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ABSTRACT

The old adage “to err is human” is more than manifest in the software world:
programmers make mistakes. As a result, it is estimated that 50% of software
development time is spent on software testing alone. This has prompted many
attempts in the past decades to fully automate testing, through tools that generate
tests autonomously. In addition to saving time, automatic test generation enables
more systematic and unbiased testing, increasing the robustness and quality of
programs.

Dynamic languages have recently risen in popularity, as their flexibility suits
today’s fast-moving software industry. The growth of web applications has led
to an increase in the use of JavaScript in particular. Formerly cast as a browser
scripting language, JavaScript is becoming a more versatile programming lan-
guage used for application development as well. This motivates research in
automatic test generation for JavaScript, yet the existing work in that domain
[19, 2, 38, 5] lacks autonomy and support for the class-based programming style
which is becoming the norm in JavaScript development.

In this report, we present Flycatcher, an automatic unit test generation tool
written for and in JavaScript. We contribute to the field of automatic test gen-
eration by proposing a tool that is capable of successfully generating tests for
a comprehensive subset of the JavaScript language. On top of providing the
tester with a suite of unit tests, Flycatcher reports the errors found during the
test generation process. Experimental evaluation shows that Flycatcher is capa-
ble of consistently achieving high code coverage with a selection of benchmark
programs.
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CHAPTER 1

Introduction

Software testing is a cornerstone of software engineering — one of the most com-
mon and effective ways to verify software quality and an effort that accounts for
at least 50% of software development time [40]. With the fast-paced growth of
the software industry, comes the need to test large and complex software on an
unprecedented scale. Moreover, as software becomes increasingly ubiquitous,
it is held to the highest standards of reliability and correctness, which further
justifies testing it in a rigorous and exhaustive manner.

As a result, many attempts have been made to automate the testing effort,
so that programs can be systematically and seamlessly tested, without requiring
laborious, costly and error-prone manual input. The consequences of automated
testing are very appealing: it reduces software maintenance and development
costs, while increasing the robustness and ultimate quality of the software. De-
spite the fact that this area of research has taken time to develop, due to the
intrinsic complexities of automatic test generation, it has now seemingly reached
a stage where it can start to make a meaningful impact on software testing prac-
tice.

Decades of research have been devoted to automatic test generation for static
languages and a multitude of tools have been developed. As the research area
matures, it is arriving to a point where its techniques are no longer simply appli-
cable to restricted programming language subsets or limited programs. Indeed,
companies such as Microsoft employ automatic test generation tools on a regular
basis to verify their software [33]. Yet, until recently, dynamic programming lan-
guages had mostly been left out of the equation — but their increasing popularity
and a renewed interest in them prompts the need to start truly including them
in the automatic testing research effort.

One such programming language that has been growing in popularity in
the past few years is JavaScript, with new frameworks and libraries frequently
being released for it. Software libraries that have gained wide acceptance, like
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Node.js1 which supports the writing of highly-scalable internet applications,
seem to confirm JavaScript’s transition from a purely client-side browser lan-
guage to an all-purpose one — at least for some. In recent studies [24], JavaScript
appears amongst the most used programming languages in the world today. In
other words, it seems that JavaScript is here to stay, at least for some time, and it
thus makes sense to choose it as the object of our work in automatic testing for
dynamic languages.

Various test generation approaches exist: from straightforward but limited
random generation to elaborate systems that combine static and dynamic anal-
ysis to provide strong software verification. Since much of the literature on
automatic test generation focuses on static procedural languages and numerical
input data types, many of the techniques found are not feasible or applicable
to automatic test generation for JavaScript, and herein lies the main element of
risk in this project. On top of that, automatic test generation is not without its
challenges. Both the static and dynamic solutions that aim for systematic test-
ing face major hurdles. For the static approach, it is mainly to do with solving
the path constraints responsible for generating the test data, as this problem can
become undecidable under certain circumstances. The dynamic approach de-
pends on the execution of the program under test, and the number of executions
needed for sufficient coverage can become infeasible. On top of the challenges
listed above that are common to most automatic test case generation initiatives,
Flycatcher raises additional difficulties due to the fact that it targets not only an
object-oriented2 language but a dynamically-typed one. For instance, our testing
tool will need to tackle issues such as the generation of method call sequences
and dynamically-typed instances, the latter being intrinsically difficult due to the
absence of static types. Our work will thus involve, amongst other things, devis-
ing solutions to tackle the well-known challenges that pertain to automatic test
generation for dynamic languages.

In this report, we present Flycatcher, a program written in JavaScript, that
combines existing and innovative methods to achieve automatic generation of
unit tests for JavaScript. The word automatic is key here, as we believe that to be
really useful such a tool requires minimal input from its user. This design choice
will therefore guide our decisions throughout, as we strive to create a tool that
works autonomously.

Contributions

• The major contribution that this project makes to the field is to extend the
limited amount of work done in automatic test generation for dynamic
languages by proposing a tool that successfully generates unit test suites
for a comprehensive subset of the JavaScript language.

1http://nodejs.org/
2this has been debated, but JavaScript is heavily object-based and can support polymorphism,

inheritance and encapsulation, which we believe is sufficient to call it an object-oriented language
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• As well as helping JavaScript developers in their testing effort, we hope
that our work will be able to offer new insights into automatic test genera-
tion for object-oriented programs in dynamic languages, and benefit future
research in that direction.

• Flycatcher also serves to demonstrate the wide-ranging applications of the
meta-programming API being put forward by the ECMAScript standards
committee. By helping to expose the benefits of the upcoming Harmony
version of JavaScript, we hope to encourage and speed up JavaScript’s move
from a quirky scripting language to a fully-fledged programming language.

Report Organisation

The report is organised as follows:

• High-level overview of the Flycatcher application (Chapter 3)

• Implementation details (Chapters 4, 5 & 6)

• Evaluation and conclusion (Chapters 7 & 8)

3
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CHAPTER 2

Background

In this chapter we will start by giving an overview of software testing, with
particular emphasis on aspects of it that are relevant to this project. We will then
take a look at the state-of-the-art in automatic test data generation (ATDG) in
order to understand the approach that will be used for Flycatcher. Because the
tests will be object-oriented, method call sequences also need to be generated for
the test cases, so we will look at the state-of-the-art for doing that too. Finally,
we will further justify our choice of JavaScript and describe features of it that are
important in this project.

2.1 Dynamic software testing

2.1.1 Overview

We can define the activity of dynamic testing, as testing that requires execution
of the software with test data as input [25]. We can characterise it with respect to
three parameters: the amount of knowledge assumed by the tester, the target of
the tests and the stage of development at which they are executed. The amount of
knowledge of the software under test can be divided into three categories: struc-
tural (white-box testing) testing, functional (black-box testing) and a hybrid of
the two (grey-box testing). The target of the tests refers to their granularity, from
testing specific units of code (unit testing) to an entire integrated system (system
testing). The stage at which the tests are undertaken determines whether they
are regression tests, alpha-tests, beta-tests, acceptance tests etc. With Flycatcher,
we generate suites of structural tests, focused at the unit level of object-oriented
classes, most likely to perform incremental regression testing. Hence, structural
testing, unit testing and regression testing will be described in more detail in this
section.
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2.1.2 Structural testing

The goal of structural testing is to test the internal workings [27] of an applica-
tion in order to verify that it does not contain errors. While functional testing
determines whether the software provides the required functionality, structural
testing tries to ensure that it does not crash under any circumstances, regardless
of how it is called. It concerns how well the software operates, its structure,
rather than what it can do, its function. As a result, the measure used to deter-
mine good structural testing is the amount of code covered during the testing
process — code coverage. It gives us an idea of the amount of code that should
be bug free. However, there are various types of code coverage criteria and the
confidence that our code is bug free varies depending on which one is chosen.

Code coverage

Edvardsson lists the most cited criteria [11], from weakest to strongest:

• Statement Coverage Each statement must be executed at least once.

• Branch/Decision Coverage Each branch condition must evaluate to true
and false.

• Condition/Predicate Coverage Each clause within each branch condition
must evaluate (independently) to true and false.

• Multiple-condition Coverage Each possible combination of truth values
for the clauses of each conditional statement must be evaluated.

• Path Coverage Every single path in the control flow graph must be tra-
versed.

The stronger criteria of condition, multiple-condition and path coverage
are often infeasible to achieve for programs of more than moderate com-
plexity, and thus statement and branch coverage have been recognised as a
basic measure for testing [11].

2.1.3 Unit testing

Unit testing consists in testing individual and independently testable units of
source code [31]. Therefore, unit testing is made easier if the code is designed in
a modular way. The nature of the units depends on the programming language
and environment but they are often a class or a function. As opposed to system
tests which can be aimed at the client, unit tests are usually white-box tests.
Although they do not guarantee that the overall software works as required,
they give confidence in specific units of code and narrow down errors, helping
the development process. In Flycatcher, the target unit will be what we will refer
to as a JavaScript ‘class’. Even though JavaScript does not have a class syntax
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per se, this is what the units that we will be discussing represent semantically.
For clarity, we will therefore from this point on use the word ‘class’ to refer to
them. Exactly what they are, and how they work, will be introduced later in
section 2.4.3.

2.1.4 Regression testing

Automatically generating structural unit tests can be of great use for regression
testing. Regression testing aims to ensure that enhancing a piece of software does
not introduce new faults [31]. The difficulty in testing this is that programmers
do not always appreciate the extent of their changes. Hence, having a suite of
unit tests with good structural coverage can reduce this problem by verifying the
software in a systematic, unbiased way.

2.2 Automatic test data generation

2.2.1 Overview

Although object-oriented test generation requires the creation of objects and
method call sequences, it shares with procedural test generation, the need for
input data. Indeed, the object constructors as well as the method invocations
require input parameters, hence Automatic Test Data Generation (ATDG) is a
key concern to us. As can be seen in Mahmood’s systematic review of ATDG
techniques [25], many classifications exist for them. For our purposes, the first
distinction that we need to make is between white-box, black-box [35] and grey-
box ATDG techniques, as for Flycatcher we are only interested in white-box
testing. In the literature, we found that white-box ATDG techniques are usually
classified in two ways [25, 11, 40]:

1. The first concerns the target selection stage of ATDG techniques: where
either paths or individual nodes that contribute to the overall coverage cri-
terion, are successively selected from the control flow graph, so that test
data that respectively traverses the path or reaches the node can be gen-
erated. When specific paths are targeted, the ATDG technique is known
as path-oriented [11], whereas if a node is targeted, then it is goal-oriented.
When data is generated purely randomly i.e. there is no specific target,
then as part of this classification the ATDG technique is simply random.

2. The other classification of white-box ATDG concerns the type of imple-
mentation: static, dynamic or a hybrid of the two [18, 27]. We will focus
on this classification of structural testing as it governs our choice of im-
plementation for Flycatcher. Moreover, the former concerns the target
selection stage of ATDG and this step will be ignored in Flycatcher, as it
is in many recent ATDG techniques [40]. Figure 2.1 summarises what we
believe is an intuitive characterisation of ATDG techniques with respect
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Functional
(black-box)

Specification
based

Model-based

Structural
(white-box)

Static

Symbolic
execution

Hybrid

Concolic
execution

Dynamic

Search-based

Genetic
algorithms

Simulated
annealing

Iterative
relaxation

Alternating
variable

...

Random

Figure 2.1 – Overview of ATDG techniques

to this project and the one which will guide our choice of implementation.
Many techniques can be found under each of the static, dynamic and hy-
brid implementation categories and we only list the most noteworthy to
us.

The rest of this section will present in further detail the structural ATDG
categories, and the difficulties of ATDG for a dynamic language, so that we can
understand the best approach to use when implementing Flycatcher.

2.2.2 Static test data generation

Static test data generation is based on information available from the static anal-
ysis of a program, without requiring that the program be actually executed [27].
Static program analysis produces control flow information that can be used to
select specific execution paths, in order to try and achieve code coverage of these
paths. The goal of static ATDG is then to generate data that executes these paths.

Every time control flow branches, e.g. at if statements, there is a corre-
sponding predicate or branch condition. These predicates can be collected along
a path and conjoined to form the path predicate. By solving the path predicate
in terms of the input variables, we can obtain test data that executes that path.
However, in order to rewrite the path predicate in terms of the input variables,
we need to take into account the execution of the program. Hence, to generate
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the test data statically a technique called symbolic execution [21] is used.
Symbolic execution gathers constraints along a simulated execution of a pro-

gram path, where symbolic variables are used instead of actual values, such that
the final path predicate can be rewritten in terms of the input variables. Solving
the resulting system of constraints yields the data necessary for the traversal of
that path [20, 21]. There are a lot of technical difficulties associated with sym-
bolic execution [11, 28, 27]:

• the presence of input variable dependent loops can lead to infinite execu-
tion trees1 as the loops can be executed any number of times

• array references become problematic if the indexes are not constants but
variables, as is typically the case

• features such as pointers and dynamically-allocated objects that rely on
execution are hard to analyse statically

• static analysis is not possible for function calls to precompiled modules or
libraries

• if the path constraint is non-linear, solving it is an undecidable problem

• even if the path constraint is linear, solving it can lead to very high com-
plexity

Although various static solutions have been proposed for these issues [36,
16, 32], they often dramatically increase the complexity of the ATDG process.
As a result, tools purely based on symbolic execution can typically handle only
subsets of programming languages and are not applicable in industry. A bet-
ter trend that has developed in the past decade, is the combination of concrete
and symbolic execution, which tackles most of the aforementioned issues [33] —
we will cover this type of ATDG implementation in section 2.2.3. Due to the
numerous problems posed by purely static ATDG, its weakness with dynamic
types and constructs [11, 40] and the complexity of building a fully-fledged sym-
bolic executor for a language [11, 18], we chose not to use static ATDG for the
implementation of Flycatcher.

2.2.3 Hybrid test data generation

The hybrid approach to ATDG consists in combining symbolic and concrete ex-
ecution, which is known as concolic execution [33]. In other words, hybrid anal-
ysis tools run programs on actual inputs, while collecting symbolic constraints
in order to direct the search for new inputs. In doing so, they avoid the main
weaknesses of the static approach, such as solving non-linear constraints or deal-
ing with dynamic structures — the concrete values are used in these cases. This

1the execution paths followed during the symbolic execution of a procedure [21]
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type of technique has been popular in recent years, mainly because it overcame
the limitations that prevented static ATDG techniques from being applied to in-
dustry software. Notable tools that implement it are DART [15], CUTE [39],
JPF-SE [3], PEX [41], EXE [7] and KLEE [6].

Yet, although hybrid ATDG deals with some limitations of static ATDG, the
constraint-solving based approach that hybrid ATDG also employs is impractical
for generating complex input data, which is our aim. Additionally, the highly
dynamic nature of JavaScript makes it very difficult to infer any information
from the program statically. Hence, hybrid analysis, as it relies on static symbolic
execution, is not adequate either for our purposes.

2.2.4 Dynamic test data generation

Dynamic test data generation is purely based on actual execution of the software.
The program under test is run and feedback is collected at runtime regarding
the chosen coverage objective [11]. The feedback is usually obtained through
some form of instrumentation of the program that monitors the program flow.
Inputs can be generated randomly, relying on probability to achieve the coverage
objective — this is known as random test data generation [11]. On the other hand,
inputs can be incrementally tuned based on the feedback (using different kinds
of search methods) in order to satisfy the coverage objective — this is known as
search-based test data generation [27]. The main drawback of dynamic ATDG
is that it is reliant on the speed of execution of a program. And as the number
of required executions to achieve satisfactory coverage may be high, this leads to
an overall expensive process. Below, we describe the random and search-based
approaches of dynamic test data generation in more detail.

Random approach

Random test data generation consists in producing inputs at random in the hope
of achieving the chosen coverage criterion through probability. Although ran-
dom test data generation has the advantage of being conceptually simple, it does
not perform well in terms of coverage, as the chances of finding faults that are
revealed by only a small percentage of program inputs are low [11]. In other
words, it is difficult for it to exercise ‘deep’ features of a program that are reach-
able only through specific and unlikely paths. As a result, random ATDG only
works well for straightforward programs. However, because it is the simplest
ATDG technique it is appropriate to use as the basis of a new application such as
Flycatcher.

Search-based approach

Search-based test data generation uses heuristics to guide the generation of input
data, so that the inputs are more likely to execute paths that contribute to the
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overall test coverage objective. This involves modelling the test coverage objec-
tive as a heuristic function or objective function, that evaluates the fitness of a
chosen set of inputs with respect to a coverage objective. Based on those fitness
values, many search techniques exist to find optimal inputs in order to achieve
the desired coverage. Some of the well-known search-based ATDG techniques
are alternating variable (local search optimisation) [22, 14], simulated annealing
[45, 44], iterative relaxation [17] and genetic algorithms [29, 30]. Given that dy-
namic ATDG is the most suitable strategy for Flycatcher, search-based ATDG
is the optimal solution. However, the random approach is more straightforward
and offers a sensible starting point, so the search-based approach can be seen as a
natural extension of that.

2.2.5 Challenges of dynamic languages

Most of the research on ATDG so far concerns static programming languages
[25] and it is only in the past few years that dynamic programming languages
have sparked some interest in that field. A possible reason for this is that dy-
namic programming languages make ATDG harder by enabling features that
allow programs to significantly change at runtime. These features can include
modifying the type system, extending objects or adding new code, all during
program execution. The challenges that this type of behaviour introduces for
ATDG are listed below [9].

Generating test data of the required type

Given that function parameters do not have static types in dynamically-typed
languages, we do not know what arguments to pass to them. A potential solution
to this is to use a method called type inference [34], which tries to infer the type of
arguments from the way they are used inside the program. Although this method
does not guarantee 100% precision, it is a good starting point for generating
accurately typed test data in a dynamic setting. Mairhofer uses this technique for
RUTEG [26], his search-based ATDG tool for Ruby, where the search for test data
refines the initially inferred type, by discarding poor candidates. We will inspire
ourselves from this approach.

Generating object instances

Sometimes input parameters will be of a complex type and this complicates the
test data generation task even further. Generating well-formed object instances
to use as arguments inside tests for a dynamically-typed object-oriented language
is problematic, because there isn’t a blueprint to construct them from. There
is previous work on input data generation for dynamic data structures [22, 46,
37, 47], but all these approaches focus on statically typed languages (C/C++),
require static program analysis and mostly lack generality.
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Another approach uses needed-narrowing [4] or lazy instantiation [23] —
where instances start off as empty placeholder objects and their members are
only created when they are actually put to use by the program. This enables test
case generators to adjust object instances during execution, when attempts are
made to use them, so that they always have the required type. This technique
is used by IRULAN [1] for generating tests in Haskell, which has lazy evaluation
by default. For the purpose of complex test data generation in Flycatcher, we
will use a new method, but the idea of substitute objects which produce some
expected behaviour will be present.

Identifying bugs

In dynamic languages such as JavaScript, the function signatures bear no type
information. This makes it difficult to know whether an exception is raised due
to a wrongly typed test argument or a true program bug.

In the case where the exception is not a bug it could be due to two things:
manipulating a badly initialised object or breaking a program precondition. The
former can be avoided by ensuring that correct parameters are passed to object
constructors i.e. the crux of this project. The latter can be solved by giving the
tester the ability to impose restrictions on the test data generated, such that the
program’s preconditions are respected.

As for real software errors, Flycatcher will deal with those too in a way that
will be described in later chapters.

Dealing with dynamically generated code

Dynamic languages sometimes offer features that parse and evaluate a string at
runtime and execute it as code, such as JavaScript’s eval function. However, not
only are these features potentially insecure, they make any analysis for test data
generation much harder. As the general use of eval in JavaScript is prohibited
anyway2, we can safely ignore it for the purpose of our application.

2.3 Object-oriented test case generation

Most of the research on test generation focuses on testing imperative functions,
such that the automated generation required is that of the functions’ input pa-
rameters only. However, when dealing with object-oriented code, a different
approach is needed, as the unit under test changes from a function to an object.
To test one of an object’s methods, three steps are necessary [43] and should be
repeated until the chosen coverage criterion for the method under test is met.

1. Instantiate the object
2"https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/eval#Don’t_use_eval!"
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2. Call some of its methods to possibly modify its state

3. Assert that the method under test returns the expected answer

Because it is impossible to know how the application will use the class/object
under test in practice, as many relevant test cases as possible must be tried. This
maximises the likelihood of finding a bug inside the class in question. Coverage,
the assessment measure that is often used for test data generation, is an equally
good indicator of the relevance of test cases. Hence, this measure will be used to
assess the quality of test cases as a whole, where coverage is considered for each
method of a class independently, as it was for functions.

The code example below illustrates in pseudocode the type of object-oriented
structural unit test that we aim to generate with Flycatcher. It assumes a standard
linked list implementation, LinkedList is the class under test and size is the
method under test:

var l = new LinkedList();
var node = new Node();
l.add(node);
l.remove(node);
l.add(node);
assert(l.size() === 1);

Example 2.1 – Object-oriented unit test

The random test data generation strategy discussed can simply be extended
to the task of generating object-oriented test cases, by randomly selecting the
methods (other than the method under test itself) to call on the object under
test.

2.4 JavaScript

2.4.1 Why JavaScript?

With cloud computing and the ubiquitous shift of desktop applications to the
web, web development has taken on a whole new meaning. Along with this
shift, the languages of the web have become much more significant to the soft-
ware world. JavaScript particularly so, due to its powerful multi-paradigm nature
(and despite its unanimously condemned defects). As a result, while in the past
JavaScript was used for no more than to animate static HTML pages, today it
powers 3D game engines and other fast real-time applications on the web. On
top of its pervasiveness on the client-side of the web, it has now also reached web
servers and desktop scripting environments.

The move that JavaScript seems to be making from the world of scripts to
the world of applications means that it is used in more complex and modular
code. This in turn comes with the need to test those applications using standard
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Figure 2.2 – The top 10 programming languages 2011 [42]

software techniques: unit testing, regression testing etc. Due to the relative re-
cency of JavaScript’s surge in popularity, which can be observed in figure 2.2,
not many efforts have been made to automate its testing effort. This is where
Flycatcher can make a difference, and this is why JavaScript was chosen for this
project: JavaScript is on its way up and there is an opportunity to help its grow-
ing community of developers.

2.4.2 Overview

JavaScript is a dynamic scripting language with weak, duck typing and first-class
functions. It is multi-paradigm, supporting imperative and functional styles, as
well as object-oriented programming, thanks to objects and object prototypes.
When used specifically within browsers, JavaScript programs come with certain
characteristics, but since we are targeting a wider range of programs, we will
focus on the core of the language, as specified by the ECMA-262 5.1 edition

14



standard [10].

2.4.3 Idiosyncratic features

For the readers who are not familiar with the language, we present the character-
istic features of JavaScript [12] that are important in this project.

Types

Types in Javascript can be divided into two categories: primitive types and object
types. The primitive types consist of Number, Boolean and String, as well as
undefined and null, but the latter are particular as they are the only element of
their type. Anything else in JavaScript will have the type Object (even arrays and
functions). Generally, a JavaScript object is an unordered collection of named
values, properties, that can be stored or retrieved by name e.g.:

var foobar = { "foo" : 1,
"bar" : 2 };

foobar.foo // returns 1
foobar["bar"] // returns 2
foobar.bar = 3
foobar.bar // returns 3

Example 2.2 – JavaScript objects

JavaScript also has specialised objects, such as Arrays and Functions. Ar-
rays are untyped, ordered collections of elements (primitives or objects) that
can be accessed through a numerical index. Although arrays exhibit additional
behaviour, they can be thought of as mere objects whose properties happen to
be integers.

Functions however, although they are treated as first-class objects and can
be stored in variables, differ significantly. They are defined as code blocks with
parameters, local scope, an invocation context this and may return a value if
invoked. Below are examples of a JavaScript function definition:

function add(a,b) {
return a + b;

}

or equivalently:

var add = function(a,b) {
return a + b;

}

Example 2.3 – JavaScript function definitions
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An important feature of JavaScript is that it is dynamically typed, hence a
variable cannot imply a type for its value and its type can change over time i.e.
the code below is correct:

var foo = "foo?";
foo = 3;
foo = [1,2,3];
foo = function() {return "foo!"};
foo(); // returns "foo!"

Example 2.4 – JavaScript dynamic types

Equally, the function add defined earlier does not imply any types for its
parameters, it could well be a function that concatenates two strings for instance.
Although JavaScript supports the object-oriented paradigm, the way it does so is
quite different from most object-oriented languages and we will see that functions
play a central role.

Object-oriented programming

JavaScript is known as a prototype-based language, meaning that it does not have
traditional class definitions to represent object blueprints and create instances
of them. Instead, object instances can be used as prototypes to construct other
objects instances. That way, we can say, tying this back to classical OOP, that if
two objects inherit properties from the same prototype object, they are instances
of the same class. The role that functions have in this is that, usually, if two
objects inherit properties from the same prototype object, it means that they
have been created and initialised by the same function — this function is known
as their constructor.

A constructor is a function typically designed for the initialisation of newly
created objects. When called with the keyword new, its invocation context rep-
resents the object being created, hence it can initialise the object’s properties by
using the this keyword and then return it as the newly created object. A key fea-
ture of constructors is that their prototype property (an object) is also used to
initialise the object they construct — the new object inherits from the prototype
object which is why it is called prototypical inheritance.

To summarise, a class in JavaScript is defined by a constructor function3

through two elements:

1. its body, which initialises objects through accessing this (the class fields
are defined here)

2. its prototype property, from which the constructed objects inherit all
properties (the class methods are defined here)

3which is not technically different from standard functions except that it is intended to be called
with the new keyword
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Below is an example of a simple class definition for a circle, to illustrate our
explanation:

function Circle(radius) {
// the Circle class has a field named radius
this.radius = radius;

}

// the Circle class has a method getCircumference
Circle.prototype.getCircumference = function() {

return this.radius * Math.PI * 2;
}

var c1 = new Circle(1);
var c2 = new Circle(2);

c1.getCircumference() // returns approx. 6.28
c2.getCircumference() // returns approx. 12.56

Example 2.5 – JavaScript class definition

In the example above, note that the invocation context of the constructor
is returned automatically when the constructor is called with the keyword new.
Also, both c1 and c2 have a radius field (though initialised to different values)
and a getCircumference method, as they were initialised with the same con-
structor — we can say that they have the same ‘class’. In Flycatcher, classes are
what we will use as the target unit for generating suites of unit tests and this is
what we will be referring to.

Finally, although classical OOP techniques such as subclassing, polymor-
phism and encapsulation are all possible in JavaScript, they are not a key concern
to us and we will therefore not discuss them.

2.4.4 Harmony

The JavaScript language and its derivatives JScript, ActionScript etc. were for-
malised in 1997 by Ecma International under the name ECMAScript. The EC-
MAScript specification, namely ECMA-262, standardises the core of the JavaScript
language and thus serves as a common ground for its implementation. The latest
published version of the standard is edition 5, which is implemented in all major
browsers.

Nevertheless, there is a very interesting and landmark edition in progress
called Harmony, with many new exciting language features. Among those fea-
tures is a meta-programming API, which, although currently non-standard, is
already implemented by major browser engines such as Google’s V8 engine and
Firefox’s SpiderMonkey. The meta-programming API presents a new type of ob-
ject which is extremely powerful and helpful for the development of Flycatcher:
the Proxy object.
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Object Proxies

Proxies are special objects that let the programmer define the behaviour of an
object i.e. how it responds to low-level operations. This is done through a ‘catch-
all’ mechanism, which traps or intercepts low-level operations on the proxy and
allows us to redefine their outcome. To illustrate this, we define a simple Proxy
that overrides the [[Get]] low-level operation and traps property accesses of
the form proxy.name in the context of getting a property’s value. We override
that behaviour and return the string ”It’s a trap!” instead:

var proxy = Proxy.create({
get: function(receiver, name) {
return name + " -> It’s a trap!";

}
});

proxy.treasure = "gold";
proxy.treasure // returns "treasure -> It’s a trap!"

Example 2.6 – Object Proxy

The receiver is a handle to the proxy itself, and the name is the name of
the property being trapped. The object passed to the Proxy’s create function
is called its handler and needs to implement a specific API, so that all of the
fundamental low-level operations on the object respond. The traps available to
Proxies and the code they respectively emulate are laid out in table 2.1. The
fundamental traps’ implementation is required, but the derived traps can be left
out as they have a default implementation in terms of the fundamental ones. In
the context of Flycatcher, the traps that we will be the most interested in are get
and set.

It is worth noting about Proxies that some operations are not trapped in order
to respect the language invariants:

• The tripple equal === operator isn’t trapped i.e. p1 === p2 only if p1 and
p2 are a reference to the same Proxy object

• The typeof operator

• The instanceof operator

• The Object.getPrototypeOf(proxy) operation

There is much more to say about object Proxies and their applications, but
this brief introduction is sufficient in our case. The full proposal can be found
online [8].
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Trap Emulated code

Fundamental Traps
getOwnPropertyDescriptor(name) Object.getOwnPropertyDescriptor(proxy,name)
getPropertyDescriptor(name) Object.getPropertyDescriptor(proxy,name)
getOwnPropertyNames() Object.getOwnPropertyNames(proxy)
getPropertyNames() Object.getPropertyNames(proxy)
defineProperty(name,pd) Object.defineProperty(proxy,name,pd)
delete(name) delete proxy.name
fix() Object.[freeze|seal|preventExtensions](proxy)

Derived Traps
has(name) name in proxy
hasOwn(name) Object.prototype.hasOwnProperty.call(proxy,name)
get(receiver,name) proxy.name
set(receiver,name,val) proxy.name = val
enumerate() for(prop in proxy)...
keys() Object.keys(proxy)

Table 2.1 – Proxy traps

Function Proxies

Harmony also proposes Function Proxies, which are useful to us. Functions in
JavaScript are objects, hence, Function Proxies have the same trapping capabilities
but they also offer additional traps, which are specific to functions: the call
trap and the construct trap. For illustration, we give an example of a Function
Proxy in action:

// handler is as earlier, construct and call are functions
var fnproxy = Proxy.create(handler, call, construct);
fnproxy.treasure // calls handler.get(fnproxy, treasure)
fnproxy(1,2,3) // calls call(1,2,3)
new fnproxy(1,2,3) // calls new construct(1,2,3)

Example 2.7 – Function Proxy

2.5 Related work

Flycatcher is the first tool to automatically generate unit test suites for JavaScript
programs written in an object-oriented style, where classes are the target unit.
In this section, we discuss projects that have applied different techniques for the
generation of tests in JavaScript, as well as some similar work in a different pro-
gramming language.
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2.5.1 Kudzu

Kudzu [38] is a tool that, given a URL for a web application, automatically gen-
erates high-coverage test cases to systematically explore its execution space. The
aim of the tool is to uncover security vulnerabilities in the browser such as client-
side code injection. It uses symbolic execution, based on a custom constraint
solver that supports the specification of boolean, machine integer and string
constraints, including regular expressions, over multiple variable-length string
inputs.

This automated vulnerability analysis tool significantly differs from Flycatcher
in that it specifically targets client-side code and in-browser interactions, focus-
ing heavily on string inputs. The test generation method used belongs to the
category of hybrid ATDG, which also differs from the method of choice for
Flycatcher: dynamic ATDG.

2.5.2 Automation of unit testing for JavaScript: prototype

A prototype has been developed by Mohammad Alshraideh [2], with a very
similar purpose to that of the Flycatcher application: automatically generate
unit tests for JavaScript programs. However, the philosophy behind it differs
significantly. To use the proposed tool, the tester has to annotate class files in
order to specify:

• the sequence of method calls in tests

• the type and range of parameter values

Moreover, only primitive parameters are handled. This tool’s contributions are
thus far from Flycatcher’s objectives of handling object-oriented code in an au-
tonomous manner.

2.5.3 JSConTest

JSConTest [19] is a test case generator for JavaScript that uses contracts to gener-
ate input data for the tests. The contracts are type signature annotations that the
tester has to include in his program, to enable systematic verification of programs
despite the absence of static types. Figure 2.3 gives an example of the contracts
in JSConTest.

2.5.4 Artemis

Artemis [5] is a framework for automated test generation in JavaScript which
targets scripts in HTML pages. This tool uses feedback-directed random test gen-
eration, meaning that execution is monitored to collect information that directs
the test generator towards input that yields increased coverage. However, this
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Figure 2.3 – JSConTest contracts

tool targets a different class of programs than Flycatcher as it focuses on web-
specific features such as AJAX, the Document Object Model and its event-driven
execution.

2.5.5 RuTeG

RUTEG [26] is an automatic unit test generation tool for the dynamic program-
ming language Ruby. Although it targets a different language, this work is worth
mentioning here as the following characteristics are also found in Flycatcher:

• it generates suites of structural unit tests

• it targets a dynamically-typed language

• it generates object-oriented tests

• it can handle complex input data

2.6 Summary

Despite being tedious and prone to human error, testing is a necessary and im-
portant part of software development — it is thus worthwhile to attempt to au-
tomate that effort where possible. In this project we focus on structural testing:
making sure that the internals of an application work by trying out, as much as
is feasible to do so, all the ways in which it can be executed. The quality mea-
sure for our tests is therefore code coverage: how much code we can, with fair
confidence, assert to be bug-free.

In the arena of automatic test generation, dynamic languages have so far
largely been left aside. Given a recent surge in JavaScript’s popularity, a growth
of its developer community, as well as an expansion towards server-side applica-
tion development, we feel that it makes sense to spend time improving the re-
search work on automatic test generation for this language. From the wide array
of techniques in this domain, we will use the most appropriate for JavaScript,
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namely dynamic test generation (as opposed to static or hybrid): test genera-
tion that results from numerous executions of the program and their feedback.
Within dynamic test generation, the random approach is the method of choice
for Flycatcher as it represents a natural starting point for a new implementa-
tion. Finally, we saw that there are challenges that pertain specifically to object-
oriented languages and dynamic languages and this project will involve devising
novel ways to overcome these issues in the context of JavaScript, using state-of-
the-art features of this language.
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CHAPTER 3

Overview of Flycatcher

The development of Flycatcher can be divided into distinct phases, which cor-
respond to the components of the application. In order for the reader to follow
and understand the development process, we feel that it is best to start off by
giving them a sense of the big picture. Hence, in this chapter we will explain our
choice of programming environment, briefly describe the development stages,
give an overview of the system, as well as an example of Flycatcher in action.

3.1 Environment

3.1.1 V8 engine

In picking a JavaScript engine to work with to develop Flycatcher, we looked for
the following characteristics:

• developer friendliness

• a standalone release (many are coupled with browsers)

• speed of execution

• open source

• strong online community

• conform to the latest ECMAScript standard, ECMA-262 edition 5

• meta-programming features

• runs on x86 or x86-64 processors

Of the three main contenders in these categories, namely Firefox’s Spider-
Monkey and Rhino engines and Google’s V8, V8 was chosen as it was by far the
strongest, notably in terms of execution speed and developer friendliness. The
version of V8 used is 3.9.5.
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3.1.2 Node.js framework

JavaScript’s debut on the server side prompted the need for a form of applica-
tion development library support for the language. The development of Node.js
that started in 2009 was an attempt to satisfy this need. Although the framework
is intended as an event-driven web framework, the fact that it has a strong online
developer community and a variety of valuable open source contributions makes
it appealing for developing JavaScript in general. It is all the more appealing to
us because it is built on top of the V8 JavaScript engine, which is our engine of
choice.

On top of its built-in library support, Node.js offers an efficient package
manager npm, which allows us to effectively separate our work into components,
as well as easily import plugins from the open-source community. The Node.js
release used to deveop Flycatcher is version 0.7.5.

3.2 Design

The process of automatically generating tests using the approach we have chosen,
dynamic test generation, naturally divides into distinct stages. In this section we
will outline and briefly describe what those stages are and introduce the compo-
nents of the application that they correspond to.

3.2.1 Components

Analysing the source

The very first task that Flycatcher needs to perform is a dynamic analysis of
the source code, in order to extract information about the program under test.
The Analyser component performs this role: extracting the information that is
necessary to even start the test generation process at all. Intuitively, we can think
of it as mapping the source code into Flycatcher’s data structures, which are then
used in the test generation process.

Generating candidate tests

The following stage consists in generating candidate or eligible tests. These gen-
erated tests are run inside a custom runtime environment and depending on the
feedback provided by that environment, they may be eligible to become part of
the final suite of unit tests which is output to the user. The early tests are not
accurately typed and therefore not eligible, but serve to gather runtime informa-
tion until we have enough information to generate tests that are. As such, the
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Test Generator component which fulfils this role is tightly coupled with another:
the one which orchestrates a virtual runtime environment in order to collect the
necessary runtime information.

Developing a custom runtime environment

The custom runtime environment which is necessary to run candidate tests and
provide feedback on their eligibility, is implemented by the Executor component.
Its main responsibilities are:

1. enabling the collection of information concerning the type of method pa-
rameters

2. tracking the code coverage achieved by candidate tests, to assess their qual-
ity

The Executor and the Test Generator thus work in to-and-fro until either full
code coverage is achieved or a termination criterion is met. Upon termination,
the tests that are deemed accurately typed and that contributed to code coverage
are collated into a suite of unit tests. They are then output to the user in a format
corresponding to his preferred unit testing framework. The tests that reveal an
error in the program under test or a possible mistake made by Flycatcher’s type
inference mechanism are also output, as failing tests.

3.2.2 System

Figure 3.1 gives an idea of the overall system and how the components fit to-
gether, so that the reader can appreciate the journey from the program under
test to a suite of test cases that can be used for regression unit testing.

3.3 JavaScript support

In this section, we elaborate on which JavaScript features are supported by Fly-
catcher. First of all, there are two separate matters to consider:

1. the support for JavaScript inside the classes being tested

2. the support for JavaScript concerning the types of parameters

Given that Flycatcher is built on one of the latest versions of the V8 engine,
it supports all of the ECMAScript Edition 5 constructs inside the classes under
test.

However, there are limitations when it comes to the support for the parame-
ters’ types, due to the fact that these types will need to be inferred by Flycatcher,
and there are restrictions as to what types can be. Flycatcher supports the in-
ference of the primitive types number and string and therefore also their object
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Figure 3.1 – The Flycatcher system

counterparts Number and String. The primitive types undefined, null and boolean
are hard to infer but this is not a concern, as in practice they can be substituted
by numbers in most cases, and produce the same behaviour. Additionally, Fly-
catcher supports used-defined types, as long as their definition is accessible in
the source code under test. However, it is worth noting that there is currently
no support for other standard objects, including Array and Function, due to the
technical challenge they represent. Finally, there is no support for the parameters
to be literal objects i.e. objects must belong to a class, which is in line with the
object-oriented style targeted by this tool. This is also appropriate in the context
of unit tests, as they are meant to test the external interface of a self-contained
unit. The elements of that interface must therefore be of a well-known primitive
or user-defined type. Nevertheless, the lack of support for Array and Function
does have its drawbacks, which we will discuss in the evaluation chapter.
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3.4 Flycatcher usage

Figure 3.2 – Flycatcher usage information

Flycatcher’s usage information can be seen in the screenshot in figure 3.2.
The required arguments are the source file where the class under test can be
found as well as the name of that class. The following arguments are optional:

• ––method <name>: Specifying a single method from the class under test,
tests are only generated for that method. If this is not specified, tests are
generated for all of the class under test’s methods.

• ––namespace <name>: This option serves to specify a namespace inside
which to look for the class under test in case it is not available in the global
context.

• ––out <name>: Specifying a file for the tests to be output. The unit test
suite is output in <name>.js and the failing tests are output in <name>.log.
If this is not specified the tests are output in a default file.

• ––custom-strings and ––custom-numbers <re>: So that the random
input strings and numbers that are generated by Flycatcher for the unit
tests are appropriate for the program under test, custom generators can be
specified for each. These are specified by a string <re> which represents
a regular expression that conforms to the JavaScript RegExp syntax. For
example, to generate only strings with characters between a and f, one
would use "[a-f]+".

• ––timeout <num>: Indicates termination after <num> valid1 tests are gen-
erated without achieving any coverage. This number indicates that the
part of the code that remains to be covered is either unreachable or deeply

1tests for which we have already inferred types for all parameters involved
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nested. However, in the event that it is the former, a certain termination
criterion is decided upon.

• ––strict-timeout <num>: The ––timeout <num> adapts to the pro-
gram under test i.e. if it is a program that performs long calculations this
is taken into account. However, if a precise deadline is needed, it can be
specified in seconds with the strict-timeout option.

• ––sequence-length <num>: Method sequences in tests are generated by
Flycatcher at random, but in order for tests to have a reasonable size, the
sequences must have a maximum length. This maximum can be specified
with this option, which defaults to ten if none is specified (based on exper-
imentation).

• ––type-inference-delay <num>: Before types are inferred for param-
eters inside candidate tests, a number of tests are run inside Flycatcher
for the sole purpose of collecting information on those parameters. Ev-
ery time such a temporary test is run, we keep track of the parameters
that are used for all of the functions involved. This gives us a measure
of how much information has potentially been collected for each param-
eter i.e. how confident a type estimate we will be able to make for that
parameter at any point in time. This advanced option sets the number
of parameter uses after which we consider having enough information for
type inference. Note that it requires the user to understand the way Fly-
catcher works internally. So that most users don’t have to, the variable
defaults to a high value (the value is based on experimentation), in order
to avoid making unsuccessful type inferences.

3.5 Flycatcher example

In figure 3.3, we give an example of Flycatcher running with the default settings
for the method remove of the LinkedList class (see Appendix A.1), a standard
linked list implementation. Parameters are inferred for all of the class’s methods,
not just the one under test, as those methods are used inside the test cases. As
the command line output shows, in the early stage of the test generation process,
the correct types are inferred for all the parameters when possible.

In a linked list implementation, it is often the case that the nodes’ values are
not used inside the implementation itself — they are only used in the context
where the linked list is used. Hence we cannot collect any information regarding
the type of the data parameter and in order for the tool to retain as much au-
tonomy as possible, it is substituted with a random type, here a string. From the
example we can see that 100% test coverage is achieved for the remove method of
the LinkedList class, thanks to the generated unit tests like the one in example
3.1. Tests that fail even though all parameter types have been resolved indicate a
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Figure 3.3 – Example run

weakness in the program. For instance, in example 3.2 we can see that the linked
list implementation does not check when calling insertBefore, whether the
target node exists in the list, which gives rise to a TypeError.
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var linkedlist325 = new LinkedList();
var node326 = new Node("AdlwkJCa2");
linkedlist325.prepend(node326);
assert.equal(linkedlist325.remove(node326), true);
linkedlist325.size();
var node327 = new Node("5asd24all");
linkedlist325.prepend(node327);
var node328 = new Node("azcma5");
assert.equal(linkedlist325.remove(node328), false);
// Success!

Example 3.1 – Unit test

var linkedlist309 = new LinkedList();
var node310 = new Node("J619y4xu1");
var node311 = new Node("segBPUR5");
linkedlist309.insertBefore(node310,node311);
linkedlist309.at(22);
var node312 = new Node("L93Ifj7t75");
linkedlist309.append(node312);
var node313 = new Node("9");
linkedlist309.remove(node313);
// TypeError: Cannot set property ’next’ of null

Example 3.2 – Failing test

In the next three chapters, we elaborate upon this high-level overview, by
detailing the implementation of the three core stages described:

1. Analysing the source

2. Generating candidate tests

3. Developing a custom runtime environment
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CHAPTER 4

Analysing the source

The targets of our unit tests are classes, understood as defined in section 2.4.
We refer to the class for which tests are being generated as the class under test,
using the acronym CUT. Because of the nature of meaningful tests in an object-
oriented context, generating tests for a class means generating tests that target
individual methods of that class, as shown in section 2.3. These methods, when
selected one at a time for the purpose of generating test cases, will be referred to
as method under test or MUT.

The Analyser component is responsible, intuitively, for retrieving informa-
tion regarding the CUT and its methods, and storing that information in conve-
nient data structures, so that they can be accessed by the rest of the Flycatcher
application. This is because that initial information not only serves as the start-
ing point for the test generation process, but is used and updated throughout that
process.

4.1 Loading

First of all, it is important to note that, given the highly dynamic nature of
JavaScript, it is necessary for us to execute or load the class definition. In other
words, a static analysis of the source code will not be able to give us the informa-
tion that we need about the class under test, namely:

• its constructor definition

• its method definitions

• its class fields

To illustrate why this is impossible, consider this class definition:
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var LinkedListConstructor = function() {
this.size = function() {

// implementation
}

}

var LinkedList = LinkedListConstructor;

var realAddFunction = function(node) {
// implementation

}

var addFunction = realAddFunction;

var getRemoveFunction = function() {
return function(node) {

// implementation
}

}

LinkedList.prototype.add = addFunction;
LinkedList.prototype.remove = getRemoveFunction();

Example 4.1 – Runtime dependent class definition

The example is unnecessarily but purposely entangled, to demonstrate the
point. First, the class constructor is not defined directly but is in fact a reference
to another function. This is possible in JavaScript because functions are first-class
objects. Second, the LinkedList class has three methods size, add and remove
but each are defined in a different manner, and sometimes also through indirect
references.

Unlike a language like C++ or Java that have static class definitions which
follow a predictable format, in JavaScript class definitions cannot be learnt stat-
ically. The example above could be made much more complex and still be a
correct class definition, and to try and learn class definitions statically while cov-
ering all possible scenarios would effectively amount to executing the class defi-
nition. In other words, simply parsing the source code does not get us very far.
Hence, this means that we need to extract the information we need dynamically,
and this involves two steps:

1. Loading/executing the source code to obtain the constructor of the CUT

2. Using that constructor to instantiate the class in order to obtain the MUTs

Thankfully, Node.js’s built-in library offers a virtual machine API which en-
ables us to do just that. In JavaScript, any variable defined at the outermost scope
in a source file becomes a property of the global object or context when that file
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is interpreted. The Node.js virtual machine API exposes:

vm.runInNewContext(code, [sandbox])

This means that we can load the source file under test using standard IO,
and execute it as code with a fresh global object sandbox. This means that we
do not pollute the environment in which we interpret the class definition with
Flycatcher’s own global object. It also means that through sandbox we have an
unambiguous handle on the objects that form the class definition of the CUT.

In fact, when the vm has finished interpreting the source under test, we have
access not just to the CUT, but to all the other classes which are accessible in
that scope. These classes are significant since they are potential candidates for the
user-defined types of the parameters of the CUT constructor and methods. For
instance in the running LinkedList example, it wouldn’t be surprising to find
a Node class in the sandbox as well.

Note that all of these classes, including the CUT, may belong to a namespace
like so:

DataStructures.LinkedList = function () {
}

DataStructures.LinkedList.prototype.add = function(node) {
// implementation

}

etc.

Example 4.2 – Namespaces

To overcome this, Flycatcher gives the option of specifying the namespace of
interest, but the underlying mechanism for extracting information remains the
same.

It is necessary for any classes that are used by the CUT to be accessible in
the provided code and namespace, or else Flycatcher will not be able to generate
tests with the correct parameter types.

4.2 Information retrieval

4.2.1 Retrieving class constructors

Once the source code under test is loaded into the sandbox, Flycatcher iterates
through the appropriate namespace and retrieves the properties which have the
type function. These are all potential class constructors as JavaScript construc-
tors are no different than ordinary functions. The name of the CUT will have
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been specified by the user, which enables us to give that function a special status
in our data structures when we retrieve properties from the sandbox.

Information about all of the classes of interest will need to be used and up-
dated throughout the course of the test generation process. Hence, while iter-
ating through the sandbox, we initialise a convenient data structure in order to
store that information. This structure, the ProgramInfo object, acts as a place-
holder for all of the information about the program under test that is relevant to
the test generation process.

4.2.2 Retrieving class methods

Given the sandbox, retrieving a class’s constructor is straightforward but to re-
trieve the class’s methods dynamically, as is required, instances of it need to be
created1. This requires us to be able to:

1. create parameters that will not crash the constructor

2. use them to initialise the class

Creating parameters that will not crash the constructor

At this point we may want to remind the reader that JavaScript function param-
eters bear no type information whatsoever. Hence, at this stage, we have no idea
what parameters to create to pass to the constructor. If we do pass wrong param-
eters to it however, such as a number when an object is expected, the constructor
will crash and we will not be any closer to retrieving information about a class’s
methods.

This leads to our first use of the Proxy object proposed by ECMA-262 Har-
mony, introduced in section 2.4.3. In order for the constructor not to crash,
we pass Proxy objects to it, which have the ability to respond to any operation:
Proxies that return other Proxies. Hence, even if property accesses are made
on the result of a property access, the constructor will continue executing, as the
get trap of the Proxy returns a reference to itself. However, we must account for
the fact that the trapped function may expect a function in return, and we must
therefore return a Function Proxy. The Function Proxy has the same behaviour
as the Proxy but can additionally trap attempts to invoke or instantiate it.

The catch is that primitive operations are also trapped by the get trap, as
they translate into the function valueOf being called. If we return a Proxy when
valueOf is trapped, the engine will try to apply a primitive operator, such as ++,
to an object, and throw a type error. Hence, the Proxy’s get trap must return
a primitive whenever the method trapped is valueOf. Returning a number is a
sound choice as it does not make any of the primitive operators effect a crash (but
for instance ”string”++ would). The Proxy API offers many more traps than

1MyClass.prototype, accessible from the context, will give access to some of a class’s meth-
ods, but others may also be defined inside the class constructor
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the get trap, but we focus on the get trap for clarity’s sake, as the other traps
simply implement idle behaviour. To summarise, we lay out the implementation
of the get trap that we have explained:

get: function(rcvr, name) {
var proxyHandle = this;
if (name === "valueOf") {

return function() {
return 1;

}
}
else {

return Proxy.createFunction(proxyHandle, // Object Proxy
function() { // Function Proxy

return Proxy.create(
proxyHandle)

});
}

}

Example 4.3 – Analyser Proxy’s get trap

It is worth noting that we do not care about the outcome of the operations
on parameters within the constructor, only that it does not crash. The purpose
of this process is to find out the signatures of a class’s methods and these cannot
be affected by the constructor’s parameters — except for the case where the class
method itself is passed in as a parameter, which we do not deal with (we do not
handle Function type parameters in general).

Tests were run to ensure that the constructor does not crash with the Proxy
parameters created. The test cases are summarised in table 4.1, where proxy is
the parameter proxy, f is a field and m is a method:

Using the proxy parameters to initialise the class

Once the appropriate number of Function Proxies have been created, which we
can find out from the retrieved constructor’s definition, we need to initialise the
class with them. One would think that JavaScript, given its first-class functions,
would have a way to do that — we have the constructor function and we have
the parameters for it. Unfortunately, the Function.apply and Function.call
library functions both simply invoke functions, they cannot instantiate a new ob-
ject with them, which is what we want to do. Thankfully, this is easily resolved
with a small closure:
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Operation Code

valueOf call on proxy itself proxy + 1
toString() call on proxy itself proxy.toString()
Field access proxy.f
Field access of field access proxy.f.f
Method call of field access proxy.f.m()
Overriding field proxy.f = 3
valueOf call on field proxy.f + 1
toString call on field proxy.f.toString()
Method access proxy.m
Method call proxy.m()
Field access of method call proxy.m().f
Method call of method call proxy.m().m()
Overriding method proxy.m = function(){}
valueOf call on method proxy.m.valueOf()
toString call on field proxy.m.toString()

Table 4.1 – Testing proxy parameters

// ctr is the constructor of the class we want to instantiate
var construct = (function() {

function Copy(args) {
return ctr.apply(this, args);

}
Copy.prototype = ctr.prototype;
return function(args) {

return new Copy(args);
}

})();

// proxyParams are the Function Proxy objects described
var instance = construct(proxyParams);

Example 4.4 – Instantiating a Function object

Once we have access to an instance of a class we can just iterate through its
properties to obtain its methods (the functions) and its fields (the rest). More-
over, this technique fully supports JavaScript polymorphism, as any superclass
methods will be inherited when the subclass is constructed and thus present
amongst the properties of the available instance.
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4.3 Conclusion

At this point, the Analyser has successfully built an object that embodies the
structure and information of all the classes in the scope of the program under
test. For clarity’s sake, we will refer to that object throughout by naming it
ProgramInfo. To summarise, this is the information that has been gathered so
far for each class:

• constructor definition X

• method definitions X

• class fields X

However, as the ProgramInfo object is the central element in Flycatcher, it
has additional responsibilities. But these will be revealed in the later implemen-
tation chapters, where relevant.
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CHAPTER 5

Generating candidate tests

In this chapter, we detail the process by which Flycatcher generates random can-
didate tests, in the hope of eventually generating some that can be used to achieve
good code coverage of the CUT. First, we explain the structure of a test and some
characteristics of that structure. Then we describe the mechanism for trying to
generate tests in which the types of the parameters are accurate. Finally, we
introduce the concept of custom data generators, for generating primitive type
values inside our tests.

5.1 Structure

To recapitulate, an object-oriented test targets a particular method of the CUT,
referred to as the MUT. If the method of interest is specified by the user then
tests are only generated for that method. Otherwise each of the CUT’s methods
are selected as the MUT, and tests are generated for each of them, covering the
whole class. Either way, generating a test for a MUT involves the following steps:

1. Create an instance of the CUT

2. Call some of its methods (including the MUT) to possibly modify its state

3. Where the MUT is called (at least once), assert that it returns the expected
answer

Assuming that the MUT is the method size, the final output of a valid unit
test might therefore look like:
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var linkedList = new LinkedList();

var node1 = new Node(123);
linkedList.add(node1);

var node2 = new Node(234);
linkedList.add(node2);
assert(linkedList.size() = 2);

var node3 = new Node(345);
linkedList.add(node3);
assert(linkedList.size() = 3);

Example 5.1 – Output format

Note that the format shown in example 5.1 differs from the format of tests
that are destined to be run in the Executor. The same test in the Executor needs a
structure to keep track of MUT call results, in order to later construct assertions
if the test is selected. Example 5.2 illustrates the format of tests in the Executor.
In the rest of the examples however, we omit the anonymous function and the
results structure to keep the examples clear and concise.

(function() {
var results = [];
var linkedList = new LinkedList();

var node1 = new Node(123);
linkedList.add(node1);

var node2 = new Node(234);
linkedList.add(node2);
results[0] = linkedList.size();

var node3 = new Node(345);
linkedList.add(node3);
results[1] = linkedList.size();
return results;

})();

Example 5.2 – Executor format

5.1.1 Recursive construction

The tests are built using recursion, in the sense that when a method call or a
constructor call (a declaration) is added to a candidate test, any parameters of that
call are declared beforehand. The recursion stops when a constructor call has no
parameters e.g. in the case of primitives. For the sake of conciseness primitives
are in fact inlined as can be seen in the example 5.1. So, in the example 5.1, the
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LinkedList.add calls each prompt the declaration of a Node object, which in
turn prompts an inline declaration of a number. The tests always start with a
declaration of the CUT, and therefore with any declarations that are needed for
its constructor’s parameters.

The number of method calls made in an attempt to modify the state of the
CUT instance is chosen at random, with a user-configurable maximum. As we
will see in the experimental evaluation, this maximum with regard to the length
of method call sequences is significant: it has an effect on code coverage (as well
as on test readability, which may or may not be a concern). However, there must
be at least one occurrence of the MUT in the overall method call sequence, since
the sole purpose of the test is to evaluate that method. Note that if there is only
one MUT call, it will be at the end, as there is no use in calling more methods
after we have finished evaluating the MUT.

We initially made the mistake of making only one MUT call in total, but
later realised that this could preclude certain portions of the code from being
covered. For example, if LinkedList.add is the MUT, it needs to be called at
least twice for a test to exercise full coverage of that method, as the branches
taken in the MUT depend on whether the linked list is empty or not.

Aside from its recursive construction, another feature of the tests’ structure
is the pooling of parameters.

5.1.2 Pooling parameters

In order to reach full coverage, it is important to enable methods in the tests’
method call sequences to manipulate references to the same object. Let us take a
look at the following code:

var linkedList = new LinkedList();

var node1 = new Node(123);
linkedList.add(node1);
var node2 = new Node(234);
linkedList.remove(node2);

Example 5.3 – Unreachable code

In that example, a substantial portion of the LinkedList.remove method
will never be reached: the portion which expects a reference already contained
in the list. Unless we allow the LinkedList.remove method to use parameters
defined previously, without necessarily redefining its own, it is impossible to
hand it a reference which exists in the list. In other words, it has to be possible
to generate:
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var linkedList = new LinkedList();

var node1 = new Node(123);
linkedList.add(node1);
linkedList.remove(node1);

Example 5.4 – Pooling

This is implemented with a ‘pooling’ mechanism. For every type, there is
a pool to which objects are added to when they are declared. This enables any
subsequent constructor calls or method calls which need a parameter of that
type, to reuse a variable which is already declared in the test. Upon a series of
experiments, it was determined that a 25% reuse rate was suitable. The design
decision of not making the reuse rate user-configurable was made in order not to
overcomplicate Flycatcher’s interface.

Note that although tests which are destined to be run in Flycatcher’s custom
runtime environment do not have the same format as the ones output to the
test suite, they do share the same underlying structure which has been described
in this section. Although we have discussed how tests are constructed, we have
purposely ignored one important detail: we do not know the types of any of the
parameters. How do we know that the LinkedList.add method takes an object
of type Node?

5.2 Types

In generating a test like example 5.1, the type of the variable linkedList is
known from the start — it is an instance of the CUT. However, initially, the
types of the parameters for the LinkedList and Node constructors are not. For
that reason, a special type of object was devised: the Unknown type.

5.2.1 Unknown type

Early on in the test generation process, this object will replace any parameter
which we need but do not know the type of. Inside the Executor, these objects
enable us to collect information about the parameter that they stand for — we
will elaborate on how this is done in the next chapter. In most cases, thanks to
this information, the Unknown objects are eventually substituted with objects of
the appropriate type. However, this is what a test might initially look like:
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var linkedList = new LinkedList();

var unknown1 = new Unknown();
linkedList.add(unknown1);

var unknown2 = new Unknown();
linkedList.add(unknown2);
linkedList.size();

var unknown3 = new Unknown();
linkedList.add(unknown3);
linkedList.size();

Example 5.5 – Unknown parameter types

It is worth noting that tests that contain Unknown objects are only destined
for the Executor, they are not suitable as final output, regardless of whether they
achieve coverage or not (that coverage is in effect meaningless). We will refer to
them as invalid tests.

Eventually, after enough information has been collected to infer that the type
of the parameter to LinkedList.add is Node, the test would look like:

var linkedList = new LinkedList();

var unknown1 = new Unknown();
var node1 = new Node(unknown1);
linkedList.add(node1);

var unknown2 = new Unknown();
var node2 = new Node(unknown2);
linkedList.add(node2);
linkedList.size();

var unknown3 = new Unknown();
var node3 = new Node(unknown3);
linkedList.add(node3);
linkedList.size();

Example 5.6 – After type inference for LinkedList.add

Similarly, when there is enough information to infer that the type of the
parameter of the Node constructor is a primitive number, we get the test in
example 5.2.

5.2.2 Type inference

The type information that is collected when tests are run by the Executor is
stored in the ProgramInfo object introduced in chapter 4. Upon each Test
Generator/Executor iteration for a test, we update ProgramInfo using the type
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information gathered in the latest Executor run. Although we will explain ex-
actly how this information is collected when we describe the Executor, here we
describe how that information is used to infer types for the various test parame-
ters.

Member accesses

For each parameter, the ProgramInfo object keeps track of any attempt to access
one of its properties. In effect, this records attempts to retrieve fields and meth-
ods from that parameter. By cross-referencing those accesses with the fields and
methods stored in ProgramInfo’s class definitions, we may be able to deduce the
type of that parameter. If more than one type has fields or methods that match
the member accesses of the parameter, the one with the highest correspondence
is elected.

During the ProgramInfo type updates, the following questions are asked to
try and determine the type of parameters, in that order:

1. Does the parameter have any user-defined member accesses?
⇒ If so select the highest match.

2. Otherwise does the parameter have any member accesses corresponding to the
Number1 type e.g. toExponential?
⇒ If so select the number primitive type.

3. Otherwise does the parameter have any member accesses corresponding to the
String2 type e.g. charAt?
⇒ If so select the string primitive type.

If none of these are true but there are member accesses3 which do not match
any known type, this means that we are faced with a non-standard or non-
supported class which is not accessible in the scope of the program. In that case
we abort the test generation process for that particular method with a warning.

If however there are no member accesses, the parameter may be a primitive,
in which case we look at its ‘primitive score’ accumulated during Executor runs.
Note that the question of whether the parameter has member accesses comes
first, as it can rule out the possibility that the parameter is a primitive, but not
vice-versa.

Primitive scoring

The primitive score of a parameter is an object which accumulates the likelihood
of a parameter being of a primitive type based on the operations it is involved

1the object counterpart of the number primitive type
2the object counterpart of the string primitive type
3except for the hidden properties inherited from Object in JavaScript which are discounted
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in. Like the member accesses, this information is recorded when a candidate test
is run in the Executor. The primitive types taken into account are number and
string. We do not deal with null, undefined and boolean as there are no strong
hints that can be used to infer any of these types4.

The primitive scoring object thus corresponds to:

{
"number" : 15,
"string" : 12

}

Example 5.7 – Primitive scoring

When type inference takes place for a parameter that is suspected of being
a primitive, the most likely primitive type is chosen based on the scores in the
accumulator object.

Delaying type inference

Because we do not want to jump to conclusions too quickly when inferring the
type for a parameter using the member accesses and primitive scores, we do not
start updating the ProgramInfo object until a sufficient number of constructor
or method calls involving that parameter have been made (during the Test Gen-
erator/Executor iterations). For example in the following code, the parameter of
the LinkedList.add method is involved or ‘used’ in two calls.

var linkedList = new LinkedList();

var unknown1 = new Unknown();
linkedList.add(unknown1); // first ‘use’ of add’s parameter

var unknown2 = new Unknown();
linkedList.add(unknown2); // second ‘use’ of add’s parameter
linkedList.size();

Example 5.8 – Parameter uses

This delay, characterised as a minimum number of parameter uses, is user-
configurable, as an optimal value for it is highly dependent on the program under
test. For example, if a user knows that a parameter is only active in a path that is
executed infrequently, they may set the type inference delay5 to a high value. By
making sure that a parameter has had an adequate number of opportunities to
collect type information, the user can ensure that type inference does not take
place too early, when it has a higher chance of being inaccurate. On the other

4the loss in terms of coverage is negligible as in most cases these values produce the same
behaviour as 0 or 1

5note that this is not a duration but a number of parameter uses, but we feel that type inference
delay is the most concise way of referring to that variable
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hand, if the user knows that a parameter is active every time its function gets
called i.e. it lies on every path inside that function, the user may want to give the
type inference delay variable a low value to save time.

At first it seemed that a more telling and intuitive measure of confidence
about inferring a type for a parameter was how many member accesses had been
recorded, or how good the best primitive score was for it. However, any lower
limit on such variables makes too strong assumptions about the program under
test. For example, in a scenario where it is decided that three member accesses
provide enough information to make a confident type choice: what if a class only
has one or two members?

When the delay expires, if the type inference is inconclusive due to the ab-
sence of member accesses and null primitive scores, this is a sign that the pa-
rameter is seldom or never accessed. However, this parameter will remain an
Unknown in the Executor and Flycatcher will not be able to terminate if we do
not give it a real type. Hence, we make the leap of faith that, given that the
user-configurable delay has expired, the parameter is not used and we replace it
with a random substitute primitive value, warning the user. An illustration of
this scenario is the linked list in Appendix A.1, as the implementation itself does
not make use of the data in the nodes. This is a common pattern which needs to
be accounted for. In many cases like this one, the substitution works and enables
tests to become valid (rid of Unknowns).

In the event that the parameter is in fact used in the program but happened
not to be in the delay chosen, tests will fail due to type errors and the user can
see that in the logs. They may then adjust the delay variable to suit the needs of
their program.

5.3 Custom data generators

When a user-defined type is inferred for a parameter, a suitable object can be con-
structed in tests using the appropriate class definition, available in the ProgramInfo
object. However, regarding the two primitive types string and number that we
are concerned with, a random value needs to be generated.

Many programs require specific input data and simply generating a number
from the space of natural numbers or constructing a string from random com-
binations of ASCII characters will fail to achieve code coverage in those cases.
For example, it is infeasible to try and achieve coverage in a program that val-
idates 13-digit International Standard Book Numbers with randomly generated
numbers. Hence, Flycatcher is equipped with an extremely convenient way of
specifying custom data generators: with regular expressions. The regular expres-
sions that specify a string or a number generator are defined as optional strings
on the command line (see usage in section 3.4) and they have to conform to a
JavaScript RegExp.

The JavaScript library used to generate random matches from JavaScript reg-
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ular expressions is randexp, available as a Node.js module6. Example 5.9 shows a
Flycatcher custom string generator that generates 4-character long hexadecimal
strings and a custom number generator that generates 13-digit long numbers:

// 4-character long hexadecimal string generator
"[A-F0-9]{4}"
// 13-digit long number generator
"\d{13}"

Example 5.9 – Custom data generators

Note that the regular expression that specifies the number generator should
only match representations that are valid JavaScript numbers, albeit in string
format. The generated string is coerced to a number, therefore if a representation
contains invalid characters, it will cause a NaN to be generated.

5.4 Outcome

5.4.1 Output

The role of the Test Generator is to generate candidate tests, but the end goal of
Flycatcher is to generate a suite of unit tests. So how is a candidate test elected to
appear in the unit test suite? A candidate test is a useful unit test if it fulfils the
following criteria:

• It achieved new coverage in the Executor (the current coverage is that
achieved by other tests so far)

• It is valid i.e. it contains no Unknowns

If a test fulfils those two criteria it is added to the suite of unit tests, which is
output in a chosen format among a choice of JavaScript unit testing frameworks.
The current unit testing formats available are node-unit, expresso and Node.js’s
assert module. More framework formats may be available in the future. If none
of these frameworks suit the user, the unit tests are output by default in simple
JavaScript code with assertions. The unit test suite output is meant to be a re-
gression test suite. That is to say, all the tests in it pass when run with the current
program under test. They are useful to uncover errors if the program under test
changes and breaks any of the unit tests.

However, valid tests that failed inside the Executor due to an exception being
thrown, are added to a log file for the user’s attention. If the tests failed due to
bugs or a lack of defensive programming, the user can use this feedback to fix
these defects. If the tests failed because of an incorrect type inference, the user
can adjust the delay before type inference, such that a better, more confident
estimate is made.

6"https://github.com/benburkert/randexp"
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5.4.2 Timeouts

A test may contain no Unknowns but still fail to ever achieve any new coverage,
for example if a portion of the code is simply not reachable in the program. In
this case, Flycatcher may loop as it may never achieve full coverage of a MUT.
Hence, there are two timeouts in place to handle this scenario:

1. a strict timeout in seconds

2. a timeout characterised by aborting after a specific number of test runs
during which coverage did not improve

Both timeouts are user-configurable variables, specified by optional com-
mand line parameters (see usage in section 3.4). Another reason than dead code
for which new coverage might be unattainable is simply bugs in the program
under test. Potential bugs may preclude any new coverage from being achieved
because of thrown exceptions. The two timeouts also apply in this case, and the
failing tests can be found in the logs. Note that two types of errors do not fit
into this category: stack overflow and infinite loops. Due to the nature of these
errors, the former crashes Flycatcher and the latter causes it to hang. Finally, if
termination is not caused by timeouts, then Flycatcher stops generating tests for
a MUT when it achieves its full coverage.

The next chapter is devoted to shedding light on the part of the implementa-
tion that has been left out so far: the responsibilities and inner workings of the
custom execution environment or Executor.
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CHAPTER 6

Developing a custom runtime
environment

The tests that are generated by the Test Generator need to be executed by Fly-
catcher for two reasons:

1. To collect runtime information about parameter types, such that tests with
accurate types can be generated — only these valid tests can be output and
serve as unit tests

2. To evaluate the code coverage achieved by valid tests, in order to elect the
ones that make a difference

To those ends, a custom runtime environment was created: the Executor.
The Executor uses the same vm package used by the Analyser in order to create
the runtime environment — it just passes to it a sandbox with all of the elements
that it wants to make available. In this chapter, we elaborate on how, in that
environment, runtime type information is collected and code coverage is tracked
for the MUT.

6.1 Collecting type information

Collecting information at runtime about the types of parameters for method
calls and constructor calls in candidate tests involves the Unknown type which
was introduced in the previous chapter. However, for clarity, we simplified the
declaration of Unknown objects in candidate tests as:

var unknown = new Unknown();

In fact, these special objects that are capable of collecting type information at
runtime require the following declaration instead, which we will elaborate on:
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var unknown = __proxy__(className, functionName, paramIndex);

The __proxy__ method is a special method1, which creates a Proxy object
tailored for type information collection, that we shall name CollectorProxy
to be precise. The information is collected inside the ProgramInfo object, as
discussed in chapter 5. Hence, the CollectorProxy’s handler needs to be in-
stantiated with information that lets it access the part of ProgramInfo corre-
sponding to the parameter it stands for:

• className: the parameter that the proxy stands for belongs to a function,
that function belongs to a class — this is the name of that class

• functionName: the parameter that the proxy stands for belongs to a func-
tion, this is the name of that function (which is identical to className in
the case of a constructor)

• paramIndex: the parameter that the proxy stands for belongs to a func-
tion, this is the index of that parameter among the function’s parameters

The type information collected at runtime takes two forms:

1. Recording member accesses

2. Accumulating a score for primitives

6.1.1 Recording member accesses

The member accesses are recorded using the get trap of the CollectorProxy:
the trap translates to handler.get(receiver,name) where name is the name
of the property that was accessed. And we know from the initialisation of the
CollectorProxy’s handler, where in ProgramInfo to store that information.

However, when a property is accessed, the get must return an appropriate
object for execution to carry on. Much like in the Analyser, we return a Function
Proxy that can respond to any operation, but this is not to be confused with the
CollectorProxy — the proxy we return no longer stands for a parameter and
as such does not collect any type information (its role is simply to avoid crashes).
The only difference is that we randomise2 the primitives returned by that proxy,
so as to diversify the code exploration achieved by invalid candidate tests. Doing
so diversifies our collection of type information in the early stages of the test
generation process.

1the name __proxy__ should avoid name clashes with classes in the program under test
20 is returned more often as it is often a significant value in path exploration
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6.1.2 Accumulating primitive scores

The operators in table 6.1, when applied to operands, translate at a lower level
into the internal function [[getValue]] being called on the operands. This
function in turn calls the valueOf method on the members if they are objects,
which instances of the CollectorProxy are. This enables the CollectorProxys
to trap the requests to get the valueOf method, as they would any other method.
Note that the operators: &&, ||, !, =, === and !== are missing from the
table as they do not yield a valueOf call and thus cannot be trapped.

Arithmetic operators +, -, *, /, %, ++, ––, unary –, unary +
Assignment Operators *=, /=, %=, +=, -=, �=, �=, ≫=, &=, ^=, |=
Bitwise Operators &, |, ^, ~, �, �, ≫

Comparison Operators ==, !=, >, >=, <, <=
String Operators +, +=

Table 6.1 – Operators yielding valueOf

When the valueOf call is trapped, the handler only needs to compare the
name in handler.get(receiver,name) to valueOf to determine whether it is
dealing with a primitive operation. However, the problem is that valueOf does
not teach us anything about what sort of primitive we are dealing with and we
cannot use it to calculate scores for primitive types. This led us to develop the
following steps in order to deduce a primitive score from a primitive operation:

1. Determine if the get trap corresponds to a primitive operation i.e. if it is
a valueOf access

2. If it is, throw an exception and catch it within the handler

3. In the catch body, use the Node.js stack-trace3 module to retrieve the line
where the primitive operation happened

4. Scan that line of source code for hints about the primitive type of the
parameter

5. Based on the hints found, increase the primitive scores in the score accu-
mulator object

Table 6.2 shows the hints that are looked out for and the corresponding in-
creases in primitive type scores. The scoring method in the table is not based
on any formal heuristics, only on our extensive programming experience in
JavaScript as well as experimentation. For example, if applied to a string, the
++ operator yields a TypeError, hence why the ++ hint confers a particularly
high score to the other type, number.

3https://github.com/felixge/node-stack-trace
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Hint number string

++, –– 10 0
>, < 2 1
-, *, /, %, �, �, ≫, ^, |, &, ~ 2 0
[0 - 9]+ 5 0
double quotes4 0 5

Table 6.2 – Primitive scoring

Other operators or hints have been purposely omitted, since they do not tip
the balance in any particular direction. For example, the + operator is used with
strings as much as it is used with numbers, and thus does not constitute a helpful
hint.

Step 4 of the above algorithm is carried out using regular expression match-
ing. However, when searching for the hints in table 6.2, one must be careful
not to match prefixes of other operators. For example, if the symbol found
is a –– one must be careful not to match a single –. The problem is that al-
though the JavaScript RegExp syntax allows for negative lookahead (matching
unless the match is followed by something), it does not allow for negative look-
behind (matching unless the match is preceded by something). Thankfully, the
XRegExp5 library compensates for that and provides the missing functionality.

In summary, the resulting primitive scores correspond, like the collection of
member accesses, to information concerning the type of a particular parameter.
This information is stored in the ProgramInfo object, and the Test Generator
uses it to try and infer a type for that parameter.

6.1.3 Trap threshold

A certain issue was uncovered with the trapping mechanism devised for type
collection: it could lead to the infinite execution of terminating programs. This
was discovered with a JavaScript implementation of the Fibonacci algorithm:

Fibonacci.prototype.compute = function(n) {
if (n>1) return this.compute(n-1) + this.compute(n-2);
else return n;

}

Example 6.1 – Fibonacci in JavaScript

4single quotes can be ignored, as if they appear in the context of the Executor it means that
they harbour a double quote, which will be found

5"http://xregexp.com/"
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The problem is that when the > and – operators are called, they are trapped,
and the value returned is not the result of the operation but a random value.
Hence, the induction that makes the Fibonacci algorithm terminate is broken
and a program which is supposed to terminate ends up hanging.

As a solution to this, a trap ‘threshold’ was implemented, which only allows
the CollectorProxy to trap 15 times. When the trap threshold is exceeded,
the whole test is discarded. Given that trapping results in the collection of type
information, upon a certain number of iterations, the parameter will change
from an Unknown to a resolved type, and the infinite execution will have been
avoided. The value of the trap threshold is not significant — what matters is that
it prevents infinite execution when the looping is due to the Unknown objects’
behaviour.

Having discussed the collection of type information and its caveats, we now
move on to discussing the second purpose of the Executor: tracking code cover-
age.

6.2 Code coverage

When doing structural testing i.e. testing the internal workings of a program, we
are interested in executing as many paths as possible in that program, regardless
of whether they are likely to be used in practice. The quality measure of a test in
the context of structural testing, also known as white-box testing, is therefore code
coverage, which reflects how error-free a program is. In practice, generating tests
to cover every single possible execution path in a program is infeasible. Hence,
in Flycatcher, we resort to a weaker measure of coverage: statement coverage,
which tracks the statements that are executed.

In Flycatcher the target of the output unit testing suite is the CUT, as by
default all of its methods are tested one by one. But as these methods each be-
come the MUT, it is their individual coverage that we are interested in. In other
words, the candidate tests generated are geared towards a particular method each
time, and it is the coverage achieved in that method that can give us the quality
of a test. Coverage in some other remote part of the program is not relevant to
how well we are testing a particular method. Hence, code coverage needs to be
tracked and reported for each MUT independently.

In order to do so, the following steps are necessary:

1. When a MUT is selected, all the statements in the definition of the MUT
used by the Executor must be wrapped with a callback that updates cover-
age for that method

2. The Executor environment must implement that callback
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6.2.1 Wrapping the MUT statements

Wrapping the MUT statements is done with the help of another Node.js package:
burrito6. Wrapping with that package is done like so:

var burrito = require("burrito");

var wrapped = burrito("foo()", function (node) {
node.wrap("callback(%s)");

});

console.log(wrapped); // prints callback(foo());

Example 6.2 – Wrapping with burrito

However, in our case we are interested in attributing indices to statements
such that when that portion of code executes, the callback registers that the
statement with that index has been covered. The wrapping statement thus looks
like this instead:

node.wrap("callback(" + index + "); %s;");
// where index is incremented when a new node is wrapped

Example 6.3 – Wrapping in Flycatcher

However, the wrapping varies for different kinds of statements, as the calls to
the callback have to be inserted in a way that they do not break JavaScript syntax
and crash the program. For instance, in example 6.4, the coverage callback called
with index 2 pertains to the return statement and differs in format from the
callbacks with indices 4 and 6 used to wrap the compute method calls.

Fibonacci.prototype.compute = function(n) {
if (__coverage__(1)(n > 1)) {
__coverage__(2);
return __coverage__(3)(

__coverage__(4)(this.compute(__coverage__(5)(n - 1)))
+

__coverage__(6)(this.compute(__coverage__(7)(n - 2)))
);

} else {
__coverage__(8);
return n;

}
};

Example 6.4 – Wrapped Fibonacci

Hence, to track coverage in the Executor it was necessary to understand and
adapt the wrapping process carried out by burrito. That wrapping process hap-

6https://github.com/substack/node-burrito
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pens in three steps:

1. The code is parsed into an AST using the parser from the uglify-js7 module

2. A wrapper function is mapped onto every node in the AST using the tra-
verse8 module

3. The transformed AST which contains the wrapped statements is rendered
into code

Therefore, understanding the wrapping process involved understanding and
manipulating the AST, and wrapping its nodes appropriately. This was chal-
lenging because the AST in question is very poorly documented9, and working
with it was thus laborious. Nevertheless, due to its portability, we believe that
using burrito for our instrumentation purposes was the best solution available.
Indeed, the other coverage tools available for JavaScript were deeply embedded
in a testing application and difficultly reusable by Flycatcher.

At the end of the instrumentation process, the list of indices used by the
coverage callback serves as a representation for a MUT’s statements. That list
can be used to keep track of coverage inside the MUT.

6.2.2 Implementing the callback

The Executor must implement the coverage callback which is called when a state-
ment is executed. This callback manipulates the list of indices gathered during
the instrumentation process, updating it with the fact that a certain statement
has been reached. In other words, it sets the value of the index it is called with
to true. For example 6.4, the list would initially be:

[false, false, false, false, false, false, false, false]

After the recursive case is executed it would be:

[true, true, true, true, true, true, true, false]

And finally when the base case is executed:

[true, true, true, true, true, true, true, true]

As a result of this coverage mechanism, the Executor can report:
7"https://github.com/mishoo/UglifyJS"
8"https://github.com/substack/js-traverse"
9the only pseudo-specification available is: "http://marijnhaverbeke.nl/parse-js/as.txt"
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• Whether a test achieves any new coverage for a MUT, and is therefore a
useful test to be output in the unit test suite

• What the current total code coverage for a MUT is, which is used to inform
the user of coverage progress, and terminate upon full coverage
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CHAPTER 7

Evaluation

In this chapter, we evaluate Flycatcher quantitatively by running it with a series
of benchmark programs and observing the results. In this experimental eval-
uation we are interested in examining some of Flycatcher’s features as well as
assessing its overall success in terms of code coverage. We start by introducing
the choice of benchmark programs, before presenting the experiments and finally
discussing them.

7.1 Choosing the benchmark suite

In choosing a suite of programs for evaluating Flycatcher we had the following
objectives in mind:

• Demonstrating Flycatcher’s ability to infer primitive types

• Demonstrating Flycatcher’s ability to infer user-defined types

• Demonstrating that Flycatcher works with methods of various size, com-
plexity and arity

• Demonstrating Flycatcher’s ability to achieve high coverage for various
methods in a reasonable time

However, the constraints imposed to us by the current limitations of the
application, made finding benchmark tests difficult. The constraints are the fol-
lowing:

• Flycatcher does not handle the inference of Array parameters

• Flycatcher does not handle the inference of Function parameters
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The reason why these constraints made it difficult to find benchmark pro-
grams is that array parameters are commonplace and because functions are first-
class objects in JavaScript, they frequently occur as parameters too. This also
indirectly imposed a restriction on the size of the benchmark programs — most
significant libraries and modules make use of either arrays or functions as param-
eters at some point. This is also why established JavaScript benchmark suites
such as SunSpider or the V8 benchmark suite couldn’t be used.

With these objectives and constraints in mind, the list of methods in table
7.1 was put together. Some of the programs are custom, many were found using
Node.js’s open-source module registry npm and others were taken from the V8
performance benchmark suite.

7.1.1 Triangle types

The Triangle example is used in many testing papers on automatic test genera-
tion. It takes three numerical inputs and determines whether they can form a tri-
angle. If so, it returns the type of the triangle i.e. whether it is equilateral, isosce-
les or scalene. This example was chosen because it demonstrates Flycatcher’s
ability to narrow down the search space of tests, by using the same parameters
more than once inside the generated tests. Without that ability, generating three
numerical inputs out of the set of natural numbers so that they form an equilat-
eral triangle would be extremely inefficient. No custom data generators are used
with this class in the experiments.

7.1.2 Doubly circular linked list

The doubly circular linked list example was picked because it demonstrates Fly-
catcher’s ability to infer user-defined types as well as deal with parameters which
are not used in the program under test itself. The circularity of this data struc-
ture also shows that Flycatcher handles scenarios where termination issues might
arise in the context of test generation. The implementation used is from computer-
science-in-javascript1.

7.1.3 Binary trees

A variety of binary trees were chosen as benchmarks because they present in-
teresting control structures for code coverage, as well as the requirement that
they infer a user-defined type: the type for the trees’ nodes. The standard
BinarySearchTree implementation is from computer-science-in-javascript2. The
RedBlackTree (a self-adjusting BST) implementation is from red-black-tree-js2.
The SplayTree (a self-adjusting BST with quick retrieval of recently accessed
nodes) implementation is part of the Google V8 benchmark suite3. No custom

1"https://github.com/nzakas/computer-science-in-javascript"
2"https://github.com/jeffreyolchovy/red-black-tree-js"
3"https://github.com/hakobera/node-v8-benchmark-suite"
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data generators were used with these programs.

7.1.4 Luhn Algorithm

The Luhn Algorithm is a checksum algorithm used to validate the format of
credit card numbers. This example demonstrates the use of custom data genera-
tors in order to narrow down the search space to achieve good code coverage. We
specify the following RegExp as the random string generator, which represents
a string of digits which may contain a character as well (to also test with NaN):
[0-9]+a?. The code can be found in computer-science-in-javascript2.

7.1.5 Base 64

The Base64 class encodes and decodes text strings to and from a radix-64 repre-
sentation. This program was chosen to test the efficiency of code coverage of its
control structures. Custom data generators were used to achieve full coverage,
as non-ASCII parameters take a specific path in the encode method, as do non-
base-64 strings in the decode method. The custom string generators are therefore
respectively, \w+\u0100? and \w+.

7.1.6 SHA1

The SHA1 algorithm generates a SHA-1 secure hash of a string. The implemen-
tation is taken from Chris Veness4.

7.1.7 Poker

The benchmark method with the most deeply nested structure is the Poker
class’s rankHand method. It carries out hundreds of comparisons and calcula-
tions in order to return the absolute rank of a hand of cards in Texas Hold’em
poker. The input thus has to conform to a hand of poker cards, which is defined
in the program as a string of five characters. A custom string generator is thus
used for that purpose, with the following regular expression: [AKQJT98765432]{5}.
The code is from node-poker5.

7.2 Experiments

All the experiments are carried out on Mac OS X v10.6 with a 2.4GHz Intel
Core 2 Duo processor and 4GB of RAM. Any of the configurable parameters
are either specified or their default value is used. The noteworthy default values
are:

• type inference delay: 20
4"http://www.movable-type.co.uk/scripts/sha1.html"
5"https://github.com/mjhbell/node-poker"
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• maximum sequence length: 10

• number generator: \d{10,20}

• string generator: \w{10,20}

7.2.1 Effect of varying the type inference delay

In this first experiment, we analyse the effect of varying the type inference delay
discussed in section 5.2.2 (see usage in section 3.2). Let us recall that this delay
is put in place in order for Flycatcher to make confident type inferences, based
on enough data. If there is not enough data when type inference is attempted
for a parameter, we consider that the type inference is unsuccessful. In this trial,
we observe the relation between the type inference delay and unsuccessful type
inferences for the methods from the benchmarking set, using an average over
twenty runs and displaying the results for two of the methods in figures 7.1 and
7.2.
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Figure 7.1 – Results for method Triangle.getType

7.2.2 Effect of varying the maximum length of tests

In the second experiment, we vary the user-configurable variable that sets the
maximum length of method call sequences in tests (see usage in section 3.2). We
observe what the effect of modifying this variable is for all of the methods in the
benchmark set. To give us a more comprehensive set of results to analyse, this
process is carried out three times with varying ‘strict’ timeouts of: 1 second, 5
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Figure 7.2 – Results for method BinarySearchTree.add

seconds and 20 seconds. The results appear in figures 7.3, 7.4 and 7.5 and each
entry constitutes an average over 20 runs.

7.3 Discussion

7.3.1 Effect of varying the type inference delay

From the first experiment, we can observe that there is a clear relation between
unsuccessful type inferences and type inference delay6: the smaller the type in-
ference delay, the higher the number of unsuccessful type inferences. Hence, this
user-configurable parameter which reflects the confidence of the type inference
estimates does effect test generation results and thus deserves careful considera-
tion.

As we can see from the results, the number of unsuccessful type inferences
tends to zero as the type inference delay increases. This led to a choice of 20
for the default value of this variable within the application, such that by default,
highly confident type estimates are made by the test generator. Although the
results are displayed for only 2 of the 22 benchmark methods for conciseness,
the experiment was carried out for all of the methods, with equivalent results.

6to reiterate, the type inference delay variable is expressed in terms of the minimum number
of uses of a parameter before type inference
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7.3.2 Effect of varying the maximum length of tests

The second experiment teaches us that the length of method call sequences in
generated tests also has a significant impact on test generation. First of all, in
some cases we observe that if the maximum length of tests is too small, cer-
tain parts of a MUT may be unreachable. For example, when the method se-
quence length is 1, the code coverage for method LinkedList.append stays
stuck around 60%, no matter how long the timeout.

Next, we also observe that although one may initially think that longer tests
are synonymous of more efficient code coverage, the results in this experiment
proves this wrong. Due to the impact of generating and running very large tests,
it is not always the case that bigger tests yield better coverage. In fact we can
observe a trend among the benchmark methods whereby the code coverage peaks
for lengths between 5 and 20 but drops afterwards. This is particularly observable
in figure 7.3, for methods LinkedList.remove, LinkedList.insertAfter or
SlapyTree.insert.

Finally, the effect of modifying the maximum length of tests is not always
predictable as can be seen in figure 7.3 with the SplayTree methods splay,
remove and findMax. In those cases, increasing the maximum length of method
call sequences has a varying effect on coverage efficiency. It is not exactly clear
what the best approach is to get the most efficient code coverage.

All of the above observations point to the same fact: finding the optimal
length of tests for efficient coverage of a MUT is not only necessary for perfor-
mance, but its unpredictability means that it is no task for humans. This leads
us to one of the clear limitations of Flycatcher: the randomness of the test gen-
eration process, particularly when it comes to the length of tests, is restrictive.

7.3.3 Code coverage

Experiment in section 7.2.2, on top of showing the effect of the length of tests,
revealed Flycatcher’s success in terms of overall code coverage. Table 7.2 shows a
summary of the proportion of methods for which full coverage is achieved. The
results are highly promising: only 2 out of the 22 methods are not fully covered
in under 20 seconds and 100% coverage is reached for 14 of them in under a
second.

In structural testing, the major indicator of the quality of a test is the amount
of code coverage achieved, which by extension is also a sound indicator of the
quality of a test generation tool. It would thus be fair to say that full coverage for
91% of the methods in a benchmark is evidence of a successful test generation
tool.

Although it is written in and for Ruby, the tool most comparable to Fly-
catcher is RUTEG [26]. Given that the target languages for each tool are different
and that JavaScript is deemed ‘faster’ than Ruby [13], it seems unfair to pit the
tools against each other. Nevertheless, despite our unorthodox benchmark suite,
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two of the methods we used are very similar to methods used in the evaluation
of RUTEG, namely:

• Triangle.triangle_type (RUTEG) — Triangle.getType (Flycatcher)

• RBTree.rb_insert (RUTEG) — RedBlackTree.insert (Flycatcher)

For both of these methods, Flycatcher performs better in terms of the code cov-
erage achieved in under 20 seconds:

• Triangle.getType: 100% coverage versus approx. 87%

• RedBlackTree.insert: 100% coverage versus approx. 70%

Once more however, this comparison is nothing more than an indicator that
our tool is roughly on a par with comparable state-of-the-art tools in other lan-
guages — it has no implications with respect to the relative quality of each tool,
given their differences.

7.3.4 Limitations

Despite producing satisfying results with the chosen benchmark suite, Flycatcher
presents certain limitations. A major design decision behind Flycatcher was to
make the tool as autonomous and convenient as possible. To a certain extent,
this has been achieved, as the minimal input a tester has to provide to get a suite
of unit tests for an entire class is:

• the name of the file with the class

• the name of the class

In the best case scenario, providing only those two arguments will supply the
tester with a full suite of unit tests for the class as well as a log of the tests that
failed. However, this level of autonomy does have its drawbacks: by entrusting
decisions such as the optimal length of tests or the data generators to Flycatcher,
the tester might lose on efficiency or accuracy. The high overall accuracy and
efficiency of the results in the experiments in this chapter owe in part to the ex-
plicit specification of the maximum length of tests and custom data generators.
For example, the method Poker.rankHand cannot achieve any coverage under
20 seconds by using the default string generator, as it expects a particular string
format — the odds are simply too low. However, because we do value auton-
omy in such a tool, as we know how much programmers prefer programming to
testing, we feel that the solution is not to ask for more input from the user, but
to make Flycatcher better. In other words, Flycatcher is restricted by its use of
random test generation, be it for data itself or the test cases. And although this
can be partly mitigated with input from the user, as in the experiments, in order
to be meaningfully autonomous without compromising accuracy or efficiency,
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Flycatcher needs to become more ‘clever’ in its exploration of the search space
of possible tests.

Another major limitation of Flycatcher is the lack of support for the standard
objects Function and Array. Arrays are commonplace function parameters in
programs and in JavaScript, so are function objects. As a result, not handling
these constructs imposes strong limitations on the programs that can be tested
by Flycatcher. This was evident in the benchmark suite selection stage, where we
were precluded by this limitation from using any of the established benchmark
suites or substantial JavaScript libraries. This in turn represents a threat to the
validity of our results as we face a selection bias — the lack of support for Array
and Function impacts the size of programs that can be tested. Because they have
such implications, we feel that it is worth outlining why supporting these types
is a challenge.

Functions: When automatically generating tests, all we have to begin with
is the program under test. With regard to a function parameter, this is what can
possibly be learnt from the program:

1. finding out that it is a function (initially)

2. what types its parameters belong to

3. what type its return value belongs to

However, as far as we understand, it is not possible to determine what the
function in question is or does from this information.

Arrays: Arrays are known to pose problems in automatic test data gener-
ation [40]. In Flycatcher, the fact that we use proxies which return random
values when called with a primitive operator, means that we cannot have ‘faith’
in any of the primitives inside the program while generating tests. This makes
it difficult to discover the length of arrays. Moreover, because arrays allow for
heterogenous types in JavaScript, every entry has to be inferred and generated
separately, which adds to the challenge and is likely to be an expensive process.

Flycatcher also does not currently support parameters of the other two stan-
dard types RegExp and Date, but these have less serious implications and their
implementation poses less problems.

In summary, Flycatcher is limited by the fact that it uses a random strategy
for test generation. Despite that this can be alleviated by input from the user, the
fact remains that the application would benefit from using search-based heuristics
to guide the exploration for test cases. Moreover, the lack of support for certain
crucial types of programming constructs, albeit for good reasons, means that
Flycatcher can only be used with a certain class of programs, and thus lacks
generality.
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Class Method LOC

Triangle
getType 38

LinkedList
append 15
remove 16
prepend 12
insertAfter 8
insertBefore 8
at 6

BinarySearchTree
add 49
contains 26
remove 147
size 9

RedBlackTree
insert 22
contains 14

SplayTree
splay 60
insert 23
remove 23
findMax 10

Luhn Algorithm
isValidIdentifer 40

Base 64
encode 45
decode 50

SHA1
hash 72

Poker
rankHand 437

Table 7.1 – Benchmark methods

Timeout 100% coverage

1s 14/22
5s 20/22
20s 20/22

Table 7.2 – Proportion of methods with full coverage
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Figure 7.3 – Results with 1s timeout
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Figure 7.4 – Results with 5s timeout
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Figure 7.5 – Results with 20s timeout
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CHAPTER 8

Conclusion

We have presented Flycatcher, an automatic unit test generation tool for and
in JavaScript. Flycatcher is capable of generating accurately-typed tests by in-
ferring the types of parameters based on how these parameters are used within
the programs under test. In doing so, Flycatcher overcomes the major obsta-
cle associated with automatic test generation in a dynamic language: discovering
parameter types in the absence of static types. Yet, with respect to what types
can be discovered, Flycatcher presents limitations. User-defined types (including
polymorphic ones) as well as primitive types can successfully be inferred by Fly-
catcher, but there is a hindering lack of support for the JavaScript types Array
and Function. However, this does fit in with our early objective of designing
an automatic test generation tool for a comprehensive subset of the JavaScript
language. With regard to that subset, the high code coverage results achieved
by Flycatcher for our 22 benchmark methods are promising and indicative of a
valuable automatic test generation tool.

Another essential feature of our application is that it can work autonomously.
But this is only the case to a certain extent, as it can produce results without the
need for user input, but in many cases the absence of this information can drasti-
cally impact coverage results. This is due to the fact that the test generation pro-
cess in Flycatcher is largely random, and thus unlikely to exercise low-probability
paths in a program. It is therefore fair to say that full autonomy is only possi-
ble with Flycatcher in the best scenarios, when the programs under test do not
contain improbable paths. In other cases, specifying variables such as custom
data generators or an adequate length for tests, is necessary. Despite that, Fly-
catcher does constitute a considerable gain in autonomy compared to the existing
JavaScript test generation tools [38, 2, 19, 5]. Indeed, it is less work to specify
a custom data generator for a class using a regular expression on the command
line, than to annotate every method with an additional ‘contract’. Moreover,
unlike the existing work, Flycatcher handles the class-based programming style
which is now predominant in JavaScript development.

To conclude, we contribute to the field of automatic test generation by propos-
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ing a powerful testing tool and offering new insights into dealing with dynamically-
typed languages in that field. Furthermore, we also feel that our project has the
potential of being meaningful for the development of the JavaScript language
as a whole. Due to the extensive and critical use in Flycatcher of state-of-the-
art features being proposed in the latest version of the ECMAScript standard,
it seems that our project also acts as a strong endorsement of these features by
demonstrating their wide-ranging and powerful applications.

Future Work

Much of the further work that is needed for Flycatcher is aimed towards tackling
the limitations that have been discussed so far, and as such includes:

• Researching ways of adding support for type inference of the JavaScript
standard constructs Function and Array.

• Building upon the Flycatcher system by developing a more ‘clever’ can-
didate test generator. The improved test generator could use search-based
heuristics as opposed to a random strategy to explore the search space of
possible tests, as is done in RUTEG [26].

An other interesting extension would be to generate tests that allow for pa-
rameters to be of a type that is user-defined but inaccessible. This could be im-
plemented using the Proxy object discussed at length in this report, to substitute
the missing classes by trapping all of the expected methods (but only those) and
responding with the expected behaviour. However, note that using this strategy
assumes that the tester would run their tests in an environment that supports
Harmony Proxies.

Lastly, so that early adopters can try out the tool’s current functionality and
in order for this future work to materialise, we aim to release Flycatcher as open-
source within the large and enthusiastic Node.js online community in the near
future.
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APPENDIX A

Code

A.1 Linked list

// JavaScript linked list
// Copyright (c) 2007 James Coglan

// It’s MIT-licensed, do whatever you want with it.
// http://www.opensource.org/licenses/mit-license.php

var Node = function(data) {
this.prev = null; this.next = null;
this.data = data;

};

function LinkedList() {
}
LinkedList.prototype = {
length: 0,
first: null,
last: null,

append: function(node) {
if (this.first === null) {
node.prev = node;
node.next = node;
this.first = node;
this.last = node;

} else {
node.prev = this.last;
node.next = this.first;
this.first.prev = node;
this.last.next = node;
this.last = node;

}
this.length++;
return true;

},
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remove: function(node) {
if (!node.prev) return false;
if (this.length > 1) {
node.prev.next = node.next;
node.next.prev = node.prev;
if (node == this.first) { this.first = node.next; }
if (node == this.last) { this.last = node.prev; }

} else {
this.first = null;
this.last = null;

}
node.prev = null;
node.next = null;
this.length--;
return true;

},

size: function() {
if(this.first) {

this.first.data;
}
return this.length;

},

prepend: function(node) {
if (this.first === null) {
this.append(node);
return;

} else {
node.prev = this.last;
node.next = this.first;
this.first.prev = node;
this.last.next = node;
this.first = node;

}
this.length++;

},

insertAfter: function(node, newNode) {
newNode.prev = node;
newNode.next = node.next;
node.next.prev = newNode;
node.next = newNode;
if (newNode.prev == this.last) { this.last = newNode; }
this.length++;

},
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insertBefore: function(node, newNode) {
newNode.prev = node.prev;
newNode.next = node;
node.prev.next = newNode;
node.prev = newNode;
if (newNode.next == this.first) { this.first = newNode; }
this.length++;

},

at: function(i) {
i+1;
if (!(i >= 0 && i < this.length)) { return null; }
var node = this.first;
while (i--) { node = node.next; }
return node;

},

randomNode: function() {
var n = Math.floor(Math.random() * this.length);
return this.at(n);

}
}
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