointcuts) de�ned in aspects.

In languages with shared state, giving advice to code objects several threads
is not much more di�cult than if the advice takers were in the same thread,
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synchronisation mechanisms can be used. An aspect instance can live in one
thread and give advice to objects in several di�erent threads, and this works
correctly.

However, the case of stateful aspect instances (when advice has side e�ects on
the aspect instance, i.e. reads and modi�es �elds of the aspect instance) is more
di�cult in Thorn.

Since Thorn is a language designed to make it easy to write concurrent as well
as distributed applications as easy as possible, it makes sense to make aspect-
oriented programming in Thorn in the context of distributed / concurrent code
as easy as possible.

Traditionally concurrent code Thorn has no shared state, concurrent code
is ran on separate JVM instances (each component in Thorn is ran on a separate
VM), message passing is used instead of synchronisation / locking. This makes
it di�cult to give advice to concurrent code, since the Aspect instance can only
have a reference to the objects running on the same VM. This is made worse,
when for example, a pointcut applies to multiple objects (on separate VMs) and
the aspect is stateful.

Traditionally distributed code Furthermore, it may be a requirement to
advise objects on separate VMs which do not interact with each other (i.e.
embarrassingly parallel), but the advice has to be aggregated somehow. For
example, there may be several webservers serving a static web page, however,
we have the need to count how many times the page has been accessed across the
whole distributed system. A trivial task if there is only one webserver (i.e. just
insert a before advice which logs invocations of the serve HTTP request routine),
however this task is less trivial if aggregation of this log data is required across
all the servers, we may need to write networking code in our aspects, so that
they communicate with each other and come up with a single number.

Part of the philosophy of Thorn is script it now and, if required, evolve it
later. As such, the author proposed that aspecting distributed code should
have a mechanism of being done very easily, even if it isn't as e�cient as if the
programmer exerted more control over how the aggregation happens.

Lets look at a motivating scenario.

3.3.1 Motivating scenario

Spec: To create a client / server application. The client asks two servers, one
in America and the other in Britain, for the news of the day. The servers read
the �le from a local �le in order to serve the request and we wish to pro�le the
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average time taken across all the news servers for the servers to read the news
�le, process it and then send the result to the client6.

The application started with a single server in the USA but has moved to an
experimental multiserver architecture, so now it has the British server also.

One way to do this, would be to to create a log server, which receives the time
taken logs from the aspect instances of the various news services. However,
this places a burden on the programmer to modify the pro�ling aspect that
was written when the application had a single server architecture, and since
the multiserver architecture is experimental, the distribution aware aspect code
may have to later be reverted.

If we have transparently distributed aspects, we can for example, have the client
initiate an instance of the pro�ling aspect as the master, and the aspects running
on the news service servers as aspect slaves. Then, all the aspect state and side
e�ects (i.e. IO operations) are done at the master.

This means, for the following NewsClient (following multiserver architecture)
and NewsService, we can keep the original aspect code (Pro�lingAspect) written
for a single server architecture without modi�cation .

Listing 3.1: NewsClient.th

1 component NewsClient {
2 body {
3 // get the handles f o r the two s e r v e r components
4 americanNewsSvc = s i t e (" thorn :// newscorpusa . com : 1 2 3 4 " ) ;
5 br i t i shNewsSvc = s i t e (" thorn :// newscorpuk . co . uk : 1 2 3 4 " ) ;
6

7 // invoke the getTheNews ( ) method on the s e r v e r
8 americanNews = americanNewsSvc <−> getTheNews ( ) ;
9 br i t i shNews = brit i shNewsSvc <−> getTheNews ( ) ;
10

11 p r i n t l n ("American news : \ n" + americanNews ) ;
12 p r i n t l n (" B r i t i s h news : \ n" + br i t i shNews ) ;
13 }
14 }NewsClient ;

Listing 3.2: NewsService.th

1 component NewsService {
2

3 sync getTheNews ( ){
4 readNewsFine ( ) ; // implementation ommited
5 }
6

6we can't do this performance measurement on the client, due to possible di�erences in
network lag between the two servers, they are in di�erent countries!
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7 body{
8 whi le ( t rue ) s e rve ;
9 }
10

11 }NewsService ;

Listing 3.3: Pro�lingAspect.th

1 aspect un s e l e c t i v e Pro f i l i n gAspe c t {
2 var counter := 0 ;
3 de f incCounter ()={ counter := counter +1;}
4

5 around : exec jp [ getTheNews ] c a l l e d ( ){
6 // nanosecond p r e c i s e system c lock value
7 t imeBefore = nanoTime ( ) ;
8 // proceed with the getTheNews computation .
9 proceed ( ) ;
10 t imeAfter = nanoTime ( ) ;
11

12 // l o g s the time taken somewhere l o c a l l y ,
13 // e . g . in a txt f i l e on the hard dr iv e
14 l og ( t imeAfter − t imeBefore ) ;
15

16 azpct . incCounter ( ) ;
17 }
18 }

As mentioned previously, if the language did not have transparently distributed
aspects, we would need to modify the pro�ling aspect with code that dealt with
the coordination between a log aggregator service and the aspects give advice
to the NewsClient instances.

For example, we may need code like this:

1

2 // s i n g l e s e r v e r a r c h i t e c t u r e :
3 around : [ getTheNews ] c a l l e d ( ){
4 . . .
5 l og ( t imeAfter − t imeBefore ) ;
6 . . .
7 }
8

9 //mult ie s e r v e r a r c h i t e c t u r e :
10 remoteTimeTakenService =
11 s i t e (" thorn :// logAggregator . com : s e r v i c ePo r t " ) ;
12

13 around : [ getTheNews ] c a l l e d ( ){
14 . . .
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15 // logRemotely ( timeTaken )
16 remoteTimeTakenService <−>
17 logRemotely ( t imeAfter − t imeBefore ) ;
18

19 remoteTimeTakenService <−> incCount ( ) ;
20 . . .
21 }
22

23 component RemoteTimeTakenService{
24 va l counter := 0 ;
25

26 sync incCount ( ) = { counter := counter +1;}
27

28 sync logRemotely ( timeTaken ){
29 l og ( timeTaken ) ;
30 }
31

32 body{whi l e ( t rue ) s e rve ; } ;
33 }

As we can see from the example, there is work involved from the programmer
to get the aspecting to work in a distributed setting. Infact, as components in
Thorn run on di�erent JVM instances, the programmer has to put this work in,
even if those components are running on the same machine (although this does
not apply to our scenario, as its purely a distributed application rather than a
concurrent one).

Furthermore, the reusability of the Aspect code is reduced, it is now polluted
with networking code.

To achieve the transparently distributed aspects, we can have an aspect running
as the master. The master holds the state of the aspect instance as well as the
aspect AST, while the slaves hold the aspect AST and a reference to the master.

To create a master aspect instance, we have the masterAspect built in function,
which takes two arguments:

1. Instance of an aspect (selective or unselective)

2. A name to use for the service (RMI registry is used, more on this in the
implementation chapter)

There is further a slaveAspect built in function, which also takes two arguments:

1. Hostname of the RMI registry which has the master aspect

2. The name of the master aspect instance
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In our scenario, the client would use the following code during startup:

1 program entry po int . . .
2 // i n s t an t i a t e d as be f o r e
3 p r o f i l i n gAsp e c t = Pro f i l i n gAspe c t ( ) ;
4

5 masterAspect ( p ro f i l i n gAspec t ,
6 "mas te rPro f i l i ngAspec t " ) ;
7 . . .
8

9

10 aspect un s e l e c t i v e Pro f i l i n gAspe c t . . .
11 // doesn ' t change , as be f o r e

and on the slave machines (the ones with news service):

1 program entry po int . . .
2 s laveAspect (" masterhost " ,
3 "mas te rPro f i l i ngAspec t " ) ;
4

5 aspect Pro f i l i n gAspe c t . . .
6 // doesn ' t change

Infact, the slaveAspect returns an aspect instance (which as explained in the
implementation section) is a wrapper around a normal aspect instance. As such,
it also works with selective aspects, as we shall see next.

3.3.2 Another motivating example, with selective aspects

Lets take a look at another example. We demonstrate the idea of selective
aspects, as well as distributed aspects. This is not an example of good design
(traditionally, aspects should not have core concerns such as raising an alarm,
although the bellow may be seen as an instance of the observer pattern), however
it does show o� the features of transparently distributed aspects.

The scenario: we have two buildings, one which contains several temperature
sensors connected to a network connected computer as well as an alarm system,
and the central building which receives readings from these sensors.

The sensors code may look like this. They can sense a temperature, in which
case they log it locally (in this case just through println), but they are also able
to activate the alarm, with a parameter to the alarm, in this case a message.

Listing 3.4: sensors.th

1 module Sensors {
2

3 c l a s s TempSensor (name){
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4 de f s ense ( temperature ) =
5 { p r i n t l n (" Sensed : " + temperature ) ; } ;
6

7 de f act ivateAlarm (message ) =
8 { p r i n t l n ("Alarm ! I n s t r u c t i o n s : " + message ) ; } ;
9 }
10 }

We started with an architecture where the sensor knew when to invoke an alarm,
but now the central server knows the temperatures that should be experienced
at the moment (based on time of year, temperature outside, and so on), so the
slave buildings must ask for it all the time. We do not want to modify the
TempSensor class to keep it simple, certainly not with any networking code.

In our single computer architecture, we used to have an aspect that intercepted
the sense method (very much in the style of the observer pattern), and based
on the temperature sensed, it would react accordingly:

1 module Aspects {
2

3 aspect s e l e c t i v e SensorLog{
4

5 // keep a count o f how many alarms have been ac t i va t ed
6 var a larmsAct ivated := 0 ;
7 de f getAlarmCount ( ) = { return alarmsActived ; } ;
8 de f incAlarms ( ) = { alarmsAct ivated := alarmsAct ivated +1;} ;
9

10 // very s imple l ogg ing system
11 de f l og (msg) = p r i n t l n (msg ) ;
12

13 de f getAlarmThreshold ( ) = { return 5 ; } ;
14 de f getEmergencyThreshold ( ) = { return 9 ; } ;
15

16 be f o r e : exec jp [ ( s ense ) ] a rgs ( arg : i n t ){
17 azpct . l og ( t h i s . name + " sensed : " + arg ) ;
18

19 i f ( arg > azpct . getAlarmThreshold ( )
20 && arg <= azpct . getEmergencyThreshold ( ) ) {
21 // we should r a i s e an alarm
22 // but the re i s no need to panic
23 t h i s . act ivateAlarm (" Not i fy a u t h o r i t i e s " ) ;
24 azpct . incAlarms ( ) ;
25 } e l s e i f ( arg >= azpct . getEmergencyThreshold ( ) ) {
26 // everyone needs to l eave the bu i l d i ng !
27 t h i s . act ivateAlarm (" Evacuate immediately ! " ) ;
28 azpct . incAlarms ( ) ;
29 }
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30 }
31 }}

This aspect worked in the single machine scenario, but it also works in the
distributed scenario when we use transparently distributed aspects.

We have decided that we wish to partition the sensors in the slave buildings into
two groups, locationA and locationB. All we need to do now is to create two
aspect instances on the master machine, and export them on an RMI registry
(details in the implementation chapter) using the masterAspect built in function,
giving it a name, i.e. �locALog�.

Listing 3.5: mastersite.th

1 import Aspects . ∗ ;
2

3 locat ionALog = SensorLog ( ) ;
4 locat ionBLog = SensorLog ( ) ;
5

6 masterAspect ( locationALog , " locALog " ) ;
7 masterAspect ( locationBLog , " locBLog " ) ;
8

9 p r i n t l n ("Master running " ) ;

Now, lets look at the code that would be written on the site with the temperature
sensors. We simply create slave aspects (aspect AST lives locally, but the aspect
we �instantiate� is a proxy for the remote aspect), using the slaveAspect method,
to which we supply a connection string, e.g. localhost on the default RMI port
(1099) using �localhost�, and the name of the master aspect that we wish to
create a proxy for.

Then, since this is a selective aspect, we must add the sensor objects to the
aspect instances, and we use the addToAsp built in function for this. Sensor 1a
and 1b belong to one group of sensors, i.e. they're in room 1 of the building,
and sensor 2 is another room.

Listing 3.6: sensorSite.th

1 import Sensors . ∗ ;
2 import Aspects . ∗ ;
3

4

5 tempSensor1a = TempSensor (" Sensor 1a " ) ;
6 tempSensor1b = TempSensor (" Sensor 1b " ) ;
7

8 tempSensor2 = TempSensor (" Sensor 2 " ) ;
9

10 s laveA = slaveAspect (" l o c a l h o s t " , " locALog " ) ;
11 s laveB = s laveAspect (" l o c a l h o s t " , " locBLog " ) ;
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12

13 addToAsp( tempSensor1a , s laveA ) ;
14 addToAsp( tempSensor1b , s laveA ) ;
15

16 addToAsp( tempSensor2 , s laveB ) ;

Then, if we executed the following code (which simulates the temp sensors
sensing temperatures and at the end of it asking the aspects how many alarms
were raised) :

1 tempSensor1a . s ense ( 6 ) ;
2 tempSensor1b . s ense ( 9 ) ;
3

4 tempSensor2 . s ense ( 6 ) ;
5

6 p r i n t l n ("Num of alarms at s i t eA : "
7 + slaveA . getAlarmCount ( ) ) ;
8

9 p r i n t l n ("Num of alarms at s i t eB : "
10 + slaveB . getAlarmCount ( ) ) ;

we would get the output:

1 Sensor 1a sensed : 6
2 Not i fy a u t h o r i t i e s
3

4 Sensor 1b sensed : 9
5 Evacuate immediately !
6

7 Sensor 2 sensed : 6
8 Not i fy a u t h o r i t i e s
9

10 Num of alarms at s i t eA : 2
11 Num of alarms at s i t eB : 1

3.3.2.1 What the above example shows

It should be apparent that the above example has shown the ability of trans-
parently distributed aspects to do a few things:

1. There was no need to add any networking code - making the code more
concise, and further there was no need for the programmer to do anything
when they moved to a distributed system, other than use masterAspect
and slaveAspect, instead of instantiating as usual
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2. It is possible to have selective aspects that can bind to objects on di�erent
computers - i.e. when using addToAsp, it was possible to have added
tempSensor1a and tempSensor1b from di�erent computers to the master
aspect instance, the output for num of alarms at siteA would still have
been the same

3. It is possible to send arguments and receive return values from the mas-
ter aspect in order for the slave to give advice to the joinpoint it has
intercepted

How all of this works is explained in section 4.3.
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Chapter 4

Implementation

The implementation section should shed light on how the new features are imple-
mented in the interpreter. The implementation documentation for the features
which the author felt are more mature / likely to make to make it into AOP
suite for Thorn is written in far more detail than the features which were more
experimental and the author felt they were not particularly likely to be useful
(e.g. distributed aspects).

4.1 Vanilla aspecting

An aspect in AOD-Thorn is an extension of a class. It can do everything that
a class can do, i.e. be instantiated using di�erent constructors, have methods
and �elds, but it also has advice and pointcuts.

4.1.1 Syntax / AST changes

Syntax is presented in EBNF form. The de�nitions of the quanti�ers are as
follows: + is 1 or more, * is 0 or more, ? is 0 or 1. | refers to a choice. Identi�ers
starting with a capital letter refer to other rules in the syntax, although they
may not be fully de�ned the following syntax description. Some details were
omitted, for example ANY_REGULAR_EXPRESSION, or syntax previously
present in Thorn, i.e. Method. The implementation can be seen in the javacc
grammar de�nition �le.
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Statement ::= AS_BEFORE| AspectDecl

AspectDecl ::= 'aspect', ('selective'|'unselective'), Name,
ClassFormals, Purity /* a thorn concept used for serialisability

of a class*/,
'{', PrecedenceMembers?,
AspectMembers, '}' ,';'

PrecedenceMembers ::= 'precedence', Id, (',', Id)*, ';'

AspectMembers ::= ClassMembers | AdviceDeclaration

AdviceDeclaration ::= AdviceLocation, ':', PointcutPrimitive,
Pointcut, Method

AdviceLocation ::= 'before' | 'after' | 'around'

PointcutPrimitive ::= 'get' | 'set' | 'exec'

Pointcut ::= Joinpoint+

Joinpoint::='jp[', ANY_REGULAR_EXPRESSION, ']'

VarExpressions ::= 'this' | Id | 'azpct' | 'origin' | 'joinpoint()' | 'proceed()'

On top of the syntax changes, there needed to be changes made to the AST.
The AST is de�ned in a Python �le (as described in 2.3.1.1), which generates
Java classes that represent the AST nodes within it.

The parser generated by the JavaCC grammar de�nition �le tries to match a
rule, and if it does, it creates an instance of the AST node associated with the
rule.

For example, the following is part of the changes made to the Python AST �le.
Comments about how this �le works are provided:

Listing 4.1: ast-�sher.py

1 . . .
2

3 // d e f i n i t i o n o f the AST node d e s c r i b i n g a po intcut
4 AspectPointcut =
5 // repre s ent ed by a c l a s s c a l l e d Pointcut
6 // which de r i v e s from the c l a s s Syntax
7 CLS(" Pointcut " , Syntax ,
8 // a po intcut has a l i s t o f j o i n p o i t n s
9 [ LIST(" j o i npo i n t " , " j o i n p o i n t s " ,
10 // the AST subt r e e s r ep r e s en t i ng a j o i npo i n t
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11 // are o f type AspectJo inpo int
12 AspectJo inpo int ) ] ,
13 // t h i s i sn ' t p a r t i c u l a r l y important f o r now ,
14 // i t s a f l a g which i n d i c a t e s whether we want
15 // to make i t p o s s i b l e to deepy copy t h i s AST t r e e
16 isDeepCopyable=False )
17

18 // The next f o l l ow the same format as the prev ious
19

20 AspectJo inpo int = CLS(" Jo inpo int " , Syntax ,
21 [ FIELD(" po intcut " , Str ing ,
22 i sCh i l d=False ) ] )
23

24 AdvicePtctPr imit iv =
25 CLS(" AdvicePtctPr imit iv " , Syntax ,
26 [ FIELD(" po in t cu tPr im i t i v e " ,
27 AdvicePtctPrimitiveEnum ,
28 i sCh i l d=False ) ] )
29 . . .

66



Figure 4.1: Example: Aspect AST tree. 1:N cardinality between aspects and
pointcuts, and 1:N cardinality between pointcuts and joinpoints. Note that
AspectDecl trees and Pointcut trees can also have other types of subtrees, i.e.
method de�nitions in an aspect.
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Figure 4.2: Railroad diagrams
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4.1.1.1 Preparing the interpreter for giving advice

In general, whenever there is a change in the AST / Syntax, changes need to
be made to the AST visitors.

Sealant As mentioned before, the sealant is what is used to give seals (see
2.3.1.2) to the AST nodes. Furthermore, it is responsible for modifying and
assigning Environments.

Environment An environment1 in the Thorn interpreter is a further mech-
anism for scoping. An environment is essentially a recursive data structure
mapping identi�ers to their values. For example, a method m(arg1,arg2) will
have an environment which maps the identi�er arg1 and arg2 to the parameters
passed into the method, and furthermore, it will point to the environment of
the parent of the method, i.e. an object (the environment for which will map
�elds of the objects to their values).

The environment is then used for value lookups when evaluating an AST tree.
For example:

1 module CONSTANTS{
2 va l PI = 3 . 1 4 2 ;
3 va l EXP = 2 . 7 1 8 ;
4 }
5

6 c l a s s Be rnou l l i {
7 import CONSTANTS. ∗ ;
8

9 va l name = "Jacob Be rnou l l i " ;
10

11 fun in t r oduce_se l f ( sho r t In t r oduc t i on ) {
12 i f ( sho r t In t r oduc t i on ){
13 p r i n t l n ("Name : Be rnou l l i . My invent i on : e " ) ;
14 }
15 e l s e {
16 p r i n t l n ("My name i s " + name +
17 " . I d i s cove r ed the value o f e = "
18 + EXP ) ;
19 }
20 }
21 }

When executing the introduce_self(bool) method, the interpreter will need to
consult the environment of the method and the environment of the class. For

1class �sher.statics.Env
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example, the snippet if(shortIntroduction) requires the interpreter to �rst look
into the environment attached to the method introduce_self() the value of the
identi�er shortIntroduction. The sealant would've given this identi�er a seal,
which is used as a key into the table mapping identi�ers (or more precisely, the
seals of identi�ers) to values in environments. Therefore, the environment of
the most precise scope that if(shortIntroduction) exists in is consulted for the
value. Since the value exists there, the value is found and the if statement can
be evaluated.

For the snippet �My name is � + name, the interpreter asks the environment for
the value of the name identi�er. Since this identi�er isn't a method argument,
nor is it de�ned inside the method, the environment asks its parent environ-
ment for the value of name. The parent environment belongs to the instance
of the Bernoulli class. The parent �nds it, and returns the value to the child.

The snippet �... e = � + EXP needs an additional step. Since EXP identi�er
is neither de�ned in the environment of the method, the environment of the
class is consulted. However, the EXP identi�er is not de�ned in the Bernoulli
class. However, notice that a module is not something that is instantiable, so
there is no need for it to have an environment instance, in which case, there is
no need for for the class environment to ask its parent environment (it doesn't
have one).

Note also that we can be selective about the parts of a module which we want
to be referenceable, i.e. we may only want to import CONSTANTS.PI to be use
able by the Bernoulli class. Therefore, it is incorrect to simply refer the class
environment to some mechanism where the identi�ers in a module are de�ned.
Instead, the environment of the class (statically, i.e. common to all instances of
the class) contains references to only imported identi�ers from the module.

This means that to get the EXP in �... e = � + EXP, the class environment
�rst checks through its map of identi�ers which are de�ned in the class, and if
its not found there, it will check through a map that contains identi�ers that
have been imported from other modules. Therefore, the class environment holds
identi�er values from both the class as well as the module.

Required changes It was required that the sealant is made fully aware of
all the new AST nodes that were introduced as part of the introduction of
aspects. For example, there needed to be seals assigned to all members of an
aspect (�elds, advice, etc), as well as the new keywords such as azpct or origin.
As aspects closely resemble classes (they are extensions), the same approach
towards sealing was taken for common parts of classes and aspects.
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Figure 4.3: AspectRegistry UML. Unimportant details represented as �...�
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4.1.2 AspectRegistry

The AspectRegistry2 is the main data structure holding information about ad-
vice and pointcuts, it is a singleton populated with data at initialisation time.

When the AspectProcessor visitor comes across an aspect declaration in the
AST tree (AspectDecl in �gure 4.1.1), it invokes the registerAspect(AspectDecl)
method on the AspectRegistry singleton. The AspectRegistry will then go
through all the advice declarations (look at AspectMembers in �gure 4.1.1)
in the aspect declaration, and for each one, will read the joinpoint and save the
AdviceDecl AST sub tree in a HashMap that maps from joinpoint de�nitions
(i.e. a [regular expression, number of formals] tuple) to the subtree.

4.1.3 Weaving phase

A ClassStatic is essentially the runtime representation of a Thorn class. For
example, the ClassStatic maps from identi�ers to methods (a method is stored
as an AST).

When a class declaration is visited by the Sealant, a new instance of the Class-
Static is created, which is used by all the instances of the class represented by
ClassStatic. When ClassStatic is being constructed, it creates a map mapping
method signatures3 to method AST trees 4. The constructor is however only
given MethDecl trees, so it needs to create MethodSig objects.

The ClassStatic class was enhanced with several maps that map from methods
and �elds to lists of AdviceDecl trees. Then, when we execute a method or
a �eld access, the Thorn object (ObjectTh) can look at its ClassStatic (each
ObjectTh has a ClassStatic bound to it), and use the method signature of the
executing method to get a list of advices for the method invocation, or the seal
of the �eld when executing a �eld access to get a list of advices for the �eld
access. For each type of joinpoint (exec | set | get), there is a list of before,
after and around advices that can apply to it, so the original code was modi�ed
to take this into account. For example, before doing a method invocation, we
�rst get the before advices for that method, and run them, then we invoke the
method, and then we execute the after advices.

Creating the advice maps in ClassStatic is done using the AspectRegistry. The
AspectRegistry exposes a set of methods asking for joinpoints and returning
a list of advices. For example, the AspectRegistry can take a �eld seal (the
joinpoint de�nition), and will return a list of AdviceDecl objects (see section
4.1.4 for how this is done).

There is now a general description of how �eld access advice and method call
advice is given. However, this isn't the whole story, and it is continued in section
4.2 when the aspect instantiation mechanism is explored further.

2�sher.eval.AspectRegistry
3�sher.statics.MethodSig
4�sher.syn.MethDecl
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4.1.3.1 Field access advice

During the initialisation of ClassStatic, the following actions5 are taken for �elds
de�ned in the class declaration AST tree:

• Create a list of �eld names (type String)

• Check for collisions, to make sure that the same �eld has not been de�ned
twice in a class.

This routine was modi�ed, in that after the collision check is performed, we also
cache advice for �eld accesses into the ClassStatic.

For both get and set (read / write) �eld accesses, we added maps into the class
static, one for each advice location (before, after, around). These map from the
�eld name to AdviceDecl AST trees, which contain the bodies of the advice.
So, upon a read6 / write7 of an ObjectTh �eld, the name of the �eld is used
to lookup if there are any advices, and if there are, then they are executed as
necessary, before, after or instead of the �eld access.

4.1.3.2 Method calls

�sher.syn.MethDecl is the AST which contains the statements for a method.
We modi�ed the class initialisation routine (the routine is in ClassStatic), so
that the routine includes storing a lists of aspects into MethDecl (see �gure:
4.4)objects which are used in the class initialisation routine.

Then, during method execution, these lists are used to see which aspects need
to be executed before / after / around the main body of the method. Advice
statements are executed in the same way as method statements, except for a
few small changes (see section 4.2.2 and 4.2.4). More details on this later in the
report.

4.1.4 Joinpoint matching

Pointcuts in AOD-Thorn support full regular expressions. For example, we may
wish to give advice to every method whose name begins with set and has one
argument in a given module / class.

When the Sealant visits an identi�er (such as a �eld declaration in a ClsDecl), it
assigns it a Seal object which contains the fully quali�ed name of that identi�er.
For example, the method setX in class bar and module foo will have a seal that
contains the fully quali�ed name foo.bar.setX.

5�sher.statics.ClassStatic.snagMethodsPatsVarsVals()
6�sher.runtime.ObjectTh.LValue(...)
7�sher.runtime.ObjectTh.RValue(...)
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Figure 4.4: MethDecl with Aspects

This allows us to use regular expressions as a relatively rich pointcutting lan-
guage. For example, if we wish to match all the setters in the foo.bar package,
we simply need to use the regular expression �foo.bar.set\.*�. Notice that the
�rst two dots were not escaped, whereas the last one was. This is because the
implementation simply makes use of the java.util.regex package for regular ex-
pressions, and the dot in that package represents any character. Since the dot
character is fairly common when de�ning pointcuts, it is escaped by default,
and escaping it in the pointcut is the equivalent of the unescaped dot character.
(In hindsight, the wildcard version of the dot could've been replaced by another
symbol to avoid the need to escape it)

When the AspectProcessor is visiting AspectDecl AST trees, the regular ex-
pressions in the pointcut are compiled, and then stored into a Map<Pattern,
AdviceDecl> object in the AspectRegistry. Precompiling the regular expression
into a Pattern object means that checking for matches are much faster than if
one were to not store the compiled Pattern later. Then, when the ClassStatic
is being initialised, the Patterns are matched against the joinpoints, and the
advice is stored in the MethDecl AST accordingly

4.1.5 proceed()

When around advice is being given, there is a need for a mechanism to execute
the original joinpoint which is being advised. For example, in an example else-
where in the report, we pro�le a method by taking a clock reading just before
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and after the joinpoint is executed.

While this can be achieved using a before and after advice where the aspect
instance has a �eld that stores the clock reading before the joinpoint is in-
stantiated, this is an incorrect approach, especially when the aspect instance
applies to multiple objects: even in a non-multithreaded environment, while the
advised joinpoint is being executed, another joinpoint may be advised by the
same aspect instance with the same advice, overwriting the clock value.

As such, the proceed() function was implemented, as is done in popular AOP
suites. Please see the semantics (section 4.2.7.2) to fully understand how it
works.

4.1.6 joinpoint()

The joinpoint function will return information about the current joinpoint that
is being advised. In Java, this is usually an object from the re�ection library.
For example, when the equivalent function is called in AspectJ while giving
advice to a method, an instance of java.lang.re�ect.Method is returned.

Thorn has no equivalent re�ection API, so the implementation was somewhat
simpli�ed. Currently, it will store the string representation of the seal of the
joinpoint. For example, if a method m in class C with arity 0 is the joinpoint,
then the joinpoint() function will return a Thorn string with value �C.m\0�.

This is done by modifying the semantics of joinpoint execution. Now when an
advice for a joinpoint executes, one of the steps is to place a StringTh into the
stack frame. The StringTh object is generated from the toString() value of the
seal for the joinpoint (recall that all joinpoints have a Seal, and the toString()
is cached in the Seal at initialisation time). The execution of advice requires
the creation of a StringTh object; this could be made more lazy by only placing
the String there, and creating a StringTh if the advice calls joinpoint(), or
alternatively other optimisations could be taken (i.e. the advice AST could be
processed at initialisation time to check for a call to joinpoint()), however, given
the microbenchmark results in the evaluation section, the author found no need
to do so.

4.1.6.1 Advice arity and type checking

When advice is given to a joinpoint, sometimes there is a set of arguments that
need to be passed to the advice. For example, from our earlier sensors example
we have the pointcut:

1 be f o r e : exec jp [ ( s ense ) ] a rgs ( arg )

Recall that the advice of this pointcut used arg in a String, i.e. used the String
representation of arg, so any object with a toString() method would be accepted.
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Figure 4.5: AspectObject extends ObjectTh

Thorn provides us with a gradual (optional) static type system, in that we can
annotate arg with the type we wish to restrict it to. If we only wanted the
argument to be of type int, then we can alter the above pointcut as follows:

1 be f o r e : exec jp [ ( s ense ) ] a rgs ( arg : i n t )

The aspecting language is fully compatible with the Thorn type system. It will
not advice sense if the argument to sense is not of type int. The existing type
checking mechanism that was in the interpreter was reused for this.

4.2 OOP / AOP uni�ed aspecting

As discussed in section 3.2, there are advantage to following an instantiation
model of aspects which closely resembles how objects are instantiated.

4.2.1 Aspect instantiation

An AspectObject (the runtime representation of an instance of an aspect) is an
extension of an ObjectTh. As such, it also has e.g. a ClassStatic, that has the
�elds / methods of that class / aspect.
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An AspectObject has the additional feature of tracking the Thorn objects it is
switched on for, as well as inserting itself into the cache of turned on objects for
ObjectTh instances.

4.2.2 azpct keyword

During the execution of a method, the this keyword in Thorn has the obvious
meaning it does in other languages, which is that is a reference to the object
whose method is being called.

In Java, this is an optional keyword to access �elds and methods of the this
object and is only required when there is a ambiguity with an identi�er, i.e. an
argument and an object �eld have the same name, so the this keyword is used
to access the object �eld. This is in contrast to Thorn, which requires the this
keyword to always be used when accessing �elds and methods of the this object.

In AOD-Thorn, we also have the azpct keyword, which refers to the aspect
object in whose context the current advice is executing. More on this later.

4.2.3 this and origin keywords in the context of Aspects

In AOD-Thorn, when executing advice, the this keyword will refer to the target
object of the joinpoint. In other words, if we have the following piece of code:

class C1() val tgt = C2(); def foo() = tgt.bar();

... before: exec jp[C2.bar] args() //advice

Then, while the advice is executing, the this keyword references the instance of
C2 named tgt, and the origin keyword refers to the instance of C1 which made
the method call on tgt. In a sense, the this, origin and azpct objects become
collaborators.

4.2.4 origin keyword

As described before, the origin keyword in advice is used to reference the object
where a method invocation / �eld access came from.

The original Thorn does not have a concept of an origin, and so, the interpreter
had to be modi�ed to include the origin in the stack frames when executing
advice.

This required that the operational semantics of �eld accesses and method in-
vocations are modi�ed, so that the origin is included in the stack frame.

For example, the original routine for method invocation had the following sig-
nature:
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Listing 4.2: �sher.runtime.ObjectTh

1 . . .
2 pr i va t e Thing invokeMethodInternal ( Thing [ ] args ,
3 Syntax src , MethodSig s ig , FunBody funbody )

while the modi�ed routine has the following signature:

Listing 4.3: �sher.runtime.ObjectTh

1 . . .
2 pr i va t e Thing invokeMethodInternal ( Thing [ ] args ,
3 Syntax src , MethodSig s ig , FunBody funbody ,
4 Thing o r i g i n )
5 // the o r i g i n i s the "Thing" where the method c a l l came from
6 // "Al l runtime Thorn ob j e c t s are Things " , i . e . they a l l d e r i v e
7 // from the f i s h e r . runtime . Thing c l a s s .

The routines for �eld accesses were dealt with in a similar manner. These
changes needed to be propagated throughout the code base wherever method
calls and �eld accesses were handled.

The operational semantics of method calls and �eld accesses were changed, even
when not giving advice, as there needed to be a way for the origin to be included
in the stack frame on advice invocation.

4.2.5 BIFs: AddToAsp(AspectObject, ObjectTh), DelFro-
mAsp(AspectObject,ObjectTh)

The addToAsp BIF will take a selective AspectObject and an ObjectTh. It will
add the ObjectTh to the list of objects that the aspect instance should advise
(this list is located in AspectObject), and it will add the AspectObject to the
list of turned on aspect instances that are advising ObjectTh (this list is located
in the ObjectTh).

For example, to instantiate an aspect Asp and then add an object to it, we can
do the following:

1 aspect s e l e c t i v e Asp { . . . }
2 c l a s s C{}
3 . . .
4 // i n s t a n t i a t e
5 // the aspect Asp
6 asp = Asp ( ) ;
7

8 // i n s t a n t i a t e the ob j e c t
9 // to be advised
10 obj = C( )
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11

12 addToAsp( obj , asp ) ;

To make an aspect no longer advise an object, the delFromAsp does the opposite
of addToAsp. It can be used as follows:

1 delFromAsp ( obj , asp ) ;
2 // aspect i n s t anc e asp
3 // no longe r adv i s e s ob j e c t
4 // obj

4.2.6 BIFs: TurnOnAsp(AspectObject), TurnO�Asp(AspectObject)

The turnOnAsp and turnO�Asp BIFs work with unselective aspect instances.
As described in more detail later, there is a global table mapping from unse-
lective aspects to a list of their instances. turnOnAsp and turnO�Asp add and
remove the aspect instance to this table. Note that when an unselective aspect
is constructed, it is automatically added to this table.

There may be a need for a turnOnAsp and turnO�Asp BIFs which are used
for selective aspect instances. Turning o� a selective aspect instance would
mean that it can be turned on later, without it losing the list of objects that
it contained. This can be done easily (i.e. just check that the aspect instance
is turned on before executing its advice). It wasn't implemented to keep the
semantics of advice execution simpler, as well as it not being a particularly
interesting feature, although if it was requested by users, the feature could be
added with a few lines of code.

4.2.7 Advice execution

Earlier (section 2.1.6), we described the weaving process which matches the
joinpoint identi�er to several lists of advice AST trees, and we iterate through
those lists to evaluate the AST trees.

However, we did not talk much about how exactly the advice is executed.

4.2.7.1 Selecting the azpct object

When a joinpoint is being executed, we �nd a list of advice ASTs, and evaluate
the ASTs with the context of the modi�ed stack frame described previously.
Each advice AST (AdviceDecl) is a child of (and references) an AspectDecl.

AOD-Thorn allows us to instantiate both selective and unselective aspect in-
stances, both of which are dealt with di�erently.
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Unselective aspect instances When an unselective aspect is instantiated,
it registers itself into a table δ which maps from the fully quali�ed aspect name
to a list of unselective aspect instances for the described aspect. δ applies to all
the classes which contain the joinpoints de�ned in the pointcuts in the aspect,
so it does not make sense to store it with a speci�c Thorn object or class, and
is therefore a global table.

During the execution of a joinpoint, for each AdviceDecl that applies to the
joinpoint, if it is discovered that the AspectDecl the AdviceDecl belongs to is
unselective, then the δ is consulted for a list of instances of that aspect (which
includes all the instances of the aspect). Then, for each aspect instance ai, the
advice is executed with the azpct set to reference ai.

Selective aspect instances When advice belonging to a selective aspect is
being executed, the advice execution loop will only execute advice in the context
of a subset of the instances of the aspect.

When an object is added to a selective aspect instance, the object caches the
the aspect instances which are switched on for it. Each object holds a table
mapping from an AspectDecl to a list of aspect instances (List<AspectObject>)
for that AspectDecl.

Then, for each AspectObject in the list, the AdviceDecl is executed with the
AspectObject being pointed to by the azpct �eld of the stack frame.

4.2.7.2 Method / advice AST evaluation

When we execute a method in Thorn, a stack frame8 is used to hold the values
of arguments as well as the this reference, and the method AST is evaluated9

in the context of this stack frame (and, of course, its parents).

An advice AST is just like a method AST, however, it has the additional features
that it can refer to the origin and azpct objects, using the respective keywords.
To implement this, one of the steps was to modify the stack frames in the context
of which advice execute in, so they include a reference to the origin and azpct
objects.

Thus, the semantics of advice execution and method execution are di�erent,
since method execution is oblivious to the origin and azpct objects, they are
only useful in the context of advice execution.

Lets look at this in more detail by looking at the operational semantics. The
reader may �nd the notation overwhelming if they are not familiar with work
similar to L1/L2[15] by Prof. Drossopoulou (the notation has been altered to
the authors taste), just below the semantics is a line by line explanation in
English, which the reader may �nd useful to read �rst.

8�sher.eval.Frame
9by �sher.eval.Evaller
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A key to symbols the reader may �nd useful (but reading about L1/L2 may still
be necessary):

χ = heap
θ = stack
e = expression
m = method
ι = an address (can be used to lookup an object in the heap)
φ = origin
ξ = joinpoint information

Some parts of the semantics which do not relate to the aspecting have been
omitted. For example, the this pointer in the stack is usually set to the object
evaluated by e0. This has been omitted as it is not relevant to aspects. The
focus of the following is the changes made to the semantics, rather than the
absolute semantics, in order to simplify an explanation of the changes that were
made to AOD-Thorn. We do not attempt to fully describe the semantics of
Thorn itself.

1 : e0, θ, χ ι, χ1

2 : e1, θ, χ
1  ι2, χ2

3 : M(c,m) = m(arg)AdvbeforeAdvafter advaround{e}
4 : doAdvices(Advbefore, θ[φ = ιφ, ξ = m], χ2) χ3

5 : advaround! = null

6 : doAroundAdvice(advaround, θ[eorig = e, φ = ιφ, ξ = m], χ3) ι3, χ4

8 : doAdvices(Advafter, θ[φ = ιφ, ξ = m], χ4) χ5

0 :
e0.m(e1), ιφ, θ, χ ι3, χ5

(meth, with around)

1 : e0, θ, χ ι, χ1

2 : e1, θ, χ
1  ι2, χ2

3 : M(c,m) = m(arg)AdvbeforeAdvafter advaround{e}
4 : doAdvices(Advbefore, θ[φ = ιφ, ξ = m], χ2) χ3

5 : advaround = null

7 : e, θ, χ3  ι3, χ4

8 : doAdvices(Advafter, θ[φ = ιφ, ξ = m], χ4) χ5

0 :
e0.m(e1), ιφ, θ, χ ι3, χ5

(meth, no around) .

The English description of the above:
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0: We wish to make a method call m() on an object to which we can gain a
reference to by evaluating the expression e0, with an argument to which
we gain a reference by evaluating the expression e1. θ represents a stack
frame, which (abstractly) is a table mapping from identi�ers (such as this,
azpct, argument1, etc..) to their values. χ represents the heap, which
(abstractly) maps from addresses (represented by ι) to objects10. ιφ refers
to the object where this method call is taking place from (the origin),
i.e. the object which contains the expression e0.m(e1). This method call
evaluates (represented by  ) to an address ι3, and the heap is modi�ed
to χ5 during this whole operation.

1: Evaluate e0 in the context of stack frame θ and the initial heap χ. This
evaluates to address ι. and χ is transformed to χ1.

2: Similar to line 1

3: The functionM(c,m) with return the MethDecl associated with the class of
the object χ2(ι2).11The MethDecl contains a set of before advicesAdvbefore
and a set of after advices Advafter, as well as a single around advice
Advaround (all of these may be null). The original method body is rep-
resented by {e}. There can be a set of before and after advices, because
neither of these are allowed to modify the control �ow of the method being
advised, i.e. they cannot return from it. However, around advice is not
only able to advise the method to return, it is also allowed to advise it to
proceed()12, so the following type of code is possible:

1 around : exec jp [ meth ] args ( arg ){
2 t imeBefore = timeNow ( ) ;
3 r e t = proceed ( ) ;
4 t imeAfter = timeNow ( ) ;
5 timeTaken = timeAfter − t imeBefore ;
6 l og ("Method meth took " + timeTaken +
7 " and returned value : " + r e t ) ;
8 }

4: doAdvices(...) is more fully explained later. Simply evaluates all the advices
in the Advbefore set. The stack frame used to evaluate the advice has the
φ identi�er (which identi�es the origin) set to the address of the origin.
Further, joinpoint information is set (i.e. the string version of the seal) in
ξ, in this case the name of the method.

10i.e. χ(ι) evaluates to an object at address ι
11This type of lookup doesn't actually happen in the implementation, there is no need to

look anything up as its provided during the method invocation in the interpreter, but the
function is used here as an abstraction over this, and for convenience

12obviously only one advice should be able to call proceed() or return, since this can only
be done once
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5: Check if there is any around advice.

6: Evaluate the around advice, with the eorig identi�er pointing to the original
method body, i.e. what would be executed if the around advice calls
proceed(). The function doAroundAdvice(...) is explained more fully later.

7: There is no around advice, so execute the original method body.

8: Evaluate the after advices.

The above set of semantics used functions doAdvices(...) and doAroundAdvice(...).
They are de�ned as follows:

1 :T(adv, ι) = {a|a ∈ ι[turnedOn(adv.parent)]} ∪ UnselObj(adv.parent)

2 :doAdvices(Advices, θ, χ0) = {
3 :|Advices| = k

∀i ∈ 0..k − 1{
4 : T(Advices[i], θ[Θ]) = AO

5 : |AO| = l

∀j ∈ 0..l − 1{
6 : Advices[i], θ[α = AO[j]], χi,j  χi,j+1

}}}

7 :doAroundAdvice(adv, θ, χ0) = {
8 : T(adv, θ[Θ]) = AO

9 : |AO| = k

∀i ∈ 0..k − 1{
10 : adv, θ[α = AO[i]], χi  ι, χi+1

}}

1: Objects contain a table that maps from the AdviceDecl, to a list of instances
of the aspect which contain this AdviceDecl (as in �gure 4.5). This func-
tion will return all the turned on aspect instances (both selective and
unselective) for the object referenced by ι. The aspect instances are of the
type which is the parent (AspectDecl) of AdviceDecl adv. Furthermore,
there is a global table UnselObj which maps from an unselective Aspect-
Decl (which is the parent of the AdviceDecl adv) to turned on instances
of this unselective aspect.
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2: doAdvices(...) takes a set of advices, as well as the stack and heap, and
modi�es the heap.

3: There are k advices.

4: For each advice, get the turned on aspect instances of the this object (Θ is
the this pointer) that contain the advice.

5: There are l turned on aspect instances to be used

6: Evaluate an advice, after setting the azpct (α) identi�er to point to the aspect
instance

7: Same as before

8: Same as before

9: Same as before

10: Execute the around advice. Notice that a ι is returned on each invocation,
so depending on how many turned on aspect objects are, the original
method body may be executed several times. If this proves problematic,
it is easy enough to warn the programmer that several aspect instances
are giving around advice to an object.

4.2.7.3 AspectObject tables, more formally

In the above semantics, the function T depends on the table turnedOn and
UnselObj. Below, we describe how these tables are generated.
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We give the semantics involving these tables, while ignoring stacks (they're not
needed in the below rules).
It assumes the turnedOn table (recall inst(x) is the set of instances of x):
turnedOn : AspectDecl → P(inst(AspectDecl)). Also the UnselObj table:
UnselObj : AspectDecl→ P(inst(AspectDecl)).

ι′selective[aspDecl] = asp

addToAsp(ι, ι′selective), χ, UnselObj  χ′(ι)[turnedOn(asp) ∪ ι′selective], UnselObj
(addToAsp)

(4.1)

ι′selective[aspDecl] = asp

delFromAsp(ι, ι′selective), χ, UnselObj  χ′(ι)[turnedOn(asp)\ι′selective], UnselObj
(delFromAsp)

(4.2)

ι′unselective[aspDecl] = asp

turnOff(ι′unselective), χ, UnselObj  χ,UnselObj(asp)\ι′unselective
(turnOff)

(4.3)

ι′unselective[aspDecl] = asp

turnOn(ι′unselective), χ, UnselObj  χ,UnselObj(asp) ∪ ι′unselective
(turnOn)

(4.4)

4.1 When we use the addToAsp BIF, it takes an ObjectTh ι and an selective
AspectObject ι′selective. The turnedOn table is modi�ed by adding the
selective AspectObject to the list of turned on AspectObjects which are
instances of the aspect described by asp.

4.2 Similar to addToAsp, except now the AspectObject is removed rather than
added.

4.3 The unselective AspectObject ι′unselective is removed from the turned on
unselective aspect instances table in UnselObj.

4.4 Same as for turnO�, except now ι′unselective is added to the UnselObj table.
It should be noted that when an unselective aspect is being constructed,
i.e. through syntax MyUnselAspect(), it will add itself to the UnselObj
table.

joinpoint
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4.2.7.4 Semantics for the this, origin, azpct, joinpoint() and pro-
ceed() syntax

this, ιφ, θ, χ θ[Θ], χ
(this)

origin, ιφ, θ, χ θ[φ], χ
(origin)

azpct, ιφ, θ, χ θ[α], χ
(azpct)

joinpoint, ιφ, θ, χ θ[ξ], χ
(joinpoint)

θ[eorig], θ, χ ι, χ1

proceed(), ιφ, θ, χ ι, χ1
(proceed)

4.2.7.5 Field access AST evaluation

Unlike for transparently distributed aspecting, �eld access interception for local
aspecting was fully implemented, in fact in a very similar way to how methods
interception works, and follows very similar semantics, so they have not been
written out.

Essentially, the same procedure is followed, i.e. run before advice before the �eld
access happens, then run the around advice if it exists, then run the after advice,
while taking into account the obvious di�erences between method calls and �eld
accesses. The joinpoint, azpct, proceed, azpct, origin and this constructs work
as in method calls.

4.3 Transparently distributed aspecting

Transparently distributed aspects could have been implemented using several
techniques given the code base as is.

Abstractly, the slave intercepts events (joinpoints) in the execution of the pro-
gram which match the predicate de�ned in a pointcut. The slave informs the
master of the event, and gives it necessary information (such as values of argu-
ments to a method call) that the master needs to give the event advice. The
master gives advice to the event, using some mechanism, either locally or at the
slave machine.

This feature was highly experimental, and turned out to have some severe lim-
itations (see section 5.7.1). However, in a restricted number of cases, it may
be useful, and and with some possible (admittedly large scale) changes to the
interpreter, it may even have useable performance.
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4.3.1 RMI

Java RMI (Remote method invocation) allows one to write distributed applic-
ations where an application can invoke the methods of objects on a separate
VM[58].

Instances of a class θ which implements an interface β that extends java.rmi.Remote
can be registered on an RMI registry using a name assigned by the programmer.

Only those methods of β which are marked as throwing java.rmi.RemoteException
can be invoked remotely. θ can have public methods other than those de�ned
in β , but they cannot be invoked remotely.

Since transparently distributed aspecting is essentially a server / client distrib-
uted architecture consisting of a server machine with the master aspect running
(on whom we can do the remote method invocations) and several clients (the
slave machines), RMI was seen by the author as a simple mechanism which can
be used to implement this functionality.

It is essentially an abstraction on taking certain actions in the server according
to events described in messages being sent over the network.

4.3.2 Setting up a master aspect

After an aspect is instantiated, we can set it as the master aspect as follows:

aspectInst = Aspect(); masterAspect(aspectInst, "nameForAspectInst");

The masterAspect BIF is what we are interested in. The listing above demon-
strates the arguments required by the masterAspect:

1. The aspect instance that is to be made the master

2. A name chosen by the programmer for the aspect master. This name will
be used by slave aspects that wish to form a link with the master.

This basically takes the AspectObject aspectInst and it will create a stub from
the AspectObject, which is then exported onto the RMI registry, under the
name provided as the second argument. Methods of AspectObject such as
invokeMethod (as the name suggests, this is required to invoke methods on the
AspectObject) are included in the stub, which involved a lot of refactoring.

4.3.2.1 RMI stubs

An RMI stub is essentially a proxy for an object. [58, 3]. The client can obtain
the stub by contacting the RMI registry, and asking by name for the stub
required.
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The client can then invoke methods on the stub, which shares the β interface
with the class that it is the proxy for. When the client invokes methods on β
which can throw java.rmi.RemoteException, then the RMI subsystem will take
the necessary steps for the method to be invocated on the server.

Of course this requires an RMI registry to be started at the machine with the
master aspect. This is done lazily, an RMI registry is started up the �rst time
that the masterAspect BIF is invoked in the application being executed by the
interpreter.

4.3.3 Setting up a slave aspect

A slave aspect instance is setup as follows:

slaveAsp = slaveAspect("hostWithMastersRegistry", "nameForAspectInst");

// if the aspect is selective, we can add // objects to it as usual: addToAsp(object,
slaveAsp);

As we can see from the above snippet, we simply need to invoke the slaveAspect
method, which takes two arguments:

1. The address where the RMI registry holding the stub for the master aspect
instance can be found, i.e. a �hostname:port� string

2. The name the master aspect instance is bound to in the registry

The function returns the proxy for the master aspect. If its an unselective
aspect, then it is added to the unselective aspect table (the table as de�ned in
section 4.2.7.1), otherwise it is added to the aspect object cache (see section
4.2.7.1) of Thorn objects using the addToAsp BIF.

Once this is done, advice is given as usual, i.e. when a joinpoint such as a method
execution is hit, it checks whether it matches any pointcuts and if it does then
it executes advice in the context of a frame which has an azpct reference inside
it. However, instead of the azpct pointing to a normal AspectObject, it contains
a stub for an AspectObject living on the master machine.

4.3.3.1 Slave objects

When executing advice, objects other than those referenced by azpct or origin
or this can be used (e.g. one of the �elds of the origin or this object, or the
arguments passed into the method being advised). This proves problematic
when executing advice, since the master aspect instance may not have access to
these objects, if they lie on the slave machine.

For example, lets say the advice contained the following snippet:
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RemoteAspectObject
-remoteAspObj: ObjectRemoteIface
+invokeMethod(String methodname, Thing[] args, Thing origin):Thing
..

AspectObject
...
+invokeMethod(String methodname, Thing[] args, Thing origin):Thing
...

ObjectTh
...

Figure 4.6: The relationship between Thing, AspectObject, RemoteAspectOb-
ject

before: exec jp[(sense)] args(arg) azpct.log(this.name + " sensed: " + arg);

Clearly, the master instance requires access to the this object as well as the
arg object. These objects are turned into RMI stubs, and are sent to the
master aspect, which can invoke remote operations on them. The operations
are evaluated on the slave machine where the objects lie, and the result is
returned to the master. In the above example, the master would invoke remote
operations to read the string representation of this.name and arg. The string
representation procedure is ran on the slave machine, and the result of this
procedure is returned to the master.

This can be described as a distributed heap, with the distributed heap consist-
ing of the individual heaps of applications where the master and slave aspect
instances live. We were vague about how exactly e.g. method invocation works.
A more exact version follows.

4.3.4 Method invocation

When invoking a method on a ObjectTh or AspectObject that live on the
master, we need to make all the referenceable objects from both sides remotable.

For example, if advice on the slave is as follows:

1 be f o r e : exec jp [ j o i npo i n t ] a rgs ( arg ){
2 . . .
3 r e t = azpct . meth ( t h i s . f i e l d ) ;
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The azpct is a RemoteAspectObject. In the implementation, it simply sub-
classes an AspectObject, it acts as a proxy for the AspectObject that is on
the master machine. When we invoke a method on the azpct as above, this
method invocation is passed to the AspectObject that it is the proxy for (i.e.
as determined by the slave BIF described earlier).

However notice that we aren't just dealing with the azpct RemoteAspectOb-
ject here, we are also dealing with arguments and the returned value from the
method.

We can't just serialise the arguments / returned object and send them over
the wire, the object may be part of a huge object graph, this would be a severe
limitation on the performance. Furthermore, as this is a distributed application,
the master may wish to invoke operations on objects on the slave machine.

For example, we may have advice of the form:

1

2 // the passed in ob j e c t has method c a l l e d
3 // getName
4 de f l ogCa l l ed ( obj ) = { p r i n t l n ( obj . getName ( ) ) ; }
5

6 be f o r e : exec jp [ j o i npo i n t ] a rgs { arg }{
7 . . .
8 azpct . l ogCa l l ed ( t h i s ) ;

It should be apparent that the master aspect instance needs to be able to call the
method getName() on the object passed into the logCalled method. However,
that object was never exported to the RMI registry, nor is it practical to export
every object to the RMI registry, when retrieving it, one needs to know the
name used to export the object.

The workaround needed a lot of digging into the RMI documentation. It turns
out that RMI stubs can be used anonymously, i.e. without needing to export
them to an RMI registry and name them explicitly. A stub contains the IP
address of the machine it was born on, as well as the port of a service which
maps from the stubs to the stubbed object.

We realised that stubs should not be too big, they are not part of large object
graphs. As such, it is easily possible to serialise a stub and send it from machine
A machine B. When machine B invokes operations on the stub, the stub can
deliver these operations back to machine A (the stub knows its way home).

The Thorn remoting mechanism was designed with both pass-by-reference (through
stubs) and pass-by-value (serialise object graph) semantics.

At the interpreter level of communication (the modi�cations made to the in-
terpreter), we are using Java RMI, which uses pass-by-value semantics, and
pass-by-reference is emulated by serialising stubs.
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When one interpreter invokes an operation on the running instance of another
interpreter (i.e. invoking the method invokeMethod(...)), we need to deal with
arguments as well as return values from the remotely invoked method. This
means that that live on interpreter A need to be transferred to interpreter B.

The relevant part of the signature of the method RemoteAspectObject.invokeMethod(..)
is Thing invokeMethod(String methodName, Thing[] args, ..). The returned
Thing is the Thorn object returned by the Thorn method described by meth-
odName (the method arity and argument types are worked out using the args[]
array), the args[] array is the array containing the Thorn objects which are used
as arguments for the Thorn method described by methodName.

The pure syntax in Thorn can be applied to classes (i.e. class C :pure{}) which
are immutable, and whose �elds only refer to pure objects. All immutable built
in types (such as the primitive objects, i.e. StringTh, IntTh etc) are pure.
Furthermore, pure objects are not allowed to perform operations which are
marked as impure, such as IO (e.g. the BIF println() ) is marked impure.

We chose to use pass-by-value semantics for Things which are marked as pure,
and we chose to use pass-by-reference semantics for Things which are not pure.

The pure syntax is added to classes by Thorn programmers when they wish
to make it possible to send objects of that class between components. These
objects are immutable, and furthermore they cannot cause IO side e�ects.

This gives us a strategy in which we can pass stubs for Things which are not
pure and pass the serialised version of Things which are pure.

So for example, if we have a class as follows:

1 c l a s s C( ){
2 de f printX ( ) = { p r i n t l n ("X" ) ; }
3 de f ge tS t r ( ) = { return " s t r "}
4 }

This class is not declared as pure, and it can't be, it uses println(). If an instance
of class C was either the argument or the return value for a method, it would be
sent over pass-by-value semantics. However, if one invokes the getStr() method
on the stub of a class C object, the remote machine will serialise the StringTh
object (which is pure) and return it using pass-by-value semantics.

This means that all side e�ect causing operations are done where the object
graph / IO stream where the non pure object lives.

The mechanism is useful for programmers who want to convert their single
threaded programs into concurrent / distributed programs. They can gradually
add the pure syntax to objects which need to be eventually passed between the
JVM instances using e.g. components.

The strategy means that objects on di�erent machines can refer to each other
as if they were local, with no special syntax needed to do so.
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However, the weakness of this strategy arises when we pass the Thorn - Java
barrier, i.e. use Javaly (described in section 2.3.1.7). Javaly does not account
for Java objects which are mutable / cause IO (i.e. impure). Having said this,
Thorn components also su�er from this problem.

4.3.5 Field access

Object �eld accesses are currently implemented in a way that is not too friendly
to them being invoked remotely. For example, they require stack frames (even
though they don't use them) and the syntax tree where the �eld access came
from (used only when throwing exceptions). Furthermore, they require full seals
of the �eld that is to be accessed, even though the �eld access routines only use
the string values of the seal.

This, coupled with the somewhat complex inheritance hierarchy that these �eld
accesses are part of (large inheritance hierarchies seem to be very common in
the Thorn interpreter code), means that relatively heavy refactoring would be
required to make �eld accesses remotely invokeable.

The work with method invocations identi�ed some key limitations of this ap-
proach when it is used in Thorn, as discussed in the evaluation chapter.

Because of the limitations and the amount of relatively uninteresting work re-
quired to make �eld accesses work, �eld accesses were not implemented. Instead,
one can simply wrap the �eld access in a method. For example, while the fol-
lowing code in advice to a slave won't work:

1 var name ;
2

3 po intcut {
4 p r i n t l n ( azpct . name)
5 }

the following will:

1 var name ;
2 de f getName()= return name ;
3

4 po intcut {
5 p r i n t l n ( azpct . getName ( ) ) ;
6 }

After doing the necessary refactoring, it would be easy to implement �eld ac-
cesses as required.
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Chapter 5

Evaluation

In this section, we attempt to evaluate the work that was done as part of this
project.

5.1 Relative to other AOP suites

We list below the functionality common to mature AOP implementations, and
how AOD-Thorn stacks up against them. It should be noted that there is no
competing AOP solution for Thorn, so it was required that

5.1.1 Aspect locations

As discussed before, there are a a number of advice locations which are common
to most AOP suites[14, 5], namely:

1. Before - run advice before joinpoint is executed, but cannot alter whether
joinpoint runs or not. Fully implemented in AOD-Thorn

2. After - run advice after joinpoint is reached, cannot alter whether join-
point runs or not or what the joinpoint returns. Fully implemented in
AOD-Thorn.

3. Around - start to run before the joinpoint. Use a proceed() type state-
ment which will proceed the joinpoint, and return the value returned by
the joinpoint (if its a method call). May prevent the joinpoint from pro-
ceeding, and can also modify the value returned by the joinpoint. All of
this is fully implemented in AOD-Thorn.
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4. After returning - advice runs if the joinpoint (a method execution)
returns a value described in the pointcut. This is syntactic sugar for an
around advice with the return value tested to determine if the advice
should be ran. This syntactic sugar was not implemented as it is not
especially interesting.

5. After throwing - advice runs if the joinpoint throws an exception, de-
scribed in the pointcut. This functionality was not implemented, as Thorn
as of yet does not have a satisfactory exception throwing mechanism: there
is no hierarchy of exceptions, all exceptions are of the same type, except
the string string representation is di�erent. It is the authors opinion that
if Thorn was not scrapped, this mechanism would have changed drastically
and therefore there was no point in implementing this functionality.

Given the above list, AOD-Thorn supports all the common advice locations,
with the exception of after throwing, which is due to the immaturity of Thorn.
If Thorn had a more mature exception throwing mechanism, it would surely not
be much more di�cult to implement the advice location implementation for it
than for the other cases.

5.1.2 Joinpoint types

There are 5 kinds of (very useful to intercept) join points common to mature
AOP suites[5]. We list them below and describe how they're supported in AOD-
Thorn:

1. Method execution - intercept the execution of a method, where the
this object in the stack frame used when executing advice is set to the
object which is the target of the method call. This is fully implemented
in AOD-Thorn.

2. Method call - intercept the call of a method, i.e. the this reference in
the advice refers to the object which has made the call. While speci�c
syntactic sugar is not used for this functionality, the use of method exe-
cution interception paired with the origin syntax gives equivalent results.
This is especially true due to the lack of information hiding mechanism
in Thorn, i.e. advice to the target can call any methods on the origin or
access any �elds, as there is no way to make them private.

3. Field set - intercept the binding of a new value to a �eld. Fully imple-
mented in AOD-Thorn, including the ability to report on the value which
will be bound to it.

4. Field get - intercept the reading of a �eld. Fully implemented in AOD-
Thorn, including ability to report on the value of the �eld.
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5. Exception handling - basically catch clauses, points in code which
handle exceptions. Not implemented in AOD-Thorn, due to the reas-
ons given before. One suggest a large reduction of exception handling
code, more than 90% reduction in catch statements in the applications
studied[29]. The additions of proper exception handling to Thorn may
bene�t in the same kind as Java.

With the exception of exception handling (due to limitation of Thorn), AOD-
Thorn directly handles or emulates the functionality of all the other joinpoint
types.

5.1.3 Other important pointcut primitives

There are two pointcut primitives not discussed above, namely scoping and
c�ow/c�owbelow. A pointcut is a set of predicates which describe when an
advice should be given to a joinpoint. There is need to be able to restrict
joinpoints to some scope, e.g. joinpoint must be in an object of a given class
/ package, and the c�ow/c�owbelow analyses the stack trace in order to work
out whether the joinpoint should be matched.

Sidenote:usefulness of c�ow/c�owbelow The c�ow / c�owbelow pointcut
primitives look at the route the program took to arrive to the current joinpoint.
For example, it may only wish to intercept the pointcut if it occurred as a result
of some method call down the stack trace.

For example, these primitives are often used to enforce that a �eld is only set
during the initialisation of the program. �For example, the c�owbelow pointcut
can be used to enforce that the �eld set is only during the init() procedure�[5].
This is often a problem experienced in Java when dealing with dependency
injection. Classes with many �elds that are to be injected are either forced to
have long constructors (and sometimes several of them), or to expose a public
setter. Clearly this is not an ideal solution, as it violates information hiding.

The c�ow.. primitives can be used to ensure that the exposed �eld setters
are only called as a result of being set by the DI solution, by looking at the
stack trace. This solves the dilemma faced by the programmer of whether
he uses bad design with very long constructors or violates information hid-
ing principles. Further, there is no need for the programmer to scatter some
kind of mechanism (possibly checking the stack, i.e. encapsulating code that
checks Thread.currentThread().getStackTrace()) to check where the call is com-
ing from.

Implementation of scoping and c�ow/c�owbelow In AOD-Thorn, scop-
ing was implemented through the use of regular expression matching on the seal
of the joinpoint.
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Due to lack of stack trace information in the Thorn interpreter, c�ow / c�ow-
below functionality was not implemented. It is however useful to note that one
can simulate some of the bene�ts of these primitives. For example, to enforce
that a �eld is only set once (which is close to the requirement that it is only set
at initialisation / by DI solution), an aspect instance attached to the object can
intercept the �eld sets, and use a boolean �eld to check whether the intercepted
�eld has been set before or not. An aspect library can be written around this
idea, making the task very easy.

However, c�ow / c�owbelow seems to be associated with an AOP �advanced�
feature, and are generally very expensive to evaluate, �even compared to other
dynamic pointcuts�[48] and therefore probably not used as widely as the others,
although we have no data to back up this claim.

5.1.4 Instantiation models

Other than c�ow/c�owbelow, as discussed before, most popular AOP suites
have 3 other instantiation models (ways to instantiate an aspect). How they
work has been described in section 3.2.1.3. It should be noted that all of those
types of instantiations can be simulated using our instantiation model: with our
model, the developer has complete control over when aspects are instantiated,
as opposed to the AOP framework. We describe how similar behaviour can be
accomplished using the instantiation model in AOD-Thorn:

1. singleton: instantiate a single unselective aspect instance

2. perthis: in the constructor of the class which needs the perthis model
applied to it, instantiate the aspect and add self to the aspect instance.
Alternatively, move this code into an aspect, i.e. there would exist an
aspect which intercepts the constructor, and gives it advice that it should
instantiate an aspect and add itself to it

3. pertarget: move this model into an aspect, i.e. when the pointcutted
joinpoint is executing, check to see if the target has attached to it

5.1.5 The limitations compared to other AOP suites

The above paints a positive picture, in that most of the commonly found fea-
tures of mature AOP suites are implemented. Unfortunately there are some
limitations.

5.1.5.1 Annotations

Possibly the biggest let down in AOD-Thorn is the lack of possibility to joinpoint
selection based on some annotation.

97



For example, in AspectJ, it is possible to annotate �elds, and then include in
the pointcut de�nition that we wish to match �elds with the given annotation.
An example application for this would be a persistence framework, which would
persist every write to �eld that has been annotated (i.e. to implement fault
tolerance).

For example, lets think about a bank application which has the requirement
that it contains the ID of a customer along with the account balance. Further,
it has the requirement that, for legal reasons, the balance must be accurate at
all times, including in the case of the server crashing, so it is not allowed to
persist the page views every once in a while.

If AOD-Thorn could support annotations (or some other kind of source level
metadata), then we could have a simple implementation the above as follows (of
course real solutions are going to be more complicated where money is involved,
but we present a simpli�ed solution):

Listing 5.1: BankBalance.th

1

2 c l a s s Balance ( customerID ) (
3 import f a u l t t o l e r a n c e . @checkpointed ;
4 @checkpointed (
5 name=customerID + " balance ")
6 var balance ;
7

8 . . . .
9 )

Listing 5.2: CheckpointingAspect.th

1

2 module FaultToleranceAspects {
3 import f au l tTo l e r anc e . @checkpointed ;
4

5 aspect un s e l e c t i v e CheckpointingAspect {
6

7 // be f o r e any f i e l d with
8 // the checkpointed annotat ion
9 // i s s e t
10 be f o r e : s e t jp [ ∗ ] withAnnotation ( @checkpointed ch ) args ( arg ){
11 // wr i t e the newly s e t f i e l d to the d i sk
12 // given some checkpo int name and the value
13 // the f i e l d w i l l be s e t to , p e r s i s t the new value
14 // to the d i sk
15 per s i s tToDisk ( ch . name , arg ) ;
16 }
17

18 . . .
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19 }

Its easy to imagine a continuation of the above aspect, i.e. after a crash, when
a customer object is being constructed using a list of customer IDs, the �elds
which are annotated as checkpointed will read the checkpointed value from the
disk in some manner.

Why AOD-Thorn doesn't support this The reason is relatively simple,
in that while the Thorn OOPSLA '09 paper promises an annotation system (as
well as extensible syntax and so on)[6], those features are largely credited to
the compiler rather than the interpreter. There doesn't appear to be a similar
architecture present in the interpreter.

If the feature was added to the interpreter, the extension to AOD-Thorn to
support this would not be too di�cult to add.

5.1.6 Joinpoint information

Currently, when calling joinpoint() inside advice, a StringTh is returned (a
Thorn String object), which contains the seal of the joinpoint, i.e. a method m
in class C with arity 0 returns �C.m/0�.

This leaves a lot to be desired compared to AspectJ / Java, which uses re�ection
that can get much more information about the joinpoint where the advice is
running, i.e. when the equivalent of joinpoint() is called in AspectJ during the
execution of a method, a java.lang.re�ect.Method object is returned.

The implementation was left fairly extensible, advice execution operates in the
context of a stack frame which contains a reference to a Thing (a Thorn object)
which contains joinpoint information. While this is currently set to a StringTh
object with the seal name of the joinpoint, this can easily be changed if Thorn
had some sort of re�ection API.

5.1.6.1 Ability to cross the Thorn - Java barrier

As a JVM language, it would be wise for Thorn to be able to call upon the
extensive API present to Java. Indeed, the interpreter has such a mechanism,
Javaly, as described in the background section.

Sometimes it is required to intercept calls to an API, i.e. JDBC as will be
described in section 5.2.2. Currently this doesn't seem too big of a issue, calls
to Java libraries need to be wrapped in Thorn objects.

However, we have seen from the experience of Scala[34], that it is possible for
JVM languages to seamlessly interoperate with the Java API.

99



If such a seamless Java interoperation mechanism was added to Thorn, the
aspecting extensions would be severely limited, and possibly shunned for their
inability to go past this Thorn - Java barrier.

It may be possible write an aspecting mechanism which can pass this barrier.
A language agnostic AOP suite has been researched as doable[28] for the .NET
platform, so perhaps it may be required that a similar work is done for the JVM
which can for example compile Thorn advice (if Thorn had a compiler) and give
that advice to Java joinpoints.

5.2 Expressiveness

Expressiveness: �e�ectively conveying meaning or feeling� - from the Oxford
Dictionary. We explore whether AOD-Thorn allows us to convey �meaning� or
�feeling� of code more e�ectively.

We present some example code which bene�t from aspecting in AOD-Thorn. It
is relatively di�cult to show the real power of AOP without a large application
under consideration, after all, the problems of scattering and tangling really
become a problem in complex applications rather than small ones. For this
reason, the reader is asked to use their imagination and / or experience of
previous software systems they may have come across. If they think about the
problem at hand, and how it may become an application wide problem if it is
replicated throughout the application many times, then the reader should start
to really appreciate the elegance of AOP.

5.2.1 Person information example

We present the following class, which holds information about a person, and
is thus a good example of a business object. The responsibility of the class is
not only to hold information about the person (the core concern), but also to
verify that the person has a legal name (i.e. make sure there are no numbers,
space etc in the name). It should throw an error (which is assumed to be a
function available in Thorn which generates a full stack trace) with the value of
the argument if the argument could not be validated.

Listing 5.3: Person.th

1 c l a s s Person ( ID){
2 var forename ;
3 var middlename ;
4 var surname ;
5 var t i t l e ;
6
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7 de f setForename ( forename ){
8 i f ( isValidName ( forename ) ){
9 l og (" Person . setForename (" + forename + " ) " ) ;
10 t h i s . forename := forename ;
11 } e l s e { e r r o r (" Inva l i d input : " + forename ) ; }
12 }
13

14 de f setMiddlename (middlename ){
15 i f ( isValidName (middlename ) ){
16 l og (" Person . setMiddlename (" + middlename + " ) " ) ;
17 t h i s . middlename := middlename ;
18 } e l s e { e r r o r (" Inva l i d input : " + middlename ) ; }
19 }
20

21 de f setSurname ( surname ){
22 i f ( isValidName ( surname ) ){
23 l og (" Person . setSurname (" + surname + " ) " ) ;
24 t h i s . surname = surname ;
25 } e l s e { e r r o r (" Inva l i d input : " + surname ) ; }
26 }}
27

28

29

30 de f s e tT i t l e ( t i t l e ){
31 i f ( i sV a l i dT i t l e ){
32 l og (" Person . s e tT i t l e (" + t i t l e + " ) " ) ;
33 t h i s . t i t l e = t i t l e ;
34 } e l s e { e r r o r (" Inva l i d input : " + args ) ; }
35 }}
36

37

38

39 de f isValidName (name){
40 re turn name . matches ?("^ [ a−zA−Z]+$")
41 }
42

43 de f i sVa l i dT i t l e ( t i t l e ){
44 t i t l e s = [ "Mr" , "Ms" , "Mrs" , "Dr" , "Prof " , "Lord " ]
45 re turn name . matches ?(
46 }
47

48

49 de f l og (msg){
50 //Extremely s imple p r i n t l n l ogg ing .
51 // R e a l i s t i c app l i c a t i o n would use a
52 // l ogg ing l i b r a r y
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53 p r i n t l n (msg ) ;
54 }
55 }

A solution in AOD-Thorn We take the cross cutting concern of logging,
veri�cation and throwing an error into an aspect that utilises joinpoint inform-
ation to decide how to do veri�cation. Then it logs the event, again using the
joinpoint information.

Lets see the results:

Listing 5.4: Person.th

1 c l a s s Person ( ID){
2 var forename ;
3 var middlename ;
4 var surname ;
5 var t i t l e ;
6 }

Listing 5.5: Aspects.th

1 module Aspects {
2 aspect un s e l e c t i v e LogAndVerify{
3

4 around : s e t jp ( Person . \ . ∗ name) args ( arg ){
5 i f ( isValidName ( arg ) ) l og ( j o i npo i n t ()+":"+ arg ) ;
6 proceed ( ) ;
7 }
8

9 around : s e t jp ( Person . t i t l e ) args ( arg ){
10 i f ( i s V a l i d t i t l e ( arg ) ) l og ( j o i npo i n t ()+":"+ arg ) ;
11 proceed ( ) ;
12 }
13

14

15 de f isValidName (name){
16 re turn name . matches ?("^ [ a−zA−Z]+$")
17 }
18

19 de f i sVa l i dT i t l e ( t i t l e ){
20 t i t l e s = [ "Mr" , "Ms" , "Mrs" , "Dr" , "Prof " , "Lord " ]
21 re turn name . matches ?(
22 }
23
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24

25 de f l og (msg){
26 //Extremely s imple p r i n t l n l ogg ing .
27 // R e a l i s t i c app l i c a t i o n would use a
28 // l ogg ing l i b r a r y
29 p r i n t l n (msg ) ;
30 }
31 }}

What did we achieve?

1. Reduction in scattering - there is no longer an almost copy / paste version
of the log statement everywhere

2. Reduction in tangling - there is no longer an unnatural link from the
Person class to what would be a logger class in a real application

3. Reduction in line count - the total lines for the Thorn solution is 55, the
total for AOD-Thorn solution is 36

4. No need for setters - setters were no longer needed, we now have �eld
access interception.

5. No longer violate the �do one thing� and �single responsibility� principles[32]
- the Person class now just holds data. It no longer holds data and the
methods no longer verify input and logs input and throw errors when input
is wrong.

All of the above make the code more modular / reusable. The class can now be
used in other projects where:

1. The logging requirements are completely di�erent - i.e. they might not
need it at all or use a di�erent logging library

2. They may have di�erent input veri�cation procedures, for examples names
may be in Cyrillic, not Latin

3. The exception handling is completely di�erent, it may not have been ac-
ceptable to catch the exceptions thrown by the Person class

5.2.2 Security example - SQL veri�cation

Lets look at another example, which may well help in securing the application.
SQL injection is a well known exploit used in web applications, where user input
is not sanitised and malicious input may make its way into SQL queries made
by the application. Furthermore, sometimes bad queries may
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The usual solution to this is to sanitise inputs wherever they appear before they
make it into an SQL query. For example (we assume the existence of a database
connectivity library, the example is adapted from[62]):

Listing 5.6: queries.th

1 module qu e r i e s {
2 fun u s e rDe t a i l s ( user ){
3 i f ( i sC l ean ( user ) ){
4 re turn " s e l e c t ∗ from use r s where uname="+user +";" ;
5 } e l s e { e r r o r (" unclean input " ) ; }
6 }
7 . . . .
8 }

Listing 5.7: webform.th

1 c l a s s UserInfoForm{
2 import s q l . ∗ ;
3 import qu e r i e s . ∗ ;
4 import dblayer . c onnde t a i l s ;
5

6 de f g e tUse r i n f o ( user ){
7 query = us e rDe t a i l s ( user ) ;
8 // execute the query g iven the
9 // connect ion d e t a i l s and the query
10 re turn SQLConn . exec ( c onnde t a i l s , query ) ;
11 }

Now say that there are hundreds of queries, and at some point the developer
forgets to sanitise the input into the query. For example, if we didn't sanitise
the query for userDetails(), and somebody gives an input in an online form like:
�'a'; drop table 'users';�. This is clearly an SQL injection, all because a query
was not sanitised.

This is a scattering problem. Sanitisation code must be scattered throughout
the codebase, wherever SQL queries appear. How could we get around this? One
common solution is to write a wrapper around the sql library. I.e. we could have
SQLConnSanitised.exec(conndetails, query), which is a proxy for the SQLConn
class. However, this places a large burden on the developer to write his own
wrappers around existing libraries, and they can still make a mistake and call
the original unwrapped library.

Aspects can help us out here. We can have in AOD Thorn an aspect like the
following:

1 module SQLAspects{
2 aspect un s e l e c t i v e SQLSanity{
3 around : exec ( s q l . SQLConn . exec ) args ( arg ){
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4 i f ( i sC l ean ( arg ) ){ proceed ( ) ; }
5 e l s e {throw e r r o r (" e r r o r (" unclean input " ) ) ; }
6 }}}

This aspect will sanitise every sql query that goes through the the SQLConn
class, and the application is longer vulnerable to SQL injection attacks. This
did not need sanitisation code scattered throughout the code, nor did it need a
wrapper around the sql library, wrappers can be tedious to write.

The example should demonstrate how we can easily enforce a design principle
across the application.

5.2.3 Expressiveness / conciseness of the previous 2 ex-
amples

The above two examples have demonstrated the changes to expressiveness and
conciseness that an AOP suite can bring to a language.

Firstly, the code was made more concise. There is no longer a need to scatter
what are essentially the same set of statements throughout the code, i.e. logging,
input veri�cation and so on. For example, if we had a logging aspect that logged
all the setters in a package (or module, the Thorn equivalent of packages), and
we added a new bean to the package, there would be no need to copy and paste
the logging code into it, because the aspect would take care of this. This is a
clear win for our AOP suite.

Secondly, the code has become more cohesive, a bean now only has the respons-
ibility of storing some data (i.e. about a person), it is no longer burdened with
the responsibility of logging access etc. Similarly, the code that takes user input
now no longer needs to check input for SQL injection attacks. Cohesiveness is
a key OO design principle so this is a big win.

However, in a way it is less expressive.

For example, Joe the new programmer joined the team that had written the code
in the �rst example. Joe added new �elds housename, streetname and postcode.
When Joe writes a unit tests for his new class, he notices that when he invokes
the setters for streetname and housename, he sees that something is logging the
setter invocations, even though Joe didn't add logging code. Further, when the
postcode setter is invoked, there is no logging going on. This confuses him until
one of his colleagues helpfully points out that the system uses AOP, and shows
him the logging aspect.

As discussed later, problems like this can be solved using proper tools.
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5.2.4 Expressiveness / conciseness of instantiable / select-
ive aspects

We draw attention back to the examples in section 3.2 and 3.3, namely the
parts where the user instantiates aspects and where they use selective aspects
as opposed to using unselective ones.

5.2.4.1 User instantiable aspects

Unlike most AOP suites, there is no asymmetry in AOD-Thorn which treats the
instantiation of aspects and objects di�erently: aspects can instantiate objects
and objects can instantiate aspects.

This lowers the conceptual burden on the programmer not familiar with AOP,
they have always known how to instantiate an object. It is easy to express when
an aspect should be instantiated, simply call its constructor. There is now no
need to worry about the AOP suite instantiating too many aspects, i.e. if we
used a perthis / pertarget.

5.2.4.2 Selective aspects

To tag an aspect as selective is more expressive than to go along with how other
AOP suites deal with this issue. It appears to be a common problem for an
aspect instance to only apply to a set of objects, however most AOP suites
force the programmer to use a hand crafted solution using lookup tables.

The ability to make an aspect selective leads to code which is more concise
as there is now no need for aspect membership tables and lookups. This can
heavily reduce scattering across advices, as explained in section 3.2.3.

5.2.5 Expressiveness / conciseness of distributed aspects

As seen in section 3.3, exporting an aspect instance onto the RMI registry is
very concise, a one line e�ort from the programmer who needs to add this to
code ran on the master machine.

Similarly, the programmer needs to add one line to the programs running on
the slave machines.

This is in contrast to an approach more idiomatic to the original Thorn, which
would have required one to speci�cally write code for communication between
the aspect instances at the master and slave machines.

Furthermore, it is worth noting here that Thorn communicates between compon-
ents through pass-by-value semantics, whereas communication between intra-
component objects is via pass-by-reference semantics. This clearly requires a
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programmer who has designed their program while in the mindset of a single
machine architecture to do a lot of work to optimise the program for pass-
by-value semantics when they move the program to a distributed architecture.
After all, the objects that are being passed between the components could be
part of large object graphs, serialisation and transfer of these graphs may take
a prohibitively long time (and of course, this is made worse if the objects be-
ing transferred have mutable state, the state could be mutated on the remote
machine, then the mutated object graph would have to be sent back so it could
replace the original graph; references to objects on the original machine will
need to be �xed, this could be non-trivial). There is further discussion about
this problem later in the chapter.

Unfortunately what the language gains in conciseness, it loses in giving the
programmer complete control over what happens.

For example, the programmer may want to exert control over the protocols used
in the communication. They may also wish to have some syntax with which they
can control where an aspect computation takes place (discussed later). While
we started work on this, i.e. adding syntax into aspects that would allow the
programmer to specify a certain method is to be carried out on the slave instead
of the default master (i.e. slave.operation() vs azpct.operation()), this was later
abandoned in the argument that this was starting to turn very much into a
solution that was only marginally putting o� the inevitable step of moving the
communication mechanism to Thorn components.

5.3 Performance evaluation

When a new language feature is introduced into a language, usually the �rst
concern is whether it makes the programmer truly more productive, but often
the next concern is whether gains in programmer productivity are wiped out by
losses in performance.

It is important that developers do not think the overhead of a feature is not too
high, otherwise they may form a habit of not using it (i.e. the feature gets a
stigma attached to it, making people take irrational decisions), even where the
performance hit is insigni�cant compared to the rest of the application.

5.3.1 Interpreter performance

Before going further, it is important to remember just how slow the interpreter
is compared to a bytecode compiler.

For example, to execute a method call in the Thorn script, the interpreter needs
to make many, many method calls internally while it traverses the method call
AST, creating a stack frame requires creating an object after several internal
method calls, and so on...
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The interpreter should not be thought of as a viable environment for applications
with high performance requirements. However, the REPL environment and the
fact there is no need to compile with the interpreter may be seen as a valuable
productivity boost, so users may �nd it useful to develop with the interpreter
where they check the correctness of their application, and then compile it when
the application is ready for deployment.

As such, it is important that the semantics of language features on the compiler
and the interpreter are equivalent, as users would not be happy to �nd that
their application no longer works when it is compiled. If aspecting is added
to the compiler, it is important that the aspecting behaves as it does in the
interpreter.

During the development of AOD-Thorn, performance was not the highest prior-
ity, keeping the interpreter as simple as possible was seen as more of a priority,
as it would enable an easier merge with the main interpreter if AOD-Thorn
was ever decided to be adapted into the main stream interpreter. Further, it
was apparent from the start that the theoretical complexity of any algorithms
required for aspecting should not have large performance hit on an interpreter
application once it was loaded. The AspectJ team strived to make the perform-
ance hit of aspecting versus a hand crafted solution to be virtually non existent,
so it was apparent that aspects in general do not add much of a performance
hit.

Nevertheless, some time was spent towards making the performance hit as small
as possible, perhaps so the approach taken in the interpreter could be adapted
without too many problems for the compiler.

Before benchmarking was done, it was the authors opinion that the performance
hit should be extremely small due to the way aspecting was implemented (i.e.
most objects relating to aspects are cached with the ObjectTh or the MethDecl,
making them a �eld access away).

5.3.2 Microbenchmark results - local aspecting

Please note that all the times quoted from here onwards are in nanoseconds,
using the Java System.nanoTime() timer. This uses the clock with the highest
accuracy available on the CPU, and has a resolution (not to be confused with
accuracy!) of 1 nanosecond. From previous experimentation on my computer,
the clock is accurate to about 15 nanoseconds).

The benchmarks taken were inspired by [19, 47]. As �eld access has a very
similar treatment to method calls, very similar results are expected.

The machine that the benchmark were ran on had the following specs:

Model Packard Bell EasyNote TM85

CPU Intel Core i3 M350 @ 2.27GHz
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RAM 3GB

OS Windows 7 64-bit

Java version 1.6.0_24

5.3.2.1 Method call with no advice

The �rst microbenchmark that was ran was to check whether method calls
that have no advice attached to them have any overhead added to them. The
overhead would come from checking the AdviceDecl AST for before / after /
around advice. There was a statistically insigni�cant di�erence in means of a
benchmark run on the old Thorn interpreter and the AOD-Thorn interpreter.

Using a paired t-test, the benchmark determined a 9ns di�erence in mean ex-
ecution time to a method call that took no advice, -3ns to 21ns at the 95th
percentile.

It is important that the overhead for method calls with no advice is as low as
possible, i.e. near to 0. If not, developers writing high performance are likely
to reject the entire AOP suite, rather than just avoid giving advice.

However, it is also important to keep the language runtime implementation as
simple as possible while the language is young and rapidly evolving. As discussed
before, it is rather unlikely that developers of high performance languages would
choose Thorn until it �rst matured in syntax, and then the interpreter / compiler
also matured to a highly performant implementation. As such, the 9ns constant
time added to a method call (see table 5.1) is seen as more than acceptable
to the author, who further notes that some of this could be taken away at the
expense of making the implementation of the interpreter more complicated

5.3.2.2 Method call - before advice

The second benchmark aimed to measure how much of an overhead is added by
executing advice just before an advised method body is executed. It did this by
making a second method call as the advice, and this was measured against the
handcrafted version which made the second method call at the joinpoint.

This scenario can emulate an example where a logging statement logging that
a method is called is moved into an aspect.

The results state a 105 to 134 nanosecond (see table 5.1) di�erence between the
two ways of adding advice, which is a ~20% di�erence. Percentage wise, this is
very favourable against e.g. early incarnations of AspectJ[19].

From the authors experience, it is unlikely that code which is in a tight loop will
experience the problem of scattering or tangling, as its unlikely to be replicated
throughout the code. Users would be advised to stay away from giving advice
to method calls inside tight loops.
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Its the authors opinion that for the vast majority of cases where advice is given
to a method or a �eld access, such a di�erence to the method call would not be
signi�cant. It is important to remember that this the overhead to the method
call, not the method body. The method body is itself likely to execute many
statements, most of which will probably not be advised.

For our examples of logging / persisting �eld writes to disk, this method call
overhead would be extremely insigni�cant compared to the IO required for this.
As stated before, Thorn is marketed as a scripting language that can evolve into
applications, and is largely used to make distributed programming easier. This
should exclude people who would care about the overhead added to advised
methods, which leads the author to conclude that the performance of before
advice is more than adequate.

After advice gave results almost identical to before advice, as both are imple-
mented in an identical fashion.

5.3.2.3 Method call - around advice

The third benchmark was similar to the second benchmark, with the di�erence
that instead of using before advice, an around advice was used. The around
advice �rst gave the same advice as the before statement, and then used the
proceed statement to execute the advised method.

The benchmark suggested a 16 to 30 nanosecond (see table 5.2) overhead of
using around advice (most likely due to the proceed call). This is a very low
overhead compared to before advice (around 3% higher than before advice),
there should be virtually no cases where around advice is not taken where it
makes the code clearer.

5.3.2.4 Advising useless entities

The use of aspects does not always add overhead, sometimes using AOP can
even reduce overhead while also improving readability.

It is very common for programs to check predicates which do not change through-
out the lifetime of the program. For example, the Log4J library uses an external
con�guration �le which determines whether logging is turned on while the ap-
plication executes, and this predicate is evaluated just before every logging
statement.

The solution that some developers utilise is to use a preprocessor, which will
remove these predicate checks. Of course, this isn't an ideal solution, it is not
possible to change the predicate while the application is running, i.e. to turn
on logging at a given time. Furthermore, preprocessors can clutter code, with
preprocessor directives near the predicate checks.
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Instead, one can simply use aspects. The equivalent of using a preprocessor
to remove predicate checks is simply to not instantiate the aspect (perhaps
the code which instantiates aspects will check a con�guration �le, i.e. a single
predicate check). The equivalent of switching the behaviour on / o� at runtime
is to switch an aspect on / o� while it is running (for an unselective aspect), or
to add / remove objects from the aspect instance (if its a selective aspect).

The author did a benchmark which should motivate some users of AOD-Thorn
to use aspects. The benchmark emulates a scenario where a predicate check is
done just before every logging statement, as the requirement of the application
is that it should be possible to turn it on at some point.

We already benchmarked the overheads of adding advice, however we did not
benchmark the overhead of not having advice and doing a predicate check on
every method invocation.

The benchmark works by checking how it takes to call and execute a method
which contains a predicate check (which itself involves a method call, as would be
the case of Log4j, which uses boolean methods such as log.isDebugEnabled()),
versus simply not turning the logging aspect on (which, due to the implementa-
tion, is performance-wise equivalent of instantiating an object and then remov-
ing or switching o� the aspect, or using a selective aspect which does not have
the logged object added).

The results were extremely encouraging. The version which uses a predicate
check upon each invocation took around 8000ns (see table 5.3), versus the 410ns
by the solution which used aspect that was not turned on (i.e. unselective aspect
which was not instantiated).

Of course, this is most likely due to the slowness of the interpreter, and a
compiled version is very unlikely to see such an extreme di�erence, however
there is still likely to be some bene�t with the compiled version as well.

Benchmark Thorn AOD-Thorn Mean di� interval1 T-test and code

Method call - no advice 328ns 337ns -3ns to 21ns Section: B.1
M. call - before advice 568ns 688ns 105ns to 134ns Section: B.2

M. call - after advice 566ns 685ns 104ns to 133ns Very similar to B.2

Table 5.1: Thorn vs AOD-Thorn benchmarks.

Benchmark B./a. advice Around advice Mean di� interval2 T-test and code

Method call -
Before / after vs around 676 698 16 to 30 Section: B.2

Table 5.2: Before / after advice vs around advice
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Benchmark No aspects soln. Aspect solution Benchmark code

Predicate check vs
aspect turned o� 8246 411 Section: B.5

Table 5.3: Predicate checks vs aspect turned o�

5.3.2.5 Microbenchmarks - local aspecting - conclusion

The micro benchmarks showed us that there was a small constant delay added
to joinpoint execution by aspecting when aspect is not giving advice and there
is also an overhead of using advice versus a hand written solution. However,
the latter benchmark also showed us that the interpreter is actually very slow,
for example, a method which contains an extremely simple body, i.e. a method
call to a predicate checking method took about 20 times longer to execute than
an empty method body.

This gives us excellent evidence to support the claim that any overheads intro-
duced by aspects are extremely insigni�cant compared to how long a joinpoint
takes to execute, which suggests that Thorn developers should not be put o�
by the aspecting extensions to the language.Having said this, it is also true that
the time it takes for the rest of the body to execute compared to the predicate
check will also be large, making the predicate check itself insigni�cant.

For this reason, many of the other combinations possible with aspects were not
benchmarked (e.g. lets say �eld writes with selective aspects), because of the
way the algorithmic complexity they introduce is no higher than i.e. method
calls with unselective aspects. It was apparent that the results that would
be gained from them will be similar to those gained for method interception,
i.e. not a cause for developers to be put o�. Furthermore, while we may not
have much of a performance advantage over hand crafted solutions, hand crafted
solutions do not have a performance addition over aspects, and aspects can bring
improvements in modularity, readability and the reduction of fragile scattered
code.

5.3.3 Microbenchmark - distributed

To get an idea of the type of overhead added by RMI, we ran a simple bench-
mark (code listing at: B.6) that called a method on a remote aspect instance
repeatedly.

On our machine, the average time taken for this method invocation was around
240,000 nanoseconds, or 0.24 milliseconds.

This number may at �rst seem shocking, that is about 800 times slower than if
we didn't use RMI! However, it does mean that the system is capable of over
4000 method invocations a second. This is fast enough for a large number of
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distributed applications. For example, in our sensors example, it is unlikely that
we will need more than 4000 sensor readings every second for most cases.

It should be noted here that network latency also plays a key part in the per-
formance of a distributed network, it is quite possible that the network latency
will be the bottleneck rather than the speed of method invocation.

We tried method invocations with up to 5 arguments, which didn't have a no-
ticeable e�ect on the method invocation speed (remember that we are stubbing
arguments, not serialising, so stub creation time is very comparable across dif-
ferent types of arguments).

5.3.3.1 Microbenchmark - distributed - conclusion

We already knew that RMI would put a large overhead on method invocations,
although it turned out to be lower than we expected. Based purely on the
performance, distributed aspect instances may still be a viable option for some
applications, several thousand remote calls per second is good for a large class
of problems. This is especially true as the remote aspects are meant as a feature
used for prototyping, until the programmer explicitly optimises the code for a
distributed architecture.

5.4 Further optimisations

5.4.1 Local aspecting

While it is possible to further increase the speed of local aspecting, given the
previous benchmark results, it does not seem necessary to do so.

For example, the execution of joinpoints which are not advised currently has an
overhead, as the joinpoint must check if there are any aspects that are advising
it. Further, when executing joinpoints with say only before advice, there is
also a check for after / around advice. This can be avoided by modifying the
joinpoint AST (i.e. the AST would have a node which would cause advice
to be evaluated) instead of checking for advice before the evaluation of every
joinpoint, including ones which are not advised by any aspects.

This approach is similar to what is done by AOP suites which modify bytecode.

5.4.2 Distributed aspecting

Transparently distributed aspects have several optimisations possible.

1. Pure functions - if an aspect method does not involve IO or create a
sidee�ect (does not mutate any state on the master), then there is no
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reason for it to be evaluated on the master aspect. For example, if we
have:

1 de f addOne(x ) = return x+1;
2

3 . . .
4 azpct . addOne ( 1 ) ;

its easy to see that there is no need to ask the master server to carry out
this method. However, with the current implementation, it will do so, as
the azpct keyword was used, which references the master. The burden to
evaluate this could be moved to the slave aspect.

2. RMI - RMI is synchronous, we must wait for a reply from the remote
machine before we continue with our computation. However, we may
be able to continue with some computation while we await the remote
machine to reply, i.e. turn it into an asynchronous call of sorts. If we apply
data �ow analysis, we may even be able to execute instructions which are
further down the instruction list than the one which requires the reply
from the remote machine (i.e. instruction reordering[61], a practise used
in microprocessor design as well as e.g. the HotSpot JVM).

3. Serialisation / stubbing - some work could be done on more intelli-
gently selecting when to stub an object and when the object graph can be
serialised and sent over the wire. This should be a rich area for possible
optimisations.

5.5 Scalability

5.5.1 Local aspecting

For this section, we de�ne scalability as the ability of an AOD-Thorn program
to utilise aspects more without imposing an overhead which may negate per-
formance requirements of the program.

Aspecting in a local context (i.e. not distributed), appears to have excellent
scalability.

5.5.1.1 Program startup time

Program startup time is increased due to the weaving process, where every
joinpoint is matched against all pointcuts. The weaving process exhibits a time
complexity of O(n ∗m), where the n stands for number of joinpoints and the
m is the number of pointcuts. Of course, how long this weaving process really
takes depends on the speed of the regular expression engine.

114



The experiment described in section A.2 shows that the Java regular expression
engine is very fast. 10 million regex matches of two realistic strings took about
1.5 seconds, which would be the time added to program startup if our program
had for example 100,000 joinpoints and 100 pointcuts. This appears fast enough
for most / all of the applications that have ever been written in Thorn so far.

Nevertheless, if / when application written to be executed by the Thorn inter-
preter started to get very big (i.e. needing more than 100 million regex matches,
which would take about 15 seconds), it would be easy to reduce the time taken
by weaving using two simple strategies:

1. Use an incremental compiler[57]. The compilation process would be much
like the early Python compilers, which stored a parsed version of a .py �le
(the AST had certain operations done on it that is always done during
program startup). The execution time for this was identical as a non
compiled version, but the program startup could avoid having to take
certain procedures, making startup faster. The weaving could be part of
this compilation process. Furthermore, by using an incremental compiler,
there is no need to match all the joinpoints against all the pointcuts when
making a change to the application.

2. Speed up the matching process. For some pointcuts, it may not even be
required to use a full regular expression engine, i.e. one can use string
equals. Further, some kind of tree based data structure could be used so
that the pointcuts are only evaluated against those joinpoints which have
a chance. For example, if a pointcut fails to evaluate at the package level,
then there should be no need to check all the joinpoints in that package
later.

Of course, it is unlikely that anyone will ever write a very large program for the
Thorn interpreter, so the above ideas would be really be best used in a proper
bytecode compiler.

5.5.1.2 Program execution time

When referring to overhead here, we mean the extra time the program has to
spend due to using aspects instead of writing the advice near the joinpoint by
hand.

Program execution time appears to have a constant time overhead (or if we get
very detailed about it, bounded time, due to the way hashmaps work), both in
the case of joinpoints with no advice and joinpoints with advice.

Execution of joinpoints with no advice have the constant time overhead of check-
ing whether there is advice for that joinpoint.

Execution of joinpoints with advice has the constant time overhead involving
retrieving the advice for the joinpoint.

As such, program execution time should scale very well with larger programs.
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5.5.2 Distributed aspecting

The big scalability issue with the distributed aspecting portion of the project is
that all the aspect state is held at the master, and it executes all the methods
of the aspect. This follows a centralised server architecture, and anyone that
knows anything about distributed system will tell you that this is not a good
idea.

1. There is no fault tolerance - what happens if the central machine goes
down? The entire distributed system stops working.

2. There is no load balancing - all the slaves communicate with one master.
Since there is no load balancing, the single machine needs to service all
requests. However, load balancing a system like this can be di�cult, there
is a need to replicate the aspect state, which itself can add overhead,
and developing a load balancing mechanism which does not compromise
correctness across the whole distributed system can be di�cult without
experience in this area.

A program not tailored for a distributed setting is likely to be extremely slow.
For example, not only do we still have the issue of the interpreter being slow,
but we now have the overheads of RMI messaging on the network and the need
to create stubs for e.g. arguments and return values, serialising certain values
and then �nally the network latency (and bandwidth). Further, nothing is done
in an asynchronous fashion. Bringing asynchronism into the equation (i.e. by
using futures) brings overheads and complexity of its own.

Some of these issues may be tackled, however this seemed a bit out of the scope
of the project, given the timelines involved.

5.6 Why AOP faces problems with adoption in
industry - how can AOD-Thorn help?

Action at a distance �Action at a distance is an anti-pattern (a recognised
common error) in which behaviour in one part of a program varies wildly based
on di�cult or impossible to identify operations in another part of the program.
�[54]. Does AOP exhibit the action at a distance anti-pattern? The answer
is probably yes. At the very core, advice is a meta programming construct
that changes the behaviour of a program from a di�erent place. After AOP is
introduced into a project, when a programmer reads the de�nition of a joinpoint
(such as a method), he can no longer be sure that this is what will be executed
when the program runs. Reasoning about the program immediately becomes
more di�cult.

So what is the solution? Tooling[41]. For example, while editing a pointcutted
method, the IDE the programmer uses would tell the programmer that this
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method is going to be advised at runtime; when the programmer wishes to
rename a method, the IDE will tell him whether he has just broken a pointcut
somewhere, and therefore the behaviour of this method will change.

AOD-Thorn would be just as vulnerable to the action at a distance anti-pattern
as usual AOP suites. The political advantage that AOD-Thorn has, over say
Java, is that the aspecting extensions to Thorn would've been made early in the
game, before tool vendors had a chance to build tools that were not designed
with aspecting in mind. With the aspecting in the core language, the tooling
would've had to fully support aspecting in order to be successful.

Lack of standard The lack of standard AOP suite in Java may be another
reason for its demise. Again, tooling support is patchy when there is no single
standard implementation, something that would've been avoided if Thorn had
aspecting extensions to it from the beginning.

Legacy software may be hard to adapt for AOP Sometimes it is a lot
of work to get AOP introduced into legacy software. With AOD-Thorn, this
would not be a problem, Thorn is still young enough not to have any real large
applications.

AOD-Thorn Given the above reasons, putting AOP extensions into the core
language may go a long way towards helping AOD-Thorn avoid the problems
that other AOP suites for other languages have.

5.7 Transparently distributed aspects limitations

5.7.1 Transparently distributed aspects

5.7.1.1 Are we breaking Thorn rules on distributed computation?

Thorn is a language which uses message passing concurrency but no shared state
concurrency. The question arose whether the distributed aspects are breaking
the Thorn rules on how distributed applications should be written.

It should be noted, that by default the RMI subsystem used for distributed
aspects is in fact a message passing mechanism. During a remote method call,
the arguments and return values are usually sent using pass by value semantics[2]
(object graphs are serialised). If we had used RMI in this way, it would have
worked in exactly the same way as Thorn already does, i.e. object graphs are
serialised and then sent over the network.

The transparently distributed aspects idea was a feature aimed as the AOP
mechanism to be used straight after a local application is turned into a distrib-
uted application, i.e. for experiments on a distributed architecture, rather than
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as a full replacement for a solution that gave the programmer explicit control
over what is sent over the network.

In Thorn, there is a �pure� annotation for classes, which indicates that the class
�cannot refer to mutable or component-local state, and thus, its instances are
suitable for transmission between components�[6]. If a class was not marked
as pure (because the program was not distributed, even though it is a good
candidate the purity status) and we just moved to a distributed setting, we
could not use objects of that class when communicating with remote aspects,
they will simply not serialise (this is enforced in the code). This would prove
problematic: the programmer has to do extra work for the distributed aspects
which he wasn't expecting.

Furthermore, the author felt it was unlikely that during the initial stages of
moving a single machine program to a distributed architecture, the object graphs
would've been optimised for e�cient serialisation (some objects may be part of
large object graphs). This is why the transparently distributed aspects use pass
by value semantics.

The reader may recall that during the advice of execution, when we ask a remote
machine to do something (e.g. advice being executed by the slave has a call to
the master), the local machine stops executing the program. In this sense, there
is no concurrent computation taking place (across the distributed system), so
the problem that message passing is trying to solve does not exist here.

Its also worth noting here that the RMI subsystem will queue up requests for
method invocations (i.e. if slave b wanted to invoke a method on the master
while it was carrying out something for slave a), it will not execute them at the
same time. However, in implemented version, there does seem to be a problem
with interleaved advice executions, i.e. the advice for slave A may have multiple
invocations on the master, however in between invocations, slave B may put in
a request. This problem, along with the whole idea of distributed aspects needs
a much more formal treatment to work out such details.

5.7.1.2 IO

One of the big problems with the transparently distributed aspects is to do with
IO.

An application that moved from a single machine to a distributed architecture
that used IO may break, (in the example of �le IO) a �le that would've been
created and then read by the application may no longer exist in the distributed
manner (e.g. the master would create the �le, and the slave would attempt to
read it). This may mean work for the programmer, i.e. the transparent aspects
would not be that transparent anymore.

Problems like this may be solved by the interpreter acting as a type of sandbox
environment, where for example, �le IO is intercepted and redirected to some
type of virtual, distributed �le system.
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5.7.1.3 The essence of transparently distributed aspects

On hindsight, the introduction of transparently distributed aspect to the lan-
guage was in fact the introduction of a more general idea, remote method in-
vocation.

However, the way we implemented them emulates a special case of RMI in Java:
in Java RMI we need to take special steps in order to be able to export an object
(i.e. it needs to extend an RMI interface and methods need to be de�ned as
throwing a RemoteException), however, in our language, we used RMI with
pass-by-reference semantics by default (as opposed to pass by value) and every
object is exportable, with no special work required for this.

As such, it may have been better to explore the idea of introducing RMI to
not only aspect instances, but to all objects in Thorn. However, such a re-
mote method invocation mechanism already exists, although it is restricted to
components, not objects in general. Furthermore, components use raw sockets,
which is a questionable (low level) technique when much higher level mechan-
isms are available.

5.8 Correctness

As the future of Thorn was somewhat uncertain from the beginning of the pro-
ject, correctness of implementation has not been the highest priority throughout
the project. Instead, the author decided to use the Thorn interpreter as a test-
bed for his ideas, however, unit testing was nevertheless used throughout the
project as a means of adding at least some con�dence in the correctness of the
project.

There were extensive tests that came with the interpreter at the beginning of
the project, and all the tests that passed at the start of the project still passed
at the end (and some which did not pass at the beginning were made to pass),
to which the new ones were added.

Sidenote It is likely that the reason some of the unit tests are failing, is
that previous developers of Thorn did not run the unit tests continuously, they
do take a long time to complete. It would be recommended that any future
developers use a continuous integration tool such as Hudson, which will monitor
the version control (SVN) for commits, and will automatically run the unit tests
on the CI server (and notify developers if unit tests fail). This should ensure that
proper testing hygiene is adhered to, avoiding the problem of future developers
testing less as a result of previous failures.
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Chapter 6

Conclusions

In this project we have explored the addition of the aspect-oriented paradigm
into Thorn.

We added features which are common to many AOP suites such as AspectJ, in-
cluding lexical pointcut descriptors using full regular expressions, before/after-
/around advice with type checking on the arguments, all of which works with
�eld reads and writes as well as method invocations.

We explored and implemented the idea of aspects which are instantiated by
the user instead of the AOP suite instantiating it for the programmer. Aspects
can be both selective and unselective, instead of placing this burden on the
programmer.

Furthermore, the idea of aspect instances operating on a remote machine was
explored and implemented, although not to the same maturity as the rest of the
work.

As with other AOP suites, the AOP extensions we brought to Thorn have great
potential to reduce scattering and tangling in real, non-trivial applications. The
feature set is rich enough to use many of the tangling / scattering reduction
techniques used in other languages with mature AOP suites.

The performance hit we added as a result of the extensions appears to be irrel-
evant for local aspect instances, and usable for some applications with remote
aspects.

Of course, our extension su�ers from the same problem as all AOP implement-
ations, namely the heavy reliance on tooling for it to be a viable paradigm used
in non-trivial software projects.

A lot of work remains to be done before our extension for Thorn, or indeed
Thorn itself, become viable for real, non-trivial software projects. We already
presented much of this in descriptions of limitations of our work, but we present
some more below.
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6.1 Future work

• The Thorn language has no real published formal semantics. A useful
piece of work would be to formally write the semantics of the language.
This base could then be used for descriptions of any extensions to the
language, such as the extensions that were made in this project. While
we presented some semantics in the implementation chapter, these were
not exact enough, as there were no base semantics.

• The idea of distributing aspects needs a full formal speci�cation, to which
the implementation can be done. It should deal with the problems of
keeping the implementation performant while not breaking the semantics
of the language, especially for issues such as IO and the interleaving of
advices.

• Many dynamically typed languages have AOP suites, however, it has been
suggested that AOP is not as useful for this class of languages as it is for
static languages such as Java. There does not seem to be much evidence
of AOP use in languages with gradual typing systems as in Thorn. It may
be useful to see how the implementation of AOP suites can exploit the
properties of gradual typing, it at all.

• There are opportunities to apply static analysis methods in order to de-
termine an optimised strategy to distribute aspects. In other words, some
work could be done to make intelligent decisions about how communica-
tion between aspect instances is done, i.e. when to do something at the
slave and when to do it at the master.

• When the �eld of a master aspect instance is overwritten, this is not
broadcasted to the slaves. It may be possible to write an optimisation
for the distributed aspects which may move computation to the slave, if
the master broadcasts events when a �eld is written to, in a replication
mechanism. Based on this, slaves may be able to execute advice without
having to ask the master to do this, even if the advice depends on the
master aspect state. Some problems may include atomic broadcasts from
the master to slaves, etc.

• A Thorn compiler was supposed to have been released, although by the
looks of it, it will not be. However, if it ever did resurface, a good piece
of work may be to implement an AOP suite similar to the one in AOD-
Thorn into the compiled version. Of course, the compiler may very well
have di�erent performance requirements than the interpreter does.

• As discussed in the background section, dynamic weaving (weaving advice
after the program has started) is now seen as a useful feature for AOP
suites. While we began working on this, unfortunately we ran out of time
and did not �nish it. It does not seem too di�cult to pull o�, especially in
the interpreter. One only has to modify ASTs, with the di�cult bit being
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security surrounding the delivery of an AST at runtime (perhaps by using
public key cryptography).

• Thorn currently has almost no API outside the core language constructs.
It may be worth working on a set of wrappers for the Java API as well
as Thorn speci�c ones, in order to enable the language to be used for non
toy projects.

• While Java is starting to be seen as a dinosaur by some practitioners,
the JVM itself is very much still an incredible piece of engineering. New
languages are joining the JVM all the time, and there is now a trend for
polyglot projects, spanning languages such as Scala, Clojure, groovy and
so on. An exciting area to explore may be to build a language agnostic
AOP implementation, i.e. one that could give advice across language
boundaries. For example, Scala can almost seamlessly use Java code, so
it would be interesting to see if one could build an AOP framework where
e.g. Scala code advised Java code or vice versa.
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Appendix A

Listings

A.1 AspectJ experiment to show aspect instan-
tiation behaviour

Listing A.1: Clazz.java

1 package com . company . employeebeans ;
2

3 pub l i c c l a s s Clazz {
4

5 pub l i c s t a t i c void main ( St r ing [ ] a rgs ){
6 System . out . p r i n t l n (" Just be f o r e Clazz .m( ) " ) ;
7 m( ) ;
8 }
9

10 pr i va t e s t a t i c void m(){
11 System . out . p r i n t l n (" i n s i d e Clazz .m( ) " ) ;
12 }
13

14 }

Listing A.2: Asp.aj

1 package com . company . employeebeans ;
2

3 pub l i c aspect Asp {
4

5 pub l i c Asp ( ){
6 System . out . p r i n t l n ("Asp cons t ruc to r " ) ;
7 }
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8

9 a f t e r ( ) : c a l l ( void Clazz .m( . . ) ) {
10 System . out . p r i n t l n ("Asp adv ice a f t e r c l a z z .m( ) " ) ;
11 }
12

13 }

The above listings result in the following output on the console:

1 Just be f o r e Clazz .m( )
2 Asp cons t ruc to r
3 i n s i d e Clazz .m( )
4 Asp advice a f t e r c l a z z .m( )

This is the behaviour we would expect if we had a class of the form (i.e. lazy
loading):

1 c l a s s C{
2 s t a t i c { C( ) ; }
3 }

A.2 Java experiment to measure speed of the
regex engine

1 import java . u t i l . regex . Pattern ;
2

3 pub l i c c l a s s Main {
4 pub l i c s t a t i c void main ( St r ing [ ] a rgs ) {
5 long be f o r e = System . nanoTime ( ) ;
6 i n t i t e r a t i o n s =10000000;
7 Pattern pattern = Pattern . compi le ("com . mypackage . s e t . ∗ " ) ;
8 f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i++){
9 pattern . matcher ("com . myspackage . se tHi " ) . matches ( ) ;
10 }
11 System . out . p r i n t l n ( ("Time taken : "+(System . nanoTime ( ) − be f o r e ) ) ) ;
12 }
13 }

Time taken on our machine: 1.5 seconds
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Appendix B

Benchmarks and t-test results

B.1 Method execution - no advice

B.1.1 Paired T-test result

1 P value and s t a t i s t i c a l s i g n i f i c a n c e :
2 The two−t a i l e d P value equa l s 0 .1141
3 Not s t a t i s t i c a l l y s i g n i f i c a n t
4

5 Confidence i n t e r v a l :
6 The mean o f AOD−Thorn minus Thorn equa l s 8 .99
7 95% con f idence i n t e r v a l o f t h i s d i f f e r e n c e :
8 From −2.702 to 20 .689

B.1.2 Benchmark

Benchmark was ran on both Thorn and AOD-Torn interpreter

1 c l a s s C{
2 de f m( ) = {} ;
3 }
4

5

6 obj = C( ) ;
7

8 i n n e r i t e r a t i o n s = 20000000;
9 o u t e r i t e r a t i o n s = 10 ;
10 f o r ( i <− 1 . . o u t e r i t e r a t i o n s ){
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11

12

13 var t imeBefore := nanoTime ( ) ;
14 f o r (n <− 1 . . i n n e r i t e r a t i o n s ){
15 obj .m( ) ;
16 }
17 var t imeAfter := nanoTime ( ) ;
18 p r i n t l n ( ( t imeAfter − t imeBefore )/ i n n e r i t e r a t i o n s ) ;
19 }

B.2 Method execution - before / after advice

B.2.1 Paired T-test results

1 P value and s t a t i s t i c a l s i g n i f i c a n c e :
2 The two−t a i l e d P value i s l e s s than 0.0001
3 S t a t i s t i c a l l y extremely s i g n i f i c a n t
4

5 Confidence i n t e r v a l :
6 The mean o f AOD−Thorn minus Thorn equa l s 119 .47
7 95% con f idence i n t e r v a l o f t h i s d i f f e r e n c e : From 104.94 to 134

B.2.2 Benchmark ran on Thorn interpreter

1 c l a s s C{
2 de f m( ) = { t h i s .m1 ( ) ; } ;
3 de f m1( ) = {} ;
4 }
5

6

7 obj = C( ) ;
8

9 o u t e r i t e r a t i o n s = 10 ;
10 i n n e r i t e r a t i o n s = 2000000;
11 f o r ( i <− 1 . . o u t e r i t e r a t i o n s ){
12

13 var t imeBefore := nanoTime ( ) ;
14 f o r (n <− 1 . . i n n e r i t e r a t i o n s ){
15 obj .m( ) ;
16 }
17 var t imeAfter := nanoTime ( ) ;
18

19 p r i n t l n ( ( t imeAfter−t imeBefore ) / i n n e r i t e r a t i o n s ) ;
20 }
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B.3 Method execution - before / after vs around
advice

B.3.1 Paired T-test results

1 P value and s t a t i s t i c a l s i g n i f i c a n c e :
2 The two−t a i l e d P value i s l e s s than 0.0001
3 By convent iona l c r i t e r i a ,
4 t h i s d i f f e r e n c e i s cons ide r ed to be
5 extremely s t a t i s t i c a l l y s i g n i f i c a n t .
6

7 Confidence i n t e r v a l :
8 The mean o f Around advice minus B/a advice equa l s 22 .96
9 95% con f idence i n t e r v a l o f t h i s d i f f e r e n c e : From 16.45 to 29 .48

B.3.2 Benchmark code

The benchmark ran for before / after advice was as in section B.2.

The benchmark involved using the same method.th as the before / after bench-
mark, however the aspect code was modi�ed:

Listing B.1: aspect.th

1 module a spec t s {
2 aspect un s e l e c t i v e Aspectc {
3 around : exec jp [ (m) ] args ( ){
4 t h i s .m1 ( ) ;
5 proceed ( ) ;
6 }
7 }
8 }

B.4 Benchmark ran on AOD-Thorn interpreter

Listing B.2: method.th

1 import a spec t s . ∗ ;
2 c l a s s C{
3 de f m( ) = {} ;
4 de f m1( ) = {} ;
5 }
6 read ln ( ) ;
7

8 Aspectc ( ) ;
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9 obj = C( ) ;
10

11 o u t e r i t e r a t i o n s = 10 ;
12 i n n e r i t e r a t i o n s = 2000000;
13 f o r ( i <− 1 . . o u t e r i t e r a t i o n s ){
14

15 var t imeBefore := nanoTime ( ) ;
16 f o r (n <− 1 . . i n n e r i t e r a t i o n s ){
17 obj .m( ) ;
18 }
19 var t imeAfter := nanoTime ( ) ;
20

21 p r i n t l n ( ( t imeAfter−t imeBefore ) / i n n e r i t e r a t i o n s ) ;
22 }

Listing B.3: aspect.th

1 module a spec t s {
2

3 aspect un s e l e c t i v e Aspectc {
4 be f o r e : exec jp [ (m) ] args ( ){
5 t h i s .m1 ( ) ;
6 }
7 }
8 }

B.5 Benchmark - aspect vs predicate check

B.5.1 Using a predicate check

1 c l a s s Logger {
2 // normally s e t by a con f i g
3 // f i l e
4 va l turnedOn = f a l s e ;
5

6 de f shouldLog ( ){
7 re turn turnedOn ;
8 }
9 }
10

11 c l a s s C{
12 va l l og = Logger ( ) ;
13

14 de f m( ) = {
15 i f ( t h i s . l og . shouldLog ( ) ) {
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16 // sk ip
17 }
18 } ;
19

20 }
21

22

23 obj = C( ) ;
24

25 o u t e r i t e r a t i o n s = 10 ;
26 i n n e r i t e r a t i o n s = 2000000;
27 f o r ( i <− 1 . . o u t e r i t e r a t i o n s ){
28

29 var t imeBefore := nanoTime ( ) ;
30 f o r (n <− 1 . . i n n e r i t e r a t i o n s ){
31 obj .m( ) ;
32 }
33 var t imeAfter := nanoTime ( ) ;
34

35 p r i n t l n ( ( t imeAfter−t imeBefore ) / i n n e r i t e r a t i o n s ) ;
36 }

B.5.2 Using aspects

Same aspect code as before.

1 import a spec t s . ∗ ;
2 c l a s s Logger {
3 // normally s e t by a con f i g
4 // f i l e
5 va l turnedOn = f a l s e ;
6

7 de f shouldLog ( ){
8 re turn turnedOn ;
9 }
10 }
11

12 c l a s s C{
13 de f m( ) = {} ;
14 }
15

16 obj = C( ) ;
17

18 o u t e r i t e r a t i o n s = 10 ;
19 i n n e r i t e r a t i o n s = 2000000;
20 f o r ( i <− 1 . . o u t e r i t e r a t i o n s ){

129



21

22 var t imeBefore := nanoTime ( ) ;
23 f o r (n <− 1 . . i n n e r i t e r a t i o n s ){
24 obj .m( ) ;
25 }
26 var t imeAfter := nanoTime ( ) ;
27

28 p r i n t l n ( ( t imeAfter−t imeBefore ) / i n n e r i t e r a t i o n s ) ;
29 }

B.6 Benchmark - distributed method invocation

Listing B.4: aspect.th

1 module Aspects {
2 aspect s e l e c t i v e Aspect {
3 de f m( ) = {}
4

5 be f o r e : exec jp [ s t a r t ] a rgs ( ){
6

7 o u t e r i t e r a t i o n s = 10 ;
8 i n n e r i t e r a t i o n s = 20000;
9 f o r ( i <− 1 . . o u t e r i t e r a t i o n s ){
10

11 var t imeBefore := nanoTime ( ) ;
12 f o r (n <− 1 . . i n n e r i t e r a t i o n s ){
13 azpct .m( ) ;
14 }
15 var t imeAfter := nanoTime ( ) ;
16

17 p r i n t l n ( ( t imeAfter−t imeBefore ) / i n n e r i t e r a t i o n s ) ;
18 }
19 }
20 }
21 }

Listing B.5: master.th

1 import Aspects . ∗ ;
2 asp = Aspect ( ) ;
3 masterAspect ( asp , "ASP" ) ;
4

5 p r i n t l n ("Master running " ) ;
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Listing B.6: slave.th

1 import Aspects . ∗ ;
2 c l a s s C{
3 de f s t a r t ( ) = {}
4 }
5

6 c = C( ) ;
7 asp = s laveAspect (" l o c a l h o s t " , "ASP" ) ;
8 addToAsp( c , asp ) ;
9

10 c . s t a r t ( ) ;

131



Appendix C

List of changes

The following is the list of �les changed. An �A� in the �rst column represents
a �le which was added, and an �M� represents a �le that was modi�ed. It was
generated using the �SVN status� command. Note that most of the �les in the
package �sher.syn (although not all, i.e. �sher.syn.core) are generated by the
src/syntax/ast-�sher.py script (this script was modi�ed).

1 A f i s h e r / runtime/AspectDynamizer . java
2 A f i s h e r / runtime/RemoteSyntax . java
3 A f i s h e r / runtime/MethodInvocationRequest . java
4 A f i s h e r / runtime/RemoteThing . java
5 A f i s h e r / runtime/AspectObject . java
6 A f i s h e r / runtime/ObjectRemoteIface . java
7 A f i s h e r / runtime/AspectDynamicTh . java
8 A f i s h e r / runtime/RemoteAspectObject . java
9 A f i s h e r / runtime/ bui l t InFun /MasterAspectBIF . java
10 A f i s h e r / runtime/ bui l t InFun /DelFromAspBIF . java
11 A f i s h e r / runtime/ bui l t InFun /AddToAspBIF . java
12 A f i s h e r / runtime/ bui l t InFun /NanoTimeBIF . java
13 A f i s h e r / runtime/ bui l t InFun /SlaveAspectBIF . java
14 M f i s h e r / runtime/ bui l t InFun /PrintlnBIF . java
15 M f i s h e r / runtime/ Nu l l i t y . java
16 M f i s h e r / runtime/ObjectTh . java
17 M f i s h e r / runtime/StringTh . java
18 M f i s h e r / runtime/ Internal_SortableTh . java
19 M f i s h e r / runtime/IntRangeTh . java
20 M f i s h e r / runtime/dunno/StringTh_16 . java
21 M f i s h e r / runtime/dunno/StringTh_17 . java
22 M f i s h e r / runtime/ListTh . java
23 M f i s h e r / runtime/BuiltInFunctionTh . java
24 M f i s h e r / runtime/CharTh . java
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25 M f i s h e r / runtime/Thing . java
26 M f i s h e r / runtime/FileTh . java
27 M f i s h e r / runtime/OrdTh . java
28 M f i s h e r / runtime/JavalyFunImpl . java
29 M f i s h e r / runtime/TableTh . java
30 M f i s h e r / runtime/ d i s t /Abst rac tLet te r . java
31 M f i s h e r / runtime/ d i s t /MsgComp2Comp. java
32 M f i s h e r / runtime/ d i s t / SiteData . java
33 M f i s h e r / runtime/ModuleDynamicTh . java
34 M f i s h e r / runtime/IntTh . java
35 M f i s h e r / runtime/ l i b / s o ck e t e e r /MsgComp2StringSocket . java
36 M f i s h e r / runtime/ l i b / j son /JSON. java
37 M f i s h e r / runtime/ l i b / sox/ SoxUti l . java
38 M f i s h e r / runtime/ l i b / sox/NetS i te . java
39 M f i s h e r / runtime/SetTh . java
40 M f i s h e r / runtime/ThingExtended . java
41 M f i s h e r / runtime/SiteTh . java
42 M f i s h e r / runtime/FloatTh . java
43 M f i s h e r / runtime/ClassDynamicTh . java
44 M f i s h e r / runtime/ClosureTh . java
45 M f i s h e r / runtime/RecordTh . java
46 M f i s h e r / runtime/DirTh . java
47 M f i s h e r / runtime/HttpTh . java
48 M f i s h e r / runtime/AbstractRangeTh . java
49 M f i s h e r / runtime/BytesTh . java
50 M f i s h e r / runtime/BoolTh . java
51 M f i s h e r / runtime/ComponentTh . java
52 M f i s h e r /run/REPL. java
53 M f i s h e r /run/Thorn . java
54 A f i s h e r / eva l /AspectObjectRegistry . java
55 A f i s h e r / eva l /AspectRegistryFie ldAccessMatcher . java
56 A f i s h e r / eva l /AspectReg ist ry . java
57 A f i s h e r / eva l /AspectRegistryMethodCallMatcher . java
58 A f i s h e r / eva l /AspectRegistryPctctMatcher . java
59 A f i s h e r / eva l /AspectsComputer . java
60 A f i s h e r / eva l / F ie ldAcces sAspectReg i s t ry . java
61 M f i s h e r / eva l / i n t e r f a c e s /Framel ike . java
62 M f i s h e r / eva l / Eva lUt i l . java
63 M f i s h e r / eva l /ModuleDynamizer . java
64 M f i s h e r / eva l / Eva l l e r . java
65 M f i s h e r / eva l /Frame . java
66 M f i s h e r / eva l /Computer . java
67 A f i s h e r / t e s t /Regex . java
68 A f i s h e r / t e s t /AOPTest . java
69 M f i s h e r / t e s t /EvalTest . java
70 M f i s h e r / t e s t /Al lTes t s . java
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71 M f i s h e r / t e s t /ParserTest . java
72 A sr c / f i s h e r / syn/AdviceSpec . java
73 A sr c / f i s h e r / syn/AspectExtends . java
74 A sr c / f i s h e r / syn/AspectDecl . java
75 A sr c / f i s h e r / syn/Proceed . java
76 A sr c / f i s h e r / syn/Pointcut . java
77 A sr c / f i s h e r / syn/ Slave . java
78 A sr c / f i s h e r / syn/Azpct . java
79 A sr c / f i s h e r / syn/AdviceDecl . java
80 A sr c / f i s h e r / syn/AspectPointcut . java
81 A sr c / f i s h e r / syn/Orig in . java
82 A sr c / f i s h e r / syn/AdvicePtctPr imit iv . java
83 A sr c / f i s h e r / syn/Aspect . java
84 A sr c / f i s h e r / syn/ Jo inpo int . java
85 A sr c / f i s h e r / syn/AspectsInAList . java
86 M src / f i s h e r / syn/Ass ignToSubscr ipted . java
87 M src / f i s h e r / syn/TableKey . java
88 M src / f i s h e r / syn/PatNot . java
89 M src / f i s h e r / syn/ Pa tL i s tB i tE l l i p . java
90 M src / f i s h e r / syn/ClsPatDef . java
91 M src / f i s h e r / syn/QueryQuantif ierCount . java
92 M src / f i s h e r / syn/QuerySort . java
93 M src / f i s h e r / syn/QueryControlFor . java
94 M src / f i s h e r / syn/ModuleFileImport . java
95 M src / f i s h e r / syn/VarDecl . java
96 M src / f i s h e r / syn/QueryQuantif ierSome . java
97 M src / f i s h e r / syn/RecordFie ld . java
98 M src / f i s h e r / syn/Continue . java
99 M src / f i s h e r / syn/AssignToMap . java
100 M src / f i s h e r / syn/MethDecl . java
101 M src / f i s h e r / syn/ Javaly . java
102 M src / f i s h e r / syn/ Proc In i t . java
103 M src / f i s h e r / syn/ListBitExp . java
104 M src / f i s h e r / syn/Al i a s . java
105 M src / f i s h e r / syn/AssignTarget . java
106 M src / f i s h e r / syn/OpABExp. java
107 M src / f i s h e r / syn/DotMethodCallExp . java
108 M src / f i s h e r / syn/ L i s tB i tE l l i p . java
109 M src / f i s h e r / syn/TypedExp . java
110 M src / f i s h e r / syn/PatEvalTestExp . java
111 M src / f i s h e r / syn/ComparisonBit . java
112 M src / f i s h e r / syn/PostExpRecordArgs . java
113 M src / f i s h e r / syn/TableF ie lds . java
114 M src / f i s h e r / syn/PatL i s tB i t . java
115 M src / f i s h e r / syn/PatExtract . java
116 M src / f i s h e r / syn/Que ryF i r s t l i k e . java
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117 M src / f i s h e r / syn/SetCtor . java
118 M src / f i s h e r / syn/PatVar . java
119 M src / f i s h e r / syn/HighLevelCommunication . java
120 M src / f i s h e r / syn/ St r ingWith In t e rpo l a t i on s . java
121 M src / f i s h e r / syn/FunBody . java
122 M src / f i s h e r / syn/RecordCtor . java
123 M src / f i s h e r / syn/WildcardExp . java
124 M src / f i s h e r / syn/Probe . java
125 M src / f i s h e r / syn/Labe l lab leLoop . java
126 M src / f i s h e r / syn/MatchExp . java
127 M src / f i s h e r / syn/ Str ingBitText . java
128 M src / f i s h e r / syn/Case . java
129 M src / f i s h e r / syn/ClsExtends . java
130 M src / f i s h e r / syn/QueryFirst . java
131 M src / f i s h e r / syn/QueryTable . java
132 M src / f i s h e r / syn/ProcBody . java
133 M src / f i s h e r / syn/EvalTestExpExp . java
134 M src / f i s h e r / syn/Serve . java
135 M src / f i s h e r / syn/SyncStmt . java
136 M src / f i s h e r / syn/AsyncStmt . java
137 M src / f i s h e r / syn/PatTypeTest . java
138 M src / f i s h e r / syn/PatRecordField . java
139 M src / f i s h e r / syn/ExpExtract . java
140 M src / f i s h e r / syn/JavalyNewDecl . java
141 M src / f i s h e r / syn/ SuperCal l . java
142 M src / f i s h e r / syn/PatWildcard . java
143 M src / f i s h e r / syn/ModuleFi l eAl ias . java
144 M src / f i s h e r / syn/ PatL i t e r a l . java
145 M src / f i s h e r / syn/Formals . java
146 M src / f i s h e r / syn/ Li s tCtor . java
147 M src / f i s h e r / syn/MapCtor . java
148 M src / f i s h e r / syn/BracketCal l . java
149 M src / f i s h e r / syn/SpawnByComponentName . java
150 M src / f i s h e r / syn/QueryQuanti f ierEvery . java
151 M src / f i s h e r / syn/While . java
152 M src / f i s h e r / syn/ L i s tB i t . java
153 M src / f i s h e r / syn/PostExpBracketArgs . java
154 M src / f i s h e r / syn/ Str ingBitVar . java
155 M src / f i s h e r / syn/Try . java
156 M src / f i s h e r / syn/QGKey. java
157 M src / f i s h e r / syn/SuperCtorCal l . java
158 M src / f i s h e r / syn/Assign . java
159 M src / f i s h e r / syn/QueryContro l I f . java
160 M src / f i s h e r / syn/PatOr . java
161 M src / f i s h e r / syn/For . java
162 M src / f i s h e r / syn/PatMatchSomethingElse . java
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163 M src / f i s h e r / syn/Send . java
164 M src / f i s h e r / syn/QueryListComprehension . java
165 M src / f i s h e r / syn/Ass i gnTo f i e ld . java
166 M src / f i s h e r / syn/QueryQuant i f i er . java
167 M src / f i s h e r / syn/QuerySwiss . java
168 M src / f i s h e r / syn/Recv . java
169 M src / f i s h e r / syn/PatNotNull . java
170 M src / f i s h e r / syn/SortKey . java
171 M src / f i s h e r / syn/QualName . java
172 M src / f i s h e r / syn/Cmd. java
173 M src / f i s h e r / syn/Throw . java
174 A sr c / f i s h e r / syn/ i n t e r f a c e s /AspectMember . java
175 M src / f i s h e r / syn/SyncDecl . java
176 M src / f i s h e r / syn/AsyncDecl . java
177 M src / f i s h e r / syn/QueryControl . java
178 M src / f i s h e r / syn/Skip . java
179 M src / f i s h e r / syn/SuperThingie . java
180 M src / f i s h e r / syn/RecordCall . java
181 M src / f i s h e r / syn/SyntaxInAList . java
182 M src / f i s h e r / syn/QuerySetComprehension . java
183 M src / f i s h e r / syn/QueryControlVar . java
184 M src / f i s h e r / syn/PatSlash . java
185 M src / f i s h e r / syn/FunDecl . java
186 M src / f i s h e r / syn/PatMethodCall . java
187 M src / f i s h e r / syn/Module . java
188 M src / f i s h e r / syn/QueryAfter . java
189 M src / f i s h e r / syn/ClsCtorDef . java
190 M src / f i s h e r / syn/Ass ignToFie ldOfSubscr ipted . java
191 M src / f i s h e r / syn/QueryAbstract . java
192 M src / f i s h e r / syn/Abst rac tSt r ingBi t . java
193 M src / f i s h e r / syn/ L i t e r a l . java
194 M src / f i s h e r / syn/JavalyFun . java
195 M src / f i s h e r / syn/ModArgBinding . java
196 M src / f i s h e r / syn/CmdsInAList . java
197 M src / f i s h e r / syn/AbstractTable . java
198 M src / f i s h e r / syn/Break . java
199 M src / f i s h e r / syn/TypeConstraint . java
200 M src / f i s h e r / syn/Seq . java
201 M src / f i s h e r / syn/OpExp . java
202 M src / f i s h e r / syn/PatListBitExp . java
203 M src / f i s h e r / syn/ Pat In t e rpo l a t i on . java
204 M src / f i s h e r / syn/ModulesInAList . java
205 M src / f i s h e r / syn/ I f . java
206 M src / f i s h e r / syn/QueryControlWhile . java
207 M src / f i s h e r / syn/ IdWithOptInit . java
208 M src / f i s h e r / syn/AnonFun . java
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209 M src / f i s h e r / syn/AssignToId . java
210 M src / f i s h e r / syn/ Inte rpo la t ionExp . java
211 M src / f i s h e r / syn/ClassFormal . java
212 M src / f i s h e r / syn/PatAnd . java
213 M src / f i s h e r / syn/This . java
214 M src / f i s h e r / syn/Valof . java
215 M src / f i s h e r / syn/PatListCtor . java
216 A sr c / f i s h e r / syn/ core /AdvicePtctPr imit ive . java
217 A sr c / f i s h e r / syn/ core /AdviceLocation . java
218 A sr c / f i s h e r / syn/ core /AdviceAction . java
219 M src / f i s h e r / syn/ core /ComparisonOp . java
220 M src / f i s h e r / syn/ core /Op. java
221 M src / f i s h e r / syn/QueryControlVal . java
222 M src / f i s h e r / syn/ClsDecl . java
223 M src / f i s h e r / syn/PostExpArgs . java
224 M src / f i s h e r / syn/Return . java
225 M src / f i s h e r / syn/QGAccum. java
226 M src / f i s h e r / syn/QueryGroup . java
227 M src / f i s h e r / syn/Ord . java
228 M src / f i s h e r / syn/FunCall . java
229 M src / f i s h e r / syn/PostExpDotId . java
230 M src / f i s h e r / syn/AnonObj . java
231 M src / f i s h e r / syn/ForPatternOnly . java
232 M src / f i s h e r / syn/Table . java
233 M src / f i s h e r / syn/Parens . java
234 M src / f i s h e r / syn/Spawn . java
235 M src / f i s h e r / syn/ComponentDecl . java
236 M src / f i s h e r / syn/Match . java
237 M src / f i s h e r / syn/Modu l eF i l eV i s i b i l i t y . java
238 M src / f i s h e r / syn/ListForGroup . java
239 M src / f i s h e r / syn/ServeBlock . java
240 M src / f i s h e r / syn/PatSet . java
241 M src / f i s h e r / syn/PatRange . java
242 M src / f i s h e r / syn/ S ignature . java
243 M src / f i s h e r / syn/PostExp . java
244 M src / f i s h e r / syn/ Java lyClassDec l . java
245 M src / f i s h e r / syn/VarExp . java
246 M src / f i s h e r / syn/TypeConstraints . java
247 M src / f i s h e r / syn/Comparison . java
248 M src / f i s h e r / syn/PatRecordCtor . java
249 M src / f i s h e r / syn/Bind . java
250 M src / f i s h e r / syn/MethodCall . java
251 M src / f i s h e r / syn/JavalyMethodDecl . java
252 A sr c / f i s h e r / syn/ v i s i t o r /AspectMemberWalker . java
253 A sr c / f i s h e r / syn/ v i s i t o r /AspectMemberVisitor . java
254 M src / f i s h e r / syn/ v i s i t o r /LocalMemberVisitor . java
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255 M src / f i s h e r / syn/ v i s i t o r /Vi s i tPat . java
256 M src / f i s h e r / syn/ v i s i t o r /ClassMemberWalker . java
257 M src / f i s h e r / syn/ v i s i t o r /Vi s i tAss ignTarget . java
258 M src / f i s h e r / syn/ v i s i t o r /ProcMemberVisitor . java
259 M src / f i s h e r / syn/ v i s i t o r /VisitCmd . java
260 M src / f i s h e r / syn/ v i s i t o r /ComponentInfoWalker . java
261 M src / f i s h e r / syn/ v i s i t o r / Pu r e t i cV i s i t o r . java
262 M src / f i s h e r / syn/ v i s i t o r /Vani l laWalker . java
263 M src / f i s h e r / syn/ v i s i t o r /ModuleFileMemberVisitor . java
264 M src / f i s h e r / syn/ v i s i t o r /ComponentInfoVis itor . java
265 M src / f i s h e r / syn/ v i s i t o r /TableMemberVisitor . java
266 M src / f i s h e r / syn/ v i s i t o r / V i s i t o r . java
267 M src / f i s h e r / syn/ v i s i t o r /ProcMemberWalker . java
268 M src / f i s h e r / syn/ v i s i t o r /WalkPat . java
269 M src / f i s h e r / syn/ v i s i t o r /ObjectMemberWalker . java
270 M src / f i s h e r / syn/ v i s i t o r / Van i l l aV i s i t o r . java
271 M src / f i s h e r / syn/ v i s i t o r /Vis i tQueryAbstract . java
272 M src / f i s h e r / syn/ v i s i t o r /VanillaWalkPat . java
273 M src / f i s h e r / syn/ v i s i t o r / Van i l l aV i s i tPa t . java
274 M src / f i s h e r / syn/ v i s i t o r /ClassMemberVisitor . java
275 M src / f i s h e r / syn/ v i s i t o r /ObjectMemberVisitor . java
276 M src / f i s h e r / syn/ v i s i t o r /Clas s l ikeWalker . java
277 M src / f i s h e r / syn/ v i s i t o r /PureticWalker . java
278 M src / f i s h e r / syn/ v i s i t o r /ModuleFileMemberWalker . java
279 M src / f i s h e r / syn/ v i s i t o r /Vis i tPat2 . java
280 M src / f i s h e r / syn/ v i s i t o r /TableMemberWalker . java
281 M src / f i s h e r / syn/ v i s i t o r /Vis i tQueryContro l . java
282 M src / f i s h e r / syn/ v i s i t o r /Walker . java
283 M src / f i s h e r / syn/ v i s i t o r /LocalMemberWalker . java
284 M src / f i s h e r / syn/ v i s i t o r /Vanil laVis itCmd . java
285 M src / f i s h e r / syn/ v i s i t o r / C l a s s l i k eV i s i t o r . java
286 M src / f i s h e r / syn/Fie ldRef . java
287 M src / f i s h e r / syn/ImportStmt . java
288 M src / f i s h e r / syn/Pat . java
289 M src / f i s h e r / syn/ModuleFileMemberStmt . java
290 M src / f i s h e r / syn/MonoBody . java
291 M src / f i s h e r / syn/ ItExp . java
292 M src / f i s h e r / syn/ que r i e s / SynUti l . java
293 A f i s h e r / s t a t i c s /ExtractSealsFromAspectDecl . java
294 A f i s h e r / s t a t i c s /AspectProcessor . java
295 A f i s h e r / s t a t i c s / SealForAspect . java
296 A f i s h e r / s t a t i c s /AspectSta t i c . java
297 M f i s h e r / s t a t i c s /SealMaker . java
298 M f i s h e r / s t a t i c s / pur i ty / Stat i cPur i tyChecker . java
299 M f i s h e r / s t a t i c s / C l a s s S t a t i c . java
300 M f i s h e r / s t a t i c s / Sea l . java
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301 M f i s h e r / s t a t i c s /ExtractSealsFromModuleMember . java
302 M f i s h e r / s t a t i c s / Sea lant . java
303 M f i s h e r / s t a t i c s /Env . java
304 M f i s h e r / s t a t i c s /SealKind . java
305 M f i s h e r / s t a t i c s / P r e d e f i n e d I d e n t i f i e r s . java
306 A f i s h e r / par s e r /grammar−f i s h e r . html
307 M f i s h e r / par s e r /TokenMgrError . java
308 M f i s h e r / par s e r /SimpleCharStream . java
309 M f i s h e r / par s e r /Token . java
310 M f i s h e r / par s e r /grammar−f i s h e r . j j
311 M f i s h e r / par s e r /ParseException . java
312 M f i s h e r / par s e r /FisherParserTokenManager . java
313 M f i s h e r / par s e r / FisherParserConstants . java
314 M f i s h e r / par s e r / F i she rPar se r . java
315 M f i s h e r / u t i l / Spec i a lCharac t e r s . java
316 M f i s h e r / u t i l /Doom. java
317 M syntax/ ast−f i s h e r . py
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