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Abstract

Robust optimisation paradigm is a technique enabling problem modellers or decision makers to
make an optimal decision under uncertainty. Unlike stochastic programming approach which relies
on the knowledge of probability distributions of uncertain parameters, robust optimisation frame-
work does not require such knowledge. Instead, it views each random parameter as a point moving
freely in the prescribed uncertainty set. During the past few decades, robust optimisation has at-
tracted a lot of attention from optimisation researchers as it seems to have techniques to transform
an uncertain robust optimisation problem to an equivalent tractable uncertainty-free optimisation
problem. In the sense of tractability, the robust optimisation approach is thus deemed superior to
the stochastic programming approach, which is usually claimed to be intractable when the problem
considered involves multiple decision stages. However, traditional robust optimisation approaches
tend to neglect recourse possibilities, which in many cases makes the robust paradigm criticised for
excessive conservatism. A recent technique to alleviate this shortcoming of the robust optimisation
while preserving its tractability is to embed decision rules in the optimisation problem. Decision
rules are used to characterise a decision variable as a function of previously observed information. It
has been proven that some specific functional forms of decision rules, for example, a linear function
or a piecewise linear function, still lead to tractable formulation of the optimisation problem under
uncertainty. The employment of decision rules appears in both stochastic programming approach
and robust optimisation approach.

In this project, we studied the robust optimisation framework and applied it to the option pric-
ing problem. Option is a kind of contract; it is a financial instrument, and it has monetary value.
Determination of a fair price of a given option is no trivial. Black-Scholes model is a very significant
piece of work in this area. It provides a closed-form formula for pricing European options. The
Black-Scholes model, however, relies on quite a lot of assumptions that usually do not hold in the
real market. That being said, what is left behind the Black-Scholes model is the idea of finding a
replicating portfolio which is dynamically rebalanced and matches the option payoff in every future
scenario at the option’s expiration date. If such a portfolio exists, then under the arbitrage-free
assumption, the initial value of the portfolio and the price of the option must be equal. A per-
fect replicating portfolio nevertheless may not exist. Chen [15] then formulates the option pricing
problem as a robust optimisation problem. The output of his model is a portfolio that matches
most closely to the option payoff in the worst-case scenario allowed by a predefined uncertainty
set. We make several contributions in this work. First, we provide an analysis of Chen’s pricing
model. Second, we propose a new way to formulate a robust option pricing problem which is in
fact identical to Chen’s model but ours is simpler and more intuitively understandable. Third, we
prove that by using linear decision rules and piecewise linear decision rules the pricing model is at
most as conservative as the original robust pricing model; the proof can obviously be applied to
other applications apart from option pricing. Fourth, when an option considered is tied to multiple
assets, we propose a method to use a factor model to provide input to the robust option pricing
model, which makes the results significantly less conservative. Fifth, we develop a robust pricing
model from both option writer’s and option buyer’s perspectives.

Keywords: Robust optimisation, Convex optimisation, Linear decision rule, Piecewise linear de-
cision rule, Factor model, Option pricing.
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Chapter 1

Introduction & Problem Statement

Financial options are tradable contracts tied to one or more assets. They enable investors to de-
velop a strategy for speculative or hedging purposes in a way that the underlying asset(s) cannot
offer. Many investors prefer, therefore, to invest in options rather than assets. In fact, sometimes
the amount of money invested in the assets is lower than the amount of money invested in the
corresponding options. As a result, a considerable amount of research effort has been put into
investigating options. One of the fundamental questions is what the fair price of a given option
should be. This branch of study is usually referred to as financial option valuation.

The Black-Scholes model (see Shah [40]) and the binomial options pricing model are two exam-
ples of the wide range of valuation techniques which have been suggested, but all are still imperfect.
Some models rely on excessively restrictive fundamental assumptions, while others are computa-
tionally demanding. Black-Scholes formula is a closed-form option pricing equation invented by
Black, Merton and Scholes. In their model, asset’s price is considered a continuous process, and
the price of an option is determined by replicating its payoff through a self-rebalancing portfolio.
Despite the great success of the Black-Scholes model, it still appears to lack flexibility in pricing
options with complicated payoff or those offering flexible exercising policy, even if the model’s as-
sumptions are all satisfied. So as to address this inflexibility, one can alternatively use binomial
options pricing model, which is a discrete analogous of the Black-Scholes model. However, using
the latter model, the problem size grows exponentially with the number of time periods, which
limits scalability. Furthermore, even though at present a number of types of the options are being
traded in the market, it may be the case that, in the future, even more complicated options will be
introduced and, unfortunately, current models do not seem to be flexible enough to be applied to
such novel developments.

Motivated by its tractability, robust linear optimisation model has attracted a great deal of
interest from optimisation researchers (see, for example, Ben-Tal, Goryashko, Guslitzer and Ne-
mirovski [4], Ben-Tal and Nemirovski [6], Bertsimas, Pachamanova and Sim [9], and Bertsimas and
Sim [10]). Chen [15] has proposed a way to use this method to price options. A nice feature of
this model is that, since the pricing problem is reduced to solving an optimisation problem, it does
not require any assumption about the market. Moreover, previous pricing models typically output
a single price for a given option whereas, in the robust pricing model, the investor is able to set a
preferred level of risk-aversion by specifying an acceptable degree of uncertainty in, for instance,
future price of the underlying asset. The robust pricing model is therefore capable of producing a
family of prices corresponding to adjustments in this risk-aversion parameter.

The purpose of this project is to see how well Chen’s model works on both well-understood
examples, like European and American options, and more exotic types of option. In the first part
of this report, an optimisation model for option pricing based on Chen’s work is described and then
derived. Chen’s model is a robust optimisation problem with linear constraints and polyhedral
uncertainty set, which makes the model simple and accurately solvable. In the second part, an
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alternative robust approach to options pricing based on various forms of decision rules is described.
Decision rule techniques have recently been developed; they are specially designed to cater for the
uncertainty that can arise in optimisation problems. It is often claimed that they can produce
more accurate solutions because they are able to capture the dynamic behaviour of decision mak-
ers. In addition, possibilities of using the robust pricing model to price an option with more than
one underlier are elaborated. Various extensions of the robust pricing model are also described.
These include, for example, a super-replication robust pricing model for option writer and a sub-
replication robust pricing model for option buyer. In the final part of this report, evaluation of the
proposed pricing models is carried out from both theoretical point of view and market’s point of
view.

This project may be of importance to financial companies responsible for pricing options. It also
confirms the significance of optimisation studies by providing significant real-world applications.

1.1 Structure and Contributions of the Thesis

In Chapter 2 and Chapter 3, we review and analyse research in this area. Specifically, we study
various option pricing techniques in Chapter 2 including the Black-Scholes model, the binomial
options pricing model, and the ε-arbitrage robust pricing model. Key idea of each pricing model is
presented along with its advantages and disadvantages. In Chapter 3, we discuss modern theories
and techniques in optimisation. We briefly present deterministic linear programming problem, the
first class of optimisation problems investigated dating back to the era of World War II, and gradu-
ally introduce modern developments, especially techniques to handle uncertain data in optimisation
problems. The ε-arbitrage robust pricing model, as an option pricing model which employs the op-
timisation technique called robust optimisation, is then thoroughly analysed in Chapter 4.

The main contributions of our work start from Chapter 5 in which we begin by identifying
the shortcomings of the ε-arbitrage robust pricing model, and subsequently propose a new option
pricing model, which is still based on robust optimisation. The new pricing model can be proven to
be almost identical to the ε-arbitrage robust pricing model, but it is simpler and more intuitively
understandable. We also introduce decision rules into this new robust pricing model; we provide
some mathematical proofs in this regard to guarantee the performance of the linear decision rules
and the piecewise linear decision rules. In Chapter 6, we show how to use the new robust pricing
model when the option considered is tied to more than one asset. We discuss how difficult it is to
restrict the movements of the underliers’ prices in the future stages and propose a way to remedy
the problem using a factor model. In Chapter 7, we create separate robust pricing models from
both option writer’s and option buyer’s perspectives. They should be seen as an example of how
to formulate pricing problems using different mindsets. Evaluation of the proposed robust pricing
models is presented in Chapter 8. Chapter 8 also provides an analysis of the resulting pricing
models as compared with the classic delta-hedging model. We end the project by providing a brief
summary of what we have done and the possibilities of future research in this area in Chapter 9.

1.2 Notation

The following notations are used in the sequel:

• Am×n means A is a real m× n matrix;

• 0m×n denotes an m× n zero matrix;

• In denotes an n× n square identity matrix;

• AT denotes a transpose of matrix A;

• R and R+ denote a set of real numbers and a set of non-negative real numbers, respectively;

2



Chapter 1. Introduction & Problem Statement

• Sn denotes a set of symmetric matrices in Rn×n;

• ∧ denotes a logical and operator;

• ·̃ means that the input parameter (·), which can be either scalar, vector, or matrix, is subject
to uncertainty;

• · denotes an element-wise lower bound of the input parameter (·);

• ·̄ denotes an element-wise upper bound of the input parameter (·);

• E(·) denotes an expectation function;

• {·}Īi=I denotes a collection of information (·) indexed by i ranging from I to Ī;

• (·)+ denotes a positive part of the input parameter (·), i.e., (·)+ = max{·, 0};

• φ(·) denotes a standard normal distribution;

• log(·) denotes a natural logarithm function;

• Tr(·) denotes a trace operator;

• || · || denotes a Euclidean norm function;

• Prob(·) denotes probability of the input (·).

3
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Chapter 2

Literature Review: Option Pricing

In this chapter and the next chapter, we review important academic concepts related to this project
from various sources. In particular, we discuss in this chapter financial options and option pric-
ing models. The next chapter in addition provides background knowledge about mathematical
optimisation, both deterministic optimisation and optimisation under uncertainty. Some mathe-
matical proofs of the closely-related concepts are provided in these two chapters. However, proofs
of well-known theories may not be provided here since they can be found in other literatures.

2.1 Financial Options

In financial market, the term asset refers to any object available in the market whose price is exactly
known at the present but liable to change in the future (see Higham [25]). Typical examples of the
assets are stocks, bonds, and currencies. Financial option, or later on referred to as an option, is a
kind of contract that is tied to one or more assets and involves two parties:

1. Writer is the party who issues the option. The writer has the responsibility to fulfil the
contract if the option is exercised at a valid time by the holder.

2. Holder is the party who holds the option, i.e., bought it from the option writer. The option
holder has a right to exercise the option, but he or she may as well not exercise the right
depending on his or her preference and the market condition.

In typical option contracts, there are two basic components to be specified including:

1. Strike price is the price agreed today specifying the price of the underlying asset to be
bought or sold at when the option is exercised at a valid future time.

2. Expiration date determines the period that the option can be exercised by its holder.
Different types of options may have different ways to define such a period. For example,
European options can be exercised only at the expiration date while American options can
be exercised at any time before the specified expiration date.

Since the action taken on a particular asset is to sell or to buy, options can be divided into two
categories depending on the right that the option holder has.

1. Call option is the term used to describe the option where its holder has the right to buy the
underlying asset at the strike price from the option writer.

2. Put option is the term used to describe the option where its holder has the right to sell the
underlying asset at the strike price to the option writer.

The simplest types of options in the market are European call option and European put option.
Therefore, analysis of option usually starts with the European options first. As mentioned before,

5
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European option is easy to deal with because the option holder can exercise his or her right at
only the prescribed time in the future, i.e., the expiration date. Payoff function of a European
call option is given by (S(T )−K)+ = max{S(T )−K, 0}, where K denotes the agreed strike price
and S(T ) (or ST in discrete-time pricing models) denotes the price of the underlying asset at the
expiration date T . From the payoff function it can be observed that the payoff can be zero, which
corresponds to the intuition that if the future price of the asset at the expiry is below the strike
price, any sensible holder will have no reason to exercise the option. Instead, the option holder
can just buy the underlying asset from the market directly. However, in the case that the price of
the underlying asset at the expiration date is larger than the strike price, the option holder had
better opt to exercise his or her right. By exercising the right and selling the received asset in the
market, the option holder can make an immediate profit of S(T )−K with no remaining obligations.
Similarly, payoff function of a European put option is given by (K − S(T ))+ = max{K −S(T ), 0}.

Figure 2.1: Payoff diagram for a European call option

Payoff diagram is a visualisation tool used for describing the option. For example, payoff dia-
gram for a European call option is given by Figure 2.1.

Apart from European options, there are also other types of interesting options, for instance:

1. American call (put) options are similar to the European call (put) options. The only
difference between them is that the holder of an American option can decide to exercise his
or her right to buy the underlying asset from (sell it to) the option writer at any time before
the expiration date.

2. Asian call (put) options refer to the options whose payoffs depend on the average price of
the underlying asset rather than on the price of the asset at one specific time. Because of this
characteristic of the Asian options, sometimes people call these options an average option.
The payoff function of an Asian call option with strike price K and expiration date T and
that of an Asian put option with the same strike price and expiration date are given by:

(a) An Asian call option is described by the payoff function max

 1

T

T∫
0

S(τ)dτ −K, 0

,

(b) An Asian put option is described by the payoff function max

K − 1

T

T∫
0

S(τ)dτ, 0

.

Note that one can also define other Asian options by replacing the integral term with another
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average function, for example, arithmetic average

1

T

T∑
t=1

St (2.1)

or geometric average (
T∏
t=1

St

) 1
T

. (2.2)

3. Lookback call (put) options refer to the options whose payoffs depend on either maximum
price or minimum price of the underlying asset before the expiry. There are two subcategories
of the lookback options: fixed strike lookback options and floating strike lookback options.
We show below the payoff functions for different types of lookback options with strike price
K and expiration date T .

(a) A fixed strike lookback call option is described by the payoff function max{Smax−K, 0}
where Smax = maxt=1,2,...T St.

(b) A fixed strike lookback put option is described by the payoff function max{K−Smin, 0}
where Smin = mint=1,2,...T St.

(c) A floating strike lookback call option is described by the payoff function ST −Smin where
Smin = mint=1,2,...T St.

(d) A floating strike lookback put option is described by the payoff function Smax−ST where
Smax = maxt=1,2,...T St.

Comparing to the corresponding European option, a lookback option is usually considered
more valuable since its payoff depend on the optimal price of the underlying asset rather than
the price of the underlying asset at the expiration date. Hence, typically the price of the
lookback option is higher than that of the corresponding European option.

The Asian Options and the lookback options are usually categorised as European-style options
because of the similarity between them and the European options in terms of the exercising policy.
The American options, on the other hand, provide the holder with a more flexible exercising policy.
As a result, it is, from our point of view, more difficult to price American options.

The interesting question about the financial options is that what the fair price of a particular
option should be. There have been many theories proposed to figure out the price of the option based
on various assumptions. The most important assumption is called the arbitrage-free assumption.
Roughly speaking, the arbitrage-free assumption or the no-arbitrage assumption states that there
should be no opportunities for the investors to possibly gain money risklessly without investing his
or her own money. It is a reasonable assumption for any financial markets although in reality the
arbitrage opportunities do exist. This is because once the investors have noticed the presence of an
arbitrage opportunity, all of them will try to seize the opportunity and henceforward it will vanish
shortly after that.

Remark 2.1.1. An arbitrage opportunity is mathematically defined as an investment opportunity
that has zero probability of losing money and has a strictly positive probability of getting money.
The arbitrage-free opportunity leads to the law of one price stating that the identical assets, i.e.,
those that yield the same cash flows, must have the same price. Otherwise, one could exploit the
gap between the prices to produce the arbitrage opportunity by buying the cheaper one and selling
it at, of course, a higher price.

In this literature review, three models used for pricing options are discussed. The first one is
called the binomial options pricing model, which directly applies the arbitrage-free assumption to
the calculation of the option price. The second one is called the Black-Scholes model. The Black-
Scholes formula is derived from Ito calculus whose details are not discussed in this report, but
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briefly Ito calculus can be thought of as an extension of the ordinary calculus specially developed for
stochastic processes which are more suitable for describing objects which are subject to uncertainty
as time progresses such as stock prices. The last one is called the ε-arbitrage robust pricing model
(the robust pricing model), which basically applies the robust optimisation to solve the pricing
problem. We are most interested in the last one since in this project we also aim to use optimisation
techniques to solve the pricing problem as well.

2.2 Option Pricing Models

Previously, we have already presented about the definition of the financial option and some funda-
mental types of the options available in the market. In this section, we aim to focus more on the
pricing problem, which is the problem of our interest. We begin by first presenting, from our point
of view, the most basic option pricing model, namely the binomial options pricing model, and then
we move to discuss the more complicated ones.

2.2.1 Binomial Options Pricing Model

We review the binomial options pricing model from Higham [25] and Luenberger [34]. The bino-
mial options pricing model simply uses the binomial lattice for pricing the options. The model is
capable of describing the asset price dynamics in discrete time. Although, in reality we prefer the
continuous-time model to the discrete-time model, it is still possible to use the binomial lattice
to achieve the time continuity by reducing the time gap between future stages. By that, one can
consider the binomial options pricing model a decent model for describing the real price dynamics.

Figure 2.2: Component of the binomial lattice

The fundamental element in the binomial lattice model is shown in Figure 2.2. In the fig-
ure, the price either goes up by a factor u or goes down by a factor d. The probability of the
price going up is denoted by a variable p. Combining multiple of this basic element together, one
can construct a multi-period binomial lattice as shown in Figure 2.3 where Si,j is equal to ujdi−jS0.

The problem now turns to be how to choose the model parameters, which consist of u, d, and
p, appropriately. This process is sometimes called parameter tuning. Indeed, there is more than
one way to pick the values for these parameters. Conventional choices of choosing these values are
the ways that make the binomial lattice well approximate the geometric Brownian motion, which
is one type of the stochastic processes that is widely used in science and engineering. Assuming
that the asset price follows this motion, the asset price will be given by

St = S0e
νt+σz(t), (2.3)

where for a given asset ν denotes the expected growth rate of its logarithm, σ denotes the volatility
of the growth rate, and z(t) is the standard Weiner process, it can be proven that the following
ways of choosing parameters are reasonable.

• p =
1

2
+

1/2√
1 + (σ2/(ν2∆t))

, u = e

√
σ2∆t+ (ν∆t)2

, and d = e−
√
σ2∆t+ (ν∆t)2
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Figure 2.3: Multi-period binomial lattice

• p =
1

2
, u = eσ

√
∆t+ ν∆t, and d = e−σ

√
∆t+ ν∆t,

where ∆t is the length of one time period.

Note that the typical values of ν and σ are 12% and 15% respectively (see Luenberger [34]). In
our experiment, we will use these values for the simulation of our novel pricing approach.

Remark 2.2.1. A standard Weiner process (or, alternatively, Brownian Motion) is a stochastic
process z(t) which is defined continuously on the time interval [0, T ] and has the following properties.

1. z(0) is deterministic, and its value is zero.

2. z(t2) − z(t1) ∼ N(0, t2 − t1), for all 0 ≤ t1 < t2 ≤ T , where N(0, t2 − t1) is a normal
distribution with mean equal to zero and variance equal to t2 − t1.

3. z(t2)− z(t1) and z(t4)− z(t3) are independent, for all 0 ≤ t1 < t2 ≤ t3 < t4 ≤ T

Consider the problem of finding a fair price of a given option. The idea is to find a replicat-
ing portfolio which has to match the payoff of the option of our interest in every future scenario.
Typically, the replicating portfolio is constructed from a set of better-understood securities, for ex-
ample, a stock and a risk-free asset, so that the exact price of the replicating portfolio can be readily
calculated. Once such a portfolio has been obtained, using the arbitrage-free assumption, it can
be concluded that the price of the option and the price of the replicating portfolio must be the same.

Remark 2.2.2. Assets in the financial market can be classified as risk-free (or riskless) assets and
risky assets. A risk-free asset has a deterministic return while a risky asset has a non-deterministic
return. A typical example of risk-free assets is treasury bond and a typical example of risky assets
is stock.

Suppose that the risk-free rate is R. The lattice for the underlying asset can be constructed by
tuning the parameters as described earlier, and the lattice for the risk-free asset is clearly easy to
obtain. The bottom lattice in Figure 2.4 is for the financial option. The rightmost points in the
lattice can be calculated as the payoff of the option can be uniquely determined from the realised
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Figure 2.4: Finding replicating portfolio using binomial lattice

price of the underlying asset and the predefined strike price. One can find a replicating portfolio
consisting of the underlying asset and the risk-free asset that perfectly matches the option payoff,
i.e., the portfolio whose return is Ou and Od in both scenarios, and conclude that the price of
the option is the same as that of the portfolio. Alternatively, one can use the risk-neutral pricing
formula below.

O =
1

R
{qOu + (1− q)Od}, q =

R− d
u− d

(2.4)

Proof.

Consider a portfolio P consisting of
Ou −Od
S(u− d)

units of the underlying asset and
uOd − dOu
R(u− d)

units of the risk-free asset.

With probability p, the portfolio P will give a payoff of amount(
Ou −Od
S(u− d)

)
uS +

(
uOd − dOu
R(u− d)

)
R = Ou

at the end of the period.

Similarly, with probability 1− p, the portfolio P will give a payoff of amount(
Ou −Od
S(u− d)

)
dS +

(
uOd − dOu
R(u− d)

)
R = Od

at the end of the period.

As a result, this portfolio replicates the payoff of the option in both scenarios. Under the
arbitrage-free assumption the fair price of the option must be equal to the initial price of the
portfolio, which is (

Ou −Od
S(u− d)

)
S +

(
uOd − dOu
R(u− d)

)
1 =

1

R
{qOu + (1− q)Od}.

In this formula, the parameter q denotes the risk-neutral probability. Usually, q is different
from the real probability p, and it can be observed that the probability p never appears in the
calculation of the option price. The risk-neutral pricing formula is very convenient and can be
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easily extended for pricing the option with multiple periods of time. For instance, in order to fairly
price a given European call option which has a strike price K and an expiration time T (quoted in
years), the risk-neutral pricing formula can be used to derive a closed-form expression of the value
of the European call option as follows supposing that the time T is divided into m periods and
there is no risk-free rate, i.e., R = 1.

Price =
m∑
i=0

qi(1− q)m−i
(
m

i

)
max{uidm−iS0 −K, 0} (2.5)

The main advantage of using the binomial options pricing model is that this model can be
used to price an option with complicated payoff function. However, as one might have expected,
the limitation of this approach is that it is relatively slow as compared with other approaches, for
example, the Black-Scholes model, which will be discussed next. This scalability issue is a result of
the lattice size, i.e., the number of nodes in the lattice, which grows exponentially with the number
of time periods. Therefore, it is possible but might not be a brilliant idea to use this model to price
options in continuous time.

2.2.2 Black-Scholes Model

Again, in this model, the principal underlying theory is the arbitrage-free assumption. The idea
behind this model is not much different from that of the binomial options pricing model; however,
this model is capable of pricing the options under the continuity of time. Starting from assuming
that the price of the underlying asset S(t) is a continuous process which obeys the geometric
Browning motion. Suggested by Ito’s lemma, we have

dS = µSdt+ σSdz, (2.6)

where z is the standard Weiner process and µ is equal to ν +
1

2
σ2. By applying the arbitrage-

free argument, if the underlying asset pays no dividend, the closed-form formula for pricing a
European call option (Vc(·, ·)) and that for pricing a European put option (Vp(·, ·)), knowing that
Vc(S, T ) = (S −K)+ and Vp(S, T ) = (K − S)+, are shown to be

Vc(S, t) = Sφ(d1)−Ke−r(T−t)φ(d2), (2.7)

Vp(S, t) = Ke−r(T−t)φ(−d2)− Sφ(−d1), (2.8)

where
S is the price of the underlying asset;
T − t is the time to maturity (T denotes the expiration date);
K is the strike price specified in the option contract;
r is the risk-free rate;
σ is the volatility of the asset return;

φ(·) is standard normal distribution (φ(x) =
1√
2π

x∫
−∞

e−η
2/2 dη);

d1 =
log(S/K) + (r +

1

2
σ2)(T − t)

σ
√
T − t

;

d2 =
log(S/K) + (r − 1

2
σ2)(T − t)

σ
√
T − t

= d1 − σ
√
T − t.

Given the closed-form expressions of the values of a European call option and a European put
option, one might use the equation φ(−x) = 1 − φ(x), which results from the symmetry of the
bell-shaped probability density function of the normal distribution, and notice a put-call parity
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which relates the value of a European call option to the value of a European put option sharing
the same strike price and expiration date.

Vp(S, t)− Vc(S, t) = Ke−r(T−t)(φ(−d2) + φ(d2))− S(φ(−d1) + φ(d1)) (2.9)

In other words,

Vp(S, t)− Vc(S, t) + S = Ke−r(T−t) (2.10)

It is, in addition, possible to figure out the relationship between the Black-Scholes model and
the binomial options pricing model. It has been shown that the output of the binomial options
pricing model converges to the Black-Scholes formula as the length of one period of time becomes
smaller (∆t→ 0). The Black-Scholes model has been used and proved successful in pricing financial
options in the sense that, as shown by empirical studies, the Black-Scholes price is fairly close to
the observed market price. The advantage of this model is that it is evidently faster than the
binomial options pricing model. Matlab, a widely-used numerical computing environment, also
provides a function for computing prices of the options using the Black-Scholes model together
with a well-written on-line documentation accessible from http://www.mathworks.co.uk.

Figure 2.5: Illustration of the Black-Scholes model using Matlab

To illustrate the use of the Black-Scholes pricing model, we use a built-in function blsprice in
Matlab to calculate the price of the option with a strike price equal to £100. In this example, we
assume that the annualised risk-free rate is 10%, the price of the underlying asset today ranges
from £20 to £200, and the expiration date of this option is one year. The result obtained is shown
in Figure 2.5. Further reading about the Black-Scholes model and its extension to other options
can be found in Hull [26], Musiela and Rutkowski [36], and Uǧur [47].

On the other hand, even though it is possible to increase the flexibility of the Black-Scholes
model, it appears to be unable to price options with complicated payoff functions, for example,
arithmetic Asian options and American options. Fortunately, an American call option which is tied
to a non-dividend paying asset is proved to be less beneficial when it is exercised early. In such
cases, the value of the American call option has no difference from the value of the corresponding
European call option (see Hull [26]). This is not true for American put options even if the option
is linked to a non-dividend paying asset.
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Although the studies of the option pricing seem to be carried out in a good direction, the first
two models, namely the binomial options pricing model and the Black-Scholes model, sometimes do
not work as well as expected. Both approaches aim to construct a perfect replicating portfolio, and
to achieve that there are various conditions assumed to hold. For example, the typical variations
of the binomial options pricing model and the Black-Scholes model usually assume that the price
of the underlying asset of the option follows the geometric Brownian motion, and this is not always
the case. One can empirically verify that this assumption, in fact, does not exactly hold in the
market. There have been attempts to improve such models; however, the computational complexity
of the model is inevitably increased. Especially in the Black-Scholes model, it is worth noting here
that the elegant closed-form formula of the option value relies on many assumptions apart from
that the price of the underlying asset follows the geometric Brownian motion. Some of them seem
to be unrealistic in the real financial market. Examples of these assumptions are listed below.

1. There are no transaction costs.

2. The underlying asset can be arbitrarily divided.

3. Risk-free rate and the volatility of the underlying asset always remain unchanged.

Hence, another pricing approach was proposed.

2.2.3 ε-Arbitrage Robust Pricing Model

The ε-arbitrage robust pricing model uses the optimisation technique called robust optimisation to
find a replicating portfolio and then price the option. Briefly, robust optimisation is an approach
used to model optimisation problems which are subject to uncertainty, similarly to the stochastic
programming approach. We review the ε-arbitrage robust pricing model from Chen [15].

To illustrate the major difference between the stochastic programming approach and the robust
optimisation approach, let f(x, D̃) be the function to be optimised, where x denotes the decision
variables and D̃ denotes the input data which can be subject to uncertainty. In this example, let
further assume that we want to minimise the objective function f . The stochastic programming
approach is expectation-based, which means it tries to optimise the expected value of the objective
function.

minimisex E(x, D̃) (2.11)

The robust optimisation approach, on the other hand, uses the idea of the worst-case analysis
which can be described by

minimisexmaximiseD̃∈U f(x, D̃). (2.12)

Although, it is application-dependent to choose the model for representing the optimisation
problem, it is worth noting here that the robust optimisation is proved computationally tractable
for a number of certain classes of convex optimisation problems. We provide in-depth review of
optimisation models in Chapter 3.

The first step in this approach is to construct a robust optimisation model which corresponds
to the pricing problem. To do so, let first suppose that P (S̃,K) is the payoff function of the op-
tion with a strike price K. The random variable S̃ denotes a collection of the future prices of the
underlying asset, which in each step can either increase or decrease. For a European call option
which expires at time T , as an example, P (S̃,K) = max{ST −K, 0}.

In order to find a replicating portfolio, which in this approach does not have to perfectly match
the payoff of the option, the objective function to be optimised is the difference in payoff between
the option and the portfolio and is written as
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|P (S̃,K)−WT |, (2.13)

where WT is the wealth level of the portfolio at the expiration date of the option. If such a dif-
ference is zero, then a perfect hedging strategy exists. Otherwise, this term would be called an
error or an arbitrage. The symbol ε is used to represent this difference. Using the robust op-
timisation technique, the objective of the ε-arbitrage robust pricing approach is to minimise the
worst-case error ε. Once the optimal solution of the associated robust optimisation problem has
been found, the final portfolio wealth WT is expected to closely match the payoff of the option, and
it would be reasonable to set the price of the option to the current value of this replicating portfolio.

More specifically, the robust optimisation problem for pricing the option is given by

ε-Arbitrage Robust Pricing Model

minimise{xSt }Tt=0,{xBt }Tt=0,{yt}
T−1
t=0

maximise{r̃St }
T−1
t=0 ∈U

|P (S̃,K)−WT |

subject to

WT = xST + xBT

xSt = (1 + r̃St−1)(xSt−1 + yt−1), ∀t = 1, 2, ..., T

xBt = (1 + rBt−1)(xBt−1 − yt−1), ∀t = 1, 2, ..., T,

(2.14)

where
xSt is the amount of money invested in the underlying asset at time t;
xBt is the amount of money invested in the risk-free asset at time t;
yt is the amount of money moved from the risk-free asset to the underlying asset at time t (neg-

ative quantity means moving the money from the underlying asset to the risk-free asset instead);
r̃St is the return of the underlying asset during the period [t, t + 1] (the symbol ∼ is used to

emphasise that this parameter is subject to uncertainty);
rBt is the return of the risk-free asset during the period [t, t+ 1].

After solving the optimisation problem (2.14), the price of the option would thus be set to the
initial price of the portfolio, i.e., the total amount of money initially invested in both the underlying
asset of the option and the risk-free asset (xS0 + xB0 ). Since the pricing model uses the concept of
the robust optimisation approach, sometimes we refer to it in short as a robust pricing model.

In the pricing model (2.14), the uncertain parameters are the future rates of return of the (risky)
underlying asset, i.e., {r̃St }T−1

t=0 . One important aspect in the robust optimisation is how one should
define the uncertainty set U . Using this pricing model, the investor is free to design the uncertainty
set accordingly to his or her preference. However, the investor should be aware that the design of
the uncertainty set results in the complexity of the robust counterpart of the pricing problem to
some extent. The author of this work also proposed a way to design the uncertainty set by setting
the boundaries on the single-period returns {r̃St }T−1

t=0 :

|r̃St − µ| ≤ Γtσ, ∀t, (2.15)

which is equivalent to

µ− Γtσ ≤ r̃St ≤ µ+ Γtσ, ∀t, (2.16)

where µ and σ denote mean and standard deviation of the random return r̃St , respectively, and Γt
is a predefined risk-aversion parameter.
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Moreover, the author also created another set of boundaries on the cumulative returns {R̃St }Tt=1,
where

R̃St =
t−1∏
i=0

(1 + r̃Si ). (2.17)

This set of boundaries comes as a result of the central limit theorem (CLT), a famous theory
in probability and statistics. As a result, we begin by briefly explaining the central limit theorem
and then explain the boundaries proposed by Chen [15].

Theorem 2.2.1. (Central limit theorem) Given a set of independent n random variables X1, X2,
..., Xn drawn from the identical distribution with the expected value of µ and the variance of σ2,

lim
n→+∞

1

n

N∑
i=1

Xi − µ

σ/
√
n

approaches the standard normal distribution.

A rule of thumb when using the central limit theorem is that it is often claimed that a set of
more than thirty independent and identically distributed random variables is sufficient for produc-
ing an approximate normally distributed sample mean, regardless of the distribution of the original
random variables.

Suppose that µlog and σlog are mean and standard deviation of log(1 + r̃St ), respectively. Note
that these items can be estimated empirically. Using the central limit theorem, the author suggested
that

1

t

t−1∑
i=0

log(1 + r̃Si )− µlog

σlog/
√
t

∼ N(0, 1), (2.18)

1

t
log R̃St − µlog
σlog/

√
t

=

1

t
log

t−1∏
i=0

(1 + r̃Si )− µlog

σlog/
√
t

∼ N(0, 1). (2.19)

Consequently, he suggested a set of boundaries on the cumulative returns as∣∣∣∣∣∣∣
1

t
log R̃St − µlog
σlog/

√
t

∣∣∣∣∣∣∣ ≤ Γ, ∀t. (2.20)

These boundaries can also be rewritten as

etµlog−Γ
√
tσlog ≤ R̃St ≤ etµlog+Γ

√
tσlog , ∀t. (2.21)

Two major advantages of this pricing model can be seen from the problem formulation. The
first one is that this approach can be used to price the options with complicated payoff functions
with ease by the substitution of the payoff function P (S̃,K) in the objective function. The second
advantage of this approach is that this model does not need assumptions about asset price dynamics
and market conditions. Recall that the Black-Scholes model heavily relies on that the price of
the underlying asset follows the geometric Brownian motion, and in the binomial options pricing
model the geometric Brownian motion is often assumed before tuning the model parameters. In
this respect, the ε-arbitrage robust pricing model outperforms the other two models. Furthermore,
while the binomial options pricing model and the Black-Scholes model output only a single so-called
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fair price for a given option, the ε-arbitrage robust pricing model can output a family of prices by
adjusting the model parameters: Γ and {Γt}Tt=1. The values of Γ and {Γt}Tt=1 reflect the degree of
risk-aversion of the investor.

2.3 Conclusions

To sum up, in this chapter, we provide background knowledge of financial options together with
successful predecessor models for options pricing. All of the discussed pricing models rely on the
arbitrage-free assumption, which is a crucial assumption leading to market equilibrium. When
asset price follows the geometric Brownian motion, the Black-Scholes model and the binomial
options pricing model arguably output the fairest option price. In real market, it is however hardly
ever the case that the asset price exactly follows the geometric Brownian motion. Additionally,
it is also difficult to simulate market conditions, for example, transaction costs and short-selling
prohibition, using the Black-Scholes model or the binomial options pricing model. Both of the
pricing models therefore lack ability to capture the behaviour of the real market. The ε-arbitrage
robust pricing approach, on the other hand, models the market conditions via a set of constraints.
Therefore, it can be deemed more flexible. Unlike the Black-Scholes model and the binomial options
pricing model, the ε-arbitrage robust pricing model does not adopt the notion of the arbitrage-free
pricing directly. Instead, it allows violation of the arbitrage-free assumption, but the arbitrage error
should be minimised. The pricing model is then reduced to an optimisation problem. Optimisation
techniques are then discussed in the following chapter before we thoroughly analyse the ε-arbitrage
robust pricing model in Chapter 4.
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Chapter 3

Literature Review: Mathematical
Optimisation

Optimisation is an important area in mathematics and computer science. It refers to a process of
selecting the best (optimal) choice from the pool of alternatives. Optimisation, therefore, takes a
major role in almost all applications that require decision making. In addition to mathematics and
computer science, applications of the optimisation theories can also be found in innumerable areas,
for example, finance, energy, and engineering. For example, an investor in the financial market may
want to find a way to allocate his or her budget in different assets in order to maximise the expected
return at the end of the investment horizon. This example is referred to as portfolio optimisation
problem. In this example, the decision to be made can be a fraction of his or her budget to be
invested in each of the assets. This confirms the crucial importance of the optimisation studies.
Mathematically speaking, the decision in the real world applications is a set of decision variables (x)
in the optimisation model. The other type of the system variables whose values are not controlled
by the decision maker is called the uncontrollable factor (D), for example, the assets’ returns in the
example of portfolio optimisation. A general formulation of the optimisation problem, assuming
that we want to minimise the objective function f , is shown below.

General Optimisation Problem

minimisex f(x,D)
subject to

gi(x,D) ≤ 0, ∀i = 1, 2, ..., I
hj(x,D) = 0, ∀j = 1, 2, ..., J

(3.1)

Typically, the optimisation model, i.e., the mathematical model that represents the optimisa-
tion problem, consists of two important parts. The first part is the objective function (f), which is
the function to be optimised (minimised or maximised). The other part of the optimisation model
is a set of constraints which is a set of rules that the system variables, i.e., the decision variables
and the uncontrollable factors, are expected to obey. A constraint can be either an inequality
constraint (gi) or an equality constraint (hj). The optimisation problem is said to be infeasible if
there is no decision x that can satisfy all of the constraints. Otherwise, the optimisation problem
is said to be feasible.

Assume for the moment that the there is no uncontrollable factor D or the value of D is
deterministic and exactly known, the optimisation problem can be reduced to

minimisex f(x)
subject to

gi(x) ≤ 0, ∀i = 1, 2, ..., I
hj(x) = 0, ∀j = 1, 2, ..., J .
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(3.2)

In particular, x can be a vector of an arbitrary number of decisions, i.e., x ∈ Rn. In that case,
f , gi, and hj become real-valued functions taking x ∈ Rn as input.

f : Rn → R (3.3)

gi : Rn → R (3.4)

hj : Rn → R (3.5)

Note that there are many other ways to formulate the optimisation problems. For instance, it
is possible to remove the equality constraint hj without reducing the capabilities of the model as
the constraint hj(x,D) = 0 is equivalent to a pair of two inequality constraints: hj(x,D) ≤ 0 and
−hj(x,D) ≤ 0.

3.1 Convex Optimisation

In this section, we review background knowledge of convex optimisation. First of all, we review
all definitions needed and provide some examples. We then close this section by giving a general
formulation of the convex optimisation problems.

Definition 3.1.1. (Convex set) A set C is said to be convex if the line segment connecting two
arbitrary points x1 and x2 from C is wholly contained in C, i.e.,

λx1 + (1− λ)x2 ∈ C, ∀λ ∈ [0, 1]. (3.6)

Example 3.1.1. A circle C = {(x, y) ∈ R2 | x2 + y2 ≤ 1} is convex.

Proof.
Let (x1, y1) and (x2, y2) be any two points in C. We have

(λx1 + (1− λ)x2)2 + (λy1 + (1− λ)y2)2

= λ2(x2
1 + y2

1) + (1− λ)2(x2
2 + y2

2) + 2λ(1− λ)(x1x2 + y1y2)

≤ λ2(x2
1 + y2

1) + (1− λ)2(x2
2 + y2

2) + 2λ(1− λ)
√
x2

1 + y2
1

√
x2

2 + y2
2

= λ2 + (1− λ)2 + 2λ(1− λ)

= 1,

for any λ ∈ [0, 1]. This implies that the point λ(x1, y1) + (1 − λ)(x2, y2) is also in C; therefore, C
is convex.

Definition 3.1.2. (Convex function) A function f : Rn → R is said to be convex if its domain is
a convex set and the following holds for any a and b taken from its domain and for any λ ∈ [0, 1].

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b) (3.7)

If the inequality strictly holds whenever a 6= b and λ ∈ (0, 1), f is said to be strictly convex.

Example 3.1.2. A function f(x) = x2 − 1 is convex on R

Proof.
For any x1 and x2 in R, we have

f(λx1 + (1− λx2)) = (λx1 + (1− λ)x2)2 − 1

= λ2x2
1 + 2λ(1− λ)x1x2 + (1− λ)2x2

2 − 1

= λx2
1 + (1− λ)x2

2 − λ(1− λ)
(
x2

1 − 2x1x2 + x2
2

)
− 1

= λx2
1 + (1− λ)x2

2 − λ(1− λ)(x1 − x2)2 − 1

≤ λx2
1 + (1− λ)x2

2 − 1

= λf(x1) + (1− λ)f(x2),
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for any λ ∈ [0, 1]. The function f is, thus, convex.

Example 3.1.3. A linear function f : Rn → R given by f(x) = cTx, where c is a fixed vector in
Rn, is convex.

Proof.
For any x1, x2 in Rn and for any λ ∈ [0, 1], we have

f(λx1 + (1− λ)x2) = cT (λx1 + (1− λ)x2)

= λcTx1 + (1− λ)cTx2

= λf(x1) + (1− λ)f(x2).

Hence, f is convex.

Definition 3.1.3. (Affine function) A function f : Rn → Rm is an affine function if it can be
written as

f(x) = Ax+ b, (3.8)

where A ∈ Rm×n and b ∈ Rm.

A convex optimisation problem is an optimisation problem in a form of (3.2) with additional
restrictions:

• The objective function f must be a convex function;

• The inequality constraint functions {gi}Ii=1 must also be convex;

• The equality constraint functions must be affine, i.e., hj(x) = aTj x + bj , where aj ∈ Rn and
bj ∈ R.

Example 3.1.4. The following optimisation problem is convex

minimisex x
subject to
x2 ≤ 1

(3.9)

Proof.
The objective function f(x) = x is linear and therefore convex, and the constraint g(x) =

x2 − 1 ≤ 0 is also convex. Thus, this is a convex optimisation problem.

3.2 Conic Optimisation

In this section, we study conic optimisation which entails an investigation of a set of thriving
classes of convex optimisation problems. We provide necessary definitions and examples as well as
the explanation of the structure of the conic optimisation problems.

Definition 3.2.1. (Cone) A set C is said to be a cone if

θx ∈ C, ∀x ∈ C, ∀θ ≥ 0. (3.10)

Definition 3.2.2. (Convex cone) A set C is a convex cone if it is convex and it is a cone.
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Definition 3.2.3. (Polynomial norm) A polynomial norm || · ||p is a function from Rn to R defined
as

||x||p =

(
n∑
i=1

|xi|p
) 1

p

. (3.11)

A Euclidean norm is a polynomial norm with p = 2. In this thesis, both || · ||2 and || · || refer to the
Euclidean norm.

Definition 3.2.4. (Positive (semi)definiteness) A square matrix Q ∈ Rn×n is said to be positive
semidefinite (Q � 0) if

dTQd ≥ 0, ∀d ∈ Rn. (3.12)

If the inequality strictly holds for every d 6= 0, Q is then said to be positive definite (Q � 0).

Definition 3.2.5. (Proper cone) A cone K is a proper cone if it satisfies all of the followings.

• K is convex.

• K is closed.

• K is a pointed cone, i.e., if x ∈ K and −x ∈ K, then x = 0.

• K has a non-empty interior.

Example 3.2.1. We show below a list of some important cones that appear frequently in the
optimisation studies.

• Non-negative orthant:

Rn+ = {x ∈ Rn | xi ≥ 0, ∀i = 1, 2, ..., n} (3.13)

• Second-order cone:

ζ2,n+1 = {(x, t) ∈ Rn+1 | ||x||2 ≤ t} (3.14)

• Positive semidefinite cone:

Sn+ = {X ∈ Sn | X � 0} (3.15)

In the optimisation studies, we definitely have to deal with a lot of inequalities. In the most
general setting, we have

a ≤ b⇐⇒ b− a ∈ R+. (3.16)

The axiom above provides a way to determine the total order of a given subset of R, i.e., two
real numbers can always be compared and the bigger one can thus be determined. Analogously, if
a and b are chosen from Rn, we have

a ≤ b⇐⇒ b− a ∈ Rn+. (3.17)

However, only partial ordering can be attained through this vector inequality. The example
below is cited to illustrate why total ordering cannot be achieved.

Example 3.2.2.

•
[
1
1

]
≤
[
3
2

]

•
[
1
4

]
�
[
3
2

]
and

[
3
2

]
�
[
1
4

]
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The notion of inequality can be further generalised using a proper cone K. This can be done
by introducing a new operator �K and defining it as

A �K B ⇐⇒ B −A ∈ K. (3.18)

Example 3.2.3. Instead of saying that [1 1]T ≤ [3 2]T , we can equivalently say that [1 1]T �R2

[3 2]T . In the very common cases, we usually drop the cone’s description though. This means it
should be understood that if a and b are vectors in Rn, a ≤ b means b− a is a non-negative vector,
and if A and B are symmetric matrices in Rn×n, A � B means that B−A is positive semidefinite.

The following is a list of the fundamental properties of the generalised inequality.

• Reflexive: x �K x.

• Antisymmetric: if x �K y and y �K x, then x = y.

• Transitive: if x �K y and y �K z, then x �K z.

• Preserved under addition: if x �K y and u �K v, then x+ u �K y + v.

• Preserved under non-negative scaling: if x �K y and α ≥ 0, then αx �K αy.

Conic optimisation is a vast subset of convex optimisation. A conic optimisation problem or a
cone program typically has a linear objective function and is written in a form below.

Conic Optimisation Problem

minimisex c
Tx

subject to
Fx+ g �K 0
Ax = b

(3.19)

3.2.1 Linear Programming Problems

Deterministic linear programming problems are linear programs which are not subject to uncer-
tainty. Any form of the optimisation problem (3.2) where the objective function f , the inequality
constraints gi, and the equality constraints hj are affine functions is called a linear program. How-
ever, it would be useful and convenient to introduce the standard form of linear programs, which
is

Linear Programming Problem

minimisex c
Tx

subject to
Ax = b
x ≥ 0.

(3.20)

In this formulation, the decision variable x is a vector consisting of n real-valued entries. The
cost coefficient c is also a vector of n real-valued numbers as well. The coefficient matrix A is a
real matrix of dimension m× n, and the vector b is a collection of m real numbers. Therefore, the
matrix equation Ax = b is, in fact, a collection of m equality constraints.

There are algorithms proposed to solve linear programming problems. The simplex algorithm
was first published by Dantzig in 1947 (for more details about this algorithm, see Dantzig, Orden
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and Wolfe [17]). Broad and deep explanation of linear programming is gathered in Dantzig and
Thapa [18]. Apart from the simplex algorithm, the interior point method is also proved efficient and
beneficial for solving many classes of the optimisation problems including the linear programming
problems (see Mehrotra [35]). These two algorithms are commonly used to solve linear program-
ming problems, and typically both of them are already made available in standard solvers, for
example, LINPROG in Matlab and CPLEX.

There have been a lot of studies about linear optimization; however, the theory that is most
useful in this work is the duality in linear programming.

Definition 3.2.6. (Dual problem) A dual problem of the primal linear programming problem (3.20)
is another linear programming problem defined as

Dual Linear Programming Problem

maximisey b
T y

subject to
AT y ≤ c.

(3.21)

After having established a pair of primal and dual problems, the next definition that we would
like to introduce is duality gap.

Definition 3.2.7. (Duality gap) Duality gap is defined as a difference between the optimal objective
value of the primal problem (p∗) and that of the dual problem (d∗).

There are three important properties regarding the relationship between the primal and the dual
problems: the unboundedness property, the weak duality property, and the strong duality property.
Explanation of this topic can be found in many literatures, for example, Boyd and Vandenberghe
[12] and Bradley, Hax and Magnanti [14].

Theorem 3.2.1. (Unboundedness property) If the primal (dual) problem is unbounded, i.e., the
primal (dual) problem has an unbounded solution, then the dual (primal) problem is infeasible.

Theorem 3.2.2. (Weak duality property) The duality gap p∗ − d∗ is always non-negative.

Theorem 3.2.3. (Strong duality property) If the primal (dual) problem has a finite optimal solu-
tion, then the dual (primal) problem also has a finite optimal solution and both solutions coincide,
i.e., the duality gap is equal to zero.

Note that the strong duality property becomes very useful when we want to solve a robust
counterpart of the robust linear optimisation problem with a polyhedral uncertainty set. This will
be discussed in details later. Duality theory is also available for many other classes of optimisation
problems. In fact, it is proven that there generally is a dual problem for every conic optimisation
problem.

3.2.2 Quadratic Constrained Quadratic Programming Problems

Quadratic constrained quadratic programming problems (QCQP) are problems whose objective
function and constraints are quadratic functions of the decision variables. They are usually written
in the following form.

Quadratic Constrained Quadratic Programming Problem

minimisex
1

2
xTP0x+ qT0 x+ r0

subject to
Ax = b

1

2
xTPix+ qTi x+ ri ≤ 0, ∀i = 1, 2, ..., I,
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(3.22)

where x ∈ Rn is the decision variables and A ∈ Rm×n, b ∈ Rm, Pi ∈ Rn×n, qi ∈ Rn, and ri ∈ R are
input to the program.

3.2.3 Second-Order Cone Programming Problems

Similarly to the quadratic constrained quadratic programming problems, second-order cone pro-
gramming problems are those of the following form.

Second-Order Cone Programming Problem

minimisex c
T
0 x

subject to
A0x = b0

‖Aix+ bi‖2 ≤ cTi x+ di, ∀i = 1, 2, ..., I,

(3.23)

where x ∈ Rn is the decision variables and the matrices Ai ∈ Rni×n, the vectors bi ∈ Rni , ci ∈ Rn,
and di ∈ R are input to the program. The constraints of the program of this type can be rewritten
using an inequality generalised by the second-order cone(

Aix+ bi
cTi x+ di

)
∈ ζ2,ni+1, (3.24)

and thus they are called the second-order constraints.

Analogously to the linear programming problem, there is an elegant explicit formula for the
dual second-order cone programming problem. Under certain conditions, weak and strong duality
properties hold for a pair of primal and dual second-order cone programming problems. Without
loss of generality, the constraint A0x = b0 can always be omitted as a result of the equivalence

between A0x = b0 and

(
A0x− b0

0

)
∈ ζ2,n0+1. Following from the simplification, a pair of primal

and dual second-order cone programming problems is given by

(Primal)

minimisex c
T
0 x

subject to
‖Aix+ bi‖2 ≤ cTi x+ di, ∀i = 1, 2, ..., I

(Dual)

maximise{zi,wi}Ii=1
−

I∑
i=1

(
bTi zi + diwi

)
subject to

I∑
i=1

(
ATi zi + ciwi

)
= c0

‖zi‖ ≤ wi, ∀i = 1, 2, ..., I,

(3.25)

where zi ∈ Rni and wi ∈ R are dual variables, i.e., decision variables of the dual problem (see Lobo,
Vandenberghe, Boyd, and Lebret [30]). Provided that the strong duality holds, an uncertainty-
affected robust linear constraint with ellipsoidal uncertainty set can be formulated as a deterministic
second-order cone programming problem.
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3.2.4 Semidefinite Programming Problems

The problems of the following form are called semidefinite programming problems.

Semidefinite Programming Problem

minimisex c
Tx

subject to
Ax = b(

n∑
i=1

xiFi

)
+G � 0,

(3.26)

where x ∈ Rn is the decision variables and A ∈ Rm×n, b ∈ Rm, and G,Fi ∈ Sk are input to the
program.

Semidefinite programming problem is often regarded as a generalised model encapsulating many
other types of deterministic optimisation problems. For example, if G and {Fi}ni=1 are all diagonal
matrices, the whole optimisation problem reduces to a simple linear programming problem.

Modern standard solvers usually have capabilities to solve semidefinite programs with accept-
able amount of resource. In order to use the solvers, typically a semidefinite program has to be
transformed to the following standard form.

minimiseX Tr(CX)
subject to

Tr(AiX) = bi, ∀i = 1, 2, ..., I
X � 0,

(3.27)

where X ∈ Sn contains the decision variables, and C,Ai ∈ Sn and bi ∈ R are input to the program.

3.3 Optimisation under Uncertainty

Indeed, if there are no uncontrollable factors or all of the controllable factors are deterministic, the
optimisation problem would become a lot easier to solve. Unfortunately, that is rarely the case
since almost all of the real world applications are subject to uncertainty.

Therefore, the assumption about not having an uncontrollable factor (D) or the uncontrol-
lable factor being deterministic appears to be too restrictive. In reality, there are a number of
system variables whose values are not under the control of the decision makers. For example, the
portfolio optimisation problem is subject to uncertainty because the assets’ returns are usually
non-deterministic. It is seen from numerous applications that ignoring these uncertain factors can
severely affect the optimisation problems in terms of both optimality and feasibility of the generated
solution. In the utmost case, the generated solution can be meaningless if it is not implementable.

In order to take into account such uncertainty, the amended optimisation model can be rewritten
as follows.

General Optimisation Problem under Uncertainty

minimisex f(x, D̃)
subject to

gi(x, D̃) ≤ 0, ∀i = 1, 2, ..., I
hj(x, D̃) = 0, ∀j = 1, 2, ..., J ,
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(3.28)

where ∼ is used to emphasise the uncertain-affected input to the program.

As one might have guessed, even though the above optimisation model does consider the uncer-
tainty that can arise in the optimisation problems, it is not a rigorous mathematical model since
the objective function takes as input uncertain parameters and therefore is not well-defined. The
model is presented in order to give some intuition about the idea of how to model the optimisation
problems which are not immunised against uncertainty. In the following sections, we review three
techniques used to deal with the uncertainty in the optimisation problems. All of them view an
uncertain input in different ways. Note that none of them is clearly better than the others. It is
application-dependent to choose what the appropriate approach to be used is.

3.3.1 Stochastic Programming Approach

As mentioned before that uncertainty factors can arise in the optimisation problems and that the
deterministic optimisation approach is not specially designed to deal with this, other optimisation
models with the capabilities to tackle the uncertainty have been proposed. The model that was
first proposed in this regard is stochastic programming approach. Here, we review concept of the
stochastic programming approach from Shapiro, Dentcheva and Ruszczyński [41] and Shapiro and
Philpott [43].

In the stochastic programming approach, each unknown parameter is viewed as a random
variable following a certain probability distribution. The purpose of the stochastic programming
approach is to determine the optimal solution based on the expected value of the nominal objective
function. In other words, the stochastic programming approach aims to find the solution that is
optimal on average. Typically, the objective function of the stochastic programming problem is
written as

minimisex E(x, D̃). (3.29)

Normally, there are two types of decisions for the decision makers to make: here-and-now
decisions and wait-and-see decisions (or recourse actions). The here-and-now decisions involve
the decisions to be made before the unknown factors become materialised while the wait-and-see
decisions are the decisions to be made depending upon future realisations of the unknown param-
eters. According to the types of decisions, stochastic programs can be categorized into two major
groups which are known as: stochastic programming problems with recourse actions and chance-
constrained problems.

In the stochastic programs with recourse actions, the decision maker first makes here-and-now
decisions and then recursively waits and observes the new information in order to make subsequent
decisions accordingly to the history of the previous observations. That this model allows the
decision maker to defer making a decision until knowing more about the problem is realistic and
desirable because in reality it is unlikely that the decision maker has to make all of the decisions
hurriedly with an inadequate amount of knowledge he or she currently has. The stochastic programs
with recourse actions can involve any arbitrary number of stages of time; the two-stage stochastic
programming problem with recourse actions is the simplest variation of the problems of this type.
In this variation, the decision maker has to make two separate decisions: first-stage decision and
second-stage decision (recourse action), which is the decision to be made after observing some
values. The example below shows how to formulate the two-stage stochastic programming problem
with recourse actions assuming that there are finitely many number of future scenarios K, and
both objective function and constraints are linear.
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Two-Stage Stochastic Problem

minimisex c
Tx+

K∑
k=1

pkq
T
k yk

subject to
Ax = b

Tkx+Wkyk = hk, ∀k = 1, 2, ...,K
x ≥ 0, yk ≥ 0, ∀k = 1, 2, ...,K

(3.30)

In the model (3.30), x is the first-stage decision, and y is the second stage decision which can
be either y1, y2, ... , or yk depending on the future scenario which is determined by the unknown
{ξk}k=K

k=1 , ξk = (qk, hk, Tk,Wk). The probability of a scenario denoted by ξk going to happen is
given by pk. The term cTx is the cost incurred by the first-stage decision, and the summation term
is the expected optimal cost from the second stage decision.

On the contrary, traditional chance-constrained problems involve only here-and-now decisions;
therefore, the decision x has to be made without the knowledge of the realisation of the non-
deterministic input D̃. In this type of stochastic programs, the objective function is deterministic
while the feasibility of the problem is described by the chance constraints, where po and pc in the
following example are predefined probabilities. The values of po and pc are the significance levels,
which are the probabilities that the constraints have to be satisfied. In the example below, we
use an integrated chance-constraint; however, it is also possible to define the chance constraints
separately for every individual constraint aix ≤ bi where ai is the ith row of the matrix A and bi is
the ith element of the vector b.

Example 3.3.1. The chance-constrained program corresponding to

minimisex c
Tx

subject to
Ax ≤ b,

(3.31)

which is a linear program under uncertainty, is given by

Chance-Constrained Problem

minimisex,τ τ
subject to

Prob
[
cTx ≤ τ

]
≥ po

Prob [Ax ≤ b] ≥ pc.

(3.32)

It can be observed that both variations of the stochastic programs rely on the probability-based
computation (the expectation of the objective function and the chance constraints); consequently,
one shortcoming of the stochastic programming approach is that the actual probability distributions
of the unknown parameters have to be known. Unfortunately, that is rarely the case. Moreover,
even if we have the data of the actual or the assumed distributions, it is still tractably challenging
to solve the resulting model.
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3.3.2 Robust Optimisation Approach

Another optimisation model that is capable of dealing with the uncertainty that arises in the op-
timisation problems is the robust optimisation model. In fact, the robust optimisation problem is
a specialisation of the chance-constrained problem where the significance levels are all set to one.
This means the generated solution of the robust optimisation model has to strictly satisfy all of
the constraints regardless of the realisation of the unknown parameters in the problem, and this
characteristic of the generated solutions is termed robustness.

To grasp the main concept of the robust optimisation approach, consider the following linear
program

minimisex c
Tx

subject to
Ax ≤ b,

(3.33)

where x ∈ Rn is a vector of decision variables and c ∈ Rn is a fixed cost vector. We further assume
that the matrix A ∈ Rm×n and the vector b ∈ Rm are uncertain. The assumption that c is fixed and
subject to no uncertainty is not restrictive as we can always reformulate the optimisation problem
in such a way that makes the objective function uncertainty-free (see Bertsimas and Sim [10]). If
we know that all of the possible values of A and b can be described by an uncertainty set U , the
robust optimisation approach guarantees that the generated solution x∗ always complies with the
constraint Ax ≤ b even if we do not know the realisation of A and b. That is the robust counterpart
of this uncertain linear program with the prescribed uncertainty set U is given by

minimisex c
Tx

subject to
Ax ≤ b, ∀[A, b] ∈ U .

(3.34)

Typically, the uncertainty set U is an infinite set, for example, U = {[A, b]|A ≤ A ≤ Ā, b ≤ b ≤
b̄}. By simply enumerating all possibilities in U , the resulting optimisation problem will become
semi-infinite because of the infinite number of constraints it has, and this seems to be intractable.
A vast number of robust optimisation problems, however, have an equivalent tractable formulation,
which can be obtained by using, for example, conic duality, e.g., the duality of linear programs and
the duality of second-order cone programs. Problem modellers who opt to use the robust optimisa-
tion approach should also bear in mind that the shape of the uncertainty set U can very well affect
the tractability of the robust problem.

Suppose that the cost vector c is no longer assumed to be uncertainty-immunised. The robust
optimisation approach will then associate the given uncertain linear program with the following
optimisation problem.

minimisex {maximiseξ=[A,b,c]∈U c
Tx : Ax ≤ b, ∀ξ ∈ U} (3.35)

The result implies that the robustness of the generated solution is equivalent to the optimality in
the worst-case scenario allowed by U .

That the robust optimisation approach aims to find the solution that is optimal in the worst-case
scenario might make the problem modeller or the decision maker look needlessly pessimistic. How-
ever, in the critical applications where constraint violation by no mean can be tolerated, the robust
optimisation approach is evidently more of an appropriate choice as compared to the stochastic
programming approach. Specifically, an investor who is very risk-averse may consider adopting the
robust optimisation approach rather than the stochastic programming approach when deciding on

27



Chapter 3. Literature Review: Mathematical Optimisation

his or her budget allocation.

Lately, the robust optimisation approach has been drawing a lot of attention from researchers
in this field because of its tractability. We suggest reading from Ben-Tal, Goryashko, Guslitzer
and Nemirovski [4], Ben-Tal and Nemirovski [6], Bertsimas, Pachamanova, and Sim [9], and Li
and Floudas [29] for developing a more sophisticated understanding of the robust optimisation
approach. A comprehensive review of robust optimisation can also be read from Ben-Tal, El Ghaoui
and Nemirovski [3]. Also, application of the robust optimisation to portfolio optimisation problem
can be reviewed from Ben-Tal, Margalit and Nemirovski [5] and Bertsimas and Pachamanova [8]
as well as its application to the option pricing problem from Chen [15]. Furthermore, we refer the
history enthusiast to Bandi and Bertsimas [2] for historical development of robust optimisation and
its connection with probability theory and stochastic programming.

3.3.3 Decision Rule Approach

In this part, we review the concept of decision rule approach, another way to deal with uncertain
optimisation problems. To begin with, we first emphasise that in dynamic optimisation problems, it
would be desirable to model the decision variables as a function of previously observed information.
This leads us to become aware of the major shortcoming of both stochastic programming approach
with recourse actions and robust optimisation approach because of the following reasons.

• Tractability of the stochastic programming approach with recourse actions is severely af-
fected by the number of decision stages. Even though the two-stage stochastic programming
problems with recourse actions appear to be computationally tractable with Monte-Carlo
sampling techniques (see Birge and Louveaux [11] and Ruszczyński and Shapiro [39]), to date
there are still no tractable manners to deal with multi-stage recourse problems (see Shapiro
and Nemirovski [42]).

• Traditional robust optimisation approach typically neglects possibilities of recourse actions.
The generated robust solution is thus more susceptible to unnecessary conservatism than the
true optimal solution. In other words, classical robust optimisation methodology employs the
constant decision rules, i.e., values of the decision variables have to be decided here and now
as a constant, and thus they are completely independent of the information not yet available.

The decision rule approach is another paradigm for decision making under uncertainty. Unlike
other approximation methodologies, for example, Monte-Carlo sampling techniques, the decision
rule approach enables the problem modeller to approximately solve the optimisation problems by
selecting the analytical functional form of the recourse actions. Using some particular forms of
recourse actions, the modeller obtains a tractable formulation of the optimisation problem of his
or her interest while recourse actions are also taken into account.

The decision rule optimisation approach is relatively new. Studies in this area were pioneered
by Ben-Tal, Goryashko, Guslitzer and Nemirovski [4] in 2004 when they introduced linear decision
rules, approximation of the recourse action as a linear function of the uncertain parameters, in the
context of robust optimisation approach, which were called adjustable robust solution in their work.
Shortly afterwards, linear decision rules were proved applicable and useful as well in the stochastic
programming paradigm (see Shapiro and Nemirovski [42]). However, the question about the loss of
optimality when using linear decision rules remained, and subsequently it was addressed in Kuhn,
Wiesemann and Georghiou [27] as they proposed a way to formulate the upper bound and the
lower bound problems. The gap between both problems is a measure of how much confidence we
should have in the obtained solution. The main advantage of using linear decision rules is that the
resulting optimisation problem can usually be formulated as a tractable conic program. We refer
the reader to Georghiou, Wiesemann and Kuhn [24] for an extensive and comprehensive review of
the linear decision rules.
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Despite its tractability and capability to consider recourse actions, in many cases, linear deci-
sion rules yield insufficiently accurate results. To address this issue, Chen, Sim, Sun and Zhang
[16] proposed another approach called segregated linear decision rules which approximate recourse
actions via piecewise linear decision rules. The idea was generalised by Georghiou, Wiesemann and
Kuhn [23] showing that there exists a correspondence between non-linear decision rules and linear
decision rules in the lifted space. The correspondence between both types of the decision rules
implicitly implies the tractability of the piecewise linear decision rule approach. It is also proven
that the piecewise linear decision rules are no less accurate than the linear decision rules in the
sense that they provide a tighter upper and lower bounds to the true optimal solution. Apart from
linear decision rules and piecewise linear decision rules, there are also other variations of decision
rules, for example, polynomial decision rules which can be reviewed from Bampou and Kuhn [1].

3.4 Related Theories

In this section, we collect the optimisation theories which are strongly related to this thesis. The
following theorem can be used to formulate a robust linear optimisation problem with polyhe-
dral uncertainty set as a single deterministic linear programming problem, which is proved to be
computationally tractable using simplex algorithm or interior-point method.

Theorem 3.4.1. (Pachamanova [37]) Given an uncertain matrix Ã ∈ Rm×n, if a polyhedral uncer-
tainty set PA is a non-empty set given by {vec(Ã) | G · vec(Ã) ≤ d} for some matrix G ∈ Rl×(m×n)

and some vector d ∈ Rl, then a given x̂ ∈ Rn satisfies the constraint ãix̂ ≤ bi for all Ã ∈ PA if and
only if there exists a vector pi ∈ Rl such that

(pi)Td ≤ bi
(pi)TG = x̂Ti
pi ≥ 0,

where vec(Ã) is a vector equivalent of matrix Ã constructed by stacking the rows of matrix Ã on
top of one another, ãi is the ith row of the matrix Ã, and x̂i is a vector in R(m×n) defined by the
one containing x̂ in entries (i− 1)n+ 1 through (i)(n) and zero elsewhere.

Proof.
Consider the following pair of primal and dual problems.

(Primal)

minimisepi (pi)Td
subject to

(pi)TG = x̂Ti
pi ≥ 0

(Dual)

maximiseÃ ãix̂
subject to

G · vec(Ã) ≤ d

(=⇒) Suppose that there exists a vector p̂i which is feasible in the primal problem and (p̂i)Td ≤
bi. Equivalently, the primal problem is feasible, and since it is assumed that PA is a non-empty
set, it follows that the dual problem is feasible. By the unboundedness property of duality, it can
be concluded that both primal and dual problems are feasible and bounded. By the strong duality
property, the optimal objective function values of both problems must be equal.

maximiseÃ ãix̂ = minimisepi (pi)Td ≤ (p̂i)Td ≤ bi
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Hence, ãix̂ ≤ bi for all Ã ∈ PA.

(⇐=) Suppose that x̂i satisfies the constraint ãix̂ ≤ bi for all Ã ∈ PA. Then, the optimal
objective function value of the dual problem, i.e., maximiseÃ ãix̂, is less than or equal to bi, and
therefore the dual problem is feasible and bounded. By the strong duality property, the optimal
objective function values of the primal and the dual problems must coincide, and the proof of this
direction thus completes.

Instead of using a polyhedral uncertainty set, sometimes it seems more appropriate, especially
in a statistical sense, to use an ellipsoidal uncertainty set or an uncertainty set which can be writ-
ten as an intersection of multiple ellipsoids. Similarly to Theorem 3.4.1, which uses duality in
linear programming to formulate a deterministic version of a robust linear constraint associated
with a polyhedral uncertainty set, duality in second-order cone programming provides a method
for transforming a robust linear optimisation problem with discussed types of uncertainty set into a
deterministic second-order cone programming problem, which still offers a good degree of scalability.

Last but not least, the final part of this section shows that even if the robust optimisation
problem is not linear, it is still possible to determine a tractable deterministic version of the problem.
Specifically, if the constraint is quadratic in the uncertain parameters x, the corresponding (exact
or approximate) deterministic optimisation problem is then a semidefinite program.

Theorem 3.4.2. (S-lemma) Given two symmetric matrices W ∈ Sn and S ∈ Sn where the in-
equality xTWx ≥ 0 is strictly feasible, i.e., there exists a vector x̂ ∈ Rn that x̂TWx̂ > 0, then the
statement

xTWx ≥ 0 =⇒ xTSx ≥ 0

is true if and only if there exists a non-negative scalar λ such that S � λW .

Proposition 3.4.1. (Approximate S-lemma) Given S ∈ Sn and {Wi}Ii=1 ∈ Sn, the statement

xTWix ≥ 0, ∀i = 1, 2, ..., I =⇒ xTSx ≥ 0

holds when there exists a vector λ ∈ RI+ such that S −
I∑
i=1

λiWi � 0.

Proofs of the theorem and the proposition are beyond the scope of this project, and therefore
they are not discussed here. However, they can be found in many other literatures, for instance,
Kuhn, Wiesemann and Georghiou [27] and Pólik and Terlaky [38]. It is, however, worth noting here
that resulting from the S-lemma the reverse of the proposition 3.4.1 also holds when I = 1. The
following proposition is another subtle case where the approximate S-lemma also becomes exact,
i.e., the reverse statement holds.

Proposition 3.4.2. (Wiesemann, Kuhn and Rustem [49]) For a set Ξ defined by

Ξ = {ξ ∈ Rq | ξTOlξ + ξT ol + ωl ≥ 0, ∀l = 1, 2, ..., L}, (3.36)

where Ol ∈ Sq, Ol � 0, ol ∈ Rq, and ω ∈ R, and for a matrix S ∈ Sq, a vector s ∈ Rq, and σ ∈ R,
if S � 0, the following statements are equivalent.

1. ∃λ ∈ Rl+,

 σ 1

2
sT

1

2
s S

− L∑
l=1

λl

 ωl 1

2
oTl

1

2
ol Ol

 � 0.

2. ξTSξ + ξT s+ σ ≥ 0, ∀ξ ∈ Ξ.
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3.5 Conclusions

In a few words, we discuss deterministic optimisation and optimisation under uncertainty in this
chapter. Deterministic optimisation models, such as deterministic linear programs, usually cannot
deal with the uncertain optimisation problems very well. However, they are still of great importance
because they are efficiently solvable by the standard optimisation solvers. In financial applications,
most optimisation problems are subject to uncertainty because there are typical uncertain factors,
for example, assets’ returns. The ε-arbitrage robust pricing model uses the robust optimisation
approach to model the option pricing problem. The robust optimisation approach is one of the
two competing techniques to deal with uncertainty in the optimisation problems. Therefore, we
sometimes refer to the ε-arbitrage pricing model as a robust pricing model. The robust pricing model
is essentially a robust linear optimisation problem. Its crude structure seems to be intractable
because the uncertainty set associated with the robust pricing model contains infinitely many
elements. Several techniques are then given to transform the robust optimisation problem into its
deterministic equivalent or deterministic approximation. These techniques are the duality in linear
programming, the duality in second-order cone programming, and the (approximate) S-lemma.
For example, we can use the duality in linear programming to find a deterministic linear program
corresponding to the robust linear optimisation problem whose uncertainty set is a polyhedron.
This will be clearer when we investigate the ε-arbitrage robust pricing model in Chapter 4.
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Chapter 4

Valuation of Single-Underlier Options

In this chapter, we focus on the valuation of fundamental European-style options: European op-
tions, Asian options, and lookback options, and fundamental American-style options: American
call options and American put options. We mathematically derive the models for pricing these
options based on the idea of the ε-arbitrage robust pricing model.

We begin by introducing an uncertainty model used for describing returns of the underlying
asset in the future stages. This step is important in formulating the robust optimisation model as
discussed in the previous chapter. We, then, investigate the valuation of a European call option,
which is the simplest type of financial options and is well-understood, followed by the valuation of
the other aforementioned types of financial options.

Note that main ideas in this chapter are accredited to Chen [15]. The resulting linear programs
for pricing options are slightly different from the ones suggested by Chen in his original proposal
though. To the best of our knowledge, this might be a matter of problem formulation. Furthermore,
Chen developed his pricing model and tested the performance of the model by identifying the
similarities between the output prices and the observed market prices. In this work, our interest
is, however, also from the theoretical outlook. To this end, we assume that the asset price follows
the geometric Brownian motion. This assumption is not necessary. The robust pricing model and
the Black-Scholes model, if available, are then compared.

4.1 Uncertainty Model

As already mentioned in Chapter 2, Chen [15] proposed a way to construct a set of boundaries on
both single-period returns (2.16) and cumulative returns (2.21). For simplicity, let rst and r̄st be
the lower bound and the upper bound of the single-period return of the underlying asset at time t,
respectively. Similarly, let Rst and R̄st be the lower bound and the upper bound of the cumulative
return of the underlying asset at time t, respectively. Therefore, the boundaries can be represented
as follows.

Uncertainty Constraints

−R̃st ≤ −Rst , ∀t = 1, 2, ..., T

R̃st ≤ R̄st , ∀t = 1, 2, ..., T

−R̃st ≤ −R̃st−1(1 + rst−1),∀t = 1, 2, ..., T

R̃st ≤ R̃st−1(1 + r̄st−1), ∀t = 1, 2, ..., T

(4.1)
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For the sake of convenience, the values of R̃s0 and RB0 can be, without loss of generality, set to
one. If the returns {R̃st}Tt=1 satisfy the constraints (4.1), we say that {R̃st}Tt=1 lies in the uncertainty
set U .

All of the constraints can be further put together into a single matrix inequality in the form
of G · vec(Ã) ≤ d, which will make it easier to determine a deterministic equivalent of the robust
pricing optimisation problem using Theorem 3.4.1.



−1 0 0 . . . 0
0 −1 0 . . . 0
0 0 −1 . . . 0

...
0 0 0 . . . −1

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0

...
0 0 0 . . . 1

−1 0 0 . . . 0
1 + rs1 −1 0 . . . 0

0 1 + rs2 −1 . . . 0
...

0 0 0 . . . −1

1 0 0 . . . 0
−1− r̄s1 1 0 . . . 0

0 −1− r̄s2 1 . . . 0
...

0 0 0 . . . 1




R̃s1
R̃s2
...

R̃sT

 ≤



−Rs1
−Rs2
−Rs3

...
−RsT

R̄s1
R̄s2
R̄s3
...
R̄sT

−1− rs0
0
0
...
0

1 + r̄s0
0
0
...
0



(4.2)

4.2 ε-Arbitrage Model Simplification

The ε-arbitrage robust pricing model (2.14) can be further simplified by introducing three series of
new variables defined below.

αSt =
xSt
R̃St

(4.3)

αBt =
xBt
RBt

(4.4)

βt =
yt

R̃St
(4.5)

The following steps demonstrate how to transform the constraints in the pricing model (2.14)
into a linear recursive form.

34



Chapter 4. Valuation of Single-Underlier Options

xSt = (1 + r̃St−1)(xSt−1 + yt−1), ∀t = 1, 2, ..., T

=⇒ xSt =
R̃St
R̃St−1

(xSt−1 + yt−1), ∀t = 1, 2, ..., T

=⇒ xSt
R̃St

=
xSt−1

R̃St−1

+
yt−1

R̃St−1

, ∀t = 1, 2, ..., T

=⇒ αSt = αSt−1 + βt−1, ∀t = 1, 2, ..., T

(4.6)

xBt = (1 + rBt−1)(xBt−1 − yt−1), ∀t = 1, 2, ..., T

=⇒ xBt =
RBt
RBt−1

(xBt−1 − yt−1), ∀t = 1, 2, ..., T

=⇒ xBt
RBt

=
xBt−1

RBt−1

− yt−1

RBt−1

, ∀t = 1, 2, ..., T

=⇒ αBt = αBt−1 − βt−1
R̃St−1

RBt−1

∀t = 1, 2, ..., T

(4.7)

Using the equations (4.6) and (4.7), one can achieve the following.

αST = αS0 +
T−1∑
t=0

βt (4.8)

αBT = αB0 −
T−1∑
t=0

βt
R̃St
RBt

(4.9)

WT = xST + xBT = αST R̃
S
T + αBTR

B
T (4.10)

The ε-arbitrage robust pricing model (2.14) can then be reduced to

Simplified ε-Arbitrage Robust Pricing Model

minimiseαS0 ,αB0 ,{βt}
T−1
t=0

maximise{R̃St }Tt=1∈U∣∣∣∣∣P (S̃,K)−

(
αS0 +

T−1∑
t=0

βt

)
R̃ST −

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT

∣∣∣∣∣.
(4.11)
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4.3 ε-Arbitrage Model Derivation for European-Style Options

In this section, we apply the idea of the ε-arbitrage robust pricing model to valuate European-style
options. Three types of options are considered here: European options, Asian options, and fixed
strike lookback options.

4.3.1 European Options

Using the simplified ε-arbitrage robust pricing model (4.11) and substituting the function(
S̃T −K

)+
=
(
S0R̃

S
T −K

)+
(4.12)

for the payoff function P (S̃,K), the model for pricing a European call option is thus given by

European Call Option Pricing: ε-Arbitrage Formulation

minimiseαS0 ,αB0 ,{βt}
T−1
t=0

maximise{R̃St }Tt=1∈U∣∣∣∣∣(S0R̃
S
T −K

)+
−

(
αS0 +

T−1∑
t=0

βt

)
R̃ST −

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT

∣∣∣∣∣.
(4.13)

The pricing model (4.13) can be further transformed into the following optimisation problem
considering the two possibilities of the payoff function and the two possibilities of the absolute value
function. Observe that the resulting pricing model below has a set of constraints which are linear
in the uncertain parameters {R̃St }Tt=1.

minimiseαS0 ,αB0 ,{βt}
T−1
t=0 ,ε

ε

subject to(
S0R̃

S
T −K

)
−

(
αS0 +

T−1∑
t=0

βt

)
R̃ST −

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃ST ≥

K

S0

−
(
S0R̃

S
T −K

)
+

(
αS0 +

T−1∑
t=0

βt

)
R̃ST +

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃ST ≥

K

S0

−

(
αS0 +

T−1∑
t=0

βt

)
R̃ST −

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃ST ≤

K

S0(
αS0 +

T−1∑
t=0

βt

)
R̃ST +

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃ST ≤

K

S0

(4.14)

Theorem 3.4.1 can be used to transform each uncertainty-affected constraint in the European
call option pricing model (4.14) to a set of deterministic linear constraints. To do so, we have to
formulate a matrix inequality for describing the uncertain factors. For example, consider the first
constraint, we can combine a condition ∀{R̃St }Tt=1 ∈ U , which is already written in a form of matrix

inequality (4.2), and R̃ST ≥
K

S0
, and then introduce dual variables appropriately. The result of this

transformation is shown here.
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−1 0 0 . . . 0
0 −1 0 . . . 0
0 0 −1 . . . 0

...
0 0 0 . . . −1

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0

...
0 0 0 . . . 1

−1 0 0 . . . 0
1 + rs1 −1 0 . . . 0

0 1 + rs2 −1 . . . 0
...

0 0 0 . . . −1

1 0 0 . . . 0
−1− r̄s1 1 0 . . . 0

0 −1− r̄s2 1 . . . 0
...

0 0 0 . . . 1

0 0 0 . . . −1




R̃s1
R̃s2
...

R̃sT

 ≤



−Rs1
−Rs2
−Rs3

...
−RsT

R̄s1
R̄s2
R̄s3
...
R̄sT

−1− rs0
0
0
...
0

1 + r̄s0
0
0
...
0

−K/S0



→ −p1,1

→ −p1,2

→ −p1,3
...

→ −p1,T

→ +q1,1

→ +q1,2

→ +q1,3
...

→ +q1,T

→ −m1,1

→ −m1,2

→ −m1,3
...

→ −m1,T

→ +n1,1

→ +n1,2

→ +n1,3
...

→ +n1,T

→ −z1

(4.15)

The variables {p1,i}Ti=1, {q1,i}Ti=1, {m1,i}Ti=1, {n1,i}Ti=1, and z1 in (4.15) are dual variables asso-
ciated with the uncertainty set of the first constraint in the European call option pricing model
(4.14). Repeating the same procedure for the remaining constraints and applying Theorem 3.4.1,
we obtain a deterministic linear programming problem displayed in the following page.

It can be seen that the size of the linear program used for pricing a European call option grows
linearly with the number of time periods T . The same idea can also be used to price European put
options as well since the payoff function of European put option(

K − S̃T
)+

=
(
K − S0R̃

S
T

)+
(4.16)

is not much analytically different from European call option. By replacing P (S̃,K) in the simpli-
fied ε-arbitrage robust pricing model (4.11) with the payoff function of the European put option, a
corresponding deterministic linear program will be of the same size as the linear program used for
pricing a European call option.

In the rest of this section, only call options are considered because the essence of the model
derivation for a put option is the same as that for a call option. By using the same idea, the pricing
model for a particular put option can be readily constructed.
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European Call Option Pricing: Linear Equivalent Formulation

minimise
αS0 ,α

B
0 ,{βt}

T−1
t=0 ,ε,{pc,t,qc,t,mc,t,nc,t,zc}

c=4,t=T
c=1,t=1

ε

subject to

case I(
T∑
t=1

p1,tR
S
t

)
+

(
T∑
t=1

q1,tR̄
S
t

)
+
(
1 + rS0

)
m1,1 +

(
1 + r̄S0

)
n1,1 +

z1K

S0
≤ ε+K + αB0 R

B
T − β0R

B
T

p1,t + q1,t +m1,t + n1,t −
(
1 + rSt

)
m1,t+1 −

(
1 + r̄St

)
n1,t+1 = βt

RBT
RBt

, ∀t = 1, 2, ..., T − 1

p1,T + q1,T +m1,T + n1,T + z1 = S0 − αS0 −

(
T−1∑
t=0

βt

)
p1,t ≤ 0, q1,t ≥ 0, m1,t ≤ 0, n1,t ≥ 0, ∀t = 1, 2, ..., T, z1 ≤ 0

case II(
T∑
t=1

p2,tR
S
t

)
+

(
T∑
t=1

q2,tR̄
S
t

)
+
(
1 + rS0

)
m2,1 +

(
1 + r̄S0

)
n2,1 +

z2K

S0
≤ ε−K − αB0 RBT + β0R

B
T

p2,t + q2,t +m2,t + n2,t −
(
1 + rSt

)
m2,t+1 −

(
1 + r̄St

)
n2,t+1 = −βt

RBT
RBt

, ∀t = 1, 2, ..., T − 1

p2,T + q2,T +m2,T + n2,T + z2 = −S0 + αS0 +

(
T−1∑
t=0

βt

)
p2,t ≤ 0, q2,t ≥ 0, m2,t ≤ 0, n2,t ≥ 0, ∀t = 1, 2, ..., T, z2 ≤ 0

case III(
T∑
t=1

p3,tR
S
t

)
+

(
T∑
t=1

q3,tR̄
S
t

)
+
(
1 + rS0

)
m3,1 +

(
1 + r̄S0

)
n3,1 +

z3K

S0
≤ ε+ αB0 R

B
T − β0R

B
T

p3,t + q3,t +m3,t + n3,t −
(
1 + rSt

)
m3,t+1 −

(
1 + r̄St

)
n3,t+1 = βt

RBT
RBt

, ∀t = 1, 2, ..., T − 1

p3,T + q3,T +m3,T + n3,T + z3 = −αS0 −

(
T−1∑
t=0

βt

)
p3,t ≤ 0, q3,t ≥ 0, m3,t ≤ 0, n3,t ≥ 0, ∀t = 1, 2, ..., T, z3 ≥ 0

case IV(
T∑
t=1

p4,tR
S
t

)
+

(
T∑
t=1

q4,tR̄
S
t

)
+
(
1 + rS0

)
m4,1 +

(
1 + r̄S0

)
n4,1 +

z4K

S0
≤ ε− αB0 RBT + β0R

B
T

p4,t + q4,t +m4,t + n4,t −
(
1 + rSt

)
m4,t+1 −

(
1 + r̄St

)
n4,t+1 = −βt

RBT
RBt

, ∀t = 1, 2, ..., T − 1

p4,T + q4,T +m4,T + n4,T + z4 = αS0 +

(
T−1∑
t=0

βt

)
p4,t ≤ 0, q4,t ≥ 0, m4,t ≤ 0, n4,t ≥ 0, ∀t = 1, 2, ..., T, z4 ≥ 0
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4.3.2 Asian Options

In this part, we consider an Asian call option or an average call option which is defined in terms of
arithmetic average. One can derive a pricing model for arithmetic Asian call options by substituting
the payoff function

(
1

T

T∑
t=1

S̃t −K

)+

=

(
S0

T

T∑
t=1

R̃St −K

)+

(4.17)

for P (S̃,K) in the simplified ε-arbitrage robust pricing model (4.11).

Asian Call Option Pricing: ε-Arbitrage Formulation

minimiseαS0 ,αB0 ,{βt}
T−1
t=0

maximise{R̃St }Tt=1∈U∣∣∣∣∣∣
(
S0

T

T∑
t=1

R̃St −K

)+

−

(
αS0 +

T−1∑
t=0

βt

)
R̃ST −

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT

∣∣∣∣∣∣
(4.18)

Again by considering the two possibilities of the payoff function and the two possibilities of the
absolute value function, one can obtain a pricing model below whose constraints are linear in the
uncertain parameters {R̃St }Tt=1. Its linear deterministic equivalent is shown in the next page.

minimiseαS0 ,αB0 ,{βt}
T−1
t=0 ,ε

ε

subject to(
S0

T

T∑
t=1

R̃St −K

)
−

(
αS0 +

T−1∑
t=0

βt

)
R̃ST −

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε,

∀{R̃St }Tt=1 ∈ U,

T∑
t=1

R̃St

T
≥ K

S0

−

(
S0

T

T∑
t=1

R̃St −K

)
+

(
αS0 +

T−1∑
t=0

βt

)
R̃ST +

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε,

∀{R̃St }Tt=1 ∈ U,

T∑
t=1

R̃St

T
≥ K

S0

−

(
αS0 +

T−1∑
t=0

βt

)
R̃ST −

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε,

∀{R̃St }Tt=1 ∈ U,

T∑
t=1

R̃St

T
≤ K

S0(
αS0 +

T−1∑
t=0

βt

)
R̃ST +

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε,

∀{R̃St }Tt=1 ∈ U,

T∑
t=1

R̃St

T
≤ K

S0

(4.19)
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Asian Call Option Pricing: Linear Equivalent Formulation

minimise
αS0 ,α

B
0 ,{βt}

T−1
t=0 ,ε,{pc,t,qc,t,mc,t,nc,t,zc}

c=4,t=T
c=1,t=1

ε

subject to

case I(
T∑
t=1

p1,tR
S
t

)
+

(
T∑
t=1

q1,tR̄
S
t

)
+
(
1 + rS0

)
m1,1 +

(
1 + r̄S0

)
n1,1 +

z1K

S0
≤ ε+K + αB0 R

B
T − β0R

B
T

p1,t + q1,t +m1,t + n1,t −
(
1 + rSt

)
m1,t+1 −

(
1 + r̄St

)
n1,t+1 +

z1

T
= βt

RBT
RBt

+
S0

T
, ∀t = 1, 2, ..., T − 1

p1,T + q1,T +m1,T + n1,T +
z1

T
=
S0

T
− αS0 −

(
T−1∑
t=0

βt

)
p1,t ≤ 0, q1,t ≥ 0, m1,t ≤ 0, n1,t ≥ 0, ∀t = 1, 2, ..., T, z1 ≤ 0

case II(
T∑
t=1

p2,tR
S
t

)
+

(
T∑
t=1

q2,tR̄
S
t

)
+
(
1 + rS0

)
m2,1 +

(
1 + r̄S0

)
n2,1 +

z2K

S0
≤ ε−K − αB0 RBT + β0R

B
T

p2,t + q2,t +m2,t + n2,t −
(
1 + rSt

)
m2,t+1 −

(
1 + r̄St

)
n2,t+1 +

z2

T
= −βt

RBT
RBt
− S0

T
, ∀t = 1, 2, ..., T − 1

p2,T + q2,T +m2,T + n2,T +
z2

T
= −S0

T
+ αS0 +

(
T−1∑
t=0

βt

)
p2,t ≤ 0, q2,t ≥ 0, m2,t ≤ 0, n2,t ≥ 0, ∀t = 1, 2, ..., T, z2 ≤ 0

case III(
T∑
t=1

p3,tR
S
t

)
+

(
T∑
t=1

q3,tR̄
S
t

)
+
(
1 + rS0

)
m3,1 +

(
1 + r̄S0

)
n3,1 +

z3K

S0
≤ ε+ αB0 R

B
T − β0R

B
T

p3,t + q3,t +m3,t + n3,t −
(
1 + rSt

)
m3,t+1 −

(
1 + r̄St

)
n3,t+1 +

z3

T
= βt

RBT
RBt

, ∀t = 1, 2, ..., T − 1

p3,T + q3,T +m3,T + n3,T +
z3

T
= −αS0 −

(
T−1∑
t=0

βt

)
p3,t ≤ 0, q3,t ≥ 0, m3,t ≤ 0, n3,t ≥ 0, ∀t = 1, 2, ..., T, z3 ≥ 0

case IV(
T∑
t=1

p4,tR
S
t

)
+

(
T∑
t=1

q4,tR̄
S
t

)
+
(
1 + rS0

)
m4,1 +

(
1 + r̄S0

)
n4,1 +

z4K

S0
≤ ε− αB0 RBT + β0R

B
T

p4,t + q4,t +m4,t + n4,t −
(
1 + rSt

)
m4,t+1 −

(
1 + r̄St

)
n4,t+1 +

z4

T
= −βt

RBT
RBt

, ∀t = 1, 2, ..., T − 1

p4,T + q4,T +m4,T + n4,T +
z4

T
= αS0 +

(
T−1∑
t=0

βt

)
p4,t ≤ 0, q4,t ≥ 0, m4,t ≤ 0, n4,t ≥ 0, ∀t = 1, 2, ..., T, z4 ≥ 0
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4.3.3 Lookback Options

Among a variety of lookback call options, we consider in this part fixed strike lookback call options.
A fixed strike lookback call option is similar to a European call option in the sense that it has a fixed
strike price K; however, rather than being dependent on the difference between the asset price at
expiry and the strike price, payoff of a lookback call option is made based on the difference between
the optimal asset price achieved during the option’s lifetime and the strike price. Mathematically
speaking, payoff of a fixed strike lookback call option is defined as

(Smax −K)+ =
(
S0R̃

S
max −K

)+
, (4.20)

where R̃Smax = maxt=1,2,...,T R̃
S
t .

Substituting this payoff function for P (S̃,K) in the simplified ε-arbitrage robust pricing model
(4.11), we obtain a robust pricing model for fixed strike lookback call options.

Fixed Strike Lookback Call Option Pricing: ε-Arbitrage Formulation

minimiseαS0 ,αB0 ,{βt}
T−1
t=0

maximise{R̃St }Tt=1∈U∣∣∣∣∣(S0R̃
S
max −K

)+
−

(
αS0 +

T−1∑
t=0

βt

)
R̃ST −

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT

∣∣∣∣∣
(4.21)

The following pricing model (4.22) is equivalent to the model (4.21). The equivalence can be
observed by enumerating all possible values of R̃Smax and considering the possibilities of the payoff
function and the absolute value function.

By applying Theorem 3.4.1, the robust pricing model (4.22) can be further transformed into
a single deterministic linear programming problem. The size of the resulting linear program still
grows polynomially with the number of time periods T , which highlights the tractability of the
ε-arbitrage robust pricing approach.

Since the linear deterministic equivalent has a fairly large number of constraints and seems a
little bit cumbersome, we divide a set of constraints into 4T subsets. Each subset is denoted by
t.I, t.II, t.III, or t.IV, where t ∈ {1, 2, ..., T}. The number t indicates that the subset is associated
with the case where R̃Smax = R̃St . Moreover, it is seen from the pricing model (4.22) that for each
value of t, there are four associated constraints. They are denoted by t.I, t.II, t.III, and t.IV in the
linear equivalent formulation.
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minimiseαS0 ,αB0 ,{βt}
T−1
t=0 ,ε

ε

subject to

If R̃Smax = R̃S1 , i.e., R̃S1 ≥ R̃St , ∀t ∈ {1, 2, ..., T} :(
S0R̃

S
1 −K

)
−

(
αS0 +

T−1∑
t=0

βt

)
R̃ST −

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃S1 ≥

K

S0

−
(
S0R̃

S
1 −K

)
+

(
αS0 +

T−1∑
t=0

βt

)
R̃ST +

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃S1 ≥

K

S0

−

(
αS0 +

T−1∑
t=0

βt

)
R̃ST −

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃S1 ≤

K

S0(
αS0 +

T−1∑
t=0

βt

)
R̃ST +

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃S1 ≤

K

S0

If R̃Smax = R̃S2 , i.e., R̃S2 ≥ R̃St , ∀t ∈ {1, 2, ..., T} :(
S0R̃

S
2 −K

)
−

(
αS0 +

T−1∑
t=0

βt

)
R̃ST −

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃S2 ≥

K

S0

−
(
S0R̃

S
2 −K

)
+

(
αS0 +

T−1∑
t=0

βt

)
R̃ST +

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃S2 ≥

K

S0

−

(
αS0 +

T−1∑
t=0

βt

)
R̃ST −

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃S2 ≤

K

S0(
αS0 +

T−1∑
t=0

βt

)
R̃ST +

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃S2 ≤

K

S0

...

If R̃Smax = R̃ST , i.e., R̃ST ≥ R̃St , ∀t ∈ {1, 2, ..., T} :(
S0R̃

S
T −K

)
−

(
αS0 +

T−1∑
t=0

βt

)
R̃ST −

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃ST ≥

K

S0

−
(
S0R̃

S
T −K

)
+

(
αS0 +

T−1∑
t=0

βt

)
R̃ST +

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃ST ≥

K

S0

−

(
αS0 +

T−1∑
t=0

βt

)
R̃ST −

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃ST ≤

K

S0(
αS0 +

T−1∑
t=0

βt

)
R̃ST +

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃ST ≤

K

S0

(4.22)
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Fixed Strike Lookback Call Option Pricing: Linear Equivalent Formulation

minimise
αS0 ,α

B
0 ,{βt}

T−1
t=0 ,ε,{pt,c,i,qt,c,i,mt,c,i,nt,c,i,zt,c,i}

t=T,c=4,i=T
t=1,c=1,i=1

ε

subject to

(If R̃Smax = R̃St where t < T )

case t.I(
T∑
i=1

pt,1,iR
S
i

)
+

(
T∑
i=1

qt,1,iR̄
S
i

)
+
(
1 + rS0

)
mt,1,1 +

(
1 + r̄S0

)
nt,1,1 +

zt,1,tK

S0

≤ ε+K + αB0 R
B
T − β0R

B
T

pt,1,i + qt,1,i +mt,1,i + nt,1,i −
(
1 + rSi

)
mt,1,i+1 −

(
1 + r̄Si

)
nt,1,i+1 − zt,1,i = βi

RBT
RBi

, ∀i 6∈ {t, T}

pt,1,t + qt,1,t +mt,1,t + nt,1,t −
(
1 + rSt

)
mt,1,t+1 −

(
1 + r̄St

)
nt,1,t+1 +

(
T∑
i=1

zt,1,i

)
= βt

RBT
RBt

+ S0,

pt,1,T + qt,1,T +mt,1,T + nt,1,T − zt,1,T = −αS0 −

(
T−1∑
t=0

βt

)
pt,1,i ≤ 0, qt,1,i ≥ 0, mt,1,i ≤ 0, nt,1,i ≥ 0, zt,1,i ≤ 0 ∀t = 1, 2, ..., T − 1, ∀i = 1, 2, ..., T

case t.II(
T∑
i=1

pt,2,iR
S
i

)
+

(
T∑
i=1

qt,2,iR̄
S
i

)
+
(
1 + rS0

)
mt,2,1 +

(
1 + r̄S0

)
nt,2,1 +

zt,2,tK

S0

≤ ε−K − αB0 RBT + β0R
B
T

pt,2,i + qt,2,i +mt,2,i + nt,2,i −
(
1 + rSi

)
mt,2,i+1 −

(
1 + r̄Si

)
nt,2,i+1 − zt,2,i = −βi

RBT
RBi

, ∀i 6∈ {t, T}

pt,2,t + qt,2,t +mt,2,t + nt,2,t −
(
1 + rSt

)
mt,2,t+1 −

(
1 + r̄St

)
nt,2,t+1 +

(
T∑
i=1

zt,2,i

)
= −βt

RBT
RBt
− S0,

pt,2,T + qt,2,T +mt,2,T + nt,2,T − zt,2,T = αS0 +

(
T−1∑
t=0

βt

)
pt,2,i ≤ 0, qt,2,i ≥ 0, mt,2,i ≤ 0, nt,2,i ≥ 0, zt,2,i ≤ 0 ∀t = 1, 2, ..., T − 1, ∀i = 1, 2, ..., T

case t.III(
T∑
i=1

pt,3,iR
S
i

)
+

(
T∑
i=1

qt,3,iR̄
S
i

)
+
(
1 + rS0

)
mt,3,1 +

(
1 + r̄S0

)
nt,3,1 +

zt,3,tK

S0

≤ ε+ αB0 R
B
T − β0R

B
T

pt,3,i + qt,3,i +mt,3,i + nt,3,i −
(
1 + rSi

)
mt,3,i+1 −

(
1 + r̄Si

)
nt,3,i+1 + zt,3,i = βi

RBT
RBi

, ∀i 6∈ {t, T}

pt,3,t + qt,3,t +mt,3,t + nt,3,t −
(
1 + rSt

)
mt,3,t+1 −

(
1 + r̄St

)
nt,3,t+1 −

(
T∑
i=1

zt,3,i

)
+ 2zt,3,t = βt

RBT
RBt

,

pt,3,T + qt,3,T +mt,3,T + nt,3,T + zt,3,T = −αS0 −

(
T−1∑
t=0

βt

)
pt,3,i ≤ 0, qt,3,i ≥ 0, mt,3,i ≤ 0, nt,3,i ≥ 0, zt,3,i ≥ 0 ∀t = 1, 2, ..., T − 1, ∀i = 1, 2, ..., T
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case t.IV(
T∑
i=1

pt,4,iR
S
i

)
+

(
T∑
i=1

qt,4,iR̄
S
i

)
+
(
1 + rS0

)
mt,4,1 +

(
1 + r̄S0

)
nt,4,1 +

zt,4,tK

S0

≤ ε− αB0 RBT + β0R
B
T

pt,4,i + qt,4,i +mt,4,i + nt,4,i −
(
1 + rSi

)
mt,4,i+1 −

(
1 + r̄Si

)
nt,4,i+1 + zt,4,i = −βi

RBT
RBi

, ∀i 6∈ {t, T}

pt,4,t + qt,4,t +mt,4,t + nt,4,t −
(
1 + rSt

)
mt,4,t+1 −

(
1 + r̄St

)
nt,4,t+1 −

(
T∑
i=1

zt,4,i

)
+ 2zt,4,t = −βt

RBT
RBt

,

pt,4,T + qt,4,T +mt,4,T + nt,4,T + zt,4,T = αS0 +

(
T−1∑
t=0

βt

)
pt,4,i ≤ 0, qt,4,i ≥ 0, mt,4,i ≤ 0, nt,4,i ≥ 0, zt,4,i ≥ 0 ∀t = 1, 2, ..., T − 1, ∀i = 1, 2, ..., T

(If R̃Smax = R̃ST )

case T.I(
T∑
i=1

pT,1,iR
S
i

)
+

(
T∑
i=1

qT,1,iR̄
S
i

)
+
(
1 + rS0

)
mT,1,1 +

(
1 + r̄S0

)
nT,1,1 +

zT,1,TK

S0

≤ ε+K + αB0 R
B
T − β0R

B
T

pT,1,i + qT,1,i +mT,1,i + nT,1,i −
(
1 + rSi

)
mT,1,i+1 −

(
1 + r̄Si

)
nT,1,i+1 − zT,1,i = βi

RBT
RBi

,

∀i = 1, 2, ..., T − 1

pT,1,T + qT,1,T +mT,1,T + nT,1,T +

(
T∑
i=1

zT,1,i

)
= S0 − αS0 −

(
T−1∑
t=0

βt

)
pT,1,i ≤ 0, qT,1,i ≥ 0, mT,1,i ≤ 0, nT,1,i ≥ 0, zT,1,i ≤ 0 ∀i = 1, 2, ..., T

case T.II(
T∑
i=1

pT,2,iR
S
i

)
+

(
T∑
i=1

qT,2,iR̄
S
i

)
+
(
1 + rS0

)
mT,2,1 +

(
1 + r̄S0

)
nT,2,1 +

zT,2,TK

S0

≤ ε−K − αB0 RBT + β0R
B
T

pT,2,i + qT,2,i +mT,2,i + nT,2,i −
(
1 + rSi

)
mT,2,i+1 −

(
1 + r̄Si

)
nT,2,i+1 − zT,2,i = −βi

RBT
RBi

,

∀i = 1, 2, ..., T − 1

pT,2,T + qT,2,T +mT,2,T + nT,2,T +

(
T∑
i=1

zT,2,i

)
= −S0 + αS0 +

(
T−1∑
t=0

βt

)
pT,2,i ≤ 0, qT,2,i ≥ 0, mT,2,i ≤ 0, nT,2,i ≥ 0, zT,2,i ≤ 0 ∀i = 1, 2, ..., T
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case T.III(
T∑
i=1

pT,3,iR
S
i

)
+

(
T∑
i=1

qT,3,iR̄
S
i

)
+
(
1 + rS0

)
mT,3,1 +

(
1 + r̄S0

)
nT,3,1 +

zT,3,TK

S0

≤ ε+ αB0 R
B
T − β0R

B
T

pT,3,i + qT,3,i +mT,3,i + nT,3,i −
(
1 + rSi

)
mT,3,i+1 −

(
1 + r̄Si

)
nT,3,i+1 + zT,3,i = βi

RBT
RBi

,

∀i = 1, 2, ..., T − 1

pT,3,T + qT,3,T +mT,3,T + nT,1,T −

(
T−1∑
i=1

zT,3,i

)
+ zT,3,T = −αS0 −

(
T−1∑
t=0

βt

)
pT,3,i ≤ 0, qT,3,i ≥ 0, mT,3,i ≤ 0, nT,3,i ≥ 0, zT,3,i ≥ 0 ∀i = 1, 2, ..., T

case T.IV(
T∑
i=1

pT,4,iR
S
i

)
+

(
T∑
i=1

qT,4,iR̄
S
i

)
+
(
1 + rS0

)
mT,4,1 +

(
1 + r̄S0

)
nT,4,1 +

zT,4,TK

S0

≤ ε− αB0 RBT + β0R
B
T

pT,4,i + qT,4,i +mT,4,i + nT,4,i −
(
1 + rSi

)
mT,4,i+1 −

(
1 + r̄Si

)
nT,4,i+1 + zT,4,i = −βi

RBT
RBi

,

∀i = 1, 2, ..., T − 1

pT,4,T + qT,4,T +mT,4,T + nT,4,T −

(
T−1∑
i=1

zT,4,i

)
+ zT,4,T = αS0 +

(
T−1∑
t=0

βt

)
pT,4,i ≤ 0, qT,4,i ≥ 0, mT,4,i ≤ 0, nT,4,i ≥ 0, zT,4,i ≥ 0 ∀i = 1, 2, ..., T

It is evident that by using the same procedure a deterministic linear program corresponding
to the fixed strike lookback put option pricing problem can be constructed. Moreover, one can
also verify that the ε-arbitrage robust pricing model is capable of pricing floating strike lookback
options as well. However, there is a study that establishes a put-call parity relating the price of the
floating strike lookback put (call) option to the price of the fixed strike lookback call (put) option.
It therefore is not entirely necessary to develop another model for pricing floating strike lookback
options. The result of this study can be found in Hull [26]. For those who are keen on studying
mathematical details of this study, we suggest reading from Wong and Kwok [50].

4.4 ε-Arbitrage Model Derivation for American-Style Options

Having discussed the employment of the ε-arbitrage robust pricing model for various European-
style options in the previous section, in this section we shift our interest to standard American
options. American option is typically considered to be more complicated than the previously
discussed options because of the flexibility its holder has in exercising his or her right specified in
the option contract. Unlike the European-style options, we investigate how to price both American
call option and American put option. First, we discuss the American call option and explain why
there is no need for us to develop another pricing model for American call options assuming that
the underlying asset does not pay dividend. However, the same argument cannot be applied to
American put options, and that makes us derive a robust pricing model for American put options.
Again, the content of this section still heavily relies on the work of Chen [15].
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4.4.1 American Call Options

If we assume that the underlying asset of the option pays no dividend, it is claimed that the
American call option and the corresponding European call option should be equally valued because
it would be optimal to keep the American call option until the expiration date. Consequently, one
can use the developed European call option pricing model to find a fair price of a given American
call option.

4.4.2 American Put Options

American put option, however, does not always give optimal payoff to its holder, if he or she insists
on keeping the option until the very end. American put option, therefore, deserves further analysis.
The simplified ε-arbitrage robust pricing model (4.11) cannot be used directly in this case since
it is not reasonable to measure the arbitrage error based on the wealth level of the portfolio at
the expiration date of the option as the holder of the American put option himself can decide
when to exercise the option. Therefore, in order to develop an optimisation model representing the
American put option pricing problem, all possibilities of the exercise time need to be taken into
account. Below, the variable τ is used to indicate the exercise time; it can adopt any value from
{1, 2, ..., T}, where as usual T denotes the expiration date of the option.

minimiseαS0 ,αB0 ,{βt}
T−1
t=0

maximise{R̃St }Tt=1∈U
maximiseτ=1,2,...,T∣∣∣∣(K − S0R̃

S
τ

)+
−Wτ

∣∣∣∣,
(4.23)

where Wτ is the wealth level of the portfolio at time τ .

Using the equation Wτ = xSτ + xBτ = αSτ R̃
S
τ + αBτ R

B
τ together with the recurrent relations (4.6)

and (4.7), the above model can be reformulated as

American Put Option Pricing: ε-Arbitrage Formulation

minimiseαS0 ,αB0 ,{βt}
T−1
t=0

maximise{R̃St }Tt=1∈U
maximiseτ=1,2,...,T∣∣∣∣∣(K − S0R̃

S
τ

)+
−

(
αS0 +

τ−1∑
t=0

βt

)
R̃Sτ −

(
αB0 −

τ−1∑
t=0

βt
R̃St
RBt

)
RBτ

∣∣∣∣∣.
(4.24)

The intuition of the American put option pricing model (4.24) is that the arbitrage error needs
to be optimised. In this setting, the optimal portfolio is expected to match well the payoff of the
option with respect to any exercise time τ . By introducing a new decision variable ε to denote the
arbitrage error, the model can be again reformulated in such a way that the uncertain parameters
{R̃st}Tt=1 are excluded from the objective function. The resulting model is given by
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minimiseαS0 ,αB0 ,{βt}
T−1
t=0 ,ε

ε

subject to

For every τ ∈ {1, 2, ..., T} :(
K − S0R̃

S
τ

)
−

(
αS0 +

τ−1∑
t=0

βt

)
R̃Sτ −

(
αB0 −

τ−1∑
t=0

βt
R̃St
RBt

)
RBτ ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃Sτ ≤

K

S0

−
(
K − S0R̃

S
τ

)
+

(
αS0 +

τ−1∑
t=0

βt

)
R̃Sτ +

(
αB0 −

τ−1∑
t=0

βt
R̃St
RBt

)
RBτ ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃Sτ ≤

K

S0

−

(
αS0 +

τ−1∑
t=0

βt

)
R̃Sτ −

(
αB0 −

τ−1∑
t=0

βt
R̃St
RBt

)
RBτ ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃Sτ ≥

K

S0(
αS0 +

τ−1∑
t=0

βt

)
R̃Sτ +

(
αB0 −

τ−1∑
t=0

βt
R̃St
RBt

)
RBτ ≤ ε, ∀{R̃St }Tt=1 ∈ U, R̃Sτ ≥

K

S0

(4.25)

Similarly to the lookback option pricing model, the size of its linear deterministic equivalent
grows quadratically with the number of time periods T . To avoid confusion, we divide a set of
linear constraints into 4T subsets denoted by τ .I, τ .II, τ .III, and τ .IV, where τ ∈ {1, 2, ..., T} is the
exercise time.

The linear equivalent formulation for pricing American put options is shown in the next page.
We note here that the constraints for the case τ = T are slightly different from the other cases.
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American Put Option Pricing: Linear Equivalent Formulation

minimise
αS0 ,α

B
0 ,{βt}

T−1
t=0 ,ε,{pτ,c,i,qτ,c,i,mτ,c,i,nτ,c,i,zτ,c}

τ=T,c=4,i=T
τ=1,c=1,i=1

ε

subject to

case τ .I(
T∑
i=1

pτ,1,iR
S
i

)
+

(
T∑
i=1

qτ,1,iR̄
S
i

)
+
(
1 + rS0

)
mτ,1,1 +

(
1 + r̄S0

)
nτ,1,1 +

zτ,1K

S0

≤ ε−K + αB0 R
B
τ − β0R

B
τ

pτ,1,i + qτ,1,i +mτ,1,i + nτ,1,i −
(
1 + rSi

)
mτ,1,i+1 −

(
1 + r̄Si

)
nτ,1,i+1 = βi

RBτ
RBi

, ∀i, i ≤ τ − 1

pτ,1,τ + qτ,1,τ +mτ,1,τ + nτ,1,τ −
(
1 + rSτ

)
mτ,1,τ+1 −

(
1 + r̄Sτ

)
nτ,1,τ+1 + zτ,1 = −S0 − αS0 −

(
T−1∑
t=0

βt

)
pτ,1,i + qτ,1,i +mτ,1,i + nτ,1,i −

(
1 + rSi

)
mτ,1,i+1 −

(
1 + r̄Si

)
nτ,1,i+1 = 0, ∀i, τ + 1 ≤ i ≤ T − 1

pτ,1,T + qτ,1,T +mτ,1,T + nτ,1,T = 0

pτ,1,i ≤ 0, qτ,1,i ≥ 0, mτ,1,i ≤ 0, nτ,1,i ≥ 0, zτ,1 ≥ 0 ∀τ, i ∈ {1, 2, ..., T}

case τ .II(
T∑
i=1

pτ,2,iR
S
i

)
+

(
T∑
i=1

qτ,2,iR̄
S
i

)
+
(
1 + rS0

)
mτ,2,1 +

(
1 + r̄S0

)
nτ,2,1 +

zτ,2K

S0

≤ ε+K − αB0 RBτ + β0R
B
τ

pτ,2,i + qτ,2,i +mτ,2,i + nτ,2,i −
(
1 + rSi

)
mτ,2,i+1 −

(
1 + r̄Si

)
nτ,2,i+1 = −βiR

B
τ

RBi
, ∀i, i ≤ τ − 1

pτ,2,τ + qτ,2,τ +mτ,2,τ + nτ,2,τ −
(
1 + rSτ

)
mτ,2,τ+1 −

(
1 + r̄Sτ

)
nτ,2,τ+1 + zτ,2 = S0 + αS0 +

(
T−1∑
t=0

βt

)
pτ,2,i + qτ,2,i +mτ,2,i + nτ,2,i −

(
1 + rSi

)
mτ,2,i+1 −

(
1 + r̄Si

)
nτ,2,i+1 = 0, ∀i, τ + 1 ≤ i ≤ T − 1

pτ,2,T + qτ,2,T +mτ,2,T + nτ,2,T = 0

pτ,2,i ≤ 0, qτ,2,i ≥ 0, mτ,2,i ≤ 0, nτ,2,i ≥ 0, zτ,2 ≥ 0 ∀τ, i ∈ {1, 2, ..., T}

case τ .III(
T∑
i=1

pτ,3,iR
S
i

)
+

(
T∑
i=1

qτ,3,iR̄
S
i

)
+
(
1 + rS0

)
mτ,3,1 +

(
1 + r̄S0

)
nτ,3,1 +

zτ,3K

S0

≤ ε+ αB0 R
B
τ − β0R

B
τ

pτ,3,i + qτ,3,i +mτ,3,i + nτ,3,i −
(
1 + rSi

)
mτ,3,i+1 −

(
1 + r̄Si

)
nτ,3,i+1 = βi

RBτ
RBi

, ∀i, i ≤ τ − 1

pτ,3,τ + qτ,3,τ +mτ,3,τ + nτ,3,τ −
(
1 + rSτ

)
mτ,3,τ+1 −

(
1 + r̄Sτ

)
nτ,3,τ+1 + zτ,3 = −αS0 −

(
T−1∑
t=0

βt

)
pτ,3,i + qτ,3,i +mτ,3,i + nτ,3,i −

(
1 + rSi

)
mτ,3,i+1 −

(
1 + r̄Si

)
nτ,3,i+1 = 0, ∀i, τ + 1 ≤ i ≤ T − 1

pτ,3,T + qτ,3,T +mτ,3,T + nτ,3,T = 0

pτ,3,i ≤ 0, qτ,3,i ≥ 0, mτ,3,i ≤ 0, nτ,3,i ≥ 0, zτ,3 ≤ 0 ∀τ, i ∈ {1, 2, ..., T}
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case τ .IV(
T∑
i=1

pτ,4,iR
S
i

)
+

(
T∑
i=1

qτ,4,iR̄
S
i

)
+
(
1 + rS0

)
mτ,4,1 +

(
1 + r̄S0

)
nτ,4,1 +

zτ,4K

S0

≤ ε− αB0 RBτ + β0R
B
τ

pτ,4,i + qτ,4,i +mτ,4,i + nτ,4,i −
(
1 + rSi

)
mτ,4,i+1 −

(
1 + r̄Si

)
nτ,4,i+1 = −βiR

B
τ

RBi
, ∀i, i ≤ τ − 1

pτ,4,τ + qτ,4,τ +mτ,4,τ + nτ,4,τ −
(
1 + rSτ

)
mτ,4,τ+1 −

(
1 + r̄Sτ

)
nτ,4,τ+1 + zτ,4 = αS0 +

(
T−1∑
t=0

βt

)
pτ,4,i + qτ,4,i +mτ,4,i + nτ,4,i −

(
1 + rSi

)
mτ,4,i+1 −

(
1 + r̄Si

)
nτ,4,i+1 = 0, ∀i, τ + 1 ≤ i ≤ T − 1

pτ,4,T + qτ,4,T +mτ,4,T + nτ,4,T = 0

pτ,4,i ≤ 0, qτ,4,i ≥ 0, mτ,4,i ≤ 0, nτ,4,i ≥ 0, zτ,4 ≤ 0 ∀τ, i ∈ {1, 2, ..., T}

4.5 Conclusions

On the whole, we use the conceptual idea of the ε-arbitrage robust pricing model to develop different
pricing models for different options. Both of the European-style options and the American-style
options are considered in this chapter. The pricing model for a particular option is a robust linear
program. We then use Theorem 3.4.1, which comes a result of the duality in linear programming,
to determine a corresponding uncertainty-free linear program. We observe one nice property of
the ε-arbitrage robust pricing model, that is, the arising deterministic linear programs scale in a
polynomial (linear or quadratic) way with the number of discretisation time steps.
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Chapter 5

The New Robust Pricing Model

During our work, we identified two shortcomings of the ε-arbitrage robust pricing model which
include:

• There is no guarantee that the output price will be non-negative. We encounter some certain
cases that the ε-arbitrage robust pricing model outputs negative price while the payoff of the
option is strictly non-negative. This should not be allowed in any circumstances since the
negativity of the option price would result in arbitrage opportunity.

• The ε-arbitrage robust pricing model, from our point of view, is excessively complicated
because, in order to achieve a robust linear optimisation problem, Chen [15] introduced new
variables: {αSt }Tt=0, {αBt }Tt=0, and {βt}T−1

t=0 . This step seems unnecessary to us. Furthermore,
defining pricing models based on these artificial variables seems to impede further analysis
on the replicating portfolio.

The shortcomings of the ε-arbitrage robust pricing model encourage us to figure out a different
way to formulate a pricing model using robust optimisation. The main purpose of this chapter is
to propose a new robust pricing model. Then, we introduce decision rules to our pricing model
expecting that they are able to improve the accuracy of the generated optimal solutions.

In the ε-arbitrage robust pricing model, the proposed price for a given option is the initial
wealth level (W0) of the portfolio which optimally matches the option payoff. To address the first
shortcoming, we can just simply add a constraint

W0 = xS0 + xB0 = αS0 + αB0 ≥ 0 (5.1)

to the simplified ε-arbitrage pricing model (4.11) to ascertain the non-negativity of the output price.
The amended model is, thus, given by

minimiseαS0 ,αB0 ,{βt}
T−1
t=0

maximise{R̃St }Tt=1∈U∣∣∣∣∣P (S̃,K)−

(
αS0 +

T−1∑
t=0

βt

)
R̃ST −

(
αB0 −

T−1∑
t=0

βt
R̃St
RBt

)
RBT

∣∣∣∣∣
subject to

αS0 + αB0 ≥ 0.

Regarding the second shortcoming, we reformulate the simplified ε-arbitrage pricing model
(4.11) in a way that enables the modellers to develop more sophisticated understanding of the

decision variables. Transforming the model by replacing R̃St with
S̃t
S0

and by replacing RBt with
Bt
B0

where S̃t and Bt are the price of the underlying asset of the option and the price of the risk-free
asset at time t, respectively, we yield the following optimisation problem.
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minimiseαS0 ,αB0 ,{βt}
T−1
t=0

maximise{R̃St }Tt=1∈U∣∣∣∣∣∣∣∣∣P (S̃,K)−


αS0 +

T−1∑
t=0

βt

S0

 S̃T −

(
αB0 − β0

B0
−
T−1∑
t=1

βtS̃t
S0Bt

)
BT

∣∣∣∣∣∣∣∣∣
subject to

αS0 + αB0 ≥ 0

(5.2)

Moreover, we introduce the following set of new variables. This is to construct a new robust
pricing model whose variables are more meaningful.

nS0 =
αS0 + β0

S0

nB0 =
αB0 − β0

B0

ut =
βt
S0
, ∀t = 1, 2, ..., T − 1

(5.3)

Hence, we can rewrite the new pricing model as

Amended ε-Arbitrage Robust Pricing Model

minimisenS0 ,nB0 ,{ut}
T−1
t=1

maximise{St}Tt=1∈U∣∣∣∣∣P (S̃,K)−

(
nS0 +

T−1∑
t=1

ut

)
S̃T −

(
nB0 −

T−1∑
t=1

utS̃t
Bt

)
BT

∣∣∣∣∣
subject to

nS0S0 + nB0 B0 ≥ 0.

(5.4)

5.1 Constant Decision Rule Pricing Model

It can be observed that the amended ε-arbitrage robust pricing model (5.4) corresponds to the
following optimisation problem.

Constant Decision Rule Pricing Model

minimise{nSt }Tt=0,{nBt }Tt=0,{ut}Tt=1,{vt}Tt=1
maximise{S̃t}Tt=1∈U

|P (S̃,K)−WT |

subject to

WT = nST S̃T + nBTBT

nSt = nSt−1 + ut, ∀t = 1, 2, ..., T

nBt = nBt−1 + vt, ∀t = 1, 2, ..., T

utS̃t + vtBt = 0, ∀t = 1, 2, ..., T

nS0S0 + nB0 B0 ≥ 0
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(5.5)

In this proposed robust pricing model, the variable nSt can be thought of as the number of the
option’s underlying assets being held in the portfolio at time t. Similarly, the variable nBt is the
number of the risk-free assets being held in the portfolio at the same time. The variables ut and vt
denote the number of the underlying assets and the number of the risk-free assets bought at time
t, respectively. As before, Wt is the wealth level of the portfolio at time t, and its value is equal to
nSt S̃t + nBt Bt. With only a slight abuse of notation, we denote by U the uncertainty set containing
the admissible underlying asset prices.

We call this pricing model a constant decision rule pricing model because the decision variables
{ut}Tt=1 are modelled as a set of constants. By replacing P (S̃,K) with the payoff function of a
given European-style option, one can obtain a corresponding constant decision rule pricing model
as follows.

European Call Option Pricing: CON-ECO

minimisenS0 ,nB0 ,{ut}
T−1
t=1

maximise{St}Tt=1∈U∣∣∣∣∣(S̃T −K)+
−

(
nS0 +

T−1∑
t=1

ut

)
S̃T −

(
nB0 −

T−1∑
t=1

utS̃t
Bt

)
BT

∣∣∣∣∣
subject to

nS0S0 + nB0 B0 ≥ 0

(5.6)

Asian Call Option Pricing: CON-ACO

minimisenS0 ,nB0 ,{ut}
T−1
t=1

maximise{St}Tt=1∈U∣∣∣∣∣∣
(

1

T

T∑
t=1

S̃t −K

)+

−

(
nS0 +

T−1∑
t=1

ut

)
S̃T −

(
nB0 −

T−1∑
t=1

utS̃t
Bt

)
BT

∣∣∣∣∣∣
subject to

nS0S0 + nB0 B0 ≥ 0

(5.7)

Fixed Strike Lookback Call Option Pricing: CON-LCO

minimisenS0 ,nB0 ,{ut}
T−1
t=1

maximise{St}Tt=1∈U∣∣∣∣∣(maxt=1,2,..,T S̃t −K
)+
−

(
nS0 +

T−1∑
t=1

ut

)
S̃T −

(
nB0 −

T−1∑
t=1

utS̃t
Bt

)
BT

∣∣∣∣∣
subject to

nS0S0 + nB0 B0 ≥ 0

(5.8)

A slight difference is expected in the case of American put option because of the flexibility in
its exercising policy. Enumerating all possible exercise times τ = 1, 2, .., T , a constant decision rule
pricing model for American put options is thus given by
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American Put Option Pricing: CON-APO

minimisenS0 ,nB0 ,{ut}
T−1
t=1

maximise{St}Tt=1∈U
maximiseτ=1,2,...,T∣∣∣∣∣(K − S̃τ)+

−

(
nS0 +

τ−1∑
t=1

ut

)
S̃τ −

(
nB0 −

τ−1∑
t=1

utS̃t
Bt

)
Bτ

∣∣∣∣∣
subject to

nS0S0 + nB0 B0 ≥ 0.

(5.9)

For each pricing model, its linear deterministic equivalent can be obtained in two different ways.
The direct approach is done by formulating the uncertainty set in a form of matrix inequality and
subsequently applying Theorem 3.4.1.

−1 0 0 . . . 0
0 −1 0 . . . 0
0 0 −1 . . . 0

...
0 0 0 . . . −1

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0

...
0 0 0 . . . 1

−1 0 0 . . . 0
1 + rs1 −1 0 . . . 0

0 1 + rs2 −1 . . . 0
...

0 0 0 . . . −1

1 0 0 . . . 0
−1− r̄s1 1 0 . . . 0

0 −1− r̄s2 1 . . . 0
...

0 0 0 . . . 1




S̃1

S̃2
...

S̃T

 ≤



−S0R
s
1

−S0R
s
2

−S0R
s
3

...
−S0R

s
T

S0R̄
s
1

S0R̄
s
2

S0R̄
s
3

...
S0R̄

s
T

−S0(1 + rs0)
0
0
...
0

S0(1 + r̄s0)
0
0
...
0



(5.10)

Alternatively, one could use a shortcut which is to consider the corresponding linear program
derived in Chapter 4 when we discuss the original ε-arbitrage robust pricing model and then:

1. Replace αS0 + β0 with S0n
S
0 ;

2. Replace αB0 − β0 with B0n
B
0 ;

3. Replace βt with S0ut;

4. Replace RBt with
Bt
B0

;

5. Divide the right hand side of the constraints by S0;

6. Add a constraint to ensure the positivity of the proposed price, i.e., nS0S0 + nB0 B0 ≥ 0.

Moreover, the value of B0 can be, without loss of generality, set to one. As an exemplar, the
following linear program corresponds to the European call option pricing problem.

54



Chapter 5. The New Robust Pricing Model

European Call Option Pricing: Linear Equivalent Formulation

minimise
nS0 ,n

B
0 ,{ut}

T−1
t=1 ,ε,{pc,t,qc,t,mc,t,nc,t,zc}

c=4,t=T
c=1,t=1

ε

subject to

nS0S0 + nB0 ≥ 0

case I(
T∑
t=1

p1,tR
S
t

)
+

(
T∑
t=1

q1,tR̄
S
t

)
+
(
1 + rS0

)
m1,1 +

(
1 + r̄S0

)
n1,1 +

z1K

S0
≤ 1

S0

(
ε+K + nB0 BT

)
p1,t + q1,t +m1,t + n1,t −

(
1 + rSt

)
m1,t+1 −

(
1 + r̄St

)
n1,t+1 = ut

BT
Bt

, ∀t = 1, 2, ..., T − 1

p1,T + q1,T +m1,T + n1,T + z1 = 1− nS0 −

(
T−1∑
t=1

ut

)
p1,t ≤ 0, q1,t ≥ 0, m1,t ≤ 0, n1,t ≥ 0, ∀t = 1, 2, ..., T, z1 ≤ 0

case II(
T∑
t=1

p2,tR
S
t

)
+

(
T∑
t=1

q2,tR̄
S
t

)
+
(
1 + rS0

)
m2,1 +

(
1 + r̄S0

)
n2,1 +

z2K

S0
≤ 1

S0

(
ε−K − nB0 BT

)
p2,t + q2,t +m2,t + n2,t −

(
1 + rSt

)
m2,t+1 −

(
1 + r̄St

)
n2,t+1 = −ut

BT
Bt

, ∀t = 1, 2, ..., T − 1

p2,T + q2,T +m2,T + n2,T + z2 = −1 + nS0 +

(
T−1∑
t=1

ut

)
p2,t ≤ 0, q2,t ≥ 0, m2,t ≤ 0, n2,t ≥ 0, ∀t = 1, 2, ..., T, z2 ≤ 0

case III(
T∑
t=1

p3,tR
S
t

)
+

(
T∑
t=1

q3,tR̄
S
t

)
+
(
1 + rS0

)
m3,1 +

(
1 + r̄S0

)
n3,1 +

z3K

S0
≤ 1

S0

(
ε+ nB0 BT

)
p3,t + q3,t +m3,t + n3,t −

(
1 + rSt

)
m3,t+1 −

(
1 + r̄St

)
n3,t+1 = ut

BT
Bt

, ∀t = 1, 2, ..., T − 1

p3,T + q3,T +m3,T + n3,T + z3 = −nS0 −

(
T−1∑
t=1

ut

)
p3,t ≤ 0, q3,t ≥ 0, m3,t ≤ 0, n3,t ≥ 0, ∀t = 1, 2, ..., T, z3 ≥ 0

case IV(
T∑
t=1

p4,tR
S
t

)
+

(
T∑
t=1

q4,tR̄
S
t

)
+
(
1 + rS0

)
m4,1 +

(
1 + r̄S0

)
n4,1 +

z4K

S0
≤ 1

S0

(
ε− nB0 BT

)
p4,t + q4,t +m4,t + n4,t −

(
1 + rSt

)
m4,t+1 −

(
1 + r̄St

)
n4,t+1 = −ut

BT
Bt

, ∀t = 1, 2, ..., T − 1

p4,T + q4,T +m4,T + n4,T + z4 = nS0 +

(
T−1∑
t=1

ut

)
p4,t ≤ 0, q4,t ≥ 0, m4,t ≤ 0, n4,t ≥ 0, ∀t = 1, 2, ..., T, z4 ≥ 0
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5.2 Linear Decision Rule Pricing Model

After identifying the shortcomings of the ε-arbitrage robust pricing model and proposing a new
robust pricing model as an amended version of it, in this section, we consider another possibility
to improve the pricing model. Both of the previously discussed robust pricing models, namely the
ε-arbitrage robust pricing model and the constant decision rule pricing model, employ the robust
optimisation approach. Using traditional robust optimisation approach, the model consists of only
here-and-now decisions; thus, the pricing models seem to be unrealistic and subject to over conser-
vatism from the optimisation perspective.

In the constant decision rule pricing model, we have a series of decision variables {ut}Tt=1

representing the number of the underlying assets to be bought at time t. Instead of modelling a
decision variable ut as a here-and-now decision which is completely independent of the information
having been observed so far, i.e., {S̃i}ti=1, it can be modelled as a function of such information.

ut = fut

(
S̃1, S̃2, ..., S̃t

)
(5.11)

Note that a decision variable should not be expressed as a function of the information not
yet known to reflect the inability of the decision maker to foresee the future. If fut is a constant
function, then ut does not depend on any information about the asset prices. Thus, the pricing
model remains unchanged. The optimal value of the objective function, namely the arbitrage error,
is expected to be more accurate (less conservative and closer to the true optimal objective value) by
increasing the expressiveness of the function fut . For example, if fut is defined as an affine function
of its arguments, we have

ut = ut,0 + ut,1S̃1 + ut,2S̃2 + ...+ ut,tS̃t. (5.12)

The functions {fut}Tt=1 are usually referred to as decision rules or policies. However, the cost of
specifying decision rules in the optimisation problems is inevitable. To preserve the tractability of
the nominal robust optimisation problem, linear decision rules are employed in this section, and the
comparison between the linear decision rule pricing model and the constant decision rule pricing
model is presented afterwards in Chapter 8. As an example, below we show how to employ linear
decision rules in the proposed robust pricing model when the option considered is a European call
option. For the other types of options: Asian options, lookback options, and American options,
the procedure below can also be applied.

By introducing the decision rules to the new robust pricing model for European call options
(CON-ECO), we achieve

European Call Option Pricing: The Decision Rule Formulation

minimise
nS0 ,n

B
0 ,{ut({S̃i}ti=1)}

T−1

t=1

maximise{St}Tt=1∈U∣∣∣∣∣∣
(
S̃T −K

)+
−

(
nS0 +

T−1∑
t=1

ut

(
{S̃i}ti=1

))
S̃T −

nB0 − T−1∑
t=1

ut

(
{S̃i}ti=1

)
S̃t

Bt

BT

∣∣∣∣∣∣
subject to

nS0S0 + nB0 B0 ≥ 0.

(5.13)

To make the resulting optimisation model more elegant and easier to deal with, we first introduce
a vector ξt containing the information previously observed up to time t. Moreover, let ξ denote ξT .
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ξt =


1

S̃1

S̃2
...

S̃t


(t+1)×1

(5.14)

ξ = ξT =


1

S̃1

S̃2
...

S̃T


(T+1)×1

(5.15)

Note that there is always a scalar, i.e., one, added at the top of the information vector. This
simple trick is very useful especially when applying the linear decision rules to the pricing model.
Furthermore, a linear relationship between ξt and ξ can be observed. That is

ξt = Mtξ, (5.16)

where Mt is a (t+ 1)× (T + 1) matrix defined as an aggregation of an identity matrix It+1 and a
zero matrix 0(t+1)×(T−t).

Mt =
[
It+1|0(t+1)×(T−t)

]
=


1 0 0 . . . 0 0 0 . . . 0
0 1 0 . . . 0 0 0 . . . 0
0 0 1 . . . 0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 1 0 0 . . . 0


(t+1)×(T+1)

(5.17)

Let et be a tth canonical basis vector of appropriate dimension, i.e., a vector comprised of T + 1
entries containing one at the tth position and zero everywhere else. A relation between S̃t and ξ
can therefore be represented as

S̃t = eTt+1ξT = eTt+1ξ. (5.18)

Lastly, we introduce a set of constants {rt}Tt=1 defined as

rt =
BT
Bt

. (5.19)

The new robust pricing model for European call options can then be equivalently rewritten as
follows.

minimisenS0 ,nB0 ,{ut(ξt)}
T−1
t=1

maximise{St}Tt=1∈U∣∣∣∣∣(eTT+1ξ −K
)+ −(nS0 +

T−1∑
t=1

ut (ξt)

)
eTT+1ξ −

(
nB0 BT −

T−1∑
t=1

ut (ξt) e
T
t+1ξrt

)∣∣∣∣∣
subject to

nS0S0 + nB0 B0 ≥ 0

(5.20)

If the decision ut (ξt) is modelled as a linear function of ξt, the expression (5.12) for every
t = 1, 2, ..., T is expected. Since the first element of the vector ξt is restricted to be one, we can
express these linear decision rules as
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ut(ξt) =


ut,0
ut,1

...
ut,t


T

ξt. (5.21)

The implication of this is that there is a vector Ut ∈ Rt+1 through which the linear dependence
is exhibited.

ut(ξt) = UTt ξt = UTt Mtξ (5.22)

With these linear decision rules, the European call option pricing model (5.20) can be rewritten
as,

minimisenS0 ,nB0 ,{Ut}
T−1
t=1

maximiseξ∈Ξ∣∣∣∣∣(eTT+1ξ −K
)+ −(nS0 +

T−1∑
t=1

UTt Mtξ

)
eTT+1ξ −

(
nB0 BT −

T−1∑
t=1

UTt Mtξe
T
t+1ξrt

)∣∣∣∣∣
subject to

nS0S0 + nB0 B0 ≥ 0,

(5.23)

where Ξ is an uncertainty set describing acceptable values of ξ. It is, in fact, very similar to the
uncertainty set U in the constant decision rule pricing model.

The pricing model below is obtained by rearranging terms in the previous one. Notice that the
objective function is quadratic in the uncertain parameter ξ.

European Call Option Pricing: LIN-ECO

minimisenS0 ,nB0 ,{Ut}
T−1
t=1

maximiseξ∈Ξ∣∣∣∣∣(ξT eT+1 −K
)+

+ ξT

(
T−1∑
t=1

(
et+1U

T
t Mtrt − eT+1U

T
t Mt

))
ξ + ξT

(
−eT+1n

S
0

)
+
(
−nB0 BT

)∣∣∣∣∣
subject to

nS0S0 + nB0 B0 ≥ 0

(5.24)

In this pricing model, as mentioned earlier, the uncertainty set Ξ is used to describe the pos-
sibilities of ξ. Recall that in the constant decision rule pricing model the uncertainty set U is a
polyhedron obtained from the upper bound and the lower bound of the price of the underlier as
well as the upper bound and the lower bound of the single-period return at time t = 1, 2, ..., T .
This idea is still adopted in this pricing model; however, according to our definition of ξ, there is,
in addition, one further constraint to be enforced, that is, ξT e1 = 1.

To be more specific, we define the uncertainty set Ξ as a set of vectors that comply to a list of
greater-than-or-equal-to constraints as follows.
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Ξ = {ξ ∈ RT+1 | ξT e1 ≥ 1 ∧
ξT e2 = S̃1 ≥ S0R

S
1 ∧

ξT e3 = S̃2 ≥ S0R
S
2 ∧

...

ξT eT+1 = S̃T ≥ S0R
S
T ∧

ξT (−e1) ≥ −1 ∧
ξT (−e2) = −S̃1 ≥ −S0R̄

S
1 ∧

ξT (−e3) = −S̃2 ≥ −S0R̄
S
2 ∧

...

ξT (−eT+1) = −S̃T ≥ −S0R̄
S
T ∧

ξT e2 = S̃1 ≥ S0

(
1 + rS0

)
∧

ξT
(
e3 −

(
1 + rS1

)
e2

)
= S̃2 −

(
1 + rS1

)
S̃1 ≥ 0 ∧

ξT
(
e4 −

(
1 + rS2

)
e3

)
= S̃3 −

(
1 + rS2

)
S̃2 ≥ 0 ∧

...

ξT
(
eT+1 −

(
1 + rST−1

)
eT
)

= S̃T −
(
1 + rST−1

)
S̃T−1 ≥ 0 ∧

ξT (−e2) = −S̃1 ≥ −S0

(
1 + r̄S0

)
∧

ξT
(
−e3 +

(
1 + r̄S1

)
e2

)
= −S̃2 +

(
1 + r̄S1

)
S̃1 ≥ 0 ∧

ξT
(
−e4 +

(
1 + r̄S2

)
e3

)
= −S̃3 +

(
1 + r̄S2

)
S̃2 ≥ 0 ∧

...

ξT
(
−eT+1 +

(
1 + r̄ST−1

)
eT
)

= −S̃T +
(
1 + r̄ST−1

)
S̃T−1 ≥ 0

}

(5.25)

Although the objective function and the uncertainty set are explicitly defined, the whole opti-
misation problem still does not seem to be solvable by standard solvers because it is a semi-infinite
optimisation problem. We therefore need to determine its deterministic version. To begin with, we
introduce the following propositions.

Proposition 5.2.1. For any ξ defined in (5.15) and any matrix A ∈ R(T+1)×(T+1), ξTAξ =

ξT
(

1

2
A+

1

2
AT
)
ξ

Proof.

The proposition follows from the fact that ξTAξ =
(
ξTAξ

)T
= ξTAT ξ.

Proposition 5.2.2. For any ξ defined in (5.15), any matrix A ∈ R(T+1)×(T+1), any vector b ∈
R(T+1), and any c ∈ R,

1.

(
1

2
A+

1

2
AT +

1

2
e1b

T +
1

2
beT1 + ce1e

T
1

)
is symmetric.
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2. ξTAξ + ξT b+ c = ξT
(

1

2
A+

1

2
AT +

1

2
e1b

T +
1

2
beT1 + ce1e

T
1

)
ξ.

Proof.

part 1 : (
1

2
A+

1

2
AT +

1

2
e1b

T +
1

2
beT1 + ce1e

T
1

)T
=

(
1

2
AT +

1

2
A+

1

2
beT1 +

1

2
e1b

T + ce1e
T
1

)
Hence, (

1

2
A+

1

2
AT +

1

2
e1b

T +
1

2
beT1 + ce1e

T
1

)T
=

(
1

2
A+

1

2
AT +

1

2
e1b

T +
1

2
beT1 + ce1e

T
1

)

part 2 :

ξTAξ + ξT b+ c = ξTAξ + bT ξ + c

Therefore,

ξTAξ + ξT b+ c = ξTAξ + ξT e1b
T ξ + ξT ce1e

T
1 ξ

= ξT
(
A+ e1b

T + ce1e
T
1

)
ξ

By applying Proposition 5.2.1 to the right hand side of the equation, the proof thus completes.

Introducing a new variable ε to denote the objective function, the European call option pricing
model (5.24) can again be rewritten as

minimisenS0 ,nB0 ,{Ut}
T−1
t=1 ,ε

maximiseξ∈Ξ ε

subject to

ξT

(
−
T−1∑
t=1

(
et+1U

T
t Mtrt − eT+1U

T
t Mt

))
ξ + ξT

(
eT+1n

S
0 − eT+1

)
+
(
ε+K + nB0 BT

)
≥ 0,

∀ξ ∈ Ξ, ξT eT+1 −K ≥ 0

ξT

(
T−1∑
t=1

(
et+1U

T
t Mtrt − eT+1U

T
t Mt

))
ξ + ξT

(
−eT+1n

S
0 + eT+1

)
+
(
ε−K − nB0 BT

)
≥ 0,

∀ξ ∈ Ξ, ξT eT+1 −K ≥ 0

ξT

(
−
T−1∑
t=1

(
et+1U

T
t Mtrt − eT+1U

T
t Mt

))
ξ + ξT

(
eT+1n

S
0

)
+
(
ε+ nB0 BT

)
≥ 0,

∀ξ ∈ Ξ, −ξT eT+1 +K ≥ 0

ξT

(
T−1∑
t=1

(
et+1U

T
t Mtrt − eT+1U

T
t Mt

))
ξ + ξT

(
−eT+1n

S
0

)
+
(
ε− nB0 BT

)
≥ 0,

∀ξ ∈ Ξ, −ξT eT+1 +K ≥ 0.

(5.26)

There are four series of constraints in the resulting optimisation problem. For each one, the
constraint is written as a quadratic constraint in ξ, and its associated uncertainty set is defined as a
polyhedron. Using Proposition 5.2.2, each of these quadratic constraints can be rewritten in a form
of ξTFξ ≥ 0 while a polyhedron can also be rewritten as {ξ ∈ RT+1 | ξTGiξ ≥ 0, ∀i = 1, 2, ..., I}
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satisfying that F and {Gi}Ii=1 are symmetric matrices.

Roughly speaking, Proposition 5.2.2 enables us to reformulate the European call option pricing
model as a robust optimisation problem with quadratic constraints, each of which is associated
with an uncertainty set which is an intersection of finitely many ellipsoids.

minimisenS0 ,nB0 ,{Ut}
T−1
t=1 ,ε

maximiseξ∈Ξ ε

subject to

ξTF (1)ξ ≥ 0, ∀ξ, ξTG(1)
i ξ ≥ 0, ∀i

ξTF (2)ξ ≥ 0, ∀ξ, ξTG(2)
i ξ ≥ 0, ∀i

ξTF (3)ξ ≥ 0, ∀ξ, ξTG(3)
i ξ ≥ 0, ∀i

ξTF (4)ξ ≥ 0, ∀ξ, ξTG(4)
i ξ ≥ 0, ∀i

(5.27)

Using the approximate S-lemma (Proposition 3.4.1), we obtain a set of approximate determin-
istic constraints.

F (j) −
I∑
i=1

λ
(j)
i G

(j)
i � 0, λ

(j)
i ≥ 0, j = 1, 2, 3, 4 (5.28)

Hence, the approximation of the deterministic equivalent of this pricing model is a semidefinite
program. It is important to note here that the obtained semidefinite program seems unlikely to be
an exact deterministic equivalent because using the approximate S-lemma this way can guarantee
only one direction is true, i.e.,

∃λ(j)
i ≥ 0, F (j) −

I∑
i=1

λ
(j)
i G

(j)
i � 0 =⇒ ξTF (j)ξ ≥ 0, ∀ξ, ξTG(j)

i ξ ≥ 0, ∀i,

and unfortunately the reverse direction does not always hold.

Despite not being exact, a semidefinite program obtained from the approximate S-lemma ap-
pears to perform well in many cases. It is therefore natural for us to investigate how good this
approximation is in the context of option pricing. Below, we prove that in terms of optimality the
linear decision rule pricing model is at least as good as the constant decision rule pricing model,
i.e., the linear decision rule approach is able to identify the portfolio that matches better the payoff
of the option.

Proposition 5.2.3. A semidefinite program corresponding to the linear decision rule pricing model
is at most as conservative as a deterministic equivalent of the constant decision rule pricing model.

Proof.
A constant decision rule can be viewed as a specialization of a linear decision rule as it can be

written as follows.

u
(c)
t (ξt) = U

(c)T
t ξt =


ut,0
0
...
0

 ξt (5.29)

By replacing the linear decision rules Ut in (5.26) with the constant decision rules U
(c)
t , the

arising optimisation model contains no quadratic terms in asset prices (S̃iS̃j , 1 ≤ i, j ≤ T ). This

result together with the symmetry of F (j) lead to quite a simple structure of the matrices F (j).
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F (j) =


� � � . . . �
� 0 0 . . . 0
� 0 0 . . . 0
...

...
...

� 0 0 . . . 0


(T+1)×(T+1)

, (5.30)

where � represents the value that can be either zero or non-zero.

Similarly, matrices G
(j)
i , which define the boundary of the uncertainty set containing acceptable

values of ξ =
[
1 S̃1 S̃2 . . . S̃T

]T
, have an analogous structure

G
(j)
i =


� � � . . . �
� 0 0 . . . 0
� 0 0 . . . 0
...

...
...

� 0 0 . . . 0


(T+1)×(T+1)

(5.31)

because the uncertainty set in this setting is a polyhedron, and a polyhedron cannot contain a
non-zero quadratic term.

In other words, we can rewrite matrices F (j) and G
(j)
i as

F (j) =

 µ(j) 1

2

(
f (j)

)T
1

2
f (j) F ′(j)

 , G
(j)
i =

 ν(j)
i

1

2

(
g

(j)
i

)T
1

2
g

(j)
i G

′(j)
i

 , (5.32)

where F ′(j) and G
′(j)
i are zero matrices. Notice that zero matrices are both positive semidefinite

and negative semidefinite.

It can be concluded from Proposition 3.4.2 that F (j) −
I∑
i=1

λ
(j)
i G

(j)
i � 0 is equivalent to

ξ′TF ′(j)ξ′ + ξ′T f (j) + µ(j) ≥ 0, ∀ξ′ ∈ {ξ′ ∈ RT | ξ′TG′(j)i ξ′ + ξ′T g
(j)
i + ν

(j)
i ≥ 0, ∀i = 1, 2, ..., I}

In other words,

F (j) −
I∑
i=1

λ
(j)
i G

(j)
i � 0 ⇐⇒

[
1
ξ′

]T
F (j)

[
1
ξ′

]
≥ 0, ∀ξ′,

[
1
ξ′

]T
G

(j)
i

[
1
ξ′

]
≥ 0, ∀i = 1, 2, ..., I

The obtained result thus implies that if the constant decision rules were used, the corresponding
semidefinite program would be an exact deterministic equivalent, not just an approximation, of the
pricing model under uncertainty.

As a constant decision rule is a specialisation of a linear decision rule, the generated optimal
solution from the semidefinite program corresponding to the constant decision rule pricing model
must be feasible in the semidefinite program corresponding to the linear decision rule pricing model.
Note that, by the argument of the S-lemma, this generated solution must also remain feasible in
the pricing model (5.26) as well. Hence, in terms of the optimality of the generated solution, it
is not possible for the constant decision rule pricing model to outperform the linear decision rule
pricing model.
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5.3 Piecewise Linear Decision Rule Pricing Model

In this section, instead of employing linear decision rules, we formulate another pricing model using
piecewise linear decision rules. The motivation for this is that even though linear decision rules
usually perform better than constant decision rules in the sense that the observed information is
taken into account, still they are usually subject to insufficient accuracy. The piecewise linear
decision rule approach was proposed to address this issue using the idea of solving the optimisation
problems under uncertainty in the lifted space, which gives decision variables extra flexibility and
yet preserves the tractability of the original linear decision rule approach. To be more specific, in
the piecewise linear decision rule pricing model, we define the decision variables {ut}Tt=1 as

ut = ut,0 + ut,1min(S̃1, z1) + ut,2max(S̃1 − z1, 0)

+ ut,3min(S̃2, z2) + ut,4max(S̃2 − z2, 0)

...

+ ut,2t−1min(S̃t, zt) + ut,2tmax(S̃t − zt, 0),

(5.33)

where {zt}Tt=1 are predefined breakpoints along the axis S̃t.

Because of the fact that min(S̃t, zt) + max(S̃t − zt, 0) = St, the linear decision rule pricing
model can be thought of as a specialisation of the piecewise linear decision rule pricing model
where ut,2i−1 = ut,2i, ∀i = 1, 2, ..., t. It can be thus concluded that the piecewise linear decision rule
pricing model is richer than the linear decision rule pricing model, and therefore it is richer than
the constant decision rule pricing model.

Furthermore, it is worth noting here that the piecewise linear decision rule pricing model is
considered to be subject to uncertainty in a lifted space which consists of 2T uncertain parameters:
{min(S̃t, zt)}Tt=1 and {max(S̃t−zt, 0)}Tt=1. To avoid future confusion, in the sequel, we use the term
original space to refer to the space where the uncertainty set Ξ describing the possibilities of the
scenario ξ ∈ RT+1 in the linear decision rule pricing model belongs to. The uncertainty set Ξ is
a polyhedron and thus can be expressed by a matrix inequality Wξ ≥ h, where W and h are a
matrix and a vector of appropriate dimensions respectively. A scenario ξ′ in the piecewise linear
decision rule pricing model is described by an uncertainty set Ξ′ in the lifted space. As an example,
we demonstrate the procedure of how to employ piecewise linear decision rules in the proposed
European call option pricing model.

Recall that by introducing the decision rules to the new robust pricing model for the European
call options (see (5.13)), we have

European Call Option Pricing: The Decision Rule Formulation

minimise
nS0 ,n

B
0 ,{ut({S̃i}ti=1)}

T−1

t=1

maximise{St}Tt=1∈U∣∣∣∣∣∣
(
S̃T −K

)+
−

(
nS0 +

T−1∑
t=1

ut

(
{S̃i}ti=1

))
S̃T −

nB0 − T−1∑
t=1

ut

(
{S̃i}ti=1

)
S̃t

Bt

BT

∣∣∣∣∣∣
subject to

nS0S0 + nB0 B0 ≥ 0.

(5.34)
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Let ξ′t again denote the information previously observed up to time t in the lifted space and ξ′

denote ξ′T . (The definition of ξt denoting the previously observed information in the linear decision
rule pricing model still remains unchanged.)

ξ′t =



1

min(S̃1, z1)

max(S̃1 − z1, 0)

min(S̃2, z2)

max(S̃2 − z2, 0)
...

min(S̃t, zt)

max(S̃t − zt, 0)


(2t+1)×1

(5.35)

ξ′ = ξ′T =



1

min(S̃1, z1)

max(S̃1 − z1, 0)

min(S̃2, z2)

max(S̃2 − z2, 0)
...

min(S̃T , zT )

max(S̃T − zT , 0)


(2T+1)×1

(5.36)

Similarly to the linear decision rule pricing model, a linear relationship between ξ′t and ξ′ can
be observed. That is

ξ′t = M ′tξ
′, (5.37)

where M ′t is a (2t+ 1)× (2T + 1) matrix defined as an aggregation of an identity matrix I2t+1 and
a zero matrix 0(2t+1)×(2T−2t).

M ′t =
[
I2t+1|0(2t+1)×(2T−2t)

]
=


1 0 0 . . . 0 0 0 . . . 0
0 1 0 . . . 0 0 0 . . . 0
0 0 1 . . . 0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 1 0 0 . . . 0


(2t+1)×(2T+1)

(5.38)

Let et be a tth canonical basis vector of appropriate dimension (which should be clear from the
context), i.e., a vector containing one at the tth position and zero elsewhere. A relation between S̃t
and ξ′ can then be written as follows.

S̃t = (eT2t + eT2t+1)ξ′T = (eT2t + eT2t+1)ξ′ (5.39)

Lastly, we reuse the set of constants {rt}Tt=1 and define them in the same way we do in the
previous section.

rt =
BT
Bt

(5.40)
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The European call pricing model (5.34) can then be equivalently rewritten as follows.

minimisenS0 ,nB0 ,{ut(ξ′t)}
T−1
t=1

maximise{St}Tt=1∈U∣∣∣∣∣((eT2T + eT2T+1)ξ′ −K
)+ −(nS0 +

T−1∑
t=1

ut
(
ξ′t
))

(eT2T + eT2T+1)ξ′−(
nB0 BT −

T−1∑
t=1

ut
(
ξ′t
)

(eT2t + eT2t+1)ξ′rt

)∣∣∣∣∣
subject to

nS0S0 + nB0 B0 ≥ 0

(5.41)

For each t, if the decision variable ut
(
ξ′t
)

is modelled as a piecewise linear function of the history
of observation ξ′t, then it can be written as

ut(ξ
′
t) =


ut,0
ut,1

...
ut,2t


T

ξ′t. (5.42)

The implication of this is that there is a vector Ut comprised of 2t+ 1 elements through which
the linear dependence is exhibited.

ut(ξ
′
t) = UTt ξ

′
t = UTt M

′
tξ
′ (5.43)

These piecewise linear decision rules lead to the following formulation of the European call
option pricing problem.

minimisenS0 ,nB0 ,{Ut}
T−1
t=1

maximiseξ′∈Ξ′∣∣∣∣∣((eT2T + eT2T+1)ξ′ −K
)+ −(nS0 +

T−1∑
t=1

UTt M
′
tξ
′

)
(eT2T + eT2T+1)ξ′−(

nB0 BT −
T−1∑
t=1

UTt M
′
tξ
′(eT2t + eT2t+1)ξ′rt

)∣∣∣∣∣
subject to

nS0S0 + nB0 B0 ≥ 0,

(5.44)

which can be rewritten as

European Call Option Pricing: PIE-ECO

minimisenS0 ,nB0 ,{Ut}
T−1
t=1

maximiseξ′∈Ξ′∣∣∣∣∣(ξ′T (e2T + e2T+1)−K
)+

+ ξ′T

(
T−1∑
t=1

(
(e2t + e2t+1)UTt M

′
trt − (e2T + e2T+1)UTt M

′
t

))
ξ′

+ ξ′T
(
−(e2T + e2T+1)nS0

)
+
(
−nB0 BT

) ∣∣∣∣
subject to

nS0S0 + nB0 B0 ≥ 0.
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(5.45)

Notice that the objective function is again quadratic in the uncertain parameter ξ′.

In this pricing model, the possibilities of ξ′ are described by the uncertainty set Ξ′. Recall
that, in the constant decision rule pricing model and the linear decision rule pricing model, U
and Ξ are polyhedrons obtained from the upper bound and the lower bound of the price of the
option’s underlier as well as the upper bound and the lower bound of its single-period return
at time t = 1, 2, ..., T . This idea is still adopted in the piecewise linear decision rule pricing
model, but it cannot be used directly since the uncertainty set Ξ′ describes the acceptable values
of ξ′, not ξ = [1 S̃1 S̃2 . . . S̃T ]T . Unfortunately, to the best of our knowledge, the exact tractable
representation of Ξ′ cannot be easily obtained. Georghiou, Wiesemann and Kuhn [23], however,
show that it is still possible to determine Ξ̂′, a tractable approximation of Ξ′. This approximation
is obtained by first identifying as small as possible a box l ≤ ξ ≤ u containing the uncertainty set
Ξ = {ξ ∈ RT+1 | Wξ ≥ h}, which is a polyhedron, inside. Hence, the uncertainty set Ξ can be
rewritten as Ξ = {ξ ∈ RT+1 | Wξ ≥ h ∧ l ≤ ξ ≤ u}. The outer approximation Ξ̂′ of the convex
hull of Ξ′ is thus an intersection of the polyhedron Wξ ≥ h in the lifted space and the convex hull
of the box l ≤ ξ ≤ u in the lifted space. In this model, Ξ̂′ can be readily constructed as such a box
is already available in the form of the lower bound (St = S0R

S
t ) and the upper bound (S̄t = S0R̄

S
t )

of the underlier’s price.

Ξ̂′ = {ξ′ ∈ R2T+1 | (constraints on the lower and the upper bounds of the underlier’s prices,

i.e., the outer box)

zt

zt − S0R
S
t

−1

zt − S0R
S
t

0

−S0R
S
t

zt − S0R
S
t

1

zt − S0R
S
t

−1

S0R̄St − zt

0 0
1

S0R̄St − zt



 1

ξ′T e2t

ξ′T e2t+1

 ≥ 0,

∀t = 1, 2, ..., T ∧

(constraints on the lower bounds of the single-period returns)

ξ′T (e2 + e3) = S̃1 ≥ S0(1 + rS0 ) ∧
ξ′T
(
e2t + e2t+1 −

(
1 + rSt−1

)
(e2t−2 + e2t−1)

)
= S̃t −

(
1 + rSt−1

)
S̃t−1 ≥ 0 , ∀t = 2, 3, ..., T ∧

(constraints on the upper bounds of the single-period returns)

ξ′T (e2 + e3) = S̃1 ≤ S0(1 + r̄S0 ) ∧
ξ′T
(
e2t + e2t+1 −

(
1 + r̄St−1

)
(e2t−2 + e2t−1)

)
= S̃t −

(
1 + r̄St−1

)
S̃t−1 ≤ 0 , ∀t = 2, 3, ..., T ∧

(constraint on the first element of ξ′)

ξ′T e1 = 1

}

(5.46)
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Definition 5.3.1. (Retraction operator) A retraction operator R is a function mapping a scenario
ξ′ ∈ R2T+1 in the lifted space to a corresponding scenario ξ ∈ RT+1 in the original space.

R : R2T+1 −→ RT , R(ξ′) = ξ.

In our setting, R is linear since

ξ′T (e2t + e2t+1) = min(S̃t, zt) + max(S̃t − zt, 0) = S̃t (5.47)

In other words, we have
R(ξ′) = Rξ′ = ξ. (5.48)

Specifically, R is a (T + 1)× (2T + 1) matrix with the following description.

R =


1 0 0 0 0 . . . 0 0
0 1 1 0 0 . . . 0 0
0 0 0 1 1 . . . 0 0
...

...
...

0 0 0 0 0 . . . 1 1

 (5.49)

The operator R is used a lot in further analysis on the piecewise linear decision rule pricing
model. Another component that we deem useful is a spanned linear decision rule pricing model
defined as follows.

Definition 5.3.2. (Spanned linear decision rule pricing model) A spanned linear decision rule
pricing model is defined as the original linear decision rule pricing model with every ξ (in both
constraints and uncertainty sets) replaced by Rξ′.

The spanned linear decision rule pricing model can be considered to be in a lifted space because
the uncertain parameter is denoted by ξ′. The proposition below relates the spanned linear decision
rule pricing model to the original linear decision rule pricing model.

Proposition 5.3.1. The spanned linear decision rule pricing model and the linear decision rule
pricing model attain the same optimal solution.

Proof.
Each of the constraints in the original linear decision rule pricing model is quadratic in the

uncertain parameter ξ. Consequently, we can write each constraint in the following manner where
j is the index of the constraint in the model.

ξTF (j)ξ ≥ 0, ∀ξ ∈ Ξ(j)

In this formulation, we can think of F (j) as a decision matrix because it is comprised of decision
variables: {Ut}T−1

t=1 , n
S
0 , nB0 , and ε, in a specific pattern. According to our definition, a set of

constraints in the spanned linear decision rule pricing model is given by

(Rξ′)TF (j)(Rξ′) ≥ 0, ∀ξ′, Rξ′ ∈ Ξ(j).

In order to prove that both pricing models yield the same optimal solution, it is sufficient to
show that both problems have the same feasible set. The common technique for verifying the
equality of two sets is to show that each of them is a subset of the other.

(=⇒) Suppose that F̌ satisfies the condition

ξT F̌ ξ ≥ 0, ∀ξ ∈ Ξ(j).

Thus, for any ξ′ such that Rξ′ ∈ Ξ(j), we have

(Rξ′)T F̌ (Rξ′) ≥ 0,
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which implies the feasibility of F̌ in the spanned linear decision rule pricing model.

(⇐=) In the reverse direction, suppose that F̌ satisfies the condition

(Rξ′)T F̌ (Rξ′) ≥ 0, ∀ξ′, Rξ′ ∈ Ξ(j).

For any ξ ∈ Ξ(j) ⊂ RT+1, there exists a vector ξ′ ∈ R2T+1 such that Rξ′ = ξ. For example, we
can assign the value of the ith position of ξ to the (2i − 1)th position of ξ′, i = 1, 2, ..., T + 1, and
assign zero to every other entry in ξ′. Hence,

ξT F̌ ξ = (Rξ′)T F̌ (Rξ′) ≥ 0,

which implies the feasibility of F̌ in the linear decision rule pricing model.

In order to evaluate the performance of the piecewise linear decision rule pricing model, we
introduce two more definitions below to describe a desirable characteristic that the predefined
breakpoints {zt}Tt=1 should have.

Definition 5.3.3. (Proper breakpoint) For an uncertain parameter υ ∈ R taking value in [υ, ῡ], a
breakpoint zυ for υ is said to be a proper breakpoint if zυ ∈ [υ, ῡ].

Definition 5.3.4. (Proper piecewise linear decision rule pricing model) A piecewise linear decision
rule pricing model is said to be proper if every of its breakpoints is proper.

The proposition below confirms that, by using the piecewise linear decision rules, the resulting
pricing model is expected to perform better than the linear decision rule pricing model does.

Proposition 5.3.2. The proper piecewise linear decision rule pricing model is at most as conser-
vative as the linear decision rule pricing model.

Proof.
The outline of this proof is to show that the uncertainty set Ξ̂′ in the proper piecewise linear

decision rule pricing model is at least as restrictive as the uncertainty set in the spanned linear
decision rule pricing model.

ξ′ ∈ Ξ̂′ =⇒ Rξ′ ∈ Ξ

Following the claim, since a piecewise linear decision rule is a generalisation of a linear decision
rule, any feasible solution in the spanned linear decision rule pricing model has to also be feasible
in the piecewise linear decision rule pricing model. We can thus conclude that the piecewise linear
decision rule pricing model provides a tighter upper bound to the true optimal objective function
value than that produced by the spanned linear decision rule pricing model, which is identical to
the one obtained from the original linear decision rule pricing model.

Recall that there are four categories of boundary conditions in the linear decision rule pric-
ing model: the lower bound of the asset price (S̃t ≥ S0R

S
t ), the upper bound of the asset price

(S̃t ≤ S0R̄
S
t ), the lower bound of the single-period return (S̃t ≥ S̃t−1(1 + rSt−1)), and the upper

bound of the single-period return (S̃t ≤ S̃t−1(1+ r̄St−1)). Therefore, we need to show that a scenario

ξ in the original space which is mapped from any admissible ξ′ in Ξ̂′ using the retraction operator
satisfies all of these constraints.

Since we explicitly include in the description of Ξ̂′ the constraints on the lower bound and the
upper bound of the single-period return at time t = 1, 2, ..., T , we only have to prove that the
description of Ξ̂′ (see (5.46)) implies the lower bound and the upper bound of the price of the
underlying asset as well.

68



Chapter 5. The New Robust Pricing Model

Consider a constraint

zt

zt − S0R
S
t

−1

zt − S0R
S
t

0

−S0R
S
t

zt − S0R
S
t

1

zt − S0R
S
t

−1

S0R̄St − zt

0 0
1

S0R̄St − zt



 1

ξ′T e2t

ξ′T e2t+1

 ≥ 0

in the [ξ′T e2t, ξ
′T e2t+1] plane. The constraint implies a closed triangle determined by three edges.

The vertices of this triangle are given by(
ξ′T e2t, ξ

′T e2t+1

)
= (S0R

S
t , 0),(

ξ′T e2t, ξ
′T e2t+1

)
= (zt, 0),(

ξ′T e2t, ξ
′T e2t+1

)
= (zt, S0R̄

S
t − zt).

Any arbitrary point in this triangle can be written as a convex combination of these three
vertices.(

ξ′T e2t

ξ′T e2t+1

)
= α1

(
S0R

S
t

0

)
+ α2

(
zt
0

)
+ α3

(
zt

S0R̄
S
t − zt

)
, α1, α2, α3 ∈ R+, α2 + α2 + α3 = 1

That implies the acceptable range of ξ′T (e2t + e2t+1).

ξ′T (e2t + e2t+1) = ξ′T e2t + ξ′T e2t+1

= α1S0R
S
t + α2zt + α3zt + α3

(
S0R̄

S
t − zt

)
= α1S0R

S
t + α2zt + α3S0R̄

S
t

∈ [min
(
S0R

S
t , zt, S0R̄

S
t

)
,max

(
S0R

S
t , zt, S0R̄

S
t

)
]

= [S0R
S
t , S0R̄

S
t ],

where the last equation holds for any proper breakpoint zt. Therefore, Ξ̂′ also determines the
bounds of the asset price. The uncertainty set Ξ̂′ in the lifted space is then at least as restrictive
as Ξ, and the proof thus completes.

It is observed that this representation of Ξ̂′ is a polyhedron. Therefore, it can be treated as
an intersection of finitely many ellipsoids. The piecewise linear decision rule pricing model itself
seems to be intractable because there are infinitely many elements in the uncertainty set; however,
we can again apply the approximate S-lemma (Proposition 3.4.1) so as to obtain the deterministic
version of the pricing model, which is a semidefinite program. However, as mentioned earlier, the
approximate S-lemma generally results in merely approximate optimisation problem. A comparison
between the deterministic semidefinite program corresponding to the piecewise linear decision rule
pricing model and that corresponding to the linear decision rule pricing model should therefore be
carried out.

Proposition 5.3.3. A deterministic semidefinite program corresponding to the proper piecewise
linear decision rule pricing model is at most as conservative as a deterministic semidefinite program
corresponding to the linear decision rule pricing model.

Proof.
Recall that there are four series of constraints (indexed by j = 1,2,3,4)

ξTF (j)ξ ≥ 0, ∀ξ, ξTG(j)
i ξ ≥ 0, ∀i = 1, 2, ..., I
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in the linear decision rule pricing model, each of which is approximated by

F (j) −
I∑
i=1

λ
(j)
i G

(j)
i � 0, λ

(j)
i ≥ 0,

where F j is a matrix made of decision variables: the initial number of the underlying assets and
the initial number of the risk-free assets in the portfolio as well as the adjustments to be made
to these figures in subsequent periods. Let the optimal solution to this semidefinite program be

denoted by
(
{F ∗(j)}4j=1, {{λ

∗(j)
i }Ii=1}4j=1

)
. Therefore,

F ∗(j) −
I∑
i=1

λ
∗(j)
i G

(j)
i � 0, λ

∗(j)
i ≥ 0.

From the positive semidefiniteness of F ∗(j) −
I∑
i=1

λ
∗(j)
i G

(j)
i , we have

dT

(
F ∗(j) −

I∑
i=1

λ
∗(j)
i G

(j)
i

)
d ≥ 0, ∀d ∈ RT+1.

Let R be the retraction operator as in (5.49). The following holds.

(Rd)T

(
F ∗(j) −

I∑
i=1

λ
∗(j)
i G

(j)
i

)
(Rd) ≥ 0, ∀d ∈ R2T+1

The above statement implies that

RTF ∗(j)R−
I∑
i=1

λ
∗(j)
i RTG

(j)
i R = RT

(
F ∗(j) −

I∑
i=1

λ
∗(j)
i G

(j)
i

)
R � 0.

The result corresponds to the feasibility of this solution in the semidefinite program approx-
imating the spanned linear decision rule pricing model because the inequality ξTF ∗(j)ξ ≥ 0 in
the original space can be transformed to an inequality (Rξ′)TF ∗(j)(Rξ′) = ξ′T (RTF ∗(j)R)ξ′ ≥ 0
in the lifted space. The same argument goes for the uncertainty set, which is given by {ξ ∈
RT+1 | ξTG(j)

i ξ ≥ 0, ∀i = 1, 2, ..., I}. However, according to the description of the piecewise linear
decision rule pricing model, we do not directly map the uncertainty set from the original space
to the lifted space. Specifically, we transform a collection of the constraints on the upper bound
and the lower bound of the asset price to its convex hull in the lifted space. Consider part of the
summation term that contributes to the upper bound (S̃t ≤ S̄t = S0R̄

S
t ) and the lower bound of

the underlier’s price (S̃t ≥ St = S0R
S
t ). Let say it is

RT


λ
∗(j)
t1



−St 0 . . . 0
1

2
0 . . . 0

0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0 0 0 . . . 0
1

2
0 . . . 0 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0 0 0 . . . 0


+ λ

∗(j)
t2



S̄t 0 . . . 0 −1

2
0 . . . 0

0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0 0 0 . . . 0

−1

2
0 . . . 0 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0 0 0 . . . 0




R.

Note that the non-zero elements appear only at positions 1 × 1, (t + 1) × 1, and 1 × (t + 1).
Rearranging terms in the formula above, we get the resulting (2T + 1)× (2T + 1) matrix given by
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−λ∗(j)t1
St + λ

∗(j)
t2

S̄t 0 . . . 0
λ
∗(j)
t1
− λ∗(j)t2

2

λ
∗(j)
t1
− λ∗(j)t2

2
0 . . . 0

0 0 . . . 0 0 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 0 0 0 . . . 0

λ
∗(j)
t1
− λ∗(j)t2

2
0 . . . 0 0 0 0 . . . 0

λ
∗(j)
t1
− λ∗(j)t2

2
0 . . . 0 0 0 0 . . . 0

0 0 . . . 0 0 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 0 0 0 . . . 0



,

where the non-zero elements appear only at positions 1×1, 2t×1, (2t+1)×1, 1×2t, and 1×(2t+1).
This matrix can be rewritten as

λ
∗(j)
t2

(S̄t − St)



zt
zt − St

0 . . . 0
−1

2(zt − St)
0 0 . . . 0

0 0 . . . 0 0 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 0 0 0 . . . 0
−1

2(zt − St)
0 . . . 0 0 0 0 . . . 0

0 0 . . . 0 0 0 0 . . . 0
0 0 . . . 0 0 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 0 0 0 . . . 0



+λ
∗(j)
t1

(S̄t − St)



0 0 . . . 0 0
1

2(S̄t − zt)
0 . . . 0

0 0 . . . 0 0 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 0 0 0 . . . 0
0 0 . . . 0 0 0 0 . . . 0
1

2(S̄t − zt)
0 . . . 0 0 0 0 . . . 0

0 0 . . . 0 0 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 0 0 0 . . . 0



+
(
λ
∗(j)
t2

(S̄t − zt) + λ
∗(j)
t1

(zt − St)
)



−St
zt − St

0 . . . 0
1

2(zt − St)
−1

2(S̄t − zt)
0 . . . 0

0 0 . . . 0 0 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 0 0 0 . . . 0
1

2(zt − St)
0 . . . 0 0 0 0 . . . 0

−1

2(S̄t − zt)
0 . . . 0 0 0 0 . . . 0

0 0 . . . 0 0 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 0 0 0 . . . 0



.

The latter three matrices are representative of the outer box in the description of Ξ̂′ (see (5.46)).
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Moreover, all of the three coefficients are non-negative provided that the breakpoint zt is proper.
Therefore, we successfully map the optimal solution of the semidefinite program corresponding to
the linear decision rule pricing model to a feasible solution of the semidefinite program correspond-
ing to the proper piecewise linear decision rule pricing model. The proof thus completes.

5.4 Conclusions

In this chapter, we propose a new way to formulate the robust optimisation model representing
the option pricing problem. The proposed model, i.e., the constant decision rule pricing model,
can be considered as an amended version of the original ε-arbitrage robust pricing model. We also
introduce the linear decision rules and the piecewise linear decision rules to the new robust pricing
model. As an example, we show how to use these forms of decision rules when the option considered
is a European call option. Such decision rules, in addition, can be applied to the Asian call option
pricing model, the fixed strike lookback call option pricing model, and the American put option
pricing model as well. We also develop theories that guarantee that, in terms of the optimality of
the generated solutions, the piecewise linear decision rule pricing model performs at least as good
as the linear decision rule pricing model, and the linear decision rule pricing model performs as
good as the constant decision rule pricing model, if not better.
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Chapter 6

Valuation of Multiple-Underlier
Options

In the previous chapters, we consider only options with single underlying asset. In the real market,
there are, in addition, options whose payoffs depend on multiple underliers. In this chapter, we
show that the robust pricing model can also be extended to price such options. Analogously to
the previously discussed pricing models, the extended pricing model outputs a portfolio consisting
of basic securities which are the underliers of the option and the risk-free asset. The price of the
option should thus be set to today’s value of the portfolio because the final wealth (WT ) of the
output portfolio matches most closely to the option payoff in the worst-case sense.

Suppose that the payoff of the option depends on the realised prices of M securities denoted by
1, 2, ...,M . The price of the security m at time t is subject to uncertainty and denoted by a random
variable S̃mt . For the sake of convenience, we also denote the risk-free asset by the number zero. A
replicating portfolio is characterised by the number of each asset in the portfolio at different times.
Specifically, a portfolio is determined by nmt (t = 0, 1, 2, ..., T, m = 0, 1, 2, ...,M) which represents
the number of assets m held in the portfolio at time t. Let uncertain parameter S̃ be a collection
of assets’ prices {S̃mt }

t=T,m=M
t=1,m=1 . As before, P denotes the option payoff, which depends on the

information S̃ and the strike price K. Hence, we can construct a general robust option pricing
model for multiple-underlier options as follows.

minimise{nmt }
t=T,m=M
t=0,m=0 ,{umt }

t=T,m=M
t=1,m=0

maximise{S̃mt }
t=T,m=M
t=1,m=1 ∈U

∣∣∣P (S̃,K)−WT

∣∣∣
subject to

WT = n0
TBT +

M∑
m=1

nmT S̃
m
T

nmt = nmt−1 + umt , ∀t = 1, 2, ..., T, ∀m = 0, 1, ...,M

u0
tBt +

M∑
m=1

umt S̃
m
t = 0, ∀t = 1, 2, ..., T

n0
0B0 +

M∑
m=1

nm0 S
m
0 ≥ 0,

(6.1)

where U is an uncertainty set describing the uncertain parameters {S̃mt }
t=T,m=M
t=1,m=1 . The second and

the third constraints account for the rebalancing activities which can be done before the expiration
date of the option. Solving the pricing model, the proposed price for the option is

n0
0B0 +

M∑
m=1

nm0 S
m
0 , (6.2)
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which is the initial wealth of the portfolio. The last constraint in the model is needed in order to
prevent the model from outputting negative prices, which would lead to an arbitrage opportunity
provided that the option payoff can never be negative.

From the rebalancing equations, i.e., the second and the third constraints in the pricing model,
it is observed that

nmT = nm0 +
T∑
t=1

umt , ∀m = 1, 2, ...,M, (6.3)

u0
t =

−
M∑
m=1

umt S̃
m
t

Bt
, ∀t = 1, 2, ..., T. (6.4)

These results lead to a simplified version of the pricing model below.

minimise{nm0 }m=M
m=0 ,{umt }

t=T−1,m=M
t=1,m=1

maximise{S̃mt }
t=T,m=M
t=1,m=1 ∈U∣∣∣∣∣∣∣∣∣P (S̃,K)−

n0
0 −

T−1∑
t=1

M∑
m=1

umt S̃
m
t

Bt

BT −
M∑
m=1

(
nm0 +

T−1∑
t=1

umt

)
S̃mT

∣∣∣∣∣∣∣∣∣
subject to

n0
0B0 +

M∑
m=1

nm0 S
m
0 ≥ 0

(6.5)

For notational convenience, we introduce new series of variables as follows. These variables are
extensively used in the model derivation henceforward.

• H0 = n0
0BT

• For 1 ≤ m ≤M and 1 ≤ t ≤ T − 1, Hm
t = −u

m
t BT
Bt

• For 1 ≤ m ≤M , Hm
T = nm0 +

T−1∑
t=1

umt

6.1 Basket Options

Specifically, in this chapter, the option of our interest is a (European) basket option. A basket
option is very similar to a European option whose payoff is determined by the realised value of
its underlier. Payoff of a basket option is determined by the realised value of the basket of the
underlying assets. Mathematically speaking, the payoff of the basket call option is given by

P (S̃,K) =

(
M∑
m=1

wmS̃
m
T −K

)+

, (6.6)

where the weights {wm}Mm=1 and the strike price K are agreed today in the option contract. Con-
ventionally, these weights sum to one, but this is not a necessary condition though. The robust
pricing model for basket call options is given by
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Basket Call Option Pricing: CON-BKT

minimise{nm0 }m=M
m=0 ,{umt }

t=T−1,m=M
t=1,m=1

maximise{S̃mt }
t=T,m=M
t=1,m=1 ∈U∣∣∣∣∣∣

(
M∑
m=1

wmS̃
m
T −K

)+

−

(
H0 +

M∑
m=1

T∑
t=1

Hm
t S̃

m
t

)∣∣∣∣∣∣
subject to

n0
0B0 +

M∑
m=1

nm0 S
m
0 ≥ 0.

(6.7)

The pricing model can be further rewritten as

minimise{nm0 }m=M
m=0 ,{umt }

t=T−1,m=M
t=1,m=1 ,ε

ε

subject to(
M∑
m=1

wmS̃
m
T −K

)
−

(
H0 +

M∑
m=1

T∑
t=1

Hm
t S̃

m
t

)
≤ ε, ∀{S̃mt }

t=T,m=M
t=1,m=1 ∈ U,

M∑
m=1

wmS̃
m
T ≥ K

−

(
M∑
m=1

wmS̃
m
T −K

)
+

(
H0 +

M∑
m=1

T∑
t=1

Hm
t S̃

m
t

)
≤ ε, ∀{S̃mt }

t=T,m=M
t=1,m=1 ∈ U,

M∑
m=1

wmS̃
m
T ≥ K

−

(
H0 +

M∑
m=1

T∑
t=1

Hm
t S̃

m
t

)
≤ ε, ∀{S̃mt }

t=T,m=M
t=1,m=1 ∈ U,

M∑
m=1

wmS̃
m
T ≤ K

+

(
H0 +

M∑
m=1

T∑
t=1

Hm
t S̃

m
t

)
≤ ε, ∀{S̃mt }

t=T,m=M
t=1,m=1 ∈ U,

M∑
m=1

wmS̃
m
T ≤ K

n0
0B0 +

M∑
m=1

nm0 S
m
0 ≥ 0.

(6.8)

6.2 Uncertainty Model

Assuming that historical prices of each asset are available, the upper bounds and the lower bounds
of the assets’ prices and their single-period returns in subsequent periods can be estimated as before
(see (2.16) and (2.21)). Moreover, to avoid over conservatism, it is desirable to impose another
type of restriction on the movement of assets’ prices as a whole.

Since the previous single-period returns are known, the covariance matrix of single-period re-
turns of the assets of our interest can be estimated by using, for instance, sample covariance matrix.
Furthermore, the asset price in the first period, i.e., S̃m1 , is linearly dependent on the single-period
return since S̃m1 = Sm0 (1 + r̃m0 ). It is therefore possible to include a correlation-based constraint in
the uncertainty set U , which contains acceptable values of the uncertain parameters {S̃}t=T,m=M

t=1,m=1

of the pricing model, using this covariance matrix Σ.

To sum up, the uncertainty set U in the basket option pricing model has five types of constraints:

• Lower bounds of the assets’ prices: S̃mt ≥ Smt , ∀t = 1, 2, ..., T, ∀m = 1, 2, ...,M ;

• Upper bounds of the assets’ prices: S̃mt ≤ S̄mt , ∀t = 1, 2, ..., T, ∀m = 1, 2, ...,M ;
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• Lower bounds of the single-period returns: S̃mt ≥ S̃mt−1(1 + rmt−1), ∀t = 1, 2, ..., T, ∀m =
1, 2, ...,M ;

• Upper bounds of the single-period returns: S̃mt ≤ S̃mt−1(1 + r̄mt−1), ∀t = 1, 2, ..., T, ∀m =
1, 2, ...,M ;

• Movement of the first-period assets’ prices:
∥∥∥C(R̃1 − Ř1)

∥∥∥ ≤ δ, where

◦ C = Σ−1/2 which can be calculated via Cholesky decomposition, i.e., CTC = Σ−1,
provided that Σ is symmetric and positive definite;

◦ R̃1 =

[
S̃1

1

S1
0

S̃2
1

S2
0

. . .
S̃M1
SM0

]T
;

◦ Ř1 is an expectation of R̃1.

Notice that all of these conditions can be equivalently expressed via membership of the second-

order cone ζ2,n =

{[
u
t

] ∣∣∣∣ u ∈ Rn−1, t ∈ R, ‖u‖ ≤ t
}

.

•
[
S̃mt − Smt

]
∈ ζ2,1, ∀t = 1, 2, ..., T, ∀m = 1, 2, ...,M .

•
[
−S̃mt + S̄mt

]
∈ ζ2,1, ∀t = 1, 2, ..., T, ∀m = 1, 2, ...,M .

•
[
S̃mt − S̃mt−1(1 + rmt−1)

]
∈ ζ2,1, ∀t = 1, 2, ..., T, ∀m = 1, 2, ...,M .

•
[
−S̃mt + S̃mt−1(1 + r̄mt−1)

]
∈ ζ2,1, ∀t = 1, 2, ..., T, ∀m = 1, 2, ...,M .

•
[
C(R̃1 − Ř1)

δ

]
∈ ζ2,M+1.

6.3 Deterministic Equivalent Derivation

Consider the pricing model (6.8). Each constraint is linear in the uncertain parameters {S̃mt }
t=T,m=M
t=1,m=1 .

It can be rewritten as a sub-optimisation problem whose constraints are defined through the mem-
bership of the second-order cone. As an exemplar, consider the fourth constraint in the pricing
model (6.8). (

H0 +
M∑
m=1

T∑
t=1

Hm
t S̃

m
t

)
≤ ε, ∀{S̃mt }

t=T,m=M
t=1,m=1 ∈ U,

M∑
m=1

wmS̃
m
T ≤ K (6.9)

This is equivalent to saying that

minimise{S̃mt }
t=T,m=M
t=1,m=1

−
M∑
m=1

T∑
t=1

Hm
t S̃

m
t

subject to[
S̃mt − Smt

]
∈ ζ2,1, ∀t = 1, 2, ..., T, ∀m = 1, 2, ...,M[

−S̃mt + S̄mt
]
∈ ζ2,1, ∀t = 1, 2, ..., T, ∀m = 1, 2, ...,M[

S̃mt − S̃mt−1(1 + rmt−1)
]
∈ ζ2,1, ∀t = 1, 2, ..., T, ∀m = 1, 2, ...,M[

−S̃mt + S̃mt−1(1 + r̄mt−1)
]
∈ ζ2,1, ∀t = 1, 2, ..., T, ∀m = 1, 2, ...,M[

C(R̃1 − Ř1)
δ

]
∈ ζ2,M+1[

−
M∑
m=1

wmS̃
m
T +K

]
∈ ζ2,1



≥ H0 − ε. (6.10)

We can then use the duality in second-order cone programming (the dual problem of the sub-
optimisation problem (6.10) is a maximisation problem with no uncertain parameters {S̃mt }

t=T,m=M
t=1,m=1 )

and obtain its deterministic equivalent, which is a second-order cone programming problem.
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6.4 Incorporation of Multi-Period Returns Information

Intuitively, it may seem that we could also include in the pricing model the restriction on the
movement of assets’ prices at every stage t > 1 in the same way we do with the first-stage assets’
prices in order to prevent the pricing model from being overly conservative. However, there is a
reason of us not doing so in the previous sections. In order to impose a restriction on the first-stage
assets’ prices, we use the knowledge of the covariance matrix of assets’ returns, i.e., the sample
covariance matrix of assets’ single-period returns. Analogously, if we have precise knowledge about
covariance matrix of τ -period returns Στ , then it is also possible to impose a restriction on the
movement of assets’ prices at time τ ; this restriction is given by∥∥∥Cτ (R̃τ − Řτ )

∥∥∥ ≤ δτ , (6.11)

where
δτ is a predefined parameter whose value reflects the degree of risk-tolerance;

R̃τ is a vector given by

[
S̃1
τ

S1
0

S̃2
τ

S2
0

. . .
S̃Mτ
SM0

]T
;

Řτ is an expectation of R̃τ ;
Cτ = Σ−1/2

τ which can be obtained via Cholesky decomposition, i.e., CTτ Cτ = Σ−1
τ .

In other words, the approach requires Στ to be invertible. Hence, using sample covariance ma-
trix would need at least historical data of length M×τ , approximately. It is hardly ever the case for
anyone to have such tremendous amount of information on hand. Moreover, even if the sample co-
variance matrix is invertible, it can still be the case that the covariance matrix is poorly estimated.
The problem of few samples and many variables does not arise in only finance applications but
also in, for example, data compression (principal components analysis) and Bayesian statistics. A
considerable amount of effort from many researchers has thus been put to address this issue for over
a century. Various methods have been proposed to ensure some (application-dependent) desirable
properties, for example, invertibility, sparsity, and positive definiteness, of the estimated covari-
ance matrices. This branch of research area is typically referred to as covariance matrix estimator
in literature (see, for instance, DeMiguel, Mart́ın-Utrera and Nogales [19] and Ledoit and Wolf [28]).

The main focus of this section is to provide a conceptual idea of how to incorporate in the
pricing model multi-period returns information when the sample covariance matrix does not work
nicely, especially when the available historical data is not sufficient. In such a situation, one can
use a factor model assuming the existence of linear relationships between the random variables of
his or her interest denoted by {rvi}Vi=1 and a set of so-called factors {fi}ki=1:

rvi = ai + bi,1f1 + bi,2f2 + . . .+ bi,kfk + ei, (6.12)

where the factors can be chosen freely by problem modeller. {ai}Vi=1 and {bi}Vi=1 are constants.
{ei}Vi=1 are errors or residual terms; ei itself is a random variable and its expectation is supposed to
be zero. The error terms are usually assumed to be independent and uncorrelated with every factor.
Given that the aforementioned conditions are satisfied, assuming for simplicity that a single-factor
model (k = 1, f1 = f) is employed, we then have a new way to estimate mean and covariance
matrix as the equation (6.12) suggests

E(rvi) = ai + biE(f),

σ2
i = b2iσ

2
f + σ2

ei ,

σij = bibjσ
2
f , i 6= j,

(6.13)

where σij (σ2
i ) is the covariance between random variables rvi and rvj (variance of rvi). σ

2
f and

σ2
ei denote variances of the factor and the error respectively. As a result, factor model offers a
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significant savings of the parameters to be estimated in the covariance matrix. In general, the
parameters ai and bi are chosen so that the sum of squared errors is minimised. This concept is
the same as that of the well-known linear regression model, which outputs a straight line that best
fits the input data set.

Especially in the basket option pricing model, the random variables are assets’ τ -period cumu-
lative returns. One possible definition of the factor f is a τ -period cumulative return of the basket
itself, where the basket value at time τ is given by

M∑
m=1

wmS̃
m
τ . (6.14)

For more literature about factor model, we recommend to the reader Fan, Fan and Lv [22] and
the references therein.

6.5 Conclusions

Pricing options with multiple underliers is more challenging than pricing those with single under-
lier. Although, the formulation of the robust pricing model for multiple-underlier options is not
much different from the single-underlier option robust pricing model, we have to be careful of how
to design the uncertainty set. One naive way is to consider the movement of each asset price in-
dividually. Another approach is to also impose a restriction on the movement of the first-period
assets’ prices using the sample covariance matrix of single-period returns. Both approaches seem
to work quite fine, but they are prone to excessive conservatism. Ideally, it is desirable to impose
restrictions on the movements of assets’ prices in every period. Traditionally, one can use inverse
of the covariance matrix of τ -period cumulative returns to do so. However, relying solely on the
sample covariance matrix estimator is not practical as we would need a ridiculously large amount of
data to ensure invertibility of the sample covariance matrix. Hence, we propose a way to estimate
covariance matrices using a factor model instead. Using the duality in second-order cone program-
ming, the corresponding deterministic optimisation problem of the multiple-underlier option robust
pricing model is a second-order cone program, which again can be efficiently solved.

78



Chapter 7

Super/Sub Robust Replication

Our previous option pricing models output a portfolio whose final wealth matches most closely to
the option payoff in the worst-case sense. Subsequently, we set the initial wealth of such a portfolio
as the price of the option in order to minimise the worst-case arbitrage error. This seems to be
a good method for fairly pricing a given option. There is, however, no guarantee whether the
final wealth of the portfolio will be greater than or lower than the option payoff. This leads to
the other two categories of the pricing models: super-replication pricing model and sub-replication
pricing model (see, for example, Edirisinghe, Naik and Uppal [20] and Vayanos, Wiesemann and
Kuhn [48]). The super-replication pricing model considers only super-replicating portfolios while
the sub-replication pricing model considers only sub-replicating portfolios. The super-replicating
and the sub-replicating portfolios are defined as follows.

• Super-replicating portfolio is a portfolio which we are certain that its wealth is always greater
than or equal to the option payoff at the expiration date of the option regardless of the realised
values of the underlying securities.

• Sub-replicating portfolio is a portfolio which we are certain that its wealth is always less than
or equal to the option payoff at the expiration date of the option regardless of the realised
values of the underlying securities.

From the perspective of the option writer, a set of super-replicating portfolios is deemed to
be a safe choice to be used for pricing the option as a result of his obligation to fulfil the option
contract by paying the amount of the option payoff to the option holder in the case that the option
holder opts to exercise the option. Super-replicating portfolios create a boundary reassuring that
the amount of money the option writer has to pay is no greater than this level, and therefore it is
reasonable to price the option by determining the minimal today’s price of such portfolios to avoid
overpricing the option. Evidently, by the reverse argument, one can conclude that from the option
holder’s point of view the sub-replicating portfolios should be used to price the option.

7.1 Super-Replication Robust Pricing Model

Using the idea of super-replication, we formulate a super-replication robust pricing model for an
option with arbitrary payoff function P (S̃,K) below.

minimise{nst}Tt=0,{nBt }Tt=0,{ut}Tt=1,{vt}Tt=1
nS0S0 + nB0 B0

subject to

WT = nST S̃T + nBTBT

nSt = nSt−1 + ut, ∀t = 1, 2, ..., T

nBt = nBt−1 + vt, ∀t = 1, 2, ..., T

utS̃t + vtBt = 0, ∀t = 1, 2, ..., T

P (S̃,K) ≤WT , ∀{S̃t}Tt=1 ∈ U
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(7.1)

As before, the decision variables nSt and nBt denote the number of the underlying assets and
the number of the risk-free assets held in portfolio at time t, respectively. The initial price of the
super-replicating portfolio, which we want to minimise, is given by nS0S0 + nB0 B0 while the final
wealth of the portfolio is denoted by WT . Changes to be made to the portfolio at time t = 1, 2, ..., T
can be made through the decision variables ut and vt. The crucial part of this pricing model is in
the last constraint where we limit the space of portfolios of our interest to those with final wealth
greater than or equal to the option payoff with certainty, given that the movement of the asset
price is described by the uncertainty set U .

The super-replication robust pricing model can be simplified by eliminating some of the decision
variables by using the equality constraints. The resulting pricing model is presented below.

minimisenS0 ,nB0 ,{ut}
T−1
t=1

nS0S0 + nB0 B0

subject to

P (S̃,K) ≤

(
nS0 +

T−1∑
t=1

ut

)
S̃T +

(
nB0 −

T−1∑
t=1

utS̃t
Bt

)
BT , ∀{S̃t}Tt=1 ∈ U

(7.2)

7.2 Sub-Replication Robust Pricing Model

Similarly to the super-replication robust pricing model, a sub-replication robust pricing model can
be formulated as

maximise{nst}Tt=0,{nBt }Tt=0,{ut}Tt=1,{vt}Tt=1
nS0S0 + nB0 B0

subject to

WT = nST S̃T + nBTBT

nSt = nSt−1 + ut, ∀t = 1, 2, ..., T

nBt = nBt−1 + vt, ∀t = 1, 2, ..., T

utS̃t + vtBt = 0, ∀t = 1, 2, ..., T

P (S̃,K) ≥WT , ∀{S̃t}Tt=1 ∈ U,

(7.3)

which again can be reduced to

maximisenS0 ,nB0 ,{ut}
T−1
t=1

nS0S0 + nB0 B0

subject to

P (S̃,K) ≥

(
nS0 +

T−1∑
t=1

ut

)
S̃T +

(
nB0 −

T−1∑
t=1

utS̃t
Bt

)
BT , ∀{S̃t}Tt=1 ∈ U .

(7.4)

Moreover, the super- and the sub-replication robust pricing models can also employ linear decision
rules and piecewise linear decision rules using the method discussed in Chapter 5. In short, this
chapter accentuates that there are different ways to formulate a robust pricing model. That the
robust pricing model is adaptive and easy to construct is also a nice feature of this pricing approach,
apart from its tractability and its flexibility.
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Numerical Results

The aim of this chapter is to provide an evaluation report of the previously discussed robust option
pricing models. We divide this chapter into three major parts as follows.

• Implementation details: This section describes the details of the implementation of our
robust pricing models. Tools and machine specifications are listed in this part.

• Theoretical evaluation: In this section, we explicitly assume that asset price follows the
geometric Brownian motion. Based on the assumption, the Black-Scholes model is arguably
the most reliable pricing model because the asset price is considered as a continuous random
process, and a perfect hedge achieved by continually adjusting the replicating portfolio is
obtainable in the case of European call option and lookback call option. We then evaluate
the proposed robust pricing models by observing the closeness between the robust prices
and the Black-Scholes prices. In the case of arithmetic Asian call option, there is no closed-
form pricing formula, and thus we opt to use the approximate Black-Scholes model instead.
American put option robust pricing model, basket call option robust pricing model, and super-
and sub-replication robust pricing models are also evaluated in this section.

• Comparison with market prices: Comparison between the output prices from the pro-
posed robust pricing models and the market prices is conducted. Three types of option are
considered: American call option, American put option, and European index call option. We
note here that for the American-style options, we consider in this section options tied to a
non-dividend paying stock, and therefore the European call option pricing model can justi-
fiably be used to price the American call options. The data used in this part was extracted
from Yahoo! Finance and Google Finance on July 21, 2012.

• Discussion of the results: We end this chapter by providing an explanation for the figures
obtained from the experiments.

8.1 Implementation Details

Every robust pricing model is implemented as a Matlab function. Optimisation problem solvers
used in the experiment are LINPROG and SDPT3.

• LINPROG is a Matlab built-in function which is used to solve linear programs.

• SDPT3 is an external Matlab software package for solving semidefinite programs. In our
experiment, it is also used for solving second-order cone programs as well. Further information
about this software can be reviewed from Toh, Todd and Tütüncü [44] and Toh, Tütüncü
and Todd [45].

Apart from the solvers, our implementation relies on YALMIP, a Matlab toolbox offering a
language for modelling optimisation problems. In simple cases, YALMIP itself is capable of for-
mulating and solving the robust counterpart problems (see Löfberg [32]); however, we do not use
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this functionality as it is not very straightforward to do so with our pricing problems. For further
reference regarding this topic, we recommend Löfberg [31].

All numerical experiments were conducted on a 2.30GHz, Intel Core i5-2410M CPU machine
with 4GB of RAM.

8.2 Theoretical Evaluation

There are six parts in this section evaluating six different categories of the proposed pricing models.
In this section, assets’ prices are assumed to follow the geometric Brownian motion with parameters
listed in Table 8.1, where the symbols S0, µ, and σ denote current asset price, expected growth
rate of the logarithmic price, and volatility of return of each asset, respectively.

Table 8.1: Asset parameters

Asset I Asset II

S0 £100 £100
µ 12% 7%
σ 15% 45%

All options considered in this section have an expiration date one year from now. The one
year’s time is divided into twelve periods (T ), each of which is one-month long (p). The annualised
risk-free rate of return rf is assumed to be fixed at 5%, and the strike price K varies between £60
and £140.

Table 8.2: Option parameters

Option

p 1/12
T 12
rf 5%
K [£60,£140]

When considering options with single underlier, we use Asset I in Table 8.1 as a model asset.
Asset II is used only when evaluating the basket option pricing model. In every experiment, all
risk-aversion parameters are assigned to a single value c:

Γ = c, (8.1)

Γt = c, ∀t = 1, 2, ..., T, (8.2)

δ = c, (8.3)

where the last one is used only when the basket option pricing model is evaluated.
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8.2.1 European Call Option Pricing Model

We evaluate three European call option pricing models: the constant decision rule pricing model
(CON-ECO), the linear decision rule pricing model (LIN-ECO), and the piecewise linear decision
rule pricing model (PIE-ECO), assuming that the options from Table 8.2 are tied to the Asset I
listed in Table 8.1. The results are presented in Table 8.3 and Table 8.4. In the sequel, the column
name Error is short for minimum worst-case arbitrage error, i.e., the optimal value of the objective
function ε. We also report the average time taken to price an option using each of the proposed
pricing models in both tables. As an alternative, we also present the results graphically in Figure
8.1 and Figure 8.2.

Table 8.3: Evaluation of the European call option pricing models (Γ = Γt = 1)

K Black-Scholes Formula CON-ECO LIN-ECO PIE-ECO
Price Error Price Error Price Error

60 42.926 42.920 0.000 42.920 0.000 42.920 0.000
70 33.426 33.407 0.000 33.407 0.000 33.407 0.000
80 24.078 23.894 0.000 23.894 0.000 23.894 0.000
90 15.467 14.380 0.000 14.380 0.000 14.380 0.000
100 8.592 5.727 1.349 5.727 1.349 5.727 1.349
110 4.076 0.938 4.006 0.938 4.006 0.938 4.006
120 1.660 0.000 4.015 0.000 4.015 0.000 4.015
130 0.590 0.000 0.488 0.000 0.488 0.000 0.488
140 0.186 0.000 0.000 0.000 0.000 0.000 0.000

Average time taken (s) 0.0946 3.0682 5.0048

Table 8.4: Evaluation of the European call option pricing models (Γ = Γt = 2)

K Black-Scholes Formula CON-ECO LIN-ECO PIE-ECO
Price Error Price Error Price Error

60 42.926 42.920 0.000 42.920 0.000 42.920 0.000
70 33.426 33.407 0.000 33.407 0.000 33.407 0.000
80 24.078 23.894 0.000 23.894 0.000 23.894 0.000
90 15.467 15.814 2.931 15.814 2.931 15.814 2.931
100 8.592 9.656 6.261 9.656 6.261 9.656 6.261
110 4.076 4.883 8.134 4.883 8.134 4.883 8.134
120 1.660 1.495 8.550 1.495 8.550 1.495 8.550
130 0.590 0.000 7.675 0.000 7.675 0.000 7.675
140 0.186 0.000 5.191 0.000 5.191 0.000 5.191

Average time taken (s) 0.1039 2.9569 4.5731
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Figure 8.1: Comparison between CON-ECO(left)/LIN-ECO(right) and the Black-Scholes model

Figure 8.2: Comparison between PIE-ECO and the Black-Scholes model
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8.2.2 Asian Call Option Pricing Model

The Asian call options of our interest are those with payoff functions defined using an arithmetic
average function. Three pricing models are evaluated here including the constant decision rule
pricing model (CON-ACO), the linear decision rule pricing model (LIN-ACO), and the piecewise
linear decision rule pricing model (PIE-ACO). In the experiment, it is assumed that the options
from Table 8.2 are tied to the Asset I listed in Table 8.1. The results are presented in Table 8.5
and Table 8.6 below. The numerical data is also displayed in Figure 8.3 and Figure 8.4.

Table 8.5: Evaluation of the Asian call option pricing models (Γ = Γt = 1)

K Black-Scholes Formula1 CON-ACO LIN-ACO PIE-ACO
Price Error Price Error Price Error

60 40.467 40.669 0.000 40.669 0.000 40.669 0.000
70 30.955 31.156 0.000 31.156 0.000 31.156 0.000
80 21.448 21.643 0.000 21.643 0.000 21.643 0.000
90 12.166 12.130 0.000 12.130 0.000 12.130 0.000
100 4.698 3.722 1.640 3.722 1.640 3.722 1.640
110 1.050 0.000 2.749 0.000 2.749 0.000 2.749
120 0.130 0.000 0.000 0.000 0.000 0.000 0.000
130 0.010 0.000 0.000 0.000 0.000 0.000 0.000
140 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Average time taken (s) 0.0608 2.9625 4.6281

1 To the best of our knowledge, unlike European call options, there is no analytical
closed-form formula available for pricing Asian call options defined in terms of
arithmetic averages even if the price of the underlying asset follows the geometric
Brownian motion; however, there is an approximate formula suggested in Chapter
24 of Hull [26].

Table 8.6: Evaluation of the Asian call option pricing models (Γ = Γt = 2)

K Black-Scholes Formula CON-ACO LIN-ACO PIE-ACO
Price Error Price Error Price Error

60 40.467 40.669 0.000 40.669 0.000 40.669 0.000
70 30.955 31.156 0.000 31.156 0.000 31.156 0.000
80 21.448 21.643 0.000 21.643 0.000 21.643 0.000
90 12.166 12.751 1.638 12.751 1.638 12.751 1.638
100 4.698 6.390 4.778 6.390 4.778 6.390 4.778
110 1.050 2.099 5.742 2.099 5.742 2.099 5.742
120 0.130 0.000 4.564 0.000 4.564 0.000 4.564
130 0.010 0.000 1.156 0.000 1.156 0.000 1.156
140 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Average time taken (s) 0.0828 3.0042 4.5493
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Figure 8.3: Comparison between CON-ACO(left)/LIN-ACO(right) and the Black-Scholes model

Figure 8.4: Comparison between PIE-ACO and the Black-Scholes model
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8.2.3 Fixed Strike Lookback Call Option Pricing Model

We consider here only fixed strike lookback call options. Again, the pricing models implemented
using constant decision rules (CON-LCO), linear decision rules (LIN-LCO), and piecewise linear
decision rules (PIE-LCO) are evaluated. In the following, it is assumed that the options from Table
8.2 are tied to the Asset I listed in Table 8.1. The results from this experiment are shown in Table
8.7 and Table 8.8, which correspond to Figure 8.5 and Figure 8.6 respectively.

Table 8.7: Evaluation of the lookback call option pricing models (Γ = Γt = 1)

K Black-Scholes Formula2 CON-LCO LIN-LCO PIE-LCO
Price Error Price Error Price Error

60 52.937 48.370 6.707 48.370 6.707 48.370 6.707
70 43.425 38.857 6.707 38.857 6.707 38.857 6.707
80 33.912 29.343 6.707 29.343 6.707 29.343 6.707
90 24.400 19.830 6.707 19.830 6.707 19.830 6.711
100 14.888 10.317 6.707 10.317 6.707 10.317 6.707
110 7.233 4.037 6.539 4.037 6.539 3.969 6.602
120 2.999 0.000 4.015 0.000 4.015 0.000 4.017
130 1.079 0.000 0.488 0.001 0.489 0.096 0.554
140 0.344 0.000 0.000 0.000 0.000 0.000 0.000

Average time taken (s) 13.2395 13.1471 30.2902

2 Similarly to the European call options, an exact formula for pricing lookback call
options is available. It can be found in, for example, Chapter 24 of Hull [26].

Table 8.8: Evaluation of the lookback call option pricing models (Γ = Γt = 2)

K Black-Scholes Formula CON-LCO LIN-LCO PIE-LCO
Price Error Price Error Price Error

60 52.937 65.332 28.903 56.051 15.084 56.051 15.085
70 43.425 46.538 15.084 46.538 15.084 46.538 15.084
80 33.912 37.025 15.084 37.025 15.084 37.025 15.085
90 24.400 27.511 15.084 27.511 15.084 27.511 15.084
100 14.888 17.998 15.084 17.998 15.084 17.998 15.084
110 7.233 9.899 14.459 9.899 14.459 9.899 14.459
120 2.999 6.325 11.712 6.325 11.712 6.179 12.047
130 1.079 1.257 8.287 1.256 8.287 1.239 8.288
140 0.344 0.000 5.191 0.000 5.191 0.000 5.194

Average time taken (s) 13.9152 12.7267 29.2439
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Figure 8.5: Comparison between CON-LCO(left)/LIN-LCO(right) and the Black-Scholes model

Figure 8.6: Comparison between PIE-LCO and the Black-Scholes model
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8.2.4 American Put Option Pricing Model

We perform experiment to price American put options using our pricing models, which consist of
the constant decision rule pricing model (CON-APO), the linear decision rule pricing model (LIN-
APO), and the piecewise linear decision rule pricing model (PIE-APO). Assuming that the options
from Table 8.2 are tied to the Asset I listed in Table 8.1, the obtained results are shown in Table
8.9 and Table 8.10. Alternatively, the reader can view the results from Figure 8.7 and Figure 8.8.

Table 8.9: Evaluation of the American put option pricing models (Γ = Γt = 1)

K Binomial Model3 CON-APO LIN-APO PIE-APO
Price Error Price Error Price Error

60 0.000 0.000 0.000 0.000 0.000 0.000 0.000
70 0.010 0.000 0.000 0.000 0.000 0.000 0.000
80 0.225 0.000 0.000 0.000 0.000 0.000 0.000
90 1.259 0.000 0.000 0.000 0.000 0.000 0.000
100 4.331 1.416 2.221 1.416 2.221 1.416 2.221
110 10.577 6.819 4.892 6.819 4.892 6.819 4.892
120 20.000 15.746 4.465 15.749 4.468 15.746 4.465
130 30.000 26.500 2.972 26.500 2.972 26.500 2.972
140 40.000 36.231 3.201 36.231 3.201 36.231 3.201
Average time taken (s) 1.6555 9.4339 17.8699

3 To the best of our knowledge, there is no tractable analytical formula for
pricing American put options due to the flexibility the option holder has in
exercising the option. We then compare the output prices from our models
with the prices from the binomial options pricing model instead.

Table 8.10: Evaluation of the American put option pricing models (Γ = Γt =
2)

K Binomial Model CON-APO LIN-APO PIE-APO
Price Error Price Error Price Error

60 0.000 0.000 0.000 0.000 0.000 0.000 0.000
70 0.010 0.000 0.000 0.000 0.000 0.000 0.000
80 0.225 0.000 0.000 0.000 0.000 0.000 0.000
90 1.259 1.433 2.931 1.442 2.951 1.433 2.931
100 4.331 4.788 6.261 4.788 6.261 4.788 6.261
110 10.577 9.567 8.166 9.567 8.166 9.567 8.166
120 20.000 15.971 8.723 15.971 8.723 15.971 8.723
130 30.000 24.245 7.861 24.245 7.861 24.245 7.861
140 40.000 34.823 5.447 34.824 5.447 34.824 5.447
Average time taken (s) 2.0532 9.3561 18.4796
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Figure 8.7: Comparison between CON-APO(left)/LIN-APO(right) and the binomial options pric-
ing model

Figure 8.8: Comparison between PIE-APO and the binomial options pricing model
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8.2.5 Basket Call Option Pricing Model

In order to demonstrate that the idea of the proposed robust option pricing model can be applied
to options linked to multiple underliers as well as those tied to only one underlier, we develop a
robust pricing model for basket call options using constant decision rule approach (CON-BKT) and
then evaluate it. In the experiment, we consider equal weighted basket options with details listed
in Table 8.2, and it is assumed that they are linked to two underlying assets: Asset I and Asset II
from Table 8.1. We further assume that the only reliable source of information of the movements
across assets’ prices is a sample covariance matrix of single-period returns. Such information is then
incorporated in the pricing model to prevent the pricing model from being overly conservative. It
is assumed that the correlation between assets’ single-period returns is ρ = 0.5. The results of the
experiment are shown in Table 8.11 and Figure 8.9.

Table 8.11: Evaluation of the basket call op-
tion pricing model

K CON-BKT CON-BKT
(Γ = Γt = δ = 1) (Γ = Γt = δ = 2)
Price Error Price Error

60 42.920 0.000 42.920 0.000
70 33.407 0.000 34.843 3.074
80 23.894 0.000 28.103 7.282
90 15.902 3.246 22.021 10.798
100 9.706 6.409 16.598 13.621
110 4.933 8.077 11.834 15.753
120 1.582 8.250 7.728 17.191
130 0.000 7.031 4.281 17.937
140 0.000 4.219 1.493 17.992

Figure 8.9: Basket call option pricing model

Alternatively, it is also possible to carry out the experiment on the basket call option robust
pricing model in a different way by fixing the strike price K and running different values for the
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current assets’ prices S0 instead of fixing the current assets’ prices while varying the strike price.

Figure 8.10 displays the output prices when we fix the strike price at £100, model the price
of each of the underlying assets as a value from the range [£60,£140], and set all risk-aversion
parameters to 0.5. Figure 8.11 presents the corresponding minimum worst-case arbitrage errors.

Figure 8.10: Output prices from the basket call option robust pricing model when strike price is
fixed

Figure 8.11: Minimum worst-case arbitrage errors from the basket call option robust pricing model
when strike price is fixed
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8.2.6 Super- and Sub-Replication Pricing Models

In this part, we implement the super-replication (SUP-ECO) and the sub-replication (SUB-ECO)
robust pricing models for European call options. The model is implemented using piecewise linear
decision rules expecting that it should output the portfolio matching most closely to the option
payoff as compared with using constant decision rules and linear decision rules. As usual, we
consider the options described by the parameters given in Table 8.2 which are assumed to be linked
to the Asset I from Table 8.1. Results from the experiment are illustrated in Table 8.12 and can
be viewed from Figure 8.12.

Table 8.12: Evaluation of the European call option super- and sub-replication robust pricing
models

K Black-Scholes Formula SUP-ECO SUB-ECO
Γ = Γt = 1 Γ = Γt = 2 Γ = Γt = 1 Γ = Γt = 2

60 42.926 42.920 42.920 42.920 42.920
70 33.426 33.407 33.407 33.407 33.407
80 24.078 23.894 23.894 23.894 23.894
90 15.467 14.380 18.602 14.380 14.381
100 8.592 7.010 15.611 4.867 4.867
110 4.076 4.749 12.621 0.000 0.000
120 1.660 2.487 9.630 0.000 0.000
130 0.590 0.225 6.639 0.000 0.000
140 0.186 0.000 3.648 0.000 0.000

Figure 8.12: Comparison between SUP-ECO/SUB-ECO and the Black-Scholes model

We also use this part in order to show that the proposed robust pricing model is flexible enough
to price various other options. For example, we can develop a robust pricing model to price a
butterfly spread option whose payoff is given by

P = (ST − 90)+ − 2 (ST − 100)+ + (ST − 110)+ . (8.4)

93



Chapter 8. Numerical Results

The butterfly spread option pricing model is evaluated assuming that the underlying asset is the
Asset I from Table 8.1 with current price S0 ranging from £60 to £140 instead of a fixed value of
£100. All risk-aversion parameters are set to 0.5. We present the experiment result in Figure 8.13.

Figure 8.13: Butterfly spread option super- and sub-replication robust pricing models

8.3 Comparison with Market Prices

In this section, we present the numerical comparisons between the output prices of our pricing
models and the observed market prices. We divide this section into two parts: comparison with
market stock options and comparison with market index options. The data used in the experiment
was collected from Yahoo! Finance and Google Finance on July 21, 2012. We note here that
we use one-year LIBOR (London Interbank Offered Rate) rate as a reference risk-free rate in all
experiments.

8.3.1 Comparison with Market Stock Options

We consider American-style options with RIMM (Research In Motion Limited) as an underlying
stock. RIMM is a non-dividend paying stock, and therefore we can use the European call option
pricing model to price the call options. American put options are of course priced by the American
put option pricing model. The initial stock price is $6.78. We use the pricing models developed
based on the piecewise linear decision rules to evaluate the closeness between the robust pricing
paradigm and the observed market prices. Evaluation of the options with strike prices between 4
and 12 which expire on October 20, 2012 (T = 13 weeks) is reported in Table 8.13 and Table 8.14.
Note that we use one year historical data for parameter estimation.
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Consider first a list of American call options linked to the stock RIMM and value them by
using the piecewise linear decision rule pricing model (PIE-ECO). In Table 8.13, we present the
obtained results. The underlined entries in Table 8.13 (and also Table 8.14) are the ones closest to
the corresponding observed market prices.

Table 8.13: Comparison between the European call option pricing model and the observed market
prices

K Market Price PIE-ECO
Γ = Γt = 1.0 Γ = Γt = 1.5 Γ = Γt = 2.0 Γ = Γt = 2.5 Γ = Γt = 3.0

4 3.10 2.527 2.570 2.707 2.874 3.050
5 2.02 1.267 1.573 1.845 2.095 2.327
6 1.29 0.337 0.793 1.141 1.438 1.702
7 0.80 0.000 0.230 0.595 0.903 1.174
8 0.48 0.000 0.000 0.208 0.490 0.744
9 0.27 0.000 0.000 0.000 0.199 0.411
10 0.17 0.000 0.000 0.000 0.030 0.176
11 0.11 0.000 0.000 0.000 0.000 0.039
12 0.09 0.000 0.000 0.000 0.000 0.000

For American put options, they can also be priced by the piecewise linear decision rule pricing
model (PIE-APO). The results are given in Table 8.14.

Table 8.14: Comparison between the American put option pricing model and the observed market
prices

K Market Price PIE-APO
Γ = Γt = 1.0 Γ = Γt = 1.5 Γ = Γt = 2.0 Γ = Γt = 2.5 Γ = Γt = 3.0

4 0.14 0.000 0.000 0.000 0.084 0.259
5 0.29 0.000 0.000 0.061 0.302 0.534
6 0.59 0.000 0.097 0.356 0.642 0.906
7 1.08 0.310 0.536 0.808 1.104 1.375
8 1.73 1.209 1.209 1.417 1.689 1.943
9 2.40 2.207 2.207 2.207 2.395 2.607
10 3.25 3.206 3.206 3.206 3.224 3.370
11 4.39 4.204 4.204 4.204 4.204 4.229
12 5.00 5.203 5.203 5.203 5.203 5.190

Alternatively, the numbers appearing in Table 8.13 and Table 8.14 are also presented graphically
in Figure 8.14 and Figure 8.15 respectively.
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Figure 8.14: RIMM call options priced by PIE-ECO

Figure 8.15: RIMM put options priced by PIE-APO
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8.3.2 Comparison with Market Index Options

In this part, we consider index call options. Their payoffs are determined by an index called 1/100
Dow Jones Industrial Average (DJIA). The value of DJIA is a sum of the values of 30 large stocks
divided by a common divisor called Dow Divisor, so it is an equal weighted index. Dow Divisor
is periodically updated in order to keep the index value consistent after affected by certain events,
for example, stock splits or dividend payouts. The current value of the 1/100 DJIA is $128.23 as
of the date of the experiment.

Two experiments are performed to compare the basket call option pricing models and the ob-
served market prices. The first experiment relies on the use of the sample covariance matrix of
stocks’ single-period returns to impose a restriction on the first-stage prices of the index’s compo-
nents. As described before that using sample covariance matrices does not generally perform well
when we want to impose other restrictions on the movement of stocks’ prices at other stages apart
from the first stage (t = 1), the second experiment is conducted by using a single-factor model for
covariance matrix estimation rather than using a sample covariance matrix. The factor chosen to
estimate a covariance matrix of τ -period cumulative returns is τ -period cumulative return of the
index itself. The covariance matrix of τ -period cumulative returns is used to impose a restriction
on the movement of stocks’ prices at time τ . We denote by CON-BKT-SAMPLE the basket call
option pricing model which takes as input the sample covariance matrix of single-period returns,
and denote by CON-BKT-FACTOR the basket call option pricing model which takes as input the
covariance matrices of τ -period cumulative returns, 1 ≤ τ ≤ T , estimated by the factor model.

Valuation of the options with strike prices between $120 and $140 that expire on December
22, 2012 (T = 22 weeks) performed using the first (CON-BKT-SAMPLE) and the second (CON-
BKT-FACTOR) approaches is reported in Table 8.15 and Table 8.16, respectively. The underlined
entries are again the ones closest to the corresponding observed market prices. We also present the
experiment results in Figure 8.16 and Figure 8.17 as well. In this experiment, three year historical
data is used for parameter estimation.

Table 8.15: Comparison between the basket call option pricing model (sample covariance matrix
approach) and the observed market prices

K Market Price CON-BKT-SAMPLE
Γ = Γt = 1.0 Γ = Γt = 1.5 Γ = Γt = 2.0 Γ = Γt = 2.5 Γ = Γt = 3.0

120 11.400 8.950 11.081 13.224 15.359 17.474
122 9.000 7.545 9.814 12.026 14.203 16.346
124 6.780 6.245 8.616 10.880 13.088 15.252
126 5.830 5.050 7.488 9.786 12.014 14.192
128 4.700 3.959 6.430 8.744 10.981 13.166
130 3.650 2.974 5.441 7.753 9.990 12.174
132 2.650 2.093 4.521 6.814 9.039 11.215
134 2.000 1.317 3.672 5.928 8.130 10.291
136 1.710 0.647 2.892 5.092 7.261 9.400
138 1.170 0.081 2.181 4.309 6.434 8.543
140 0.600 0.000 1.540 3.578 5.648 7.720

97



Chapter 8. Numerical Results

Table 8.16: Comparison between the basket call option pricing model (factor model approach) and
the observed market prices

K Market Price CON-BKT-FACTOR
Γ = Γt = 1.0 Γ = Γt = 1.5 Γ = Γt = 2.0 Γ = Γt = 2.5 Γ = Γt = 3.0

120 11.400 8.770 8.770 9.375 10.483 11.563
122 9.000 6.779 6.779 7.996 9.177 10.306
124 6.780 4.788 5.369 6.715 7.950 9.115
126 5.830 2.797 4.126 5.532 6.803 7.992
128 4.700 1.268 3.014 4.448 5.736 6.935
130 3.650 0.291 2.030 3.462 4.748 5.946
132 2.650 0.000 1.177 2.574 3.839 5.024
134 2.000 0.000 0.453 1.784 3.011 4.170
136 1.710 0.000 0.000 1.093 2.262 3.382
138 1.170 0.000 0.000 0.500 1.592 2.661
140 0.600 0.000 0.000 0.005 1.002 2.008

Figure 8.16: 1/100 DJIA call options priced by CON-BKT-SAMPLE
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Figure 8.17: 1/100 DIJA call options priced by CON-BKT-FACTOR

8.4 Discussion of the Results

In this section, we analyse the figures obtained from our experiments. Despite being proved to be
superior (or not inferior, to be exact) in terms of optimality to the constant decision rule pricing
model, the piecewise linear decision rule pricing model and the linear decision rule pricing model
exhibit no noticeable improvement as they appear to be unable to reduce the minimum worst-case
arbitrage error ε∗, i.e., the difference between the final wealth level of the output portfolio and the
option payoff. It is even seen in some cases that the constant decision rule pricing model outputs
a slightly smaller ε∗ as compared with the linear decision rule pricing model and the piecewise
linear decision rule pricing model. This is possible because, as noted by Tütüncü, Toh and Todd
[46], the SDPT3 solver has numerical difficulties solving some optimisation problems. We have also
tried to reduce the value of ε∗ by increasing the flexibility of the employed decision rules by using
multiple-breakpoint piecewise linear decision rules and non-axial piecewise linear decision rules;
however, the optimal objective value still remains roughly the same4.

That the constant decision rule pricing model, the linear decision rule pricing model, and the
piecewise linear decision rule pricing model seem to output similar replicating portfolios suggests
that the robust pricing paradigm proposes a dynamic hedging strategy which is radically differ-
ent from the classic delta-hedging strategy. This is because, using the robust pricing model, the
knowledge of asset’s prices in subsequent periods appears to have no significant effect to the port-
folio adjustment, i.e., recourse possibilities are of no use, while the delta-hedging strategy heavily
relies on the knowledge of such. Specifically, consider a European call option with single underlier
and assume that its price follows the geometric Brownian motion. Delta-hedging strategy suggests
continuously rebalancing a portfolio in such a way that the number of underliers held in portfolio
at time t is updated constantly and given by

4Explanation of this part is not included in the thesis as it is merely an extension of the piecewise linear decision
rule pricing model. We recommend Georghiou, Wiesemann and Kuhn [23] to the reader interested in this topic.
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∆ = φ(d1), d1 =
log(S/K) +

(
r + 1

2σ
2
)

(T − t)
σ
√
T − t

, (8.5)

where φ is the standard normal distribution. An explanation of each variable is provided in Section
2.2.2, where we review the Black-Scholes model, since continuous delta-hedging is a key concept
to derive the Black-Scholes formula. For more details about delta-hedging, we recommend, for
example, Higham [25] and Hull [26].

In the case of European call options, from the experiments we encountered, the portfolio sug-
gested by the robust pricing paradigm behaved similar to static hedging strategy especially when
the option considered was deep in the money or deep out of the money. In several cases, the model
decided on the portfolio’s components here and now and often made only negligible changes to the
portfolio in subsequent periods. This can be explained by the following argument. Consider the
final wealth of the portfolio which is given by

WT =

(
nS0 +

T−1∑
t=1

ut

)
S̃T +

(
nB0 −

T−1∑
t=1

utS̃t
Bt

)
BT . (8.6)

Rearranging terms in the equation, we have

WT = nB0 BT +

(
T−1∑
t=1

−utBT
Bt

S̃t

)
+

(
nS0 +

T−1∑
t=1

ut

)
S̃T . (8.7)

A set of all possible values of the final portfolio wealth for a fixed path of asset price ς = {S̃t}Tt=1

is thus given by

$ς =

{
W ∈ R

∣∣∣∣W = nB0 BT +

(
T−1∑
t=1

−utBT
Bt

S̃t

)
+

(
nS0 +

T−1∑
t=1

ut

)
S̃T ,

nS0 , n
B
0 ,u1, u2, . . . , uT−1 ∈ R

}
.

(8.8)

Observe that the term W is a summation of T +1 terms, and there are T +1 degrees of freedom:
nS0 , n

B
0 , and {ut}T−1

t=1 . It is therefore possible to conclude that $ς is equivalent to

$′ς =

{
W ∈ R

∣∣∣∣W = π0 +

T∑
t=1

πtS̃t, π0, π1, . . . , πT ∈ R
}
. (8.9)

Hence, an alternate way of interpreting the robust pricing model is to determine a set of optimal

decision variables {π∗t }Tt=0 such that W ∗ = π∗0 +
T∑
t=1

π∗t S̃t matches most closely to the option payoff

in the worst-case sense.

Indeed, for a European call option, a best matching replicating portfolio in the worst-case sense
is likely to have π∗t ≈ 0, ∀t, 1 ≤ t ≤ T − 1, because its payoff, which is given by (ST −K)+, does
not depend on {S̃t}T−1

t=1 . Having non-zero π∗t , 1 ≤ t ≤ T − 1, might just add an extra uncertain
element contributing to the greater difference between the option payoff and the final portfolio
wealth in some scenarios. In the case that portfolio adjustments are noticeable, they still usu-
ally occur in early stages, far from option expiry date, which probably results from a degree of
uncertainty in the asset’s price being enlarged as time progresses. The argument also seems to
be supported by the Asian call option pricing model, where the output portfolio is evidently dy-
namically rebalanced, because payoffs of Asian call options depend on the whole price path {S̃t}Tt=1.
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Furthermore, the equivalence between $ς and $′ς also explains why the European call option
robust pricing model and the Asian call option robust pricing model perform well and produce the
results similar to the Black-Scholes formula, especially when the option is currently deep in the
money or deep out of the money. In the case that the option considered is deep out of the money,
it may be deemed worthless with certainty, and the output portfolio of the robust pricing model
is thus likely given by π∗0 = π∗1 = . . . = π∗T = 0. For a European call option that is deep in the
money, the European call option robust pricing model has a tendency to output a portfolio given
by π∗0 = −K, π∗1 = π∗2 = . . . = π∗T−1 = 0, and π∗T = 1. Similarly, for an Asian call option which is
deep in the money, the Asian call option robust pricing model tends to output a portfolio given by
π∗0 = −K and π∗1 = π∗2 = . . . = π∗T = 1/T .

Unfortunately, a similar argument cannot be applied to a lookback call option whose payoff is
determined by the optimal asset price and an American put option where its holder has a flexible
exercising policy. The complexity of their payoffs makes the replicating portfolio more subtle. It is
seen from the experiment results that, using the robust pricing framework, a perfect hedge cannot
be obtained when an option of these two types is deep in the money. It can be further observed
that the robust pricing model tends to underprice an American put option as compared with the
binomial options pricing model. This is expected since the optimal exercising strategy is not con-
sidered in the robust pricing model as it solely tries to minimise arbitrage error in the worst-case
scenario. Believing that the price of the underlying asset will rise (positive growth rate), Figure
8.8 presents a worth discussing result. When the strike price K is far below the current asset
price S0, i.e., the American put option considered is deep out of the money, setting risk-aversion
parameters (Γ, {Γt}Tt=1) to one and setting them to two agree to price the option at around zero,
i.e., the option is considered worthless. When around-the-money options are considered, the larger
the risk-aversion parameters are, the higher the output price becomes. This phenomenon is due to
the increased probability of the option eventually becoming profitable. However, if the option cur-
rently is (slightly) in the money, setting risk-aversion parameters to high values seems to decrease
the output price, as the bigger the uncertainty set is, the more probable the option will become
less profitable.

Result from the experiment on the super- and the sub-replication robust pricing models is in
line with our intuition about the market. For a particular derivative, namely option contract, its
price from the seller’s (option writer’s) perspective should be higher than that from the buyer’s
perspective. As confirmed by the example of the butterfly spread option, the robust pricing model
can also be used to price a variety of options. In fact, the idea of minimising worst-case arbitrage
error ε is simply denoted by a constraint

|P (S̃,K)−WT | ≤ ε. (8.10)

If this constraint can be equivalently replaced by a finite set of (uncertain) linear constraints, then
the robust pricing model can be readily constructed for the pricing purpose. For European options
and Asian options, the sizes of the linear programs corresponding to the robust pricing problem
grow linearly with the number of time periods. For lookback options and American options, this
number grows quadratically with the number of time periods. Such polynomial growth rates en-
courage the problem modeller to imitate continuous-time model via discretisation.

Although basket call option and European call option have a very similar structure. From our
experiment, it seems like the robust pricing model had difficulty pricing an option with multiple
underlying assets. When Γ = Γt = 2, in the case of European call option the highest value of
ε∗ from Table 8.4 is 8.550 while in the case of basket call option the highest ε∗ from Table 8.11
is 17.992. We claim that this undesirable figure is a result of a well-known shortcoming of the
robust optimisation, that is, the extreme conservatism. However, this problem is lessened after the
introduction of a factor model which we use for covariance matrix estimation (see Table 8.15 and
Table 8.16).
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Let Γ∗ be the value of the risk-aversion parameters that makes the model’s output price, when
Γ = Γ1 = Γ2 = . . . = ΓT = Γ∗, equal to the corresponding market price. From the comparison with
market prices, it can be observed that Γ∗ should be around 2 and 2.5. When the option considered
has no intrinsic value and is deep out of the money, it may be valued by the proposed robust pricing
model with such level of risk-aversion at zero; however, the market price is not exactly zero because
it is still possible for the underlying asset’s price to make a major move resulting in the option
becoming lucrative. This situation may not be accounted by the uncertainty set associated with
the pricing model. Γ∗ for deep-out-of-the-money options should thus be unusually high. The same
goes for deep-in-the-money options, which might be because of their being appealing to a lot of
investors. Indeed, options which are deep in the money can help investors enhance their portfolios.
Option trading strategies can be reviewed from many informative sources, for example, Lowell [33].

Additionally, from the comparison between the European call option robust pricing model and
the market prices of the RIMM American call options, Γ∗ of the European call option robust pricing
model should approximately be around 2.3. Besides, from the comparison with the market prices of
the RIMM American put options, Γ∗ of the American put option robust pricing model is expected
to be close to 2.5. That Γ∗ of the American put option robust pricing model is higher than that of
the European call option robust pricing model is anticipated since the American put option robust
pricing model appears to be prone to underpricing. Determining the appropriate values of risk-
aversion parameters is not a completely trivial task. Consequently, we recommend the reader to
carry out an empirical experiment to determine Γ∗ for a particular option before using our proposed
robust pricing models in order to more reasonably adjust the risk-aversion parameters.

8.5 Conclusions

In this chapter, we evaluate the proposed robust pricing model for several types of option: European
call option, Asian call option, fixed strike lookback call option, and American put option. Also,
we show that the robust pricing model can be used to price other options, such as butterfly spread
option. The output price of the European call option robust pricing model and that of the Asian
call option robust pricing model are fairly close to the corresponding Black-Scholes prices, which
confirms the reliability of the proposed robust pricing model. Moreover, by adjusting the model’s
risk-aversion parameters appropriately, the output price of the robust pricing model coincides with
the observed market price. Such values of the risk-aversion parameters should be used as a bottom
line for the future employment of the robust pricing model. For options with multiple underliers,
we suggest using the factor model to remedy the conservatism issue of the robust optimisation.
This method produces a very nice result as confirmed by our experiment. Last but not least, we
show that there is not a unique way to formulate a pricing model as an application of the robust
optimisation. Specifically in this thesis, we propose three ways to formulate the pricing problem:
the minimum-arbitrage robust pricing model, the super-replication robust pricing model, and the
sub-replication robust pricing model. All of them are evaluated; tabular and graphical evaluation
results are reported in this chapter.
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Conclusions

We started this work by reviewing theories and applications of both deterministic optimisation
and optimisation under uncertainty. Many classes of deterministic convex optimisation problems
can be efficiently solved by, for example, interior point method; however, they are not practical
for a number of real world applications as the deterministic optimisation is not specially designed
for tackling uncertain factors that can arise in the optimisation problems. There are two main
competing approaches, namely the stochastic programming approach and the robust optimisation
approach, to tackle the optimisation problems which are subject to uncertainty. Each of them
has its own advantages and disadvantages. In the context of option pricing, Chen [15] proposed a
robust optimisation model that can be used to price several options, for example, European call op-
tions and Asian call options. The concept behind his model is that he translated the arbitrage-free
assumption to an arbitrage opportunity minimisation problem. One nice feature of Chen’s model
is that it requires fewer assumptions about the market as compared with other famous approaches,
for example, the Black-Scholes model. The model also inherits the tractability of the robust linear
optimisation. Chen showed that typically the size of the deterministic linear program for option
pricing grows polynomially with the number of time periods, which is considerably slower than the
binomial options pricing model, which suffers from the exponential growth rate.

In the option pricing problem, the uncertain parameters are the future prices of the underlying
asset(s). In the model that Chen proposed, the uncertainty set describing these uncertain parame-
ters is designed as a polyhedron. This choice of uncertainty set enabled him to derive a deterministic
equivalent of a particular robust pricing problem using duality in linear programming. We identified
that there are unnecessary steps in the derivation of Chen’s model. The correction we made leads to
a new formulation of the robust pricing problem, which welcomes further analysis and improvement.

Motivated by the success of linear decision rules and piecewise linear decision rules illustrated
in Georghiou, Wiesemann and Kuhn [23] and Georghiou, Wiesemann and Kuhn [24], we employ
these two types of decision rules in the proposed robust pricing model. Although to the best of our
knowledge, to date, there is no equivalent deterministic formulation of the robust pricing model
whose decision variables are modelled by the linear decision rules or the piecewise linear decision
rules, we successfully derive the approximate deterministic version, which is a semidefinite program,
of the robust counterpart. We also establish theories reassuring that, after employing the linear
decision rules or the piecewise linear decision rules, the arising robust pricing model performs at
least as good as the original robust pricing model with no embedded decision rules, i.e., the one
with every decision variable modelled by a constant decision rule, in terms of the optimality of the
generated solution. The experiment however detected no noticeable improvement, which made us
claim that the robust pricing paradigm suggests a portfolio rebalancing strategy differently from
the classic delta-hedging model.

In the case that the option considered is tied to more than one underlier, we encountered a
situation where the robust pricing model was overly conservative. This is expected since in reality
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it is unlikely for the price of each individual asset to move freely with no regards to the other
assets. However, it is also not trivial to impose restrictions on the movements of assets’ prices
as a result of a sample covariance matrix becoming not invertible when the number of underliers
is large and the size of available historical data is small. We then propose a way to lessen such
excessive conservatism by using another covariance matrix estimator, namely the factor model. The
experiment result is indeed satisfactory. We also elaborate on the development of robust pricing
model from option writer’s perspective and option holder’s perspective as it is usually the case that
an option is valued differently by the seller and the buyer.

9.1 Advantages of the Robust Pricing Model

We believe that the main advantages of the robust pricing model are its flexibility and its tractabil-
ity. Tractability of the robust pricing model is determined by solvability of deterministic linear
programs, deterministic second-order cone programs, and deterministic semidefinite programs. The
robust pricing model therefore offers a high degree of scalability. Consequently, it can very well
be used to price an option where the price of its underlying security constantly fluctuates. It is
observed that when the price of the underlying security obeys the geometric Brownian motion, the
output price of the robust pricing model is fairly close to the Black-Scholes formula. This result
confirms the reliability of the robust pricing model.

Besides, the robust pricing model, from our point of view, is very flexible. Problem modeller
can amend the robust pricing model to simulate other market conditions, for example, transaction
costs and short-selling prohibition. In order to confirm the model’s flexibility, below we show how
one can model the transaction costs and include them in the proposed pricing model.

9.1.1 Transaction Costs

The proposed robust pricing model can be generalised to take into account transaction costs as a
result of portfolio adjustments. Consider the original self-financing constraint in the robust pricing
model (see the model (5.5))

utS̃t + vtBt = 0, (9.1)

which can be modified as (
u+
t − u

−
t

)
S̃t + vtBt = 0

u+
t , u

−
t ≥ 0

(9.2)

so as to differentiate buying activities (u+
t ) from selling activities (u−t ). In the latter form, linear

transaction costs can be included in the robust pricing model by replacing the original self-financing
constraint with

(
u+
t − u

−
t

)
S̃t + vtBt + cS+u+

t S̃t + cS−u−t S̃t = 0
u+
t , u

−
t ≥ 0,

(9.3)

where cS+ and cS− are the transaction cost rates associated with buying and selling the underlying
asset respectively.

We repeat the experiment on the Asian call options in Chapter 8 with the inclusion of the
transaction costs. In Figure 9.1, we present the result of this experiment.
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Figure 9.1: Option pricing in the presence of transaction costs

9.1.2 Pricing Other Exotic Options

The robust pricing model can also be used to price more exotic types of option, which again confirms
the flexibility of the robust pricing model. Two case studies are presented in this part. In the first
case study, we modify the European call option robust pricing model to price binary options. We
assume that a binary option of our interest pays a fixed amount of £1 if the price of the underlying
asset ends up above the strike price. The result of this study is presented in Figure 9.2.

Figure 9.2: Valuation of binary options

In the second case study, we develop a robust pricing model for a certain type of barrier option,
namely down and out call option. A down and out call option is a regular call option which
automatically becomes worthless if the asset price reaches a barrier level at any time during the
option’s lifetime. This type of contract is interesting because its payoff is similar to that of the
corresponding vanilla option and it is cheaper. The comparison between the Black-Scholes model
and the robust option pricing model for down and out call options is illustrated in Figure 9.3.
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Figure 9.3: Valuation of down and out call options

9.2 Future Research

We note in this section potential extensions that could be made to the robust pricing model.

• Probabilistic interpretation: One disadvantage of the robust pricing model that we foresee
is that it is not easy to reasonably assign values to the risk-aversion parameters. Indeed, we
know that the larger such values are, the more risk-averse the investor is. However, the
meaning of the magnitudes of these parameters is still ambiguous. Lately, there has been
research focusing on finding probabilistic interpretation of the uncertainty set of a specific
size and shape specified in the robust optimisation problem (see, for example, El Ghaoui,
Oks and Oustry [21], Zymler, Kuhn and Rustem [51] and Zymler, Kuhn and Rustem [52]).
It would be desirable if this idea can also be applied to the robust pricing model.

• Choices of objective function: We describe in this work that there are several ways to
define the objective function in the robust pricing model. For example, the super-replication
and the sub-replication robust pricing models employ different forms of the objective function,
and both of them are also different from the original objective function, which is an arbitrage
error ε. There are several ways to define the measure of closeness between the final wealth of
the portfolio and the option payoff. Different measures lead to different robust counterparts.
Under a given setting, some of them may be more appropriate than others.

• Choices of uncertainty set: Chen used a polyhedral uncertainty set in his robust pricing
model, and we also use the same type of uncertainty set in the proposed robust pricing model.
That Chen decided to use a polyhedron was probably because he wanted to use the duality
in linear programming to derive the linear deterministic equivalent of the robust pricing
problem. We however use several other techniques, for instance, the approximate S-lemma
and the duality in second-order cone programming, to determine the deterministic version of
the robust counterpart. Consequently, it is possible to define the uncertainty set differently.

• Reduction of arbitrage: After having introduced a couple of the decision rules to the robust
pricing model, the minimum arbitrage error ε∗ still remains roughly the same. It would of
course be preferable to reduce the arbitrage error as much as possible. One possibility that
might help is to introduce new forms of decision rules. If this could be done, the robust
pricing model would be considered less conservative and more reliable.
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[31] Löfberg, J. (2004): YALMIP: a toolbox for modeling and optimization in MATLAB. In
Proceedings of IEEE International Symposium on Computer-Aided Control Systems Design
(CACSD), Taipei.
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[46] Tütüncü, R., Toh, K. and Todd, M. (2003): Solving semidefinite-quadratic-linear programs
using SDPT3. Mathematical Programming, 95, 189 – 217.
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Appendix

A.1 Prerequisite Software

In order to use our proposed robust option pricing models, the following three components must
already be installed on your machine.

• Matlab: Matlab is a programming environment specially developed for scientific purposes.
It has a variety of built-in functions which can be used in a wide range of applications. The
version of Matlab used in our experiment is R2011b.

• SDPT3: SDPT3 is a Matlab software package used for solving semidefinite programs. It is,
in addition, capable of solving other classes of convex optimisation problems, for example,
linear programs, quadratic constrained quadratic programs, and second-order cone programs.
The version of SDPT3 used in our experiment is 4.0.
SDPT3 can be downloaded from http://www.math.nus.edu.sg/∼mattohkc/sdpt3.html.

• YALMIP: YALMIP is a Matlab toolbox providing a simple way to model optimisation
problems in Matlab. YALMIP itself is not a solver. It is often used with other solver packages,
for example, SDPT3. The version of YALMIP used in our experiment is R20120420.
YALMIP can be downloaded from http://users.isy.liu.se/johanl/yalmip.

A.2 Robust Pricing Software

We divide our implementation into three categories: single-underlier option pricing models, multiple-
underlier option pricing models, and super- and sub-replication pricing models. Each function name
is written as a combination of two parts: pricing model and option type. For example, lin eco is
an implementation of the linear decision rule robust pricing model for European call options.

Table A.1 contains a list of acronyms of the option types, and Table A.2 contains a list of
acronyms of the pricing models.

Table A.1: Option acronyms

Acronym Description

eco European call option
aco Asian call option
lco Lookback call option
apo American put option
bkt Basket call option
but Butterfly spread option
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Table A.2: Pricing model acronyms

Acronym Description

bls Black-Scholes model
binomial Binomial options pricing model

chen Chen’s ε-arbitrage robust pricing model
con Constant decision rule robust pricing model
lin Linear decision rule robust pricing model
pie Piecewise linear decision rule robust pricing model

sup con Super-replication constant decision rule robust pricing model
sup lin Super-replication linear decision rule robust pricing model
sup pie Super-replication piecewise linear decision rule robust pricing model
sub con Sub-replication constant decision rule robust pricing model
sub lin Sub-replication linear decision rule robust pricing model
sub pie Sub-replication piecewise linear decision rule robust pricing model

Especially for the multiple-underlier option pricing models, sample refers to a model that takes
as input a sample covariance matrix of assets’ single-period returns. Factor, on the other hand,
refers to a model that takes as input covariance matrices of τ -period cumulative returns (1 ≤ τ ≤ T )
estimated by a factor model.
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