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Abstract

Data analysis has become a key aspect of many companies day to day activities.
Systems have been develop to run large data computations on thousands of ma-
chines. Moreover, on top of this infracture many higher level frameworks have
been deployed. Despite the plethora of systems, no current scheduler has been
built to encourage execution of multi-framework workflows.

In this report we describe Dron, a new job scheduler that makes it easy to use mul-
tiple frameworks. On one hand, it allows engineers to easily integrate frameworks
to work with the scheduler, and on the other hand, it provides a language for users
to create job workflows. We will then show that Dron scales better than other
currently available workflow schedulers. Following, we also study four scheduling
strategies that utilize the graph of job dependencies in order to optimize resource
utilization. Lastly, we demonstrate the powerfulness of the system by using it to
build a recommendation engine.
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Chapter 1

Introduction

1.1 Motivation

The amount of digital information is growing at an astonishing pace. A study
conducted by Gantz and Reinsel [1] correctly predicted that the quantity of data
created on the Internet in 2011 would exceed 1.8 zettabytes. Every month we
created more data than the entire size of the Internet up to 2007.

The exponential increase of stored information has made data analysis a key
research topic. The interest was also sustained by the need of many Internet
companies to analyze the collected data sets in order to improve their products
and sustain innovation. Thus, the increase in stored data has come to be a nuisance
for some people. Traditional Relational Database Management Systems (RDBMS)
can not scale up to meet the requirements. Even with all the advances in hard
drives and multi-core programming, the fastest machines can not support the
intensive data processing.

The high costs of buying specially designed servers together with the above
mentioned reasons, have encouraged Google, followed by many other companies,
to develop an infrastructure based on commodity hardware. However, the new
type of clusters also have many drawbacks. For example, in a typical first year,
in a new Google cluster, approximatively 5 racks misbehave causing up to 50%
package loss, 20 racks fail making 40 to 80 machines dissappear for up to 6 hours.
This has brought fault tolerance to the core of infrastructure development, and
as a result an abundance of scalable, failure tolerant computing frameworks have
been developed (e.g. MapReduce [3], Hadoop [4], Dryad [5, 6]).

Given that the aforementioned systems were built for software engineers, they
do not provide the abstractions needed by the layman users. Thus, more and more
tools have been developed on top of the frameworks. Their purpose is to cover a
new variety of use cases and to simplify usage.

Facebook has developed Hive [7] so that engineers can run SQL like queries on
their 100+ Petabyte Hadoop cluster, Yahoo has developed Pig Latin [8] a combi-
nation of SQL queries and MapReduce style procedural programming. Moreover,

10



Chapter 1. Introduction 1.2. Contributions

Google has built many tools like Sawzall [9] and FlumeJava [10] around its MapRe-
duce framework in order to conduct log analysis, store old data and perform graph
algorithms as a series of chained MapReduce jobs.

With the abundance of frameworks and tools developed for specific tasks, en-
gineers have started to create workflows that make use of multiple systems. As
presented in [11], Facebook uses an entire suite of systems in order to conduct data
analysis. For example, Scribe [12] is used to move data from their web tiers to
HDFS [13]. Moreover, jobs that scrape the federated MySQL databases, contain-
ing all website related data, are run on daily basis. Lastly, data is transformed into
Hive readable format and log analysis is conducted. However, since the amount of
data copied varies from hour to hour, data analysts do not have an easy way to
manage their workflows and to conduct experiments.

In this report we will describe a new system called Dron, that will attempt
to close the above described gap. The purpose of Dron is to make frameworks
more interoperable by providing an integration job scheduler that can handle job
dependencies. The scheduler will allow users to define large workflows that make
use of multiple systems. It will display information about data and jobs so that
similar steps within different workflows will be identified and performed only once.

1.2 Contributions

This project made the following contributions:

e Developed New Job Scheduler
We developed a highly scalable and fault tolerant job scheduler that is able
to handle thousands of jobs a second, distributed over many machines. The
jobs are Unix commands (e.g. copy, Hadoop command, Hive query) that are
required to be executed only once or at given time intervals. They can also
depend on the execution of other jobs which means that they are only run
if all their dependencies have been successfully executed.

e Integration of Multiple Frameworks
We demonstrated the ease of adapting current infrastructure systems to co-
operate with Dron for job scheduling. We modified three framworks (Hadoop,
Mahout and Spark) to show how to use the API we have provided.

¢ Removed Duplicated Computation Within a Data Center
By placing Dron at the core of every job computation, we allowed it to cap-
ture the entire graph of job and resource dependencies. Thus, by consulting
the graph, users can avoid conducting the same computation more than once.

e Evaluated Several Scheduling Strategies
We have built a benchmark modelled after real world computations. We
have also studied four scheduling strategies that use the direct acyclic graph
of job dependencies in order to reduce the running time of the benchmark.
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Chapter 1. Introduction 1.3. Outline of this report

e Opened Opportunities for New Systems
By bringing the state of the art frameworks together, in a data center, and
by providing a way of creating complex workflows, we allow for new com-
putations and systems (e.g. a recommendation engine) to be expressed as a
series of Dron jobs.

e Developed and Evaluated Two System Architectures
We have implemented two versions of Dron and we have discussed their
advantages and disadvantages.

e Fault Tolerant Implementation
We have implemented a system that offers a good degree of fault tolerance.
Moreover, we have discussed the behaviour of the system under different
failure scenarios.

e Scalability Evaluation
We evaluated the scalability of Dron by performing a variety of tests whose
alm was to measure the behaviour of the system under different types of
load. The benchmarks tested how the schedulling delay is affected when the
number of jobs increases and how many concurrent running jobs the system
can handle at a time. Finally, We also compared Dron with the current state
of the art workflow manager.

1.3 Outline of this report

We continue with Chapter 2 where we provide an overview of the current existing
solutions for running large process or data intensive computations. While present-
ing each framework we also briefly discuss its use cases. The second part of the
chapter is devoted to other state of the art workflow job schedulers which may
have few similarities with our system.

Following, in Chapter 3 we give an overview of the highly scalable and fault
tolerant system we developed to tackle the existing problems. We do so by first
describing the features of the system, the API it provides and its dependency
language. Following, we give a high overview of its architecture. Lastly, we focus
on the several implementation iterations we conducted and explain the rationale
behind our current system design. The optimizations and issues encountered while
developing the system are also discussed.

Chapter 4 demonstrates the easiness of adapting frameworks to work with the
new job scheduler. First, we go over the possibilities of integration provided by
Dron. Subsequently, we exemplify the changes we had to make to each system.

In Chapter 5 we evaluate the performance of Dron by conducting several tests
that stress its ability to handle a large volume of different jobs. Moreover, we also
use a benchmark designed after the jobs Facebook is running to analyse the sys-
tem’s suitability for current industry needs. Using the benchmark we also evaluate
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Chapter 1. Introduction 1.3. Outline of this report

four scheduling strategies that make use of the dependencies graph. Following we
compare Dron with Oozie, the most used workflow scheduler. Lastly, we discuss
Dron’s fault tolerance under different situations.

Chapter 6 exemplifies the opportunity of building new systems on top of the
job scheduler. We show the development of a recommendation engine using Dron
and several of the frameworks we adapted.

Lastly, in Conclusions (Chapter 7) we provide a retrospective of the project,
analyse if we have reached our goals, mention the lessons we learned and outline
the areas for future work.
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Chapter 2

Background

Workflow scheduling and management has been a perpetual research topic since
the invention of the first batch computer, up to grid computing and distributed
software frameworks. Even tough, much research has been conducted in the area
we believe that there still are plenty of opportunities once with the development
of the new large cluster computation frameworks.

In the first few sections of the chapter we will briefly explain how several
current frameworks work. They will help us understand how large data analysis is
conducted, and why there is a genuinely need for a new framework management
system. Moreover, the first few sections will give us the background required to
analyze current state of the art alternatives to Dron.

2.1 MapReduce

The concepts behind MapReduce were introduced in a paper by Dean and Ghe-
mawat [3]. It is a programming model associated with a highly scalable framework
for computation on large data sets. As the authors acknowledged, the abstractions
behind MapReduce were inspired by the map and reduce primitives present in Lisp
and many other functional programming languages.

A MapReduce job receives as input a set of key/value pairs and returns as
output a possibly different set of pairs. The framework does not restrict the types
of the input and output. Users can pass to a job from simple pairs of integers up
to complex files location.

MapReduce conducts the processing with the help of two functions provided
by the users: Map and Reduce. The Map function receives as input a key/value
pair and outputs a list of possibly different key/value pairs. The function is used in
the first step of the computation by being applied to every single key/value input
pair. Following, the job goes into an intermediate state in which the framework
groups the values emitted by the Map function (i.e. all the values corresponding
to a key are merged into a pair of key, list of values). Lastly, the Reduce function,
also written by the user, is applied on every pair resulted from the intermediate
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Chapter 2. Background 2.2. Hadoop Ecosystem

step. It receives as input a key/list of values pair and its purpose is to merge the
values to form a possibly smaller list. The input of the Reduce function is supplied
using an iterator. Thus, allowing the framework to handle lists that do not fit into
the machine’s memory.

The programming model behind MapReduce (i.e. splitting the computation
into a series of smaller steps) is perfectly suited to a world in which machine failures
are common. Whenever a machine crashes, or even worse, a switch misbehaves, the
framework can simply restart the affected map/reduce tasks on different hardware.
Moreover, the system can even preemptively duplicate several tasks so that the
duration of job does not get affected in case of failures. The aforementioned
features have made the framework to be suitable for deployment on a cluster of
commodity hardware.

Together with MapReduce, Google has developed Google File System (GF'S)
[29]. Tt is a highly scalable, fault tolerant distributed file system suitable for stor-
ing large amounts of data. Since one of its requirements was to perform well on
large sequential reads, the architects have decided to only support large append-
only files. These are divided into data chunks of 64Mb or more. The chunks are
replicated on several (usually 3) commodity machines. This gives the file system
the power of supporting machine or even more complex network failures. Having
the aforementioned features has made GFS the traditional storage solution for the
inputs and outputs of the MapReduce jobs run within the company.

We will not go into further details about the two pieces of infrastructure de-
scribed above. However, we would like to emphasize the impact they had over
the industry. They have inspired engineers to build an entire suite of similar open
source systems. In the following section we will cover some of the publicly available
solutions.

2.2 Hadoop Ecosystem

Inspired by the paper published by Dean and Ghemawat [3] Yahoo has started a
similar open source project called Hadoop [4]. Subsequently, many other major In-
ternet companies (e.g. Facebook, LinkedIn) have joined the project and embraced
it as a crucial piece of infrastructure. However, not long after the development,
the engineers have quickly started to feel the need of new abstractions on top of
the low-level MapReduce programming paradigm. As a result, they have created
an entire collection of libraries and systems that run on the Apache Hadoop frame-
work. The following subsections will describe several of the products that have
been built and their use cases.

2.2.1 MapReduce

The open source community together with several software companies have man-
aged to create an equivalent to Google’s MapReduce framework. As described in
Section 2.1 the computation is conducted with the help of two functions provided
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Chapter 2. Background 2.2. Hadoop Ecosystem

by the users: Map and Reduce.

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
IntWritable one = new IntWritable(1);
Text word = new Text();
String line = value.toString().toLowerCase();
// Split the line into words.
StringTokenizer tokenizer = new StringTokenizer (line);
while (tokenizer.hasMoreTokens()) {
word . set (tokenizer .nextToken());
// Generate a new intermediate pair consisting of word and 1.
output.collect (word, one);
reporter.incrCounter (Counters .INPUT WORDS, 1);
}

Listing 2.1: Word Count Map Function

In order to get a better understanding of the framework’s usage, we will go
over a simple example. We want to count the number of occurrences of every word
within a large file. In order to do so, we take each line from the file and build
a pair out of its number and content. Finally, we pass it in as input to the Map
function provided in Listing 2.1. On line 5 the function splits the text line into
words. Subsequently, it iterates over the words in the text, and on line 12 it emits
a pair having the word as key and one as the value.

In the intermediate step the framework sorts the pairs emitted by all the Map
functions. Subsequently, it groups together all the pairs that have the same key
(i.e. emitted for the same word) into a key/list of values pair. Every pair resulted
from the intermediate step is given as input to the Reduce function provided in
Listing 2.2. Between lines 5 and 7, the function simply counts the number of values
from the input pair. Finally, on line 10 it emits the previously computed value as
the output.

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
int sum = 0;
while (values.hasNext()) {
// Add up the number of intermediate values existing for each
word .
sum += values.next().get ();
}
// Output the number of occurences of each word.
output. collect (key, new IntWritable (sum));
}

Listing 2.2: Word Count Reduce Function

16




Chapter 2. Background 2.2. Hadoop Ecosystem

An overview of the framework’s architecture is presented in Figure 2.1. The
system consists of a single master node called JobTracker and a set of slave nodes
on which TaskTrackers are run. The master is responsible for scheduling tasks (i.e.
map and reduce functions) onto the slave nodes. While assigning tasks, it tries to
locate the nodes that contain the data required by the computation. Moreover, it
also uses a heartbeat protocol to keep record of the free slots every TaskTracker
has.

JobTracker

TaskTracker TaskTracker

manages" ]

08 oN\/O0O O
Q )

Map Slots Reduce Slots

Figure 2.1: Hadoop MapReduce Overview

2.2.2 Hadoop Distributed File System

Similar to Google’s solution, the open source community has built Hadoop Dis-
tributed File System (HDFS) [13]. It is a file system built to run on commodity
hardware and to serve as a storage layer for the plethora of Hadoop applications.
The system was designed to meet the following goals:

e Fault Tolerance - hardware failures are common in large clusters. As
Dean presented in [2], in the typical first year of a new cluster there are
approximatively 20 rack and thousands of hard drive failures.

e Streaming Data Access - the purpose of the system is to support large
data analyzing MapReduce jobs. Thus, the emphasis was set on high through-
put rather than low data access latency.

e Optimize Data Locality - it is more costly to send the data to the com-
putation node than running the computation where the data is.

17



Chapter 2. Background 2.2. Hadoop Ecosystem

We believe that the file system has managed to partially meet the abovemen-
tioned requirements with the help of the master/slave architecture pictured in
Figure 2.2.

[ DataNode ] [ DataNode ] [ DataNode ] [ DataNode ]

Replication

Figure 2.2: HDFS Overview

The NameNode is the key component of the system. It manages the file names-
pace and administers the access to the files. The other important piece of the
system is the DataNode. Every node that is part of a cluster is running one. Its
purpose is to manage the data stored on the node.

HDFS’s requirements have encouraged the developers to model the large files
as a series of 128 or 256Mb blocks. The blocks are managed and replicated by
the DataNode across machines and racks, at the instruction of the NameNode.
Replication has allowed the file system to provide a high degree of fault tolerance.
However, as we can see in Figure 2.2, the NameNode is a single point of failure.
Thus, the crash/restart of the machine that is running the NameNode will suddenly
make the whole file system unavailable. The NameNode has also proved to be a
bottleneck in the large clusters managed at Facebook. As a result one of the
top efforts in the community is to improve its performance and to make it highly
available.

2.2.3 Mahout

Mahout [15] is a machine learning library built on top of the Hadoop MapReduce
framework. It provides implementations for clustering (e.g. group related news
articles), classification (e.g. tag documents based on their content) and batch based
collaborative filtering (e.g spam detection). The algorithms are implemented as an
iterative sequence of MapReduce jobs that are executed on the Hadoop framework.
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Chapter 2. Background 2.3. Query Engines on Top of MapReduce

As we will see in Chapter 6, Mahout and Dron will help us to easily build a
recommendation engine.

The success of the Mahout library has also started to expose some of the weak
points of Hadoop’s Mapreduce framework. A commonly discussed problem is its
poor performance in running iterative jobs (i.e. the majority of Mahout’s jobs).
This is due to the fact that Hadoop writes the output of each MapReduce job to
the distributed file system and subsequently reads it back on during the the next
iteration. As we will see in Section 2.4, the research community has built many
frameworks that address the issue.

2.2.4 Dron and Hadoop

The importance of the systems we have presented above has convinced us to put a
considerable amount of work into adapting them so that MapReduce and Mahout
jobs that depend on HDF'S files can be run with the help of Dron. In Chapter 4
we give details the changes we have made.

2.3 Query Engines on Top of MapReduce

2.3.1 Hive

Hive [7] is an open source data warehousing system running on top of Hadoop.
It was developed by Facebook to provide an easier to use interface for their data
analysis team. This was accomplished by supporting a SQL-like declarative lan-
guage which transforms queries into MapReduce jobs. As a result of its success,
Hive has continuously challenged the scalability of the Hadoop framework. For
example, Facebook currently manages a HDFS/Hive cluster containing more than
100 petabytes of data.

The SQL-like language provided by Hive is called HiveQL. It currently sup-
ports data definition statements (DDL) used to create or delete tables. When
creating a new table the users have to specify the types of the columns. Hive cur-
rently supports columns of primitive types, arrays, maps and compositions of the
aforementioned. In order to get a better understanding, in Listing 2.3 we create a
table of page views that stores the page accesses made by the users of a website.
It consists of three columns, the first one keeps the viewing time, the second one
stores the user id and the last one contains the page URL. As the table can quickly
grow to a notable size, we decided to partition it over the days we are logging the
information.

1 CREATE TABLE page_views(viewTime INT, userId BIGINT, pageUrl STRING)
2 PARTITIONED BY(dateStamp STRING)
3 STORED AS SEQUENCEFILE;

Listing 2.3: Example of a Hive Data Definition Statement

19



Chapter 2. Background 2.3. Query Engines on Top of MapReduce

Additionally, HiveQL provides load primitives so that users can directly import
data from their HDFS deployment. The language also includes different options
of accessing and aggregating the data. For example, in Listing 2.4 we show an
example that filters out the visits made by the user with id 42.

1 SELECT page views.x
2 FROM page views
3 WHERE userld = 42;

Listing 2.4: Example of a Hive Query

The data managed by Hive is stored in the Hadoop Distributed File System
(HDFS). Each table has a corresponding directory. Moreover, each table can
have one or more partitions that are modelled as subdirectories. The files within
these directories store the data that has been serialized by the default built-in
serialization library or by implementations that have been provided by users.

Another notable feature of Hive is the system catalog called Metastore. It pro-
vides metadata about the framework and the data it manages. For example, for
each table, it stores its location, list of columns and their types, serialization/de-
serialization information and much more. The metadata is used by the HiveQL to
create the MapReduce jobs. Moreover, it can also be accessed by external services
via Thrift [38] (a cross-language framework for services development) to determine
the existence of certain tables or partitions.

Hive does not by any means provide all the features of a traditional Relational
Database Management System (RBDMS). For example, as a consequence of being
built on top of HDFS, the query language does not support updating and deleting
rows in existing tables. The reason behind this shortcoming is that the file system
was built to be able to scale up to petabytes of data. Thus, it only supports
append-only operations making it unsuitable for storing small quantities of data.

2.3.2 Pig

Pig [8] represents Yahoo's attempt at closing the gap between the declarative style
of SQL and the low-level programming model of MapReduce. Similar to Hive, it
provides a language (PigLatin) which gets translated into a series of MapReduce
jobs. A PigLatin program expresses the computations as a series of steps with
each one carrying out a single data transformation (e.g. filtering, grouping, aggre-
gation). As Hive and Pig are two systems that are very similar we decided that
there is no reason for integrating both of them with Dron. We choose to adapt
Hive, hence we will not delve into more details about Pig.

2.3.3 Google’s Solutions

Data analysis has been at the core of Google since its early existence. Thus, over
the past seven years they have published papers about three highly scalable query
execution engines. Following we will briefly describe each one of them.
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Chapter 2. Background 2.3. Query Engines on Top of MapReduce

Sawzall

Sawzall [9] is a procedural domain-specific programming language developed on
top of Google’s MapReduce framework. The design of the system was influenced
by two observations. Firstly, the order in which the records of a table are pro-
cessed is unimportant if the querying operations are commutative across them,
and secondly, the order in which the records are processed is unimportant if the
aggregation operations are commutative.

This has encouraged the developers of the system to break the computation into
two phases. In the first step the framework runs a Sawzall script over each record of
the input. The script can output only by emitting data that is sent to an external
aggregator. The role of the aggregator is to gather the results from each record
and process them. The authors of the system have decided to conduct aggregation
outside of the language in order not to expose parallelism to the Sawzall users and
to safe-guard the infrastructure of poorly implemented aggregators. As a result,
Sawzall only offers a collection of aggregators (e.g. maximum, quantile, sum) that
have been carefully implemented.

Dremel

Not long after the launch of Sawzall, users started to feel the pain of waiting for a
long time for their scripts to run. Thus, a new scalable, interactive ad-hoc query
system for analysis of read-only data, has been built. Dremel [37] achieves the
above mentioned features by combining multi-level execution trees and columnar
data layout. It is capable of accessing data stored in Google File System or in other
storage layers such as Bigtable [39]. Moreover, Dremel runs queries natively (i.e.
it does not translate them into MapReduce jobs). As a result, it is able to execute
queries over a trillion records in just several seconds. Sadly, we were not able
to integrate Dremel with Dron because there is no open source implementation
available at the moment.

Tenzing

Tenzing [36] is yet another effort to build a query engine for ad-hoc data analysis
on top of MapReduce. It is an almost complete SQL92 implementation, highly
efficient with a latency of as low as ten seconds. In order to achieve this perfor-
mance, Tenzing optimizes both the queries provided by engineers and the resulted
MapReduce jobs. By developing it tightly coupled with MapReduce, the engi-
neers were able to avoid spawning new binaries for each Tenzing query, implement
streaming between MapReduce jobs, disable the MapReduce sorting stage for some
queries and many more. Similar to Dremel, we were not able to experiment with
the system as currently there is no open source implementation.
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Chapter 2. Background 2.4. Tterative Computation

2.4 Iterative Computation

While introducing the Mahout library in Subsection 2.2.3 we mentioned Hadoop’s
poor performance in running iterative MapReduce jobs. As a result, many have
set on creating new frameworks (e.g. Spark [16, 17], HaLoop [18], Twister [19]
that are more suitable for the given use case. In the following subsections we will
go over a selection of the most noteworthy solutions that have been developed.

2.4.1 Spark

Spark is the result of the observation its authors have made: there is an entire set
of applications that cannot be efficiently expressed under the acyclic programming
model provided by standard MapReduce (e.g. iterative jobs, interactive analysis).
It is a framework implemented in Scala, that fixes the aforementioned shortcomings
with the help of two new abstractions: resilient distributed dataset (RDD) and
parallel operations on these datasets.

The RDD is a read-only collection of objects partitioned across a set of ma-
chines. Users can construct RDDs from the files of a distributed file system (e.g.
HDFS), from splitting a Scala collection into slices that will be distributed over the
nodes or by applying a flatMap operation over an existing RDD. The computation
can be performed on RDDs with the help of the following parallel operations:

e reduce - combines dataset elements using a provided function.
e collect - sends all the elements of the dataset to the user program.
e foreach - applies a provided function onto every element of a dataset.

Furthermore, Spark provides two types of shared variables: accumulators and
broadcast variables. They are the result of the fact that operations like map
and reduce involve passing closures to Spark. Thus, in order to avoid sending
variables to every worker node, programmers can use broadcast variables which
are distributed to the workers only once. On the other hand, accumulators are
variables onto which workers can only apply associative operations.

The features provided by the framework have encouraged us to study it more
and to make several changes so that it can be used with the Dron scheduler. In
Chapter 4 we will explain in detail the changes we have made.

2.4.2 HalLoop

HaLoop is a modified version of the Hadoop MapReduce framework that on average
reduces iterative’s jobs runtime by 45%. The improvements are the result of two
observations that have been made by the authors of the system:

e The termination condition of the iteration, may involve detecting when an
approximative fixpoint has been reached. Thus, the check of the condition
may require an additional MapReduce job for each iteration.
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e Even tough the data between iterations is almost unchanged on many in-
stances, Hadoop still writes outputs into HDFS and reads them back again
during the next iteration.

HaLoop solves the above mentioned problems by making the following key
improvements:

e Stores the output of the data on the disk of the machine where the computa-
tion was executed. On the next iteration, it tries to allocate the map/reduce
functions on the same machines as they were in the previous step. In doing
so, HaLoop avoids writing to HDFS and implicitly waiting after the entire
slow replication protocol.

e Requires the user to implement several functions that will be used to deter-
minate the convergence to an approximative fixpoint. For example, the user
has to provide a function that computes the distance between two return
value sets sharing the same out key.

We believe that even tough Hal.oop and Spark are based on different concepts,
they can be used to solve the same set of problems. Thus, having already integrated
Spark with Dron we decided not to devote any extra time to HaL.oop.

2.5 Non-MapReduce Systems

As MapReduce has started to be adopted more and more, many have started to
feel that its programming model is too restrictive. Hence, they have set onto
building frameworks that can express more general computations. We will briefly
describe several systems out of the plethoria that have been built (e.g. Dryad [5, 6],
Pregel [22], Percolator [44], BOOM Analytics [40], CIEL [21]).

2.5.1 Dryad

Dryad is a general-purpose distributed execution engine designed for data intensive
applications. A Dryad job is modelled as a dataflow graph. Vertices represent the
computation points, while the directed edges model the communication channels
(e.g. files, TCP pipes, shared-memory queues).

The users have to provide implementations for each type of vertex. They
usually are simple sequential programs. Despite that, concurrency is supported
on Dryad by being able to run non-dependent vertices at the same time. The
authors of the system have also implemented a language that makes it easy to
specify common communication patterns. As we can see in the graphs presented
in Figure 2.3 there are four basic operators:

e A " n - creates n copies of the vertex A.
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e A >= B - creates a directed connection between A and B. Every outgoing
edge from A is assigned in a round-robin manner to B’s inputs.

e A >> B - forms the complete bipartite graph between A’s outputs and B’s
inputs.

e A || B - merges two graphs. This is useful for constructing communication
patterns such as fork or join.
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[ V2 ] [ V2 ]
“vzs = v2A2“

> < \V12=V2) (| (V1 >=v2) ) ) )
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Figure 2.3: Dryad Operators

We believe that some interesting research has been conducted in conjunction
with Dryad. For example, DryadInc [45] is a system that tries to almost automat-
ically reduce the amount of duplicate analysis. It extends Dryad’s Job Manager
with a logic that detects duplicate computations and rewrites the directed acyclic
graph accordingly. Optimizing computation within a cluster is one of Dron’s goals
as well. However, we will not be able to provide an automatic solution to the
problem as Dron is working in a much more heterogeneous environment (i.e. a
whole suite of frameworks). Nonetheless, we foresee the possibilities of extending
Dron to support such a feature.

Lastly, we would like to point that Dryad was intended to act a foundation for
other frameworks that would be developed on top of it. However, unknown reasons
have determined Microsoft to stop the project and to move on to developing their
own Hadoop-like system.

2.5.2 CIEL

CIEL [21] is a universal execution engine for distributed data-flow programs. It
supports a dynamic task graph that can adapt based on the data it processes. The
system has been developed in conjunction with Skywriting [20], a Turing complete
scripting language suitable for expressing iterative algorithms.
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CIEL uses objects, references and tasks in order to express the computation.
Objects are the output of a job, they are uniquely named, unstructured, finite-
length sequences of bytes. Similar to the majority of object oriented programming
language, objects can be used without owning their full content. This is achieved
with the help of references (i.e. pairs of name and set of object locations). With
the help of Skywriting the computation can be expressed as a series of tasks that
execute on a single machine. These tasks can also have dependencies on references
(i.e. they will only run when the data pointed to by the reference will be available).

CIEL tasks can perform two actions that affect the result of a computation:

e Output - they can publish one or more objects.

e Adapt - by spawning new tasks that perform additional computation. In
this way, an execution graph dependant on the processed data can be con-
structed.

Finally, we would like to point that we appreciate the additional expressivity
given by Skywriting and the CIEL framework. However, we believe that as jobs
get more and more complex it will be more difficult to debug them and to track
the execution of the tasks.

2.6 Mesos

As we have already seen, many frameworks have been developed. Nonetheless, we
believe that many more will be created as there will not be an optimal system to
solve all the problems. This also was the reason for which a team of researchers has
built Mesos [23, 24], a platform for sharing commodity clusters between different
computing frameworks. Its purpose is to reduce the duplication of data, improve
utilization of resources by collocating systems within the same cluster and reduce
the costs of sending data between clusters.

Mesos is a two-layer scheduler that does not take the control over scheduling
from the other systems. It manages to accomplish this by introducing the concept
of a resource offer (i.e. a set of resources that a framework can use on a machine
to run its tasks). On every scheduling loop Mesos tries to keep fair sharing among
frameworks by providing them resource offers. Each framework can decide to
accept or refuse the offer if it does not suit its needs (e.g. data locality). By
refusing a resource, the framework still remains under its fair share, thus the cluster
manager will offer resources to the same framework during the next scheduling
iteration.

We believe that once with the exponential growth in stored data, companies
will find more and more difficult to manage separate clusters for each type of
framework. This will make Mesos or a similar system a crucial piece of infras-
tructure. By acknowledging this, we decided to use Mesos together with Dron for
better resource sharing. Thus, the schedulers of the majority of the frameworks
we adapted collaborate with Mesos for better resource utilization. To sum up, we
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Figure 2.4: Resource Offering Overview

think that a combination of Mesos and Dron may represent a base for conducting
large scale data analysis.

2.7 Related Work

We believe that having analyzed several of the current state of the art systems, we
have the background knowledge to proceed to the following sections. Moreover, we
have also got a better understanding of why we believe an integration scheduler is
required. The remaining of the chapter will be devoted to current workflow (data
pipelines) management systems.

2.7.1 FlumeJava

FlumelJava [10] is a Java library developed by Google with the purpose of reducing
the complexity of development, testing and running of data parallel pipelines. The
core of the library contains several parallel collections together with few parallel
operations.

The parallel collections do not expose details about how data is stored. Thus,
users can develop and test their pipelines by storing a small data set into the
memory. As a result, they will not be required to adapt the data pipeline when-
ever they will want to run it on the entire data set. Similar to collects, parallel
operations abstract their execution strategy (i.e. an operation can run locally or
as a MapReduce job). Tables 2.1 and 2.2 give a short description of the collections
and primitives operations available in FlumelJava.
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Collection Description

PCollection (T) | an immutable bag of elements of type T. The ele-
ments can be ordered (sequence) or not (collection)
PTable (K,V) a immutable multi-map with keys of type K and
values of type V

Table 2.1: FlumeJava’s Collections

Operations Description

parallelDo() map a function over each element of a PCollection and
returns another PCollection

groupByKey() converts a PTable into a collection of type PTable
(K, Collection(VY))

combineValues() | takes as input a PTable(K, Collection(V)) and an associa-
tive combing function on Vs, and returns a PTable(K,V)
flatten() flattens a list of PCollections into a single one containing
all the elements of the input Collections.

Table 2.2: FlumeJava’s Operators

The library’s parallel operations are not actually run when they are invoked.
Instead they are added to an internal execution plan graph. Once the entire graph
has been constructed, FlumeJava proceeds onto optimizing it. Moreover, when the
operations are actually run, the library chooses how to execute them (i.e. a loop
run locally vs. a MapReduce job) based on the size of the input and the latency
a MapReduce job involves.

Finally, we acknowledge that FlumeJava has managed to accomplish its goals.
However, we think that providing the functionality as a library imposes several
limits. For example, the designers have restricted the users to a specific suite of
languages (i.e. JVM based). Moreover, the users are required to find a ‘perfect
machine onto which a FlumeJava process can remain active for as long as the
computation lasts. Otherwise, if the machine on which the application is running,
crashes or restarts, the whole dataflow is lost.

2.7.2 Qozie

Oozie [32] is a workflow scheduler developed by Yahoo for the Apache Hadoop
framework. An Oozie workflow is a directed acyclic graph composed of two dif-
ferent types of nodes: action and control. The former type starts jobs in external
systems (e.g. MapReduce, Pig jobs) or it can simply run a Java program on a
remote machine. The later type of node is used to control the execution path of
the workflow (e.g. fork, join, decision nodes). For example, the fork node is used
to split the execution path (i.e. run two or more different jobs) and the join node
is used as a barrier (i.e. the next job will not run until all the above running jobs
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have completed).

A workflow is defined in an XML file that is stored in an HDFS directory
together with all the files required for each node (e.g. Pig scripts, MapReduce job
jars). Subsequently, users run the workflow by using a provided command line
tool. Finally, they can monitor the execution of their job via a Web UL

To get a better understanding of Qozie’s capabilities, we will go over a simple
example. We want to build a workflow that scans a document and calculates the
number of occurences of each word. Moreover, we also want to count the number
of distinct words. We can express the computation as a two node Qozie workflow.
Listing 2.6 describes a word count MapReduce job. The creator of the action node
must minimally specify the map class (lines 6-9), reduce class (lines 10-13) to be
used, the input and the output directory, and finally the actions to be conducted
in case of failure or success (lines 28-29).

Subsequently, the creator of the workflow can specify a Pig job that counts the
number of unique words. Similar to the MapReduce action node, the Pig node
must define the location of the script to be run, the input and output parameters
and the nodes to be executed in case of failure or success.

Since machine crashes/restarts are common in clusters of commodity hard-
ware, Qozie also provides a basic mechanism for handling workflow failures. Users
are allowed to rerun their jobs. While doing so, they have to specify a rerun pol-
icy. They can either inform the scheduler which nodes it must skip or allow it
to automatically rerun the workflow from the failed node. However, users must
also ensure that all the workflow cleaning operations have been conducted before
rerunning the computation.

1 <action name="UniqueWords”>

2 <pig>

3 <job—tracker>\$(jobTracker)</job—tracker>
4 <name—node>\ $ (nameNode )</name—node>

5 <script>uk/ac/ic/doc/dron/unique. pig</script>
6 <param>INPUT=word _count</param>

7 <param>OUTPUT=unique_words</param>

8 </pig>

9 <ok to="end”>

10 <error to="fail”>

11 </action>

Listing 2.5: Example of an Oozie Pig Job
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1 <action name="WordCount”>
2 <map—reduce>
3 <job—tracker>\$(jobTracker)</job—tracker>
4 <name—node>\$(nameNode)</name—node>
5 <configuration>
6 <property>
7 <name>mapred . mapper. class</name>
8 <value>uk.ac.ic.doc.dron.WordMapper</value>
9 </property>
10 <property>
11 <name>mapred . reducer . class</name>
12 <value>uk.ac.ic.doc.dron.WordReducer</value>
13 </property>
14 <property>
15 <name>mapred . map. tasks</name>
16 <value>1</value>
17 </property>
18 <property>
19 <name>mapred . intput . dir</name>
20 <value>document</value>
21 </property>
22 <property>
23 <name>mapred . output . dir</name>
24 <value>word_count</value>
25 </property>
26 </configuration>

27 </map-reduce>

28 <ok to="UniqueWords”>
29 <error to="fail”>

30 </action>

Listing 2.6: Example of an Oozie MapReduce Job

Having evaluated Oozie, we believe that it is a system that meets a signifi-
cant amount of our requirements. However, we would like to point several of its
shortcomings:

1. It has been designed to only work with the Hadoop framework. Moreover,
its architecture makes it difficult to integrate any new system. The lack of
support for HBase and Hive serves as evidence.

2. The requirement of expressing workflows in XML files makes the scheduler
difficult to use. The workflows can quickly become difficult to manage. As
we could see in the example we presented, files grow to a considerable size
even for the most simple jobs. Thus, we forsee the need of tools that reduce
the complexity of Oozie workflow creation and management.

3. Oozie is not suitable for multi-user environments. We believe that our users
workflows have common steps. Thus, we emphasize the importance of allow-
ing one user to depend on another user’s job.
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4. The scheduler was built to be deployed on a single machine. This does not
offer the fault tolerance required by a crucial piece of infrastructure.

Finally, we would like to mention that Oozie has encouraged the development
of another new system called Nova [41]. It is a workflow manager that lays on top
of Oozie and it provides continuous Pig/Hadoop workflows. However, we will not
go into further details because Nova has not tried to solve any of what we believe
are Qozie’s limitations.

2.7.3 Condor and DAGMan

Condor [42] is the most popular high-throughput distributed batch computing
system. Its goal is to provide large amounts of computational power while effec-
tively utilizing the resources available to the network. Condor supports resource
management and monitoring, scheduling policies and job management.

As aresult of its long withstanding existence and success, many tools have been
built on top of it. DAGMan (Directed Acyclic Graph Manager) is just one
of them. It provides a solution for running jobs with dependencies. Figure 2.5 ex-
emplifies a workflow that can be expressed with the help of DAGMan. Moreover,
Listing 2.7 gives the language definition of the graph. Jobs are expressed on lines
1-4 using the JOB statement that associates names with files containing Condor
job descriptions. The directed edges of the graph are expressed on lines 5-6 with
the help of the PARENT-CHILD statement that describes the dependency of two
jobs. An interesting feature is the support of PRE and POST scripts that can be
run before and respectively after the execution of a job.

JOB ScrapeData sd.condor

JOB AnalyzeDatal adl.condor

JOB FilterData fd.condor

JOB AnalyzeData2 ad2.condor

PARENT ScrapeData CHILD AnalyzeDatal FilterData
PARENT FilterData CHILD AnalyzeData2

SCRIPT PRE FilterData in.pl

SCRIPT POST FilterData out.pl

Listing 2.7: Example of DAGMan’s supported language

DAGMan has been designed to gracefully handle job failures. For example, if
a job terminates with a result indicating an error, the system writes out a rescue
DAG. The new graph contains only the jobs that have not been executed before
the failure.

Much research has been conducted around Condor and DAGMan. For example,
the authors of [43] have succeeded to optimize the run of a dependencies graph by
trying to determine an Internet-Computing optimal (IC optimal) schedule. The
goal of such a schedule is to devise an order for assigning jobs to workers such
that the number of jobs that can be run at every step is maximized. The tool
implemented by the authors has managed to reduce the execution time by 13%.
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Figure 2.5: Example of a DAGMan Job Graph

While Condor and DAGMan have long proved to be able to handle many dif-
ferent types of jobs, we believe that they have several shortcomings. For example,
running MapReduce jobs requires an active client process to be kept open. Thus,
the potential Condor job that runs a MapReduce computation, may terminate
before the actual work is over. As a result, DAGMan will start running the jobs
that depend on the MapReduce results.

Lastly, another potentially major drawback is the fact that the systems were
not designed to support computation sharing between users. As each dependencies
DAG is defined within a file, there is no central knowledge of a complete DAG of
jobs. As a result, users may end up performing the same computation more than
once. For example, a user may not be aware of an already existing job (e.g.
daily production database scraper) and may proceed into duplicating the work by
writing his own new job.

2.7.4 Gearman

Gearman [33] is a framework that can be used to farm out work to other machines.
It currently supports two types of jobs: foreground and background. The former
are jobs that have a client attached while the latter do not. Figure 2.6 depicts the
main components of the system: job managers, workers and clients.

The clients are responsible of creating jobs and requesting the job server to
run them. Whenever the server receives a request, it dispatches it to one of the
managed workers. Following, the worker performs the required work and sends a
response to the client through the job server.

The job server stores all the jobs in memory based queues. Thus, if the server
fails while having pending jobs, they will be lost forever. Gearman partially solves
the problem by supporting persistent queues. The pending jobs are written into
a database so that they survive server restarts and failures. However, the ap-
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Figure 2.6: Gearman Overview

proach does not provide availability because in the case of a hardware failure the
framework will not be able to run the pending jobs.

While Gearman has met the demands of many companies, we believe that it
does not provide the abstractions required to run complex workflows on it. In its
current state it does not support any way of expressing dependencies between jobs.
Thus, a user would have to implement his own mechanism of checking dependen-
cies. Moreover, background job failures can cause headaches to the users, as there
is no current mechanism for detecting them.

To sum up, we think that German would have to go through a complete re-
design in order to be able to implicitly support many frameworks, job dependencies
and nonetheless improve its fault tolerance.

2.7.5 Cascading

Cascading [30] is a data processing API and process scheduler. It can be used to
execute data processing workflows on a cluster of machines. Cascading has been
built to reduce the complexity of developing applications on top of the Apache
Hadoop framework.

The data processing workflows are build using the Cascading API. The interface
introduces several new concepts such as pipe assemblies and operations. A pipe
assembly is a pipeline that may or not have data sources and data sinks. There
currently are five types of pipe assemblies that apply different operations to the
content of the streams (i.e. tuples).

e Each - it applies a function or a filter operation to every tuple from the
stream.

e GroupBy - it groups the stream on selected fields from the tuple.

32



Chapter 2. Background 2.7. Related Work

e CoGroup - similar to the SQL join operation, it joins streams based on
some common set, of fields.

e Every - applies an aggregator function to every tuple from the stream.

e SubAssembly - packages pipe assemblies to be used in a larger pipe assem-
bly.

Cascading supports custom operations by allowing the users to define their
own functions. There are four types of functions: Function, Filter, Aggregator and
Buffer. The first one expects a single Tuple as argument and it may return zero
or more Tuples as result. The Filter, as its name suggests, expects a single Tuple
as argument and returns a boolean value stating if the tuple should be discarded
from the stream or not. The third operation expects a set of Tuples in the same
grouping as input and returns one or more Tuples. Lastly, the Buffer is similar to
the Aggregator, it only differs in its input. It receives the current Grouping Tuple.

After defining pipe assemblies and their operations, one has to bind them to
sources and sinks. The process of binding results in a Flow. Subsequently, Flows
can be grouped together to form a Cascade. The grouping is done via dependencies
(i.e. a Flow can depend on the output of another Flow).

Finally, the defined Cascade job is passed to Cascading’s MapReduce Job Plan-
ner. Its role is to convert the pipe assemblies into a graph of dependant MapReduce
jobs. Furthermore, Cascading has a scheduler that given a graph of dependant
flows runs them on the Hadoop framework according to their topological order.

Having presented Cascading’s features we would like to point several of its
limitations. Firstly, it does not provide failure guarantees for long running jobs.
Since Cascading is running from the client’s machine, there is no way to provide
availability and dataflow recoverability in case of hardware failures. Secondly, we
believe that the API which is provided may be a bit restrictive. For example, one
would not be able to easily express jobs that do not involve stream operations.
Lastly, its architecture does not provide a way of adding non MapReduce based
computation frameworks. In other words Cascading it is not able to run more
complex computations supported by CIEL or Dryad.

2.7.6 Quartz

Quartz [34] is an open source job scheduler that has been designed to be used
together with any Java application. Users can specify the time when a job should
be executed by providing Cron style strings. Quartz transforms the strings into
triggers that notify the scheduler when a job must be run.

Similar to Gearman, the system can persist the jobs or it can optimize by only
storing them into the memory. In contrast to the abovementioned system, Quartz
does provide fault tolerance by being able to run a cluster of schedulers. Whenever
a machine fails, one of the remaining schedulers reads the pending jobs from the
database and runs them.
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Quartz can send scheduling/job events to applications that implement several
of the available listeners (e.g. JobListener, TriggerListener). Thus, even tough
the scheduler does not natively support dependencies between jobs, one could pro-
grammatically create workflows by launching the dependant jobs when completion
events are received. The solution we provided may be good enough for simple cases,
but for the following reasons it is not suitable for expressing long running complex
workflows:

e Every single user will have to manually reimplement dependency checking in
order to be able to express his or hers workflows.

e [t requires the client to be connected to the scheduler for the whole duration
of the computation. Hence, it introduces a new point of failure in the system.

e Users are required to explicitly handle job failures in their programmatic
workflows.

e Applications will not be aware of the computation each one is conducting.
Hence, they may end up running the same jobs more than once.

To sum up, we believe that Quartz is a great scheduler for simple Java based
jobs. However, since it has been so tightly coupled with the language, it does not
provide any way of integrating external frameworks.

2.7.7 Moab

Adaptive Computing has developed a suite of HPC workload management prod-
ucts. Among them, a scheduling and management system called Moab Workload
Management [35]. The product was built to centralize the access to clusters and to
optimize resource usage. As a result the system supports four types of workloads:

e Batch - typically a job command file that describes all the jobs requirements
(e.g. memory, disk, CPU). When the job is submitted it is placed into a job
queue. Subsequently, when resources become available, it run in the cluster.

e Interactive - a job whose output is of immediate interested to the users.
Thus, the job submitters remain connected to the job so that users can view
output and error information in real-time.

e (Calendar - jobs that must be executed at a particular time or on regular
basis.

e Service - long-running jobs that usually are persistent services. Moab sup-
ports extensive configuration for this type of jobs. As an example a user may
specify storage requirements and locality constraints.

34



Chapter 2. Background 2.7. Related Work

State Description

deferred the job has been postponed due to an inability to schedule it

idle the job is queued and is waiting to be run

starting the job is performing pre-start tasks (e.g. provisioning re-
sources)

running job is currently executing

canceling | job has been canceled
completed | job has successfully completed

Table 2.3: Job States

The aforementioned jobs pass through a series of states as they are scheduled.
The Table 2.3 briefly explains the most important ones.

Sadly, we were not able to find any document explaining the architecture of
the product. However, in the Administrator Guide, it was briefly mentioned how
the system achieves high availability. The scheduler has several slave instances
running such that they can take over scheduling in case of a failure.

While evaluating the product we were impressed by its abilities to handle jobs
with priorities and by its extensive resource management options. However, we
believe that the system is not suitable for the types of computation we are trying to
run as it has not been designed for clusters of commodities machines. Moreover,
its complexity makes it very difficult to try to adapt it to support the current
state of the art frameworks. The above mentioned arguments together with the
fact that it does not support job dependencies have determined us to rule it out
as a solution for our problem.
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Dron Architecture and
Implementation

In this chapter, we first present the features of our system. Subsequently, we
describe its architecture from a high-level point, ignoring the details. Finallly, we
describe the architecture and implementation of Dron by following the design and
optimization changes we have made in order to bring the system to the final state.

3.1 Overview
The users of the system will be able to register several types of jobs:

e periodic jobs - they are required to be executed at a specific time interval
(e.g. every 30 minutes).

e one off jobs - tasks that are executed only once at a given time.

e periodic jobs with dependencies - they are expected to be run at a
given time interval or later when the job instances on which they depend
have successfully completed.

e one off jobs with dependencies - tasks that may be executed a given
time. They will only run if the jobs on which they depend have successfully
completed within a given timeout from the scheduled running time of the
task.

Dron will run the jobs and monitor them to make sure they meet their spec-
ification. For example, it may execute again a failed job if the user has specified
so. Moreover, it will also make sure that job instances do not exceed their maxi-
mum running time or the time they are allowed to wait for their dependencies to
succeed.

The system was constructed in order to meet the raising needs of data scientists
and engineers of using the multitude of frameworks that have been developed for
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large scale data analysis. Thus, one of its main features is the ability to represent
workflows that are composed of steps executed by several other systems. For
example, a user may construct a workflow which firstly scrapes the production
databases to HDF'S, then it loads the data into Hive, transforms it, and finally it
saves into a MySQL database for further analysis.

Lastly, Dron was built to provide a good degree of fault tolerance. We have
designed it such that it has no single point of failure. In this way the system is
able to withstand several components failures without affecting the long running
jobs it manages.

3.2 Dron API

In this section we describe the API we have developed. The users can register
jobs by calling the register job method. While doing so they have to specify the
name of the job, a Unix command line representing the programm to be executed,
starting time, running frequency, a timeout value representing the longest time a
job instance is allowed to run and the maximum number of times the job is rerun
in case of a failure. In Listing 3.1 we can see an example of a job that runs a shell
script every hour and allows for three failures to happen.

ldron_api:register_ job(#job{name="scrape users”,

cmd line="sh scrape users.sh” |
start_time={{2012,06,23},{12,0,0}},
frequency = 3600,

timeout = 600,

max_retries = 3,

dependencies = [],

deps_timeout = 10}).
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Listing 3.1: Example of job registration

More importantly, users can construct workflows by specifying dependencies
among jobs. We have developed a basic language for expressing the dependencies.
Following we give the grammar of the language.

(dependency) == {(job_name), (specification)}

(specification) = {(tag)} | {({tag), {(number), (number)}} | {(date)}
(tag) ::= today | hour | minute | second

(date) = {{year, month, day}, {hour, minute, second}}
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A dependency is declared by providing a tuple composed of the job’s name and
a specification which can be of three types: a simple tag, a date value or a tag and
a tuple containing two numbers. The date can be used to exactly specify on which
job instance the newly registered job depends. However, in the majority of cases
a job depends on instances that are within a sliding window interval. For such
situations we can use tags. For example, by using the tag today, we declare that
the job depends on all the instances that are expected to run today. Additionally,
one could define a dependency on even older or future job instances by proving
the tuple containing two numbers as well.

ldron_api:register_job(#job{name="scrape query”,

2 cmd line="hive —e ’select users.name from table
users 7,

3 start time={{2012,06,23},{12,1,0}},

4 frequency = 3600,

5 timeout = 600,

6 max _ retries = 3,

7 dependencies = [{”scrape_ users”, {hour, {2, 1}}}
] b

8 deps_timeout = 3600}).

Listing 3.2: Example of registration of a job with dependencies

In Listing 3.2 we register a job that runs a Hive query every hour if its de-
pendency is satisfied. The scrape query job will run after all the scrape users
instances that were scheduled to be executed in the past two hours and in the next
hour have successfully completed.

We believe that the language we have developed for the project is expressive
enough to define most of the use cases of the system. However, we think there
are plenty opportunities to improve it. For example, we could add support for
dependencies on data. One could specify a dependency on a HDFS file or even
better on a Hive table. As a result, whenever the file/table would be created
the jobs that depends on it could proceed to run their computations. Another
possibility would be to build a graphical interface for expressing the workflows.
In the interface, users will be able to see the entire direct acyclic graph of jobs
together with information about every job (e.g. command, output). This would
encourage users to look and utilize jobs that are running similar computations as
the ones they are planning to schedule. However, while all these features are a nice
thing to have, we do not believe they are central to the purpose of the project.

3.3 Architecture
In this section we will briefly describe the first architecture design of Dron. Fun-

damentally, the purpose of our project is to develop a system that allows users to
create complex long running workflows, that make use of multiple frameworks.
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Before we have started developing the system we have set ourselves several goals
to be achieved in order to meet the current needs of the largest data warehouses:

e Dron must be able to schedule more than 10 million jobs a day.
e Scale without significant increase in scheduling delay (less than 10s).

e Design must be modular enough such that new frameworks can be integrated
easily.

e Scheduler should be pluggable such that many strategies can be experi-
mented.

e Handle well different failure scenarios such as machine’s crashes and transient
network errors.

The majority of the system has been developed using Erlang programming
language. Even tough, the language is not one of the fastest, we have chosen
it because we think it is suitable for the problem we are solving. FErlang was
built to support distributed, fault-tolerant, non-stop applications. It does so by
introducing the concept of an Erlang node and process. A node is simply an
executing Erlang runtime system that can handle many processes (light-weight
with small footprint). For the remainder of the report whenever we will use the
concept of node we will refer to an Erlang node.

While the language may have few drawbacks, such as unsuitability to be used
between data centers (i.e. does not provide good security), they do not apply to
our case as Dron was built to be used within a single data center. Lastly, we
believe that our programming language choice has allowed us to move faster and
iterate several times more than if we would have picked a classical object oriented
language such as Java. This is due to Erlang’s conciseness in expressing multi
process computations (i.e. we approximate the code size to be around 8 to 10
times smaller than if we would have written the project in Java).

Figure 3.1 provides a high overview of the architecture of the system. The
core of Dron is represented by the Active Master node. The most important
responsibilities of the master are:

e Schedule jobs - create job instances at the requested time intervals. More-
over, make sure that these instances are re-executed in case of failures or
that they do not exceed their maximum running time.

e Manage workers - monitor the state of the workers and make sure jobs are
re-run when worker nodes fail.

e Persist data - the master must write to a database all the information
related to job description, job’s running history, workers state etc.
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e Filter events - watch for events that are published by the worker nodes or
by the external frameworks. These events must be then transformed into
state changes of the database or the master node.

As we can see from the figure the system also deploys light-weight Erlang nodes
on the worker machines. The purpose of these nodes is to manage and monitor the
state of the jobs that are executed there. Since failures are the norm in clusters
of commodity hardware, we have designed our worker nodes to be as state-less as
possible. Thus, they do not keep any information about the job instances except
timers to be triggered when their maximum running time is reached. The workers
can run any job that can be specified as a Unix shell script. This may be a
Hadoop MapReduce job, a Hive query or even a Spark task. As we will see in
Chapter 4 we have adapted these frameworks to publish events about job’s state
on a publisher/subscriber system.

Pub/Sub

Figure 3.1: Architecture Overview

For persisting the data we have chosen Erlang’s builtin database, Mnesia. The
main arguments for our decision are the fact that the database is well integrated
with the programming language while others such as MySQL are not, it is easy to
replicate on multiple machines and finally it provides two types of persistence (on
disk as well as in main memory).
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As one of our main goals is to build a fault tolerant system, we could not allow
for any single point of failures. As a result, the master node has one or more hot-
standby nodes. In case of a master node failure, one the other nodes is promoted
to the a master role using a leader election algorithm.

While developing the system we have continuously evaluated its performance.
This has allowed us to discover early on the bottlenecks, and more importantly,
that the initial architecture was not be able to meet all the goals we have set for
the system. In the following sections we will discuss in depth the various design
changes and optimizations we have made in the iterative development process of
Dron.

3.4 FErlang Background

Before we proceed with the explanation of the design, we have to briefly intro-
duce several concepts about programming with Erlang/OTP. The code is divided
into modules that may be either a plain or a behaviour module. The behaviours
are formalizations of common patterns such as finite state machines, event han-
dlers or servers. An example of such a behaviour is the Generic Server Behaviour
(gen_server) which implements the client-server relation. The model is charac-
terized by a central server and an arbitrary number of clients that can send or
request data from the server. As a result, the gen server is a callback module
that exports a pre-defined set of functions. Among them there are handle call
and handle_cast. The former must be implemented to handle synchronous re-
quests from the clients while the later must be implemented for the requests that
must be handled asynchronously. With the help of gen_ server one may develop
complex distributed systems modelled as a collection of servers and processes that
communicate between them.

The second important Erlang/OTP concept we are introducing is the Supervi-
sor Behaviour. A supervisor is responsible for starting, monitoring and stopping
a set of children processes. A common design pattern used in Erlang is to build
supervision trees. With the help of the trees one may express the computation
as a set of worker processes that are monitored by a set of supervisor processes.
The pattern strongly encourages Erlang’s philosophy which is to treat failures as
the norm and not as the exception. By conducting the computation in state-less
worker processes, the system can handle failures by simply allowing the supervisor
processes to restart the computation in a different process.

3.5 First Iteration
Before we have started developing Dron we have considered various architectural

solutions. The option we have chosen for our first iteration is presented in Figure
3.1. The system is centered around a multi-purpose master node that schedules
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jobs, manages workers, filters event from a publisher/subscriber system and per-
sists data.

Since the master node was playing a central role, we had to make sure that its
failure would not make the entire system unavailable. We have considered three
solutions for this problem. Following we will briefly explain the advantages and
disadvantages of each one of them.

Single Master With a Database

Each action conducted by the master (e.g. job instance creation, worker alive
message) must be saved in a database that is replicated on several other machines.
Upon master’s failure the maintainer of the system must launch a new master node
on one of the machines containing a replica of the database. The node would first
reconstruct an in-memory state from the database after which it would proceed to
schedule jobs.

The main advantage of this design is its simplicity. Having the master node on
a single machine does not require the developer to think and handle consistency
and network partition issues. On the other hand, it can not offer good availability
in case of failures. One would have to manually start the master on a different
machine and the process may take a long time as the entire state would have to be
reconstructed from the persistent storage. Lastly, the master may quickly become
a bottleneck as it is required to write all the operations to the database.

Multiple Masters Organized in a ZooKeeper Quorum

ZooKeeper [25] is a service for coordinating processes, maintaining configuration
information, providing distributed synchronization and group services. It allows
distributed processes to coordinate with each other via a shared hierarchical names-
pace that is kept in-memory. Moreover, with the help of the namespace API
one may implement more powerful primitives such as: configuration management,
leader election, group membership, locks, double barrier, distributed queues etc.

The name space provided by ZooKeeper is similar to a standard file system.
The main difference is that in ZooKeeper each node can have data associated with
it as well as children. The API provides simple primitives to create, delete, read
and write data atomically to the ZooKeeper nodes. On top of that the system
also supports the notion of ephemeral nodes. These nodes are created by the
client systems and exists until the client explicitly deletes them or until the session
is terminated (e.g. client failure) when ZooKeeper automatically removes them.
Lastly, the system also provides watches to allow clients to be notified of changes
without requiring them to poll.

ZooKeeper can be used to perform two important tasks within our system:
atomic broadcast and leader election. By creating a quorum of ZooKeeper nodes,
we can delegate the master election protocol to ZooKeeper. The quorum will
be responsible for detecting and handling node failures, network partitions and
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related events. When a service will be considered to be dead, its connection with
ZooKeeper will be invalidated, its ephemeral nodes will be synchronously removed
from the name space and the events will be distributed to watchers.

/workers

| /workers/w1 | | Iworkers/w2

ljobs/job2

/jobs/job1

\
liobsfiob1/ji1 | | fiobsfiob2siit | | /jobsliob2sjiz |

Figure 3.2: ZooKeeper usage example

With the help of ZooKeeper’s atomic broadcast protocol (Zab [26]) and its
name space Dron would be able to distribute its state over several machines. Figure
3.2 shows how it can be achieved. Every worker node can create and ephemeral
node under the /workers node. Thus, in case of a failure or a network partition,
every watcher will be notified. Similarly, we can create a hierarchy for jobs, in
which for each instance we will create a children under the node representing the
job.

Despite the fact that ZooKeeper is a system that has been used in production
for a long time we chose not to build Dron around it because of the following
reasons:

e There is no API support for Erlang. As a result, we would have had to
implement a service that would receive requests from Dron and forward them
to ZooKeeper. This would add much complexity to our system and at the
same time it would decrease maintainability.

e A three server ZooKeeper quorum scales up to around 20 000 requests per
seconds. If we assume an average of 10 requests per job instance, then the
system will only be able to handle around 2 000 job instances per second.
This would not be enough to meet the goals we have outlined for Dron.

Shadowed Master

The third design we have considered is the one presented in Figure 3.1. Sim-
ilarly to the first architecture, it consists of a master node that coordinates the
scheduling, monitors workers and persists data. However, in this design the master
node has one or more hot-standby nodes. When a node failure happens, a leader
election algorithm picks and informs which hot-standby node will be responsible
for coordinating from there on. Over the next few subsections we will study the
implementation in more detail.
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3.5.1 Modules

Figure 3.3 provides an overview of the main modules implemented in the first
iteration and the way they interact. Following, we briefly describe the role of each
module:

[ dron_api ]
(module)

dron_sup
(supervisor)

dron_worker dron_worker
(gen_server) (gen_server)

Figure 3.3: Implementation Overview

e dron - the module implements the application behaviour and it is responsible
for starting and stopping the whole framework. This involves starting the
database nodes, starting the scheduler and finally attaching worker nodes.

e dron mnesia - the module is responsible for starting and stopping Mnesia
on a set of given nodes. While starting the nodes, it makes sure to create and
distribute the database tables over them and to setup the data replication.

e dron_ sup - the module implements the supervisor behaviour. It is respon-
sible for monitoring and restarting the scheduler and the pubsub module in
case of a failure. However, if these processes fail more than once every 60
seconds, then the supervisor will choose not to restart them and it will termi-
nate the entire system. We have chosen not to allow for more often failures
because we believe that the processes implementation should be reviewed if
they are crashing regularly.
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e dron_api - is the entry point to Dron. It exports methods to register/un-
register jobs and to kill job instances. We expect users, to only use this
module while interacting with the system.

e dron scheduler - is the most important module from the system. It has
many responsabilities such as: schedule jobs, create job instances, persist
data to the database, maintain timeout timers, check for dependencies and
handle job failures.

e dron pool - the module is managing all the Dron workers. It does so by
implementing the gen server behaviour and by allowing other modules to
add or remove workers. It also uses Erlang’s capabilities to monitor failures
of distributed nodes. Lastly, the module also implements the policy that
dictates job instance to worker assignments.

e dron db -is amodule that exports all the operations involving the database
that are required by other modules.

e dron_pubsub - manages the entire communication with the publisher/-
subscriber system. It implements the gen server behaviour with the help
of which it manages connections to the publisher/subscriber. Moreover, it
is also responsible for providing a clean and simple to use API for other
modules (e.g. dron_worker) to publish messages and start consumers.

e dron event consumer - is the default job instance event subscriber. It
consumes all the events published on a queue and it notifies the scheduler
about the job instances state changes.

e dron_ worker - the module implements the gen_server behaviour and ex-
ports all the operations required to run and manage job instances. An in-
stance of this module is executed on every worker machine. In this way the
scheduler can delegate tasks to every worker machine.

In the following subsections we will give more implementation details about
the most important modules.
3.5.2 Scheduler
Description

The scheduler represents the core of the system. Following, we will briefly explain
the way we have implemented each important feature of the scheduler:

e Create and manage job instances - the node maintains a timer for each
job. When the timer is triggered, it creates a job instance whose description
is saved in the database. The job instance will go through a series of states
that are represented in Figure 3.4. First, it will be in waiting state until its
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dependencies are satisfied. Following, the scheduler will look for a worker
machine onto which to run the instance. After it sends the description of the
instance to the selected worker node, the scheduler changes the state of the
instance to running. From there on, the job instance can transition to one
of the following final states: failed, succeeded, timeout and killed.

e Maintain timers - the scheduler is also responsible for creating and man-
aging three types of timers. The first type of timers is the one which is used
to trigger when the next run of a job should occur. These timers are created
when a newly job is registered.

The second type of timers are instantiated when new job instances are cre-
ated. They are to be triggered when the dependencies of an instance have
not been satisfied until a pre-specified timeout. We have taken great care to
make sure that these timers are cancelled when a job instance starts running.

The last type of timers are the ones that are going to be triggered when a
job exceeds its maximum allowed running time. When one of these timers
is triggered it sends a message to scheduling process. Upon receipt of the
message, the scheduler makes sure that the job instance is stopped and that
its state is updated to timeout.

In an initial version, we have stored all the timers in the state of the gen server
implemented by the scheduler. However, as we learned more about Erlang
we have found out that the state is completely copied whenever it is mod-
ified. Since the state changes at least whenever a state transition happens,
we have tried to look into alternatives to this solution. We have come across
ets which is a built-in term storage. It provides the ability to store data in
an Erlang runtime system, and to have constant time access to it. The data
is organized into dynamic tables, with each one of them being created by
a process. When the creator process terminates, the table is automatically
destroyed. Thus, in our case the tables storing the timeouts are created
by the process running the gen server and are shared with all the processes
launched by the scheduler. This change gave the scheduler a significant speed
improvement and allowed it to scale more.

e Instantiate dependencies and check their state - an important role
of the scheduler node is to make sure that job instances are run only when
their dependencies are satisfied. It achieves by first collaborating with the
dron_language module to transform every dependency specification from the
form given by the user to information that exactly describes job instances
(i.e. job name, running time).

The instanciated dependencies are written to the database as well as into an
in-memory structure. We have chosen to store the data into the RAM as
well because it is accessed on numerous occassions by the scheduler. In this
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way we have managed to reduce the load on the database and the scheduling
delay.

waiting

running

[ failed [succeeded] [ timeout ]

Figure 3.4: Job instance state transitions

Failures

One of our main goals was to provide a system that is able to continue running
under various failure scenarios. In this subsection we will study several failure
situations that could have affected the scheduler node.

Developing the system with a single scheduler process was a relatively easy task
to achieve. The timers corresponding to each job were all stored in the memory of
the node. However, the failure of the machine on which the scheduler was running
would have had catastrophic consequences (i.e. all the job timeout, dependency
timeout timers would have been lost). Thus, we had to make sure that scheduling
would continue even in case of master machine failure. As it can be seen in Figure
3.1, we have decided to have one or more hot-standby schedulers. Each one of them
tries to have the same in-memory state as the active scheduler. Thus, whenever
the master machine would fail, one of the secondary schedulers would take up its
place. However, this introduced a whole new problem that our system had to
tackle. The following subsection will describe the problem and briefly describe
how we managed to solve it.

Leader Election

On a master scheduler failure, every secondary node is competing to become re-
sponsible for scheduling. The problem has been extensively studied in the litera-
ture as the leader election problem. Many solutions have been devised for it that
work only under a specific set of constraints (e.g. synchronous system, ring net-
work). Thus, in the following paragraphs we will describe the requirements of our
system.

Having designed the system such that it does not support network partitions
(because Mnesia does not handle well such situations) implies that our leader
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election algorithm does not have to cater for such situations. Moreover, since the
communication between nodes is conducted with the help of TCP/IP, we can say
that it is reliable and that no messages are lost. However, the algorithm should be
fault-tolerant with respect to failing and restarting processes and nodes. It must
terminate and guarantee that a single node is elected as the leader and that every
other node knows whether it was elected as a leader or not.

An algorithm that meets our requirements is the Bully Algorithm which
has been presented in [46, 47]. The algorithm assumes that each process has an
unique identifier and that there is a way to monitor processes failures. Thus, when
a process P observes that the coordinator no longer replies to messages it holds an
election as follows:

1. P sends an election message to all the processes with bigger identifiers.

2. If P does not receive any response within a given time, then it wins the
election and becomes the new leader.

3. If one of the processes with a bigger identifier receives the message, then it
replies to P and, finally, it takes over the election.

The Bully algorithm also handles the case when a process known to be failed
manages to come back up. Thus, when the process restarts, the algorithm will
hold an election. If the new process has the highest identifier then it will win the
election and be declared as the new leader.

An adjusted version of the algorithm was implemented in [48]. The solution
was implemented in Erlang and it extensively makes use of Erlang’s abilities to
detect failed processes. The major modification that was made to the algorithm,
was to avoid conducting an election whenever a process with a smaller identifier
that the leader is started. The implementation is available via the gen leader
behaviour. It can be seen as an extension of the standard gen_server behaviour.
Listing 3.3 briefly describes the additional functions the behaviour exports. With
their help we have succeeded in supporting leader election and state replication
among a set of scheduler nodes.
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9% Called in the leader process when it is elected. The synch node
will be
9%% broadcasted to all the other nodes.

9%
%% @spec elected (State, Election, undefined) —> {ok, Synch, State}
elected (State, Election, undefined)

%% Called in the leader process when a new node joins the pool. The
synch node

%% will be sent to the node.

T

%% @spec elected (State, Election, Node) —> {ok, State}

elected (State, Election, Node)

%% Called in all pool nodes except the leader. Synch is the message
the leader

%% has sent when it has been elected.

T

%% @spec surrendered (State, Synch, Election) —> {ok, State}

surrendered (State, Synch, Election)

%% Handle synchronous calls made to the leader. Upon completion of
handling the

%% message, the leader can broadcast a term to all the other nodes.

VO

%% @spec handle leader call(Request, From, State, Election) —>

9% {reply , Reply, Broadcast, State} | {reply, Reply, State} |

9% {noreply, State} | {stop, Reason, Reply, State} | {stop, Reason
, State}

handle leader_call (Request, From, State, Election)

9%% Handle asynchronous calls made to the leader. Upon completion of
handling the

9% message, the leader can broadcast a term to all the other nodes.

%%

%% @spec handle leader cast(Request, State, Election) —>

9% {ok, Broadcast, State} | {noreply, State} | {stop, Reason,
State}

handle_ leader_cast(Request, State, Election)

%% Handle the broadcast messages sent by the leader.

V)

%% @spec from_leader (Request, State, Election) —>

T {ok, State} | {noreply, State} | {stop, Reason, State}
from leader (Synch, State, Election)

%% Called in the leader when nodes go down.
T

%% @spec handle. DOWN(Node, State, Election) —>
T {ok, State} | {ok, Broadcast, State}
handle. DOWN (Node, State, Election)

Listing 3.3: gen_leader behaviour
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Gen Leader

We have used the gen leader behaviour to implement the active-shadow master
relationship. The adaptation from a scheduler using a gen_ server to the new
version consisted of three main steps. Firstly, we have changed all the handle call
and handle cast functions to be implemented with a new version that broadcasts
information to the shadow nodes. In most of the cases the information is almost
identical to the data that is passed while calling the server.

Secondly, we have implemented the functions required to handle the broadcasts
made by the active node. The purpose of these methods is to create the same in-
memory state as in the active scheduler. By using the data we are sending in the
broadcast messages (e.g. timer rate and timeout) we are creating timers with the
same triggering time as in the active master.

Lastly, we had to make sure that all the Erlang messages that are sent directly
to the scheduling process do not change its state. To achieve this, we have up-
dated the dependencies checking mechanism to only use the API provided by the
gen_server behaviour.

3.5.3 Pool

The pool module is responsible for holding all the information related to the worker
nodes. Thus, its API provides methods to add and remove workers. When a a
worker is added, the pool first checks if it can communicate with the new node.
Following, it updates its in-memory state and the database with information about
the node.

Another important role of the pool is to monitor the status of the workers.
Under a general model there is no way to implement node monitoring. In [49],
Brewer has stated the following conjecture, that later was proven to be a theorem:
it is impossible for a distributed system to simultaneously provide all three of the
following guarantees:

e Consistency - all the nodes have the same view of the data at the same
time.

e Availability - guarantees that every request will receive a response in a
timely manner.

e Partition Tolerance - the system continues to operate well when arbitrary
messages are lost or even when two or more parts of it can not communicate
at all.

As Dron was designed to be deployed within a single data center, we expect
network partitions to rarely happen. Furthermore, because Mnesia was not de-
signed to handle partitions we have chosen to do the same in our worker monitoring
implementation. We have chosen to use Erlang’s ability to monitor its own nodes.
The feature communicates with the watched nodes at a given time interval, using
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a connection it maintains. If one of the workers fails or if a network partition
occurs, the pool receives a nodedown message that contains information about the
failed node. Upon receipt of the message the pool updates its in-memory state
and the persistent database.

The pool server is also in charge with deciding on which machine every job
instance will be run. We have opted for simplicity and we have implemented our
workers to be slot based. Thus, whenever a job instance is started, the number of
free slots is decreased, and whenever the instance finishes, the number of free slots
is increased. The algorithm picking the worker assignments implements a greedy
strategy. Every time it simply picks the worker that has the biggest number of
free slots. If two workers have the same amount of free slots then the algorithm
picks the one that is stored first in the internal data structure. We expect the
solution to achieve good load balancing in practice due to the heterogeneity of
the jobs. However, if later we will see that this is not the case we could extend
the pool to monitor the resource utilization of the workers as well. Based on the
additional information we can assign workers by taking in mind their load as well.
The strategy could be implemented as a multi-dimensional knapsack, with each
dimension representing a resource such as: memory, cpu, etc.

Since the pool module is an important component of Dron, we do not want to
let our system fail when the pool would temporarily crash. As a result, we have
chosen to implement a recovery procedure to be called in case of an unexpected
failure. This procedure reconstructs the state of the server from the database.
Considering we do not expect to have more than 500 Dron worker nodes, the
process of reconstructing the state should be quick and it should not significantly
increase the scheduling delay.

3.5.4 Publisher/Subscriber

The publisher/subscriber system is a crucial part of Dron as well. It is used by all
the workers and external frameworks to publish events of interest to the scheduler.
In our current implementation they are mostly job state change events. However,
we believe that as the system will mature more events will be published. For
example, the frameworks could publish information about their state (e.g. load,
free map/reduce slots) such that the Dron will be able to optimize scheduling.
Following, we describe the systems we have considered to use and the way we have
finally integrated the publisher/subscriber in the scheduler.

Kafka

Kafka is a distributed publish-subscribe messaging system. It has been designed
to provide high-throughput (i.e. hundreds of thousands of messages per second),
persistent messaging, support for partitioning messages accross multiple Kafka
servers and distributed messages consumption.

The messages are published to a topic by a producer when they are sent to
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a Kafka broker. On the other end, several processes can act as consumers. Each
consumer process belongs to a consumer group and each message is delivered
exactly to one process within a consumer group. Thus, with the help of groups
one can distribute the load over a set of consumers by putting them into the same
group, or one can send every message to every consumer by not allocating more
than a process to each consumer group.

Kafka makes extensive usage of the local file system for persisting messages.
The system writes all the data to a persistent log (on the file system), allowing the
operating system to decide when to flush it. Moreover, it allows the users to specify
a flush policy which controls how often the data is written to the persistent disk.
The frequency of data flushes also limits the amount of messages that will be lost
in case of a broker failure. For example, a policy of a flush per second in a broker
that handles N messages per second guarantees that no more than N messages
will be lost in case of a failure. The arguments provided by the developers against
an usual in-memory storage and flush include the high memory overhead of Java
objects and garbage collector inadequacy in handling big heaps.

Compared to other publisher/subscriber systems, Kafka does not provide rich
filtering semantics. This is the result of the way in which messages are persisted.
In order to improve throughput the engineers have decided not to use the stan-
dard solution for storing data (BTrees). The argument is that even tough BTrees
operations are O(log N) in theory, they do not perform well in practice as they
may require several disk seeks. A single disk seek can be performed at a time and
it usually takes 10ms. Thus, they have used a persistent queue which is modelled
as simple reads and appends to files.

While Apache Kafka meets most of our requirements we have decided not to
use it in our system because of the following reasons:

e The API is too restrictive and it does not allow message filtering. Thus, the
only way to make sure that consumers are only receiving messages they are
interested in is to define a queue for each consumer.

e It has been developed in Java and it only provides a Java API. As a result
we would had to use an Erlang to Java communication tool called JInterface
even tough we were unsure of its stability.

RabbitMQ

RabbitM(@ is an open source implementation of the Advanced Message Queue-
ing Protocol (AMQP) developed for message-oriented middleware. The system
introduces several concepts described bellow:

e Producer - a program that sends/publishes messages.

e Consumer - a program that receives messages published on a queue.
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e Exchange - receives messages from producers and it forwards them to
queues. A message can be appended to a particular queue, a set of queues
or even discarded. The routing of the messages is influenced by the type of
the exchange (e.g. direct, topic, headers, fanout).

e Queue - acts as a temporary storage point for messages. It receives messages
published by multiple producers and it allows many consumers to receive
them.

The system runs a RabbitMQ broker which is a grouping of one or more nodes
running the Erlang application. The broker is responsible for maintaining the
queues, the exchanges, and for routing the messages to the consumers. The state
of the broker is replicated accross all the Erlang nodes within the cluster. However,
the messages sent to a queue are only stored on the machine that created the queue.

A broker consisting of a single node does meet our fault-tolerance requirements.
The failure of the node implies lack of availability. Even worse, no matter if per-
sistent queues are used, some messages may be lost because of buffering. Luckily,
RabbitMQ has a feature that allows the system to be available even in the case
of multiple nodes failure and decreases the chances of lost messages. The afore-
mentioned properties can be obtained by using the active/active high availability
feature for queues. It works by mirroring the queue on multiple nodes. One of the
nodes is declared as the master of the queue while the others become slaves. All
operations on a queue other than publishing are applied to the master first and
subsequently are broadcasted by the master to the slaves.

New nodes may join the broker cluster at any time. When a node joins the
cluster, some queues may decide to use it as a slave. When this happens the
node starts receiving messages published to the queues for which it acts as a slave.
However, it will not try to get any of the messages that have been previously
published and not consumed. As a result the slave is unsynchronised up to the
moment when all the old messages are drained.

Node failures are handled by a mirrored queue according to the type of the
node:

e Slave Node - the metadata is updated and the master remains the same.
The messages are not lost and the operations continue as before except that
the replication factor of the queue has decreased by one.

e Master Node - the eldest slave is promoted to be the new master because
it has the highest chance of being synchronized with the master. If there is
no slave that is fully synchronized with the master then the messages stored
only on the master are lost.

Lastly, we would like to point that RabbitMQ does not tolerate network par-
titions well as a consequence of their usage of Mnesia. This shortcoming does
not affect our system as Dron was built using Mnesia. Hence, it is vulnerable to
network partition failures as well.
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Having seen the features that RabbitMQ has we decided to use it as a publish-
er/subscriber in our system. Another reason for which we have picked it is that it
was implemented in Erlang. Thus, we have managed to avoid any inter language
communication and to reduce our development time.

Usage

Dron is using RabbitMQ to send and receive all the events related to job instances
states. Thus, when a job instance is run, the system decides if a Dron worker
or an external framework is responsible for sending the state change events. For
example, a MapReduce job requires Hadoop to publish the events while for a simple
shell script they are published by a Dron worker. As a result the system has a
fanout exchange named dron_events that is available to receive messages. A valid
message contains the job instance id and the new state encoded as an JSON object.
The have chosen to use JSON in order to allow external frameworks to use the
same exchange if they want. In Chapter 4 we will explain how to integrate a new
framework with Dron, how to create new exchanges and make use of RabbitMQ’s
filtering features.

The module that is responsible for creating exchanges, starting consumers and
publishing messages is dron_pubsub. It is implemented as an Erlang gen server.
On its initialization it creates a connection to RabbitMQ and it setups all the
exchanges and consumers that have been specified in the dron config module.
Subsequently, it can be used by other modules (e.g. dron_worker) to publish
messages. Listing 3.4 contains a part of the code written to created the default ex-
changes and consumers. On lines 3 and 4 we first create a connection to RabbitMQ
and then we open a channel. Following, on lines 6-8 we setup all the exchanges
declared in the dron_config module. In the next step (lines 9-13) we bind the
consumers to the queues they have been declared to be interested in. Finally, on
line 15 we store in the state of the gen_server the connection and the channel we
have previously created.
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1% Function called on the initialization of the server.
2init ([]) —

3 {ok, Connection} = amqp_connection:start(#amqp_params_network{}),

4 {ok, Channel} = amqp_connection:open_channel(Connection),

5 % Setup all the exchanges declared in the config module.

6 lists :map(fun({Exchange, Type}) —>

7 setup_exchange_ intern(Channel, Exchange, Type)

end ,

8 dron_config:exchanges()),

9 % Setup all the consumers declared in the config module.

10 lists :map(fun({Module, Exchange, RoutingKey}) —>

11 start _consumer_intern(Channel, Module, Exchange,

12 RoutingKey)

13 end, dron_config:consumers()),

14 % The connection and the channel are part of the state of the
server .

15 {ok, #state{connection = Connection, channel = Channel}}.

16

17start _consumer_ intern(Channel, Module, Exchange, RoutingKey) —>

18 #’ queue.declare ok '{queue = Queue} =

19 amqp_ channel: call (Channel, #’queue.declare’{}),

20 Binding = #’queue.bind '{queue = Queue,

21 exchange = Exchange,

22 routing key = RoutingKey},

23 #’queue.bind_ok’{} = amqp_channel: call (Channel, Binding),

24 proc_lib:start_ link (Module, init, [self(), Channel, Queue]).

25

26 setup_exchange intern(Channel, Name, Type) —>

27 Exchange = #’exchange.declare ’{exchange = Name, type = Type},

28 case amgqp_channel: call (Channel, Exchange) of

29 #’exchange.declare ok’ {} —> ok;

30 - —> error

31 end .

Listing 3.4: Publisher/Subscriber usage

3.5.5 Worker

The Dron worker servers have been designed to be as simple as possible. They
are state-less servers that only act as a proxy between the master node and the
machine. Every worker receives commands to run job instances upon which it
spawns operating system processes in which the instances are executed. Depending
on how it was instructed the server notifies the master of an instances state change
by publishing an event message using the publisher/subscriber system.

We have chosen to design the workers as state-less in order to reduce the
complexity of the implementation. Thus, whenever a worker failure occurs, the
monitoring pool simply acknowledges it and it redistributes the instances to the
remaining worker nodes. The tasks are re-executed without increasing their retry
number as the failure was caused by an unexpected cause.
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3.5.6 Issues Encountered

During the development of the system We have chosen to refine Dron’s archi-
tecture by constantly testing the system for bottlenecks. In this subsection we
describe the performance issues that have affected the first version of Dron and
the optimizations we have implemented.

The benchmark we have used in our bottleneck driven development is testing
the schedulers ability to handle as many job instances as possible every second. As
we can see from Table 3.1, during the first few tests we have conducted, Dron was
able to run up to around 100 job instances per second. At this point the system
would crash with an error stating that too many database tables are open.

Since the database was causing the first bottleneck, we have decided to optimize
the system’s usage of it. We have gone through every single transaction that Dron
was performing and we have studied the possibilities of removing or changing
them such that they use more fine grained locking. By using dirty reads we have
managed to reduce the number of transactions executed per job from nine to seven.
As a result the system could now scale up to approximatively 120 job instances
per second. However, at bigger loads it would crash with the same error message
as in previous case.

Upon further investigation about Mnesia’s internals, we have found out that
during a transaction the database creates a temporary in-memory table called ets.
The Erlang runtime environment places a default limit of 1400 on the number of
tables that can exist simultaneously. This basicaly limited the number of transac-
tions that can be carried at the same time. However, after we increased the limit
to 65536 tables, Dron was able to schedule around 300 job instances until it would
crash without any error message.

Following we have discovered that the new crashes were caused by the code
we have added into the scheduler to monitor the delay. The code was processor
intensive. The moment we have improved it Dron was able to scale up to around
400 job instances per second.

Jobs/second | Issue

100 Too many database tables open.

120 Too many database tables open.

300 The scheduler crashes with no reason.

400 Writing and reading from the workers table
takes too long.

500 The machine can not handle the load.

Table 3.1: Scalability issues encountered by the first architecture as optimization
were conducted

In order to detect what was causing the newly found bottleneck we extensively
profiled the code. While doing so, we have discovered that reading and writing
information to the database about the workers state (e.g. number of free/used
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slots), was significantly increasing the scheduling delay. To solve the issue, we
have decided to maintain in-memory information about workers. While this may
increase the state of the scheduler it also has an important advantage: it reduces
the load on the database by allowing the scheduler to only go to the database
during write operations.

After the last optimization the system was able to handle around 500 job in-
stances per second. At this point, the big load would cause the Mnesia transactions
to race for access and to continuously retry until they would reach the maximum
number of retries. Moreover, the 6Gb of RAM that our testing machine had and
the Dual-Core 2.5GHZ CPU would be used up to almost 100%.

The tests and the optimizations we have conducted inspired us to embark on
the daunting task of improving Dron’s architecture. In the following section we
will study the improvements we have made to the system.

3.6 Second Iteration

In the previous section we have presented the bottlenecks we have encountered
during the development of the first version of Dron. Based on our experiments we
have decided to change the architecture of the system in order to be able to meet
our goals. In the next few subsections we will discuss the changes we have made.

3.6.1 Description

Despite all the optimizations we have made to the scheduler’s implementation and
to our usage of the database, we did not managed to scale the system to handle
more than 500 job instances per second. Furthermore, we believe that most of
the optimizations that could still be conducted will not bring major performance
improvements. The fact that the resources of the machine running the scheduler
are completely utilized under such a load supports our belief. As a result we
have decided to change the architecture of the system such that multiple scheduler
nodes can be run in parallel.

In Figure 3.5 we can see an overview of the new Dron architecture. When com-
paring it to the previous design, one can observe that a new type of node has been
introduced. The coordinator is the new central module of the system. Its main
role is to distribute the load among the running schedulers. The other components
have suffered changes that are not obvious from the figure. In the following few
paragraphs we will briefly explain the changes every important module has gone
trough.

Coordinator

The coordinator is a new module of the system that acts as a thin monitoring and
managing layer. It is the only component that has complete information about
the running worker and scheduler nodes. Moreover, whenever someone wants to
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add a new node to Dron, it calls the appropriate coordinator function and from
there on, the node launches and monitors the new component.

Similarly, to the previous version of the scheduler, we have chosen to increase
the fault-tolerance of the node by adding several hot-standby nodes. This has been
achieved by implementing the gen leader behaviour. The in-memory state of the
coordinator consists mostly of information about the worker scheduler assignments
and information about the schedulers. Thus, the active coordinator only has to
broadcast information to the shadow nodes when the state of one of the scheduler
or worker nodes changes.

As we will see in Subsection 3.6.2 the coordinator also requires the scheduler
nodes to send information about their state, at a specific time interval. By sim-
ply using the default methods Erlang provides for monitoring, we could not send
data defined by us. Thus, we were forced to implement our own heartbeat based
monitoring system. The implementation will be explained in the following section.

Lastly, the coordinator is also responsible for load balancing the jobs accross
the active schedulers. We have chosen to use the Erlang’s default hash function
to achieve it. However, if upon further investigation we will observe that the
function does not perform well under various loads, we can change it with our
own implementation. We could implement the consistent hashing [28] algorithm.
The function has been proven to perform well even when the number of hashing
buckets changes. In our case this would be when schedulers are added or removed
or when they fail.

Scheduler

We have managed to reuse most of the code while adapting the scheduler to the
new architecture. However, during the process we have also found out that the
supervisors processes we have used, had to be completely changed. This was due
to the fact that the supervisors have been developed to be used within the same
node. While they may behave well in monitoring process on the same machine they
do not give any availability guarantees while being used in a distributed setting.
This issue was overcome using our own heartbeat protocol which will be presented
in the next subsection.

Another important change was made in the way the system handles depen-
dency checking. Up to now, the single scheduler had information about all the
dependencies. Moreover, it would receive state change events for every single
job instance. In the new implementation the coordinator only forwards the state
change events to the node that is responsible for the scheduling of the job. As
a result, the schedulers may not be aware when some of the dependencies are
satisfied. We have solved this issue by adding to the scheduler the possibility of
receiving messages about satisfied dependencies. Lastly, we have also changed the
coordinator such that when it receives a state change event it forwards the message
to all the possible interested schedulers.

Once we have distributed scheduling on several machines by running many
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Figure 3.5: Architecture Overview

schedulers at the same time we have created an entire new set of challenges to be
tackled. Each one of the following subsections will describe a challenge and the
solution we are providing for it.

3.6.2 Workers Balancing

Having several schedulers running in parallel introduces the problem of deciding
who will be responsible of worker monitoring and assignment. Following, we dis-
cuss the three options we have considered:

1. The coordinator is responsible of managing all the workers.

2. Each scheduler is monitoring all the workers and can run a job instance on
any of them.

3. Fragment the pool of workers such that each scheduler has control over a
subset of workers.

The first solution can easily be achieved by adapting the worker pool from
our first implementation. However, we believe it has several shortcomings. First,
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the coordinator will quickly become a bottleneck as it will have to answer to all
the worker requests made by schedulers. Lastly, the scheduling delay will increase
because for each job instance we would have to do a call to the coordinator. The
call will be synchronous and will get the name of the worker on which the job
instance should be run.

The second option reduces the load on the coordinator. However, it still has
a bottleneck, which is the database. For each worker we persist the number of
occupied slots/resources. Thus, we have to update them whenever a job instance
is run. This will force us to fragment the workers table over several machines
in order to be able to handle the load. As a result, a big percentage of worker
related writes that every scheduler makes, will be conducted on fragments situated
on remote nodes. The solution also makes it difficult to provide Service Level
Agreement (SLA) for high priority jobs as they will be run on any machine with
any other potentially unfair (i.e. cpu and memory intensive) jobs.

The third option solves the bottlenecks discussed above by allowing each sched-
uler to manage its own worker pool. However, this solution has a big disadvantage
as a scheduler may become a hot spot and run out of worker resources. We have
managed to solve this shortcoming by developing self balancing worker pools.

The algorithm is composed of the following steps:

1. At a given interval of time every scheduler computes a value representing the
load of its workers.

2. Based on the computed load and its policy every scheduler decides if it
requires more workers or if it can offer several.

3. Every scheduler sends its request/offering to the coordinator node. The
content of a message is presented in Table 3.2.

4. The coordinator reassigns offered workers to the schedulers that need more.

Message Description

{SchedulerName, {request, Number}} | A scheduler is requesting Number
workers

{SchedulerName, {offer, Number}} A scheduler is offering Number
workers

Table 3.2: Worker Pools Balancing Protocol

Figure 3.6 presents a simple example of workers balancing. At the beginning
the pool running at node dronl has two workers and the pool running at node
dron2 has one worker. Subsequently, every scheduler is computing the load on its
pool. The load indicates that the pool from node dronl is wasting resources while
the one from node dron2 is requiring more. Thus, the first pool offers a worker,
while the other one requests a worker. Lastly, the coordinator decides that Worker
2 will be reassigned to the pool running on node dron2.
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Figure 3.6: Workers Balancing

We have developed the self balancing workers feature to be flexible. Thus, it
can be configured the time interval at which every scheduler should compute and
send its offerings/requests to the coordinator. Moreover, we allow every scheduler
to have its own sharing policy. Currently, we are supporting three types of policies:

1. Low Priority - the scheduler offers workers when its load is not very high
and requires when it is utilizing almost all of its resources. In our simple
slot-based schedulers we have chosen to offer workers when less than 30% of
the slots are used and to request for extra workers when more than 90% are
used.

2. Medium Priority - the scheduler is less willingly to offer workers and will
request for more sooner that the Low Priority scheduler. It requests for extra
workers when the load reaches 80% and it offers workers when the load is
less than 20%.

3. High Priority - the scheduler almost never offers any workers (only when
load is smaller than 10%). Moreover, it requests workers as soon as the pool
reaches a load of 70% or more.

We believe that scheduler policies are an important feature of Dron as they give
guarantees in handling important jobs. For example, an important team within a
company (e.g. ads analytics) could just deploy their own scheduler that manages
a set of high specification, purposely configured machines. Their scheduler could
be high priority or use a no share policy which will make sure that almost none of
their workers will be offered to other schedulers.

We would like to point that experiments could be conducted to study how the
scheduler priorities behave under different job traces. These tests could also be
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used to fine-tune the thresholds for each priority. However, we leave the experi-
ments as future work as they are not central to the project.

3.7 Summary

When we have designed Dron, the main goal was to build a scalable job sched-
uler system. We have started with a simple design centered around a single node
scheduler. After some preliminary evaluation of the system, we have gained a bet-
ter understanding of the bottlenecks which affected it. Despite the optimizations
conducted and explained in the current chapter we have not managed to make the
single node architecture to scale up to our goals.

We acknowledge the fact that there may be optimizations to be implemented
in our single node architecture. Nevertheless, we believe that they can not bring
the scalability improvement needed to meet our requirements. We have briefly ex-
plained the architectural changes we have made in order to solve this shortcoming.
The evaluation must further show if our decisions have strengthen the performance
of the system enough to meet the goals we initially set.
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Chapter 4

Integrating Frameworks

4.1 Introduction

An important goal of the system was to provide simple ways of integrating different
types of frameworks with the scheduler. In this section, we discuss the possibilities
of achieving the aforementioned and the difficulties we have encountered while
adapting several systems.

When Dron is starting a job in an external system, it must have a way of moni-
toring the job’s state. In other words, it has to be informed when the job completes
successfully or when it fails. The scheduler is providing to the developers, two so-
lutions to detect the mapping between a Dron job instance id and an external job.
In both cases the framework running the job must send notification events (e.g.
job completion, job failure). The events can be sent using an implementation of
AMQP (RabbitMQ). The content of the events will depend on which one of the
following two solution the developer is choosing;:

1. Change the framework to support job parameters. Thus, every time when
Dron runs a job instance, it will pass the dron job instance id as a pa-
rameter to the framework. This approach will allow the external system to
send events on a common AMQP queue (e.g. dron_events). Following, the
messages received on the queue are forwarded to a subscriber (Dron Events
Filter) which will parse them and notify the Dron Coordinator.

The solution is suitable for frameworks that already support job parameters
or for the ones that do not require extensive redesign to have this function-
ality. The advantage of the solution is that the mapping between dron job
instance and the job running in the framework is explicitly handled. Thus,
the developer does not have to make any changes in Dron’s code base.

2. Adapt the system to notify on events (e.g. job completion, file creation) and
provide a module that filters the events. In this case, the scheduler does not
have to explicitly send the dron job instance id to the external framework.
Thus, the solution is suitable for the cases when passing parameters to a
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job is not available or difficult to achieve. However, the developer must be
careful to encode enough information in the messages so that the event filter
module will be able to infer the mappings between dron job instances and
externally executed jobs.

The approach is also suitable for handling dependencies on external re-
sources (e.g. MySQL tables). Whenever a MySQL table will be created
by a Dron job or an external user, an event will be published on a queue
(e.g. dron_mysql events). The module provided by the developer will be
automatically subscribed to the queue and it will receive the events. Its role
is to inform the coordinator about which resources have been satisfied. Fi-
nally, the coordinator will run the jobs that depend on the recently satisfied
resource.

Coordinator

[ Scheduler 1 ] [ Scheduler 2 ]

HDFS Dron Event
Event Filter Filter

run job run job
instance 1 instance 2
\ \

Spark

{"1":"succeeded"}

Figure 4.1: Possibilities of Adapting Frameworks

Figure 4.1 depicts the two ways of integration external systems with Dron. The
Spark framework has been adapted to support job arguments. Thus, when Worker
1 is running job instance 1 (i.e. a Spark job) it will also pass the job instance id
to the framework. Subsequently, when the job finishes, Spark publishes an event
consisting of a JSON object. As showed in Table 4.1 the object contains the Dron
job instance id and its state. Lastly, the event is received by the default Dron
event filter which will inform the coordinator.
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Events Description

9 .9

{“job_instance:”1”,”state”:”succeeded” } | Sent when the job started by Dron
job instance 1 has successfully com-

pleted
{“job_instance:”1”,”state”:” failed” } Sent when the job started by Dron

job instance 1 has failed
{“job_instance:”1”,”state”:"killed” } Sent when the job started by Dron

job instance 1 has been killed

Table 4.1: Dron Events

Job instance 2 is a job that creates a file in the Hadoop Distributed File
System (HDF'S). Since the file system has been integrated using the second method,
Worker N does not have to pass the job instance id to it. However, an event filter
has been provided to handle HDFS events published on dron_hdfs events queue.
They are JSON objects composed of the name of file/directory and the event that
affected it (e.g. created, deleted).

The following sections will detail the changes we made to every framework and
the challenges we were faced with.

4.2 Hadoop MapReduce

MapReduce has become the core framework for performing data or process inten-
sive tasks. We decided to adapt Hadoop version 0.20.2 using the first method.
The system provides a listener interface for users to implement and register with
the scheduler. In Listing 4.1 we present an extract of the listener we have imple-
mented. The jobUpdated method is called with an event whenever the state of any
job changes. From that event we are extracting the status of the job. On lines
12,18,24 we are checkig if the job is in one of the three states: succeeded, failed
or killed. In the case of each state we are publishing a JSon message on the Dron
publisher /subscriber queue.

The piece of code described above will sit at the core of the Hadoop scheduler.
We had to make sure that it does not significantly increase the load on the sched-
uler. Moreover, we also wanted to make sure that dron events are published even
in case of transient failures (e.g. network spike, queue temporarily down) as the
loss of an event could lead up to job instances timeout. The aforementioned goals
have been achieved with the help of a thread pool and a connection pool.
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1public class JobStateChangeMonitor extends JobInProgressListener {
private final Dron dron;
private final String exchangeName;

2
3
4
5 public JobStateChangeMonitor (Dron dron, String exchangeName) {
6
7
8

this.dron = dron;
this.exchangeName = exchangeName;
}
9
10 public void jobUpdated(JobChangeEvent event) {
11 JobInProgress jobInProgress = event.getJobInProgress () ;
12 if (jobInProgress.getStatus().getRunState() = JobStatus.SUCCEEDED
) |
13 JSONObject jsonObject = new JSONObject () ;
14 jsonObject.put(”job instance”
15 jobInProgress.getJobConf().get(”dronJobInstanceld”, 7—1"));
16 jsonObject.put(”state” , 7succeeded”);
17 publish (jsonObject.toJSONString () ) ;
18 } else if (jobInProgress.getStatus().getRunState() = JobStatus.
FAILED) {
19 JSONODbject jsonObject = new JSONObject () ;
20 jsonObject.put(”job instance”,
21 jobInProgress.getJobConf().get(”dronJobInstanceld”, 7—17));
22 jsonObject .put(”state”, 7 failed”);
23 publish (jsonObject.toJSONString () ) ;
24 } else if (jobInProgress.getStatus().getRunState() = JobStatus.
KILLED) {
25 JSONObject jsonObject = new JSONObject () ;
26 jsonObject.put(”job instance”
27 jobInProgress.getJobConf().get(”dronJobInstanceld”, 7—17));
28 jsonObject.put(”state”, 7 failed”);
29 publish (jsonObject.toJSONString () ) ;
30 }
31}
32
33 private void publish(String message) {
34 dron. publish (exchangeName, message);
35}
361}

Listing 4.1: Job State Listener

Figure 4.2 provides an overview of our solution. The Dron class is responsible
for creating the pools for and publishing messages. Knowing that creating a new
Connection for every job event is a slow process we decided to implement a Con-
nection Pool. It is responsible for managing a set of connections. Thus, whenever
the scheduler wants to publish a message it can acquire a connection from the pool.
Subsequently, when the message has been sent, it has to release the connection.

Sending a message to a remote machine is a slow operation that should not
keep the JobStateMonitor listener busy. A simple solution would spawn a new
thread whenever a message must be published. However, this approach does not
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work at the scale at which Hadoop is receiving job state change events because
creating a new thread is an expensive operation. As a result, we decided to use a
fixed size thread pool. Whenever a message must be published, Dron can simply
reuse one of the available threads.

We handled transient network failures by using exponential backoff while send-
ing each message. Listing 4.2 presents our simple implementation. First, we try
to send the message. If we do not succeed in publishing it, the thread will sleep
for a predefined amount of time (e.g. 100 milliseconds). Subsequently, the we try
to send the message again. If we do not succeed on this attempt as well then we
double the amount of time for which we sleep. As a result the thread attempts to
publish a message until a maximum sleep time is reached.

[ JobStateMonitor ]

Connection
Pool

Thread Pool

I'Un

[ Connection 1 ] [ Connection N ] [ Event Publisher 1 ] [ Event Publisher 2 ]

Figure 4.2: Hadoop Integration Design

Finally, we would like to point that the adaption was not as difficult as we were
expecting. The only challenges were to find the exact places where changes were
required, and to understand how the code works at a fine grained level. Both of
them were the result of working with a system compromising of more than 300
000 lines of code not adhering to a standard coding style.

4.3 Spark

Being aware of Hadoop’s weaknesses exhibited while running iterative jobs, we have
decided to integrate the Spark [16] cluster computing system as well. The Scala
based framework provides primitives for in-memory cluster computing. Thus, it-
erative jobs can quickly access the data instead of writing and reading it from the
distributed file system as in Hadoop.
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1for (long sleep = 100; sleep <= MAX SLEEP MS; sleep <<= 1) {

2 try {

3 Channel channel = channelPool.acquireChannel () ;

4 channel. basicPublish (exchangeName, 7”7, null, message.getBytes());
5 return ;

6 } catch (InterruptedException e) {

7 LOG. error (" Thread could not sleep”);
8 } catch (IOException e) {

9 LOG. error (e);

10 try {

11 Thread . sleep (sleep) ;

12 Connection connection = connectionPool.acquireConnection () ;
13 channelPool.addNewChannel (connection);

14 connectionPool.releaseConnection (connection);
15 } catch (InterruptedException el) {

16 LOG. error (" Thread could not sleep”);

17 } catch (IOException e2) {

18 LOG. error (”Could not add new channel”, e2);
19 }

20 }

21}

Listing 4.2: Event Publisher

Being confronted with a relatively small project we have decided to adapt it
such that it can receive Dron job instance id whenever a new Spark job is run. This
has been achieved by enhancing two classes modelling Spark jobs. Subsequently,
we had to provide a RabbitMQ publisher for Spark. Even tough there is no Rab-
bitMQ client library for Scala we managed to easily reuse the Java implementation.
Lastly, we had to adjust the Spark scheduler to send job failure/success events to
Dron.

1if (job.hasFailed () = true) {

2 val jsonMap: Map[String , Any] =

3 Map(” job_instance” —> dronlnstanceld ,
4 Vstate” —> 7 failed”)

5 wval jsonObject = new JSONODbject (jsonMap .toMap)
6 dron.publishMessage (jsonObject.toString ())

7

8

} else {
val jsonMap: Map[String, Any]| =
9 Map(” job _instance” —> dronlnstanceld ,
10 "state” —> "succeeded”)

11  val jsonObject = new JSONODbject (jsonMap .toMap)
12 dron.publishMessage (jsonObject.toString ())

Listing 4.3: Additions to the Mesos scheduler: whenever a job completes, a JSON
object is constructed and published according to the job’s state.

We believe that Spark will not be used as extensively as the MapReduce frame-
work. Thus, we chose to implement a simple solution in which we use the scheduler
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thread to publish messages. However, if a performance drop is observed one could
simply implement a solution based on channel and thread pools. Listing 4.3 pro-
vides an extract of the changes we had to make in the scheduler. Similarly, to the
Hadoop’s case we check for the state of the job on line 1. If the job has failed then
we construct a JSON object on lines 2-5 which is later published (line 6). We treat
the other case equivalently.

4.4 Mahout

We believe that being able to run machine learning computations on top of Hadoop
has allowed users to solve a set of problems at a scale bigger than ever. For example,
in Chapter 6 we will show how to easily build a scalable recommendation engine
using Dron, Mahout and Hadoop.

The machine learning library is implemented as a driver program. Thus, we
were able to easily find the entry point to the system and to detect the places where
changes were required. The driver receives the address of the RabbitMQ host, the
name of the AMQP exchange and the Dron job instance id corresponding to the
Mahout job as command line arguments. Since the driver runs on the machine
where it has been started (i.e. on dron workers) and only manages a single job, we
did not have to implement a more complex solution that uses thread pools. Thus,
we only had to monitor the state of the job and to publish an event when it would
change.

Listing 4.4 represents an extract of the code we have added. The if statement
makes sure that an event is published only for a job that has received the Rab-
bitMQ host, exchange and the Dron job instance id.

1if (host != null && exchange != null && dronJoblInstanceld != null) {

2 Dron dron = new Dron(host);

3 dron.publish (exchange, dron.buildJsonString (dronJobInstanceld
status));

4 dron.close();

5}

Listing 4.4: Excerpt of Mahout Adaptation

4.5 Summary

In the previous sections we have demonstrated the possibilities of integrating ex-
ternal frameworks with Dron. We believe that the two options do not require
complex changes in the other systems. Even so, in some cases we may want to
quickly run several jobs in a new framework without going through the hassle of
adapting it. This is possible as long as we make sure that the Unix command
that triggered the task exits only when the computation is finished. In this way
Dron will be able to know about the computation’s exit signal. The disadvantages
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of this approach is that Dron will not have much information about the state of
the job and that worker resources will be wasted by occupying slots with waiting
processes. Despite these we have chosen to run Hive queries using this approach
as it saved us the time we would have spent changing Hive.

Finally, we would like to point that we believe that the integration should be
taken a step further. The frameworks would sent information about their state
such that Dron can adapt the execution order of the jobs.
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Chapter 5

Evaluation

In this chapter, we will start by evaluating the scalabilaty of our scheduler. We
first compare it to anoter workflow scheduler (Oozie). Following, we evaluate the
behaviour and performance of Dron under high loads.

In order to test different scheduling strategies, we construct a benchmark which
is modelled after real-world computations. Lastly, we discuss the results and we
study how the utilization of the cluster changes under four scheduling strategies.

5.1 Dron’s Scalability

The two main questions we set ourselves when evaluating the performance of the
system are:

e How is the job scheduling delay affected as the number of jobs is increasing?

e How many jobs can the system handle at a time before its performance
significantly degrades?

We answer them by first comparing Dron to the most similar system that has
been built and that currently represents the state of the art. Following, we analyse
Dron’s behaviour under heavy load and we discover its bottlenecks.

5.1.1 Dron and Oozie

Oozie [32] is a job scheduler developed by Yahoo for the Hadoop framework. In
certain aspects it is similar to Dron, as it allows users to create workflows composed
of multiple MapReduce or Pig jobs.

In order to answer the first question mentioned above we studied how the
scheduling delay is affected by the increase of the number of scheduled jobs. First,
we scheduled 100 no operation jobs to be run at the same time. In Figure 5.1 and
5.2 we have constructed the histograms of the scheduling delay incurred by each
system. From the figures we can observe that Oozie can handle on average
3.57 jobs per second and that the average scheduling delay is 15.33
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seconds. Since the average MapReduce completion time is of 395 seconds [2] we
believe that Oozie’s delay is quite significant as it ads another 3.88% extra running
time to every job. On the other hand, Dron has managed to schedule the
jobs in under 1 second and with an average delay of 0.78 seconds.

Number Jobs
w

(0] 5 10 15 20 25 30
Delay(sec)

Figure 5.1: Histogram showing Oozie’s scheduling delay on a test with 100 jobs

Following, we have tested how the scheduling delay is affected if we increase the
number of jobs in our benchmark to 1000. In figure 5.3 we present the histogram
representing the number of jobs scheduled every 20 seconds. From it we can observe
that Oozie is scheduling around 195 jobs every 20 seconds for the first 100 seconds.
However, after that we can see a big drop in performance. The scheduler can not
keep up with the load and as a result it only manages to run approximatively 50
jobs every 5 minutes. As a result, the last 17 jobs of the 1000 are scheduled after
1028 seconds from the beginning of the benchmark.

We have also run the same test using Dron. In Figure 5.4 we have built the
histogram representing the number of jobs that are scheduled every second. As
we can see from it, the system has successfully scheduled the jobs in under 0.9
seconds and with an average delay of 0.35 seconds.

Having conducted the above described tests we have shown that Dron’s schedul-
ing overhead is much smaller than Qozie’s. Moreover, Dron scales better when the
number of jobs is increased. On top of that, the maximum number of non-empty
jobs Oozie can run at the same time is bound by the number of Map slots available
in the Hadoop cluster. The fact that the biggest Hadoop deployments have around
30 000 Map slots, makes Oozie unable to handle more than approximatively 10
000 jobs at the same time. From the author’s own experience this is not enough to
handle the needs of a company such as Facebook, that relies on large data analysis.
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Figure 5.2: Histogram showing Dron’s scheduling delay on a test with 100 jobs

Oozie’s limitation comes for the fact that every job specification is first copied
onto HDFS and subsequently is run as a Map task even tough it is a simple Java
program. While we understand that the developers of the system have concen-
trated on simplicity, we believe that Oozie is not able to meet many companies
scalability requirements. Moreover, it does not provide good fault-tolerance as it
was designed to be run on a single machine, without any secondary machine to
act as a hot standby.

5.1.2 Scheduling Delay

In order to better understand the performance of Dron, we have built a benchmark
that stresses the system’s ability to handle events happening at the same time
(e.g. jobs completing or jobs being scheduled). The test is composed of identical
jobs that are simple sleep 0 Unix commands. This has allowed us to increase the
number of slots on each worker to 20 000, and as a result, to decrease the number of
worker machines required for the test. Moreover, the simple jobs do not change the
benchmark’s focus, which is to study the scalability of the Coordinator, Scheduler
and Database nodes.

The test starts by registering 500 periodic jobs. They are expected to run every
10 seconds. Subsequently, at every 30 seconds, the benchmark registers another
500 jobs. The process continues, until the scheduling delay significantly increases
or until the system crashes.

We have executed the benchmark on two deployment configurations. In the
first setup, we have launched two EC2 large instances. One was used as a worker
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Figure 5.3: Histogram showing Oozie’s scheduling delay on a test with 1000 jobs

node and the other one was used to run the Dron Coordinator, Scheduler and
Database. Before running the test, we have deployed our own monitoring software
in order to have a better understanding of our machines status.

The system behaved well and had a scheduling delay of only one second up
to a load of 250 jobs per second. After that, the delay increased to two seconds
and, as the number of jobs grew, to 370 per second. However, at around 380 jobs
per second the delay started to increase exponentially until the scheduler crashed.
This was caused by the database’s inability to scale up more, fact confirmed by the
crash message: “system_limit, Cannot create an ets table for the local transaction
store”.

In Figure 5.5 and 5.6 we have plotted the CPU and memory usage of the
machine on which we ran the Coordinator, Scheduler and the Database. The
values, have been collected every 5 seconds from the beginning of the test until the
end. From the graph on the left side we can see how the CPU utilization increased
as we registered more jobs. The spikes are the result of the fact that we have
not succeeded to uniformly distribute the jobs across the 10 seconds interval. The
figure on the right shows that the memory usage was very low and that it did not
increase by much as we registered more jobs. However, despite the relatively low
resource utilization the scheduler has not been able to scale more.

Subsequently, we decided to test if the scalability of the system improves if we
add more database and scheduler nodes. We have deployed Dron on 6 Amazon
EC2 large instances. Four of them were used to run four schedulers and database
shards, while the remaining two were used as worker nodes. Both in this setup
and in the previous one we have setup a database replication factor of two. Under
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Figure 5.4: Histogram showing Dron’s scheduling delay on a test with 1000 jobs

this configuration the system has successfully managed to scale up to 850 jobs
per second. For each one of them the scheduling delay was under two seconds.
However, the moment we increased the load beyond 850 jobs per second the delay
started to exponentially increase. As in the previous cases, we have monitored
the all the machines. The graphs plotting the load on the most busy scheduler
machine can be found in Appendix A.

Lastly, we would like to point that Dron has been able to schedule 100 times
more jobs per second than Oozie. Even so, we think that there are several tweaks
that can be made to improve Dron’s performance. For example, we could change
Mnesia’s hashing function to make it identical with the hashing function used by
Dron to load balance jobs to schedulers. LinearHashing [27] or ConsistentHash-
ing [28] would be two suitable algorithms as they are two hashing techniques
suitable for environments in which the number of buckets changes often. In this
way, we would be able to add extra schedulers and database nodes as the load
increases. Moreover, every scheduler will only run jobs that are locally stored on
its database shard. This will significantly reduce the load on the database and the
latency of read operations.

5.1.3 High Load

Since Dron was built to schedule large data jobs we have also built a benchmark in
order to evaluate how well it manages to handle many long running jobs. In this
test we are interested to observe the system’s ability to keep information about
jobs that are running at the same time (e.g. timeout timers, monitoring processes).
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As a result we have tried to keep the jobs as simple as possible. Every job is a
simple sleep 600 Unix command. This has allowed us to increase the slots on the
worker nodes up to 10 000 and to ultimately use less machines.

The benchmark was executed using six EC2 large instances. One of the in-
stances was used to run the Dron Coordinator, Scheduler and Database node. On
each of the remaining machines we have deployed three Dron Worker nodes. Thus,
the entire capacity of our deployment would sum up to 150 000 job slots.

The test first registers 25 000 periodic jobs. Every job is expected to run
every 10 minutes. Subsequently, every 150 seconds, the benchmark registers an
additional 25 000 periodic jobs. We have allowed the benchmark to register 150
000 which corresponds to the maximum amount of available job slots of our de-
ployment. During the execution of the test we have sampled every 5 seconds the
CPU and memory usage on the machine on which we ran the Dron Coordinator,
Scheduler and Database nodes. The values we have collected are plotted in Figure
5.7 and Figure 5.8.

The left figure shows that the CPU usage was low through almost the entire
duration of the test. The spike at the end was caused by the fact that the last
two batches of 25 000 jobs have been scheduled to start exactly at the same time
of the second run of the first two job batches. Even so, the CPU usage has barely
reached 30%. The figure on the right side plots the memory usage. From it we
can see that the utilization steadily increases as the test proceeds. This is caused
by two reasons:

e More jobs are executed at the same time increasing the size of the state the
scheduler is keeping in memory.

e The size of the in-memory database increases as more job instances are cre-
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Figure 5.7: CPU usage on the machine Figure 5.8: Memory usage on the ma-
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uler and Database during the high load Scheduler and Database during the high
benchmark load benchmark

The test we have conducted shows that the system is able to handle loads that
the other currently publicly available large data schedulers can not. We believe
that Dron’s current scalability is enough even to meet the demands of the biggest
companies relying on large data analysis.

5.2 Scheduling Evaluation

In this section we demonstrate that by capturing the direct acyclic graph of job
dependencies, Dron can use different scheduling strategies to improve the running
time of the benchmark. There are two main questions we set ourselves when
evaluating the different scheduling options:

1. How is the overall running time of the benchmark affected?
2. How does the resources utilization change with each strategy?

In order to answer the above mentioned questions we construct a benchmark
modelled after a real world scenario and we run it on a cluster. Before we proceed
we would like to point that the scheduling strategies have not been developed with
any fairness constraints in mind. We assume that the jobs in the benchmark do
not have requirements in terms of job starting time. This problem could be solved
by providing to the users the option of tagging jobs as prioritary (i.e. it must start
at the given time) or not.
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5.2.1 Node Configuration

We deployed Hadoop and Hive on a 21-node cluster. Each node is an Amazon
EC2 large instance with 4 Compute Units, 7.5 GB of RAM and 850 GB of instance
storage running Ubuntu 11.10 (Oneiric Ocelot). According to Amazon a Compute
Unit has the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Xeon processor. Using
hdparm we discovered that the hard disks deliver approximately 2400 MB/s for
cached reads, 490 MB/s for buffered disk reads and 70 MB/s writing speed. With
the help of iperf we have also tested the network bandwidth and we have found it
to be on average around 870 Mbits/s.

For our experiments we use Hadoop 0.20.2 and Hive 0.7.1 running on Java
1.6.0. We deployed the system with the default configurations settings: NameN-
ode/JobTracker JVM heap size of 900 MB and DFS block size of 64 MB. One
node was used as a NameNode/JobTracker and the remainder of 20 as TaskTrack-
ers/DataNodes. Each nodes has been setup to execute at most 5 Map tasks and
2 Reduce tasks concurrently. Thus, our cluster has a total of 100 Map slots and
40 Reduce slots.

5.2.2 Benchmark Description

Our benchmark consists of 14 jobs. It has been built based on previous tests
conducted by Pavlo et al. and Facebook engineers [51, 50]. For each job we only
give an overview of what its achieving. However, the interested reader can consult
Appendix A for listings of the Hive queries and the publicly available repository
for the source code of the MapReduce jobs used.

As depicted in Figure 5.9 the benchmark is composed of 4 main categories of
tasks. The first type of job is the “Grep task” which is described by the authors of
the MapReduce framework to be “representative for a large subset of real programs
written by the users of MapReduce”[3]. We have created two identical jobs to
conduct this task. One is a MapReduce job and the other one is a Hive query.
Both jobs are scanning through a 50GB data set generated using Pavlo’s et al.
benchmark. The data is composed of 100-byte records containing a 10 bytes unique
key and a 90 bytes random value. The jobs are looking for a three-character pattern
that is only found once in every 10 000 records.

The generated data is first loaded into HDFS text files using a Dron job. This
phase is not included into the benchmark since it is a long step that does not stress
any of Hadoop’s resources (i.e. the duration of the loading phase depends on the
reading speed of the disk where the data is initially stored). Following, using the
CreateGrepSel Dron job we create a table into which the output of the Grep query
will be inserted. Once this step is completed, we launch the GrepH query and the
GrepM MapReduce Job. The former is composed of 194 Map Tasks and the latter
of 746 Map Tasks.

For the remaining tasks we have used Pavlo’s et al. benchmark to generate
a collection of HTML documents. Using the documents we have also generated
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Figure 5.9: Direct acyclic graph of jobs used for benchmark

two data sets that model log files of HTTP traffic. The first set stores for each
page URL its page rank and the average duration visit. The second data set has
been built to model user visits to a set of URLs. It contains information about
the user(e.g. source ip, country code) and about its every website visit (e.g. date,
ad revenue). For more information consult Table 5.1 which contains the schema
of data sets we have used in our benchmark.

Similarly to Grep’s data set, we did not include the data generating and up-
loading to HDFS into the benchmark. However, we have included 4 jobs that
are responsible with creating the tables needed to store the output of the queries.
Create RankSel is responsible for creating the table for a simple selection task. The
purpose of the of the task is to filter the page URLs from the Rankings table that
have a page rank bigger than a given value. As for all other categories of tasks we
have created a job (SelRankH) to run the Hive query and a job (SelRankM) to
run the MapReduce job. The number of Map and Reduce tasks required by each
job can be seen in Table 5.1.

The third category of tasks depend on the CreateUVJoin job. They are tasks
that perform complex calculations on the Rankings and UserVisists data sets. In
the first step the tasks lookup for the source ip that generated the most revenue
within a given data range. Following, the tasks calculate the average page rank
of the pages visited during the above mentioned interval. The difficulty of this
category of tasks comes from the fact that the two different data sets (Rankings
and UserVisits) must be scanned and joined together in order to compute the
output. Thus, the tasks extensively stress the cluster’s network and processing
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capabilities.

Finally, the fourth category of tasks depend on the CreateUVAgg and CreateU-
VAd jobs. AggUV job calculates the total ad revenue generated for each source
ip contained in the UserVisits data set, grouped by the source ip column. Upon’s
AggUVH job completion, AdUVH is started. The job computes the ad revenue
generated everyday, grouped by the visit date. The aggregation tasks were de-
signed to test the performance of parallel analytics on a single read-only table.
The second aggregation task has been added in order to increase the depth of the
direct acyclic graph. Thus, the workload better depicts loads that have seen by
the author in his previous work experiences.

Schema Size

grep(key varchar(10), field varchar(90)) 500 million rows,
50GB

rankings(pageRank int, pageUrl varchar(100), avgDura- | 18.7 million rows,

tion int) 1.1GB

uservisits(sourcelp varchar(16), destUrl varchar(100), | 160 million rows,
visitDate date, adRevenue float, userAgent varchar(64), | 20.2GB
countryCode varchar(3), languageCode varchar(6), search-
Word varchar(32), duration int)

Table 5.1: Benchmark Hive table’s information

5.2.3 Scheduling Strategies

In this subsection we study four scheduling strategies that we have used in Dron
in order to execute the benchmark described above. For each strategy we have ran
the benchmark two times to make sure that the results are consistent.

In order to be able to conduct the tests we have extended Dron’s job syntax. We
give users the possibility to declare the number of Map and Reduce tasks required
by each job. If the users provide this information, Dron can try to optimize the
usage of the Hadoop cluster. Since the job scheduler is external to Hadoop it can
only improve the utilization of the deployment by rearranging the order of the jobs.
This solution can only bring advantages in cases when the cluster is overloaded.
However, most of the companies that analyse big data are in this situation, fact
confirmed even by our contacts at Facebook.

We overload our own cluster by starting at the same time, all the jobs described
in the previous section. Thus, we successfully replicate real world scenarios in
which jobs are queued up because of large computations.

Following we describe every strategy we have tested. For each one of them we
also include a table detailing the order in which the jobs have been run. We have
omitted the jobs that do not run Hadoop computations as they all are of short
duration.
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1st Strategy

In this setting the scheduler simply registers all the jobs at the same time. The
jobs which depend on other jobs (e.g. AdUVHive) will only be triggered when
their dependencies succesfully complete. Table 5.2 contains information about
the running order of jobs and their duration. From the table we can observe
that MapReduce jobs are scheduled before all the Hive jobs. This is due to the
computation that is conducted by Hive to transform the queries into MapReduce
jobs and to their dependency on the jobs that create the tables.

# | Job Name Start Time(sec) | End Time(sec)
1 | Join UserVisits MapReduce 37 863
2 | Select Rankings MapReduce 38 365
3 | Aggregate UserVisits MapReduce 47 365
4 | Grep MapReduce 197 473
5 | Select Rankings Hive 358 546
6 | Aggregate UserVisits Hive 361 727
7 | Join UserVisits Hive 376 904
8 | Grep Hive 506 878
9 | Aggregate Ads UserVisits Hive 647 886

Table 5.2: Hadoop jobs running information for scheduling using 1st strategy

2nd Strategy

Using second strategy the scheduler prioritizes the jobs which have the highest
direct acyclic graphs depending on them. The strategy was developed based on the
hypothesis that the jobs situated on bigger level do not fully utilize the resources
of the cluster. Our benchmark, excluding the jobs that create tables, has only
one job with dependant jobs (Aggregate UserVisits Hive). We expect it to be the
first job to be run. However, in Table 5.3 we see that Grep MapReduce is the
first job executed. This is due to fact that Aggregate UserVisits Hive depends
on Create UserVisits Aggregate. The dependency takes some time to be satisfied
and on top of that even the starting delay of a Hive job is quite significant in our
benchmark (i.e. it takes around 45 seconds to transform a Hive query into a series
of MapReduce jobs). As a result the strategy runs a MapReduce job until the
highest priority job is ready to be run. We expect this delay to be less important
in large industry scale computations. However, we still consider it is an aspect to
be kept in mind while refining strategies.

3rd Strategy

The third strategy is a refinement of the previous one. While running the bench-
mark we have observed that several jobs have multiple steps. For example the Hive

81



Chapter 5. Evaluation 5.2. Scheduling Evaluation

# | Job Name Start Time(sec) | End Time(sec)
1 | Grep MapReduce 21 155
2 | Aggregate UserVisits Hive 168 454
3 | Join UserVisits MapReduce 169 810
4 | Aggregate UserVisits MapReduce 360 547
5 | Grep Hive 505 635
6 | Join UserVisits Hive 608 897
7 | Select Rankings MapReduce 674 848
8 | Select Rankings Hive 693 769
9 | Aggregate Ads UserVisits Hive 685 77

Table 5.3: Hadoop jobs running information for scheduling using 2nd strategy

query representing Join UserVisits Hive is transformed into four MapReduce jobs.
Figure 5.10 details the requirements of the components of the multi-step jobs from
our benchmark. This observation has encouraged us to allow users to specify infor-
mation (i.e. number of Map/Reduce tasks expected) for every step of their Dron
jobs. As a result the adjusted scheduler treats Join UserVisits MapReduce, Aggre-
gate UserVisits Hive and JoinUserVisits Hive as priority jobs. Fact confirmed by
the running order (Table 5.4) we obtained while executing the benchmark.

We believe that with more time at hand we would be able to extend the sched-
uler with the ability to receive information about complex jobs from Hive and
Hadoop. Subsequently, Dron could automatically use this to prioritize the jobs
that have implicit dependant jobs.

JoinUVMR.Phase1, M318,R10 ] /[ JoinUVH.Stage1, M93,R10 ]\

[ JoinUVMR.Phase2, M60,R10 ] [ JoinUVH.Stage2, M8,R10 ]

[ JoinUVMR.Phase3, M73,R1 ] [ JoinUVH.Stage3, M8,R1 ]
JoinUVMR

[ JoinUVH.Stage4, M1,R1 ]

K JoinUVH /

Figure 5.10: Example of Dron jobs composed of multiple MapReduce jobs

4th Strategy

Lastly, we have tried to improve the previous strategy by delaying the run of a
job that was determined to be prioritary. This strategy was developed from the
hypothesis that the jobs situated at the higher levels of the benchmark’s direct
acyclic graph do not fully utilize the resources of the cluster. Thus, in order to
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# | Job Name Start Time(sec) | End Time(sec)
1 | Join UserVisits MapReduce 29 836
2 | Aggregate UserVisits Hive 152 460
3 | Join UserVisits Hive 169 876
4 | Aggregate UserVisits MapReduce 252 504
5 | Select Rankings MapReduce 285 618
6 | Select Rankings Hive 469 537
7 | Grep MapReduce 451 620
8 | Grep Hive 682 830
9 | Aggregate Ads UserVisits Hive 750 838

Table 5.4: Hadoop jobs running information for scheduling using 3rd strategy

balance computation, the scheduler has decided to postpone the Join UserVisits
Hive job.

# | Job Name Start Time(sec) | End Time(sec)
1 | Join UserVisits MapReduce 26 852
2 | Aggregate UserVisits Hive 151 466
3 | Grep MapReduce 169 405
4 | Select Rankings MapReduce 398 657
5 | Aggregate UserVisits MapReduce 400 593
6 | Grep Hive 545 842
7 | Select Rankings Hive 658 697
8 | Join UserVisits Hive 664 938
9 | Aggregate Ads UserVisits Hive 771 860

Table 5.5: Hadoop jobs running information for scheduling using 4th strategy

5.2.4 Results

In this section we study the results we have obtained while using the strategies
outlined above. We have executed the benchmark twice for every scheduling order.
This allowed us to verify that the running times were not affected by temporary
network traffic spikes, virtual machines collocation (i.e. other resource intensive
virtual machines situated on the same node) or many other possible transient
failures.

In order to be able to answer the three questions mentioned in Section 5.2,
we have deployed our own resource monitoring system. This is because Amazon’s
CloudWatch only offers paid resource information at a minute interval. Our bench-
mark does not run for more than 17 minutes. The only few data points provided
by CloudWatch would have not accurately captured the changes in the cluster
utilization. As a result, we chose to manually deploy collectl and to sample CPU,
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network traffic, disk and memory usage at a 5 second interval.
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Figure 5.11: Duration of benchmark depending on the strategy used while schedul-
ing

Figure 5.11 presents the duration of the benchmark while using the different
scheduling strategies. We can observe that the 3rd strategy has a duration 3.1%
smaller than the first strategy and 6.6% smaller than the 4th strategy. Moreover,
while testing other scheduling orders that have not been covered in the report we
have seen improvements of up to 10%.

These results suggest that it is possible to reduce the duration of the benchmark
by making use of the jobs dependency graph. For the test we have conducted it
can be achieved by prioritizing the jobs that have the highest direct acyclic graphs
depending on them and the jobs that are made of multiple steps. We would also
like to point that this observation requires much more testing and refinement. The
problem of scheduling is complex and it may be case that the 3rd strategy just
schedules well the benchmark we have used.

Following we try to answer the second question (how does the resources utiliza-
tion change with each strategy?) by studying the data we have gathered about the
nodes state. Figure 5.12 and 5.13 plot the CPU and memory usage on the node
that was used as a Dron coordinator, scheduler and worker. Due to the small size
of the benchmark and to lack of computing power we have chosen to run all the
above mentioned Dron components on the same machine. Even so, as the graphs
point, the CPU and memory utilization were small.

The plot representing CPU usage contains several spikes. Upon further analy-
sis, we have discovered that they coincide with the starting times of the jobs that
are running Hive queries. This is due to the fact that Hive queries are transformed
to MapReduce jobs locally on the Dron machine. Except these spikes, the load on
the machine is very low with the CPU usage rarely exceeding 5%.

The memory footprint of the Dron components is very small. As it can be
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Figure 5.12: CPU usage on Dron node Figure 5.13: Memory usage on Dron node

observer from Figure 5.13 most of the memory is used by the operating system
and by the benchmark jobs that are running on the node. As more jobs complete
we can see the memory utilization decreasing down to 8% for all the strategies.
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Figure 5.14: CPU usage on JobTrack- Figure 5.15: Memory usage on JobTrack-
er/NameNode node er/NameNode node

Figure 5.14 and 5.15 are plotting the CPU and memory usage gathered from the
EC2 node we have used to run the Hadoop JobTracker and NameNode. Since for
large data standards our cluster is small, we have not seen any intensive resource
utilization on this machine. As the plots show, CPU utilization almost never
exceeds 10% and memory utilization is constant at approximatively 9%.

Following, we have measured the resource utilization on the worker nodes.
Figure 5.16 plots the average CPU usage accross all workers for every strategy.
As we expected we can see that the worst strategy (4th) it is not using the CPU
as much as the other strategies. After 570 seconds from the beginning of the
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Figure 5.16: Average CPU usage on Figure 5.17: CPU usage standard devia-
worker nodes tion on worker nodes

benchmark the CPU usage drops to around 40% and continues to be around that
value for approximatively 60 seconds. On the other hand, For all the remaining
strategies we do not see any big differences. Their overall CPU usage which is
around 57% for all of them. In order to get a better understanding we have also
plotted the standard deviation of CPU usage across the workers. From this graph
we can observe that for the first 500 seconds the computation is well distributed on
all the workers nodes. Following, the standard deviation starts to increase as the
final jobs do not make use of all the resources of the cluster. As we were expecting
the average standard deviation for CPU utilization is bigger by 1.23 than the value
observed for the 3rd strategy.

100

30

80

2nd strategy
3rd stragety ||
4th strategy

IN)
o

- - 1st strategy - - 1ststrategy

2nd strategy
3rd stragety [q
4th strategy

N
=3

601

401

Memory Usage (%)

-
)

Memory Usage Standard Deviation (%)
=
&

37 -
- R NAY N
201 XePE\ " il RN VTN :- ""—A-\\
1! ;) N PSR TPV L R 5t 4 - o
i M ’ oo B SN~ o o) -7 Ay IR
Ja 5 P - -
k! S N TR O N ATC APl SR SRS
‘\i' A ‘\ ’) e 7T TN had
0 L L L L 0 L L i ~==z° L
0 200 400 600 800 0 200 400 60! 800

Time (Seconds) Time (Seconds)

Figure 5.18: Average memory usage on Figure 5.19: Memory usage standard de-
worker nodes viation on worker nodes

Figure 5.18 and 5.19 plot the data we have gathered about the memory uti-
lization on the worker nodes. Despite the variation in the running length of the
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benchmark we have not observed any big variations in the memory usage of the
cluster. While scheduling the jobs using 3rd strategy we have seen an increase
of 0.3% in memory than while scheduling them with 4th strategy. However, we
believe that this increase is to small to draw any conclusions upon.
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Figure 5.20: Average network usage on
worker nodes

Figure 5.21:
worker nodes

Average disk usage on

Lastly, we have also measured the disk and network utilization. While com-
puting the average network read and write speed (Table 5.6) we have observed a
correlation with the duration of the benchmark. In order to better understand the
similarity we have studied how many of the Map tasks are conducted using local
data, tasks failure rates and percentage of tasks ran preemptively by the frame-
work (Appendix A). The findings did not hint to any reason for the difference in
network usage. The disk utilization plotted in Figure 5.21 has also shown better
usage during the run with the 3rd strategy. In this case the disks have read /written
on average an extra 2 MB/s than during the run using 1st or 2nd strategy.

Strategy

1st

2nd

3rd

4th

Network Usage (MB/s)

9.91

9.52

9.2

10.74

Table 5.6: Average Network Utilization on Worker Nodes

5.3 Discussion

Our experiements have shown that Dron scales better than other current existing
workflow schedulers. With a bit of extra development time to remove existing
bugs and to do few optimizations the system will be able to meet the needs of
most companies relying on large data analysis. Following, we have also tested and
evaluated four scheduling strategies. We have observed that one is performing bet-

ter than the others. However, we think that many more tests should be conducted
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in order to study how the strategy performs under different scenarios.

We are aware that there are things to be improved in Dron’s design. However,
we believe that even as it is, the system is offering much flexibility. For example, by
being able to run several schedulers at the same time the engineers can experiment
with various strategies and more importantly change them without any downtime.
Another good design decision we have made is that we provide two ways of in-
tegrating external frameworks with Dron. In this way, the engineers can choose
the solution which is the most easy for them to implement. Nevertheless, we also
think that several architectural decisions may create problems. For example, even
if the coordinator node is just a thin layer, we expect it to become a bottleneck
under heavy job loads.

Some of Dron’s features can not be easily evaluated. For example, it was
important for the system to provide a rich enough dependencies language. Since
there is no way to quantify simplicity or language’s expressiveness, we have decided
to simply show that interesting system can be achieved with it. In Chapter 6 we
show how to build a scalable recommendation engine using Dron, Hadoop and
Mahout.

Finally, we would like to point that testing the system has proven to be much
more difficult than anticipated. Firstly, we were faced with many problems while
generating the data for the benchmark (e.g. hardcoded operating system depen-
dencies in open source code, difficult to adapt implementation). Secondly, it took
us few weeks just to correctly deploy Hadoop, Hive and Oozie on Amazon EC2.
Despite all the automation bash and Python scripts we have written, the deploy-
ment process still consists of approximatively 25 steps.
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Chapter 6

Recommendation Engine Based
on Dron and Mahout

6.1 Description

In this chapter, we show how it is possible to build a scalable recommendation
system with the help of Dron, Mahout and Hadoop. Developing such a system
normally requires an effort equivalent to few person-months. However, by using
multiple frameworks, we show that it is possible to be achieved in only several
hours. Our solution is based on the description given in [52].

The recommendation system meets the demands of websites that have the
following characteristics:

e the items are not changing often (e.g. every few hours)
e the number of users is significantly bigger than the number of items

e the recommendations do not have to update in real-time

An example of a website that has these properties would be a music discovery
service. The number of bands is few orders of magnitude smaller than the number
of users. Moreover, new bands can be included in the recommender once every
day or even less often.

6.2 Implementation

We assume that the website stores the user preferences into the table declared in
Listing 6.1. For our example, we have chosen a MySQL database. However, the
data could be stored in any other relational database. The table has two columns
userld and artistld. A row entry such as (42, 7) means that the user with id 42
has at some point liked/listened to the artist with id 7.
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1 CREATE TABLE IF NOT EXISTS preferences (
2 userld BIGINT NOT NULL,

3 artistld BIGINT NOT NULL,

4  PRIMARY KEY (userld, artistId),

5 INDEX (userld),

6 INDEX (artistId))

Listing 6.1: SQL statement that creates the rpeferences table

For storing the similarity measure between two artists, we use the table de-
scribed in Listing 6.2. The table has three columns. The first two contain the ids
of the artists we are comparing, while the last one stores a float values representing
their similarity. Whenever, the website would want to recommend artists it would
simply execute a query on this table.

1 CREATE TABLE similarities (
artistId1l BIGINT NOT NULL,
artistId2 BIGINT NOT NULL,
similarity FLOAT NOT NULL,
PRIMARY KEY (artistIdl , artistId2))

T W N

Listing 6.2: SQL statement that creates the similarities table

Having described how the data is stored we will now present how our recom-
mendation system works. As it can be seen from Figure 6.1, it is developed as
a series of Dron jobs. At the core of the syste we have a Mahout job running
an Itembased Collaborative Filtering algorithm. This job will be responsible for
updating the similarity values between artits. However, before we can run the job
we must first import the data to HDFS. This is achieved with few jobs (e.g. one
for each shard) that scrape the production database. In Listing 6.3 we give an
example of such a job. It simply, dumps the entire preferences table to file which
will be later inported to HDF'S.

1 SELECT userld, artistld FROM preferences
2 INTO OUTFILE ’/tmp/preferences.csv’

3 FIELDS TERMINATED BY '’

4 LINES TERMINATED BY ’\n’

Listing 6.3: SQL statement that dumps the preferences table to a file

Once the data has been loaded into the distributed file system, Dron can run
the Unix command from Listing 6.4. The job starts the Mahout driver which is
launching several MapReduce jobs to compute the similarities between the artists.
By using Mahout we make sure that the recommender will scale beyond the point
where the computation can be conducted on a single machine.
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DB DB
Shard 1 Shard N
\ 4 \ 4
[ Scrape Job DB 1 ] [ Scrape Job DB N ]

\/

[ Scrape Monitor Job ]

\

Mahout Item Similarity Job

[ Map Tasks ] [ Reduce Tasks ]

Y
[ HDFS to MySQL Job ]

Figure 6.1: Workflow implementing a recommender system

Imahout itemsimilarity —i /recommendation/input —o /recommendation/

output —s SIMILARITY LOGLIKELIHOOD —m 10 —tempDir /tmp/tmp

Listing 6.4: Unix command starting the ItemSimilarity Mahout job

When the Mahout job finishes, Dron runs a final job that loads the data from
HDEFS to a MySQL table. An example of such a job is given in Listing 6.5. The
last step of the statement consists of renaming the newly created table such that
it can be used by the website. The operation does not take much time because it
is achieved by MySQL by only few metadata changes.
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1 LOAD DATA LOCAL INFILE ’/recommendation/output/similarities.csv’
2 INTO TABLE similarities tmp

3 FIELDS TERMINATED BY ’\t’

4 LINES TERMINATED BY ’\n’

5 (artistIdl , artistIdId2, similarity);

6

TRENAME TABLE similarities to similarities tmp2, similarities tmp to
similarities;

Listing 6.5: MySQL query that loads data into the similarities table

By running the jobs we have explained with Dron we can obtain a scalable
recommender system. There are many optimizations that can be performed to
improve it. For example, one may try to change the Mahout job such that it
directly scrapes the data from the production database. This would eliminate
the job first dumps the preferences table to a file and then loads it into HDF'S.
However, even without the optimizations, we expect the recommendation system
to be able to meet the scalability demands of the majority of the websites.
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Conclusions

Building an entire new system from scratch has proven to be a challenging and
rewarding task. While developing it we had the opportunity to deal with many
difficult systems aspects: database optimizations, fault tolerance, leader election,
scalability etc. Moreover, we had the pleasure of studying and solving many bot-
tlenecks that we have encountered during the development.

The project also gave us the opportunity to study and modify many different
frameworks that represent the state of the art in terms of large data processing.
While doing so, we have dived into large code bases and we have come to under-
stand how important are testing and building for maintainability during develop-
ment. Overall we have spent around half of the time just installing and configuring
the frameworks we have used.

Throught the development of the project we have been faced with many dif-
ficult engineering decisions. For example, from early on we have decided to use
Erlang as our main implementation language. Despite its scarce documentation,
the language has allowed us to develop, iterate rapidly and bring the project to
the current state. We believe that this would have not been possible to achieve
with traditional languages such as C++ or Java.

In this project, we have managed to design a new distributed job scheduler
for large data jobs. While doing so, we have put the ability of using multiple
external frameworks at the top of our requirements. We have showed that this
is achievable by adapting four systems such that they can be used in conjuction
with Dron. Moreover, we have showed that the system scales better that the most
widely used existing batch scheduler and that it can handle the work loads required
even by the biggest companies dependant on data analysis.

The software that has been developed provides a good degree of flexibility.
Features such as self balancing worker pool and the ability to add extra schedulers
on demand allow the system to scale up or down as the job load it handles changes.
Lastly, we have tested four scheduling strategies and we have showed that by
making use of the entire graph of job dependencies we may optimize the overall
running time of the jobs.
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7.1 Future Work

We think there are many areas of improvement for our project. Following, we
outline several ideas for potential extensions and for further research:

e Dependency language
While our current way of expressing dependencies is good enough to support
the majority of the use cases, it could still be improved. For example, one
may want to execute jobs that depend in a time-agnostic manner on other
jobs. For such a use case Dron would have to support declarations of type
“depend on the last 5 job instance runs”. For this case and several others
we would have to extend the language to be more expressive.

Another extension is to add a new type of node into the direct acyclic graph.
These nodes can change the flow of dependencies at run-time. For example,
if some condition is triggered (e.g. job failure) then job instance A will run,
otherwise job instance B will be run. This feature would allow the users to
automate the maintenance of their workflows by simply add jobs to be run
in case of different job failures.

e Scheduling
Further research into scheduling algorithms could be conducted. The schedul-
ing strategies we have tested do not offer any fairness to the jobs. One could
try to explore various options that treat fairness as a requirement. We also
believe that the strategies we have tried should be evaluated more on many
different types of jobs and cluster’s states (e.g. misbehaving jobs that block
the entire cluster).

Lastly, one could also try to improve the utilization of the Dron worker
machines by studying more complex non-slot based scheduling algorithms.
This could be potentially achieved by adding the possibility of declaring
resource requirements into the job’s declaration. The information would be
used to setup Linux Containers in which the jobs will be executed.

e Frameworks integration
The integration of each framework could be extended such that the exter-
nal systems provide more information that could be used in scheduling. For
example, Hive could publish information about the MapReduce jobs it cre-
ates when transforming a query. Thus, Dron and the scheduling algorithms
would have a better understanding of the state of the cluster.

e Scalability improvements
There still are few low hanging apples to be picked to improve the scalability
of the system. For example, one could experiment with the settings of the
Erlang runtime environment and more importantly with the database. He
or she could try to improve the locality of the data by changing the linear
hash function used to shard the data with consistent hashing. The same

94



Chapter 7. Conclusions 7.1. Future Work

hash function could be used by Dron to assign jobs to a specific schedulers.
Thus, whenever a scheduler will read from the database it will only have to
go to its shard of the database that is situated in its main memory. This can
bring significant speed and scalability improvements as no network or hard
disk is involved into the operation.

e Incorporate data

Further development and research could be also conducted around the pos-
sibilities of make data a first class citizen in the system. For example, one
could add support for an abstract layer for holding information called data
containers. These containers would only provide a way of accessing the data
which underneath the bonnet will still be kept in HDFS or MySQL. How-
ever, based on the size of the data they could decide where to store it or how
to run the computations on it (e.g. local vs parallel). We believe that data
containers would reduce the duration of many small jobs, as they will not
have to incur the usual batch processing latency. Moreover, they would also
reduce the load on the big data cluster.

e User experience
Since Dron is a user facing system, one could improve the user experience
by adding a simple website where jobs would be created and managed. The
interface could also show a visual representation of the entire direct acyclic
graph of jobs. Finally, the graph could be extended with information about
its jobs such that users could check if the computation they are planning on
running or a part of it has not been already executed by someone else.
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Appendix A

Benchmark Evalution

A.1 Dron Latency Test

The following figures plot the CPU and memory usage of the most busy machine
among the ones running a scheduler node.
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Figure A.1: CPU usage on the machine

running Dron Coordinator,
and Database

A.2 Hive Queries

Scheduler

100 150
Time (Seconds)

uler and Database

Figure A.2: Memory usage on the ma-
chine running Dron Coordinator, Sched-

In this section, we provide full descriptions of the Hive queries we have used in the
benchmark evaluating the scheduling strategies.

1CREATE TABLE grep select

( key STRING,

field STRING );

Listing A.1: Create Grep select table
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Appendix A. Benchmark Evalution A.2. Hive Queries

1CREATE TABLE rankings_ select ( pageRank INT, pageURL STRING );

Listing A.2: Create Rankings select table

1CREATE TABLE rankings uservisits_join ( sourcelP STRING, avgPageRank
DOUBLE, totalRevenue DOUBLE) ;

Listing A.3: Create UserVisits join table

1CREATE TABLE uservisits aggre ( sourcelP STRING, sumAdRevenue DOUBLE) ;

Listing A.4: Create UserVisits aggregation table

1CREATE TABLE uv_ad (visitDate STRING, sumAdRevenue DOUBLE) ;

Listing A.5: Create UserVisits ads table

1INSERT OVERWRITE TABLE grep select
2 SELECT * FROM grep WHERE field LIKE "%XYZ%’;

Listing A.6: Selects entries that contains XYZ

1INSERT OVERWRITE TABLE rankings_ uservisits_join
2 SELECT sourcelP , avg(pageRank), sum(adRevenue) as totalRevenue

3 FROM rankings R JOIN

4 (SELECT sourcelP , destURL, adRevenue FROM uservisits UV

5 WHERE UV. visitDate > ’1999—-01—-01" AND UV.visitDate < ’2000—01-01"
)

6 NUV ON (R.pageURL = NUV.destURL)

7 GROUP BY sourcelP

8 ORDER BY totalRevenue DESC LIMIT 1;

Listing A.7: Joins Rankings and UserVisits tables

1INSERT OVERWRITE TABLE rankings select
2 SELECT pageRank, pageURL FROM rankings WHERE pageRank > 10;

Listing A.8: Selects entries that have a page rank higher than 10

1INSERT OVERWRITE TABLE uservisits_aggre
2  SELECT sourcelP , SUM(adRevenue) FROM uservisits GROUP BY sourcelP ;

Listing A.9: Calculates ads revenue generated by each IP

1INSERT OVERWRITE TABLE uv_ad
2 SELECT visitDate , SUM(adRevenue) FROM uservisits GROUP BY visitDate;

Listing A.10: Calculates ads revenue for each day
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Appendix A. Benchmark Evalution A.3. Benchmark Run Information

A.3 Benchmark Run Information

In Table A.1 we can see information about the execution of the map tasks. For
all the strategies the map data locallity was around 80%. The only significant two
differences that can be observed is that: the 4th strategy has locality lower by
0.8% then the 3rd strategy and that the percentage of map tasks killed is smaller
by 1.3%.

Strategy 1st | 2nd | 3rd | 4th
% of Data Local Map Tasks | 81.2 | 79.5 | 80.0 | 79.2
% of Map Tasks Killed 16.0 | 15.3 | 15.8 | 14.5
% of Map Tasks Failed 0.0 | 0.0 | 0.0 | 0.0

Table A.1: Information about the Map tasks executed with every strategy
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