
Types for Deep/Shallow Cloning

Ka Wai Cheng
kwc108@ic.ac.uk

Supervisor : Prof. Sophia Drossopoulou
scd@doc.ic.ac.uk

Department of Computing
Imperial College London

June 19, 2012



Abstract

In Java, exact copies of objects are achieved by calling clone methods. By default, these clone methods
create a shallow clone; if programmers desire sheep cloning (in between shallow and deep cloning) then
they must override and maintain custom implementations of clone methods. For the programmer, this
is tedious and error prone.

The cloning approach proposed in a recent paper, Trust the Clones [15], addresses this problem
by using object ownership as the copy/clone policy and deriving the implementation of clone methods
from them. In this report, we extend this cloning approach to deal with cloning when there are arrays,
subclassing and generics. We explore the problems specific to each feature and propose solutions that
allow clone methods to be derived from ownership types.

As a proof of concept, I implemented the basic cloning approach as a Java language extension using
Polyglot (an extensible compiler framework). This compiles classes written in the extended Java language
into standard Java with generated clone method implementation.

I also discovered situations where this cloning approach has problems – type errors sometimes occur
when cloning without owners-as-dominators. We describe and formulate solutions to statically prevent
these problematic cases from occurring.
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Chapter 1

Introduction

When developing software in Java, care needs to be taken when passing/receiving internal objects to/from
untrusted code. The security concern is that untrusted code can change the state of internal mutable
objects. It is therefore recommended for methods to return copies of mutable objects and to use copies
of mutable objects received from untrusted sources, unless sharing is intended [20, 25].

Creating a new object that is an exact copy of an existing object is known as cloning. Different
methods of cloning are:

• Shallow cloning – where a copy of the top level object is created; values and references (not the
actual objects) are copied from the original object. As a result, an object will share the same
referenced objects as its shallow clone. For example, given the heap in Figure 1.1, the result of
shallow cloning Department is shown in Figure 1.2a, where oDepartment′ is a shallow clone of
oDepartment.

• Deep cloning – where cloning an object involves cloning all referenced objects recursively (to
produce the same structure). For example, deep cloning oDepartment in Figure 1.1 results in
Figure 1.2b, where oDepartment′ is a deep clone of oDepartment.

Both shallow and deep cloning have problems. With shallow cloning, it is possible to clone too little
– we probably do not want oDepartment’s clone, oDepartment′, to reference the same oStudentList,
since adding/removing any student from either department object will affect the other. On the other
hand, it is also possible to clone too much when deep cloning – we may not want to have copies of student
objects when cloning oDepartment.

In Java, cloning objects is often achieved through the clone() method in the Object class, which
by default performs shallow cloning; and deep cloning can be achieved by serialising objects. On the
other hand, to produce object clones that are in between shallow and deep clones, the programmer can
override the implementation of clone() for each class of objects that are permitted to be cloned. In
this way, the programmer can specify precisely which referenced objects to clone and how deep to clone.

The disadvantages of manually overriding clone() are that it is tedious and error prone because
it is the programmer’s responsibility to ensure the clone implementation is correct. This is not always
a good idea, for example if fields are added/changed, the programmer may forget to modify the clone
implementation. Proposals to address this include: forming copy policies and perform code analysis to
check theses policies are adhered to [20]; and sheep cloning [15, 21, 26], which is in between shallow
and deep cloning, achieved using a type system that incorporates object ownership to guide cloning
(Section 2.3).

In particular, the cloning approach proposed in Trust the Clones [15] uses object ownership as the
copy/clone policy and derives the implementation of clone methods from them (rather than being man-
ually implemented by the programmer). Further details of this approach are included in Section 2.2.
The proposed approach has not yet been implemented and has not yet dealt with subclasses, arrays and
generics classes.

This project expands on this cloning approach, making the following contributions:

• A description of situations in which this cloning approach is problematic, and solutions to this
(Section 3.1.1).

3



This problem arises based on the ownership structure of objects and field references between them;
in some situations, clone objects may have type errors. Solutions proposed detect and prevent
these problematic situations from occurring.

• An extension for generating clone methods for arrays (Section 3.3).

An array is an object that references a number of other objects (the array elements), which we
may or may not want to clone when the array object is cloned. One problem is that the array class
is predefined in Java and we would prefer not to make change to the predefined class. I propose a
solution that generates an array clone method for each class and dimension array combination.

• An extension for generating cloning methods for subclasses (Section 3.4).

This involved solving the problem that objects could be assigned to fields that are declared as
a superclass of the object and may expect different arguments to be passed when the field is
cloned. The idea of the solution is to only allow assignments of subclasses if the correct clone
implementation can be derived from the clone method arguments that would be passed to the
superclass.

• An extension for generating cloning methods for generic classes (Section 3.5).

The problem with this is that the actual type parameters are not known until an instance of the
generic class is created, so there is not any infomation to derive clone implementation from. The
solution is to store dynamic information that enables ownership information to be derived.

• An implementation of the basic generation of clone methods using ownership types (Chapter 4).

Thisis achieved by building a pre-processor that will transform programs written in the extended
Java language with parameterised ownership types into the standard Java language with generated
clone methods.

oCollege

oDepartment

oStudentList

oNode

oStudent

department

students

head

student

Figure 1.1: Example structure of objects
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oCollege

oDepartment

oStudentList

oNode

oStudent

oDepartment′

department

students

head

student

students

(a) Result of shallow cloning oDepartment

oCollege

oDepartment

oStudentList

oNode

oStudent

oDepartment′

oStudentList′

oNode′

oStudent′

department

students

head

student

students

head

student

(b) Result of deep cloning oDepartment

Figure 1.2: Examples of cloning
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Chapter 2

Background

In order to understand the details of the project, the necessary background information is included in
this chapter, including existing solutions and frameworks that this project uses, and formal notation
used in this report.

2.1 Notation
This section presents the formal notation used in throughout this report.

Figure 2.1 contains the identifier conventions used in the illustrative examples. Object identifiers
are the object’s class name prefixed with o and identifiers for object clones will be the original object’s
identifier appended with prime (′). Traditionally, field types are the defined ClassId’s, however, types
are extended by the cloning approach we are adopting (explained in Section 2.3.2).

The basic syntax for the heap and type environment are shown in Figure 2.2. Objects on the heap
are tuples consisting of the object type and a mapping of field identifiers to values. This representation
of objects will be extended to include ownership information in Section 2.2, where we explain the notion
of Object ownership. Values can be object identifiers, null or boolean values: true and false. The
heap maps object identifiers to objects and type environment maps object identifiers to types.

o ∈ ObjectId Object identifiers

C ∈ ClassId Class identifiers

f ∈ FieldId Field identifiers

t ∈ FieldType Field types

Figure 2.1: Identifier conventions

χ ∈ Heap = ObjectId→ Object Heap

Γ ∈ TypeEnv = x→ t Type environment

Object = t× (FieldId→ v) Object

v ∈ V alues = ObjectId ∪ {null, true, false} Values

Figure 2.2: Syntax for heaps and type environment

Given the syntax, χ(o) is the object that o is an identifier for, and χ(o) ↓2 (f) is value in field f of
the object, χ(o). As shorthand, I define the following for field access: object(f) = object ↓2 (f). For
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example, the heap for Figure 1.1 and some example field accesses are:

χ(oCollege) = (College, (department 7→ oDepartment))

χ(oDepartment) = (Department, (students 7→ oStudentList))

χ(oStudentList) = (StudentList, (head 7→ oNode))

χ(oNode) = (Node, (student 7→ oStudent, next 7→ null))

χ(oStudent) = (Student, ∅)

χ(oCollege)(department) = oDepartment

χ(oStudentList)(head) = oNode

p ::= this | p.f

Figure 2.3: Syntax for field paths

In our discussions in the main content of this report, we talk about paths between objects via fields
accesses; the syntax for paths is shown in Figure 2.3, where this refers to the object that we are starting
from. The composition of paths is defined as:

p1p2 =

{
p1 p2 = this

(p1p
′).f p2 = p′.f

Following a path from an object on the heap is written as χ(o, p) and is defined as:

χ(o, p) =

{
o p = this

χ(o, p′)(f) p = p′.f

Using the heap, χ, from the previous example, the following are some examples of path compositions
and results of following paths from objects in the heap:

(this.department.students)(this.head) = this.department.students.head

(this)(this.student) = this.student

χ(oCollege, this.department) = oDepartment

χ(oStudentList, this.head.student) = oStudent

2.2 Ownership Types
The notion of object ownership is that every object has an owner and can own other objects. An owner
can be an object or world, which owns objects that are not owned by other objects. The representation
of an object, o, refers to the objects that have o as their owner; there is no restriction that objects
referenced by o through its fields must be in o’s representation. Ownership is acyclic, so forms a tree of
objects with world at the root.

The hierarchical structure of objects in the heap can be represented diagrammatically with boxes such
as in Figure 2.4. In these diagrams, objects are rectangles with identifiers starting with o and arrows
are field references. An object’s representation is shown through rounded boxes, where the owner is the
object on the edge of the box and objects inside the box are its representation. For example, oCollege is
the owner of oDepartment and oStudent. Boxes are omitted in cases where the representation is empty
such as for oNode and oStudent. The outermost objects (that are not strictly in a box), i.e. oCollege,
are owned by world.
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oCollege

oDepartment

oStudentList

oNode

oStudent

department

students

head

student

Figure 2.4: Example of object ownership diagram

Object = FieldType× (f 7→ v)×Owner
Owner = {world} ∪ObjectId

Figure 2.5: Extended syntax for objects on the heap, with owners

The syntax for objects on the heap from Figure 2.2 is extended with ownership information by adding
a third element in the tuple as shown in Figure 2.5. This third element is either world (not owned by
any other object) or an object with the given identifier. For example, the heap for Figure 2.4 is:

χ(oCollege) = (College, (department 7→ oDepartment), world)

χ(oDepartment) = (Department, (students 7→ oStudentList), oCollege)

χ(oStudentList) = (StudentList, (head 7→ oNode), oDepartment)

χ(oNode) = (Node, (student 7→ oStudent, next 7→ null), oStudentList)

χ(oStudent) = (Student, ∅, oCollege)

Ownership types introduce ownership information to types and the type system will ensure the own-
ership relation is not violated statically. For example, we can declare a variable, v, that has static type
Department with owner oCollege, often written with parameterised types as v:Department<oCollege>.
Hence, v can reference any object instance of class Department, as long as its owner is the object
oCollege.

We also say an object, o1, is inside an object, o2, iff o1 is in o2’s transitive representation or o1 is
o2 itself.This inside relation is written formally as o1 ≺∗ o2 and satisfies the reflexivity and transitivity
properties. This relation is clear in the diagrams as all objects contained in the box (including the owner
of the box) are inside the owner of the box. For example, the following holds for Figure 2.4:

oDepartment ≺∗oDepartment
oDepartment ≺∗oCollege

oStudent ≺∗oCollege
oStudentList ≺∗oDepartment
oStudentList ≺∗oCollege

The opposite idea, o1 is outside o2 iff o1 6≺∗ o2 (i.e. o1 is not inside o2), this does not imply o2 is
inside o1, although the converse is true (o2 inside o1 implies o1 is outside o2). For example, the following
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holds for Figure 2.4:

oCollege 6≺∗oDepartment
oStudent 6≺∗oDepartment

oDepartment 6≺∗oStudent
oStudent 6≺∗oStudentList

oStudentList 6≺∗oStudent

2.2.1 Owners-as-Dominators

Objects in the heap can be viewed as nodes in a graph where field references are directed edges (arrows)
between object nodes. A node, d, dominates a node, n, iff every path from the start node to n goes
through d. Similarly, an object, od, dominates an object, o, iff all paths from the root of the system to
o goes through od.

Owners-as-dominators is a property that may be enforced in object ownership systems [30, 14]. This
property states all owners dominate the objects in their representation. Hence, owners dominate all
objects that they contain (i.e. itself and its transitive representation). This means that there are no
arrows/field references that enter boxes (cross over box boundaries). Figure 2.6 shows examples of valid
references and invalid references (striked arrows), where the references to o5 from o7 and o9 are not valid
(reference should be through o3) and o1 should not directly reference o2.

The owners-as-dominators guarantee can be useful such as for memory management where deallocat-
ing memory for an object, o, means we can safely deallocate memory for all objects inside o. However,
this property restricts the number of programs that can be written such as those that use iterators to
traverse a lists of objects. The iterator object and list object will not be able to reference the node/link
objects of the list at the same time.

o1

o2

o4

o6 o7

o8

o3

o5

o9

Figure 2.6: Example of valid references (plain arrows) and invalid references (crossed arrows) when owners-as-
dominators is enforced

2.2.2 Related Works

Ownership types are first introduced to restrict aliasing in object oriented programming, and works
included Flexible Alias Protection [13, 28]. When an object, o, has aliases (many objects, os, reference
o) then if an object in os modifies o’s state then all the other objects in os are affected.

The use of ownership types for sheep cloning is described in Section 2.3.1. Related to cloning,
ownership types have also been made possible to transfer of ownership and minimal cloning in dealing
with concurrency [12], where a cloning approach is similar to sheep cloning is used (owner parameters
determine whether an object’s fields should be cloned). Here, cloning returns a unique reference and
ownership can be transferred.

A few other applications of ownership types include:
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• Memory management [7], where owners-as-dominators can be used so that when deallocating mem-
ory of an object, o, we can safely deallocate memory of all objects inside o. This is possible because
having the owners-as-dominators property means that o is the single point of access for all objects
inside o, so deleting o will leave all objects that were inside o to be unreachable.

• Preventing programs from having data races, which is where multiple threads access the same data
and one or more threads changes the value, without having to lock every object [6]. In this system,
acquiring a lock to an object means that all objects transitively owned are locked.

• Enforcing the architecture of an application using ownership [4] to prevent lower layers in the
application from accessing the upper layers, but allow objects to access objects in layers below it;
this uses different owners to define different layers.

2.3 Cloning Approach

This project is based upon and extends the cloning approach proposed in Trust the Clones [15], which
is explained in this subsection. In this ownership system, owners of objects do not change over time, all
owners are known and owners-as-dominators is not enforced. However, after some investigation, I have
found that this cloning approach will have type errors when cloning in some situations where enforcing
owners-as-dominators is not enforced; the details are in Section 3.1.1.

Main features of this approach:

1. Uses ownership types (Section 2.2) to determine the set of objects to clone when an object is cloned,
called its cloning domain, (Section 2.3.1).

2. Extends a subset of the Java language with ownership types by adding annotations (Section 2.3.2).

3. Generates the clone methods in standard Java, by deriving them from the annotations (Sec-
tion 2.3.3).

Related Works. Issues with cloning objects have been studied in general including depth of cloning,
equality between objects, cyclic object structures [17]. Cloning should produce a new object, which is
considered as equal to the original; in the cloning approach we adopted we require structural equivalence
between objects and their clones. Other notions of equality highlighted in the paper [17] include a deeper
comparison of objects.

2.3.1 Ownership Types and Cloning

For cloning, the use of ownership types was proposed in Object Ownership for Dynamic Alias Protection
[26], where ownership can be used to define the cloning domain of an object, o, (objects that require
cloning when o is cloned). The cloning domain of o includes o itself and all objects that are reachable
from o via some path that is inside o at every step of the path, i.e. does not go outside of o’s box.
Otherwise, all referenced objects that are outside of o should be shared with the clone (object references
are copied). Diagrammatically, this means that all reachable objects inside the box should be cloned
when the owner of the box is cloned.

For example, cloning oDepartment involves cloning oStudentList and oNode is cloned as part of the
process of cloning oStudentList, resulting in Figure 2.7 where oNode′ references the original oStudent.
On the other hand, cloning oCollege will result in Figure 2.8, where oStudent is also cloned as part
of cloning oNode because oStudent is inside oCollege. These two examples highlight that the cloning
behaviour of an object (such as oNode) depends on the originator of the cloning process (the outermost
owner being cloned).
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oCollege

oDepartment

oStudentList

oNode

oStudent

oDepartment′

oStudentList′

oNode′

department

students

head

student

students

head

student

Figure 2.7: Example of sheep cloning oDepartment

oCollege

oDepartment

oStudentList

oNode

oStudent

oCollege′

oDepartment′

oStudentList′

oNode′

oStudent′

department

students

head

student

department

students

head

student

Figure 2.8: Example of sheep cloning oCollege

2.3.2 Clone Annotations

Extending Java with ownership types is achieved by adding annotations to types, similar to type param-
eters for generic types, the proposed extended syntax is given in Figure 2.9. Each class has one or more
formal owner/cloning parameters, c, which are identifiers representing objects. The first parameter is
the owner of the class; hence c is always a non-empty list. The other cloning parameters can be used in
the cloning parameters of fields declared in the class. Listing 2.1 gives an example of class declarations
corresponding to the objects in Figure 2.4 using this extended syntax.

ClassDecl ::= class C〈c〉{FieldDecl MethDecl}
FieldDecl ::= t f

F ieldType, t ::= C〈ca〉
c ::= Identifier clone parameters

ca ::= c | this clone arguments

Figure 2.9: Extended Java syntax

Given the extended class declarations, object types are of the form C<ca1,...,can>, where C is the
class and ca1,...,can are the actual cloning parameters, ca. Actual cloning parameters instantiate
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the formal cloning parameters of the object – these can be formal cloning parameters in scope, or this.
To illustrate with the current example, the types of the objects are:

oCollege:College〈world〉
oDepartment:Department〈oCollege〉
oStudentList:StudentList〈oDepartment,oCollege〉

oNode:Node〈oStudentList,oCollege〉
oStudent:Student〈oCollege〉

1 class College<c> {
2 Department<this> department;
3 }
4

5 class Department<c> {
6 StudentList<this,c> students;
7 }
8

9 class StudentList<c1,c2> {
10 Node<this, c2> head;
11 }
12

13 class Node<c1,c2> {
14 Student<c2> student;
15 Node<c1,c2> next;
16 }
17

18 class Student<c> {
19 }

Listing 2.1: Example class declarations

2.3.3 Cloning Methods

Cloning an object involves recursively cloning referenced objects that are inside the object that initiated
the cloning process. Therefore, when cloning an object, o, we need to know whether the objects repre-
sented by o’s formal cloning parameters are also to be cloned. This was illustrated in Figure 2.7 and
Figure 2.8 where the cloning oNode:Node<oStudentList,oCollege> involves cloning oStudent whenever
oCollege is being cloned.

To indicate which relevant objects are being cloned, clone is overloaded so that each class, C<c1,...,cn>,
has a parametric clone method: clone(Boolean s1,..., Boolean sn, Map m). The purpose of
this method is to clone class instances as part of the cloning process of some object and so will only
be called from within other clone methods. The value of si (ith Boolean parameter) indicates whether
objects inside ci (ith formal cloning parameter) should be cloned. Hence, the fields that should be cloned
are those with the first actual cloning parameter, ca, s.t. ca ∈ { this } ∪ {ci : 1 ≤ i ≤ n and si = true
}.

Starting the actual clone process is by invoking the original clone() method, which calls the
parametric clone method of the same class. The generated implementation of this method for class
C<c1,...cn> is given in Listing 2.2 (lines 1 - 3). false is passed for all Boolean parameters, which
means only fields with owner, this, will be cloned. A new Map (mapping Objects to Objects) is
passed as the last parameter to keep track of the objects already cloned. This prevents objects from
being cloned multiple times in the same cloning process.

1 C clone() {
2 return this.clone(false1,...,falsen, new IdentitityHashMap());
3 }
4

5 C clone(Boolean s1,...,Boolean sn, Map m){
6 Object o = m.get(this);
7 if o != null then
8 return (C)o;
9 else {

10 C oClone = new C();
11 m.put(this, oClone);
12 oClone.f1 = s1,1 ? this.f1.clone(s1,1,...,s1,k1, m) : this.f1;
13 ... = ...
14 oClone.fn = sq,1 ? this.fn.clone(sq,1,...,sq,kq, m) : this.fn;
15 return oClone;
16 }

12



17 }
18

19 where
20 {f1, ..., fq} are the fields defined in class C
21 and where, for all i ∈ {1, ..., n} :
22 (fType(C〈s1, ..., sn〉, fi))[true = this] = Ci〈si,1, ..., si,ki〉
23 for some classes C1, ...Cn

Listing 2.2: General implementation of clone methods.

The implementation of the parametric clone method is given in Listing 2.2 (lines 5 - 17), which
performs the main steps:

1. Return the existing clone of this object if it exists (lines 6 - 8).

2. Create and record a new clone, o′, of this object (lines 9 - 11).

3. For every field, fi, in this class (lines 12 - 14):

(a) Calculate the type of field, fi, in an object of type C<s1,...,sn> (this transforms the list
Boolean parameters in the same way C’s list of formal cloning parameters is transformed to
give fi’s actual cloning parameters) and replace all occurrences of this with true. Hence,
we have the Boolean values indicating the cloning parameters of fi that are being cloned.
This refers to line 22.

(b) If si,1 is true, this means that the field should be cloned so assign to oClone.fi the result
of cloning fi, passing the Boolean values si,1...si,ki. Otherwise, assign to oClone.fi the
object referenced by fi and do not clone.

An example of the clone methods of class Node is shown in Listing 2.3. In particular, the Boolean
parameters, s1 and s2, are passed in lines 19 - 22 in the order of the field’s actual cloning parameters
wrt class Node’s formal cloning parameters.

1 Node clone( ){
2 this.clone(false, false, new IdentityHashMap());
3 }
4

5 Node clone(Boolean s1, Boolean s2, Map m){
6 Object n = m.get(this);
7 if (n != null) {
8 return (Node)n;
9 } else {

10 Node clone = new Node();
11 m.put(this,clone);
12 clone.next= s1 ? this.next.clone(s1,s2,m) : this.next;
13 clone.student= s2 ? this.student.clone(s2,m) : this.student;
14 return clone;
15 }
16 }

Listing 2.3: Clone methods for class Node.

2.4 Extensible Compiler Frameworks
Language extensions can be implemented as a preprocessor, which is a compiler that accepts source
code in the extended language and outputs an equivalent program in the target language. To make the
implementation easier, extensible compiler frameworks can be used such as Polyglot [29], JaCo [1] and
JastAddJ [16] for Java. These are Java compilers by themselves and are extended to create compilers for
extended/modified Java languages. The programmer only needs to write code for the changes to the Java
language – less demanding for the programmer than the alternative of building the preprocessor from
scratch. In addition, the created compiler is also extensible for any future extensions or modifications to
the language.

Out of these extensible compiler frameworks, I chose Polyglot for this project. Polyglot has a relatively
large number of projects with source code available online, of which some involve extending Java with
parameterised types such as PolyJ [3], Jif [24] and Coffer [29]. Together with more documentation
and support, this helps greatly with understanding how Polyglot works internally and how to extend
Polyglot for this project especially for similarities such as extending with parameterised types. Unlike
Jaco and JastAddJ, Polyglot is written in Java so using tools available in IDE’s such as Eclipse helps

13



with debugging and code investigation. On the other hand, Jaco is written in a Java-like language and
uses extensible algebraic datatypes with defaults, and JastAddJ is implemented using JastAdd [2] so the
source code uses JastAdd syntax.

Polyglot

Polyglot is a framework written in Java and by itself, it is a semantic checker for Java 1.4. Extensions/-
modifications to Java, including changes to syntax and semantics, are implemented by extending Polyglot
(or other Polyglot extensions) and changing parts of the compilation process. The extended compiler
translates programs written in the modified language into standard Java source code. Optionally, the
translated program can be compiled into Java bytecode.

Currently, there are many language extensions implemented using Polyglot, ranging from small to
large scale extensions. Examples of the more complex extensions are Jif [24], which adds support for
information flow control and access control, and PolyJ [3, 23], which adds support for parametric poly-
morphism. Smaller scale extensions include Coffer [29], which extends Java with resource management,
and J0 [5], which is aimed at novice programmers and allows methods and statements without defining
classes. There is also an extension, Polyglot5 [22], supporting Java 1.5 and can be used instead of the
base Polyglot as the starting point for language extensions.

Polyglot uses Polyglot Parser Generator (PPG) [8], an extensible LALR parser generator based on
CUP [18]. PPG allows programmers to modify the syntax of Java for the extension by adding, removing
or changing productions (rewrite rules) and symbols from the grammar (the syntax rules) of the base
language being extended.

Extending Polyglot

This section briefly describes the main steps for implementing a new Polyglot extension. A more detailed
tutorial has been written by Raoul-Gabriel Urma and is available from the Polyglot homepage [32].

To start, the Polyglot source code includes a shell script to create the skeleton files for new extensions.
For extensions that change/modify the Java grammar, the programmer needs to specify the changes in
the ppg file generated. The PPG syntax and semantics is available online[8] and is quite straightforward.

The compilation process of an extended Polyglot compiler is shown in Figure 2.10. First the source
code written in the extended language is parsed by the extended parser and produces an extended
Abstract Syntax Tree (AST) that represents the program. The extended AST is extended from the AST
of the base compiler, which is a tree of nodes implementing the Node interface and are constructed by
node factories. The extended AST may have new classes of nodes to represent the new syntax or record
new information. These extra classes are defined in the extension’s AST package, and all AST nodes
must be created through the node factory class (one of the extension skeleton files).

Once the extended AST is obtained, the pass scheduler manages the compilation passes run over the
AST of each source file, ensuring that dependencies between files are maintained. A compilation pass
rewrites the AST by performing semantic analysis or translation to Java. If the compilation passes are
successful, the result should be a Java AST and Polyglot’s code generator will output the Java source
code from the AST.

Extension
source code

Extended
AST

Java AST
Java source
codeParse using

extended
parser

Compiler
passes

Code genera-
tion

Figure 2.10: Compilation process of an extended Polyglot compiler
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Chapter 3

Extending Ownership Types for
Cloning

There are problems/issues related to cloning using ownership types that remain to be solved for generating
cloning methods. The possible solutions to these problems are discussed and evaluated here, including:
extending this cloning approach, by generating cloning methods, to arrays, subclasses and generics. First,
desirable properties of cloning are described, which form the basis for evaluating alternative solutions for
each extension. We will consider each feature separately as an extension to the approach as proposed in
Trust the Clones, before bringing these features together in a single extension in Section 3.6. This allows
us to focus on the problems specific to each feature: arrays (Section 3.3), subclasses (Section 3.4), and
generics (Section 3.5).

The proposed solutions to these features make use of an alternative clone methods (Section 3.2) to
the original one described in Section 2.3.3. In the originally proposed method, Boolean values are passed
as individual arguments to the method, whereas the alternative clone method have a List<Boolean>
as one argument.

3.1 Desired Cloning Properties
Several desired properties of cloning any object, o:

1. All objects that are reachable inside o are also cloned (in accordance to sheep cloning).

2. All objects outside of o must not be cloned (in accordance to sheep cloning).

3. The heap after cloning o is homomorphic to the heap before cloning o (i.e. the clone has the same
shape as o).

4. Minimise the amount of dynamic information that is needed to be stored (cost for this method of
cloning).

Properties 1 and 2 must hold for producing sheep clones, however, examples of cloning in Trust
the Clones only had situations where owners dominate objects inside them (this property, owners as
dominators, is detailed in Section 2.2.1). This led to some investigation in cloning objects where owners
as dominators do not hold. I discovered that a subset of these situations result in type errors when
cloning according to properties 1 and 2. These problematic situations are where for objects o1, o2, o3,
there is a path (via fields) from o1 to o3; there is a path from o3 to o2; o3 is outside of o1; and o2 is inside
of o1. This problem is discussed in detail in Section 3.1.1, where we also explore possible solutions.

3.1.1 Cloning without Owners-as-Dominators

When cloning an object, o1, other objects that are cloned as part of the process include all objects that
are in the cloning domain of o1. This raises the question of whether it is desirable to clone an object,
o2, whose owner is o1, but some object o3 outside of o1, references o2 (i.e. owners as dominators do not
hold).
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In this section, we discuss the possible results of cloning without owners-as-dominators, their problems
(or lack of problem) and possible solutions. We divide situations that break owners as dominators into
2 cases based on object references, for any objects o1, o2 inside o1, and o3 outside of o1:

1. Problematic case – there is a path from o1 to o3, and there is a path from o3 to an o2. We call such
a path from o1 to o2 via o3 as a re-entering domain path (RDP). Figure 3.1 illustrates 2 examples
of this. In the following, we consider the possible cloning results, where I show the desired result
of cloning o1 will have type error.

2. Non-problematic case – there is no re-entering ownership path but o3 has a field reference to o2.
We call such a reference as an inward cross-boundary reference (ICBR), corresponding to how
such references appear in our diagrams. Figure 3.2 shows an example of this, where there is no
re-entering domain path from o1, but o3 has an inward cross-boundary reference to o2.

o1

o2

o3
fa1

fc

(a) Path from o1 to o2 is not in o1’s cloning domain.

o1

o2

o3
fa1

fa2

fc

(b) There is a path from o1 to o2 in o1’s cloning
domain and another path that is not in o1’s cloning
domain.

Figure 3.1: Examples where there is a re-entering ownership path from o1 to o2 via o3, which is outside of o1.

o1

o2

o3

o4

o5

fb2

fb1 fb2

fb1

Figure 3.2: Example where there is no re-entering ownership path and there is an inward cross-boundary reference
from o3 to o2 (and from o3 to o4).

For this method of generating clone code to be applicable to a larger range of programs, it is desirable
to allow owners-as-dominators to be broken if there are only ICBR’s and no RDP’s. Such references and
paths occur dynamically – some instances of classes may have ICBR’s or RDP’s depending on their actual
owner parameters. To illustrate, Figure 3.3a shows objects where owners as dominators hold; whilst the
property does not in Figure 3.3b, where the objects are instances of the same classes with different actual
owner parameters in Listing 2.1. In Figure 3.3a, oStudentList has type StudentList<world,world>
whereas oStudentList has type StudentList<world,oCollege in Figure 3.3b.

However, by property 4, we would like to remove ownership information from the generated Java
code. Thus, the challenge is to find a solution that prevents RDP’s through static checks. After showing
the possible cloning results, the alternative solutions considered are discussed:

Solution 1 Prevent all such situations from occurring by enforcing owners as dominators (Section 3.1.2).

Solution 2 Allow the non-problematic cases but prevent the problematic case by checking the relative
owners of objects along every possible path from each class (Section 3.1.3).

In the process of finding this solution, I made other attempts of detecting RDP’s, which were
insufficient. These are detailed in Appendix B for readers who are interested – otherwise the
section may be skipped.

16



Under the first solution, even non-problematic cases cannot occur, we would prefer to allow owners-
as-dominators to be broken so that the cloning approach is more applicable to real programs, such as
those using iterators. Hence, solution 2 is more desirable since it prevents the possibility of problems
occuring, while making this cloning approach applicable to more programs.

oStudentList

oNode oStudent

head

student

(a) Example of objects with owners as domi-
nators.

oStudentList

oNode

oCollege

oStudent

head

student

(b) Example of objects where owners as dominators is broken.

Figure 3.3: Example of instances of classes from Listing 2.1, when owners as dominators hold and when it does
not.

Cloning the Problematic Case

Under this case where there is an RDP from objects o1 to o2, we consider whether o2 should be cloned
when o1 is cloned. The possible answer to this differs for the further subcases of where there is a RDP
from o1 to o2, illustrated in Figure 3.1:

(a) Only RDP’s exist – all paths from o1 to o2 are RDP’s.

(b) RDP’s and internal paths from o1 to o2 exist – there is a path, p, from o1 to o2 where all objects
referenced in p are in the cloning domain (we call p an internal path) as well as another path that
is a RDP.

However, in both situations, we show type errors occur for the desired cloning results regardless of
whether internal paths exist because the problem is caused by the type of objects in the RDP. For readers
who are interested, I also include how the two situations can be characterised formally in Appendix C –
otherwise, readers may choose to skip this section.

Possible results of cloning o1 for our example in Figure 3.1a, when only RDP’s exist:

• o2 is cloned – the result would be Figure 3.5, where o2′ (the clone of o2) is unreferenced and
inaccessible. This is undesirable.

o2′ is not referenced although o1 owns o2 because o1 can only reach o2 by paths that go outside
of its ownership and objects that are not owned by o1 should not be cloned. This implies that all
references by o3 will remain unchanged, (i.e. o3 continues to reference o2) and o1′ will reference
o3.

• o2 is not cloned – the result would be Figure 3.4, where o2 is not cloned despite being inside
the cloning domain of o1, and o1′ is the clone of o1. Similar to the previous subcase, o3 remains
unchanged and o1′ references o3. This is the ideal outcome.

o1

o2

o3

o1′

fa1

fc

fa1

Figure 3.4: Possible result of cloning object o1 from Figure 3.1a.
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o1

o2

o3

o1′

o2′

fa1

fc

fa1

Figure 3.5: Undesirable result of cloning object o1 from Figure 3.1a.

Possible results of cloning o1 for our example in Figure 3.1b, when RDP’s and internal paths exist:

• o2 is cloned – the result is Figure 3.6, where o1′ is the clone of o1, and references o2′ (clone of o2)
and o3, which is not cloned. Since o3 is not cloned, it is left unchanged and continues to reference
the original o2 object and has no knowledge of the clones. This is the ideal outcome in contrast to
the situation with only RDP’s because o2 is owned and referenced by o1 and so should be cloned
by property 1.

• o2 is not cloned – the result is Figure 3.7, where o2 is not cloned and o1′ will have to reference the
original o2 object. This is undesirable because we find a type error when we compare the type of
field fa2 with the type of o2 as seen in the diagram.

Using the example class declarations in Listing 3.1 and Figure 3.7:

o1 :A〈world〉 (in Figure 3.7)

o1′ :A〈world〉 (in Figure 3.7)

Therefore, based on the class declaration, we expect:

o1′.fa2 :B〈o1′〉 (by class declaration)

However, the type of o1′.fa2 as seen in the diagram does not match the expected type:

o1′.fa2 =o2 (in Figure 3.7)

o2 :B〈o1〉 (in Figure 3.7)

B〈o1′〉 6=B〈o1〉

o1

o2

o3

o1′

o2′

fa1

fa2

fc

fa1

fa2

Figure 3.6: Possible result of cloning object o1 from Figure 3.1b.

o1

o2

o3

o1′

fa1

fa2

fc

fa1

fa2

Figure 3.7: Undesirable result of cloning object o1 from Figure 3.1b.
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1 class A<c> {
2 C<c,this> fa1;
3

4 B<this> fa2;
5 }
6

7 class B<c> {
8 }
9

10 class C<c1,c2> {
11 B<c2> fc;
12 }

Listing 3.1: Example class declarations for examples based on Figure 3.1.

Although, we would like to clone objects in the 2 subcases differently, there is a problem with achieving
the desired results in both. We show there is a type error when we compare the type of field fa1 with
the type of o3 as seen in Figures 3.4 and 3.7. Using the example class declarations in Listing 3.1 for the
ideal outcomes:

o1 :A〈world〉 (in Figures 3.4 and 3.7)

o1′ :A〈world〉 (in Figures 3.4 and 3.7)

Therefore, based on the class declaration, we expect:

o1′.fa1 :C〈world, o1′〉 (by class declaration)

However, the type of o1′.fa1 as seen in the diagram does not match:

o1′.fa1 =o3 (in Figures 3.4 and 3.7)

o3 :C〈world, o1〉 (in Figures 3.4 and 3.7)

This type error occurs in regardless of whether there is an internal path when there is a RDP from o1
to o2. Hence, we cannot clone clone situations where there are RDP’s and need to prevented. Proposed
solutions are to enforce owners-as-dominators (Section 3.1.2) and to statically prevent this problematic
case only (Section 3.1.3).

Cloning the Non-problematic Case

For cases where there is no re-entering ownership path, when calling clone() on an object, o1: all
objects that are outside the cloning domain of o1 remain unchanged by property 2; and all objects inside
of and reachable from o1 are cloned by property 1. Hence, for the example in Figure 3.2, the result of
cloning o1 is Figure 3.8, where o3, that has an inward cross-boundary reference to o2, will still reference
o2, o5 is not cloned and o2′ is the clone of o2.

On the other hand, objects unreachable from o1, even if they are inside of o1, such as o4, will not
be cloned. If o4 was cloned, the result of cloning o1 is shown in Figure 3.9, where o4′ is the clone of o4.
However, o4′ is unreferenced and will be garbage collected by the Java Garbage Collector – the outcome
is the same as when o4 was not cloned.

Compared to the problematic case, no type errors occur because for any object that is outside of
and reachable from o1, this (in context of o1) or any object inside of o1 is not given as an owner
parameter. Therefore, the type of fields that reference objects outside of the cloning domain of a class
will be the same for the original object and the clone. This is illustrated explicitly by the corresponding
class declarations in Listing 3.2 for the current example. o1 and o1′ are both of type A<world>, and o5
is of type B<world>. This matches with the expected type of the field fa1 for o1 and o1′.

o1

o2

o3

o4

o5

o1′

o2′

fa1
fa1

fc1 fc2

fa2 fa2

Figure 3.8: Possible result of cloning o1 from Figure 3.2.
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o1

o2

o3

o4

o5

o1′

o2′ o4′

fa1
fa1

fc1 fc2

fa2 fa2

Figure 3.9: Undesired result of cloning o1 from Figure 3.2.

1 class A<c> {
2 B<c> fa1;
3

4 B<this> fa2;
5 }
6

7 class B<c> {
8 }
9

10 class C<c> {
11 B<c> fc1;
12 B<c> fc2;
13 }

Listing 3.2: Example class declarations corresponding to Figures 3.2, 3.8 and 3.9.

3.1.2 Solution 1: Enforce Owners-as-Dominators

Situations presented in Figure 3.1 will not occur if we have owners as dominators because o2 should be
dominated by its owner, o1, as described in Section 2.2.1. Therefore, o3 will not be able to have a direct
reference to o2. To access o2, the object reference from o3 and o2 in Figure 3.1 will have to be replaced
by a reference to o1 and add a reference from o1 to o2 (if it does not already exist), as shown in Figure
3.10a. The result of cloning o1 is shown in Figure 3.10b, where o1′ references o3.

o1

o2

o3
fa1

fa2

fc

(a) The examples in Figure 3.1
with owners as dominators en-
forced.

o1

o2

o3

o1′

o2′

fa1

fa2

fc
fa1

fa2

(b) Result of cloning o1 in Figure 3.10a.

Figure 3.10: Cloning example of Figure 3.1 with owners as dominators.

To enforce owners-as-dominators, it is sufficient to check the actual clone parameters at class instan-
tiations, i.e. C<ca1,...,can> o = new C<ca1,...,can>(). From the syntax in Figure 2.9, the
clone parameters of fields in a class C, can only be this, world or is one of C’s formal clone parameters.
Therefore, the owner of each of the actual clone parameters ca2,...,can must be a transitive owner
of ca1. Otherwise, the o may reference an object that is not dominated by its owner.

To illustrate, Figure 3.11 shows all the objects that can be referenced by o are the colour-filled
rectangles. We notice that these colour-filled objects are all owned by o or a transitive owner of o, which
are {world, o2, o1} and are underlined in the diagram.

Operationally, we can statically check constructor calls that the owner of each actual clone parameter
is in the set of transitive owners of the first actual clone parameter by checking the types. For example,
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we can find the set of transitive owners of o by recursively checking the types of its owner:

start with empty set of transitive owners = {}
o : <o2, ...> transitive owners = {o2} ∪ {}
o2 : <o1, ...> transitive owners = {o1} ∪ {o2}

o1 : < world, ...> transitive owners = {world} ∪ {o1, o2}

If owners-as-dominators is enforced, then the problematic situations cannot occur, but this also means
that even the non-problematic subcases where owners-as-dominators are broken cannot occur either. If
possible, we would like to allow owner-as-dominators to be broken if it does not cause problems so that
objects like iterators (that break this property) can be used. This leds us on to Solution 2, which allows
owners-as-dominators to be broken if the RDP’s cannot possibly occur based on the class declarations.

o3

o2

o1

o4

o5

o9

o10

o7

o8

Figure 3.11: Example of objects that maybe referenced by o with owners-as-dominators.

3.1.3 Solution 2: Statically Prevent Problematic Case

This solution is to statically detect the possibility of RDP’s occurring by checking class declarations and
the relative owner positions of objects along all possible field paths. This involves traversing over fields to
find all possible paths and for each path, p, determining whether each object along p is inside or outside
(i.e. not inside) of the current class by substituting formal owner parameters with owner parameters
relative to the current class.

All possible paths from a class, C, and the relative position of reachable objects can be represented
by directed graphs with (extended) types as nodes, field references as edges and the root is the type of
an object instance of C. Types are extended to allow us to use paths (relative to the root object) to
express owners that are objects owned by the current object or by objects represented by formal owner
parameters. These objects would otherwise be unrepresentable.

As an example, Figure 3.12 is the graph for the College<c> class declared in Listing 2.1. The root
of the graph is College<c> and we treat the formal owner parameters, c, of this class as actual owner
parameters. Paths to each node start from the root node (this) and append the label of edges as we
traverse the graph to reach the node.
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College〈c〉

department

��
Department〈this〉

students

��
StudentList〈this.department, this〉

head

��
Node〈this.department.students, this〉

next

OO

student

��
Student〈this〉

Figure 3.12: Graph showing all paths and reachable types from class College<c> where no RDP is possible.

The following observations enable us to identify whether a referenced object is inside or outside of
the current class, given a class declaration class C<c>{...}:

• Formal owner parameters, c, are guaranteed to represent objects outside of this (the current
instance of the class). This is because when calling the constructor, new C<ca>(), the actual
owner parameters, ca, represent objects that already exist in the heap – existing objects cannot be
owned or transitively owned by the new object that has not been created till the constructor call.

However, this does not imply the current object is inside the objects represented by formal owner
parameters, they may be any object that is not inside the current object.

• By the extended Java syntax, owner positions of fields must be from {this, world, c}. Where this
means the referenced object is inside the current class and world means the referenced object is
outside the current class.

Hence, if the owner of a referenced object, o is:

• this then o is inside the current object. For example, the object referenced by this.department
in Figure 3.12 is inside the current object.

• world then o is outside the current object.

• A formal owner parameter then o is outside the current object.

• A path, p, then o is inside the current object iff the object referenced at p is inside the cur-
rent object. For example, the object referenced by this.department.students is owned by
this.department and hence is inside the current object since the owner of this.department
is this.

By inspecting the owner of each node as we traverse the edges, we build a sequence of owners. We shall
call such a sequence as a relative position path (RPP), which gives the relative position of each field ref-
erenced object in a path, p. For any object, o, at the nth referenced field of p, the owner of o is the nth ele-
ment in corresponding RPP. For example, the field path, p = this.department.students.head.student,
has RPP, this.(this.department).(this.department.students).this, which comes from
the first owner of each field referenced object.

Based on the observations mentioned, we know that a RPP corresponds to a re-entering domain path
iff 1 of the following holds for a RPP:

• this follows a formal owner parameter (from c) of the current class. The formal owner parameter
means that the field path has reached an object, o, outside of the cloning domain of the current
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class. If the next relative owner position in the RPP is this, then o may reference an object that
is inside the current class. For the previous example of RPP, this.this.c2, we can see that this
does not correspond to a RDP.

• this follows a path, p, where p 6= this and p 6≺∗ this (i.e. the object referenced by p is outside
of this).

• A path, p2 follows a path, p1, where p1 6≺∗ this and p1 ≺∗ this

From the graph in Figure 3.12, we know that all referenced objects are inside the current object by
transitivity of the inside relation (≺∗):

this.department ≺∗this
this.department.students ≺∗this.department

this.department.students.head ≺∗this.department.students
this.department.students.head.next ≺∗this.department.students

this.department.students.head.student ≺∗this

Hence, there are no RDP’s from a College object because at each step of all possible paths, the reference
object is inside of the current object. If there is an RDP, p, then there is are referenced objects, o1 and
o2, where o2 follows o1 in p, o1 is outside of the current object and o2 is inside the current object.

Example where RDP exists. For the class declarations in Listing 3.1, which we have previously used
to show that RDP’s may occur, the graph for each class is given in Figure 3.13. The path, this.fa1.fc,
from an A<c> object is a RDP with RPP, c.this. This is because the first field referenced object is
owned by c (i.e.this.fa1 6≺∗ this) and it references an object owned by this (i.e. this.fa1.fc
≺∗ this). However, RDP’s cannot occur for the other classes because class B has no fields.

A〈c〉
fa1

yyttttttttt
fa2

$$HH
HH

HH
HH

H

C〈c, this〉 fc // B〈this〉
(a) Graph for class A<c>, where there is a
RDP.

B〈c〉

(b) Graph for class B<c>,
where there is no RDP.

C〈c1, c2〉

fc

��
B〈c2〉

(c) Graph for class C<c1,c2>,
where there is no RDP.

Figure 3.13: Graph showing all paths and reachable types from classes declared in Listing 3.1, where RDP’s are
possible from A objects.

Example where ICBR exists but there is no RDP. For the class declarations in Listing 3.2,
previously used to show that RDP’s cannot occur but OAD property is broken by the possibility of
ICBR’s, the graph for each class is given in Figure 3.14. The graph shows that no RDP’s are possible
since class B has no fields, from nodes with an owner

A〈c〉
fa1

||zz
zz

zz
zz fa2

$$HH
HH

HH
HH

H

B〈c〉 B〈this〉
(a) Graph for class A<c>, where there is no
RDP.

B〈c〉

(b) Graph for class B<c>,
where there is no RDP.

C〈c〉

fc1

��
fc2

��
B〈c〉

(c) Graph for class C<c>,
where there is no RDP.

Figure 3.14: Graphs showing all paths and reachable types from classes based on Listing 3.2, where there is no
possibility of RDP’s.

Finding the type of referenced objects systematically. I show how the type of objects in these
graphs are calculated systematically through a simple example based on the class declarations in Listing
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2.1. The graph for class StudentList<c1,c2> is Figure 3.16 and we show the steps in calculating the
types of objects along the field path, p = this.head.next.student, in Figure 3.15.

First, we know that the formal parameters to the StudentList class is <c1,c2> and are also treated
as the actual owner parameters. At each step, we find the class, c, and the actual owner parameters,
ca, of the object referenced by the Field Path column. To access the next field in the path, we will go
into the class declaration of c, so the formal parameters of c need to be substituted with ca and in the
class declaration of c, references to this as an owner parameters need to be substituted with the path
in Field Path. This propagates the actual owner parameters to referenced objects so that types of fields
use this substitution to find their owner position relative to this object. The following gives a brief
explanation of each step to further illustrate:

Step 0 We know that the formal parameters to the StudentList class is <c1,c2>, which we treat
as actual owner parameters and c1 is the owner. Hence, the substitution to use when calculating
the type of a field in this class is [this/this, c1/c1, c2/c2].

Step 1 Field head in StudentList is declared as Node<this,c2> head;. After applying the
substitution from Step 0, the type of the object at this.head is Node<this,c2>, where the
owner is this. To calculate the actual parameters of the next field reference, the formal owner
parameters of class Node are substituted by the actual parameters. Also, fields in class Node that
use this as a owner parameter actually refer to the object at this.head from StudentList.
This substitution is given in the last column.

Step 2 The substitution from Step 1 is applied to the field declaration of field next in class Node.
Hence, the actual owner parameters of the referenced object is <this,c2> and substitutes this
and the formal parameters of the class of next.

Step 3 The substitution from Step 2 is applied to the field declaration of field student in class Node.
Hence, the actual owner parameters is <c2>. We can further calculated the substitution to be
applied when we go into the class declaration of Student.

Step Field Path Type Owner Parameter Substitution
for Class of Field

0 this StudentList<c1,c2> [this/this, c1/c1, c2/c2]
1 this.head Node<this,c2> [this.head/this, this/c1, c2/c2]
2 this.head.

next
Node<this,c2> [this.head.next/this, this/c1, c2/c2]

3 this.head.
next.student

Student<c2> [this.head.next.student/this, c2/c]

Figure 3.15: Steps to finding the types of referenced objects in the path this.head.next.student from
StudentList<c1,c2>.

StudentList〈c1, c2〉

head

��
Node〈this, c2〉

next

OO

student

��
Student〈c2〉

Figure 3.16: Type graph showing reachable types from StudentList<c1,c2>.
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Formalisation

Having described the solution, the formalisation is given in here, including syntax of extended types,
definition of path graphs, and origin graphs . This formalisation is based on the graphs showing reachable
types, however in the process of finding this formalisation, another formalisation was made and this is
included in Appendix A for readers who are interested.

Programs can be represented as a mapping from class names to a tuple, consisting of: the formal
owner parameters, a mapping from field names to field types, and a mapping from method identifiers to
the method declaration. This allows us to defined functions: F , Fs and O, to find the type of a field in a
class; all fields of a class, and formal owner parameters of a class declaration, respectively. The definition
of these are given in Figure 3.17.

Program,P = ClassId→ (c× (FieldId→ type)× (MethId→ meth))

F (P,C, f) = P (C) ↓2 (f) Gets the type of the field f in class C

Fs(P,C) = {f |F (P,C, f) is defined} Gets all fields of class C

O(P,C) = P (C) ↓1 Gets the formal owner parameters

Figure 3.17: Representation of programs and auxiliary functions.

Figure 3.18 gives the syntax of extended types as used in our graphs, where owner parameters are
actual owner parameters or field paths. The information given by the graphs (relative to a class, C)
shown so far is formalised as a pair, (PG,OG), where PG is a path graph and OG is an origin graph.
PG holds the information about edges, PG(t)(f) gives the extended type of the object referenced by
field f from object of type t. OG(t) returns the field path from C to the node representing type t. The
type of the partial function and map are given in Figure 3.19, where an auxiliary function, inside is
also defined. Given an origin graph and a parameter (po) of an extended type, inside returns true if po
represents an object inside of the root object in the represented graph.

EType ::= ClassId〈por〉 Extended types

PathOrOwner, po ::= p|ca Field path or actual owner parameter

Figure 3.18: Syntax for extended types.

PG : EType→ (FieldId→ EType) Path Graph

OG : EType→ (Path) Original Graph

inside : OriginGraph× PathOrOwner → Boolean

inside(OG, po) =



true po = this

false po = world

false po = ca

inside(OG, po1) otherwise

where OG(C〈po1, ..., pon〉) = po

Figure 3.19: Types for path graphs and origin paths; and definition of an auxiliary function to determine whether
the owner parameter of an extended type is inside the root object.
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The pair (PG,OG) is complete for a class C in program P iff the following conditions hold:

• The current class is in the graph, i.e.

C〈c1, ..., cn〉 ∈ dom(PG) where C ∈ dom(P ) and O(P,C) = c1, ..., cn

• The current class has edges for each field declared in its class declaration, i.e.

Fs(P,C) = dom(PG(C〈c1, ..., cn〉))

• The current class is the root of the graph, i.e.

OG(C〈c1, ..., cn〉) = this

• All reachable objects from the fields of the current class are also in the graph, i.e.

For any D ∈ dom(P ) and any field, f :

D〈d1, ...dn〉 ∈
⋃
{range(fToET ) | fToET ∈ range(PG)} and F (P,D, f) = t

=⇒
PG(D〈d1, ..., dn〉) = t′ and OG(t′) = OG(D〈d1, ..., dn〉).f
where t′ = t[d1, ..., dn/O(P,D), OG(D〈d1, ..., dn〉)/this]

If (PG,OG) is complete for class C in program P , then a C object may have RDP’s iff :

∃D〈d1, ..., dn〉, E〈e1, ...en〉, f : PG(D〈d1, ..., dn〉)(f) = E〈e1, ...en〉
and

D〈d1, ...dn〉 6= C〈O(P,C)〉
and

¬inside(OG, d1) andinside(OG, e1)

This will detect whether there is an edge, f , from D〈d1, ..., dn〉 to E〈e1, ...en〉 in the graph for C, where
the D object is not the current object and is not inside the current object, and the E object is inside
the current object (creating a RDP).

To demonstrate, I show that the RDP is detected for the class declarations in Listing 3.1, where we
have shown there may be a RDP from A (Figure 3.1 contains example objects where there is an RDP
and the extended type graph of A is Figure 3.13a). The pair (PG,OG) is complete for A, where:

PG = [A〈c〉 7→ [fa1 7→ C〈c, this〉, fa2 7→ B〈this〉],
B〈this〉 7→ [],

C〈c, this〉 7→ [fc 7→ B〈this〉]]
OG = [A〈c〉 7→ this,

B〈this〉 7→ this.fa2,

C〈c, this〉 7→ this.fa1]

Then the possibility of an RDP is detected because the above condition holds:

PG(C〈c, this〉)(fc) = B〈this〉
C〈c, this〉 6= A〈c〉
¬inside(OG,c)

inside(OG,this)

3.2 Alternative Cloning Methods

In this section, variations of the proposed cloning methods (Section 2.3.3) are presented here as alter-
natives and the advantage of these alternatives is the parametric clone method can be called for objects
whose dynamic type (and number of cloning parameters) may vary during execution. These alterna-
tive cloning methods are adopted in my proposed solutions to extending ownership directed cloning for
arrays, subclassing and generics.
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3.2.1 Use a Single List Argument for Boolean Values in Clone Methods

The proposed cloning method described in Section 2.3.3 expects Boolean values and a Map as arguments.
An alternative is to use a single List<Boolean> object as an argument rather than individual Boolean
arguments, where the order of values in the list is the same as the order of the original sequence of
Boolean arguments. This alternative is used in the proposed cloning methods for arrays, subclassing and
generics, where variable’s dynamic type (and number of cloning parameters) is variant.

Listing 2.2 gives the general implementation of the alternative clone methods, where the differences
with the original are:

Lines 2 - 6, 9: the parametric clone method takes a List<Boolean> object as the first argument.

Lines 17 - 29: a list of Boolean values to is constructed by getting the values from bs (line 38) and
passed to the clone methods of the field objects.

As a concrete example, the cloning methods of class Node is shown in Listing 3.4.

1 C clone() {
2 List<Boolean> bs = new List<Boolean>();
3 bs.add(false1);
4 ...
5 bs.add(falsen);
6 return this.clone(bs, newIdentitityHashMap());
7 }
8

9 C clone(List<Boolean> bs, Map m){
10 Object o = m.get(this);
11 if o != null then
12 return (C)o;
13 else {
14 C oClone = new C();
15 m.put(this, oClone);
16

17 List<Boolean> bs1 = new List<Boolean>();
18 bs1.add(s1,11);
19 ...
20 bs1.add(s1,1k);
21 oClone.f1 = s1,1 ? this.f1.clone(bs1, m) : this.f1;
22

23 ...
24

25 bs1 = new List<Boolean>():
26 bs1.add(sq,q1);
27 ...
28 bs1.add(sq,qk);
29 oClone.fn = bs.get(sq,q1) ? this.fn.clone(bs1, m) : this.fn;
30 return oClone;
31 }
32 }
33

34 where
35 {f1, ..., fq} are the fields defined in class C
36 and where, for all i ∈ {1, ..., q} :
37 (fType(C〈bs.get(0), ..., bs.get(n− 1)〉, fi))[true = this] = Ci〈si,1, ..., si,ik〉(*@for some classes C1, ...Cn

Listing 3.3: Alternative implementation of clone methods using List<Boolean>.

1 Node clone( ){
2 List<Boolean> bs = new List<Boolean>();
3 bs.add(false);
4 bas.add(false);
5 this.clone(bs, new IdentityHashMap());
6 }
7

8 Node clone(List<Boolean> bs, Map m){
9 Object n = m.get(this);

10 if (n != null) {
11 return (Node)n;
12 } else {
13 Node clone = new Node();
14 m.put(this,clone);
15

16 List<Boolean> bs1 = new Liost<Boolean>();
17 bs1.add(bs.get(0));
18 bs1.add(bs.get(1));
19 clone.next= bs.get(0) ? this.next.clone(bs1,m) : this.next;
20 bs1 = new List<Boolean>();
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21 bs1.add(bs.get(1));
22 clone.student= bs.get(1) ? this.student.clone(bs1,m) : this.student;
23

24 return clone;
25 }
26 }

Listing 3.4: Alternative clone methods for class Node.

3.2.2 Generate Permutation-like Order of Cloning Parameters for Fields

This approach to generating cloning methods extends the cloning alternative described in the previous
section by generating a list of indices for each field, in standard Java. We shall call these lists as
permutation-like order lists as they are lists of indices (indexing from 0) into the formal cloning parameters
of the class declaration that gives the sequence of actual parameters. Actual cloning parameters this
and world (which are not formal cloning parameters) are represented in permutation-like order lists by
-1 and -2, respectively. For example, if a field’s permutation-like list is [1,2,0,-1], this means that the
field has 4 actual cloning parameters, where:

• The first actual cloning parameter is the second (1) formal cloning parameter of the class declaration
that the field is declared in.

• The second actual cloning parameter is the third (2) formal cloning parameter.

• The third actual cloning parameter is the first (0) formal cloning parameter.

• The fourth actual cloning parameter is this (-1).

Hence, the permutation-like order also gives the indices of the Boolean values in the arguments of the
class’ clone method that should be passed to the field’s clone method. This alternative is used in the
proposed cloning methods for subclassing and generics, where fields’ dynamic type (and number of
cloning parameters) may vary during execution.

This permutation-like order is useful when the actual cloning parameters of a field’s dynamic type
is not known statically. Hence, this is used in proposed solutions to extending cloning for subclassing,
where subclasses may have different actual cloning parameters, and for generic classes, where there are
generic type parameters with unknown actual cloning parameters.

Cloning using Permutation-like Order Lists

Given a permutation-like order list, perm, and a list of Boolean values (from the parametric clone
method’s arguments) it is possible to obtain the list of boolean values to pass to the field that perm is
associated with. A helper method, reorder, in Listing 3.5 returns a list of Boolean values to pass to
the clone method of the field that is associated with the given perm argument. The function visits each
index in perm in order (lines 9 - 12) and determines what the Boolean value the index refers to on line
10. If the index is:

• -1 then the actual cloning parameter is this, so true must be the Boolean value (objects in the
cloning domain of this should be cloned).

• -2 then the actual cloning parameter is world, so false must be the Boolean value (objects
owned by world are not in the cloning domain of any object).

• Otherwise the index refers to a Boolean value in bs.

Constructing and Assigning Permutation-like Order Lists

Whenever a reference type variable is declared (A<c> a;), an associated permutation-like order list
is also declared (A a; List<Integer> aPerm;) in the standard Java code generated. For every
assignment statement to local variables and fields of the current class (x = y;) written in the extended
language, an assignment is also made to the permutation-like order list (x = y; xPerm = yPerm;)
in the code generated.

However, care needs to be taken when assigning to fields in objects that are not this and when assign-
ing values from fields of objects that are not this. This is because indices in permutation-like order lists
are in terms of the object that they are stored in, when there are assignments to fields of other objects (e.g.
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this.f1.f1 = x;) the permutation-like order (xPerm) needs to be calculated relative to the cloning
parameters of this.f1. Helper methods, getRelativePerm and getReverseRelativePerm, have
been defined to do this (Listing 3.5). The purpose of getRelativePerm is to calculate the permutation-
like order list to assign to another object’s field. The purpose of getReverseRelativePerm is to
calculate the permutation-like order list relative to some other object and find the the permutation-like
order list relative to the current object.

getRelativePerm. Given two permutation-like order lists representing cloning parameter indices for
objects, o1 and o2, that are in terms of cloning parameters of the same object, o3, getRelativePerm
returns a new permutation-like order list that represents the cloning parameter indices for o2 in terms of
o1. This is used when assigning o2 to a field, f , of o1 so that o1 can calculate the Boolean values to pass
to the f ’s clone method. This method visits each index in fieldPerm (lines 26 - 32) and finds where it
appears in newBasePerm) because the same index represents the same object since bother arguments
are relative to the same object. If the index is:

• -2 then the actual cloning parameter is world, which is the same for all objects, so -2 must be the
index in relativePerm.

• Otherwise the index must occur in newBasePerm and we can find the index at which it occurs.

For example, if o1 has permutation-like order list, p1 = [1, 0], and o2 has permutation-like order list,
p2 = [0], relative to the current object that has formal owner parameters 〈c1, c2〉, then 0 refers to c1 and
1 refers to c2. If o2 was to be assigned to a field, f , of o1, then p2 has to be in terms of o1’s cloning
parameters. Since o2 only has 1 cloning parameter (referring to c1), the permutation-like order list for
f in o1 must also refer to c2. Hence, the permutation-like order list stored in o1 for f is [1] (the second
cloning parameter of o1 refers to c2), this is the index of 0 in p1.

getReverseRelativePerm. The two method arguments are permutation-like order lists representing
cloning parameter indices for objects, o1 and o2, where fieldPerm is the list indexing into the cloning
parameters of o1 and objPerm is the list indexing into the cloning parameters of some other object
o3. getReverseRelativePerm returns a new permutation-like order list that represents the cloning
parameter indices for o2 in terms of o3. This is used when in the context of o3, there are uses of objects
(o2) referenced by another object (o1). This method visits each index in fieldPerm (lines 49 - 55) and
finds the value it indexes in objPerm). If the index is:

• -2 then the actual cloning parameter is world, which is the same for all objects, so -2 must be the
index in relativePerm.

• Otherwise the index must be 0 or greater because o3 cannot access o2 unless it can name all of o2’s
actual cloning parameters (i.e. they must refer to either world, o3 or one of o3’s formal cloning
parameters). Hence, we can find the value in objPerm at the given index.

For example, if o1 has permutation-like order list, p1 = [1, 0],relative to o3; o2 has permutation-like
order list, p2 = [0], relative to o1; and o3 that has formal owner parameters 〈c1, c2〉; then o2 has only
1 cloning parameter that refers to the first cloning parameter of o1 (c2). If o2 was to be assigned to
a field, f , of o3, then p2 has to be in terms of o3’s cloning parameters. Since o2 only has 1 cloning
parameter (referring to c2), the permutation-like order list for f in o3 must also refer to c2. Hence, the
permutation-like order list stored in o1 for f is [1] (the second cloning parameter of o1 refers to c2), this
is the value at the 0th index of p1.

Full example. To illustrate using a concrete example, the class in Listing 3.6, which has a method with
some assignment statements to variables and fields, will have the generated Java code is in Listing 3.7.
Each reference type variable and field has its own permutation-like order list; the actual permutation-
like order list is actually created when a constructor is called (Listing 3.7 lines 11 - 14 are generated for
Listing 3.6 line 8). The generated clone method will call the helper methods before deciding whether to
clone each field to get the list of Boolean values corresponding to the field (for example line 49). The
field containing the permutation-like order list is also given to the clone on line 49 so that oClone knows
how to clone its fields.

For assignments to fields of objects that are not this (Listing 3.6 lines 14 and 16), getRelativePerm
to assign the permutation-like order list associated with the field (Listing 3.7 lines 26 and 29). When
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field of other objects are used, such as in Listing 3.6 line 16, getReverseRelativePerm is also used
to first get the permutation-like order list of y.f1 in terms of cloning parameters of class C.

1 class Perm {
2 /*
3 * Gets the a new list that is bs reordered according to perm.
4 * Used when calling clone on a field that has a permutation-like order list, perm.
5 */
6 static List<Boolean> reorder(List<Boolean> bs, List<Integer> perm) {
7 List<Boolean> reordered = new List<Boolean>();
8

9 for(Integer index : perm) {
10 Boolean b = index == -1 ? true : (index == -2 ? false : bs.get(index));
11 reordered.add(b);
12 }
13

14 return reordered;
15 }
16

17 /*
18 * Returns a permutation-like order list representing fieldPerm relative to newBasePerm.
19 * Used when assigning to field of objects that has a permutation-like
20 * order list, newBasePerm.
21 * newBasePerm and fieldPerm are in terms of the current object, this.
22 */
23 static List<Integer> getRelativePerm(List<Integer> newBasePerm, List<Integer> fieldPerm)

{
24 List<Integer> relativePerm = new List<Integer>();
25

26 for(Integer index : fieldPerm) {
27 if (index== -2) {
28 relativePerm.add(-2);
29 } else {
30 relativePerm.add(newBasePerm.indexOf(index));
31 }
32 }
33

34 return relativePerm;
35 }
36

37 /*
38 * Returns a permutation-like order list representing fieldPerm relative to the
39 * same object that objPerm is relative to.
40 * Used when assigning to local variables/fields with
41 * with a field of some other object that has a permutation-like order likst, objPerm.
42 * objPerm is relative to the current object.
43 * fieldPerm the permutation-likfe order list of the object relative to the
44 * object with objPerm.
45 */
46 static List<Integer> getReverseRelativePerm(List<Integer> objPerm, List<Integer>

fieldPerm) {
47 List<Integer> relativePerm = new List<Integer>();
48

49 for(Integer index : fieldPerm) {
50 if (index== -2) {
51 relativePerm.add(-2);
52 } else {
53 relativePerm.add(objPerm.get(index));
54 }
55 }
56

57 return relativePerm;
58 }
59 }

Listing 3.5: Helper methods for getting a list of Boolean values reordered according to the permutation-like order
list and calculating the permutation-like order list to assign to fields of objects other than this.

1 class C<c1,c2,c3> {
2 A<this,c2> f1;
3

4 void m1() {
5 A<this,c2> x;
6 A<this,c2> y;
7

8 x = new A<this,c2>();
9

10 y = x;
11

12 this.f1 = y;
13

14 this.f1.f1 = x;
15
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16 x.f1 = y.f1;
17 }
18 }

Listing 3.6: Example class declaration with assignments.

1 class C {
2 A f1;
3 List<Integer> f1Perm;
4

5 void m1() {
6 A x;
7 List<Integer> xPerm;
8 A y;
9 List<Integer>yPerm;

10

11 x = new A();
12 xPerm = new List<Integer>();
13 xPerm.add(-1);
14 xPerm.add(1);
15

16 y = x;
17 yPerm = xPerm;
18

19 this.f1 = y;
20 this.f1Perm = yPerm;
21

22 this.f1.f1 = x;
23 this.f1.f1Perm = Perm.getRelativePerm(this.f1Perm, xPerm);
24

25 y.f1 = x;
26 y.f1Perm = Perm.getRelativePerm(yPerm, xPerm);
27

28 x.f1 = y.f1;
29 x.f1Perm = Pern.geRelativePerm(xPerm, Perm.getReverseRelativePerm(yPerm, y.f1Perm));
30 }
31

32 C clone() {
33 List<Boolean> bs = new List<Boolean>();
34 bs.add(false);
35 bs.add(false);
36 bs.add(false);
37 return this.clone()
38 }
39

40 C clone(List<Boolean> bs,Map m) {
41 Object o = m.get(this);
42 if (o != null) {
43 return (C)o;
44 } else {
45 C oClone = new C();
46 m.put(this,oClone);
47

48 if (this.oClone != null) {
49 List<Boolean> fBs = Perm.reorder(bs,this.f1Perm);
50 oClone.f1 = fBs.get(0) ? this.f1.clone(fBs, m) : this.f1;
51 oClone.f1Perm = this.f1Perm;
52 }
53

54 return oClone;
55 }
56 }
57 }

Listing 3.7: Generated class that uses permutation-like order lists, in standard Java, for the class in Listing 3.6.

3.3 Arrays
Arrays are commonly used in programs so we would like to extend cloning using ownership types to deal
with arrays of objects. An array is an object and elements of an array are also objects of a class, which
will have their own cloning parameters in their class declaration. The implication is that elements of an
array can have different cloning parameters to the array object. Figure 3.20 shows an example of such
an array, oAs, whose owner is o and elements of the array (oA1, ..., oAn) are not owned by o, i.e. they
have different cloning parameters.
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o

oAs

oA1 oAn

Figure 3.20: Example of an array object with ownership types.

There are several considerations when extending the cloning approach to arrays mainly because the
array class is predefined in Java and may be any dimension (i.e. arrays of arrays). We would prefer not
to make changes to the predefined array class, this implies we cannot call the clone method for array
objects. Therefore, there should be a different approach to implementing array clone methods and clone
methods of arrays need to know whether the array elements are array objects since array objects will be
cloned differently.

Extending the system will involve:

• Extending the syntax to have arrays with cloning parameters (Section 3.3.1).

• Generating clone methods for arrays (Section 3.3.2), this involves:

– Solving the problem of how objects know what information is required to be passed to the
cloning method of the array object, in order for the array object to call the array elements’
clone methods and pass the correct cloning Boolean values.

– Finding a solution to how/where the cloning method for arrays should be defined – we would
prefer not to have to change the predefined array class.

3.3.1 Syntax

Array types are of the form C<c1,...,cn>[]<o>, corresponding to array types commonly used: C[],
which is an array of C objects. The type of the array elements are C<c1,...,cn> and the owner of
the array is o. The syntax from Figure 2.9 is extended as shown in Figure 3.21, where the actual clone
parameter after [] represents the owner of the array object and the array elements are of the type t,
which appears before the rightmost [].

Listing 3.8 shows some example class declarations in the extended syntax and Figure 3.22 shows an
example A object and objects referenced by its fields. o3 is a multi-dimensional array (an array of arrays
of C<world,world>), and o4 and o5 are arrays of C<world,world>.

We will call array elements that are not arrays as array leaf elements, so o3, o4 and o5 have the same
leaf element type C<world,world>.

FieldType, t ::= C〈ca〉 | t[]〈ca〉

Figure 3.21: Extended syntax for arrays.

1 class A<c1,c2> {
2 B<c2>[]<c1> fbs;
3

4 C<c1,c2>[]<c1>[]<this> fcs;
5 }
6

7 class B<c> {
8 }
9

10 class C<c1,c2> {
11 }

Listing 3.8: Example class with arrays.
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o1

o2 : A〈o1, world〉

o3 : C〈world, world〉[]〈o1〉[]〈o2〉

o4 : C〈world, world〉[]〈o1〉 o5 : C〈world, world〉[]〈o1〉

o6 : C〈world, world〉

fcs

Figure 3.22: Example of an array object with ownership types.

3.3.2 Cloning Methods

Like any other object, cloning an array object, o3, involves determining whether referenced objects should
also be cloned. For example, o3 in Figure 3.22 has type C<world,world>[]<o1>[]<o2>, so if o3 is
cloned then its elements (o4 and o5), which are arrays of type C<world,world>[]<o1> and should
be also be cloned if the domain of o1 is being cloned. In turn, elements of o4 and o5 (o6), which are of
type C<world,world> should also be cloned if the domain of world is being cloned.

As highlighted from the example, cloning a n-dimensional array, o, of C〈ca〉 objects take into account
the cloning parameter of each k-dimensional array (for 1 < k < n) and the cloning parameters of the
array leaf elements (i.e. ca). Hence, the clone method for arrays need to know the dimension of the
array; and the Boolean values indicating whether the cloning parameters each dimension array and array
leaf element are in the cloning domain.

The proposed solutions makes use of the alternative style of generated clone method for classes
(Section 3.2.1), where a lists of Boolean values is passed as a single argument rather than as individual
Boolean arguments. The proposed alternatives for array clone methods are:

Solution 1 Generate a new class with a static clone method for arrays of any class objects and any
dimension (Section 3.3.3).

Solution 2 Generate an array clone method for each class and any dimension (Section 3.3.4).

Solution 3 Generate an array clone method for each class and each dimension (Section 3.3.5).

For solution 2 and 3, the generated clone methods can be in a new class or added to the class that
the array clone method is associated with.

The evaluation of the proposed solutions against the desired cloning properties are summarised in
the following table. All solutions satisfy the desired cloning properties, however, there is more use of
Java reflection in solution 1 than in solution 2,, whilst solution 3 does not require reflection at all. We
would like to avoid using reflection if possible, so solution 3 is adopted.

Solution Property 1 Property 2 Property 3 Property 4
1 No Yes Yes No additional dynamic information required.
2 Yes Yes Yes No additional dynamic information required.
3 Yes Yes Yes No additional dynamic information required.

Figure 3.23: Table of solutions to arrays against desired cloning properties

3.3.3 Solution 1: Static Clone Method for All Arrays

This solution is to generate a static clone method in a new class, Arrays, for cloning any array (Listing
3.9), using Java reflection. This includes arrays of any class of objects and of any dimension.
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To clone an array using this method, the array object itself needs to be passed as the array argument;
the actual cloning parameters for the array elements’ type as bs; and the Map of the cloned objects so
far. The array object to be cloned must be passed to the clone method so that it can be cloned and a
map is passed to the method so that we only clone objects once. The Boolean actual cloning parameters
are passed as a List rather than as separate Boolean parameters because arrays of different class of
objects may have different number of cloning parameters.

For multi-dimensional arrays, each array object has an owner and their Boolean actual cloning param-
eters must be included in the list of Boolean values. The order of the Boolean values should be according
to depth of the array element. For example, C<o3,o4>[]<o2>[]<o1> cs is a multi-dimensional array
owned by o3 and the array elements are arrays (owned by o2) of C<o1> objects. When cs is cloned,
the order of the list of Boolean values is [o2,o3,o4]. Boolean for o1 is not included because it is the
owner cs and the clone method is called only when the object requires cloning.

The main steps of the clone method are:

1. Check whether array has already been cloned. Return the clone if it already exists (lines 3 - 6).

2. Otherwise (array has not been cloned yet), create an array object as the clone (and add to the
m) using Java reflection (lines 8 - 13).

3. If array is a multi-dimensional array:
If the first element of bs is true then clone the elements of the array by recursion; otherwise
reference the same object (lines 16 - 21). The first element of bs is removed because it is the
owner of the elements of array and since each array element, ae, is also an array. The array clone
method does not expect the cloning parameter of ae to also be passed because the clone method
is called only when arrays requires cloning.

4. Otherwise, if array is an array with elements that are of primitive types, then the values of array
are copied into the clone, arrayClone (lines 22 - 23).

5. Otherwise, we know array is a one-dimensional array of non-primitive types. If the first element
of bs is true, we call the clone method defined in the array elements’ class (lines 25 - 30). The first
element of bs is not removed because the generated parametric clone methods in classes expect all
cloning parameters of the class to be passed.

1 class Arrays {
2 static Object clone(Object array, List<Boolean> bs, Map m) {
3 Object n = m.get(array);
4 if (n != null) {
5 return n;
6 }
7

8 Class arrayClass = array.getClass();
9 int length = Array.getLength(array);

10 Class elementType = arrayClass.getComponentType();
11

12 Object arrayClone = Array.newInstance(elementType, length);
13 m.put(array, arrayClone);
14

15 if (elementType.isArray()) {
16 Boolean owner = bs.remove(0);
17 for(int i = 0; i < l; i++) {
18 Cloneable element = (Cloneable)Array.get(array, i);
19 Object elementClone = owner && element != null ? clone(element, bs, m) : element;
20 Array.set(arrayClone, i, elementClone);
21 }
22 } else if (elementType.isPrimitive()) {
23 System.arraycopy(array, 0, arrayClone, 0, length);
24 } else {
25 Boolean owner = bs.get(0);
26 for(int i = 0; i < l; i++) {
27 Cloneable element = (Cloneable)Array.get(array, i);
28 Object elementClone = owner && element != null ? element.clone(bs, m) : element;
29 Array.set(arrayClone, i, elementClone);
30 }
31 }
32

33 return arrayClone;
34 }
35 }

Listing 3.9: General array clone method.
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This array clone method uses reflection to create an array clone and does not know the exact class of
the array elements, therefore, it does not know the number of parameters that it will pass. Therefore, we
change the arguments of clone methods of classes to clone(List<Boolean> bs, Map m), so that
we can pass List<Boolean> instead of the Boolean values as individual parameters.

However, the array clone method assigns elements of the array clone to an object, whose type is
unknown (lines 26 - 28) and hence does not guarantee that a clone method exists for this object. To
solve this, we can create an interface, Listing 3.10, that all classes implement and the clone methods
of classes index into the list to get the Boolean values instead of using individual Boolean parameters
directly.

1 interface Cloneable {
2 Cloneable clone();
3

4 Cloneable clone(List<Boolean> bs, Map m);
5 }

Listing 3.10: Interface for all classes.

An alternative to using List<Boolean> is to use variable arguments list for the Boolean argument.
The class declaration will be in the form, Cloneable clone(Map m, boolean ... bs) {...},
where bs is treated as an array. This requires the clone method call on line 27 in Listing 3.9 to be
changed to element.clone(m,bs.toArray()) instead of element.clone(bs,m).

As an example, Listing 3.11 gives the clone methods for A from Listing 3.8, where the array fields are
cloned in lines 21 - 29 by the array clone method in Listing 3.9.

1 A clone() {
2 List<Boolean> bs = new List<Boolean>();
3 bs.add(false);
4 bs.add(false);
5 return this.clone(bs, newIdentitityHashMap());
6 }
7

8 A clone(List<Boolean> bs, Map m) {
9 Object o = m.get(this);

10 if (o != null) {
11 return(A)o;
12 } else {
13 A oClone = new A();
14 m.put(this, oClone);
15

16 List<Boolean> arrayBs = new List<Boolean>();
17 arrayBs.add(bs.get(2));
18 oClone.fbs = bs.get(0) && this.fbs != null ? Arrays.clone(this.fbs, arrayBs, m) : this

.fbs;
19

20 arrayBs = new List<Boolean>();
21 arrayBs.add(bs.get(0));
22 arrayBs.add(bs.get(0));
23 arrayBs.add(bs.get(1));
24 oClone.fcs = this.fcs != null ? Arrays.clone(this.fcs, arrayBs, m) : this.fcs;
25

26 return oClone;
27 }
28 }

Listing 3.11: Clone methods for A from Listing 3.8.

3.3.4 Solution 2: Array Clone Method for Each Class and Any Dimension

This solution is to generate static array clone methods in every class (for any dimension) declared.
The clone method is in the form clone(Object array, List<Boolean> bs, Map m, int d),
where d is the dimension of the array. This method is similar to the clone method in Solution 1 except
the type of the array leaf elements of multi-dimensional arrays are known. Listing 3.12 is an example of
this for cloning Student arrays of any dimension, where:

• Java reflection is not needed to check whether the object is a multi-dimensional array, since the
dimension is given by d.

• Cloning the 1-dimensional array is lines 7 - 19, where reflection is not used since the type of array
leaf elements is known.
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• For multi-dimensional arrays of the current class, reflection is used to get the dimension of the
array to create a clone (lines 21 - 25) and recursively calls this clone method for the elements of
the array if the Boolean representing their owner is true (lines 28 - 33).

The array clone method is needed for every class although the second method will be very similar in
each class. The only lines that will differ are lines 8 and 10 where the actual leaf element class is known.

However, multi-dimensional arrays for primitive types still need their own clone method, in a new
class (Listing 3.13), which just needs to copy the values of array leaf elements if the 1-dimensional array
is to be cloned. This is very similar to the clone method for classes except reflection is used to find the
type of array leaf elements and for elements of 1-dimensional arrays, the values are copied (not cloned)
since they are of primitive type.

1 static Object clone(Object array, List<Boolean> bs, Map m, int d) {
2 Object n = m.get(array);
3 if (n != null) {
4 return n;
5 }
6

7 if (d == 1) {
8 Student[] baseArray = (Student[]) array;
9 int length = baseArray.length;

10 Student[] arrayClone = new Student[length];
11 m.put(array, arrayClone);
12

13 Boolean owner = bs.get(0);
14 for(int i = 0; i < length; i++) {
15 arrayClone[i] = owner && baseArray[i] != null ? baseArray[i].clone(bs, m) :

baseArray[i];
16 }
17

18 return arrayClone;
19 }
20

21 Class arrayClass = array.getClass();
22 int length = Array.getLength(array);
23 Class elementType = arrayClass.getComponentType();
24

25 Object arrayClone = Array.newInstance(elementType, length);
26 m.put(array, arrayClone);
27

28 Boolean owner = bs.remove(0);
29 for(int i = 0; i < length; i++) {
30 Cloneable element = (Cloneable)Array.get(array, i);
31 Object elementClone = owner && element != null ? clone(element, bs, m, d--) : element;
32 Array.set(arrayClone, i, elementClone);
33 }
34

35 return arrayClone;
36 }

Listing 3.12: Array clone method where the class of the leaf element is known.

1 class PrimitiveArrays {
2 static Object clone(Object array, List<Boolean> bs, Map m, int d) {
3 Object n = m.get(array);
4 if (n != null) {
5 return n;
6 }
7

8 Class arrayClass = array.getClass();
9 int length = Array.getLength(array);

10 Class elementType = arrayClass.getComponentType();
11

12 Object arrayClone = Array.newInstance(elementType, length);
13 m.put(array, arrayClone);
14

15 if (d == 1) {
16 System.arraycopy(array, 0, arrayClone, 0, length);
17

18 return arrayClone;
19 }
20

21 Boolean owner = bs.remove(0);
22 for(int i = 0; i < length; i++) {
23 Cloneable element = (Cloneable)Array.get(array, i);
24 Object elementClone = owner && element != null ? clone(element, bs, m, d--) :

element;
25 Array.set(arrayClone, i, elementClone);
26 }
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27

28 return arrayClone;
29 }
30 }

Listing 3.13: Array clone method where array leaf elements are of primitive types only.

3.3.5 Solution 3: Array Clone Method for Each Class and Each Array Di-
mension

This solution is to generate a static array clone method for each class and each array dimension
that is used/occurs in the program. The method will be of the form cloneC2(Object array,
List<Boolean> bs, Map m), where C is the class of the leaf array elements and 2 is the dimen-
sion of the array. This method is similar to the clone method in Solution 2 except the exact dimensions
and array leaf element types (primitive or reference types) are also known. Unlike Solution 1 and 2, this
solution does not use Java reflection to find the dimension of the array or the array leaf element types.

Listing 3.14 shows examples of clone methods for single and 2-dimensional arrays of Student objects,
and Listing 3.15 show examples of clone methods for single and 2-dimensional arrays of int’s. These
closely resemble the clone methods for arrays of classes except reflection is not used to create the multi-
dimensional array clones in Listing 3.14 line 24, and Listing 3.15 lines 7 and 20.

1 static Student[] cloneStudent1(Student[] students, List<Boolean> bs, Map m){
2 Object n = m.get(students);
3 if (n != null) {
4 return (Student[]) n;
5 }
6

7 Student[] clone = new Student[students.length];
8 m.put(students, clone);
9

10 Boolean owner = bs.remove(0);
11 for(int i = 0; i < students.length; i++) {
12 clone[i] = owner && students[i] != null ? students[i].clone(bs, m) : students[i];
13 }
14

15 return clone;
16 }
17

18 static Student[][] cloneStudent2(Student[][] students, List<Boolean> bs, Map m){
19 Object n = m.get(students);
20 if (n != null) {
21 return (Student[][]) n;
22 }
23

24 Student[][] clone = new Student[students.length][];
25 m.put(students, clone);
26

27 Boolean owner = bs.remove(0);
28 for(int i = 0; i < students.length; i++) {
29 clone[i] = owner && students[i] != null ? cloneStudent1(students[i], bs, m) : students

[i];
30 }
31

32 return clone;
33 }

Listing 3.14: Array clone methods for Student arrays with dimensions known.

1 static int[] cloneint1(int[] array, List<Boolean> bs, Map m){
2 Object n = m.get(array);
3 if (n != null) {
4 return (int[]) n;
5 }
6

7 int[] arrayClone = new int[array.length];
8 m.put(array, clone);
9 System.arraycopy(array, 0, arrayClone, 0, array.length);

10

11 return clone;
12 }
13

14 static int[][] cloneint2(int[][] array, List<Boolean> bs, Map m){
15 Object n = m.get(array);
16 if (n != null) {
17 return (int[][]) n;
18 }
19
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20 int[][] arrayClone = new int[array.length][];
21 m.put(array, arrayClone);
22

23 Boolean owner = bs.remove(0);
24 for(int i = 0; i < array.length; i++) {
25 arrayClone[i] = owner && array[i] != null ? cloneint1(array[i], bs, m) : array[i];
26 }
27

28 return clone;
29 }

Listing 3.15: Array clone methods for int arrays with dimensions known.

3.4 Subclasses
To extend the system for subclassing, considerations will have to be made concerning the cloning pa-
rameters and cloning methods of subtypes. The syntax for class declaration is extended as follows:

ClassDecl ::= class C〈c〉{FieldDecl MethDecl} |
class C1〈c〉 extends C2〈c′〉{FieldDecl MethDecl}

All objects require cloning parameters with length of at least 1. In general, a subclass may have a
different number of cloning parameters than its superclass, which we will show may cause problems for
cloning. The first cloning parameter of a class indicates the owner, therefore, the first cloning parameter
of a subclass must be the same as the first cloning parameter of the superclass. For example, B<o,o>
is a subtype of A<o,o> and C<o1,o2,o3> is a subtype of A<o1,o2>, given the class declarations in
Listings 3.16.

1 class A<c1,c2> {
2 D<c1> fd;
3 }
4

5 class B<c1,c2> extends A<c1,c2> {
6 }
7

8 class C<c1,c2,c3> extends A<c1,c2> {
9 C<c1,c2,c3> fc;

10 }
11

12 class D<c> extends A<c,c> {
13 C<c,c,c> fc;
14 }
15

16 class E<c2,c3,c1> extends C<c1,c2,c3> {
17 E<this,c3,c1> fe;
18 }
19

20 class F<c> {
21 A<c,c> fa;
22 C<c,c,c> fc;
23 }

Listing 3.16: Examples of subclassing

Under the cloning methods proposed by [15], all classes have cloning methods defined. There-
fore, subclasses must also provide the overloaded clone methods: clone(), to clone the object, and
clone(Boolean b1,...,Boolean bn, Map m), where n is the number of cloning parameters of
the subclass. In addition, if a class, subC has a different number of cloning parameters to its superclass,
supC, then the parametric clone method defined in supC is also visible from subC.

When an object is cloned, its clone method will call the clone method for the field referenced objects
that are in the cloning domain. If subclassing is allowed, the dynamic type of a field may differ from its
static type

The implications of the cloning approach described in Section 2.3.3 are explored in the following
subsections for the different situations a field referenced object can be in:

1. Object’s static and dynamic types are the same. No extension to the current cloning approach
need to be made for this case.

2. Object’s static and dynamic types are different:
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(a) With the same number of actual cloning parameters. A potential problem is that if the cloning
parameters are in a different order, then Boolean values may be passed to the clone method
in the wrong order.

(b) With different actual cloning parameters, where the dynamic type has:

i. Less actual cloning parameters. More cloning parameters will be passed to the clone
method than the dynamic class of the object expects. However, we show that the actual
cloning parameters of the dynamic type can be derived from the static type.

ii. More actual cloning parameters. We show that this is most problematic case because the
actual cloning parameters of the dynamic type cannot be derived from the static type.

Different approaches to tackling the problematic cases include:

Solution 1 Clone referenced objects according to their static type, disregarding their dynamic type
(Section 3.4.1).

This requires each class to provide a parametric clone methods to clone an object as each superclass
(e.g. class F must provide 3 parametric clone methods: cloneF, cloneC and cloneA to clone an
instance of the class as an F, C and A object, respectively). This eliminates the problems in case 2.

Solution 2 Clone referenced objects according to their dynamic type (Section 3.4.2).

For each field, the class stores a permutation-like order for actual clone parameters as described in
Section 3.2.2. This is used to get the correct order and number of Boolean values when calling the
referenced object’s parametric clone method.

Solution 3 Restrict assignments of objects to variables/fields so that only cases where the dynamic
actual cloning parameters can be derived from the static type (Section 3.4.3).

This solution involves for:

Case 2(a) if the cloning parameters are in a different order to its superclass, they are renamed con-
sistently in the body of the subclass’s class declaration so that the formal cloning parameters
are in the same order.

Case 2(b)i subclass also overrides the parametric clone method from the superclass.

Case 2(b)ii this case is eliminated – any assignments that causes this case to occur are invalid.

The evaluation of the proposed solutions against the desired cloning properties are summarised in the
following table. Since solution 1 does not satisfy property 3 and solution 2 requires additional dynamic
information to be stored, we adopt solution 3.

Solution Property 1 Property 2 Property 3 Property 4
1 No Yes No No additional dynamic information required.
2 Yes Yes Yes An array/list of indices of clone parameters re-

quired for at least each field that is of a class that
has a subclass.

3 Yes Yes Yes No additional dynamic information required.

Figure 3.24: Table of solutions to subclassing against desired cloning properties

Case 1: Referenced object’s static and dynamic types are the same

An example of this case is shown in Listing 3.17 (using class declarations in Listing 3.16), where an
instance of class F, references a C<this,this,this> object through field, fc.

Here, cloning the object in field fc as part of cloning e through the clone method clone(boolean
b, Map m) in class F, and poses no problems. This is regardless of the number of cloning parameters
that the subtype has because the class, F, knows exactly the class and the clone parameters of the object
referenced, f.fc. Hence, the clone method in E will call the clone method as defined in class C, passing
the required values to clone the dynamic type of f.fc.
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1 F<this> f = new F<this>();
2 f.fc = new C<this,this,this>();
3 f.clone();

Listing 3.17: Example of an object, f.fc, whose static and dynamic types are the same, based on class
declarations in Listing 3.16.

Case 2a: Referenced object’s static and dynamic types are different, but have the same
number of cloning parameters.

An example of this case is shown in Listing 3.18, where f.fa has static type A<this,this> and
dynamic type B<this,this>.

Because the number of cloning parameters of the dynamic type and the static type are the same, the
expected parameters of the cloning methods of the static and dynamic class will be the same. Cloning e
will result in calling clone(boolean b, boolean b, Map m) generated for class F, which clones
the object at f.fa. The clone(boolean b, boolean b, Map m) method generated for B will be
executed due to dynamic dispatch. Hence, the object will be cloned in accordance to its dynamic type
and the current cloning methods do not need to be altered.

A potential problem is if a subclass has the same number of cloning parameters as the class it extends,
but have the cloning parameters in a different order e.g. class E in Listing 3.16. Then when the cloning
method is called, the wrong order of Boolean values may be passed if the caller of the method expected
the object to be an instance of the superclass.

1 F<this> f = new F<this>();
2 f.fa = new B<this,this>();
3 f.clone();

Listing 3.18: Example of an object, f.fa, with different static and dynamic types and the same cloning
parameters, based on class declarations in Listing 3.16.

Case 2b(i): Referenced object’s dynamic type has less cloning parameters.

An example of this case is shown in Listing 3.19, where f.fa has static type A<world,world> and
dynamic type D<world>.

Class A will have a generated parametric clone method that expects 2 boolean arguments, whilst
class B’s parametric clone method only expects 1 boolean argument (corresponding to the number of
formal cloning parameters each class has). As a consequence, when f.clone() is executed on line 3,
the method call to clone the object at f.fa will only be passed 1 Boolean value since class F only knows
the field has static type A<world>. This means that the parametric clone method implemented in A is
executed and fClone.fa has a different dynamic type to f.fa.

1 F<world> f = new F<world>();
2 f.fa = new D<world>();
3 F<world> fClone = f.clone();

Listing 3.19: Example of an object with different static and dynamic types that have different cloning parameters

Case 2b(ii): Referenced object’s dynamic type has more cloning parameters.

An example is shown in Listing 3.20, where f.fa has static type A<world,world> and dynamic type
C<world,world,this>.

The clone method in F will call the clone method in A to clone field fa. Class F does not know the
dynamic type of fa, which may change during execution. Hence, when the field f.fa is cloned, only 2
Boolean values will be passed to the clone method.

1 F<world> f = new F<world>();
2 f.fa = new C<world,world,this>();
3 f.clone();

Listing 3.20: Example of an object with different static and dynamic types that have different cloning parameters

3.4.1 Solution 1: Clone Referenced Objects According to their Static Type

A solution is to use static binding when calling clone methods, which does not require the proposed clone
methods to be changed. This means that class F will always call the clone method defined in the A class.
This guarantees that the cloned object is a copy of the original object with respect to the static type
and have a dynamic type equal to the static type.
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However, for subclasses (B) that have the same number of cloning parameters as their superclass (A),
if an field has dynamic type B<o1,o2> and static type A<o1,o2> then when the field is cloned, the
method implemented in class B will be executed. The object should instead be cloned as an A object.

To solve this problem, we can ensure objects are cloned according to their static type by renaming
the original parametric clone method for a class, C, as cloneC to indicate that it clones itself as type
C. So cloneC should only be called when the object is a field where the declared type is C. If the
object was stored as a superclass A, then cloneA (inherited) will be called.

For example, the generated code for the classes in Listing 3.16 are shown in Listing 3.21. Class E
implements cloneE) and inherits methods (cloneC and (cloneA. When fields are cloned in parametric
clone methods, the clone method matching the static type is called (lines 15, 36, 37, 57 - 59).

1 class A {
2 D fd;
3

4 A clone() {
5 return this.clone(false, false, new IdentityHashMap());
6 }
7

8 A cloneA(Boolean b1, Boolean b2, Map m) {
9 Object o = m.get(this);

10 if (o != null) {
11 return (A)o;
12 } else {
13 A oClone = new A();
14 m.put(this,oClone);
15 oClone.fd = b1 && this.fd != null ? this.fd.cloneD(b1,m) : this.fd;
16 return oClone;
17 }
18 }
19 }
20

21 class C extends A {
22 C fc;
23

24 C clone() {
25 return this.cloneC(false, false, new IdentityHashMap());
26 }
27

28

29 C cloneC(Boolean b1, Boolean b2, Boolean b3, Map m) {
30 Object o = m.get(this);
31 if (o != null) {
32 return (C)o;
33 } else {
34 C oClone = new C();
35 m.put(this,oClone);
36 oClone.fd = b1 && this.fd != null ? this.fd.cloneD(b1,m) : this.fd;
37 oClone.fc = b1 && this.fc != null ? this.fc.cloneC(b1,b2,b3,m) : this.fc;
38 return oClone;
39 }
40 }
41 }
42

43 class E extends C {
44 E fe;
45

46 E clone() {
47 return this.clone(false, false, false, new IdentityHashMap());
48 }
49

50 E cloneE(Boolean b1, Boolean b2, Boolean b3, Map m) {
51 Object o = m.get(this);
52 if (o != null) {
53 return (E)o;
54 } else {
55 E oClone = new E();
56 m.put(this,oClone);
57 oClone.fd = b3 && this.fd != null ? this.fd.cloneD(b3,m) : this.fd;
58 oClone.fc = b3 && this.fc != null ? this.fc.cloneC(b3,b1,b2,m) : this.fc;
59 oClone.fe = true && this.fe != null ? this.fe.cloneE(true,b2,b3,m) : this.fe;
60 return oClone;
61 }
62 }
63 }

Listing 3.21: Generated code for classes A, C and E in Listing 3.16 under current cloning method.
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Cloning Properties

Here we evaluate this solution against the desired cloning properties described in Section 3.1. Properties
1 and 3 do not hold in a subset of situations that fall under the classification of case 2b.

Property 1: All objects that are reachable inside o are also cloned. This does not always hold
if class C has additional fields (not declared in the superclass A) that has this as the owner. Because
objects are cloned as their static types, only fields that are declared in the static class will be considered
when cloning.

Property 2: All objects outside of o must not be cloned. This will hold because static binding
means that only fields known in the static class (i.e. the superclass) will be known and considered for
cloning. Hence all other referenced objects in the subclass will not be cloned regardless of whether they
are inside or outside the object.

Property 3: The heap after cloning o is homomorphic to the heap before cloning o. This
cannot be guaranteed for the same reason why property 1 is not guaranteed. The structure of the clone
of an object, which has a dynamic type different to its static type, may not be the same as the original
object’s structure since some fields may not be referenced.

Property 4: Minimise the amount of dynamic information that is needed to be stored. No
dynamic information is needed to be maintained.

Other Potential Problems

Other potential problems with the result of cloning according to the static type are: the clone may have
a different behaviour; additional difficulty with cloning in certain situations; and abstract classes.

It is possible that the cloned object will not have the exact behaviour of the original object if subclasses
can override methods of the superclass. However, we would expect the returned result of calling a method
on an object, o, to be the equal to the result of calling a method on o’s clone.

There is a potential problem with cloning when an object is referenced by fields with different static
type. An example is illustrated in Figure 3.25, where an object, oF , has two fields references to the same
object, oAC (whose dynamic type is C〈oG, oG, oG〉):

• Via field, fa, with static type A〈oG, oG〉.

• Via field, fc, with static type C〈oG, oG, oG〉.

Listing 3.22 shows how these objects and references can be constructed. A possible result of cloning
oG is Figure 3.26, where oAC is cloned as an A object when field fa is cloned before field fc. Then
when calling clone(...) on field fc, the clone, oAC ′, already exists and will try to assign it to the
field. However, oAC ′ has dynamic type A〈oG, oG, oG〉 and cannot be assigned to fc that has static type
C〈oG, oG, oG〉.

If abstract classes are supported, another potential problem is when there is a field declaration with
an abstract class (i.e. references objects that extend the abstract class). In this case, cloning an object
would clone the referenced object as if it was its superclass and return an instance of the abstract class.

1 class G<c> {
2 F<this> ff;
3

4 G() {
5 this.ff new F<this>();
6 this.ff.fc = new C<this,this,this>();
7 this.ff.fa = this.ff.fc;
8 }
9 }

Listing 3.22: Example of cloning difficulty when an object is referenced by fields with different static types, based
on Listing 3.16.
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oG : G〈world〉

oF : F〈oG〉

oAC : C〈oG, oG, oG〉

ff

fafc

Figure 3.25: Example where an object is referenced by fields with different static types, based on class declarations
in Listings 3.22 and 3.16.

oG : G〈world〉

oF : F〈oG〉

oAC : C〈oG, oG, oG〉

oG′ : G〈world〉

oF ′ : F〈oG〉

oAC′ : A〈oG, oG〉

ff

fafc

ff

fafc

Figure 3.26: A possible result of cloning oG in Figure 3.25, where oAC has been cloned as an A object and field
fc cannot reference the clone of oACS.

3.4.2 Solution 2: Clone Objects According to their Dynamic Type

In contrast to solution 1, this solution is to clone objects exactly as their dynamic type even in the case
where the static and dynamic types has different clone parameters. This guarantees the cloned object
will have the same dynamic type and have the same behaviour even with overridden methods.

To achieve this, the main challenge is the cloning method of F does not know statically the exact
sequence of parameters that it needs to pass when cloning the field f.fa. This can be solved by
adopting the alternative cloning method, Generate Permutation-like Order of Cloning Parameters for
Fields, explained in more detail in Section 3.2.2. A permutation-like order list for each field is stored in
the class to give the field’s cloning parameters as indices into the class’s formal cloning parameters. This
is then used when cloning fields, to find the Boolean values to pass to the field referenced object, which
may have different actual cloning parameters in its dynamic type from its declared type in the class.

For example, Listing 3.23 will be the code for class F from Listing 3.16. When a field, fa, is cloned,
the boolean values given to F’s clone method is re-ordered based on the permutation-like order and
passed to the clone method call.

Here, the parametric clone methods expect 2 arguments exactly, a list of Boolean values (rather than
given as individual arguments) and the map of objects cloned. As a result, the parametric clone method
executed will be the one implemented in the dynamic class of the object and since the permutation-like
order list has been used to re-order bs, the clone method receives the correct number and order of
Boolean values.

However, the problem with this solution is that the generated clone code requires dynamic information
about cloning parameters to be stored and maintained as a list for each field declared in a class.

1 class F {
2 A fa;
3 List<Integer> faPerm;
4

5 C fc;
6 List<Integer> fcPerm;
7
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8 F clone() {
9 List<Boolean> bs = new List<Boolean>();

10 bs.add(false);
11 return this.clone(bs, new IdentityHashMap());
12 }
13

14 F clone(List<Boolean> bs, Map m) {
15 Object o = m.get(this);
16 if (o != null) {
17 return (F)o;
18 }
19

20 F oClone = new F();
21 m.put(this, oClone);
22

23 if (this.fa != null) {
24 List<Boolean> bs = Perm.reorder(bs, this.faPerm);
25 oClone.fa = bs.get(0) ? this.fa.clone(bs,m) : this.fa;
26 }
27

28 if (this.fc != null) {
29 List<Boolean> bs = Perm.reorder(bs, this.fcPerm);
30 oClone.fc = bs.get(0) ? this.fc.clone(bs,m) : this.fc;
31 }
32 return oClone;
33 }
34 }

Listing 3.23: Generated code that uses permutation-like order lists, in standard Java, for the class F in Listing
3.16.

3.4.3 Solution 3: Restrict assignments

Unlike Solution 2, this solution does not use either of the alternative cloning methods described in
Section 3.2. The idea of this solution is to only allow assignments of objects to variables/fields if the
dynamic clone parameters can be derived from the static clone parameters. This involves:

1. Generating cloning methods as in the original cloning approach. This allows cloning works as
normal for Case 1, where the static and dynamic types of a field are the same, and for a subset of
Case 2(a), where the cloning parameters of a class are the exactly the same as the class it extends.

2. Reordering formal cloning parameters in class declarations where the class extends another class
with the same cloning parameters but in a different order. This solves the problem with subcases
of Case 2(a), where Boolean values could be passed to the cloning method in the wrong order if
the caller referenced the object through a field with the superclass as its static type.

3. Generating clone methods to override superclass’ parametric clone method if the class extends a
class that has more cloning parameters. This deals with case 2(b)i, where more Boolean values may
be passed to the parametric clone method and hence executing the clone method implemented in
the superclass.

4. Restricting assignments in the extended language so that any assignments that cause Case 2(b)ii
to arise are now invalid.

Reordering Formal Cloning Parameters for Case 2(a)

For classes that have the same number of cloning parameters but in a different order than the class it
extends, the formal cloning parameters can be reordered in the subclass’ class declaration so that the
cloning parameters are expected to be in the same order as its superclass. Listing 3.24 is an example
of the rewritten class declaration of the example, where only line 1 has been rewritten. The cloning
parameters in field declarations remain unchanged because we are only changing the order in which
cloning parameters appear in the class’s sequence of formal cloning parameters (and hence in types).

Once, the cloning parameters are reordered, generating the cloning methods according to the original
approach is sufficient. Calls to the parametric clone method when the object is referenced as its superclass
will result in the subclass’s clone method to be called with Boolean arguments passed in the correct order.

1 class E<c1,c2,c3> extends C<c1,c2,c3> {
2 E<this,c3,c1> f;
3 }

Listing 3.24: Class E in Listing 3.16 rewritten with cloning parameters renamed so that they are in the same
order as its superclass.
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Overriding Superclass’ Parametric Clone Method for Case 2(b)i

For classes have less formal cloning parameters than their superclass, override the superclass’ parametric
clone method. The implementation of the method will call the parametric clone method that has the
correct number of Boolean values for this class.

For example, the class declaration that would be generated from class D, including the overridden
clone method is given in Listing 3.25. Lines 21 - 23 is overrides the clone method from A and calls its
original parametric clone method declared on lines 8 - 19. This is possible because the cloning parameters
of the subtype (D<c>) can be derived from the cloning parameters of the supertype (A<c,c>) when the
subclass has less formal cloning parameters.

1 class D extends A {
2 C fc;
3

4 D clone() {
5 return clone(false, new IdentityHashMap());
6 }
7

8 D clone(Boolean b1, Map m) {
9 Object o = m.get(this);

10 if (o != null) {
11 return (D) o;
12 }
13

14 D oClone = new D();
15 m.put(this, oClone);
16 oClone.fd = b1 ? this.fd.clone(b1, m) : this.fd;
17 oClone.fc = b1 ? this.fc.clone(b1, b1, b1, m) : this.fc;
18 return oClone;
19 }
20

21 D clone(Boolean b1, Boolean b2, Map m) {
22 return clone(b1, m);
23 }
24 }

Listing 3.25: Example of class D that override the clone method from its superclass, based on Listing 3.16.

Restricting Assignments

This solution is to restrict assignments of subtypes to only allow assignments of objects that are subtypes
to the static type of the receiver and do not have more cloning parameters. The problematic case 2b will
not occur if this is enforced.

For example, A<this,this> a = new B<this,this>() is a valid assignment but A<this,this>
a = new C<this,this,this>() is an invalid assignment. Hence, C objects can only be referenced
through fields that are declared as type an instance of class C.

3.5 Generics
In Java, generics are used such as for the generic class, List<T>, where T is a generic type parameter,
and when a List is instantiated, the actual type is passed in the parameters e.g. new List<String>().
Extending cloning to generics requires solving the problem that generic types, T, are unknown until the
class is instantiated. Therefore, statically, it is not known what the cloning parameters of the generic
type is and consequently, the it is not known which Boolean values should be passed to the referenced
objects of type T when cloning the generic class.

Extending the system involves:

• Extending the syntax with parameters for generics (Section 3.5.1).

• Solving the problem of how objects know what information is required to be passed to the cloning
method of fields in a generic class (Section 3.5.2).

The proposed solution is to store permutation-like order lists for generic type parameters, a vari-
ation to the alternative cloning method described in Section 3.2.2. These indicate the cloning
parameters of generic parameters by indexing into the formal cloning parameters.

The solution satisfies properties 1, 2 and 3, but it requires dynamic information to be stored in the
corresponding standard Java code for each generic class, otherwise there is no way of knowing the actual
cloning parameters of type parameters. This is unless a restriction is placed on generic class declarations
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such as ensuring that cloning parameters of type parameters are declared in class declarations. For
example class C<c1,c2,T<c2>> {...}, where the classes that T may take are those that have a
single cloning parameter (which must be the second cloning parameter of the object instance of C).
This is likely to be too restrictive in practice because the type that the generic type can take would be
restricted to classes that have the exact same number of cloning parameters.

3.5.1 Syntax

The syntax for class declaration and types are extended as follows:

ClassDecl ::= class C〈c,G〉{FieldDecl MethDecl}
FieldType ::= C〈ca,Ga〉 | Ga

G ::= Identifier generic type identifiers

Ga ::= G | t actual type parameter

Classes can be declared with type parameters after the clone parameters, can be used as field types
and must be instantiated with a type when an instance of the class is created. For example, Listing 3.28
shows a generic class declaration, where G parameters are the generic type parameters. Constructing a
new instance of the class A involves passing actual types in place of the generic parameters, for example,
A<c1,c2,B<c2>> a = new A<c1,c2,B<c2>>().

The actual cloning parameters of type parameters must be one of the actual parameters of the class,
i.e. {c1, c2} for the current example, and actual type parameters do not change over time.

1 class A<c1,c2,G> {
2 G f1;
3 C<c2> f2;
4 }

Listing 3.26: Example of generic class A in standard Java.

3.5.2 Solution

For generic classes the problem is that the sequence of cloning parameters for type parameters are
not known statically and hence the Boolean values to pass to the clone method of any generic field is
unknown. This can be solved by adapting the alternative cloning method, Generate Permutation-like
Order of Cloning Parameters for Fields, explained in more detail in Section 3.2.2. A permutation-
like order list for each generic type parameter is stored in the class to give the generic type’s cloning
parameters as indices into the class’s formal cloning parameters. This is then used when cloning fields
that use generic type parameter as a field type, to find the Boolean values to pass to the field referenced
object.

The permutation-like order list should be assigned when generic class is instantiated and do not
change since actual type parameters of an object cannot change over time. This removes the need to
maintain the permutation-like order list once it is first assigned.

Constructors

Since the order of actual cloning parameters is only known during instantiation, the constructors of
generic class will accept a permutation-like order list for each generic type parameter and stores them in
new fields. For example, the translated class A is shown in Figure 3.28, where the constructor is shown
in lines 7 - 9, storing the list in a new field, gPerm.

For every instantiation of a generic class, the permutation-like order list is generated and passed to
the constructor, e.g. A<c1,c2,B<c2>> a = new A<c1,c2,B<c2>>() becomes Listing 3.27.

1 List<Integer> gPerm = new List<Integer>();
2 gPerm.add(1);
3 A<B> a = new A<B>(gPerm);

Listing 3.27: Example of corresponding standard Java code for A<c1,c2,B<c2>> a = new
A<c1,c2,B<c2>>().

1 class A<c1,c2,G> {
2 G f1;
3 C f2;
4

5 List<Integer> gPerm;
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6

7 A(List<Integer> gPerm) {
8 this.gPerm = gPerm;
9 }

10

11 A<G> clone() {
12 List<Boolean> bs = new List<Boolean>();
13 bs.add(false);
14 bs.add(false);
15 return this.clone(bs, new Map());
16 }
17

18 A<G> clone(List<Boolean> bs, Map m) {
19 Object n = m.get(this);
20 if (n != null) {
21 return (A<G>)n;
22 }
23

24 A<G> oClone = new A<G>(this.gPerm);
25 m.put(this, oClone);
26

27 oClone.f1 = this.f1 != null && bsG.get(this.gPerm(0)) ? this.f1.clone(Perm.reorder(bs,
this.gPerm), m) : this.f1;

28

29 List<Boolean> bsc = new List<Boolean>();
30 bsc.add(bs.get(1));
31 oClone.f2 = this.f2 != null && bs.get(1) ? this.f2.clone(bsc, m) : this.f2;
32

33 return oClone;
34 }
35 }

Listing 3.28: Example of generic class A in standard Java.

Clone methods

The permutation-like order list is sufficient for deriving the corresponding Boolean values (from the
parametric clone method) that will have to be passed when cloning fields that are instances the generic
type parameter. In this solution, parametric clone methods accept a List<Boolean> argument instead
of individual Boolean arguments, and use the stored ordering when checking whether to clone a field of
type G and passing boolean values.

This general cloning method involving generics is shown Figure 3.29, where the changes are lines:

25 Changed parametric clone method signature by replacing Boolean parameters with a list of Booleans.
This causes necessary changes to the implementation of the clone() method in lines 17 - 23.

33 - 35 The Boolean value corresponding to the owner of each field is checked before deciding whether
to clone. If the Boolean is true then the field is cloned by calling clone on the field and passing
the Boolean values that it expects by reordering the list of boolean values by using the permutation-
like order list. This uses the helper method defined in Listing 3.5 to get the list of Boolean values
to pass to the generic field’s clone method.

1 class C<G1,...,Gk> {
2 G1 f1;
3 ...
4 Gn fn;
5

6 List<Integer> g1Perm;
7 ...
8 List<Integer> gkPerm;
9

10 C(List<Integer> G1,..., List<Integer> Gk) {
11 this.g1perm = g1perm;
12 ...
13 this.gkperm = gkperm;
14

15 }
16

17 C<G1,...,Gn> clone() {
18 List<Boolean> bs = new List<Boolean>();
19 bs.add(false);
20 ...
21 bs.add(false);
22 return this.clone(bs, new Map());
23 }
24
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25 C<G1,...,Gn> clone(List<Boolean> bs, Map m) {
26 Object n = m.get(this);
27 if (n != null) {
28 return (C<G1,...,Gn>)n;
29 }
30

31 C<G1,...,Gn> oClone = new C<G1,...,Gn>(g1Perm,...,gnPerm);
32

33 oClone.fg1 = bs.get(g1Perm.get(0)) ? fg1.clone(Perm.reorder(bs, g1Perm), m) : fg1;
34 ...
35 oClone.fgk = bs.get(gkPerm.get(0)) ? fgk.clone(Perm.reorder(bs, gkPerm), m) : fgk;
36

37 return oClone;
38 }

Listing 3.29: General generic class implementation in standard Java.

3.6 Combining Extensions for Arrays, Subclasses and Generics
We have so far considered extending the cloning approach for arrays, subclasses and generics separately.
How these extensions fit together is discussed in this section, including the extended syntax to include
all three features. First, we consider the effects the features will have on each other (Section 3.6.1), then
we present the refined extended syntax that covers the three features (Section 3.6.2) and the cloning
methods (Section 3.6.4).

3.6.1 Effects of Arrays, Subclasses and Generics on Each Other

The selected solutions for each feature were:

• Arrays – generate an array clone method for each class and each dimension (Section 3.3.5).

This solution uses the alternative cloning method described in Section 3.2.1, where parametric
cloning methods have a List<Boolean> argument in place of the sequence of Boolean arguments.

• Subclassing – restrict assignments of objects to variables/fields so that only cases where the dynamic
actual cloning parameters can be derived from the static type (Section 3.4.3).

• Generics – generate permutation-like order lists for deriving cloning parameters of generic type
parameters (Section 3.5.2).

This uses versions of the alternative cloning methods described in Section 3.2, where parametric
cloning methods have a List<Boolean> argument in place of the sequence of Boolean arguments
and use permutation-like order list to reorder Boolean values.

The implications of combining these solutions in order to have these features in one extension are:

• The solutions for the arrays and generics extensions require all parametric cloning methods to use
List<Boolean> as an argument, whilst the originally proposed cloning methods pass these values
as individual arguments. All parametric clone methods for the subclassing extension will have to
be changed to use a list.

This will not be a problem for arrays, but the solution for subclassing involve generating two
parametric clone methods when subclasses have less cloning parameters than the class they extend.
The difference between the signatures of the two clone methods are by the number of Boolean values,
hence this can be adapted to using List<Boolean> by having one parametric clone method and
performing a check on the length of the list to decide what actions to take.

• Arrays may have elements that are subtypes of the declared array element type. This will not pose
a problem because we restrict assignments of subclass objects to have the same clone parameters
as its superclass. Hence, all objects in an array can handle cloning when Boolean values expected
by the superclass are passed to subclass’ parametric cloning methods.

• There may be generic arrays declared as in fields of a generic class. This is where a generic type
parameter is used to specify the type of array leaf elements (i.e. the class and formal cloning
parameters of objects in an array). The arrays extension require a cloning method to be generated
for each class and dimension that appears in the program. Therefore, a generic array cloning
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method need to be generated for each generic array and dimension combination. However, since
these will be generic arrays, reflection is needed to be used to create the array clone.

The generated permutation-like order lists can be used to order the Boolean values in the list and
appending to the front of the list, the known Boolean values representing the owners of array. This
final list can then be passed to the generic array cloning method, which operates very similarly to
the usual array cloning methods.

• Generic classes may have subclasses assigned to fields whose type is given by a type parameter. This
will not pose a problem because when an instance of the generic class is created, the actual type
becomes known and cloning parameters of the generic types can be derived from the permutation-
like order list. For subclassing, we restrict assignments of subclass objects to so that subclasses
can only be assigned if they can handle cloning when the number of Boolean values expected by
the superclass is passed. Hence, objects can only be assigned to generic fields if they are subtypes
that have less of the same number of cloning parameters.

• Generic class declarations can specify bounds for generic types parameters, this restricts the types
that the generic type parameter may be instatiated as. This corresponds to bounded type parame-
ters in Java such as class C<T extends String>. Since the supertype of the type parameter
is declared, the cloning parameters of the supertype are also known. As a result, the permutation-
like order list stored will be indices for the supertype’s cloning parameters. This can be further
optimised by removing the permutation-like order list for bounded generic type parameters because
the relative cloning parameters are constant for the class.

The combined solution has the desired cloning properties 1, 2, and 3, but the generics solution
require some dynamic information to be stored in the derived code. However, this is necessary since
actual cloning parameters of generic type parameters are unknown until the generic class is instantiated.

3.6.2 Syntax

The refined extended syntax that covers the three features is the following:

ClassDecl ::= class C〈c,GPar〉{FieldDecl MethDecl}
class C1〈c,GPar〉 extends C2〈c′, ga〉{FieldDecl MethDecl}

FieldType ::= C〈ca, ga〉 | t[]〈ca〉 | ga
GPar ::= G | G extends C〈ca〉

G ::= Identifier generic type identifiers

ga ::= G | t actual type parameter

Listing 3.30 is an example of class declarations that uses all features, using the extended syntax.
ClassA has a generic type parameter and class B is a subclass of A, with bounded generic type parameter
and an array of elements that have the given type parameter.

1 class A<c1,c2,G> {
2 A<c1,c2,G> fa1;
3 G fa2;
4 }
5

6 class B<c1,c2,G extends A<c1,c2>> extends A<c1,c2,G> {
7 C<c2>[]<this> fb1;
8 G[]<tihs> fb2;
9 }

10

11 class C<c> {
12 }

Listing 3.30: Example of classes using arrays, subclassing and generics.

3.6.3 Restricting Assignments

The solution for the subclassing extension includes restricting assignments of subtypes to only allow
assignments of objects that are subtypes to the static type of the receiver and do not have more cloning
parameters. This can be extended to generics by adding the constraint that the actual type parameters
must match (including the actual cloning parameters).
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For example, Listing 3.31 contains examples of valid assignments and Listing 3.32 contains examples
of invalid assignments.

1 A<this,this,C<this>> ac;
2 B<this,C<this>> bc;
3 ac = bc;
4

5 A<this,this,A<this,this,C<this>>> aac;
6 B<this,A<this,this,C<this>>> bac;
7 aac = bbc;

Listing 3.31: Example of valid assignments based on class declarations in Listing 3.30.

1 A<this,this,C<this>> acThis;
2 A<this,this,C<world>> acWorld;
3 A<this,world,C<this>> aWorldc;
4 B<this,C<world>> bcWorld;
5 B<world,C<this>> bWorldc;
6

7 // Generic type parameters do not match: C<this> and C<world>
8 // ac = acWorld;
9

10 // Cloning parameters do not match: A<this,this,G> and A<this,world,G>
11 // ac = aWorldc;
12

13 // Generic type parameters do not match: C<this> and C<world>
14 // ac = bcWorld;
15

16 // Cloning parameters do not match: A<this,this,G> and B<world,G>
17 // ac = bWorldc;
18

19 // Generic type parameters do not match: A<this,this,C<this>> and B<this,C<this>>
20 A<this,this,A<this,this,C<this>>> aac;
21 A<this,this,B<this,C<this>>> abc;
22 // aac = abc;

Listing 3.32: Example of invalid assignments based on class declarations in Listing 3.30.

3.6.4 Generating Cloning Methods

The steps involved in generating the Java code with cloning methods will be explained using the example
in Listing 3.30:

1. To allow cloning generic arrays:

(a) Generate an interface, Cloneable, that declares the cloning methods that all classes will
implement (Listing 3.33 lines 1 - 4).

(b) Generate a new class for cloning arrays that have array leaf elements of primitive types or
generic types (Listing 3.33 lines 6 - 22):

• Generate static generic array cloning method for each dimension of generic arrays that
appears in the program (lines 7 - 21). This expects bs to be the Boolean values to be
passed for cloning G objects.

2. For each appearance of a non-generic arrays:

(a) In the new class for cloning arrays (from the previous point 1b), generate a static array cloning
method for each dimension of arrays with primitive type leaf elements. (None exist in our
example.)

(b) Generate a static array cloning method for each dimension and class, C, combination that
appears in the program, in the class declaration of class C. (Listing 3.34 lines 20 - 35, is the
1-dimensional array cloning method for class C, generated because C[] is a field of B)

3. For cloning generic classes, A and B:

(a) Generate a class, Perm, that contains the helper method, reorder, that returns a reordered
list of Boolean values should be passed to clone objects associated with the given permutation-
like order list. (Listing 3.33 lines 24 - 33).

(b) Add a field in generic classes to store a permutation-like order list for each type parameter
(Listing 3.34 line 5, this field also inherited by class B).
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(c) Add a constructor for generic classes that accepts a permutation-like order list for each type
parameter (Listing 3.34 lines 7 - 9 and Listing 3.35 lines 5 - 7).

4. Cloning in general:

(a) Check whether a clone of this object already exists (Listing 3.34 lines 19 - 22, Listing 3.35
lines 16 - 19, and Listing 3.36 lines 9 - 12). If it does not exist then create a new instance of
the class.

(b) If the class extends a class with more cloning parameters, check the length of the Boolean
list argument. If the list has more elements than the number of cloning parameters of the
current class, then derive and reconstruct the list of Boolean values for the subclass from the
superclass. (Listing 3.35 lines 21 - 26.)

(c) Before cloning fields, construct a new list of Boolean values that should be passed to clone
the field (Listing 3.34 lines 27 - 30 and Listing 3.35 lines 31 -34).

Additionally, for generic types, reorder the list of Boolean values before calling clone for fields
of generic type (Listing 3.34 lines 32 - 33 and Listing 3.35 lines 36 -37).

(d) When cloning arrays:

• Construct the list of Booleans with Boolean values representing the owner of the outermost
array listed first and the last Boolean values are those for cloning the array leaf elements.
(Listing 3.35 lines 39 - 41)
Additionally, for generic arrays, this involves reordering the , to get the correct order of
Boolean values for cloning the generic leaf elements. (Listing 3.35 lines 44 - 45).

• Remove the Boolean value representing the outermost array to check whether to clone
the array object. If the elements of the outermost array should be cloned, call clone on
each element while passing the updated list of Boolean values and the map. (Listing 3.35
lines 42 and 46).

1 interface Cloneable {
2 Cloneable clone();
3 Cloneable clone(List<Boolean> bs, Map<Object, Object> m);
4 }
5

6 class Arrays {
7 static <G> G[] cloneG1(G[] array, List<Boolean> bs, Map m) {
8 Object n = m.get(array);
9 if (n != null) {

10 return (G[])n;
11 }
12

13 G[] oClone = (G[]) Array.newInstance(array.getClass().getComponentType(), array.length
);

14

15 Boolean owner = bs.get(0);
16 for(int i = 0; i < array.length; i++) {
17 oClone[i] = (G) (owner && array[i] != null ? ((ICloneable)array[i]).clone(bs,m) :

array[i]);
18 }
19

20 return oClone;
21 }
22 }
23

24 class Perm {
25 static List<Boolean> reorder(List<Boolean> bs, List<Integer> perm) {
26 List<Boolean> reordered = new List<Boolean>();
27 for(Integer index : perm) {
28 Boolean b = index == -1 ? true : (index == -2 ? false : bs.get(index));
29 reordered.add(b);
30 }
31 return reordered;
32 }
33 }

Listing 3.33: Extra classes/interface that should be generated for Listing 3.30.

1 class A<G> implements Cloneable {
2 A<G> fa1;
3 G fa2;
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4

5 List<Integer> gPerm;
6

7 A(List<Integer> gPerm) {
8 this.gPerm = gPerm;
9 }

10

11 A clone() {
12 List<Boolean> bs = new List<Boolean>();
13 bs.add(false);
14 bs.add(false);
15 return this.clone(bs, new IdentityHashMap());
16 }
17

18 A clone(List<Boolean> bs, Map m) {
19 Object n = m.get(this);
20 if (n != null) {
21 return (A) n;
22 }
23

24 A clone = new A(this.gPerm);
25 m.put(array, clone);
26

27 List<Boolean> fBs = new List<Boolean>();
28 fBs.add(bs.get(0));
29 fBs.add(bs.get(0));
30 clone.fa1 = this.fa1 != null && bs.get(0) ? this.fa1.clone(fBs,m) : this.fa1;
31

32 fBs = Perm.reorder(bs, this.gPerm);
33 clone.fa2 = this.fa2 != null && fBs.get(0) ? this.fa2.clone(fBs,m) : this.fa2;
34

35 return clone;
36 }
37 }

Listing 3.34: Class that should be generated for Class A from Listing 3.30.

1 class B<G extends C> extends A<G> implements Cloneable {
2 C[] fb1;
3 G[] fb2;
4

5 B(List<Integer> gPerm) {
6 this.gPerm = gPerm;
7 }
8

9 B clone() {
10 List<Boolean> bs = new List<Boolean>();
11 bs.add(false);
12 return this.clone(bs, new IdentityHashMap());
13 }
14

15 B clone(List<Boolean> bs, Map m) {
16 Object n = m.get(this);
17 if (n != null) {
18 return (B) n;
19 }
20

21 if (bs.size() == 2) {
22 // Called as superclass
23 List<Boolean> deriveBs = new List<Boolean>();
24 deriveBs.add(bs.get(0));
25 bs = deriveBs;
26 }
27

28 B clone = new B(this.gPerm);
29 m.put(array, clone);
30

31 List<Boolean> fBs = new List<Boolean>();
32 fBs.add(bs.get(0));
33 fBs.add(bs.get(0));
34 clone.fa1 = this.fa1 != null && bs.get(0) ? this.fa1.clone(fBs,m) : this.fa1;
35

36 fBs = Perm.reorder(bs, this.gPerm);
37 clone.fa2 = this.fa2 != null && fBs.get(0) ? this.fa2.clone(fBs,m) : this.fa2;
38

39 fBs = new List<Boolean>();
40 fBs.add(true);
41 fBs.add(bs.get(0));
42 clone.fb1 = this.fb1 != null && fBs.remove(0) ? C.clone1(this.fb1,fBs,m) : this.fb1;
43

44 fBs = Perm.reorder(bs, this.gPerm);
45 fBs.add(0,true);
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46 clone.fb2 = this.fb2 != null && fBs.remove(0) ? Arrays.cloneG1(this.fb2,fBs,m) : this.
fb2;

47

48 return clone;
49 }
50 }

Listing 3.35: Class that should be generated for class B from Listing 3.30.

1 class C implements Cloneable {
2 C clone() {
3 List<Boolean> bs = new List<Boolean>();
4 bs.add(false);
5 return this.clone(bs, new IdentityHashMap());
6 }
7

8 C clone(List<Boolean> bs, Map m) {
9 Object n = m.get(this);

10 if (n != null) {
11 return (C) n;
12 }
13

14 C clone = new C();
15 m.put(array, clone);
16

17 return clone;
18 }
19

20 static C[] clone1(C[] array, List<Boolean> bs, Map m) {
21 Object n = m.get(array);
22 if (n != null) {
23 return (C[]) n;
24 }
25

26 C[] clone = new C[array.length];
27 m.put(array, clone);
28

29 Boolean owner = bs.get(0);
30 for(int i = 0; i < array.length; i++) {
31 clone[i] = owner && array[i] != null ? array[i].clone(bs, m) : array[i];
32 }
33

34 return clone;
35 }
36 }

Listing 3.36: Class that should be generated for class C from Listing 3.30.
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Chapter 4

Implementation

As a proof of concept, I implemented the basic cloning approach (Section 2.3) as a new Java extension
language, which I named CloneCodeGen. This was implemented by using Polyglot to build a pre-
processor/compiler that takes source code written in CloneCodeGen and translates it into standard Java
with generated clone method as described in Section 2.3.3.

The process of compiling source code written in the extended language into standard Java is shown in
Figure 4.1. The input file is parsed to produce an internal object structure that is the abstract syntax tree
(AST) representing the program. By default Polyglot traverses the AST several times (called passes),
each time performing different checks, modifying the AST. The last pass transforms the AST to a String
representation of the program in standard Java and writes it to an output file. Changes made to the
default set of passes included:

• Extension of the parser to recognise the extended syntax and create an AST with extended nodes
where necessary.

• To generate the clone methods, a new pass, GenerateCloneCode, was inserted before the Type
Check pass (Section 4.2). This pass adds the implementation of clone methods to the AST so that
it will be translated by Polyglot’s default passes. This pass is done here because if it was inserted
after the Type Check pass instead, type checked information needs to be manually added to nodes
created during this new pass.

The aim of the pre-processor is to show generating clone methods based on ownership types is possible,
so only minimal type checking was implemented as a simplification and assume only type-safe source
code will be given as input. Hence, I have only implemented checks to ensure the owner parameters used
in field declarations are in scope (i.e. owner parameters may be this, world and the formal owner
parameters of the class declaration). This ensures the compiler correctly generates the implementation
of clone methods.

4.1 Structure
The overall structure of the compiler is shown in Figure 4.2, this is generated by the script provided with
Polyglot for creating Polyglot extension. The main components that are modified for this extension are:

• ExtensionInfo class is modified to add the new Genereate Clone Code pass to the scheduler.

• parse package contains the extended ppg, flex and generated cup files. When the compiler is built,
these files generate the classes that parse input files and create AST nodes by using the node factory
in the ast package.

• ast package contains classes that represent nodes of AST and the node factory, which creates the
concrete instances of the node. These classes and interfaces extend corresponding classes from
Polyglot

• visit package contains the class that visits nodes in the AST for the Generate Clone Code pass. It
adds clone methods for class declarations that appear in the AST.
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Figure 4.1: Overview of process of compiling CloneCodeGen source code into Java source code.
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Figure 4.2: Overview of components of CloneCodeGen compiler and dependencies between them.

• types package contains classes that represent: the extended type system, new types, exceptions,
and context extended with owner parameters in scope.

Figure 4.3 shows the structure of the clonecgen.parse package, most files are automatically generated
when the compiler is built. The files created/modified are:

• New CCGParsedName class extending ParsedName from Polyglot with a collection of Id AST node
objects that are used to represent owner parameters.

• Extended cloneCGen.ppg grammar file to expect owner parameters wherever reference types are
expected and not allow subclassing and interfaces. This uses the new node factory to create the
AST .
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Figure 4.3: Class diagram of CloneCodeGen’s Parse package.

Figure 4.4 is the class diagram of the AST package, where:

• CCGNodeFactory interface and implementing class extends the node factory in Polyglot so that
the new CCGAmbTpeNode and CCGClassDecl nodes are created instead of the classes that they
extend and the creation of other nodes is not changed.

• CCGAmbTypeNode represents types before they are disambiguated and type checked, the actual
owner parameters of the type are stored as a list of Id objects. The interface is extended with
getters and setters for the owner parameters list.

• CCGClassDecl is the extended class declaration node, where the work on generating and adding
clone methods occur when visited in the Generate Clone Code pass. This involves adding the
Cloneable interface to the node; creating new nodes for each method, statement, and expression;
and ensuring a default constructor exists and each field’s owner parameters are in scope.

Other nodes and the majority of the inherited methods for the extended classes are unchanged so
that the default scheduled passes have the default behaviour of checking and transforming the AST into
standard Java.

Figure 4.5 is the class diagram of the Types package, where:

• CCGTypeSystem creates the extended context, CCGContext c, and creates array type objects
extended with owner parameters. Although cloning of arrays is not implemented, we allow arrays
to be used in the extension language and assume it is not used as a type in field declarations.

• CCGArrayType extends ArrayType with the owner of the array object.

• CCGContext interface and implementing class extend Context with a list of String representing
the owner parameters in scope and a method for checking whether an owner is in scope. ”this”
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Figure 4.4: Class diagram of CloneCodeGen’s AST package.
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and ”world” are always in scope, and the formal owner parameters of a class declaration are added
to the list when the class’ scope is entered.

Figure 4.6 is the class diagram of the Visit package, where there is only one class, CloneCodeGenerator.
This class visits the nodes in an AST and whenever it visits an extended class declaration node, it calls
the new method in CCGClassDecl that generates and add clone code to the class.

SemanticExceptionNoOwnerParameterException

TypeSystem c

TypeSystemCloneCGenTypeSystem

CloneCGenTypeSystem c

Context

Context c

CCGContext

CCGContext c

ArrayType c

ArrayType

CCGArrayType c

CCGArrayType

ReferenceType cReferenceType

Type cType

polyglot.typesclonecgen.types

〈〈creates〉〉 〈〈creates〉〉

Figure 4.5: Class diagram of CloneCodeGen’s Types package.
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clonecgen.visit

clonecgen.ast

Figure 4.6: Class diagram of CloneCodeGen’s Visit package.

4.2 Generate Clone Code Pass
The compiler generates clone methods in the clone methods in the GenerateCloneCode pass and the
majority of the work in performed in the class declaration AST nodes. In this section, I describe and
give code examples of the key steps to generating the clone methods in the GenerateCloneCode pass.

Key steps of this pass are:

1. GenerateCloneCode object instructs class declaration nodes to generate clone methods when
they are visited. This is achieved by overriding the leaveCall method in GenerateCloneCode
(Listing 4.1). It passes itself as an argument so that the class declaration node can access the node
factory, type system and context that GenerateCloneCode has. This is needed for creating new
nodes and checking owner parameters of field declarations are in scope.

Listing 4.2 is the implementation of the called method, which co-ordinates the next steps.

2. Check the owner parameters of field declarations are in scope because the implementation of clone
methods depend on the owner parameters (Listing 4.2, lines 7 - 23). If there is an owner parameter
that is not in scope, then an exception is thrown (lines 16 - 20).

3. Add Cloneable to the list of interfaces that the class declaration implements (Listing 4.2, line
26). The implementation of the called method is given in Listing 4.3, where a mutable copy of the
existing list of interfaces is obtained (line 2) before the Cloneable interface is added in line 3 and
set the interfaces in line 4.

4. Create and add method declaration nodes to the class declaration node (Listing 4.2, line 27). The
implementation of the called method is in Listing 4.4, where:

(a) Method declaration nodes are created and added to the body (lines 2 - 8). An example of
how a method declaration node is created is given in Listing 4.5, which is the implementation
of the method called in line 4.

(b) Method instances (MedthodDef objects) corresponding to the method declarations are added
to the type system (lines 10 - 11).

Listing 4.5 shows an example of creating a new method declaration node, this involves:

1. Constructing the AST nodes representing the body of the new method (lines 6 - 17).

2. Create the MethodDecl node by calling the node factory and passing as arguments a visibility
flag node, the return type of the method, the name of the method, the formal parameters of the
method, the exceptions that the method throws and the method body (lines 19 - 25).

3. Create and set the method instance object for the method declaration node (lines 27 - 31), which
expects as arguments the types for the arguments passed in lines 22 - 25.
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1 @Override
2 protected Node leaveCall(Node old, Node n, NodeVisitor v) throws SemanticException {
3 if (n instanceof CCGClassDecl) {
4 CCGClassDecl classNode = (CCGClassDecl)n;
5 return classNode.createCloneMethod(this);
6 }
7

8 return n;
9 }

Listing 4.1: Code in GenerateCloneCode for creating clone methods when a class declaration node is visited.

1 @Override
2 public Node createCloneMethod(CloneCodeGenerator cloneCodeGenerator) throws

SemanticException {
3 CloneCGenTypeSystem ts = (CloneCGenTypeSystem) cloneCodeGenerator.typeSystem();
4 CloneCGenNodeFactory nf = (CloneCGenNodeFactory) cloneCodeGenerator.nodeFactory();
5 CCGContext context = (CCGContext) cloneCodeGenerator.context();
6

7 List<ClassMember> classMembers = this.body.members();
8 for(ClassMember member : classMembers) {
9 if(member instanceof FieldDecl) {

10 FieldDecl fd = (FieldDecl)member;
11 TypeNode t = fd.type();
12 if(t instanceof CCGAmbTypeNode) {
13 CCGAmbTypeNode tn = (CCGAmbTypeNode) t;
14 List<Id> fieldOwners = tn.ownerParams();
15

16 for(Id owner : fieldOwners) {
17 if (!context.ownerParameterInThisScope(owner.id())) {
18 throw new NoOwnerParameterException(owner.id().toString(), owner.

position());
19 }
20 }
21 }
22 }
23 }
24

25 CCGClassDecl_c cd = (CCGClassDecl_c) this.copy();
26 cd = cd.addCloneableInterface(nf, ts);
27 cd = (CCGClassDecl_c) cd.addCloneMethod(cloneCodeGenerator);
28 return cd;
29 }

Listing 4.2: Method in class CCGClassDecl c called by GenerateCloneCode to add clone code.

1 protected CCGClassDecl_c addCloneableInterface(CloneCGenNodeFactory nf,
CloneCGenTypeSystem ts) {

2 List<TypeNode> interfaces = TypedList.copyAndCheck(this.interfaces(), TypeNode.class,
false);

3 interfaces.add(nf.CanonicalTypeNode(this.position(), ts.Cloneable()));
4 return (CCGClassDecl_c) this.interfaces(interfaces);
5 }

Listing 4.3: Implementation for adding an implemented interface to a class declaration.

1 protected CCGClassDecl_c addCloneMethod(CloneCodeGenerator cloneCodeGenerator) throws
SemanticException {

2 ClassBody newBody = body();
3

4 MethodDecl cloneMethod = this.addTopMostCloneMethod(cloneCodeGenerator);
5 MethodDecl cloneParamMethod = this.addParamCloneMethod(cloneCodeGenerator);
6

7 newBody = newBody.addMember(cloneMethod);
8 newBody = newBody.addMember(cloneParamMethod);
9

10 this.type.addMethod(cloneMethod.methodDef());
11 this.type.addMethod(cloneParamMethod.methodDef());
12

13 return (CCGClassDecl_c) body(newBody);
14 }

Listing 4.4: Implementation for adding method declarations to the class and type system.

1 protected MethodDecl addTopMostCloneMethod(CloneCodeGenerator cloneCodeGenerator) throws
SemanticException {

2 CloneCGenTypeSystem ts = (CloneCGenTypeSystem) cloneCodeGenerator.typeSystem();
3 CloneCGenNodeFactory nf = (CloneCGenNodeFactory) cloneCodeGenerator.nodeFactory();
4 Position pos = position();
5

6 Block valuesBlock = nf.Block(pos);
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7

8 List<Expr> args = new LinkedList<Expr>();
9 for(int i = 0; i < this.ownerParams.size(); i++) {

10 args.add(nf.BooleanLit(pos, false));
11 }
12

13 Type hashmapType = ts.typeForName(QName.make("java.util.IdentityHashMap"));
14 args.add(nf.New(pos, nf.CanonicalTypeNode(pos, hashmapType), Collections.EMPTY_LIST));
15

16 Call call = nf.Call(this.position, nf.Id(pos,"clone"), args);
17 valuesBlock = valuesBlock.append(nf.Return(pos, call));
18

19 FlagsNode vmFlagsNode = nf.FlagsNode(pos, Flags.PUBLIC);
20 TypeNode returnType = nf.CanonicalTypeNode(pos, this.type.asType());
21 Id name = nf.Id(pos, "clone");
22 MethodDecl cloneMethod = nf.MethodDecl(
23 pos, vmFlagsNode, returnType,
24 name, Collections.EMPTY_LIST, Collections.EMPTY_LIST,
25 valuesBlock);
26

27 MethodDef md = ts.methodDef(pos, Types.ref(this.classDef().asType()),
28 vmFlagsNode.flags(), Types.ref(returnType.type()), Name.make("clone"),
29 Collections.EMPTY_LIST, Collections.EMPTY_LIST);
30

31 return cloneMethod.methodDef(md);
32 }

Listing 4.5: Implementation for creating method declaration node for the parameterless clone method.

4.3 Testing
11 test classes were written in the extended Java language to test the pre-processor that implements
the basic cloning approach (without arrays as fields, subclassing and generics). For test classes that
was expected to compile successfully, 22 unit tests were written using JUnit to test the generated clone
methods behave as expected.

The test.sh and pthScript scripts provided by Polyglot were used to compile all the test classes into
standard Java by executing test.sh once. The test files and the compiler error messages expected for
each file were added to pthScript and when test.sh is executed, it reports whether each file compiled as
expected.

These test classes are included in Appendix D and cover fringe cases:

• Class with no constructor.

• Class with no fields.

• Class with a field of a primitive type.

• Class contains reference types.

• Using world and this as an owner parameters.

• Cloning parameters of fields are in different orders.

• Importing and using classes from the Java Class Library (but not as fields).

• Use of arrays (aside from as fields).

• Calling and declaring methods.

• Making field assignments.

• Calling clone() in some of the code.

• Class is not compiled when there is a field with a cloning parameter that is not in scope.

Unit testing the clone behaviour involved testing each pair of clone methods with after creating
objects with different structures, this is to test that the referenced objects are not cloned more than
once. Different object instances were tested to cover cases where:

• Object makes a field reference to itself.

• Object’s fields reference the same object.
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Chapter 5

Evaluation

In this section, we evaluate this approach to ownership directed cloning by generating clone implemen-
tation for the basic generation of cloning code and for each feature extension.

5.1 Pre-processor and General Cloning Approach
The pre-processor and the basic cloning approach is evaluated in the following aspects to applicability,
usability and correctness. The main issues are the applicability due to the small coverage of features,
and using classes from the Java Class Library. Because the basic cloning approach was first proposed
for a small subset of the Java language, this approach to cloning is still not yet applicable to writing real
programs and annotating existing programs.

Applicability

A major issue related to the Java Class Library is that the pre-processor cannot compile any programs
that use any class from the Java Class Library as a field (even the String class). This is because
classes in the Java Class Library do not have the parametric cloning methods that this approach to
cloning generates and uses. A potential solution is to extend the pre-processor so that it can generate
methods or blocks of statements that should be called or inserted into the parametric cloning methods
when cloning commonly used classes (such as String) when they are stored as fields.

Some investigation was carried out to see if this cloning approach was applicable to classes from the
Java Class Library. For the basic cloning approach, I was unable to find classes that could be annotated
with ownership types such that the implemented pre-processor could be used to generate cloning methods
for them. The main reasons for this were classes used features that were not dealt with in the basic
cloning approach: subclassing, interfacing, arrays, and static fields/classes. Otherwise, classes that this
cloning approach was not applicable for, were used as fields in other classes.

From this investigation, I observed that there are methods with arguments that are reference types
but these arguments do not get assigned to fields of any object. Adding cloning parameters to these
arguments may be too restrictive when it does not really matter what the cloning parameters of the object
is. For example, Listing 5.2 shows a method in Formatter, which takes a String as an argument but
does not get assigned to any field.

Another observation from the investigation was very few fields will actually use this as an owner
parameter because fields are often initialised in the constructor, where the values/objects are passed as
arguments. If the object, o, has not been created yet, then it is not possible for objects with o as a
cloning parameter to exist. A small example of this is the FilterOutputStream class (Listing 5.1).

1 class FilterOutputStream extends OutputStream {
2 /*
3 * The underlying output stream to be filtered.
4 */
5 protected OutputStream out;
6

7 public FilterOutputStream(OutputStream out) {
8 this.out = out;
9 }

10 ...
11 }

Listing 5.1: Class where fields are initialised with arguments passed in the constructor.
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1 public final class Formatter implements Closeable, Flushable {
2 ...
3 private int width(String s) {
4 width = -1;
5 if (s != null) {
6 try {
7 width = Integer.parseInt(s);
8 if (width < 0)
9 throw new IllegalFormatWidthException(width);

10 } catch (NumberFormatException x) {
11 assert(false);
12 }
13 }
14 return width;
15 }
16 ...
17 }

Listing 5.2: Class where a method has a String argument that does not get stored as a field.

Usability

To apply this cloning approach to existing programs, all classes must be annotated with cloning pa-
rameters, this is difficult for large and complex programs and must not use features that have not been
implemented yet by the pre-processor.

In contrast, I tried writing a small program using ownership types and the pre-processor to generate
clone methods; and then compared this with writing the same program with clone implementation that
achieves the same cloning behaviour by hand. The time and effort to do both was similar but the bulk
of the reasons for this are different between the two cases, and the number of lines of code written were
approximately the same.

The main difficultly with writing the program using ownership type was the lack of IDE support,
implemented features (for example List could not be used) and taking care with which cloning param-
eters to give to fields. On the other hand, writing the clone implementation by hand that gives the same
cloning behaviour took the most effort but wring the rest of the program was easier and less classes were
created because the Java Class Library could be used.

In general, this cloning approach would be more usable if commonly used features are handled and
classes from the Java Class Library can be used.

Correctness

The pre-processor successfully shows that cloning methods can be generated using ownership types and
the testing validates that the generated clone methods behave as expected. However, limited type
checking is implemented and checks for problematic situations are not performed, so there may be
unexpected behaviours in cases where programs have invalid assignments and ownership structures.

5.2 Extensions to the Cloning Approach

Cloning without Owners-as-Dominators

To allow the use of iterators, we wanted to allow owners-as-dominators to be broken, I discovered without
owners-as-dominators, sometimes cloning causes type errors. I formulated conditions that prevent the
possibility of re-entering domain paths from occurring, whilst allowing owners-as-dominators to be broken
if they do not create re-entering domain paths. There has been other approaches to allow owners-as-
dominators to be broken in a controlled manner such as Owners as Ombudsmen [34], however, for our
specific use of ownership types for cloning, the problematic situations are still possible.

Arrays

I proposed several solutions for extending this cloning approach to array objects, these solutions involved
generating new cloning methods for cloning arrays specifically. Each proposed solution have the desired
properties of cloning described in Section 3.1, when cloning an object o:

• All objects inside o are also cloned.

• All objects outside of o are not cloned.

• The clone is homomorphic to o (have the same shape).
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• No dynamic information amount cloning parameters are stored in fields.

The selected solution for the arrays extension (without generics) was to generate an array clone
method for each class and array dimension combination that appears in the program. The advantage of
this solution over the other proposed solutions is Java reflection, which has slower performance, is not
used. However, this solution can potentially generate many methods if many multi-dimensional arrays
appear in a program.

Subclassing

The selected solution involves generating methods to override superclass’ clone method and restricting
assignments so that an object, o, cannot be assigned to a variable/field with static type, t〈ca〉, unless
one of the following is true:

• o is an instance of a subclass of t and o has less or the same number of cloning parameters.

• o has dynamic type t〈ca〉.

Unlike of the approaches I proposed for extending cloning to deal with subclassing, this solution has
all the desired cloning properties, but this means that some assignments are invalid even though the
object is a valid subtype of the receiver. This is the case when subclass have more cloning parameters
than the class it extends, it is not unlikely that this occurs when the superclass is very simple and
subclasses declare new fields.

Generics

Extending this cloning approach to deal with generic classes had the problem that the cloning parameters
of generic type parameters are not known. The solution I proposed requires a permutation-like order
list (Section 3.2.2) to be added to each generic class to represent the indices of cloning parameters of
each type parameter. Although it is desired for no dynamic information to be additionally stored, it
is necessary in the case of generic types because the cloning parameters are unknown until an instance
of the class is created. This is unless there is the restriction that generic type parameter’s sequence
of cloning parameters are restricted to be identical to the class’s cloning parameters. The other three
desired cloning properties hold and we are able to limit the dyamic information stored to only be for
generic type parameters.

As a consequence of this solution, the combined extension (dealing with arrays, subclassing and
generics) involves generating an additional generic array cloning method, which requires reflection to be
used to create array clones since the actual type of array elements is not known.
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Chapter 6

Conclusion

6.1 Achievements
Main achievements of this project are I have extended the cloning approach of generating ownership
directed clone methods proposed in Trust the Clones[15]. I implemented the basic cloning approach as a
Java language extension, using Polyglot. The resulting clone methods do not clone objects too deeply or
too shallow, allowing programmers to annotate code with cloning (owner) parameters and relieves them
from maintaining clone implementation directly.

The problems and solutions for extending this cloning approach for arrays, subclassing and generics
have been explored. These extensions ensure the cloning policy is followed and aim to minimise the
amount of dynamic information about ownership that is needed to be stored in the generated code
standard Java. Permutation-like order lists are stored only when they are necessary for deriving cloning
parameters of generic type parameters.

I have also investigated the problem and formulated the solution to preventing potentially problematic
situations where breaking owners-as-dominators sometimes cause type errors when cloning. Our solution
allows owners-as-dominators to be broken as long as problematic re-entering domain field paths are not
possible.

6.2 Challenges/Difficulties
Challenges I experienced in this project were in using Polyglot, such as adding nodes to the AST,
debugging and running the compiler. Developing and running using Eclipse, and making use of the
attach source feature helped with the latter two problems. Existing documentation and many example
Java language extensions using Polyglot helped solve problems with rewriting the AST.

Despite these difficulties, I would recommend using Polyglot to implement language extensions. The
learning curve may be steep for Polyglot but after learning from practical experience and exploring
existing examples, using Polyglot allows Java language extensions to be implemented without writing an
immensely large amount of code.

6.3 Future Work
Further work in this area will help make this cloning approach more applicable to real programs. This
includes extending cloning to deal with other features such as interfacing, static fields or classes, and
investigating how to deal with uses of the Java Class Library (since these classes do not have parametric
clone methods and many do not implement the Cloneable interface). We would also like to support
existential/variable clone parameters so that this cloning approach is more permissive – this should not
be a problem if objects with variable clone parameters are not stored as fields.

The pre-processor can be extended to generate cloning code for arrays, subclassing, generics and any
further features explored. I would suggest using Polyglot to do this and developing in Eclipse, making
use of the attach source and debugging features.
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Appendix A

Alternative Formalisation of
Statically Prevent Problematic Case

Another formalisation of solution 2 for cloning without OAD described in Section 3.1.3, is given here,
including the necessary syntax of field paths, relative position paths; auxiliary functions; and definition
of well-formed classes.

Figure A.1 gives the syntax of relative position paths and field paths are extended to include repeated
sequences of fields. A relative position path is a sequence of actual owner parameters (relative to some
object), which may have infinitely repeated subsequence due to an infinitely repeated sequence in the
corresponding field path. The asterisks (∗) indicate an infinitely repeated sequence of fields and owner
parameters in field paths and relative position paths, respectively. In addition, the functions first and
last are defined for extracting the first and last owner from a relative position path.

p ::=this|this.fp Field Path

fp ::=f ∗ |(f.fp) ∗ |f |f.fp Many fields

rpp ::=ca|ca.rpp|rrp∗ Relative Position Path

first : RelativePositionPath→ ActualOwner

first(ca) = ca

first(ca.rpp) = ca

first(rpp∗) = undefined

last : RelativePositionPath→ ActualOwner

last(ca) = ca

last(cs.rpp) = last(rpp)

last(rpp∗) = undefined

Figure A.1: Syntax for Field Path and Relative Position Path; and definitions of auxiliary functions.

Other auxiliary functions, allPaths, relPosPath and hasRDP are defined in Figure A.2, the following
is a description of each function:

allPaths
Returns a set of field paths starting from the given path (which currently references an object
instance of class C with actual owner parameters ca), given a program, P . The set includes all
possible paths except for those that traverse a sequence of fields (through the same objects) more
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than once, however, paths that end with an infinitely repeated sequence of fields indicated with ∗
are included.

In some cases, objects in infinitely repeated sequence of fields do not have the same type, such as
when the owner parameters of a field in the sequenced is this. However, this means that objects
in the infinite loop will become more and more nested inside, I propose that if a RDP can occur
from a nested object then a RDP should also be able to occur from an object in the first instance
of the repeated sequence.

Arguments:

• P is the current program.

• C is the class of the object referenced by path

• ca is the actual owner parameters of the object referenced by path

• TP is a mapping from types of visited objects to the path that led to the visited object. This
keeps track of visited objects and enables cycles to be detected.

• path is the field path constructed so far and is being extended further till no fields are available
or we visit the same class and actual owners again (i.e. the same object).

Constructing the set of paths involves recursive calls to allPaths for each field, f , in class of C and
passing the extended path, updated visited objects mapping, and updated currently referenced class
and actual owner parameters. The actual owner parameters are found by applying a substitution
to the owner parameters of the field as declared in class C. This substitution is replacing the
appearances of formal owner parameters of C with the actual parameters, ca.

relPosPath
Returns the RPP corresponding to the first given field path, p1, by recursively calling relPosPath
to build the RPP as fields in p1 are visited.

Arguments:

• p1 is the target field path, whose corresponding RPP is to be returned.

• p2 is the field path processed so far.

• rpp is the RPP so far (corresponding to p2). When p1 = p2, this rpp is returned.

• PT is a mapping from field paths (processed so far) to the types of their objects. This mapping
enables us to find the relative object position of the next object referenced by a field by looking
up the formal owner parameters of fields and substituting them with actual parameters from
the object referenced by p2.

For repeated sequences of fields, we make a recursive call to relPos supposing there is only 1
instance of the sequence, f∗. From the returned RPP, we extract the subsequence, rp, that
represents f . We can then indicate rp is a repeating sequence in the final RPP.

hadRDP
Returns whether the given RPP, rpp, corresponds to a field path is a RDP or contains once. This
inspects the first 2 owners, ca1 and ca2, in rpp if available; if ca1 is outside this and ca2 is this
then rpp contains a RDP; otherwise a recursive call is made with ca1 removed. For the repeated
sequence case, we check whether there is a RDP from the last owner to the first owner in the
repeated sequence, rpp1, and whether there is a RDP in rpp1 itself. If the end of rpp is reached
without finding a RDP, then there is no RDP and false is returned.
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allPaths : (Program× ClassId×ActualOwners× (Type→ Path)× Path)→ P(Path)

allPaths(P,C, ca, TP, path) =



p1.(f∗) if TP (C〈ca〉) is defined

where p1 = TP (C〈ca〉) and path = p1.f

{path} if Fs(P,C) = ∅

⋃
∀f ∈ Fs(P,C) : Otherwise

allPaths(P,C1, ca1, TP1, p1)

where C1〈fo〉 = F (P,C, f)

and ca1 = fo[ca/O(P,C)]

and TP1 = TP [C〈ca〉 7→ path]

and p1 = path.f

relRosPath : (Path× Path× (Path→ Type)×RelativePositionPath)→ RelativePositionPath

relRosPath(p1, p2, PT, rpp) =



rpp if p1 = p2

relPos(p1, p2.f, PT
′, rpp′) if p1 = p2.f.f l

where C〈ca〉 = PT (p2)

and A〈a〉 = F (P,C, f)

and ca1, ca2 = a[ca/O(P,C)]

and rpp′ = rpp.ca1

and PT ′ = PT [p2.f 7→ A〈ca1, ca′〉]

rpp.(rp∗) if p1 = p2.(f∗)
where rpp.rp = relPos(p2.f , ps, PT, rpp)

hasRDP : RelativePositionPath→ Boolean

hasRDP (rpp) =



ca1 6= this ∧ ca2 = this if rpp = ca1.ca2

hasRDP (ca1.ca2) ∨ hasRDP (ca2.rpp
′) if rpp = ca1.ca2.rpp

′

hasRDP (ca.first(rpp1)) ∨ hasRDP (rpp1∗) if rpp = ca.(rpp1∗)
hasRDP (last(rpp1).first(rpp1)) ∨ hasRDP (rpp1) if rpp = rrp1∗
false otherwise

Figure A.2: Auxiliary functions for finding all paths from a class instance (AllPaths), calculating the RPP of a
given path (relPosPath) and determining whether a given RPP corresponds to a RDP (hasRDP ).

The conditions of a well-formed class is extended to require all possible field paths from an instance
of the class are not RDP’s: Using the functions given in Figure A.2, we extend the conditions of a well-
formed class C in program P (ClssWP,C), with a condition that checks whether an instance of a class
could reference objects through a RDP. This condition is given in Figure A.3, where the set of paths to
check is calculated and for each path, p, we require that it does not contain a RDP.
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ClssWFP (C) =


Original conditions of well-formed class

and

∀p ∈ AllPaths(P,C,O(P,C), [], this) :

not hasRDP (relRosPath(p, this, [this→ C〈O(P,C)〉], ε))

Figure A.3: Definition of well-formed class extended to prevent the possibility of RDP’s.

To demonstrate, we will now use the formalisation to detect a RDP for the program with the class
declarations in Listing 3.1, which we have previously shown may give rise to RDP’s:

ClssWFP (A) =∀p ∈ AllPaths(P,A,O(P,A), [], this) :

not hasRDP (relRosPath(p, this, [], ε))

=∀p ∈ AllPaths(P,A, c, [], this) :

not hasRDP (relRosPath(p, this, [], ε))

AllPaths(P,A, c, [], this) =AllPaths(P,B, this, [A〈c〉 7→ this], this.fb)

∪AllPaths(P,C, (c, this), [A〈c〉 7→ this], this.fc)

={this.fb}
∪AllPaths(P,B, this, [A〈c〉 7→ this, C〈c, this〉], this.fc.fb)

={this.fb}
∪ {this.fc.fb}

={this.fb, this.fc.fb}

relPosPath(this.fb, this, [this 7→ A〈c〉], ε)
=relPosPath(this.fb, this.fb, [this 7→ A〈c〉, this.fb 7→ B〈this〉], this)

=this

relPosPath(this.fc.fb, this, [this 7→ A〈c〉], ε)
=relPosPath(this.fc.fb, this.fc, [this 7→ A〈c〉, this.fc 7→ C〈c, this〉], c)
=relPosPath(this.fc.fb, this.fc.fb, [this 7→ A〈c〉, this.fc 7→ C〈c, this〉, this.fc.fb 7→ B〈this〉], c.this)

=c.this

hasRDP (this) = false

hasRDP (c.this) = true

From class A, there is a RPP that corresponds to a RDP, hence A is not a well-formed class.
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Appendix B

Detecting Re-entering Domain
Paths Attempts

In this section, I describe other attempts at detecting RDP’s and were found to be insufficient. These
are based on the observation that objects can only reference objects owned by objects represented by
the formal owner parameters of their class, this and world. Hence, RDP’s depend on the actual
owner parameters in field declarations and their relative position to the current class. Field referenced
objects can only make an ICBR if the owner of objects that breaks owners-as-dominators is passed as
an additional actual owner parameter for a field. For example, given class declaration in Listing B.1,
we know that for objects of class A, this.fa is outside of this since its owner is c and this.fa can
reference an object owned by this because this is passed as the second owner parameter of the field
fa. Hence, instances of class A may have RDP’s if fields are not null.

The attempts made to detect and prevent RDP’s from occurring are:

1. Restrict use of this owner parameter – If the first actual owner parameter of a field declaration is
not this then disallow this to appear as additional actual owner parameters for that field. This
is not a sufficient condition, which will be illustrated by an example where a RDP can occur without
passing this as additional owner parameters. The reason for this is that it only prevents RDP’s
from occurring immediately from the current class – within a path, p, the violating references to
an object outside and then back into the domain of the current class may still occur later in p.

2. Restrict use of the owner of the class – In addition to Attempt 1, if the first actual owner parameter
of a field declaration is not this, then disallow the owner of the current class to appear as additional
actual owner parameters for that field. This is not a sufficient condition, which will be illustrated
by an example where the RDP involves another object, o, in which the path has references from
an object inside o to an object outside and then back into o.

1 class A<c> {
2 B<c,this> fa;
3 B<this,this>fa2;
4 }
5

6 class B<c1,c2> {
7 C<c2> fb;
8 }
9

10 class C<c> {
11 }

Listing B.1: Example class declarations where for A objects, this.fa is outside of this but this.fa.fb is
inside this.

Attempt 1: Restrict use of this owner parameter

As illustrated from the previous example, a RDP can occur if this is passed as extra owner parameters
to fields whose owner is not this (and hence guaranteed to be outside the domain of the current class).
Therefore, fields not owned by this should not have this as an additional owner parameter. No
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problem occurs for fields that have this as its owner, such as fa2, because the referenced object is
inside this and should be allowed to reference other objects owned by this.

Figure B.1 shows how this condition can be expressed formally. Class A is not a well-formed class
because its field fb is not well-formed.

However, this is not a sufficient condition because RDP’s can occur even without having to pass this,
such as for the class declarations in Listing B.2. Figure B.2 shows how these classes can be instantiated
to give a RDP this.fb.fa.fa from o1 to o2 via o3. To also prevent such cases, Attempt 2 was made.

FieldWF (C〈ca1, ..., can〉f ; ) = ca1 6= this→ ∀ca ∈ {ca2, ..., can} : ca 6= this

Figure B.1: Condition for well-formed fields – restricts appearance of this.

1 class A<c1,c2> {
2 A<c2,c1> fa;
3 }
4

5 class B<c> {
6 A<this,c> fb;
7 }

Listing B.2: Example class declarations where RDP can occur without passing this as an extra owner parameter.

o1 : B<world>

o2 : A<o1,world> o3 : A<world, o1>

fa

fafb

Figure B.2: Example of object instances of classes in Listing B.2, where there is a RDP.

Attempt 2: Restrict use of the owner of the class

This extends Attempt 1 with an additional condition that fields not owned by this should not have the
owner of the current class as an additional owner parameter. For Listing B.2, this condition does not
hold for class A since the owner of field fa is outside of the current class and c1, the owner of the class,
is passed as the second owner parameter of the field.

Figure B.3 shows how this extended condition can be expressed formally.
However, this is not a sufficient condition because an RDP, p, can occur when it involves another

object, o, and p has contains references from an object inside o to an object outside and then back into o.
Figure B.4 illustrates this diagrammatically and the corresponding class declarations are given in Listing
B.3. The class declarations satisfy the condition but from Figure B.4, we can see that there is a RDP
from o2 to o6 (inside o2) via o5, which is outside o2.

This suggests that every step of any possible path from instances of a class have to be checked for
RDP’s and this led to Solution 2 detailed in Section 3.1.3.

FieldWFP,C1(C〈ca1, ..., can〉f ; ) = ca1 6= this→ ∀ca ∈ {ca2, ..., can} : (ca 6= this and ca 6= c1)

where class C1〈c1, ...ck〉{...} is defined

Figure B.3: Condition for well-formed fields of class C1 in program P – restricts appearance of this and the
owner of the class.
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o1 : B<world>

o5 : A<o1,o2>

o2 : B<o1>

o6 : B<o2>o3: A<o2,o1>

o4 : C<o3,o1,o2>

fb1

fb2

fa1
fc

fa2

Figure B.4: Example of object instances of classes in Listing B.2, where there is a RDP.

1 class A<c1,c2> {
2 C<this,c1,c2> fa1;
3 B<c2>fa2;
4 }
5

6 class B<c> {
7 B<this> fb1;
8 A<this,c> fb2;
9 }

10

11 class C<c1,c2,c3> {
12 A<c2,c3> fc;
13 }

Listing B.3: Example class declarations where for A objects, this.fa is outside of this but this.fa.fb is
inside this.
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Appendix C

Formal Characterisations of
Situations with Re-entering Domain
Paths

In this section, I show how the the two subcases of situations with RDP’s (described in Section 3.1.1)
can be characterised; this is optional and readers may skip this chapter. Given than there is a RDP from
o1 to o2, the two situations are:

(a) Only RDP’s exist – all paths from o1 to o2 are RDP’s.

(b) RDP’s and internal paths from o1 to o2 exist – there is a path, p, from o1 to o2 where all objects
referenced in p are in the cloning domain (we call p an internal path) as well as another path that
is a RDP.

Situations A and B can be characterised formally in terms of the heap and environment as SitA∗

and SitB∗ respectively, defined as:

SitA∗(o, χ,Γ) = ∃p, f ′.[Γ 6` χ(o, p) ≺∗ o and Γ ` χ(o, p.f ′) ≺∗ o and

∀p′′.(χ(o, p′′) = χ(o, p.f ′) =⇒ ∃p1, p2.p′′ = p1p2 and

Γ 6` χ(o, p1) ≺∗ o)]

SitB∗(o, χ,Γ) = ∃p, f ′.[(Γ 6` χ(o, p) ≺∗ o and Γ ` χ(o, p.f ′) ≺∗ o)
=⇒

(∃p′′.χ(o, p′′) = χ(o, p.f ′) and

∀p1, p2.p′′ = p1p2 =⇒ Γ ` χ(o, p1) ≺∗ o)]

In English, SitA∗ says that an object, o1, in the heap, χ, has a path to an object (o3) outside of it,
which has a field to an object inside o1 but cannot be reached by o1 via a field. The combination of paths
and fields used in this definition is sufficient because for situation A to hold, the minimum requirement
is that:

• There must be an object, o3, outside o1 that can be reached by some path from o1.

• o3 references an object, o2, inside o1.

• There is no path from o1 to this object (o2) that does not go outside of o1 – i.e. every path from
o1 to o2 goes outside of o1 at some point.

SitB∗ says that if the object, o1, in the heap has a path to an object (o3) outside of it and o3 has a
field to an object inside o1, then o1 must have a path, p′′, to that object where every step of p′′ stays
inside o1. Similar to SitA∗, the combination of fields and paths in this definition is sufficient.
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Variants of SitA∗ and SitB∗. Other versions of these properties were considered before choosing the
final formalisation. These include first characterising the concrete examples and then generalising them
(with different combinations of field references and paths between o1, o3 and o2) to capture all cases
that fall into Situation A and B.

The concrete examples in Figure 3.1a (an example of Situation A) can be detected with the property
SitA1 and Figure 3.1b (an example of Situation B) can be detected with the property SitB1, defined as:

SitA1(o, χ,Γ) = ∃f, f ′.(Γ 6` χ(o)(f) ≺∗ o and Γ ` χ(χ(o)(f))(f ′) ≺∗ o and

¬∃f ′′.χ(o)(f ′′) = χ(χ(o)(f))(f ′))

SitB1(o, χ,Γ) = ∃f, f ′.[(Γ 6` χ(o)(f) ≺∗ o and Γ ` χ(χ(o)(f))(f ′) ≺∗ o)
=⇒ ∃f ′′.χ(o)(f ′′) = χ(χ(o)(f))(f ′)]

In English, SitA1 says that the object at o in the heap, o, has a field to an object (o′) outside of its
ownership, which has a field to an object under the ownership of o but cannot be reached by o via a
field. SitB1 says that if the object at o in the heap has a field to an object (o′) outside of its ownership,
which has a field to an object under the ownership of o, then o must have a field to that object.

The properties can be extended from fields to paths (via fields of objects):

SitA2(o, χ,Γ) = ∃p, p′.[Γ 6` χ(o, p) ≺∗ o and Γ ` χ(χ(o, p), p′) ≺∗ o and

∀p′′.(χ(o, p′′) = χ(χ(o, p), p′) =⇒ ∃p1, p2.p′′ = p1p2 and

Γ 6` χ(o, p1) ≺∗ o)]

SitB2(o, χ,Γ) = ∃p, p′.[(Γ 6` χ(o, p) ≺∗ o and Γ ` χ(χ(o, p), p′) ≺∗ o)
=⇒ ∃p′′.χ(o, p′′) = χ(χ(o, p), p′)]

There can be a path of any length, as long as for all paths from object o1 to object o2, there is an
object that is not owned by o1, in the path; then the situation will be detected by SitA2.

It can be seen that SitA1 < SitA2, the counter example is given by figure C.1. Here, there is a path
from object 1 to object 4, which is not owned by 1, and a path from 4 to object 2, which is owned by 1,
but there is no path to from 1 to 2 that does not go outside of 1’s ownership. SitA1 fails to detect this
at 1, however, SitA2 detects this situation as required.

o1

o2

o3 o4...

Figure C.1: Example of a path from o1 to o2 that is more than 2 fields away and goes outside of o1’s ownership.

Other versions of SitA2 explored, using different combinations of fields and paths in the properties:

1. If p is just a field, f :

SitA3(o, χ,Γ) = ∃f, p′.[Γ 6` χ(o)(f) ≺∗ o and Γ ` χ(χ(o)(f), p′) ≺∗ o and

∀p′′.(χ(o, p′′) = χ(χ(o)(f), p′) =⇒ ∃p1, p2.p′′ = p1p2 and

Γ 6` χ(o, p1) ≺∗ o)]

This definition is not sufficient. SitA3 fails to detect cases where the only path from an object o1
to o2 (is owned by o1) goes outside the ownership of o1, but it only does so at a later step in the
path. Such a case is illustrated in Figure C.2.
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o1

o2o3

o4

Figure C.2: Example of a path from o1 to o2 that stays within o1’s ownership in the first step of the path.

2. If p′′ is just a field, f ′′:

SitA5(o, χ,Γ) = ∃p, p′.[Γ 6` χ(o, p) ≺∗ o and Γ ` χ(χ(o, p), p′) ≺∗ o and

¬∃f ′′.χ(o)(f ′′) = χ(χ(o, p), p′)]

SitA5 will hold for some cases that should be be classified as Situation B. For example, where for
some object o1 and object o2, whose owner is o1: there is a path from o1 to o2 that goes outside
the ownership of o1 and also a path from o1 to o2 that stays within the ownership of o1. This is
illustrated in Figure C.3.

o1

o2o3

o4

Figure C.3: Example of where there is path from o1 to o2 that stays within o1’s ownership and one that does
not.

Other versions of SitB2 use the same combinations as the variants of SitA2, and are insufficient for
the same reasons.
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Appendix D

Test Classes

This section contain the test classes used to test the pre-processor. For tests expected to compile, the
compiled class is also given.

Test class and compiled code for a class that uses an array (but not as a field).

1 package compilerTestClasses;
2

3 /*
4 * Test class that uses an array
5 */
6 public class Hello<c1,c2> {
7 public Hello() {}
8

9 public static void main(String<world
>[]<c1> args) {

10 System.out.println("Hello world!");
11 String<c1> a;
12 }
13 }

Listing D.1: Test class that uses an array (but not stored
as a field).

1 package compilerTestClasses;
2

3 public class Hello implements Cloneable {
4

5 public Hello() { super(); }
6

7 public static void main(String[] args)
{

8 System.out.println("Hello world!");
9 String a;

10 }
11

12 public Hello clone() {
13 return this.clone(false, false, new

java.util.IdentityHashMap());
14 }
15

16 public Hello clone(boolean b0, boolean
b1, java.util.IdentityHashMap map)
{

17 Object o = map.get(this);
18 if (o != null)
19 return (Hello) o;
20 else {
21 Hello oClone = new Hello();
22 map.put(this, oClone);
23 return oClone;
24 }
25 }
26

27 final public static String
jlc$CompilerVersion$jl = "3.2.0";

28 final public static long
jlc$SourceLastModified$jl =
1339503813000L;

29 final public static String
jlc$ClassType$jl = ...

30 }

Listing D.2: Generated Java class for Listing D.1.
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Test class that contains no fields.

1 package compilerTestClasses;
2

3 /*
4 * Test class with no fields
5 */
6 public class Simple<c> {
7 public Simple() {}
8 }

Listing D.3: Test class that has no fields.

1 package compilerTestClasses;
2

3 public class Simple implements Cloneable {
4

5 public Simple() { super(); }
6

7 public Simple clone() {
8 return this.clone(false, new java.

util.IdentityHashMap());
9 }

10

11 public Simple clone(boolean b0, java.
util.IdentityHashMap map) {

12 Object o = map.get(this);
13 if (o != null)
14 return (Simple) o;
15 else {
16 Simple oClone = new Simple();
17 map.put(this, oClone);
18 return oClone;
19 }
20 }
21

22 final public static String
jlc$CompilerVersion$jl = "3.2.0";

23 final public static long
jlc$SourceLastModified$jl =
1338383864000L;

24 final public static String
jlc$ClassType$jl = ...

25 }

Listing D.4: Generated Java class for Listing D.3.

Test class that contains a field of primitive type.

1 package compilerTestClasses;
2

3 /*
4 * Test class with primitive type field
5 * and imports.
6 */
7 public class Simple2<c1,c2> {
8 public int f1;
9

10 public Simple2() {
11 this.f1 = 0;
12 }
13 }

Listing D.5: Test class that has a field that is of a
primitive type.

1 package compilerTestClasses;
2

3 public class Simple2 implements Cloneable {
4 public int f1;
5

6 public Simple2() {
7 super();
8 this.f1 = 0;
9 }

10

11 public Simple2 clone() {
12 return this.clone(false, false, new

java.util.IdentityHashMap());
13 }
14

15 public Simple2 clone(boolean b0, boolean
b1,

16 java.util.IdentityHashMap map) {
17 Object o = map.get(this);
18 if (o != null)
19 return (Simple2) o;
20 else {
21 Simple2 oClone = new Simple2();
22 map.put(this, oClone);
23 oClone.f1 = this.f1;
24 return oClone;
25 }
26 }
27

28 final public static String
jlc$CompilerVersion$jl = "3.2.0";

29 final public static long
jlc$SourceLastModified$jl =
1338383896000L;

30 final public static String
jlc$ClassType$jl = ...

31 }

Listing D.6: Generated Java class for Listing D.5.
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Test class that contains fields of primitive and reference types, and methods that uses a
class from the Java Class Library.

1 package compilerTestClasses;
2

3 import java.lang.Integer;
4

5 /*
6 * Test class with a mix of primitive and

reference type fields,
7 * method declarations and use of imported

class from Java Class Library
8 */
9 public class Simple3<c1,c2> {

10 public Simple3<c1,c2> f1;
11

12 public int f2;
13

14 public Simple3() {
15 this.f1 = null;
16 this.f2 = 0;
17 }
18

19 public void setf1(Simple3<c1,c2> f1) {
20 this.f1 = f1;
21 }
22

23 public Simple3<c1,c2> getf1() {
24 return this.f1;
25 }
26

27 public int echo(String<world> line) {
28 try {
29 this.f2 = Integer.parseInt(line);
30 } catch (NumberFormatException<world> e

) {
31 this.f2++;
32 }
33

34 return this.f2;
35 }
36 }

Listing D.7: Test class that has primitive and reference
type fields; methods and uses Integer from the Java Class
Library.

1 package compilerTestClasses;
2

3 import java.lang.Integer;
4

5 public class Simple3 implements Cloneable {
6 public Simple3 f1;
7 public int f2;
8

9 public Simple3() {
10 super();
11 this.f1 = null;
12 this.f2 = 0;
13 }
14

15 public void setf1(Simple3 f1) { this.f1 =
f1; }

16

17 public Simple3 getf1() { return this.f1;
}

18

19 public int echo(String line) {
20 try {
21 this.f2 = Integer.parseInt(line);
22 }
23 catch (NumberFormatException e) { this.

f2++; }
24 return this.f2;
25 }
26

27 public Simple3 clone() {
28 return this.clone(false, false, new

java.util.IdentityHashMap());
29 }
30

31 public Simple3 clone(boolean b0, boolean
b1,

32 java.util.IdentityHashMap map)
{

33 Object o = map.get(this);
34 if (o != null)
35 return (Simple3) o;
36 else {
37 Simple3 oClone = new Simple3();
38 map.put(this, oClone);
39 oClone.f1 = this.f1 != null && b0
40 ? (Simple3) this.f1.clone(b0,

b1, map)
41 : this.f1;
42 oClone.f2 = this.f2;
43 return oClone;
44 }
45 }
46

47 final public static String
jlc$CompilerVersion$jl = "3.2.0";

48 final public static long
jlc$SourceLastModified$jl =
1339968401567L;

49 final public static String
jlc$ClassType$jl = ...

50 }

Listing D.8: Generated Java class for Listing D.7.
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Test class that uses world as the owner parameter of a field.

1 package compilerTestClasses;
2

3 /*
4 * Test class using world as an owner of a

field
5 */
6 public class Simple4<c1,c2> {
7 public int f1;
8

9 public Simple4<c2,c2> f2;
10

11 public Simple4<world,c2> f3;
12

13 public Simple4() {
14 this.f1 = 0;
15 this.f2 = null;
16 this.f3 = null;
17 }
18 }

Listing D.9: Test class that has world as an owner
parameter of a field.

1 package compilerTestClasses;
2

3 public class Simple4 implements Cloneable {
4 public int f1;
5 public Simple4 f2;
6 public Simple4 f3;
7

8 public Simple4() {
9 super();

10 this.f1 = 0;
11 this.f2 = null;
12 this.f3 = null;
13 }
14

15 public Simple4 clone() {
16 return this.clone(false, false, new

java.util.IdentityHashMap());
17 }
18

19 public Simple4 clone(boolean b0, boolean
b1,

20 java.util.IdentityHashMap map)
{

21 Object o = map.get(this);
22 if (o != null)
23 return (Simple4) o;
24 else {
25 Simple4 oClone = new Simple4();
26 map.put(this, oClone);
27 oClone.f1 = this.f1;
28 oClone.f2 = this.f2 != null && b1
29 ? (Simple4) this.f2.clone(b1,

b1, map)
30 : this.f2;
31 oClone.f3 = this.f3;
32 return oClone;
33 }
34 }
35

36 final public static String
jlc$CompilerVersion$jl = "3.2.0";

37 final public static long
jlc$SourceLastModified$jl =
1338384187000L;

38 final public static String
jlc$ClassType$jl = ...

39 }

Listing D.10: Generated Java class for Listing D.9.
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Test class that uses this as the owner parameter of a field.

1 package compilerTestClasses;
2

3 /*
4 * Test class with this as a owner of a

field
5 */
6 public class Simple5<c1,c2> {
7 public int f1;
8

9 // Hence, this.f2.f3 is owned by this
10 public Simple5<this,c2> f2;
11

12 // Owned by owner of ’this’
13 public Simple5<c1,world> f3;
14

15 public Simple5() {
16 this.f1 = 0;
17 this.f2 = null;
18 this.f3 = null;
19 }
20 }

Listing D.11: Test class that has this as an owner
parameter of a field.

1 package compilerTestClasses;
2

3 public class Simple5 implements Cloneable {
4 public int f1;
5 public Simple5 f2;
6 public Simple5 f3;
7

8 public Simple5() {
9 super();

10 this.f1 = 0;
11 this.f2 = null;
12 this.f3 = null;
13 }
14

15 public Simple5 clone() {
16 return this.clone(false, false, new

java.util.IdentityHashMap());
17 }
18

19 public Simple5 clone(boolean b0, boolean
b1,

20 java.util.IdentityHashMap map)
{

21 Object o = map.get(this);
22 if (o != null)
23 return (Simple5) o;
24 else {
25 Simple5 oClone = new Simple5();
26 map.put(this, oClone);
27 oClone.f1 = this.f1;
28 oClone.f2 = this.f2 != null
29 ? (Simple5) this.f2.clone(

true, b1, map)
30 : this.f2;
31 oClone.f3 = this.f3 != null && b0
32 ? (Simple5) this.f3.clone(b0,

false, map)
33 : this.f3;
34 return oClone;
35 }
36 }
37

38 final public static String
jlc$CompilerVersion$jl = "3.2.0";

39 final public static long
jlc$SourceLastModified$jl =
1338384245000L;

40 final public static String
jlc$ClassType$jl = ...

41 }

Listing D.12: Generated Java class for Listing D.11.
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Test class that has fields that are instances of other user defined classes.

1 package compilerTestClasses;
2

3 /*
4 * Test class with reference types that are

other classes (other than this class)
5 */
6 public class Simple6<c1,c2> {
7 public Simple4<this,c2> f1;
8

9 public Simple5<c1,world> f2;
10

11 public Simple6() {
12 this.f1 = null;
13 this.f2 = null;
14 }
15 }

Listing D.13: Test class that has other user defined
classes as fields.

1 package compilerTestClasses;
2

3 public class Simple6 implements Cloneable {
4 public Simple4 f1;
5 public Simple5 f2;
6

7 public Simple6() {
8 super();
9 this.f1 = null;

10 this.f2 = null;
11 }
12

13 public Simple6 clone() {
14 return this.clone(false, false, new

java.util.IdentityHashMap());
15 }
16

17 public Simple6 clone(boolean b0, boolean
b1,

18 java.util.IdentityHashMap map)
{

19 Object o = map.get(this);
20 if (o != null)
21 return (Simple6) o;
22 else {
23 Simple6 oClone = new Simple6();
24 map.put(this, oClone);
25 oClone.f1 = this.f1 != null
26 ? (Simple4) this.f1.clone(

true, b1, map)
27 : this.f1;
28 oClone.f2 = this.f2 != null && b0
29 ? (Simple5) this.f2.clone(b0,

false, map)
30 : this.f2;
31 return oClone;
32 }
33 }
34

35 final public static String
jlc$CompilerVersion$jl = "3.2.0";

36 final public static long
jlc$SourceLastModified$jl =
1338384305000L;

37 final public static String
jlc$ClassType$jl = ...

38 }

Listing D.14: Generated Java class for Listing D.13.
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Test class that uses has a constructor that expects parameters.

1 package compilerTestClasses;
2

3 /*
4 * Class with constructor that expects

arguments
5 */
6 public class Simple7<c1,c2> {
7 public Simple4<this,c2> f1;
8

9 public Simple5<c1,world> f2;
10

11 public Simple7(Simple4<this,c2> f1,
Simple5<c1,world> f2) {

12 this.f1 = f1;
13 this.f2 = f2;
14 }
15 }

Listing D.15: Test class that has a constructor with some
parameters.

1 package compilerTestClasses;
2

3 public class Simple7 implements Cloneable {
4 public Simple4 f1;
5 public Simple5 f2;
6

7 public Simple7(Simple4 f1, Simple5 f2) {
8 super();
9 this.f1 = f1;

10 this.f2 = f2;
11 }
12

13 public Simple7() { super(); }
14

15 public Simple7 clone() {
16 return this.clone(false, false, new

java.util.IdentityHashMap());
17 }
18

19 public Simple7 clone(boolean b0, boolean
b1,

20 java.util.IdentityHashMap map)
{

21 Object o = map.get(this);
22 if (o != null)
23 return (Simple7) o;
24 else {
25 Simple7 oClone = new Simple7();
26 map.put(this, oClone);
27 oClone.f1 = this.f1 != null
28 ? (Simple4) this.f1.clone(

true, b1, map)
29 : this.f1;
30 oClone.f2 = this.f2 != null && b0
31 ? (Simple5) this.f2.clone(b0,

false, map)
32 : this.f2;
33 return oClone;
34 }
35 }
36

37 final public static String
jlc$CompilerVersion$jl = "3.2.0";

38 final public static long
jlc$SourceLastModified$jl =
1339501151000L;

39 final public static String
jlc$ClassType$jl = ...

40 }

Listing D.16: Generated Java class for Listing D.15.
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Test class that calls the clone method of another object.

1 package compilerTestClasses;
2

3 /*
4 * Calls clone on another object
5 */
6 public class Simple11<c> {
7 public Simple11<c> twin;
8

9 public void makeTwin(Simple11<c> twin) {
10 this.twin = twin.clone();
11 }
12 }

Listing D.17: Test class that calls the clone method of
another object.

1

2 public class Simple11 implements Cloneable
{

3 public Simple11 twin;
4

5 public void makeTwin(Simple11 twin) {
this.twin = twin.clone(); }

6

7 public Simple11() { super(); }
8

9 public Simple11 clone() {
10 return this.clone(false, new java.util.

IdentityHashMap());
11 }
12

13 public Simple11 clone(boolean b0, java.
util.IdentityHashMap map) {

14 Object o = map.get(this);
15 if (o != null)
16 return (Simple11) o;
17 else {
18 Simple11 oClone = new Simple11();
19 map.put(this, oClone);
20 oClone.twin = this.twin != null && b0
21 ? (Simple11) this.twin.clone(

b0, map)
22 : this.twin;
23 return oClone;
24 }
25 }
26

27 final public static String
jlc$CompilerVersion$jl = "3.2.0";

28 final public static long
jlc$SourceLastModified$jl =
1340081199930L;

29 final public static String
jlc$ClassType$jl = ...

30 }

Listing D.18: Generated Java class for Listing D.17.
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Test class that has 2 fields that may reference the same object.

1 package compilerTestClasses;
2

3 /*
4 * Test class with 2 fields that can

reference the same object
5 */
6 public class Simple12<c1,c2> {
7 public Simple12<c1,c2> f1;
8 public Simple12<c1,c2> f2;
9 }

Listing D.19: Test class that has 2 fields that may
reference the same object.

1 package compilerTestClasses;
2

3 public class Simple12 implements Cloneable
{

4 public Simple12 f1;
5 public Simple12 f2;
6

7 public Simple12() { super(); }
8

9 public Simple12 clone() {
10 return this.clone(false, false, new

java.util.IdentityHashMap());
11 }
12

13 public Simple12 clone(boolean b0, boolean
b1,

14 java.util.IdentityHashMap map
) {

15 Object o = map.get(this);
16 if (o != null)
17 return (Simple12) o;
18 else {
19 Simple12 oClone = new Simple12();
20 map.put(this, oClone);
21 oClone.f1 = this.f1 != null && b0
22 ? (Simple12) this.f1.clone(b0

, b1, map)
23 : this.f1;
24 oClone.f2 = this.f2 != null && b0
25 ? (Simple12) this.f2.clone(b0

, b1, map)
26 : this.f2;
27 return oClone;
28 }
29 }
30

31 final public static String
jlc$CompilerVersion$jl = "3.2.0";

32 final public static long
jlc$SourceLastModified$jl =
1340083168492L;

33 final public static String
jlc$ClassType$jl = ...

34 }

Listing D.20: Generated Java class for Listing D.19.

Test class that has a field with a cloning parameter that does not exist.

1 package compilerTestClasses;
2

3 /*
4 * Clone parameter c2 for field f1 does not exist
5 */
6 public class Simple8<c> {
7 public Simple4<this,c2> f1;
8 }

Listing D.21: Test class where the clone parameter c2 of field f1 does not exist.

Test class where less cloning parameters are given to a field that its type expects.

1 package compilerTestClasses;
2

3 /*
4 * Test class where not enough cloning parameters are
5 * given to the field
6 */
7 public class Simple9<c> {
8 public Simple6<c> f1;
9 }

Listing D.22: Test class where not enough cloning parameters are given to a field.
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