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Abstract

Twitter is arguably among the most popular social networks today, with over 140 million
active users. It is characterised by a dual nature, since it can be used as both a social
interaction environment and as an information dissemination site. Twitter’s popularity
has attracted not only individuals but also corporations seeking to promote their brands,
and bots, which are computer programs that use Twitter to disseminate information
and, in some cases, malicious content.

In this work, we have collected a large dataset of Twitter users and have employed this
dataset to study the online behaviour of three different types of accounts: personal,
managed and bot-controlled. We perform a statistical analysis of user profiles and
create two different Machine Learning algorithms based on tweeting behaviour: a naive
Bayes classifier, which classifies Twitter accounts into the aforementioned categories,
and a probabilistic prediction model, which aims to predict the time of a user’s next
tweet.

We obtain some interesting results when comparing the account categories regarding
three different properties, namely, inter-tweet delay, tweet frequency on different hours
of the day, and tweet frequency on different days of the week, and find very distinct be-
haviours among the three different account classes. Our classifier performs an effective
classification despite using only the first two of the properties studied. Finally, our pre-
dictive model generates statistically significant results, although it has so far exhibited
a moderate correctness ratio and therefore still leaves room for future improvement.
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Chapter 1

Introduction

Online social networks play a major role in social interaction today [17]: they are an important
medium for communication and exchange of information and data between their users. The informal
setting of social media encourages users to frequently express their thoughts, opinions, and random,
personal details of their lives [29, 34]. Moreover, recent research has shown that managing the
impression of one’s online presence is increasingly important [1]. Among the large number of online
social networks that presently exist, Twitter stands out as a microblogging website in which users
broadcast brief text updates, with up to 140 characters, called tweets. Another distinct feature of
Twitter is that its user relationship is directed: user A may choose to follow user B and receive their
updates, but user B is not required to follow user A back. This means that the flow of information
on the Twitter network is directed from the source (author of the tweet) to its subscribers (followers)
[12].

Although it is possible for Twitter users to have private accounts, which cannot be accessed by
the general public, these constitute only a small portion of cases. Twitter is a public interaction
network that contains freely available information about the lives of its millions of users. Previous
studies, such as the one found in [23], have shown the main uses of Twitter to be the following: daily
chatter, or posting information about one’s personal life; conversations, in the form of direct tweets
to specific users; information sharing, such as links to other web pages, photos and videos; and news
reporting, such as commentary on news and current affairs. These different types of interaction
give us a wide range of possibilities for using Twitter data when studying human behaviour.

There are many advantages to using data from Twitter for scientific research: it is free, abundant
and relatively easy to obtain. Furthermore, another important characteristic of Twitter content
is its timeliness: the messages are so brief that they are intrinsically associated with the moment
they were posted, which is represented as a timestamp on the tweet. This means that tweets
relate to a very narrow temporal window and thus constitute an extremely up-to-date view of
users’ information [7]. Although most tweets contain little informational value, the aggregation
of millions of these messages can generate important knowledge about the population sample of
Twitter users. Many studies have been developed that use data from Twitter to analyse public
sentiment and opinion and their relation to social, political and economic measures. Some of these
studies are briefly described in chapter 3.

While past research has largely focused on using tweets as a representation of collective be-
haviour, this project takes the perspective of Reality Mining, a field concerned with the analysis
and discovery of patterns in large datasets pertaining to human social behaviour [15, 16], and aims
to use Twitter data to study users individually and make predictions about them in real life. The
main motivation behind this project is therefore the essential need to understand human behaviour
and the human decision-making process. Because the dynamics of many social, technological and
economic phenomena are driven by individual human actions, the quantitative understanding of
human behaviour is a central question of modern science. In [3], Barabási argues that understand-
ing the mechanisms that govern the timing of various human activities has significant scientific and
commercial potential. For instance, models of human behaviour are indispensable for large-scale
models of social organisation, such as urban models, the spread of epidemics, the development of
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panic and financial market behaviour. Furthermore, human behavioural models are crucial for bet-
ter resource allocation and pricing plans for telephone companies, to improve inventory and service
allocation in retail, and to understand the bursts of ideas and memes emerging in communication
and publication patterns.

The field of Computational Social Science [25, 19] is concerned with studying patterns of indi-
vidual and group behaviours through digital and online data. In [25], Lazer et al. claim that the
digital traces of our lives can be compiled into comprehensive pictures of human behaviour, with
the potential to transform our understanding of our lives, organisations and societies. This data
can enable, for instance, investigating the temporal dynamics of human communications, studying
the evolution of social networks over time, analysing the spread of pathogens through populations,
tracing the spread of political arguments and rumours online, among many other interesting studies.
Data from social network websites, in particular, can help us understand the impact of a person’s
position in the network on their tastes, their moods and even their health. The present work is a
contribution to the field of Computational Social Science in that it attempts to understand the be-
haviour of humans when deciding to post messages on Twitter, a decision that might be associated
with many aspects of their real lives, such as their work routines, their friendship network and the
process of forming and expressing their opinions.

The purpose of this project is therefore to obtain real-life information about Twitter users based
solely on their tweeting patterns. We focus on the use of data that can be easily obtained through a
web crawler and does not require parsing the contents of posts or obtaining questionnaire answers
from the users, which can be both time-consuming and expensive. Moreover, with a large number
of publishers, it is difficult to establish a standard for the presentation of information on Twitter,
which can hamper content analysis. Analysing tweeting behaviour, on the other hand, can avoid
this shortcoming because it focuses on how the content is sent rather than what the content is [26].

The first step in the development of this project was the collection of data from multiple Twitter
users through a web crawler. For this purpose, we created Creepy Crawly, a Twitter crawler which
allowed us to retrieve data in an efficient way while conforming to the request limit imposed by
the Twitter API. After data collection, we studied tweeting patterns, such as the timestamps of
each post and the time interval in between posts, and used this information to classify users into
three different groups and to predict when their next tweets would be posted. By analysing users’
behaviour on Twitter, we were able to learn about human behavioural patterns without having to
look into the tweets’ contents.

Since its creation in 2006, Twitter has become increasingly popular, and has reached over 140
million active users [10]. The popularity of Twitter makes it an important tool for marketing and
business promotion [8], customer service [9], political campaigning [33] and even fuelling of civil
revolutions [37]. As a result, identifying and understanding the behaviour of users behind Twitter
accounts can be of great importance: it allows Twitter users, both humans and corporations,
to know with whom they are interacting on the social network, and thus plan their interaction
accordingly. Although many real life characteristics of users could potentially be extracted from
their tweeting behaviour, such as gender, age group, friendship network and even personality, this
project focuses on the simple goal of identifying what type of user is controlling a given account.

With the continuing expansion of Twitter, many companies and businesses have created corpo-
rate accounts in order to promote their products or services and gain visibility [10]. Furthermore,
the website’s popularity has attracted a large number of automated programs, known as bots,
that access Twitter through its API and are allowed to perform the same activities as an actual
person would [12]. Although some of these bots are harmless and merely provide automated in-
formation, such as news or blog updates, there are also ill-intentioned bots that spread spam and
malicious content. The short tweet size limit, characteristic of Twitter, favours spammers because
it requires links to be shortened, making them illegible. Consequently, identifying spammers on
Twitter is a relevant issue, and for this purpose we create a naive Bayes classifier based on tweeting
patterns to classify Twitter accounts as either managed (corporate), personal, or bot-controlled.
This classification can be very helpful in the recognition and filtering of spammers and malicious
accounts.
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The main contributions of this project are the following: a vast literature survey, comprising
past work in Computational Social Science and Reality Mining, and previous research that stud-
ies the structure of Twitter or uses Twitter data for a variety of purposes; the development of
Creepy Crawly, a web crawler for data collection from Twitter; a statistical analysis of the data
collected and a behavioural analysis of Twitter users; the implementation of two Bayes classifiers
for Twitter accounts, the first one to distinguish between personal and managed accounts, and the
second one to distinguish between personal, managed, and bot-controlled accounts; and finally, the
implementation of a predictive model for estimating the time of a user’s next tweet.

The remainder of this report is organised as follows. Chapter 2 contains a brief description
of concepts and techniques that were relevant to the development of the project. The literature
survey in chapter 3 is an analysis of past research related to human behaviour and to the use of
online social network data. Chapter 4 describes the application developed for collection of data
from Twitter, and chapter 5 contains a statistical analysis of the data that was obtained. Machine
Learning methods and the algorithms implemented are explained is chapter 6, while developments
and results obtained so far are described in chapter 7. Finally, chapter 8 concludes the report and
contains suggestions for future work.
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Chapter 2

Methodological Background

In this chapter, we briefly review the theoretical concepts that constitute the building blocks of
both the literature survey, presented in chapter 3, and the development of the project itself. In
the next sections, we cover some important topics in Probability and Statistics, Machine Learning,
and Complex Networks.

2.1 Probability and Statistics

Basic Concepts

The study of Probability and Statistics [27, 13] is concerned with the analysis of random phenomena.
We begin by reviewing the concept of a random variable, which numerically describes the outcome
of an event occurring in a system subject to variations due to chance. If A is a discrete random
variable, the probability that A takes an arbitrary value a is:

0 ≤ P (A = a) ≤ 1 (2.1.1)

The probability of alternative values is given by the sum of the individual probabilities:

P (A = a or A = a′) = P (A = a) + P (A = a′) (2.1.2)

Intuitively, it is easy to conclude that the sum of probabilities of all possible values that A can
take on is equal to one: ∑

all possible a

P (A = a) = 1 (2.1.3)

For two random variables A and B, the joint probability P (A = a,B = b) is the probability that
both A has value a and B has value b. We can use joint probabilities to marginalise the probability
of a random variable, i.e., to obtain the probability for variable A as the sum of joint probabilities
over all possible outcomes of a different variable B:

P (A = a) =
∑

all possible b

P (A = a,B = b) (2.1.4)

The conditional probability P (A = a|B = b) is the probability that A will take on a value a
given that we know B has value b. The product rule defines the following property:

P (A = a,B = b) = P (A = a)P (B = b|A = a) = P (B = b)P (A = a|B = b) (2.1.5)

If A and B are independent variables, then following three properties also apply:

P (A = a|B = b) = P (A = a) (2.1.6)

P (B = b|A = a) = P (B = b) (2.1.7)
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P (A = a,B = b) = P (A = a)P (B = b) (2.1.8)

From the product rule defined in 2.1.5, we can derive a central theorem in the study of Proba-
bility, called Bayes’ theorem:

P (A = a|B = b) =
P (A = a)P (B = b|A = a)

P (B = b)
∝ P (A = a,B = b) (2.1.9)

Intuitively, Bayes’ theorem can be written as:

posterior ∝ likelihood× prior (2.1.10)

where the prior, p(A = a), is the initial degree of belief in A = a; the likelihood, P (B = b|A = a),
is the degree of belief in B = b having accounted for A = a; and the posterior, P (A = a|B = b), is
the degree of belief in A = a having accounted for B = b.

The Bernoulli distribution is a discrete probability distribution which takes value one with
probability p and value zero with probability 1− p:

B(k = 1; p) = p (2.1.11)

B(k = 0; p) = 1− p

The binomial coefficient
(
n
k

)
can be used to represent the number of ways in which we can choose

k elements out of a set of n elements, i.e., it counts the number of possible k-size combinations
using those n elements. It can be computed as:(

n

k

)
=

n!

k!(n− k)!
=

(
n

n− k

)
(2.1.12)

The probability mass function (PMF) gives us the probability that a discrete random variable
x will be exactly equal to a given value. If x is a discrete random variable defined on a sample
space S, then the PMF of x can be defined as:

fx(a) = P (x = a) = P ({s ∈ S|x(s) = a}) (2.1.13)

The total probability for all possible values of x must be equal to 1:∑
a∈A

fx(a) = 1 (2.1.14)

For continuous random variables, the probability density function (PDF) describes the relative
likelihood for a variable x to take on a given value, and is defined within range [−∞,∞]:∫ ∞

−∞
p(x)dx = 1 (2.1.15)

The cumulative distribution function (CDF) describes the probability that a continuous random
variable x with probability distribution p(x) will be found at a value less than or equal to a:

P (x ≤ a) =

∫ a

−∞
p(x)dx (2.1.16)

Intuitively, the CDF is the “area so far” function of the PDF.
The expectation of a random variable x under a probability distribution p(x) is defined as:

〈f(x)〉 =

∫ ∞
−∞

p(x)f(x)dx (2.1.17)

Finally, the variance of a random variable x under a probability distribution is defined as:

Var(x) = 〈(x− 〈x〉)2〉 = 〈x2〉 − 〈x〉2 (2.1.18)
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Poisson Distribution

The Poisson distribution, named after mathematician Siméon Denis Poisson, is a discrete distri-
bution that describes the probability that a given number of events will occur in a fixed interval
of time or space. This distribution assumes that events will occur with a known average rate λ
and that the occurrence of each particular event is independent of the time elapsed since the last
occurrence. Therefore, for a given interval, the Poisson distribution predicts the degree of spread
around the known average rate of occurrence.

A random variable x has a Poisson distribution with average rate parameter λ if its PMF is
given by:

fx(k;λ) = P (x = k) =
λke−λ

k!
(2.1.19)

where the parameter λ is equal to both the expected value and the variance of x.

Power Law Distribution

The power law distribution expresses the probability of a continuous variable that varies as a power
of that variable’s value. This distribution is characterised by a fat tail that represents large but
rare values that the random variable might take. A random variable is said to follow a power law
if its probability density function has the form:

p(x) ∝ L(x)x−α (2.1.20)

where α > 1 and L(x) is a slowly varying function such that limx→∞ L(cx)/L(x) = 1. The
form of function L(x) controls the shape and extent of the distribution’s tail. On a log-log plot, in
which both axes are displayed in log scale, a power law distribution will have the form of a straight
line with negative slope given by −α.

Lognormal Distribution

The lognormal distribution is the continuous probability distribution of a random variable x, whose
logarithm is normally distributed. This means that a variable x is lognormally distributed if
y = log(x) has a normal distribution. The probability density function of a lognormal distribution
is given by:

p(x|µ, σ) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 , x > 0 (2.1.21)

where µ and σ are the mean and the standard deviation, respectively, of the associated normal
distribution. A lognormal random variable x is therefore defined as:

x = eµ+σz (2.1.22)

where z is a standard normal variable. The mean m and the variance v of x can be obtained
as functions of µ and σ:

m = e(µ+σ
2)/2 (2.1.23)

v = e2µ+σ
2
(eσ

2 − 1) (2.1.24)

The lognormal distribution is applicable when the quantity of interest must be positive, since
log(x) exists only when x is positive. A random variable can be modelled as lognormal if it can be
thought of as the multiplicative product of many independent, positive random variables.

6



Dirichlet Distribution

The multinomial distribution is a discrete distribution which gives the probability of choosing a
collection of m items from a set of n items with repetitions, where the probabilities of choosing each
item are given by q1, ..., qn. These probabilities are the parameters of the multinomial distribution.

The Dirichlet distribution is a family of continuous, multivariate probability distributions
parametrized by a vector α of positive reals. It is the conjugate prior of the parameters of the
multinomial distribution. The probability density function of the Dirichlet distribution for vari-
ables q = (q1, ..., qn) with parameters α = (α1, ..., αn) is defined as:

p(q) = Dirichlet(q, α) =
1

B(α)

n∏
i=1

qαi−1i (2.1.25)

where q1, ..., qn ≥ 0,
∑n

i=1 qi = 1 and α1, ..., αn > 0. The parameters αi can be seen as prior
observation counts for events governed by probabilities qi. The normalisation constant B(α) is the
multinomial beta function, which can be expressed in terms of the gamma function:

B(α) =

∏n
i=1 Γ(αi)

Γ(
∏n
i=1 αi)

(2.1.26)

Intuitively, the probability density function of the Dirichlet distribution returns the belief that
the probabilities of n rival events are qi given that each event has been observed αi − 1 times.

Statistical Measures

We now review some statistical measures that can be used in the evaluation of statistical models.
The first of these measures is the coefficient of determination R2, which is a goodness-of-fit eval-
uation for regression and statistical models of prediction. It determines how well future outcomes
are likely to be predicted by the predictive model. In a dataset with values yi (observed values),
and for which the model has predicted values fi (predicted values), the variability of the dataset
can be measured by the residual sum of squares, SSerr, and the total sum of squares, SStot:

SSerr =
∑
i

(yi − fi)2 (2.1.27)

SStot =
∑
i

(yi − y)2 (2.1.28)

where the mean of y is given by

y =
1

n

n∑
i

yi (2.1.29)

The coefficient of determination is defined as:

R2 = 1− Serr
Stot

(2.1.30)

The coefficient of determination is therefore a measure of the portion of variance in the data
that is explained by the model, since the second term in its definition compares the unexplained
variance (variance of the model’s errors) with the total variance of the data. The value of R2 ranges
from 0 to 1, where a value of 1 means that the model perfectly predicts the data.

The Pearson Correlation Coefficient (PCC) is a value between −1 and 1 that measures the
correlation, or linear dependence, between two variables X and Y . A value close or equal to 1
means that a linear equation can describe the relationship between X and Y quite well, with all
data points lying close to a line for which Y increases as X decreases, while a value close or equal
to −1 means that the data points lie close to a line for which Y decreases as X increases. A value
close 0 implies that there is no linear correlation between the two variables.
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The PCC is defined as the covariance of the two variables divided by the product of their
standard deviations. For a population the PCC ρX,Y between X and Y is given by:

ρX,Y =
cov(X,Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
(2.1.31)

where σX and σY are the standard deviations of X and Y , respectively, and µX and µY are the
means of X and Y , respectively.

The PCC is a symmetric measure, i.e., ρX,Y = ρY,X . It can be interpreted geometrically as the
cosine of the angle between both possible regression lines, y = fx(x) and x = fy(y).

Granger causality is a statistical hypothesis test for determining whether one time series is
useful in forecasting another, revealing causality between the two. Consider three time series X1,
X2 and X3, and two autoregressive linear models for X1:

X1(t) =
m∑
j=1

AjX1(t− j) +BjX2(t− j) + CjX3(t− j) + εABC(t) (2.1.32)

X1(t) =

m∑
j=1

AjX1(t− j) + CjX3(t− j) + εAC(t) (2.1.33)

If we find that the variance of εABC is significantly less than the variance of εAC , this means that
X2 is relevant to the prediction of values of X1, and we say that X2 Granger-causes X1. Granger
causality therefore assesses the influence of one variable (X2) on another variable (X1) over and
above the influence of the rest of the system (X3).

In a test for Granger causality, we start by doing a regression of ∆Y on lagged values of ∆Y ,
where ∆Y is the first difference of variable Y , equal to Y minus its one-period-prior value. Once
the set of significant lagged values for ∆Y is found, we add lagged values of ∆X to the regression
and check whether any of these lagged values are retained in the regression according to t-tests and
F-tests. Then we can conclude that there is no Granger causality between X and Y if and only if
no lagged values of ∆X have been retained in the regression.

2.2 Machine Learning

Machine Learning [4] is the study of algorithms that can learn from data and automatically improve
with experience. It is a subject closely related to Statistics and to Pattern Recognition, which is
the inspection of complex patterns and probability distributions in large amounts of data. In this
section, we revise a few topics in Machine Learning that were relevant to the development of the
algorithms described in chapter 6.

Probabilistic Prediction

In deterministic prediction, the outcome of a variable is determined exactly, which means that
the predictive model has complete confidence in the value predicted. In contrast, probabilistic
prediction generates a “degree of belief” in each possible outcome of a variable. We can use
probabilities to predict the outcome of a random variable A based on the probability distribution
obtained from a training set. If p(A) is the PDF obtained for A, we can simply infer that the
outcome of A will be given by that distribution. To evaluate the prediction, a statistical measure
such as the coefficient of determination can be used to compare the distribution obtained from the
training set to the actual outcome of the variable.

In order to generate a deterministic prediction for the outcome of A, we can assume the value
of A will be given by:

outcome(A) = arg max
v
{p(A = v)} (2.2.1)

where v represents all possible outcomes for A.
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Naive Bayes Classifier

A naive Bayes classifier is a simple classifier model based on Bayes’ theorem. It is called naive
because it uses naive or strong independence assumptions: it assumes that the presence, or absence,
of a particular feature of a class is unrelated to the presence, or absence, of any other feature of
that class. Naive Bayes classifiers are trained in a supervised learning setting, in which the classes
of all samples in the training dataset are known a priori.

The probability model for such a classifier can be defined as follows:

p(C|F1, ..., Fn) =
p(C)p(F1, ..., Fn|C)

p(F1, ..., Fn)
(2.2.2)

where C is a class and F1, ..., Fn are n features. The denominator in the equation above is not
strictly relevant: since all features Fi are independent and their values are known, the value of
p(F1, ..., Fn) will be effectively constant. Therefore, we can rewrite equation 2.2.2 as:

p(C|F1, ..., Fn) = p(C)p(F1, ..., Fn|C) = p(C,F1, ..., Fn) (2.2.3)

It can be shown that

p(C,F1, ..., Fn) ∝ p(C)p(F1|C)p(F2|C,F1)...p(Fn|C,F1, F2, ..., Fn−1) (2.2.4)

and, since each feature is conditionally independent of every other feature, we have:

p(C,F1, ..., Fn) ∝ p(C)
n∏
i=1

p(Fi|C) (2.2.5)

Finally, the conditional distribution over class C is given by:

p(C|F1, ..., Fn) =
1

Z
p(C)

n∏
i=1

p(Fi|C) (2.2.6)

where Z is a scaling factor which is constant as long as the values of each feature variable are
known. p(C) is the class prior, and p(Fi|C) is the probability of feature Fi given that the sample
is from class C; these probabilities can be obtained from the training set. In order to classify a
new sample, we can simply pick the class that is most probable, using the maximum a posteriori
(MAP) decision rule:

class(f1, ..., fn) = arg max
c

{
p(C = c)

n∏
i=1

p(Fi = fi|C = c)

}
(2.2.7)

EM Algorithm

The Expectation-Maximisation (EM) Algorithm is an iterative method used in Statistics to deter-
mine the maximum likelihood of parameters in a certain model. The algorithm’s name is due to the
two main steps it comprises: in the E step, we use the current estimated values for the parameters
to compute the expectation of the log-likelihood; in the M step, we obtain a new estimate for the
parameters by maximising the expected log-likelihood obtained in the E step.

Given a statistical model with observable variables X, discrete latent (hidden) variables Z and
unknown parameters θ, the complete-data likelihood function is the probability of obtaining both
observable and latent variables given the parameters, and can be defined as follows:

L(θ;X,Z) = p(X,Z|θ) (2.2.8)

The maximum likelihood estimation (MLE) is the extent to which the parameters can explain
the observed data, and is given by the marginal likelihood of the observed variables:

9



L(θ;X) = p(X|θ) =
∑
Z

p(X,Z|θ) (2.2.9)

We assume that optimising p(X|θ) is difficult, but that optimising the complete-data likelihood
function p(X,Z|θ) is easier.

For N observations of X, the joint probability of X and Z is:

p(X,Z) =

N∏
i=1

p(xi|zi)p(zi) (2.2.10)

Thus, the complete-data log-likelihood function is given by:

ln{p(X,Z|θ)} = ln{
N∏
i=1

p(xi|zi, θ)p(zi|θ)} =
N∑
i=1

{ln(p(xi|zi, θ)) + ln(p(zi|θ)} (2.2.11)

In order to obtain the parameters θ for the model, we first initialise these parameters, define
a prior over the latent variables Z, p(Z), and define the likelihood p(X|Z). Because we do not
have the complete data set {X,Z}, we cannot directly maximise the complete-data log likelihood
function. Our knowledge of the latent variables Z is given by the posterior distribution p(Z|X, θ);
therefore, we can use this posterior to obtain the expected value of the complete-data log likelihood.

In the E step, we use the current estimates for θ to obtain the posterior distribution of the latent
variables, p(Z|X, θ). We then take the expectation of the complete-data log likelihood function,
ln{p(X,Z|θ)}, with respect to the posterior distribution of Z. This expectation will be a function
of θ:

Q(θ|θ(t)) = Ep(Z|X,θ(t))[ln{p(X,Z|θ)}] =
∑
Z

p(Z|X, θ(t)) ln(p(X,Z|θ)) (2.2.12)

In the M step, we maximise the expectation of the joint probability obtained in the E step,
with respect to the parameters θ, keeping the posterior statistics fixed:

θ(t+1) = arg max
θ
Q(θ|θ(t)) (2.2.13)

2.3 Complex Networks

The study of complex networks [18, 5] is concerned with the dynamics of large systems where the
behaviour of individual elements is relatively simple and easy to understand, while the behaviour
of the network as a whole is not. We can model such networks as graphs in which the vertices
are the elements of the system and the edges represent the interactions between these elements.
The applications of this model include, for instance, genetic networks, the nervous system, social
networks, electric power grids, and the World Wide Web. Representing the complexity of a system
as a network can be very helpful since it allows us to analyse the network’s topology, providing
insight into the organisational principles of that system. As an online social network, Twitter
can be studied as a complex network in which users are represented as vertices and the ‘follow’
relationships between users are represented as directed edges.

Basic Concepts

In order to analyse and classify complex networks, we need to study their topology, i.e., we need to
measure some properties of the network’s connectivity structure that will allow us to understand
its behaviour. An important measure is the average node degree, which is the average number of
nodes that are connected to one specific node. Related to the average node degree is the node
degree distribution, which is a sequence {ki} for 1 ≤ i ≤ n, where n is the total of nodes, and where
each ki is the degree of node i. The degree distribution can also be seen as a histogram showing the
proportion of nodes that have a specific degree. The shortest path length between two nodes i and
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j is the minimum amount of edges forming a path that connects i to j; if there is no path linking
these two nodes, then the value for this measure is set to infinity. Using the notion of shortest path
length, we can define the network diameter as the maximum degree of separation between all pairs
of nodes in the network, and the average distance as the average shortest path between all pairs of
nodes. The local clustering coefficient for one particular node is the fraction of pairs of neighbours
of that node that are connected by an edge, while the global clustering coefficient is the average of
local clustering coefficients over the entire network.

Random Networks

A random network is the most basic kind of network, and it can be defined as a graph that has a
uniform distribution of randomly assigned edges. For every pair of nodes i and j in such a network,
the probability of finding an edge connecting them is p. A random network is fully determined by
its number of nodes, n, and its average node degree, z. Using that information we can obtain the
number of edges, nz/2, and the connection probability, p, which is the probability of finding an
edge between two given nodes:

p =
nz/2

n(n− 1)/2
=

z

n− 1
(2.3.1)

If D is the diameter of the random network, we have that z2 is the number of next nearest
neighbours of a node, and that zD ≈ n, since any given node has approximately z neighbours.
Therefore, the network diameter D is proportional to log n. It can also be shown that the average
distance L is proportional to log(n)/ log(z). For a random network, the global clustering coefficient
C is equal to the connection probability p, i.e., it’s the probability that any two vertices are
connected by an edge, and thus, for large random networks, C tends to zero as n→∞.

The generating model for a random network is the Erdős-Rènyi model, in which a link is drawn
between each pair of nodes with equal probability and independently of other edges. We begin with
n disconnected nodes and then add nz/2 edges at random between pairs of nodes, which means
that the network will have average node degree z. For any network, if xk is the number of nodes
that have degree k, then the node degree distribution of the network is given by pk = xk/n. For
Erdős-Rènyi graphs, we have:

pk =

(
n− 1

k

)
pk(1− p)n−1−k (2.3.2)

where p = z/(n− 1) is the connection probability. When n→∞, the node degree distribution
pk is given by a Poisson distribution with mean z:

pk ≈ e−pn
(pn)k

k!
≈ e−z z

k

k!
(2.3.3)

since z ≈ pn. We can generate an Erdős-Rènyi graph that satisfies any desired degree distri-
bution given by pk, where

∑∞
k=0 pk = 1, through the following steps: we start with n disconnected

nodes and assign ki stubs (ends of edges) to each node i; we then iteratively choose pairs of stubs
and connect them, until there are no disconnected stubs left. In consequence, the fraction of nodes
with degree k will tend to pk as N →∞.

The average number of neighbours of a node can be written in terms of the degree distribution:

z = 〈k〉 =
∑
k

kpk (2.3.4)

The conditional probability that a node i has degree ki given that i and j are connected is:

P (ki|i↔ j) =
P (ki, i↔ j)

P (i↔ j)
=
P (i↔ j|ki)P (ki)

P (i↔ j)
(2.3.5)

where P (ki) = pki . The probability that nodes i and j are connected is P (i↔ j) = 〈k〉/(n−1),
and P (i↔ j|ki) = ki/(n− 1).
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Small-world Networks

Random networks are not easily observed in the real world, since most networks display some sort
of structure. On the other hand, small-world networks appear to be very common. A small-world
network has three important features: it is sparse, it has a large global clustering coefficient, and
it has a small average distance. Being sparse means that the number of existing edges is only a
small fraction of the possible edges among the network’s nodes. A large global clustering coefficient
means that if a node i is connected to nodes j and k, then there is a higher probability that j and
k are also connected to each other. Finally, a small average distance translates into a relatively
small path between any two nodes in the network, when compared to the size of the network.
Small-world networks frequently have hub nodes, which are connected to many different nodes,
whereas Erdős-Rènyi random networks rarely have hubs. Hub nodes are responsible for collapsing
the diameter of a small-world network.

We can use the Watts-Strogatz method to construct small-world networks. We start with a
regular ring lattice with degree z; then, for each edge in the lattice, we remove one of its ends with
probability p and reconnect it to a randomly selected node. The average degree is still z, but now
different nodes can have different degrees. This method can preserve the large clustering coefficient
of the original lattice, while decreasing the average distance at the same time. For p ≈ 0.1, we
obtain a small-world network as desired.

Most real networks are in fact growing networks. We can create a growing network by starting
with a small graph, consisting of two doubly connected nodes. At each moment in time, starting
at t = 3, we add a new node and connect it at random to one of the existing nodes. Therefore, at
time t, we have exactly t nodes and t edges in the network. The average degree 〈k〉 is then defined
as a function of t:

〈k〉(t) =
2t

t
= 2 (2.3.6)

Scale-free Networks

Scale-free networks are networks whose degree distribution, i.e., the distribution of edges per node,
fits a power law:

P (k) ∝ k−γ , γ > 1 (2.3.7)

The degree distribution is therefore fat-tailed and goes to zero slowly. In scale-free networks,
the probability of a node being highly connected is higher than in a random graph. While scale-
free networks are robust and exhibit high tolerance to random perturbations, they are also very
sensitive to attacks on highly connected nodes. The failure of a hub node causes the network to
break into isolated clusters, while the failure of random nodes affects mostly small-degree nodes
and does not cause any major loss of connectivity. Such networks are called scale-free because no
specific feature value stands out in the distribution structure. If we rescale by taking k → sk, then
the distribution remains the same: P (k) ∝ (sk)−γ ∝ k−γ .

Many real world networks satisfy a power law, such as the WWW documents, the citation
network, and the network of actors with edges between actors who have casted in the same movie.
A scale-free network can be built by the preferential growth algorithm proposed by Barabási and
Albert: we modify the random growth method previously described by giving preference to con-
nection to vertices with higher degree. In this algorithm, the probability of choosing a node for
the insertion of a new link is proportional to the current degree of that node. Therefore, heavily
linked nodes (hubs) will quickly accumulate even more links, while nodes with only a few links are
unlikely to be chosen as the destination for a new link. This method generates a network that is
scale-free and has low average length between nodes.

12



The Twitter Network

In [23], Java et al. present evidence that the Twitter network is scale-free and exhibits a small
world feature. At the time of their study, they found that the clustering coefficient in Twitter
was quite high at 0.106 while the network diameter was only 6, which indicates that Twitter, in
the same way as many other social networks, is a small-world network. They also found that
the network presents a high degree correlation and high reciprocity, indicating a large number of
mutual acquaintances in the graph. This can be explained by the fact that new users often join the
network after being invited by friends, and that new friends are added to the network by browsing
through user profiles and adding other known acquaintances. Moreover, Java et al. found that
both in-degree and out-degree distributions of the Twitter network follow a power law with slope
close to -2.4, which is similar to the value found for the Web as a whole and the blogosphere.

13



Chapter 3

Research Background

We now present a review of past research papers that were relevant to the conception and devel-
opment of our project. In this literature survey, we cover five different areas of research: Reality
Mining, Computational Social Science, classification of Twitter accounts, measuring influence in
social networks, sentiment analysis using Twitter data, and other miscellaneous applications of
social network data.

3.1 Reality Mining

Reality mining is a field related to data mining that uses machine-sensed environmental data to
study human behaviour. The term ‘reality mining’ was used by a research group in the MIT
Media Lab when conducting a study with mobile phone data from 100 phones during the period
of one academic year. This data includes call logs, Bluetooth devices in proximity, cell tower IDs,
application usage and phone status, and was analysed in different ways, giving rise to several studies
and publications.

In [16], Eagle et al. compare the mobile phone data with standard self-report survey data,
focusing on the relationships between dyads of subjects. Three analyses were conducted: the
relationship between self-report and behavioural data; whether there were behaviours identified in
the mobile phone data that were characteristic of real life friendship; and the relationship between
behavioural data and individual satisfaction. In order to analyse the dyadic variables, the authors
used the nonparametric multiple regression quadratic assignment procedure (MRQAP), which is a
standard technique for social network data.

When studying the relationship between self-report and behavioural data, the authors checked
for recency and salience biases in recall of physical proximity. Recency means that memories are
biased toward recent events, while salience means memories are biased toward more vivid events.
In their data, recency is represented by the quantity of interactions in a fixed period preceding
the survey, and salience by whether the other individual is a friend or non friend. Subjects were
asked about their proximity with other subjects, and the answers were compared with average daily
proximity based on Bluetooth scans. It was found that survey responses were biased in favour of
recent behaviour, and that subjects recall of information about their interactions begins to degrade
after approximately one week.

The authors obtained the average hour-by-hour levels of proximity between dyads of symmetric
friends, asymmetric friends and non friends, which are shown in figure 3.1. To check for behaviours
that were characteristic of friendship, they clustered the data according to proximity, location and
time. Using factor analysis, they found that the two factors that captured the most variance in
these variables were representative of the behaviour between work colleagues and between friends
outside the work environment. With these factors, they were able to accurately predict self-reported
friendships.

The authors then built two models to predict social integration in work groups, one based on
self-reported friendship, and the other one based on the dyadic weights associated with the factor
analysis previously performed. The predictors used in both models were number of friendships,
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average proximity to friends while at work, and phone communication with friends while at work.
They found that the inferred friendship network produced substantially identical results to the
self-report model, and concluded that having friends at work predicted satisfaction with the work
group, whereas calling friends while at work was associated with lack of satisfaction.

Figure 3.1: Probability of proximity between subjects, both at work and off campus for symmetric
friends, asymmetric friends and non friends. This probability is calculated for each hour in the
week and is generally much higher for friends than non friends. We can also see that symmetric
friends spend more time together off campus in the evenings. Source: [16]

Another important study in Reality Mining using the same mobile phone data can be found
in [15]. In this work, Eagle et al. obtain the principal components of the dataset in order to find
structure and behavioural patterns. The principal components, referred to as ‘eigenbehaviours’,
are the eigenvectors of the covariance matrix of the data, and were computed for each individual
studied. A linear combination of an individual’s eigenbehaviours was used to accurately reconstruct
the behaviour from each day in the data, and also to predict the individual’s subsequent behaviour.
Furthermore, eigenbehaviours were used to characterise the behaviour of communities within the
social network and to identify affiliations and relationships between individuals.

The data for each individual was represented as a two-dimensional array, where the dimensions
are the days of data collection and the hours of each day. Each element of this array is one of
the following labels corresponding to behaviour: ‘home’, ‘elsewhere’, ‘work’, ‘no signal’, and ‘off’.
The primary eigenbehaviours are a subset of vectors that best characterise the distribution of
behaviours, and define the individual’s low-dimensional behaviour space. The authors argue that
an individual’s primary eigenbehaviours represent a space upon which all vectors corresponding to
individual days can be projected with different levels of accuracy. Figure 3.2 shows the projection
of each day onto spaces created using an increasing number of eigenbehaviours.

In order to compute the eigenbehaviours of an individual, the authors obtained an average
behaviour and then used it to obtain the deviation of each day from the mean. They performed
principal components analysis on these vectors to generate a set of orthonormal vectors that corre-
sponds to the eigenvectors of the covariance matrix with highest eigenvalues. They then used the
resulting eigenbehaviours and weights generated from the first 12 hours of an individual’s day to
predict the subsequent 12 hours.

In addition, eigenbehaviours were computed for three communities in the social network, and
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the data for each individual was projected into the behavioural space of each community. Individual
affiliation was then measured by the Euclidian distance between the individual and the principal
components of each community’s behaviour space. Community eigenbehaviours were also used to
determine the similarity of members, by identifying how accurately a member’s behaviour could
be approximated by the community’s eigenbehaviours, and to determine how much each individ-
ual fit in a community, by measuring the distance between the individual’s projection onto the
community’s behaviour space and the individual’s original behaviour.

While these two studies in Reality Mining use mobile phone data, they could easily be modified
and extended with the use of online social network data. They do require, however, the collection
of real life data about the subjects, such as their real friendship networks and satisfaction level in
the work environment.

Figure 3.2: Behaviour approximation of a period of 115 days using a varying number of eigenbe-
haviours. As the number of eigenbehaviours increases, a better approximation is obtained. Source:
[15]

3.2 Computational Social Science and Human Behaviour

As explained in chapter 1, Computational Social Science is a relatively new field of research con-
cerned with the study of human behaviour, both individually and in groups, based on the analysis
of digital and online data. Many interesting studies have arisen in this field. For instance, in [3],
Barabási studies the communication between e-mail users in order to understand how humans pri-
oritise their activities. While previous models of human activity had been largely based on Poisson
processes, in which the time interval between two consecutive actions by the same individual fol-
lows an exponential distribution, the model supported by Barabási predicts that inter-event times
are better approximated by a heavy-tailed or Pareto distribution. This model allows for very long
periods of inactivity that separate bursts of intense activity, a behaviour characteristic of the timing
of many human actions.

The author studied an e-mail dataset capturing the sender, recipient, time and size of each
e-mail. He found that the distribution of time differences between consecutive e-mails sent by a
user was best approximated by P (τ) ≈ τ−α, with α ' 1, which indicates a bursty, non-Poisson
character: during a single session a user would send several emails in quick succession, followed by
long periods of no e-mail activity. Figure 3.3 shows some of the findings in the dataset analysed.
Barabási then continued to show that the bursty nature of human dynamics is a consequence of a
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queuing process in decision making: when presented with multiple tasks, an individual chooses a
task based on some priority parameter, and thus the waiting time of the various tasks will follow
a Pareto distribution.

Figure 3.3: Heavy-tailed activity patterns in e-mail communications. (a) shows the distribution of
time intervals between consecutive e-mails sent by a single user over three months. (b) shows the
distribution of the time taken by the same user to reply to a received message. (c) shows a scatter
plot of the waiting time and the size of each e-mail responded to by the user, indicating that file
size and response time do not correlate. (d) shows a scatter plot of the number of e-mails sent and
received by 3,188 users during three months. Source: [3]

Barabási explains that most human-initiated events require an individual to assess and prioritise
different activities. When presented with a list of tasks, an agent assigns a priority parameter x to
each task, which allows for a comparison between the urgency of different tasks. In most human
activities, the individual executes the highest-priority item on the list first, and this selection
mechanism is the probable source of the fat tails observed in human-initiated processes. The author
built a priority list model to account for this behaviour, and found that both the analytical solution
and the numerical simulations performed were in agreement with the empirical data, resulting in
a power law tail with exponent α = 1. He explains that the tail distribution is independent of the
distribution from which the agent chooses the priorities, and this is the reason why, despite the
diversity of human actions, most decision-driven processes develop a heavy tail.

The author proposes that the inter-event time distribution observed for e-mail communication is
rooted in the uneven waiting times experienced by different tasks. In order to test this hypothesis,
he determined the time a user would take to reply to each received message, and found that the
waiting time distribution was best approximated by a heavy-tail with exponent αw = 1, which
would explain the observed bursty e-mail activity patterns.

Barabási concludes that the observed fat-tailed activity distributions can be explained by the
hypothesis that humans execute their tasks based on some perceived priority and set up queues that
generate uneven waiting time distributions for different tasks. He argues that the fact that a wide
range of human activity patterns follow non-Poisson statistics suggests that the observed bursty
character reflects some fundamental feature of human dynamics. Finally, the author speculates
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that Internet traffic must be driven by two separate processes: a heavy-tailed size distribution of
the files sent by users, and the human decision-driven timing of various Internet activities that
individuals engage in.

In [30], Oliveira and Barabási extended the study found in [3]. They studied Darwin’s and
Einstein’s patterns of correspondence, shown in figure 3.4, and compared them with today’s e-mail
exchanges. For both scientists, they computed the response times, or the time interval between
the date a letter was received and the date that a reply was sent. They found that the probability
that a letter would be replied to in τ days was well approximated by a power law, P (τ) ≈ τ−α,
and thus followed the same scaling laws as current e-mail communication. The authors conclude
that the famous scientists’ late responses or resumed correspondences are a part of the universal
scaling law, representing a fundamental pattern of human dynamics.

Figure 3.4: Correspondence patterns of Darwin and Einstein. (a) shows the historical record of
letters sent (Darwin, red; Einstein, green) and received (Darwin, black; Einstein, blue) each year.
(b) and (c) show the distribution of response times to letters by Darwin and Einstein, respectively.
Source: [30]

Assuming that Darwin and Einstein prioritised correspondence in need of response, and that
therefore the rate of letters arriving was higher than the rate of letters being answered, the authors
obtained a value of α = 3/2, which is different from the α = 1 obtained for e-mail communica-
tions. The different scaling exponents describing the scientists’ letter responses and current e-mail
show that these two communication patterns belong to different universality classes. Oliveira and
Barabási argue that this fact provides evidence for a new class of phenomena in human dynamics.

In [14], Dezsö et al. present yet another study on the bursty nature of human dynamics. In this
work, they aim to understand the topology and dynamical features of rapidly changing networks
such as the most visited portions of the World Wide Web, which change within hours through the
rapid addition and removal of documents and links. They investigate the visitation patterns of a
major news portal and show that the timing of the browsing process is non-Poisson, a fact that
has a significant impact on the visitation history of web documents.

The authors used the log files of the news portal to collect the visitation pattern of each
visitor during the period of one day. They explain that web portal networks consist of a stable

18



skeleton, representing the main structure of the portal, and a large number of news items that are
documents only temporarily linked to the skeleton. While documents belonging to the skeleton
present an approximately constant daily visitation pattern, which causes the cumulative number
of accesses to increase linearly in time, the visitation of news documents is the highest right after
their release and decreases in time, which causes a saturation in their cumulative visitation after
several days. These distinct visitation patterns were used to distinguish, in an automated fashion,
the pages belonging to the skeleton from the news documents.

Dezsö et al. find that, in general, the number of visits n(t) to a news document follows a
dampened periodic pattern, with the majority of visits happening within the first day, decaying
to only 7% on the second day, then reaching a small but constant visitation beyond four days.
These measurements indicate that the visitation does not decay exponentially, but its asymptotic
behaviour is best approximated by a power law n(t) ∼ t−β, such that, while the bulk of visits
takes place at small t, a considerable number of visits are recorded well beyond the document’s
release time. This visitation pattern can be explained by the uneven browsing patterns of individual
users, shown in figure 3.5: for each user, numerous frequent downloads are followed by long periods
of inactivity. This bursting, non-Poisson pattern, characteristic of human behaviour, causes the
interval between consecutive requests by the same user to follow a power-law distribution.

Figure 3.5: (a) shows the distribution of time intervals between two consecutive visits of users,
with a slope of α = 1.2. (b) shows the half-time distribution for individual news items, following a
power law with exponent ≈ −1.5. Source: [14]

The authors then describe a model for the number of visits of a news document, n(t), based
on the browsing pattern of individual users. They found that the waiting time distribution is a
power law where the exponents follow a Gaussian distribution with average exponent α0 = 1.14,
which is very close to the value found for the power law of users’ visits, α = 1.2. Furthermore, they
obtained the following relation between exponent α, related to the decay in news visitation, and
β, related to the visitation pattern of individual users: β = α − 1. They conclude their study by
characterising the interest in news documents by their half-time, i.e., the time frame during which
half of all visitors that eventually access it have visited. They found that the overall half-time
distribution also follows a power law, which indicates that while most news items have a short
lifetime, a few continue to be accessed well beyond their initial release.

The authors conclude that the decay laws identified in the study are likely generic, as they
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do not depend on the content of pages, but are determined mainly by the users’ visitation and
browsing patterns. They conjecture that the same power law inter-event time behaviour is likely to
be observed in the visitation of individual users to commercial sites, and might be also applicable
to biological systems.

3.3 Identifying and Classifying Behaviour on Twitter

Identifying and classifying specific types of users on Twitter can be useful for a variety of reasons,
from focusing advertisement and political campaigns, to filtering spam and malicious accounts.
With a large occurrence of spamming and political campaigning on Twitter, recent research has
focused on methods for identifying certain types of behaviour that are characteristic of spammers
or propagandists.

In [26], Lumezanu et al. aim to understand how Twitter is used to spread propaganda. They
study the Twitter behaviour of propagandists, users who consistently express the same opinion
or ideology, and focus their work on hyperadvocates, who show a consistent lack of impartiality
in their messages. Four publishing patterns were used in the study of hyperadvocates: sending
high volumes of tweets in short periods of time, retweeting more than publishing original content,
quickly retweeting, and colluding with other users to post similar content at the same time.

The data used consisted of tweets from two discussion groups: the 2010 Nevada Senate race,
identified by the hashtag #nvsen, and the 2011 debt ceiling debate, identified by the hashtag
#debtceiling. Figure 3.6 shows the volume of tweets and retweets in both communities. In order
to classify users as either biased (hyperadvocates) or neutral, they clustered users with similar
ideologies, who retweeted exclusively each other’s messages. They began by randomly assigning
each user to one of two clusters, corresponding to one set of related opinions. The algorithm was
seeded with users whose political views were known, and then each user was reassigned to the
cluster in which they had the most associated users, where the association consists of retweeting
of each other’s messages. If at least a certain fraction of the connections of a user were to users in
the same cluster, then the user was considered a hyperadvocate; otherwise, they were considered
neutral.

In the #nvsen group, the authors identified two distinct tweeting behaviours among hyperad-
vocates: high daily volumes of tweets and a high daily fraction of retweets. The same behaviours
were not observed in the #debtceiling group. Behaviours assumed to be characteristic of hyper-
advocates were determined as follows: a high volume of tweets per day was identified when a user
published more tweets in one day than a predefined threshold θ, and the value of θ varied for each
day; for identifying high fraction of retweets, the authors defined a user’s repeater score as the
ratio of the number of retweets to the total number of tweets; quick retweeting was characterised
by short reaction time, defined as the difference between the time of a retweet and the time of the
original post; and collusion was quantified by the number of users in the same community that sent
duplicate or near-duplicate messages very close in time.

The authors conclude that the behaviours studied can help amplify the effect on hyperadvocacy
on Twitter and that their presence or absence depends on the community being analysed. Although
they make some interesting observations in the paper, Lumezanu et al. assume that the behaviours
studied are characteristic of propagandists rather than extracting this information from the data
structure. For this reason, we cannot conclude whether these behaviours are indeed the most
representative attributes of propagandists.

Many organisations currently make use of Twitter accounts to promote their products and
services. For them, a large number of followers is an advantage since it can be interpreted as
popularity or credibility. With this in mind, some companies purchase fake followers, which are
actually Twitter bots generated in large quantities by software programs.

In [10], Calzolari describes an algorithm to distinguish between Twitter accounts controlled by
humans and those controlled by robots. Based on criteria selected by the author, this algorithm
assigns “human behaviour” points and “bot behaviour” points to each user, then uses the points
to classify them. The author picked 39 Twitter accounts owned by companies among the accounts
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Figure 3.6: Number of tweets and retweets published each day in the #nvsen (top) and #debtceiling
(bottom) communities. Source: [26]

with largest number of followers. For each of these companies, 10,000 randomly selected followers
were analysed.

Some of the characteristics used by the algorithm to assign “human points” were: the profile
contained a biography, the user had at least 30 followers, the user had used an iPhone or Android
to log in to Twitter, at least one post by the user had been retweeted by others, among others.
The characteristic associated with “bot behaviour” was that the user used only APIs. For each
“human” characteristic that a user did not possess, a “bot point” was assigned, and conversely
for “bot” characteristics. Users with “uncertain” behaviour, i.e. whose behaviour did not feature
enough characteristics to identify them as either human or bot, and users with protected Twitter
accounts, were not taken into account.

Calzolari found a large number of users with “bot behaviour” following certain companies,
despite the fact that the algorithm used very conservative parameters when assigning “human” and
“bot” points. The author argues that the remarkably different numbers of potential bots among the
followers of different companies confirm that the algorithm works well. However, since the criteria
that differentiates between “human” and “bot” behaviour were determined a priori by the author,
there is no guarantee that they are actually representative of each behaviour. Furthermore, other
than the fact that different companies obtained different results, nothing else confirms or validates
the results generated by the algorithm.

In [2], Balasubramaniyan et al. develop a system to distinguish between legitimate users and
malicious entities on Twitter, using both the behaviour and the true social network structure of each
user. They begin by determining the users’ true social networks (TSN) based on ‘@’ mentions and
retweets, then apply a PageRank-like algorithm to these networks in order to measure reputation
values. They use the reputation values and behavioural traits to identify malicious entities, who
are characterised by disseminating poor quality information (and therefore obtain low PageRank
values) in an aggressive manner.

The authors collected data from users in different categories, such as science, sports, entertain-
ment, etc., by using specific keywords and seed users who were related to each category. They
also manually picked 10 users who engaged in malicious activities and added them to the dataset.
The TSN’s were constructed as follows: for each user, their friends were sorted based on who they
mentioned the most and the 30 most mentioned friends were picked. For each of these friends, the
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20 most mentioned friends were picked, and so on, until they had a 3-hop true social network for
each user. For all users in the dataset and all users in their TSN’s, the authors collected details
including name, screen name, friend and follower lists, and the last 200 tweets. In order to identify
malicious accounts, they continuously ran a script to check if Twitter had suspended any accounts
in their dataset, and found that 222 accounts were eventually suspended. These accounts were then
used to test the effectiveness of their classification approach.

To demonstrate the difficulties in detecting malicious accounts, they began by testing two
simple mechanisms. The first one is measuring the tweet frequency of users (number of tweets per
day), seeing as malicious entities would potentially tweet more aggressively than legitimate ones.
However, they found no threshold to distinguish between the sets of all users and the set of malicious
users, since there were some legitimate users at each tweet frequency. The second approach to
identify malicious entities was checking if a large fraction of people that they mentioned did not
interact among themselves. This was evaluated using the clustering coefficient (CC) of each user.
Although legitimate users had much higher CC than malicious entities, they found that CC values
were well spread across all values, meaning that malicious entities can appear as well connected as
legitimate users.

The PageRank algorithm was implemented on top of the TSN, with the aim of ranking users
based on their ability to either engage other users or provide meaningful information. They used
a weighted PageRank model where the link from user A to user B was weighted based on the
number of times A had either mentioned or retweeted B. Therefore users who were mentioned or
retweeted by well ranked users, would become well ranked themselves. Since malicious entities try
to get noticed, they produce large quantities of information and yet do not obtain high PageRank
(PRTSN ) values, thus a combination of PRTSN with behavioural characteristics would be a good
indication of whether a user is malicious.

The authors characterised bad or aggressive behaviour as a combination of tweeting frequently,
providing links to products and mentioning random users. Users with low PRTSN would not be
considered bad as long as their behaviour was good, and users with poor behaviour traits would
not be considered bad as long as they had high PRTSN . Four user categories were then defined:
users with high PRTSN and good behaviour were celebrities who had a significant number of
users interacting with them; entities such as TweetMeme, who tweeted links many times a day,
could afford to behave aggressively since they were also popular across a wide user base, having a
high PRTSN ; legitimate users had moderate to low PRTSN and good behaviour; lastly, malicious
accounts were characterised by low PRTSN and bad behaviour. In addition to these criteria,
the authors flagged down users who had a high number of outside mentions as malicious entities.
Finally, they observed that some malicious entities were harder to identify, since they had amassed a
large social network and were not aggressive in posting links or tweeting frequently. However, these
entities had many aggressively malicious accounts among their initial friends, and could therefore
be identified based on this criterion.

The combined algorithm was implemented as follows. They began by computing the PRTSN ,
which was the principle eigenvector of the social network transition matrix. Moreover, they cal-
culated the link ratio LR (number of links over number of tweets) and the tweet frequency TF
(number of tweets over time between last and first tweet) for each user. The combined rank for
user i was given by:

CRi =
PRTSNi

LRi × TFi
(3.3.1)

where the denominator LRi × TFi represents the number of tweets per day that have links,
indicating how aggressively the user is trying to disseminate their information. Users with CR
below a certain threshold were trying to propagate information aggressively but their information
was deemed worthless by most users; they were therefore classified as malicious users. In order
to catch more sophisticated malicious entities, the authors calculated a corrected combined rank,
CR′, using the number of initial friends who were identified as malicious based on CR. Lastly,
they considered users who mentioned a large number of users outside their social network. Figure

22



3.7 shows a plot of user behaviour against PRTSN for all accounts and shows the ones that were
identified as spammers.

Figure 3.7: Plot showing user behaviour against PRTSN . Different markers show the suspended
accounts caught by different mechanisms: combined rank (CR), temporal pulldown (PD) and
mentions (@). Source: [2]

The authors set the classification threshold such that 10% of users in the dataset were classified
as potentially malicious. They found that all 10 seed malicious accounts were in the bottom
10%, along with 181 of the 222 accounts that were suspended by Twitter. They evaluated the
effectiveness of their system by comparing it to two commercially available systems for grading
Twitter users. While their algorithm classified all 10 seed malicious accounts correctly, the majority
of these accounts were given high grades by both commercial systems, which confirms the validity
of their system. Their algorithm has the advantages of using a measure of influence, given by the
PageRank algorithm, in order to evaluate the legitimacy of users, and not requiring parsing the
tweets’ contents.

Another example of Twitter account classification can be found in [12]. Chu et al. observe
the differences between Twitter accounts controlled by humans, bots, and cyborgs, which refer to
either bot-assisted humans or human-assisted bots and interweave characteristics of both humans
and bots. The authors study tweeting behaviour, tweet content and account properties in order
to characterise the automation feature of Twitter accounts, then use this information to build a
classifier for the three account categories, with the aim of assisting Twitter in managing the online
community and helping humans recognise who they are tweeting with.

The authors collected data from over 500,000 Twitter users, then created a training dataset
and a test dataset containing known samples of humans, bots and cyborgs. This was achieved by
randomly choosing different samples and manually checking their logs and homepages in order to
classify them. Some of the criteria used for this classification were tweet contents, user profile,
number of friends and followers and the content of web pages pointed by posted URLs. Users were
labeled as humans if there was evidence of original and intelligent content, and as bots if there
was excessive automation in tweeting, abundant presence of spam or malicious URLs, aggressive
following behaviour and lack of original or intelligent content. Users were labeled as cyborgs if
there was evidence of both human and bot participation.
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After analysing the collected data, the authors concluded that the cyborg category was charac-
terised by a high tweet count, which can be attributed to the combination of both automatic and
human behaviours. They also found that humans are more active during the regular workdays and
less active during the weekend, while bots have roughly the same activity level every day of the
week and cyborgs are most active on Mondays, then slowly decrease their activity during the week.
Figure 3.8 shows the proportion of tweets posted by each class, per day of the week and per hour
of the day. They further noticed that humans tend to tweet manually, bots are more likely to use
auto piloted tools, and cyborgs display both behaviours. Finally, they observed that bots had the
highest external URL ratios (the number of external URLs included in tweets over the number of
tweets posted by an account), while the human URL ratio was the lowest.

Figure 3.8: Proportion of tweets posted by each class, per week day and per hour. Source: [12]

The automated classification system developed by the authors consists of four components: an
entropy component, which uses tweeting interval as a measure of behaviour complexity and detects
the periodic and regular timing that is an indicator of automation; a machine-learning component,
which uses tweet content to check whether text patterns contain spam or not; an account properties
component, which employs account properties to detect potential bot or human characteristics; and
a decision maker, based on Linear Discriminant Analysis (LDA), which uses a linear combination
of the features generated by the first three components in order to classify the Twitter accounts.

The entropy component of the classifier detected periodic or regular timing of the messages
posted by a Twitter user. A low entropy for inter-tweet delays indicates periodic behaviour, which
is a sign of automation, whereas a high entropy indicates irregularity, which is a sign of human
participation. The machine-learning component used the content of tweets to detect spam, which
is usually a sign of automation. The authors used an implementation of a Bayesian classifier,
CRM114, which decided that a message belonged to class spam if the probability of the class given
the message, P (C = spam|M), was over a certain threshold. Messages were represented as feature
vectors, where each feature is one or more words and is assumed to be conditionally independent.
The account properties component evaluated important properties of Twitter profiles, based on the
data analysis previously performed: URL ratio, tweeting device makeup and followers to friends
ratio. Finally, the decision maker used the features identified by the other three components to
determine whether a user was a human, a bot, or a cyborg. A multiclass discriminant model was
used to identify the most relevant features of the three classes. For each class, a classification
function was created, and then the training dataset was used to decide feature weights in each
function. Each sample was classified into the class with the highest classification score.

Chu et al. conclude that their classification system was able to accurately differentiate humans
from bots: over 94% of humans and over 93% of bots were classified correctly. Distinguishing
humans and bots from cyborgs, however, was more challenging and caused the system to generate
slightly worse results, with only 82.8% of cyborgs being classified correctly. The authors also state
that the classification system developed is resistant to possible evasion attempts made by bots,
since the URL ratio and tweeting device makeup features are very hard for bots to evade. Despite
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attaining a high correctness rate, the system has the limitation of heavily relying on processing the
contents of tweets in order to identify them as spam, which can be an expensive process.

3.4 Measuring Influence

As a social network, Twitter allows for plenty of interaction among its users, and this setting gen-
erates relationships of influence between users who interact. Direct links between users determine
the flow of information in the social network; on Twitter, whenever a user posts a tweet or retweet,
the contents of these posts can be seen by the user’s followers, therefore influencing them somehow.

IIn [11], Cha et al. study and compare three measures of influence on Twitter, namely in-degree,
retweets and mentions, and examine how the three types of influential users perform in spreading
popular news topics. Moreover, they investigate how a user’s influence changes by topic and over
time, and pinpoint behaviours that can make users gain influence over short periods of time.

Among the different types of influence, a user’s in-degree, or their number of followers, is the
most straight-forward. Regarding the other two types, while retweets are focused on the content
of the original post, mentions are focused on the user being replied to. In order to compare user
influence, the authors used one rank set for each type of influence, then used the relative order of
the ranks as a measure of difference. To quantify how a user’s rank varied across different types
of influence, they used Spearman’s rank correlation coefficient as a measure of the strength of the
association between two rank sets.

After ranking the users, the authors found that there was little overlap between influence
measures, as shown in figure 3.9. This indicates that each measure indeed captures a different type
of influence. The top users in the rank showed strong correlation between their retweet influence
and their mention influence, but in-degree was not related to the other measures. The authors thus
argue that the most connected users are not necessarily the most influential when engaging their
audience in conversations or having their messages spread.

Figure 3.9: Venn diagram of the top 100 influential users across different measures. Numbers are
normalised so that the whole diagram sums up to 100. Source: [11]

To investigate whether a user’s influence varies by topic, the authors picked three popular topics
and identified a set of keywords related to each topic, then searched for messages including those
keywords. The measure of influence for a given topic was then computed as the count of retweets
and mentions on that topic. It was found that the most influential users ranked consistently high
amongst different topics. In oder to track the popularity of the most influential users over time,
they counted the number of retweets and mentions of these users every 15 days over a period
of 8 months, then computed the probability that a random tweet posted during a 15 day period
would be a retweet or mention of each user. They found that organisation accounts were the most
retweeted, while evangelists increased their influence by engaging users in conversation and getting
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mentions. Finally, the authors computed the same probability for ordinary users with the aim of
understanding what behaviours could make these users influential, and found that users who limit
their tweets to a single topic had the largest increase in their influence scores.

The authors conclude that, although a user’s in-degree represents their popularity, it is not
related other notions of influence, such as engaging audience. Furthermore, users must keep great
personal involvement in order to gain and maintain influence. The paper provides an interesting
comparison of the different ways in which a user can influence the Twitter community around them.

We now look into some theoretical work about influence in a social community. In [32], Pan et
al. describe a simple influence model, which is used to explain the influence amongst interacting
agents in a social system. The term influence here means that the state of an agent A at time t
is somewhat determined by the state of all agents in the system at time t − 1. The authors also
define a generalisation of the influence model, the dynamical influence model, which differs from
the simple model in that its influence matrix changes over time. The paper also provides a few
examples of applications of the influence model.

The simple influence model was defined as follows: in a system with C agents, or entities, each
entity c is associated with a certain state hct at time t. This state can be any of the elements in the
finite set {1, ..., S}. This set can be the same for every entity or each entity can have its own finite
set of states. The state of an entity is not observable, but it is possible to observe the signal Oct
emitted by entity c at time t, which has a probability conditioned on the entity’s state, p(Oct |hct).
This probability function can be defined as a multinomial, for the discrete case, or as a gaussian,
for the continuous case.

The influence between entities is the conditional dependence between an entity’s state at time
t and all other entities’ states at time t− 1:

p(hc
′
t |h1t−1, ..., hCt−1) (3.4.1)

This probability was defined as follows:

p(hc
′
t |h1t−1, ..., hCt−1) =

∑
c∈{1,...,C}

Rc′,c × p(hc
′
t |hct−1) (3.4.2)

where Rc′,c is the tie strength between c′ and c (how much entity c influences entity c′)and
p(hc

′
t |hct−1) is the conditional probability between c′ and c. Rc′,c is an element of matrix R, which

is a C × C row stochastic matrix called the influence matrix. The conditional probability can be
modelled by C2 transition matrices of size S×S, i.e., for each entity c, there would be C transition
matrices M c,c′ of size S × S defining the transitions between all possible states. However, a more
economic way of modelling the conditional probability is to define two S × S matrices Ec and F c

for each entity c: while Ec = M c,c defines the transitions for entity c on itself, F c = M c,c′ defines
the influence of c over any other entity c′ (assuming that the influence of an entity is the same over
all other entities, except itself).

In conclusion, the influence model described is a generative model with parameters R, E1:C ,
F 1:C and emission probabilities p(Oct |hct). These parameters can be learned by machine learning
algorithms from the observations O1

1:T , ..., O
C
1:T . The number of parameters grows quadratically

with the number of entities C and with the number of states S, which makes the model more
scalable and also reduces the risk of overfitting.

The authors also define the dynamical influence model, which is a generalisation of the influence
model wherein the influence matrix R changes over time. This modification makes sense for social
systems such as group discussion sessions and negotiations, where the influence between subjects
will fluctuate. They define a finite set of different influence matrices, {R(1), ..., R(J)}, each repre-
senting an influence dynamical pattern between the entities. J is a hyper parameter that defines
how many different influence matrices exist. The parameter rt ∈ {1, ..., J} specifies which influence
matrix is active at time t. The conditional probability for entity c′’s state is now defined as:

p(hc
′
t |h1t−1, ..., hCt−1) =

∑
c∈{1,...,C}

R(rt)c′,c × p(hc
′
t |hct−1) (3.4.3)
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To make sure that the influence matrix will change gradually, they define a prior for rt:

p(rt+1|rt) ∼ multi(Vrt,1, ..., Vrt,J) (3.4.4)

where V is a parameter matrix constrained by hyper parameter pV > 0. The prior for V is
defined as:

(Vrt,1, ..., Vrt,J) ∼ Dirichlet(100, 100, ..., 10p
V
, ..., 100) (3.4.5)

These priors are such that if pV is very large, rt−1 and rt will be there same, and if pV is very
small, rt−1 will randomly switch to any value in {1, ..., J} with equal probability. The authors do
not justify the choice for a finite set of influence matrices. This raises the question of what results
would be obtained if a continuously changing influence matrix was used instead.

The likelihood function for the model is defined as:

L(O1:C
1:T , h

1:C
1:T , r1:T |E1:C , F 1:C , R(1 : J), V ) (3.4.6)

=
T∏
t=2

{p(rt|rt−1)×
C∏
c=1

[p(Oct |hct)× p(hct |h
(1,...,C)
t−1 , rt)]} ×

C∏
c=1

p(Oc1|hc1)p(hc1)p(r1) (3.4.7)

As in the simple influence model, the system parameters and latent variables for the dynam-
ical influence model can be learned from observations through an inference process. The authors
describe in the paper the steps for a variational E-M algorithm that can achieve this. The paper
is then concluded with the presentation of various applications of the models described: a toy
example with two binary time series, where the influence model is used to find structural changes
in network dynamics, modelling of inter-personal influence and interaction on turn taking during
group discussions in different settings, and a study of the flu spreading dynamics.

The simple influence model presented by Pan et al. is a direct application of the Hidden Markov
Model (HMM), where the actual states are not visible but it is possible to observe outputs that are
dependent on the states. The influence model is a special case because it involves multiple entities,
with each having its own set of possible states, and thus the addition of an influence matrix to
weigh the multiple transition probabilities. In the particular case of the dynamical influence model,
there is also the modification that the influence matrix changes at each time step.

3.5 Sentiment Analysis with Twitter Data

The purpose of sentiment analysis is to determine implicit mood or opinion contained in text
according to the words and expressions used. Twitter data is ideal for sentiment analysis since it
comprises messages posted by millions of different users every day and is fairly simple to obtain.

Social, political and economical events have a significant and immediate effect on public mood,
and tweets often contain information about the mood of their authors, which means that a large
collection of tweets published over a given time period can be used as a measure of public mood and
indicate changes in its state. The work found in [7], published when Twitter was still in its early
stages, is one of the first to perform sentiment analysis of Twitter messages. Bollen et al. explore
how public mood patterns obtained from Twitter data relate to fluctuations in social and economic
indicators. They performed sentiment analysis on tweets to measure the public mood’s state using
a six-dimensional psychometric instrument, then studied how this state relates to macroscopic
socio-economic events such as drops in the stock market, rises in the oil prices and the outcome of
a political election.

The authors manually selected events including major fluctuations in gas prices and stock
market indices, international and US-based political events and natural disasters. Sentiment anal-
ysis of the Twitter data was performed using an extended version of the Profile Of Mood States
psychometric instrument, POMS-ex, which measures six dimensions of mood: “tension”, “depres-
sion”, “anger”, “vigour”, “fatigue” and “confusion”. The messages selected for the analysis were
tweets that explicitly expressed individual sentiment, matching regular expressions such as “feel”
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and “I’m”. The POMS-scoring function mapped each tweet to a six-dimensional mood vector by
matching the terms extracted from the tweet to the set of POMS mood adjectives for each di-
mension. The aggregate mood vector for the set of tweets submitted on a particular day was the
average of the mood vectors of all the tweets from that day, which was used to generate a time
series of aggregated, daily mood vectors over a period of time.

The authors carried out two case studies. In the first one, they analysed public mood during
the 2008 US presidential elections and found, among other things, that all mood levels dropped to
nominal levels on the day of the outcome of the election, except for a significant spike in “vigour”
and a large drop in “fatigue”, indicating positive sentiments about the election results. The second
case study is regarding to the celebration of Thanksgiving, for which they found that all mood
dimensions remained nearly at baseline levels except for “vigour”, which spiked significantly on
Thanksgiving day, indicating a happy and active public mood. These findings are shown in figure
3.10

(a) US presidential elections

(b) Thanksgiving

Figure 3.10: Sparklines for public mood before, during and after the US presidential elections and
Thanksgiving in 2008.

The paper also includes an analysis of the ability of large-scale economic indicators such as the
Dow Jones Industrial Average (DJIA) and the West Texas Intermediate oil price (WTI) to influ-
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ence public mood. During the time period used for data extraction, public sentiment fluctuated
significantly due to many important events such as the presidential elections and the economical
crisis. In order to assess the effect of changes in the DJIA and WTI on public mood levels, they
defined four time periods in which DJIA underwent significant changes in value and examined the
extent of mood changes across those four periods, interpreting results visually. To check for statis-
tical relevance, they performed a Mann-Withney U-test over all possible combinations of the time
series observed within the four time periods and found that all mood curves underwent statistically
significant changes from one DJIA period to the next. An equivalent study was developed for WTI
prices, for which they also found statistically significant changes in mood levels across the four
WTI periods.

The paper is concluded with an analysis of the results found in the studies performed: while
long-term fluctuations in indicators such as the DJIA and WTI seem to have a delayed, cumulative
effect on public mood, short-term events such as the news cycle, national holidays and elections
have a significant and immediate effect on public mood, generating the high variability observed in
the mood time series extracted from the tweets.

In [6], Bollen et al. present another application of sentiment analysis of Twitter messages:
studying and predicting social and economical measures. The authors claim that, assuming that
emotions play a significant role in human decision-making and that financial decisions are signif-
icantly driven by emotion and mood, it is reasonable to use public mood and sentiment to study
and predict stock market values. They therefore investigate whether measurements of collective
mood states obtained from Twitter are correlated to the value of the Dow Jones Industrial Average
(DJIA) over time, and whether the same public mood states can be used to predict changes in the
DJIA closing values.

In order to measure variations in the public mood, the authors used tweets that contained
explicit statements of their author’s mood states. The Twitter data obtained was then analysed by
two different tools: OpinionFinder (OF), which analyses the text contents of tweets and provides
a positive vs. negative daily time series of public mood, and the Google Profile of Mood States
(GPOMS), which similarly analyses tweets to generate a six-dimensional daily time series of public
mood. A total of 7 public mood time series were obtained, one generated by OF and six generated
by GPOMS, which were correlated to a time series of daily DJIA closing-values in order to assess
their ability to predict changes in the DJIA over time. The authors performed a Granger causality
analysis in which the DJIA values were correlated to GPOMS and OF values of the previous n days.
Furthermore, a Self-Organising Fuzzy Neural Network (SOFNN) was used to test the hypothesis
that the prediction accuracy of DJIA prediction models can be improved by including measurements
of public mood.

To enable comparison, the OF and GPOMS time series were normalised such that they would
fluctuate around a zero mean and be expressed on a scale of 1 standard deviation. In order to
validate their ability to capture aspects of public mood, both tools were applied to tweets posted
during a period that included the US presidential election in early November and Thanksgiving in
late November. Both tools successfully identified the public’s emotional response to these events.

The Granger causality technique was applied to both the time series produced by GPOMS and
by OF vs. the DJIA time series in order to test whether one times series had predictive information
about the other one or not. The authors compared the variance explained by two linear models,
one using only lagged values of the DJIA series for prediction, and the other using the DJIA values
but also the GPOMS and OF mood time series. They found, for instance, that when the “calm”
time series and the DJIA were plotted together, they frequently overlapped or pointed in the same
direction, suggesting that the “calm” mood dimension has predictive value with regards to the
DJIA. Both time series are shown in figure 3.11.

The authors also compared the performance of a SOFNN model that predicts DJIA values based
on two different inputs, one using only past DJIA values, and the other using DJIA values combined
with various permutations of the mood time series. The forecasting accuracy was measured in terms
of the average Mean Absolute Percentage Error (MAPE) and the direction accuracy (up or down).
It was found that adding the data from OF to the input had no effect on prediction accuracy, and
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Figure 3.11: Overlap (top) and individual plots for the DJIA (middle) and GPOMS “calm” dimen-
sion (bottom) time series. Source: [6]

that adding data from the “calm” series resulted in the highest prediction accuracy. Finally, the
authors assessed the statistical significance of their results by calculating the odds that they would
occur by chance, and thus confirmed that the SOFNN direction accuracy was most likely not the
result of chance or of selecting a particularly favourable test period.

Survey and polling methods aim to measure public opinion by asking questions to a random
sample of people. In [29], O’Connor et al. use Twitter data to try to infer population attitudes
in a similar fashion to how public opinion pollsters query a population. This method is faster and
cheaper than traditional polls and allows for consideration of a greater variety of polling questions.
The authors compare the sentiment measured from Twitter messages text analysis to measures of
public opinion obtained from traditional polls.

The public opinion polls used in the paper measure consumer confidence, which refers to how
optimistic the public feels about the economy and their personal finances, and political opinion,
regarding both the presidential elections in the United States in 2008 and the presidential job
approval rating for president Barack Obama over the year 2009. In order to assess the population’s
aggregate opinion based on Twitter data, two tasks were performed: message retrieval, which
consisted of identifying the messages that were related to a specific topic, and opinion estimation,
which involved determining whether the messages expressed positive or negative opinions about
the topic.

The correlation between Twitter data and the polls results used was a goodness-of-fit metric
for fitting slope and bias parameters in a linear least-squares model. In this model, a poll outcome
was compared to the k-day text sentiment window that ended on the same day as the poll. In
order to check whether changes in consumer confidence appeared in text sentiment measure before
they appeared in polls, the authors introduced a lag hyperparameter L to the model, so that a poll
outcome was compared against the text window ending L days before the poll outcome. With this
modification, it was found that correlation is higher for text leading the poll and not the other way
around, which suggests that text obtained from Twitter is a leading indicator.

For a forecasting analysis, the authors tested how well the text-based model could predict future
values of the poll. The results obtained are shown in figure 3.12. It was found that text sentiment
is a poor predictor of consumer confidence for data obtained in 2008 and early 2009, but a good
predictor for data obtained from mid-2009, which suggests that different phenomena are being
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captured by the text sentiment measure at different times.

Figure 3.12: Rolling text-based forecasts (top) and text sentiment coefficients (bottom) for the text
forecasting models over time. Source: [29]

The relatively simple sentiment detector based on Twitter data used by O’Connor et al. was able
to replicate both the consumer confidence and the presidential job approval polls, which makes it a
good supplement for the expensive and time-consuming traditional polling methods. The authors
emphasise the advantages of using Twitter data, which can be gathered in a fast, inexpensive
manner, and allows for studying measures regarding any topic that is mentioned in the posts.

3.6 Other Applications of Social Network Data

Social network data has been vastly used for research in recent years, and Twitter data has been
particularly useful in studies concerning collective behaviour and opinion. The work developed
in [34] is a good example of how Twitter data can be used to understand and make predictions
about the behaviour of a population. In this particular study, Paul and Dredze use the data to
investigate public health matters. They apply a probabilistic topic model called the Ailment Topic
Aspect Model (ATAM) to the data and extend this model through the use of priors in several
different applications: geographic syndromic surveillance, correlating behavioural risk factors with
ailments, and correlating symptoms and treatments with ailments.

The authors used the ATAM model to translate tweets into structured disease information that
can be used for public health metrics. For this work, ATAM was extended with the use of prior
knowledge from WebMD.com articles, and the extended model was named ATAM+. The data
used consists of over 2 billion tweets collected between May 2009 and October 2010. The ailments
obtained from the models qualitatively matched their WebMD priors, but the discovered ailment
clusters were often more general: for instance, the “breast cancer” prior resulted in a general
“cancer” cluster.

In order to evaluate the outputs obtained from the models, the authors compared the ailment
distributions obtained through ATAM+ with distributions estimated from the WebMD articles
used to generate the priors. Each article was paired with its corresponding ailment in the model
output, and then the Jenson-Shannon divergence was computed between the distributions for each
ailment and the distributions for each WebMD disease. The divergence was used to compute a score
that defined a ranking of articles for ailments and a ranking of ailments for articles; associations
between an ailment and an article were considered correct when the correct answer had rank 1.

31



The results obtained showed that ATAM+ outperformed ATAM, which indicates that the priors
produced more coherent ailments.

The article presents different applications of the ATAM+ model created, such as analysing
temporal and geographic impacts on medical wellbeing, and investigating how the public treats
illness. In one application, the authors used tweets with allergy-related keywords to compute the
rate of the allergy ailment by american state from February to June 2010. Results obtained are
shown in figure 3.13.

Figure 3.13: Rates of allergies by state discovered by ATAM+ during a period of four months in
2010. Darker shading indicates higher allergy rates, while diagonal shaded states lacked sufficient
data. Source: [34]

The authors conclude the article by discussing some limitations of the use of Twitter for ob-
taining information on public health. While a variety of public health data can be automatically
extracted from Twitter, resulting in different measures regarding the population in general, statis-
tics that require a single user to post multiple tweets could not be obtained, since the vast majority
of users only had a single tweet in the data used. The authors argue that this suggests that Twitter
data is a better fit for population level metrics rather than understanding the individual behaviour
of users. Paul and Dredze’s paper is one example of many studies that use Twitter data to represent
collective behaviour and opinion. The majority of these studies, however, does not attempt to use
Twitter data for understanding individual behaviour, which is the main goal of our project.

While most previous work with social network data focuses on collective behaviour, there is a
smaller segment that has explored the possibility of extracting individual level metrics from this
data. A very recent study of individual behaviour using social network data can be found in [1].
Bachrach et al. use data extracted from Facebook to understand the correlations between features
of a person’s online profile and their real personality. Some of the features studied were the size and
density of a person’s friendship network, the number of uploaded photos and the number of events
attended, among many others. The authors also performed multivariate regression to predict an
individual’s personality traits based on their Facebook profile. Users’ personalities were evaluated
through the standard Five Factor Model personality questionnaire, which is currently the most
widespread and generally accepted model of personality.

In order to study the relation between a given Facebook feature and each personality trait,
the authors clustered together users with similar features: users were partitioned into equal-sized,
disjoint groups with increasing feature values, then the average values of personality trait scores
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for each group were examined. The personality traits present in the Five Factor Model are the
following: openness to experience, conscientiousness, extraversion, agreeableness and neuroticism.
Openness was found to be positively correlated with number of users’ likes, group associations
and status updates; conscientiousness was negatively related to the number of likes and group
membership, but positively related to number of uploaded photos; extraversion was correlated to
the number of Facebook friends and more interaction with other users through groups; agreeableness
was correlated with appearing in more pictures with other users and negatively correlated with the
number of likes; finally, neuroticism was found to be positively correlated with number of likes and
number of groups.

The authors tested the statistical significance of their findings by using a t-distribution test, to
test against the null hypothesis of no correlation, and a Mann-Whitney-Wilcoxon test, to deter-
mine whether the top and bottom thirds of the Facebook users differed significantly in terms of
personality trait scores. In order to predict a user’s personality based on multiple profile features,
they used a multivariate linear regression model, and evaluated the model using the coefficient of
determination, R2. They found that some personality traits can be predicted with reasonable ac-
curacy using high-level Facebook features, and that the use of more sophisticated machine learning
methods, such as tree based rule-sets and support vector machines, did not considerably increase
the value of R2. Bachrach et al. present in their paper an interesting use of social network data for
Reality Mining and the study of individual behaviour. Nonetheless, one drawback of their study is
that the data was not easy to obtain, since the questionnaires used in the Five Factor Model had
to be requested from each of the users studied.

In this chapter, we have reviewed several research papers pertaining to Reality Mining, Com-
putational Social Science and the use of Twitter data for a variety of applications. In the next
few chapters, we will show how our project builds on some of these papers with a study of human
behaviour through data retrieved from Twitter.
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Chapter 4

The Creepy Crawly Software
Application

The first task to be executed in our project was the collection of data from Twitter. This was
achieved through the development of a Twitter crawler, a small computer program that browses
Twitter and gathers its contents in a methodical, automated manner. We have affectionately named
our Twitter crawler Creepy Crawly, due to its controlled and careful crawling process throughout the
social network graph. Access to Twitter was possible due to the Twitter Application Programming
Interface (API), a specification that allows communication between the crawler and Twitter itself.
In this chapter, we give a brief description of the structure of Twitter, an explanation of the Twitter
API, implementation details of the application developed for data collection and, lastly, we describe
the data retrieval process and the database created for storing this data. Figure 4.1 shows a simple
diagram of the complete system implemented.

Figure 4.1: System overview diagram.

There is currently a large number of companies that sells data from social networks like Twitter.
Furthermore, there are many different crawlers freely available online that allow for data collection.
Nonetheless, we had several reasons to develop our own Twitter crawler and collect our own data:

• Data provided commercially by companies is usually expensive, and we wanted to take ad-
vantage of the fact that all data on Twitter is available for free;
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• In order to collect data from specific account types, we had to be able to exactly specify the
accounts to be tracked;

• The Twitter API has a restrictive request limit, which only allows clients to make 150 requests
per hour;

• In the past, Twitter would “white list” some accounts in order to facilitate data collection by
increasing the API request limit. However, this is no longer an option;

• Using multiple IP addresses to bypass the API’s request limit and retrieve data is against
Twitter’s usage policy 1.

Building our own Twitter crawler allowed us to bypass Twitter’s bandwidth restrictions by
simply creating multiple accounts that individually respected the request limit. Moreover, we were
able to choose the Twitter accounts we wanted to collect data from, which was a crucial factor for
studying the behaviour of different types of account.

4.1 The Structure of Twitter

The primary structure of Twitter can be described as follows: each user can post text updates
of up to 140 characters, called tweets, on their profile page. The collection of tweets posted by
a user constitutes their timeline, with the most recent tweet appearing first on the profile page.
Relationships between Twitter users are created by the process of following. When a user A follows
another user B, A becomes B’s follower and B becomes A’s friend. B in turn can follow A to make
the relationship mutual [2]. When user A chooses to follow user B, A will be able to see B’s tweets
on their homepage. The profile of a user on Twitter has therefore three main attributes: a set of
tweets (their timeline), a set of followers, and a set of friends (users that they chose to follow).

User profile: The user profile on Twitter consists of the following main attributes: name,
screen name (which is unique on the network), location, short biography, website and picture.
Other attributes, such as the unique user id and time zone, can only be accessed through the
Twitter API. Users can edit their profile information whenever they want.

Following other users: To start following another user, the user must go to the other’s profile
page and click on ‘Follow’. On their home page, the user gets a feed of tweets from all the users
they choose to follow, also called their friends.

Tweeting: From their home page, the user can compose a new tweet, which will be broadcast
to all their followers. A tweet has a timestamp that describes the exact moment it was posted,
and can include url’s and media (photos, videos, etc.). The stream of the user’s tweets, called their
timeline, appears on their profile page, with the most recent tweet first.

Retweeting: A retweet (RT) is a reposting of someone else’s tweet, constituting a way of
spreading or popularising someone else’s tweet. Any tweet that the user retweets will be broadcast
to their followers, even if the followers do not follow the user who originally created the tweet. The
retweet will also appear on the user’s timeline in their profile page. To retweet someone else’s post,
the user must hover the mouse over it and click ‘Retweet’.

Mentions: A user can mention another user in one of their tweets by using the symbol ‘@’
followed by their user name, anywhere in the tweet. The mentioned user will receive a notification
that they were mentioned.

Replies: To reply to a tweet, the user must hover the mouse over it and click ‘Reply’. The
screen name of the user being replying to will be automatically added to the beginning of the tweet.
The replied user will receive a notification that they were replied to. This feature allows users to
publicly exchange messages on Twitter.

Favorites: The user can save tweets that they particularly like in their favourites list by
hovering the mouse over the tweets and clicking on ‘Favorite’. The list of favourite tweets can be
seen on the user’s profile page.

1support.twitter.com/articles/18311-the-twitter-rules
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Hashtags: A hashtag ‘#’ is used to mark keywords or topics in a tweet. Using the hashtag
symbol before a relevant keyword or phrase (with no spaces) in a tweet is useful because it cate-
gorises the tweet and will make it appear more easily in Twitter search. A hashtag can be added
anywhere in the tweet.

Direct messages: Users can also exchange messages on Twitter privately using direct mes-
sages, which are similar to mentions but are private between the interacting users.

Trends: On their home page, the user can see a list of the topics and hashtags that are currently
trending on Twitter.

4.2 The Twitter API

The Twitter API 2 consists of a large collection of resources that enable developers to access Twitter
through their programs, without the use of a web browser. As described in its documentation, the
API provides methods that can perform nearly every feature present in the Twitter website. In
this project, we used only one component of this API, called the REST API, which has methods
for dealing with timelines (collections of tweets ordered by timestamp), tweets, users, friends and
followers, among other features.

The three main objects handled by the Twitter API are users, tweets and entities. The most
important attributes of each of these objects are described in table 4.1.

(a) User object

Attributes:

created at
description

favourites count
followers count
friends count

id
language
location

name
screen name

status
statuses count

time zone
url

utc offset

(b) Tweet object

Attributes:

created at
entities

favorited
id

in reply to screen name
in reply to status id
in reply to user id

retweet count
text
user

(c) Entities object

Attributes:

hashtags
media
urls

user metions

Table 4.1: Twitter API objects.

The following API methods were used in the development of the Creepy Crawly application:

• UsersLookup: returns the profiles of users (list of User objects) given their id’s;

• GetUser: returns the profile of a user (User object) given their screen name;

• GetFollowerIds: returns the id’s of followers of a specific user, given their id;

• GetFriendIds: returns the id’s of friends of a specific user, given their id;

• GetUserTimeline: returns the timeline (list of Tweet objects) for a specific user, given their
id;

2dev.twitter.com/docs
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• GetRetweets: returns the retweets of a status (list of Tweet objects), given the status id;

• GetFavorites: returns the user’s favourite tweets (list of Tweet objects), given the user id.

The Twitter API also provides methods for dealing with the request limit it imposes, which are
explained in more detail later in this chapter. In order to gain access to the API, one must first
create a Twitter account, then request a consumer key, a consumer secret, an access token key and
an access token secret. These unique values are used by Twitter to control access to the API.

4.3 System Design and Implementation

The Creepy Crawly application was developed in Python 3 script language, due to its simplicity,
efficiency and fast implementation. Additionally, a wide variety of third-party libraries exist to
support web access in Python applications. The libraries used in the implementation of our crawler
were the following: python-twitter 4, oauth2 5, httplib 6, json 7, psycopg 8, and pyparsing 9. Python-
twitter is a Python wrapper library for the Twitter API; oauth2 is an implementation of the Oauth
protocol, which allows for secure authorisation in web applications; httplib implements the client
side of the HTTP protocol; json is a JSON (JavaScript Object Notation) encoder and decoder
library; psycopg is a PostgreSQL adapter for Python, which queries the PostgreSQL database;
finally, pyparsing is a text parsing library which allows the user to create grammars directly in
Python code. Details about these libraries are omitted from this paper, but their documentations
can be obtained from their respective web links. The whole Creepy Crawly application consists of
four Python modules to be described in this section: crawler, rateLimiter, databaseAccess and
errorReport. Figure 4.2 shows the UML diagram for these modules.

3docs.python.org/tutorial/
4code.google.com/p/python-twitter/
5github.com/simplegeo/python-oauth2/
6docs.python.org/library/httplib.html
7docs.python.org/library/json.html
8initd.org/psycopg/
9pyparsing.wikispaces.com/
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Figure 4.2: UML diagram of the Python modules.

Preventing Twitter Throttling

As previously mentioned, one significant shortcoming in using the Twitter API for data retrieval is
its restrictive limit policy, which only allows clients to make 150 requests per hour. Even if a client
makes calls to the API within the allowed limit, Twitter may throttle the account when too many
calls are made repeatedly. For these reasons, the first step in the development of the crawler was
creating a wrapper module for the python-twitter library, in order to add small time intervals in
between requests to the API and thus prevent the account from being “black listed” by Twitter.
Module rateLimiter was created for this purpose. Before making a call to the Twitter API, this
module obtains from the API the minimum amount of time that the program must wait before
making the next call without exceeding the rate limit. It then puts the program to sleep until the
specified amount of time has passed, when it finally makes the call.

Access to the Database

In addition to the crawler application, it was necessary to create a database where all the data
collected from Twitter was stored. This database was created in PostgreSQL and is described
in the next section, Data Collection and Storage. Access to the database was implemented in
module databaseAccess, in order to confine all database queries to just one module. This module
contains methods to create tables and to insert all retrieved data into these tables. Furthermore, it
includes two exception classes, ConnectionClosed and CursorClosed, which are raised when the
connection or the cursor to the database are lost.

The Restricted and Unrestricted Crawlers

The main loop of the Creepy Crawly application was implemented in module crawler. This module
uses rateLimiter to extract the data via Twitter API, then uses databaseAccess to store this data
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into the database. Lastly, module errorReport is used to generate a log file describing exceptions
and errors that may occur while the application is running, in addition to informing which profiles
have already been processed. In order to differentiate between tweets and retweets in a user’s
timeline, module crawler uses a parsing mechanism which checks for the sequence “RT @[user
screen name]” in the beginning of a message. This sequence characterises a retweet of anther user
and, although not visible on the Twitter interface, it is present in the text obtained through the
API. Two different versions of the crawler were implemented: unrestricted and restricted.

The unrestricted crawler has the goal of spreading as much as possible throughout the Twitter
network, and for this purpose it performs Breadth-First Search (BFS) based crawling. The program
is given the screen name of a seed user, from which the crawling process begins. The crawler adds
this user to a queue and begins a loop to handle the contents of the queue: while the queue is
not empty, the first user in the queue has their profile processed and their followers and friends
also added to the queue. Processing a profile means sending all the information relating to that
user to the database: profile attributes, timeline (up to 200 tweets), and follow connections. Follow
connections are stored as directed edges in a graph, where one node corresponds to the follower and
the other node corresponds to the followed user. Since some users on Twitter such as celebrities have
an extremely large number of followers, we discarded users who had more than 100,000 followers
so as to avoid slowing down the data collection process. The unrestricted crawler runs indefinitely,
spreading throughout the Twitter network until the program is interrupted.

In the restricted version of the crawler, the program is given a full list of the screen names of
users to process, and collects more detailed data than the unrestricted version. The crawler simply
goes through the list and processes each user, adding their information to the database, and ceases
to run as soon as the list has been fully processed. The information collected for each user consists
of profile attributes, timeline (both tweets and retweets, up to 700 posts total), favourite tweets,
friends and followers.

Parallelism and Performance

In order to retrieve the data in an efficient way, it was important to have multiple Python scripts
running in parallel for long periods of time. However, this setting brought about some difficulties
that had to be overcome. First, to make the system robust to possible run-time exceptions, such
as errors from the Twitter API or loss of the connection to the database, we implemented careful
exception handling for every call to the API and every database query. To avoid exceeding the API
rate limit, multiple Twitter accounts were created, so that a separate account (and corresponding
API key and access token) could be used in each running crawler. Finally, the crawlers were set
up as long running processes in a virtual machine using the Ubuntu 10.04 operating system. This
virtual machine was accessed via Secure Shell (SSH). In order to run the crawler application via
command line, a very simple shell script named runCrawler was used, consisting of the following
two lines:

#!/bin/sh

python ./crawler.py

And the following command was used to run the shell script and thus set the process running
in the background, detached from the keyboard and the screen, and immune to hangup signals:

nohup ./runCrawler </dev/null >&/dev/null &

The performance of Creepy Crawly was evaluated through manual measurements. The unre-
stricted version was able to collect, on average, data from 20 Twitter accounts per hour, whereas
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for the restricted version that rate was reduced to one user every 2 hours. This significant difference
in performance is because the restricted crawler collects more detailed data and can extract up to
700 tweets from each user, compared to only 200 tweets in the unrestricted version. In addition,
the parsing of tweets in the restricted crawler, used to differentiate between tweets and retweets,
further retards the crawling process.

4.4 Data Collection and Storage

The data was retrieved from Twitter in June 2012, then aggregated and inserted into a PostgreSQL
database. Two separate datasets were constructed: the uncategorised dataset was created through
the unrestricted crawler, while the categorised dataset was created through the restricted crawler.

The uncategorised dataset has three main components: user profiles, tweets and social graph.
The user profiles contain the following information about each Twitter user: unique user id, name,
screen name, location, UTC (Coordinated Universal Time) offset, time zone, number of tweets in
timeline, number of followers, number of friends, number of favourites, language, and date of profile
creation. These attributes were implemented as columns in a table called profiles. Similarly, table
tweets was created, containing the attributes for that component. Details about each table are
shown in figure 4.3, a diagram of the tables found in the uncategorised dataset.

The user graph is a directed graph where each Twitter user is a node and the follow relationships
between users are edges, i.e., there is an edge in the graph from node A to node B if and only if
user A follows user B on Twitter. This graph is represented in table social graph, containing two
columns: parent, where the user id of the follower is stored, and child, where the user id of the
followed user is stored. Therefore, each row in the graph table corresponds to an edge in the graph.

Figure 4.3: Diagram of tables in the uncategorised dataset.

The categorised dataset consists of three classes (Personal, Managed and Bot-controlled). The
unrestricted crawler was run in three separate instances, each instance with a list of 100 Twitter
accounts from one of the classes. These Twitter accounts were manually selected and had their
profile information and timelines carefully analysed. They were then classified into one of the three
classes, and the result was considered a ground truth dataset in the analyses that followed. All
accounts chosen were unprotected (their contents were visible to the public) and were being actively
used at the time when the data was collected.

Each account class contains six main components, namely, user profiles, tweets, retweets,
favourites, friends and followers. In order to store this data, six tables for each class were cre-
ated: profiles, tweets, retweets, favourites, friends, and followers. Tables friends and followers are
similar and contain only two columns, each column representing one end of an edge in the network
graph. In the friends table, the first column is the user id, and the second column is the friend
id; in the followers table, the first column is the user id, and the second column is the follower id.

40



Details about each table are shown in figure 4.4, a diagram of the tables found in the categorised
dataset.

Figure 4.4: Diagram of tables in the categorised dataset.

In order to be analysed and used in the algorithms, the data was exported from the PostgreSQL
database to text files (‘.txt’), which can be read in the MATLAB environment.

In this chapter, we have described the implementation of our Twitter crawler application,
Creepy Crawly, which successfully retrieves data from Twitter while respecting the API request
limitations. The application was written in Python with the aid of various Python libraries. Two
versions of the application were implemented: the unrestricted version starts from a seed user and
continuously spreads across the Twitter network, while the restricted version collects data from
a pre-determined set of accounts. In order to increase performance, several scripts were run in
parallel on a virtual machine. Furthermore, a Postgresql database was created for data storage.
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Chapter 5

Data Analysis

In this chapter, we present the statistical analyses performed for the two datasets retrieved through
the Creepy Crawly application. The uncategorised dataset is the largest, consisting of 10,958 user
accounts and over 890,000 tweets, and was therefore used for analysing general characteristics of
Twitter accounts, such as number of tweets, number of followers, number of friends and tweet
frequency. For these characteristics, a larger amount of data improves the results of the analysis.
The categorised dataset, on the other hand, is much smaller, containing only 100 user accounts for
each of the three classes. This dataset was used for analysing behavioural characteristics specific
to each account class. The graph analysis and plot for the uncategorised dataset were produced
with the Gephi platform. All other statistical analyses and plots were produced in the MATLAB
environment.

5.1 Analysis of the Uncategorised Dataset

We begin our study of the uncategorised dataset with a brief analysis of the user network obtained,
following the concepts presented in section 2.3. A directed graph containing all users and ‘follow’
links in the uncategorised dataset is shown in figure 5.1. We removed from the graph edges for which
one end-node did not belong to the dataset. In this graph, node size and colour are proportional
to degree (including both in and out edges). The network contains a total of 10,958 nodes and
34,440 edges. The average degree is 3.14, the network diameter is 19, and the average path length
is 5.48. Graph analysis and plotting were performed with the aid of the igraph library 1 and the
Gephi open-source platform. The graph was built through a Python script using the igraph Python
interface, then exported as a ‘.graphml’ file and finally plotted in Gephi. The layout of the graph
was obtained through the use of the Force Atlas algorithm.

The number of tweets, number of followers and number of friends are three simple yet important
properties of Twitter accounts, since they allow us to quickly assess the participation of users on
the social network. Figures 5.2, 5.3 and 5.4 show the probability density functions (PDF) for
number of tweets, number of followers and number of friends, respectively. All three distributions
are intrinsically associated with the time the data was collected (June 2012). We observe that the
three properties roughly follow a power law distribution, resulting in approximate straight lines in
the log scale plots. The distribution for number of followers in figure 5.3 is not strictly factual since
we limited our data collection to users with at most 100,000 followers. Therefore, it applies to our
dataset only and not to Twitter in general. Furthermore, looking at figure 5.4, we can see a glitch
in the probability at 2,000 friends, which is caused by an artificial friend limit imposed by Twitter.
There is a small number of users with more than 2,000 friends, though, since Twitter makes some
exceptions to this rule based on the user’s follower to friend ratio.

1igraph.sourceforge.net
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Figure 5.1: Graph of the Twitter network in the uncategorised dataset. Only the edges connecting
two users that exist in our dataset are shown. Node size and colour are proportional to node degree.
This plot was generated in the Gephi open-source platform, and the layout was obtained through
the use of the Force Atlas algorithm.
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Figure 5.2: Probability density function for number of tweets in the uncategorised dataset. The
distribution follows a power law with exponent approximately -1.07 (slope of the polynomial fit).
The coefficient of determination obtained for the polynomial fit of degree 1 was R2 = 0.88.

Figure 5.3: Probability density function for number of followers in the uncategorised dataset. The
distribution follows a power law with exponent approximately -1.17 (slope of the polynomial fit).
The coefficient of determination obtained for the polynomial fit of degree 1 was R2 = 0.89. This
distribution applies to our dataset only and does not correspond to the real Twitter network, since
we limited data collection to users with at most 100,000 followers.
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Figure 5.4: Probability density function for number of friends in the uncategorised dataset. The
distribution follows a power law with exponent approximately -1.51 (slope of the polynomial fit).
The coefficient of determination obtained for the polynomial fit of degree 1 was R2 = 0.84. The
glitch in the distribution at 2,000 friends corresponds to the maximum friend limit imposed by
Twitter.
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Figures 5.5, 5.6 and 5.7 show the complementary cumulative density functions (CCDF) of the
fraction of users in the dataset who have number of tweets, friends and followers above a certain
number. Again, the glitch at 2000 friends in the number of friends CCDF is due to the artificial
friend limit imposed by Twitter.

Figure 5.5: Complementary cumulative density function for number of tweets in the uncategorised
dataset. This distribution shows the fraction of users in the dataset that have at least a given
number of tweets.
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Figure 5.6: Complementary cumulative density function for number of followers in the uncategorised
dataset. This distribution shows the fraction of users in the dataset that have at least a given
number of followers.

Figure 5.7: Complementary cumulative density function for number of friends in the uncategorised
dataset. This distribution shows the fraction of users in the dataset that have at least a given
number of friends. The glitch at 2,000 friends is due to the maximum friend limit imposed by
Twitter.
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The tweet frequency measures how actively users are posting on Twitter. We define this measure
as the number of tweets posted by a user in one day, including retweets of other users. We can
calculate a user’s tweet frequency by dividing their number of tweets by the time elapsed between
their first and their last tweet in the dataset. Figure 5.8 shows the histogram for tweet frequencies
in the uncategorised dataset. Since we collected at most 200 tweets per user, the maximum value
for the tweet frequency is 200.

Figure 5.8: Tweet frequency for the uncategorised dataset. The maximum value is 200 because we
collected at most 200 tweets per user.

All probability distributions obtained for the uncategorised dataset are consistent with those
found in previous research [2, 23, 12]. This indicates that our datasets are valid and unbiased.

5.2 Analysis of the Categorised Dataset

The categorised dataset was used for analysing and comparing the behaviour of users in each
account class, namely, Personal, Managed, and Bot-controlled. The two main properties studied
were the tweet times, determined by the timestamp of each tweet, and the inter-tweet delay, i.e.,
the amount of time elapsed between two consecutive tweets by the same user. The timestamps
of tweets, provided by the Twitter API, are regulated by the UTC standard. In order to adjust
these timestamps to the time zone of each user, we added to each timestamp the UTC offset, an
attribute also provided by the Twitter API for users who have specified their time zones. Users
who did not specify their time zone were hence discarded from this analysis. Consequently, our
dataset, which originally had 100 accounts in each category, was reduced to 86 personal accounts,
91 managed accounts and 67 bot-controlled accounts.

We begin by studying the inter-tweet delay distributions in each class. Figures 5.9, 5.10 and
5.11 show the PDF’s for the inter-tweet delay in classes Personal, Managed and Bot-controlled,
respectively. For all three classes, we obtain an approximate straight line in the log scale plot,
which indicates that the inter-tweet delay follows a power law distribution. In particular, for the
personal accounts, which are controlled by only one individual, the coefficient of determination
obtained between the distribution and the polynomial fit was the highest at 0.91. This finding is in
accordance with many previous studies in Computational Social Science [3, 30, 14], some of which
were described in chapter 3. According to Barabási [3], the power law distribution is indicative of a
bursty, non-Poisson character: during a single session, an individual will post several tweets, then
follow with a long period of inactivity on Twitter, a behaviour that is characteristic of the timing
of many human actions.
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Figure 5.9: Probability density function for the inter-tweet delay of personal accounts. The distri-
bution follows a power law with exponent approximately -1.58 (slope of the polynomial fit). The
coefficient of determination obtained for the polynomial fit of degree 1 was R2 = 0.91. A total of
86 accounts was used in this analysis.

Figure 5.10: Probability density function for the inter-tweet delay of managed accounts. The
distribution follows a power law with exponent approximately -1.01 (slope of the polynomial fit).
The coefficient of determination obtained for the polynomial fit of degree 1 was R2 = 0.73. A total
of 91 accounts was used in this analysis.
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Figure 5.11: Probability density function for the inter-tweet delay of bot-controlled accounts. The
distribution follows a power law with exponent approximately -1.45 (slope of the polynomial fit).
The coefficient of determination obtained for the polynomial fit of degree 1 was R2 = 0.83. A total
of 67 accounts was used in this analysis.
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Figure 5.12 shows error bar plots for the inter-tweet delay distribution of each account class.
In these plots, the dotted lines depict the probabilities for individual accounts, while the solid line
depicts the mean for the whole class. The error bars represent the standard deviations. Since the
distributions obtained for the three classes are very distinct, we were able to use these distributions
in a naive Bayes classifier that differentiates between classes, as explained in chapter 6.
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(a) Error bar plot for the inter-tweet delay of personal accounts (86 samples).

(b) Error bar plot for the inter-tweet delay of managed accounts (91 samples).

(c) Error bar plot for the inter-tweet delay of bot-controlled accounts (67 samples).

Figure 5.12: Error bar plots for the inter-tweet delay of personal (86 samples), managed (91 sam-
ples) and bot-controlled (67 samples) accounts. The dotted lines depict the probabilities for each
individual account, while the solid line is the mean for the whole class. The error bars represent
the standard deviations across the accounts analysed.
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As explained in the beginning of this chapter, all tweet timestamps were adjusted in order to
correspond to the local time zone of each user. Figure 5.13 shows the PDF’s for the hour of tweets
in classes Personal, Managed and Bot-controlled, respectively. We can see that personal accounts
increase their tweeting level as the day progresses, peaking at 9pm. Managed accounts tend to tweet
more during work hours, between 9am and 6pm. The dip in the distribution at 12pm can probably
be explained by lunch hour breaks. From these findings we can conclude that the distribution of
tweets throughout the day is related to a user’s daily routine. Finally, the distribution for bot-
controlled accounts exhibits a variety of peaks, which is probably because their behaviour is not
associated with a structured daily routine.

Figure 5.13: Probability density functions for the tweeting times of personal (86 samples), managed
(91 samples) and bot-controlled (67 samples) accounts. The horizontal axis corresponds to the hours
of the day, from 0 (midnight) to 23 (11pm). All timestamps were adjusted in order to correspond
to the local time zone of each user.

Figures 5.14 shows error bar plots for the tweeting times of each account class. In these plots,
the dotted lines depict the probabilities for individual accounts, while the solid line depicts the
mean for the whole class. The error bars represent the standard deviations.
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(a) Error bar plot for thetweeting times of personal accounts (86 samples).

(b) Error bar plot for the tweeting times of managed accounts (91 samples).

(c) Error bar plot for the tweeting times of bot-controlled accounts (67 samples).

Figure 5.14: Error bars plot for the tweeting times of personal (86 samples), managed (91 samples)
and bot-controlled (67 samples) accounts. The dotted lines depict the probabilities for each indi-
vidual account, while the solid line is the mean for the whole class. The error bars represent the
standard deviations across the accounts analysed.
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We now study the individual behaviour of users in each account class. The hourly tweeting
patterns for the 65 most active users of each class are shown in figure 5.15. In these plots, each tile
is associated with a user and an hour of the day, and the tile’s colour intensity is proportional to
the amount of tweets posted by that user at that hour. We can clearly observe the differences in
behaviour between the three classes: personal accounts tend to tweet more in the afternoons and
evenings; managed accounts tweet more during work hours, from 8am to 6pm; and bot-controlled
accounts either have a regular behaviour, tweeting at an approximately constant rate throughout
the day, or display a low tweet rate with a very high peak at one or a few specific hours. Among
the bot-controlled accounts, it is possible to detect behaviour that is characteristically programmed
or scheduled: account number 40, for instance, exhibits a clear alternating pattern, tweeting every
two hours.

These behavioural plots show that the tweeting patterns for both personal and managed ac-
counts are intrinsically related to a real life daily routine. Bot-controlled accounts, on the other
hand, exhibit an artificially designed behaviour. The very distinct patterns obtained for the three
account classes allow us to use tweeting behaviour as a classification criterion for Twitter accounts,
which is explained in chapter 6.

Figure 5.15: Number of tweets at each hour for each account class. Each row corresponds to a user
and each column corresponds to an hour of the day. Users are sorted by increasing total number
of tweets collected.

The weekly tweeting patterns for the same 65 users are shown in figure 5.16. In these plots, each
tile is associated with a user and a day of the week, and the tile’s colour intensity is proportional to
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the amount of tweets posted by that user on that day. We can observe that personal accounts tend
to maintain approximately the same amount of tweeting throughout the whole week, although the
tweeting amount slightly drops in the weekends. This pattern could be indicative that tweeting
is an activity used as pastime during work or school days. Managed accounts tweet significantly
more during the work week (Monday to Friday) than in weekends, which is expected since tweeting
in this case is a work-related activity. Finally, bot-controlled accounts present a diverse behaviour,
with some accounts maintaining a uniform rate while others tweet more on one or a few specific
days.

Figure 5.16: Number of tweets throughout the week for each account class. Each row corresponds
to a user and each column corresponds to a day of the week. Users are sorted by increasing total
number of tweets collected.

In this chapter, we have discussed the statistical analysis of both our uncategorised and our
categorised Twitter datasets. We obtained probability distributions for number of tweets, number
of followers and number of friends that are consistent with previous work. Furthermore, we have
found that the inter-tweet delay follows a power law distribution, and that the distribution of tweets
throughout the day and throughout the week is associated with users’ daily routines.
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Chapter 6

Methods

In this chapter, we describe the Machine Learning algorithms created for classification of Twitter
accounts and prediction of tweeting behaviour. The theoretical concepts presented in chapter 2 are
the building blocks for these algorithms. The main tool used for implementation was the MATLAB
environment due to its aptitude for dealing with probability distributions and processing large
amounts of data.

6.1 Naive Bayes Classifiers for Twitter Accounts

We begin by describing the two naive Bayes classifiers created. Our classification system is based
on equation 2.2.7 from section 2.2, in which we discussed the naive Bayes classifier. Based on that
equation, we obtain the following maximum a posteriori (MAP) decision rules for our naive Bayes
classifiers:

class(d) = arg max
c
{p(delay = d|C = c)} , c ∈ {P,M,B} (6.1.1)

class(t) = arg max
c
{p(time = t|C = c)} , c ∈ {P,M,B} (6.1.2)

class(d, t) = arg max
c
{p(delay = d|C = c)× p(time = t|C = c)} , c ∈ {P,M,B} (6.1.3)

where P, M and B correspond to our three account classes, personal, managed and bot, re-
spectively. The first equation uses only the marginal distribution for inter-tweet delay, the second
equation uses only the marginal distribution for tweeting time, and the third equation uses the
joint distribution of both variables assuming independence between them.

The 2-Classifier

The 2-Classifier distinguishes between account classes Personal and Managed. Four attempts
of classification were made: using only inter-tweet delay distributions; using only tweeting time
distributions; using both properties as independent variables; and using both properties as non-
independent variables. Due to the small number of samples obtained for each class, we applied
leave-one-out cross validation instead of using separate training and testing datasets. In leave-one-
out cross validation, with N samples in the dataset, the classification is performed as follows: the
model is constructed N times, and at each time one of the samples is left out while the other N −1
samples are used for construction of the model. The sample that was not used in the model is then
classified based on the probability distributions given by the model samples.

In each cross-validation loop, the N−1 model samples are grouped into their respective classes,
and then four different probability density functions for each of the two classes is computed, namely,
the marginal distributions for inter-tweet delay (ITD), the marginal distribution for tweeting times
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(TT), the joint distribution assuming independent variables (JI), and the joint distribution assum-
ing non-independent variables (JNI). The marginal distributions are created in the same way as
shown in the data analysis perfumed in chapter 5. The joint distribution assuming independent
variables is obtained by simply multiplying the values of the two marginal distributions. Finally,
the joint distribution assuming non-independent variables is obtained as a three-dimensional sur-
face, where the first two dimensions are given by the values of inter-tweet delay and tweet time,
and the third dimension corresponds to the joint probability.

To classify the left-out sample, the values (inter-tweet delay and timestamp hour) of each one
of that sample’s tweets are interpolated into the distributions of both classes. For each of the four
attempts, the classification score Sc(i) of class c for sample i is computed as:

Sc(i) =
∑

t in T (i)

log(interpolate(t,pdf(c))) (6.1.4)

where T (i) is the set of tweets for sample account i, and interpolate(t,pdf(c)) is the interpolation
of the value of t into the probability density function of class c. Once both class scores have been
computed, sample i is classified into the class with highest classification score.

Since scores are computed separately for each classification attempt, a different outcome is
obtained for each attempt, resulting in four different classification outcomes for each sample. The
pseudocode showing the outline of this algorithm is presented below.

for subj = 1 to size(Samples)

testSample = Samples[subj]

sumPersonal[subj] = 0

sumManaged[subj] = 0

pdfPersonal = getPDF(Samples[i] where i!=subj and Samples[i] in Personal)

pdfManaged = getPDF(Samples[i] where i!=subj and Samples[i] in Managed)

for tweet = 1 to size(testSample)

probPersonal[subj,tweet] = interpolate(testSample[tweet],pdfPersonal)

sumPersonal[subj] += log(probPersonal[subj,tweet])

probManaged[subj,tweet] = interpolate(testSample[tweet],pdfManaged)

sumManaged[subj] += log(probManaged[subj,tweet])

end for

if sumPersonal[subj] > sumManaged[subj]

testSample classified as Personal

else

testSample classified as Managed

end for

The 3-Classifier

The implementation of the 3-Classifier is analogous to that of the 2-Classifier, the only difference
being the number of classes used. The increase in the number of classes from 2 to 3 caused
classification results to be slightly worse, as explained in the next chapter. In order to evaluate the
robustness of the classification algorithms regarding the amount of training data available, we tested
both classifiers with varying dataset sizes. The plots showing the percentage of correct classification
as a function of the number of samples used in the can be seen in figures 6.1 and 6.2. These plots
indicate that the use of larger datasets might improve the classification results, especially when
using joint probability distributions. The results obtained with the different classification attempts
for both classifiers are presented in chapter 7.
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Figure 6.1: Correct classification percentage vs. number of samples for the 2-Classifier.

Figure 6.2: Correct classification percentage vs. number of samples for the 3-Classifier.
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6.2 Predictive Model for Tweeting Time

Our following step was to try to predict when a user’s next tweet would be posted, based on
the inter-tweet delay and tweeting time distributions of that user’s account class. We perform
probabilistic prediction by computing a cumulative distribution function of the probability that a
tweet would happen t seconds after the previous tweet. As in the classifier algorithms, we used
leave-one-out cross validation due to the small size of the categorised dataset.

In our first attempt for prediction, we simply used the inter-tweet delay distribution of one
particular class in order to generate a corresponding cumulative distribution function. The CDF
in terms of the inter-tweet delay t describes the probability that a tweet will occur given that t
seconds have passed since the last tweet. As before, at each cross validation loop, all samples are
used in the computation of the probability distribution, with the exception of one left-out sample.
We then take the actual inter-tweet delay we want to predict (among the left-out sample’s tweets)
and use that delay to compute a step function as follows:

step(t) =

{
0 if t < τ
1 if t ≥ τ (6.2.1)

where τ is the actual inter-tweet delay of the left-out sample, which we aim to predict. This
step function represents the observed cumulative probability of a tweet occurring τ seconds after
the last tweet: because the tweet occurred exactly after τ seconds, this probability is 0 before τ ,
and 1 after τ . For each tweet of the sample user account, a different step function is computed and
then compared to the CDF generated from the class probability distribution. As an illustrative
example, the comparison between the class CDF and ten different step functions for the same user
in shown in figure 6.3. Finally, we compute the coefficient of determination in order to evaluate the
predictive model: for each account, we take all step functions generated and check how well the
probability distribution of the class fits to each of them. The pseudocode for the single distribution
prediction algorithm, for an arbitrary class c, is presented below.

for subj = 1 to size(Samples c)

testSample = Samples c[subj]

pdf = getPDF(Samples c[i] where i!=subj)

for tweet = 1 to size(testSample)

delay = testSample[tweet].delay

prob[subj,tweet] = interpolate(delay, pdf)

add point (delay, prob[subj,tweet]) to pdf

cdf = getCDF(pdf)

step(subj,tweet,t) = 0 if t < delay; 1 otherwise

compute R squared for cdf and step(subj,tweet,t)

end for

end for

In a slightly more elaborated version of the predictor, we used the same predictive model but
with separate inter-tweet delay distributions for each hour of the day. Each inter-tweet delay is
associated with an hour based on the timestamp of the tweet that occurred before that delay,
resulting in 24 different probability distributions for the inter-tweet delay. This is reasonable since
the length of the time delay between consecutive tweets is very likely related to the time of the day
when those tweets occur. After computing the 24 distributions, we select which distribution to use
according to the timestamp of the sample user’s last tweet. Again, we compute a step function to
represent the observed probability of the inter-tweet delay, then use the coefficient of determination
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Figure 6.3: Comparison between the predicted cumulative probability function for inter-tweet delay
(in red) and ten different step functions for the same user account (in blue), which correspond to
the actual cumulative probability functions for the inter-tweet delay of ten different tweets.

to evaluate the prediction. The pseudocode for the multiple distribution predictor, for an arbitrary
class c, is presented below.

for subj = 1 to size(Samples c)

testSample = Samples c[subj]

for h = 0 to 23

pdf[h] = getPDF(Samples c[i] where i!=subj and Samples c[i].timestamp==h)

end for

for tweet = 1 to size(testSample)

delay = testSample[tweet].delay

hour = testSample[tweet].timestamp

prob[subj,tweet] = interpolate(delay, pdf[hour])

add point (delay, prob[subj,tweet]) to pdf[hour]

cdf[hour] = getCDF(pdf[hour])

step(subj,tweet,t) = 0 if t < delay; 1 otherwise

compute R squared for cdf[hour] and step(subj,tweet,t)

end for

end for

We also created a third version of the predictive model, this time using a separate probability
distribution for each hour of the day and for each day of the week, resulting in a total of 24×7 = 168
distributions. Each inter-tweet delay was associated with the hour and the day of the week of the
last tweet occurring before the delay. We then used this information to select which distribution to
use in the prediction of each particular tweet. The results obtained for the three different predictive
algorithms implemented are described in chapter 7.
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Chapter 7

Results

In this chapter we demonstrate the results obtained with the Machine Learning algorithms that were
described in chapter 6: the two classifier algorithms for Twitter accounts and the three predictive
models for next tweet time.

7.1 Automatic Recognition of User Account Types

We begin by examining the confusion matrices generated by the 2-Classifier and by the 3-Classifier.
As explained in chapter 6, four attempts of classification were made: using only inter-tweet delay
distributions (ITD); using only tweeting time distributions (TT); using the joint distribution of
both properties as independent variables (JI); and using the joint distribution of both properties
as non-independent variables (JNI). Each of these attempts has its own confusion matrix. In each
confusion matrix, the columns correspond to the predicted classes, while the rows correspond to
the actual classes of the samples. Therefore, the diagonals of the confusion matrices display the
number of samples in each class that were classified correctly.

Tables 7.1 to 7.4 show the confusion matrices of the 2-Classifier, while table 7.5 displays the
percentage of correct classifications in each of the four trials. Comparing tables 7.1 and 7.2, we
can see that using the marginal distribution for tweeting time yielded better results than using the
marginal distribution for inter-tweet delay. This is reasonable since the tweeting time distributions
for each class, presented in figure 5.13, exhibit particularly distinct shapes. From tables 7.3 and
7.4, we can conclude that the naive Bayes classifier using the joint distribution of the two variables
generated better results than the classifier with the non-independence assumption. We believe that
this is due to the small number of samples used for training the model.

Predicted class:
Personal Managed Total

Actual class:
Personal 68 18 86
Managed 31 55 86

Table 7.1: Confusion matrix obtained with the 2-Classifier, using inter-tweet delay marginal prob-
ability distribution.

Predicted class:
Personal Managed Total

Actual class:
Personal 70 16 86
Managed 21 65 86

Table 7.2: Confusion matrix obtained with the 2-Classifier, using tweeting time marginal probability
distribution.
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Predicted class:
Personal Managed Total

Actual class:
Personal 73 13 86
Managed 16 70 86

Table 7.3: Confusion matrix obtained with the 2-Classifier, using the joint probability distribution
of inter-tweet delay and tweeting time, assuming independent variables.

Predicted class:
Personal Managed Total

Actual class:
Personal 72 14 86
Managed 15 70 85

Table 7.4: Confusion matrix obtained with the 2-Classifier, using the joint probability distribution
of inter-tweet delay and tweeting time, assuming non-independent variables.

2-Classifier Correctness

ITD 71.5%

TT 78.5%

JI 83.1%

JNI 82.6%

Table 7.5: Correct classification percentage for the 2-Classifier.
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The total of samples used in the 2-Classifier was 86, since we discarded accounts for which
the time zone information was not available. In the last confusion matrix (table 7.4), the total
number of classified samples is shown to be less than the actual total. This is because, in some
cases, the classifier was not be able to make a decision for one or more samples. As one would
expect, using both inter-tweet delay and tweeting time properties as classification criteria yielded
better results than using only one of them. Even though the assumption that these properties were
independent variables led to better results than the non-independence assumption, it is likely that
the deterioration in correctness caused by the non-independence assumption is due to subsampling:
with a small amount of samples, the interpolation of sample values into the three-dimensional joint
distribution is very poor. This argument is corroborated by the plot in figure 6.1, which shows that
the correct classification percentage for the JNI distribution is still increasing just before the final
test, which used 85 samples. Therefore, a larger dataset could potentially improve the classification
results obtained with the joint distribution.

Tables 7.6 to 7.9 show the confusion matrices of the 3-Classifier, while table 7.10 displays
the percentage of correct classifications in each of the four trials. As expected, the 3-Classifier
performed slightly worse than the 2-Classifier, due to its larger number of classes. From tables 7.6
and 7.7, we see that again the tweeting time marginal distribution led to better classification results
than the inter-tweet delay distribution, and that in the 3-Classifier this difference was even more
pronounced than in the 2-Classifier. Similarly, from tables 7.8 and 7.9, we see that once again the
variable independence assumption yielded better results than the non-independence assumption.
In both cases, JI and JNI, 3 samples could not be classified due to poor interpolation into one of
the class joint distributions.

The total of samples used in the 3-Classifier was 67. For this algorithm, results obtained when
assuming that inter-tweet delay and tweeting time were non-independent variables were consider-
ably worse than the results obtained with the independence assumption. As in the 2-Classifier, this
is probably largely due to subsampling, which causes poor interpolation of the test samples into
the three-dimensional probability distribution. The classification correctness percentage we have
obtained with the JI distribution is only slightly worse than those obtained by previous researchers
[10, 2, 12], with one important advantage: unlike previous work, our classification algorithm is
based solely on tweeting behaviour and does use any other account feature or require parsing of
tweet contents.

Predicted class:
Personal Managed Bot Total

Actual class:
Personal 38 22 7 67
Managed 17 40 10 67
Bot 18 18 31 67

Table 7.6: Confusion matrix obtained with the 3-Classifier, using inter-tweet delay marginal prob-
ability distribution.

Predicted class:
Personal Managed Bot Total

Actual class:
Personal 52 11 4 67
Managed 13 45 9 67
Bot 11 11 45 67

Table 7.7: Confusion matrix obtained with the 3-Classifier, using tweeting time marginal probability
distribution.
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Predicted class:
Personal Managed Bot Total

Actual class:
Personal 56 7 3 66
Managed 14 47 6 67
Bot 13 8 44 65

Table 7.8: Confusion matrix obtained with the 3-Classifier, using the joint probability distribution
of inter-tweet delay and tweeting time, assuming independent variables.

Predicted class:
Personal Managed Bot Total

Actual class:
Personal 37 26 3 66
Managed 17 41 9 67
Bot 15 22 28 65

Table 7.9: Confusion matrix obtained with the 3-Classifier, using the joint probability distribution
of inter-tweet delay and tweeting time, assuming non-independent variables.

3-Classifier Correctness

ITD 54.2%

TT 70.6%

JI 73.1%

JNI 52.7%

Table 7.10: Correct classification percentage for the 3-Classifier.
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7.2 Prediction of Next Tweet Time

For the prediction algorithms, we used the coefficient of determination, R2, as a goodness of fit
measure of the predictive models created. As explained in the previous chapter, the actual data is
represented by a step function, while the model data is represented by a cumulative distribution
function, both describing the cumulative probability of a tweet being posted t seconds after the
previous tweet occurred. Figure 7.1(a) shows a comparison between the cumulative distribution
function (the model) and the step functions generated for 10 sample tweets. Figure 7.1(b) shows
a scatter plot for all points of the same 10 sample tweets, with the horizontal axis corresponding
to the value of the CDF (predicted value) and the vertical axis corresponding to the value of the
step function (actual value). This example scatter plot shows the points for which the coefficient
of determination was computed in order to evaluate the model.

A total of 60 samples from each class was used in the prediction algorithms. Table 7.11 shows the
average R2 obtained for each account class by the three predictive models constructed: the first one
using a single probability distribution, the second one using a separate probability distribution for
each hour of the day (H), and the third one using a separate probability distribution for each hour
of the day and each day of the week (HW). The results obtained for the coefficient of determination
are in a good range for human generated data. From table 7.11 we can see that the use of separate
distributions for each hour and each day of the week was especially beneficial for the prediction
of tweets by bot-controlled accounts. This is because bot-controlled accounts have a programmed
behaviour which is typically hour or day specific.

In order to evaluate the statistical significance of our results, we applied the same predictive
models to randomly generated data. We used a pseudo-random number generator, drawing numbers
from a uniform distribution over range 1 to 1,000,000. In these tests, the average R2 obtained was
0.33, which is much lower than any of the values obtained for the real data. We can conclude that
our results are statistically significant, but can potentially be improved by the use of additional
information about the tweeting patterns observed.

Average R2

Personal Managed Bot
Single Distribution 0.661 0.716 0.518
Multiple Distribution (H) 0.662 0.723 0.574
Multiple Distribution (HW) 0.667 0.725 0.676

Table 7.11: Average coefficient of determination obtained for each class by the three probabilistic
prediction models.
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(a) Comparison between the predicted cumulative probability function
for inter-tweet delay (in red) and 10 different step functions for the
same user account (in blue), which correspond to the actual cumulative
probability functions for the inter-tweet delay of 10 different tweets.

(b) Scatter plot for all points of the same 10 sample tweets, with the
horizontal axis corresponding to the value of the CDF (predicted value)
and the vertical axis corresponding to the value of the step function
(actual value).

Figure 7.1: Plots used in the computation of the coefficient of determination for the predictive
algorithms.
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Chapter 8

Discussion and Conclusion

In this project, we have used data collected from the online social network Twitter in order to
study the behaviour of different types of user accounts. Three different classes of Twitter accounts
were studied: personal accounts, belonging to a single individual; managed accounts, belonging to
a corporation; and bot-controlled accounts, which are administered by a computer program and
therefore receive no human input. In order to collect the data, we created Creepy Crawly, a Twitter
crawler application which retrieves account information and tweet feeds from either a pre-specified
set of accounts or from the social network surrounding a seed user. The dataset collected through
Creepy Crawly was used in two different types of Machine Learning algorithms: account classifiers,
with the aim of distinguishing between the three account classes in the dataset, and predictive
models, with the aim of determining when the next tweet of a user would be posted.

In the analysis of our uncategorised dataset, consisting of over 10,000 users, we studied the
Twitter graph, tweet frequency and the probability distributions for three account features, namely,
number of tweets, number of followers and number of friends. We obtained through this analysis
results consistent with those reported in previous work.

For our categorised dataset, we examined the inter-tweet delay distributions and the tweet
frequency variation throughout different hours of the day and different days of the week, for each
of the account classes studied. We were able to observe that personal, managed and bot-controlled
accounts present very distinct tweeting patterns, and as a result these patterns could be used to
distinguish between the classes in an automated manner. When studying the inter-tweet delay, i.e.,
the time interval between two consecutive tweets by the same user, we found that this measure
follows a power-law distribution. This finding is in accordance with the findings of many other
studies in Computational Social Science, and reinforces the idea that a bursty, fat-tailed behaviour
is characteristic of the time of many human actions. Furthermore, we found that the distribution
of a user’s tweets throughout the day and throughout the week is closely related to that user’s daily
routine. In the tweeting patterns studies, we were able to detect, for instance, evidence for work
schedules, weekends and lunch hour breaks.

Using the categorised dataset, we created two classification algorithms based on probability
distributions, the first algorithm to classify only personal and managed accounts, and the second
one to classify all three types of accounts studied. Both classifiers performed well, with the best
results being generated by the use of joint probability distributions of inter-tweet delays and tweet
times. When compared to previous research, our classification results were only slightly worse, but
with two important advantages: first, we do not determine a priori what behaviours or features are
characteristic of each class; and second, we not use any profile attribute or tweet content in order
to perform classification.

Additionally, we implemented three different predictive models in order to attempt predicting
when the next tweet of a user would be posted. In our first attempt at probabilistic prediction, we
used only the inter-tweet delay distribution of a given class in order to predict the next delay for
a user of the same class. We then tried to improve our results by using separate distributions for
each hour of the day and for each day of the week. Our predictive models produced statistically
significant results, with all coefficients of determination highly surpassing those of randomly gener-
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ated data. To the best of our knowledge, no previous work has been performed in studying human
behaviour through the prediction of tweeting activity.

Achievements

From a software development perspective, in this project we have successfully implemented a Twit-
ter crawler application and a total of five Machine Learning algorithms that aim to study the
behaviour of Twitter users through their tweeting patterns. With our classifier algorithms we were
able to distinguish between personal, managed and bot-controlled accounts, which allows users to
know with whom they are interacting on Twitter and can potentially aid spam detection. Further-
more, we believe that this work is a small but significant contribution to the field of Computational
Social Science, in that it uses the digital traces of Twitter accounts in order to study the behaviour
of its users. We have obtained results that extend the findings of many previous studies on the
bursty, heavy-tailed character of distributions pertaining to human actions.

Future Work

This project leaves room for many future advances in the use of Twitter data for studying human
behaviour. The Creepy Crawly application can be easily adapted to collect any kind of dataset
from Twitter. Ultimately, our goal is to be able to predict even more information about Twitter
users based on their tweeting behaviour. This information could include, for instance, a user’s
gender, nationality and age group. If it were possible to collect real-life information from users,
such as their personality traits and their real friendship networks, many additional studies could
be conducted in order to find the correlation between behaviour on Twitter and aspects of the
users’ real lives. Moreover, by collecting data from specific user classes, in the same way as we
did for personal, managed and bot-controlled accounts, one could create classifier algorithms for
distinguishing between different genders, nationalities, age groups, and many other user categories.
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Appendix A

Creepy Crawly (Unrestricted)

1 import tw i t t e r
2 import da taba s eAcce s s un r e s t r i c t ed
3 import r a t eL im i t e r un r e s t r i c t e d
4 import e r r o rRepo r t un r e s t r i c t ed
5
6 QUIET=0
7 STDOUTPUT=1
8 VERBOSE=2
9 DEBUG=3

10
11
12 de f main ( seeduse r=’ gab ioptavares ’ , r e c en tu s e r s =1000 ,∗∗kwargs ) :
13
14 pr in t ’Main arguments : ’ , kwargs
15
16 ve rbo s i t y = kwargs . get ( ’ v e rbo s i t y ’ )
17
18 # Create log f i l e
19 log = e r r o rRepo r t un r e s t r i c t ed . getErrorReport ( )
20 log . s tar tLog ( )
21
22 # Connect to database and c r ea t e t ab l e s
23 dbAccess = databa s eAcce s s un r e s t r i c t ed . getDatabaseAccess ( )
24 dbargs = d i c t ( [ (k , kwargs [ k ] ) f o r k in [ ’ host ’ , ’ db ’ , ’ user ’ , ’ passwd ’ ] ] )
25 dbAccess . makeConnection (∗∗ dbargs )
26 dbAccess . c r ea teTab le s ( )
27
28 r l a p i = r a t eL im i t e r un r e s t r i c t e d . getRateLimiter (∗∗ kwargs )
29
30 p r o f i l e f i e l d s = [ ’ uid ’ ,
31 ’name ’ ,
32 ’ screen name ’ ,
33 ’ l o c a t i on ’ ,
34 ’ protec ted ’ ,
35 ’ u t c o f f s e t ’ ,
36 ’ t ime zone ’ ,
37 ’ s t a tu s e s c oun t ’ ,
38 ’ f o l l owe r s c oun t ’ ,
39 ’ f r i e nd s c oun t ’ ,
40 ’ geo enabled ’ ,
41 ’ lang ’ ,
42 ’ c r e a t ed a t ’ ]
43
44 # I n i t i a l i z e the queue
45 p r o f i l e = r l a p i . f reqLimitGetUser ( s eeduse r )
46 s t a r t i d = p r o f i l e . id
47 samelanguage = p r o f i l e . lang
48 queue = se t ( [ ] )
49 queue . add ( s t a r t i d )
50 recent = [ ]
51
52 whi le l en ( queue ) > 0 :
53 queue = queue − s e t ( r e cent )
54 i f l en ( r e cent ) > r e c en tu s e r s :
55 recent = recent [− r e c en tu s e r s : ]
56 newuser ids = [ queue . pop ( ) f o r in range (min (100 , l en ( queue ) ) ) ]
57 i f v e rbo s i t y >= DEBUG:
58 pr in t ’ [DEBUG] newuser ids : ’ , newuser ids
59
60 # Get a l l new user p r o f i l e s in a s i n g l e c a l l
61 try :
62 p r o f i l e s = r l a p i . f reqLimitUsersLookup ( newuser ids )
63 f o r p r o f i l e in p r o f i l e s :
64 i f v e rbo s i t y >= VERBOSE:
65 pr in t ’ Proces s ing p r o f i l e ’ , s t r ( p r o f i l e . screen name ) , ’ , ’ , s t r ( p r o f i l e . id )
66 log . writeMessage ( ’ Proces s ing p r o f i l e ’ + s t r ( p r o f i l e . screen name ) + ’ , ’ + s t r ( p r o f i l e

. id ) )
67 i f p r o f i l e . lang == samelanguage and p r o f i l e . f o l l owe r s c oun t < 100000:
68 try :
69 # Try to i n s e r t in to p r o f i l e s t ab l e
70 dbAccess . profi leToSQL ( p r o f i l e , p r o f i l e f i e l d s , ∗∗kwargs )
71 except databaseAccess . ConnectionClosed , e :
72 log . wr i t eError ( )
73 p r in t e . message
74 log . writeMessage ( e . message )
75 dbAccess . makeConnection (∗∗ dbargs )
76 p r in t ’ Connection r e e s t a b l i s h e d . ’
77 log . writeMessage ( ’ Connection r e e s t a b l i s h e d . ’ )
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78 except databaseAccess . CursorClosed , e :
79 log . wr i t eError ( )
80 p r in t e . message
81 log . writeMessage ( e . message )
82 dbAccess . getCursor ( )
83 p r in t ’ Cursor updated . ’
84 log . writeMessage ( ’ Cursor updated . ’ )
85 except Exception , e :
86 log . wr i t eError ( )
87 p r in t ’ Database except ion : ’ , e
88 log . writeMessage ( ’ Database except ion : ’ + e . message )
89 # Note that i n s e r t f a i l e d ( probably because entry a l ready e x i s t s )
90 newuser ids . remove ( p r o f i l e . id )
91 e l s e :
92 # Note that language i s not the same as the seed user or user has too many f o l l ow e r s
93 newuser ids . remove ( p r o f i l e . id )
94 pr in t ’ User ’ + s t r ( p r o f i l e . id ) + ’ ignored due to language or l a r g e number o f

f o l l ow e r s . ’
95 log . writeMessage ( ’ User ’ + s t r ( p r o f i l e . id ) + ’ ignored due to language or l a r g e number

o f f o l l ow e r s . ’ )
96 except Exception , e :
97 log . wr i t eError ( )
98 p r in t ’ Twitter API except ion : ’ , e
99 log . writeMessage ( ’ Twitter API except ion : ’ + e . message )

100
101 # Now get f o l l owe r s , f r i e n d s and tweets f o r each user
102 i f v e rbo s i t y >= DEBUG:
103 pr in t ’ [DEBUG] newuser ids : ’ , newuser ids
104 f o r u s r id in newuser ids :
105 log . writeMessage ( ’ Ful ly p roc e s s i ng id : ’ + s t r ( u s r i d ) )
106 i f v e rbo s i t y >= VERBOSE:
107 pr in t ’ Ful ly p ro c e s s i ng id : ’ , u s r i d
108
109 cur so r = −1
110 whi le cur so r != 0 :
111 r e s = [ ]
112 try :
113 r e s = r l a p i . f reqLimitGetFol lowerIDs ( usr id , cur so r )
114 f o l i d s = re s [ u ’ i d s ’ ]
115 cur so r = re s [ u ’ n ex t cu r so r ’ ]
116
117 # Write f o l l ow e r s to the database
118 f o r f o l i d in f o l i d s :
119 try :
120 dbAccess . followToSQL ( f o l i d , u s r i d )
121 queue . add ( f o l i d )
122 except databaseAccess . ConnectionClosed , e :
123 log . wr i t eError ( )
124 pr in t e . message
125 log . writeMessage ( e . message )
126 dbAccess . makeConnection (∗∗ dbargs )
127 pr in t ’ Connection r e e s t a b l i s h e d . ’
128 log . writeMessage ( ’ Connection r e e s t a b l i s h e d . ’ )
129 except databaseAccess . CursorClosed , e :
130 log . wr i t eError ( )
131 pr in t e . message
132 log . writeMessage ( e . message )
133 dbAccess . getCursor ( )
134 pr in t ’ Cursor updated . ’
135 log . writeMessage ( ’ Cursor updated . ’ )
136 except Exception , e :
137 log . wr i t eError ( )
138 pr in t ’ Database except ion : ’ , e
139 log . writeMessage ( ’ Database except ion : ’ + e . message )
140 except Exception , e :
141 log . wr i t eError ( )
142 pr in t ’ Twitter API except ion : ’ , e
143 pr in t ’ id : ’ , u s r i d
144 log . writeMessage ( ’ Twitter API except ion : ’ + e . message + ’\nid : ’ + s t r ( u s r id ) )
145 cur so r = 0
146
147 cur so r = −1
148 whi le cur so r != 0 :
149 r e s = [ ]
150 try :
151 r e s = r l a p i . f reqLimitGetFr iendIDs ( usr id , cur so r )
152 f r i e n d i d s = re s [ ’ i d s ’ ]
153 cur so r = re s [ ’ n ex t cu r so r ’ ]
154
155 # Write f r i e n d s to the database
156 f o r f r i e n d i d in f r i e n d i d s :
157 try :
158 dbAccess . followToSQL ( usr id , f r i e n d i d )
159 queue . add ( f r i e n d i d )
160 except databaseAccess . ConnectionClosed , e :
161 log . wr i t eError ( )
162 pr in t e . message
163 log . writeMessage ( e . message )
164 dbAccess . makeConnection (∗∗ dbargs )
165 pr in t ’ Connection r e e s t a b l i s h e d . ’
166 log . writeMessage ( ’ Connection r e e s t a b l i s h e d . ’ )
167 except databaseAccess . CursorClosed , e :
168 log . wr i t eError ( )
169 pr in t e . message
170 log . writeMessage ( e . message )
171 dbAccess . getCursor ( )
172 pr in t ’ Cursor updated . ’
173 log . writeMessage ( ’ Cursor updated . ’ )
174 except Exception , e :
175 log . wr i t eError ( )
176 pr in t ’ Database except ion : ’ , e
177 log . writeMessage ( ’ Database except ion : ’ + e . message )
178 except Exception , e :
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179 log . wr i t eError ( )
180 pr in t ’ Twitter API except ion : ’ , e
181 pr in t ’ id : ’ , u s r i d
182 log . writeMessage ( ’ Twitter API except ion : ’ + e . message + ’\nid : ’ + s t r ( u s r id ) )
183 cur so r = 0
184
185 # Get t ime l i n e
186 log . writeMessage ( ’ Getting user t ime l i n e ’ )
187 i f v e rbo s i t y >= VERBOSE:
188 pr in t ’ Gett ing user t ime l i n e ’
189 t ime l i n e = [ ]
190 try :
191 t ime l i n e = r l a p i . f reqLimitGetUserTimel ine ( u s e r i d=usr id , count=200)
192
193 # Write tweets to the database
194 f o r s t a tu s in t ime l i n e :
195 try :
196 dbAccess . tweetToSQL( status , ∗∗kwargs )
197 except databaseAccess . ConnectionClosed , e :
198 log . wr i t eError ( )
199 pr in t e . message
200 log . writeMessage ( e . message )
201 dbAccess . makeConnection (∗∗ dbargs )
202 pr in t ’ Connection r e e s t a b l i s h e d . ’
203 log . writeMessage ( ’ Connection r e e s t a b l i s h e d . ’ )
204 except databaseAccess . CursorClosed , e :
205 log . wr i t eError ( )
206 pr in t e . message
207 log . writeMessage ( e . message )
208 dbAccess . getCursor ( )
209 pr in t ’ Cursor updated . ’
210 log . writeMessage ( ’ Cursor updated . ’ )
211 except Exception , e :
212 log . wr i t eError ( )
213 pr in t ’ Database except ion : ’ , e
214 log . writeMessage ( ’ Database except ion : ’ + e . message )
215 log . writeMessage ( ’Tweet : ’ + s ta tu s . t ext )
216 except Exception , e :
217 log . wr i t eError ( )
218 pr in t ’ Twitter API except ion : ’ , e
219 pr in t ’ id : ’ , u s r i d
220 log . writeMessage ( ’ Twitter API except ion : ’ + e . message + ’\nid : ’ + s t r ( u s r id ) )
221
222 # Fina l ly , mark the user as r ecent
223 recent . append ( us r id )
224 log . writeMessage ( ’Appended user to the recent l i s t . ’ )
225 i f v e rbo s i t y >= VERBOSE:
226 pr in t ’Appended user to the r ecent l i s t . Now i s : ’ , r e c ent
227
228 # Close database connect ion
229 dbAccess . c loseConnect ion ( )
230
231 # End log f i l e
232 log . endLog ( )
233
234
235
236 i f name ==’ ma in ’ :
237
238 from optparse import OptionParser
239 par se r = OptionParser ( )
240 par s e r . add opt ion ( ’−v ’ , ”−−ve rbo s i t y ” ,
241 type=int ,
242 de f au l t=VERBOSE,
243 help=”Set the ve rbo s i t y ” )
244 par se r . add opt ion ( ”−−host ” ,
245 type=str ,
246 de f au l t=’ l o c a l h o s t ’ ,
247 help=”Host machine f o r database ac c e s s ” )
248 par se r . add opt ion ( ”−−db” ,
249 type=str ,
250 de f au l t=’XXXXX’ ,
251 help=”Database name” )
252 par se r . add opt ion ( ”−−user ” ,
253 type=str ,
254 de f au l t=’XXXXX’ ,
255 help=”User name f o r database ac c e s s ” )
256 par se r . add opt ion ( ”−−passwd” ,
257 type=str ,
258 de f au l t=’XXXXX’ ,
259 help=”Password f o r database ac c e s s ” )
260
261
262 ( opt ions , args ) = par se r . pa r s e a r g s ( )
263 kwargs = d i c t ( [ [ k , v ] f o r k , v in opt ions . d i c t . i t e r i t em s ( ) i f not v i s None ] )
264 main (∗ args ,∗∗ kwargs )

crawler unrestricted.py

1 import time
2 import tw i t t e r
3
4 QUIET=0
5 STDOUTPUT=1
6 VERBOSE=2
7 DEBUG=3
8
9

10 c l a s s SuppressedCal lExcept ion ( Exception ) :
11 de f i n i t ( s e l f , va lue ) :
12 s e l f . va lue = value
13 de f s t r ( s e l f ) :
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14 return repr ( s e l f . va lue )
15
16
17 c l a s s RateLimiter ( ob j e c t ) :
18
19 readmethods = [ ’ F i l t e rPub l i cT ime l i n e ’ ,
20 ’ GetUser ’ ,
21 ’ GetDirectMessages ’ ,
22 ’ GetFavor i tes ’ ,
23 ’ GetFeatured ’ ,
24 ’ GetFollowerIDs ’ ,
25 ’ GetFol lowers ’ ,
26 ’ GetFriendIDs ’ ,
27 ’ GetFriends ’ ,
28 ’ GetFriendsTimel ine ’ ,
29 ’ GetLis t s ’ ,
30 ’ GetMentions ’ ,
31 ’ GetPubl icTimel ine ’ ,
32 ’ GetRepl ies ’ ,
33 ’ GetRetweets ’ ,
34 ’ GetSearch ’ ,
35 ’ GetStatus ’ ,
36 ’ GetSubscr ipt ions ’ ,
37 ’ GetTrendsCurrent ’ ,
38 ’ GetTrendsDaily ’ ,
39 ’ GetTrendsWeekly ’ ,
40 ’ GetUser ’ ,
41 ’ GetUserByEmail ’ ,
42 ’ GetUserRetweets ’ ,
43 ’ GetUserTimeline ’ ,
44 ’MaximumHitFrequency ’ ,
45 ’ UsersLookup ’
46 ]
47
48 writemethods = [ ]
49
50 # I n i t i a l i z i n g ra t e l im i t i n g va r i ab l e
51 de f i n i t ( s e l f , api , v e rbo s i t y ) :
52 s e l f . max ca l l s = 0 # number o f a l lowed c a l l s in one hour ( the quota )
53 s e l f . c a l l s l e f t = 0 # what i s l e f t in the quota
54 s e l f . t end = 0 # end time o f an one−hour per iod
55 s e l f . api = api
56 f o r methodname in s e l f . readmethods+s e l f . writemethods :
57 s e l f .WrapMethod(methodname)
58 s e l f .WaitToMethod (methodname)
59 s e l f . FreqLimitMethod (methodname)
60 s e l f . GetTwitterRateLimit ( api=s e l f . api )
61 s e l f . timefrom = None
62 s e l f . v e rbo s i t y = ve rbo s i t y
63
64
65 de f getTwitterRateLimit ( s e l f , api=None ) :
66
67 # Refresh the number o f c a l l s l e f t , max c a l l s and r e f r e s h time .
68 i f api i s None :
69 api = s e l f . ap i
70 r l = api . GetRateLimitStatus ( )
71 s e l f . c a l l s l e f t = r l [ ’ r ema in ing h i t s ’ ]
72 s e l f . max ca l l s = r l [ ’ h ou r l y l im i t ’ ]
73 s e l f . t end = r l [ ’ r e s e t t ime i n s e c ond s ’ ]
74
75
76 de f freqLimitMethod ( s e l f , methodname) :
77
78 # Waits the appropr ia te l ength be fo r e c a l l i n g .
79 # Twitter api may t h r o t t l e us i f we try c a l l i n g r epeated ly but with in our l im i t .
80 method = ge t a t t r ( s e l f . api , methodname)
81 de f f r eq l imitmethod (∗ args ,∗∗ kwargs ) :
82 i f s e l f . v e rbo s i t y >= DEBUG:
83 pr in t ” [DEBUG] In FreqLimit ”+methodname
84 i f s e l f . timefrom == None :
85 s e l f . timefrom = time . time ( )
86 mhf = s e l f . MaximumHitFrequency ( )
87 i f mhf == None :
88 mhf = 30
89 w a i t t i l l = s e l f . timefrom + mhf
90 now = time . time ( )
91 i f now > w a i t t i l l :
92 pass
93 e l s e :
94 i f s e l f . v e rbo s i t y >= STDOUTPUT:
95 pr in t ” S l eep ing f o r ”+ s t r ( w a i t t i l l−now)+ ” seconds ”
96 time . s l e ep ( w a i t t i l l−now)
97 i f s e l f . v e rbo s i t y >= STDOUTPUT:
98 pr in t ”Waking up”
99 r e s = method (∗ args ,∗∗ kwargs )

100 s e l f . timefrom = time . time ( )
101 return r e s
102 s e t a t t r ( s e l f , ’ f r eqL imi t ’+methodname , f req l imitmethod )
103
104
105 de f getRateLimiter ( consumer key = ’XXXXX’ ,
106 consumer secre t = ’XXXXX’ ,
107 acc e s s t oken key = ’XXXXX’ ,
108 a c c e s s t o k e n s e c r e t = ’XXXXX’ ,
109 ∗∗kwargs ) :
110
111 api = tw i t t e r . Api ( consumer key=consumer key ,
112 consumer secre t=consumer secret ,
113 acc e s s t oken key=acces s token key ,
114 a c c e s s t o k e n s e c r e t=ac c e s s t o k en s e c r e t ,
115 cache=None )
116
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117 r l a p i = RateLimiter ( api , v e rbo s i t y=kwargs . get ( ’ v e rbo s i t y ’ ) )
118 return r l a p i

rateLimiter unrestricted.py

1 import psycopg2
2 from datet ime import datet ime
3
4 DATETIME STRING FORMAT = ’%a %b %d %H:%M:%S +0000 %Y’
5 QUIET=0
6 STDOUTPUT=1
7 VERBOSE=2
8 DEBUG=3
9

10 p r o f i l e t a b l e = ’ p r o f i l e s ’
11 s o c i a l g r aph t ab l e = ’ s o c i a l g r aph ’
12 tweet tab l e = ’ tweets ’
13
14
15 c l a s s ConnectionClosed ( Exception ) :
16 de f i n i t ( s e l f ) :
17 s e l f . message = ’ ConnectionClosed Exception ! ’
18 return
19
20
21 c l a s s CursorClosed ( Exception ) :
22 de f i n i t ( s e l f ) :
23 s e l f . message = ’ CursorClosed Exception ! ’
24 return
25
26
27 de f getDatabaseAccess ( ) :
28 dbAccess = DatabaseAccess ( )
29 return dbAccess
30
31
32 c l a s s DatabaseAccess ( ) :
33
34 de f i n i t ( s e l f ) :
35 s e l f . dbconn = None
36 s e l f . dbcursor = None
37
38
39 de f makeConnection ( s e l f , ∗∗kwargs ) :
40 host = kwargs . get ( ’ host ’ )
41 database = kwargs . get ( ’ db ’ )
42 user = kwargs . get ( ’ user ’ )
43 password = kwargs . get ( ’ passwd ’ )
44 s e l f . dbconn = psycopg2 . connect ( database=database , user=user , password=password )
45 s e l f . getCursor ( )
46
47
48 de f getCursor ( s e l f ) :
49 s e l f . dbcursor = s e l f . dbconn . cur so r ( )
50
51
52 de f c loseConnect ion ( s e l f ) :
53 s e l f . dbconn . c l o s e ( )
54
55
56 de f c r eateTab le s ( s e l f ) :
57
58 # Create tab l e ’ p r o f i l e s ’ i f i t doesn ’ t a l ready e x i s t
59 tableCheck = s e l f . dbcursor . execute ( ’SELECT count ( table name ) : : i n t FROM information schema . t ab l e s

WHERE table name = \ ’ ’ + p r o f i l e t a b l e + ’ \ ’ ’ )
60 tableCheck = s e l f . dbcursor . f e t chone ( )
61 count = tableCheck [ 0 ]
62 i f count == 0 :
63 try :
64 s e l f . dbcursor . execute ( ’CREATE TABLE ’ \
65 + p r o f i l e t a b l e + ’ ( ’ \
66 + ’ uid BIGINT PRIMARY KEY, ’ \
67 + ’name VARCHAR(40) , ’ \
68 + ’ screen name VARCHAR(40) , ’ \
69 + ’ l o c a t i o n VARCHAR(40) , ’ \
70 + ’ protec ted BOOL, ’ \
71 + ’ u t c o f f s e t INTEGER, ’ \
72 + ’ t ime zone VARCHAR(40) , ’ \
73 + ’ s t a tu s e s c oun t INTEGER, ’ \
74 + ’ f o l l owe r s c oun t INTEGER, ’ \
75 + ’ f r i e nd s c oun t INTEGER, ’ \
76 + ’ geo enabled BOOL, ’ \
77 + ’ lang VARCHAR(2) , ’ \
78 + ’ c r e a t ed a t TIMESTAMP) ’ )
79 except Exception , e :
80 p r in t ’ DatabaseAccess except ion : ’ , e
81 p r in t ’ Connection s ta tu s : ’ , s e l f . dbconn . c l o s ed
82 pr in t ’ Cursor s t a tu s : ’ , s e l f . dbcursor . c l o s ed
83 i f s e l f . dbconn . c l o s ed :
84 r a i s e ConnectionClosed ( )
85 e l i f s e l f . dbcursor . c l o s ed :
86 r a i s e CursorClosed ( )
87 e l s e :
88 r a i s e e
89
90 # Create tab l e ’ tweets ’ i f i t doesn ’ t a l ready e x i s t
91 tableCheck = s e l f . dbcursor . execute ( ’SELECT count ( table name ) : : i n t FROM information schema . t ab l e s

WHERE table name = \ ’ ’ + tweet tab l e + ’ \ ’ ’ )
92 tableCheck = s e l f . dbcursor . f e t chone ( )
93 count = tableCheck [ 0 ]
94 i f count == 0 :
95 try :
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96 s e l f . dbcursor . execute ( ’CREATE TABLE ’ + tweet tab l e + ’ ( ’ \
97 + ’ t i d BIGINT PRIMARY KEY, ’ \
98 + ’ uid BIGINT NOT NULL, ’ \
99 + ’ text VARCHAR(160) , ’ \

100 + ’ c r e a t ed a t TIMESTAMP, ’ \
101 + ’ truncated BOOL, ’ \
102 + ’ retweeted BOOL) ’ )
103 except Exception , e :
104 pr in t ’ DatabaseAccess except ion : ’ , e
105 pr in t ’ Connection s ta tu s : ’ , s e l f . dbconn . c l o s ed
106 pr in t ’ Cursor s t a tu s : ’ , s e l f . dbcursor . c l o s ed
107 i f s e l f . dbconn . c l o s ed :
108 r a i s e ConnectionClosed ( )
109 e l i f s e l f . dbcursor . c l o s ed :
110 r a i s e CursorClosed ( )
111 e l s e :
112 r a i s e e
113
114 # Create tab l e ’ s o c i a l g r aph ’ i f i t doesn ’ t a l ready e x i s t
115 checkTable = s e l f . dbcursor . execute ( ’SELECT count ( table name ) : : i n t FROM information schema . t ab l e s

WHERE table name = \ ’ ’ + s o c i a l g r aph t ab l e + ’ \ ’ ’ )
116 checkTable = s e l f . dbcursor . f e t chone ( )
117 count = checkTable [ 0 ]
118 i f count == 0 :
119 try :
120 s e l f . dbcursor . execute ( ’CREATE TABLE ’ + so c i a l g r aph t ab l e + ’ ( ’ \
121 + ’ parent BIGINT NOT NULL, ’ \
122 + ’ ch i l d BIGINT NOT NULL, ’ \
123 + ’UNIQUE ( parent , c h i l d ) ) ’ )
124 except Exception , e :
125 pr in t ’ DatabaseAccess except ion : ’ , e
126 pr in t ’ Connection s ta tu s : ’ , s e l f . dbconn . c l o s ed
127 pr in t ’ Cursor s t a tu s : ’ , s e l f . dbcursor . c l o s ed
128 i f s e l f . dbconn . c l o s ed :
129 r a i s e ConnectionClosed ( )
130 e l i f s e l f . dbcursor . c l o s ed :
131 r a i s e CursorClosed ( )
132 e l s e :
133 r a i s e e
134
135 # Commit changes to the database
136 try :
137 s e l f . dbconn . commit ( )
138 except Exception , e :
139 pr in t ’ DatabaseAccess except ion : ’ , e
140 pr in t ’ Connection s ta tu s : ’ , s e l f . dbconn . c l o s ed
141 pr in t ’ Cursor s t a tu s : ’ , s e l f . dbcursor . c l o s ed
142 i f s e l f . dbconn . c l o s ed :
143 r a i s e ConnectionClosed ( )
144 e l i f s e l f . dbcursor . c l o s ed :
145 s e l f . dbconn . r o l l b a ck ( )
146 r a i s e CursorClosed ( )
147 e l s e :
148 s e l f . dbconn . r o l l b a ck ( )
149 r a i s e e
150
151
152 de f t a b l e I n s e r t ( s e l f , tablename=None , en t ryd i c t=None , ∗∗kwargs ) :
153 ve rbo s i t y = kwargs . get ( ’ v e rbo s i t y ’ )
154 f i e l d s = ””
155 valuetemplate = ””
156 va lues = [ ]
157
158 f o r k , v in en t ryd i c t . i t e r i t em s ( ) :
159 f i e l d s += s t r (k ) + ” , ”
160 valuetemplate += ” %s , ”
161 va lues . append (v )
162 f i e l d s = f i e l d s [ : −1 ]
163 valuetemplate = valuetemplate [ : −1 ]
164 va lues = tup le ( va lues )
165
166 query = ”INSERT INTO ”
167 query += tablename + ” ( ” + f i e l d s + ” ) VALUES( ” + valuetemplate + ” ) ”
168
169 i f v e rbo s i t y >= DEBUG:
170 pr in t ” [ debug ] query : ” , query
171 pr in t ” [ debug ] va lues : ” , va lues
172 try :
173 s e l f . dbcursor . execute ( query , va lues )
174 except Exception , e :
175 pr in t ’ DatabaseAccess except ion : f a i l e d to i n s e r t in to tab l e ’ , tablename , ’ with message : ’ ,

e
176 pr in t ’ Connection s ta tu s : ’ , s e l f . dbconn . c l o s ed
177 pr in t ’ Cursor s t a tu s : ’ , s e l f . dbcursor . c l o s ed
178 i f s e l f . dbconn . c l o s ed :
179 r a i s e ConnectionClosed ( )
180 e l i f s e l f . dbcursor . c l o s ed :
181 r a i s e CursorClosed ( )
182 e l s e :
183 r a i s e e
184 f i n a l l y :
185 try :
186 s e l f . dbconn . commit ( )
187 except Exception , e :
188 pr in t ’ DatabaseAccess except ion : f a i l e d to commit changes to tab l e ’ , tablename , ’ with

message : ’ , e
189 pr in t ’ Connection s ta tu s : ’ , s e l f . dbconn . c l o s ed
190 pr in t ’ Cursor s t a tu s : ’ , s e l f . dbcursor . c l o s ed
191 i f s e l f . dbconn . c l o s ed :
192 r a i s e ConnectionClosed ( )
193 e l i f s e l f . dbcursor . c l o s ed :
194 s e l f . dbconn . r o l l b a ck ( )
195 r a i s e CursorClosed ( )

78



196 e l s e :
197 s e l f . dbconn . r o l l b a ck ( )
198 r a i s e e
199
200
201 de f profi leToSQL ( s e l f , p r o f i l e , f i e l d s , ∗∗kwargs ) :
202 d p r o f i l e = p r o f i l e . AsDict ( )
203 d p r o f i l e [ ’ uid ’ ] = dp r o f i l e . pop ( ’ id ’ )
204 en t ryd i c t = d i c t ( [ ( key , d p r o f i l e [ key ] ) f o r key in f i e l d s i f key in d p r o f i l e ] )
205 try :
206 s e l f . t a b l e I n s e r t ( tablename=p r o f i l e t a b l e , en t ryd i c t=entryd i c t , ∗∗kwargs )
207 except Exception , e :
208 r a i s e
209
210
211 de f tweetToSQL( s e l f , s tatus , ∗∗kwargs ) :
212 c r e a t ed a t = datetime . s t rpt ime ( s t a tu s . c r ea ted at , DATETIME STRING FORMAT)
213 en t ryd i c t = d i c t ( uid=s ta tu s . user . id ,
214 t i d=s ta tu s . id ,
215 text=s ta tu s . text ,
216 c r e a t ed a t=created at ,
217 truncated=s ta tu s . truncated ,
218 retweeted=s ta tu s . retweeted )
219 try :
220 s e l f . t a b l e I n s e r t ( tablename=tweettab le , en t ryd i c t=entryd i c t , ∗∗kwargs )
221 except Exception , e :
222 r a i s e
223
224
225 de f followToSQL ( s e l f , f o l l owe r , fo l lowed , f o l l o w e r f i e l d=’ parent ’ , f o l l ow e d f i e l d=’ ch i l d ’ , ∗∗kwargs ) :
226 en t ryd i c t = d i c t ( [ ( f o l l ow e r f i e l d , f o l l owe r ) , ( f o l l ow ed f i e l d , f o l l owed ) ] )
227 try :
228 s e l f . t a b l e I n s e r t ( tablename=soc i a l g r aphtab l e , en t ryd i c t=en t ryd i c t )
229 except Exception , e :
230 r a i s e

databaseAccess unrestricted.py

1 import datet ime
2 import traceback
3 import sys
4 import os
5
6
7 de f getErrorReport ( ) :
8 er rorReport = ErrorReport ( )
9 return errorReport

10
11
12 c l a s s ErrorReport ( ) :
13
14 de f i n i t ( s e l f ) :
15 return
16
17 de f s tar tLog ( s e l f ) :
18 timestamp = s t r ( datet ime . datet ime . now( ) )
19 f i leName = ’ Log ’+timestamp+’ . txt . ’
20 s e l f . l o gF i l e = open ( fi leName , ’w ’ )
21
22 de f endLog ( s e l f ) :
23 s e l f . l o gF i l e . c l o s e ( )
24
25 de f wr i t eError ( s e l f ) :
26 traceback . p r i n t ex c ( f i l e=s e l f . l o gF i l e )
27 s e l f . l o gF i l e . wr i t e ( ’\n ’ )
28 s e l f . l o gF i l e . f l u s h ( )
29 os . f sync ( s e l f . l o gF i l e )
30
31 de f writeMessage ( s e l f , message=’ ’ ) :
32 s e l f . l o gF i l e . wr i t e ( message )
33 s e l f . l o gF i l e . wr i t e ( ’\n\n ’ )
34 s e l f . l o gF i l e . f l u s h ( )
35 os . f sync ( s e l f . l o gF i l e )

errorReport unrestricted.py
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Appendix B

Creepy Crawly (Restricted)

1 import tw i t t e r
2 import r a t e L im i t e r r e s t r i c t e d
3 import e r r o rR epo r t r e s t r i c t e d
4 import da t aba s eAcc e s s r e s t r i c t ed
5 from pypars ing import Word , alphas , alphanums , Ca s e l e s sL i t e r a l , empty , p r in tab l e s , Keyword ,

CaselessKeyword
6
7 QUIET=0
8 STDOUTPUT=1
9 VERBOSE=2

10 DEBUG=3
11
12
13 de f main (∗∗ kwargs ) :
14
15 pr in t ’Main arguments : ’ , kwargs
16
17 ve rbo s i t y = kwargs . get ( ’ v e rbo s i t y ’ )
18
19 # Create log f i l e
20 log = e r r o rR epo r t r e s t r i c t e d . getErrorReport ( )
21 log . s tar tLog ( )
22
23 # Grammar f o r pars ing retweet
24 retweeted = Word( alphanums + ” ” + ”−” )
25 grammar = Keyword ( ”RT” ) + ”@” + retweeted . setResultsName ( ”name” ) + ” : ”
26
27 # Connect to database and c r ea t e t ab l e s
28 dbAccess = da t aba s eAcc e s s r e s t r i c t ed . getDatabaseAccess ( )
29 dbargs = d i c t ( [ (k , kwargs [ k ] ) f o r k in [ ’ host ’ , ’ db ’ , ’ user ’ , ’ passwd ’ ] ] )
30 dbAccess . makeConnection (∗∗ dbargs )
31 dbAccess . c r ea teTab le s ( )
32
33 r l a p i = r a t e L im i t e r r e s t r i c t e d . getRateLimiter (∗∗ kwargs )
34
35 # L i s t o f f i e l d s in the p r o f i l e t ab l e
36 p r o f i l e f i e l d s = [ ’ uid ’ ,
37 ’name ’ ,
38 ’ screen name ’ ,
39 ’ l o c a t i o n ’ ,
40 ’ protec ted ’ ,
41 ’ u t c o f f s e t ’ ,
42 ’ t ime zone ’ ,
43 ’ s t a tu s e s c oun t ’ ,
44 ’ f o l l owe r s c oun t ’ ,
45 ’ f r i e nd s c oun t ’ ,
46 ’ f a vou r i t e s c oun t ’ ,
47 ’ geo enabled ’ ,
48 ’ lang ’ ,
49 ’ c r e a t ed a t ’ ]
50
51 # L i s t o f u s e r s we want to track
52 use r s = [ ’ gab ioptavares ’ ]
53
54 f o r user in us e r s :
55
56 log . writeMessage ( ’ Started user : ’ + user )
57
58 # Get user p r o f i l e
59 try :
60 p r o f i l e = r l a p i . f reqLimitGetUser ( user )
61 us r id = p r o f i l e . id
62 except Exception , e :
63 log . wr i t eError ( )
64 p r in t ’ Twitter API except ion : ’ , e
65 log . writeMessage ( ’ Twitter API except ion : ’ + e . message )
66 cont inue
67
68 # In s e r t p r o f i l e in to p r o f i l e t ab l e
69 try :
70 dbAccess . profi leToSQL ( p r o f i l e , p r o f i l e f i e l d s , ∗∗kwargs )
71 except da t aba s eAcc e s s r e s t r i c t ed . ConnectionClosed , e :
72 log . wr i t eError ( )
73 p r in t e . message
74 log . writeMessage ( e . message )
75 dbAccess . makeConnection (∗∗ dbargs )
76 p r in t ’ Connection r e e s t a b l i s h e d . ’
77 log . writeMessage ( ’ Connection r e e s t a b l i s h e d . ’ )
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78 except da t aba s eAcc e s s r e s t r i c t ed . CursorClosed , e :
79 log . wr i t eError ( )
80 p r in t e . message
81 log . writeMessage ( e . message )
82 dbAccess . getCursor ( )
83 p r in t ’ Cursor updated . ’
84 log . writeMessage ( ’ Cursor updated . ’ )
85 except Exception , e :
86 log . wr i t eError ( )
87 p r in t ’ Database except ion : ’ , e
88 log . writeMessage ( ’ Database except ion : ’ + e . message )
89
90 # Get user ’ s f o l l ow e r s
91 cur so r = −1
92 whi le cur so r != 0 :
93 r e s = [ ]
94 try :
95 r e s = r l a p i . f reqLimitGetFol lowerIDs ( usr id , cur so r )
96 f o l i d s = re s [ u ’ i d s ’ ]
97 cur so r = re s [ u ’ nex t cu r so r ’ ]
98
99 # In s e r t f o l l ow e r s in to f o l l owe r tab l e

100 f o r f o l i d in f o l i d s :
101 try :
102 dbAccess . followerToSQL ( usr id , f o l i d )
103 except da t aba s eAcc e s s r e s t r i c t ed . ConnectionClosed , e :
104 log . wr i t eError ( )
105 pr in t e . message
106 log . writeMessage ( e . message )
107 dbAccess . makeConnection (∗∗ dbargs )
108 pr in t ’ Connection r e e s t a b l i s h e d . ’
109 log . writeMessage ( ’ Connection r e e s t a b l i s h e d . ’ )
110 except da t aba s eAcc e s s r e s t r i c t ed . CursorClosed , e :
111 log . wr i t eError ( )
112 pr in t e . message
113 log . writeMessage ( e . message )
114 dbAccess . getCursor ( )
115 pr in t ’ Cursor updated . ’
116 log . writeMessage ( ’ Cursor updated . ’ )
117 except Exception , e :
118 log . wr i t eError ( )
119 pr in t ’ Database except ion : ’ , e
120 log . writeMessage ( ’ Database except ion : ’ + e . message )
121 except Exception , e :
122 log . wr i t eError ( )
123 pr in t ’ Twitter API except ion : ’ , e
124 pr in t ’ id : ’ , u s r i d
125 log . writeMessage ( ’ Twitter API except ion : ’ + e . message + ’\nid : ’ + s t r ( u s r id ) )
126 cur so r = 0
127
128 # Get user ’ s f r i e n d s
129 cur so r = −1
130 whi le cur so r != 0 :
131 r e s = [ ]
132 try :
133 r e s = r l a p i . f reqLimitGetFriendIDs ( usr id , cur so r )
134 f r i e n d i d s = re s [ u ’ i d s ’ ]
135 cur so r = re s [ u ’ nex t cu r so r ’ ]
136
137 # In s e r t f r i e n d s in to f r i e nd tab l e
138 f o r f r i e n d i d in f r i e n d i d s :
139 try :
140 dbAccess . friendToSQL ( usr id , f r i e n d i d )
141 except da t aba s eAcc e s s r e s t r i c t ed . ConnectionClosed , e :
142 log . wr i t eError ( )
143 pr in t e . message
144 log . writeMessage ( e . message )
145 dbAccess . makeConnection (∗∗ dbargs )
146 pr in t ’ Connection r e e s t a b l i s h e d . ’
147 log . writeMessage ( ’ Connection r e e s t a b l i s h e d . ’ )
148 except da t aba s eAcc e s s r e s t r i c t ed . CursorClosed , e :
149 log . wr i t eError ( )
150 pr in t e . message
151 log . writeMessage ( e . message )
152 dbAccess . getCursor ( )
153 pr in t ’ Cursor updated . ’
154 log . writeMessage ( ’ Cursor updated . ’ )
155 except Exception , e :
156 log . wr i t eError ( )
157 pr in t ’ Database except ion : ’ , e
158 log . writeMessage ( ’ Database except ion : ’ + e . message )
159 except Exception , e :
160 log . wr i t eError ( )
161 pr in t ’ Twitter API except ion : ’ , e
162 pr in t ’ id : ’ , u s r i d
163 log . writeMessage ( ’ Twitter API except ion : ’ + e . message + ’\nid : ’ + s t r ( u s r id ) )
164 cur so r = 0
165
166 # Get user ’ s t ime l i n e
167 t ime l i n e = [ ]
168
169 t l = r l a p i . f reqLimitGetUserTimel ine ( u s e r i d=usr id , count=200 , i n c l u d e r t s=True , i n c l u d e e n t i t i e s=

True )
170 whi le ( t l != None and t l != [ ] and len ( t ime l i n e ) <= 600) :
171 log . writeMessage ( ’TIMELINE LENGTH: ’+s t r ( l en ( t ime l i n e ) ) )
172 t ime l i n e = t ime l i n e + t l
173 maxId = ( t l [−1]) . id −1
174 try :
175 t l = r l a p i . f reqLimitGetUserTimel ine ( u s e r i d=usr id , count=200 , max id=maxId , i n c l u d e r t s=

True , i n c l u d e e n t i t i e s=True )
176 except Exception , e :
177 log . wr i t eError ( )
178 pr in t ’ Twitter API except ion : ’ , e
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179 pr in t ’ id : ’ , u s r i d
180 log . writeMessage ( ’ Twitter API except ion : ’ + e . message + ’\nid : ’ + s t r ( u s r id ) )
181
182 f o r s t a tu s in t ime l i n e :
183
184 # Check i f i t i s a retweet
185 isRT = False
186 r e s = [ ]
187 try :
188 r e s = grammar . pa r s eS t r ing ( s t a tu s . t ext )
189 except Exception , e :
190 pass
191 f i n a l l y :
192 i f l en ( r e s ) > 0 :
193 isRT = True
194 r e twee t ed use r = re s . name
195
196 # I f i t i s a retweet , i n s e r t in to retweet tab l e
197 i f isRT :
198 try :
199 dbAccess . retweetToSQL ( status , r e tweeted user , ∗∗kwargs )
200 except da t aba s eAcc e s s r e s t r i c t ed . ConnectionClosed , e :
201 log . wr i t eError ( )
202 pr in t e . message
203 log . writeMessage ( e . message )
204 dbAccess . makeConnection (∗∗ dbargs )
205 pr in t ’ Connection r e e s t a b l i s h e d . ’
206 log . writeMessage ( ’ Connection r e e s t a b l i s h e d . ’ )
207 except da t aba s eAcc e s s r e s t r i c t ed . CursorClosed , e :
208 log . wr i t eError ( )
209 pr in t e . message
210 log . writeMessage ( e . message )
211 dbAccess . getCursor ( )
212 pr in t ’ Cursor updated . ’
213 log . writeMessage ( ’ Cursor updated . ’ )
214 except Exception , e :
215 log . wr i t eError ( )
216 pr in t ’ Database except ion : ’ , e
217 log . writeMessage ( ’ Database except ion : ’ + e . message )
218
219 # Else , get retweets , check f o r e n t i t i e s and i n s e r t in to tweet tab l e
220 e l s e :
221 # Get re tweet s
222 try :
223 re tweet s = r l a p i . f reqLimitGetRetweets ( s t a tu s . id )
224 except Exception , e :
225 log . wr i t eError ( )
226 pr in t ’ Twitter API except ion : ’ , e
227 pr in t ’ id : ’ , u s r i d
228 log . writeMessage ( ’ Twitter API except ion : ’ + e . message + ’\nid : ’ + s t r ( u s r id ) )
229 r e tw e e t e r i d s = [ ]
230 f o r retweet in re tweet s :
231 r e twe e t e r i d s . append ( retweet . user . id )
232 retweet count = len ( r e twe e t e r i d s )
233
234 # Check f o r r ep ly and e n t i t i e s ( mentions , hashtags , media and u r l s )
235 i s r e p l y = False
236 i s ment ion = False
237 mentions = [ ]
238 ment ion ids = [ ]
239 i s ha sh tag = False
240 hashtags = [ ]
241 i s med ia = False
242 i s u r l = False
243 i f s t a tu s . i n r e p l y t o s t a t u s i d != None :
244 i s r e p l y = True
245 i f l en ( s t a tu s . user ment ions ) > 0 :
246 i s ment ion = True
247 f o r mention in s t a tu s . user ment ions :
248 mentions . append (mention . screen name )
249 ment ion ids . append (mention . id )
250 i f l en ( s t a tu s . hashtags ) > 0 :
251 i s h a s t a g = True
252 f o r hashtag in s t a tu s . hashtags :
253 hashtags . append ( hashtag . t ext )
254 i f s t a tu s . media != None :
255 i s med ia = True
256 i f l en ( s t a tu s . u r l s ) > 0 :
257 i s u r l = True
258
259 # In s e r t in to tweet tab l e
260 try :
261 dbAccess . tweetToSQL( status , retweet count , r e twee t e r i d s , i s r e p l y , i s ment ion ,

mentions , mention ids , i s hashtag , hashtags , i s media , i s u r l , ∗∗kwargs )
262 except da t aba s eAcc e s s r e s t r i c t ed . ConnectionClosed , e :
263 log . wr i t eError ( )
264 pr in t e . message
265 log . writeMessage ( e . message )
266 dbAccess . makeConnection (∗∗ dbargs )
267 pr in t ’ Connection r e e s t a b l i s h e d . ’
268 log . writeMessage ( ’ Connection r e e s t a b l i s h e d . ’ )
269 except da t aba s eAcc e s s r e s t r i c t ed . CursorClosed , e :
270 log . wr i t eError ( )
271 pr in t e . message
272 log . writeMessage ( e . message )
273 dbAccess . getCursor ( )
274 pr in t ’ Cursor updated . ’
275 log . writeMessage ( ’ Cursor updated . ’ )
276 except Exception , e :
277 log . wr i t eError ( )
278 pr in t ’ Database except ion : ’ , e
279 log . writeMessage ( ’ Database except ion : ’ + e . message )
280
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281 # Get user ’ s f a v o r i t e s
282
283 try :
284 f a v o r i t e s = r l a p i . f r eqL imi tGetFavor i t e s ( u s r i d )
285 except Exception , e :
286 log . wr i t eErro r ( )
287 pr in t ’ Twitter API except ion : ’ , e
288 pr in t ’ id : ’ , u s r i d
289 log . writeMessage ( ’ Twitter API except ion : ’ + e . message + ’\nid : ’ + s t r ( u s r id ) )
290
291 # In s e r t f a v o r i t e s in to f a v o r i t e t ab l e
292 f o r f a v o r i t e in f a v o r i t e s :
293 try :
294 dbAccess . favoriteToSQL ( usr id , f a vo r i t e , ∗∗kwargs )
295 except da t aba s eAcc e s s r e s t r i c t ed . ConnectionClosed , e :
296 log . wr i t eError ( )
297 pr in t e . message
298 log . writeMessage ( e . message )
299 dbAccess . makeConnection (∗∗ dbargs )
300 pr in t ’ Connection r e e s t a b l i s h e d . ’
301 log . writeMessage ( ’ Connection r e e s t a b l i s h e d . ’ )
302 except da t aba s eAcc e s s r e s t r i c t ed . CursorClosed , e :
303 log . wr i t eError ( )
304 pr in t e . message
305 log . writeMessage ( e . message )
306 dbAccess . getCursor ( )
307 pr in t ’ Cursor updated . ’
308 log . writeMessage ( ’ Cursor updated . ’ )
309 except Exception , e :
310 log . wr i t eError ( )
311 pr in t ’ Database except ion : ’ , e
312 log . writeMessage ( ’ Database except ion : ’ + e . message )
313
314 log . writeMessage ( ’ F in i shed user : ’ + user )
315
316
317 i f name ==’ ma in ’ :
318
319 from optparse import OptionParser
320 par se r = OptionParser ( )
321 par s e r . add opt ion ( ’−v ’ , ”−−ve rbo s i t y ” ,
322 type=int ,
323 de f au l t=VERBOSE,
324
325 help=”Set the ve rbo s i t y ” )
326 par se r . add opt ion ( ”−−host ” ,
327 type=str ,
328 de f au l t=’ l o c a l h o s t ’ ,
329 help=”Host machine f o r database ac c e s s ” )
330 par se r . add opt ion ( ”−−db” ,
331 type=str ,
332 de f au l t=’XXXXX’ ,
333 help=”Database name” )
334 par se r . add opt ion ( ”−−user ” ,
335 type=str ,
336 de f au l t=’XXXXX’ ,
337 help=”User name f o r database ac c e s s ” )
338 par se r . add opt ion ( ”−−passwd” ,
339 type=str ,
340 de f au l t=’XXXXX’ ,
341 help=”Password f o r database ac c e s s ” )
342
343
344 ( opt ions , args ) = par se r . pa r s e a r g s ( )
345 kwargs = d i c t ( [ [ k , v ] f o r k , v in opt ions . d i c t . i t e r i t em s ( ) i f not v i s None ] )
346 main (∗ args ,∗∗ kwargs )

crawler restricted.py

1 import time
2 import tw i t t e r
3
4 QUIET=0
5 STDOUTPUT=1
6 VERBOSE=2
7 DEBUG=3
8
9

10 c l a s s SuppressedCal lExcept ion ( Exception ) :
11 de f i n i t ( s e l f , va lue ) :
12 s e l f . va lue = value
13 de f s t r ( s e l f ) :
14 return repr ( s e l f . va lue )
15
16 c l a s s RateLimiter ( ob j e c t ) :
17
18 readmethods = [ ’ F i l t e rPub l i cT ime l i n e ’ ,
19 ’ GetUser ’ ,
20 ’ GetDirectMessages ’ ,
21 ’ GetFavor i tes ’ ,
22 ’ GetFeatured ’ ,
23 ’ GetFollowerIDs ’ ,
24 ’ GetFol lowers ’ ,
25 ’ GetFriendIDs ’ ,
26 ’ GetFriends ’ ,
27 ’ GetFriendsTimel ine ’ ,
28 ’ GetLis t s ’ ,
29 ’ GetMentions ’ ,
30 ’ GetPubl icTimel ine ’ ,
31 ’ GetRepl ies ’ ,
32 ’ GetRetweets ’ ,
33 ’ GetSearch ’ ,
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34 ’ GetStatus ’ ,
35 ’ GetSubscr ipt ions ’ ,
36 ’ GetTrendsCurrent ’ ,
37 ’ GetTrendsDaily ’ ,
38 ’ GetTrendsWeekly ’ ,
39 ’ GetUser ’ ,
40 ’ GetUserByEmail ’ ,
41 ’ GetUserRetweets ’ ,
42 ’ GetUserTimeline ’ ,
43 ’MaximumHitFrequency ’ ,
44 ’ UsersLookup ’
45 ]
46
47 writemethods = [ ]
48
49 # I n i t i a l i z i n g ra t e l im i t i n g va r i ab l e
50 de f i n i t ( s e l f , api , v e rbo s i t y ) :
51 s e l f . max ca l l s = 0 # number o f a l lowed c a l l s in one hour : the quota
52 s e l f . c a l l s l e f t = 0 # what i s l e f t in the quota
53 s e l f . t end = 0 # end time o f an one−hour per iod
54 s e l f . api = api
55 f o r methodname in s e l f . readmethods+s e l f . writemethods :
56 s e l f .WrapMethod(methodname)
57 s e l f .WaitToMethod (methodname)
58 s e l f . FreqLimitMethod (methodname)
59 s e l f . GetTwitterRateLimit ( api=s e l f . api )
60 s e l f . timefrom = None
61 s e l f . v e rbo s i t y = ve rbo s i t y
62
63
64 de f GetTwitterRateLimit ( s e l f , api=None ) :
65 # Refresh the number o f c a l l s l e f t , max c a l l s and r e f r e s h time .
66 i f api i s None :
67 api = s e l f . ap i
68 r l = api . GetRateLimitStatus ( )
69 s e l f . c a l l s l e f t = r l [ ’ r ema in ing h i t s ’ ]
70 s e l f . max ca l l s = r l [ ’ h ou r l y l im i t ’ ]
71 s e l f . t end = r l [ ’ r e s e t t ime i n s e c ond s ’ ]
72
73
74 de f freqLimitMethod ( s e l f , methodname) :
75 # Waits the appropr ia te l ength be fo r e c a l l i n g .
76 # Twitter api may t h r o t t l e us i f we try c a l l i n g r epeated ly but with in our l im i t .
77 method = ge t a t t r ( s e l f . api , methodname)
78 de f f r eq l imitmethod (∗ args ,∗∗ kwargs ) :
79 i f s e l f . v e rbo s i t y >= DEBUG:
80 pr in t ” [DEBUG] In FreqLimit ”+methodname
81 i f s e l f . timefrom == None :
82 s e l f . timefrom = time . time ( )
83 mhf = s e l f . MaximumHitFrequency ( )
84 i f mhf == None :
85 mhf = 30
86 w a i t t i l l = s e l f . timefrom + mhf
87 now = time . time ( )
88 i f now > w a i t t i l l :
89 pass
90 e l s e :
91 i f s e l f . v e rbo s i t y >= STDOUTPUT:
92 pr in t ” S l eep ing f o r ”+ s t r ( w a i t t i l l−now)+ ” seconds ”
93 time . s l e ep ( w a i t t i l l−now)
94 i f s e l f . v e rbo s i t y >= STDOUTPUT:
95 pr in t ”Waking up”
96 r e s = method (∗ args ,∗∗ kwargs )
97 s e l f . timefrom = time . time ( )
98 return r e s
99 s e t a t t r ( s e l f , ’ f r eqL imi t ’+methodname , f r eq l imitmethod )

100
101
102 de f getRateLimiter ( consumer key = ’XXXXX’ ,
103 consumer secre t = ’XXXXX’ ,
104 acc e s s t oken key = ’XXXXX’ ,
105 a c c e s s t o k e n s e c r e t = ’XXXXX’ ,
106 ∗∗kwargs ) :
107
108 api = tw i t t e r . Api ( consumer key=consumer key ,
109 consumer secre t=consumer secret ,
110 acc e s s t oken key=acces s token key ,
111 a c c e s s t o k e n s e c r e t=ac c e s s t o k en s e c r e t ,
112 cache=None )
113
114 r l a p i = RateLimiter ( api , v e rbo s i t y=kwargs . get ( ’ v e rbo s i t y ’ ) )
115 return r l a p i

rateLimiter restricted.py

1 import psycopg2
2 from datet ime import datetime , date
3
4 DATETIME STRING FORMAT = ’%a %b %d %H:%M:%S +0000 %Y’
5 QUIET=0
6 STDOUTPUT=1
7 VERBOSE=2
8 DEBUG=3
9

10 p r o f i l e t a b l e = ’ p r o f i l e s ’
11 f o l l ow e r t a b l e = ’ f o l l ow e r s ’
12 f r i e n d t a b l e = ’ f r i e n d s ’
13 tweet tab l e = ’ tweets ’
14 r e twee t tab l e = ’ re tweet s ’
15 f a v o r i t e t a b l e = ’ f a v o r i t e s ’
16
17
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18 c l a s s ConnectionClosed ( Exception ) :
19 de f i n i t ( s e l f ) :
20 s e l f . message = ’ ConnectionClosed Exception ! ’
21 return
22
23
24 c l a s s CursorClosed ( Exception ) :
25 de f i n i t ( s e l f ) :
26 s e l f . message = ’ CursorClosed Exception ! ’
27 return
28
29
30 de f getDatabaseAccess ( ) :
31 dbAccess = DatabaseAccess ( )
32 return dbAccess
33
34
35 c l a s s DatabaseAccess ( ) :
36
37 de f i n i t ( s e l f ) :
38 s e l f . dbconn = None
39 s e l f . dbcursor = None
40
41
42 de f makeConnection ( s e l f , ∗∗kwargs ) :
43 host = kwargs . get ( ’ host ’ )
44 database = kwargs . get ( ’ db ’ )
45 user = kwargs . get ( ’ user ’ )
46 password = kwargs . get ( ’ passwd ’ )
47 s e l f . dbconn = psycopg2 . connect ( database=database , user=user , password=password )
48 s e l f . getCursor ( )
49
50
51 de f getCursor ( s e l f ) :
52 s e l f . dbcursor = s e l f . dbconn . cur so r ( )
53
54
55 de f c loseConnect ion ( s e l f ) :
56 s e l f . dbconn . c l o s e ( )
57
58
59 de f c r eateTab le s ( s e l f ) :
60
61 # Create tab l e ’ p r o f i l e s ’ i f i t doesn ’ t a l ready e x i s t
62 tableCheck = s e l f . dbcursor . execute ( ’SELECT count ( table name ) : : i n t FROM information schema . t ab l e s

WHERE table name = \ ’ ’ + p r o f i l e t a b l e + ’ \ ’ ’ )
63 tableCheck = s e l f . dbcursor . f e t chone ( )
64 count = tableCheck [ 0 ]
65 i f count == 0 :
66 try :
67 s e l f . dbcursor . execute ( ’CREATE TABLE ’ \
68 + p r o f i l e t a b l e + ’ ( ’ \
69 + ’ uid BIGINT PRIMARY KEY, ’ \
70 + ’name VARCHAR(40) , ’ \
71 + ’ screen name VARCHAR(40) , ’ \
72 + ’ l o c a t i o n VARCHAR(40) , ’ \
73 + ’ protec ted BOOL, ’ \
74 + ’ u t c o f f s e t INTEGER, ’ \
75 + ’ t ime zone VARCHAR(40) , ’ \
76 + ’ s t a tu s e s c oun t INTEGER, ’ \
77 + ’ f o l l owe r s c oun t INTEGER, ’ \
78 + ’ f r i e nd s c oun t INTEGER, ’ \
79 + ’ f a vou r i t e s c oun t INTEGER, ’ \
80 + ’ geo enabled BOOL, ’ \
81 + ’ lang VARCHAR(2) , ’ \
82 + ’ c r e a t ed a t TIMESTAMP) ’ )
83 except Exception , e :
84 p r in t ’ DatabaseAccess except ion : ’ , e
85 p r in t ’ Connection s ta tu s : ’ , s e l f . dbconn . c l o s ed
86 pr in t ’ Cursor s t a tu s : ’ , s e l f . dbcursor . c l o s ed
87 i f s e l f . dbconn . c l o s ed :
88 r a i s e ConnectionClosed ( )
89 e l i f s e l f . dbcursor . c l o s ed :
90 r a i s e CursorClosed ( )
91 e l s e :
92 r a i s e e
93
94 # Create tab l e ’ f o l l ow e r s ’ i f i t doesn ’ t a l ready e x i s t
95 checkTable = s e l f . dbcursor . execute ( ’SELECT count ( table name ) : : i n t FROM information schema . t ab l e s

WHERE table name = \ ’ ’ + f o l l ow e r t a b l e + ’ \ ’ ’ )
96 checkTable = s e l f . dbcursor . f e t chone ( )
97 count = checkTable [ 0 ]
98 i f count == 0 :
99 try :

100 s e l f . dbcursor . execute ( ’CREATE TABLE ’ + f o l l ow e r t a b l e + ’ ( ’ \
101 + ’ uid BIGINT NOT NULL, ’ \
102 + ’ f o l l ow e r i d BIGINT NOT NULL, ’ \
103 + ’UNIQUE ( uid , f o l l ow e r i d ) ) ’ )
104 except Exception , e :
105 pr in t ’ DatabaseAccess except ion : ’ , e
106 pr in t ’ Connection s ta tu s : ’ , s e l f . dbconn . c l o s ed
107 pr in t ’ Cursor s t a tu s : ’ , s e l f . dbcursor . c l o s ed
108 i f s e l f . dbconn . c l o s ed :
109 r a i s e ConnectionClosed ( )
110 e l i f s e l f . dbcursor . c l o s ed :
111 r a i s e CursorClosed ( )
112 e l s e :
113 r a i s e e
114
115 # Create tab l e ’ f r i e n d s ’ i f i t doesn ’ t a l ready e x i s t
116 checkTable = s e l f . dbcursor . execute ( ’SELECT count ( table name ) : : i n t FROM information schema . t ab l e s

WHERE table name = \ ’ ’ + f r i e n d t a b l e + ’ \ ’ ’ )
117 checkTable = s e l f . dbcursor . f e t chone ( )
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118 count = checkTable [ 0 ]
119 i f count == 0 :
120 try :
121 s e l f . dbcursor . execute ( ’CREATE TABLE ’ + f r i e n d t a b l e + ’ ( ’ \
122 + ’ uid BIGINT NOT NULL, ’ \
123 + ’ f r i e n d i d BIGINT NOT NULL, ’ \
124 + ’UNIQUE ( uid , f r i e n d i d ) ) ’ )
125 except Exception , e :
126 pr in t ’ DatabaseAccess except ion : ’ , e
127 pr in t ’ Connection s ta tu s : ’ , s e l f . dbconn . c l o s ed
128 pr in t ’ Cursor s t a tu s : ’ , s e l f . dbcursor . c l o s ed
129 i f s e l f . dbconn . c l o s ed :
130 r a i s e ConnectionClosed ( )
131 e l i f s e l f . dbcursor . c l o s ed :
132 r a i s e CursorClosed ( )
133 e l s e :
134 r a i s e e
135
136 # Create tab l e ’ tweets ’ i f i t doesn ’ t a l ready e x i s t
137 tableCheck = s e l f . dbcursor . execute ( ’SELECT count ( table name ) : : i n t FROM information schema . t ab l e s

WHERE table name = \ ’ ’ + tweet tab l e + ’ \ ’ ’ )
138 tableCheck = s e l f . dbcursor . f e t chone ( )
139 count = tableCheck [ 0 ]
140 i f count == 0 :
141 try :
142 s e l f . dbcursor . execute ( ’CREATE TABLE ’ + tweet tab l e + ’ ( ’ \
143 + ’ uid BIGINT NOT NULL, ’ \
144 + ’ t i d BIGINT PRIMARY KEY, ’ \
145 + ’ text VARCHAR(160) , ’ \
146 + ’ c r e a t ed a t TIMESTAMP, ’ \
147 + ’ i s r e p l y BOOL, ’ \
148 + ’ i n r e p l y t o u s e r i d BIGINT , ’ \
149 + ’ i n r e p l y t o s t a t u s i d BIGINT , ’ \
150 + ’ i s ment ion BOOL, ’ \
151 + ’ mentions VARCHAR(40) [ ] , ’ \
152 + ’ ment ion ids BIGINT [ ] , ’ \
153 + ’ i s ha sh tag BOOL, ’ \
154 + ’ hashtags VARCHAR(100) [ ] , ’ \
155 + ’ i s med ia BOOL, ’ \
156 + ’ i s u r l BOOL, ’ \
157 + ’ re tweet count INTEGER, ’ \
158 + ’ r e tw e e t e r i d s BIGINT [ ] ) ’ )
159
160 except Exception , e :
161 pr in t ’ DatabaseAccess except ion : ’ , e
162 pr in t ’ Connection s ta tu s : ’ , s e l f . dbconn . c l o s ed
163 pr in t ’ Cursor s t a tu s : ’ , s e l f . dbcursor . c l o s ed
164 i f s e l f . dbconn . c l o s ed :
165 r a i s e ConnectionClosed ( )
166 e l i f s e l f . dbcursor . c l o s ed :
167 r a i s e CursorClosed ( )
168 e l s e :
169 r a i s e e
170
171 # Create tab l e ’ r e tweet s ’ i f i t doesn ’ t a l ready e x i s t
172 tableCheck = s e l f . dbcursor . execute ( ’SELECT count ( table name ) : : i n t FROM information schema . t ab l e s

WHERE table name = \ ’ ’ + r e twee t tab l e + ’ \ ’ ’ )
173 tableCheck = s e l f . dbcursor . f e t chone ( )
174 count = tableCheck [ 0 ]
175 i f count == 0 :
176 try :
177 s e l f . dbcursor . execute ( ’CREATE TABLE ’ + re twee t t ab l e + ’ ( ’ \
178 + ’ uid BIGINT NOT NULL, ’ \
179 + ’ r e twee t ed use r VARCHAR(30) , ’ \
180 + ’ t i d BIGINT NOT NULL, ’ \
181 + ’ text VARCHAR(160) , ’ \
182 + ’ c r e a t ed a t TIMESTAMP, ’ \
183 + ’UNIQUE ( uid , t i d ) ) ’ )
184 except Exception , e :
185 pr in t ’ DatabaseAccess except ion : ’ , e
186 pr in t ’ Connection s ta tu s : ’ , s e l f . dbconn . c l o s ed
187 pr in t ’ Cursor s t a tu s : ’ , s e l f . dbcursor . c l o s ed
188 i f s e l f . dbconn . c l o s ed :
189 r a i s e ConnectionClosed ( )
190 e l i f s e l f . dbcursor . c l o s ed :
191 r a i s e CursorClosed ( )
192 e l s e :
193 r a i s e e
194
195 # Create tab l e ’ f a v o r i t e s ’ i f i t doesn ’ t a l ready e x i s t
196 tableCheck = s e l f . dbcursor . execute ( ’SELECT count ( table name ) : : i n t FROM information schema . t ab l e s

WHERE table name = \ ’ ’ + f a v o r i t e t a b l e + ’ \ ’ ’ )
197 tableCheck = s e l f . dbcursor . f e t chone ( )
198 count = tableCheck [ 0 ]
199 i f count == 0 :
200 try :
201 s e l f . dbcursor . execute ( ’CREATE TABLE ’ + f a v o r i t e t a b l e + ’ ( ’ \
202 + ’ uid BIGINT NOT NULL, ’ \
203 + ’ t i d BIGINT NOT NULL, ’ \
204 + ’ f a v o r i t e d u s e r i d BIGINT NOT NULL, ’ \
205 + ’ text VARCHAR(160) , ’ \
206 + ’ c r e a t ed a t TIMESTAMP, ’ \
207 + ’UNIQUE ( uid , t i d ) ) ’ )
208 except Exception , e :
209 pr in t ’ DatabaseAccess except ion : ’ , e
210 pr in t ’ Connection s ta tu s : ’ , s e l f . dbconn . c l o s ed
211 pr in t ’ Cursor s t a tu s : ’ , s e l f . dbcursor . c l o s ed
212 i f s e l f . dbconn . c l o s ed :
213 r a i s e ConnectionClosed ( )
214 e l i f s e l f . dbcursor . c l o s ed :
215 r a i s e CursorClosed ( )
216 e l s e :
217 r a i s e e
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218
219
220 # Commit changes to the database
221 try :
222 s e l f . dbconn . commit ( )
223 except Exception , e :
224 pr in t ’ DatabaseAccess except ion : ’ , e
225 pr in t ’ Connection s ta tu s : ’ , s e l f . dbconn . c l o s ed
226 pr in t ’ Cursor s t a tu s : ’ , s e l f . dbcursor . c l o s ed
227 i f s e l f . dbconn . c l o s ed :
228 r a i s e ConnectionClosed ( )
229 e l i f s e l f . dbcursor . c l o s ed :
230 s e l f . dbconn . r o l l b a ck ( )
231 r a i s e CursorClosed ( )
232 e l s e :
233 s e l f . dbconn . r o l l b a ck ( )
234 r a i s e e
235
236
237 de f t a b l e I n s e r t ( s e l f , tablename=None , en t ryd i c t=None , ∗∗kwargs ) :
238 ve rbo s i t y = kwargs . get ( ’ v e rbo s i t y ’ )
239 f i e l d s = ””
240 valuetemplate = ””
241 va lues = [ ]
242
243 f o r k , v in en t ryd i c t . i t e r i t em s ( ) :
244 f i e l d s += s t r (k ) + ” , ”
245 valuetemplate += ” %s , ”
246 va lues . append (v )
247 f i e l d s = f i e l d s [ : −1 ]
248 valuetemplate = valuetemplate [ : −1 ]
249 va lues = tup le ( va lues )
250
251 query = ”INSERT INTO ”
252 query += tablename + ” ( ” + f i e l d s + ” ) VALUES( ” + valuetemplate + ” ) ”
253
254 i f v e rbo s i t y >= DEBUG:
255 pr in t ” [ debug ] query : ” , query
256 pr in t ” [ debug ] va lues : ” , va lues
257 try :
258 s e l f . dbcursor . execute ( query , va lues )
259 except Exception , e :
260 pr in t ’ DatabaseAccess except ion : f a i l e d to i n s e r t in to tab l e ’ , tablename , ’ with message : ’ ,

e
261 pr in t ’ Connection s ta tu s : ’ , s e l f . dbconn . c l o s ed
262 pr in t ’ Cursor s t a tu s : ’ , s e l f . dbcursor . c l o s ed
263 i f s e l f . dbconn . c l o s ed :
264 r a i s e ConnectionClosed ( )
265 e l i f s e l f . dbcursor . c l o s ed :
266 r a i s e CursorClosed ( )
267 e l s e :
268 r a i s e e
269 f i n a l l y :
270 try :
271 s e l f . dbconn . commit ( )
272 except Exception , e :
273 pr in t ’ DatabaseAccess except ion : f a i l e d to commit changes to tab l e ’ , tablename , ’ with

message : ’ , e
274 pr in t ’ Connection s ta tu s : ’ , s e l f . dbconn . c l o s ed
275 pr in t ’ Cursor s t a tu s : ’ , s e l f . dbcursor . c l o s ed
276 i f s e l f . dbconn . c l o s ed :
277 r a i s e ConnectionClosed ( )
278 e l i f s e l f . dbcursor . c l o s ed :
279 s e l f . dbconn . r o l l b a ck ( )
280 r a i s e CursorClosed ( )
281 e l s e :
282 s e l f . dbconn . r o l l b a ck ( )
283 r a i s e e
284
285
286 de f profi leToSQL ( s e l f , p r o f i l e , f i e l d s , ∗∗kwargs ) :
287 d p r o f i l e = p r o f i l e . AsDict ( )
288 d p r o f i l e [ ’ uid ’ ] = dp r o f i l e . pop ( ’ id ’ )
289 en t ryd i c t = d i c t ( [ ( key , d p r o f i l e [ key ] ) f o r key in f i e l d s i f key in d p r o f i l e ] )
290 try :
291 s e l f . t a b l e I n s e r t ( tablename=p r o f i l e t a b l e , en t ryd i c t=entryd i c t , ∗∗kwargs )
292 except Exception , e :
293 r a i s e
294
295
296 de f followerToSQL ( s e l f , usr id , f o l l owe r i d , ∗∗kwargs ) :
297 en t ryd i c t = d i c t ( uid=usr id ,
298 f o l l ow e r i d=f o l l ow e r i d )
299 try :
300 s e l f . t a b l e I n s e r t ( tablename=fo l l owe r t ab l e , en t ryd i c t=entryd i c t , ∗∗kwargs )
301 except Exception , e :
302 r a i s e
303
304
305 de f friendToSQL ( s e l f , usr id , f r i e nd i d , ∗∗kwargs ) :
306 en t ryd i c t = d i c t ( uid=usr id ,
307 f r i e n d i d=f r i e n d i d )
308 try :
309 s e l f . t a b l e I n s e r t ( tablename=f r i e nd t ab l e , en t ryd i c t=entryd i c t , ∗∗kwargs )
310 except Exception , e :
311 r a i s e
312
313
314 de f tweetToSQL( s e l f , s tatus , retweet count , r e twee t e r i d s , i s r e p l y , i s ment ion , mentions , mention ids

, i s hashtag , hashtags , i s media , i s u r l , ∗∗kwargs ) :
315 en t ryd i c t = d i c t ( uid=s ta tu s . user . id ,
316 t i d=s ta tu s . id ,
317 text=s ta tu s . text ,
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318 c r e a t ed a t=s ta tu s . c r ea ted at ,
319 i s r e p l y=i s r e p l y ,
320 i n r e p l y t o u s e r i d=s ta tu s . i n r e p l y t o u s e r i d ,
321 i n r e p l y t o s t a t u s i d=s ta tu s . i n r e p l y t o s t a t u s i d ,
322 i s ment ion=is ment ion ,
323 mentions=mentions ,
324 ment ion ids=mention ids ,
325 i s ha sh tag=i s hashtag ,
326 hashtags=hashtags ,
327 i s med ia=is media ,
328 i s u r l=i s u r l ,
329 retweet count=retweet count ,
330 r e tw e e t e r i d s=r e twe e t e r i d s )
331 try :
332 s e l f . t a b l e I n s e r t ( tablename=tweettab le , en t ryd i c t=entryd i c t , ∗∗kwargs )
333 except Exception , e :
334 r a i s e
335
336
337 de f retweetToSQL ( s e l f , s tatus , r e tweeted user , ∗∗kwargs ) :
338 c r e a t ed a t = datetime . s t rpt ime ( s t a tu s . c r ea ted at , DATETIME STRING FORMAT)
339 en t ryd i c t = d i c t ( uid=s ta tu s . user . id ,
340 r e twee t ed use r=retweeted user ,
341 t i d=s ta tu s . id ,
342 text=s ta tu s . text ,
343 c r e a t ed a t=c r ea t ed a t )
344 try :
345 s e l f . t a b l e I n s e r t ( tablename=retweet tab l e , en t ryd i c t=entryd i c t , ∗∗kwargs )
346 except Exception , e :
347 r a i s e
348
349
350 de f favoriteToSQL ( s e l f , usr id , s tatus , ∗∗kwargs ) :
351 c r e a t ed a t = datetime . s t rpt ime ( s t a tu s . c r ea ted at , DATETIME STRING FORMAT)
352 en t ryd i c t = d i c t ( uid=usr id ,
353 t i d=s ta tu s . id ,
354 f a v o r i t e d u s e r i d=s ta tu s . user . id ,
355 text=s ta tu s . text ,
356 c r e a t ed a t=c r ea t ed a t )
357 try :
358 s e l f . t a b l e I n s e r t ( tablename=f avo r i t e t ab l e , en t ryd i c t=entryd i c t , ∗∗kwargs )
359 except Exception , e :
360 r a i s e

databaseAccess restricted.py

1 import datet ime
2 import traceback
3 import sys
4 import os
5
6
7 de f getErrorReport ( ) :
8 er rorReport = ErrorReport ( )
9 return errorReport

10
11
12 c l a s s ErrorReport ( ) :
13
14 de f i n i t ( s e l f ) :
15 return
16
17 de f s tar tLog ( s e l f ) :
18 timestamp = s t r ( datet ime . datet ime . now( ) )
19 f i leName = ’ Log ’+timestamp+’ . txt . ’
20 s e l f . l o gF i l e = open ( fi leName , ’w ’ )
21
22 de f endLog ( s e l f ) :
23 s e l f . l o gF i l e . c l o s e ( )
24
25 de f wr i t eError ( s e l f ) :
26 traceback . p r i n t ex c ( f i l e=s e l f . l o gF i l e )
27 s e l f . l o gF i l e . wr i t e ( ’\n ’ )
28 s e l f . l o gF i l e . f l u s h ( )
29 os . f sync ( s e l f . l o gF i l e )
30
31 de f writeMessage ( s e l f , message=’ ’ ) :
32 s e l f . l o gF i l e . wr i t e ( message )
33 s e l f . l o gF i l e . wr i t e ( ’\n\n ’ )
34 s e l f . l o gF i l e . f l u s h ( )
35 os . f sync ( s e l f . l o gF i l e )

errorReport restricted.py
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Appendix C

2-Classifier

1 % This func t i on c l a s s i f i e s u s e r s in one o f two c l a s s e s : pe r sona l accounts
2 % (P) and managed accounts (M) . I t takes as input the s i z e o f the datase t
3 % used in the c l a s s i f i c a t i o n and performs leave−one−out c r o s s v a l i d a t i on .
4 % Four d i f f e r e n t c l a s s i f i c a t i o n s are used : us ing only in t e r−tweet de lay
5 % i n t e r v a l s (ITD) , us ing only tweet ing t imes (TT) , us ing both as
6 % independent v a r i a b l e s ( JI ) and us ing both as non−independent v a r i a b l e s
7 % (JNI ) .
8
9 func t i on [ numSamples , percCorrect JNI , percCorrec t J I , percCorrect ITD , percCorrect TT ] = C l a s s i f i e r 2 (

vararg in )
10
11 load companies . mat
12 J{1} = T;
13
14 load people . mat
15 J{2} = T;
16
17 % Class M − ITD
18 T M ITD = J {1} ;
19 g M ITD = grp2idx (T M ITD ( : , 1 ) ) ;
20
21 % Class P − ITD
22 T P ITD = J {2} ;
23 g P ITD = grp2idx (T P ITD ( : , 1 ) ) ;
24
25 % Class M − TT
26 T M TT = J {1} ;
27 g M TT = grp2idx (T M TT( : , 1 ) ) ;
28
29 % Class P − TT
30 T P TT = J {2} ;
31 g P TT = grp2idx (T P TT ( : , 1 ) ) ;
32
33 % Class M − J
34 T M J = J {1} ;
35 g M J = grp2idx (T M J ( : , 1 ) ) ;
36
37 % Class P − J
38 T P J = J {2} ;
39 g P J = grp2idx (T P J ( : , 1 ) ) ;
40
41 % Confusion matrix counts
42 countPP ITD = 0 ;
43 countPM ITD = 0 ;
44 countMP ITD = 0 ;
45 countMM ITD = 0 ;
46
47 countPP TT = 0 ;
48 countPM TT = 0 ;
49 countMP TT = 0 ;
50 countMM TT = 0 ;
51
52 countPP JI = 0 ;
53 countPM JI = 0 ;
54 countMP JI = 0 ;
55 countMM JI = 0 ;
56
57 countPP JNI = 0 ;
58 countPM JNI = 0 ;
59 countMP JNI = 0 ;
60 countMM JNI = 0 ;
61
62 i f narg in == 0
63 f o r i =1:2
64 T = J{ i } ;
65 g = grp2idx (T( : , 1 ) ) ;
66 n( i ) = length ( unique ( g ) ) ;
67 end
68 f o r i =1:2
69 T = J{ i } ;
70 g = grp2idx (T( : , 1 ) ) ;
71 n( i ) = length ( unique ( g ) ) ;
72 end
73 numSamples = min (n) ;
74 e l s e
75 numSamples = vararg in {1} ;
76 end
77
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78 %% ITD
79
80 % Leave−one−out c r o s s v a l i d a t i on
81 f o r i =1:numSamples
82
83 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s M
84 [ n M , xout M ] = h i s t (T M ITD(g M ITD˜=i & g M ITD<=numSamples , 2 ) , l og space (0 ,8 , 30 ) ) ;
85 n M = n M/sum(n M) ;
86 xout M l in = log ( xout M) ;
87
88 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s P
89 [ n P , xout P ] = h i s t (T P ITD( g P ITD˜=i & g P ITD<=numSamples , 2 ) , l og space (0 ,8 , 30 ) ) ;
90 n P = n P/sum(n P ) ;
91 xout P l i n = log ( xout P ) ;
92
93 % Get sub j e c t SubjM from c l a s s M, get p r obab i l i t y f o r c l a s s e s M and P
94 SubjM = [ ] ;
95 SubjM = T M ITD(g M ITD==i , 2 ) ;
96 Sum M M = 0;
97 Sum M P = 0 ;
98 f o r j =1: s i z e (SubjM , 1 )
99 Sum M M = Sum M M + log ( in t e rp1 ( xout M lin , n M , log (SubjM( j , 1 ) ) , ’ s p l i n e ’ ) ) ;

100 end
101 f o r j =1: s i z e (SubjM , 1 )
102 Sum M P = Sum M P + log ( in t e rp1 ( xout P l in , n P , log (SubjM( j , 1 ) ) , ’ s p l i n e ’ ) ) ;
103 end
104
105 % Get sub j e c t SubjP from c l a s s P, get p r obab i l i t y f o r c l a s s e s M and P
106 SubjP = [ ] ;
107 SubjP = T P ITD( g P ITD==i , 2 ) ;
108 Sum P M = 0;
109 Sum P P = 0 ;
110 f o r j =1: s i z e ( SubjP , 1 )
111 Sum P M = Sum P M + log ( in t e rp1 ( xout M lin , n M , log ( SubjP ( j , 1 ) ) , ’ s p l i n e ’ ) ) ;
112 end
113 f o r j =1: s i z e ( SubjP , 1 )
114 Sum P P = Sum P P + log ( in t e rp1 ( xout P l in , n P , log ( SubjP ( j , 1 ) ) , ’ s p l i n e ’ ) ) ;
115 end
116
117 resM = Sum M P − Sum M M;
118 i f ( resM > 0)
119 countMP ITD = countMP ITD + 1 ;
120 e l s e i f ( resM < 0)
121 countMM ITD = countMM ITD + 1 ;
122 end
123
124 resP = Sum P P − Sum P M;
125 i f ( resP > 0)
126 countPP ITD = countPP ITD + 1 ;
127 e l s e i f ( resP < 0)
128 countPM ITD = countPM ITD + 1 ;
129 end
130 end
131
132
133 %% TT
134
135 % Leave−one−out c r o s s v a l i d a t i on
136 f o r i =1:numSamples
137
138 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s M
139 [ n M , xout M ] = h i s t (T M TT(g M TT˜=i & g M TT<=numSamples , 3 ) , 0 : 1 : 2 3 ) ;
140 n M = n M/sum(n M) ;
141
142 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s I
143 [ n P , xout P ] = h i s t (T P TT(g P TT˜=i & g P TT<=numSamples , 3 ) , 0 : 1 : 2 3 ) ;
144 n P = n P/sum(n P ) ;
145
146 % Get sub j e c t SubjM from c l a s s M, get p r obab i l i t y f o r c l a s s e s M and P
147 SubjM = [ ] ;
148 SubjM = T M TT(g M TT==i , 3 ) ;
149 Sum M M = 0;
150 Sum M P = 0 ;
151 f o r j =1: s i z e (SubjM , 1 )
152 Sum M M = Sum M M + log ( in t e rp1 ( xout M , n M , SubjM( j , 1 ) , ’ s p l i n e ’ ) ) ;
153 end
154 f o r j =1: s i z e (SubjM , 1 )
155 Sum M P = Sum M P + log ( in t e rp1 ( xout P , n P , SubjM( j , 1 ) , ’ s p l i n e ’ ) ) ;
156 end
157
158 % Get sub j e c t SubjP from c l a s s P, get p r obab i l i t y f o r c l a s s e s M and P
159 SubjP = [ ] ;
160 SubjP = T P TT(g P TT==i , 3 ) ;
161 Sum P M = 0;
162 Sum P P = 0 ;
163 f o r j =1: s i z e ( SubjP , 1 )
164 Sum P M = Sum P M + log ( in t e rp1 ( xout M , n M , SubjP ( j , 1 ) , ’ s p l i n e ’ ) ) ;
165 end
166 f o r j =1: s i z e ( SubjP , 1 )
167 Sum P P = Sum P P + log ( in t e rp1 ( xout P , n P , SubjP ( j , 1 ) , ’ s p l i n e ’ ) ) ;
168 end
169
170 resM = Sum M P − Sum M M;
171 i f ( resM > 0)
172 countMP TT = countMP TT + 1 ;
173 e l s e i f ( resM < 0)
174 countMM TT = countMM TT + 1 ;
175 end
176
177 resP = Sum P P − Sum P M;
178 i f ( resP > 0)
179 countPP TT = countPP TT + 1 ;
180 e l s e i f ( resP < 0)
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181 countPM TT = countPM TT + 1 ;
182 end
183 end
184
185
186 %% JI
187
188 % Leave−one−out c r o s s v a l i d a t i on
189 f o r i =1:numSamples
190
191 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s M ( Inte r twee t delay )
192 [ n M ITD , xout M ITD ] = h i s t (T M ITD(g M ITD˜=i & g M ITD<=numSamples , 2 ) , l og space (0 ,8 , 30 ) ) ;
193 n M ITD = n M ITD/sum(n M ITD) ;
194 xout M ITD lin = log ( xout M ITD) ;
195
196 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s P ( In te r twee t de lay )
197 [ n P ITD , xout P ITD ] = h i s t (T P ITD( g P ITD˜=i & g P ITD<=numSamples , 2 ) , l og space (0 ,8 , 30 ) ) ;
198 n P ITD = n P ITD/sum(n P ITD) ;
199 xout P ITD l in = log ( xout P ITD ) ;
200
201 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s M ( Tweeting time )
202 [ n M TT , xout M TT ] = h i s t (T M TT(g M TT˜=i & g M TT<=numSamples , 3 ) , 0 : 1 : 2 3 ) ;
203 n M TT = n M TT/sum(n M TT) ;
204
205 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s P ( Tweeting time )
206 [ n P TT , xout P TT ] = h i s t (T P TT(g P TT˜=i & g P TT<=numSamples , 3 ) , 0 : 1 : 2 3 ) ;
207 n P TT = n P TT/sum(n P TT) ;
208
209 % Get sub j e c t SubjM from c l a s s M, get p r obab i l i t y f o r c l a s s e s M and P
210 SubjM ITD = T M ITD(g M ITD==i , 2 ) ;
211 SubjM TT = T M TT(g M TT==i , 3 ) ;
212 Sum M M = 0;
213 Sum M P = 0 ;
214 f o r j =1: s i z e (SubjM ITD , 1 )
215 Sum M M = Sum M M + log ( in t e rp1 ( xout M ITD lin , n M ITD , log (SubjM ITD( j , 1 ) ) , ’ s p l i n e ’ ) ) ;
216 Sum M P = Sum M P + log ( in t e rp1 ( xout P ITD lin , n P ITD , log (SubjM ITD( j , 1 ) ) , ’ s p l i n e ’ ) ) ;
217 end
218 f o r j =1: s i z e (SubjM TT , 1 )
219 Sum M M = Sum M M + log ( in t e rp1 (xout M TT ,n M TT , SubjM TT( j , 1 ) , ’ s p l i n e ’ ) ) ;
220 Sum M P = Sum M P + log ( in t e rp1 ( xout P TT , n P TT , SubjM TT( j , 1 ) , ’ s p l i n e ’ ) ) ;
221 end
222
223 % Get sub j e c t SubjP from c l a s s P, get p r obab i l i t y f o r c l a s s e s M and P
224 SubjP ITD = T P ITD( g P ITD==i , 2 ) ;
225 SubjP TT = T P TT(g P TT==i , 3 ) ;
226 Sum P M = 0;
227 Sum P P = 0 ;
228 f o r j =1: s i z e ( SubjP ITD , 1 )
229 Sum P M = Sum P M + log ( in t e rp1 ( xout M ITD lin , n M ITD , log ( SubjP ITD ( j , 1 ) ) , ’ s p l i n e ’ ) ) ;
230 Sum P P = Sum P P + log ( in t e rp1 ( xout P ITD lin , n P ITD , log ( SubjP ITD ( j , 1 ) ) , ’ s p l i n e ’ ) ) ;
231 end
232 f o r j =1: s i z e (SubjP TT , 1 )
233 Sum P M = Sum P M + log ( in t e rp1 (xout M TT ,n M TT , SubjP TT( j , 1 ) , ’ s p l i n e ’ ) ) ;
234 Sum P P = Sum P P + log ( in t e rp1 ( xout P TT , n P TT , SubjP TT( j , 1 ) , ’ s p l i n e ’ ) ) ;
235 end
236
237
238 resM = Sum M P − Sum M M;
239 i f ( resM > 0)
240 countMP JI = countMP JI + 1 ;
241 e l s e i f ( resM < 0)
242 countMM JI = countMM JI + 1 ;
243 end
244
245 resP = Sum P P − Sum P M;
246 i f ( resP > 0)
247 countPP JI = countPP JI + 1 ;
248 e l s e i f ( resP < 0)
249 countPM JI = countPM JI + 1 ;
250 end
251 end
252
253
254 %% JNI
255
256 c t r s {1} = logspace (0 ,8 , 60 ) ;
257 c t r s {2} = 0 : 1 : 2 3 ;
258
259 % Leave−one−out c r o s s v a l i d a t i on
260 f o r i =1:numSamples
261
262 % Jo int p r obab i l i t y d i s t r i b u t i o n f o r c l a s s M
263 [ n M J , xout M J ] = h i s t 3 (T M J( g M J˜=i & g M J<=numSamples , 2 : 3 ) , c t r s ) ;
264 n M J = n M J/sum(sum(n M J ) ) ;
265 xout M J l in = log ( xout M J {1 ,1}) ;
266
267 % Jo int p r obab i l i t y d i s t r i b u t i o n f o r c l a s s P
268 [ n P J , xout P J ] = h i s t 3 (T P J ( g P J˜=i & g P J<=numSamples , 2 : 3 ) , c t r s ) ;
269 n P J = n P J/sum(sum( n P J ) ) ;
270 xou t P J l i n = log ( xout P J {1 ,1}) ;
271
272 % Get sub j e c t SubjM from c l a s s M, get j o i n p r obab i l i t y f o r c l a s s e s M and P
273 SubjM = [ ] ;
274 SubjM ( : , 1 ) = T M J( g M J==i , 2 ) ;
275 SubjM ( : , 2 ) = T M J( g M J==i , 3 ) ;
276 Sum M M = 0;
277 Sum M P = 0 ;
278 f o r j =1: s i z e (SubjM , 1 )
279 [X,Y] = meshgrid ( xout M J {1 ,2} , xout M J l in ) ;
280 aa = inte rp2 (X,Y, n M J , SubjM( j , 2 ) , l og (SubjM( j , 1 ) ) , ’ s p l i n e ’ ) ;
281 Sum M M = Sum M M + log ( aa ) ;
282 end
283 f o r j =1: s i z e (SubjM , 1 )
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284 [X,Y] = meshgrid ( xout P J {1 ,2} , x ou t P J l i n ) ;
285 aa = inte rp2 (X,Y, n P J , SubjM( j , 2 ) , l og (SubjM( j , 1 ) ) , ’ s p l i n e ’ ) ;
286 Sum M P = Sum M P + log ( aa ) ;
287 end
288
289 % Get sub j e c t SubjP from c l a s s P, get j o i n p r obab i l i t y f o r c l a s s e s M and P
290 SubjP = [ ] ;
291 SubjP ( : , 1 ) = T P J ( g P J==i , 2 ) ;
292 SubjP ( : , 2 ) = T P J ( g P J==i , 3 ) ;
293 Sum P M = 0;
294 Sum P P = 0 ;
295 f o r j =1: s i z e ( SubjP , 1 )
296 [X,Y] = meshgrid ( xout M J {1 ,2} , xout M J l in ) ;
297 aa = inte rp2 (X,Y, n M J , SubjP ( j , 2 ) , l og ( SubjP ( j , 1 ) ) , ’ s p l i n e ’ ) ;
298 Sum P M = Sum P M + log ( aa ) ;
299 end
300 f o r j =1: s i z e ( SubjP , 1 )
301 [X,Y] = meshgrid ( xout P J {1 ,2} , x ou t P J l i n ) ;
302 aa = inte rp2 (X,Y, n P J , SubjP ( j , 2 ) , l og ( SubjP ( j , 1 ) ) , ’ s p l i n e ’ ) ;
303 Sum P P = Sum P P + log ( aa ) ;
304 end
305
306 resM = Sum M P − Sum M M;
307 i f ( resM > 0)
308 countMP JNI = countMP JNI + 1 ;
309 e l s e i f ( resM < 0)
310 countMM JNI = countMM JNI + 1 ;
311 end
312
313 resP = Sum P P − Sum P M;
314 i f ( resP > 0)
315 countPP JNI = countPP JNI + 1 ;
316 e l s e i f ( resP < 0)
317 countPM JNI = countPM JNI + 1 ;
318 end
319 end
320
321
322 %% Obtain f i n a l r e s u l t s
323
324 numCorrect ITD = countMM ITD + countPP ITD ;
325 numCorrect TT = countMM TT + countPP TT ;
326 numCorrect JI = countMM JI + countPP JI ;
327 numCorrect JNI = countMM JNI + countPP JNI ;
328
329 percCorrect ITD = numCorrect ITD/(2∗numSamples ) ∗ 100 ;
330 percCorrect TT = numCorrect TT/(2∗numSamples ) ∗ 100 ;
331 pe r cCor r e c t J I = numCorrect JI /(2∗numSamples ) ∗ 100 ;
332 percCorrect JNI = numCorrect JNI /(2∗numSamples ) ∗ 100 ;
333
334
335 end

Classifier2.m
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Appendix D

3-Classifier

1 % This func t i on c l a s s i f i e s u s e r s in one o f three c l a s s e s : pe r sona l
2 % accounts (P) , managed accounts (M) , and bots (B) . I t takes as input the
3 % s i z e o f the datase t used in the c l a s s i f i c a t i o n and performs leave−one−out
4 % c ro s s v a l i d a t i on . Four d i f f e r e n t c l a s s i f i c a t i o n s are used : us ing only
5 % inte r−tweet de lay i n t e r v a l s (ITD) , us ing only tweet ing t imes (TT) , us ing
6 % both as independent v a r i a b l e s ( JI ) , and us ing both as non−independent
7 % va r i a b l e s ( JNI ) .
8
9 func t i on [ numSamples , percCorrect JNI , percCorrec t J I , percCorrect ITD , percCorrect TT ] = C l a s s i f i e r 3 (

vararg in )
10
11 load companies . mat
12 J{1} = T;
13
14 load people . mat
15 J{2} = T;
16
17 load bots . mat
18 J{3} = T;
19
20 % Class M − ITD
21 T M ITD = J {1} ;
22 g M ITD = grp2idx (T M ITD ( : , 1 ) ) ;
23
24 % Class P − ITD
25 T P ITD = J {2} ;
26 g P ITD = grp2idx (T P ITD ( : , 1 ) ) ;
27
28 % Class B − ITD
29 T B ITD = J {3} ;
30 g B ITD = grp2idx (T B ITD ( : , 1 ) ) ;
31
32 % Class M − TT
33 T M TT = J {1} ;
34 g M TT = grp2idx (T M TT( : , 1 ) ) ;
35
36 % Class P − TT
37 T P TT = J {2} ;
38 g P TT = grp2idx (T P TT ( : , 1 ) ) ;
39
40 % Class B − TT
41 T B TT = J {3} ;
42 g B TT = grp2idx (T B TT ( : , 1 ) ) ;
43
44 % Class M − J
45 T M J = J {1} ;
46 g M J = grp2idx (T M J ( : , 1 ) ) ;
47
48 % Class P − J
49 T P J = J {2} ;
50 g P J = grp2idx (T P J ( : , 1 ) ) ;
51
52 % Class B − J
53 T B J = J {3} ;
54 g B J = grp2idx (T B J ( : , 1 ) ) ;
55
56 % Confusion matrix counts
57 countPP ITD = 0 ;
58 countPM ITD = 0 ;
59 countPB ITD = 0 ;
60 countMP ITD = 0 ;
61 countMM ITD = 0 ;
62 countMB ITD = 0 ;
63 countBP ITD = 0 ;
64 countBM ITD = 0 ;
65 countBB ITD = 0 ;
66
67 countPP TT = 0 ;
68 countPM TT = 0 ;
69 countPB TT = 0 ;
70 countMP TT = 0 ;
71 countMM TT = 0 ;
72 countMB TT = 0 ;
73 countBP TT = 0 ;
74 countBM TT = 0 ;
75 countBB TT = 0 ;
76
77 countPP JI = 0 ;
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78 countPM JI = 0 ;
79 countPB JI = 0 ;
80 countMP JI = 0 ;
81 countMM JI = 0 ;
82 countMB JI = 0 ;
83 countBP JI = 0 ;
84 countBM JI = 0 ;
85 countBB JI = 0 ;
86
87 countPP JNI = 0 ;
88 countPM JNI = 0 ;
89 countPB JNI = 0 ;
90 countMP JNI = 0 ;
91 countMM JNI = 0 ;
92 countMB JNI = 0 ;
93 countBP JNI = 0 ;
94 countBM JNI = 0 ;
95 countBB JNI = 0 ;
96
97 i f narg in == 0
98 f o r i =1:3
99 T = J{ i } ;

100 g = grp2idx (T( : , 1 ) ) ;
101 n( i ) = length ( unique ( g ) ) ;
102 end
103 numSamples = min (n) ;
104 e l s e
105 numSamples = vararg in {1} ;
106 end
107
108 %% ITD
109
110 % Leave−one−out c r o s s v a l i d a t i on
111 f o r i =1:numSamples
112
113 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s M
114 [ n M , xout M ] = h i s t (T M ITD(g M ITD˜=i & g M ITD<=numSamples , 2 ) , l og space (0 ,8 , 30 ) ) ;
115 n M = n M/sum(n M) ;
116 xout M l in = log ( xout M) ;
117
118 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s P
119 [ n P , xout P ] = h i s t (T P ITD( g P ITD˜=i & g P ITD<=numSamples , 2 ) , l og space (0 ,8 , 30 ) ) ;
120 n P = n P/sum(n P ) ;
121 xout P l i n = log ( xout P ) ;
122
123 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s B
124 [ n B , xout B ] = h i s t (T B ITD( g B ITD˜=i & g B ITD<=numSamples , 2 ) , l og space (0 ,8 , 30 ) ) ;
125 n B = n B/sum(n B) ;
126 xout B l in = log ( xout B ) ;
127
128 % Get sub j e c t Subj M from c l a s s M, get p r obab i l i t y f o r each c l a s s
129 SubjM = [ ] ;
130 SubjM = T M ITD(g M ITD==i , 2 ) ;
131 Sum M M = 0;
132 Sum M P = 0 ;
133 Sum M B = 0 ;
134 f o r j =1: s i z e (SubjM , 1 )
135 Sum M M = Sum M M + log ( in t e rp1 ( xout M lin , n M , log (SubjM( j , 1 ) ) , ’ s p l i n e ’ ) ) ;
136 end
137 f o r j =1: s i z e (SubjM , 1 )
138 Sum M P = Sum M P + log ( in t e rp1 ( xout P l in , n P , log (SubjM( j , 1 ) ) , ’ s p l i n e ’ ) ) ;
139 end
140 f o r j =1: s i z e (SubjM , 1 )
141 Sum M B = Sum M B + log ( in t e rp1 ( xout B l in , n B , log (SubjM( j , 1 ) ) , ’ s p l i n e ’ ) ) ;
142 end
143
144 % Get sub j e c t Subj P from c l a s s P, get p r obab i l i t y f o r each c l a s s
145 SubjP = [ ] ;
146 SubjP = T P ITD( g P ITD==i , 2 ) ;
147 Sum P M = 0;
148 Sum P P = 0 ;
149 Sum P B = 0 ;
150 f o r j =1: s i z e ( SubjP , 1 )
151 Sum P M = Sum P M + log ( in t e rp1 ( xout M lin , n M , log ( SubjP ( j , 1 ) ) , ’ s p l i n e ’ ) ) ;
152 end
153 f o r j =1: s i z e ( SubjP , 1 )
154 Sum P P = Sum P P + log ( in t e rp1 ( xout P l in , n P , log ( SubjP ( j , 1 ) ) , ’ s p l i n e ’ ) ) ;
155 end
156 f o r j =1: s i z e ( SubjP , 1 )
157 Sum P B = Sum P B + log ( in t e rp1 ( xout B l in , n B , log ( SubjP ( j , 1 ) ) , ’ s p l i n e ’ ) ) ;
158 end
159
160 % Get sub j e c t Subj B from c l a s s B, get p r obab i l i t y f o r each c l a s s
161 SubjB = [ ] ;
162 SubjB = T B ITD( g B ITD==i , 2 ) ;
163 Sum B M = 0;
164 Sum B P = 0 ;
165 Sum B B = 0 ;
166 f o r j =1: s i z e ( SubjB , 1 )
167 Sum B M = Sum B M + log ( in t e rp1 ( xout M lin , n M , log ( SubjB ( j , 1 ) ) , ’ s p l i n e ’ ) ) ;
168 end
169 f o r j =1: s i z e ( SubjB , 1 )
170 Sum B P = Sum B P + log ( in t e rp1 ( xout P l in , n P , log ( SubjB ( j , 1 ) ) , ’ s p l i n e ’ ) ) ;
171 end
172 f o r j =1: s i z e ( SubjB , 1 )
173 Sum B B = Sum B B + log ( in t e rp1 ( xout B l in , n B , log ( SubjB ( j , 1 ) ) , ’ s p l i n e ’ ) ) ;
174 end
175
176 i f max ( [ Sum M M,Sum M P ,Sum M B ] ) == Sum M M
177 countMM ITD = countMM ITD + 1 ;
178 e l s e i f max ( [ Sum M M,Sum M P ,Sum M B ] ) == Sum M P
179 countMP ITD = countMP ITD + 1 ;
180 e l s e i f max ( [ Sum M M,Sum M P ,Sum M B ] ) == Sum M B
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181 countMB ITD = countMB ITD + 1 ;
182 end
183
184 i f max ( [ Sum P M, Sum P P , Sum P B ] ) == Sum P M
185 countPM ITD = countPM ITD + 1 ;
186 e l s e i f max ( [ Sum P M, Sum P P , Sum P B ] ) == Sum P P
187 countPP ITD = countPP ITD + 1 ;
188 e l s e i f max ( [ Sum P M, Sum P P , Sum P B ] ) == Sum P B
189 countPB ITD = countPB ITD + 1 ;
190 end
191
192 i f max ( [ Sum B M, Sum B P , Sum B B ] ) == Sum B M
193 countBM ITD = countBM ITD + 1 ;
194 e l s e i f max ( [ Sum B M, Sum B P , Sum B B ] ) == Sum B P
195 countBP ITD = countBP ITD + 1 ;
196 e l s e i f max ( [ Sum B M, Sum B P , Sum B B ] ) == Sum B B
197 countBB ITD = countBB ITD + 1 ;
198 end
199 end
200
201
202 %% TT
203
204 % Leave−one−out c r o s s v a l i d a t i on
205 f o r i =1:numSamples
206
207 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s M
208 [ n M , xout M ] = h i s t (T M TT(g M TT˜=i & g M TT<=numSamples , 3 ) , 0 : 1 : 2 3 ) ;
209 n M = n M/sum(n M) ;
210
211 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s I
212 [ n P , xout P ] = h i s t (T P TT(g P TT˜=i & g P TT<=numSamples , 3 ) , 0 : 1 : 2 3 ) ;
213 n P = n P/sum(n P ) ;
214
215 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s B
216 [ n B , xout B ] = h i s t (T B TT(g B TT˜=i & g B TT<=numSamples , 3 ) , 0 : 1 : 2 3 ) ;
217 n B = n B/sum(n B) ;
218
219 % Get sub j e c t Subj M from c l a s s M, get p r obab i l i t y f o r each c l a s s
220 SubjM = [ ] ;
221 SubjM = T M TT(g M TT==i , 3 ) ;
222 Sum M M = 0;
223 Sum M P = 0 ;
224 Sum M B = 0 ;
225 f o r j =1: s i z e (SubjM , 1 )
226 Sum M M = Sum M M + log ( in t e rp1 ( xout M , n M , SubjM( j , 1 ) , ’ s p l i n e ’ ) ) ;
227 end
228 f o r j =1: s i z e (SubjM , 1 )
229 Sum M P = Sum M P + log ( in t e rp1 ( xout P , n P , SubjM( j , 1 ) , ’ s p l i n e ’ ) ) ;
230 end
231 f o r j =1: s i z e (SubjM , 1 )
232 Sum M B = Sum M B + log ( in t e rp1 ( xout B , n B , SubjM( j , 1 ) , ’ s p l i n e ’ ) ) ;
233 end
234
235 % Get sub j e c t Subj P from c l a s s P, get p r obab i l i t y f o r each c l a s s
236 SubjP = [ ] ;
237 SubjP = T P TT(g P TT==i , 3 ) ;
238 Sum P M = 0;
239 Sum P P = 0 ;
240 Sum P B = 0 ;
241 f o r j =1: s i z e ( SubjP , 1 )
242 Sum P M = Sum P M + log ( in t e rp1 ( xout M , n M , SubjP ( j , 1 ) , ’ s p l i n e ’ ) ) ;
243 end
244 f o r j =1: s i z e ( SubjP , 1 )
245 Sum P P = Sum P P + log ( in t e rp1 ( xout P , n P , SubjP ( j , 1 ) , ’ s p l i n e ’ ) ) ;
246 end
247 f o r j =1: s i z e ( SubjP , 1 )
248 Sum P B = Sum P B + log ( in t e rp1 ( xout B , n B , SubjP ( j , 1 ) , ’ s p l i n e ’ ) ) ;
249 end
250
251 % Get sub j e c t Subj B from c l a s s B, get p r obab i l i t y f o r each c l a s s
252 SubjB = [ ] ;
253 SubjB = T B TT(g B TT==i , 3 ) ;
254 Sum B M = 0;
255 Sum B P = 0 ;
256 Sum B B = 0 ;
257 f o r j =1: s i z e ( SubjB , 1 )
258 Sum B M = Sum B M + log ( in t e rp1 ( xout M , n M , SubjB ( j , 1 ) , ’ s p l i n e ’ ) ) ;
259 end
260 f o r j =1: s i z e ( SubjB , 1 )
261 Sum B P = Sum B P + log ( in t e rp1 ( xout P , n P , SubjB ( j , 1 ) , ’ s p l i n e ’ ) ) ;
262 end
263 f o r j =1: s i z e ( SubjB , 1 )
264 Sum B B = Sum B B + log ( in t e rp1 ( xout B , n B , SubjB ( j , 1 ) , ’ s p l i n e ’ ) ) ;
265 end
266
267 i f max ( [ Sum M M,Sum M P ,Sum M B ] ) == Sum M M
268 countMM TT = countMM TT + 1 ;
269 e l s e i f max ( [ Sum M M,Sum M P ,Sum M B ] ) == Sum M P
270 countMP TT = countMP TT + 1 ;
271 e l s e i f max ( [ Sum M M,Sum M P ,Sum M B ] ) == Sum M B
272 countMB TT = countMB TT + 1 ;
273 end
274
275 i f max ( [ Sum P M, Sum P P , Sum P B ] ) == Sum P M
276 countPM TT = countPM TT + 1 ;
277 e l s e i f max ( [ Sum P M, Sum P P , Sum P B ] ) == Sum P P
278 countPP TT = countPP TT + 1 ;
279 e l s e i f max ( [ Sum P M, Sum P P , Sum P B ] ) == Sum P B
280 countPB TT = countPB TT + 1 ;
281 end
282
283 i f max ( [ Sum B M, Sum B P , Sum B B ] ) == Sum B M
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284 countBM TT = countBM TT + 1 ;
285 e l s e i f max ( [ Sum B M, Sum B P , Sum B B ] ) == Sum B P
286 countBP TT = countBP TT + 1 ;
287 e l s e i f max ( [ Sum B M, Sum B P , Sum B B ] ) == Sum B B
288 countBB TT = countBB TT + 1 ;
289 end
290 end
291
292
293 %% JI
294
295 % Leave−one−out c r o s s v a l i d a t i on
296 f o r i =1:numSamples
297
298 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s M ( Inte r twee t delay )
299 [ n M ITD , xout M ITD ] = h i s t (T M ITD(g M ITD˜=i & g M ITD<=numSamples , 2 ) , l og space (0 ,8 , 30 ) ) ;
300 n M ITD = n M ITD/sum(n M ITD) ;
301 xout M ITD lin = log ( xout M ITD) ;
302
303 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s I ( In t e r twee t de lay )
304 [ n P ITD , xout P ITD ] = h i s t (T P ITD( g P ITD˜=i & g P ITD<=numSamples , 2 ) , l og space (0 ,8 , 30 ) ) ;
305 n P ITD = n P ITD/sum(n P ITD) ;
306 xout P ITD l in = log ( xout P ITD ) ;
307
308 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s B ( In te r twee t delay )
309 [ n B ITD , xout B ITD ] = h i s t (T B ITD( g B ITD˜=i & g B ITD<=numSamples , 2 ) , l og space (0 ,8 , 30 ) ) ;
310 n B ITD = n B ITD/sum(n B ITD) ;
311 xout B ITD lin = log ( xout B ITD ) ;
312
313 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s M ( Tweeting time )
314 [ n M TT , xout M TT ] = h i s t (T M TT(g M TT˜=i & g M TT<=numSamples , 3 ) , 0 : 1 : 2 3 ) ;
315 n M TT = n M TT/sum(n M TT) ;
316
317 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s P ( Tweeting time )
318 [ n P TT , xout P TT ] = h i s t (T P TT(g P TT˜=i & g P TT<=numSamples , 3 ) , 0 : 1 : 2 3 ) ;
319 n P TT = n P TT/sum(n P TT) ;
320
321 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s B ( Tweeting time )
322 [ n B TT , xout B TT ] = h i s t (T B TT(g B TT˜=i & g B TT<=numSamples , 3 ) , 0 : 1 : 2 3 ) ;
323 n B TT = n B TT/sum(n B TT) ;
324
325 % Get sub j e c t SubjM from c l a s s M, get p r obab i l i t y f o r each c l a s s
326 SubjM ITD = T M ITD(g M ITD==i , 2 ) ;
327 SubjM TT = T M TT(g M TT==i , 3 ) ;
328 Sum M M = 0;
329 Sum M P = 0 ;
330 Sum M B = 0 ;
331 f o r j =1: s i z e (SubjM ITD , 1 )
332 Sum M M = Sum M M + log ( in t e rp1 ( xout M ITD lin , n M ITD , log (SubjM ITD( j , 1 ) ) , ’ l i n e a r ’ ) ) ;
333 Sum M P = Sum M P + log ( in t e rp1 ( xout P ITD lin , n P ITD , log (SubjM ITD( j , 1 ) ) , ’ l i n e a r ’ ) ) ;
334 Sum M B = Sum M B + log ( in t e rp1 ( xout B ITD lin , n B ITD , log (SubjM ITD( j , 1 ) ) , ’ l i n e a r ’ ) ) ;
335 end
336 f o r j =1: s i z e (SubjM TT , 1 )
337 Sum M M = Sum M M + log ( in t e rp1 (xout M TT ,n M TT , SubjM TT( j , 1 ) , ’ l i n e a r ’ ) ) ;
338 Sum M P = Sum M P + log ( in t e rp1 ( xout P TT , n P TT , SubjM TT( j , 1 ) , ’ l i n e a r ’ ) ) ;
339 Sum M B = Sum M B + log ( in t e rp1 ( xout B TT , n B TT , SubjM TT( j , 1 ) , ’ l i n e a r ’ ) ) ;
340 end
341
342 % Get sub j e c t SubjP from c l a s s P, get p r obab i l i t y f o r each c l a s s
343 SubjP ITD = T P ITD( g P ITD==i , 2 ) ;
344 SubjP TT = T P TT(g P TT==i , 3 ) ;
345 Sum P M = 0;
346 Sum P P = 0 ;
347 Sum P B = 0 ;
348 f o r j =1: s i z e ( SubjP ITD , 1 )
349 Sum P M = Sum P M + log ( in t e rp1 ( xout M ITD lin , n M ITD , log ( SubjP ITD ( j , 1 ) ) , ’ l i n e a r ’ ) ) ;
350 Sum P P = Sum P P + log ( in t e rp1 ( xout P ITD lin , n P ITD , log ( SubjP ITD ( j , 1 ) ) , ’ l i n e a r ’ ) ) ;
351 Sum P B = Sum P B + log ( in t e rp1 ( xout B ITD lin , n B ITD , log ( SubjP ITD ( j , 1 ) ) , ’ l i n e a r ’ ) ) ;
352 end
353 f o r j =1: s i z e (SubjP TT , 1 )
354 Sum P M = Sum P M + log ( in t e rp1 (xout M TT ,n M TT , SubjP TT( j , 1 ) , ’ l i n e a r ’ ) ) ;
355 Sum P P = Sum P P + log ( in t e rp1 ( xout P TT , n P TT , SubjP TT( j , 1 ) , ’ l i n e a r ’ ) ) ;
356 Sum P B = Sum P B + log ( in t e rp1 ( xout B TT , n B TT , SubjP TT( j , 1 ) , ’ l i n e a r ’ ) ) ;
357 end
358
359 % Get sub j e c t SubjB from c l a s s B, get p r obab i l i t y f o r each c l a s s
360 SubjB ITD = T B ITD( g B ITD==i , 2 ) ;
361 SubjB TT = T B TT(g B TT==i , 3 ) ;
362 Sum B M = 0;
363 Sum B P = 0 ;
364 Sum B B = 0 ;
365 f o r j =1: s i z e ( SubjB ITD , 1 )
366 Sum B M = Sum B M + log ( in t e rp1 ( xout M ITD lin , n M ITD , log ( SubjB ITD( j , 1 ) ) , ’ l i n e a r ’ ) ) ;
367 Sum B P = Sum B P + log ( in t e rp1 ( xout P ITD lin , n P ITD , log ( SubjB ITD( j , 1 ) ) , ’ l i n e a r ’ ) ) ;
368 Sum B B = Sum B B + log ( in t e rp1 ( xout B ITD lin , n B ITD , log ( SubjB ITD( j , 1 ) ) , ’ l i n e a r ’ ) ) ;
369 end
370 f o r j =1: s i z e (SubjB TT , 1 )
371 Sum B M = Sum B M + log ( in t e rp1 (xout M TT ,n M TT , SubjB TT( j , 1 ) , ’ l i n e a r ’ ) ) ;
372 Sum B P = Sum B P + log ( in t e rp1 ( xout P TT , n P TT , SubjB TT( j , 1 ) , ’ l i n e a r ’ ) ) ;
373 Sum B B = Sum B B + log ( in t e rp1 ( xout B TT , n B TT , SubjB TT( j , 1 ) , ’ l i n e a r ’ ) ) ;
374 end
375
376 i f max ( [ Sum M M,Sum M P ,Sum M B ] ) == Sum M M
377 countMM JI = countMM JI + 1 ;
378 e l s e i f max ( [ Sum M M,Sum M P ,Sum M B ] ) == Sum M P
379 countMP JI = countMP JI + 1 ;
380 e l s e i f max ( [ Sum M M,Sum M P ,Sum M B ] ) == Sum M B
381 countMB JI = countMB JI + 1 ;
382 end
383
384 i f max ( [ Sum P M, Sum P P , Sum P B ] ) == Sum P M
385 countPM JI = countPM JI + 1 ;
386 e l s e i f max ( [ Sum P M, Sum P P , Sum P B ] ) == Sum P P
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387 countPP JI = countPP JI + 1 ;
388 e l s e i f max ( [ Sum P M, Sum P P , Sum P B ] ) == Sum P B
389 countPB JI = countPB JI + 1 ;
390 end
391
392 i f max ( [ Sum B M, Sum B P , Sum B B ] ) == Sum B M
393 countBM JI = countBM JI + 1 ;
394 e l s e i f max ( [ Sum B M, Sum B P , Sum B B ] ) == Sum B P
395 countBP JI = countBP JI + 1 ;
396 e l s e i f max ( [ Sum B M, Sum B P , Sum B B ] ) == Sum B B
397 countBB JI = countBB JI + 1 ;
398 end
399 end
400
401
402 %% JNI
403
404 c t r s {1} = logspace (0 ,8 , 60 ) ;
405 c t r s {2} = 0 : 1 : 2 3 ;
406
407 % Leave−one−out c r o s s v a l i d a t i on
408 f o r i =1:numSamples
409
410 % Jo int p r obab i l i t y d i s t r i b u t i o n f o r c l a s s M
411 [ n M J , xout M J ] = h i s t 3 (T M J( g M J˜=i & g M J<=numSamples , 2 : 3 ) , c t r s ) ;
412 n M J = n M J/sum(sum(n M J ) ) ;
413 xout M J l in = log ( xout M J {1 ,1}) ;
414
415 % Jo int p r obab i l i t y d i s t r i b u t i o n f o r c l a s s P
416 [ n P J , xout P J ] = h i s t 3 (T P J ( g P J˜=i & g P J<=numSamples , 2 : 3 ) , c t r s ) ;
417 n P J = n P J/sum(sum( n P J ) ) ;
418 xou t P J l i n = log ( xout P J {1 ,1}) ;
419
420 % Jo int p r obab i l i t y d i s t r i b u t i o n f o r c l a s s B
421 [ n B J , xout B J ] = h i s t 3 (T B J ( g B J˜=i & g B J<=numSamples , 2 : 3 ) , c t r s ) ;
422 n B J = n B J/sum(sum( n B J ) ) ;
423 xou t B J l i n = log ( xout B J {1 ,1}) ;
424
425 % Get sub j e c t SubjM from c l a s s M, get j o i n t p r obab i l i t y f o r each c l a s s
426 SubjM = [ ] ;
427 SubjM ( : , 1 ) = T M J( g M J==i , 2 ) ;
428 SubjM ( : , 2 ) = T M J( g M J==i , 3 ) ;
429 Sum M M = 0;
430 Sum M P = 0 ;
431 Sum M B = 0 ;
432 f o r j =1: s i z e (SubjM , 1 )
433 [X,Y] = meshgrid ( xout M J {1 ,2} , xout M J l in ) ;
434 aa = inte rp2 (X,Y, n M J , SubjM( j , 2 ) , l og (SubjM( j , 1 ) ) , ’ l i n e a r ’ ) ;
435 Sum M M = Sum M M + log ( aa ) ;
436 end
437 f o r j =1: s i z e (SubjM , 1 )
438 [X,Y] = meshgrid ( xout P J {1 ,2} , x ou t P J l i n ) ;
439 aa = inte rp2 (X,Y, n P J , SubjM( j , 2 ) , l og (SubjM( j , 1 ) ) , ’ l i n e a r ’ ) ;
440 Sum M P = Sum M P + log ( aa ) ;
441 end
442 f o r j =1: s i z e (SubjM , 1 )
443 [X,Y] = meshgrid ( xout B J {1 ,2} , x ou t B J l i n ) ;
444 aa = inte rp2 (X,Y, n B J , SubjM( j , 2 ) , l og (SubjM( j , 1 ) ) , ’ l i n e a r ’ ) ;
445 Sum M B = Sum M B + log ( aa ) ;
446 end
447
448 % Get sub j e c t SubjP from c l a s s P, get j o i n p r obab i l i t y f o r each c l a s s
449 SubjP = [ ] ;
450 SubjP ( : , 1 ) = T P J ( g P J==i , 2 ) ;
451 SubjP ( : , 2 ) = T P J ( g P J==i , 3 ) ;
452 Sum P M = 0;
453 Sum P P = 0 ;
454 Sum P B = 0 ;
455 f o r j =1: s i z e ( SubjP , 1 )
456 [X,Y] = meshgrid ( xout M J {1 ,2} , xout M J l in ) ;
457 aa = inte rp2 (X,Y, n M J , SubjP ( j , 2 ) , l og ( SubjP ( j , 1 ) ) , ’ l i n e a r ’ ) ;
458 bb = log ( aa ) ;
459 Sum P M = Sum P M + bb ;
460 end
461 f o r j =1: s i z e ( SubjP , 1 )
462 [X,Y] = meshgrid ( xout P J {1 ,2} , x ou t P J l i n ) ;
463 aa = inte rp2 (X,Y, n P J , SubjP ( j , 2 ) , l og ( SubjP ( j , 1 ) ) , ’ l i n e a r ’ ) ;
464 bb = log ( aa ) ;
465 Sum P P = Sum P P + bb ;
466 end
467 f o r j =1: s i z e ( SubjP , 1 )
468 [X,Y] = meshgrid ( xout B J {1 ,2} , x ou t B J l i n ) ;
469 aa = inte rp2 (X,Y, n B J , SubjP ( j , 2 ) , l og ( SubjP ( j , 1 ) ) , ’ l i n e a r ’ ) ;
470 bb = log ( aa ) ;
471 Sum P B = Sum P B + bb ;
472 end
473
474 % Get sub j e c t SubjB from c l a s s B, get j o i n p r obab i l i t y f o r each c l a s s
475 SubjB = [ ] ;
476 SubjB ( : , 1 ) = T B J ( g B J==i , 2 ) ;
477 SubjB ( : , 2 ) = T B J ( g B J==i , 3 ) ;
478 Sum B M = 0;
479 Sum B P = 0 ;
480 Sum B B = 0 ;
481 f o r j =1: s i z e ( SubjB , 1 )
482 [X,Y] = meshgrid ( xout M J {1 ,2} , xout M J l in ) ;
483 aa = inte rp2 (X,Y, n M J , SubjB ( j , 2 ) , l og ( SubjB ( j , 1 ) ) , ’ l i n e a r ’ ) ;
484 bb = log ( aa ) ;
485 Sum B M = Sum B M + bb ;
486 end
487 f o r j =1: s i z e ( SubjB , 1 )
488 [X,Y] = meshgrid ( xout P J {1 ,2} , x ou t P J l i n ) ;
489 aa = inte rp2 (X,Y, n P J , SubjB ( j , 2 ) , l og ( SubjB ( j , 1 ) ) , ’ l i n e a r ’ ) ;
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490 bb = log ( aa ) ;
491 Sum B P = Sum B P + bb ;
492 end
493 f o r j =1: s i z e ( SubjB , 1 )
494 [X,Y] = meshgrid ( xout B J {1 ,2} , x ou t B J l i n ) ;
495 aa = inte rp2 (X,Y, n B J , SubjB ( j , 2 ) , l og ( SubjB ( j , 1 ) ) , ’ l i n e a r ’ ) ;
496 bb = log ( aa ) ;
497 Sum B B = Sum B B + bb ;
498 end
499
500 i f max ( [ Sum M M,Sum M P ,Sum M B ] ) == Sum M M
501 countMM JNI = countMM JNI + 1 ;
502 e l s e i f max ( [ Sum M M,Sum M P ,Sum M B ] ) == Sum M P
503 countMP JNI = countMP JNI + 1 ;
504 e l s e i f max ( [ Sum M M,Sum M P ,Sum M B ] ) == Sum M B
505 countMB JNI = countMB JNI + 1 ;
506 end
507
508 i f max ( [ Sum P M, Sum P P , Sum P B ] ) == Sum P M
509 countPM JNI = countPM JNI + 1 ;
510 e l s e i f max ( [ Sum P M, Sum P P , Sum P B ] ) == Sum P P
511 countPP JNI = countPP JNI + 1 ;
512 e l s e i f max ( [ Sum P M, Sum P P , Sum P B ] ) == Sum P B
513 countPB JNI = countPB JNI + 1 ;
514 end
515
516 i f max ( [ Sum B M, Sum B P , Sum B B ] ) == Sum B M
517 countBM JNI = countBM JNI + 1 ;
518 e l s e i f max ( [ Sum B M, Sum B P , Sum B B ] ) == Sum B P
519 countBP JNI = countBP JNI + 1 ;
520 e l s e i f max ( [ Sum B M, Sum B P , Sum B B ] ) == Sum B B
521 countBB JNI = countBB JNI + 1 ;
522 end
523 end
524
525
526 %% Obtain f i n a l r e s u l t s
527
528 numCorrect ITD = countMM ITD + countPP ITD + countBB ITD ;
529 numCorrect TT = countMM TT + countPP TT + countBB TT ;
530 numCorrect JI = countMM JI + countPP JI + countBB JI ;
531 numCorrect JNI = countMM JNI + countPP JNI + countBB JNI ;
532
533 percCorrect ITD = numCorrect ITD/(3∗numSamples ) ∗ 100 ;
534 percCorrect TT = numCorrect TT/(3∗numSamples ) ∗ 100 ;
535 pe r cCor r e c t J I = numCorrect JI /(3∗numSamples ) ∗ 100 ;
536 percCorrect JNI = numCorrect JNI /(3∗numSamples ) ∗ 100 ;
537
538
539 end

Classifier3.m
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Appendix E

Predictive Model (Single
Distribution)

1 % This s c r i p t loads matr i ces that inc lude both tweet ing t imes (TT) and the
2 % time i n t e r v a l s a f t e r each tweet ( i n t e r twee t delay , ITD) . The p r ed i c t o r
3 % uses the p r obab i l i t y d i s t r i b u t i o n o f i n t e r twee t delay f o r each c l a s s
4 % ( Personal , Managed , Bot ) in order to p r ed i c t what the next i n t e r v a l w i l l
5 % be .
6
7 c l e a r a l l
8 c l o s e a l l
9 c l c

10
11 load companies . mat
12 T M = T;
13 g M = grp2idx (T M( : , 1 ) ) ;
14
15 load people . mat
16 T P = T;
17 g P = grp2idx (T P ( : , 1 ) ) ;
18
19 load bots . mat
20 T B = T;
21 g B = grp2idx (T B ( : , 1 ) ) ;
22
23 numSamples = 60 ;
24
25
26 %% Leave−one−out c r o s s v a l i d a t i on f o r c l a s s P
27
28 f o r i =1:numSamples
29
30 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s P ( In te r twee t de lay )
31 [ n P ITD , xout P ITD ] = h i s t (T P( g P˜=i & g P<=numSamples , 2 ) , l og space (0 ,8 ,100) ) ;
32 xout P ITD l in = log ( xout P ITD ) ;
33
34 % Get Subj P from c l a s s P
35 Subj P = T P( g P==i , 2 : 3 ) ;
36
37 f o r j =1:( s i z e ( Subj P , 1 )−1)
38
39 % What we want to p r ed i c t
40 h = Subj P ( j , 2 ) ;
41 de l t a = Subj P ( j , 1 ) ; % time i n t e r v a l a f t e r h
42
43 % Get cumulative d i s t r i b u t i o n f o r c l a s s I i n c l ud ing i n t e r p o l a t i o n
44 % f o r po int observed (model data )
45 [ minDiff , pos ] = min ( abs ( de l t a − xout P ITD ) ) ;
46 i f ( d e l t a − xout P ITD ( pos ) < 0)
47 pos = pos−1;
48 end
49 xout P = [ xout P ITD (1 : pos ) , de l ta , xout P ITD ( pos+1: l ength ( xout P ITD ) ) ] ;
50
51 p de l t a = in t e rp1 ( xout P ITD lin , n P ITD , log ( de l t a ) , ’ s p l i n e ’ ) ;
52 n P = [ n P ITD (1 : pos ) , p de l ta , n P ITD( pos+1: l ength ( n P ITD) ) ] ;
53 n P = n P/sum(n P ) ;
54
55 f o r k=1: l ength ( n P )
56 n P cmlt{ j }(k ) = 0 ;
57 f o r l =1:k
58 n P cmlt{ j }(k ) = n P cmlt{ j }(k ) + n P ( l ) ;
59 end
60 end
61
62 % Create step func t i on : cumulative prob f o r the point observed
63 % ( actua l data )
64 S{ j } = zero s ( l ength ( xout P ) ,1) ;
65 f o r k=(pos+1) : l ength (S{ j })
66 S{ j }(k )=1;
67 end
68
69 end
70
71 % Evaluate p r ed i c t i o n s us ing c o e f f i c i e n t o f determinat ion R squared
72 avg = 0 ;
73 den = 0 ;
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74 f o r j =1: l ength (S)
75 avg = avg + sum(S{ j }) ;
76 den = den + length (S{ j }) ;
77 end
78 avg = avg/den ;
79
80 SS tot = 0 ;
81 SS er r = 0 ;
82 f o r j =1: l ength (S)
83 f o r k=1: l ength (S{ j })
84 SS tot = SS tot + ( ( S{ j }(k ) − avg ) ˆ2) ;
85 SS er r = SS er r + ( ( S{ j }(k ) − n P cmlt{ j }(k ) ) ˆ2) ;
86 end
87 end
88
89 R squared P ( i ) = 1 − ( SS er r / SS tot ) ;
90
91 end
92
93
94 %% Leave−one−out c r o s s v a l i d a t i on f o r c l a s s M
95
96 f o r i =1:numSamples
97
98 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s M ( Inte r twee t delay )
99 [ n M ITD , xout M ITD ] = h i s t (T M(g M˜=i & g M<=numSamples , 2 ) , l og space (0 ,8 ,100) ) ;

100 xout M ITD lin = log ( xout M ITD) ;
101
102 % Get Subj M from c l a s s M
103 Subj M = T M(g M==i , 2 : 3 ) ;
104
105 f o r j =1:( s i z e ( Subj M , 1 )−1)
106
107 % What we want to p r ed i c t
108 h = Subj M( j , 2 ) ;
109 de l t a = Subj M( j , 1 ) ; % time i n t e r v a l be f o r e h
110
111 % Get cumulative d i s t r i b u t i o n f o r c l a s s M inc lud ing i n t e r p o l a t i o n
112 % f o r po int observed (model data )
113 [ minDiff , pos ] = min ( abs ( de l t a − xout M ITD) ) ;
114 i f ( d e l t a − xout M ITD( pos ) < 0)
115 pos = pos−1;
116 end
117 xout M = [ xout M ITD (1 : pos ) , de l ta , xout M ITD( pos+1: l ength ( xout M ITD) ) ] ;
118
119 p de l t a = in t e rp1 ( xout M ITD lin , n M ITD , log ( de l t a ) , ’ s p l i n e ’ ) ;
120 n M = [ n M ITD (1 : pos ) , p de l ta , n M ITD( pos+1: l ength (n M ITD) ) ] ;
121 n M = n M/sum(n M) ;
122
123 f o r k=1: l ength (n M)
124 n M cmlt{ j }(k ) = 0 ;
125 f o r l =1:k
126 n M cmlt{ j }(k ) = n M cmlt{ j }(k ) + n M( l ) ;
127 end
128 end
129
130 % Create step func t i on : cumulative prob f o r the point observed
131 % ( actua l data )
132 S{ j } = zero s ( l ength ( xout M) ,1) ;
133 f o r k=(pos+1) : l ength (S{ j })
134 S{ j }(k )=1;
135 end
136
137 end
138
139 % Evaluate p r ed i c t i o n s us ing c o e f f i c i e n t o f determinat ion R squared
140 avg = 0 ;
141 den = 0 ;
142 f o r j =1: l ength (S)
143 avg = avg + sum(S{ j }) ;
144 den = den + length (S{ j }) ;
145 end
146 avg = avg/den ;
147
148 SS tot = 0 ;
149 SS er r = 0 ;
150 f o r j =1: l ength (S)
151 f o r k=1: l ength (S{ j })
152 SS tot = SS tot + ( ( S{ j }(k ) − avg ) ˆ2) ;
153 SS er r = SS er r + ( ( S{ j }(k ) − n M cmlt{ j }(k ) ) ˆ2) ;
154 end
155 end
156
157 R squared M ( i ) = 1 − ( SS er r / SS tot ) ;
158
159 end
160
161
162 %% Leave−one−out c r o s s v a l i d a t i on f o r c l a s s B
163
164 f o r i =1:numSamples
165
166 % Probab i l i t y d i s t r i b u t i o n f o r c l a s s B ( In te r twee t delay )
167 [ n B ITD , xout B ITD ] = h i s t (T B( g B˜=i & g B<=numSamples , 2 ) , l og space (0 ,8 ,100) ) ;
168 xout B ITD lin = log ( xout B ITD ) ;
169
170 % Get Subj B from c l a s s B
171 Subj B = T B( g B==i , 2 : 3 ) ;
172
173 f o r j =1:( s i z e ( Subj B , 1 )−1)
174
175 % What we want to p r ed i c t
176 h = Subj B ( j , 2 ) ;
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177 de l t a = Subj B ( j , 1 ) ; % time i n t e r v a l be f o r e h
178
179 % Get cumulative d i s t r i b u t i o n f o r c l a s s B inc lud ing i n t e r p o l a t i o n
180 % f o r po int observed (model data )
181 [ minDiff , pos ] = min ( abs ( de l t a − xout B ITD ) ) ;
182 i f ( d e l t a − xout B ITD ( pos ) < 0)
183 pos = pos−1;
184 end
185 xout B = [ xout B ITD (1 : pos ) , de l ta , xout B ITD ( pos+1: l ength ( xout B ITD ) ) ] ;
186
187 p de l t a = in t e rp1 ( xout B ITD lin , n B ITD , log ( de l t a ) , ’ s p l i n e ’ ) ;
188 %n B IT = n B IT ∗ sum( n B IT ) ;
189 n B = [ n B ITD (1 : pos ) , p de l ta , n B ITD( pos+1: l ength ( n B ITD) ) ] ;
190 n B = n B/sum(n B) ;
191
192 f o r k=1: l ength ( n B )
193 n B cmlt{ j }(k ) = 0 ;
194 f o r l =1:k
195 n B cmlt{ j }(k ) = n B cmlt{ j }(k ) + n B( l ) ;
196 end
197 end
198
199 % Create step func t i on : cumulative prob f o r the point observed
200 % ( actua l data )
201 S{ j } = zero s ( l ength ( xout B ) ,1) ;
202 f o r k=(pos+1) : l ength (S{ j })
203 S{ j }(k )=1;
204 end
205
206 end
207
208 % Evaluate p r ed i c t i o n s us ing c o e f f i c i e n t o f determinat ion R squared
209 avg = 0 ;
210 den = 0 ;
211 f o r j =1: l ength (S)
212 avg = avg + sum(S{ j }) ;
213 den = den + length (S{ j }) ;
214 end
215 avg = avg/den ;
216
217 SS tot = 0 ;
218 SS er r = 0 ;
219 f o r j =1: l ength (S)
220 f o r k=1: l ength (S{ j })
221 SS tot = SS tot + ( ( S{ j }(k ) − avg ) ˆ2) ;
222 SS er r = SS er r + ( ( S{ j }(k ) − n B cmlt{ j }(k ) ) ˆ2) ;
223 end
224 end
225
226 R squared B ( i ) = 1 − ( SS er r / SS tot ) ;
227
228 end

PredictorSingle.m
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Appendix F

Predictive Model (Multiple
Distribution H)

1 % This s c r i p t loads matr i ces that inc lude both tweet ing t imes (TT) and the
2 % time i n t e r v a l s a f t e r each tweet ( i n t e r twee t delay , ITD) . The p r ed i c t o r
3 % uses 24 p r obab i l i t y d i s t r i b u t i o n s ( each a s s o c i a t ed with the time 0−23 o f
4 % the l a s t tweet ) o f i n t e r twee t de lays f o r each c l a s s ( Personal , Managed ,
5 % Bot ) in order to p r ed i c t what the next i n t e r v a l w i l l be .
6
7 c l e a r a l l
8 c l o s e a l l
9 c l c

10
11 load companies . mat
12 T1 = T;
13 g1 = grp2idx (T1 ( : , 1 ) ) ;
14 f o r i =1:24
15 T M{ i } = T(T( : , 3 )==i −1 , :) ;
16 g M{ i } = grp2idx (T M{ i } ( : , 1 ) ) ;
17 end
18
19 load people . mat
20 T2 = T;
21 g2 = grp2idx (T2 ( : , 1 ) ) ;
22 f o r i =1:24
23 T P{ i } = T(T( : , 3 )==i −1 , :) ;
24 g P{ i } = grp2idx (T P{ i } ( : , 1 ) ) ;
25 end
26
27 load bots . mat
28 T3 = T;
29 g3 = grp2idx (T3 ( : , 1 ) ) ;
30 f o r i =1:24
31 T B{ i } = T(T( : , 3 )==i −1 , :) ;
32 g B{ i } = grp2idx (T B{ i } ( : , 1 ) ) ;
33 end
34
35 numSamples = 60 ;
36
37
38 %% Leave−one−out c r o s s v a l i d a t i on f o r c l a s s P
39
40 f o r i =1:numSamples
41
42 % Probab i l i t y d i s t r i b u t i o n s f o r c l a s s I ( In t e r twee t de lay )
43 f o r j =1: l ength (T P)
44 [ n P ITD{ j } , xout P ITD{ j } ] = h i s t (T P{ j }( g P{ j}˜= i & g P{ j}<=numSamples , 2 ) , l og space (0 ,8 ,100) ) ;
45 xout P ITD l in{ j } = log ( xout P ITD{ j }) ;
46 end
47
48 % Get Subj P from c l a s s P
49 Subj P = T2( g2==i , 2 : 3 ) ;
50
51 f o r j =1:( s i z e ( Subj P , 1 )−1)
52
53 % What we want to p r ed i c t
54 h = Subj P ( j , 2 ) ;
55 de l t a = Subj P ( j , 1 ) ; % time i n t e r v a l a f t e r h
56
57 % Get cumulative d i s t r i b u t i o n f o r c l a s s P inc lud ing i n t e r p o l a t i o n
58 % f o r po int observed (model data )
59 [ minDiff , pos ] = min ( abs ( de l t a − xout P ITD{h+1}) ) ;
60 i f ( d e l t a − xout P ITD{h+1}(pos ) < 0)
61 pos = pos−1;
62 end
63 xout P = [ xout P ITD{h+1}(1: pos ) , de l ta , xout P ITD{h+1}(pos+1: l ength ( xout P ITD{h+1}) ) ] ;
64
65 p de l t a = in t e rp1 ( xout P ITD l in{h+1} ,n P ITD{h+1} , l og ( de l t a ) , ’ s p l i n e ’ ) ;
66 n P = [ n P ITD{h+1}(1: pos ) , p de l ta , n P ITD{h+1}(pos+1: l ength ( n P ITD{h+1}) ) ] ;
67 n P = n P/sum(n P ) ;
68
69 f o r k=1: l ength ( n P )
70 n P cmlt{ j }(k ) = 0 ;
71 f o r l =1:k
72 n P cmlt{ j }(k ) = n P cmlt{ j }(k ) + n P ( l ) ;
73 end
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74 end
75
76 % Create step func t i on : cumulative prob f o r the point observed
77 % ( actua l data )
78 S{ j } = zero s ( l ength ( xout P ) ,1) ;
79 f o r k=(pos+1) : l ength (S{ j })
80 S{ j }(k )=1;
81 end
82
83 end
84
85 % Evaluate p r ed i c t i o n s us ing c o e f f i c i e n t o f determinat ion R squared
86 avg = 0 ;
87 den = 0 ;
88 f o r j =1: l ength (S)
89 avg = avg + sum(S{ j }) ;
90 den = den + length (S{ j }) ;
91 end
92 avg = avg/den ;
93
94 SS tot = 0 ;
95 SS er r = 0 ;
96 f o r j =1: l ength (S)
97 f o r k=1: l ength (S{ j })
98 SS tot = SS tot + ( ( S{ j }(k ) − avg ) ˆ2) ;
99 SS er r = SS er r + ( ( S{ j }(k ) − n P cmlt{ j }(k ) ) ˆ2) ;

100 end
101 end
102
103 R squared P ( i ) = 1 − ( SS er r / SS tot ) ;
104
105 end
106
107 %% Leave−one−out c r o s s v a l i d a t i on f o r c l a s s M
108
109 f o r i =1:numSamples
110
111 % Probab i l i t y d i s t r i b u t i o n s f o r c l a s s M ( Inte r twee t de lay )
112 f o r j =1: l ength (T M)
113 [ n M ITD{ j } , xout M ITD{ j } ] = h i s t (T M{ j }(g M{ j}˜= i & g M{ j}<=numSamples , 2 ) , l og space (0 ,8 ,100) ) ;
114 xout M ITD lin{ j } = log ( xout M ITD{ j }) ;
115 end
116
117 % Get Subj M from c l a s s M
118 Subj M = T1( g1==i , 2 : 3 ) ;
119
120 f o r j =1:( s i z e ( Subj M , 1 )−1)
121
122 % What we want to p r ed i c t
123 h = Subj M( j , 2 ) ;
124 de l t a = Subj M( j , 1 ) ; % time i n t e r v a l be f o r e h
125
126 % Get cumulative d i s t r i b u t i o n f o r c l a s s I i n c l ud ing i n t e r p o l a t i o n
127 % f o r po int observed (model data )
128 [ minDiff , pos ] = min ( abs ( de l t a − xout M ITD{h+1}) ) ;
129 i f ( d e l t a − xout M ITD{h+1}(pos ) < 0)
130 pos = pos−1;
131 end
132 xout M = [ xout M ITD{h+1}(1: pos ) , de l ta , xout M ITD{h+1}(pos+1: l ength ( xout M ITD{h+1}) ) ] ;
133
134 p de l t a = in t e rp1 ( xout M ITD lin{h+1} ,n M ITD{h+1} , l og ( de l t a ) , ’ s p l i n e ’ ) ;
135 n M = [ n M ITD{h+1}(1: pos ) , p de l ta , n M ITD{h+1}(pos+1: l ength (n M ITD{h+1}) ) ] ;
136 n M = n M/sum(n M) ;
137
138 f o r k=1: l ength (n M)
139 n M cmlt{ j }(k ) = 0 ;
140 f o r l =1:k
141 n M cmlt{ j }(k ) = n M cmlt{ j }(k ) + n M( l ) ;
142 end
143 end
144
145 % Create step func t i on : cumulative prob f o r the point observed
146 % ( actua l data )
147 S{ j } = zero s ( l ength ( xout M) ,1) ;
148 f o r k=(pos+1) : l ength (S{ j })
149 S{ j }(k )=1;
150 end
151
152 end
153
154 % Evaluate p r ed i c t i o n s us ing c o e f f i c i e n t o f determinat ion R squared
155 avg = 0 ;
156 den = 0 ;
157 f o r j =1: l ength (S)
158 avg = avg + sum(S{ j }) ;
159 den = den + length (S{ j }) ;
160 end
161 avg = avg/den ;
162
163 SS tot = 0 ;
164 SS er r = 0 ;
165 f o r j =1: l ength (S)
166 f o r k=1: l ength (S{ j })
167 SS tot = SS tot + ( ( S{ j }(k ) − avg ) ˆ2) ;
168 SS er r = SS er r + ( ( S{ j }(k ) − n M cmlt{ j }(k ) ) ˆ2) ;
169 end
170 end
171
172 R squared M ( i ) = 1 − ( SS er r / SS tot ) ;
173
174 end
175
176
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177 %% Leave−one−out c r o s s v a l i d a t i on f o r c l a s s B
178
179 f o r i =1:numSamples
180
181 % Probab i l i t y d i s t r i b u t i o n s f o r c l a s s B ( In te r twee t de lay )
182 f o r j =1: l ength (T B)
183 [ n B ITD{ j } , xout B ITD{ j } ] = h i s t (T B{ j }( g B{ j}˜= i & g B{ j}<=numSamples , 2 ) , l og space (0 ,8 ,100) ) ;
184 xout B ITD lin{ j } = log ( xout B ITD{ j }) ;
185 end
186
187 % Get Subj B from c l a s s B
188 Subj B = T3( g3==i , 2 : 3 ) ;
189
190 f o r j =1:( s i z e ( Subj B , 1 )−1)
191
192 % What we want to p r ed i c t
193 h = Subj B ( j , 2 ) ;
194 de l t a = Subj B ( j , 1 ) ; % time i n t e r v a l be f o r e h
195
196 % Get cumulative d i s t r i b u t i o n f o r c l a s s B inc lud ing i n t e r p o l a t i o n
197 % f o r po int observed (model data )
198 [ minDiff , pos ] = min ( abs ( de l t a − xout B ITD{h+1}) ) ;
199 i f ( d e l t a − xout B ITD{h+1}(pos ) < 0)
200 pos = pos−1;
201 end
202 xout B = [ xout B ITD{h+1}(1: pos ) , de l ta , xout B ITD{h+1}(pos+1: l ength ( xout B ITD{h+1}) ) ] ;
203
204 p de l t a = in t e rp1 ( xout B ITD lin{h+1} ,n B ITD{h+1} , l og ( de l t a ) , ’ s p l i n e ’ ) ;
205 n B = [ n B ITD{h+1}(1: pos ) , p de l ta , n B ITD{h+1}(pos+1: l ength ( n B ITD{h+1}) ) ] ;
206 n B = n B/sum(n B) ;
207
208 f o r k=1: l ength ( n B )
209 n B cmlt{ j }(k ) = 0 ;
210 f o r l =1:k
211 n B cmlt{ j }(k ) = n B cmlt{ j }(k ) + n B( l ) ;
212 end
213 end
214
215 % Create step func t i on : cumulative prob f o r the point observed
216 % ( actua l data )
217 S{ j } = zero s ( l ength ( xout B ) ,1) ;
218 f o r k=(pos+1) : l ength (S{ j })
219 S{ j }(k )=1;
220 end
221
222 end
223
224 % Evaluate p r ed i c t i o n s us ing c o e f f i c i e n t o f determinat ion R squared
225 avg = 0 ;
226 den = 0 ;
227 f o r j =1: l ength (S)
228 avg = avg + sum(S{ j }) ;
229 den = den + length (S{ j }) ;
230 end
231 avg = avg/den ;
232
233 SS tot = 0 ;
234 SS er r = 0 ;
235 f o r j =1: l ength (S)
236 f o r k=1: l ength (S{ j })
237 SS tot = SS tot + ( ( S{ j }(k ) − avg ) ˆ2) ;
238 SS er r = SS er r + ( ( S{ j }(k ) − n B cmlt{ j }(k ) ) ˆ2) ;
239 end
240 end
241
242 R squared B ( i ) = 1 − ( SS er r / SS tot ) ;
243
244 end

PredictorMult H.m
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Appendix G

Predictive Model (Multiple
Distribution HW)

1 % This s c r i p t loads matr i ces that inc lude both tweet ing t imes (TT) and the
2 % time i n t e r v a l s a f t e r each tweet ( i n t e r twee t delay , ITD) . The p r ed i c t o r
3 % uses (24∗7) p r obab i l i t y d i s t r i b u t i o n s ( each a s s o c i a t ed with the time 0−23
4 % and the day o f the week o f the l a s t tweet ) o f i n t e r twee t time de lays f o r
5 % each c l a s s ( Personal , Managed , Bot ) in order to p r ed i c t what the next
6 % i n t e r v a l w i l l be .
7
8 c l e a r a l l
9 c l o s e a l l

10 c l c
11
12 load companies . mat
13 T1 = T;
14 g1 = grp2idx (T1 ( : , 1 ) ) ;
15 f o r i =1:24
16 f o r j =1:7
17 T M{ i , j } = T(T( : , 3 )==i−1 & T( : , 5 )==j , : ) ;
18 g M{ i , j } = grp2idx (T M{ i , j } ( : , 1 ) ) ;
19 end
20 end
21
22 load people . mat
23 T2 = T;
24 g2 = grp2idx (T2 ( : , 1 ) ) ;
25 f o r i =1:24
26 f o r j =1:7
27 T P{ i , j } = T(T( : , 3 )==i−1 & T( : , 5 )==j , : ) ;
28 g P{ i , j } = grp2idx (T P{ i , j } ( : , 1 ) ) ;
29 end
30 end
31
32 load bots . mat
33 T3 = T;
34 g3 = grp2idx (T3 ( : , 1 ) ) ;
35 f o r i =1:24
36 f o r j =1:7
37 T B{ i , j } = T(T( : , 3 )==i−1 & T( : , 5 )==j , : ) ;
38 g B{ i , j } = grp2idx (T B{ i , j } ( : , 1 ) ) ;
39 end
40 end
41
42 numSamples = 60 ;
43
44
45 %% Leave−one−out c r o s s v a l i d a t i on f o r c l a s s P
46
47 f o r i =1:numSamples
48
49 % Probab i l i t y d i s t r i b u t i o n s f o r c l a s s P ( In te r twee t de lay )
50 f o r j =1: s i z e (T P , 1 )
51 f o r k=1: s i z e (T P , 2 )
52 [ n P ITD{ j , k} , xout P ITD{ j , k } ] = h i s t (T P{ j , k}( g P{ j , k}˜= i & g P{ j , k}<=numSamples , 2 ) , l og space

(0 ,8 ,100) ) ;
53 xout P ITD l in{ j , k} = log ( xout P ITD{ j , k}) ;
54 end
55 end
56
57 % Get Subj P from c l a s s P
58 Subj P = T2( g2==i , 2 : 5 ) ;
59
60 f o r j =1:( s i z e ( Subj P , 1 )−1)
61
62 % What we want to p r ed i c t
63 h = Subj P ( j , 2 ) ; % hour
64 w = Subj P ( j , 4 ) ; % day o f the week
65 de l t a = Subj P ( j , 1 ) ; % time i n t e r v a l a f t e r h
66
67 % Get cumulative d i s t r i b u t i o n f o r c l a s s I i n c l ud ing i n t e r p o l a t i o n
68 % f o r po int observed (model data )
69 [ minDiff , pos ] = min ( abs ( de l t a − xout P ITD{h+1,w}) ) ;
70 i f ( d e l t a − xout P ITD{h+1,w}( pos ) < 0)
71 pos = pos−1;
72 end
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73 xout P = [ xout P ITD{h+1,w} ( 1 : pos ) , de l ta , xout P ITD{h+1,w}( pos+1: l ength ( xout P ITD{h+1,w}) ) ] ;
74
75 p de l t a = in t e rp1 ( xout P ITD l in{h+1,w} , n P ITD{h+1,w} , l og ( de l t a ) , ’ s p l i n e ’ ) ;
76 n P = [ n P ITD{h+1,w} ( 1 : pos ) , p de l ta , n P ITD{h+1,w}( pos+1: l ength ( n P ITD{h+1,w}) ) ] ;
77 n P = n P/sum(n P ) ;
78
79 f o r k=1: l ength ( n P )
80 n P cmlt{ j }(k ) = 0 ;
81 f o r l =1:k
82 n P cmlt{ j }(k ) = n P cmlt{ j }(k ) + n P ( l ) ;
83 end
84 end
85
86 % Create step func t i on : cumulative prob f o r the point observed
87 % ( actua l data )
88 S{ j } = zero s ( l ength ( xout P ) ,1) ;
89 f o r k=(pos+1) : l ength (S{ j })
90 S{ j }(k )=1;
91 end
92
93 end
94
95 % Evaluate p r ed i c t i o n s us ing c o e f f i c i e n t o f determinat ion R squared
96 avg = 0 ;
97 den = 0 ;
98 f o r j =1: l ength (S)
99 avg = avg + sum(S{ j }) ;

100 den = den + length (S{ j }) ;
101 end
102 avg = avg/den ;
103
104 SS tot = 0 ;
105 SS er r = 0 ;
106 f o r j =1: l ength (S)
107 f o r k=1: l ength (S{ j })
108 SS tot = SS tot + ( ( S{ j }(k ) − avg ) ˆ2) ;
109 SS er r = SS er r + ( ( S{ j }(k ) − n P cmlt{ j }(k ) ) ˆ2) ;
110 end
111 end
112
113 R squared P ( i ) = 1 − ( SS er r / SS tot ) ;
114
115 end
116
117
118 %% Leave−one−out c r o s s v a l i d a t i on f o r c l a s s M
119
120 f o r i =1:numSamples
121
122 % Probab i l i t y d i s t r i b u t i o n s f o r c l a s s M ( Inte r twee t de lay )
123 f o r j =1: s i z e (T M, 1 )
124 f o r k=1: s i z e (T M, 2 )
125 [ n M ITD{ j , k} , xout M ITD{ j , k } ] = h i s t (T M{ j , k}(g M{ j , k}˜= i & g M{ j , k}<=numSamples , 2 ) , l og space

(0 ,8 ,100) ) ;
126 xout M ITD lin{ j , k} = log ( xout M ITD{ j , k}) ;
127 end
128 end
129
130 % Get Subj M from c l a s s M
131 Subj M = T1( g1==i , 2 : 5 ) ;
132
133 f o r j =1:( s i z e ( Subj M , 1 )−1)
134
135 % What we want to p r ed i c t
136 h = Subj M( j , 2 ) ; % hour
137 w = Subj M( j , 4 ) ; % day o f the week
138 de l t a = Subj M( j , 1 ) ; % time i n t e r v a l a f t e r h
139
140 % Get cumulative d i s t r i b u t i o n f o r c l a s s M inc lud ing i n t e r p o l a t i o n
141 % f o r po int observed (model data )
142 [ minDiff , pos ] = min ( abs ( de l t a − xout M ITD{h+1,w}) ) ;
143 i f ( d e l t a − xout M ITD{h+1,w}( pos ) < 0)
144 pos = pos−1;
145 end
146 xout M = [ xout M ITD{h+1,w} ( 1 : pos ) , de l ta , xout M ITD{h+1,w}( pos+1: l ength ( xout M ITD{h+1,w}) ) ] ;
147
148 %n M IT{h+1,w} = n M IT{h+1,w}/sum(n M IT{h+1,w}) ;
149 p de l t a = in t e rp1 ( xout M ITD lin{h+1,w} ,n M ITD{h+1,w} , l og ( de l t a ) , ’ s p l i n e ’ ) ;
150 n M = [ n M ITD{h+1,w} ( 1 : pos ) , p de l ta , n M ITD{h+1,w}( pos+1: l ength (n M ITD{h+1,w}) ) ] ;
151 n M = n M/sum(n M) ;
152 %n M IT{h+1,w} = n M IT{h+1,w} ∗ sum(n M IT{h+1,w}) ;
153
154 f o r k=1: l ength (n M)
155 n M cmlt{ j }(k ) = 0 ;
156 f o r l =1:k
157 n M cmlt{ j }(k ) = n M cmlt{ j }(k ) + n M( l ) ;
158 end
159 end
160
161 % Create step func t i on : cumulative prob f o r the point observed
162 % ( actua l data )
163 S{ j } = zero s ( l ength ( xout M) ,1) ;
164 f o r k=(pos+1) : l ength (S{ j })
165 S{ j }(k )=1;
166 end
167
168 end
169
170 % Evaluate p r ed i c t i o n s us ing c o e f f i c i e n t o f determinat ion R squared
171 avg = 0 ;
172 den = 0 ;
173 f o r j =1: l ength (S)
174 avg = avg + sum(S{ j }) ;
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175 den = den + length (S{ j }) ;
176 end
177 avg = avg/den ;
178
179 SS tot = 0 ;
180 SS er r = 0 ;
181 f o r j =1: l ength (S)
182 f o r k=1: l ength (S{ j })
183 SS tot = SS tot + ( ( S{ j }(k ) − avg ) ˆ2) ;
184 SS er r = SS er r + ( ( S{ j }(k ) − n M cmlt{ j }(k ) ) ˆ2) ;
185 end
186 end
187
188 R squared M ( i ) = 1 − ( SS er r / SS tot ) ;
189
190 end
191
192
193 %% Leave−one−out c r o s s v a l i d a t i on f o r c l a s s B
194
195 f o r i =1:numSamples
196
197 % Probab i l i t y d i s t r i b u t i o n s f o r c l a s s B ( In te r twee t de lay )
198 f o r j =1: s i z e (T B , 1 )
199 f o r k=1: s i z e (T B , 2 )
200 [ n B ITD{ j , k} , xout B ITD{ j , k } ] = h i s t (T B{ j , k}( g B{ j , k}˜= i & g B{ j , k}<=numSamples , 2 ) , l og space

(0 ,8 ,100) ) ;
201 xout B ITD lin{ j , k} = log ( xout B ITD{ j , k}) ;
202 end
203 end
204
205 % Get Subj B from c l a s s B
206 Subj B = T1( g1==i , 2 : 5 ) ;
207
208 f o r j =1:( s i z e ( Subj B , 1 )−1)
209
210 % What we want to p r ed i c t
211 h = Subj B ( j , 2 ) ; % hour
212 w = Subj B ( j , 4 ) ; % day o f the week
213 de l t a = Subj B ( j , 1 ) ; % time i n t e r v a l a f t e r h
214
215 % Get cumulative d i s t r i b u t i o n f o r c l a s s B inc lud ing i n t e r p o l a t i o n
216 % f o r po int observed (model data )
217 [ minDiff , pos ] = min ( abs ( de l t a − xout B ITD{h+1,w}) ) ;
218 i f ( d e l t a − xout B ITD{h+1,w}( pos ) < 0)
219 pos = pos−1;
220 end
221 xout B = [ xout B ITD{h+1,w} ( 1 : pos ) , de l ta , xout B ITD{h+1,w}( pos+1: l ength ( xout B ITD{h+1,w}) ) ] ;
222
223 p de l t a = in t e rp1 ( xout B ITD lin{h+1,w} , n B ITD{h+1,w} , l og ( de l t a ) , ’ s p l i n e ’ ) ;
224 n B = [ n B ITD{h+1,w} ( 1 : pos ) , p de l ta , n B ITD{h+1,w}( pos+1: l ength ( n B ITD{h+1,w}) ) ] ;
225 n B = n B/sum(n B) ;
226
227 f o r k=1: l ength ( n B )
228 n B cmlt{ j }(k ) = 0 ;
229 f o r l =1:k
230 n B cmlt{ j }(k ) = n B cmlt{ j }(k ) + n B( l ) ;
231 end
232 end
233
234 % Create step func t i on : cumulative prob f o r the point observed
235 % ( actua l data )
236 S{ j } = zero s ( l ength ( xout B ) ,1) ;
237 f o r k=(pos+1) : l ength (S{ j })
238 S{ j }(k )=1;
239 end
240
241 end
242
243 % Evaluate p r ed i c t i o n s us ing c o e f f i c i e n t o f determinat ion R squared
244 avg = 0 ;
245 den = 0 ;
246 f o r j =1: l ength (S)
247 avg = avg + sum(S{ j }) ;
248 den = den + length (S{ j }) ;
249 end
250 avg = avg/den ;
251
252 SS tot = 0 ;
253 SS er r = 0 ;
254 f o r j =1: l ength (S)
255 f o r k=1: l ength (S{ j })
256 SS tot = SS tot + ( ( S{ j }(k ) − avg ) ˆ2) ;
257 SS er r = SS er r + ( ( S{ j }(k ) − n B cmlt{ j }(k ) ) ˆ2) ;
258 end
259 end
260
261 R squared B ( i ) = 1 − ( SS er r / SS tot ) ;
262
263 end

PredictorMult HW.m
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