
MoovMe: A Motivational Exercise App

Piotr Holc
Imperial College London

June 19, 2012

Abstract

In this day and age, nearly everyone wants to be fit and attempting to
achieve this, they exercise. Currently exercising follows a primordial scheme
of working out to randomly chosen music attempting to serve as a motiva-
tional stimulus. This project attempts to create a solution that delivers a
motivational impetus higher than that of playing arbitrary music. We have
created an iPhone application that utilises a bespoke implementation of a
tempo analysing algorithm using digital signal processing algorithms. This
implementation works on both accelerometer data (to identify the user’s
pace) and on music (to identify song tempo). It works in real-time and uses
the users music collection; not imposing any restrictions on what music the
user can play. Finally we have compared the performance and accuracy of
our algorithm with known solutions and achieved much better results with
a higher degree of flexibility.

Acknowledgements

I would like to thank Prof. Krysia Broda and Dr. John Charnley for their di-
rection, assistance, and guidance. I also would like to thank Graham Deane
for the help on the intricacies of digital signal processing, Peter Mason from
Iconic Media for the business and marketing insights, and Bartek Podkowa
for help in debugging.

Contents

1 Introduction . 2
2 Accomplishment . 4
3 Background . 7

3.1 Overview of Smartphone Development 7
3.2 Technical Research . 7
3.3 Required Processes and Components 10
3.4 Related Work . 14

4 Initial Assessments . 16
4.1 Motivation . 16
4.2 iOS Library Access . 17
4.3 Hardware Accelerated FFT 18
4.4 Movement Awareness 20
4.5 BPM Detection Algorithm 21
4.6 Choices . 23

5 Implementation . 24
5.1 Design . 24
5.2 Accelerometer Data for User Pace (BPM) 29
5.3 Accelerometer Data for Activity Recognition 33
5.4 BPM Analysis . 33

6 Benchmarking . 43
6.1 Tempo Analysis Complexity/Speed 43
6.2 Tempo Analysis Accuracy 46

7 Conclusion . 48
7.1 Future Work . 48

Glossary 54
1 Appendix 1: FFT Applier Implementation 56

1

1 Introduction

The problem tackled by the project stems from the fact that simply playing
music whilst exercising doesnt offer the person anything more than the bare
minimum. Due to the proliferation of smartphones, especially the Apple
devices (iPhone, iPod, and iPad), more people are turning away from dedi-
cated MP3 players and in turn using their phones to play music. This opens
up an array of possibilities in the realm of personal sport. Our solution is an
iPhone application (colloquially called an app). It takes the existing musi-
cal layer (access to the user’s music library) and attempts to deliver it more
relevantly (by playing music matching the tempo of the user, rather than
simply playing random songs). Harnessing hardware available on the smart
phone; the accelerometer, multi-core CPU, hardware accelerated routines,
and sample level access to the user’s music library, the app is capable of
very detailed analysis and thus majestic results. It analyses both the Beats
Per Minute (BPM) of music and the user pace (also BPM), and plays music
at the desired tempo. Such a desired tempo may be based upon the user
wanting to run at a steady pace, run a specified distance (and thus requir-
ing an implied speed), or a musical hills workout. Because almost every
aspect is custom and proprietary code, the flexibility and thus application
are infinite.

The basis of the project is Digital Signal Processing (DSP) which heavily
relies upon the Discrete Fourier Transform (DFT). The DFT will be exam-
ined in detail in section 3.2. On top of DSP lies BPM analysis to be able
to determine the tempo of the music and the pace of the person running.
Furthermore, activity recognition using the accelerometer is employed to
be able to determine if the user has stopped, continued to workout, slowed
down, or sped up.

The report that follows begins with a technical analysis. The core driver
of the algorithms is the Fourier transform. Section 3.2 presents the theory
behind the discrete Fourier transform, and some of it’s properties. We then
take a look at two different types of BPM analysis algorithms. We examine
beat matching, and why we do not have to implement it and activity recog-
nition, to enforce user pace detection. Finally we recognise related work and
show how no one has yet conquered musical motivation.

Following the technical analysis there are several hypotheses which need
to be assessed and evaluated beforehand. This is what section 4 is all about.
The app needs to serve motivational stimuli, thus various ways of motivating
someone with music will be investigated. Furthermore, because the app will

2

run on an iPhone, there are several physical restrictions such as music library
access and hardware accelerated routines. The intricacies and limitations of
these are also examined in detail. Moreover, movement awareness research
is explored, as being able to truly discern the users activity context is crucial
to serving right music. Finally implementations of BPM analysis algorithms
are looked upon, resulting in the decision to create a custom algorithm.

After both technical analysis and testing of hypotheses, implementation
takes over. The design patters and choices are examined, as well as specific
implementations of various hypothesis. The essence of this section is a de-
tailed explanation of the bespoke BPM analysis algorithm, presented both
textually and pictorially.

The BPM analysis algorithm is now accurate, bespoke, and very flex-
ible. The only property it lacks is speed. Section 6 shows the effects of
optimisation; making the algorithm a staggering 49% faster!

3

2 Accomplishment

Figure 1 presents the basic UI of the app. It is simple and elegant. The
user can start running, and the app will do the hard work. It’s simplicity,
however, is a design choice, not a shortcoming. The heavy lifting occurs
behind the scenes: in a highly multi-threaded manner the app performs:
accelerometer data gathering, tempo detection using a proprietary algorithm
(on both accelerometer and music data), and activity recognition (to know
when the person is running or not).

Figure 1: The user interface of the application. The left screen gives three
options: free run, constant, and hills. These are three different modes of
exercise. Free run matches the user’s tempo, constant plays a predefined
tempo, and hills is the mix of the two, explained in the future work section.
The right image presents the free run view: The current song being played,
as well as basic controls. The heavy lifting of the app is invisible – allowing
the user to focus on what is important to them – the run.

4

The final application has two modes: Free run and Constant. Free run
allows the person to start running, and the app automatically chooses the
tempo to match the user’s pace. The constant run mode allows the person
to set a tempo with which they want to run. The app will then maintain
this tempo by time-scaling songs to match.

Figure 2 is a use case of the app. It shows what the user can do and
how these actions use the technical components of the system. It is a high-
level image; the components of which will be explained in detail in the
forthcoming sections. The user has a few options available to him such
as two different run modes and basic music controls. Running includes
BPM detection on either a song signal or accelerometer signal. Finally this
detection relies heavily on the DFT transform. The last part of the system
is the SQLite data store which maintains persistent information on analysed
music.

The application utilises several core tools: BPM detectors, Fourier trans-
formers, and activity recognisers. These are all bespoke implementations
that offer a very high degree of flexibility. The biggest example is using
BPM detection on both accelerometer and music signals. This makes sense
cine they are both signals and their only difference is the sampling frequency
(how many samples per second). Moreover, any error in the BPM detec-
tion will be expressed in both accelerometer and music readings. External
libraries, however, did not offer the capability of being able to use any type
of signal (as explained in section 4.5); hence the custom implementation.
These tools enable pushing the limit of what is possible on a smartphone,
as explained in the future work section.

5

MoovMe App

User

Free Run

Constant run

Run<extends>

<extends>

Music BPM
Detection

<includes>

Song
Access

<extends>

BPM
Detection

<extends>

User Pace
(BPM)

Detection

<includes>

<extends>

Storing
music BPM

SQLite Store

<includes>

FFT Applier
Next Song

Previous
Song

Pause/Play

Set Tempo
by UI

<includes>

Figure 2: The use case diagram shows that the user can perform Free run
or constant run. He can also get the next and previous song, and pause or
play the song. The different use cases require and extend other processes,
such as BPM detection for both sound and movement, storing BPM values
in the datastore and setting tempo via the UI (for the constant run mode).

6

3 Background

3.1 Overview of Smartphone Development

This project is an investigation into assembling together a solution, using
various aspects of computer science, to create a fitness tool. The device to
run the app has been chosen as the iPhone because of: portability, pop-
ularity, familiarity, and power. Portability comes from the form-factor of
the smartphone, which offers the best performance to size ratio. Popularity
originates from the fact that as of Q1 2012 the iOS platform has 22.90% [1]
market share with 3 types of devices (iPhone, iPad, iPod touch) consisting
of 6 different devices (3 iPhones, 2 iPads, 1 iPod Touch)1. This equals
approximately 3.82% market share per device. This is in contrast to the
Android operating system, which as of Q1 2012 had 56.10% market share
with 162 phones (183 devices), giving it a 0.35% market share per phone [2].
This fragmentation of the android devices market poses a great problem for
app development, since testing must be done on as many phones as possible
(since each come with different specifications, screen sizes, and hardware).
This was the reason for choosing the iPhone where the real testing involved
only 3 devices. The familiarity reason for choosing the iPhone was that
I had previous experience programming the iPhone and was more familiar
with its Application Programming Interface (API) than of any other mobile
platform. Finally the power came from the fact that the 3 different iPhones
offer great performance. The iPhone 4S, the newest iOS device, released Oc-
tober 7, 2011, offers a very fast 800 MHz dual-core ARM Cortex-A9 CPU
with 512 MB of RAM. This hardware can be used by an API for hardware
accelerated calculations (such as the DFT).

3.2 Technical Research

The following section will present the theoretical background information,
and the solutions tailored to the iOS platform and device capabilities.

Discrete Fourier Transform

The BPM analysis implementation relies heavily on the forward and inverse
Fourier transforms to perform a filter-banking of the signal and fast convolu-

1The 6 devices currently on sale (iPhones: 3GS, 4, 4S, iPads: 2, 3rd Generation, and
4th generation iPod Touch) without the discontinued units (first generation iPod, iPhone
3G, and older iPod touches).

7

tions. This section describes the Fourier transform, as it pertains to digital
signal processing, rather than the application at hand.

The Fourier transform is a mathematical operation that enables express-
ing a function of time in its frequency spectrum. The notion of time-domain
and frequency-domain is crucial to the Fourier transform. The time domain
shows how a signal or function changes over time. The frequency domain
shows “how much of the signal lies within each given frequency band over a
range of frequencies [3]”.

A forward Fourier transform expresses a time domain function in the
frequency domain, whereas the inverse Fourier transform expresses the fre-
quency domain in the time domain. Fourier analysis is currently widely used
in physics, partial differential equations, number theory, combinatorics, sig-
nal processing, imaging, probability theory, statistics, option pricing, cryp-
tography, numerical analysis, acoustics, oceanography, geometry, and even
protein structure analysis [3].

Signal processing on sound involves discrete data, we thus focus on the
discrete Fourier transform. It changes an input signal of length N into two
point output signals (complex numbers). The input signal (in time domain)
is decomposed into the two signals (frequency domain), one containing cosine
amplitudes of the component, and one the sine wave amplitudes [4].

The forward Fourier transform equation is shown in equation 1. The
transform takes as input a sequence of numbers x0, ..., xN−1 (in the time
domain) and outputs a sequence of N/2 + 1 complex numbers (in frequency
domain).

Xk =

N−1∑
n=0

xne
−i2π k

N
n, 0 ≤ k ≤ N

2
(1)

The inverse forward transform is described by equation 2. Similarly this
transform takes N/2+1 complex numbers (in frequency domain) and output
N complex numbers (in time domain).

xn =
1

N

N−1∑
k=0

Xke
i2π k

N
n, 0 ≤ n ≤ N − 1 (2)

Figure 3 displays an exemplary forward Fourier transform. The x-axis
of the frequency domain poses various issues, but is crucial to understand
for manipulation of frequency data. The confusion comes from the fact that
there are 4 ways to refer to the frequency domain in DSP.

8

Figure 3: A forward Fast Fourier Transform (FFT) calculation [4]

1. The axis can be labelled with the index of the sample. In our example
the time domain signal has N=128 points, thus the two output signals
will have N/2 + 1 (65) points. This labelling is synonymous to the
way the samples are stored in various data types (by an index).

2. Another way to label the axis is using the fraction of the sampling
rate. The values are thus from 0 to 0.5 (since the transform outputs
half the length, equaling half the sampling rate).

3. The third way multiplies the second option by 2π. This causes the
values to be equally spaced between 0 and π. This allows expressing
the value easier (since it is a sine or cosine).

4. The fourth method is application specific. If the sampling frequency
has a sampling rate of fs kHz, then the frequency domain can be

9

labelled from 0 to fs/2 kHz. Thus if the system is 44.1 kHz (a common
sampling frequency for CD’s) the frequency domain will run from 0 to
22.05 kHz (22050 samples per second).

When the signal can be quickly turned into the frequency domain, more
elaborate analysis can be run on the signal. Furthermore, simply removing
particular bands (for instance clearing values between 0 and 32, in our pre-
vious example), would remove those frequencies from the signal. Thus low
or high passing the signal. Also analysis can be performed on particular por-
tions of the signal. In music, usually the lower frequencies (bass kicks) are
periodic and thus dictate the tempo of the song. Performing BPM analysis
only on that portion of the signal (and not on the higher frequency portion
of the signal) could give much clearer information about the tempo. Because
of this, the time-comb BPM detection algorithm relies heavily on performing
forward and inverse transforms. The detailed application, therefore, will be
explained in the next section.

3.3 Required Processes and Components

The solution has various components and processes required to create a
working system. They are:

• BPM Analysis

• Beat Matching

• Activity Recognition

Each of the different components are presented in a different section since
each has its own research, problems, and solutions.

BPM Analysis

BPM analysis comes in two parts: music and movement BPM analysis. Both
parts utilise the same algorithm, so that any margin of error is expressed
in both outcomes. Analysing the BPM of the users music library is a back-
ground process that takes each song in the library, runs the BPM analysis
algorithms on it and stores the songs BPM in an SQLite database. This
process is the most computationally intensive, as well as the most impor-
tant. An incorrect BPM value causes the song’s tempo to be unequal to the
pre-defined tempo. This will cause the user to hear the music out of tempo
to his pace of exercising, and, being the worst-case scenario, will be such as

10

listening to random music.
Frederick Patin [5] identified two flavours of beat detection:

• Statistical streaming beat detection

• Filtering rhythm detection

Statistical Streaming beat detection This class of algorithms rely on
the notion of sound energy. Humans infer beats as pseudo-periodical succes-
sions of sound [5]. The beat is a sound whose energy is higher than its close
neighbours, with large changes in energy, expressing periodicity. Statistical
streaming beat detection identifies these energy peaks, and calculates their
periodicity, thus achieve a BPM value. The algorithm compares the aver-
age sound energy with the instant sound energy, and upon finding a local
maximum denotes it as a beat.

Filtering rhythm detection The problem with statistical streaming
beat detection algorithms is that a sound may be full of noise, and such
noise needs to be removed. Filtering rhythm detection algorithms split the
signal into frequency sub bands, or filter bank the signal, and perform anal-
ysis on each band. The reason for doing this is that different instruments
are expressed in different frequencies. For example, a kick drum would be in
the 44 Hz - 200 Hz range, whilst a high hat would be in the 8 kHz - 12 kHz
range. By separating the signal into sub bands we can perform analysis on
bands which are very close to particular instruments. Well chosen sub-bands
could almost separate particular instruments2.

To filter bank the signal, the forward FFT is taken, which transforms
the signal from the time domain to the frequency domain. The signal is then
separated into frequency bands. The filtering rhythm detection algorithm
attempts to find the BPM by time-combing the signal. Such a time comb is
shown in figure 4. For each BPM value from the chosen range (for instance,
100-200 BPM), a time comb signal is created. This time-comb signal has
the highest energy at the time when the beat is to occur, and 0 everywhere
else [6].

The DFT of the original signal is then multiplied with the DFT of the
time comb (convolution). When the time comb corresponding to the BPM

2Filter banking does not guarantee that each particular band will contain the signal of
a single instrument since single instruments may contain noise, i.e. a kick drum occurring
in the 44-200 Hz range may contain parts in the 2 kHz frequency. However filter banking
will achieve the result of muffing other instruments, and this is enough to achieve good
results.

11

−0.3 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1 4.5 4.9 5.3 5.7 6.1 6.5 6.97

x 10
4

0

0.2

0.4

0.6

0.8

1

Timecomb for 3 beats at 120 BPM
44.1 kHz sampling rate

Time (frames)

S
tr

e
n
g
th

Figure 4: A time comb representing 3 beats at 120 BPM using a sampling
rate of 44.1 kHz. The whole signal is zero apart from where the beat occurs
(0, 22050, and 44100). A time comb like this one is created for every BPM in
the range tested. Each comb is then convolved (multiplied in the frequency
domain) with the signal. The time comb which gives the highest sum of the
product, corresponds to the signals underlying tempo.

of the signal is multiplied with this signal, the sum of the energies is greater
than for any other time comb. Thus the BPM underlying the sound sample
is found on the time-comb where the sum of the convolution is greatest.

Beat Matching

Beat Matching is the synchronisation of one signal to another, such that
their tempos are the same, and their beats occur at the same time. Simply
matching tempo is not enough to ensure correct beat matching, as the beats
and bars begin and end at different moments in time. For the purpose of
the project, and with insights from research into neuroscience [7] it can be
concluded that “one universal of human music perception is the tendency
to move in synchrony with a periodic beat”. Such a nature in humans to
adjust themselves to a beat, such as the music the app plays, makes it very
difficult to sync our music with the users movement. Figure 5 presents a
situation where two signals, both beat-matched to the same tempo, are offset
by alpha (α) , which equals a tenth of a second: 4410 samples (44.1 kHz

12

sampling rate). The human would automatically attempt to shift their pace
to equal that of the music, and the application would attempt to shift itself
to equal that of the human, leading to undesired effects. The application
would constantly miss the perfect tempo moment with the human. The
proper solution is to exploit the natural human tendency, and not perform
any syncing. The user, without even noticing, will automatically shift his
tempo to match the apps.

0 1 2 3 4 5 6 7 8 9

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Two signals offset by alpha

Time (samples)

S
tr

e
n
g

th αα
α α

Figure 5: The two signals presented here (one blue, the other green) are in
the same tempo, but offset by alpha (α). Beat matching would need to be
done to shift the sound sample by alpha, such that the signals are overlaid.
However, because of the human condition, users will automatically attempt
to synchronise with the external tempo stimuli. This would cause a problem
as the phone would try to calculate alpha and then scale to this alpha,
the human, however, would perform the same thing. This would require
synchronisation of a constantly moving and unpredictable alpha. It is much
easier to simply not scale, and leave the human to perform this computation
by himself.

Activity Recognition

The application needs to distinguish between the different actions of the
user. For instance, the app needs to be notified when the user stops run-
ning, start running, slows down, or speeds up. A lot of research has been

13

done in the past on activity recognition using accelerometer data. Niskham
Ravi, et al [8] investigated using machine learning on accelerometer data
to discern between standing, walking, running, climbing up stairs, climbing
down stairs, performing sit-ups, vacuuming, and brushing teeth. The exper-
iment was run using various classifiers, with the Plurality Voting classifier
offering the best results. 4 different settings were used for the experiment.
Setting 1 was “data collected for a single subject over different days, mixed
together and cross-validated”. Setting 2 was “data collected for multiple
subjects over different days, mixed together and cross-validated”. Setting 3
was “data collected for a single subject on one day used as training data,
and data collected for the same subject on another day used as testing
data”. Finally setting 4 was “data collected for a subject for one day used
as training data, and data collected on another subject on another day used
as testing data”. The outcome of Plurality Voting was thus 99.57% for set-
ting 1, 99.82% for setting 2, 90.61% for setting 3, and 65.33% for setting 4.
Based on these results the implementation of activity recognition is based
in majority on the research by Niskham Ravi, et al.

3.4 Related Work

The proposed solution is a combination of existing technology, in a unique
way. Related work, therefore, span the whole technological landscape.
Myung-kyung Suh [9], et al, of the University of California, Los Angeles,
created a smartphone application which proposed music for exercise. Their
solution streamed music from an online database, matching the users train-
ing plan with the music played. Their results show that “compared with
the uncontrolled condition, the experiment shows that exercise commands
generally help users to exercise more accurately. [...] the accuracy of the
exercise is improved from 53.97% to 88.71%” Accuracy in this sense is the
ability to maintain a steady pace. This solution, however, only played music
that the user preferred, learning what songs which gender, age, and residen-
tial area prefer. Moreover, the app chose music server-side. It did not allow
the person to choose their own music, something our solution does. This is
poor user experience as it creates a restriction on what the user can listen
to. There is no clear correlation between the gender, age, and residential
area and the type of music listened to. Perhaps if the app analysed what
the user had on their phone and matched that, it would give people more
freedom.

Nike, the major sportswear and equipment supplier, released successful
apps such as Nike+ Global Positioning System (GPS), Nike BOOM, and

14

Nike Training Club. All of these apps attempt to seize the opportunities of
offering more to the amateur athlete. The currently existing apps, however,
offer additional layers of information, without truly harnessing the musical
layers. “Map your runs, track your progress and get the motivation you need
to go even further. Hear mid-run cheers every time your friends like or
comment on your run status, or outrun them in a game of Nike+ Tag” [10]
(excerpt from Nike+ GPS description.)

Musical beat detection is the cornerstone of DSP. Various research has
been done into different ways of performing BPM detection (explained in
section 3.3). The most promising algorithm is the ‘Beat This’ implemen-
tation, based upon a filter-bank approach, from Rice University [6]. The
implementation is straightforward, not requiring any extra hardware or per-
formance than is offered on the iPhone. Furthermore, weighing the tradeoff
between accuracy and complexity, this algorithm offers adequate results for
what is required. Valtino Afonso [11], et al, employed ECG beat detection
also using a filter bank-based approach. This enabled “time and frequency
dependent analysis”. This approach achieved a positive accuracy of 99.56%.

For activity recognition using the accelerometer Nishkam Ravi [8], et al
harnessed the flexibility of machine learning to predict various movements,
and received very strong results. Cliff Randell and Henk Muller [12], of the
University of Bristol, proposed utilising clustering algorithms to differenti-
ate between different activities, using only “Root Mean Square (RMS) and
integration of the last 2 seconds of measurements”, achieving an accuracy
of 95%. Amit Purwar [13] et al, proposed using simple RMS to reduce 3-
dimensional accelerometer data, and used simple thresholds to infer actions,
attaining an 81% accuracy.

15

4 Initial Assessments

There were many different options for addressing the various challenges of
the application. In this section we describe the work we performed to identify
our favoured approach to each of motivation, iOS implementations, Fourier
transforms, and movement awareness.

4.1 Motivation

The first assumption is what kind of transformations to music are the most
effective to deliver a motivational message. These results will be used to
notify the user when he is going out of sync with the required workout (as
measured by the phone’s hardware). The tests were performed on a treadmill
with a laptop using the open source program Audacity to experiment with
changing the sound to motivate the person to speed up. The following table
presents the various tests and a quantitative rating awarded. The rating
ranges from -5 (didn’t work, even cause to go slower) to +5 (worked very
well). A rating of 0 means that the test had no effect.

Test Rating Comment

Increasing BPM
(tempo)

+3 This worked very well if the song played had
initially been in the same speed as running. In-
creasing the tempo slowly is natural to speeding
up.

Volume (increas-
ing to increase
speed)

-1 This had no effect on my results, one could argue
that it was more annoying as the volume could
get to unbearable volumes.

Phasing -5 This did not cause me to want to go faster. The
dreamy sound of phasing, if anything, made me
want to stop.

Overlay delay +1 Echo was interesting as it caused the beats to
rumble (making the song seem faster), however
this had little or no effect on speed.

Increasing pitch +2 This experiment actually was motivational as it,
without drawing too much attention to itself,
made me feel that something was off with the
sound and wanted to correct it (by increasing
my speed).

The tests were performed with electronic music that had a 4/4 beat.
The techniques were also employed on music without a steady beat (classi-

16

cal/ballad), and the effects were the same apart from increasing speed made
a smaller difference (harder to tell change in speed without a persistent,
driving beat). One of the tests ran was phasing. Phasing is when two iden-
tical tracks (the same song) are played overlapping themselves and gradually
shift out of unison. The first thing that happens is an echo. As they begin
to drift apart doubling within each beat occurs, then a ringing effect, and
then the same effects happen backwards as the songs start falling back into
the same phase.

4.2 iOS Library Access

iOS 4.1 (the update to the operating system for Apple portable products
released on September 8, 2010) added a number of new classes to the AV
Foundation framework to provide an API for sample-level access to media.
This section explores this API since it is not straightforward, nor obvious.

Primarily accessing samples using the AVAssetReader and AVAssetWriter
classes was explored. They are a low-level API and thus have a small latency.
They also enable taking chunks of a signal into a buffer, thus the adequate
amount of samples can be chosen rather than loading the whole signal into
memory (which might take in excess of 40 MB). This increases performance
radically, and therefore, these classes were chosen for BPM analysis [14].

To modify samples being played, Audio Units, are going to be used.
They enable, using the RemoteIO classes, to setup a chain of input to output
units. A callback function is added before the output, which needs to deliver
the samples to be played. There is a short ‘window’ of time before they
need to be returned [15]. The exact length of the window is defined by
function (3), where the size of the window is dependent on the buffer size.
A typical implementation will use a buffer size of 512 or 1024 samples. A
typical sampling rate for digital music is 44.1 kHz, and thus the length of
the window will be 0.012 seconds for a 512 frame buffer and 0.023 seconds
for 1024 [16].

Lwindow =
Bsize
Srate

(3)

where
Lwindow is the length of the window (seconds)
Bsize is the size of the buffer
Srate is the sampling rate (Hz)

This means that within the 0.023 seconds all of the processing needs to
occur on the samples. If this time is exceeded and the function does not

17

return the phone will not output any sound. Thus it is advised to use C
to write the callback function and not allocate any memory, take locks, or
perform any redundant things when executing inside the callback [16].

4.3 Hardware Accelerated FFT

Signal processing relies heavily on working with time-domain signal, as-well
as frequency-domain, for manipulation based on frequency (such as low pass
or high pass filters). To implement a filtering rhythm detection algorithm,
calculating the DFT is required. The most commonly used algorithm for
doing so is the FFT (Fast Fourier Transform) algorithm. The benefit of the
FFT algorithm is the complexity; it reduces the required computations for
N points from O(2N2) to O(2Nlog2(N)), thus decreasing the computational
burden [17]. Refer to figure 6 for a graphical complexity comparison.

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

1800

N

N
u
m

b
e

r
o
f

c
o
m

p
u

ta
ti
o
n
s

Complexity comparison for DFT and FFT computation

FFT Complexity

DFT Complexity

Figure 6: The complexity comparison for the DFT and FFT algorithm
shows that the FFT algorithm is a far better (in terms of complexity) al-
gorithm for computing the DFT. The DFT complexity is O(2N2), whereas
the FFT complexity is O(2Nlog2(N)). With an increasing input (N), the
FFT complexity far outweighs the DFT complexity.

18

FFT Implementation

Apple, through its Accelerate Framework, offers a hardware accelerated
API for performing FFT transforms. The downside, however, is that the
documentation is of poor quality, and truly understanding how the API
works requires excessive experimentation. I have done both, and have fi-
nally achieved fast FFT computation on the iPhone. The confusing part
comes from the preparation of the FFT environment. An FFTSetup object
needs to be created first to create appropriate twiddle factors:

“To boost performance, vDSP functions that process frequency-
domain data expect an array of complex exponentials (sometimes
called twiddle factors) to exist prior to calling the function. Once
created, this FFT weights array can be used over and over by
the same Fourier function and can be shared by several Fourier
functions [18]”.

One of the parameters to vDSP create fftsetup(...) is a log2n argument:

“Argument log2n to these functions is the base-2 logarithm of
n, where n is the number of complex unit circle divisions the ar-
ray represents, and thus specifies the largest number of elements
that can be processed by a subsequent Fourier function. Argu-
ment log2n must equal or exceed argument log2n supplied to
any functions using the weights array. Functions automatically
adjust their strides through the array when the table has more
resolution, or larger n, than required [18]”.

This step thus causes a sound signal, Sinput of length l to be modified by
padding with zeros to get signal Sfft to be exactly n in length, following
conditions 4 and 5.

∀x ∈ N.(x < n ∧ x < l =⇒ Sfft[x] = Sinput[x]) (4)

∀x ∈ N.(x < n ∧ x > l =⇒ Sfft[x] = 0) (5)

I wrote a separate FFT applier class which took in a signal of length < n,
and performed the padding transformation 4 and 5. This is shown in listing:
1.

Listing 1: Performing the transformation

int t o Z e r o F i l l = N − L ;
memcpy(f f tA . rea lp , sampleBuffer , L∗ s izeof (f loat)) ;
memset (f f tA . r e a lp+L , 0 , t o Z e r o F i l l) ;

19

Any algorithm that then wishes to use the data in the frequency domain has
to operate on the whole n-length signal. Finally when transforming back to
time domain, the whole n-length signal is input, giving an output of length
n, following conditions 4 and 5. Thus, only the signal up to l is used (to
avoid using the padded zeros). The whole code listing for FFT Applier can
be found in appendix 1.

Listing 2: Performing FFT and IFFT
// Perform the forward FFT
vDSP f f t z ip (f f tSe tup , &fftA , s t r i d e , log2n , kFFTDirection Forward) ;

// Perform the In v e r s e FFT
vDSP f f t z ip (f f tSe tup , &fftA , s t r i d e , log2n , kFFTDirect ion Inverse) ;

//we need to s c a l e t h e ou tpu t as per documentat ion i n s t r u c t i o n s
// by a f a c t o r o f n . (t hu s eve ry i tem w i l l be d i v i d e d by n) .
f loat s c a l e = (f loat) 1 . 0 / N;

// s c a l e
vDSP vsmul (f f tA . rea lp , 1 , &sca l e , f f tA . rea lp , 1 , numberFrames) ;
vDSP vsmul (f f tA . imagp , 1 , &sca l e , f f tA . imagp , 1 , numberFrames) ;

4.4 Movement Awareness

The possible movement awareness hardware that can be harnessed to give
insight to the person exercising is:

• Accelerometer

• GPS

• Gyroscope

• External, more accurate GPS/Accelerator/Gyroscope device

• External heart monitor

For local movement awareness the accelerometer was chosen as the most
useful tool because it is available on all Apple devices. The accelerometer
gives information about changes in acceleration in the three axes. Figure
7 presents data from the accelerometer whilst running, which shows that
the signal expresses periodicity, and thus can be analysed for tempo. Grav-
ity, the omnipresent force, is always expressed in at least one axis. Other
forces, such as when a person moves the phone up, are picked up by the
accelerometer as changes in acceleration. This gives the basics of being able
to discern when the phone is moved. The GPS can be used to track how far
the person has moved, to find global movement patterns. The Gyroscope

20

is, unfortunately, only available on newer Apple devices, thus was not cur-
rently considered. It will definitely give more insight into the user’s local
movement, and thus could used as a possible extension to the project. An
external device is unfeasible at this time as designing one takes money and
time. Such a device, however, would also greatly benefit the results. Finally,
an external heart monitor is a potential extension to the project as playing
music in the rate of someones heart beat (or by taking it into consideration)
would be an interesting way to deliver motivation.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5
x 10

4

Time (frames)

A
c
c
e
le

ra
ti
o
n

Raw accelerometer x−axes data
Sampling rate of 120 Hz

Figure 7: Raw accelerometer data showing 8 peaks corresponding to changes
in acceleration. The data was recorded in the hand of a person running, as
shown with the sinusoidal motion. Since the accelerometer picks up changes
in acceleration, when the person is hitting of the ground the acceleration is
positive, and when starts to fall back down it is negative. This data shows
that running expresses periodicity, and thus can be analysed to find the
underlying tempo.

4.5 BPM Detection Algorithm

In the beginning a statistical streaming beat detection algorithm was imple-
mented. The algorithm was a C++ implementation from the open-source
audio processing library, SoundTouch. The beat detection algorithm per-

21

formed the following steps [19].

1. Input chunks of samples to the algorithm to analyse (8192 samples).

2. The input sound frames are decimated to approximately 500 Hz to
reduce the amount of frames on which to perform calculations. This
can be done as mostly low frequency sound defined the beat rate (drum
kicks, for instance). The signal is decimated by removing every nth

frame.

3. The decimated signal is then enveloped. Enveloping detects the shape
of the amplitude by removing signals that are below a certain thresh-
old. The threshold is calculated as the sliding average multiplied by a
scalar value. This only leaves peaks in the signal.

4. An autocorrelation function is ran on the signal, which returns the
sound patterns in the enveloped signal.

5. After the whole sample has been analysed, the algorithm finds the
precise location of the highest peak of the autocorrelation function
and converts to BPM.

The results of the algorithm, however, were not good enough. The following
table presents the results of running the algorithm on various songs. The
real BPM value was found by running the sound through an acclaimed beat
detection implementation in the Serato Software.

Song Title Artist Genre Real
BPM

Approx.
BPM

Mean
Square
Error

An American
in Paris

STP Ft.
Kevin Yost

Chill House 124 125.299 1.687

Maria Blondie Rock, Pop 160 35.125 15593.8

Amazing Seal Upbeat, Pop 121 123.99 8.94

In My Arms Kylie
Minogue

Pop 128 125 9

I Found You Axwell House 130 146.5 272.25

Good Vibra-
tions

The Beach
Boys

Rock 77 150 5329

Got 2 B U Solar House House 124 123.99 0.0001

I Will Survive Gloria
Gaynor

Disco 117 115.5 2.25

One More
Time

Daft Punk House 125 125 0

22

As can be seen the mean square error of the algorithm is good for elec-
tronic music, however sometimes the algorithm returns nearly half of the
BPM (found the half-beat).

The algorithm was then run on accelerometer data, to find the tempo
of the person exercising. Because the algorithm implemented decimation
throughout the code and assumed a 44.1 kHz sampling rate, a lot of code
had to be rewritten for the first steps to work. Ultimately the whole code
would have to be changed, and since the accuracy of the algorithm was not
good enough, it was decided to try a filtering rhythm detection algorithm.

4.6 Choices

The initial assumptions looked at motivation, iOS library access, hardware
accelerated routines, movement awareness, and the Soundtouch BPM anal-
ysis implementation. The following sections will utilise the previous parts
in the implementation. The BPM detection implementation provided by
Soundtouch was, unfortunately, deemed unusable. A custom bespoke im-
plementation was thus created, explained in the forthcoming section.

23

5 Implementation

The following section presents the implementation of the points talked about
in section 3 and 4.

5.1 Design

This section describes the design of the proposed solution in a class diagram.
Figure 8 presents the overview of the class diagram, whereas figure 9 presents
the detailed class diagram (spanning three pages). Detailed explanations will
follow.

AccelerometerController

ContextAwarenessController AccelerometerMeasurer

CombBPMDetecter

FFTApplier

iTunesSampleAccesser

BPMDataManager

BPMSongAnalyzer AMusicPlayer

PaceMakerController

SamplePlayer

CurrentlyPlayingInformator

AudioController

Figure 8: The main class diagram, without methods or ivars. This figure
shows the associations between the classes, figure 9 presents the full class
diagram including the methods and ivars.

24

- (void)go;
- (void)stop;
- (void)performTempoDetectionOnAccelerometerData;
- (void)performAnalysisOnTempo;
- (void)didStopRunning;
- (void)didStopWalking;

 CombBPMDetecter *bpmDetecter;
 AccelerometerMeasurer *accelMeasurer;
 TPCircularBuffer *a_buffer;
 BOOL isRunning;
 float measuredBPM;
 float longAvgBPM;
 int longAvgCounter;
 int longAvgDataIn;
 float longAvgStd;
 float *avgQueue;

AccelerometerController

- (void)addSampleObservation:(double)x andY:
(double)y andZ:(double)z;

 double *xQueue;
 double *yQueue;
 double *zQueue;
 UInt16 queueCounter;
 UInt16 queueSize;
 double *xQueueCopy;
 double *yQueueCopy;
 double *zQueueCopy;
 double xMean;
 double yMean;
 double zMean;
 double xStd;
 double yStd;
 double zStd;
 double xyCorr;
 double xzCorr;
 double yzCorr;
 BOOL isRunning;

ContextAwarenessController

- (void)beginMeasuringAccelerometerData;
- (void)stopMeasuringAccelerometerData;
- (TPCircularBuffer *)getBufferPtr;

 CMMotionManager *motionManager;
 Boolean measuring;
 TPCircularBuffer a_buffer;
 short prev;
 UIAccelerationValue x, y, z;
 UIAccelerationValue lastX, lastY, lastZ;
 double alpha;
 ContextAwarenessController *contextController;

AccelerometerMeasurer

- (void)updateTitle:(NSString *)title
andArtist:(NSString *)artist
andItemArtwork:
(MPMediaItemArtwork *)artwork;
- (void)updateSongDuration:
(NSTimeInterval)duration;
+ sharedInformator;

 NSString *songTitle;
 NSString *songArtist;
 MPMediaItemArtwork
*songArtwork;
 NSTimeInterval songDuration;
 CFAbsoluteTime
elapsedAbsoluteTime;

CurrentlyPlayingInformator

CombBPMDetecter PaceMakerController

25

- initWithSamplingRate:(int)rateHz;
- (BPMStatus)processSample:(SInt16 *)signal signalLength:(UInt32)length samplingRate:(int)rateHz accuracy:(CombAccuracy)accuracy;
- (void)filterbank:(float *)signal signalLength:(UInt32)length andMaxFrequency:(int)maxfreq;
- (void)hwindow:(short *)signal signalLength:(UInt32)length withWindowLength:(float)winLength andMaxFrequency:(int)maxfreq;
- (void)diffrect:(short *)signal signalLength:(UInt32)length;
- (float)timecomb:(UInt32)length andAcc:(float)acc andMinBPM:(float)minBPM andMaxBPM:(float)maxBPM andMaxFrequency:(int)maxfreq;
- (void)prepareForHWindow;
- (void)prepareFilterBank;
- (void)prepareForProcess;
- (void)prepareTimeComb;
- (void)prepareToMultiplyWithLength:(int)length;
- (void)complexMultiply:(float *)a_real imag:(float *)a_imag breal:(float *)b_real imag:(float *)b_imag oreal:(float *)o_real imag:(float *)o_imag auxBuf:(float
*)aux length:(int)length;
+ (void)serialize:(void *)signal isFloat:(BOOL)isFloat length:(UInt32)samples andName:(NSString *)name bandSize:(int)bands;
- (void)serializeDoubleReal:(float **)signalReal imaginary:(float **)signalImag length:(UInt32)samples andName:(NSString *)name bandSize:(int)bands;

 FFTApplier *fftApplier;
 SInt16 *inputBuffer;
 UInt32 bufferSize;
 UInt32 requiredSampleLength;
 int samplingRateHz;
 int nbands;
 float *bandlimits;
 float *hann;
 float *fftHann_real, *fftHann_imag;
 COMPLEX_SPLIT dft;
 UInt32 *bl, *br;
 COMPLEX_SPLIT dft_t;
 COMPLEX_SPLIT dftfil;
 float *fil;
 float *auxFloat;
 NSMutableString *_debug_data;
 uint64_t avgLoopTime;
 uint64_t startLoopTime;
 uint64_t its;

CombBPMDetecter

- (void)go;
- (void)stop;
- (float)getAccelerometerTempo;

 AccelerometerController *accelController;
 AudioController *audioController;

PaceMakerController

- (void)go;

 AUGraph audioGraph;
 AudioUnit mixerUnit;
 CAStreamBasicDescription
outputCASBD;
 AMusicPlayer *music_player;
 AudioQueueRef mQueue;
 UInt32 mNumPacketsToRead;
 AudioQueueBufferRef
mBuffers[kNumberBuffers];
 Boolean mIsInitialized;
 TimeScaler *timeScaler;
 BPMSongAnalyzer
*bpmSongAnalyzer;

AudioController

AccelerometerController

FFTApplier BPMSongAnalyzer AMusicPlayer

26

- initWithMaxFrames:(UInt32)mFrames;
- (int)getN;
- (void)performFFT:(SInt16 *)sampleBuffer withNumberOfFrames:
(UInt32)numberFrames andOutput:(COMPLEX_SPLIT *)dft;
- (void)performFloatingFFT:(float *)sampleBuffer withNumberOfFrames:
(UInt32)numberFrames andOutput:(COMPLEX_SPLIT *)dft;
- (void)performDoubleFFT:(double *)sampleBuffer withNumberOfFrames:
(UInt32)numberFrames andOutput:(DOUBLE_COMPLEX_SPLIT *)dft;
- (void)performIFFT:(float *)realBuffer andImagBuffer:(float *)imagBuffer
andBufferLength:(UInt32)numberFrames andOutput:(COMPLEX_SPLIT *)dft;
- (void)performDoubleIFFT:(double *)realBuffer andImagBuffer:(double
*)imagBuffer andBufferLength:(UInt32)numberFrames andOutput:
(DOUBLE_COMPLEX_SPLIT *)dft;

 FFTSetup fftSetup;
 FFTSetupD fftSetupD;
 UInt32 maxFrames;
 int log2n;
 int N;
 int NOver2;
 size_t bufferCapacity;
 size_t index;
 void *dataBuffer;
 float *outputBuffer;

FFTApplier

- (void)getSongSamples:(short *)fillBuffer ForFrameLength:
(UInt32)samples;
- (void)getSongSamples:(void *)filBuffer forPackets:(UInt32
*)nPackets andBytes:(UInt32 *)numBytes;
- (BOOL)setNextSongItem:(MPMediaItem *)song
startingWithOffset:(CMTime)timeStart;
- (BOOL)setNextSongID:(NSNumber *)persistand_id
startingWithOffset:(CMTime)timeStart;
- (void)giveSoundSamples:(UInt32 *)nPackets andBytes:(UInt32
*)numBytes;
- (MPMediaItem *)getMediaItemForPersistantID:(NSNumber
*)pers_id;

 MPMediaItem *mediaItem;
 AVAssetReaderTrackOutput *assetReaderOutput;
 AVAssetReader *assetReader;
 AVAssetTrack *track;
 int numChannels;
 int sampleRate;
 NSMutableDictionary *audioReadSettings;

iTunesSampleAccesser
- (void)setForPersistantID:(NSNumber *)persistant_id bpm:(BPM)bpm;
- (BPM)getBPMForPersistantID:(NSNumber *)persistant_id;
- (NSArray *)getIDsForSongsWithBPM:(BPM)bpm withPercentageDeviation:
(float)percent;
- (void)removeInformationForID:(NSNumber *)persistant_id;
- (BOOL)doesBPMExistForPersistantID:(NSNumber *)persistant_id;
- (int)size;

 NSMutableDictionary *bpm_data;
 sqlite3 *db;
 int count;
 NSLock *mutexLock;
 sqlite3_stmt *set_stmt;
 sqlite3_stmt *get_stmt;
 sqlite3_stmt *get_stmt_interval;
 sqlite3_stmt *del_stmt;
 sqlite3_stmt *count_stmt;

BPMDataManager

- (void)go:(BPMSongAnalyzer *)THIS;
- (void)stop;
- (BOOL)isAnalyzerReadyToDeliverSongs;
- (NSNumber *)givePersistantIDCloseToBPM:(float)bpm;
- (float)giveBPMForPersistantID:(NSNumber
*)persistantID;
- (void)analyzeWholeLibrary:(BPMSongAnalyzer *)THIS;
- (void)analyzeMPMediaItem:(MPMediaItem *)item
andSelf:(BPMSongAnalyzer *)THIS;

 iTunesSampleAccesser *sample_accessor;
 CombBPMDetecter *detecter;
 BPMDataManager *dataManager;
 BOOL isWaitingToFillDB;

BPMSongAnalyzer

- (BOOL)preloadNextSongID:(NSNumber *)persistant_id
andBPM:(float)bpm;
- (void)forcePlayNext;
- (void)playLoadedSong;
- (void)getSongSamples:(void *)filBuffer forPackets:(UInt32
*)nPackets andBytes:(UInt32 *)numBytes;
- (void)setSystemPlayBPM:(float)sysBPM;
- (AudioFileID)getExemplaryAudioFile;

 SamplePlayer *player1;
 SamplePlayer *player2;
 BOOL isUsingPlayer1;
 BOOL isUnusedPlayerLoaded;
 BOOL isMixingTwoTracks;
 BOOL isFirstLoading;
 NSTimer *durationTimer;
 NSTimer *preloadTimer;
 float systemPlayBPM;
 EchoEffector *echoEffector;
 SInt16 *tempBuffer;

AMusicPlayer

- (void)setSystemBPM:(float)sysBPM;
- (BOOL)setNextSongItem:(MPMediaItem *)song
startingWithOffset:(CMTime)timeStart andBPM:(float)bpm;
- (BOOL)setNextSongID:(NSNumber *)persistand_id
startingWithOffset:(CMTime)timeStart andBPM:(float)bpm;
- (float)getSongBPM;
- (NSTimeInterval)getDurationInSecondsForLoadedTrack;
- (void)playingAboutToStart;

 float bpm;
 float sysBPM;
 SInt16 *tempBuffer;
 NSTimeInterval durationOfSong;

SamplePlayer

CombBPMDetecter AudioController

Figure 9: The full class diagram of the proposed solution.

Figure 9 presents the class diagram of the solution showing the various
associations between the classes. This part briefly describes the purpose of
each class.

ContextAwarenessController This controller receives accelerometer up-
dates from the AccelerometerMeasurer class, and performs activity

27

recognition as described in section 5.3.

AccelerometerMeasurer This is the class that received motion updates
(accelerometer data) using the CMMotionManager class. It performs
smoothing of the accelerometer data and places it into the circular
buffer that it shares with the AccelerometerController.

CurrentlyPlayingInformator This class is a singleton which maintains
app-wide information about the song currently being played. The
data can be written to from any class and read by any class. This is
important as this doesn’t require an association between the views and
the music playing controllers, thus decoupling logic from presentation.

AccelerometerController The main job of this controller is to coordinate
the accelerometer data processing tasks. This class has the Accelerom-
eterMeasurer, which it instruments to collect raw accelerometer data.
Every 5 seconds this class performs analysis on the accelerometer data,
using the CombBPMDetecter class.

CombBPMDetecter This is the main class of the project, as it performs
the tempo analysis on signals. Both the AccelerometerController and
the BPMSongAnalyzer use this class (their own instances) to perform
analysis on accelerometer and sound signals, respectively. The major-
ity of the methods of this class relate directly to section 5.4, which
explains in detail the stages of the BPM analysis algorithm.

PaceMakerController This is top-level class which executes methods on
other classes, such as to start analysing songs in the background, to
start playing music, and to setup other controllers.

AudioController This is the controller responsible for audio. It has an
association to the BPMSongAnalyzer class and tells it to perform or
stop analysis. Furthermore it also acts as the middle-man between the
BPMSongAnalyzer and the AMusicPlayer, dictating which songs to
play and when.

AMusicPlayer This music player has two SamplePlayer’s that it loads
with songs, as per AudioController instructions, so that there is always
a ready player to start playing the next song. This also enables the
music player to perform mixing of the two songs. It is also in charge
of managing when to inform the higher controllers that a new song
needs to be loaded, and when a song ends.

28

FFTApplier Fourier analysis is required for BPM detection, and this class
performs it. It has various different methods to perform different kinds
of Fourier analysis (on double or single precision floating numbers or
the forward and inverse transforms).

BPMSongAnalyzer The analyser coordinates the background analysis of
songs. It uses the BPMDataManager class to serialise and retrieve
BPM values. This class also tells higher level classes which songs are
available within range of a specific BPM value.

BPMDataManager This class interfaces with the SQLite database which
maintains information on the BPM values of different songs.

iTunesSampleAccesser This class performs low level access to samples.
It has a method by which samples are placed into a provided buffer.
This class also has basic information about the item it is playing.

SamplePlayer This class is a subclass of the iTunesSamplesAccesser which
is used to play music. It therefore contains more information about
the song being played, such as it’s computed BPM and duration. This
player also uses the SoundTouch library to change the tempo of the
song, and reflect this in it’s duration. Furthermore, this class also
writes currently playing songs to the CurrentlyPlayingInformator.

5.2 Accelerometer Data for User Pace (BPM)

The accelerometer was the main hardware input for analysis of the user’s
tempo. It provides information on the change in acceleration in the 3 axes.
There were a few things to consider with using this data:

Noise The accelerometer data can have lots of noise - gravity, spurious
movements, factors arising from phone shift.

Dimensionality Reduction The accelerometer provides 3-axis data, whereas
the tempo algorithm expects a single number.

Accuracy We want to extract the periodicity of movement, and need to
attain this from a change in acceleration reading.

Points 1 and 2 were tackled together. Figure 10 displays raw accelerome-
ter data when jumping around with the phone in the pocket. The motion
measured was running, which as in Figure 5 expressed periodicity. How-
ever, because there are three axes, and the rotation of the phone cannot

29

be assumed, the periodicity will be expressed in some (or all) of the axes.
Therefore the reduction operation, which takes as input the three axis val-
ues, and output 1 value, needs to take into account this fact.

50 100 150 200 250
−1.5

−1

−0.5

0

0.5

1
x 10

4

Time

A
c
c
e
le

ra
ti
o
n

Raw 3−axis accelerometer data

x

y

z

Figure 10: Raw accelerometer data for the 3-axis. The motion measured
was running, which as in Figure 7 expressed periodicity. However, because
there are three axes, and the rotation of the phone cannot be assumed, the
periodicity will be expressed in some of the axes. Therefore the reduction
operation, which takes as input the three axis values, and outputs 1 value,
needs to take this into account.

For simplicity, it is assumed that at least one axis will express periodicity,
because situations with no movement will be filtered out in a previous stage.
The approach taken in the implementation was to low-pass filter the signal.
Equation 6 presents the low pass filter. In the implementation the ∆t is 1/60
(sampling rate) and RC is 1/5. This gives the input contribution factor of
0.077 and previous output factor of 0.923. This means that the new sample
xi will only factor 7.7% to the final value and the previous processed sample,
yi−1, will factor 92.3%. The new sample will not influence the final outcome
too much. This is precisely the point of the low-pass filter. Large changes
(high frequencies) are to be attenuated. This thus decreases any big changes
in the signal, hence leaving lower frequencies intact. Figure 11 presents the
discrete low pass filter on exemplary accelerometer data.

30

yi =

input contribution︷ ︸︸ ︷(
∆t

RC + ∆t

)
xi +

previous output factor︷ ︸︸ ︷(
RC

RC + ∆t

)
yi−1 (6)

where
yi is the ith output sample
xi is the ith input sample
∆t is the sampling rate (1/fs). fs is the sampling frequency, in hertz.
RC is a time constant, originating from a RC circuit. We use 1/5

0 100 200 300 400 500

−0.5

−0.4

−0.3

−0.2

−0.1

0

Time (samples)

A
m

p
lit

u
d
e

Original Accelerometer signal

0 100 200 300 400 500
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1
Low pass filtered signal

Time (samples)

A
m

p
lit

u
d
e

Figure 11: The image presents a low pass filter applied to an accelerometer
signal. The left image presents the raw signal taken from the accelerometer,
and the right image presents the low-pass filtered signal, following equation
6. 2 of the 3 goals are met: noise reduction and periodicity (accuracy). Spu-
rious movements are removed from the signal, removing noise. Furthermore
the filtered signal expresses a more clear periodicity, one which the BPM
detection algorithm can better pickup.

The reason for using the low-pass filter is that it attenuates (reduces
the amplitude of) high-frequency signals. This is in contrast to the high-
pass filter which attenuates low-frequency signals. Because movement in
running is expressed mostly in low frequencies, such a filter would not work.

31

Figure 12 presents the high pass filter on our exemplary accelerometer signal.
As can be seen no periodicity is expressed in the signal (mostly just high
frequency noise). A further potential development would be a band pass
filter, which removes frequencies at both sides of the spectrum using specific
cutoff frequencies. This is a future development, since a deeper analysis
would need to be made in order to find the adequate cutoff frequencies.

0 50 100 150 200 250 300 350 400 450 500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time (samples)

A
m

p
lit

u
d
e

High pass filter on accelerometer data

Figure 12: The image presents a high pass filter applied to our accelerometer
signal. As can be seen no periodicity is expressed in the signal (mostly just
high frequency noise). This filter is not adequate for analysing periodicity
when running or exercising, because such a motion is expressed in the lower
frequencies of the motion spectrum.

The final step is to reduce the dimensions of the signal from 3 to 1 (3
dimensional axis data into a single dimension). This is done by taking the
length of vector of each sample, following equation 7. This is the Euclidian
normalisation of a vector, which gives the distance from 0 for the three
dimensional point.

si =
√
x2
i + y2

i + z2
i (7)

32

where
si is the ith output sample
xi, yi, zi are the ith x, y, and z samples

5.3 Accelerometer Data for Activity Recognition

The following section explains the implementation of activity recognition as
described in section 3.3. The approach taken by Nishkam et al [8] was to
use artificial intelligence classifiers to discern between various activities. In
order to simplify the implementation of activity recognition for the purpose
of achieving a working demo, the learning step was omitted. Rather than
learning dictating activities, a simple threshold of parameters was used. In
order to decrease errors that creep into accelerometer data, a window of 2
seconds was used. For each accelerometer axis (X,Y,Z) a queue is created
that stores 2 seconds worth of data (at 60 Hz sampling rate equals 120
samples). The context is thus calculated every 2 seconds, giving enough
time for the buffers to be filled3. When the buffers are full the mean and
standard deviation is calculated, and the logic follows listing 3.

Listing 3: Activity Recognition Logic
double avgStd = (xStd + yStd + zStd) / 3 ;
i f (avgStd > 0 . 25) {

// now we are running
i f (! isRunning) {

isRunning = YES;
[s e l f informStoppedWalking] ;

}
} else i f (avgStd < 0 . 1) {

// now we s topped (are wa lk ing , or s low)
i f (isRunning) {

isRunning = NO;
[s e l f informStoppedRunning] ;

}
}

5.4 BPM Analysis

A signal going through the BPM analysis implementation has several stages.
Each stage is examined with diagrams showing an exemplary signal trans-
formation.

3In the worst case scenario, it will take the phone 2 seconds to realise that the user has
changed activity. From experimentation it shows that this is an adequate time interval.

33

Overview

Figure 13 presents the flow chart of the BPM analysis algorithm. Each of
the stages are reflected in the processes.

Signal

Preparation

Frequency

Decomposition

Hann Window

Differentiation &

Rectification

Time-combing

Sound

File

More accurate

time comb?
Output

Tempo

Need more

Samples?

Yes No

Yes

No

Figure 13: The flowchart of the BPM analysis stage. The samples are
fed into the signal preparation method, and when there are enough the
algorithm runs frequency decomposition, hann window, differentiation and
rectification, and time-combing. The time-comb algorithm can be called
iteratively to gain better results. Finally the tempo is returned.

Signal preparation

Signal preparation is the stage where, at first, the signal is read into buffers.
The filtering rhythm algorithm matches the beats with a time comb, thus
requiring the sample analysed to contain at least 2 beats. Equation 8 dis-
plays the relation between the required sample length and the sampling rate.
Thus in our case, with a 44.1kHz sampling rate, and the lowest BPM tested
for of 70, we require 75600 samples.

Lsample = b120 ∗ fs
β

c (8)

where
Lsample is the length of the sample (in samples)

34

fs is the sampling rate of the file (in Hz)
β is the minimum BPM being tested)

Once the buffers are filled, the data is converted from 16-bit signed
integers into floating point numbers, for ease of computation. Figure 14
presents an exemplary signal.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (samples)

A
m

p
lit

u
d
e

Raw signal

Figure 14: Raw signal (in time domain) representing 2.2 seconds of the song
(97020 samples at 44.1 kHz sampling rate). This is the raw signal that is
fed into the buffers of the BPM analysis engine. The tempo of the song is
calculated based upon this sample. The length of the signal is enough to
withhold at least 2 beats (as seen on the image).

Frequency decomposition

Frequency decomposition, or filter banking the signal, is the second stage.
Here the FFT of the signal is taken, and separated into 6 different bands
based upon frequency:

• 0 - 1000 Hz

• 1000 - 4000 Hz

35

• 4000 - 6000 Hz

• 6000 - 8000 Hz

• 8000 - 10000 Hz

• 10000 - 44100 Hz

The values for the different bands were taken from Cheng et al [6] and
music theory specifying where certain instruments are expressed (in fre-
quency). Image 15 displays the filter-banked signal in both the time and
frequency domains.

36

0 2 4 6 8 10 12

x 10
4

0

20

40

60

80

100

120

140

160

180

200

Frequency

A
m

p
lit

u
d
e

Filterbank Signal

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (samples)

A
m

p
lit

u
d

e
0 − 1 kHz

1 − 4 kHz

4 − 8 kHz

6 − 8 kHz

8 − 10 kHz

10 − 44.1 kHz

Figure 15: The top image presents the signal in the frequency domain,
expressed in the different frequency bands (as shown in the legend). The
image is mirrored at the centre, thus the blue bands represent the lowest
frequencies (0-1 kHz), whereas the orange band represents the highest signal
(10-44.1 kHz). The bottom image represents the same signal in the time
domain, maintaining the frequency band colour scheme. Thus the blue band
once again corresponds to the lowest frequencies (this is a drum kick).

Hann window

A Hann window is “an apodization function, also called the Hann function,
frequently used to reduce aliasing in Fourier transforms” [20]. An apodiza-

37

tion function is one that changes the shape of a mathematical function or
signal. The function creates a smoothing of the signal around a specific
interval. The implemented signal only performs a half Hann window. The
purpose of this operation is to smooth the signal’s end, since it is cut from
the middle of the song, and thus could have noise. Before the Hann window
is applied on the signal, full-wave rectification occurs. Full wave rectifica-
tion is taking the absolute value of the signal, such that it is bound from
0. Because the algorithm attempts to find moments of great change in the
signal, the sign of the signal is unimportant. Figure 16 shows the output of
the Hann window stage on the signal.

38

0 2 4 6 8 10

x 10
4

0

500

1000

1500

2000

2500

Time (samples)

A
m

p
lit

u
d
e

Hann Window processed signal

0 − 1 kHz

1 − 4 kHz

4 − 6 kHz

6 − 8 kHz

8 − 10 kHz

10 − 44.1 kHz

Figure 16: The signal after the Hann window transformation, expressed
in the particular frequency bands (in time domain). The signal first is full
wave rectified - taking the absolute value of the signal, such that it is bound,
from 0. It then is multiplied with the Hann window to smooth the signals
end. The highest amplitude band corresponds to the 0 - 1 kHz frequency
band. This is the lowest frequencies, or the bass. In images from previous
stages this band had the highest amplitude, thus this transform preserves
the particular amplitudes.

Differentiation and Rectification

The penultimate stage is differentiation and half wave rectification. First
the signal is differentiated, so that only the change in sample amplitude
are shown. The signal thus maintains negative changes (when going from
maxima to minima, i.e. from higher amplitude to lower). Therefore the
signal is half-wave rectified to remove any values that are lower than zero.
Figure 17 shows this stages transformation on the signal.

39

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Differentiated and Rectified signal

Time (samples)

A
m

p
lit

u
d
e

0 − 1 kHz

1 − 4 kHz

4 − 6 kHz

6 − 8 kHz

8 − 10 kHz

10 − 44.1 kHz

Figure 17: The differentiated and half-wave rectified signal, expressed in the
particular frequency bands (in time domain). The signal was differentiated
and half-wave rectified (so that only positive differences are recorded). This
causes the output to have maximum amplitude in places where the signal
sharply increased (such as introductions of a beat).

Time-combing

Time combing is the last stage of the BPM analysis algorithm. It is also
the most computationally demanding. In this stage the processed signal (by
the filter bank, Hann window, and differentiation and rectification stages)
is analysed to determine the underlying BPM.

Overview The inputs to the time comb stage are the minimum BPM
(minBPM), the maximum BPM (maxBPM), and the increment factor. The
function analyses the BPMs from the minBPM up to the maxBPM every
increment factor. The function is called with more accurate results, thus
finding improving approximate BPMs. Listing 4 displays computation 3

40

levels deep. The first level inputs the minBPM and maxBPM as specified
by the system, and the next calls use the resulting BPM from the first call
± an offset (0.5 and 0.01).

Listing 4: Iterative time comb
f loat bpm;
bpm = [s e l f timecombAcc : 1 andMinBPM:70 andMaxBPM: 1 6 5] ;
bpm = [s e l f timecombAcc : 0 . 5 andMinBPM:bpm−2 andMaxBPM:bpm+2] ;
bpm = [s e l f timecombAcc : 0 . 0 1 andMinBPM:bpm−0.1 andMaxBPM:bpm+0 .1] ;

Detail Each iteration performs the same calculation, but with different
input. Firstly, the sound signal is transformed into the frequency domain.
Then a for loop is created which goes through every BPM in the range of
minBPM to maxBPM by increment factor.

1. The variable emax is set to zero. This variable represents the highest
observed energy (for determining the max energy).

2. The variable sbpm is set to zero. This variable will contain the BPM
giving the highest energy (emax).

3. For each tested BPM starting from minBPM to maxBPM increment-
ing by the increment factor

(a) A time comb is created using equation 9 for the desired BPM
being tested (tested BPM). It uses the Nstep values to create 3
time combs (as shown in figure 4). The time comb is created
by setting the samples at position Nstep ∗ γ to 1, where γ is the
iteration (0 ≤ γ ≤ 2). The rest of the samples are 0. This time
comb, therefore, corresponds to the tested BPM value, where
each samples of value 1 is where the beat could occur.

Nstep = bfs ∗ 60.0

bpm
c (9)

where
Nstep is interval (in samples) between beats at the given BPM
fs is the sampling rate (in Hz)
bpm is the BPM being tested in the loop

(b) The time comb is transformed to the frequency domain, thus both
the signal and time comb are in the frequency domain.

41

(c) The signals (sound and time comb) are multiplied together. Since
they are in the frequency domain, they are both complex number
vectors. Thus a complex number multiplication occurs on each
pair of samples (where C1 : a+bi is the first sample and C2 : c+di
is the second, thus the product is C1∗C2 = (ac−bd)+i(ad+bc)).

(d) Now that the output is still a complex number vector, both
components are squared and added together. Thus each sam-
ple Co : e+ fi is transformed into e2 + f2, resulting in a real (R)
number.

(e) All of the real number samples are then summed together, and
the sum is compared to the variable emax. If the sum is greater
than emax, then sbpm is set to the tested BPM, and emax is set
to the sum (now the highest energy observed). If the sum is not
greater, the algorithm continues with the next tested BPM.

4. The sbpm now holds the underlying BPM of the song, and is returned
back so that another iteration of the time-comb algorithm can be
called.

The sum of energies for each BPM, for our exemplary signal, is shown
in Figure 18. The underlying BPM of this signal is 128.

42

80 90 100 110 120 130 140 150 160 170
1.6

1.7

1.8

1.9

2

2.1

2.2
x 10

10 Energies for different BPM values using Time comb algorithm

BPM

E
n
e
rg

y

Maximum @ 128 BPM

Figure 18: The energies calculated for different BPM values using the time
comb algorithm. It can be noted that the maximum occurs at 128 BPM’s,
thus specifying the underlying BPM of the song. However, on the lower
BPM’s the energies start quickly climbing. This is because the signal also
finds high energies for the half beats (half of the BPM). In this case half of
the BPM is 64. If the range of tested BPM’s was increased to cover 64, the
maximum might be found there. Thus a possible future optimisation is to
classify signals that fall below a certain threshold, and use the lower end of
the BPM spectrum to find the underlying BPM.

6 Benchmarking

6.1 Tempo Analysis Complexity/Speed

The tempo analysis is done in two different tasks. Firstly, it is used as an
offline process to classify the tempo of music. Secondly, it is used to analyse
the tempo change of the user. The second task occurs more often (approx-
imately every 5 seconds), since the application needs to know whether the
user has sped up, or stopped. It is therefore very important to have the
tempo algorithm implementation heavily optimised. This section presents
the optimisation efforts with benchmarking data for every stage of optimi-

43

sation, and more elaborate benchmarks for the final implementation.

The first attempt at the algorithm was not optimised, as it had been de-
bugged for more than a month. The following table displays the relative
speeds of the different parts of the system in seconds.

Test iter-
ations

Filterbank Hwindow Diffrect Total
timecomb

Timecomb
avg itera-
tion

Total
Analysis

10 0.0252 0.7038 0.0563 6.0368 0.2810 18.4810
10 0.0251 0.7045 0.0566 6.0507 0.2817 18.5061
10 0.0254 0.7049 0.0562 6.0311 0.2808 18.4574
Avg 0.0253 0.7044 0.0564 6.0395 0.2812 18.4815

The first series of optimisations was to remove useless clearing of mem-
ory (using the C memset command), and change the places where memory
needed to be cleared to hardware accelerated using Accelerate Framework
methods. The results are as follows:

Test iter-
ations

Filterbank Hwindow Diffrect Total
timecomb

Timecomb
avg itera-
tion

Total
Analysis

10 0.0250 0.7067 0.0559 5.7068 0.2651 17.5125
10 0.0256 0.7063 0.0560 5.6145 0.2608 17.2476
10 0.0255 0.7178 0.0559 5.5230 0.2566 16.9891
Avg 0.0254 0.7103 0.0559 5.6148 0.2609 17.2498
% Change 0.42% 0.83% -0.76% -7.03% -7.22% -6.66%

Overall such an optimisation decreased the total analysis time by 6.7%.
The next series of optimisations were by further using Accelerate Framework
methods for basic arithmetic (such as absolute value of each element in a
vector, or summing a vector). The results, in seconds, were thus:

Test iter-
ations

Filterbank Hwindow Diffrect Total
timecomb

Timecomb
avg itera-
tion

Total
Analysis

10 0.0256 0.6635 0.0559 5.5950 0.2598 17.1554
10 0.0256 0.6635 0.0559 5.5950 0.2598 17.1554
10 0.0263 0.6725 0.0559 5.5649 0.2584 17.0733
Avg 0.0257 0.6697 0.0559 5.5460 0.2575 17.0190
%∆ Orig 1.95% -4.93% -0.73% -8.17% -8.41% -7.91%
%∆ Prev 1.52% -5.71% 0.03% -1.23% -1.28% -1.34%

The final optimisation was to complex number multiplication. Equation
10 & 11 present the case for complex number multiplication.

44

C1 : a+ bi

C2 : c+ di
(10)

C1 ∗ C2 = (ac− bd) + i(ad+ bc) (11)

Such a complex multiplication occurs in the time-comb iteration, or loop
within the time-comb method. The complex numbers in this loop are in 4
vectors (two vectors per complex number for the real and imaginary parts),
and every elements needs to be multiplied with its counterpart in the other
vector. A naive approach, as presented in equation 11, is to loop through
every element and extract the a, b, c, and d coefficients and perform the
arithmetic. Such an approach is rather costly as a typical complex vec-
tor, in our example, will have approximately 217 or 131,072 elements. For
each of these 131,072 elements equation 11 must be performed, and such an
operation must happen for every BPM value the algorithm wants to test.
This comes out to 56 iterations, or 29,360,128 multiplications, and 7,340,032
additions and subtractions4. Using vDSP methods such multiplication was
rewritten as shown in listing 7.

Listing 5: Complex vector each element multiplication using vDSP routines
void complexMultiply (f loat ∗ A real , f loat ∗ A imag , f loat ∗B real , f loat ∗B imag ,

f loat ∗ o r ea l , f loat ∗ o imag , f loat ∗aux , int l ength)
{

// a = a r e a l
// b = a imag
// c = b r e a l
// d = b imag

// a ∗ c = o r e a l
vDSP vmul (A real , 1 , B real , 1 , o r ea l , 1 , l ength) ;

// b ∗ d = o imag
vDSP vmul (A imag , 1 , B imag , 1 , o imag , 1 , l ength) ;

// (a∗c − b∗d) = a r e a l ;
vDSP vsub (o imag , 1 , o r ea l , 1 , o r ea l , 1 , l ength) ;
// need to r e t a i n o r e a l .

// a ∗ d = o imag
vDSP vmul (A real , 1 , B imag , 1 , o imag , 1 , l ength) ;

4For the first Time-comb call, 40 values are checked incrementing by 2, giving 20
iterations. The second call checks 4 values incremented by 0.5, thus 8 iterations. The
third call is 1 value incremented by 0.1, thus 10 iterations. The final call is 0.2 values, by
0.01, thus 20 iterations. This gives 56 iterations total. For each pair of complex number,
from equation 11, we have 4 multiplications, 1 addition, and 1 subtraction. The typical
vector has length of 131072 (approximately 2.2 seconds at 44.1kHz sampling rate rounded
to closest whole power of 2), and thus 524,288 multiplications, and 131,072 additions and
subtractions. Finally for the 56 iterations, this surmounts to 29,360,128 multiplications,
and 7,340,032 additions and subtractions.

45

// b ∗ c = aux
vDSP vmul (A imag , 1 , B real , 1 , aux , 1 , l ength) ;

// (a∗d + b∗c) = o imag
vDSP vadd (o imag , 1 , aux , 1 , o imag , 1 , l ength) ;

}

The results for this optimisation are:

Test iter-
ations

Filterbank Hwindow Diffrect Total
timecomb

Timecomb
avg itera-
tion

Total
Analysis

10 0.0257 0.6068 0.0562 3.0243 0.1374 9.6029
10 0.0255 0.6067 0.0567 3.0021 0.1335 9.7323
10 0.0256 0.6049 0.0563 2.9393 0.1335 9.3778
10 0.0258 0.6025 0.0563 2.8888 0.1311 9.2293
10 0.0245 0.6069 0.0544 2.8500 0.1308 9.2625
10 0.0256 0.6035 0.0561 2.8777 0.1345 9.2223
10 0.0262 0.6041 0.0565 2.9653 0.1341 9.3442
10 0.0260 0.6031 0.0599 2.7611 0.1333 9.5031
10 0.0259 0.6064 0.0583 3.0442 0.1362 9.6132
10 0.0262 0.6021 0.0523 3.1552 0.1356 9.1464
Avg 0.0257 0.6047 0.0563 2.9508 0.1340 9.4034
%∆ Orig 1.74% -14.15% -0.18% -51.14% -52.33% -49.12%
%∆ Prev -0.21% -9.70% 0.56% -46.79% -47.95% -44.75%

This optimisation made a huge difference, with a 49% change in speed,
from 18.5 seconds down to 9.4. This same algorithm is used for accelerom-
eter data, however, the sampling rate is much higher (at 60 Hz), and thus
performing the analysis on a 2 second window (120 samples) takes 0.004
seconds.

6.2 Tempo Analysis Accuracy

The implemented tempo analysis was much better than the initial imple-
mentation (as described in section 4.5). The following table presents the
inferred BPM by the algorithm, the actual BPM value (per outcome from
Serato Software), and the mean square error. It can be noted that this
algorithm offered a much smaller mean square error than the previous im-
plementation.

46

Song Title Artist Genre Real
BPM

Approx.
BPM

Mean
Square
Error

An American
in Paris

STP Ft.
Kevin Yost

Chill House 124 122.6 1.96

Maria Blondie Rock, Pop 160 159.2 0.64

Amazing Seal Upbeat, Pop 121 122.01 1.0201

In My Arms Kylie
Minogue

Pop 128 68.09 3589.2

I Found You Axwell House 130 128.86 1.3

Good Vibra-
tions

The Beach
Boys

Rock 77 80.72 13.84

Got 2 B U Solar House House 124 122.61 1.9321

I Will Survive Gloria
Gaynor

Disco 117 80.12 1360.1344

One More
Time

Daft Punk House 125 122.93 4.28

The following table shows BPM analysis run on additional songs:

Song Title Artist Genre Real
BPM

Approx.
BPM

Mean
Square
Error

All My Love Avalon Super-
star

House 128 128.09 0.0081

You’ll See Me Jon Fitz House 128.5 128.5 0

Say Say Say Michael Jack-
son & Paul
McCartney

Pop 118 117.1 0.81

Umbrella Rihanna Pop 88 128.61 1649.17

Rakfunk Pryda House 126 125 1

Conga Gloria Este-
fan

Pop 117 81.1 1288.81

Miami Will Smith R&B 107.5 107.96 0.2116

Give It To Me Timbaland R&B 111.5 73.84 1418.3

The mean square error is significantly lower than analysis done in section
4.5 using the statistical streaming beat detection algorithm.There still are
songs which are incorrectly classified (anomalies), however ones which miss
the BPM by a small amount are the more serious errors, since these are songs
that will be chosen. Songs that are classified at half tempos are usually too
low to meet the cutoff to actually run. The future work proposes solutions
to make the accuracy even higher.

47

7 Conclusion

This project attempts to create a solution that delivers a motivational im-
petus higher than that of simply playing music. This is accomplished suc-
cessfully by tracking the users tempo and analysing their own music in order
to play exactly the right song at the right time (in the right tempo). The
BPM analysis implementation uses DSP techniques on both accelerometer
and sound signals. It achieves a low degree of error, lower than existing
solutions (libraries). Furthermore activity recocgnition allows the phone to
know when the user stops or continues exercising.

Throughout the project we have taken a look at the overview of the
smartphone market, looked at technical research such as the discrete Fourier
transform, investigated beat matching and activity recognition, and finally
tested these ideas in the initial assessments section. From there an imple-
mentation for BPM analysis was crafted, which offered much better results
than existing and available libraries which can be ported to the iPhone.
Accelerometer data, driving the user pace analysis, was pre-processed and
transformed to remove unwanted parts of the signal (such as noise). Finally
the complexity and speed were analysed, and decreased.

The final app has 2 modes: free run and constant. Free run plays music
matching the users tempo (user controls tempo), and constant mode plays
music at the same tempo (app controls tempo).

Motivation, therefore, is challenged with music. The extent of motiva-
tion, however, at this stage, is not measurable. A large scale test would need
to be employed which tracked users running without and with the applica-
tion. The offset between desired BPM and actual BPM would be measured
and this could give more insight into the level of motivation. Comparing to
related work which attempt to motivate the user, however, this app is at a
forefront. It is the one that harnesses the potential of music.

7.1 Future Work

The implementation described in the earlier sections was limited to devel-
opment time and hardware. This section describes parts of the system that
require more exploration in order to achieve higher analysis results, better
performance, and a better user experience.

Musical Hills The ability to pre-set a workout before starting it, and hav-
ing music take you on a journey through this workout, is the biggest
and most promising future work. Through the user interface the user
could choose different BPM levels at different time lasting for various

48

amounts of time, and thus create a hill resembling workout schedule.
Then when the user would start running, the app would play music
at these predefined tempos. The user would follow, and if not, the
app would notify the user and mark it in the workout summary. Hills
would be the epitome of musical motivation.

Movement Awareness Section 4.4 presented various hardware that can
be employed to perform movement awareness. The implementation
used only accelerometer data, because it was the easiest to interpret
and is widely available (since the iPhone has a built-in accelerometer).
Newer iPhones, however, have shipped with a gyroscope, allowing ac-
cess to information on the rotation about an axis. Harnessing both the
accelerometer and gyroscope could offer even greater results to both
user BPM analysis and activity recognition.

Learning Learning, the forefront of truly personalised software, is a big
part that can be introduced into the project. Such learning is both
client-side and back-end side, meaning learning from gathered data
prior to shipping. Client-side learning means learning from users’ ac-
tions based solely on what the user does in the app (to tailor specific ac-
tions to the user). The most obvious client-side implementation would
be for activity recognition. Each person has a specific way of mov-
ing when performing different activities, and learning these specifics
would increase accuracy of prediction. Furthermore, back-end learning
of activity recognition would be a more complex, yet more accurate
method of determining activity recognition. Currently the implemen-
tation performs a simple threshold operation on standard deviation,
but this threshold is arbitrary. It was chosen through simple observa-
tion, rather than a deep study of motion. Learning would infer much
more deeply that which simple observation cannot.

Cloud The iPhone is limited in processing power and battery life. Vari-
ous implementation of intensive computationally algorithms has been
done in the cloud. Rather than perform calculations on the phone, the
signal can be sent to more powerful servers which can perform even
more accurate calculations that would be infeasible on the phone. This
approach has even more advantages such as other means of analysis
and massive learning potential. Other means of analysis could exploit
properties of the song being played. The iPhone has access to the title,
artist, album information about each song, and the cloud server could
utilise this information to look up pre- analysed songs. The drawback

49

is that users download their music from unknown sources, some pi-
rated, which may give inaccurate information of the songs (such as
wrong titles). This, however, is simply a hypothesis thus the cur-
rent implementation should gather as much data (and send to logging
servers) to be able to determine whether this is a feasible solution.

User Experience The purpose of the application is to aid in motivation
during running. This implies that the user experience is crucial to
achieving this goal. The first optimisation comes in the form of con-
tinuous musical sensation. Currently the app plays a song and switches
to the next one. This causes a bit of silence or a sudden jerk to a com-
pletely different key and sound. Future work on this will involve an
effector unit which will mix together the songs so that there is a blend
between the two, thus delivering a continuous musical sensation.

Another possibility to enhance the user experience would be to track,
for songs that the person presses next for (ie skips), the time interval
between starting to play the song and pressing next. This time would
encompass the level of hesitation, ie, how much the user enjoys or
wants to hear the song whilst exercising. Songs with a very small
interview could be excluded from every playing again (until the person
accepts them again). This could enhance what the BPM analysis
engine cannot determine - whether the song is right for running (even
if it is in the correct tempo).

Future optimisations

The project has future work that is more optimisation than new imple-
mentation. The approach taken in the application was to create tools that
then could be easily extended to perform a plethora of tasks. The future
optimisations are thus:

Feedback The Constant mode in the app plays music at a constant tempo.
The user is supposed to run at this speed. If, however, the user strays
of the desired tempo, the app currently does nothing. It should notify
the user via audio that he is either going too fast or too slow. Such
a feedback can be something easy such as a few clicks, or use insights
from section 4.1: Motivation.

BPM Analysis The BPM analysis implementation analyses a small win-
dow of the original song. In most cases this is adequate, however,
certain songs have moments of build-up which do not contain tempo

50

discerning features, or have additional sounds which may mask the
tempo within this window. Therefore, in order to attain a more ac-
curate result, this analysis can be done multiple times on different
windows. A simple decision engine can then take the BPM’s and
determine what the underlying BPM is, or place the song back into
analysis (on a different window). Through simple experimentation
with the BPM implementation, it can be noted that performing anal-
ysis multiple times on different windows does indeed give much better
results. Such an experimentation was done on 3 windows (from the
beginning, middle, and end of the song), and in most cases at least one
of the returned values contained the near exact BPM (with a mean
square error < 2). More investigation would need to be done for the
algorithm to tell which BPM value is correct.

Parameter optimisation The parameters to the BPM analysis stage and
accelerometer pre-processing stage, are largely chosen either based
upon related research or simple testing/observation. Taking research
values is adequate for the purpose of this project, but may not be ad-
equate for this specific implementation. In order to truly attain the
best results, every parameter needs to be deeply analysed in order
to determine under which value it best fits the whole system. The
basic optimisations that can be run is mean error minimisation, but
more elaborate optimisation techniques could be employed to test the
combination of parameters that offer the best results.

Information For the application to truly make sense, it needs to be aug-
mented by more information. These information could be GPS track-
ing, burning of calories, and a history of runs. GPS tracking would
track the distance travelled and display a heat map overlaid on the
actual map that showed the tempo in different parts of the run. Fur-
thermore calorie burning could be calculated from available informa-
tion. Finally a history of all previous runs could be displayed, perhaps
exportable to the computer for a more detailed analysis.

51

Bibliography

[1] Statistica, “Smartphone os: global market share q1 2012,” 2012.
Available from: http://www.statista.com/statistics/73662/quarterly-
worldwide-smartphone-market-share-by-operating-system-since-2009.

[2] “Android device gallery.” Available from:
http://www.android.com/devices.

[3] A. Terras, Fourier Analysis on Finite Groups and Applications.
No. ISBN 978-0-521-45718-7, Cambridge University Press, 1999. p.
30.

[4] S. W. Smith, “The scientist and engineer’s guide to digital signal pro-
cessing.”

[5] F. Patin, “Beat detection algorithms,” 2003.

[6] K. Cheng, B. Nazer, J. Uppuluri, and R. Verret, Beat This - A Beat
Synchronisation Project. PhD thesis, Rice University, Houston, Texas,
2001.

[7] A. D. Patel, J. R. Iversen, M. R. Bregman, I. Schulz, and C. Schulz,
Investigating the human-specificity of synchronization to music. PhD
thesis, University of California San Diego, 2010. The Neurosciences
Institute.

[8] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, Activity Recog-
nition from Accelerometer Data. PhD thesis, Rutgers University, Pis-
cataway, NJ 08854, 2005. Department of Computer Science.

[9] M. kyung Suh, K. Lee, A. Nahapetian, and M. Sarrafzaded, Inter-
val training guidance system with music and wireless group exercise
motivations. PhD thesis, University of California Los Angeles, 2009.
Department of Computer Science.

52

[10] Nike-Inc., “Nike+ gps.” Apple App Store description.

[11] V. X. Afonso, W. J. Tompkins, T. Q. Nguyen, and S. Luo, Filter
Bank-based ECG Beat Detection. PhD thesis, University of Wisconsin-
Madison, 1996. Department of Electrical and Computer Engineering.

[12] C. Randell and H. Muller, Context Awareness by Analysing Accelerom-
eter Data. PhD thesis, University of Bristol, 2000. Department of
Computer Science.

[13] A. Purwar, D. U. Jeong, and W. Y. Chung, Activity Monitoring from
Real-Time Triaxial Accelerometer data using Sensor Network. PhD
thesis, Graduate School of Design and IT, Dongseo University, Busan,
Korea, 2007. Division of Computer Information Engineering.

[14] “From ipod library to pcm samples in far fewer steps than were previ-
ously necessary,” 2010. subfurther.com.

[15] M. Tyson, “Using remoteio audio unit,” 2008. atastypixel.com.

[16] T. Zicarelli, “ios audio processing graph,” 2011. zerokidz.com.

[17] E. W. Weisstein, “Fast fourier transform.”
From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/FastFourierTransform.html.

[18] A. Inc., “ios documentation - vdsp programming guide,” 2011. devel-
oper.apple.com.

[19] O. Parviainen, “Soundtouch audio processing library,” 2001-2011. Su-
rina.net/soundtouch/.

[20] E. W. Weisstein, “Hanning function.” From
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/HanningFunction.html.

53

Glossary

Accelerate Framework An iOS framework which contains C APIs for
vector and matrix math, digital signal processing, large number han-
dling, and image processing, accelerated in hardware. 43, 52

API Application Programming Interface. 6, 16, 18, 52

BPM Beats Per Minute. 2, 4, 9–11, 13, 15, 16, 21, 22, 40, 42, 44, 46, 48,
52

convolution A convolution is an integral that expresses the amount of over-
lap of one function as it is shifted over another function. It therefore
“blends” one function with another. 10, 52

DSP Digital Signal Processing. 2, 7, 13, 47, 52

FFT Fast Fourier Transform. 1, 2, 4, 10, 17–19, 52, 55

GPS Global Positioning System. 2, 13, 19, 52

Gyroscope a device consisting of a wheel or disk mounted so that it can
spin rapidly about an axis that is itself free to alter in direction. The
orientation of the axis is not affected by tilting of the mounting; so
gyroscopes can be used to provide stability or maintain a reference
direction in navigation systems, automatic pilots, and stabilizers. 19,
52

Hz The SI unit of frequency, equal to one cycle per second. 10, 11, 16, 21,
22, 33, 44, 52

iOS Apple Inc.’s mobile operating system. Runs iPod Touch, iPad, iPhone,
Apple TV. 1, 6, 16, 52, 55

54

iTunes An Apple application that comes with Mac OS X and lets you
import music, podcasts, and video from CDs or from the iTunes Store;
organise media into custom albums and playlists; and burn it onto
disks or transfer it to an iPod or other media player. iTunes is also
widely used on Windows-based computers. 52

latency A measure of time delay experienced in a system. 16, 52

memset Sets the first num bytes of the block of memory pointed by ptr to
the specified value (interpreted as an unsigned char). 43, 52

noise Irregular fluctuations that accompany a transmitted electrical signal
but are not part of it and tend to obscure it. 10, 28, 52

RMS Root Mean Square. 14, 52

55

1 Appendix 1: FFT Applier Implementation

This section holds the implementation of the single precision FFT algorithm
using the iOS Accelerate framework.

Listing 6: FFTApplier.h
// //
//

3// FFTApplier . h
// PaceMaker
//
// Created by P io t r Holc on 16/01/2012.
// Copyr i gh t (c) 2012 P io t r Holc . A l l r i g h t s r e s e r v e d .

8//
// //
//
// This program i s f r e e s o f twa r e : you can r e d i s t r i b u t e i t and/ or modi fy
// i t under t h e terms o f t h e GNU General Pub l i c L i cense as p u b l i s h e d by

13// the Free So f tware Foundation , e i t h e r v e r s i o n 3 o f t h e License , or
// (a t your op t i on) any l a t e r v e r s i o n .
//
// This program i s d i s t r i b u t e d in t h e hope t h a t i t w i l l be u s e f u l ,
// bu t WITHOUT ANY WARRANTY; w i t hou t even the imp l i e d warranty o f

18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See t h e
// GNU General Pub l i c L i cense f o r more d e t a i l s .
//
// You shou l d have r e c e i v e d a copy o f t h e GNU General Pub l i c L i cense
// a long w i th t h i s program . I f not , s e e <h t t p ://www. gnu . org / l i c e n s e s />.

23//
// //

#import <Foundation/Foundation . h>

28#include <s t d i o . h>
#include <s t d l i b . h>
#include <Acce l e ra t e / Acce l e ra t e . h>

33@inte r f a ce FFTApplier : NSObject {

// f f t v a l s
FFTSetup f f t S e tup ; // f f t p r e d e f i n e d s t r u c t u r e

// h o l d i n g we i gh t v e c t o r f o r vDSP .
38

// f f t p r e d e f i n e d s t r u c t u r e f o r doub l e p r e c i s i o n f f t s
FFTSetupD fftSetupD ;

43UInt32 maxFrames ; // the max amount o f frames g i v en .
int log2n ; // base 2 l o g o f f f t s i z e (1024)
int N; // f f t s i z e
int NOver2 ; // h a l f f f t s i z e
s i z e t bu f f e rCapac i ty ; // b u f f e r s i z e in samples

48s i z e t index ; // read index p o i n t e r f o r f f t b u f f e r .

void ∗dataBuf fe r ; // inpu t b u f f e r
f loat ∗ outputBuf fer ; // f f t c onve r s i on b u f f e r

}
53

−(id) initWithMaxFrames : (UInt32)mFrames ;

−(int) getN ;
58

−(void) performFFT : (SInt16 ∗) sampleBuf fer
withNumberOfFrames : (UInt32) numberFrames

andOutput : (COMPLEX SPLIT∗) d f t ;

63−(void) performFloatingFFT : (f loat ∗) sampleBuf fer
withNumberOfFrames : (UInt32) numberFrames

andOutput : (COMPLEX SPLIT∗) d f t ;

−(void) performDoubleFFT : (double∗) sampleBuf fer

56

68withNumberOfFrames : (UInt32) numberFrames
andOutput : (DOUBLE COMPLEX SPLIT ∗) d f t ;

−(void) performIFFT : (f loat ∗) r e a lBu f f e r
73andImagBuffer : (f loat ∗) imagBuffer

andBufferLength : (UInt32) numberFrames
andOutput : (COMPLEX SPLIT∗) d f t ;

−(void) performDoubleIFFT : (double∗) r e a lBu f f e r
78andImagBuffer : (double∗) imagBuffer

andBufferLength : (UInt32) numberFrames
andOutput : (DOUBLE COMPLEX SPLIT ∗) d f t ;

83@end

Listing 7: FFTApplier.m
// //

2//
// FFTApplier .m
// PaceMaker
//
// Created by P io t r Holc on 16/01/2012.

7// Copyr i gh t (c) 2012 P io t r Holc . A l l r i g h t s r e s e r v e d .
//
// //
//
// This program i s f r e e s o f twa r e : you can r e d i s t r i b u t e i t and/ or modi fy

12// i t under t h e terms o f t h e GNU General Pub l i c L i cense as p u b l i s h e d by
// the Free So f tware Foundation , e i t h e r v e r s i o n 3 o f t h e License , or
// (a t your op t i on) any l a t e r v e r s i o n .
//
// This program i s d i s t r i b u t e d in t h e hope t h a t i t w i l l be u s e f u l ,

17// bu t WITHOUT ANY WARRANTY; w i t hou t even the imp l i e d warranty o f
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See t h e
// GNU General Pub l i c L i cense f o r more d e t a i l s .
//
// You shou l d have r e c e i v e d a copy o f t h e GNU General Pub l i c L i cense

22// a long w i th t h i s program . I f not , s e e <h t t p ://www. gnu . org / l i c e n s e s />.
//
// //

#import ”FFTApplier . h”
27

@inte r f a ce FFTApplier (hidden)

−(void) setupFFT ;

32@end

@implementation FFTApplier

37−(id) initWithMaxFrames : (UInt32)mFrames {

i f ((s e l f = [super i n i t])) {
maxFrames = mFrames ;
[s e l f setupFFT] ;

42}
return s e l f ;

}

// s e t up t he FFT s t r u c t u r e s f o r vDSP .
47−(void) setupFFT {

p r i n t f (”SetupFFT : Se t t ing up FFT s t r u c t u r e s \n”) ;

// s e t up inpu t and ou tpu t b u f f e r s to t h e max frame s i z e
52dataBuf fe r = (void∗) mal loc (maxFrames ∗ s izeof (SInt16)) ;

outputBuf fer = (f loat ∗) mal loc (maxFrames ∗ s izeof (f loat)) ;

memset (dataBuffer , 0 , maxFrames ∗ s izeof (SInt16)) ;
memset (outputBuffer , 0 , maxFrames ∗ s izeof (f loat)) ;

57

57
// s e t t h e i n i t s t u f f f o r f f t based on number o f frames

// l o g base2 o f max number o f frames , i e : 10 f o r 1024 .
log2n = c e i l f (l o g 2 f (maxFrames)) ;

62// a c t u a l max number o f frames , s i n c e n = 10 , 1024 .
N = 1 << log2n ;
NOver2 = N / 2 ;

67// ze ro r e t u rn i n d i c a t e s an e r r o r s e t t i n g up i n t e r n a l b u f f e r s
f f t S e tup = vDSP crea t e f f t s e tup (log2n , FFT RADIX2) ;
f f tSetupD = vDSP create f f t setupD (log2n , FFT RADIX2) ;

i f (f f t S e tup == (FFTSetup)0) {
72p r i n t f (”Error : FFTSetup − unable to a l l o c a t e f f t setup bu f f e r s ”) ;

}
i f (f f tSetupD == (FFTSetupD)0) {

p r i n t f (”Error FFTSetupD − unable to a l l o c a t e f f t setup bu f f e r s ”) ;
}

77}

// Performs a forward FFT.
−(void) performFFT : (SInt16 ∗) sampleBuf fer withNumberOfFrames : (UInt32) numberFrames

andOutput : (COMPLEX SPLIT∗) d f t
82{

a s s e r t (numberFrames <= N) ;
UInt32 s t r i d e = 1 ;

// we need to conve r t SInt16 to f l o a t i n g po i n t
87vDSP vflt16 ((SInt16 ∗) sampleBuffer ,

s t r i d e ,
(f loat ∗) outputBuffer ,
s t r i d e ,
numberFrames) ;

92
[s e l f performFloatingFFT : outputBuf fer

withNumberOfFrames : numberFrames
andOutput : d f t] ;

}
97

−(void) performFloatingFFT : (f loat ∗) sampleBuf fer
withNumberOfFrames : (UInt32) numberFrames

andOutput : (COMPLEX SPLIT∗) d f t
{

102NSAssert2 (numberFrames <= N,
@”Number frames (%d) not l e s s than N (%d) ” ,
numberFrames , N) ;

UInt32 s t r i d e = 1 ;
int t oZ e r oF i l l = N − numberFrames ;

107
memcpy(dft−>rea lp , sampleBuffer , numberFrames∗ s izeof (f loat)) ;
memset (dft−>r ea lp+numberFrames , 0 , t oZ e r oF i l l) ;
memset (dft−>imagp , 0 , N ∗ s izeof (f loat)) ;

112// Perform the forward FFT
vDSP f f t z ip (f f tSe tup , dft , s t r i d e , log2n , kFFTDirection Forward) ;

}

−(void) performDoubleFFT : (double∗) sampleBuf fer
117withNumberOfFrames : (UInt32) numberFrames

andOutput : (DOUBLE COMPLEX SPLIT ∗) d f t
{

a s s e r t (numberFrames <= N) ;
122UInt32 s t r i d e = 1 ;

int t oZ e r oF i l l = N − numberFrames ;

memcpy(dft−>rea lp , sampleBuffer , numberFrames∗ s izeof (double)) ;
memset (dft−>r ea lp+numberFrames , 0 , t oZ e r oF i l l) ;

127memset (dft−>imagp , 0 , N ∗ s izeof (double)) ;

// Perform the forward FFT
vDSP fft z ipD (fftSetupD , dft , s t r i d e , log2n , kFFTDirection Forward) ;

}
132

58

// Performs an i n v e r s e FFt , u s ing s e p e r a t e d b u f f e r s f o r complex number , i e :
// a number a + bi , i e 5 th in t h e b u f f e r would be :
// r e a l B u f f e r [4] + imagBuf fer [4] i .

137−(void) performIFFT : (f loat ∗) r e a lBu f f e r
andImagBuffer : (f loat ∗) imagBuffer

andBufferLength : (UInt32) numberFrames
andOutput : (COMPLEX SPLIT∗) d f t

{
142

numberFrames = N;
a s s e r t (numberFrames <= N) ;

UInt32 s t r i d e = 1 ;
147int t oZ e r oF i l l = N − numberFrames ;

// copy th e inpu t to t h e b u f f e r .
memcpy(dft−>rea lp , r e a lBu f f e r , numberFrames∗ s izeof (f loat)) ;
memcpy(dft−>imagp , imagBuffer , numberFrames∗ s izeof (f loat)) ;

152
// c l e a r t h e a d d i t i o n a l b i t s
memset (dft−>r ea lp+numberFrames , 0 , t oZ e r oF i l l) ;
memset (dft−>imagp+numberFrames , 0 , t oZ e r oF i l l) ;

157// perform in p l a c e f o u r i e r t rans form
vDSP f f t z ip (f f tSe tup , dft , s t r i d e , log2n , kFFTDirect ion Inverse) ;

//we need to s c a l e t h e ou tpu t as per documentat ion i n s t r u c t i o n s
// by a f a c t o r o f n . (t hu s eve ry i tem w i l l be d i v i d e d by n) .

162f loat s c a l e = (f loat) 1 . 0 / N;

// s c a l e
vDSP vsmul (dft−>rea lp , 1 , &sca l e , dft−>rea lp , 1 , numberFrames) ;
vDSP vsmul (dft−>imagp , 1 , &sca l e , dft−>imagp , 1 , numberFrames) ;

167}

−(void) performDoubleIFFT : (double∗) r e a lBu f f e r
andImagBuffer : (double∗) imagBuffer

andBufferLength : (UInt32) numberFrames
172andOutput : (DOUBLE COMPLEX SPLIT ∗) d f t

{

numberFrames = N;
a s s e r t (numberFrames <= N) ;

177
UInt32 s t r i d e = 1 ;
int t oZ e r oF i l l = N − numberFrames ;

// copy th e inpu t to t h e b u f f e r .
182memcpy(dft−>rea lp , r e a lBu f f e r , numberFrames∗ s izeof (double)) ;

memcpy(dft−>imagp , imagBuffer , numberFrames∗ s izeof (double)) ;

// c l e a r t h e a d d i t i o n a l b i t s
memset (dft−>r ea lp+numberFrames , 0 , t oZ e r oF i l l) ;

187memset (dft−>imagp+numberFrames , 0 , t oZ e r oF i l l) ;

// perform in p l a c e f o u r i e r t rans form
vDSP fft z ipD (fftSetupD , dft , s t r i d e , log2n , kFFTDirect ion Inverse) ;

192//we need to s c a l e t h e ou tpu t as per documentat ion i n s t r u c t i o n s
// by a f a c t o r o f n . (t hu s eve ry i tem w i l l be d i v i d e d by n) .
double s c a l e = (double) 1 . 0 / N;

// s c a l e
197vDSP vsmulD(dft−>rea lp , 1 , &sca l e , dft−>rea lp , 1 , numberFrames) ;

vDSP vsmulD(dft−>imagp , 1 , &sca l e , dft−>imagp , 1 , numberFrames) ;
}

−(int) getN {
202return N;

}

−(void) d e a l l o c {

207vDSP destroy f f tsetupD (f ftSetupD) ;
f f tSetupD = NULL;

59

vDSP dest roy f f t s e tup (f f t S e tup) ;
f f t S e tup = NULL;

212f r e e (dataBuf fe r) ;
f r e e (outputBuf fer) ;

[super d e a l l o c] ;
}

217
@end

60

