
Algorithms for System Performance Analysis

Abhimanyu Chugh
ac1108@ic.ac.uk

Supervisor : Giuliano Casale
Second Marker : Jeremy Bradley

June 19, 2012

ac1108@ic.ac.uk

Abstract

The prevalence of computer and communication systems nowadays have esca-
lated the need to analyse their performance for purposes of capacity planning.
(Closed) Queuing networks are widely used to model these systems, whose per-
formance can be calculated analytically. Until recently, their performance was
evaluated using exact algorithms such as Mean Value Analysis (MVA), which
prohibit evaluation of large systems servicing several different types of requests
with hundreds or thousands of jobs of each type circulating the system, a case
commonly encountered in modern applications. To overcome this infeasibility to
solve large queuing models, several approximate algorithms have been proposed
in the past, which show drastic reduction in computation cost in comparison
with MVA and hence, providing a way to evaluate performance of large queuing
models.

In this report, we present a library of these approximate algorithms and their
implementations in Java. Moreover, we fully integrate them into JMVA, an
analytic tool used for performance evaluation and allow users to select different
algorithms for evaluation. We also add the ability to compare results of different
algorithms (including MVA) graphically, to compare their accuracy.

Furthermore, we discuss their applicability in real application models and
conduct an experiment involving comparison of these algorithms and MVA for
a range of models measuring parameters, such as runtime and maximum error.

Lastly, in addition to measuring performance indices, we use the algorithms
to compute moments for station queue lengths (in a model), in order to deter-
mine their mean and variance.

i

Acknowledgements

I would like to thank my supervisor, Giuliano Casale, for his continuous support
and invaluable advice throughout this project, and also my friends and family
for their moral support.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Report Structure . 3

2 Introduction to Queuing Networks 4
2.1 Model Inputs . 4

2.1.1 Customer Description . 4
2.1.2 Service Centre Description 6
2.1.3 Service Demand . 6

2.2 Model Outputs . 6
2.2.1 Residence Time (R) . 7
2.2.2 Throughput (X) . 7
2.2.3 Utilisation (U) . 8
2.2.4 Queue Length . 8

2.3 Multiple Class Networks/Models 8

3 Queuing Network Analysis Algorithms 10
3.1 Mean Value Analysis (MVA) . 10

3.1.1 Single Class Models . 10
3.1.2 Multiple Class Models . 12

3.2 Approximate Mean Value Analysis (AMVA) 15
3.2.1 Chow Algorithm . 15
3.2.2 Bard-Schweitzer Algorithm 15
3.2.3 Linearizer Algorithm . 16
3.2.4 De Souza-Muntz Linearizer Algorithm 18
3.2.5 Aggregate Queue Length (AQL) Algorithm 19

3.3 Moment Analysis . 22
3.4 Applications of Closed Networks 25
3.5 Software Tools for Evaluating Queuing Networks 27

3.5.1 JMT . 27

4 Implementation 29
4.1 Key Features . 29
4.2 Architecture of JMVA . 30
4.3 Design and Implementation . 31

4.3.1 jmt.analytical package 32
4.3.2 jmt.gui.exact package 39

v

4.3.3 jmt.gui.exact.link package 42
4.3.4 jmt.gui.exact.panels package 43
4.3.5 Moment Analysis . 52

4.4 Testing and Verification . 53

5 Evaluation 55
5.1 Real Application Models . 55

5.1.1 Capacity Planning of an Intranet with Multi-class Workload 55
5.1.2 A J2EE Application . 57
5.1.3 Stress Case . 60

5.2 Experimental Evaluation . 62
5.2.1 Queue Length Tolerance Error 62
5.2.2 Runtime . 63

5.3 GUI Evaluation . 67
5.4 Strengths and Weaknesses . 68

6 Conclusion 72
6.1 Future Work . 73

Appendix A Sample model file 76

Appendix B XSLT template file for Synopsis panel 78

vi

Chapter 1

Introduction

1.1 Motivation

Over the years, computers and communication systems have become progres-
sively more complex, with astounding capabilities, partly due to the presence of
a large number of components. Since client-server architectures and distributed
systems are so prevalent now-a-days, it has become exceedingly important to
analyse the performance of these systems for various reasons, such as to ensure
they can cope with varying amounts of workloads the systems will receive, or to
check the utilisation of all resources within the system, or even to measure the
impact any changes in the architecture would have on the system performance.

Queuing network models have proven extremely helpful in accurately repre-
senting real-life computer systems and using the properties of queuing networks,
we can easily compute the performance measures for these systems analytically.
In this approach, the system is modelled as a network of interconnected queues,
where the elements in the queue are the jobs the system needs to service and
each queue represents a resource of the system.

In this project, we consider a special subcategory of queuing networks called
product-form queuing networks. These networks have a closed-form expression
that has enabled the development of efficient algorithms to evaluate their per-
formance [13]. However, this efficiency does not scale well for real-life systems,
because of the large number of components involved. This is due to the recur-
sive computation that needs to be performed over a large state space, leading
to very high computational costs, even for small networks.

This situation is made worse by the inability to exactly evaluate the perfor-
mance of systems serving jobs belonging to different workload classes, i.e. jobs
that put a different burden on the system depending on their type. We models
these systems using multi-class models, where classes represents the different
types of jobs. These models are extremely important in effectively modelling
and evaluating the performance of modern system architectures. For example,
the IT architecture behind modern web-sites comprises of computer servers and
multi-tier web applications, which accept different types of request (such as
HTTP, FTP) with different costs depending on their type [13]. The evaluation
of these systems using exact techniques quickly becomes infeasible as the popu-
lations and number of classes increase; both of which are essential for accurately

1

modelling modern system architectures.
Since the exact evaluation techniques are only feasible for small models and

the excessive computation cost for large models makes them infeasible, several
approximate evaluation algorithms have been proposed, namely Chow [7], Bard-
Schweitzer [15], AQL [17] and Linearizer [6]. These algorithms can compute
approximate solutions with a high degree of accuracy, with significant reduc-
tion in computation cost, making the evaluation of large models feasible. These
algorithms form the basis of this project. There are several software packages
available which allow the performance of queuing networks to be evaluated us-
ing exact or approximate techniques. One such software is JMVA, which is
an analytic tool that uses the exact MVA technique to solve queuing models,
however due to infeasibility of exact MVA for large models, JMVA cannot be
used to solve large models. Hence, we will be aiming to add the aforementioned
approximate algorithms within the tool to extend its functionality, vastly in-
crease the models the tool can be used for and exploring some other uses of the
algorithms in this project.

1.2 Contributions

The main contributions of this project are summarised below:

• A Java library of approximate algorithms (namely Chow, Bard-Schweitzer,
AQL (Aggregate Queue Length), Linearizer and De Souza-Muntz Lin-
earizer) implemented, and designed in a way to be flexible and ease future
additions to the library.

• Complete and seamless integration of the aforementioned Java library in
JMVA (part of JMT suite) – JMVA previously only used exact MVA
algorithm which is highly inefficient for large models, so the addition of
new approximate algorithms allows users to solve even large models within
a reasonable amount of time.

• Provision of a clean, usable interface allowing use of these implemented
algorithms (and their associated tolerances) through the JMVA interface,
and for comparison of these algorithms (graphically and numerically) in
what-if analysis mode1.

• Successful loading and saving state of the model upon opening and saving
a model file, complying with the XML structure used by JMVA for model
files.

• Computation of different moments, in order to calculate mean and vari-
ance of station queue lengths in a queuing model, through a simple command-
line interface.

1What-If analysis mode in JMVA allows user to solve multiple models changing the value
of a control parameter, such as customer numbers, arrival rates, population mix and service
demands. The user can specify a range of values for the control parameter, which are then
used to compute multiple models. It also allows user to compare the solutions of these models
visually on a graph.

2

• Systematic evaluation of performance of the implemented algorithms with
that of the existing MVA for a range of models, covering the aspects of
runtime and accuracy.

1.3 Report Structure

The remainder of the report is organised as follows:

• Chapter 2 provides a brief introduction to queuing networks, lists and
defines the model inputs and outputs and finally, covers queuing networks
with multiple classes and their strengths and weaknesses.

• Chapter 3 details the exact and approximate algorithms that are the
basis of this project. It also explains how these algorithms could be used
to compute different moments for the queuing model. Furthermore, the
applications of closed queuing networks are presented, along with a de-
scription of JMVA, which is modified as part of this project to incorporate
the aforementioned algorithms.

• Chapter 4 describes the design choices, implementation of the features
added to JMVA, data structures used and any points of interest that
played an important in realising the project objectives.

• Chapter 5 presents applicability of the implemented algorithms in real
application models, and the results of the experimental evaluation car-
ried out to compare the effectiveness of the algorithms against MVA and
conclusions drawn from it. Additionally, it enlists the strengths and weak-
nesses of the project.

• Chapter 6 contains concluding remarks about the entire project, as well
as future work that could be done to extend the project.

3

Chapter 2

Introduction to Queuing
Networks

Queuing network models are broadly utilised to represent congestion systems
(such as communication, computer and production systems) and to evaluate
their performance. The model representation of these systems is used to cal-
culate performance measures describing system performance. These include
resource utilisation, system throughput and response time. [2]

For this project, we focus primarily on product-form (or separable) queuing
network models, which are a subset of general class queuing network models,
with constraints over the behaviour of the service centres and customers. They
are of special importance because each service centre from the network can be
treated individually and evaluated in isolation, and the solution for the whole
network is a combination of these individual solutions. They also follow the
flow balance assumption, i.e. the number of arrivals is equal to the number of
completions. Moreover, product-form queuing network models require signif-
icantly less computation than general queuing network models, making them
a lot more practical for evaluation purposes [2]. In the following sections, we
mention the input and output parameters needed to describe a queuing network,
before moving on to the techniques used to evaluate them and their practical
applications.

2.1 Model Inputs

A queuing network model mainly comprises of service centres, which represent
system resources, customers, which represent users, jobs or transactions and a
network topology, which defines the interconnections between the service centres
and the path customers follow through the system.

2.1.1 Customer Description

The workload intensity within the system can be described in three ways, de-
pending on the type of workload, as suggested by the following names [11]:

• A transaction workload’s intensity is defined by a parameter λ, which

4

Queue Server

Figure 2.1: A service centre

represents the arrival rate of requests or customers. Completed requests
leave the model.

• A batch workload’s intensity is defined by a parameter N, which represents
the average number of active jobs/customers and is fixed. Completed jobs
leave the model and are immediately replaced from a backlog of waiting
jobs.

• A terminal workload’s intensity is defined by two parameters: N, rep-
resenting the number of active terminals/customers, and Z, representing
the average length of time between customers having completed service
and customers’ next course of action, i.e. their next interaction with a
terminal. Z is commonly referred to as think time.

Models with transaction workloads are called open models, as they have an
infinite stream of arriving customers, whereas models with batch or terminal
workloads are called closed models, as the customers re-circulate within the
system and there is a fixed population. The distinction is essential as methods
or algorithms used to evaluate these models differ depending on their type [11].
For the purpose of this project, we will only be focussing on performance analysis
algorithms for closed models.

Arriving
customers

Departing
customers

CPU

Disks

Figure 2.2: An open model

5

Arriving
customers

CPU

Disks

Figure 2.3: A closed model

2.1.2 Service Centre Description

Service centres, also called stations (we use the terms interchangeably), as men-
tioned before, represent system resources, such as CPU and disk, or different
types of servers. They can be divided into two categories: queuing and delay.

Customers at a queuing service centre contend for the use of server/to be
serviced, such as CPU and I/O devices. Hence, time spent by a customer at a
queuing centre has two components: time spent waiting and time spent receiving
service. On the other hand, there is no competition for service at a delay centre,
as each customer (logically) is assigned their own server. Hence the time spent
by customers at a delay centre is just their service demand there [11].

2.1.3 Service Demand

The service demand of a customer at centre k, Dk, is the total amount of time
it takes for the customer to be serviced at that centre. It can be calculated
numerically as Bk/C, where Bk is the total busy time of centre k and C is the
number of system completions, or Vk ∗ Sk, where Vk is the number of customer
visits to the centre k and Sk is the service requirement per visit. The total service
demand of a customer at all centres, D, is defined as the sum of individual service

demands at each centre, i.e. D =
K∑

k=1

Dk [11].

2.2 Model Outputs

After the queuing network is evaluated using the above input parameters, the
outputs listed below are obtained. Although other outputs can also be cal-
culated, we are mainly looking at the most common/desired outputs for the
purpose of this project, i.e. utilisation, residence time, throughput and queue
length.

6

The outputs are obtained for the individual service centres in the network,
and also, in some cases, for the system as a whole.

A vital rule used during queuing model analysis is Little’s Law, which states
that the average number of customers in a system, N, is equal to the product of
the throughput of that system, X, and the average time a customer spends in
that system (i.e. average system response), i.e. N = XR. It has many benefits,
as listed below, which are essential for algorithms discussed later for evaluating
queuing network models [11]:

• It is widely applicable, so it can be used to validate the measurement data.

• It provides a simple, algebraic way to calculate one quantity, provided the
other two are known.

• In a computer system model, it can be applied at many different levels:
to a single resource, to a subsystem, or even to the system as whole.

Since we also have the think time, Z, for a terminal workload, the Little’s
Law is revised, as follows, to take this into account.

N = X(R+ Z)

For a batch workload, Z = 0, which gives the same equation as earlier, so con-
sistency is maintained. A rearrangement of the above equation expressing R in
terms of other quantities is known as the Response Time Law, as its application
is so ubiquitous:

R =
N

X
− Z

2.2.1 Residence Time (R)

The average residence time of a service centre k, Rk, is the mean time spent
by a customer at the centre (during all visits to the centre), both waiting and
receiving service.

Average system response time, R, is the average interval of time between a
customer arrival and departure from the system. It is the sum of the residence

times at all service centres: R =
K∑

k=1

Rk

2.2.2 Throughput (X)

Throughput refers to the rate at which customers depart from the system/cen-
tre. If a model is parameterised in terms of Dk, then we can get system through-
put, X, but we are unable to determine individual service centre throughputs,
Xk, due to insufficient information. However, if the model is parameterised in
terms of Vk and Sk, then device throughputs are calculated as Xk = Vk ∗ X,
also known as the forced flow law [11].

7

2.2.3 Utilisation (U)

The utilisation of a service centre k, Uk, is defined as the proportion of time the
centre is busy, or as the average number of customers in service there [11]. This
output is only calculated on a per centre basis.

Uk =
Bk

T
=
Ck

T
× Bk

Ck
= XkSk(XVkSk = XDk)

The above equation is known as the Utilisation Law, a special case of Little’s
Law. It states that the utilisation of a resource is equal to the product of the
throughput of that resource and the service requirement at that resource.

2.2.4 Queue Length

The average queue length at centre k, Qk, is the average number of customers
at that centre, both waiting and receiving service. The number of customers
waiting is, simply, Qk − Uk, since Uk is the average number of customers in
service at centre k.

The average number of customers in the system is represented by Q, the
calculation of which differs depending on the workload [11]:

• Batch workload: Q = N

• Transaction workload: Q = XR (from Little’s Law)

• Terminal workload: Q = N −XZ (from Little’s Law and Response Time
Law)

In general, the average population of any subsystem can be determined either
by calculating the product of the throughput of that subsystem and the resi-
dence time of that subsystem, or by summing the queue lengths at the centres
belonging to the subsystem [11].

2.3 Multiple Class Networks/Models

In a basic queuing network model, all customers are identical for all intents and
purposes, i.e. they are based on the same probability distribution and routed
through the network in the same manner. However, a more realistic represen-
tation of a congestion system would likely have various types of customers with
distinct workload intensities and resource usage, or where inputs or outputs
are specified for the individual types rather than the aggregate system work-
load. This characteristic can be represented in a queuing network model via a
well-known concept of customer classes.

In single (customer) class models, all customers are indistinguishable from
one another. Although they are the simplest models, they can accurately rep-
resent real systems and provide correct performance data, as long as the level
of detail provided by them is sufficient for the user.

In multiple (customer) class models, each customer class has its own work-
load intensity and its own service demand at each centre. The customers within

8

each class are indistinguishable. The outputs are provided in terms of the indi-
vidual customer classes, in addition to the outputs from earlier, which are given
for single class models. Typical scenarios where multiple class models are ben-
eficial include computer systems with a mixture of CPU and I/O bound jobs,
web servers handling HTTP and FTP requests and communication networks
supporting TCP and UDP connections. This technique provides a lot more de-
tail and a better understanding of the performance of the system. However, the
main strength of multiple class models is also its prime weakness, as the ability
to define distinct workloads requires you to spend additional effort on providing
input parameter values for each workload [11]:

• The inclusion of multiple customer classes means that multiple sets of
input parameters are required, leading to a more tedious data input stage
of the process.

• The majority of current measurement tools do not provide enough infor-
mation to determine the input parameters necessary for each customer
class with the same level of accuracy as the single class models.

• The solution techniques available for multiple class models are much more
complex, and hence, more difficult to implement and demand more system
resources than the single class techniques.

Multiple class models comprising solely of open (transaction) classes are
called open models, whereas models comprising solely of closed (batch and ter-
minal) classes are called closed models. Models that have a mixture of both
types of classes are called mixed models.

Consider a multiple class model with C customer classes, its workload in-

tensity would be described by a vector with an entry for each class:
−→
λ =

(λ1, λ2, . . . , λC) for an open model,
−→
N = (N1, N2, . . . , NC) for a closed model

(with the addition of
−→
Z = (Z1, Z2, . . . , ZC) for terminal classes), and

−→
I =

(N1 or λ1, N2 or λ2, . . . , NC or λC) for a mixed model. The service demand of
a class c customer at centre k is defined as Dc,k and analogous to single-class
case, the total service demand of a class c customer at all centres, Dc, is defined

as: Dc =
K∑

k=1

Dc,k [11].

All performance measures for multiple class models are obtained on a per-
class basis (such as Uc,k and Xc) as well as on an aggregate basis (such as Uk and
X). For utilisation, queue length and throughput, the aggregate performance
measure equals the sum of the per-class performance measures (e.g. Qk =
C∑

c=1
Qc,k). However, for residence time and system response time, the per-class

measures must be weighted by relative throughput [11]:

Rk =

C∑
c=1

Rc,kXc

X
and R =

C∑
c=1

RcXc

X

9

Chapter 3

Queuing Network Analysis
Algorithms

The solution of a queuing network model obtained after evaluation is a set of
performance measures that describe the time averaged (or long term) behaviour
of the model. For product-form queuing network models, solutions can be de-
termined analytically. The techniques used for evaluating them differ for open
and closed models.

For open models (with transaction workloads), the throughput is given as
an input (with Forced Flow Law in mind). Therefore, the solution can be easily
calculated algebraically using successive applications of the formulae mentioned
in [11]. In fact, tools already exist that can solve open models in all cases. On
the other hand, closed queuing networks (with batch or terminal workloads) are
more difficult to evaluate and rely on iterative algorithms for solutions, requiring
significant system resources. Thus, for the purpose of this project, we focus
on some of these solution techniques and approximate ones for closed queuing
models. Additionally, the specific algorithm used for evaluation depends on the
size and complexity of the model. We cover these algorithms in the following
sections.

3.1 Mean Value Analysis (MVA)

The mean value analysis algorithm differs slightly for single class and multiple
class models, as model inputs and performance measures for individual classes
have to be taken into account. We consider each in turn.

3.1.1 Single Class Models

In the case of single class models, MVA algorithm is based on the following three
equations [11]:

1. Little’s Law (Response Time Law version) applied to the queuing network
as a whole:

X(N) =
N

Z +
K∑

k=1

Rk(N)

(3.1)

10

where X(N) is the system throughput, R(N) the average system response
time and Rk(N) the residence time at centre k, given a population of N
customers in the network. As mentioned earlier, Z = 0 for batch workloads.

2. Little’s Law applied to individual service centres:

Qk(N) = X(N)Rk(N) (3.2)

where Qk(N) is the average queue length at centre k, given a population
of N customers in the network.

3. Service centre residence time equations:

Rk(N) =

{
Dk (delay centres)

Dk[1 +Ak(N)] (queuing centres)
(3.3)

where Ak(N) is the average number of customers seen at centre k on arrival
of a new customer, or simply, arrival instant queue length at centre k, and
Dk the service demand at centre k.

Considering these three equations and model inputs, we can see that the first
step to evaluating the model is computation of Ak(N). Two basic techniques
exist for this: exact and approximate (in Section 3.2). The two techniques differ
in how the arrival instant queue lengths are computed. It is important to note
the distinction between these techniques refers to how the solution relates to
the model, rather than to the computer system itself. For now, we focus on the
exact solution technique.

The exact solution technique incorporates computation of arrival instant
queue length Ak(N) exactly, followed by application of equations (3.1)–(3.3) to
obtain the required performance measures. For a closed, product-form queuing
network, this is defined as simply:

Ak(N) = Qk(N − 1) (3.4)

This can be shown with the following example. Consider a closed queuing
network with a population of N. When a customer arrives at a centre, it is not
already in the centre’s queue. This implies only the other N−1 customers could
interfere with the new arrival and the number of these actually in queue is just
the average queue length at the centre when only those N − 1 customers are in
the network [11].

After applying the above equations iteratively, we can obtain system through-
put, average centre queue lengths and centre residence times when there are n
customers in the network, given we know the average centre queue lengths with
n − 1 customers. For the base case, we observe that all queue lengths are zero
with zero customers in the network. Using this and equations (3.1)–(3.4), we
can compute the solution for the scenario with one customer in the network,
and the average queue length obtained from that can be used as the arrival
instant queue length for the network with two customers. Similarly, successive
applications can provide solutions for customer populations up to N [11].

11

Algorithm 1 Exact MVA Solution Technique for single class models [11]

1: for k = 1→ K do
2: Qk = 0
3: end for
4: for n = 1→ N do
5: sumR = 0
6: for k = 1→ K do

7: Rk =

{
Dk (delay centres)

Dk[1 +Qk] (queuing centres)

8: sumR = sumR+Rk

9: end for
10: X = N

Z+sumR
11: for k = 1→ K do
12: Qk = XRk

13: end for
14: end for

From Algorithm 1, we can see that it has the time complexity of N ∗ K
arithmetic operations, as the equations need to be applied N times and each
iteration requires looping over all K service centres. The space complexity, on
the other hand, is just K, as the results from previous iterations do not need to
be stored.

Once Algorithm 1 terminates, the other performance measures can be cal-
culated using Little’s Law, as summarised below:

System throughput: X
System response time: N/X − Z
Average number in system: N −XZ
Service centre k throughput: X ∗ Vk
Service centre k utilisation: X ∗Dk

Service centre k queue length: Qk

Service centre k residence time: Rk

3.1.2 Multiple Class Models

Consider a closed, multiple class model with C customer classes and a workload

intensity defined by:
−→
N = (N1, N2, . . . , NC) where Nc is class c’s population

size, and
−→
Z = (Z1, Z2, . . . , ZC) where Zc is class c’s think time. Similar to

single class models, multiple class MVA is based on three central equations,
except adjusted for per-class performance measures [11]:

1. For each class, Little’s Law applied to the queuing network as a whole:

Xc(
−→
N) =

Nc

Zc +
K∑

k=1

Rc,k(
−→
N)

(3.5)

2. For each class, Little’s Law applied to individual service centres:

Qc,k(
−→
N) = Xc(

−→
N)Rc,k(

−→
N) (3.6)

12

The total queue length at a centre k is also a useful measure:

Qk(
−→
N) =

C∑
c=1

Qc,k(
−→
N) (3.7)

3. For each class, the service centre residence time equations:

Rc,k(
−→
N) =

{
Dc,k (delay centres)

Dc,k[1 +Ac,k(
−→
N)] (queuing centres)

(3.8)

where Xc(
−→
N) is the throughput for class c, Qc,k(

−→
N) the average queue

length for class c at centre k, Rc,k(
−→
N) the residence time for class c at

centre k, Dc,k(
−→
N) the service demand for class c at centre k, and Ac,k(

−→
N)

the arrival instant queue length at centre k seen by an arriving customer
of class c.

As with the single class models, the performance measures can be computed

once Ac,k(
−→
N) are known, and there are two techniques used for evaluation: exact

and approximate (discussed in the next section). Similar to single class MVA
algorithms, the two techniques differ in the computation of the arrival instant
queue lengths. For now, we focus on the exact technique.

To calculate arrival instant queue length, the same analogy as in single class
models can be used to obtain this generalisation [11]:

Ac,k = Qk(
−−−−→
N − 1c) (3.9)

where (
−−−−→
N − 1c) is population

−→
N with one class c customer removed.

As with the single class models, we start with the base case of population−→
0 (Qk(

−→
0) = 0 for all centres k) and apply equations (3.5)–(3.9) iteratively to

obtain solutions for increasing populations. It should be noted that in general,
the solution for each population −→n needs C input solutions, one for each popu-

lation
−−−−→
n− 1c, c = 1,. . . , C. Figure 3.1 demonstrates this by showing the network

populations for which solutions need to be computed to evaluate a network with
three class X customers (NX = 3) and two class Y customers (NY = 2): the
solution from the base case is used to compute solutions for populations with
one customer, i.e. (1X, 0Y) and (0X, 1Y), which are used in turn to compute
solutions for populations comprising of two customers, and so on, until the solu-
tion for population (3X, 2Y) is obtained. Due to these recursive dependencies,
the time and space requirements of the multiple class MVA algorithm are con-
siderably larger than those of the single class algorithm. There are roughly
proportional to:

time: CK
C∏

c=1
Nc + 1 arithmetic operations

space: K
C∏

c=1
Nc + 1 storage locations

It is clear that the performance of MVA would deteriorate as number of
classes and/or class populations increase. Therefore, it is infeasible to com-
pute the solutions of closed networks with exact technique with more than four

13

(3X, 2Y)

(3X, 1Y) (2X, 2Y)

(3X, 0Y) (2X, 1Y) (1X, 2Y)

(2X, 0Y) (1X, 1Y) (0X, 2Y)

(1X, 0Y) (0X, 1Y)

(1X, 0Y)

Figure 3.1: Population graph for Exact MVA

classes. This is the motivation behind the development of approximate solution
techniques as discussed in the next section. [11]

Algorithm 2 Exact MVA Solution Technique for multiple class models [11]

1: for k = 1→ K do
2: Qk(

−→
0) = 0

3: end for

4: for n = 1→
C∑

c=1
Nc do

5: for each feasible population −→n ≡ (n1, . . . , nC) with n total customers
do

6: for c = 1→ C do
7: for k = 1→ K do

8: Rc,k =

{
Dc,k (delay centres)

Dc,k[1 +Qk(
−−−−→
n− 1c)] (queuing centres)

9: end for
10: Xc = nc

Zc+
K∑

k=1

Rc,k

11: end for
12: for k = 1→ K do
13: Qk(−→n) = XcRc,k

14: end for
15: end for
16: end for

As with single class MVA algorithm, once Algorithm 2 terminates, the other
performance measures can be calculated using Little’s Law, as summarised be-
low:

14

Class c system throughput: Xc

Class c system response time: Nc/Xc − Zc

Average number of class c in system: Nc −XcZc

Class c throughput at centre k: Xc ∗ Vc,k
Class c utilisation at centre k: Xc ∗Dc,k

Class c queue length at centre k: Xc ∗Rc,k

Class c residence time at centre k: Rc,k

3.2 Approximate Mean Value Analysis (AMVA)

Due to the large time and space requirements of the exact MVA algorithm for
large numbers of classes, the approximate mean value analysis is the only feasible
method for evaluation. AMVA algorithms provide significant time and space
improvements by substituting non-recursive approximations for arrival instant

queue lengths, Ac,k(
−→
N).

We still use the equations from exact MVA technique (equations (3.5)–(3.8));
however, the arrival instant queue lengths are estimated iteratively.

We obtain the estimates for Ac,k(
−→
N) based on the average queue lengths

at the service centres with the full customer population, avoiding the need to
solve models for populations from zero up to full customer population. We
start with an initial guess for average queue lengths, which is then input into an
approximating function and the resulting value for arrival instant queue length
is substituted into equation (3.8). Applying equations (3.5)–(3.7) to the new
residence values provides new estimates for average queue lengths, which are
used in the next iteration. We keep iterating until successive estimates of these
queue lengths are within a given tolerance (specified by the user) [11]. Next, we
describe some of these AMVA algorithms.

3.2.1 Chow Algorithm

The Chow algorithm was proposed by We-Min Chow [7]. The algorithm is
based on the assumption that the mean queue lengths of service centres are
identical in the model with full customer population and in the model with

one less customer, i.e. Qk(
−→
N) ≈ Qk(

−−−−→
N − 1c). This is reasonable for models

with large customer populations. In addition, its computational complexity is
several orders of magnitude less than that of exact MVA [7]. Substituting the
assumption into equations (3.4) and (3.9), the system can be solved iteratively
using some tolerance between values at the start and end of each iteration,
and/or maximum number of iterations.

3.2.2 Bard-Schweitzer Algorithm

The Bard-Schweitzer algorithm was proposed by Y. Bard and P. J. Schweitzer
[15] in 1979. Bard proposed the same assumption as the one in Chow algorithm,
however Schweitzer immediately suggested an improvement, such that removing
a customer from a class affects the queue lengths of only that class and no
other. Hence, when calculating the queue length of a service length with one
less customer of class c, we scale the queue length with class c to reflect the

15

omitted customer, while leaving the values of the other classes unchanged. A
generalised formalised is presented in equation (3.10).

Qk(
−−−−→
N − 1c) ≈

Nc − 1

Nc
Qc,k(

−→
N) +

C∑
j=1
j 6=c

Qj,k(
−→
N) (3.10)

This algorithm provides more accurate estimates than Chow algorithm. Its
computational complexity is O(CK), which is drastically better than exact
MVA for the multi-class case.

3.2.3 Linearizer Algorithm

The Linearizer algorithm, proposed by Chandy and Neuse [6], is a very well-
known approximation technique for closed, product-form queuing network mod-
els, which provides far more accurate results than Bard-Schweitzer. While main-
taining a high level of accuracy, it avoids the pitfall of exact MVA algorithm,
i.e. the need for recursive computation of solutions/performance measures for all

populations from
−→
0 up to

−→
N in order to get a complete solution. Instead, Lin-

earizer approximates, heuristically, performance measures for population
−−−−→
N − 1j

using information about population
−→
N and then using the MVA equations to

work out new performance measures for population
−→
N . The method followed is

described below [6]:

First, define Fc,k(
−→
N) as the fraction of class c customers at centre k, when

the population is
−→
N , for all classes c and centres k:

Fc,k(
−→
N) =

Qc,k(
−→
N)

Nc
(3.11)

Also, define Sc,k,j(
−→
N) as the difference in the fraction of class c customers

at centre k, when population is
−→
N and the same fraction when population is−−−−→

N − 1j (i.e. with one less class j customer), for all classes c and j, and centres
k:

Sc,k,j(
−→
N) = Fc,k(

−−−−→
N − 1j)− Fc,k(

−→
N) (3.12)

Upon substituting population
−−−−→
N − 1j into equation (3.11) and using the

result along with (3.12), we can derive the expression for average queue length

of class c customers at centre k, when population is
−−−−→
N − 1j :

Qc,k(
−−−−→
N − 1j) = (

−−−−→
N − 1j)c(Fc,k(

−→
N)− Sc,k,j(

−→
N)) (3.13)

where (
−−−−→
N − 1j)c is the population of class c with one class j customer removed

from full population
−→
N .

We cannot calculate Sc,k,j(
−→
N) using equation (3.12) because of the unknown

Qc,k(
−−−−→
N − 1j) values, which are necessary. We, instead, estimate the Sc,k,j(

−→
N)

values and then work out approximations forQc,k(
−−−−→
N − 1j) using equation (3.13).

The Linearizer algorithm estimates the values of Sc,k,j(
−→
N) by successive calls

to the Core Algorithm, although the Core algorithm requires Sc,k,j(
−→
N) values

to be passed as inputs. The Core algorithm is as follows: [6]

16

Algorithm 3 Linearizer Core Algorithm

Step 1:

Initialisation: Obtain estimate values for Sc,k,j(
−→
N) and Qc,k(

−→
N) for all classes

c and j and centres k.

Step 2:

Compute new approximations for Qc,k(
−−−−→
N − 1j) from equations (3.11) and

(3.13) for all c, k, j.

Step 3:

From the above approximations for Qc,k(
−−−−→
N − 1j), compute new estimates for

Qc,k(
−→
N) and Rc,k(

−→
N) using Little’s law and the MVA equations.

Step 4:

If the maximum difference between new and old estimates of Qc,k(
−→
N) is below

a given tolerance, then terminate and return the new estimates. Otherwise,
go to Step 2.

As mentioned earlier, the Linearizer algorithm calls Core algorithm and com-

putes its own, more accurate estimates of Sc,k,j(
−→
N), from the estimates returned

by the Core algorithm. The Linearizer algorithm also makes the following as-
sumption:

Sc,k,j(
−−−−→
N − 1j) = Sc,k,j(

−→
N) (3.14)

The code of the actual Linearizer algorithm is shown in Algorithm 4.

17

Algorithm 4 Linearizer Algorithm

Step 1:
Initialisation: Assume uniform distribution of customers of each class for
population

−→
N , i.e. Qc,k(

−→
N) = Nc/K.

Assume, Qc,k(
−−−−→
N − 1j) = (

−−−−→
N − 1j)c/K for all c, k, j.

Assume Sc,k,j(
−→
N) = 0 for all classes j.

Because of equation (3.14), we can assume Sc,k,j(
−−−−→
N − 1j) = 0.

Set I = 1.

Step 2:

Invoke the Core algorithm at population
−→
N , passing the latest values of

Sc,k,j(
−→
N) and Qc,k(

−→
N) as inputs. Isolate the execution of Core algorithm

so that it does not interfere with values used in Linearizer.

Step 3:
If I =3, then terminate, otherwise continue.

Step 4:

Invoke the Core algorithm at all populations
−−−−→
N − 1j , for all classes j, passing

the latest values of Sc,k,j(
−−−−→
N − 1j) and Qc,k(

−−−−→
N − 1j) as inputs. Qc,k(

−→
N) can

be used in place of Qc,k(
−−−−→
N − 1j), because of equation (3.14).

Step 5:

Compute estimates of the fractions Fc,k(
−→
N) and Fc,k(

−−−−→
N − 1j) for all c, k, j,

using equation (3.11) and subsequently, estimates of Sc,k,j(
−→
N) for all c, k, j,

using equation (3.12). With equation (3.14) in mind, assume Sc,k,j(
−−−−→
N − 1i) =

Sc,k,j(
−→
N) for all c, k, j, i.

Step 6:
Set I =I +1, and then go to Step 2.

Upon termination of the algorithm, use the final values of Qc,k(
−→
N) and

Rc,k(
−→
N) to compute other performance measures using the MVA equations.

Although the termination condition for Linearizer could be set to a maximum
change being below a given tolerance, in practice, continuing for more than four
iterations provides minimal improvement, and hence, is probably not worth the
extra computation [6].

The time complexity of Core algorithm is O(KC2), since it iterates over all
classes c and j, and centres k in Step 2, and since the Linearizer algorithm,
calls Core algorithm K+1 times every iteration, its own time complexity comes
to O(KC3) and its space complexity is O(KC2). Hence, there is a trade-off
between accuracy and time taken to compute the solution.

3.2.4 De Souza-Muntz Linearizer Algorithm

While being the best approximation algorithm, Linearizer is very computation-
ally heavy. Therefore to overcome this issue, E. De Souza E Silva and Richard R.

18

Muntz suggested an improvement, which reduces the complexity from O(KC3)
to O(KC2), without compromising on accuracy [8].

The changes proposed are made to the Core algorithm. It exploits the fact

that in Step 2 of Core algorithm even though we compute Qc,k(
−−−−→
N − 1j), we

only use Qk(
−−−−→
N − 1j) in Step 3 to compute the residence times, i.e. Rc,k(

−→
N).

Therefore, we calculate just Qk(
−−−−−→
M − 1j) using the equations (3.15) and (3.16)

[8].

For the case where (
−→
M =

−→
N), we have

Qk(
−−−−−→
M − 1j) = Qk(

−→
M)− Qj,k(

−→
M)

Nj
+ S′j,k(

−→
M)− Sj,k,j(

−→
M) (3.15)

where S′j,k(
−→
N) =

C∑
c=1

NcSc,k,j(
−→
N).

However, for the case where (
−→
M =

−−−−→
N − 1i), we have

Qk(
−−−−−→
M − 1j) = Qk(

−→
M)− Qj,k(

−→
M)

(
−→
M)j

+ S′j,k(
−→
M)− Sj,k,j(

−→
M)− Sc,k,j(

−→
M) (3.16)

such that (
−→
M)j > 0.

In summary, the following modifications are made to the original Linearizer
algorithm [8]:

1. In Steps 1 and 5 of the Linearizer algorithm, compute S′j,k(
−→
M)∀j, k before

any other computations and save the values for use in the calls to the Core
algorithm during Steps 2 and 3.

2. Step 2 of the Core algorithm is replaced by a computation ofQk(
−−−−−→
M − 1j)∀j, k

using equation (3.15) if (
−→
M =

−→
N) or equation (3.16) if (

−→
M =

−−−−→
N − 1c)

with the precomputed values for S′j,k(
−→
N)(= S′j,k(

−−−−→
N − 1l)) and Sc,k,j(

−→
N)(=

Sc,k,j(
−−−−→
N − 1i)).

S′j,k(
−→
N)∀j, k can be computed at a cost of O(KC2) and these values are

used for each of the (C + 1) calls to the Core algorithm, whose complexity has
been reduced to O(KC). Thus, the cost of this optimised Linearizer has been
reduced to O(KC2).

3.2.5 Aggregate Queue Length (AQL) Algorithm

The Aggregate Queue Length (AQL) algorithm, proposed by Zahorjan, Eager
and Sweillam [17], improves on original Linearizer in terms of costs of both time
and space, while maintaining almost the same level of accuracy in solutions.

It achieves this by working with aggregate per-server queue lengths instead
of per-class queue lengths. This clearly yields an improvement by a factor
of C in time and space costs, resulting in time and space complexities being
roughly proportional to KC2 and KC, respectively, as opposed to KC3 and
KC2, respectively, for the original Linearizer. Although, the time complexity

19

of AQL is the same as that of Improved Linearizer, it improves on space cost,
by a factor of C, due to the use of aggregate queue lengths.

In contrast to Linearizer which uses Sc,k,j terms that specify the change
in the queue length of class c at centre k (as a fraction of the total class c
population) obtained after removing one class j customer, for all classes c and j,
and centres k, AQL uses γc,k terms that specify the change in aggregate queue
length at centre k (as a fraction of the total network population) obtained after
removing one class j customer from the network, for all classes c and centres k.
[17]

In this technique, we compute arrival instant queue lengths (Ac,k(
−→
N)) using

the following equation [17]:

Ac,k(
−→
N) = (N − 1)(

Qk(
−→
N)

N
+ γc,k(

−→
N)) (3.17)

where

γc,k(
−→
N) ≡ Qk(

−−−−→
N − 1c)

N − 1
− Qk(

−→
N)

N
(3.18)

We iterate on the γc,k terms to achieve better approximations successively.
After assigning initial values to γc,k terms (typically zero), we use them to
compute performance measures, using equations (3.5)–(3.8) and (3.17), for the

network population
−→
N and for the C populations

−−−−→
N − 1j acquired by the removal

of one customer from each class j in turn. The following approximation is used
for getting performance measures for reduced populations:

γc,k(
−−−−→
N − 1j) ≈ γc,k(

−→
N) (3.19)

Next, equation (3.18) can be used to compute new γc,k values from the
current average queue length estimates, and the updated γc,k terms utilised
in the following iteration. In the pseudo code provided in Algorithm 5, the
termination condition is satisfied when the change in successive Qk terms is
below some given tolerance. [17]

20

Algorithm 5 Approximate Queue Length algorithm [17]

1: // Initialisation
2: N = 0
3: for c = 1→ C do
4: N = N +Nc

5: end for
6: for k = 1→ K do
7: Qk = N/K
8: for c = 1→ C do
9: γc,k = 0

10: end for
11: end for
12: repeat
13: // Saving old queue lengths used later to check termination condition
14: for k = 1→ K do
15: oldQk = Qk

16: end for
17:

18: // Solve reduced populations
19: for j = 1→ C do
20: repeat
21: for k = 1→ K do
22: tempQk = Qk

23: end for
24: for c = 1→ C do
25: Rc = Zc

26: for k = 1→ K do
27: Rc,k = Dc,k(1 + (N − 2)(Qk

N−1 + γc,k))
28: Rc = Rc +Rc,k

29: end for
30: for k = 1→ K do

31: Qk = (
C∑

c=1
Nc

Rc,k

Rc
)− Rj,k

Rj

32: end for
33: end for
34: until maxk

∣∣∣ tempQk−Qk

Qk

∣∣∣ ≥ tolerance
35: for k = 1→ K do
36: γj,k = Qk

N−1 −
oldQk

N
37: end for
38: end for
39: // Solve full population
40: repeat
41: for k = 1→ K do
42: tempQk = Qk

43: end for

21

Algorithm 5 Approximate Queue Length algorithm [17] (continued)

44: for c = 1→ C do
45: Rc = Zc

46: for k = 1→ K do
47: Rc,k = Dc,k(1 + (N − 1)(Qk

N + γc,k))
48: Rc = Rc +Rc,k

49: end for
50: for k = 1→ K do

51: Qk =
C∑

c=1
Nc

Rc,k

Rc

52: end for
53: end for
54: until maxk

∣∣∣ tempQk−Qk

Qk

∣∣∣ ≥ tolerance
55: until maxk

∣∣∣ oldQk−Qk

Qk

∣∣∣ ≥ tolerance
Due to all approximations being iterative, their accuracy (and thus, AQL’s)

is dependent upon the selection of the termination condition in use (normally,
when the difference between successive queue length values is below some toler-
ance). Zahorjan, Eager and Sweillam observed that, in practice, as the number
of classes in a model increases, the accuracy of AMVA algorithms decreases [17].

3.3 Moment Analysis

In this section, we discuss how we could use the above algorithms, along with
some techniques involving moments, to compute the mean and variance of queue
lengths of stations.

A moment is a quantitative measure about a distribution, such as mean,
variance and skewness. In our case, the distribution we consider is for mean
queue lengths of stations. There are many different kinds of moments. The
ones we are interested in are power, binomial and central moments.

The n-th power moment of a discrete random variable N, which takes non-
negative integer values, is defined as [9]

E[Nn] =

∞∑
k=0

knP (N = k)

where P (N = k) is the probability that N takes the value k and E is the
expectation operator.

From the above equation, it is clear that the first power moment (E(N)) is
the population mean, as mean is the expected value of a distribution.

Similarly, the n-th binomial moment of a variable N with binomial distribu-
tion is defined as [9]

E

[(
N

n

)]
=

1

n!
E[N(N + 1)...(N + n− 1)] =

∞∑
k=n

(
k

n

)
P (N = k)

Using the first power-moment, we can obtain the n-th central moment as

22

following [9]

E[(N − E(N))n] =

∞∑
k=0

(k − E(N))nP (N = k)

Since the first power moment is the mean and by definition variance is the
average value of the quantity (distancefrommean)2), we can deduce that the
second central moment is the variance of the distribution.

Since our distribution is defined on station queue lengths, which are discrete
and can only take a finite number of values (as they cannot exceed the total
population in the models), unlike the variable N (which takes non-negative
integers values), we define the n-th power moment of a station k for a given
total population N as [4]

E[nk|N] =

N∑
nk=0

nkpk(nk|N) (3.20)

where nk is the number of jobs at station k (nk ≥ 0) and pk(nk|N) is the
marginal probability that there are nk jobs at station k. Here, the first moment
represents the mean number of jobs at station k, i.e. its mean queue length.

In order to compute higher-order binomial moments of queue lengths for
a queuing model (a notion used in an algorithm called Method of Moments
(MoM)), we add a certain numbers of station replicas to the queuing network.

Let ∆−→m = (∆m1,∆m2, ...,∆mM) be a vector of non-negative integers (i.e.
∆mk ≥ 0), which represent the number of replicas of station k, for all stations
1 ≤ k ≤M , to add to the original queuing network, i.e. ∆m2 is the number of
replicas we add of station 2. Further assuming that all queues are distinct, i.e.
mk = 1, the (joint) binomial moment of queue-length can be defined as [5]

E[∆~m, ~N] =
∑

~S∈S(~N)

M∏
k=1

(
nk + ∆mk

nk

)
Pr(~S) (3.21)

where ~S is a state of the model of the form

(n0,1, n0,2, ..., n0,M , ..., nc,1, nc,2, ..., nc,k, ..., nc,M , ...nC,M)

such that n0,1 is the number of jobs of class 0 at station 1, S(~N) is the state

space of the model and Pr(~S) is the probability of the state ~S.
Since we want the individual station moments, we simplify equation (3.21)

for the case where we only add replicas of station i. The result is the following:

E[∆~m, ~N] =
∑

~S∈S(~N)

(
ni + ∆mi

ni

) M∏
k=1
k 6=i

(
nk
nk

)
Pr(~S)

Since
(
nk

nk

)
= 1, we get

E[∆~m, ~N] =
∑

~S∈S(~N)

(
ni + ∆mi

ni

)
Pr(~S)

23

We can now use marginal probabilities for the station to compute the r-th
binomial moment of queue length of station k, with a given total population of
N in the network, using

E

[(
nk + r

nk

)]
=

N∑
nk=0

(
nk + r

nk

)
pk(nk|N) (3.22)

where r is the number of replicas of station k we add to the network and pk are
the marginal probabilities for station k.

If we add one replica of station k to the network, we get the following ex-
pression for the first binomial moment using equation (3.22).

E

[(
nk + 1

nk

)]
=

N∑
nk=0

(nk + 1)pk(nk|N)

Expanding this gives

E

[(
nk + 1

nk

)]
=

N∑
nk=0

nkpk(nk|N) +

N∑
nk=0

pk(nk|N)

Since pk are marginal probabilities, they sum to 1, meaning the latter sum-
mation evaluates to 1. We also notice that the former summation is the first
power moment. Hence, we obtain the following expression, connecting the first
binomial and power moments.

E

[(
nk + 1

nk

)]
= E(nk|N) + 1 (3.23)

Now, we add two replicas of station k to the network, this would give us the
following expression for second binomial moment can be written as

E

[(
nk + 2

nk

)]
=

N∑
nk=0

(nk + 2)(nk + 1)

2
pk(nk|N)

Expanding this gives

E

[(
nk + 2

nk

)]
=

1

2

N∑
nk=0

(n2k + 3nk + 2)pk(nk|N)

Further expanding and using the fact that marginal probabilities sum to 1,
we obtain the following expression

E

[(
nk + 2

nk

)]
=

1

2

(
N∑

nk=0

n2kpk(nk|N) +

N∑
nk=0

3nkpk(nk|N) + 2

)
(3.24)

We observe that the first summation in (3.24) is the second power moment
and the second summation is the first power moment. This relation is sum-
marised below:

2E

[(
nk + 2

nk

)]
= E(n2k|N) + 3E(nk|N) + 2 (3.25)

24

Next, we discuss how we can use this link between binomial and power
moments to compute mean and variance of queue length of stations.

As the first power moment, i.e. mean, is just the mean queue length of
the station in the original network, it can be computed by simply solving the
original network.

The variance, on the other hand, can be computed using both first and
second power moments using [4]

V ar(nk|N) = E[n2k|N]− (E[nk|N])2 (3.26)

However, we do not have the second power moment. We can use equation
(3.25), but we do not have first and second binomial moments either. So, first,
we calculate these.

The first binomial moment can be derived from the first power moment
(which we can get by solving the model) using equation (3.23). The second
binomial moment of a station can be computed by multiplying the first binomial
moment of the station in the original network by the first binomial moment of
the station in the same network but with an additional replica of the station in
the network. The process is explained below:

1. Find first binomial moment of the station k in the original network, as
mentioned before.

2. Solve the model again, but with an additional replica of the station and
find the mean queue length of the station k, Q′k.

3. Using equation (3.23), we get the first binomial moment of station k in
this new model, by adding 1 to Q′k, and multiply it by the first binomial
moment from the original network (calculated in Step 1) to compute the
second binomial moment of station k in the original network.

Now that we have the second binomial moment and the first power moment,
we can calculate second power moment using equation (3.25) and the variance
thereafter using equation (3.26).

Since we have to solve the queuing model, in order to compute the mean
and variance of station queue lengths. This allows us to utilise the analysis
algorithms discussed in the previous section. As MVA would not scale well for
models with more than four classes, we can use the approximate techniques for
those models. In addition, this work could be further explored to compute the
marginal probabilities themselves by using the moments obtained from solving
the model and solving the system of linear equations connecting the moments
and marginal probabilities with Simplex algorithm.

3.4 Applications of Closed Networks

In this section, we consider the practical applications of closed queuing networks
to justify the need for algorithm techniques for evaluating these networks.

The growth in complexity of computer systems and networks in use everyday
has largely contributed to the popularity and applicability of closed queuing
networks in several areas. Some of these practical applications are discussed
below:

25

1. Capacity Planning : Closed queueing networks provide the ability to an-
swer performance questions regarding the capacity of a system architec-
ture. We can model the different services as service centres and compare
the performance under different scenarios to determine how much capacity
would need to be allocated to a service in order to support peak work-
load, or the maximum amount of workload the current (or a future) ar-
chitecture can handle under the given capacity. The performance indices
provide good measures for determining system behaviour under these cir-
cumstances, for example, utilisation can be used to check for bottlenecks,
throughput for saturation. Hence, closed queueing models are routinely
used for capacity planning at data centres [12].

2. Software Applications: Another application of closed queuing networks is
being able to model software applications and the services they commu-
nicates with, in order to measure their performance and to see whether
any services are having a significant impact. We can use the model to
narrow down which service needs immediate attention, if any, to function
properly.

3. Multi-tier web applications: Closed queuing models are widely used to
model multi-tier web applications (the most common IT architecture be-
hind modern web sites), comprising of web servers, database servers and
application servers, distributed across a network and communicating cen-
trally. We can model the user interaction with the web servers, as well
as the interaction between the servers themselves that goes on behind the
scenes, to check the performance of the entire architecture, for example
checking for high throughput and low response times, as servicing user
web requests is time-critical.

4. Scalability : Closed queuing models can also be used to measure scalability
of existing system architectures, in terms of work loads as well as the
growth of the system itself. This could help in determining the scale at
which improvements become noticeable.

5. Quality of Service (QoS): Testing the quality of an IT infrastructure or
ensuring a certain QoS is a maintained in order to deliver consistent or
better performance to customers are valid applications of closed queuing
models. This is very true especially in the case of web services, as the
servers have to deliver quick, consistent experience to users, because drop
in performance could be a matter of losing or gaining customers. Closed
queuing models could be used to ensure no negative impact in encountered
on the quality of service provided to the users, as circumstances change,
such as high amount of workload in the system, one of the services stop
responding. We can also model the current system composition to deter-
mine whether a service needs replacement, if it is affecting the QoS. It
should be checked when and whether the system reaches saturation, so
that steps can be taken to avoid this, as it would impact the time it takes
for new requests to be serviced.

6. Bottleneck identification and tuning : Closed queuing networks can also
be used identify bottlenecks within a system, so that the system could be
tuned accordingly to avoid occurrence of bottlenecks. The utilisation of

26

services could be compared to ensure none of them are being overloaded
with requests, while the others work at a fraction of their capacity.

7. Peer-to-peer networks: We can model peer-to-peer networks with closed
queuing networks to investigate impact that changing system capacity and
work load would have

3.5 Software Tools for Evaluating Queuing Net-
works

3.5.1 JMT

Java Modelling Tools (JMT) is a suite of free open-source applications developed
by Politecnico di Milano, intended to be used for performance evaluation, work-
load characterisation, capacity planning and modelling of computer systems and
communication networks. The primary focus of JMT is queuing systems and
queuing network models [1]. Its ease of use is accentuated by its use of wizards
to describe models and its rich graphical user interface.

Figure 3.2: Main GUI screen of JMT

It comprises of six distinct applications, each serving a different purpose.
One of these applications is JMVA, which is built for analytical evaluation of
product-form queuing networks. A user can define a model by stating values for
different parameters, such as service demands, arrival rates and/or population,
or import a model created graphically using JSIMengine (the engine used in
JMT for simulating queuing models). The application can then be used to
compute performance measures (such as mean queue length, mean throughput,
utilisation and mean response time) for the system being modelled as well as
individual service centres in the model, using the exact MVA algorithm for closed

27

models or similar algorithms for open and mixed models. In the implementation
phase of this project, we will be extending the functionality of JMVA to include
approximate algorithms for solving closed models.

In contrast to JSIMengine, JMVA has much lower execution times on mod-
els, when there are less than three or four customer classes. However, it can
have larger memory consumption than JSIMengine for large populations (in
hundreds, or more) [3]. This is primarily due to the inefficiency and huge com-
putational cost of exact MVA algorithm. Therefore, to overcome this, we will
augment the JMVA application by including implementations of approximate
mean value analysis (AMVA) algorithms described earlier, for quicker and fairly
accurate evaluations of models in comparison with MVA algorithm.

An extremely useful feature of JMVA is that it provides the ability to per-
form what-if analysis, i.e. solve multiple models changing the value of a control
parameter, such as customer numbers, arrival rates, population mix and service
demands [1]. It allows a user to specify a range of values for the control param-
eter, which are then used to compute multiple models. It also allows user to
compare the solutions of these models visually on a graph. In the implementa-
tion phase of this project, we will aim to add a new parameter to the what-if
analysis window – algorithm selector, which will allow a user to compute the
above models (obtained from range of values for the control parameter) under
different algorithms and compare the values between the algorithms.

Figure 3.3: Initial screen of JMVA

28

Chapter 4

Implementation

This chapter covers the architecture, design and implementation aspects of the
project. Since, we are extending the functionality of the existing software JMVA,
which is managed by several other developers, significant effort was put to high-
light the changes made and produce clean and modularised code for easy un-
derstanding, extensibility and manageability of the code.

4.1 Key Features

The key additions made to JMVA include:

• Ability to process queuing network model files adhering to a common
format (XML).

• Analytical evaluation of closed queuing network models, using approxi-
mate algorithms: Chow, Bard-Schweitzer, AQL, Linearizer and De Sousa-
Muntz Linearizer, and obtaining performance indices (such as mean through-
put, queue length, utilisation for class r or service centre k) as a result of
this analysis.

• Ability to graphically compare performance indices for particular stations,
classes or aggregates, for different values of input parameters, such as class
populations, service demands, and also to graphically compare these values
for different algorithms

• Display of algorithm attributes (name, tolerance, iterations) on the Syn-
opsis page of solution panel

• Complete integration with JMVA, from GUI to the underlying analytical
engine

• Computation of moments for queuing network models to find mean queue
lengths and variance of queue lengths of individual service centres in a
given queuing model

29

4.2 Architecture of JMVA

JMVA has been designed to be flexible. This is achieved by separating the GUI
from the underlying analytical solver engine, via an XML layer. This means
all the communication between different parts of JMVA and with other tools
in JMT is done with the means of the model being expressed in XML. This
modularises the analytical engine and allows its reusability in other projects by
simply providing a valid XML file.

XML Layer

JMVA JSIM JMODEL

Analytical
Engine

Simulation
Engine

Figure 4.1: JMT Architecture

The core systems of the modified JMVA and their interaction can be repre-
sented through Figure 4.2.

Queuing Network
Model

Analytical Solver

GUI Components

Figure 4.2: Core systems of the modified JMVA

The GUI Components here are responsible for providing a user interface to
the user, capturing user inputs, which are used for evaluating the model and
displaying the solutions to the user, either in numerical or graphical form. The

30

user inputs are saved in a model and solutions obtained from the same model
after evaluation.

The Queuing Network Model provides an abstract representation of the queu-
ing model the user wants to solve. It also acts as a model parser, to parse a
model into the abstract representation (stored in memory) from an input XML
file containing its description. It acts as a bridge between the GUI components
and the analytic solver and provides simple APIs to read and modify its state
(because of user input from GUI or solutions from solver). In addition, it stores
the algorithms that should be used for evaluation of the model, which are set
from the options selected by the user in the GUI.

Finally, the Analytical Solver is responsible for evaluating the model and
computing performance indices. The solver can use many different algorithms
for evaluation. The algorithms to use are determined from the model. The
result of the evaluation (i.e. performance indices) is sent back to the model,
which are in turn read by the GUI components to visualise them on the user
interface.

4.3 Design and Implementation

Since JMVA is a big ongoing project with several developers contributing, good
software engineering practices (such as use of appropriate patterns) were strictly
followed to achieve modularity/flexibility, and ease maintenance and extensibil-
ity in the future. However, this also made it difficult to understand the existing
codebase, due to the different coding styles practised by the contributors. Only
the changes that were absolutely necessary were made to the existing codebase
(with the addition of classes relevant to the project), to avoid breaking existing
logic and functionality of the program.

Within the JMT project, JMVA is mainly organised into 4 packages, and
these are the only packages that were modified during the implementation stage
of the project. The packages are as follows:

1. jmt.analytical package: This package incorporates the main underlying
logic used for solving the queuing models. It contains classes which imple-
ment the algorithms discussed in Chapter 3. These classes are only used
when the user selects to solve the queuing model. The algorithm to use for
evaluation is chosen within this package by the SolverDispatcher class,
depending on the options specified by user on the GUI. The classes were
structured in a way that maximises code reuse. In addition, it includes
the class used for calculating mean and variances of queue lengths of ser-
vice centres in queuing models, as described in Chapter 3. This package
corresponds to the Analytical Solver component in Figure 4.2.

2. jmt.gui.exact package: This package contains the main GUI class for
JMVA, while the sub-components of the interface are defined within its
sub-packages. It interprets the user’s input and calls sub-systems ac-
cordingly. It stores a reference to the model, which is used by its sub-
components to update the model upon user’s request. Moreover, it also
contains the ExactModel class, which provides an abstract representation
of the queuing model in question. Hence, this class corresponds to the

31

Queuing Network Model component in Figure 4.2, while other classes in
this packages and its sub-packages correspond to the GUI Components.

3. jmt.gui.exact.link package: This package provides a link between the Queu-
ing Network Model and Analytical Solver components. It connects the
input model with the solver dispatcher, which is then called to evaluate
the model.

4. jmt.gui.exact.panels package: This package contains the sub-components
(or panels) of JMVA GUI, which are used to update the model and to
specify the evaluation method to use, according to user’s specifications.
It also includes components used for displaying the result to the user, in
numerical or graphical form (where graphical representation is limited to
what-if analysis which is used for comparisons).

Although some of the GUI elements were taken from a previous attempt
at this project by Georgios Poullaides [14], majority of them were modified
and their functionality changed due to them exhibiting incorrect and erratic
behaviour. Hence, the final source code as a result of this project looked very
different from Poullaides’ code.

In the following section, specific implementation details about the packages
and classes mentioned in the previous section will be provided.

4.3.1 jmt.analytical package

This package primarily contains the implementations of algorithms used for
evaluation of performance indices as well as mean and variance of the queuing
model, and a class to connect these algorithms with the abstract queuing model.
First, we discuss the algorithms, which are divided into single-class and multi-
class categories. We implemented a general multi-class solution, which can be
easily adapted to single-class, hence we explore multi-class case first.

Multi-class algorithms

The structure of the algorithm classes can be depicted with the class diagram
in Figure 4.3.

32

Figure 4.3: Class structure of multi-class algorithms

SolverMulti is an abstract superclass, which must be used as the basis for
every multi-class queuing model solver. It has an input(...) method used for
specifying model parameters, such as stations, classes, service demands, class
populations, which will be used by its subclasses during evaluation. It also has
variables for storing values of performance indices (i.e. throughput, utilisation,
queue length and residence times), which will be updated by its subclasses
upon evaluation. Finally, it has an abstract solve(...) method meant to be
implemented by the subclasses, which will provide the main logic for solving the
model and computing performance indices.

Since this is an abstract superclass, it serves as an interface for multi-class
algorithm solvers and separates the underlying implementation when used for
solving a model, reducing dependencies to the concrete implementations.

SolverMultiClosedMVA, SolverMultiOpen and SolverMultiMixed classes
were already a part of this program prior to this project, so we just focus on
the approximate algorithms for closed models.

SolverMultiClosedAMVA is another abstract class, which is a subclass of
SolverMulti. It serves as a superclass for all approximate MVA algorithms, as
it predefines variables, such as iterations, and tolerance and maximum number
of iterations, which will be used by every approximate algorithm, to keep track of
the number of algorithm iterations and termination criteria, respectively. Since
these are recursive algorithms which improve upon each iteration, termination
criteria is needed. The termination criteria is checked at the end of each iteration
and is set so that the algorithm stops when maximum number of iterations are
reached or the maximum difference between old and new queue lengths is below
a certain tolerance, specified by the user (this can be seen clearly in Listing
4.1). It also provides methods for validating a tolerance value used by the GUI
components and for calculating maximum difference between individual new
and old queue lengths, and service centre new and old queue lengths used for
checking termination criteria, in order to avoid redundant code in subclasses.
Moreover, it implements a basic approximate MVA algorithm (in solve(...)

method), using equations (3.5)–(3.9) from Chapter 3, with recursion based on
the queue lengths, i.e. the termination criteria is that the maximum difference

33

between old and new queue lengths after an iteration must be less than or
equal to the given tolerance. However, it leaves the calculation of queue length

with one less customer, i.e. Qk(
−−−−→
N − 1c), used in equation (3.9), for subclasses to

implement. For algorithms that use this approximate methodology (for example
Chow and Bard-Schweitzer), they only have to implement this abstract method,
providing the benefit of code reuse, while other algorithms (such as Linearizer
and AQL) can just override the solve(...) method for other methodologies.

1 // Check convergence c r i t e r i a
2 i f (i t e r a t i o n s >= MAX ITERATIONS | | maxDiff (oldQueueLen , queueLen)

< t o l e r an c e) {
3 break ;
4 }

Listing 4.1: Code snippet that checks for termination criteria in approximate
algorithms

Similar to SolverMulti, SolverMultiClosedAMVA being abstract provides a
common way to interact with approximate multi-class algorithm solvers without
worrying about the specific implementations.

SolverMultiClosedChow and SolverMultiClosedBardSchweitzer classes
extend SolverMultiClosedAMVA and provide implementations of the Chow al-
gorithm and Bard-Schweitzer algorithm, respectively. Since, they only differ in
how they calculate the queue length of a service centre with one less customer
and the rest of the algorithm is already implemented in SolverMultiClosed-

AMVA, they only add method bodies for the abstract method getQueueLens-

WithOneLessCustomer defined in SolverMultiClosedAMVA.
Since Chow algorithm assumes that the queue length with one less customer

is the same as the queue length with that customer present (i.e. Qr,k(
−−−−→
N − 1c) ≈

Qr,k(
−→
N)), this can be seen in the code snippet from SolverMultiClosedChow

in Listing 4.2, where k is a service centre and c the class of the customer being
removed. Similarly, we can notice in the code snippet of SolverMultiClosed-
BardSchweitzer in Listing 4.3 that in the case where c = r, each individual
queue length is normalised by (Nc − 1)/Nc, before summing up for the service
centre k, as Bard-Schweitzer dictates.

1 protected double [] [] getQueueLensWithOneLessCustomer () {
2 double [] [] scQueueLens = new double [s t a t i o n s] [c l a s s e s] ;
3 for (int k = 0 ; k < s t a t i o n s ; k++) {
4 for (int c = 0 ; c < c l a s s e s ; c++) {
5 double currQueueLen = 0 ;
6 for (int r = 0 ; r < c l a s s e s ; r++) {
7 currQueueLen += queueLen [k] [r] ;
8 }
9 scQueueLens [k] [c] = currQueueLen ;

10 }
11 }
12 return scQueueLens ;
13 }

Listing 4.2: Code snippet from SolverMultiClosedChow.java

1 protected double [] [] getQueueLensWithOneLessCustomer () {

34

2 double [] [] scQueueLens = new double [s t a t i o n s] [c l a s s e s] ;
3 for (int k = 0 ; k < s t a t i o n s ; k++) {
4 for (int c = 0 ; c < c l a s s e s ; c++) {
5 double currQueueLen = 0 ;
6 for (int r = 0 ; r < c l a s s e s ; r++) {
7 i f (c == r) {
8 i f (c l sPopu la t i on [r] != 0) {
9 currQueueLen += queueLen [k] [r] ∗ (c l sPopu la t i on [r]

− 1) /(double) c l sPopu la t i on [r] ;
10 }
11 }
12 else {
13 currQueueLen += queueLen [k] [r] ;
14 }
15 }
16 scQueueLens [k] [c] = currQueueLen ;
17 }
18 }
19 return scQueueLens ;
20 }

Listing 4.3: Code snippet from SolverMultiClosedBardSchweitzer.java

The SolverMultiClosedAQL class extends SolverMultiClosedAMVA and con-
tains the implementation of the AQL (Aggregated Queue Length) algorithm
mentioned in Chapter 3. This class overrides the solve(...) method in its
superclass, as it follows a different technique from the basic one implemented in
its superclass. Upon termination, the values for performance indices are saved
in the variables of its superclass, which are accessed later to be displayed on
GUI.

The SolverMultiClosedLinearizer class extends SolverMultiClosedAMVA
and contains the implementation of the Linearizer algorithm mentioned in Chap-
ter 3. Since Linearizer has a sub-algorithm within it, called Core algorithm,
which takes different set of inputs and works different in general, its imple-
mentation has been moved to its own (inner) class (namely LinearizerCore-

Algorithm), inside SolverMultiClosedLinearizer, modularising it and keep-
ing it independent of the Linearizer implementation.

Moreover, since the Linearizer optimisation proposed by E. De Souza and
Richard Muntz only requires a change in the Core algorithm, we only had to
extend the LinearizerCoreAlgorithm to add their proposed implementation of
Core algorithm, namely DeSouzaMuntzLinearizerCoreAlgorithm. The deci-
sion about which Core algorithm to use is made by the boolean variable useDe-

SouzaMuntz in Linearizer class, which is initialised in the constructor according
to user selection. Since the modification proposed only changes calculation of
queue lengths in Step 2 of Core algorithm (recall Section 3.2.4), this step has
been moved to its own method getSCQueueLengths(...), which means the
modified Core algorithm only has to override this method preventing the need
to replicate the rest of the Core algorithm. In the modified Core algorithm, this

method requires values for S′j,k(
−→
N)∀j, k passed to the algorithm on every call

from Linearizer, a variable has been created for it. Linearizer computes these
values at the start of every iteration and sets the variable in the instance of the
modified Core algorithm thereafter (as shown in Listing 4.4), which are then
used in the overridden version of getSCQueueLengths(...) to process queue
lengths for Step 2 of Core algorithm.

35

1 i f (useDeSouzaMuntz) {
2 for (int k = 0 ; k < s t a t i o n s ; k++) {
3 for (int j = 0 ; j < c l a s s e s ; j++) {
4 s cCustFracDi f f s [k] [j] = 0 ;
5 for (int c = 0 ; c < c l a s s e s ; c++) {
6 s cCustFracDi f f s [k] [j] += c l sPopu la t i on [c]∗ cu s tF ra cD i f f s

[k] [c] [j] ;
7 }
8 }
9 }

10 for (int c = 0 ; c < c l a s s e s +1; c++) {
11 i f (co r eRe su l t s [c] instanceof

DeSouzaMuntzLinearizerCoreAlgorithm) {
12 ((DeSouzaMuntzLinearizerCoreAlgorithm) co r eResu l t s [c]) .

s e tScCustFracDi f f s (s cCustFracDi f f s) ;
13 }
14 }
15 }

Listing 4.4: Code snippet showing computation of S’ (service centre fraction
differences) in Linearizer class at the start of every iteration and saving these
values in the deSouza-Muntz Core algorithm

Single-class algorithms

The implementations written for the multi-class case were designed as a general
solution, hence we can use the same implementations with a wrapper, which
makes them suitable for single-class case. The structure of the algorithm classes
can be depicted with the class diagram in Figure 4.4.

Figure 4.4: Class structure of single-class algorithms

Similar to SolverMulti, Solver is an abstract superclass, which must be
used as the basis for every single-class queuing model solver. It also has an
input(...) method used for specifying model parameters, such as stations,
classes, service demands, class population, and an abstract solve(...) method,
intended to be implemented by its subclasses. The array variables used for
storing values of performance indices (i.e. throughput, utilisation, queue length
and residence times) do not have the class dimension, since there is only one
class.

Since this an abstract superclass, it serves as an interface for single-class
algorithm solvers and separates the underlying implementation when used for
solving a model, reducing dependencies to the concrete implementations.

36

SolverSingleClosedMVA and SolverSingleOpen classes were already a part
of this program prior to this project, so we just focus on the approximate algo-
rithms for closed models.

The SolverSingleClosedAMVA class uses the wrapper design pattern to
solve single-class queuing models. The wrapper design was used to reuse code
from multi-class and to avoid breaking existing design logic, as that might have
caused confusions with the other contributors later. In its constructor, it re-
quires the algorithm to use to be passed as a parameter, which initialises its
solver variable to the relevant multi-class algorithm (this can be seen in List-
ing 4.5). It overrides the input(...) method in its superclass, as it needs to
adjust the parameters passed to multi-class case, in order to forward them to the
relevant solver. Finally, its solve(...) method calls the solve(...) method
on the previously initiated solver and then copies its result into the variables
for performance indices defined in its superclass Solver (this can noticed in
Listing 4.6).

1 private void i n i t i a l i s e S o l v e r () {
2 int [] c lassPop = new int [1] ;
3 c lassPop [0] = customers ;
4

5 i f (SolverAlgor i thm .CHOW. equa l s (a lgor i thm)) {
6 s o l v e r = new SolverMultiClosedChow (1 , s t a t i on s , c lassPop) ;
7 } else i f (SolverAlgor i thm .BARD SCHWEITZER. equa l s (a lgor i thm)) {
8 s o l v e r = new SolverMult iClosedBardSchweitzer (1 , s t a t i on s ,

c lassPop) ;
9 } else i f (SolverAlgor i thm .AQL. equa l s (a lgor i thm)) {

10 s o l v e r = new SolverMultiClosedAQL (1 , s t a t i on s , c lassPop) ;
11 } else {
12 s o l v e r = new So lv e rMu l t iC l o s edL inea r i z e r (1 , s t a t i on s ,

c lassPop , SolverAlgor i thm .DESOUZA MUNTZ LINEARIZER. equa l s
(a lgor i thm)) ;

13 }
14 s o l v e r . s e tTo l e rance (t o l e r an c e) ;
15 }

Listing 4.5: Code snippet used for initialising solver SolverSingleClosed-

AMVA.java

1 public void s o l v e () {
2 s o l v e r . s o l v e () ;
3

4 totUser = customers ;
5 totRespTime = so l v e r . sysResponseTime ;
6 totThroughput = s o l v e r . sysThroughput ;
7

8 queueLen = ArrayUt i l s . ex t rac t1 (s o l v e r . queueLen , 0) ;
9 throughput = ArrayUt i l s . ex t rac t1 (s o l v e r . throughput , 0) ;

10 res idenceTime = ArrayUt i l s . ex t rac t1 (s o l v e r . res idenceTime , 0) ;
11 u t i l i z a t i o n = ArrayUt i l s . ex t rac t1 (s o l v e r . u t i l i z a t i o n , 0) ;
12 }

Listing 4.6: Code snippet used for solving queuing model in SolverSingle-

ClosedAMVA.java

Next, we discuss how these algorithm classes are called and connected with
the abstract queuing model.

37

First, we introduce an enumerated type SolverAlgorithm, which we can use
to distinguish the algorithm(s) selected by user, as enums are generally easier
and quicker to compare than using strings and also considered better coding
practice. The enum values for different algorithms are defined in Listing 4.7.

1 public enum SolverAlgor i thm {
2 EXACT(”MVA”) ,
3 CHOW(”Chow”) ,
4 BARD SCHWEITZER(”Bard−Schwei tzer ”) ,
5 AQL(”AQL”) ,
6 LINEARIZER(” L i n e a r i z e r ”) ,
7 DESOUZA MUNTZ LINEARIZER(”De Souza−Muntz L i n e a r i z e r ”) ,
8 OPEN(”Open”) ,
9 MIXED(”Mixed”) ;

10 }

Listing 4.7: SolverAlgorithm enum

The text defined in brackets is the string representation of the enum, which
will be used by the GUI as algorithm names. The enum stores a static array
of values called CLOSED VALUES, which only has the algorithms that can be
used for solving closed models (i.e. all except OPEN and MIXED), which again
will be utilised by the GUI to display a choice of algorithms for closed models.
Furthermore, the enum has separate methods for checking whether an algorithm
is exact, approximate or for closed models, defined in Listing 4.8. These will be
used by the GUI to show/hide the tolerance box and to show/hide selection of
algorithms for closed models.

1 public stat ic boolean i sC l o s ed (SolverAlgor i thm a lg) {
2 return a lg == SolverAlgor i thm .EXACT | |
3 a lg == SolverAlgor i thm .CHOW | |
4 a lg == SolverAlgor i thm .BARD SCHWEITZER | |
5 a lg == SolverAlgor i thm .AQL | |
6 a lg == SolverAlgor i thm .LINEARIZER | |
7 a lg == SolverAlgor i thm .DESOUZA MUNTZ LINEARIZER;
8 }
9

10 public stat ic boolean i sExact (SolverAlgor i thm a lg) {
11 return a lg == SolverAlgor i thm .EXACT;
12 }
13

14 public stat ic boolean isApproximate (SolverAlgor i thm a lg) {
15 return a lg == SolverAlgor i thm .CHOW | |
16 a lg == SolverAlgor i thm .BARD SCHWEITZER | |
17 a lg == SolverAlgor i thm .AQL | |
18 a lg == SolverAlgor i thm .LINEARIZER | |
19 a lg == SolverAlgor i thm .DESOUZA MUNTZ LINEARIZER;
20 }

Listing 4.8: Checks whether an algorithm is exact, approximate or closed

Finally, we look at SolverDispatcher class which given a model, instanti-
ates the appropriate solver according to number of classes in the model (this
decides whether to use single-class or multi-class solvers) and algorithm selected
by user (value of which is saved in the model) and then calls the solve(...)

method in the instantiated solver. Upon solving the model, it passes the solu-
tions to the model where they are saved for later use. If user chose to perform

38

what-if analysis1, SolverDispatcher makes sure that model is solved and re-
sults saved for each value of control parameter, otherwise it only solves the
model once with the parameters stored in the model. This process is repeated if
more than one algorithm was selected for comparison in what-if analysis (again
these algorithms are accessed from the model).

SolverDispatcher is used within the SolverClient class from jmt.gui.-

exact.link package, which provides the model to dispatcher. Moreover, Solver-
Dispatcher adds an inner interface called SolverListener, which is used to
notify SolverClient when computation of an iteration2 terminates (for what-if
analysis, the number of iterations is the number of different values of control
parameter). This is useful, as it helps determines how much progress has been
made, which is then displayed in a progress window on the GUI to keep user in-
formed. Since this is the only class that communicates with the algorithm solvers
and the only class other packages interact with (except the SolverAlgorithm

enum) within the analytical package, the dependencies between solvers and other
packages are minimised, ensuring loose coupling.

Figure 4.5: Dependencies between these classes

4.3.2 jmt.gui.exact package

This package primarily contains two classes essential to JMVA. We explore their
roles and usefulness in order:

ExactModel class provides a complete representation of the queuing model,
as well as all methods required for parsing an input file (containing the model),
creating an XML representation of the model which can then be saved to a
file and providing access to model parameters to the other classes. The last is

1What-If analysis allows user to solve multiple models changing the value of a control
parameter, such as customer numbers, arrival rates, population mix and service demands. The
user can specify a range of values for the control parameter, which are then used to compute
multiple models. It also allows user to compare the solutions of these models visually on a
graph.

2An iteration here refers to the completion of model evaluation either during normal anal-
ysis or for a value of control parameter during what-if analysis, while iteration count within
approximate algorithms is the number of times we looped until reaching the termination
criteria

39

Figure 4.6: Structural diagram of jmt.analytical package and dependencies
between its classes. As can be seen, there are no cycles, which could have caused
issues with maintenance and code reuse.

achieved with the help of getter methods, which provide values such as class
populations, number of queues, service demands, algorithms selected by user
and their respective tolerances if applicable, as well as performance indices (i.e.
throughput, queue length, utilisation and residence times – these are used when
displaying results to the user). Additionally, it includes several setter methods
used for updating list of selected algorithms and their tolerances as user makes
changes and for saving results in the model passed by SolverDispatcher after
evaluation.

Before this project, JMVA only had one algorithm for solving models, hence
to incorporate the addition of other algorithms, variables were created to mon-
itor which algorithms have been selected and their tolerance values in case of
approximate algorithms. Furthermore, since we added comparison of perfor-
mance indices obtained from different algorithms for the same model in what-if
analysis (instead of knowing there will only ever using one algorithm), the re-
sults from each algorithm had to be stored separately. This was accomplished
with the use of a Map for each performance index and another variable for stor-
ing algorithm iterations. The key of the Map is the algorithm and its value the
results computed using that algorithm (as shown in Listing 4.9). The built-in
implementation of HashMap in Java is used for instantiation of these maps, for
constant time access.

In light of these changes, methods used for saving a model and parsing an
input (model) file had to be updated. We will discuss saving of model first to
highlight the XML convention used for representation the model, which will be
useful when parsing an input (model) file.

The createDocument() method in ExactModel provides a DOM (Document
Object Model) representation of the model. This is created using the API pro-
vided by Java for XML processing. A Document is created with a root element,
to which we add elements for model parameters (such as stations, classes, ser-
vice demands, algorithm selections) and their respective values. Moreover, if the
model has solutions (from its evaluation) saved within the performance indices’

40

1 /∗∗
2 ∗ number o f i t e r a t i o n s a lgor i thm performed fo r each (what− i f)

i t e r a t i o n / execu t ion
3 ∗ dim : a l g I t e r a t i o n s<Algorithm , [i t e r a t i o n s]>
4 ∗/
5 private Map<SolverAlgor ithm , int []> a l g I t e r a t i o n s ;
6

7 /∗∗
8 ∗ queue l en g t h s
9 ∗ dim : queueLen<Algorithm , [s t a t i o n s] [c l a s s e s] [i t e r a t i o n s]>

10 ∗/
11 private Map<SolverAlgor ithm , double [] [] [] > queueLen ;
12

13 /∗∗
14 ∗ throughput
15 ∗ dim : throughput<Algorithm , [s t a t i o n s] [c l a s s e s] [i t e r a t i o n s]>
16 ∗/
17 private Map<SolverAlgor ithm , double [] [] [] > throughput ;
18

19 /∗∗
20 ∗ re s idence t imes
21 ∗ dim : resTime<Algorithm , [s t a t i o n s] [c l a s s e s] [i t e r a t i o n s]>
22 ∗/
23 private Map<SolverAlgor ithm , double [] [] [] > resTimes ;
24

25 /∗∗
26 ∗ u t i l i z a t i o n
27 ∗ dim : u t i l<Algorithm , [s t a t i o n s] [c l a s s e s] [i t e r a t i o n s]>
28 ∗/
29 private Map<SolverAlgor ithm , double [] [] [] > u t i l ;

Listing 4.9: Variable definitions of performance indices. The iteration dimension
in the array refers to the results during that iteration of What-If analysis. This
will just have 1 value for normal analysis, or n values for what-if analysis where
n is the number of control parameter values.

maps, they are also added to the representation, so that the user does not have
to re-evaluate a saved model, if they just want the solutions for performance
indices again. A sample model file with the added changes is added in Appendix
A for reference.

The loadDocument() method, on the other hand, is used to read in the
DOM representation of a model and copy the parameter values into the current
model. The DOM representation is created from the input file using the Java
XML API. Starting at root, the elements are read one by one and values copied
into the relevant model variables. Furthermore, if the file has solutions saved
in it, they are also copied into the relevant performance indices’ maps within
the model, and after successful loading of the model, a solution window will
appear with these results, just like it did when the model was solved before it
was saved.

The other important class in jmt.gui.exact package is ExactWizard, which
is the main GUI class for JMVA (referred to as the wizard in subsequent sec-
tions). It has several sub-components defined as panels on the GUI. These
are organised in the panels sub-package and discussed in Section 4.3.4 of this
chapter. This is the only class that stores a reference to the model, so its sub-

41

components have to access the model through ExactWizard, hence a reference
to ExactWizard is passed when the subcomponents are initialised. The main
change made to this class in particular, was the way it decides on the solution
window displayed to the user. If, say, the user has selected a few algorithms
for comparison in what-if analysis, we have solutions for all those algorithms.
Before, JMVA would only have displayed solutions for one of these algorithms.
This behaviour was changed by adding a tab for each algorithm in the solution
window. Also, since we changed the way we store solutions (by using maps),
relevant changes were made to calls to access solutions, in order to pass them
to the solution window. The new look of JMVA (or ExactWizard) can be seen
in Figure 4.7.

Figure 4.7: New look of JMVA (or ExactWizard)

4.3.3 jmt.gui.exact.link package

This package only has one class, namely SolverClient, which serves as a bridge
between the wizard (JMVA GUI) and the analytical solver package. Solver-

Client receives a request from ExactWizard to solve the model passed to it as
a parameter. The client, in turn, creates a new thread to be used for solving
the model. The dispatcher is added to the thread and model handed over to it.
Once the evaluation terminates for all iterations (there could be more than one,
if what-if analysis is performed), the client returns the model with solutions to
ExactWizard, which displays the results to the user in a solution window.

42

4.3.4 jmt.gui.exact.panels package

Since the wizard has so many subcomponents, not all of which were modified
as part of this project, we mainly focus on the ones that were and the additions
made within them, for the betterment of the program.

The first addition made to the GUI was providing users a way to choose
between different algorithms. The simplest way to do this was to add a drop-
down box (the addition can be seen in Figure 4.8). This was put in its own
class called AMVAPanel, to distinguish it from other subcomponents. This class
extends the abstract class WizardPanel, which acts as the superclass of all
panels and contains their common elements. In AMVAPanel’s constructor, a
reference to the wizard (JMVA GUI) is passed, which can be used to access the
model or other GUI subcomponents.

The algorithms in the drop-down box are separated by exact and approxi-
mate to inform user of their accuracy. Additionally, when the user selects an
approximate algorithm (i.e. Chow, Bard-Schweitzer, AQL, Linearizer or De
Souza-Muntz Linearizer), user is given the chance to input a tolerance value,
as shown in Figure 4.8, the value of which is validated and an error message
returned if invalid. Since the tolerance can usually be quite small and is stored
as a double in the system, its string value can be in exponential form, which
could be confusing for users to read. Hence, a DecimalFormat is used to find
the decimal representation (up to 15 decimal places).

When the user selects an algorithm in the drop-down box, the Action-

Listener attached to it accesses the model via ExactWizard and updates the
algorithm variable. The tolerance text-box works similarly and updates the
tolerance variable, however, it uses a FocusListener so that the user does not
have to press enter to save the tolerance, which is not very intuitive and can
be easily forgotten, hence we save the tolerance whenever focus is lost from the
box, which is a much better solution.

One of the difficulties that presented during the GUI design was how to add
the separators between the exact and approximate algorithms, as a ComboBox

(equivalent of drop-down box) in Java does not allow you to add an unselectable
element in the box. Therefore, a workaround was added to overcome this issue.
This involved adding two elements in the combo box, one before start of exact
algorithm and one before start of approximate algorithms, which will act as the
separators. A custom ListCellRenderer, used to render each element in the
combo-box, was attached to it, and it checked if an element in the combo-box is
not a valid algorithm (validated through SolverAlgorithm enum), then disable
the element, make it unfocusable and change its background to grey to give it
the disabled appearance. Additionally, in the ActionListener of the combo-
box, whenever one of these non-algorithm elements is selected, do not change
the algorithm value in the model or the value in the combo-box, i.e. change the
value of combo-box to the value prior to the click, and since the default value
is the exact algorithm, reaching a scenario where a greyed element is selected is
impossible, avoiding deadlock. This behaviour can be seen in the code snippets
in Listings 4.10 and 4.11.

Since the algorithms listed in the drop-down does not support evaluation of
open and mixed models, but only closed models, the ClassesPanel class within
this package was modified. This is the panel that takes user input concerning

43

Figure 4.8: The drop-down box added to JMVA to choose algorithm used for
evaluation

class parameters, such as class type, population, arrival rate. The change made
was such that whenever an open class is added to the model, the drop-down
and tolerance boxes are disabled, and open and mixed algorithm solvers used
for evaluation instead.

Now that the drop-down box has been added, the next option to add was to
allow users to visually compare the results of algorithms against each other. This
could help the user in deciding the appropriate algorithm for the evaluation of a
bigger model, by comparing the precision in accuracy between the algorithms.
This feature was added to the existing what-if analysis in JMVA.

As mentioned earlier, JMVA provides a way to automate evaluations of
models, which only different on the value of a control parameter, through what-
if analysis. The control parameter can be customer numbers, arrival rates,
population mix or service demands. The user can specify a range of values for
the control parameter, which are then used to compute multiple models. It also
allows users to compare the solutions of these models visually on a graph. This
can be seen in Figure 4.9.

44

1 a l go r i thmLi s t . setRenderer (new Defau l tL i s tCe l lRende re r () {
2 @Override
3 public Component getListCel lRendererComponent (JL i s t l i s t , Object

value , int index , boolean i s S e l e c t ed , boolean ce l lHasFocus)
{

4 Component comp = super . getListCel lRendererComponent (l i s t ,
value , index , i s S e l e c t e d , ce l lHasFocus) ;

5 St r ing s t r = (value == null) ? ”” : va lue . t oS t r i ng () ;
6 i f (SolverAlgor i thm . f i nd (s t r) == null) {
7 comp . setEnabled (fa l se) ;
8 comp . se tFocusab l e (fa l se) ;
9 setBackground (l i s t . getBackground ()) ;

10 setForeground (l i s t . getForeground ()) ;
11 } else {
12 comp . setEnabled (true) ;
13 comp . se tFocusab l e (true) ;
14 }
15 return comp ;
16 }
17 }) ;

Listing 4.10: Definition of ListCellRenderer used for the algorithm combo-box
in AMVAPanel

Figure 4.9: Graphical representation of performance indices for different values
of control parameter customer classes. Comparison between both aggregate and
individual class/station values of performance indices is possible.

Before we add the option to compare different algorithms graphically in
the solution window, we need to provide a way for users to select algorithms

45

1 private Act ionL i s t ene r ACTIONCHANGEALGORITHM = new Act ionL i s t ene r
() {

2 // i n i t i a l va lue
3 int currentItem = 1 ;
4

5 public void act ionPerformed (ActionEvent e) {
6 JComboBox a lgo r i thmLi s t = (JComboBox) e . getSource () ;
7 a lgor i thm = (St r ing) a l go r i thmLi s t . g e tSe l e c t ed I t em () ;
8

9 // check i f a l gor i thm or not
10 i f (SolverAlgor i thm . f i nd (a lgor i thm) == null) {
11 a l go r i thmLi s t . s e tS e l e c t ed Index (currentItem) ;
12 } else {
13 currentItem = a lgo r i thmLi s t . g e tSe l e c t ed Index () ;
14 ew . getData () . setAlgorithmType (a lgor i thm) ;
15 SolverAlgor i thm a lg = SolverAlgor i thm . f i nd (a lgor i thm) ;
16 boolean exact = a lg != null && SolverAlgor i thm . i sExact (a l g

) ;
17 showToleranceFie ld (! exact) ;
18 }
19 }
20 } ;

Listing 4.11: ActionListener defined for the algorithm combo- box in AMVA-

Panel

they would like to use for comparison. To incorporate this functionality, check
boxes were added in WhatIfPanel (panel used for inputting values for control
parameter), as shown in Figure 4.10. As the figure demonstrates, we have an
outer check box (i.e. ”Compare Algorithms”), which is used to specify whether
the user would like to compare algorithms graphically at all, and the inner
check boxes used for selecting the algorithms to be used for comparison. The
approximate algorithms have tolerance boxes next to them. Another thing to
notice in the figure is that if the ”Compare Algorithms” box is selected, the
drop-down box for algorithm selection and its corresponding tolerance box are
disabled, as their values would be ignored. However, if it is not selected, the
algorithm and tolerance from the drop-down box are used for evaluation, to
provide a simple way of performing what-if analysis if only one algorithm is to
be used.

46

Figure 4.10: Sub-panel of checkboxes, added to WhatIfPanel, used for selecting
algorithms to use during what-if analysis

An array called compareAlgs was added to ExactModel for storing the values
of the checkboxes, and likewise, algTols array for storing the tolerances from
text-boxes. They are saved so that these settings can be restored when the
user saves the model and opens it again. A DecimalFormat is again used for
getting a decimal representation of the tolerance. Similar to the drop-down box,
the ActionListener attached to the checkboxes access the model via Exact-

Wizard (a reference to which is again passed to WhatIfPanel’s constructor) and
updates the relevant value in the compareAlgs array. The tolerance text boxes,
likewise, update the algTols array, however, they use a FocusListener, which
as mentioned earlier is a more intuitive option.

Next, we discuss how we compare algorithms graphically in the solution
window displayed after termination of what-if analysis.

A new column was added to the GraphPanel (class responsible for the graph-
ical representation of the performance indices from what-if analysis), to allow
the user to select between different algorithms and compare their solutions, as
shown in Figure 4.11. For open and mixed models, the algorithm column does
not appear. The framework used for plotting the performance index values on
the graph is called Ptplot framework (written in Java).

47

Figure 4.11: The new algorithm column added for comparing solutions from
different algorithms

GraphPanel uses a custom implementation of JTable written as an inner
class called LinesTable. The combo-boxes used for selecting a class, station
and algorithm are stored within a LinesTable. It uses the built-in combo-box
cell editor for each cell. Each combo-box in the algorithm column is initialised
to list of algorithms obtained from the keyset of one of the performance index’s
map (recall solutions to performance indices were stored in Maps with algorithm
as the key). LinesTable uses a custom table model, namely LinesTableModel,
which is used to manage the cells in the table. It defines methods for returning
the column and row count for the table, whether a cell is editable3 and the value
of a cell4 and for defining what to do when a cell value (i.e. combo-box value)
is changed. The last one is the most interesting one, defined in the method
setValueAt(Object aValue, int rowIndex, int columnIndex), where the
first parameter represents the selected index in the cell, i.e. combo-box and
the other two specify the location of the cell in the table. For each column, it
saves the value in an array, to keep track of the class/station/algorithm selected
in each row of the table and then updates the performance index values for
that row in the graph (Listing 4.12 shows the case for algorithm column and
the method called for updating the index values). To update the graph, the
saved algorithm value for the modified row is used, in order to get the name of

3A cell is editable if it is in the class or station column, or if it is an algorithm column and
there is more than one algorithm to choose from. If a cell is not editable, a label is used at
its place instead of a combo-box

4The value of a cell depends on in which column it appears. A cell in class/station column
will be either ’Aggregate’ or a class/station name, while a cell in algorithm column will be
one of the algorithms selected for evaluation.

48

the algorithm from the model (using getAlgorithmName(int index) method),
which subsequently is used to obtain values of the selected performance index
for that algorithm from the model, as shown in Listing 4.13 for the case of
throughput.

1 public void setValueAt (Object aValue , int rowIndex , int columnIndex
) {

2 i f (columnIndex == 2) {
3 . . .
4 } else i f (columnIndex == 3) {
5 a lgor i thms [rowIndex] = ((In t eg e r) aValue) . intValue () + 2 ;
6 } else i f (columnIndex == 1) {
7 . . .
8 }
9 // Paints new index

10 paintIndexAtRow (rowIndex) ;
11 }

Listing 4.12: Code snippet from LinesTableModel class within GraphPanel

that shows the steps taken after a value is changed in the table. The ’+2’ is
added because the combo-box editor defined in the table returns the value as
(index− 2).

1 private void paintIndexAtRow (int rowNum) {
2 . . .
3 SolverAlgor i thm a lg = SolverAlgor i thm . f i nd (getAlgorithmName (

rowNum)) ;
4 // Throughput
5 i f (current Index . equa l s (ExactConstants . INDICES TYPES [0])) {
6 i f (classNum >= 0 && statNum >= 0) {
7 graph . draw (rowNum, model . getThroughput (a l g) [statNum] [

classNum]) ;
8 } else i f (classNum < 0 && statNum >= 0) {
9 graph . draw (rowNum, model . getPerStat ionX (a lg) [statNum]) ;

10 } else i f (classNum >= 0 && statNum < 0) {
11 graph . draw (rowNum, model . getPerClassX (a lg) [classNum]) ;
12 } else {
13 graph . draw (rowNum, model . getGlobalX (a lg)) ;
14 }
15 }
16 . . .
17 }

Listing 4.13: Code snippet from GraphPanel class for updating the graph

While this covers the graphical representation of the results, JMVA also
provides the numerical results to the user. For a normal analysis, these are
the only results shown to the user, but for what-if analysis, both graphical
and numerical results are shown under separate tabs (’Graphical Results’ and
’Numerical Results’, respectively). Figure 4.12 shows the solution window after
a normal analysis, while Figure 4.13 shows the numerical results from a what-if
analysis. As the figures demonstrate, the solutions are distinguished first by the
algorithm tabs (in the case of what-if analysis), and then by the performance
index tabs. Each tab was implemented as a panel, with the class hierarchy

49

as shown in Figure 4.14. The performance index panels get their values from
the model through the wizard, a reference to which is passed to each panel’s
constructor.

Figure 4.12: Solution window after a normal analysis

50

Figure 4.13: Numerical results from what-if analysis shown under ’Textual Re-
sults’ tab, while graphical representation appears under ’Graphical Results’ tab.
The ’Execution number’ parameter is the iteration number for the different val-
ues of control parameter.

Figure 4.14: The class hierarchy of solution panels

As you may have noticed in some of the screenshots of the solution win-
dow, there is one more panel we have not discussed yet, that is the ’Synopsis’
panel. This panel displays a summary of the model that was evaluated, i.e.
the model parameters provided by the user. Prior to this project, the Synopsis
panel displayed the class, station and service demands information. Since users

51

can now specify algorithms to use in addition to those parameters, this needs
to be reflected in the Synopsis panel. The class responsible for this panel is
SynopsisPanel, which essentially uses an XSLT (EXtensible Stylesheet Lan-
guage Transformations) template to extract relevant data from the XML repre-
sentation of the model and copy that into an XML file, conforming to the design
specification in the template. The output XML file is then displayed within the
Synopsis panel. So, we added an extra table to the XSLT template to show al-
gorithm information that includes algorithm names, their respective tolerances
and their iteration count (in the case of what-if analysis, the algorithm iteration
count for each execution are displayed in the order the executions were per-
formed and separated by commas). This is only done for closed models, as the
algorithms are only applications to them. The result can be observed in Figure
4.15. A code snippet from the XSLT template file for including the algorithm
information table is shown in Appendix B.

4.3.5 Moment Analysis

Another feature that has been added to JMVA is the calculation of mean and
variance of queues. In addition to providing values of performance indices, the
algorithms can also be used to compute mean and variance of queue lengths of
individual service centres in a queuing model. This section uses material from
Section 3.3.

For this feature, a new class was created, called Moment, in the analytical
package. It takes a model file as input and returns the mean and variance of
each queue in that model. For each service centre, it calculates the first power
moment, by solving the original model. The first binomial moment is computed
from the first moment and this is used to compute the second binomial mo-
ment, along with the queue length obtained from solving the model with an
additional replica of the service centre in question (recall Section 3.3). From
these binomial moments, second power moments are calculated using the equa-
tions in Section 3.3. Finally, from the power moments, the mean and variance
are easily computed and returned. It uses MVA algorithm if there is a single
class in the model, or if the number of classes and number of stations are less
than four (since MVA struggles with models having classes or stations greater
than four, as well as taking into consideration that we also have to solve the
same model with an additional replica station, so we have to ensure both models
are feasible for MVA), otherwise it uses De Souza-Muntz Linearizer, as that is
the most accurate approximate algorithm and would provide closest estimates
to actual mean and variance. We use De Souza-Muntz Linearizer instead of the
original Linearizer, because it provides the same degree of accuracy with lower
complexity.

This analysis of moments has not been integrated into JMVA GUI, however,
in the future, users could be given the choice to compute mean and variance,
in addition to solving the model, and the measures could be displayed in their
own panel or with in the Synopsis panel along with other service centre/station
characteristics. However, for the time being, they have to be computed through
command-line in the following manner:

java -cp JMT.jar jmt.analytical.Moment sample_model_file.jmva

The testing for class was done by comparing the interim binomial moments

52

and actual results with the values provided by the supervisor for some given
models.

In addition to the above use, the binomial moment generation method in
Moment class, that is getBinomialMethod(int[] replicas) can be used to
calculate any binomial moment, with the given replicas array, which contains a
value for each service centre in the model, where the value indicates the number
of replicas of service centres to be added to the model. Also, there are established
methods for easily computing the first, second and third power moments, given
we know the values for the first, second and third binomial moments.

4.4 Testing and Verification

Testing and verification of program’s output were very important aspects of the
implementation process, as they helped in ensuring the robustness and correct-
ness of the program. Since the algorithms added are approximate and hence
only provide estimates, we could not write unit tests to compare their results
with the expected values. Therefore, in order to verify that all the algorithms
and their associated solvers were working correctly, system-level testing was
performed which involved comparing solutions of models taken from research
papers and provided by the supervisor, as well as comparison with other existing
implementations of some of these algorithms written in MATLAB. In the case
of calculation of mean and variance of service centres, examples were provided
by the supervisor, which were then compared against the values obtained from
the program. Moreover, user acceptance testing was performed thoroughly for
the GUI by myself, my supervisor and other contributors who work on JMVA,
to pinpoint any erratic or incorrect behaviour.

This concludes the implementation part of the report. In the next chapter,
we evaluate the usefulness of the implemented algorithm solvers, and of the
work done in this project.

53

(a) For normal analysis

(b) For what-if analysis

Figure 4.15: Addition of algorithm information in Synopsis panel

54

Chapter 5

Evaluation

Now that the algorithms have been implemented and fully integrated into JMVA,
the next thing to consider is whether they offer any benefits over the exact tech-
niques in practice. In order to quantify the impact of the proposed modifications
and to investigate the achieved improvements in real-life scenarios, we used well-
known examples given from research papers, as well as created our own a set of
queuing network models.

This chapter is structured in the following manner:

• First, we consider evaluation of real application models, to show their
applicability and usefulness in different real-world scenarios.

• Secondly, we show results and draw conclusions from an experimental
campaign carried out to benchmark each algorithm and compare their
performance against the exact algorithm.

• Lastly, we summarise the effectiveness of the approximate algorithms and
the strengths and weaknesses of the work accomplished as part of this
project.

5.1 Real Application Models

5.1.1 Capacity Planning of an Intranet with Multi-class
Workload

Consider an IT infrastructure with a web server, an application server and
three database servers1. We suppose that the number of customers submitting
requests remains constant. This allows us to use a closed model to represent the
system, for which we can use the approximate algorithms implemented earlier.
Customers submit HTTP requests to the web server and wait a few seconds
for the web page to load in their browser. Hence, we suppose the delay be-
tween HTTP requests is 1 second. If the submitted request is for a static page,
the HTTP response from web server is immediately returned to the customer,
otherwise the web server communicates with the application server, which subse-
quently talks to the database to perform some queries and returns the processed

1This example has been adapted from an example in [16]

55

Customers

Web Server

DBs

App Server

.

.

.

Delay Server

Figure 5.1: System model used for capacity planning case study

LightLoad HeavyLoad
Web Server 1.40 1.10
App Server 2.10 1.50

Database Server 1 1.10 2.90
Database Server 2 1.20 2.70
Database Server 3 1.10 2.80

Table 5.1: Service demands in milliseconds for each station and class in the
system.

data is returned back to the web server. The system model is presented in Figure
5.1. Since we are examining an Intranet, we assume there are no communica-
tions delays imposed by the local area network (LAN), due the extremely high
speeds offered on a LAN now-a-days.

The database servers work in parallel, and a job is assigned to them by a
load-balancer in a random manner. The distribution of requests among the
servers is assumed to be uniform. We also assume the load-balancer does not
introduce any delay in the network.

The requests are divided into two types: request for a search query on the
database and request for update query on the database. These types are mod-
elled as classes in our queuing model, with the servers assuming the role of
service centres/stations. Since a search query puts significantly less load on
the database than an update query, we refer to the classes as LightLoad and
HeavyLoad, respectively. The service demands for each station and each class
are provided in Table 5.1.

Now, we analyse system behaviour as customer population increases. We
range the number of customers from 10 to 1000 and assume the ratio between the
number of LightLoad requests and HeavyLoad requests is 3/7. We used what-if
analysis in JMVA to perform this analysis. In Figure 5.2, we plotted the values

56

of the system throughput for the range of customer populations. In addition,
we solved the model using exact MVA as well as all approximate algorithms
(with tolerance = 0.0000001), so that we could compare their accuracy against
exact MVA. As the figure demonstrates, the system reaches saturation around
600 customers. Furthermore, Figure 5.3 shows that the system response time
increases linearly after an initial phase. We can infer from these findings that
a bottleneck2 exists in the system. This is confirmed in Figure 5.4, which plots
the utilisation of each station/server. It is clear that the application server
reaches complete saturation around 600 customers (as its utilisation becomes
1), and constitutes the bottleneck in the system. This signifies that when the
application server reaches saturation, the system throughput remains constant
(as shown in Figure 5.2).

As this example demonstrates, the algorithms can be used to check for bot-
tlenecks within a system, by modelling it with a queuing network. Also, as
Figures 5.2 and 5.3 show the difference between values obtained from approxi-
mate algorithms and exact MVA is almost negligible and results are still accurate
enough for an estimate, even more so for AQL, Linearizer and De Souza-Muntz
Linearizer (see Figure 5.5). Since this was relatively small model, it allowed us
to use exact MVA. If, however, we were to add other types of queries to the
model as well, such as delete and insert queries, solving with MVA would not
be feasible, at least not within any reasonable amount of time. In that case,
approximate algorithms would be very effective, as they can solve the model
realistically with a reasonable degree of accuracy.

5.1.2 A J2EE Application

We continue the evaluation considering a real application model which cannot be
solved with Exact MVA. The results demonstrate how useful the implemented
approximate algorithms can be when evaluating large (closed) models. We
consider the large-scale J2EE service application modelled by Samuel Kounev
and Alejandro Buchmann in [10]. We provide an overview of the model discussed
in the paper. For a detailed description, please look at the paper.

The application runs on a two-tier architecture with a cluster of kAS repli-
cated application servers (AS) and a back end which consists of a dual-processor
database server (DB). The workload is represented in terms of C = 5 classes,
labelled C1–C5, which represent a new order placement or an status query.
We look at the most complex architecture among the ones evaluated in [10],
which has kAS = 9 and overall K = 12 stations, which also include a station
that represents communication overheads (CO). We assume the delay to be
Z1 = ... = Z4 = 2s for the first four classes and Z5 = 3s for the fifth class. The
service demands for the stations and classes are given in Table 5.2. We evaluate
the following three workload profiles:

• Low load:
−→
N = (30, 10, 50, 40, 50)

• Medium load:
−→
N = (50, 40, 100, 70, 100)

• Heavy load:
−→
N = (100, 50, 150, 50, 200)

2Presence of a bottleneck indicates that the a station is working at full capacity (this is
the bottleneck), while the load of other stations remains limited as the number of customers
increase.

57

Figure 5.2: Global system throughput for the chosen range of number of cus-
tomers, computed using different algorithm techniques. Red line represents
results of Exact MVA, blue line represents Chow, turquoise represents Bard-
Schweitzer, black represents AQL, orange represents Linearizer and green rep-
resents De Souza-Muntz Linearizer.

Figure 5.3: Global system response time for the chosen range of number of
customers, computed using different algorithm techniques. Red line represents
results of Exact MVA, blue line represents Chow, turquoise represents Bard-
Schweitzer, black represents AQL, orange represents Linearizer and green rep-
resents De Souza-Muntz Linearizer.

58

Figure 5.4: Utilisation of each station/server for the chosen range of number of
customers, computed using Exact MVA. The top line represents the application
server, the bottom line represents the web server and the middle three represent
the database servers.

Figure 5.5: Utilisation error on each station for each approximate algorithm.
Although the error in AQL, Linearizer and De Souza-Muntz Linearizer is neg-
ligible, the errors in the other two are still fairly small.

59

Station name Stations C1 C2 C3 C4 C5
AS kAS = 9 12.98 13.64 2.64 2.54 24.22
DB kDB = 2 5.32 5.18 1.24 1.04 17.07
CO kCO = 1 1.12 1.27 0.58 0.03 1.68

Table 5.2: Service demands Dc,k in milliseconds of the J2EE application model.

The evaluations are performed on batch1.doc.ic.ac.uk machine, which
has 16 cores of Intel Xeon-2.53 Ghz and 23 GB of memory. We plotted the
runtimes for these models when solved with all approximate algorithms (using
tolerance = 0.0000001) in Figure 5.6. The memory requirements for each in-
dividual execution was almost 2 MB, meaning as the memory consumption for
these algorithms does not increase very much as population increases. Although
we could not run exact MVA on these models, we obtained runtime and memory
requirements for Method of Moments (MoM) algorithm3 from [5]. Using MoM,
the low load model was solved in 0.9s using 1.6 MB of memory, the medium load
in 4.7s using 2.3 MB of memory and the heavy load in 14.1s using 3.4 MB of
memory. Comparing these values with Figure 5.6, it is evident that the approx-
imate algorithms are considerably quicker, and since MoM’s time complexity
is O(N2), it would get slower as population increases, while the approximate
algorithms would still be very quick, as their complexity depends on the num-
ber of stations and classes. These results further validate the applicability of
approximate algorithms on models of practical interest.

5.1.3 Stress Case

The final case study we look at is one where we test the algorithms under
extreme stress (i.e. very large customer population). The example is taken from
[5] to simplify comparing the results, as the paper provides solutions, while also
comparing time and memory requirements.

We consider a model with five distinct stations, named S1–S5, and C = 7
workload classes, named C1–C7, and 16,660 jobs present. The service demands
are provided in Table 5.3. The populations used in the model are defined by

the vector
−→
N = (10000, 5000, 1000, 500, 100, 50, 10).

On the same machine as before, we ran the approximate algorithms with
tolerance = 0.0000001 (10−7). The runtime, queue length of class 1 at station
1 Q1,1, throughout of class 2 X2 and memory requirements of all approximate
algorithms and MoM are provided in Table 5.4. It is evident that the approx-
imate algorithms are extremely quick even with vast populations. While MoM
took minutes to solve the model, the approximate algorithms solved it within
milliseconds with minimal memory usage and a very high degree of accuracy.
The memory requirement of MVA for this model would be approximately 1010

GB. This case study further emphasises the key computational and memory ad-
vantage of approximate algorithms over the exact algorithms for large models
and ever larger populations.

3Method of Moments (MoM) algorithm is another exact algorithm, which while being more
complex, is not as computationally intensive as exact MVA.

60

Figure 5.6: Utilisation error on each station for each approximate algorithm.
Although the error in AQL, Linearizer and De Souza-Muntz Linearizer is neg-
ligible, the errors in the other two are still fairly small.

Station C1 C2 C3 C4 C5 C6 C7
S1 64 77 93 27 19 60 8
S2 68 70 14 22 32 2 64
S3 28 2 68 34 22 47 81
S4 35 97 69 15 82 83 10
S5 10 85 88 71 62 79 98

Table 5.3: Service demands Dc,k in milliseconds for stress case with N = 16, 660
jobs.

61

Runtime (s) Q1,1 X2
Memory
(MB)

Chow 0.003 9982.207529 0.00389701 1.89

Bard-Schweitzer 0.005 9982.208475 0.003897244 1.89

AQL 0.004 9982.23135 0.003897244 1.89

Linearizer 0.024 9982.231584 0.003897244 3.78

De Souza-Muntz
Linearizer

0.01 9982.231584 0.003897244 3.78

MoM 409 9982.23 0.00389724 407

Table 5.4: Service demands Dc,k in milliseconds for stress case with N = 16, 660
jobs.

5.2 Experimental Evaluation

To benchmark the performance of the approximate algorithms, we carried out
an experimental campaign on the same machine as before. The comparison is
done against the MVA algorithm because for large populations, it is typically
the best performing among existing methods, although inefficient.

We consider in this section simple models with no more than C = 4 classes,
for which existing methods can be feasible under large populations4. The num-
ber of queues/stations (K) used is 3 and it is kept constant, while the number of
classes ranges from 2 to 4. Several workload profiles are defined, corresponding
to super-low, low, medium and heavy load for each model. The load represents
the number of jobs circulating the system. The populations assigned to each
profile is 100, 300, 500 and 700, respectively. These populations are split equally
among the classes (i.e. Nc = N/C), with rounding to the nearest integer. A con-
stant tolerance of 0.0000001 (10−7) is used for all approximate algorithms. The
measures used for comparing performance of approximate algorithms include
runtime and queue length tolerance error, which is defined as

max
c,k

|Qc,k −Q∗c,k|
Nc

where Qc,k is the approximate class c queue length at centre k, Q∗c,k is the
exact value, and Nc is the class c population. Tolerance error is used instead
of relative error because the latter measure is very sensitive to small errors
in small values, although these errors have negligible impact on our notion of
overall accuracy [17].

5.2.1 Queue Length Tolerance Error

Now, we compare the queue length tolerance error percentage of the approxi-
mate algorithms obtained from the experimental campaign. From Figures 5.7–
5.10, we can deduce that the approximate algorithms scale very well to large
populations as the error percentage goes down as populations increase. The fig-
ures also confirm our hypothesis that Chow is the least accurate algorithm and
Linearizer the most accurate algorithm, among the ones implemented, as well as

4Beyond four classes, exact MVA is too computationally expensive to be solved within any
reasonable amount of time.

62

Figure 5.7: Maximum queue length tolerance error percentage when evaluating
model, using different algorithms, with total population (N) = 100 and K = 3
queues for varying number of classes, C.

the fact that Linearizer and De Souza-Muntz Linearizer should effectively have
the same results. In fact, for AQL, Linearizer and De Souza-Muntz Linearizer,
the error remains below 0.5% for all populations and even becomes negligible for
the model with population N = 700. These algorithms demonstrate great po-
tential for providing very accurate estimations, while Chow and Bard-Schweitzer
mainly good for a quick analysis (due to their lower complexity), where shorter
length of execution is desired over accuracy. Although, as you will see in the
next section, the runtime between the approximate algorithms does not differ
by much, meaning AQL and Linearizer are not actually that expensive and in
most circumstances, would be worth sacrificing a second for better precision.

5.2.2 Runtime

Now, we compare the runtime of different algorithms obtained from the experi-
mental campaign. As Figures 5.11–5.14 demonstrate, there is a significant jump
in runtime from C = 3 to C = 4 with MVA algorithm, which is made even more
apparent with larger populations. This implies that the MVA algorithm does
not scale well with increase in number of classes and populations. However, all
the approximate algorithms barely notice any difference in runtime as number
of classes and populations increase. Hence, they will be more suitable for large
models, especially those where number of classes is greater than 4. Figure 5.15

63

Figure 5.8: Maximum queue length tolerance error percentage when evaluating
model, using different algorithms, with total population (N) = 300 and K = 3
queues for varying number of classes, C.

64

Figure 5.9: Maximum queue length tolerance error percentage when evaluating
model, using different algorithms, with total population (N) = 500 and K = 3
queues for varying number of classes, C.

65

Figure 5.10: Maximum queue length tolerance error percentage when evaluating
model, using different algorithms, with total population (N) = 700 and K = 3
queues for varying number of classes, C.

66

shows the runtime for different algorithms for the workloads with five stations
and five classes. Even though MVA cannot solve this model, the approximate
algorithms can and we also notice that the runtime of algorithm decreases as to-
tal population increases, confirming that these algorithms scale well to increase
in population.

With the significantly low runtimes and low error percentages even for large
populations, we can conclude that these approximate algorithms are far more
scalable than MVA algorithm and since real-life models are usually quite big
and complex, the approximate algorithms are a much better and effective so-
lution than exact MVA algorithm. It means that practically anyone can run
approximate algorithms on their systems, without the need for very powerful
systems, due to them being computationally light in comparison to the exact
techniques.

Figure 5.11: Total time needed to evaluate model, using different algorithms,
with total population (N) = 100 and K = 3 queues for varying number of
classes, C.

5.3 GUI Evaluation

Having talked about the quantitative aspects of evaluation, we briefly discuss the
qualitative aspects. These aspects were covered as part of the user acceptance
testing. It mainly involved thoroughly testing the GUI of the final product by
myself and others. To test the usability aspect of the final product, feedback

67

Figure 5.12: Total time needed to evaluate model, using different algorithms,
with total population (N) = 300 and K = 3 queues for varying number of
classes, C.

was be obtained from a group of people familiar with the subject (for example,
the supervisor and other JMVA contributors) regarding the ease of use of the
new features and how easy, self-contained and self-explanatory they are. In
addition, the program was tested with several different inputs (valid and invalid)
and workloads to observe its behaviour. Moreover, the behaviour of algorithms
was observed, such as in terms of accuracy of algorithms, the order we get is
Chow, Bard-Schweitzer, AQL, Linearizer and De Souza-Muntz Linearizer (from
least to most accurate), and Linearizer and De Souza-Muntz Linearizer provide
similar results. The feedback proved very helpful in attaining a correct and
robust program.

5.4 Strengths and Weaknesses

The strengths of the work accomplished as part of this project include:

• Complete and seamless integration of the approximate algorithms within
JMVA.

• Simple, intuitive interface for choosing between different algorithms.

• Ability to compare results of all algorithms (including MVA) against each
other graphically, as well as numerically.

68

Figure 5.13: Total time needed to evaluate model, using different algorithms,
with total population (N) = 500 and K = 3 queues for varying number of
classes, C.

• Saving of algorithm preferences and their results when a model is saved,
and reloading of them upon opening a model.

• Simple, command-line execution of moment analysis for stations in a
model to compute their mean and variance.

• Simplicity of adding new algorithms to the system, due to the designed
algorithm API.

Although majority of the project was a success, there are some limitations
associated with it, as listed below:

• We initially planned to incorporate another exact algorithm called Method
of Moments (MoM) (which is not as computationally intensive as MVA)
into JMVA, using its implementation by Michail Makaronidis [13]. How-
ever, due to issues with his implementation, it had to be removed. Since
it can solve even large models, unlike MVA, it would have been a useful
addition. Nevertheless, adding new algorithms to the system has been
made extremely simple as a result of this project, so if an implementation
of MoM or any other algorithm needs to be included, the process would
not be as too tedious or time-consuming.

69

Figure 5.14: Total time needed to evaluate model, using different algorithms,
with total population (N) = 700 and K = 3 queues for varying number of
classes, C.

• As moment analysis has not been incorporated into the GUI yet, users are
required to use command-line, which all users may not be fully familiar
with. Also, since it takes a model file as input, the model has to be created
in JMVA first and saved before we can run moment analysis, which makes
the process a little tedious. However, this also makes it more flexible, since
we do not need to write our own command-line parser, as we can just use
the one we implemented for JMVA and also, the model only needs to be
created once in JMVA and can be used with both JMVA and moment
analysis.

70

Figure 5.15: Total time needed to evaluate model, using different algorithms,
with K = 5 queues and C = 5 classes for varying total population, N. Although
MVA cannot be run on this model, we can still run approximate algorithms
with quick evaluations.

71

Chapter 6

Conclusion

We have presented a library of approximate algorithms, which are used for solv-
ing closed queuing network models and are very well-suited to solving large
models. These have been implemented and designed in a way to provide seam-
less integration with the JMVA tool. The design of implemented algorithm API
is flexible and makes it easy to include new algorithms or new implementations
of existing ones in JMVA. We introduced clear, intuitive ways for users to make
use of these algorithms in the evaluation of models and to compare the results
of algorithms against results from other algorithms and MVA numerically and
graphically. The latter allows user to visually see the difference in accuracy be-
tween the approximate algorithms, which may help them decide which algorithm
to use for future models.

The most important conclusions drawn from the evaluation of these algo-
rithms was that they provide considerable improvements over MVA, in terms
of runtime and memory usage. Although there is a small price of accuracy
to pay with Chow and Bard-Schweitzer algorithms, AQL, Linearizer and De
Souza-Muntz Linearizer make up for it with nearly accurate estimates (with an
error percentage of below 0.5%). We also found that although the approximate
algorithms are not as accurate for small populations, they scale extremely well
to large models and populations, which is something MVA does not offer. As
complexity of AQL, Linearizer and De Souza-Muntz Linearizer depends primar-
ily on the number of classes and stations in the network, we believe they have
a clear advantage over Chow and Bard-Schweitzer, considering the practical
models these are used with will generally have very large populations (which we
already know these algorithms scale well for), but still not as many stations and
classes to have a negative impact on runtime. Also, as we found in the stress
case evaluation, even with other exact techniques which can solve large models,
these algorithms still far surpass them, on the subject of runtime, without sacri-
ficing hugely on accuracy, meaning they are perfect for quick model evaluations,
where exact solutions are not necessarily needed. Since these algorithms are not
very CPU- or memory-intensive, it means that these could practically be run on
any machines, avoiding the need for extremely powerful machines which would
be required for MVA.

After the successful integration of these algorithms in JMVA, we focussed our
attention to moment analysis, which makes use of these algorithms (Linearizer
to be specific). After researching about moments and finding out about their

72

significance in queuing networks (recall 3.3), we noticed how easily we could
compute them using MVA (for small models) and the implemented approximate
algorithms (for other models). These provide important characteristics about
station queue lengths, such as mean and variance, which can be helpful in better
understanding their distribution. Regrettably, we did not have the chance to
explore this topic further to establish a way of computing marginal probabilities
of stations.

6.1 Future Work

Although not possible for this project, Method of Moments (MoM) algorithm
could be included in JMVA in the future. It is another exact algorithm, which
solves queuing networks by recursively computing a set of higher order moments
of the stations’ queue length distributions, using a a system of linear equations
involving normalising constants. It provides drastic improvement in terms of
cost for an exact analysis compared to the MVA algorithm and does not scale
as badly as MVA for bigger models and thus, would be a useful addition to
JMVA and its users who require exact solutions. Since it can be parallelised
with multi-threads, it could provide even better performance.

Additionally, we could allow users to set maximum number of iterations,
along with tolerance, as termination criteria for approximate algorithms in
JMVA. This would allow to use either or both measures, as some users might
prefer one over the both. The APIs for this have already been established in
the algorithm solvers, so only the option in the GUI needs to be added.

Lastly, the work on moment analysis could be extended to include calculation
of marginal probabilities (i.e. probability that there are n jobs at a station k) for
stations from binomial and power moments. The formulas connecting marginal
probabilities with binomial and power moments were provided in section 3.3.
As we already covered calculation of moments in this project, we could use
these values to get a system of linear equations, which could be solved with
Simplex algorithm to obtain a solution for the marginal probabilities. These
could then be incorporated into JMVA, along with moment analysis, to provide
a simple, intuitive way for users to compute moments and marginal probabilities
of stations in a model. Furthermore, other moments, such as skewness, could
also be added to moment analysis.

73

Bibliography

[1] Java Modelling Tools – Users Manual, November 2011.

[2] S. Balsamo. Product form queueing networks. Lecture Notes in Computer
Science, pages 377–402, 2000.

[3] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. Jmt: performance
engineering tools for system modelling. ACM SIGMETRICS Performance
Evaluation Review, 36(4):10–15, March 2009.

[4] Giuliano Casale. On single-class load-dependent normalizing constant equa-
tions. Proc. of QEST, pages 333–342, September 2006.

[5] Giuliano Casale. Exact analysis of performance models by the method of
moments. Performance Evaluation, 68(6):487–506, June 2011.

[6] K. Mani Chandy and Doug Neuse. Linearizer: a heuristic algorithm for
queueing network models of computing systems. Communications of the
ACM, 25(2):126–134, February 1982.

[7] We-Min Chow. Approximations for large scale closed queueing networks.
Performance Evaluation, 3(1):1–12, 1983.

[8] E. de Souza e Silva and R. R. Muntz. A note on the computational cost
of the linearizer algorithm for queueing networks. IEEE Transactions on
Computers, 39(6):840–842, June 1990.

[9] Armin Heindl and Appie van de Liefvoort. Moment conversions for discrete
distributions. Proc. of PMCCS-6 Workshop, 2003.

[10] Samuel Kounev and Alejandro Buchmann. Performance modeling and eval-
uation of large-scale j2ee applications, 2003.

[11] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C.
Sevcik. Quantitative System Performance: Computer System Analysis Us-
ing Queueing Network Models. Prentice-Hall, Inc., 1984.

[12] Edward D Lazowska, John Zahorjan, and Kenneth C Sevcik. Computer
system performance evaluation using queueing network models. Annual
review of computer science, 1:107–137, 1986.

[13] Michail A. Makaronidis. Efficient analysis of it sizing models. Master’s
thesis, Imperial College London, 2010.

74

[14] Georgios Poullaides. Algorithms for computer system performance analysis.
Master’s thesis, Imperial College London, 2011.

[15] Paul J. Schweitzer. Approximate analysis of multi-class closed networks of
queues. Proceedings of International Conference on Stochastic Control and
Optimization, pages 25–29, 1979.

[16] Giuseppe Serazzi. Performance Evaluation Modelling with JMT: learning
by examples. Politecnico di Milano - DEI, June 2008.

[17] John Zahorjan, Derek L. Eager, and Hisham M. Sweillam. Accuracy, speed,
and convergence of approximate mean value analysis. Performance Evalu-
ation, 8(4):255–270, August 1988.

75

Appendix A

Sample model file

1 <?xml version=” 1 .0 ” encoding=”UTF−8” standalone=”no”?>
2 <model xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”

xsi:noNamespaceSchemaLocation=”JMTmodel . xsd”>
3 <parameters>
4 <c l a s s e s number=”1”>
5 <c l o s e d c l a s s name=”Class1 ” populat ion=”5”/>
6 </ c l a s s e s>
7 <s t a t i o n s number=”1”>
8 < l i s t a t i o n name=” Stat ion1 ” s e r v e r s=”1”>
9 <s e r v i c e t ime s>

10 <s e r v i c e t ime cus tomerc l a s s=”Class1 ”>
0.027385234208403157</ s e r v i c e t ime>

11 </ s e r v i c e t ime s>
12 <v i s i t s>
13 <v i s i t cu s tomerc l a s s=”Class1 ”>1 .0</ v i s i t>
14 </ v i s i t s>
15 </ l i s t a t i o n>
16 </ s t a t i o n s>
17 </parameters>
18 <algParams>
19 <algType name=”Bard−Schwei tzer ” t o l e r an c e=” 1 .0E−7”/>
20 <compareAlgs va lue=” true ”>
21 <whatIfAlg index=”0” name=”MVA” to l e r an c e=” 1 .0E−7” value=”

1”/>
22 <whatIfAlg index=”1” name=”Chow” to l e r an c e=” 0 .01 ” value=”1

”/>
23 <whatIfAlg index=”2” name=”Bard−Schwei tzer ” t o l e r an c e=” 1 .0

E−7” value=”0”/>
24 <whatIfAlg index=”3” name=”AQL” to l e r an c e=” 1 .0E−7” value=”

0”/>
25 <whatIfAlg index=”4” name=” L i n e a r i z e r ” t o l e r an c e=” 1 .0E−7”

value=”0”/>
26 <whatIfAlg index=”5” name=”De Souza−Muntz L i n e a r i z e r ”

t o l e r an c e=” 1 .0E−7” value=”0”/>
27 </compareAlgs>
28 </algParams>
29 <whatI f className=”Class1 ” type=”Customer Numbers” va lue s=”

5 . 0 ; 6 . 0 ”/>
30 <s o l u t i o n s algCount=”2” i t e r a t i o n=”0” i t e r a t i onVa lu e=” 5 .0 ” ok=”

true ” solut ionMethod=” an a l y t i c a l what i f ”>
31 <a lgor i thm name=”MVA”>
32 <s t a t i o n r e s u l t s s t a t i o n=” Stat ion1 ”>
33 <c l a s s r e s u l t s cus tomerc l a s s=”Class1 ”>

76

34 <measure meanValue=” 5 .0 ” measureType=”Number o f
Customers” s u c c e s s f u l=” true ”/>

35 <measure meanValue=”36.516028761702174 ” measureType=
”Throughput” s u c c e s s f u l=” true ”/>

36 <measure meanValue=”0.1369261710420158 ” measureType=
”Residence time” s u c c e s s f u l=” true ”/>

37 <measure meanValue=” 1 .0 ” measureType=” U t i l i z a t i o n ”
s u c c e s s f u l=” true ”/>

38 </ c l a s s r e s u l t s>
39 </ s t a t i o n r e s u l t s>
40 </ a lgor i thm>
41 <a lgor i thm i t e r a t i o n s=”1” name=”Chow”>
42 <s t a t i o n r e s u l t s s t a t i o n=” Stat ion1 ”>
43 <c l a s s r e s u l t s cus tomerc l a s s=”Class1 ”>
44 <measure meanValue=” 5 .0 ” measureType=”Number o f

Customers” s u c c e s s f u l=” true ”/>
45 <measure meanValue=”30.43002396808515 ” measureType=”

Throughput” s u c c e s s f u l=” true ”/>
46 <measure meanValue=”0.16431140525041893 ” measureType

=”Residence time” s u c c e s s f u l=” true ”/>
47 <measure meanValue=”0.8333333333333334 ” measureType=

” U t i l i z a t i o n ” s u c c e s s f u l=” true ”/>
48 </ c l a s s r e s u l t s>
49 </ s t a t i o n r e s u l t s>
50 </ a lgor i thm>
51 </ s o l u t i o n s>
52

53 . . .
54 (s o l u t i o n s from other i t e r a t i o n s)
55

56 </model>

Listing A.1: A sample input model file with the newly added elements. alg-

Params element stores the algorithm preferences, and solutions element the
values of performance indices for the model under different algorithms.

77

Appendix B

XSLT template file for
Synopsis panel

1 < !−−c r ea t e s a lgor i thm t a b l e−−>
2 <x s l : t emp l a t e match=”algParams” mode=” de s c r i p t i o n ”>
3 < !−− Check t ha t no open c l a s s e s e x i s t −−>
4 < x s l : i f t e s t=”not ($model/ parameters / c l a s s e s / openc l a s s) ”>
5 <t ab l e c l a s s=”param” c e l l s p a c i n g=”0”>
6 <t r><th c l a s s=” paramt i t l e ” co l span=”3”>
7 Algorithms
8 </ th></ t r>
9 <t r c l a s s=”paramhead”>

10 <td>Name</ td>
11 <td>Tolerance</ td>
12 <td>I t e r a t i o n s</ td>
13 </ t r>
14 <x s l : f o r −each s e l e c t=”$model/algParams/compareAlgs”>
15 <x s l : c h o o s e>
16 < !−− Check r e s u l t s are from a what− i f ana l y s i s and i f

compare a l gor i thms opt ion was s e l e c t e d −−>
17 <xs l :when t e s t=”$model/whatI f and @value=’ true ’ ”>
18 < !−− Go through each s e l e c t e d a lgor i thm and d i s p l a y

i t s name , t o l e rance and i t e r a t i o n s −−>
19 <x s l : f o r −each s e l e c t=”$model/algParams/compareAlgs/

whatIfAlg ”>
20 < x s l : i f t e s t=”@value = 1”>
21 <t r>
22 <x s l : a t t r i b u t e name=” c l a s s ”>
23 < x s l : i f t e s t=” po s i t i o n () mod 2=0”> l i n e 2<

/ x s l : i f>
24 < x s l : i f t e s t=” po s i t i o n () mod 2=1”> l i n e 1<

/ x s l : i f>
25 </ x s l : a t t r i b u t e>
26 <td width=”{$ alg−name−width}”><x s l : v a l u e−o f

s e l e c t=”@name”/></ td>
27 <x s l : c h o o s e>
28 <xs l :when t e s t=”@name = ’MVA’ ”><td width

=”{$ alg−to l−width}”>−</ td></ xs l :when
>

29 <x s l : o t h e rw i s e><td width=”{$ alg−to l−
width}”><x s l : v a l u e−o f s e l e c t=”
@tolerance ”/></ td></ x s l : o t h e rw i s e>

30 </ x s l : c h o o s e>

78

31 <x s l : c h o o s e>
32 < !−− Put a hyphen in i t e r a t i o n s column

fo r MVA −−>
33 <xs l :when t e s t=”@name = ’MVA’ ”><td width

=”{$ alg−i t e r−width}”>−</ td></
xs l :when>

34 <x s l : o t h e rw i s e>
35 <td width=”{$ alg−i t e r−width}”>
36 < !−− For other a lgor i thms , go

through each what− i f execu t ion
and f ind a lgor i thm

37 i t e r a t i o n s and d i s p l a y them in
t h i s column , separated by
commas −−>

38 <x s l : f o r −each s e l e c t=”key (’ k1 ’ , @name
) ”>

39 <x s l : v a l u e−o f s e l e c t=”
@ i t e r a t i on s ”/>

40 < x s l : i f t e s t=” po s i t i o n () != l a s t
() ”>

41 <x s l : t e x t> , </ x s l : t e x t>
42 </ x s l : i f>
43 </ x s l : f o r −each>
44 </ td>
45 </ x s l : o t h e rw i s e>
46 </ x s l : c h o o s e>
47 </ t r>
48 </ x s l : i f>
49 </ x s l : f o r −each>
50 </ xs l :when>
51 <x s l : o t h e rw i s e>
52 < !−− For a normal ana l y s i s , or a what− i f ana l y s i s

wi thout comapre a l gor i thms s e l e c t ed ,
53 ge t the va lue from the a lgor i thm box −−>
54 <x s l : f o r −each s e l e c t=”$model/algParams/algType”>
55 <t r>
56 <x s l : a t t r i b u t e name=” c l a s s ”>
57 < x s l : i f t e s t=” po s i t i o n () mod 2=0”> l i n e 2</

x s l : i f>
58 < x s l : i f t e s t=” po s i t i o n () mod 2=1”> l i n e 1</

x s l : i f>
59 </ x s l : a t t r i b u t e>
60 <td width=”{$ alg−name−width}”><x s l : v a l u e−o f

s e l e c t=”@name”/></ td>
61 <x s l : c h o o s e>
62 <xs l :when t e s t=”@name = ’MVA’ ”><td width=”

{$ alg−to l−width}”>−</ td></ xs l :when>
63 <x s l : o t h e rw i s e><td width=”{$ alg−to l−width}”

><x s l : v a l u e−o f s e l e c t=”@tolerance ”/></
td></ x s l : o t h e rw i s e>

64 </ x s l : c h o o s e>
65 <x s l : c h o o s e>
66 <xs l :when t e s t=”@name = ’MVA’ ”><td width=”

{$ alg−i t e r−width}”>−</ td></ xs l :when>
67 <x s l : o t h e rw i s e>
68 <td width=”{$ alg−i t e r−width}”>
69 <x s l : f o r −each s e l e c t=”key (’ k1 ’ , @name) ”>
70 <x s l : v a l u e−o f s e l e c t=”@ i t e r a t i on s ”

/>
71 < x s l : i f t e s t=” po s i t i o n () != l a s t () ”>
72 <x s l : t e x t> , </ x s l : t e x t>
73 </ x s l : i f>

79

74 </ x s l : f o r −each>
75 </ td>
76 </ x s l : o t h e rw i s e>
77 </ x s l : c h o o s e>
78 </ t r>
79 </ x s l : f o r −each>
80 </ x s l : o t h e rw i s e>
81 </ x s l : c h o o s e>
82 </ x s l : f o r −each>
83 </ tab l e>
84 </ x s l : i f>
85 </ x s l : t emp l a t e>

Listing B.1: The code added to the XSLT template file to display the algorithm
information mentioned in Section 4.3.4, i.e. algorithm names, tolerances and
algorithm iterations.

80

	Introduction
	Motivation
	Contributions
	Report Structure

	Introduction to Queuing Networks
	Model Inputs
	Customer Description
	Service Centre Description
	Service Demand

	Model Outputs
	Residence Time (R)
	Throughput (X)
	Utilisation (U)
	Queue Length

	Multiple Class Networks/Models

	Queuing Network Analysis Algorithms
	Mean Value Analysis (MVA)
	Single Class Models
	Multiple Class Models

	Approximate Mean Value Analysis (AMVA)
	Chow Algorithm
	Bard-Schweitzer Algorithm
	Linearizer Algorithm
	De Souza-Muntz Linearizer Algorithm
	Aggregate Queue Length (AQL) Algorithm

	Moment Analysis
	Applications of Closed Networks
	Software Tools for Evaluating Queuing Networks
	JMT

	Implementation
	Key Features
	Architecture of JMVA
	Design and Implementation
	jmt.analytical package
	jmt.gui.exact package
	jmt.gui.exact.link package
	jmt.gui.exact.panels package
	Moment Analysis

	Testing and Verification

	Evaluation
	Real Application Models
	Capacity Planning of an Intranet with Multi-class Workload
	A J2EE Application
	Stress Case

	Experimental Evaluation
	Queue Length Tolerance Error
	Runtime

	GUI Evaluation
	Strengths and Weaknesses

	Conclusion
	Future Work

	Appendix Sample model file
	Appendix XSLT template file for Synopsis panel

