
Accelerating Unstructured Mesh
Computations using Custom Streaming

Architectures

Kyrylo Tkachov

Supervisor: Prof. Paul H J Kelly

Second marker: Dr. Tony Field

READ PROCESS WRITE

IPH

µp 2
µp 1

IPH

µp 2
µp 1

IPH

IPH

µp 2
µp 1

µp 1

IPH

IPH

µp 2

µp 2
µp 1

IPH

IPH

µp 2
µp 1

µp 1

IPH

IPH

µp 2

PH 1

PH 2

PH 3

PH 1

PH 2

PH 3

PH 1

T
IM

E

2012, Department of Computing

Imperial College London

Abstract

In this report we present a methodology for accelerating computations performed
on unstructured meshes by using a custom architecture implemented on Field Pro-
grammable Gate Arrays, or FPGAs. In particular, we focus on dealing with irregular
memory access patterns that are a consequence of using an unstructured mesh in
such a way as to facilitate a streaming model of computation. We describe the
partitioning of the mesh and the techniques used to exchange information between
neighbouring partitions, using so-called halos. We provide hardware a accelerated
version of a concrete application and develop a performance model used to pre-
dict performance and justify our design decisions and guide the implementation.
Practical experiments confirm that our analytical model can be used to predict the
performance of a whole design space of custom architectures and identify the ones
that can offer considerable performance increases.

1

Acknowledgements

I would like to thank Professor Paul Kelly for giving me so much of his time and ideas
and making me aware of scope of the project and the impact of my work. I would
also like to thank Dr. Carlo Bertolli for providing practical advice and explaining the
labyrinth that is heterogenous computing. Special thanks go to the team at Maxeler
Technologies for helping me out with the details of FPGA-based acceleration and
providing support for their excellent toolchain. I extend my gratitude to Dr. Tony
Field, my personal tutor, for supporting me throughout my years at Imperial College
and guiding so much of my academic development, as well as being the second marker
for this project.

I would like to thank my family for supporting me through university, especially
my mother and grandfather. Last but not least, I would like to thank my course-
mates and friends all over the world, with whom I’ve had many thought-provoking
discussions on every subject imaginable and who always kept me motivated, even
when I doubted myself.

Contents

1 Introduction 4
1.1 The domain . 4
1.2 The Airfoil program . 5
1.3 FPGAs, streaming and acceleration 6
1.4 Contributions . 7

2 Background 8
2.1 Unstructured meshes and their representation 8
2.2 Airfoil . 10

2.2.1 Computational kernels and data sets 12
2.2.2 Indirection maps . 13

2.3 Hardware platform, Maxeler toolchain and the streaming model of
computation . 17
2.3.1 MaxCompiler example . 18
2.3.2 Hardware . 23
2.3.3 Mesh partitioning and halos 24
2.3.4 Floating point vs fixed point arithmetic 25

2.4 Previous work . 26

3 Design and Modelling 31
3.1 DRAM and mesh storage . 31
3.2 Result accumulation and storage . 32
3.3 Halo exchange mechanism . 33
3.4 Two-level partitioning . 36
3.5 The case for a custom streaming pipeline 40
3.6 Performance Model . 43

3.6.1 Phase 1 . 44
3.6.2 Phase 2 . 45
3.6.3 Phase 3 . 46
3.6.4 Design space exploration . 46

3.7 Conclusion . 53

2

CONTENTS 3

4 Implementation 54
4.1 Mesh partitioning . 54
4.2 Edge scheduling . 55

4.2.1 No-op edges . 61
4.2.2 Complexity . 61
4.2.3 No-op edge-partitions . 63
4.2.4 Graph colouring and edge scheduling revisited 63

4.3 Data sets and padding . 66
4.4 Data layout and preparation for streaming 67
4.5 FPGA accelerator . 68

4.5.1 I/O streams and manager . 68
4.5.2 Result RAM division and duplication 69
4.5.3 Resource usage . 72
4.5.4 State machine . 72
4.5.5 Validation and hardware build 73

5 Evaluation 75
5.1 No-op edges . 75
5.2 Performance model validation . 79
5.3 Host-side halo reduction . 81
5.4 Resource usage . 82
5.5 Conclusion . 83

6 Conclusions and further work 84
6.1 Contributions and reflection . 84
6.2 Further work . 86

Bibliography 88

A Code Samples 91
A.1 Airfoil Kernel definitions in C . 91

List of Figures 95

Chapter 1

Introduction

This project presents a methodology for accelerating computations performed on un-
structured meshes in the context of Computational Fluid Dynamics (CFD). We use
Field Programmable Gate Arrays, or FPGAs, to design a high-throughput streaming
architecture which is kept filled thanks to an appropriate data layout and partition-
ing scheme for the mesh. We explore the rearrangement and grouping schemes used
to achieve locality of the data sets in the mesh. A formal performance model is
constructed to predict the performance characteristics of a family of architectures,
parametrised by hardware and architecture features. The performance model shows
that interesting speedups can be achieved using our proposed architecture, compa-
rable to state of the art implementations on other hardware platforms. We build an
implementation that is used to validate the model. In this section we present a gen-
eral overview of the problem domain, the hardware platform and the contributions
of this project.

1.1 The domain

Computational Fluid Dynamics, or CFD, is a branch of physics focused on numerical
algorithms that simulate the movement of fluids and their interactions with surfaces.
These simulations are widely used by engineers to design structures and equipment
that interact with fluid substances, for example airplane wings and turbines, water
and oil pipelines etc.

The required calculations are usually expressed as systems of partial differential
equations, the Navier-Stokes equations or the Euler equations, which are discretized
using any of a number of techniques. The technique used by our sample application,
Airfoil, is the finite volume method that calculates values at discrete places in a mesh
and relies on the observation that the fluxes entering a volume are equal to the fluxes
leaving it. This project is not concerned with the exact mathematical formulation
of these techniques, but they provide a feel for the origins of the problem domain.

4

CHAPTER 1. INTRODUCTION 5

1.2 The Airfoil program

The sample program we examine is called Airfoil, a 2D unstructured mesh finite
volume simulation of fluid motion around an airplane wing (which has the shape of
an airfoil). Airfoil was written as a representative of the class of programs that are
tackled by OP2, a framework partially developed and maintained by the Software
Performance Optimisation group at Imperial College to abstract the acceleration of
unstructured mesh computations on a wide variety of hardware backends.

Airfoil defines an unstructured mesh through sets of nodes, edges and cells and
associating them through mappings. It is written in the C language and these sets
are represented at the lowest level as C-arrays. Then data is associated with the
sets, such as node coordinates, temperature, pressure etc. The mesh solution is then
expressed as the conceptually parallel application of computational kernels on the
data associated with each element of a particular set (nodes, edges, cells). These
kernels are usually floating point- intensive operations and update the datasets.
The procedure is repeated through multiple iterations as desired until a steady-
state solution is reached. A more detailed discussion of the unstructured mesh is
presented in the Background section of this report.

Figure 1.1: Visualisation of a reduced version of the Airfoil mesh

CHAPTER 1. INTRODUCTION 6

1.3 FPGAs, streaming and acceleration

In this project we explore the acceleration possibilities of unstructured mesh appli-
cations by using custom hardware, implemented using Field Programmable Gate
Arrays or FPGAs. FPGAs provide a matrix of digital logic elements that can be
reconfigured on the fly to implement in hardware any logic design. Thanks to this
property they provide the development flexibility of software with the benefits of
an explicit custom hardware datapath. At a high level, FPGAs can be viewed as a
two-dimensional grid of logic elements that can be interconnected in any desirable
way.

The FPGA acceleration approach we look at is the streaming model of compu-
tation. In a streaming approach we create a dataflow graph out of simple compu-
tational nodes that perform a specific operation on pieces of data pushed in and
out of them. Connecting these nodes together creates a pipeline through which
one can stream an array of data and get one output per cycle thus achieving high
throughput. A simple dataflow graph can be seen in Figure 1.2. FPGAs are usu-
ally programmed using a low level hardware description language like VHDL or
Verilog, however many tools have been designed that allow a developer to specify
high-level designs in a Domain Specific Language (or DSL). We use MaxCompiler,
a compiler that lets us specify the computational graph through a high-level Java
API, so we focus on the functional aspects of our design and the tool generates a
hardware implementation of it. We use this approach to implement a datapath for
a kernel described in Airfoil and we then look at approaches to utilise the streaming
bandwidth. The FPGAs we consider have a large DRAM storage area attached
(>24GB) to them that can be used to store the mesh and utilising the bandwidth
of that DRAM effectively is key to achieving maximum performance.

During the course of our work it emerges that in order to stream data to and from
the accelerator continuously, we need to enforce some spatial locality on the mesh
data, thus requiring us to reorder the mesh data and organise it into partitions
that will be stored in the kernel internally and will need to exchange data with
neighbouring partitions through a halo exchange mechanism. This opens a whole
new space of decisions that we must make pertaining to the storage layout and
streaming responsiblities of the DRAM and the host machine. We present the mesh
partitioning schemes that are used to maximise DRAM bandwidth utilisation and
maximise pipelining.

We present a performance model that will be used to describe the theoretical
performance increase of the system in terms of various parameters like DRAM util-
isation, clock frequency etc. Finally, we present an implementation of a point in the
architeture design space and use it to validate the model.

CHAPTER 1. INTRODUCTION 7

Figure 1.2: A simple dataflow graph that implements the function y(x) = x2 + x.
The adder and the multiplication nodes are fully pipelined, enabling a throughput
of one result per cycle, thus providing us with the intuition for accelerating floating
point calculations

1.4 Contributions

• We present an architecture for accelerating unstructured mesh computations
using deeply pipelined streaming FPGA designs.

• We investigate memory layout issues that arise from efforts to maximise the
spatial locality of the mesh and consquently increase utilisation of the stream-
ing bandwidth. This is achieved through interleaving of I/O and computation
thanks to a two-level partitioning scheme.

• We develop a scheme for handling dependencies across partitions by offloading
a workload to the host machine, using a halo exchange mechanism.

• We provide a hardware accelerated version of part of the Airfoil program using
the methodologies described in this report.

• We develop a predictive performance model that is used to justify our design
decisions and provide a formal expression of the potential speedup.

• We validate the performance model, allowing the exploration of a variety of
architectures custom-built for this type of application.

Chapter 2

Background

This section provides more detail on the sample application, the representation
of meshes, the data sets and the iteration structure of Airfoil. An overview of
the Maxeler toolchain is given, which is used to implement the streaming solution
we design. The streaming model of computation is presented in the context of
MaxCompiler by walking through steps to build a simple MaxCompiler application.
Real number representation is discussed and the concept of a halo is introduced.
Previous work in this area is presented and summarised in order to provide a context
for the contributions of our work.

2.1 Unstructured meshes and their representation

The spatial domain of the problem can be discretised into either a structured or an
unstructured mesh. A structured mesh has the advantage of having a highly regular
structure and thus a highly predictable access pattern. If, however, one needs a
more detailed solution around a particular area, the mesh would would have to be
fine-grained across the whole domain, thus increasing the number of cells, nodes and
edges by a large factor even in areas that are not of such great interest. This is where
unstructured meshes come in. They explicitly describe the connectivity between the
elements and can thus be refined and coarsened around particular areas of interest.
This provides much greater flexibility at the expense of losing the regularity of the
mesh, forcing us to store explicitly the connectivity information that defines its
topology. It is useful to have an intimate understanding of the representation of
unstructured meshes in order to understand the techniques discussed further on. A
graphical example of the mesh representation in Airfoil is shown in Figure 2.1

In our sample application the mesh distinguishes three main elements: nodes,
cells and edges. We have to represent the connectivity information between them.
This is done through indirection maps that store, for example, the nodes that an
edge connects or the nodes that a cell contains. In the application that we explore the
cells always have four nodes and the edges always connect two nodes and have two

8

CHAPTER 2. BACKGROUND 9

cells adjacent. In the more general case of variable-dimension cells (quadrilaterals,
triangles, hexagons all mixed together) we would need an additional array storing
the indices into the indirection maps and the sizes of the elements. But we do not
consider such meshes here.

Figure 2.1: An example mesh and its representation using indirection arrays. The
cell numbers are shown inside the quadrilaterals formed by the nodes (circles) and
edges (edges connecting the nodes). Together with the indirection map, we also
store an integer dim ∈ N which specifies the dimension of the mapping. Thus, the
data associated with element i are stored in the range [i∗dim, ... , i∗ (dim+ 1)−1]
of the relevant indirection map (in the example: the nodes associated with edge 3
are stored at indices 3 ∗ 2 = 6 and 3 ∗ 2 + 1 = 7). Note: in the edge-to-cell map −1
represents a boundary cell that may be handled in a special way by a computational
kernel.

The above method deals with the connectivity information amongst the different
elements of the mesh. The data on which we perform the arithmetic calculations
is stored in arrays indexed by element number. Such an approach is presented in
Figure 2.2.

CHAPTER 2. BACKGROUND 10

Figure 2.2: An example mesh with coordinate data associated with each node ((x, y)
from node id (x, y)). The coordinate data will be represented as an array of floating
point numbers x = {0.0, 0.0, 2.78, 5.0, 3.0, 1.0, 3.0, 6.7, 7.5, 3.14, 9.0, 7.7}. Again we
also record the dimension of the data (in this case dim = 2) in order to access the
data set associated with each element. In this example, the coordinate data for node
4 is stored at indices 4 ∗ 2 = 8 and 4 ∗ 2 + 1 = 9 of the array x.

2.2 Airfoil

Airfoil was written as a representative of the class of problems we are interested
in. It was initially designed as a non-trivial example of the issues tackled by the
OP2 framework. Although we are not directly dealing with OP2 in this project, an
overview of Airfoil within this context is provided by MB Giles et al [1] because it
discusses the acceleration issues arising from the memory access pattern.

The computational work in Airfoil is performed by 5 loops that work one after
the other and operate on the nodes, cells and edges of the mesh. Each loop iterates
over the cells or edges of the mesh, applying a computational kernel to elements
of a data set associated with each mesh element. Conceptually, the application of
a kernel to a data item is independent of the application to any other item in the
same set, and can therefore be executed in parallel with an application of the same
kernel on another mesh element. The complexity comes from reduction operations,
where some edges or cells update the same data item (e.g associated with the same
cell). In these cases care must be taken to ensure the correct update of the data.
For parallel architectures such as GPUs this issue can be resolved by enforcing an
atomic commit scheme or by colouring the mesh partitions, so that no two partitions
update the same data item simultaneously [1].

CHAPTER 2. BACKGROUND 11

Figure 2.3: An example mesh, showing data dependencies between edges that affect
cell data.

Consider Figure 2.3. Take for example edges α = (1, 4) and β = (4, 5). Suppose
there is a data item x associated with every cell and the processing of an edge
increments the data items associated with its two cells. α and β cannot execute
in parallel because they are both associated with cell 0 and can therefore end up
using out of date copies of the data associated with cell 0 by the following sequence
of events: α reads initial x0, β reads x0, α computes xα = x0 + 1, β computes
xβ = x0 + 1, α writes back xα, β writes back xβ and the final value of x turns out
to be xβ = x0 + 1 instead of the desired x0 + 2. Some implementations work around
this issue by colouring the edges, such that no two edges of the same colour share a
cell and can therefore be processed in parallel. Figure 2.3 shows such a colouring.
Another option would be to introduce atomic operations and/or locking, but that
would serialise the memory accesses, reducing parallelism, or requiring more exotic
memory architectures (i.e one that reduces all of the memory write requests with
addition before commiting the result).

CHAPTER 2. BACKGROUND 12

2.2.1 Computational kernels and data sets

Airfoil defines five computational kernels that iterate over the mesh, performing
floating point calculations on the data sets defined over the elements of the mesh. We
shall describe them by the elements they iterate over and by the elements they read
and modify. As described above, we also define some data sets that are associated
with the mesh elements. The datasets defined in Airfoil are shown in Table 2.1.

Data set name Associated with Type/Dimension

x Nodes R× R
q Cells R× R× R× R

q old Cells R× R× R× R
res Cells R× R× R× R
adt Cells R

bound Edges {0, 1}

Table 2.1: Table showing the data sets and their types. In the actual implementa-
tion, we may choose to represent real numbers (R) as standard or double precision
floating point numbers or as fixed point numbers (discussed later). Elements of
dimension larger than one will be represented as arrays. The physical meaning of
these sets is not important, however Airfoil is generally intereseted in computing a
steady-state solution for the q data set.

The kernels are presented in Table 2.2 along with the datasets they require and
modify.

Kernel Name Iterates over Reads Writes

save soln Cells q q old

adt calc Cells x, q adt

res calc Edges x, q, adt res

bres calc (Boundary) Edges x, q, adt, bound res

update Cells q old, adt, res q, res

Table 2.2: Table showing the kernels defined in airfoil and their data requirements.

To show a more concrete example of what these kernels do, the res calc kernel
code in the C language is presented in Listing 1. The rest of the kernels are repro-
duced in A.1. The res calc kernel applied during an iteration over edges and requires
data sets associated with the two nodes and two cells that each edge references.

CHAPTER 2. BACKGROUND 13

1 void res_calc(float *x1, float *x2, float *q1, float *q2,

2 float *adt1, float *adt2, float *res1, float *res2) {

3 float dx,dy,mu, ri, p1,vol1, p2,vol2, f;

4 dx = x1[0] - x2[0];

5 dy = x1[1] - x2[1];

6 ri = 1.0f/q1[0];

7 p1 = gm1*(q1[3]-0.5f*ri*(q1[1]*q1[1]+q1[2]*q1[2]));

8 vol1 = ri*(q1[1]*dy - q1[2]*dx);

9 ri = 1.0f/q2[0];

10 p2 = gm1*(q2[3]-0.5f*ri*(q2[1]*q2[1]+q2[2]*q2[2]));

11 vol2 = ri*(q2[1]*dy - q2[2]*dx);

12 mu = 0.5f*((*adt1)+(*adt2))*eps;

13 f = 0.5f*(vol1* q1[0] + vol2* q2[0]) + mu*(q1[0]-q2[0]);

14 res1[0] += f;

15 res2[0] -= f;

16 f = 0.5f*(vol1* q1[1] + p1*dy + vol2* q2[1] + p2*dy) + mu*(q1[1]-q2[1]);

17 res1[1] += f;

18 res2[1] -= f;

19 f = 0.5f*(vol1* q1[2] - p1*dx + vol2* q2[2] - p2*dx) + mu*(q1[2]-q2[2]);

20 res1[2] += f;

21 res2[2] -= f;

22 f = 0.5f*(vol1*(q1[3]+p1) + vol2*(q2[3]+p2)) + mu*(q1[3]-q2[3]);

23 res1[3] += f;

24 res2[3] -= f;

25 }

Listing 1: Definition of the res calc kernel with reals represented as single precision
floating point numbers. Note the type signature. The kernel requires the element
of the dataset x associated with each of the two nodes of the edge we are currently
processing and the q, adt and res elements of the two cells associted with the cur-
rent edge. Note that the res set is updated by incrementing (+=), introducing
dependencies between parallel applications of the kernel to different edges. The im-
portant part of this definition are the data requirements of the kernel and not the
exact meaning of the arithmetic operations. The variables gm1 and eps are global
constants that do not need to be passed in explicitly.

2.2.2 Indirection maps

Having defined the data sets and the kernels, we now need to define the indirection
maps that express the connectivity of the mesh and the relationships between the
elements of the mesh. Airfoil has five such maps called: edge, cell, ecell, bedge,
becell. They are presented in Figure 2.4.

CHAPTER 2. BACKGROUND 14

Edges

Cells

ecell (2)

Nodes

edge (2)

cell (4)

Boundary Edges

becell (1)

bedge (2)

Figure 2.4: Diagram showing the maps between the mesh elements The dimension
of the map is shown in parentheses next to the name. Thus the map edge relating
edges to nodes with dimension 2 means that for each edge, there are two nodes
associated with it.

Having specified the data sets, indirection maps and kernels, the application of a
kernel on an element is performed by looking up the mesh elements that element is
associated with through the indirection maps and using those to access the data sets
required by the kernel. For example, the invokation of the res calc kernel defined in
Listing 1 can be done with the following line of C:

res_calc(

&x[2*edge[2*i]], &x[2*edge[2*i+1]], &q[4*ecell[2*i]],

&q[4*ecell[2*i+1]], &adt[ecell[2*i]], &adt[ecell[2*i+1]],

&res[4*ecell[2*i]], &res[4*ecell[2*i+1]]

);

Recall that res calc operates on edges. There is a double level of indirection going
on here. i is the number of the edge we are currently processing (i ranges in
[0..number of edges− 1]). As described in the section on mesh representation, the
two nodes corresponding to the edge are stored at indices 2*i and 2*i+1 of the edge
map. For each of those nodes, res calc requires the corresponding element in the x
data set. Recall from Table 2.1 that set x has a dimension of 2. Therefore the node
numbers acquired from edge[2*i] and edge[2*i+1] are multiplied by 2 and used
as indices into the array x to access the correct data. Similarly for the rest of the
arguments.

CHAPTER 2. BACKGROUND 15

The complete iteration step in a sequential implementation of Airfoil is shown in
Listing 2. The old values of q are stored in q old and the inner loop runs twice before
saving the solution again. The metric rms is computed in each iteration that is
used to measure the convergence of the solution. The variables ncell, nedge, nbedge
represent the number of cells, the number of edges and the number of boundary
edges respectively.

A run of the sequential version in Listing 2 on a mesh with 721801 nodes, 1438600
edges, 2800 boundary edges and 720000 cells on a machine with an Intel Core i7-2600
CPU at 3.4 GHz takes about 115.6 seconds to complete 2000 iterations. The time
spent in each kernel is presented in Table 3.1. It is evident that the computation is
dominated by the res calc and adt calc kernels.

In this project we will be concentrating on accelerating the res calc kernel be-
cause it is the most computationally intensive kernel and because it has the most
complex data access patterns that make it the interesting case to study. Finding a
way to accelerate res calc will pave the way for accelerating any similar kernel.

Kernel Name Time spent (seconds) Percentage of total time (%)

save soln 1.84 1.59

adt calc 51.09 44.19

res calc 53.99 46.70

bres calc 0.23 0.20

update 8.44 7.30

Table 2.3: Table showing the time spent in each kernel during a run of a single-
threaded sequential version of Airfoil on a current CPU. The total run time is 115.6
seconds.

CHAPTER 2. BACKGROUND 16

1 int niter = 1000;

2 float rms = 0.0;

3 for(int iter=1; iter<=niter; iter++) {

4 for (int i = 0; i < ncell; ++i) {

5 save_soln(&q[4*i], &qold[4*i]);

6 }

7 for(int k=0; k<2; k++) {

8

9 for (int i = 0; i < ncell; ++i) {

10 adt_calc(&x[2*cell[4*i]], &x[2*cell[4*i+1]],

11 &x[2*cell[4*i+2]], &x[2*cell[4*i+3]],

12 &q[4*i], &adt[i]

13);

14 }

15

16 for (int i = 0; i < nedge; ++i) {

17 res_calc(&x[2*edge[2*i]], &x[2*edge[2*i+1]],

18 &q[4*ecell[2*i]], &q[4*ecell[2*i+1]],

19 &adt[ecell[2*i]], &adt[ecell[2*i+1]],

20 &res[4*ecell[2*i]], &res[4*ecell[2*i+1]]

21);

22 }

23

24 for (int i = 0; i < nbedge; ++i) {

25 bres_calc(&x[2*bedge[2*i]], &x[2*bedge[2*i+1]],

26 &q[4*becell[i]], &adt[becell[i]],

27 &res[4*becell[i]], &bound[i]

28);

29 }

30

31 rms = 0.0;

32 for (int i = 0; i < ncell; ++i) {

33 update(&qold[4*i], &q[4*i], &res[4*i], &adt[i], &rms);

34 }

35 }

36 rms = sqrt(rms/(float) ncell);

37 if (iter%100 == 0)

38 printf(" %d %10.5e \n",iter,rms);

39 }

Listing 2: The iteration structure of Airfoil.

CHAPTER 2. BACKGROUND 17

2.3 Hardware platform, Maxeler toolchain and the stream-
ing model of computation

The toolchain and platform that we use for implementing the FPGA accelerator
is the one developed and maintained by Maxeler Technologies. It consists of the
MAX3 cards that contain a Xilinx Virtex-6 chip [4] and up to 48GB of DDR3
DRAM. These cards can be programmed through MaxCompiler[5], which provides
a Java-compatible object-oriented API to specify the dataflow graph, contained in
what is called a kernel. MaxCompiler will then schedule the graph, i.e. it will insert
buffers that will introduce the appropriate delays in the design that will ensure the
correct values will reach the appropriate stages in the pipeline at the correct clock
cycle. After MaxCompiler has generated the VHDL code control is given to the
Xilinx ISE tools[3] that will synthesize, place and route the design and generate a
bitstring that can be used to configure the FPGA.

Kernel Compiler

Hardware Build or Simulation

Manager

HW Accelerator (.max)

Application Kernel(s) (.java)Manager Configuration (. java)

Host Application (.c, .cpp, .f)

Compiler, Linker

Accelerated Application (executable)

Figure 2.5: A diagram of the Maxeler toolchain. The data-flow graphs of the compu-
tational kernels are defined using a Java API. A manager connects multiple kernels
together and handles the streaming to and from the kernels of data. These are
combined by MaxCompiler and compiled into a .max file that can then be linked to
a host C/C++ or Fortran application using standard tools (gcc, ld etc).

The bitstream is then included in what is termed a maxfile that contains various
other meta-data about the design such as I/O stream names, named memory and
register names, various runtime parameters etc. The maxfile can be linked against a
normal C/C++ application using standard tools (gcc, ld etc). The interaction with

CHAPTER 2. BACKGROUND 18

the FPGA is performed by a low-level runtime (MaxCompilerRT) and a driver layer
(MaxelerOS). A diagram of the toolchain is shown in Figure 2.5, adapted from the
MaxCompiler documentation[5].

Kernels in MaxCompiler have input streams that are pushed through a pipelined
dataflow graph and some of them are output from the kernel. Programmatically,
a hardware stream is seen as analogous to a variable in conventional programming
languages. It’s value potentially changes each cycle.

2.3.1 MaxCompiler example

Listing 3 shows a MaxCompiler kernel design that computes a running 3-point
average of a stream of floating point values (32 bits).

1 pulic class MovingAverageKernel extends Kernel {

2

3 public MovingAverageKernel(KernelParameters parameters) {

4 super(parameters);

5 HWType flt = hwFloat(8,24);

6 HWVar x = io.input("x", flt) ;

7 HWVar x_prev = stream.offset(x, -1);

8 HWVar x_next = stream.offset(x, +1);

9 HWVar cnt = control.count.simpleCounter(32, N);

10 HWVar sel_nl = cnt > 0;

11 HWVar sel_nh = cnt < (N-1);

12 HWVar sel_m = sel_nl & sel_nh;

13 HWVar prev = sel_nl ? x_prev : 0;

14 HWVar next = sel_nh ? x_next : 0;

15 HWVar divisor = sel_m ? 3.0 : 2.0;

16 HWVar y = (prev+x+next)/divisor;

17 io.output("y" , y, flt);

18 }

19 }

Listing 3: A MaxCompiler definition of a kernel that computes a moving 3-point
average with boundary conditions. Note that the arithmetic operators as well as
the ternary if operator have been overloaded for HWVar objects that represent the
value of a hardware stream.

MaxCompiler code is written in a Java-like language called MaxJ that provides
overloaded operators for hardware streams such as +,−, ∗, / and ? : . The example
in Listing 3 creates a computational kernel that computes a stream of running 3-
point averages,named y, from a stream of input values x. The HWVar class is the
main representation of the value of a hardware stream at any clock cycle. HWVars

CHAPTER 2. BACKGROUND 19

always have a HWType that represents the type of the stream (i.e. an integer, a
floating point number, a 1-bit boolean value etc). The stream.offset(x,−1) and
stream.offset(x,+1) expressions on lines 7 and 8 extract HWVars for the values of
the stream on cycle in the past and one cycle in the future (note that this is internally
done by creating implicit buffers, or FIFOs, and scheduling the pipeling accordingly).
The ternary if operator ? : creates multiplexers in hardware that express choice. A
Java API is provided that contains various useful design elements, such as counters
(HWVars that increment their values in many configurable ways every cycle) that
can be accessed through the control.count field.

The resulting dataflow graph is shown in Figure 2.6

Figure 2.6: The dataflow graph resulting from the code in Listing 3. Note: the
stream.offset(x,−1) and stream.offset(x,+1) expressions are shown here using
the rhombuses with +1 and −1, evaluating the value of x one cycle in the ’future’
and one cycle in the past respectively. The other nodes have the obvious meanings.

Kernel designs form part of a MaxCompiler design. The user also specifies a
manager that describes the streaming connections between the kernels. A manager

CHAPTER 2. BACKGROUND 20

can be used to configure a design to stream data to and from the host through PCIe
or from the DRAM that is attached to the FPGA. In the manager design, the user
will instantiate the kernels and connect them up. Thus for the example in Listing 3
the manager might look like the one in Listing 4.

1 pulic class MovingAvgManager extends CustomManager {

2

3 public MovingAvgManager(MAXBoardModel board_model,

4 boolean is_simulation, String name) {

5 super(is_simulation, board_model, name);

6 KernelBlock k

7 = addKernel(

8 new MovingAverageKernel(

9 makeKernelParameters("MovingAverageKernel")

10)

11);

12 Stream x = addStreamFromHost("x");

13 k.getInput("x") <== x;

14 Stream y = addStreamToHost("y");

15 y <== k.getOutput("y");

16 }

17 }

Listing 4: Manager specification for a MovingAverageKernel that streams the input
data ”x” from the host and streams the output data ”y” to the host. The <==
operator means connect the right hand side stream to the left hand side stream.
The code instantiates the MovingAverageKernel, creates a stream called ”x” from
the host and connects it to the input stream ”x” in the kernel. Then it creates a
stream to the host called ”y” and connects to it the output stream ”y” from the
kernel.

CHAPTER 2. BACKGROUND 21

After we have specified a manger, we can build the design in order to create the
.max file using the following lines of code:

public class MovingAvgHWBuilder {

public static void main(String argv[]) {

MovingAvgManager m

= new MovingAvgManager(MAX3BoardModel.MAX3242A,

false,

"MovingAverage");

m.build() ;

}

}

This builds our design for a MAX3 card (containing a Xilinx Virtex6 FPGA) using
the ”MovingAverage” name for the design. The second argument to the constructor
(false) signifies that we are building a hardware design and not a simulation.

Now that we have a .max file, we can interact with the FPGA from the host
code by using the MaxCompilerRT API, an example of which is shown in Listing 5.
In order to use the FPGA we must initialise the maxfile as in line 14 and open the
device (line 15). The actual streaming to and from the FPGA is done using the
max run vararg function (line 22) where the arrays corresponding to the input data
and the allocated space for the output data are specified. The MaxCompilerRT
runtime and the MaxelerOS drivers handle the low-level details of PCIe streaming
and interrupts.

CHAPTER 2. BACKGROUND 22

1 #include<stdlib.h>

2 #include<stdint.h>

3 #include<MaxCompilerRT.h>

4 #define DATA_SIZE 1024

5

6 int main(int argc, char* argv[]) {

7 char* device_name = "/dev/maxeler0";

8 max_maxfile_t* maxfile;

9 max_device_handle_t* device;

10 float *data_in, *data_out;

11

12 maxfile = max_maxfile_init_MovingAverage();

13 device = max_open_device(maxfile, device_name);

14

15 data_in = (float*)malloc(DATA_SIZE * sizeof(float));

16 data_out = (float*)malloc(DATA_SIZE * sizeof(float));

17

18 for (int i = 0; i < DATA_SIZE; ++i) {

19 data_in[i] = i;

20 }

21

22 max_run(device,

23 max_input("x", data_in, DATA_SIZE * sizeof(float)),

24 max_output("y", data_out, DATA_SIZE * sizeof(float)),

25 max_runfor("MovingAverageKernel", DATA_SIZE),

26 max_end());

27

28

29 for (int i = 0; i < DATA_SIZE; ++i) {

30 printf("data_out@%d = %f\n", i, data_out[i]);

31 }

32

33 max_close_device(device);

34 max_destroy(maxfile);

35 return 0;

36

37 }

Listing 5: A sample host code using the MaxCompilerRT API for the C language.

CHAPTER 2. BACKGROUND 23

2.3.2 Hardware

The MAX3 card we use provides 48GB of DRAM that can be accessed with a maxi-
mum bandwidth of 38GB/s and a PCIe connection to the host machine that achieves
a maximum bandwidth of 2GB/s in both directions. The Virtex6[4] FPGA by Xilinx
used in the MAX3 card has about 4MB of fast on-board block RAM that should not
be confused with the external DRAM. The host machine can communicate with the
card through the PCIe bus using the MaxCompilerRT API. The external DRAM
will be used to store the bulk of the mesh data and therefore achieving maximum
utilisation of it is one of the focal points of this project. The top-level components
of the hardware we are dealing with are presented in Figure 2.7.

The FPGA provides a number of resources that can be used to specify a design.
The Xilinx Virtex6 chip we are using defines four such elements:

• LUTs: LookUp Tables are small elements of combinatorial logic that can be
configured to implement any logical function.

• Flip Flops: Stateful elements that can be used as registers to implement ac-
cumulators, pipeline stages etc.

• BRAMs: Block RAMs are memory cells that are on the chip itself and can be
accessed with very low latency.

• DSPs: Elements custom tuned for fast multiplication.

When building an FPGA design, one must be careful to not use more resources than
the chip has to offer, therefore these numbers place a limit on the partition size we
can store on the chip at any time, the number of arithmetic pipelines available etc.

The card is connected to the host machine via a PCIe bus, a popular standard
that is found on most modern motherboards.

CHAPTER 2. BACKGROUND 24

MAX3 card

DRAM

Manager

Kernel

FPGA (Virtex 6)

PCIe Host

Figure 2.7: Diagram of the hardware parts of a MAX card, showing the relationships
between the DRAM, PCIe, the host and the FPGA.

2.3.3 Mesh partitioning and halos

In computing the optimal memory layout for our application, we have to partition
large meshes into partitions that fit in the block RAM of the FPGA. We use a
popular and widely available set of tools called METIS developed by George Karypis
[6] that uses state of the art techniques to partition meshes, graphs, hypergraphs and
matrices according to various parameters like size, edge/hyperedge cut, minimising
certain metrics etc. It is a highly robust and efficient tool that we use through its
C API. Since an iteration over a mesh element may require data associated with
another element, partitions have a set of elements called a halo region that consists
of all the elements (cells, nodes, edges) that maybe accessed from another partition.
Consider Figure 2.8. The partitioning is shown with the red line. The four partitions
share cells (shown in purple), edges (shown in red) and nodes (along the red line).
This presents a difficulty when computing an edge that uses cells in the halo region
of another partition, since we are storing a single partition at a time on the device.
The method used to deal with this issue is called the halo exchange mechanism and
it opens up a large design space, with decisions usually dependent on the hardware
and communication frameworks.

CHAPTER 2. BACKGROUND 25

Partition 1 Partition 2

Partition 3Partition 4

H
al

o
re

g
io

n
1

Halo region 1

Halo region 4

H
a
lo

reg
io

n
2

Halo region 2

Halo region 3

H
al

o
re

gi
on

3H
alo

region
4

Figure 2.8: A mesh partitioned into 4 partitions, shown in green. The halo regions
are shown in purple. Nodes, cells and edges belonging to the halo region can be
accessed by more than one partition.

2.3.4 Floating point vs fixed point arithmetic

As presented in Table 2.1, the most important data sets in Airfoil (q, adt, res)
consist of real numbers. Therefore a decision must be made on the low level number
representation. The most common representation for real numbers in most modern
architectures is the IEEE-754[7] floating point representation. This representation
stores the number using three fields: the sign bit, the mantissa and the exponent.
The representation of a 32-bit floating point number is shown in Figure 2.9. The
standard also specifies double precision floating point numbers using 64 bits: 11
bits for the exponent and 53 bits for the mantissa. In general, a floating point

number with N bits for the exponent can represent a range from ±1 × 2−
2N

2
−2 to

±2×2
2N

2
−1. For 32-bit single precision numbers, this range is [±1×2−126..±2×2127].

The details of how the mantissa, the exponent and the sign bit are used to encode a
real number are presented in the IEEE specification [7]. The decoding of a floating

CHAPTER 2. BACKGROUND 26

point number involves multiplying the mantissa by 2 raised to the power of the
exponent, which is typically an expensive operation. Further details, like exponent
bias and normalisation are not discussed here as they are tangential to this section.

+/- 8 bits exponent 23 bits mantissa

0 1 8 31

Figure 2.9: The representation of an IEEE-754 single precision floating point num-
ber. It has 8 bits for the exponent and 24 bits for the mantissa. However, one bit
of the mantissa is used to represent the sign, and is therefore unavailable to the rest
of the mantissa.

Since we are working with custom hardware, we have an alternative to float-
ing point numbers for our representation of real arithmetic. We can store a real
number as an integer and a fractional part at fixed offsets. This approach makes
the arithmetic much simpler and hence faster, but it sacrifices range and accuracy.
Fixed point representation is used in applications where the range of the numbers
is predictable and not too large, or when the inputs are of limited precision. Faster
in this context means fewer cycles taken to perform an operation, which translates
to pipeline stages. For example, a fixed point number with 8 integer bits and 8
fraction bits using two’s complement mode for negative numbers can repressent
numbers from −128 up to 127 + 255/256 in increments of 1/256 with each fraction
bit representing 1/256.

2.4 Previous work

Computation using unstructured meshes is widely used in many areas of engineer-
ing, not just in fluid dynamics, and there have been many attempts to augument
the computation using accelerators. A recent trend has been to use the many cores
available on Graphics Processing Units (GPUs) to launch thousands of threads in
parallel, exploiting the parallel nature of many of these problems. Other hard-
ware platforms include many-core architectures [1] and large parallel clusters [2]. A
project close to this one is OP2 [1]. It is a framework used to specify computations
on unstructured meshes in a hardware-agnostic way, allowing the user to concentrate
on the functional specification of the application. Airfoil is one of the test programs
for that project.

More relevant to this project, there have been attempts to use FPGAs to ac-
celerate such computations. The principles of acceleration using FPGAs are quite
different compared to using GPUs or many-core systems. In the case of FPGA
acceleration, the performance advantage comes from a custom, application specific,

CHAPTER 2. BACKGROUND 27

deeply pipelined datapath, often thousands of cycles deep that provides a through-
put of one result per cycle. This argument for FPGA acceleration is widely accepted
and is the source of the speedups achieved in all current attempts. Given this deep
custom pipeline, it is a challenge for the developer to keep the pipeline fully utilised
for the maximum amount of time and the techniques used to achieve this have been
the main differentiating factors in the applications existing today. The most com-
mon approach has been to use on-chip block RAM memory to cache small parts of
the mesh and operate on it, cache the results and write them back to main memory.

M.T. Jones and K.Ramachandran [9] formulate the unstructured mesh com-
putation as a sparse matrix problem, Ax = y where A is a large sparse matrix
representing the mesh and x is the vector that is being approximated. Their ap-
proach uses the conjugate gradient method to iteratively refine the approximation of
the x vector. This involves, most importantly, a multiplication of the sparse matrix
A with the vector x which forms the bulk of the computation and a subsequent
refinement of the mesh and reconstruction of the spares matrix. They formulate
the problem as a sparse matrix-vector multiplication, whereas we are interested in
iterating computational kernels over the mesh. Furthermore, they are concerned
with mesh adaptation and the reconstruction of the sparse matrix in each iteration.
We assume a static mesh specified at the beginning of the program.

Morishita et al. [10] examine the acceleration of CFD applications and in par-
ticular the use of on-chip block RAM resources to buffer the data in order to keep
the arithmetic pipeline as full as possible. This is a more similar approach to ours.
However, their approach applies a constant stencil to a grid in 3D and tries to cache
points in the grid that will be accessed in the next iteration, thus elimintating re-
dundant accesses to the external memory. This caching/buffering is made possible
by the fact that the stencil is of constant shape and thus the memory accesses can be
predicted. In our application we have a 2D mesh that does not exhibit this property.

Sanchez-Roman et al. [11] present the acceleration of an airfoil-like unstruc-
tured mesh computation using FPGAs. Their solution uses two FPGAs on a single
chip that perform different calculations and they identify the need to reason about
computation and data access separately. They mention the need to partition larger
meshes but they do not discuss techniques for partitioning or the issues arising from
data dependencies across partitions. They mention the degradation in performance
arising from the unstructured memory access patterns causing cache misses. We
present a technique to reorganise the mesh so as to facilitate more well-behaved
memory accesses, allowing us to stream data to the datapath efficiently and pre-
dictably.

In another attempt, Sanchez-Roman et al. [12] recognise the update dependency
that occurs during reduction operations, similar to the ones in our res calc kernel
and work around it by adding an accumulator that correctly updates the required
data sets. However, their design is used on comparatively small meshes of a max-
imum of 8000 nodes. Thus all the data can fit into the on-board memory of the

CHAPTER 2. BACKGROUND 28

FPGA, eliminating the need to consider partitioning issues. The applications we
are concerned with usually have meshes of the order of 106 edges, which will defi-
nitely not fit on the on-chip block RAMs any time soon, thus presenting the need
for partitioning.

The existing work gives us many hints towards design decisions. While it was
tempting to use fixed point arithmetic for the calculations, Sanchez-Roman et al.
[11] hint at the difficulty in porting application from the host side to fixed point
and also mention great difficulties that arise in the debugging and verification of
the calculations. Furthermore, Durbano et al. [13] find that the error of fixed-point
arithmetic accumulates with each iteration in finite difference applications such as
the one in Airfoil. They explore the possibility of acceleration of electromagnetics
calculations using the Finite Difference Time Domain method (FTDT) which has
some similarities to ours from a computational point of view. These factors lead us
to discard fixed point representation of real numbers in our solution. All authors
mention the relative difficulty of developing FPGA-based systems compared to nor-
mal CPU implementations, citing the different mindset required and the inherently
more low level reasoning about hardware, architecture and algorithms that must be
done to extract the required performance characteristics.

All attempts recognise the need to tame the unstructured memory accesses that
arise, and all of them use the on-chip block RAM resources to cache or buffer
data before feeding it to the arithmetic pipeline, relying on complex memory access
address generators to handle memory accesses. Our approach will also use block
RAMs to store parts of the mesh, but we will remove the need for complex memory
access patterns by reordering, partitioning and laying out the mesh data in a way
that facilitates large, contiguous bursts of streaming. To do that we add a mesh
preprocessing stage on the host side that partitions and reorganises the layout of
the data in memory.

The benefits of developing a performance model to predict the achievable speedups
on FPGA-accelerated applications have been recognised before. Alam, S.R et al
[15] used a model parametrised by hardware characteristics like clock frequency and
memory transfer bandwidth and also by specific problem parameters, in their case
the details of biomolecular simulations. In this project we also define a design space
of architectures and parametris them by hardware features and problem specific pa-
rameters. Using an analytical model is actually a widely adopted approach that is
used to predict performances on various other architectures, not just custom ones.
Sunpyo et al[16] use an analytical model of a GPU to predict its performance based
on a number of GPU-specific parameters like warp size, number of threads/cores
and memory bandwidth. Their performance model notably does not account for
cache misses and issues like temporal locality, as well as branching execution. The
complicated and hard to predict nature of memory accesses leads us into designing
an architecture with as simple a memory hierarchy as possible, using only one level
of caching in the on-board block RAMs for which we ensure by laying out the data

CHAPTER 2. BACKGROUND 29

appropriately that no misses will be possible and all DRAM (large external storage)
accesses are accounted for and predicted. Meng et al [17] develop a memory model
of the cache on an Nvidia card when used to compute a stencil operation and they
do it accurately enough, but still do not model cache hierarchies and Direct Memory
Accesses (DMAs), a further hint that modelling memory accesses is a hard task.

Some exploration has been done in adapting meshes for particular memory ar-
chitectures or reordering computations to optimise memory accesses. White B. et
al. [18] have explored techniques for reordering computations on CPUs to facili-
tate efficient memory access, but not from a streaming perspective. There has been
some work done in storing meshes for efficient access[19], but it has been focused
on block-based CPU and GPU caches. We explore issues that are associated with
laying out mesh data for optimal DRAM bandwidth utilisation on FPGAs.

Managing memory and data transfers is a central theme in many applications
involving FPGAs and attempts have been made to increase data reuse and hide
latencies. A common approach is to use multiple memory hierarchies [14][10], akin
to modern CPU architectures. M.Weinhardt et al [14] also mention the need to
reuse data and memory so as to minimise memory transfers from external sources
like the host machine. They also mention the possibility of interleaving computation
and data transfer, an idea that will feature prominently in our design by adding a
second level of mesh partitioning (section 3.4) to the host-side preprocessing code.

The differentiating factors of this project from existing work are:

• We explore the architectural design space for the accelerator in conjunction
with mesh reordering techniques custom-fitted for the chosen architecture.
One is custom made for the other. Previous attempts do not go any further
down this path than doing simple partitioning.

• Our design aims to work for larger meshes, in the order of 105 - 106 nodes.

• We attempt to keep the design of the hardware accelerator as simple as possi-
ble, without complex memory access patterns and relying on host-side prepro-
cessing to figure out the optimal data layout. Keeping the memory hierarchy
simple allows us to construct a model with better predictive powers and more
stable results.

• In order to keep memory access patterns simple (and hence predictable) we
offload a small portion of the work to the host CPU, using a halo exchange
mechanism.

Ideas that we take from previous work are:

• We aim to design a simple memory architecture and develop a performance
model that is robust and accurate thanks to this simplicity property.

• We use block RAM resources on the FPGA to store partitions of the mesh,
since block RAMs can be accessed efficiently and with constant latency.

CHAPTER 2. BACKGROUND 30

• We avoid the use of fixed-point numbers due to hints at potential error accu-
mulation.

• We develop an analytical model to predict the performance of a whole design
space of architectures instead of designing and implementing just one that
may turn out to not provide interesting performance.

Chapter 3

Design and Modelling

In this section we discuss the design of the hardware accelerated version of the
res calc kernel from Airfoil. We present the architecture for the FPGA-based accel-
erator and develop a formal performance model that is used to justify the viability
of the architecture. From that point we decide on an optimal data layout that will
lead to an implementation of the mesh preprocessing on the host.

3.1 DRAM and mesh storage

The MAX3 cards we have available a large DRAM memory attached to them, and
it is a natural candidate for storing mesh data. The kernel on the FPGA can ac-
cess this memory at a maximum bandwidth of 38GB/s. This bandwidth, however, is
only achievable when the memory is accessed in large bursts of contiguous addresses.
Random access to this memory, while possible, is very inefficient and wasteful (be-
cause the DRAM controller will still read a large chunk of data, but return only
the small fraction requested). Because of the representation of the unstructured
mesh through indirection maps, processing an edge in res calc requires a lookup in
the edge and ecell maps, and then a lookup into the x, q and adt data sets. If we
perform such a two-level dereferencing procedure on the DRAM, the performance
is expected to degrade to a point where it is not worth considering. The on-chip
block RAMs, on the other hand, are designed to be accessed randomly and do not
degrade in performance when accessed so. Thus, we want to push the indirection
down to the block RAMs. In other words, mesh connectivity information must not
affect the DRAM access pattern and be entirely contained in the data layout and
addressing of the block RAMs. This is the argument for storing mesh partitions
in the block RAMs, using connectivity information to access them randomly with-
out penalty and feeding the result into an arithmetic pipeline that will perform the
floating point calculations. Under this arrangement, the edges are then represented
as a vector of addresses into the node and cell RAMs.

31

CHAPTER 3. DESIGN AND MODELLING 32

3.2 Result accumulation and storage

Remember that res calc performs an incrementing operation (also known as reduc-
tion with addition) on the res data set for the cells that each edge accesses. There-
fore each edge computes only part of the final value of res of its cells. Therefore the
arithmetic pipeline, upon processing each edge will produce increments that must
be correctly summed up for each cell before that cell is output. Thus the result of
the arithmetic pipeline must be added to the current value of res for the relevant
cells. We use more block RAMs to store the intermediate res results, since the
access pattern to res is the same as the access pattern for the cells.

The architecture diagram of that description is shown in Figure 3.1. The node
and cell data for the current partition are streamed in from the DRAM and stored
in the block RAMs. They are then read in a pattern described by the connectivity
between edges, nodes and cells and fed into the pipeline that produces the res
increments for two cells that must then be added to the currenty values of res for
those cells. Thus we have an accumulator node between the block RAMs for res
and the arithmetic pipeline.

The steps required to process a partition become:

1. Read in node and cell data from DRAM and store it locally.

2. Process the partition data and store the res data set locally.

3. Write out the resulting res set back to DRAM.

CHAPTER 3. DESIGN AND MODELLING 33

DRAM (Node/Cell data) DRAM (Edges/addresses)

Block RAM

Node data: x

Block RAM

Cell data: q, adt

Arithmetic pipeline

+

Block RAM
res

Figure 3.1: Simplified architecture diagram of the accelerator showing the block
RAMs storing the node and cell data, the arithmetic pipeline, the result block
RAMs and the accumulator. The connectivity information is used to address the
block RAMs.

3.3 Halo exchange mechanism

In Airfoil every edge references two nodes and two cells. Those nodes and cells
may be contained in the halo region of an adjacent partition. We have to devise
a mechanism to acquire the required halo data. Since the mesh connectivity is
constant, we can pre-compute the neighbours and the halo regions on the host. The
difficulty arises from the reduction operation. A cell that can be accessed from two
or more partitions needs to add up the contributions of all its edges, and the four
edges that typically reference a cell will not necessarily be in the same partition. We
are faced with the problem of updating a cell from two or more partitons. Since we
perform the initial partitioning, we can identify these halo cells and store them on

CHAPTER 3. DESIGN AND MODELLING 34

the host, not on the DRAM of the card. When processing a partition, we will send
these halo cells and nodes to the FPGA via PCIe. The accelerator will then have all
the data it needs to process all its edges, however the res results that it computes for
the halo cells will be only partial results that need to be combined with the results
of the other partitions that access those cells. This addition of partial results will be
performed on the host. We add some logic to choose whether to read cell and node
data from the halo RAMs or the normal RAMs to obtain an architecture shown in
Figure 3.2. This approach to halo exchange is similar to the ghost cell mechanism
[8]. Thus the stages for processing a partition become:

1. Read in node and cell data from DRAM. Read in halo node and cell data from
PCIe.

2. Process the partition data and store the res data set locally. The res data for
the halo cells is a partial contribution of the final value.

3. Write the resulting res set back to DRAM. Send the partial results for halo
cells back to the host through PCIe.

4. Once all the partitions are processed, the host adds up the contributions to
the halo cells from all partitions.

Remember that PCIe bandwidth is much lower than that of the DRAM (about
10 times lower), so if the halo region of a partition constitutes a large enough
percentage of the total size of the partition, the PCIe transfer becomes dominant
and the DRAM will end up being poorly utilised because the kernel will be waiting
on the host transfer. This is a factor to keep in mind when choosing partition sizes
and partitioning techniques.

CHAPTER 3. DESIGN AND MODELLING 35

Node/Cell data

Edges (addresses)

Edges (addresses) Halo data (PCIe)

Block RAM

Node data: x

Block RAM

Cell data: q, adt

Block RAM

Halo Cell data: q, adt

Block RAM

Halo Node data: x

Arithmetic pipeline

RAM selector

+

Block RAM
res

Block RAM

Halo res

RAM selector

Figure 3.2: Architecture diagram of the accelerator with the PCIe halo exchange
mechanism. The RAM selectors will select which RAM to read the cell and node
data from based on the edge information. They are also used to pick the RAM to
write the results back to. The dashed lines represent addresses that are used to
access the RAMs and to determine which RAMs to access.

CHAPTER 3. DESIGN AND MODELLING 36

3.4 Two-level partitioning

The astute reader will notice that in order to process the partition, we first need
to stream in the entire partition, process it fully and write it back. During the
processing phase we are not streaming anything in or out of the kernel, leaving
the DRAM unutilised, thus wasting bandwidth. To mitigate this, we introduce a
second level of partitioning on the mesh. Each partition will be split into two micro-
partitions(µpartitions). The idea is that as soon as we finish reading in the first
mircro-partition, we can immediately start processing it while reading in the second
micro-partition. Then, when the second mircro-partition has finished streaming
in and the processing has finished for the first one, we can write out the results
of the first one while processing the second. This allows us to achieve an overlap
of data transfer and computation in a scheme reminiscent of a simple processor
pipeline, where the fetch, computation and commit stages overlap to increase the
utilisation of the relevant units. As shown in Figure 3.3, the two micro-partitions
will invariably share some elements in a small region we call the intra-partition
halo(IPH). Care must be taken to not write out the results of the intra-partition
halo or overwrite the data in it before both mirco-partitions have finished processing.
To avoid confusion we call the top-level partitions macro-partitions. This approach
gives us the following phases in the accelerator:

1. Read in data for first micro-partition plus the intra-partition halo. If this
is not the first macro-partition, write out the non-halo data for the second
micro-partition and the intra-partition halo.

2. Process first micro-partition, read in the non-IPH data for second micro-
partition.

3. Process second micro-partition, write out the non-IPH data for the first micro-
partition.

Note that ”read in” and ”write out” include both the DRAM and PCIe halo trans-
fers. This approach is expected to greatly improve DRAM utilisation at the expense
of slightly more complex control logic. This imposes a constraint on the mesh layout
in the DRAM and on the host machine. The first micro-partition should be stored
before the intra-partition halo and the second micro-partition last.

CHAPTER 3. DESIGN AND MODELLING 37

µpartition 1 µpartition 2

IP
H

IP
H

Figure 3.3: Partitioning of a macro-partition into two micro-partitions. This intro-
duces a new intra-partition halo region, shown here in crimson.

The inputs, outputs and RAMs of the kernel can be controlled through enable
signals that predicate their function on some boolean condition that we can define.
This gives us a straightforward way to control when the kernel reads, processes
or writes data. We can define a state machine with internal counters that can be
used to keep track of the progress of each phase and signal the I/O units when
data needs to be read in or written out. It can also be used to control the block
RAMs, specifying when to commit the data found on their input ports. For this,
the state machine will need to know the sizes of the micro-partitions, the intra-
partition halo and the external halo. This can be added to the design as a separate
stream that contains vectors of integers that represent the required sizes. Compared
to the sizes of the partitions, the size of the size vector is negligible and therefore
does not impact the performance of the memory system. Finally, we arrive at the
architecture shown in Figure 3.4. The interleaving of I/O and processing gives rise
to a pipeline-like execution pattern, shown in figure 3.5. Notice how at every stage
there is I/O activity that keeps the DRAM and PCIe streams busy.

CHAPTER 3. DESIGN AND MODELLING 38

Node/cell/halo data Edges (addresses) Size vectors

SMread? process?write?

Block RAM storage

Nodes, Cells, Halos

Arithmetic pipeline

+

Block RAM
res

Figure 3.4: Architecture diagram showing the addition of a state machine (node
SM) that controls the I/O and the processing. The red wires represent the boolean
enable signals. The halo and normal RAMs as well as the RAM selectors are shown
in merged blocks for brevity.

CHAPTER 3. DESIGN AND MODELLING 39

READ PROCESS WRITE

IPH

µpartition 2
µpartition 1

IPH

µpartition 2
µpartition 1

IPH

IPH

µpartition 2
µpartition 1

µpartition 1

IPH

IPH

µpartition 2

µpartition 2
µpartition 1

IPH

IPH

µpartition 2
µpartition 1

µpartition 1

IPH

IPH

µpartition 2

PHASE 1

PHASE 2

PHASE 3

PHASE 1

PHASE 2

PHASE 3

PHASE 1

T
IM

E

Figure 3.5: Diagram showing the overlapping of execution and I/O thanks to the
two-level partitioning scheme. Note that both micro-partitions need the intra-
partition halo (IPH) in order to be processed, so the IPH can only be written out to-
gether with the second micro-partition after both micro-partitions (µpartitions) have
been processed. The red boxes represent the progress of a single (macro)partition
through the accelerator phases.

CHAPTER 3. DESIGN AND MODELLING 40

3.5 The case for a custom streaming pipeline

The floating point calculations will be performed by the arithmetic pipeline, custom
designed for the res calc kernel. In a general purpose core, like on a CPU and to
a somewhat lesser extent a GPU, the floating point calculations will be performed
one after another, writing intermediate values to registers and/or cache. The calcu-
lations are expressed as a sequence of instructions. In a custom streaming datapath
we specify a dataflow graph that the x, q and adt vectors are streamed through, and
the res increments come out of the bottom. The advantage of this approach is that
we can add registers at every stage of every calculation to create a deep pipeline
with high throughput. Pipelining is a well-known processor design technique for
increasing functional unit utilisation and throughput. On conventional processors
it is used with some care, avoiding very deep pipelines, because the general purpose
workload these CPUs are designed for may include arbitrary sequences of instruc-
tions that can potentially create various pipeline hazards (such as invalidation of an
instruction already in a pipeline because a previous branch instruction was taken, a
load memory instruction waiting on a write memory instruction etc.). Adding more
pipeline stages may increase throughput (results per clock cycle) of instructions,
but it also increases their latency (time for a particular instruction to complete)
because of the extra registers that are added to store results between the pipeline
stages. A pipeline hazard is usually dealt with by stalling the pipeline (waiting for
an instruction to complete execution) or flushing it to remove invalid instructions.
These measures introduce a performance penalty that is proportional to the depth
of the pipeline [21].

These drawbacks are not applicable to our approach, because we are creating a
custom datapath for a known custom workload that will perform specific floating
point operations to data that is well-formed for this particular purpose. Since we
know beforehand the calculations that will be performed and in what order we
can safely pipeline the design as much as possible without worrying about data or
control hazards. With that done, the only other concern becomes the task of keeping
it occupied for as long as possible as discussed in the sections above.

An important and perhaps counter-intuitive prediction we can make is that
because of the extreme pipelining the throughput of the architecture during the
processing phase will remain at one result per cycle, regardless of the actual com-
putational workload. As we increase the computational complexity of the kernel,
the pipeline gets deeper and therefore takes more cycles to fill in the beginning and
flush at the end, but during the time when it’s filled (which is most of the time if
the architecture works properly and supplies inputs continuously) it produces one
result per clock cycle. This gives us an intuition of why this approach to acceler-
ation is a good idea. Assuming large enough data sets, as in Airfoil, the time to
fill and flush the pipeline will be amortised by the time spent executing. Compare
this observation with the execution of Airfoil on a CPU or a GPU. On those archi-

CHAPTER 3. DESIGN AND MODELLING 41

tectures the arithmetic execution time is expected to increase proportionally to the
number of floating point calculations performed. Using a custom streaming datap-
ath, the increase in floating point calculations translates into more resources being
used (LUTs, Flip Flops and DSPs), but does not imply a corresponding increase
in execution time. This means that a custom, deeply pipelined architecture must
win in the asymptotic case against any general purpose architecture as the number
of arithmetic operations increases. Of course, in practice, the complexity of the
arithmetic pipeline will be limited by the amount of resources available on the chip.

Figure 3.6 shows the difference in the custom streaming approach as opposed
to a conventional CPU. Note the absence of a fetch/decode unit in the custom
approach, since we are not dealing with instructions. The arithmetic pipeline is
designed to implement a particular mathematical function, while on a generic CPU,
the Arithmetic and Logic Unit (ALU) can handle arbitrary sequences of arithmetic
operations, at the expense of requiring a separate fetch/decode unit as well as a
register file to store intermediate results. Notice how the add r1, r2 instruction
cannot execute until the previous instruction mul r1, r1 has commited its result
to register r1, creating a potential data hazard that may stall any pipelines present
in the functional units of the ALU. In the streaming approach on the left, each of
the functional units is pipelined to achieve high throughput. The y stream must be
delayed by a FIFO queue before being sent to the adder to compensate for the cycles
taken to produce the result from the multiplication unit. Similarly, the output of
the square root unit must be delayed/buffered before entering the subtraction node.
This way, we can push new values for x, y and z into the pipeline every cycle
and after it has been filled, we start receiving one value for r every cycle. Notice,
also, that the x2 and

√
z functions are computed in parallel, since they operate on

different data items. Compare this to the CPU approach on the right, where the
computation of a single value for r takes 8 instructions. It is evident that even
with sophisticated processor design techniques like out-of-order execution, value
forwarding and instruction reordering by the compiler, it is unlikely that the CPU
will be able to produce and sustain a throughput of one value per clock cycle since
the load instructions alone will probably take at least one cycle to fetch the data
from the cache or, even worse, the main memory in the event of a cache miss. This
should be especially evident on large homogeneous workloads where the time to fill
and flush the custom pipeline on the left becomes negligible compared to the time it
remains filled, providing maximal throughput, while the CPU case will have to deal
with more cache misses that introduce huge performance penalties (in the 1000s of
clock cycles) due to the fact that the large data sets will simply not fit into the
cache. Of course, the custom streaming approach also demands that data be fed
into the pipeline at every cycle, thus requiring additional effort by the developer to
format the data accordingly as discussed in previous sections.

A potential GPU implementation will also suffer from these problems, albeit to a
lesser degree. While a GPU has hundreds of cores and arithmetic units available to

CHAPTER 3. DESIGN AND MODELLING 42

run hundreds or thousands of threads, they are still general purpose and still suffer
from the need to decode instructions and access a register file and a cache/memory
hierarchy. Adding more complex arithmetic operations will still increase the time to
produce a result in a linear fashion, while in a custom streaming datapath the extra
work can either be done in parallel by adding extra function nodes and streams
or by adding more nodes to the pipeline, increasing the time to fill/flush it, but
maintaining the throughput.

The arithmetic pipeline we design for the res calc kernel will produce increments
that must be added to the previous values of res by the accumulator, as discussed
earlier. We choose to use single precision IEEE-754 floating point numbers for the
arithmetic because previous work by Sanchez-Roman et al. [11] hints at the error
accumulation that arises from repeated iterations of fixed-point calculations as well
as the implementation difficulties in encoding the data sets to and from fixed-point
representation due to the fact that most host CPU architectures do not have native
fixed-point data types. Trial runs of the serial version of Airfoil on a CPU have
shown the iteration structure to converge when using single precision floating point
numbers so we do not use double precision arithmetic, since this is a proof of concept
project.

Note that the res calc arithmetic pipeline has too many nodes to be meaningfully
reproduced in a diagram here, but it is constructed using the principles discussed
in this section.

CHAPTER 3. DESIGN AND MODELLING 43

x y z

∗ √

+

−

r

r = x2 + y −
√
z

load r1, x

load r2, y

load r3, z

mul r1, r1

add r1, r2

sqrt r3

sub r1, r3

str r1, r

Fetch/Decode

ALU (+ − ∗ √)

Load/Store CACHE/MEM

REGISTERS

Figure 3.6: Diagram showing the computation of the function r = x2 + y −
√
z

by using a custom streaming datapath (left) and using a sequence of instructions in
a conventional CPU (right).

3.6 Performance Model

In order to justify the design decisions made, we present a performance model that
aims to predict the maximum achievable performance increase. For this we need to
take into account the hardware characteristics, such as DRAM and PCIe bandwidth
and the chip clock frequency as well as the format of the data, in particular the
widths of the data sets. We start by considering the structure and partitioning of
the mesh. In the sample meshes that we have the number of nodes is roughly the
same as the number of cells. The number of edges is about twice the number of
cells/nodes.

Let Ctot = total number of cells, Ntot = total number of nodes, Etot = total
number of edges. Cpp is the number of cells per partition and depends solely on
the amount of memory available on the FPGA. Same goes for the number of nodes
per partition Npp. Npp is typically equal to Cpp. We use this number to specify
the desired partition size to the METIS partitioning tool to get n partitions. For

CHAPTER 3. DESIGN AND MODELLING 44

the purposes of this analysis, we assume that the partitions are roughly square in
shape. By square, we mean that they have an equal number of cells/nodes on
their sides/borders. In practice the tools may deliver arbitrary shaped partitions.
Assuming square partitions of dimension l × l = Cpp, the number of halo cells will
be Ch = l + l + 2× (l − 1) ≈ 4l = 4×

√
Cpp as l becomes large. The same for the

number of halo nodes Nh = 4l = 4×
√
Cpp. The number of edges per partition will

be Epp = Etot/n.
We can reasonably assume that partitioning the macro-partitions into two micro-

partitions will give two micro-partitions of equal size. In that case the number of cells
per micro-partition is Cµp = Cpp/2 and the number of nodes is Nµp = Npp/2 and
similarly for the edges Eµp = Epp/2. In a similar fashion we calculate the numbers
for the halo regions of each micro-partition: Chµp = Ch/2, Nh

µp = Nh/2. We assume
the intra-partition halo to be negligible in size, which is confirmed in practice. We
represent the width of the data sets involved in res calc in bits: q = 4 × 32 = 128,
x = 2× 32 = 64, adt = 32, res = 4× 32 = 128.

Next, we take into account the hardware characteristics. The important factors
are: the DRAM bandwidth (BD), the PCIe bandwidth (BP) and the clock frequency
f . Note that the DRAM bandwidth BD is shared between streams to and from
DRAM, while the PCIe streams get BP of bandwidth to the FPGA and BP from
the FPGA.

Recall the phases of computation in the accelerator:

1. Read in data for first micro-partition plus the intra-partition halo. If this
is not the first macro-partition, write out the non-halo data for the second
micro-partition and the intra-partition halo.

2. Process first micro-partition, read in the non-IPH data for second micro-
partition.

3. Process second micro-partition, write out the non-IPH data for the first micro-
partition.

The total execution time can be estimated by adding the execution times for
each of the three phases. So we consider each phase in turn.

3.6.1 Phase 1

The size of the input data for one cell is Cin = q + adt = 128 + 32 = 160 bits.
The size of the input data for one node is just the size of the x dataset: x =
64. Therefore the amount of data that needs to be transferred from DRAM is
Din
DRAM = Cµp × Cin + Nµp × x. We are also writing back the res vectors back

to DRAM and PCIe from the previous micro-partition. The width of the result
is Cout = res = 128 and thus the amount of data to be written out to DRAM
is Dout

DRAM = Cµp × Cout. Similarly the amount of halo data to be transferred

CHAPTER 3. DESIGN AND MODELLING 45

from PCIe is Din
PCIe = Chµp × Cin + Nh

µp × x and the data written out to PCIe

is: Dout
PCIe = Chµp × Cout. The DRAM bandwidth is shared among both input and

output streams, therefore the bandwidth allocated to the input stream from DRAM

to the kernel will be Bin
D = BD ×

Din
DRAM

Din
DRAM +Dout

DRAM

and the bandwidth to DRAM

will be Bout
D = BD − Bin

D . As mentioned earlier, both PCIe streams get the same
bandwidth BP . Knowing the bandwidths we can calculate the times needed for

the data transfers. tDRAM =
Din
DRAM

Bin
D

=
Dout
DRAM

Bout
D

for the DRAM transfer and

tPCIe =
Din
PCIe

BP
for the PCIe transfer since the width of the input data is greater

than the width of the output data and the bandwidths for input and output are the
same. The FPGA itself is a synchronous circuit operating at f cycles per second.
This means that if it wants to read a data item from but the stream does not have
anything available the kernel will stall until the memory system supplies a data item.
Since the PCIe channel is slower than the DRAM channel, we need to make sure
that the PCIe accesses happen at regular intervals and not one after the other so as
to avoid forcing the DRAM to deliver data in lockstep with the PCIe bus. Similarly
for output streams. We assume such a configuration here. We assume that we
read/write one node/cell pair from DRAM every cycle and a halo node/cell pair
from PCIe every few cycles in such a way as to not throttle the DRAM. Assuming
a clock frequency f , the minimum time needed to consume the data for a micro-

partition will be tFPGA =
Cµp
f

. Thus, the time taken to complete phase 1 will

be the maximum of the three times calculated: t1 = max(tDRAM , tPCIe, tFPGA).
Ideally we want the three times to be in then order: tPCIe < tDRAM < tFPGA, i.e.
we don’t want PCIe transfer to be a bottleneck.

3.6.2 Phase 2

In phase 2, the first micro-partition gets processed, i.e. its edges are streamed in,
used to address the block RAMs and results are written to the res block RAMs.
Also, the second micro-partition is streamed in and stored in local storage. Again,
we stream in data of width Cin from both DRAM and PCIe, but this time we
also stream in edge data in the for of four addresses: one for each of the two cells
and nodes. The width of the edge data depends on the number of elements that
are in a partition. A block RAM of depth/size d has addresses of width dlog2(d)e
bits. The depth of the block RAMs in our case is the number of cells/nodes in a
partition Cpp (typically, the number of nodes and cells is roughly equal), therefore
the width of each address is dlog2(Cpp)e and the width of the data for each edge
is Ein = 4 × dlog2(Cpp)e. Therefore the amount of data we are transferring from
DRAM will be Din

DRAM = Eµp × Ein + Cµp × Cin + Nµp × x, while the amount of
halo data transfered from PCIe will be Din

PCIe = Chµp × Cin +Nh
µp × x.

CHAPTER 3. DESIGN AND MODELLING 46

As before, we calculate the times to transfer the data from DRAM tDRAM =
Din
DRAM

BD
and PCIe tPCIe =

Din
PCIe

BP
.

This time, the number of cycles taken to consume the data by the kernel will be
dominated by the number of edges, since there are about twice the number of edges
on average than cells or nodes. The number of edges we process per cycle is the
number of arithmetic pipelines we have np. The minimum time taken by the FPGA

to consume all edges in a micro-partition in phase 2 will then be tFPGA =
Eµp
f × np

.

Again, the total runtime for this phase will be dominated by the maximum of the
three times calculated above, that is t2 = max(tDRAM , tPCIe, tFPGA).

3.6.3 Phase 3

The third phase is similar to the second one, except that we are now writing back
the first micro-partition and processing the second one. The numbers remain the
same for tDRAM , tPCIe and tFPGA. t3 = max(tDRAM , tPCIe, tFPGA). The total
time to process one iteration of the whole mesh is therefore: ttot = n× (t1 + t2 + t3).
The time to execute i iterations then becomes titot = i× n× (t1 + t2 + t3).

3.6.4 Design space exploration

Having the above model, we can plug in values for existing test meshes and ar-
chitecture options to explore the effects that each one will have on the perfor-
mance. This way we can identify bottlenecks in performance and optimise the
architecture accordingly. Substituting values for our test mesh of 721801 nodes,
720000 cells and 1438600 edges and 213 = 8192 cells/nodes per partition for an
architecture with one arithmetic pipeline running at f = 240MHz we get values
for t1 = 1.71 × 10−5s, t2 = 3.44 × 10−5s, t3 = 3.44 × 10−5s for a total runtime
ttot = 7.48 × 10−3s. Extrapolating to 2000 iterations, we get t2000tot = 14.96s. This
estimated runtime beats the time of 53.99 seconds for res calc shown in Table 3.1,
achieving a speedup of ×3.6. However, it is more interesting to compare the run-
time to an accelerated version. One such implementation, developed at the Software
Performance Optimisation group at Imperial College uses the NVIDIA Tesla M2050
accelerator [23] programmed using the OpenCL framework [22]. .It uses the large
number of cores present on the card to launch thousands of threads in parallel, thus
greatly accelerating computation. We run a version of Airfoil re-engineered to fit
the GPU computational model and record the time spent in each kernel The times
for the various Airfoil kernels on the same test mesh are shown in Table 3.1:

CHAPTER 3. DESIGN AND MODELLING 47

Kernel Name GPU time spent (seconds) CPU time spent (seconds)

save soln 0.4593 1.84

adt calc 1.1310 51.09

res calc 6.5122 53.99

bres calc 0.0640 0.23

update 1.5042 8.44

Table 3.1: Table showing the time spent in each kernel during a run of a hardware
accelerated version of Airfoil on a Tesla M2050 GPU. The total run time is 9.67
seconds for 2000 iterations. The corresponding times of the serial single-threaded
implementation as shown in Table 3.1 are shown here. The GPU implementation is
programmed using the OpenCL backend of OP2.

Notice how the execution time has improved in contrast to the single-threaded
CPU variant and how res calc now dominates the execution time. The time we
should be planning to beat is 6.51 seconds. In the graphs following, the times are
reported in seconds.

Number of arithmetic pipelines np

If we look at the numbers we computed for the above mesh we notice that for phases
2 and 3 of the accelerator, the time spent computing the edges (tFPGA) is 3.44 ×
10−5s, dominating the execution of that phase, while the time for DRAM transfer
is tDRAM = 4.43×10−6s. This is a strong indication that the edge processing is the

bottleneck in performance. Recall that tFPGA =
Eµp
f × np

. Eµp is a characteristic of

the mesh and not subject to variation. The clock frequency f and the number of
arithmetic pipelines np we can vary. Lets start with np. Increasing the number of
pipelines we get a considerable boost in performance, as shown in Figure 3.7.

CHAPTER 3. DESIGN AND MODELLING 48

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

ti
m

e

pipelines

2000 iterations
Tesla M2050

Figure 3.7: Plot of estimated execution time for 2000 iterations of res calc against
the number of arithmetic pipelines in the architecture. The clock frequency is set
to 240MHz.

Notice how after 8 pipelines we do not get a performance boost anymore because
the bottleneck now shifts to the memory transfers, DRAM in particular. Using just
4 pipelines our architecture is estimated to beat the Tesla performance, which is
an impressive result, considering the hundreds of concurrent cores running on the
Tesla.

Clock frequency f

Next we explore the effects of varying the clock frequency of the chip. Realistically,
the frequencies achievable on the hardware range from 120MHz to 300MHz approx-
imately. The results of increasing the frequency are presented in Figure 3.8. While
frequencies above 300MHz are not in general achievable, we present the theoretical
increase it would take to catch up to the Tesla implementation. As we can see,
raising the clock frequency is clearly a worse choice than increasing the number of
pipelines but still a gives a boost in performance. Note also that raising the clock
frequency implies more energy consumption leading to more heat dissipation.

CHAPTER 3. DESIGN AND MODELLING 49

 6

 8

 10

 12

 14

 16

 18

 200 250 300 350 400 450 500 550 600

ti
m

e

clock frequency (MHz)

2000 iterations
Tesla M2050

Figure 3.8: Plot of estimated execution time for 2000 iterations of res calc against
the clock frequency of the FPGA using one arithmetic pipeline.

Clock frequency f and arithmetic pipelines np

It is interesting to see the effects of varying the frequency f as well as the number
of arithmetic pipelines np. The results of such an experimentation are shown in
Figures 3.9 and 3.10.

CHAPTER 3. DESIGN AND MODELLING 50

 3

 4

 5

 6

 7

 8

 9

 10

 11

 200 220 240 260 280 300

ti
m

e

clock frequency (MHz)

2 pipelines
3 pipelines
4 pipelines
5 pipelines
6 pipelines
7 pipelines

Tesla M2050

Figure 3.9: Plot of estimated execution time for 2000 iterations of res calc against
the clock frequency of the FPGA for various numbers of arithmetic pipelines.

 2

 3

 4

 5

 6

 7 200
 220

 240
 260

 280
 300

 3

 4

 5

 6

 7

 8

 9

 10

 11

time

2000 iterations

pipelines

clock frequency (MHz)

time

Figure 3.10: Plot of estimated execution time for 2000 iterations of res calc against
the clock frequency of the FPGA for various numbers of arithmetic pipelines in a
3-dimensional plot.

We see that by using 6 or 7 pipelines and clocking the design at 300MHz, we

CHAPTER 3. DESIGN AND MODELLING 51

can beat the Tesla implementation by about 66%, offering a total of ×13.8 speedup
over the serial CPU version. These numbers validate the architecture we designed
by providing some estimates about the potential speedup. Having performed this
performance analysis, we can now move on to implementing the architecture in order
to discover potential issues that might prevent us from achieving the maximum
performance that we predict with this model.

Partition size Cpp

Once we remove the arithmetic pipeline bottleneck by adding more pipelines we
can experiment with partition sizes to see the effects. varying the number of cells
per partition Cpp gives us the data shown in Figure 3.11. Note, also the ratio of
non-halo to halo transfers in Figure 3.12.

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

256 512 1024 2048 4096 8192 16384 32768

ti
m

e

cells per partition

2000 iterations

Figure 3.11: Plot of estimated execution time for 2000 iterations of res calc against
the number of cells per partition. Note that the horizontal axis is on a log-2 scale.
The design has 8 pipelines and runs at 240MHz. Noye how for values of Cpp less
than 2048 the execution time rises very steeply. This is when the proportion of
halo data to non-halo data becomes too large and the PCIe transfers dominate and
become a bottleneck.

We notice that for values of Cpp less than 2048 the PCIe transfer time dominates

CHAPTER 3. DESIGN AND MODELLING 52

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

256 512 1024 2048 4096 8192 16384

D
R

A
M

/P
C

Ie
 t

ra
n

s
fe

r
ti
m

e
 r

a
ti
o

cells per partition

ratio
1

Figure 3.12: Plot of estimated DRAM to PCIe transfer time ratio (
tDRAM
tPCIe

) against

the number of cells per partition. Note that the horizontal axis is on a log-2 scale.The
design has 8 pipelines and runs at 240MHz. Notice that for values of Cpp less than
2048 the ratio of DRAM to PCIe transfer time drops below one and the whole design
is dominated by halo transfers, greatly decreasing DRAM bandwidth utilisation.

execution time. Notice how steeply the performance degrades when PCIe transfers
dominate. This result is to be expected since the size of the halo region is propor-
tional to the square root of the partition size, in other words Chpp ∝

√
Cpp. This

obeservation makes it important to pick partition sizes large enough to avoid this
issue.

An important point in our approach is the observation that the performance of
our design is highly predictable, much more so than conventional CPU and GPU
implementations. If we had tried to predict the performance of a CPU or a GPU
implementation we would have to deal with a lot of system-dependent factors like
cache misses, thread creation overhead, register spilling etc that make a significant
impact on performance, yet cannot be easily accounted for in a preliminary analysis
such as this.

CHAPTER 3. DESIGN AND MODELLING 53

3.7 Conclusion

In this chapter we presented the design space of the accelerator, developing ideas
such as two-level partitioning to increase memory channel utilisation and a halo
exchange scheme to enable communication between different partitions. The case
for using a streaming architecture for acceleration was presented and the advantages
of using a deep pipeline were summarised.

We developed an analytical performance model, parametrised by problem pa-
rameters such as partition size and hardware and architecture characteristics such
as clock frequency, number of arithmetic pipelines and memory bandwidth. We use
the performance model to explore the design space of this family of architectures
in search of configurations that will give interesting speedups compared to existing
implementations of Airfoil. We investigate the issue of halo transfers and the ef-
fect they can have on the performance of the system. We come to the conclusion
that, provided the partition size is above a certain threshold the halo transfers do
not impact the performance, hence mitigating the effects of the significantly lower
bandwidth of PCIe and justifying our design choice. Furthermore, we explore the
advantages of using multiple arithmetic pipelines and varying the clock frequency
of the design and find that a subspace of architectures can indeed provide superior
performance to a state of the art GPU implementation.

The next step is to implement an architecture from this family and use it to
validate the model, which would confirm and justify the design choices presented in
this chapter. The next chapter discusses the implementation issues that arise, both
in the host code mesh preprocessing stage and in the FPGA accelerator.

Chapter 4

Implementation

In this chapter we present the issues that arise when trying to implement the FPGA-
based accelerator and the host-side mesh preprocessing code. Due to time limitations
we attempt to build a design using one arithmetic pipeline with 8192 (213) cells per
partition. We build designs with clock frequencies ranging from 100MHz to 180MHz.

The host code is implemented in C. We implement some data structures that are
necessary for the intermediate stages of mesh preprocessing. We implement hash
maps, hash sets, ordered linked lists and queues. We use the MaxCompilerRT C
API to communicate with the accelerator. We overcome hardware limitations, such
as limits on the number of ports for block RAMs on the FPGA and fundamentally
computationally hard problems such as edge scheduling.

4.1 Mesh partitioning

We use the METIS partitioning tool through its C API to assign a partition number
to each cell and node. This is where we use the indirection maps that define the
connectivity. When assigning edges to partitions we must take care to also add the
nodes and edges that they reference from neighbouring partitions. These nodes and
cells will be part of the halo region.

Next, we need to perform the second level of partitioning. For this we need
to translate the global indirection maps (cell, edge etc) into local maps for each
partition. For this we need to remap the nodes and cells to a local numbering. We
use hash maps to store the associations between global and local numbering and use
them to translate the cell indirection map into local maps for each partition.

Now we can perform the second level of partitioning by breaking up each parti-
tion into 2 micro-partitions. We actually want three regions from this process: the
two micro-partitions and the intra-partition halo (IPH). We assign edges to each
partition again taking care to add the nodes and cells from the neighbouring micro-
partition. Since METIS provides a partition number for each cell and node, we need
to determine the IPH region ourselves. We store the nodes for each micro-partition

54

CHAPTER 4. IMPLEMENTATION 55

into a set (we used a hash set but any implementation could be used) calledNodesµp1
and Nodesµp2 and calculate the IPH region by NodesIPH = Nodesµp1 ∩Nodesµp2.
Now we need to remove the common nodes from Nodesµp1 and Nodesµp2, that is
Nodesµp1 := Nodesµp1\NodesIPH and Nodesµp2 := Nodesµp2\NodesIPH , where
A\B is the set A with the elements of set B removed (\ is the set difference opera-
tor). We follow the same procedure for cells and we arrive at the partitions that we
need.

4.2 Edge scheduling

Recall the use of the accumulator that adds the increments computed by the arith-
metic pipeline to the current values of res (Figures 3.1 and 4.1), creating a loop
in the architecture. This has implications on the order with which we process the
edges. Suppose the accumulator has latency l, that is if the operands for addition
arrive to it at cycle c the corresponding result will appear on its output at cycle
c+ l. That latency depends on the number of pipeline stages in the adder. One of
the operands is the increment computed by the arithmetic pipeline and the other
is the previous value of res that was read from the corresponding BRAM. The new
res result that must be written back to the BRAMs will be produced in l cycles.
This means that within that window we must not access the same BRAM address
(i.e. the same cell) because we will have not commited the previous result of res
that is still in the accumulator pipeline, thus getting two values for res that will
be commited to the BRAM with the earliest one being overwritten instead of being
added. This outcome is shown in Figure 4.1 where two values v1 and v4 for the
cell at α0 are being computed. When v4 exits the pipeline it will be written at
address α0 in the BRAM, only to be overriden by v1 3 cycles later. To work around
this issue we constrain the iteration order of the edges in each micro-partition. The
constraint is that for every edge no edge in a window of width l must access the any
of the two cells. Thus, given an ordering of n edges sch the validity of the schedule
sch for a window width l can be determined by algorithm 1.

CHAPTER 4. IMPLEMENTATION 56

v1@α0

v2@α1

v3@α2

v4@α0

v5@α3

v6@α4

l = 6+

BRAM

ARITH

Figure 4.1: Architecture diagram of the accumulation part of the accelerator design
showing the conflicting values of res being computed in the accumulator pipeline.
The conflicting values for address α0 are shown in red.

function boolean validSchedule(node[]sch, int n, int l)
for i in [0..n− 1] do

Ci ← set of cells referenced by edge sch[i]
for j ← 1 ; j < l ; j ← j + 1 do

C(i+j)%n ← set of cells referenced by edge sch[(i+ j)%n]
if Ci ∩ C(i+j)%n 6= ∅ then

return FALSE
end if

end for
end for
return TRUE

end function

Algorithm 1: Pseudocode that validates an edge schedule sch of n edges with window
width l.

In order to compute that schedule we partition each micro-partition again into
multiple partitions, calling them edge partitions. We define two edge partitions
being adjacent if an edge in one references a cell in the other, or if a cell in one is
referenced by an edge in the other. Using this definition we construct an adjacency
graph where the nodes represent the edge partitions and we connect two nodes with

CHAPTER 4. IMPLEMENTATION 57

an edge if the two edge partitions are adjacent. That way we know that edges
belonging to two non-adjacent partitions will never conflict and can be scheduled
one after the other, since they cannot access the same cells. That way, the problem
of finding a schedule for the edges can be reduced to finding a schedule for the nodes
in the adjacency graph such that no two nodes within a window of width of width l
will be adjacent. An example is shown in Figure 4.2. Using the adjacency graph we
can transform Algorithm 1 for checking the validity of a schedule into Algorithm 2.

1

2

3

4

5

67

8

9

10

11

1

2

3

4 5

6

7

8 9

10 11

Figure 4.2: An example partitioning of a micro-partition into 11 edge partitions
(left) and the adjacency graph generated from that partitioning (right).

function boolean validSchedule(node[] sch, int n, int l, Graph g)
for i in [0..n− 1] do

for j := 1 ; j < l ; j := j + 1 do
if sch[i] adjacent to sch[(i+ j)%n] in g then

return FALSE
end if

end for
end for
return TRUE

end function

Algorithm 2: Pseudocode that validates a node schedule sch of an adjacency graph
g with n elements for a window width of l.

CHAPTER 4. IMPLEMENTATION 58

To actually compute a schedule given an adjacency graph and a window width,
we can use algorithm 3. Note that the sch function is recursive and uses the validPos
function defined in algorithm 4 to pick which nodes to attempt to schedule. Due
to the high number of adjacency checks, we choose to represent the graphs as two-
dimensional adjacency matrices mat where mat[i][j] = 1 if nodes i and j are adjacent
and mat[i][j] = 0 otherwise. Algorithm 3 performs a depth-first search of the state
space, backtracking to try different paths if a particular path fails thanks to the
use of queues to store nodes that should be tried next. The recursion handles the
backtracking. At every call of sched the algorithm will try to place a node into the
schedule and determine which of its non-adjacent nodes are eligible for consideration,
calling itself recursively to place the next node.

CHAPTER 4. IMPLEMENTATION 59

function node[] scheduleGraph(Graph g, int l)
nnodes← number of nodes in g
res← node[nnodes] . array of size nnodes
count← 0
q ← empty Queue
for all node in g do

enqueue node in q
end for
while q not empty do

n← q.dequeue()
if sch(n,&count,&res, g,) then

return res
end if

end while
print(”Could not schedule graph”)
return NULL

end function
function boolean sched(node n, node[] res, int count, Graph g, int l)

res[count]← n
count← count+ 1
q ← empty Queue
if count = number of nodes in g then

return TRUE
end if
for all nn in g and not adjacent to n do

if nn /∈ res ∧ validPos(res, nn, count, l, g) then
enqueue nn in q

end if
end for
while q not empty do

child← q.dequeue()
if sched(child, &res, &count, g, l) then

return TRUE
end if

end while
count← count− 1 . Failed to find schedule down this path
return FALSE

end function

Algorithm 3: Pseudocode that computes a schedule for the nodes in a graph g with
window width l.

CHAPTER 4. IMPLEMENTATION 60

function boolean validPos(node[] arr, node n, int c, int l, Graph g)
if c ≤ l then

for p← 0 ; p < count ; + + p do
if arr[p] adjacent to n in g then

return FALSE
end if

end for
end if
nnodes← number of nodes in g
if c > nnodes− l then

for p← 0 ; p < l − (nnodes− c) ; p← p+ 1 do
if arr[p] adjacent to n in g then

return FALSE
end if

end for
end if
for p← c− l − 1 ; p < c ; p← p+ 1 do

if arr[p] adjacent to n in g then
return FALSE

end if
end for
return TRUE

end function

Algorithm 4: Pseudocode that checks whether inserting node n at position c into
the schedule arr will produce a valid partial schedule for window width l of the
nodes in graph g.

CHAPTER 4. IMPLEMENTATION 61

4.2.1 No-op edges

Once the edge-partition schedule has been computed, the edge order can be com-
puted by taking an edge from each partition in the scheduled order in turn. However,
in practice each edge-partition will not contain exactly the same amount of edges,
leaving ”gaps” in the pipeline. To work around this, we add no-op edges(no op-
eration edges), dummy edges that will be used to fill the gaps in the pipeline and
whose resulting res increments will be ignored by the accelerator commit phase. The
conversion from an edge-partition schedule to a schedule for the edges is shown in
Figure 4.3. No-op edges clearly are a necessary but undesirable addition to the edge
schedule since they take up pipeline stages in order to preserve the independency
between each pipeline stage, but producing no useful arithmetic result. In practice,
we introduce no-op cells and no-op nodes in the accelerator that when processed
(upon encountering a no-op edge) will produce NaN (Not a Number) floating point
values that will be ignored by the result committing mechanism. The number of
no-op edges depends on how uneven the partitioning is. In practice, the disparity
between the number of edges in each edge-partition increases in proportion to the
size of the partitions. We can ask METIS to produce as even partitions as possible,
but there will always be some disparities.

4.2.2 Complexity

The algorithm described above (Algorithm 3) will find a correct schedule of the ad-
jacency graph, but has a forbiddingly high complexity. Consider the dual adjacency
graph defined as the nodes of the adjacency graph connected by an edge iff they are
not connected in the adjacency graph. The task of scheduling the adjacency graph
g with window width l can be transformed into finding a path visiting every node
of the dual graph g once where each node in the path is adjacent to every node in
a window of l around it along that path. Intuitively, we can see that this problem
is at least as hard as the problem of finding a Hamiltonian path, which is known
to be NP-complete [24] and thus NP-hard. This has serious implications on the
performance of our scheduling algorithm, since NP-complete problems do not have
any known fast (polynomial-time) algorithms for solving them. In fact, finding an
efficient polynomial time algorithm would be tantamount to proving P=NP, thus
revolutionising computer science as we know it. Algorithm 3 performs little better
than a blind search through the space of possible permutations of the nodes, hence
its complexity is O(n) = n! where n is the number of nodes in the graph. This is
quite poor complexity for an algorithm that does not scale well at all. For example,
a trial attempt at scheduling a graph with 300 nodes with window width 18 did not
terminate even after an overnight run. Clearly we must do better.

CHAPTER 4. IMPLEMENTATION 62

= no-op edge

= edge scheduling order

1 2 3 4 5 6

Scheduled edge partitions

1

2

3

4

5

6

N
u

m
be

r
o
f

E
d
ge

s

Figure 4.3: Diagram showing the conversion of an edge-partition schedule (top) to
an edge schedule (bottom) with the no-op edges shown in gray.

CHAPTER 4. IMPLEMENTATION 63

4.2.3 No-op edge-partitions

Fortunately, we can work around this issue by introducing no-op edge-partitions.
No-op edge-partitions contain only no-op edges and are conceptually non-adjacent
to any node in the adjacency graph (or, conversely, adjacent to every node in the
dual adjacency graph) and can therefore be placed at any position in the schedule,
thus padding it out and making it easier to find a schedule. We want to add as few
no-op partitions as possible since we are trying to reduce the no-op edge count.

4.2.4 Graph colouring and edge scheduling revisited

A trivial solution for scheduling a graph with window-width l would be to add l
no-op partitions after each node, but this would increase the edge count in the
mesh by a huge amount, adding l × e × n no-op edges, where e is the maximum
number of edges per edge-partition and n is the number of nodes in the adjacency
graph or the number of edge-partitions. In this section we transform the scheduling
problem (Hamiltonian path problem) to a graph colouring problem for which we
can compute a sub-optimal but tolerably good solution in polynomial time. The
approach we use utilises graph colouring to group nodes together and using no-op
partitions to pad the space between different colours. We define a colouring of a
graph as an assignment of a colour to each node such that no two adjacent nodes
have the same colour. Graph colouring is a popular problem in computer science and
a lot of work has been done in this area. Finding an optimal colouring, one which
uses the minimal number of colours is known to be NP-complete [25]. However, we
use a greedy colouring algorithm to compute a sub-optimal but adequate colouring
that enables us to group independent partitions together (Algorithm 5). Algorithm
5 iterates through every node in the graph and tries to assign it the lowest numbered
colour not assigned to its neighbours (that’s where the greediness shows). In the
worst case each node will be assigned a different colour (ncolours = nn), forcing
the algorithm to go through all nn−1 colours before finding a valid colour for itself.
Thus, in the worst case we iterate over all the nodes, then through all colours (which
will be O(nn)) and then through all the neighbours of each node (again bounded
by O(nn)) giving us a worst case complexity of O(nn3) for a graph with nn nodes.
In practice we noticed that the algorithm performs well enough and hardly ever
encounters the worst case.

Having coloured the adjacency graph, we can now schedule it with a window
width l by grouping the nodes with the same colour one after another, safely know-
ing that they do not interfere. Transitioning from one colour to the next though
can present a problem, since nodes with different colours are not guaranteed to be
independent. We mitigate this by adding l no-op edge partitions after each colour
group. This means adding l×c×e no-op edges to the schedule where c is the number
of colours. Evidently, the fewer colours we use the less no-op edges are added, so
an optimal colouring of the adjacency graph is desirable, but cannot be computed

CHAPTER 4. IMPLEMENTATION 64

efficiently.
With this approach we are guaranteed to add no-op edge-partitions. Recall

that for a colouring with c colours of a graph that we are trying to schedule with
window width l such that the maximum number of edges in each edge partition is
e, the number of no-op edges we add is Nnop = l × c × e. We want to minimise
Nnop. l is a parameter of the problem and is a characteristic of the hardware. c
depends on the quality of the colouring as discussed above. e can be minimised by
using smaller edge-partitions. Using smaller edge-partitions means creating more of
them per micro-partition. Therefore, using this scheme, it is in our best interests
to use as many edge-partitions as possible to minimise the ratio of no-op to normal
edge-partitions.

CHAPTER 4. IMPLEMENTATION 65

function int[] colourGraph(Graph g)
nn← number of nodes in g
colours← int[nn]
for all node n in g do

colours[n]← −1 . Initialise colours to invalid colour
end for
ncolours← 1
for all node n in g do

c← 0
repeat← TRUE
while repeat do

available← TRUE
for all node neigh adjacent to n and while available do

if colours[neigh] = c then
available← FALSE

end if
end for
if available then

colours[n]← c
repeat← FALSE

end if
c← c+ 1
if c = ncolours then

ncolours← ncolours+ 1
end if

end while
end for
return colours

end function

Algorithm 5: A greedy colouring algorithm that takes an undirected graph g and
returns an array containing the colour of each node in g

CHAPTER 4. IMPLEMENTATION 66

4.3 Data sets and padding

As discussed earlier, the kernel on the accelerator has 6 inputs and two outputs:

1. cell data from DRAM

2. node data from DRAM

3. halo cell data from PCIe

4. halo node data from PCIe

5. Edge/address data from DRAM

6. Size vectors from DRAM

7. res cell data to DRAM

8. res halo cell data to PCIe

The memory system on the MAX3 card places certain limitations on the size of
the data streams. In particular: PCIe stream widths must be multiples of 128 bits,
while DRAM streams must fit into multiples of 1536 bits. These limitations force
us to pad out data sets so that they can be streamed in and out of the accelerator.
Remember that cell data consists of the q and adt data sets and the res result.
The node data is just the x data set. The edge data is a vector of the addresses
into the BRAMs while the size vectors contain the sizes of the constituent parts of
a partition (number of cells, nodes, halo sizes, IPH size etc). For the types of the
individual data sets refer to Table 2.1 on page 12. We represent real numbers (R)
with 32-bit IEEE-754 floating point numbers. The padding required for each data
set is shown in Table 4.1. Notice how in some cases the padding is quite extensive,
in the case of node data doubling the size of the input.

The padding will introduce a degradation in performance, since bandwidth is
used to transfer these unutilised data items. Due to time limitations we have not had
an opportunity to explore more efficient data packing and compression techniques,
but it is certainly something worth looking into in future work. For now we are
interested in getting a working solution so that we can identify implementation
issues such as this.

CHAPTER 4. IMPLEMENTATION 67

I/O stream Original
width(bits)

Padding(bits) Total width(bits)

cell data from
DRAM

160 96 256

node data from
DRAM

64 64 128

halo cell data from
PCIe

160 96 256

halo node data
from PCIe

64 64 128

Edge/address
data from DRAM

56 8 64

Size vectors from
DRAM

238 18 256

res cell data to
DRAM

128 0 128

res halo cell data
to PCIe

128 0 128

Table 4.1: Table showing the amount of padding added to each dataset to enable
streaming.

4.4 Data layout and preparation for streaming

Having performed the partitioning and scheduling of the mesh we have to separate
the data that will be loaded onto the DRAM of the card from the halo data that will
be sent from the host. Calculating the halo regions is a simple matter of taking the
set intersections of the nodes and cells between each pair of partitions and placing
them into a separate data structure.

Then we order the partition data such that for each partition the first micro-
partition is laid out before the IPH region and then the second micro-partition. This
is a fairly intuitive layout that ensures that the partition data will be read in the
correct order. We make sure to lay out the halo data that will be streamed from
the host in a corresponding manner, with the halo data that belongs to the first
micro-partition coming before the halo data that is in the IPH region, followed by
the halo data of the second micro-partition. The sizes of each of these sub-regions
is recorded in the size vector for the partition that will be used to control the state
machine in the FPGA.

Having determined the layout of the nodes, cells and edges we rearrange the data
sets to prepare them for streaming by going through each node/cell in the schedule
and copying accross each data set that is associated with it. In the end we have the

CHAPTER 4. IMPLEMENTATION 68

data sets in the correct format, ready for contiguous streaming to and from DRAM.
Edges are expressed as addresses into the cell and node block RAMs and are

therefore assembled as structs containing the local partition numberings of the cells
and nodes in a partition. Since halo data is stored in separate RAMs, we need a
way for the hardware to distinguish halo data addresses from normal data. One
approach is to add a boolean field with each address specifying whether the address
should be used to index a halo RAM or not. We choose a different approach. Since
we send the sizes of each of region of the partition in the sign vector, we assign
halo data addresses that are greater than normal data. That way we avoid adding
extra boolean fields to the edge data and the hardware can detect wether a cell or
node is in a halo RAM by checking wether its address is greater than the size of the
non-halo data. Of course, an appropriate address translation must be performed by
subtracting the size of the non-halo data from the address to get a new value that
can be used to index the halo RAMs.

During preparation for loading the data to the FPGA we set up the DRAM ad-
dress generators to generate simple linearly increasing addresses that will maximise
the performance of the memory system. Another issue that has to be overcome is
the limitation that memory streams to/from DRAM have a size that is a multiple of
384 bytes (called the burst size). If mesh data does not fit exactly into this multiple
we pad out the end of the stream with junk data that will be consumed but ignored
by the kernel.

4.5 FPGA accelerator

4.5.1 I/O streams and manager

The accelerator architecture design has been discussed in the design chapter and
its implementation follows those guidelines. A high-level diagram of the input and
output streams is shown in Figure 4.4. In practice there is also an extra stream
from PCIe directly to DRAM that is used to load the data into the DRAM upon
initialisation from the host, but it is ommited from this diagram. The DRAM
streams need address generators that define the memory access pattern and tell the
system where to fetch data from. In our architecture the DRAM address generators
provide a simple linear, contiguous stream of increasing addresses for each of the
DRAM data streams so that the memory controller can take advantage of the locality
and provide the maximum bandwidth possible.

CHAPTER 4. IMPLEMENTATION 69

DRAM PCIe

cells nodes edges sizes halo cells halo nodes

RES CALC KERNEL

res halo res

256 128 64 256 256 128

128 128

Figure 4.4: The manager graph of the accelerator showing the widths of the I/O
streams. The host communicates with the FPGA through the PCIe channel.

4.5.2 Result RAM division and duplication

The kernel itself is programmed using the MaxCompiler API. As discussed earlier,
resulting res vectors will be stored in local BRAM storage. The RAMs on the
Xilinx Virtex6 chip have a limitation of only two ports, meaning that at any single
cycle they can accept two address streams, two input data streams, two write-
enable signals and produce two output streams. This presents a challenge to the
implementation. Recall that because of the accumulator latency, we must read one
value from the result RAM and write the corresponding result of the addition l
cycles later, where l is the latency of the accumulator. The only way to implement
this is to read the current value of res for the cell we are processing from port A
and write the corresponding result of the accumulation l cycles later on port B.
This is a fine approach, but it presents a difficulty when we want to read out the
RAMs for output. Remember that thanks to our two-level partitioning scheme and
the resulting interleaving of computation and I/O we are potentially processing and
edge and outputting the result of the previous micro-partition, thus needing access
to the BRAMs from three different addresses.

To overcome this, we notice that this contention for addresses happens only
during phase 3 of the accelerator where we are processing the second micro-partition
and the intra-partition halo while writing out the first micro-partition. We know
that the first micro-partition will not be accessed by the edge data (because of the
two-level partitioning scheme). We therefore make the decision to split the RAMs

CHAPTER 4. IMPLEMENTATION 70

for storing the res data into two RAMs, one for each micro-partition. The intra-
partition halo will be stored in the RAM of the second micro-partition, since it is
written out together with the second micro-partition.

This limit on port numbers drives us towards another implementation decision.
Recall that the processing of each edge requires the update of two cells. But we
have already used up both ports on the result RAMs for processing just one cell.
Therefore we make the decision to use two sets of RAMs, one for each cell access.
Of course, this means that the results stored in the RAMs will only be partial res
vectors that must be summed up on output. Such an arrangement is shown in Figure
4.5. During output an incrementing counter will provide addresses to sequentially
read out the res data from both RAMs. The partial results are added before being
sent out either to DRAM or to the host (for halo data). We have an addition node
for each cell that we process for every edge. Some selection logic is used to choose
whether to write to the halo or the normal RAMs. The selection logic is necessary
because the in the streaming model all nodes and all RAMs produce a result every
cycle and we need some logic to control which ones are valid. The selection logic
is controlled by the address data produced by the edges and by the kernel state
machine that controls the enable signals to the RAMs and input/output streams.

CHAPTER 4. IMPLEMENTATION 71

ARITH

+ +

SEL

Address translation

µp1 R1 µp1 hR1

µp2 R1 µp2 hR1

Address translation

µp1 R2 µp1 hR2

µp2 R2 µp2 hR2

SEL SEL

+

SEL

DRAM PCIe

Figure 4.5: Diagram showing the division of the result RAMs and the data flow
in the result RAMs. The selectors choose whether to read from the first or the
second micro-partition, dependent on the accelerator phase. The addition node
adds the partial results before writing them back. The halo RAMs have an h in
their name (e.g. µp1 hR1). During the processing phase two cells are updated in two
RAMs (R1 and R2). The address translation blocks translate global cell addresses
to local addresses, for example when the second micro-partition (µp2) RAMs are
being accessed.

CHAPTER 4. IMPLEMENTATION 72

4.5.3 Resource usage

The FPGA has a limited amount of resources and any extensions to the design must
not require more resource than are available. Table 4.2 shows the resource usage of
our design. Notice that the arithmetic pipeline uses all of the DSP resources that
are used in multiplication operations, but does not consume too much. This gives
an indication that adding more pipelines would not be a problem, at least from a
resource usage view. MaxCompiler uses extra block RAM resources to schedule the
data flow graph and for other low-level ”plumbing”.

LUTs FFs BlockRAMs DSPs

Total avail-
able

297600 595200 1064 2016

Total used 83863 113985 649 62

Used by ker-
nel

37989 45524 433 62

Used by arith-
metic pipeline

17426 22120 0 62

Total used as
percentage of
available

28.18% 19.15% 60.95% 3.08%

Table 4.2: Table showing the resource usage of our implementation

4.5.4 State machine

The inputs, outputs and enable signals for all elements in the kernel are controlled
by a state machine. This is required to implement the overlapping of I/O and
execution that we are trying to achieve from the two-level partitioning scheme. The
state machine is implemented as a collection of hardware counters that count up to
an appropriate maximum defined by the size vector input. For example: in phase
2 (reading in micro-partition 2, processing micro-partition 1) there are counters
counting the number of cells and nodes we have read in from DRAM and PCIe
and also a counter counting the number of edges we have read in for the processing
stage. Once the counters have reached their maximum, that is the number of the
relevant elements in the micro-partition, the enable signals for reading and writing
are turned off.

Because the bandwidth of halo exchange is slower than that of the DRAM,
the halo read/write actions must be delayed since the kernel operates in lock-step,
stalling on unavailable inputs. The state machine provides the addresses for writing
out the result RAMs. This is a simple matter of writing out the RAMs serially, so
we implement this with standard hardware counters. An example of how a counter

CHAPTER 4. IMPLEMENTATION 73

REG

res

en in

out

cl
k

CLK

+

1

MUX <

MAX0

ENABLE

RESET

Figure 4.6: Diagram of a hardware counter that increments by one up to a value of
MAX. A register is used to store the state and has the usual ENABLE and RESET
signals tha can be produced by the kernel state machine. We compare the output
with the maximum permitted value and use the result together with a multiplexer
to choose whether to wrap around or continue incrementing. The clocking of the
design is done automatically by MaxCompiler, so the clock signal is shown here only
for completeness.

can be implemented in hardware is shown in Figure 4.6. MaxCompiler provides an
API for constructing much more complicated counter configurations with different
wrapping protocols, incrementing modes and edge cases. We use counters mostly to
generate RAM addresses that are used to store the node and cell data during the
read in phase and to read the results during the write out phase. The kernel state
machine also uses counters to keep track of the I/O and processing state.

4.5.5 Validation and hardware build

In order to debug our sample implementation we used MaxCompilers’ simulation
features. In simulation we can build a software model of the FPGA and run it on
the host through the same host API. Of course the simulation runs a lot slower than
the hardware implementation but it can be built very fast and since it runs on the
host it can use some of the hosts resources for simulation-only debugging purposes.
For example we can print out the value of any stream on any cycle, which is very
useful for tracking down programming errors.

Unfortunately, our implementation ends up producing wrong results, i.e. differ-
ent from the corresponding CPU implementation. Using the simulation tools we

CHAPTER 4. IMPLEMENTATION 74

have been able to track down the error to NaN values produced by no-op edges be-
ing commited to the result RAMs and in general some unexpected behaviour in the
result commit logic. An important observation we made is that the kernel consumes
and produces the exact correct amount of data and processes the correct amount
of edges. This leads us to propose that the fix that is required to produce correct
results will not impact the performance of our current implementation. This is be-
cause the performance depends entirely on the movement and consumption of data
in the kernel and since in that regard the kernel behaves exactly as expected, we
can reasonably trust the performance metrics that are shown in the next evaluation
chapter.

Building the design in hardware takes a long time because it requires multiple
passes by the Xilinx ISE tools, including mapping, placing and routing of the design.
This process takes up to 5 hours (in some cases more), highlighting the need to use
simulation tools to verify the design. We can try to build the design at a variety
of frequencies, but the higher the desired frequency, the harder it is for the tools
to find a valid placement of the logic elements on the FPGA while satisfying the
timing constraints imposed by the clock frequency. The higher the frequency, the
less time there is for a clock edge to propagate across the circuit. The process of
meeting timing for complicated designs at higher clock frequencies is a complex
one, requiring knowledge of digital electronics and sometimes demanding explicit
guidance of the placing tools by the developer. The frequencies we managed to
build our designs at range from 100MHz to 180MHz. Building at higher frequencies
is possible, but requires more time than we had available and would require very
specific knowledge of digital electronics, which is not in the scope of this project.
Remember that we are building designs at varying frequencies mainly to prove the
validity of the performance model.

Chapter 5

Evaluation

Having implemented a point in the design space of architectures defined by our an-
alytical model we perform test runs to confirm the validity of the model. A major
implementation issue that we encountered was the necessity to add no-op edges to
keep pipeline stages independent. We perform experiments to get an understanding
of how no-op edges and edge scheduling in general affects performance. We use our
hardware implementation to run the res calc kernel and compare its performance
to the predictions of the model. We find that our model accurately predicts the
performance characteristics of the design and in particular the fact that edge pro-
cessing dominates performance for our test desing. We build our design for various
clock frequencies and find that our model correctly predicts the impact on runtime.
Demonstrating the robustness and accuracy of the model is crucial to the success
of this project, since we are trying to prove that a custom streaming approach to
unstructured mesh computations is interesting and worthwhile

5.1 No-op edges

During our implementation we commented on the necessity of adding no-op edges
that arise from the unevenness of the partitioning and the complexity of scheduling.
As dicussed in the performance model (section 3.6), for an architecture with less than
four pipelines the execution time is dominated by the edge processing. Therefore
we want to minimise the number of no-op edges we add. In the section on graph
colouring (4.2.4) we predicted that using smaller but more edge-partitions will reduce
the number of no-op edges we add due to METIS producing more even partitions
and also since the ratio of edge-partitions to no-op edge-partitions will increase.

We test this hypothesis by using our test mesh of 721801 nodes, 1438600 edges
and 720000 cells and varying the number of edge-partitions per micro-partition and
recording the number of no-op edges our graph colouring-based scheduling algorithm
ends up adding. The window-width l is 18. The results are shown in Figure 5.1. We
notice that varying the number of edge-partitions does indeed affect the number of

75

CHAPTER 5. EVALUATION 76

no-op edges added significantly with the number of no-op edges added ranging from
2064540 (ratio 1.44) for 80 edge partitions down to 435088 (ratio 0.3) for 920 edge-
partitions. This decrease, however, seems to have unexpected fluctuations that seem
to become more and more pronounced as we increase the number of edge-partitions.
We believe the cause of these to be inconsistent partitioning from the METIS tool.
Therefore we try to schedule the same mesh but with a window-width of 0. This does
not produces any no-op partitions (because now there is no independence constraint)
and therefore all no-op edges must come from the differences in the edge-partitions.
The results are shown in Figure 5.1 in blue. Notice that the fluctuations in the
two patterns are identical, giving us strong evidence that the unexpected extra no-
op edges in the useful (red) schedule are caused by METIS and not by unexpected
behaviour of our graph colouring scheduling approach. In fact, it seems that METIS
partitioning degrades somewhat as the number of partitions asked of it increases.
We can see that increasing the number of edge-partitions per micro-partition is a
very effective way to reduce the number of no-op edges, but some experimentation
is needed to pick a number that will not trigger a pathologically bad partitioning
by METIS.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 200 400 600 800 1000 1200

ra
ti
o

 o
f

n
o

-o
p

 e
d

g
e

s
 t

o
 n

o
rm

a
l
e

d
g

e
s

number of edge-partitions per micro-partition

window width 18
window width 0

Figure 5.1: Plot of the ratio of no-op edges to normal edges against the number of
edge-partitions per micro-partition for schedules window-width 18 and 0.

CHAPTER 5. EVALUATION 77

While adding more edge-partitions reduces the number of no-op edges in general,
it should also increase the time needed to prepare the mesh, since the performance
of the scheduling algorithm depends on the size of the adjacency graph. We test
this hypothesis by performing a set of trial runs that preprocess the mesh with vary-
ing numbers of edge-partitions per micro-partition and we time taken to partition
the mesh, perform the second level of partitioning and then partition the micro-
partitions into edge-partitions and schedule them. We use the same test mesh as
above and run the preprocessing code on a machine with an Intel Xeon X5650 CPU
running at 2.67GHz. The pre-processing code is single-threaded and does not take
advantage of the multiple cores in the test machine. The results of this experimen-
tation are shown in Figure 5.2. The window width is again 18.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200

e
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

number of edge-partitions per micro-partition

execution time

Figure 5.2: Plot of measured times to partition the test mesh against the number
of edge-partitions.

We notice that execution time scales in a linear fashion which is an indication
that the graph colouring algorithm presented in section 4.2.4 performs well and does
not encounter its worst case of O(n3). Note that the mesh pre-processing does not
factor into the runtime of the kernel because it is performed only once while the
kernel loops will be performed potentially thousands of times in real applications
and will therefore dominate execution time in the asymptotic case.

CHAPTER 5. EVALUATION 78

Using our performance model we can make a prediction about the execution
time in correlation to the number of no-op edges that we add. The results, for 1 and
5 arithmetic pipelines are shown in Figure 5.3. From section 3.6 we expected that
for a low number of arithmetic pipelines the execution time would be dominated by
edge processing and we can see that the predicted execution time is very sensitive to
the number of no-op edges we add when we have only one arithmetic pipeline. We
see that the fluctuations are expected to become less pronounced as we increase the
number of pipelines (and therfore the number of edges we process simultaneously)
which is a positive thing. Notice how increasing the number of pipelines also de-
creases the added runtime caused by the no-op edges. This is encouraging since we
can now expect that adding more arithmetic pipelines can alleviate the performance
penalty imposed by the no-op edges and stop them from dominating execution time.
Still, improving the scheduling and/or METIS partitioning is a worthwile direction
for future work that will have a direct tangible effect on the performance of the
system.

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000 1200

p
re

d
ic

te
d

 e
x
e

c
u

ti
o

n
 t

im
e

 f
o

r
2

0
0

0
 i
te

ra
ti
o

n
s
 (

s
e

c
o

n
d

s
)

number of edge-partitions per micro-partition

1 pipeline
5 pipelines

no no-op edges
no no-op edges

Figure 5.3: Plot of predicted execution time for 2000 iterations against the num-
ber of edge-partitions per micro-partition for architectures with 1 and 5 arithmetic
pipelines. The predicted execution time in the ideal case of no no-op edges be-
ing added is shown in dashed red and blue lines. The assumed clock frequency is
100MHz.

CHAPTER 5. EVALUATION 79

5.2 Performance model validation

Unfortunately, our implementation of the architecture does not give correct results.
From reviewing and simulating the accelerator design, we see that the errors arise
from the the intricacies of the enable signals in the result RAMs that result in the
accelerator commiting NaN values caused by no-op edges, and we believe that the
required fix would not impact the performance of the design in a measurable way,
nor would it require any fundamental re-engineering that would demand a different
performance model. We claim this on the observation that while the end results are
wrong, various simulation runs with debugging information suggest that all of the
data is processed in a correct order with the accelerator producing and consuming
the exactly correct amount of data and more importantly processing the correct
amount of edges which dominates execution time. The errors arise from commiting
invalid no-op results at the wrong cycle.

Therefore, we feel confident in using our implementation to test the performance
model. Due to time limitations we implemented accelerators with one arithmetic
pipeline running at 100 to 180MHz. The effects of varying edge-partition size on
the measured execution time are shown in Figure 5.4. We run one iteration over the
mesh and time it and extrapolate from there by multiplying the number by 2000
to estimate the execution time for 2000 iterations. We notice that the measured
execution time is consistent with the predicted time. The measured time is slightly
larger than the predicted one. We believe that is down to the overhead of setting
up the streams and consuming the extra padding data that we added in the mesh
layout phase so that it would fit into a multiple of the burst size.

Overall, the model is validated in its prediction that computation is dominated
by edge processing and provides a reasonably accurate estimate of the runtime.
The predicted performance does not deviate from the measured one by more than
1s or more than 2%-3%. This is an important and encouraging result because it
allows us to use the performance model to accurately predict the performance of
any architecture in the design space we defined by plugging in problem parameters
such as frequency, number of pipelines, partition size etc without having to build,
validate and benchmark a potential architecture. This is the result that provides
us with generalisation opportunities by allowing us to reason about performance
characteristics across a whole design space.

CHAPTER 5. EVALUATION 80

 44

 46

 48

 50

 52

 54

 56

 58

 60

 200 300 400 500 600 700 800 900 1000 1100

e
x
e

c
u

ti
o

n
 t

im
e

 f
o

r
2

0
0

0
 i
te

ra
ti
o

n
s
 (

s
e

c
o

n
d

s
)

number of edge-partitions per micro-partition

predicted time
measured time

Figure 5.4: Plot of extrapolated measured execution time for 2000 iterations against
the number of edge-partitions per micro-partition for an architecture with one
pipeline running at 100MHz. The measured time is shown in blue. The corre-
sponding predictions of the performance model are shown in red.

We build the design at various clock frequencies to check whether the perfor-
mance model correctly predicts the performance variation when the clock frequency
is varied. The results are shown in Figure 5.5. We see that the model accurately
predicts the performance of the design at 100, 120, 140, 160 and 180MHz, giving
us even more confidence of its robustness, at least along the dimension of clock fre-
quency. The prediction that performance can be improved by increasing the clock
rate is confirmed as we see a decrease in execution time for each 20MHz we add
to the clock, with the benefit decreasing somewhat as we keep increasing (notice
how the difference between the runtime between 100 and 120MHz is about 7 sec-
onds while the difference between the 160 and 180MHz architectures is only about
4 seconds). This is consistent with the models’ predictions about the diminishing
returns of increasing the frequency.

CHAPTER 5. EVALUATION 81

 20

 30

 40

 50

 60

 70

 80

 200 300 400 500 600 700 800 900 1000 1100

e
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

number of edge-partitions per micro-partition

measured at 100MHz
estimated at 100MHz
measured at 120MHz
estimated at 120MHz
measured at 140MHz
estimated at 140MHz
measured at 160MHz
estimated at 160MHz
measured at 180MHz
estimated at 180MHz

Figure 5.5: Plot of extrapolated execution times for 2000 iterations against the
number of edge-partitions per micro-partition for architectures running at 100, 120,
140, 160 and 180MHz. The measured and predicted times are shown.

5.3 Host-side halo reduction

Due to our halo exchange mechanism, the host will have to combine the partial
results of the halo cells. This is done by iterating the through the halo cells received
and using the maps that were computed from the preprocessing stage to find the
memory locations to update. In our test setup the host machine uses an Intel
Core i7-870 CPU running at 2.93GHz. The application is compiled with the GCC
compiler, version 4.1.2 using the maximum -O3 optimisation flag. We record the
time spent on the FPGA and then add the overhead that is incurred by the host-side
reduction in the end performed on the halo data and extrapolate to 2000 iterations.
The results for an architecture running at 180MHz are shown in Figure 5.6. We
notice that the final host-side reduction adds about 2 seconds of runtime. Our
sample mesh of 720000 cells had 34401 halo cells that needed to be processed. We
notice that the host-side processing increases the runtime by about 7%. This is
an acceptable penalty, especially considering that it can be reduced by increasing
partition size (remember that the ratio of halo to non-halo data decreases as partition
size increases). These results justify our halo exchange mechanism.

CHAPTER 5. EVALUATION 82

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 200 300 400 500 600 700 800 900 1000 1100

e
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

number of edge-partitions per micro-partition

FPGA time
FPGA + host-side time

Figure 5.6: Plot of extrapolated execution times for 2000 iterations against the num-
ber of edge-partitions per micro-partition for an architecture running at 180MHz.
The time spent on the FPGA and the FPGA plus the host-side reduction times are
shown.

5.4 Resource usage

Recall Table 4.2 showing the resource usage of our test design and Table 5.1 showing
the resource usage of the arithmetic pipeline. The resources available on the FPGA
place a limit on the amount of logic we can fit onto the device. Since we have shown
through the performance model that the bottleneck is edge processing, the obvious
extension to consider is adding more arithmetic pipelines. As shown in Table 5.1 we
have plenty of DSP resources for at least 30 more pipelines, but the LUT count will
place a limitation on that ambition. As shown in Figure 3.7 on page 48 we would
need at most 8 pipelines to remove the edge processing bottleneck, a feat that is
perfectly accomplishable from a resource usage point of view. Building a design
with multiple arithmetic pipelines is an important future extension since it would
be used to validate the robustness of the performance model along that dimension.

CHAPTER 5. EVALUATION 83

LUTs FFs BlockRAMs DSPs

Total avail-
able

297600 595200 1064 2016

Used by arith-
metic pipeline

17426 22120 0 62

Total used by
pipeline as
percentage of
available

5.86% 3.73% 0% 3.08%

Table 5.1: Table showing the resource usage of our implementation

5.5 Conclusion

Having performed the experiments, we have demonstrated the accuracy of the per-
formance model and its robustness. This was a very important result because, due
to time limitations, we have not been able to implement a large number of designs
from the defined design space, and therefore our argument that the approach pre-
sented in this project can provide interesting performance rests on the correctness
of the performance model and its prediction that in a certain subspace of the pa-
rameters there are configurations that provide a considerable speedup, making their
implementation worthwile. By considering the resource usage of our sample imple-
mentation we can make an argument that increasing the complexity of the design
(by adding extra pipelines for example) is a realistic scenario thus giving evidence
that the optimal architecture configurations recommended by the analytical model
are indeed achievable.

In the end our sample implementation does not outperform a GPGPU imple-
mentation, but it was not expected to by the performance model. The important
thing is that the model has been validated and can therefore reasonably be trusted
in its prediction of the performance characteristics of architectures that do beat the
other implementation.

We have explored the effect of edge scheduling and no-op edges on performance
and have come to the conclusion that for a certain number of configurations (par-
ticularly with many arithmetic pipelines) the current scheduling approach provides
adequate results. In any case we presented a way to abstract the problem of schedul-
ing into the more well-understood and analysed problem of graph colouring, enabling
the reuse of the extensive research already performed in that area.

In the next chapter we draw the final conclusions and contemplate future direc-
tions for work in this area.

Chapter 6

Conclusions and further work

6.1 Contributions and reflection

In this project we tackled a problem that is generally thought to be unfit for acceler-
ation with a custom streaming approach due to the irregular memory access pattern.
Previous attempts at using FPGAs for this purpose required complex memory ac-
cess architectures and hierarchies that were hard to predict and model. We reviewed
existing work to learn from their experiences (avoid using fixed-point numbers, use
on-chip memory to buffer data) and identify areas that were left unexplored (mesh
reorganisation to fit a custom architecture).

We took the approach of designing both hardware and software at the same
time, custom-fitting each other to extract the best performance we can, tackling
some challenging problems on the way. We devised a novel scheme for overlapping
I/O and arithmetic calculations and developed an elegant and well-behaved way to
work around the NP-hard problem of edge scheduling by transforming it into an
abstract graph colouring problem and applying known graph algorithms.

We applied these techniques to accelerate the most complex part of a non-trivial
CFD application and while we did not produce correct arithmetic results, we have
reason to believe that a functionally correct implementation of our architecture will
not exhibit different performance characteristics than the ones predicted by our
model and validated by the test runs. The test runs confirm the validity of our
model and pave the way for the implementation of any of the architectures in the
design space.

While the design of the accelerator is not terribly complex when compared to
modern CPUs and memory systems, partly on purpose, the implementation required
much more effort than initially anticipated due to limitations of the hardware (port
numbers on RAMs), edge cases (kernel state machine counters) and fundamentally
computationally hard problems (edge scheduling). The majority of the difficulties
have been overcome and the end result validates our initial mathematical model.
By pushing the irregularity of memory accesses either to the mesh pre-processing

84

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 85

stage or inside the block RAMs on the FPGA where the access time is constant, we
have designed a simple and hence predictable family of architectures.

We claim that the project has been a success because we developed an ap-
proach to acceleration that gives highly predictable performance for a problem with
irregular memory accesses that usually make such predictions on conventional ar-
chitectures a much less accurate endeavour. This characteristic of predictability is
very valuable, since it can be used to choose the optimal architecture setup based on
hardware resources available without having to go through the demonstrably hard
process of implementing, verifying and benchmarking any particular architecture.

The novelty of the project lies in our approach of modifying the mesh to optimally
fit the streaming model implemented on the accelerator. To the best of the authors’
knowledge, this project is the first attempt at evolving the architecture and mesh
format to fit each other optimally. The second major original contribution is the
halo exchange mechanism that uses the slower PCIe channel to send data to the
host that will handle the comlicated task of adding up contributions to halo cells
from different partitions. We make sure that using the PCIe bus to transmit halo
data does not limit our performance by adjusting the ratio of halo data to non-halo
dat so that DRAM transfers dominate the data transfer times. Another important
contribution is the proposal that a purely streaming approach can be used to achieve
interesting speedups, even compared to highly complex multi-core architectures like
the ones found in GPUs. This is done again through the analytical model and
through the experiments that validate it.

A further argument for using custom streaming architectures to accelerate these
types of computation is that for increasing arithmetic complexity of the kernels,
a custom architecture like ours will not suffer from increase in runtime because
the extra operations will just add more fuctional units, making the pipeline deeper
but still preserving the high throughput. Thus, we can argue that in the asymptotic
case of increasing computational complexity our approach is expected to outperform
most other approaches.

It should be noted that the architectures presented in this report need not be
restricted to an FPGA implementation. We chose FPGAs as the implemenation
medium because they are easily accessible to us and we have the tools to program
them. To make the most out of custom hardware, an Application-Specific Integrated
Circuit, or ASIC would provide much better performance. ASICs are not reconfig-
urable, and thanks to that property can be manufactured to provide a truly optimal
implementation of a dataflow graph. Remember that an FPGA design is just a
specification of how to connect the general purpose logic elements already present
on the chip and hence is not truly custom. ASICs are very expensive to manufac-
ture, thus showcasing the value of our approach of specifying a predictive model to
locate the optimal configuration before commiting to a particular architecture.

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 86

6.2 Further work

There are a number of possible directions for future work, most notably:

• Ensuring that the design produces correct results is priority number one, since
it is a necessary precondition for future extensions that will prove beyond
doubt that the approach presented here is a good one.

• Implementing more architectures from the design space is the next logical step,
in particular a design with multiple arithmetic pipelines is expected to offer
a dramatic improvement in performance and would be a good way to further
validate the performance model.

• A major step forward would be to fit multiple kernels onto the FPGA, since
Airfoil can only be accelerated as a whole when all calculations run on the
FPGA. Accelerating only res calc works well as a proof of concept but to fully
benefit from this approach we cannot afford any transfers between the DRAM
and the host apart from the initial uploading of the mesh data. Achieving this
would require all kernels to be computed on the FPGA. The major difficulty
in this regard lies with the different iteration structure of other kernels. For
example: the adt calc kernel iterates over cells, not edges and by our current
approach would require a different data layout in the DRAM that would not
be optimal for res calc.

• Currently, the limitation on the number of ports available on the RAMs forces
us to duplicate RAMs which can be viewed as wasteful. Devising a smarter
scheme for accessing node and cell data is a valuable extension.

• Due to hardware limitations we had to add padding to then data that is
streamed in and out of the FPGA. The padding data wastes bandwidth, there-
fore it is worthwile to explore potential ways to pack data into a more compact
and appropriate format, so as to waste as little bandwidth as possible.

• An interesting direction for future work would be to use multiple FPGAs to
either compute multiple partitions of the mesh in parallel, or through some
shared memory mechanism be used to interleave the execution of different
kernels.

• In this project we implemented one architecture but specified a whole design
space of architectures parametrised by factors such as number of pipelines,
clock frequency, partition size etc. A natural extension along this line of
thought is to implement a compilation system that, given a set of parameters
will generate the accelerator design and configure the host code to format the
data appropriately.

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 87

• It is shown that the no-op edges that arise from edge scheduling add a perfor-
mance penalty. Therefore extensions that improve the scheduling algorithms
are certainly well-worth the consideration. These can range from improving
the graph colouring algorithm to use fewer colours to improving the parti-
tioning produced by METIS or maybe even implementing a custom mesh
partitioning application.

• While the performance model presented here has proved to be adequately
accurate, it can be improved by taking into account smaller details such as
pipeline fill/drain times.

• The accelerator implementation could be improved by reducing the number
of resources used by the state machine and the RAM selection logic, thus
allowing one to fit more computational logic onto the chip.

• Host side preprocessing could be sped up considerably by parallelising parts
like partitioning and edge scheduling. There is a parallel version of METIS
called ParMETIS[26] that could be used to partition the mesh on multiple
machines.

Bibliography

[1] MB Giles, GR Mudalige, Z Sharif, G Markall, PHJ Kelly,
Performance Analysis of the OP2 Framework on Many-core Architectures.
ACM SIGMETRICS Performance Evaluation Review, 38(4):9-15, March 2011

[2] G.R Mudalige, MB Giles, C. Bertolli, P.H.J. Kelly,
Predictive Modeling and Analysis of OP2 on DistributedMemory GPU Clusters
PMBS ’11 Proceedings of the second international workshop on Performance
modeling, benchmarking and simulation of high performance computing systems
Pages 3-4

[3] Xilinx Inc.
ISE Design Suite Software Manuals and Help
http://www.xilinx.com/support/documentation/dt ise11-1.htm

[4] Xilinx Inc.
Virtex-6 Family Overview
http://www.xilinx.com/support/documentation/virtex-6.htm

[5] Maxeler Technologies
MaxCompiler White Paper
http://www.maxeler.com/content/briefings/MaxelerWhitePaperMaxCompiler.pdf

[6] G. Karypis, V. Kumar.
A Fast and Highly Quality Multilevel Scheme for Partitioning Irregular Graphs
SIAM Journal on Scientific Computing, Vol. 20, No. 1, pp. 359392, 1999.

[7] IEEE
IEEE Standard for Floating-Point Arithmetic
IEEE Std 754-2008 (Revision of IEEE Std 754-1985)

[8] F. B. Kjolstad, M Snir
Ghost Cell Pattern
ParaPLoP ’10 Proceedings of the 2010 Workshop on Parallel Programming Pat-
terns

88

BIBLIOGRAPHY 89

[9] M. T. Jones, K. Ramachandran
Unstructured mesh computations on CCMs
Advances in Engineering Software - Special issue on large-scale analysis, design
and intelligent synthesis environments Volume 31 Issue 8-9, Aug-Sept. 2000

[10] H. Morishita, Y. Osana, N. Fujita, H. Amano
Exploiting memory hierarchy for a Computational Fluid Dynamics accelerator
on FPGAs
ICECE Technology, 2008. FPT 2008. pp 193 - 200

[11] Sanchez-Roman, D.; Sutter, G.; Lopez-Buedo, S.; Gonzalez, I.; Gomez-Arribas,
F.J.; Aracil, J.; Palacios, F.;
High-Level Languages and Floating-Point Arithmetic for FPGABased CFD Sim-
ulations
Design & Test of Computers, IEEE, 2011, Volume: 28 Issue:4, pp 28 - 37

[12] Sanchez-Roman, D.; Sutter, G.; Lopez-Buedo, S.; Gonzalez, I.; Gomez-Arribas,
F.J.; Aracil, A.;
An Euler Solver Accelerator in FPGA for computational fluid dynamics appli-
cations
Proceedings of the 2011 VII Southern Conference on Programmable Logic Cr-
doba, Argentina April 13 15, 2011

[13] Durbano, J.P.; Ortiz, F.E.;
FPGA-based acceleration of the 3D finite-difference time-domain method
12th Annual IEEE Symposium on Field-Programmable Custom Computing Ma-
chines, 2004. FCCM 2004.

[14] Weinhaudt, M.; Luk, W.;
Memory access optimisation for reconfigurable systems
Computers and Digital Techniques, IEE Proceedings - , vol.148, no.3, pp.105-
112, May 2001

[15] Alam, S.R.; Agarwal, P.K.; Smith, M.C.; Vetter, J.S.; Caliga, D.;
Using FPGA Devices to Accelerate Biomolecular Simulations
Computer , vol.40, no.3, pp.66-73, March 2007

[16] Hong, Sunpyo and Kim, Hyesoon
An analytical model for a GPU architecture with memory-level and thread-level
parallelism awareness
ISCA ’09 Proceedings of the 36th annual international symposium on Computer
architecture pages 152-163

[17] Meng, Jiayuan and Skadron, Kevin
Performance modeling and automatic ghost zone optimization for iterative stencil

BIBLIOGRAPHY 90

loops on GPUs
ICS ’09 Proceedings of the 23rd international conference on Supercomputing
pages 256-265

[18] White B., McKee S. ,de Supinski B., Miller B., Quinlan D., Schulz M., Lawrence
Livermore National Laboratory
Improving the computational intensity of unstructured mesh applications
ICS ’05 Proceedings of the 19th annual international conference on Supercom-
puting Pages 341 - 350

[19] Sung-Eui, Y., Lindstrom, P.
Mesh Layouts for Block-Based Caches
IEEE Transactions on visualization and computer graphics, Vol. 12, No. 5,
September/October 2006

[20] Shirazi, N., Walters, A., Athanas, P.
Quantitative analysis of floating point arithmetic on FPGA based custom com-
puting machines
IEEE Symposium on FPGAs for Custom Computing Machines, 1995. Proceed-
ings.

[21] Hartstein, A. Puzak, Thomas R.
The Optimum Pipeline Depth for a Microprocessor
ISCA ’02 Proceedings of the 29th annual international symposium on Computer
architecture Pages 7 - 13.

[22] Khronos Group
The OpenCL Specification v1.2
www.khronos.org/registry/cl/specs/opencl-1.2.pdf

[23] NVIDIA
Tesla M2050 / M2070 GPU Module Specification Document
http://www.nvidia.com/docs/IO/43395/BD-05238-001 v03.pdf

[24] Trummel, K. E. ; Weisinger, J. R.
The Complexity of the Optimal Searcher Path Problem
Operations Research , Vol. 34, No. 2 (Mar. - Apr., 1986), pp. 324-327

[25] Karp, Richard M.
50 Years of Integer Programming 1958-2008
Springer Berlin Heidelberg, ISBN:978-3-540-68279-0, pp.219-241

[26] Karypis, G; Kumar, V;
A Coarse-Grain Parallel Formulation of Multilevel k-way Graph Partitioning
Algorithm
8th SIAM Conference on Parallel Processing for Scientific Computing

Appendix A

Code Samples

A.1 Airfoil Kernel definitions in C

Even though we focused on accelerating the res calc kernel, the other kernels are
shown here for the sake of completeness.

void adt_calc(float *x1,float *x2,float *x3,float *x4,float *q,float *adt){

float dx,dy, ri,u,v,c;

ri = 1.0f/q[0];

u = ri*q[1];

v = ri*q[2];

c = sqrt(gam*gm1*(ri*q[3]-0.5f*(u*u+v*v)));

dx = x2[0] - x1[0];

dy = x2[1] - x1[1];

*adt = fabs(u*dy-v*dx) + c*sqrt(dx*dx+dy*dy);

dx = x3[0] - x2[0];

dy = x3[1] - x2[1];

*adt += fabs(u*dy-v*dx) + c*sqrt(dx*dx+dy*dy);

dx = x4[0] - x3[0];

dy = x4[1] - x3[1];

*adt += fabs(u*dy-v*dx) + c*sqrt(dx*dx+dy*dy);

dx = x1[0] - x4[0];

dy = x1[1] - x4[1];

*adt += fabs(u*dy-v*dx) + c*sqrt(dx*dx+dy*dy);

*adt = (*adt) / cfl;

}

void bres_calc(float *x1, float *x2, float *q1,

float *adt1,float *res1, int *bound) {

float dx,dy,mu, ri, p1,vol1, p2,vol2, f;

dx = x1[0] - x2[0];

91

APPENDIX A. CODE SAMPLES 92

dy = x1[1] - x2[1];

ri = 1.0f/q1[0];

p1 = gm1*(q1[3]-0.5f*ri*(q1[1]*q1[1]+q1[2]*q1[2]));

if (*bound==1) {

res1[1] += + p1*dy;

res1[2] += - p1*dx;

}

else {

vol1 = ri*(q1[1]*dy - q1[2]*dx);

ri = 1.0f/qinf[0];

p2 = gm1*(qinf[3]-0.5f*ri*(qinf[1]*qinf[1]+qinf[2]*qinf[2]));

vol2 = ri*(qinf[1]*dy - qinf[2]*dx);

mu = (*adt1)*eps;

f = 0.5f*(vol1* q1[0] + vol2* qinf[0]) + mu*(q1[0]-qinf[0]);

res1[0] += f;

f = 0.5f*(vol1* q1[1] + p1*dy + vol2* qinf[1] + p2*dy) + mu*(q1[1]-qinf[1]);

res1[1] += f;

f = 0.5f*(vol1* q1[2] - p1*dx + vol2* qinf[2] - p2*dx) + mu*(q1[2]-qinf[2]);

res1[2] += f;

f = 0.5f*(vol1*(q1[3]+p1) + vol2*(qinf[3]+p2)) + mu*(q1[3]-qinf[3]);

res1[3] += f;

}

}

void res_calc(float *x1, float *x2, float *q1, float *q2,

float *adt1,float *adt2,float *res1,float *res2) {

float dx,dy,mu, ri, p1,vol1, p2,vol2, f;

dx = x1[0] - x2[0];

dy = x1[1] - x2[1];

ri = 1.0f/q1[0];

p1 = gm1*(q1[3]-0.5f*ri*(q1[1]*q1[1]+q1[2]*q1[2]));

vol1 = ri*(q1[1]*dy - q1[2]*dx);

ri = 1.0f/q2[0];

p2 = gm1*(q2[3]-0.5f*ri*(q2[1]*q2[1]+q2[2]*q2[2]));

vol2 = ri*(q2[1]*dy - q2[2]*dx);

APPENDIX A. CODE SAMPLES 93

mu = 0.5f*((*adt1)+(*adt2))*eps;

f = 0.5f*(vol1* q1[0] + vol2* q2[0]) + mu*(q1[0]-q2[0]);

res1[0] += f;

res2[0] -= f;

f = 0.5f*(vol1* q1[1] + p1*dy + vol2* q2[1] + p2*dy) + mu*(q1[1]-q2[1]);

res1[1] += f;

res2[1] -= f;

f = 0.5f*(vol1* q1[2] - p1*dx + vol2* q2[2] - p2*dx) + mu*(q1[2]-q2[2]);

res1[2] += f;

res2[2] -= f;

f = 0.5f*(vol1*(q1[3]+p1) + vol2*(q2[3]+p2)) + mu*(q1[3]-q2[3]);

res1[3] += f;

res2[3] -= f;

}

void save_soln(float *q, float *qold){

for (int n=0; n<4; n++) qold[n] = q[n];

}

void update(float *qold, float *q, float *res, float *adt, float *rms){

float del, adti;

adti = 1.0f/(*adt);

for (int n=0; n<4; n++) {

del = adti*res[n];

q[n] = qold[n] - del;

res[n] = 0.0f;

*rms += del*del;

}

}

List of Figures

1.1 Example Airfoil mesh . 5
1.2 Simple dataflow graph . 7

2.1 Mesh representation with indirection arrays 9
2.2 Mesh data set example . 10
2.3 Example mesh coloring . 11
2.4 Airfoil maps relationships . 14
2.5 Maxeler toolchain diagram . 17
2.6 Example data flow graph for MaxCompiler example 19
2.7 MAX3 card components . 24
2.8 Mesh partitioning and halos . 25
2.9 IEEE-754 floating point representation 26

3.1 Initial accelerator architecture diagram 33
3.2 Accelerator architecture diagram with halo exchange 35
3.3 Two-level partitioning . 37
3.4 Architecture diagram with state machine added 38
3.5 Overlapping of execution and I/O on the FPGA 39
3.6 Custom pipeline vs conventional CPU 43
3.7 Execution time against number of pipelines 48
3.8 Execution time against clock frequency 49
3.9 Execution time against number of pipelines and frequency 50
3.10 3-D plot of execution time against number of pipelines and frequency 50
3.11 Execution time against partition size 51
3.12 DRAM to PCIe transfer time ratio 52

4.1 Accumulation part with edge dependencies 56
4.2 Edge partitions and adjacency graph 57
4.3 Graph schedule to edge schedule . 62
4.4 Manager graph of the FPGA . 69
4.5 Division of result RAMs . 71
4.6 Hardware counter example . 73

94

LIST OF FIGURES 95

5.1 No-op edges to edges ratio against number of edge-partitions 76
5.2 Partitioning time agains number of edge-partitions 77
5.3 Predicted execution time against number of edge-partitions 78
5.4 Measured execution time against number of edge-partitions 80
5.5 Measured and predicted execution times against number of edge-

partitions for 100, 120, 140, 160 and 180MHz 81
5.6 FPGA time and halo reduction time for 180MHz 82

	Introduction
	The domain
	The Airfoil program
	FPGAs, streaming and acceleration
	Contributions

	Background
	Unstructured meshes and their representation
	Airfoil
	Computational kernels and data sets
	Indirection maps

	Hardware platform, Maxeler toolchain and the streaming model of computation
	MaxCompiler example
	Hardware
	Mesh partitioning and halos
	Floating point vs fixed point arithmetic

	Previous work

	Design and Modelling
	DRAM and mesh storage
	Result accumulation and storage
	Halo exchange mechanism
	Two-level partitioning
	The case for a custom streaming pipeline
	Performance Model
	Phase 1
	Phase 2
	Phase 3
	Design space exploration

	Conclusion

	Implementation
	Mesh partitioning
	Edge scheduling
	No-op edges
	Complexity
	No-op edge-partitions
	Graph colouring and edge scheduling revisited

	Data sets and padding
	Data layout and preparation for streaming
	FPGA accelerator
	I/O streams and manager
	Result RAM division and duplication
	Resource usage
	State machine
	Validation and hardware build

	Evaluation
	No-op edges
	Performance model validation
	Host-side halo reduction
	Resource usage
	Conclusion

	Conclusions and further work
	Contributions and reflection
	Further work

	Bibliography
	Code Samples
	Airfoil Kernel definitions in C

	List of Figures

