
Imperial College London

bachelor of science

final report

Lie Algebras and Markovian Arrival
Processes

Author:
Ashmi Mehta

Supervisor:
Prof. Peter Harrison

Second-Supervisor:
Dr. Giuliano Casale



Abstract

Lie algebra is a mathematical concept that involves various algebraic theories, but it has some
very strong links with other areas of mathematics. Lie algebra and matrix Lie groups can
be have an extensive use in the real world today, especially when solving problems related
to Markovian arrival processes (MAPs). From its name, we can detect that MAPs have a
connection with Markov chains and the Markov property. In this report, we will give a formal
definition of MAPs and how Markov chains relate to it. MAPs are widely used in today’s
world as we can not only apply this model to scientific cases but also in daily-life situations.
For instance, when jobs arrive in a queue (say on a network) then this can be modeled using
MAPs or another example would be modeling the number of people arriving in a queue.

This report will introduce the different matrix Lie groups and its corresponding Lie algebra,
which will form the basis of this project. We will then use two of these groups, SL (2,R) and
SU (2), and model them using MAPs, i.e. generate the rate matrices using Lie algebra and
its key properties. Hence, in that section we will break down the steps on how to solve such
a problem as well as include a further section where we apply these rate matrices to define a
new concept. We will also give a verification of the solutions using MATLAB. The advantage
of applying the commutator relation in order to solve the problem is to obtain a method that
one could solve by hand (for simple cases) rather then relying only on computers.

In reality we know that not everything is perfect, hence in the case of MAPs we may not
always have all the information. Therefore, we may need to estimate the unobserved data
using the estimation-maximisation(EM) algorithm. A small discussion of the advantages and
disadvantages of a second approach that is based on moments is also included. Finally, we
will explore some applications of the EM algorithm as well as discover where and how we can
apply it.

A further investigation will be carried out to identify if we can find the rate matrices for matrix
Lie groups that have higher dimensions, such as 3 x 3. However, this is mostly left as future
work. Other extensions also include, modeling MAPs on other matrix Lie groups other than
the two already mentioned; and comparing outcomes of the EM algorithm and the moment
based approach when applied to real data.

1



Acknowledgement

I would like to thank my supervisor, Prof. Peter Harrison for his endless support, inspiration
and enthusiasm throughout this project. He always remained patient and confident in my
ability to deliver results.

I would also like to thank Dr. Giuliano Casale, for his advice and constructive feedback during
the interim report submission.

I would also like to take this opportunity to thank my personal tutor, Dr. Alessandra Russo,
who has guided me throughout my three years at Imperial College.

Finally, I would like to thank my friends and my family for their encouragement and blessings
throughout my three years at Imperial College.

2



CONTENTS CONTENTS

Contents

1 Introduction 5

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Layout of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7

2.1 Matrix Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Examples Of Matrix Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Simple Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Homomorphisms And Isomorphisms . . . . . . . . . . . . . . . . . . . . . . 19

2.7 The Polar Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 The Matrix Exponential and Computing The Exponential of a Matrix . . . . 21

2.10 The Matrix Logarithm and More Properties of the Matrix Exponential . . . . 23

2.11 The Lie Algebra of a Matrix Lie Group . . . . . . . . . . . . . . . . . . . . . 26

2.11.1 The General Linear Group . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11.2 The Special Linear Group . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11.3 The Unitary Group . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11.4 The Orthogonal Group . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.11.5 The Generalised Orthogonal Group . . . . . . . . . . . . . . . . . . . 28

2.11.6 The Symplectic Group . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.11.7 The Heisenberg Group . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.12 Properties of Lie Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.13 Lie Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.14 The Baker-Campbell-Hausdorff Formula . . . . . . . . . . . . . . . . . . . . 33

3 Markovian Arrival Process (MAP) 37

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Example: SL (2,R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Solving for C and D . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Implementing C and D . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Example: SU (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Investigate SU (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3



CONTENTS CONTENTS

4 Coded Examples in MATLAB 53

4.1 Why use MATLAB? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Example: sl (2,R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Estimation-Maximisation (EM) For MAPs 58

5.1 General EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 EM and MAPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Formulas for the M-Step . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.2 Formulas for the E-step . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.3 Computing the EM algorithm . . . . . . . . . . . . . . . . . . . . . . 65

5.2.4 Example using Uniformisation . . . . . . . . . . . . . . . . . . . . . . 68

6 Evaluation 71

6.1 Result From Lie Algebra Examples . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Efficiency of Estimation-Maximisation Algorithm . . . . . . . . . . . . . . . 72

7 Conclusion & Future Work 73

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.1 Larger Dimension Matrices . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.2 Simplify Large Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.3 Other Matrix Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2.4 Apply EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2.5 Other Forms of MAPs . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2.6 Stiff Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4



1 INTRODUCTION

1 Introduction

In this chapter, we will look at the history of Lie Groups and its unique features. We will also
highlight the problems that can be solved with matrix Lie groups and Lie algebra while also
discussing some of the applications of this theory. This chapter is divided into four sections,
where Section 1.1 will focus on the motivation of the project and a short history of the topic.
Section 1.2 outlines the applications of the theory and what the objective is. Finally, section
1.3 will provide a summary of how this report is organised.

1.1 Motivation

There are a lot of theorems and proofs involved in mathematics and the beauty about this
subject is its applications in all different fields ranging from physics to economics. Furthermore,
over the years we can find new ways of applying these century old mathematical concepts and
see the world around us advance. Matrix Lie groups and Lie algebra have been researched
extensively, but understanding its role in matrix exponentiation with applications to continuous
time Markov chains is very interesting and useful in reality as it has many applications.

Lie Groups are named after Sophius Lie, who laid the foundations of the continuous transfor-
mation group theory. As Lie groups are smooth manifolds they can be studied using differential
calculus and the key idea of this theory is to replace the global object (the group) with a lo-
cal/linearised version of the group. Lie groups were initially introduced to help solve and
simplify ordinary as well as partial differential equations.[1] The most beautiful and useful
feature about Lie groups is that it can be applied in two of broadest mathematical divisions,
algebra and geometry. Their algebraic properties are derived from the group axioms, while
their geometric properties are identified from group operations with points in a topological
space.

The study of matrix Lie groups can be facilitated by linearising the group in the neighbourhood
of its identity and this results in a structure called a Lie algebra. The Lie algebra retains
most of the properties of the original matrix Lie group, but not necessarily all. In addition,
the majority of the Lie group properties can be recovered by the inverse of the linearisation
operation, which is known as exponential mapping. Since a Lie algebra is a linear vector
space, we can study it by using all the standard tools defined for linear vector spaces.[1] In
particular, we can define the inner products and make standard choices of the basis vectors.
These tools such as the inner product, can then be extended over the entire group manifold
using the group multiplication operation.

This area of mathematics has a clear application within the computer science field i.e. the
theory of Lie algebra and Markovian arrival processes will be used to show how we can solve
queueing system problems. This project will allow us to further explore Markovian arrival
processes (MAP) and understand the differences when various underlying distributions are
used. The main process that this project will focus on is the Poisson process/distribution as
well as the continuous-time Markov process and we will discuss examples that highlight the
link between Lie algebra and MAPs.

1.2 Objectives

This project aims to explore Lie algebra and matrix Lie groups in terms of matrix exponential
as well as apply the theory to applications such as continuous-time Markov chains (CTMC).
More specifically, we will go in depth into some of the theory and apply Lie algebra and matrix
Lie groups to the class of Markovian arrival processes (MAP).

5



1.3 Layout of the report 1 INTRODUCTION

One of the aims at the end of this project is to understand the link between MAPs and Lie
algebra. In addition, we would like to discuss how we could use matrix exponentials to simplify
some of the equations that appear in examples involving MAPs. We will be working with two
different matrix Lie groups and these will be discussed further in the next chapter.

Another aim is to understand the method of solving problems related to MAPs i.e. finding
the two rate matrices C and D as these are very important elements of a MAP. Further
explanations about the rate matrices and their definitions will follow in later chapters. We
will also use MATLAB to generate these matrices and apply them to different situations, such
as the estimation-maximisation algorithm.

We will also briefly discuss the estimation and maximisation (EM) algorithm and how we can
apply that to MAPs. In other words, we will answer questions such as why should we use this
algorithm and in what cases is it useful? We we will also discuss the two different ways of
applying the EM algorithm, i.e. either using differential equations or uniformisation.

The final aim is to look into the EM algorithm and apply it to MAPs. We will break down each
step of the algorithm and see how to use the equations in order to solve a specific problem.

1.3 Layout of the report

This report is organised as follows:

• Chapter 2 outlines the relevant work in Lie algebra that will form the basis of this
project. It focuses on matrix Lie groups, and some of these will be discussed in further
detail. In addition, we discuss and prove some of the key theorems and propositions
related to Lie algebra.

• Chapter 3 introduces the concept of Markovian arrival processes (MAP). We will in-
troduce the method of solving MAPs as well as provide two examples based on matrix
Lie groups. Finally, we will investigate how we could potentially solve higher dimension
matrices, namely 3 x 3.

• Chapter 4 is closely linked with the previous chapter as we take those two examples and
validate the results in MATLAB.

• Chapter 5 introduces a relatively new topic, the estimation and maximisation algorithm
for MAPs. We will give an overview of the algorithm and describe its importance within
MAPs.

• Chapter 6 is where we will evaluate our results and check if we have successfully achieved
our aims that we outlined at the onset of this report.

• Chapter 7 summarises the contributions of this project and will be a formal conclusion
to this report. We will discuss any limitations we encountered along with suggestions
for how to develop this project in the future.

6



2 BACKGROUND

2 Background

In this chapter, we will explore in more detail the theory behind matrix Lie groups and Lie
algebra. We will also prove some key theorems and propositions as shown in [2] and these
will be applied in the project. We will define a matrix Lie group and give many examples that
highlight the importance of this mathematical concept. Furthermore, we will understand the
link between matrix Lie groups and its respective Lie algebra.

There is emphasis on all the different matrix Lie groups as each one portrays unique properties.
However, this project will focus on the special linear group and the special unitary group.

We end this chapter by proving the Baker-Hausdorff-Campbell Lemma, which is important
and heavily used in the study of Markovian arrival processes..

2.1 Matrix Lie Groups

In order to understand the other matrix Lie groups in depth, one must be familiar with the
concept of general linear groups.

Definition 2.1.1.
A general linear group over the real numbers is denoted by:

GL (n,R)

This is the group of all n x n invertible matrices with real entries.

Definition 2.1.2.
A general linear group over the complex numbers is denoted by:

GL (n,C)

This is the group of all n x n invertible matrices with complex entries.

We can easily show that the general linear groups are a group under the matrix multiplication
operation as:

1. The product of two invertible matrices is an invertible matrix

2. Matrix multiplication is associative

3. The identity of any matrix is the identity of the group

4. An invertible matrix has by definition an inverse

Definition 2.1.3.
Let Am be a sequence of complex matrices inMn (C), whereMn (C) is the space of all n x n
matrices with complex entries.
Hence, we can say that Am converges to a matrix A if every corresponding entry in Am
converges to its respective entry in A as m→∞.
For instance, as m→∞ then (Am)kl converges Akl ∀1 ≤ k, l ≤ n

Now, we can combine Definition 2.1.2. and Definition 2.1.3. and write a new definition for a
concept called matrix Lie groups.

7



2.2 Examples Of Matrix Lie Groups 2 BACKGROUND

Definition 2.1.4.
A matrix Lie group is a closed subgroup, say G, of GL (n,C) with the following property:

• If Am is any sequence of matrices in G, and Am converges to a matrix A then there
can only be two possibilities:

– A ∈ G or

– A is not invertible

[Note: G is a closed subset of GL (n,C), but this does not imply that G is closed in Mn (C).
Nonetheless, there are many examples of matrix Lie groups which are also closed in Mn (C).]

A simple counterexample, which is not closed and hence is not a matrix Lie group is the set
of all invertible, n x n, matrices with every entry being real and rational. We know that such
a matrix is a subgroup of GL (n,C), however it is not closed as we can show that a sequence
of invertible matrices with rational entries can converge to an invertible matrix with some
irrational entries.

2.2 Examples Of Matrix Lie Groups

Example 1.

The general linear group: GL (n,R) and GL (n,C)

The most straightforward example is the general linear groups, GL (n,R) and GL (n,C), which
are also matrix Lie groups and can be proved just by using the definition.

[Note: From group theory we know that a group is also a subgroup of itself.]

Hence, GL (n,R), is by definition a subgroup of itself. So, if Am is a sequence of matrices in
GL (n,R) and Am converges to A then either A ∈ GL (n,R) or A is not invertible.

In addition, GL (n,C), is also subgroup of itself. Therefore, just like the previous case if Am
is a sequence of matrices in GL (n,C) and Am converges to A then the entries of A are real,
hence either A ∈ GL (n,C) or A is not invertible.

Example 2.

The special linear group: SL (n,R) and SL (n,C)

The special linear group is a group of n x n matrices over R or C with real or complex entries
and each matrix has a determinant equal to one.

Clearly, SL (n,R) and SL (n,C) are subgroups of the general linear groups GL (n,R) and
GL (n,C), respectively. Moreover, if Am is a sequence of matrices, all with determinant one,
and if Am converges to A then A will also have determinant one. This is true because the
determinant of the product of two square matrices say X and Y is equal to the product of
their individual determinants i.e.

det (XY ) = det (X) det (Y )

8



2.2 Examples Of Matrix Lie Groups 2 BACKGROUND

and this can be extended to a finite number of matrices. So, in this case as the determinant
of each matrix in the sequence of Am is one then as Am converges to A it implies that A
also has determinant one.

Example 3.

The orthogonal group: O (n) and the special orthogonal group: SO (n)

There are a few different ways to define an orthogonal matrix and each definition is important
in order to show that O (n) is a matrix Lie group:

Definition 2.2.1.
A n x n matrix is orthogonal if its column vectors are orthonormal i.e. if A is an orthogonal
matrix then the columns of A would be orthonormal and defined as:

n∑
i=1

AijAik = δjk

1 ≤ j, k ≤ n

where δjk is defined as the Kronecker delta:
if j = k then

δjk = 1

if j 6= k then

δjk = 0

Proposition 2.2.2.
A is an orthogonal, n x n, matrix if it preserves the inner product. The inner product is
defined as:

〈x, y〉 = xT y

=

n∑
i=1

xiyi

where x, y ∈ Rn and xT is the transpose of x.
So, A preserves the inner product if:

〈Ax,Ay〉 = 〈x, y〉

9



2.2 Examples Of Matrix Lie Groups 2 BACKGROUND

Proposition 2.2.3.
A matrix, A, is orthogonal if

ATA = AAT

= I

In other words, AT = A−1 where AT is the transpose of A i.e.

Aij =
(
AT
)
ji

and the transpose of A is equal to the inverse of A.

So, from the above definition we can easily prove the resulting two propositions.

So, if A is an orthogonal matrix then using proposition 2.2.3. we know that AAT = ATA = I
and from the definitions of determinants we know that det (A) = det

(
AT
)
, so now we can

write:

det
(
AAT

)
= det (A) det

(
AT
)

= (det (A))
2

= det (I)

= 1

Therefore, det (A) = ±1 for all orthogonal matrices, A.

This clearly indicates that every orthogonal matrix, A, is invertible. From this we can also
prove that an inverse of an orthogonal matrix is also orthogonal. This can be done using
proposition 2.2.2:

〈
A−1x,A−1y

〉
=

〈
A
(
A−1x

)
, A
(
A−1y

)〉
= 〈x, y〉

In addition, the product of an orthogonal matrix, A, and another orthogonal matrix, B, will
also result in an orthogonal matrix i.e. AB is orthogonal because both A and B preserve
the inner product definition, so AB must also preserve it. Hence, this is a set of orthogonal
matrices that forms into a group.

So, the set of all n x n orthogonal matrices can be defined as the orthogonal group, O (n),
which is a subgroup of GL (n,C). The limit of a sequence of orthogonal matrices is also
orthogonal, because under limits the relation ATA = I is preserved. Therefore, by definition,
O (n) is a matrix Lie group.

SO (n) is called the special orthogonal group, as we define it to be the set of all n x n matrices
that have determinant one. This clearly implies that SO (n) is a subgroup of O (n), and as
O (n) is the group with matrices that has determinant ±1 then SO (n) is the set of all matrices
with determinant, +1.

[Note: This also means that number of elements (size of) of SO (n) is exactly half of O (n).]

Hence, as SO (n) is a subgroup of O (n) and O (n) is a subgroup of GL (n,C) this implies
that SO (n) is a subgroup of GL (n,C). Furthermore, the limit of a sequence of orthogonal

10



2.2 Examples Of Matrix Lie Groups 2 BACKGROUND

matrices preserves the property of orthogonality and determinants being equal to one. There-
fore, again, by definition this is a matrix Lie group.

Example 4

The unitary group: U (n) and the special unitary group: SU (n)

The complex n x n matrix, A, is unitary if the columns of A are orthonormal i.e.

n∑
i=1

AijAik = δjk

where Aik is the the ikth element of matrix A and this implies Aij is the conjugate of the
element at the ijth position (i.e. a + ib has the complex conjugate a − ib, only negate
imaginary parts).

δjk is the Kronecker delta which is defined earlier.

In addition, A is unitary if it preserves the inner product i.e.

〈x, y〉 = 〈Ax,Ay〉

where x, y ∈ Cn.

However, the inner product for complex vectors in Cn are defined differently:

〈x, y〉 =
∑
k

xkyk

where it is clear that instead of using the transpose of x we are using the complex conjugate
of, x.

Moreover, we can also define A to be unitary by using the adjoint of A. The adjoint of A is
defined as A∗ where A∗ is obtained by taking the transpose of A and then taking the complex
conjugate of each element in A. So, by this definition we can write:

(A∗)jk = Akj

So, if:

A∗A = I

=⇒ A∗ = A−1

and thus A is unitary.

Using the same argument as we did for orthogonal groups, we can say that:

11



2.2 Examples Of Matrix Lie Groups 2 BACKGROUND

det (A∗) = det (A)

=⇒ det (AA∗) = det (A) det (A∗)

= |det (A)|2

= det (I)

= 1

and this is true for all unitary matrices, A.

Just like for orthogonal matrices, this shows that all unitary matrices are invertible and hence
the set of unitary matrices form a group.

Now we can easily apply the definition of matrix Lie groups and prove that U (n) is also a
matrix Lie group, this is shown below:

We can write that the set of all n x n unitary matrices is the unitary group, U (n), and is
clearly a subgroup of GL (n,C). The limit of any sequence of unitary matrices is also unitary,
hence it is a matrix Lie group.

Just as the case for orthogonal groups, there is a special case for unitary groups which is
called the special unitary group, SU (n). This group is a subgroup of U (n), as it includes all
the matrices that have determinant +1, hence SU (n) is also a subgroup of GL (n,C). The
limit of the sequence of matrices that have determinant one will converge to a matrix within
the group SU (n) as the property unitary and determinants are preserved. Hence, SU (n) is
also matrix Lie group.

Example 5.

The complex orthogonal group: O (n,C) and the complex special orthogonal group:
SO (n,C)

Define (·, ·) as the bilinear form on Cn such that (x, y) =
∑
k xkyk. The set of all n x n

matrices, A, which preserve this form (i.e. (Ax,Ay) = (x, y) ∀x, y ∈ Cn) is called the
complex orthogonal group, O (n,C) and it is clearly a subgroup of GL (n,C).

We can see that this group is similar to O (n), except we have complex entries, so we can use
the same argument and say that any n x n complex matrix, A, is in O (n,C) if and only if
ATA = I and if the det (A) = ±1, ∀A ∈ O (n,C). Hence, the complex orthogonal group is
a matrix Lie group.

Similarly, SO (n,C) is defined as the subgroup of O (n,C) (and this further implies that it
is a subgroup of GL (n,C)) with all its elements, A, having determinant +1. Again using a
similar argument as for SO (n), we know that SO (n,C) is also a matrix Lie group.

A simple example of a SO (2,C) are matrices of the form:

A =

[
cos (θ) −sin (θ)
sin (θ) cos (θ)

]

Any matrix of the form A is orthogonal, which is a standard definition and the determinant
of A is also going to always be one as it is the following trigonometric identity:

cos2 (θ) + sin2 (θ) = 1

12



2.2 Examples Of Matrix Lie Groups 2 BACKGROUND

Example 6.

The generalised orthogonal group: O (n, k)

Let n and k be positive integers, such that we are working in Rn+k. Define a symmetric
bilinear form [·, ·]n,k on Rn+k by the formula:

[x, y]n,k = x1y1 + · · ·+ xnyn − xn+1yn+1 − · · · − xn+kyn+k

The set of (n+ k) x (n+ k) real matrices, A, which preserve this form:

[Ax,Ay]n,k = [x, y]n,k

for all x, y ∈ Rn+k are called the generalised orthogonal group, O (n, k). It is a subgroup of
GL (n+ k,R) and hence a matrix Lie group.

Example 7.

The symplectic groups: Sp (n,R), Sp (n,C), Sp (n)

Sp (n,R), Sp (n,C), Sp (n) involve skew-symmetric bilinear forms rather than symmetric bi-
linear forms.

Define the skew-symmetric bilinear form, B, on R2n as:

B [x, y] =

n∑
k=1

xkyn+k − xn+kyk

The set of all 2n x 2n matrices, A, which preserve B such that:

B [Ax,Ay] = B [x, y]

∀x, y ∈ R2n is called the real symplectic group, Sp (n,R), and it is a subgroup of GL (2n,R)
and hence it is also a matrix Lie group.

If J is a 2n x 2n matrix such that:

J =

(
0 I
−I 0

)

then B [x, y] = 〈x, Jy〉 and a 2n x 2n real matrix, A, is in Sp (n,R) if and only if ATJA = J .
Taking the determinant of this gives (det (A))

2
det (J) = det (J) as (det (A))

2
= 1. Hence,

det (A) = ±1 ∀A ∈ Sp (n,R). However, det (A) = 1 ∀A ∈ Sp (n,R) but this is
not very obvious.

In addition, we can define a similar bilinear form as above on C2n which does not involve any
complex conjugates. The set of 2n x 2n complex matrices which preserve this form are called
the complex symplectic group, Sp (n,C).

13



2.2 Examples Of Matrix Lie Groups 2 BACKGROUND

A 2n x 2n complex matrix, A, is in Sp (n,C) if and only if ATJA = J . Hence, like the real
case the det (A) = ±1 ∀A ∈ Sp (n,C). However, again we have det (A) = 1 ∀A ∈
Sp (n,C).

The final case is called the compact symplectic group, Sp (n), defined as:

Sp (n) = Sp (n,C) ∪ U (2n)

Example 8.

Heisenberg group: H

The set of all 3 x 3 real matrices, A, of the form:

A =

 1 a b
0 1 c
0 0 1

 (1)

where a, b, c ∈ R. This set of matrices is called the Heisenberg group, H. The product of
two matrices of the form 1 is also of the form 1 and clearly if a = b = c = 0 then we have
the identity, I.

Furthermore, if A is of the form as in equation 1then it is clear that A−1 is:

A−1 =

 1 −a ac− b
0 1 −c
0 0 1


Thus, H is a subgroup of GL (3,R) and clearly the limit of such matrices remains in the form
of equation 1 and this implies that H is a matrix Lie group.

Example 9.

Some groups are not naturally a group of matrices, these include:

• R∗ is a group of non-zero real numbers and under multiplication it is isomorphic to
GL (1,R).

• C∗ is a group of non-zero complex numbers and under multiplication it is isomorphic
to GL (1,C).

• S1 is defined as a group of complex numbers with absolute value one and that is
isomorphic to U (1).

Since we have already proved that the general cases of GL (1,R), GL (1,C),U (1) are matrix
Lie groups, we can say that R∗,C∗, S1 are also defined as matrix Lie groups as they are
isomorphic to GL (1,R) ,GL (1,C) ,U (1), respectively.

Another example is taking the group R under addition, and this is isomorphic to GL (1,R)
+

i.e all 1 x 1 real matrices with positive determinants. This isomorphism is achieved using the
map x→ ex.

14



2.3 Compactness 2 BACKGROUND

On the other hand, if we have the group Rn under vector addition then it is isomorphic to
the group of diagonal real matrices with positive entries, via a map:

(x1, . . . , xn) →

 ex1 0
. . .

0 exn



Example 10.

The Euclidean group: E (n) and Poincare group: P (n, 1)

Definition 2.2.4.
The Euclidean group, E (n), is the group of all one-to-one distance-preserving maps of Rn to
itself, f : Rn → Rn
where d (f (x) , f (y)) = d (x, y) ∀x, y ∈ Rn and d is defined as the usual distance formula
d (x, y) = |x− y|.

In this example, f does not have to be linear hence it is clear that the orthogonal group,
O (n), is a subgroup of E (n), since O (n) is the group of all linear distance-preserving maps
of Rn to itself.

In addition, for x ∈ Rn, we can define the translation by Tx (y) = x+ y and the set of these
translations is also a subgroup of E (n).

The Poincare group, P (1, n), is isomorphic to the group of (n+ 2) x (n+ 2) matrices with

the form, M =


x1

A
...

xn+1

0 . . . 0 1

, with A ∈ O (n, 1). Hence, the set of matrices of

the form, M , is a matrix Lie group.

2.3 Compactness

Definition 2.3.1.
A matrix Lie group is compact if the following two conditions are satisfied:

1. If Am is any sequence of matrices in G and Am converges to a matrix, A, then A is in
G.

2. There exists a constant, C, such that ∀A ∈ G, |Aij | ≤ C ,∀i, j such that
1 ≤ i, j ≤ n.

The set Mn (C) of all n x n complex matrices can be thought of as Cn2

. So, the above
definition says that G is compact if it is a closed and bounded subset of Cn2

. Heine-Borel
theorem states that a subset of Cn2

is compact if and only if it is closed and bounded.[3]

15



2.4 Connectedness 2 BACKGROUND

All the examples from section 2 except GL (n,R) and GL (n,C) satisfy the first condition of
definition 2.3.1, hence the second property (boundedness) is the most important to check.

Examples of Compact Groups.

The orthogonal group, O (n), is compact because it satisfies the first condition as the limit
of orthogonal matrices is orthogonal. The second condition is satisfied because if a matrix,
A, is orthogonal then the column vectors of A have norm one, hence one is the constant C
(i.e. C = 1) with |Aij | ≤ 1, ∀i, j such that 1 ≤ i, j ≤ n.

Similarly, the special orthogonal group, SO (n) is compact because it satisfies the first condi-
tion as the limit of orthogonal matrices is orthogonal and the limit of matrices with determinant
one is also determinant one. The second condition is satisfied by the same logic as above.

Further examples include U (n), SU (n), Sp (n) and using a similar argument as above we can
show that they are compact too.[4]

Examples of Non-Compact Groups.

The remaining examples of matrix Lie groups that were discussed in section 2.2 are non-
compact groups. The groups GL (n,R) and GL (n,C) are non-compact because they violate
property one as the limit of invertible matrices can be non-invertible.

The remaining examples all violate condition two, hence they are all non-compact.

2.4 Connectedness

Definition 2.4.1.
A matrix Lie group, G, is connected if there exists a continuous path between any two
matrices, A,B ∈ G where the continuous path is defined as A (t), a ≤ t ≤ b lying in G such
that A (a) = A and A (b) = B.

In general, connected is also known as path-connected. A matrix Lie group is connected
if and only if it is path-connected.

A matrix Lie group is not connected if it can be uniquely decomposed as a union of compo-
nents, such that two elements of the same component can be joined by a continuous path,
while two elements of different components cannot.

Proposition 2.4.2.
If G is a matrix Lie group, then the component of G containing the identity is a subgroup of
G.

Proof.

A and B are, two elements, both in the component containing the identity such that there
exists continuous paths A (t) and B (t) with A (0) = B (0) = I , A (1) = A, B (1) = B.

So, A (t)B (t) is a continuous path, which starts at I and ends at AB. Hence, the product
of two elements of the identity component is also in the identity component.

16



2.4 Connectedness 2 BACKGROUND

A (t)
−1 is a continuous path starting at I and ends at A−1, hence the inverse of any element

of the identity component is again in the identity component.

[Note: matrix multiplication and matrix inversion are continuous on GL (n,C) it follows that
if A (t) and B (t) are continuous, then so are A (t)B (t) and A (t)

−1.]

QED

Proposition 2.4.3.
The group GL (n,C) is connected ∀n ≥ 1.

Proof.

Case 1: n = 1

A 1 x 1 invertible complex matrix, A, is of the form A = [λ] with λ ∈ C∗ (i.e. the set of non-
zero complex numbers). Given any two non-zero complex numbers there exists a continuous
path, which connects them and does not intersect at zero.

Case 2: n ≥ 2

In order to prove this case, we need to show that any element of GL (n,C) can be connected
to the identity by a continuous path lying in GL (n,C). Then by taking any two elements, A
and B, of GL (n,C) they can be connected by a path going from A to the identity and then
from the identity to B.

Thus, to complete the proof we need to use the algebraic property which states that every
matrix is similar to an upper triangular matrix, i.e. given any n x n complex matrix, A, there
exists an invertible n x n complex matrix, C, such that

A = CBC−1

where B is an upper triangular matrix:

B =

 λ1 ∗
. . .

0 λn


Assume that A is invertible, then all the λi’s must be non-zero, since from the properties of
upper triangular matrices we know that det (A) = det (B) = λ1 . . . λn.

Now, let B (t) be obtained by multiplying (1− t) to the elements that are above the diagonal
in B, for 0 ≤ t ≤ 1 and let A (t) = CB (t)C−1.

Then, A (t) is a continuous path which starts at A and ends at CDC−1, where D is the
diagonal matrix:

D =

 λ1 0
. . .

0 λn


This path lies in GL (n,C) as det (A (t)) = λ1 . . . λn = det (A) ∀t

Similar to case 1, we can define λi (t) which connects each λi to 1 in C∗ as t goes from 1 to
2.

Define A (t) on the interval 1 ≤ t ≤ 2 by:

17



2.4 Connectedness 2 BACKGROUND

A (t) = C

 λ1 (t) 0
. . .

0 λn (t)

C−1

This is a continuous path, which starts at CDC−1 when t = 1 and ends at I
(
= CIC−1

)
when t = 2. Since, the λk (t)’s are always non-zero, A (t) lies in GL (n,C).

Hence, it is clear that every matrix A in GL (n,C) can be connected to the identity by a
continuous path lying in GL (n,C).

QED

Proposition 2.4.4.
The group GL (n,R) is not connected, but has two components GL (n,R)

+ (n x n real ma-
trices with positive determinant) and GL (n,R)

− (n x n real matrices with negative determi-
nant).

Proof.

GL (n,R) cannot be connected because if det (A) > 0 and det (B) < 0 then any continuous
path connecting A to B would have to include a matrix that has determinant zero which is
clearly outside the group, GL (n,R).

QED

There are ways of proving if other matrix Lie groups are connected or not, and they are
straightforward to solve provided you use the definition and the key conditions related to each
group.

Below is a table listing the different matrix Lie groups and indicating if the group is connected
and how many components it has:

Groups Connected? Components
GL (n,R) No 2
GL (n,C) Yes 1
SL (n,R) Yes 1
SL (n,C) Yes 1
O (n) No 2
SO (n) Yes 1
U (n) Yes 1
SU (n) Yes 1
O (n, 1) No 4
SO (n, 1) No 2
Heisenberg Yes 1

E (n) No 2
P (n, 1) No 4

18



2.5 Simple Connectedness 2 BACKGROUND

2.5 Simple Connectedness

Definition 2.5.1.
A matrix Lie group is simply connected if it is connected and every loop in G can be shrunk
continuously to a point in G.
In other words, assume that the group, G, is connected. So, G is simply connected if given
any continuous path, A (t), 0 ≤ t ≤ 1 lying in G with A (0) = A (1) then there exists a
continuous function A (s, t), 0 ≤ s, t ≤ 1 that takes the values in G. We can think of A (t) as
a loop and A (s, t) as a family of loops, parameterised by the variable, s, which shrinks A (t)
to a single point. This has the following properties:
(I) A (s, 0) = A (s, 1) ∀s
Condition (I) is saying that for each value of the parameter, s, we have a loop.
(II) A (0, t) = A (t) ∀t
Condition (II) is saying that if s = 0, then the loop is the specific loop, A (t).
(III)A (1, t) = A (1, 0) ∀t
Condition (III) is saying that if s = 1, then the loop is a point.

2.6 Homomorphisms And Isomorphisms

Definition 2.6.1.
Let G and H be matrix Lie groups. A map Φ from G to H is a Lie group homomorphism
if the following conditions hold:
(I) Φ is a group homomorphism
(II) Φ is continuous
Furthermore, if Φ is a one-to-one relation and the inverse map, Φ−1, is continuous then Φ is
Lie group isomorphism.

[Note: it is very difficult to give an example of a group homomorphism between two matrix
Lie groups which is not continuous, so this condition is just stated for completeness.]

A simple matrix Lie group homomorphism is: Φ : R→ SO (2) i.e.

Φ (θ) =

(
cos (θ) -sin (θ)
sin (θ) cos (θ)

)
The above map is clearly continuous and using standard trigonometry we can show that it is
also a homomorphism.

2.7 The Polar Decomposition

Polar decomposition can be used to prove the connectedness of SL (n,R) and SL (n,C) as
well as show that SL (n,R) and SL (n,C) are the same as SO (n) and SU (n), respectively.
This decomposition is similar to the decomposition of a complex number, z, where z = up
such that |u| = 1 and p is real as well as positive.

19



2.8 Lie Groups 2 BACKGROUND

Definition 2.7.1.
A real symmetric matrix, P i.e P = PT , is defined as positive if 〈x, Px〉 >
0 ∀non-zero x ∈ Rn.
In addition, a symmetric matrix is positive if all its eigenvalues are positive.
Given a symmetric matrix, P , there exists an orthogonal matrix, R, such that:

P = RDR−1

where D is the diagonal matrix with positive diagonal entries of eigenvalues, λ1, . . . , λn. If
we take the orthogonal basis v1, . . . , vn of the matrix, P , then v1, . . . , vn are the columns of
R.

2.8 Lie Groups

Definition 2.8.1.
A Lie group is a differentiable manifold, G, which is also a group such that the group product
G xG→ G and the inverse map g → g−1 are differentiable.

The simplest example would be G = Rn with the product map given by (x, y)→ x+ y

A more interesting example is the following:

Let

G = R x R x S1

=
{

(x, y, u) |x ∈ R, y ∈ R, u ∈ S1 ⊂ C
}

Now, define the group product G x G→ G by

(x1, y1, u1) · (x2, y2, u2) =
(
x1 + x2, y1 + y2, e

ix1y2u1u2

)
Checking if the operation makes G a group:

Associative:

[(x1, y1, u1) · (x2, y2, u2)] · (x3, y3, u3) =
[(
x1 + x2, y1 + y2, e

ix1y2u1u2

)]
· (x3, y3, u3)

=
(
x1 + x2 + x3, y1 + y2 + y3, e

i(x1y2+x1y3+x2y3)u1u2u3

)

(x1, y1, u1) · [(x2, y2, u2) · (x3, y3, u3)] = (x1, y1, u1) ·
[(
x2 + x3, y2 + y3, e

ix2y3u2u3

)]
=

(
x1 + x2 + x3, y1 + y2 + y3, e

i(x1y2+x1y3+x2y3)u1u2u3

)
So, the above equations prove associativity.

20



2.9 The Matrix Exponential and Computing The Exponential of a Matrix2 BACKGROUND

There also exists an identity element in the group, G i.e. e = (0, 0, 1).

The inverse of each element, (x, y, u), is
(
−x,−y, eixyu−1

)
.

Hence, clearly G is a group. In addition, both the group product and the map that sends each
element to its inverse is smooth, and so G is also a Lie group. However, this example shows
that not all Lie groups are matrix Lie groups as there is no continuous injective homomorphism
of G into any GL (n,C).

2.9 The Matrix Exponential and Computing The Exponential of a
Matrix

Definition 2.9.1.
Let X be a real or complex n x n matrix, so define the exponential of X denoted as eX by
the usual power series:

eX =

∞∑
m=0

Xm

m!

There are three standard ways of exponentiating general matrices and they are described
below.

Case 1: X is diagonalisable

Suppose that X is an n x n real or complex matrix and X is diagonalisable over C. This
means that there exists an invertible matrix C such thatX = CDC−1 whereD is the diagonal
matrix with the eigenvalues of X as the diagonal elements. In other words, D would be a
n x n matrix with the following form:

D =

 λ1 0
. . .

0 λn


It is also true that eD is the diagonal matrix with eigenvalues eλ1 . . . eλn and hence from the
theory of differential equations and algebra, it is clear that

eX = CeDC−1

Thus, if X is diagonalisable then we can compute eX .

[Note: X may be real, however the values in the matrix C and the λ′ks may be complex.
Nonetheless, eX must be real as the terms in the power series of eX are always real.]

Case 2: X is nilpotent

A n x n matrix, X, is defined as nilpotent if Xm = 0 for some positive integer m. Clearly, if
Xm = 0, then X l = 0 ∀l > m. So, the power series that defines eX terminates after
the first m terms.

21



2.9 The Matrix Exponential and Computing The Exponential of a Matrix2 BACKGROUND

For example, if X =

 0 a c
0 0 b
0 0 0

 then

X2 =

 0 0 ac
0 0 0
0 0 0


X3 = 0

Hence, eX =

 1 a b+ 1
2ac

0 1 c
0 0 1


Case 3: X is arbitrary

A matrix, X, can be neither diagonalisable nor nilpotent, however every X can be written
uniquely as a sum of a diagonal and nilpotent matrix i.e. X = D+N , where D is a diagonal
matrix and N is a nilpotent matrix.

In addition, DN = ND so since D and N commute eX = eD+N = eDeN . Hence, from
Case 1 and Case 2 we can calculate eN and eD.

For example, if X =

(
a b
0 a

)
then

X =

(
a 0
0 a

)
︸ ︷︷ ︸
Diagonal

+

(
0 b
0 0

)
︸ ︷︷ ︸
Nilpotent

The above two terms commute because the diagonal matrix is a multiple of the identity, hence

eX =

(
ea 0
0 ea

)(
1 b
0 1

)
=

(
ea eab
0 ea

)

22



2.10 The Matrix Logarithm and More Properties of the Matrix Exponential2 BACKGROUND

2.10 The Matrix Logarithm and More Properties of the Matrix Ex-
ponential

Definition 2.10.1.
The matrix logarithm is the inverse function to the matrix exponential. The function for the
logarithm of complex numbers can be defined as a power series such that:

logz =

∞∑
m=1

(−1)
m+1 (z − 1)

m

m

Similarly, for any n x n matrix, A, log (A) can be defined as:

logA =

∞∑
m=1

(−1)
m+1 (A− I)

m

m

when the series converges.

A key theorem that is essential in the study of Lie algebras is the Lie Product Formula.

Theorem 2.10.2. (Lie Product Formula)
Let X and Y be n x n complex matrices then

eX+Y = limm→∞

(
e
X
m e

Y
m

)m

Proof.

Writing out the power series for e
X
m and e

Y
m i.e.

e
X
m = I +

X

m
+

(
X
m

)2
2

+

(
X
m

)3
3!

+ . . .

= I +
X

m
+

X2

2m2
+

X3

6m3
+ . . .

e
Y
m = I +

Y

m
+

(
Y
m

)2
2

+

(
Y
m

)3
3!

+ . . .

= I +
Y

m
+

Y 2

2m2
+

Y 3

6m3
+ . . .

So, multiplying the above two power series it is clear that except three terms the rest include
higher powers of 1

m :

e
X
m e

Y
m =

(
I +

X

m
+

X2

2m2
+

X3

6m3
+ . . .

)(
I +

Y

m
+

Y 2

2m2
+

Y 3

6m3
+ . . .

)
= I +

X

m
+
Y

m
+O

(
1

m2

)

23



2.10 The Matrix Logarithm and More Properties of the Matrix Exponential2 BACKGROUND

Hence, it is clear that e
X
m e

Y
m → I as m→∞ and e

X
m e

Y
m is the domain for the logarithm for

large values of m.

A proposition about matrix exponentials states that, ∀n xn matrices, B, log (I +B) = B +

O
(
‖B‖2

)
and this proposition can be used to prove this theorem.

log
(
e
X
m e

Y
m

)
= log

(
I +

X

m
+
Y

m
+O

(
1

m2

))
The above log equation matches the form of the log equation given in the proposition, so
log
(
e
X
m e

Y
m

)
can also be written as:

log
(
e
X
m e

Y
m

)
=

X

m
+
Y

m
+O

(∥∥∥∥Xm +
Y

m
+O

(
1

m2

)∥∥∥∥2
)

=
X

m
+
Y

m
+O

(
1

m2

)
By exponentiating the above logarithm we get

e
X
m e

Y
m = exp

(
X

m
+
Y

m
+O

(
1

m2

))
(
e
X
m e

Y
m

)m
= exp

(
X + Y +O

(
1

m

))
Finally, by the continuity of exponentials, we can say

limm→∞

(
e
X
m e

Y
m

)m
= exp (X + Y )

which is the Lie Product Formula.

QED

Another key theorem is the following:

Theorem 2.10.3.
For any n xn complex matrix, X:

det
(
eX
)

= etrace(X)

Proof.

Earlier, we defined three ways of exponentiating general matrices and to prove 2.10.3. we will
break it down into the three different cases.

Case 1: X is diagonalisable

24



2.10 The Matrix Logarithm and More Properties of the Matrix Exponential2 BACKGROUND

Suppose there is complex invertible matrix, C, such that

X = C

 λ1 0
. . .

0 λn

C−1

=⇒ eX = C

 eλ1 0
. . .

0 eλn

C−1

So, the trace of X is

trace (X) =
∑

λi

=⇒ etrace(X) = e
∑
λi

And the determinant of eX is

det
(
eX
)

= Πeλi

= e
∑
λi

Hence, trace (X) = det
(
eX
)
.

Case 2: X is nilpotent

If X is nilpotent then there exists an invertible matrix C such that

X = C

 0 ∗
. . .

0 0

C−1

In this case, it is evident that eX will also be upper triangular, with 1’s on the diagonal i.e.

X = C

 1 ∗
. . .

0 1

C−1

So, the trace of X is

trace (X) = 0

=⇒ etrace(X) = 1

And the determinant of eX is the product of the diagonal, which are all 1’s, so

det (X) = 1

25



2.11 The Lie Algebra of a Matrix Lie Group 2 BACKGROUND

Hence, trace (X) = det
(
eX
)
.

Case 3: X is arbitrary

From the previous section, we showed that any matrix, X, can be written as a sum of two
commuting matrices D (diagonalisable matrix over C) and N (nilpotent matrix). Since,
DN = ND i.e. they commute we can write

eX = eDeN

So, from the previous two cases we know that

det
(
eX
)

= det
(
eDeN

)
= det

(
eD
)
det
(
eN
)

= etrace(D)etrace(N)

= etrace(X)

[Note: From the Case 1 and Case 2, we know that trace (N) = 0 and trace (D) = trace (X)]

QED
Another important theory, which highlights the relationship between Lie groups and Lie algebra
is the one-parameter subgroups. One-parameter subgroups are of basic importance in the
theory of Lie groups, as every element of the associated Lie algebra defines a homomorphism to
the exponential map. And in the case of matrix groups it is defined by the matrix exponential.

Definition 2.10.4.
A function A : R→ GL (n,C) is called the One-Parameter Subgroup of GL (n,C) if
(I) A is continuous
(II) A (0) = I
(III)A (t+ s) = A (t)A (s) ∀t, s ∈ R

In addition, if A is a one-parameter subgroup of GL (n,C) then there exists a unique n xn
complex matrix, X, such that A (t) = etX (One-Parameter Subgroups Theorem).

2.11 The Lie Algebra of a Matrix Lie Group

Lie algebra is a linear space and can be understood by linear algebra, hence it is simpler to
solve than matrix Lie groups. So, many questions about matrix Lie groups can be solved by
considering a similar but easier Lie algebra problem.

Definition 2.11.1.
Let G be a matrix Lie group, then the Lie algebra of G is denoted by, g, and it is the set of
all matrices, X, such that etX is in G ∀ real numbers t.
In other words, X is in g if and only if the one-parameter subgroup generated by X lies in G.
[Note 1: Even if G is a subgroup of GL (n,C) (not necessarily GL (n,R)), we do not require
etX to be in G ∀ complex numbers t, but only ∀ real numbers t.]
[Note 2: It is not enough to have eX ∈ G. It is easy to give an example of an X and a G
such that eX ∈ G, but etX /∈ G for some real values of t. Such an X is not in the Lie algebra
of G.]

26



2.11 The Lie Algebra of a Matrix Lie Group 2 BACKGROUND

2.11.1 The General Linear Group

If X is a n x n complex matrix, then we know that the exponential of the matrix is invertible,
i.e. etX is invertible. Hence the Lie algebra of GL (n,C), defined as gl (n,C), is the space of
all n x n complex matrices.

If X is a n x n real matrix, then etX is invertible and real. In addition, if etX is real (∀real t
) then X = d

dte
tX |t=0 will also be real. Therefore the Lie algebra of GL (n,R), defined as

gl (n,R), is the space of all n x n real matrices.

[Note: The above argument shows that if G is a subgroup of GL (n,R), then the Lie algebra
of G must be consist entirely of real matrices.]

2.11.2 The Special Linear Group

Recall, that the special linear group are n x n complex matrices, X that have complex entries
and a determinant of one.

Also, theorem 2.10.3 states that det
(
eX
)

= etrace(X) therefore if

trace (X) = 0

=⇒ det
(
etX
)

= 1 ∀real t

So, if X is any n x n matrix such that det
(
etX
)

= 1 ∀t then ettrace(X) = 1 ∀t. This implies
that t · trace (X) is an integer multiple of 2πi ∀t, but this is only possible if trace (X) = 0.
Thus, the Lie algebra of SL (n,C) is the space of all n x n complex matrices with trace zero,
written as sl (n,C).

Similarly, the Lie algebra of SL (n,R) is the space of all n x n real matrices with trace zero,
written as sl (n,R).

2.11.3 The Unitary Group

Recall, a matrix U is unitary if and only if U∗ = U−1 . Hence, etX is unitary if and only if

(
etX
)∗

=
(
etX
)−1

= e−tX

There exists a proposition, which states that
(
etX
)∗

= etX
∗
and using this proposition the

above equation becomes

etX
∗

= e−tX (2)

Therefore, a sufficient condition for 2 to hold is −X = X∗. However, if 2 holds ∀t then by
differentiating at t = 0 we will get a necessary condition, −X = X∗.

Hence, the Lie algebra of U (n) is the space of all n x n complex matrices, X, such that
X∗ = −X. The Lie algebra of U (n) is denoted as u (n).

Similarly, by using the Lie algebra definition of the unitary group and the special linear group
we can define the Lie algebra of special unitary group, SU (n). The Lie algebra of SU (n) is
the space of all n x n complex matrices, X, such that X∗ = −X and trace (X) = 0 and is
written as su (n).

27



2.11 The Lie Algebra of a Matrix Lie Group 2 BACKGROUND

2.11.4 The Orthogonal Group

The identity component of O (n) is simply SO (n). Furthermore, another proposition states
that the exponential of a matrix in the Lie algebra is automatically in the identity component.
So, this means that the Lie algebra of O (n) is the same as the Lie algebra of SO (n).

Recall, a n x n real matrix, R, is orthogonal if and only if RT = R−1. So, given a n x n
matrix, X, etX is orthogonal if and only if

(
etX
)T

=
(
etX
)−1

=⇒ etX
T

= e−tX (3)

Therefore, a sufficient condition for 3 to hold is XT = −X. However, if 3 holds ∀t then by
differentiating at t = 0 we will get the necessary condition, XT = −X.

Hence, the Lie algebra of O (n) and of SO (n) is the space of all n x n real matrices X with
XT = −X and it is denoted as so (n). The condition XT = −X forces the diagonal of X
to be zero, which implies that the trace of X is zero.

Similarly, the Lie algebra of SO (n,C) is the space of n x n complex matrices with XT = −X
and written as so (n,C).

2.11.5 The Generalised Orthogonal Group

A matrix, A, is in O (n, k) if and only if AT gA = g, where g is the (n+ k) x (n+ k)
diagonal matrix with the first n diagonal entries equal to one and the last k entries equal to
negative one. This is equivalent to saying g−1AT g = A−1 and since g−1 = g, we can write,
gAT g = A−1.

So, if X is a (n+ k) x (n+ k) real matrix, then etX is O (n, k) if and only if

getX
T

g = etgX
T g

= e−tX

This condition holds for all real t if and only if gXT g = −X. Therefore, the Lie algebra
of O (n, k), which is also the same as the Lie algebra of SO (n, k) (same argument as the
orthogonal group) is the space of all (n+ k) x (n+ k) real matrices X with gXT g = −X
and it is denoted by so (n, k).

2.11.6 The Symplectic Group

The calculation of these Lie algebras are similar to generalised orthogonal groups. So, let J
be the matrix defined in section 2.2 (example 7) then the Lie algebra for Sp (n,R) is the space
of 2n x 2n real matrices X with JXTJ = X and it is denoted by sp (n,R).

Similarly, the Lie algebra for Sp (n,C) is the space of 2n x 2n real matricesX with JXTJ = X
and it is denoted by sp (n,C).

28



2.12 Properties of Lie Algebra 2 BACKGROUND

2.11.7 The Heisenberg Group

Recall, the Heisenberg group, H, is the group of all 3 x 3 real matrices, A, which are of the
form:

A =

 1 a b
0 1 c
0 0 1


with a, b, c ∈ R.

Furthermore, earlier we computed the exponential of a nilpotent matrix, X, which is of the
form

X =

 0 a b
0 0 c
0 0 0


and we discovered that eX is in H as

eX =

 1 a b+ 1
2ac

0 1 c
0 0 1


However, if X is any matrix such that etX is of the form A, then all the entries of X =
d
dte

tX |t=0, which are on or below the diagonal must be zero in order for X to be in the form
of a nilpotent matrix.

Therefore, the Lie algebra of a Heisenberg group is the space of all 3 x 3 real matrices that
are upper triangular.

2.12 Properties of Lie Algebra

Basic properties of the Lie algebra of a matrix Lie group:

Proposition 2.12.1.
Let G be a matrix Lie group, and X an element of its Lie algebra. Then eX is an element of
the identity component of G.

Proof.

From the definition of Lie algebra, etX lies in G ∀t. So, as t varies from 0 to 1, etX is a
continuous path connecting the identity to eX .

QED

Proposition 2.12.2.
Let G be a matrix Lie group with a Lie algebra, g. Let X ∈ g and A ∈ G then AXA−1 ∈ g.

29



2.12 Properties of Lie Algebra 2 BACKGROUND

Proof.

From the theory about exponentials we know that if C is an invertible matrix then:

eCXC
−1

= CeXC−1

By using this result we can write:

et(AXA
−1) = AetXA−1

thus AetXA−1 ∈ G ∀t.
QED

A list of a few other properties that we will not prove in this project:

Let G be a matrix Lie group, g defined as its Lie algebra, and X,Y ∈ g, then this following
properties hold:

1. sX ∈ g ∀real numbers s

2. X + Y ∈ g

3. XY − Y X ∈ g

The following definitions and properties are going to be useful, for proving the Baker-Campbell-
Hausdorff Formula.

Definition 2.12.3.
Given two n x n matrices A and B, the bracket/commutator of A and B is defined as

[A,B] = AB −BA

From Property 3 (above), we know that the Lie algebra of any matrix Lie group is closed
under brackets.

A simple example of using the commutator is show below:

A =

 0 1 0
0 0 0
0 0 0


B =

 0 0 1
0 0 0
0 0 0


[A,B] = AB −BA

=

 0 1 0
0 0 0
0 0 0

 0 0 1
0 0 0
0 0 0

−
 0 0 1

0 0 0
0 0 0

 0 1 0
0 0 0
0 0 0


= 0− 0

= 0

30



2.12 Properties of Lie Algebra 2 BACKGROUND

This is a very useful shorthand to simplify some complex matrix equations.

Definition 2.12.4.
A matrix Lie group, G, is complex if its Lie algebra,g, is a complex subspace of Mn (C) i.e.
if iX ∈ g ∀X ∈ g
Examples of complex groups are:
GL (n,C), SL (n,C), SO (n,C), and Sp (n,C)

Definition 2.12.5.
Let G be a matrix Lie group, with Lie algebra g. Then for each A ∈ G, a linear map
AdA : g→ g is defined using:

AdA (X) = AXA−1

Properties 2.12.6.

1. There is an associated real linear map X → adX from the Lie algebra of G to the Lie
algebra of GL (g) i.e. linear map from g to gl (g) with a property that states

eadX = Ad
(
eX
)

Note: GL(g) is quite the same as GL (k,R) as g is essentially a real vector space with
some dimension k, hence GL (g) can be regarded as a matrix Lie group.
Note: gl (g) is the Lie algebra of the matrix Lie group, GL (g) i.e. the space of all
linear maps of g to itself.

2. For any X ∈Mn (C), let adX : Mn (C)→Mn (C) be defined as

eadXY = AdeXY
= eXY e−X

This property can easily be proved using property 1 (above) and definition 2.12.5.

31



2.13 Lie Algebra 2 BACKGROUND

2.13 Lie Algebra

Proposition 2.13.1.
A finite-dimensional real or complex Lie algebra is a finite-dimensional real or complex
vector space, g, together with a map [·, ·] from g x g into g and holds the following properties:

1. [·, ·] is bilinear

2. [X,Y ] = − [Y,X] ∀X,Y ∈ g (Skew-symmetry)

(a) Property 2 implies that [X,X] = − [X,X] = 0 ∀X ∈ g

3. [X, [Y,Z]] + [Y [Z,X]] + [Z, [X,Y ]] = 0 ∀X,Y, Z ∈ g (Jacobi identity)

Using the properties defined in section 2.12, we can prove proposition 2.13.1. Now we can
define two simple examples for Property 2 and 3 that will allow us to understand how the
commutator relation works. Assume for both examples that X and Y are 3 x 3 Heisenberg
matrices.

Example (Property 2):

X =

 1 1 2
0 1 3
0 0 1


Y =

 1 4 5
0 1 6
0 0 1



[X,Y ] = XY − Y X

=

 1 1 2
0 1 3
0 0 1

 1 4 5
0 1 6
0 0 1

−
 1 4 5

0 1 6
0 0 1

 1 1 2
0 1 3
0 0 1


=

 0 0 −6
0 0 0
0 0 0



[Y,X] = Y X −XY

=

 1 4 5
0 1 6
0 0 1

 1 1 2
0 1 3
0 0 1

−
 1 1 2

0 1 3
0 0 1

 1 4 5
0 1 6
0 0 1


=

 0 0 6
0 0 0
0 0 0


= − [X,Y ]

Example (Property 3):

32



2.14 The Baker-Campbell-Hausdorff Formula 2 BACKGROUND

X =

 1 1 2
0 1 3
0 0 1


Y =

 1 4 5
0 1 6
0 0 1


Z =

 1 7 8
0 1 9
0 0 1



[X, [Y,Z]] + [Y [Z,X]] + [Z, [X,Y ]]

=

 1 1 2
0 1 3
0 0 1

 ,

 1 4 5
0 1 6
0 0 1

 ,

 1 7 8
0 1 9
0 0 1


+

 1 4 5
0 1 6
0 0 1

 1 7 8
0 1 9
0 0 1

 ,

 1 1 2
0 1 3
0 0 1


+

 1 7 8
0 1 9
0 0 1

 ,

 1 1 2
0 1 3
0 0 1

 ,

 1 4 5
0 1 6
0 0 1


=

 0 0 −6
0 0 0
0 0 0

+

 0 0 12
0 0 0
0 0 0

+

 0 0 −6
0 0 0
0 0 0


=

 0 0 0
0 0 0
0 0 0


= 0

Definition 2.13.2.
Let g be a Lie algebra, then for X ∈ g we can define a linear map adX : g→ g by

adX (Y ) = [X,Y ]

Note: This notation can be useful in situations where we have the following expression and
we can simplify it using “ad”:

[X, [X, [X,Y ]]] = (adX)
3

(Y )

2.14 The Baker-Campbell-Hausdorff Formula

This is a very important formula as it defines log
(
eXeY

)
in terms of brackets of X and Y ,

brackets of brackets of X and Y etc. This clearly indicates that for elements of the form eX ,

33



2.14 The Baker-Campbell-Hausdorff Formula 2 BACKGROUND

where X is small, the group product for a matrix Lie group, G, is completely expressible in
terms of its Lie algebra. This is true because one form the Baker-Campbell-Hausdorff formula
states that if X and Y are sufficiently small, then:

log
(
eXeY

)
= X + Y +

1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y [X,Y ]] + . . .

So log
(
eXeY

)
and, hence, eXeY can be computed in Lie-algebraic terms.

Rather than proving the above series of the Baker-Campbell-Hausdorff formula, we will show
the proof of the general (i.e. the integral) part of the formula.

Below is the integral form of the Baker-Campbell-Hausdorff formula and its proof.

Theorem 2.14.1.
For all n x n complex matrices X and Y with ‖X‖ and ‖Y ‖ sufficiently small, then

log
(
eXeY

)
= X +

1ˆ

0

g
(
eadXetadY

)
(Y ) · dt

Proof.

Define:

Z (t) = log
(
eXetY

)
So, if X and Y are sufficiently small then Z (t) can be defined for 0 ≤ t ≤ 1 (Note: Z (t) is
smooth). Hence, the aim is to compute Z (1) and then the proof will be complete.

Clearly, using the above definition of Z (t) we can write:

eZ(t) = eXetY

so that

e−Z(t) d
dte

Z(t) =
(
eXetY

)−1
eXetY Y (4)

= Y

On the other hand, equation 4 can be re-written using the Derivative of Exponential The-
orem, which states:

d

dt
eX+tY |t=0 = eX

{
I − e−adX

adX
(Y )

}

= eX
{
Y − [X,Y ]

2!
+

[X, [X,Y ]]

3!
− . . .

}

34



2.14 The Baker-Campbell-Hausdorff Formula 2 BACKGROUND

where X and Y are complex matrices.

And if X (t) is a smooth matrix valued function (like equation 4) then the following is true:

d

dt
eX(t)|t=0 = eX(t)

{
I − e−adX(t)

adX(t)

(
dX

dt

)}

Now, using the above theorem, equation 4 can be written as:

e−Z(t) d

dt
eZ(t) =

{
I − e−adZ(t)

adZ(t)

}(
dZ

dt

)

=⇒

{
I − e−adZ(t)

adZ(t)

}(
dZ

dt

)
= Y

If X and Y are small, then Z (t) will also be small which implies that
[
I − e−adZ(t)

]
will be

close to the identity and hence invertible.

Thus, the following would hold:

dZ

dt
=

{
I − e−adZ(t)

adZ(t)

}−1

(Y ) (5)

Since, we have defined eZ(t) = eXetY then by applying the homomorphism “Ad” we get:

AdeZ(t) = AdeXAdetY (6)

Property 2 mentioned in Properties 2.12.6 describes the relationship between “Ad” and “ad”,
hence equation 6 becomes:

eadZ(t) = eadXetadY (7)

=⇒ adZ(t) = log
(
eadXetadY

)
So, we can substitute equation 7 into equation 5 and this results in:

dZ

dt
=


I −

(
eadXetadY

)−1

log
(
eadXetadY

)

−1

(Y ) (8)

Note, we can define:

g (z) =

{
1− z−1

log (z)

}−1

35



2.14 The Baker-Campbell-Hausdorff Formula 2 BACKGROUND

Thus, equation 8 can be re-written as:

dZ

dt
= g

(
eadXetadY

)
(Y ) (9)

Now, if we take Z (0) = X and integrate equation 9 then we get:

Z (1) = X +

1ˆ

0

g
(
eadXetadY

)
(Y ) · dt

which is what we needed as Z (1) = log
(
eXeY

)
, and this ends the proof.

QED

36



3 MARKOVIAN ARRIVAL PROCESS (MAP)

3 Markovian Arrival Process (MAP)

3.1 Overview

Markovian arrival processes (MAP) is defined as a random sequence of events and we may
think of it as a point process. There are many different types of MAPs, for instance the most
common ones are Poisson process, PH renewal process, etc. [5]

Markovian arrival processes have two processes; one of them is a continuous-time Markov
chain (also known as a continuous-time Markov process process), J (t), which is a Markov
process generated by a rate matrix/generator, Q. The second process is a counting process
N (t), which has state space N0 := N ∪ {0}. Every time there is a transition in J (t), that is
marked, it increases N (t). [6]

Now, we can further understand the first process that is required in a MAP: continuous-time
Markov process. This is a stochastic process that satisfies the Markov property and takes
values from a set called the state space.

Below are the definitions of the underlined terms:

Definition 3.1.1. (Markov Property)[9]:
The Markov property states that for any t within, 0 < t < s, the conditional probability
distribution of the process at s (given the history of the whole process up to and including
the state of the process at time, t) depends only on the state of the process at time, t.
In other words, the conditional probability distribution of the future states in the process (i.e.
say at time s) is only dependent on the current state (say at time t) and is not affected by
the events of the states that occur before time, t.

Definition 3.1.2. (Finite State Space)[10]:
A finite state space can be finite with the transition probability distribution represented as
a matrix. This matrix is defined as the transition matrix, say P , with the (i, j)th element of
P equal to:

pij = P (Xn+1 = j|Xn = i)

So, each row of P sums to one and all elements are non-negative. Thus, P is a right stochastic
matrix.

Now, we explore the second process that is required to define a MAP. For this project we will
mainly be using the Poisson process (distribution).

37



3.1 Overview 3 MARKOVIAN ARRIVAL PROCESS (MAP)

Definition 3.1.3 (Poisson Process)[7]:
As mentioned one of the counting processes, which is frequently used in MAPs is the Pois-
son process. This is a continuous-time counting process, {N (t) , t ≥ 0}, and the following
properties hold:

1. N (0) = 0

2. The number of changes in disjoint intervals are independent of each other.

3. The probability distribution of the number of occurrences in any time interval is depen-
dent on the length of the interval.

(a) The probability of exactly one change in a relatively small interval, h = 1
n is

P = v ·h ≡ v
n where v is the probability of one change and n the number of trials.

The results of these properties are summarised below:

1. The probability distribution of this process, N (t), is a Poisson distribution.

2. But, the probability distribution of the waiting time between the next occurrence is an
exponential distribution.

3. The total number of occurrences, N (t), has a Poisson distribution over (0, t], while any
individual occurrence, t ∈ (a, b] is a uniform distribution.

So, in a Poisson process the sequence of events are randomly spaced over time and that can
be shown using a diagram:

Examples of real-life situations where we may estimate the probability of events using a Poisson
process include:

• Customers arriving into a bank (day-to-day life)

• Geiger-Muller counter clicks: detects the emission of radiation (science related)

• Packets arriving into a buffer on a network (computer-science)

So the rate, λ, of a Poisson process is the average number of events per unit time (calculated
over a long period of time). Thus, probability of n arrivals in t units of time is:

Pn (t) =
(λt)

n

n!
e−λt

Looking at the two different components of a MAP, we can now further explore the properties
of a MAP and see its unique features. So, now we can give a more formal definition of a
MAP:

38



3.2 Example: SL (2,R) 3 MARKOVIAN ARRIVAL PROCESS (MAP)

Definition 3.1.4. (Markov Arrival Process):
A MAP is a stochastic process defined by the continuous-time bivariate Markov chain
{N (t) , J (t)}. N (t) is the number of arrivals in [0, t) and J (t), 1 ≤ J (t) ≤ m, where
J (t) is the state of the Markov chain (phase at time, t).
Now, the m-state MAP can be written using a Markov process {N (t) , J (t)} on the state
space {(i, j) |i ≥ 0, 1 ≤ j ≤ m} with an infinitesimal generator, Q∗ with the following struc-
ture:

Q∗ =


C D 0 0 . . .
0 C D 0 . . .
0 0 C D . . .
...

...
...

. . . . . .
...

...
...

...
. . .


where both C and D are m x m matrices. C is the matrix that defines transitions without
arrival events and all its diagonal entries are negative while its off-diagonal elements are non-
negative. Matrix D has only non-negative elements and represents transitions with arrival
events.
Thus, matrix Q defined as

Q = C +D

is an irreducible infinitesimal generator of the underlying continuous-time Markov chain
(CTMC), {J (t)}. [11]
In other words, if we define Q as:

Q =


−γ1,1 γ1,2 · · · γ1,m

γ2,1, −γ2,2 · · · γ2,m

...
...

. . .
...

γm,1 γm,2 · · · −γm,m


then by the definition of a matrix generator γi,i =

∑m
j=1,j 6=i γi,j i.e. the rows of Q must sum

to 0. [12]

In addition, we have C on the diagonal of Q∗ as it is the block matrix that defines state
transitions with no arrivals and has negative diagonal entries. So, if we have an arrival then
we move to the next element in Q∗, which is defined by the rate matrix, D. This process
continues as we proceed down the rows of Q∗.

3.2 Example: SL (2,R)

This example is based on the information and data given in [8]. We build on this theory and
expand the steps defined in that paper.

Given the Lie algebra of the special linear group, SL (2,R), as sl (2,R) i.e. the group of 2 x 2

matrices with determinant one we can denote E(c)
+ , E(c)

− , and E(c)
3 as (c+ 1) x (c+ 1) c ∈

R matrix representations of the standard generators ê+, ê−, ê3. We define the commutator
relations directly from it definition: [A,B] = AB −BA i.e:

39



3.2 Example: SL (2,R) 3 MARKOVIAN ARRIVAL PROCESS (MAP)

[ê+, ê−] = ê3

[ê3, ê+] = 2ê+

[ê3, ê−] = −2ê−

so,
[
â, b̂
]

= âb̂− b̂â for any operator â, b̂

For 2 x 2 matrices there are generally four generators, however since there is one condition
(trace = 0) on the Lie algebra of SL (2,R) we subtract one, thus leaving us with only three
generators i.e. 22 − 1 = 3.

From Lie algebra we know that there exists infinitely many matrix representations that satisfy
the commutator, and we can also conclude that any (c+ 1) x (c+ 1) matrix representations
of ê+, ê−, ê3 can be defined by:

(
E

(c)
+

)
i,j

= (c− i) δi,j−1(
E

(c)
−

)
i,j

= iδi,j+1(
E

(c)
3

)
i,j

= (c− 2i) δi,j

where δi,j is the Kroncker delta that we defined earlier.

Further investigations will be demonstrated on the class of MAPs that have the following
matrices, C and D:

C = c+E
(c)
+ + c−E

(c)
− −

α

2
E

(c)
3 − β

2
I(c)

D = d+E
(c)
+ + d−E

(c)
− +

λ+ − λ−
2

E
(c)
3 +

λ+ + λ−
2

I(c)

where α = (c+ + d+ + λ+)− (c− + d− + λ−) and β = (c+ + d+ + λ+) + (c− + d− + λ−).

I(c) = cI(c+1) x (c+1) i.e. c times the (c+ 1) x (c+ 1) identity matrix, I(c+1) x (c+1). Now,
we can show that C and D satisfy the conditions for representing matrices of a MAP if the
following hold:

• c+, c− are non-negative real numbers.

• d+, d−, λ+, λ− are also all non-negative real numbers while at least one of them is
strictly positive.

3.2.1 Solving for C and D

We can now use matrix Lie algebra on E
(c)
+ , E

(c)
− , E

(c)
3 as the commutator relations from

above hold. Hence, the following is true:

40



3.2 Example: SL (2,R) 3 MARKOVIAN ARRIVAL PROCESS (MAP)

[C,D] =

[
c+E

(c)
+ + c−E

(c)
− −

α

2
E

(c)
3 − β

2
I(c), d+E

(c)
+ + d−E

(c)
− +

λ+ − λ−
2

E
(c)
3 +

λ+ + λ−
2

I(c)

]
= − [αd+ + c+ (λ+ − λ−)]E

(c)
+ + [αd− + c− (λ+ − λ−)]E

(c)
− + (c+d− − c−d+)E

(c)
3

[C, [C,D]] = {α [αd+ + c+ (λ+ − λ−)]− 2c+ (c+d− − c−d+)}E(c)
+

+ {α [αd− + c− (λ+ − λ−)] + 2c− (c+d− − c−d+)}E(c)
−

+ {c+ [αd− + c− (λ+ − λ−)] + c− [αd+ + c+ (λ+ − λ−)]}E(c)
3

To further simplify this we can use the definition of the linear map ad as mentioned in Definition
2.13.2. So, we can write adC and repeatedly apply this operation to D which results in:

ad3
CD = [C, [C, [C,D]]]

= a2 [C,D]

Therefore, we can write the general case as:

adnCD = { a
2k [C,D] n = 2k + 1
a2k [C, [C,D]] n = 2k + 2

for k ∈ Z+ where a2 = α2 + 4c+c−.

We can choose a 2 x 2 matrix representation of ê+, ê−, ê3:

E
(1)
+ =

(
0 1
0 0

)
E

(1)
− =

(
0 0
1 0

)
E

(1)
3 =

(
1 0
0 −1

)

So, now we can write C and D using the definitions given above i.e.

C = c+E
(c)
+ + c−E

(c)
− −

α

2
E

(c)
3 − β

2
I(c)

D = d+E
(c)
+ + d−E

(c)
− +

λ+ − λ−
2

E
(c)
3 +

λ+ + λ−
2

I(c)

Hence,

41



3.2 Example: SL (2,R) 3 MARKOVIAN ARRIVAL PROCESS (MAP)

C = c+E
(1)
+ + c−E

(1)
− −

α

2
E

(1)
3 − β

2
I(1)

=⇒ C = c+

(
0 1
0 0

)
+ c−

(
0 0
1 0

)
− α

2

(
1 0
0 −1

)
− β

2

(
1 0
0 1

)
=⇒ C =

(
0 c+
0 0

)
+

(
0 0
c− 0

)
−
(

α
2 0
0 −α2

)
−
(

β
2 0

0 β
2

)
=⇒ C =

(
0 c+
0 0

)
+

(
0 0
c− 0

)
−

(
(c++d++λ+)−(c−+d−+λ−)

2 0

0 − (c++d++λ+)−(c−+d−+λ−)
2

)

−

(
(c++d++λ+)+(c−+d−+λ−)

2 0

0 (c++d++λ+)+(c−+d−+λ−)
2

)

=⇒ C =

(
−c+ − d+ − λ+ c+

c− −c− − d− − λ−

)

D = d+E
(1)
+ + d−E

(1)
− +

λ+ − λ−
2

E
(1)
3 +

λ+ + λ−
2

I(1)

=⇒ D = d+

(
0 1
0 0

)
+ d−

(
0 0
1 0

)
+
λ+ − λ−

2

(
1 0
0 −1

)
+
λ+ + λ−

2

(
1 0
0 1

)
=⇒ D =

(
0 d+

0 0

)
+

(
0 0
d− 0

)
+

(
λ+−λ−

2 0

0 −
(
λ+−λ−

2

) )+

(
λ++λ−

2 0

0 λ++λ−
2

)

=⇒ D =

(
λ+ d+

d− λ−

)
These are standard representing matrices of a two-state MAP that has ON (subscript ’+’)
and OFF (subscript ’-’). There are many other examples that can be described by the MAP
with representing matrices C and D, both in the case when c = 1 and in the general case.

3.2.2 Implementing C and D

We can also construct a solution of P (n, t) for a MAP {N (t) , J (t)} with representing
matrices C and D that do not necessarily have to be expanded in terms of E+, E−, E3, I
where n ∈ Z+ and t ∈ R+. Thus, the MAP can be defined by the matrix with the i, jth
element written as:

(P (n, t))i,j = P (N (t) = n, J (t) = j|N (0) = 0, J (0) = i)

We know that matrix C defines the transitions without arrival events, while matrix D defines
state transitions with arrival events. So, we can write the i, jth element of exp (Ct) and it is
defined as the probability that there is no arrival event in the time, (0, t]. In addition, given
that the state of the Markov chain is i at time 0 then at time t the state of the Markov chain
is j. This implies that when n = 0 (i.e. no arrivals in time, t) then P (0, t) = exp (Ct).

Now, let ti be the time when the ith arrival event occurs for i = 1, 2, . . . , n where 0 < t1 <
t2 < · · · < tn < t.

Hence, if the following conditions hold:

42



3.2 Example: SL (2,R) 3 MARKOVIAN ARRIVAL PROCESS (MAP)

1. Markov property and the probability density that an arrival event occurs at time, t

2. The state of the Markov chain at time t is j given that the state of the Markov chain
at time 0 is i

then we can write the i, jth element of exp [Ct]D.

This is defined as the probability that there are n consecutive arrival events in (0, t] and occur
at time t1, t2, . . . , tn. Finally, condition 2 can be deduced as the i, jth element of the following
matrix:

eCt1DeC(t2−t1)D . . . eC(tn−tn−1)DeC(t−tn)dt1dt2 . . . dtn

Note: the above expression come directly from the matrix integral expression for P (n, t) for
n ≥ 1, which is defined as:

P (n, t) =

ˆ

Ωn,t

eCt1DeC(t2−t1)D . . . eC(tn−tn−1)DeC(t−tn)dt1dt2 . . . dtn

where Ωn,t =
{

(t1, t2, . . . , tn) ∈ Rn+|0 < t1 < · · · < tn < t
}

Furthermore, by keeping in mind the above equation and using the idea of eC(x−y) =
eCxe−Cy = e−CyeCx we can define a matrix, M (n, t), for t ∈ R+ and n ≥ 1 as:

M (n, t) =

ˆ

Ωn,t

(
eCt1De−Ct1

) (
eCt2De−Ct2

)
. . .
(
eCtnDe−Ctn

)
dt1dt2 . . . dtn

Also, M (0, t) = I(c+1) x (c+1) .

Now, clearly from above we can see that P (n, t) can be decomposed using M (n, t) and this
results in:

P (n, t) = M (n, t) eCt

for n ∈ Z+. The initial conditions are

P (0, 0) = I(c+1) x (c+1)

P (n, 0) = O

where O is the zero matrix. Similarly, the initial conditions for M (n, t) are:

M (0, 0) = I(c+1) x (c+1)

M (n, 0) = O

where n ≥ 1

43



3.2 Example: SL (2,R) 3 MARKOVIAN ARRIVAL PROCESS (MAP)

Therefore, we can see that a solution for P (n, t) can be obtained if M (n, t) and eCt can be
explicitly derived.

Recalling, the Baker-Hausdorff lemma we can write, eXtY e−Xt, for a given t ∈ R and two
square matrices X and Y as:

eXtY e−Xt = Y + [X,Y ] +
t

2!
[X, [X,Y ]] +

t

3!
[X, [X, [X,Y ]]] + . . .

=defn 13.2 Y + adXY +
t

2!
ad2
XY +

t

3!
ad3
XY + . . .

Y +

∞∑
n=1

tn

n!
adnXY

So, by using the above lemma and the general case of the ad definition i.e.

adnCD = { a
2k [C,D] n = 2k + 1
a2k [C, [C,D]] n = 2k + 2

(10)

and

adC (D) = [C,D] (11)

we can deduce the following:

eCtDe−Ct = D + tadCD +
t2

2!
ad2
CD + · · ·+ tn

n!
adnCD + . . . (definition of B-H lemma)

= D +

(
t+

t3

3!
a2 +

t5

5!
a4 + . . .

)
[C,D] +

(
t2

2!
+
t4

4!
a2 +

t6

6!
a4 + . . .

)
[C, [C,D]] (from 10)

= D +

(
t+

t3

3!
a2 +

t5

5!
a4 + . . .

)
adCD +

(
t2

2!
+
t4

4!
a2 +

t6

6!
a4 + . . .

)
ad2
CD (from 11)

= D +

(
eat − e−at

2a

)
adCD +

(
eat + e−at

2a2
− 1

a2

)
ad2
CD

= D + (sinh (at)) adCD +

(
1

a2
(cosh (at)− 1)

)
ad2
CD

So, we have obtained a solution for eCtDe−Ct when a 6= 0 and we simplified it using Lie
algebra and the Baker-Hausdorff Lemma.

If a = 0 (when c+ = c− = 0 and α = 0) then the above equation simplifies to:

D +

(
t+

t3

3!
a2 +

t5

5!
a4 + . . .

)
adCD +

(
t2

2!
+
t4

4!
a2 +

t6

6!
a4 + . . .

)
ad2
CD

for a = 0

=⇒ D + (t) adCD +

(
t2

2!

)
ad2
CD

= D + tadCD +
t2

2
ad2
CD

44



3.3 Example: SU (2) 3 MARKOVIAN ARRIVAL PROCESS (MAP)

In addition, from the above equivalence we can substitute eCtDe−Ct into the definition of
M (n, t) and hence we can rewrite P (n, t).

M (n, t) =

ˆ

Ωn,t

(
D + (sinh (at1)) adCD +

(
1

a2
(cosh (at1)− 1)

)
ad2
CD

)

·
(
D + (sinh (at2)) adCD +

(
1

a2
(cosh (at2)− 1)

)
ad2
CD

)
. . .

(
D + (sinh (atn)) adCD +

(
1

a2
(cosh (atn)− 1)

)
ad2
CD

)
dt1dt2 . . . dtn

Thus,

P (n, t) = M (n, t) eCt

= eCt
ˆ

Ωn,t

(
D + (sinh (at1)) adCD +

(
1

a2
(cosh (at1)− 1)

)
ad2
CD

)

·
(
D + (sinh (at2)) adCD +

(
1

a2
(cosh (at2)− 1)

)
ad2
CD

)
. . .

(
D + (sinh (atn)) adCD +

(
1

a2
(cosh (atn)− 1)

)
ad2
CD

)
dt1dt2 . . . dtn

3.3 Example: SU (2)

Taking some inspiration from [14] and the idea of how to specify a general case of the Lie
algebra, su (2), we have been able to define a second example as shown below.

We can define a MAP for the Lie algebra of the special unitary group, SU (2), as su (2) i.e.
the group of complex 2 x 2 matrices, say X, such that X∗ = X−1 and trace (X) = 0. We
can define a general element in su (2) by:

X =

(
ix −ā
a −ix

)
where x ∈ R and a ∈ C.

We can denote U (c)
+ , U (c)

− , and U (c)
3 as (c+ 1) x (c+ 1) matrix representations of the stan-

dard generators û+, û−, û3 of su (2).

One possible set of standard generators are:

û+ =

(
0 i
i 0

)
û− =

(
0 −1
1 0

)
û3 =

(
i 0
0 −i

)

45



3.3 Example: SU (2) 3 MARKOVIAN ARRIVAL PROCESS (MAP)

These are a form of the Pauli matrices[15].

Hence, we can define the commutator relations as:

[û+, û−] =

(
0 i
i 0

)(
0 −1
1 0

)
−
(

0 −1
1 0

)(
0 i
i 0

)
=

(
i 0
0 −i

)
−
(
−i 0
0 i

)
=

(
2i 0
0 −2i

)
= 2

(
i 0
0 −i

)
= 2û3

[û3, û+] =

(
i 0
0 −i

)(
0 i
i 0

)
−
(

0 i
i 0

)(
i 0
0 −i

)
=

(
0 −1
1 0

)
−
(

0 1
−1 0

)
=

(
0 −2
2 0

)
= 2

(
0 −1
1 0

)
= 2û−

[û−, û3] =

(
0 −1
1 0

)(
i 0
0 −i

)
−
(

i 0
0 −i

)(
0 −1
1 0

)
=

(
0 i
i 0

)
−
(

0 −i
−i 0

)
=

(
0 2i
2i 0

)
= 2

(
0 i
i 0

)
= 2û+

In addition, one of the many 2 x 2 matrix representations of û+, û−, û3 can be defined as
below:

46



3.3 Example: SU (2) 3 MARKOVIAN ARRIVAL PROCESS (MAP)

U
(1)
+ =

1

2
(û+ + iû−)

=

(
0 0
i 0

)
U

(1)
− = −1

2
(û+ − iû−)

=

(
0 i
0 0

)
U

(1)
3 =

1

2
û3

=

(
i
2 0
0 − i

2

)

Hence, we can use the earlier definitions of C and D and replace it with the above matrix
representations:

C = c+U
(c)
+ + c−U

(c)
− −

α

2
U

(c)
3 − β

2
I(c)

D = d+U
(c)
+ + d−U

(c)
− +

λ+ − λ−
2

U
(c)
3 +

λ+ + λ−
2

I(c)

where α = (c+ + d+ + λ+)− (c− + d− + λ−) and β = (c+ + d+ + λ+) + (c− + d− + λ−).
As well as c+, c− are non-negative real numbers and d+, d−, λ+, λ− are also all non-negative
real numbers while at least one of them is strictly positive.

Thus, by using the matrix representations of U (1)
+ , U

(1)
− , U

(1)
3 we can denote C and D in terms

of it:

47



3.3 Example: SU (2) 3 MARKOVIAN ARRIVAL PROCESS (MAP)

C = c+U
(1)
+ + c−U

(1)
− −

α

2
U

(1)
3 − β

2
I(1)

= c+

(
0 0
i 0

)
+ c−

(
0 i
0 0

)
− α

2

(
i
2 0
0 − i

2

)
− β

2
I

=

(
0 0
c+i 0

)
+

(
0 c−i
0 0

)
− α

2

(
i
2 0
0 − i

2

)
− β

2

(
1 0
0 1

)
=

(
0 c−i
c+i 0

)
−
(

(c+ + d+ + λ+)− (c− + d− + λ−)

2

)(
i
2 0
0 − i

2

)
−
(

(c+ + d+ + λ+) + (c− + d− + λ−)

2

)
I

=

(
0 c−i
c+i 0

)
−

(
((c++d++λ+)−(c−+d−+λ−))i

4 0

0 − ((c++d++λ+)−(c−+d−+λ−))i
4

)

−

(
(c++d++λ+)+(c−+d−+λ−)

2 0

0 (c++d++λ+)+(c−+d−+λ−)
2

)

=

(
− ((c++d++λ+)−(c−+d−+λ−))i

4 − (c++d++λ+)+(c−+d−+λ−)
2 c−i

c+i − ((c++d++λ+)−(c−+d−+λ−))i
4 − (c++d++λ+)+(c−+d−+λ−)

2

)

D = d+U
(1)
+ + d−U

(1)
− +

λ+ − λ−
2

U
(1)
3 +

λ+ + λ−
2

I(1)

= d+

(
0 0
i 0

)
+ d−

(
0 i
0 0

)
+
λ+ − λ−

2

(
i
2 0
0 − i

2

)
+
λ+ + λ−

2

(
1 0
0 1

)
=

(
0 0
d+i 0

)
+

(
0 d−i
0 0

)
+

(
(λ+−λ−)i

4 0

0 − (λ+−λ−)i
4

)
+

(
λ++λ−

2 0

0 λ++λ−
2

)

=

(
0 d−i
d+i 0

)
+

(
(λ+−λ−)i

4 + 2λ++2λ−
4 0

0 − (λ+−λ−)i
4 + 2λ++2λ−

4

)

=

(
(λ+−λ−)i

4 + 2λ++2λ−
4 d−i

d+i − (λ+−λ−)i
4 + 2λ++2λ−

4

)

=

(
(λ+i+2λ+)+(−λ−i+2λ−)

4 d−i

d+i
(−λ+i+2λ+)+(λ−i+2λ−)

4

)

=

(
(2+i)λ++(2−i)λ−

4 d−i

d+i
(2−i)λ++(2+i)λ−

4

)
If we compare the C and D matrices of sl (2,R) to the new ones above we can see that the
that su (2) matrices are more complicated. This is clear as we have both real and complex
entries.

Unfortunately, we can see that su (2) does not work as sum of the matrices C and D should
result in a matrix Q such that:

Q = C +D

and the the rows of Q must sum to zero. In other words, the diagonal entries of Q must be

48



3.3 Example: SU (2) 3 MARKOVIAN ARRIVAL PROCESS (MAP)

equal to the sum of the other elements in the same row. Nonetheless, further research can
be done as it is very likely to find the correct rate matrices, C and D. We generated very
simple and straightforward commutator relations, so there is definitely scope in generating the
required rate matrices.

So, just like the earlier example we can define P (n, t) for the new C and D matrices and
similarly we can reconstruct that integral using Lie algebra and rewrite P (n, t) in terms of
M (n, t) and eCt as shown below.

P (n, t) = eCtM (n, t)

3.3.1 Investigate SU (3)

We define the Lie algebra of SU (3) as su (3) and just as the case for su (2) we have to define
the generators. However, as we are dealing with 3 x 3 matrices there will be more generators
to take into account. In fact, technically, we should have 9 generators, however one condition
is imposed on su (3) therefore we only have 32 − 1 = 8 generators. This itself makes the
process more complicated and it becomes harder to find the right commutator relations in
order to find C and D.

Below are the useful standard generators that we would use to obtain our matrix representa-
tions:

û1 =

 0 1
2 0

1
2 0 0
0 0 0


û2 =

 0 − i
2 0

i
2 0 0
0 0 0


û3 =

 1
2 0 0
0 − 1

2 0
0 0 0


û4 =

 0 0 1
2

0 0 0
1
2 0 0


û5 =

 0 0 − i
2

0 0 0
i
2 0 0


û6 =

 0 0 0
0 0 1

2
0 1

2 0


û7 =

 0 0 0
0 0 − i

2
0 i

2 0


û8 =

1√
3

 1
2 0 0
0 1

2 0
0 0 −1



49



3.3 Example: SU (2) 3 MARKOVIAN ARRIVAL PROCESS (MAP)

And from this we can define a matrix representation, which are also known as the Gell-Mann
matrices[13]:

U
(2)
1 =

 0 1 0
1 0 0
0 0 0


U

(2)
2 =

 0 −i 0
i 0 0
0 0 0


U

(2)
3 =

 1 0 0
0 −1 0
0 0 0


U

(2)
4 =

 0 0 1
0 0 0
1 0 0


U

(2)
5 =

 0 0 −i
0 0 0
i 0 0


U

(2)
6 =

 0 0 0
0 0 1
0 1 0


U

(2)
7 =

 0 0 0
0 0 −i
0 i 0


U

(2)
8 =

1√
3

 1 0 0
0 1 0
0 0 −2


So, we can see that the basic matrix representations originate from the 8 generators and using

the relation: ûi =
U

(2)
i

2 ∀i ∈ {1, . . . , 8}.

Furthermore, the generators satisfy the following general commutator relation:

(We return only the final solution as the steps are identical to those in the su (2) case)

[û1, û2] = i

 1
2 0 0
0 − 1

2 0
0 0 0


= iû3

[û1, û3] =

 0 − 1
2 0

1
2 0 0
0 0 0


= −iû2

50



3.3 Example: SU (2) 3 MARKOVIAN ARRIVAL PROCESS (MAP)

[û1, û4] =

 0 0 0
0 0 1

4
0 − 1

4 0


=

i

2
û7

[û1, û5] =

 0 0 0
0 0 − i

4
0 − i

4 0


= − i

2
û6

[û1, û6] =

 0 0 1
4

0 0 0
− 1

4 0 0


=

i

2
û5

[û1, û7] =

 0 0 − 1
4

0 0 0
− 1

4 0 0


= −1

2
û4

[û1, û8] =

 0 0 0
0 0 0
0 0 0


= 0

[û2, û3] =

 0 i
2 0

i
2 0 0
0 0 0


= iû1

[û2, û4] =

 0 0 0
0 0 1

4
0 1

4 0


=

1

2
û6

51



3.3 Example: SU (2) 3 MARKOVIAN ARRIVAL PROCESS (MAP)

[û2, û5] =

 0 0 0
0 0 1

4
0 − 1

4 0


=

i

2
û7

[û2, û6] =

 0 0 − i
4

0 0 0
− i

4 0 0


= − i

2
û4

These are not all the commutator relations, however we can see that they are straightforward
to compute and the output from the brackets are useful results. Therefore, now as future
work we can complete the list and solve for the rate matrices C and D of a MAP. In order
to find useful equations for C and D we will need to generate a lot of test cases in order to
find the correct combination of matrix representations.

52



4 CODED EXAMPLES IN MATLAB

4 Coded Examples in MATLAB

4.1 Why use MATLAB?

MATLAB is a very useful mathematical programming tool that allows us to easily and quickly
compute large calculations that would take very long to compute by hand. Like MATLAB
there were other mathematical programming options that we considered such as Mathematica.
MATLAB is a straightforward programming tool that has a lot of the functions required to
compute integrals, matrices etc. This can help us simplify a lot of the code and allow other
readers to understand the concept in simple terms. The two examples that were defined in
the previous section were coded into MATLAB in order to see if we could generate the correct
output when given the correct input. As mentioned earlier there were two Lie algebra cases
that we looked into namely, sl (2,R) and su (2).

Let us look into some of the functionalities that will be useful when computing the two
examples. The key functionality that we will heavily use is the idea of accessing individual
elements within a matrix. This is done using the following manner:

First define a 2 x 2 matrix A as

A = [1,2;3,4]

≡
[

1 2
3 4

]

Then we can easily access the first element of the matrix by typing A (1, 1), the second element
by typing A (1, 2), and so on. So, it is clear that A (x, y) returns the element in the xth row
and yth column. This is particularly useful for the first example where we have a general
equation that creates the generating matrices E(c)

+ , E
(c)
− , E

(c)
3 as it is dependent on what the

user enters as c. In addition, the use of for loops and recursion will simplify a lot of the code
and we can find solutions for general cases too as we do not have to hard code any data.

Furthermore, simplify is a function that takes any symbolic function (i.e. with variables)
and reduces it into its simplest form. Sometimes, equations can become very complex and
reducing them by hand can become very difficult. Thus, this functionality will allow us to
re-write complicated expressions into those that are understandable.

The Kronecker Delta is not defined by MATLAB, hence we had to define it using a for loop,
which would return 1 when i = j and 0 otherwise i.e. return 1 for the diagonal entries of
a matrix. This was a simple function to code and we will need to call the Kroncker Delta
function in the examples.

4.2 Example: sl (2,R)

In order to compute this example, we clearly have to create the three matrices E(c)
+ , E

(c)
− , E

(c)
3

that have a specific definitions. Below is a reminder of those definitions:

53



4.2 Example: sl (2,R) 4 CODED EXAMPLES IN MATLAB

(
E

(c)
+

)
i,j

= (c− i) δi,j−1(
E

(c)
−

)
i,j

= iδi,j+1(
E

(c)
3

)
i,j

= (c− 2i) δi,j

This can be expressed in MATLAB in a very straightforward manner. The user inputs a value
C, which is the size of the output matrix say C = 2 then we will return a 2 x 2 matrix for
E

(c)
+ , E

(c)
− , E

(c)
3 , and in this case c will be defined as c = C − 1. Therefore, 2 x 2 matrices

correspond to E(1)
+ , E

(1)
− , E

(1)
3 which are generated through MATLAB and these are shown

below:

1 Ep =
2
3 0 1
4 0 0
5
6
7 Em =
8
9 0 0
10 1 0
11
12
13 E3 =
14
15 1 0
16 0 −1

When we compare this with the results we get from the computation we did by hand, it is
clear that our MATLAB output gives us the identical result for all three matrices.

From this output, we can define matrix C (state transitions that have no arrivals) and D
(state transitions that have arrivals) by using the definition that we mentioned in the previous
chapter. Hence, it is quite straightforward to code the algorithm once we have the Ep,Em,E3
matrices defined and computed. By substituting the Ep,Em,E3 matrices into the definition
of C and D, we get the following results:

1 C =
2
3 [ − cp − dp − xp , cp ]
4 [ cm , − cm − dm − xm]
5
6
7 D =
8
9 [ −xp , dp ]
10 [ dm, −xm]

Note that c+=cp, c−=cm, d+=dp, d−=dm,λ+=xp,λ−=xm and these have been created
as symbolic variables that can be replaced with appropriate values to return matrices, C and
D.

54



4.2 Example: sl (2,R) 4 CODED EXAMPLES IN MATLAB

Now, we can define a solution of P (n, t) for a MAP {N (t) , J (t)} with the representing
matrices C and D that we have defined above. Calculating this by hand can be very tedious
and there are more chances of making errors, hence coding the integral algorithm into MAT-
LAB will allow us to generate a solution more efficiently. There are various ways to integrate
expressions in MATLAB, the two functions already defined are described below:

1. The int() function takes in a symbolic expression and if there are multiple symbolic
variables then the user can define which variable we will integrate with respect to. If
applicable, we can also define the limits to the integral.

(a) Unfortunately, the integral that we are working with is a bit more complicated and
it is not a simple expression that can be evaluated with int() as there are multiple
recursions and different parameters that determine the outcome of the integral.

2. The second function is quad(), this can numerically evaluate an integral using the
Simpson adaptive quadrature method can handle more complex expressions. Specifically,
it can evaluate the integral of functions by using the approximated quadrature rules.
These quadrature rules break the integral into subintervals and then approximate it as
a sum that can be solved. So, it uses a method of recursion to break the integral into
smaller integrals that we can approximate and then sum up to get the final result.

The quad () function is the best option, but rather than utilising the in built function it seemed
more clear and appropriate to implement a new function that would cater to the functionality
of MAPs and the result we hope to acquire. The aim of this MATLAB code is to simplify
the matrices that we compute for P (n, t) and see if we can find a commutator relation i.e.
[A,B] = AB − BA relation for any two matrices A,B. This is the key connection between
Lie algebra and MAPs, thus with this link we can easily simplify the integral and write higher
order terms in relation to the lower order one as there would be a pattern emerging.

The algorithm to calculate the integral is broken down and explained below:

There are four parameters that are required in order to calculate P (n, t), these include:

• MAP - the Markovian arrival process (MAP) that we will be using i.e. the matrix that
has no arrivals, C and the matrix that has a state of arrivals, D.

• n - the number of arrivals

• t - the time frame within which the arrivals should occur

• tsteps - this variable determines how many times, t, has to be split into as the integral
calculates each state and then computes the result for the next state based on the
preceded one.

As seen in the previous chapter we can write P (n, t) as P (n, t) = eCtM (n, t) where
M (n, t) =

´
Ωn,t

(
eCt1De−Ct1

) (
eCt2De−Ct2

)
. . .
(
eCtnDe−Ctn

)
dt1dt2 . . . dtn and this is

easier to compute into MATLAB as we can use recursion. We will compute M (n, t) and
then multiply it with eCt at the end in order to get the final result, P (n, t). The integration
will take a very long time to compute as each step is based on the previous result. Hence, in
this report we have focused on 2 x 2 matrices as this will allow us to work with smaller but
useful examples.

We have already calculated our C and D matrices that will be used as input for the variable
MAP. In addition, we define the base case for n as n = 0 where it would return only eCt as

55



4.2 Example: sl (2,R) 4 CODED EXAMPLES IN MATLAB

there are no arrivals. Thus, in every case we would have eCt in the solution so we need to
define a separate case for when n = 1 and make that our base case to ensure that we return
the correct solution. In our model we would like to try and get results for when there are
arrivals i.e. when n 6= 0 hence we make our base case n = 1 to ensure that we get our results
to include cases with matrix, D. With higher levels of n the program is going to be much
slower as the recursion is based on n and we must ensure to calculate the entire probability
of n arrivals within the given time, t.

The time variable, t, is also user defined because it allows us to specify a the time frame
for which we must calculate the probability of arrivals. However, with large time values the
program runs slow as the probability is harder to calculate due to the higher chances of arrival
events. Hence, the matrix becomes more complex and as a result so is the integral.

And finally the tsteps variable is key as it breaks down the time, t, into segments that are
used to calculate each

(
eCtiDe−Cti

)
∀i ∈ {1 . . . n} and it is used to determine the next

time frame.

Note: that there are only n segments so once we reach n = 1, we have hit the base case.
This is the final time that we will ’cut’ in order to calculate the result.

The way the final program works is it takes the entire time, t, and starts to segment it during
every for loop iteration this way it gets smaller and smaller until it reaches n = 1 where we
have the segment t1 which will be the smallest time frame. In some sense, we are working
backwards in order to calculate the final integral.

In this case, we can have two separate parameters for matrix C and D, or we can use the {}
to extract the different matrices C and D from the MAP definition. Below is a sample of
how we would separate the C and D matrices:

C =

(
c+ − d+ − λ+ c+

c− −c− − d− − λ−

)
D =

(
λ+ d+

d− λ−

)

1 C =
2
3 [ − cp − dp − xp , cp ]
4 [ cm , − cm − dm − xm]
5
6
7 D =
8
9 [ −xp , dp ]
10 [ dm, −xm]
11
12 MAP = {( cp − dp − xp , cp ; cm , − cm − dm − xm) (− xp , dp ; dm, −

xm) }
13
14 % Ex t r a c t the r e l e v e n a t ma t r i c e s to use f o r the i n t e g r a l
15 C = MAP{1}
16 D = MAP{2}

56



4.2 Example: sl (2,R) 4 CODED EXAMPLES IN MATLAB

This format of defining gives us the opportunity to reduce one parameter and it gives a more
clear understanding as the MAP contains both C and D. Hence, coupling them together and
then separating them allows us to concisely use them for the integral. In addition, MATLAB
allows us to call results from other functions hence the output of C and D can be called
without hard coding it. Therefore, even if we replace C and D then it will automatically
change those matrices in our calculation of P (n, t).

However, the output for the small cases for n are also very large even before simplification.
We did a few runs using the following parameters:

1 Run 1 :
2
3 MAP = {C,D} ; t = 3 ; n = 1 ; t s t e p s = 2 ;
4
5 Run 2 :
6
7 MAP = {C,D} ; t = 3 ; n = 5 ; t s t e p s = 2 ;

These are just two of the test runs that we performed on our code, however the simplification
was still very long and MATLAB was unable to output the entire result. This limitation in
MATLAB does not allow us to display our output, however if the code is run the user can
clearly see that once the entire matrix is simplified we can generate the correct output as
suggested in [8].

In the future, it would be suitable to try and code this section using a different programming
language in order to take advantage of other simplification options. Nonetheless, even though
the matrices are large we must still do some of the simplification by hand, i.e. defining the
matrices that the solution must be broken down into.

57



5 ESTIMATION-MAXIMISATION (EM) FOR MAPS

5 Estimation-Maximisation (EM) For MAPs

(Note: Estimation-Maximisation algorithm is also known as the Expectation-Maximisation
algorithm)

As mentioned earlier, MAPs are widely used in communication systems and measuring network
traffic. The key issue is to estimate the parameters for MAPs and other stochastic models.
There are two different ways to approach this, one way is to use the moment-based approach
and the second option is to use the likelihood-based approach. [12]

In the moment-based approach, we determine the model parameters that are associated with
the MAP in order to fit the real moments from the observed data with the theoretical ones.
The advantage of using moments rather than the maximum likelihood (ML) approach is to
reduce computational costs. MAPs have many parameters, hence it is harder to find the ML
from just the data. Hence, we require the ML estimation principle to maximise the likelihood
that the observed data has occurred. However, a negative comment about ML estimates of
MAPs is that it requires us to work with large and computationally intensive matrices.

5.1 General EM algorithm

In general, the EM algorithm consists of a set, X, which includes all the observed data.
Secondly, Z is the set of missing or unobserved data with a vector, θ, that holds information
about unknown parameters.

Along with the above information we need the likelihood function such that L (θ;X,Z) =
P (X,Z|θ). Using all this data we can define the ML estimation of the unknown parameters
by the marginal likelihood of the observed data:

L (θ;X) = P (X|θ)
=

∑
Z

P (X,Z|θ)

To find the ML estimation of the marginal likelihood we need to iteratively apply the following
two steps:

Estimation (E step):

We must calculate the log likelihood of the function, with respect to Z given X which is under
the current estimate of the parameters θ(t). This is written as:

Q
(
θ|θ(t)

)
= EZ|X,θ(t) (logL (θ;X,Z))

Maximisation (M step):

We must find the θ (unknown parameter) that maximises the above expectation step. This
is defined as:

θ(t+1) = arg maxθQ
(
θ|θ(t)

)

where θ(t) is the estimate of the parameters at time or iteration, t.[16]

58



5.2 EM and MAPs 5 ESTIMATION-MAXIMISATION (EM) FOR MAPS

5.2 EM and MAPs

As seen in the previous section, we discussed the EM algorithm and the two key steps in
calculating it for various situations. Hence, now we can apply this EM algorithm to MAPs in
order to generate a solution when the phases are not observable i.e. the sample used is not
complete.

So, to apply the EM algorithm in order to get the ML estimation we must first define some
parameters. Using the same variables as in section 5.1 we can define X as the observed data
and Z as the unobserved data. Hence, we want to estimate the set of parameters, θ, using
the observed data, X. We will be following and examining the algorithm mentioned in [12] as
well as taking some further information from [17]. Below, we will break down the estimation
and maximisation steps in order to use it for MAPs:

1. Calculating the estimated log-likelihood function for the data pair (X,Z) given that X
is the only observed data.

2. Computing θ (parameters) that maximises the log-likelihood function.

Combining the two steps (1 and 2) we can define the following equation:

θ := argmaxθEZ (L (θ|X,Z) |X) (12)

where EZ is the expectation of the unobserved data, Z and L is the log-likelihood function.

Therefore, we can compute the expected L by using an initial set of parameters, θ which is
defined in equation 12. In addition, equation 12 updates the parameters, θ, based on the
previously calculated parameters. In other words, this is a recursive function or an iterative
method that continues to update the parameters until it converges towards a certain threshold
value.

In order to apply the EM algorithm, it would be useful to introduce a generalised data format
for the observed data that includes the arrival time of the data and other necessary information
related to the data (usual group data). Information that we can gain from the observed data
is the time within a certain period and the number of arrivals that are observed in the given
period. An additional variable that we must add to the group is an indicator variable (a
variable that takes a value of 0 or 1), which returns a 1 if an arrival occurs at the end of the
observation period. We can concisely write this as:

XG := {(t1, x1, a1) , . . . , (tK , xK , aK)}

where each bracket includes the three main variables described above and the subscripts range
from 1, . . . ,K which identify the observation period we are in. Hence, tk is the time of the
kth period and xk is the number of arrivals in the kth period. Finally, ak is the indicator
variable for the event that an arrival occurs at the end of the kth observation period.

From the above variables we can also calculate a few other facts that relate to the EM
algorithm:

1. Define sk as the sum of the times for the first k periods, i.e.

sk =

k∑
i=1

ti

59



5.2 EM and MAPs 5 ESTIMATION-MAXIMISATION (EM) FOR MAPS

2. The time intervals can be written in terms of the sk’s. For instance, xk will be the
number of arrivals within the time interval (sk−1, sk).

3. ak = 1 =⇒ an arrival occurred at time, sk.

4. ak = 0 =⇒ no arrival occurred at time, sk.

5. Total number of arrivals within the time interval (sk−1, sk] is clearly xk+ak (combining
2,3,4).

6. ak = 0 ∀k ∈ {1, . . . ,K} implies we get the data for the usual data group.

7. ak = 1 andxk = 0 ∀k ∈ {1, . . . ,K} implies we get the data for the arrival date
group.

Let us recall a few other facts from the definition of MAPs, which we will use as well as build
on. MAPs is a counting process whose arrival rate is based on a continuous-time Markov
chain (CTMC). Then we define C and D as m x m matrices such that C is the matrix that
defines state transitions without arrival events and D represents state transitions with arrival
events.

Denote matrices C and D as:

C =


−µ1,1 µ1,2 · · · µ1,m

µ2,1, −µ2,2 · · · µ2,m

...
...

. . .
...

µm,1 µm,2 · · · −µm,m



D =


λ1,1 λ1,2 · · · λ1,m

λ2,1, λ2,2 · · · λ2,m

...
...

. . .
...

λm,1 λm,2 · · · λm,m


C is also a generator of the underlying CTMC (when there are no arrivals), so µi,i =∑m
j=1,j 6=i µi,j +

∑m
j=1 λi,j and D is a rate matrix.

In addition, MAPs include two stochastic processes N (t) and J (t). Just as a reminder these
processes are defined as:

1. {N (t) ; t ≥ 0} is a stochastic process, which shows the number of arrivals during the
time interval [0, t).

2. {J (t) ; t ≥ 0} is a stochastic process, which indicates the state at time t.

From this definition of MAPs, we can further define π as the initial steady state (probability)
vector, which determines the initial state of the underlying Markov chain, {J (t)}. We can
write π as (π1, . . . , πm) such that

∑m
i=1 πi = 1.

Moreover, from our example in chapter 3 we defined the following matrix:

(P (n, t))i,j = P (N (t) = n, J (t) = j|N (0) = 0, J (0) = i)

60



5.2 EM and MAPs 5 ESTIMATION-MAXIMISATION (EM) FOR MAPS

From this we can now write the differential-difference equations:

d
dtP (0, t) = P (0, t)C (13)
d
dtP (n, t) = P (n, t)C + P (n− 1, t)D for n = 1, 2, . . .

where t ∈ R+ with initial conditions P (0, 0) = I and P (n, 0) = O with I is the identity and
O is the zero matrix.

5.2.1 Formulas for the M-Step

We must first define a few new variables for the unobserved data:

• Bi: an indicator random variable for the event that the current state is i at time, t = 0

• Y [k]
i,j : an indicator random variable for the event when an arrival has state transitions

between i and j at time, sk

• Z [k]
i : total sojourn time (i.e. expected time spent within the state) for phase i during

the time interval, (sk−1, sk)

• M [k]
i,j : total number of state transitions between i and j during the time interval,

(sk−1, sk) where there are no arrivals

• W [k]
i,j : total number arrivals that lead to a state transition from i to j during the interval,

(sk−1, sk)

Then we denote I (·) as an indicator function, i.e. a function defined on a set of elements X
and if we take a subset of X, say A then the indicator function returns 1 for all the elements
that are in A and 0 otherwise.

Hence, we can write the unknown data variables by using the definition of MAPs:

• Bi = I (J (0) = i)

• Y [k]
i,j = I

(
J
(
s−k
)

= i, J
(
s+
k

)
= j
)

• Z [k]
i =

´ sk
sk−1

I (J (τ) = i) · dτ

• M [k]
i,j =

´ sk
sk−1

I (J (τ−) = i, J (τ+) = j) · dτ where i 6= j

where τ− and τ+ are the left and right limits respectively, i.e

I
(
N
(
τ−
)

= x, N
(
τ+
)

= y
)

= lim∆t→+0I (N (τ −∆t) = x, N (τ + ∆t) = y)

Let the parameter set be defined as:

θ := {πi, µi,j , λi,j}

61



5.2 EM and MAPs 5 ESTIMATION-MAXIMISATION (EM) FOR MAPS

where i, j = 1, . . . ,m.

Denote the unobserved data using the new defined variables:

Z :=
{
Bi, Y

[k]
i,j , Z

[k]
i ,M

[k]
i,j ,W

[k]
i,j

}
where i, j = 1, . . . ,m and k = 1, . . . ,K.

The variables µi,j and λi,j are the rates of the exponential distributions that represent the
state transitions and arrivals in a MAP. Therefore, if we have the complete date i.e. (XG,Z)
then we can write the ML estimation for the parameters defined in θ:

π̂i = Bi

ˆµi,j =

∑K
k=1M

[k]
i,j∑K

k=1 Z
[k]
i

ˆλi,j =

∑K
k=1

(
W

[k]
i,j + Y

[k]
i,j

)
∑K
k=1 Z

[k]
i

Recall, λi,j are variables that correspond to the rate matrix D i.e. the case where an arrival
leads to a potential state change of the continuous-time Markov chain. So, we know that
we can have an arrival within the time interval (sk−1, sk), which relates to W [k]

i,j . However,
we also have to take into account the case when an arrival occurs at time sk and causes a
state transition, which relates to the indicator random variable, Y [k]

i,j . Therefore, we have two
variables for the ML estimation of λi,j .

Now, taking the above ML estimations and equation 12 we can write the M-step formulas
(the update equation for the parameter, θ, in order to find the maximum) of the EM algorithm
for a MAP:

πi = E [Bi|XG]

µi,j =

∑K
k=1E

[
M

[k]
i,j |XG

]
∑K
k=1E

[
Z

[k]
i |XG

]
λi,j =

∑K
k=1

(
E
[
W

[k]
i,j |XG

]
+ E

[
Y

[k]
i,j |XG

])
∑K
k=1E

[
Z

[k]
i |XG

] (14)

5.2.2 Formulas for the E-step

We denote the following indicator random variable:

Ak = I
(
N
(
s+
k

)
−N

(
s−k
)

= 1
)

Then we can define the following:

62



5.2 EM and MAPs 5 ESTIMATION-MAXIMISATION (EM) FOR MAPS

• Forward event: Fk = A1, . . . ,Ak

• Backward event: Bk = Ak, . . . ,AK

• Overall event: Ok = A1, . . . ,AK

Let A be any indicator random variable, then we can write P (A) = P (A = 1) as the proba-
bility of the indicator variable, A.

Furthermore, we can let fk (u) and bk (u) be row and column vectors that represent the
likelihoods from the forward and backward events, respectively, during the interval (sk−1, sk).

Now, the ith element of both the vectors are written as:

[
fk (u)

]
i

= P
(
Fk−1, N

(
(sk−1 + u)

−
)
−N

(
s+
k−1

)
= 0, J

(
(sk−1 + u)

−
)

= i
)

[
bk (u)

]
i

= P
(
N
(
s−k
)
−N

(
(sk − u)

+
)

= 0,Ak,Bk+1|J
(

(sk − u)
+
)

= i
)

Using the equations described in 14 as well as the indicator random variable, O, then we can
write:

πi =
E [BiO]

P (O)

=
πi [b1 (t1)]i
πb1 (t1)

It is more difficult to understand and compute, E
[
M

[k]
i,j |XG

]
, E
[
Y

[k]
i,j |XG

]
and E

[
Z

[k]
i |XG

]
.

Let us begin by first computing E
[
M

[k]
i,j |XG

]
as E

[
W

[k]
i,j |X

]
can then be computed in a

similar manner.

So, in the same way as we wrote πi, we can formulate E
[
M

[k]
i,j |XG

]
as:

E
[
M

[k]
i,j |XG

]
=

E
[
M

[k]
i,jO

]
P (O)

We can determine E
[
M

[k]
i,jO

]
if we are given the Markov process, J (t) and the independent

increments of N (t) (i.e. the increments of the arrivals within the time interval) then we get:

E
[
M

[k]
i,jO

]
=

ˆ sk

sk−1

P
(
J
(
τ−
)

= i, J
(
τ+
)

= j,N
(
τ+
)
−N

(
τ−
)

= 0,O
)
· dτ (15)

=

ˆ sk

sk−1

P
(
Fk−1, N

(
τ−
)
−N

(
s+
k−1

)
= 0, J

(
τ−
)

= i
)

·P
(
J
(
τ+
)

= j,N
(
τ+
)
−N

(
τ−
)

= 0|J
(
τ−
)

= i
)

·P
(
N
(
s−k
)
−N

(
τ+
)

= 0,Ak,Bk+1|J
(
τ+
)

= j
)
· dτ

63



5.2 EM and MAPs 5 ESTIMATION-MAXIMISATION (EM) FOR MAPS

We can write the above in terms of fk (u) and bk (u):

E
[
M

[k]
i,jO

]
=

ˆ tk

0

[
fk (τ)

]
i
µi,j

[
bk (tk − τ)

]
j
· dτ (16)

Furthermore, we can formulate the equation for E
[
Z

[k]
i |X

]
using 16 and substituting the j

for i:

E
[
Z

[k]
i O

]
=

ˆ tk

0

[
fk (τ)

]
i

[
bk (tk − τ)

]
i
· dτ

In a similar way, we can derive the expected value for W [k]
i,j :

E
[
W

[k]
i,jO

]
=

ˆ sk

sk−1

P
(
Fk−1, N

(
τ−
)
−N

(
s+
k−1

)
= 0, J

(
τ−
)

= i
)

(17)

·P
(
J
(
τ+
)

= j,N
(
τ+
)
−N

(
τ−
)

= 1|J
(
τ−
)

= i
)

·P
(
N
(
s−k
)
−N

(
τ+
)

= 1,Ak,Bk+1|J
(
τ+
)

= j
)
· dτ

Hence, we can write the following:

E
[
W

[k]
i,jO

]
=

ˆ tk

0

[
fk (τ)

]
i
λi,j

[
bk (tk − τ)

]
j
· dτ

The key difference between equation 15 and 17 is a check to see if an arrival occurs at time,
τ or not.

Hence, we also have the a µi,j in 15 and by definition M [k]
i,j includes those cases where there

are no arrivals between state transitions.

(Note: µi,j is a variable of rate matrix, C, where there are no arrivals)

In contrast, we have λi,j in 17 and by definition W [k]
i,j includes those cases where there are

are arrivals causing possible state transitions.

(Note: λi,j is a variable of rate matrix, D, where there are arrivals leading to possible state
transitions)

Finally, we can also derive the expected value for Y [k]
i,j :

E
[
Y

[k]
i,j O

]
= P

(
Fk−1, N

(
s−k
)
−N

(
s+
k−1

)
= 0, J

(
s−k
)

= i
)

·P
(
J
(
s+
k

)
= j,N

(
s+
k

)
−N

(
s−k
)

= 1|J
(
s−k
)

= i
)

·P
(
Bk+1|J

(
s+
k

)
= j
)

Thus, we can simplify the above to:

E
[
Y

[k]
i,j O

]
=

[
fk (tk)

]
i
λi,j

[
bk+1 (tk+1)

]
j

This completes all the formulas for the E-step and we can now apply them.

64



5.2 EM and MAPs 5 ESTIMATION-MAXIMISATION (EM) FOR MAPS

5.2.3 Computing the EM algorithm

There are two distinct ways of computing the EM algorithm of MAPs, one way is to use
differential equations and the second way is to use uniformisation. Each way has its advantages
and disadvantages, but we will have a quick overview of the two algorithms as well as compare
their differences.

First, we will understand how to apply EM algorithm using the differential equations
method.

We need to compute the vectors fk (u) and bk (u) as well as their convolutions.

Thus, from their definitions we can express the vectors fk (u) and bk (u) as below:

fk (u) = πexp (Ct1)D × · · · × exp (Ctk−1)D × exp (Cu) (18)
bk (u) = exp (Ct)D × · · · × exp (CtK)De

The differential equations for fk (u) and bk (u) are then directly obtained from C and D. In
order for us to derive these equations we need to rewrite fk (u) and bk (u) as fk (n, u) and
bk (n, u), i.e. the general case and they are defined below:

[
fk (n, u)

]
i

= P
(
Fk−1, N

(
(sk−1 + u)

−
)
−N

(
s+
k−1

)
= n, J

(
(sk−1 + u)

−
)

= i
)

[
bk (n, u)

]
i

= P
(
N
(
s−k
)
−N

(
(sk − u)

+
)

= n,Ak,Bk+1|J
(

(sk − u)
+
)

= i
)

Hence, if we have fk (n, u) and bk (n, u) we can then apply the same differential-difference
method as we did for equation 13. As a result, we will have the following new equations for
fk (n, u):

d
dufk (0, u) = fk (u)

= fk (0, u)C

d
dufk (n, u) = fk (n, u)C + fk (n− 1, u)D (19)

where n = 1, 2, . . . , xk and xk = N
(
s−k
)
−N

(
s+
k−1

)
.

Similarly, we have the following equations for bk (n, u):

d
dubk (0, u) = bk (u)

= bk (0, u)C
d
dubk (n, u) = bk (n, u)C + bk (n− 1, u)D (20)

where n = 1, 2, . . . , xk and xk = N
(
s−k
)
−N

(
s+
k−1

)
.

From the equations 19 and 20 we can see that the relevant equations are the first set of
formulas in both fk and bk.

And the initial conditions are:

65



5.2 EM and MAPs 5 ESTIMATION-MAXIMISATION (EM) FOR MAPS

1. f1 (0) = π

2. fk (0) = fk−1 (tk−1)D

3. fk (0) = 0 for k ≥ 2

4. b1 (0) = π

5. bk (0) = bk−1 (tk−1)D

6. bk (0) = 0 for k ≥ 2

Finally, based on the equations defined by 18 we can argue that fk (u) and bk (u) can be
computed in a forward-backward manner. Therefore, anotherm x m matrix, Hk (u) is defined
as the convolution of fk (u) and bk (u). This matrix is needed to derive the computation
method of the expected values. Hk (u) is defined as:

Hk (u) =

ˆ u

0

bk (u− τ) fk (τ) dτ

Just as we defined the general cases for fk (u) and bk (u), we do the same for Hk (u) i.e.
Hk (n, u) and its differential equations are:

d
duHk (0, u) = C ·Hk (0, u) + bk (0, 0) fk (0, u)

d
duHk (n, u) = C ·Hk (n, u) +D ·Hk (n− 1, u) + bk (0, 0) fk (n, u)

where n = 1, 2, . . . , xk and xk = N
(
s−k
)
−N

(
s+
k−1

)
.

The initial condition is Hk (n, 0) = O where O is the zero matrix and n = 0, . . . , xk.

Hence, this completes the first method that we can use to solve the EM algorithm for MAPs.

The second method we will investigate uses uniformisation to find the formulas for fk (t)
and bk (t) as well as Hk (t).

Just like earlier we define the fk (t) and bk (t) as:

fk (t) = πexp (Ct1)D × · · · × exp (Ctk−1)D × exp (Ct)

bk (t) = exp (Ct)D × · · · × exp (CtK)De

Then we let q be a constant that is higher than the absolute value of the maximum diagonal
element of matrix, C i.e. q > maxi |µi,i|. Then we can write:

exp (Ct) =

∞∑
y=0

e−qt
(qt)

y

y!

(
I +

C

q

)
(21)

where I is the m x m identity matrix.

In practice, equation 21 can be reduced by the Poisson probability mass function.

Below is the convolution integral that uses the uniformisation-based integration of matrix
exponential method:

66



5.2 EM and MAPs 5 ESTIMATION-MAXIMISATION (EM) FOR MAPS

1. Compute bu for u = 1, . . . , U :

(a) bu := Pbu−1, b0 = bk (0)

2. Compute cu for u = U − 1, . . . , 0

(a) cu := cu+1P + e−qtk (qtk)u+1

(u+1)! fk (0) , cU := e−qtk (qtk)U+1

(U+1)! fk (0)

3. Compute Hk =
(

1
q

)∑U
u=0 bucu

where q > |maxi (µi,i)| and P = I + C
q

Furthermore, U is a right truncation point of uniformisation that satisfies the following con-
dition:

U∑
u=0

e−qtk
(qtk)

u

u!
≥ 1− ε

=⇒ 1−
U∑
u=0

e−qtk
(qtk)

u

u!
≤ ε

where we define ε as the tolerance error.

It is important to have a truncation point as we are dealing with an infinite sum and so
depending on the accuracy we require, we can reduce our sum to that many terms, say U .

After computing the above three steps, we can write the (j, i)
th element of Hk as:

[H]j,i =

ˆ tk

0

[
fk (τ)

]
i

[
bk (tk − τ)

]
j
dτ

The time complexity of using the uniformisation method is much less then applying the
differential equations approach. Therefore, MAPs with many state transitions can be solved
using the above procedure.

However, in practice, there are certain situations where we find it difficult to find the expec-
tations in the E-step. The most significant problem is the stiffness of the the underlying
continuous-time Markov chain (CTMC). In simple terms, we define a stiff CTMC as the in-
clusion of both rapid and slow events that occur simultaneously. So, as we know that MAPs
are composed of an underlying CTMC that have state transitions it poses a problem when
estimating MAPs.

Hence, we leave it as an extension to further explore the possibilities and solutions in order to
solve this stiffness problem. This is a recurring problem as many interesting models are stiff
i.e. they have important events occurring at different time-scales (i.e. some slow and some
fast). [18]

Now, let us summarise the algorithm into exactly 5 steps:

1. Determine initial set, θ := {πi, µi,j , λi,j}

67



5.2 EM and MAPs 5 ESTIMATION-MAXIMISATION (EM) FOR MAPS

2. Compute bk (u), fk (u) and Hk (u) by using the differential equation approach or the
uniformisation method.

3. Compute the expected values for Bi, Y [k]
i,j , Z

[k]
i , M [k]

i,j , W
[k]
i,j as described earlier.

4. Update parameters using the formulas given in equation 14.

5. If termination condition satisfied then we stop, otherwise loop back to 2.

The termination condition must be accurate as it determines the accuracy of the estimates.
Determining the optimal number of state transitions is a key issue as the accuracy of fitting
gets better as the number of transitions increase and this leads to an over-fitting problem.
In order to avoid the over-fitting problem we can use an information criteria such as Akaike’s
information criterion (AIC)[19].

AIC = −2 (maximum log− likelihood) + 2p

where p is the degrees of freedom. The number of free parameters for m transitions is
generally, 2m2 − 1 or m2. Therefore, by using AIC we can determine the number of state
transitions that returns the lowest AIC.

5.2.4 Example using Uniformisation

Let us show an example of how we can apply the uniformisation method of the EM algorithm.
This example will clearly highlight all the steps we stated in the earlier section.

We can define equation 21 using an iterative solution scheme[20] and the resulting formula is
below:

yε∑
y=0

Φyβy

where Φ0 = θ (initial set), Φy+1 = ΦyP , β0 = e−qt, βy+1 = βy · qty+1 and yε is the truncation
point.

Thus we can define our truncation point as well as our error, which are bound by:

∞∑
y=yε+1

βy = 1−
yε∑
y=0

βy

Now, we can take an example with the initial set, θ, defined as:

θ := {0.5, 2, 1}

i.e. π = 0.5, µ = 2, and λ = 1

Next, we define our generator matrix, Q, of the underlying CTMC as:

68



5.2 EM and MAPs 5 ESTIMATION-MAXIMISATION (EM) FOR MAPS

Q =

 −3 2 1
0 −1 1
0 0 0


(Note: Q is a generator matrix because the sum of its rows are 0 and the diagonal entries
are negative or 0.)

Then we take q = 3 and define P = I + Q
q , which results in:

I +
1

3

 −3 2 1
0 −1 1
0 0 0

 = I +

 −1 2
3

1
3

0 − 1
3

1
3

0 0 0


P =

 1 0 0
0 1 0
0 0 1

+

 −1 2
3

1
3

0 − 1
3

1
3

0 0 0


P =

 0 2
3

1
3

0 2
3

1
3

0 0 1


Then using MATLAB or another programming language we can define the result. We have
the output for each step outlined below:

initial: β0 = e−
3
2 ≈ 0.223, Φ0 = (1, 0, 0)

1 y = 0
2 ph i = 0 0.6667 0 .3333
3 beta = 0.3347
4
5 y = 1
6 ph i = 0 0.4444 0 .5556
7 beta = 0.2510
8
9 y =
10 2
11 ph i = 0 0.2963 0 .7037
12 beta = 0.1255
13
14 y = 3
15 ph i = 0 0.1975 0 .8025
16 beta = 0.0471
17
18 y = 4
19 ph i = 0 0.1317 0 .8683
20 beta = 0.0141
21
22 y = 5
23 ph i = 0 0.0878 0 .9122
24 beta = 0.0035
25
26 y = 6

69



5.2 EM and MAPs 5 ESTIMATION-MAXIMISATION (EM) FOR MAPS

27 ph i = 0 0.0585 0 .9415
28 beta = 7.5643 e−04
29
30 y = 7
31 ph i = 0 0.0390 0 .9610
32 beta = 1.4183 e−04
33
34 y = 8
35 ph i = 0 0.0260 0 .9740
36 beta = 2.3638 e−05
37
38 y = 9
39 ph i = 0 0.0173 0 .9827
40 beta = 3.5457 e−06
41
42 y =
43 10
44 ph i = 0 0.0116 0 .9884
45 beta = 4.8351 e−07
46
47 y = 11
48 ph i = 0 0.0077 0 .9923
49 beta = 6.0439 e−08

We could continue running the code as we know this is an infinite sum, but because of our
pre-defined truncation point we stop at y = 11. First, let us see the sum after y = 2 and
π = 1.5 (as 0.5 ∗ 3 = 1.5 and there are three state transitions):

2∑
y=0

Φyβy = Φ0β0 + Φ1β1 + Φ2β2

= (0.2231, 0.3347, 0.2510)

And after k = 11 the error is less than our truncation point, which we defined as 10−7.
Therefore, we are left with our answer as an approximation at π = 1.5:

(0.2231, 0.383, 0.393)

70



6 EVALUATION

6 Evaluation

We will evaluate the two distinct sections of this project and give critical justification on the
parameters as well as the tools used. We will analyse the results that we generated in chapters
3, 4 and 5.

As this project is more theoretical based rather than practical, we evaluate our achievements
differently and if we have succeeded in completing the goals set out at the inception. Through-
out this report we have focused on the relationship between Lie algebra and Markovian arrival
processes. There have already been some papers written about this topic and how they can
be expanded in terms of matrix representations by the special linear group. As mentioned
earlier this project is very closely linked with the paper written by Ken’ichi Kawanishi on
The Counting Process for a Markovian Arrival Process with an Application to a Queueing
System[8].

6.1 Result From Lie Algebra Examples

There were two matrix Lie groups that we discussed in detail, namely SL (2,R) and SU (2).
We defined the two groups and using their respective Lie algebra we were able to define their
C and D matrices. The first example was introduced in [8] and in this project we expand
those steps in order to prove the rate matrices for MAPs.

Let us recall the rate matrices derived in section 3:

C =

(
−c+ − d+ − λ+ c+

c− −c− − d− − λ−

)
D =

(
d+ λ+

λ− d−

)

From the above C and D we can define the infinitesimal generator, Q such that:

Q = C +D

=

(
−c+ − d+ − λ+ c+

c− −c− − d− − λ−

)
+

(
d+ λ+

λ− d−

)
=

(
−c+ − λ+ c+ + λ+

c− + λ− −c− − λ−

)

So, by definition of generators we know that the sum of each row must be equivalent to zero
i.e.

−c+ − λ+ + c+ + λ+ = 0

c− + λ− − c− − λ− = 0

Hence, the first example works and in chapter 3 we discussed the uses of of these matrices in
the real world. In addition, we coded these examples into MATLAB and in order to compute

71



6.2 Efficiency of Estimation-Maximisation Algorithm 6 EVALUATION

P (n, t) as well as verify that the rate matrices C and D are correct and their sum is a
generator matrix.

We generated our own example for the matrix Lie group, SU (2) and performed further analysis
into generating commutator relations for SU (3). As we realised the number of brackets
increase very quickly and we will require more time to try and generate appropriate equations
for C and D. Even though we used a well known set of matrices as our basis, the commutator
relations were defined by us and we could continue to expand them as we further investigate
the 3 x 3 case.

6.2 Efficiency of Estimation-Maximisation Algorithm

We have seen that there are two ways of solving the problem of incomplete data when modeling
MAPs. One way was using moments, however we did not discuss or show examples of this
method and the second approach involved the EM algorithm, which we discussed in detail.

Within the EM algorithm we also had two different ways of solving the problem. The first
method uses the concept of differential equations, which is computationally intensive as there
are will be a lot of recursion if the value of n is very large. We did not get to reach a stage to
be able to compute our example using this algorithm as it is harder to implement and we did
not get the time. However, the problem of stiffness can be addressed as we can apply solve
stiff cases by using the implicit Runge-Kutta method.[17]

The second approach, uniformisation, is more novel and applicable in the real world as we
can code it in a straightforward manner and it returns results in an instant. As seen in the
computation of our example, we were able to put in the relevant data and get a clear set of
output that shows us each step. This is a very simple algorithm that can prove to be very
effective, but it can go on and get very complicated i.e. it can reach a point where the answer
is not accurate. So, the tolerance error must be defined accurately and it should be the best
value in order to estimate the results and generate the correct solution.

This section of the report was based on two different papers that we mentioned in section
5, however the implementation and example was derived in order to fit the theory. We also
simplified some of the equations that were mentioned in the paper as well as expanded some of
the situations where parameters were missing. For instance, we added an extra variable,W [k]

i,j ,
that was not mentioned in [12]. However, even though it was included in [17] we simplified
all those equations in order to prove the required result, i.e. the expectations of our variables
which are used in the EM algorithm.

72



7 CONCLUSION & FUTURE WORK

7 Conclusion & Future Work

7.1 Conclusion

To conclude this report, we summarise our achievements in terms of what we have learnt
and if we have met our objectives. Our goal was to understand the link between Lie algebra
and Markovian arrival processes (MAPs). Using the work from the following paper "On the
Counting Process for a Class of Markovian Arrival Processes with an Application to a Queueing
System", we have been able to define a strong link between some of the matrix Lie groups,
their corresponding Lie algebra and MAPs. We were successfully able to demonstrate two
different methods in order to find the rate matrices, C and D of a MAP and one of these
approaches’ requires us to use the commutator relation (i.e. Lie algebra). By computing
the results in MATLAB, we were able to show that computationally integration with matrix
exponentials as well as commutators are slow and require a lot of time. However, it was
slightly faster to computer the rate matrices using Lie algebra and it is more readable as well
as understandable because the equations become much smaller to work with and in some
cases we can solve the problem by hand. While with integration it requires a lot more CPU
time and it is very difficult to solve these problems by hand even for simple, 2 x 2 cases.

Furthermore, we went into depth and further understood the estimation-maximisation algo-
rithm and how we can apply it to MAPs. As mentioned in the introduction, MAPs are widely
used in network and queueing theory, so in these real-life scenarios not all the data arrives
(incomplete data). Therefore, the EM algorithm can help estimate the missing information. In
chapter 6, we discussed an alternative to the EM algorithm i.e. the moment-based approach.
Even though we only briefly described the advantages and disadvantages, our main focus was
the more recent and new idea of the EM algorithm and its use in solving MAPs.

7.2 Future Work

There are various extensions that can be built and explored from the above aims and those
are left as future work. Some of these include:

7.2.1 Larger Dimension Matrices

Solving MAPs not just for 2 x 2 matrices, but also for 3 x 3 and larger dimensions. We
have already tried to apply a method to solve the SU (3) case, however as we have not been
successful in finding a solution we can continue to find different approaches in order to prove
or disprove the claim. We would need to perform a similar analysis as we did for SL (2,R)
and using that as a basis find relations that we could use to generate the rate matrices.

7.2.2 Simplify Large Matrices

As seen earlier, MATLAB was not very helpful in simplifying very large matrices. Therefore,
when we work on larger matrices and matrix exponentials it would be useful to code in a
different mathematical language in order to ensure that we get the simplest form of our
solution.

73



7.2 Future Work 7 CONCLUSION & FUTURE WORK

7.2.3 Other Matrix Lie Groups

Finding examples within the other matrix Lie groups i.e. other than SL (2,R) and SU (2) .
There are many different matrix Lie groups and we can attempt to prove the commutator
relation for different cases. Therefore, as a result find the rate matrices C and D that could
be used to further solve for P (n, t).

7.2.4 Apply EM Algorithm

Applying the EM algorithm to a real situation where MAPs are used and comparing the
solution with the moment-based method. Give more examples and compute them to existing
problems.

7.2.5 Other Forms of MAPs

Further investigate into the different MAPs such as Markov-modulated Poisson process or
Phase-type renewal process and see if we can apply Lie algebra and its commutator relations
to such cases. In addition, we could apply these models to real networking situations in order
to compare results and see if the EM algorithm can also be applied to other situations.

7.2.6 Stiff Matrices

While discussing the EM algorithm, we came across the concept of stiff matrices. As an
extension we could look into ways of applying the uniformisation method in order to solve this
problem.

74



REFERENCES REFERENCES

References

[1] "Lie Groups, Physics, and Geometry." Lie Groups, Physics and Geometry. N.p.,
n.d. Web. 14 Mar. 2012. <http://einstein.drexel.edu/~bob/LieGroups.html>.

[2] Hall, Brian C. Lie Groups, Lie Algebras, and Representations: An Elementary
Introduction. New York: Springer, 2003. 3-73. Print.

[3] Hanson, Robert. "A Proof of the Heine-Borel Theorem." N.p., n.d. Web. 20
June 2012. <http://www.math.utah.edu/~bobby/3210/heine-borel.pdf>.

[4] Sepanski, Mark R. Compact Lie Groups. New York, NY: Springer, 2007. PDF.

[5] "Examples of Markovian Arrival Processes." Examples of
Markovian Arrival Processes. N.p., n.d. Web. 17 Feb. 2012.
<http://www.cs.cmu.edu/~osogami/thesis/html/node72.html>.

[6] "Definition of MAP." Definition of MAP. N.p., n.d. Web. 17 Feb. 2012.
<http://www.cs.cmu.edu/~osogami/thesis/html/node73.html>.

[7] "Poisson Process." – from Wolfram MathWorld. N.p., n.d. Web. 14 Mar. 2012.
<http://mathworld.wolfram.com/PoissonProcess.html>.

[8] Kawanishi, Ken’ichi. "On the Counting Process for a Class of Markovian Arrival
Processes with an Application to a Queueing System." Queueing Systems 49.2
(2005): 93-122. Print.

[9] "3.5 The Markov Property." 3.5 The Markov Property. N.p., n.d. Web. 13 Feb.
2012. <http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node32.html>.

[10] "Introduction to Finite Markov Chains." N.p., n.d. Web. 13 Feb. 2012.
<http://www.ams.org/bookstore/pspdf/mbk-58-prev.pdf>.

[11] Kang, Sang H., Yong Han Kin, Dan K. Sung, and Bong D. Choi. "An Appli-
cation of Markovian Arrival Process (MAP) to Modeling Superposed ATM Cell
Streams." IEEE Transactions on Communications 50.4 (2004): 633-44. PDF.

[12] Okamura, Hiroyuki, Yuya Kamahara, and Tadashi Dohi. "An EM Algorithm for a
Superposition of Markovian Arrival Processes." N.p., 2008. Web. 27 May 2012.
<http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1589-
28.pdf>.

[13] Haywood, Stephen. "Gell-Mann Matrices." N.p., n.d. Web. 18 June 2012.
<http://hepwww.rl.ac.uk/Haywood/Group_Theory_Lectures/Lecture_4.pdf>.

[14] Turzillo, Alex. "Representations of Matrix Lie Al-
gebras." N.p., Aug. 2010. Web. 25 Mar. 2012.
<http://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Turzillo.pdf>.

[15] "Pauli Matrices." – from Wolfram MathWorld. N.p., n.d. Web. 18 June 2012.
<http://mathworld.wolfram.com/PauliMatrices.html>.

[16] Borman, Sean. "The Expectation Maximization Algo-
rithm." N.p., 09 Jan. 2009. Web. 25 May 2012.
<http://www.seanborman.com/publications/EM_algorithm.pdf>

75



REFERENCES REFERENCES

[17] Okamura, Hiroyuki, Tadashi Dohi, and Kishor S. Trivedi. "IEEE/ACM Trans-
actions on Networking." Markovian Arrival Process Parameter Estimation With
Group Data 17.4 (2009): 1328-330. PDF.

[18] Reibman, Andrew, Kishor Trivedi, Sanjaya Kumar, and Gianfranco Cia-
rdo. "Analysis of Stiff Markov Chains." N.p., 1989. Web. 10 June 2012.
<http://people.ee.duke.edu/~kst/markovpapers/paper05.pdf>.

[19] H. Akaike, B. N. Petrov and F. Csaki, Eds., “Information theory and an extension
of the maximum likelihood principle,” in Proc. 2nd Int. Symp. Inform. Theory,
1973, pp. 267–281.

[20] "Uniformisation." N.p., n.d. Web. 15 June 2012. <www.informatik.hu-
berlin.de/~wolter/teaching/.../uniformisation.ps>.

76


	Introduction
	Motivation
	Objectives
	Layout of the report

	Background
	Matrix Lie Groups
	Examples Of Matrix Lie Groups
	Compactness
	Connectedness
	Simple Connectedness
	Homomorphisms And Isomorphisms 
	The Polar Decomposition
	Lie Groups
	The Matrix Exponential and Computing The Exponential of a Matrix
	The Matrix Logarithm and More Properties of the Matrix Exponential
	The Lie Algebra of a Matrix Lie Group
	The General Linear Group
	The Special Linear Group
	The Unitary Group
	The Orthogonal Group
	The Generalised Orthogonal Group
	The Symplectic Group
	The Heisenberg Group

	Properties of Lie Algebra
	Lie Algebra
	The Baker-Campbell-Hausdorff Formula

	Markovian Arrival Process (MAP)
	Overview
	Example: SL(2,R) 
	Solving for C and D
	Implementing C and D

	Example: SU(2) 
	Investigate SU(3) 


	Coded Examples in MATLAB
	Why use MATLAB?
	Example: sl(2,R) 

	Estimation-Maximisation (EM) For MAPs
	General EM algorithm
	EM and MAPs
	Formulas for the M-Step
	Formulas for the E-step
	Computing the EM algorithm
	Example using Uniformisation


	Evaluation 
	Result From Lie Algebra Examples
	Efficiency of Estimation-Maximisation Algorithm 

	Conclusion & Future Work
	Conclusion
	Future Work
	Larger Dimension Matrices
	Simplify Large Matrices
	Other Matrix Lie Groups
	Apply EM Algorithm
	Other Forms of MAPs
	Stiff Matrices



