
Imperial College London

Department of Computing

Hybrid Logic with the Sigma Binder
by

Sebastian Dörner

Submitted in partial fulfilment of the requirements for the MSc Degree in
Advanced Computing of Imperial College London

September 2012

2

Abstract

This thesis investigates the hybrid language with the Σ binder (ML + Σ, for “Modal Logic and
Σ”). We show that all sentences of the language are essentially equivalent to a boolean combi-
nation of modal formulas and first-order sentences. We define a new type of bisimulation (“Σ-
bisimulation”) to mean bisimilar and elementarily equivalent. We show that any first-order for-
mula α(x) is invariant under Σ-bisimulation if and only if it is equivalent to the standard trans-
lation of a formula in ML + Σ. We prove a second bisimulation characterisation for ML + Σ using
“strong Σ-bisimulation”, which means bisimilar and isomorphic. A third characterisation is given
using a game. We show that it is undecidable whether a first-order formula is invariant under
Σ-bisimulation. Finally, we prove that any sentence in ML + Σ without nominals that is invari-
ant under forward-generated submodels, disjoint unions or p-morphisms is equivalent to a modal
formula.

3

Acknowledgements

I would like to thank Ian Hodkinson for supervising this project with a personal investment of
time that is much higher than I could expect. He was always motivated to comment on my results
and suggest ways to improve upon them. It is hard to imagine doing this project without him
guiding me through the huge body of available knowledge in the area, providing valuable ideas and
sharpening my thinking.

Thanks also to Anja Bachmann and Christian Braune for reading drafts of this thesis and for
giving some helpful comments and suggestions.

I thank the German National Academic Foundation and my parents for sponsoring my studies
at Imperial College. Finally, I would also like to thank my parents and friends for supporting me
in the step to go abroad and making this year an unforgettable time.

4

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Project Objectives . 7
1.3 Related Work . 7
1.4 A Brief Introduction to Hybrid Logics . 8
1.5 Achievements . 8
1.6 Outline . 10

2 Hybrid Languages 11
2.1 Modal Language . 11

2.1.1 Syntax of the Modal Language . 11
2.1.2 Semantics of the Modal Language . 12
2.1.3 Bisimulation . 14

2.2 Extension to Hybrid Languages . 14
2.2.1 Syntax of Hybrid Languages . 15
2.2.2 Semantics of Hybrid Languages . 16

3 On the Expressiveness of ML + Σ 18
3.1 Introduction . 18
3.2 ML + Σ and ML +E+ ↓ . 20
3.3 First-Order Sentences and Hybrid Languages . 25

4 Semantic Characterisations of ML + Σ 28
4.1 Σ-Bisimilarity . 28
4.2 The Σ-Game . 30
4.3 Strong Σ-Bisimilarity . 33
4.4 Characterising ML + Σ . 36

5 Undecidability of Invariance by Σ-Bisimulation 37

6 The Modal Core of ML + Σ 40

7 Conclusions 46
7.1 Summary of Results . 46
7.2 Further Research . 46

Bibliography 48

5

Chapter 1

Introduction

1.1 Motivation

With a background in computer science, it is easy to see relational structures as ubiquitous. Even
the restricted form of graphs is applicable to a variety of real-world problems, from the layout of
public infrastructure (water, electricity, public transport) to linguistics, the study of molecules in
chemistry or the modelling of dependencies in bug-tracking software.

One of the most widely taught logics reasoning about relational structures is first-order predicate
logic. It is very expressive, but with atoms, terms and formulas, binding operators, distinctions
between free and bound variables and the need for an assignment to evaluate first-order formulas, it
is not the most accessible logic. If we restrict to sentences, which can be evaluated independently of
assignments, all variables have to be bound. As the binding operators ∃ and ∀ have global semantics
(a formula has to hold for one or all objects of the whole domain), first-order sentences only provide
a global perspective on the relational structure. Furthermore, first-order logic becomes undecidable
very quickly (depending on what relational and functional symbols we admit, see [BGG97]).

Modal logic is also used to reason about relational structures. But in all the above mentioned
aspects, it is quite the opposite from first-order logic: It uses a simple syntax without variables,
and so its special operator 3 is non-binding. As modal formulas are evaluated at a specific point
(usually called “world”) of the relational structure, modal logic provides an internal view on the
structure. The modal operator only allows to get information about worlds that are accessible
from the current world of evaluation (via the accessibility relation R). The term “world” comes
from the philosophical background of regarding the points of the relational structure as “possible
states of affairs”. This serves distinguishing absolute truths (“The planet Earth orbits the Sun.”)
holding at every world from more contingent truths (“You are wearing blue jeans.”) that only hold
at some of the worlds. In contrast, the global perspective of first-order logic does not provide much
support for expressing modality. As a final difference we mention the fact that the basic modal
logic is decidable (see [vB10, Chapter 4]).

Hybrid logics combine aspects of both of these approaches. They are mostly regarded as an
extension of modal logic adding in first-order concepts. The most central of these is certainly the
addition of so-called world-variables. They are comparable to first-order variables and name specific
worlds. As in first-order logic, they can be bound using operators. However, the binding might be
more or less restricted, e. g. by only allowing to bind the current world or requiring to also change
the world of evaluation before the binding happens. But hybrid formulas are still evaluated at
a world, so the local view of modal logic is retained. This combination is very interesting: For
instance, some hybrid logics are able to express that the current world is reflexive, which is not
possible in modal logic. Some operators also provide a way to break out of this local perspective
and to look at worlds that might not be accessible from the current one. Depending on which
hybrid operators are admitted, we obtain hybrid languages with different degrees of expressiveness,
some of them as expressive as first-order logic.

Despite their more theoretical and philosophical origins, hybrid logics have already found their
way into applications, in particular in the areas of model checking and query and constraint eval-

6

uation. In [FdR06], Franceschet and de Rijke look at Lorel [AQM+97], a query language for
semi-structured data, e. g. in XML format. They embed different fragments of Lorel into different
hybrid logics and show how to use hybrid model checkers to evaluate Lorel queries. Moreover,
they do the same for a constraint language, which can be used for “imposing conditions on nodes
at arbitrary depths in the data graph” [FdR06, p. 23]. They basically interpret an XML tree as
a Kripke model. Similarly, in [HS08], Hoareau and Satoh use a hybrid logic to process location
queries. Their location model represents locations as a tree hierarchy where each node represents
a location. The more specific the location is, the deeper is the node; for instance the different
departments of a hospital would all appear below a common node for the hospital. They then
interpret this tree as a Kripke model and use a hybrid language to formulate queries for it. Most
recently, Søgaard and Kristiansen presented a very fast querying tool for dependency treebanks,
based on hybrid logic [SK12]. “Dependency treebanks are collections of natural language sentences
annotated with dependency trees.” [SK12] The authors then apply a hybrid query language to
these dependency trees.

1.2 Project Objectives

There is a huge difference between formally specifying the semantics of a logic and actually knowing
“how it ticks”. One way to help us understand the expressive strengths and weaknesses of a
language are characterisations specifying how two models must be related to each other in order to
be equivalent in terms of the logic. Bisimulations characterise modal logic in such a sense: If two
models are bisimilar, modal formulas holding in the one model also hold in the other (i. e. modal
formulas are bisimulation-invariant). In fact the first-order formulas that are bisimulation-invariant
are exactly those that are equivalent to a modal formula. Multiple hybrid languages have also been
characterised using variants of bisimulation, but the hybrid logic with the Σ binder has so far not
been studied in this regard.

The overall goal of this project was to explore the expressive power of the hybrid logic with the
Σ binder. The main way to achieve this is to find a bisimulation-like characterisation (we call it
Σ-bisimulation) for the logic. Other ways to investigate the logic have deliberately been left open
so as to not restrict the paths on which our initial results may lead us.

1.3 Related Work

The foundations of hybrid logics have been laid by Arthur Prior in the 1950s and 1960s, and
his work has been continued by his student Robert Bull. “About fifteen years later in Sofia,
Bulgaria, nominals [(one aspect of hybrid logics)] were re-discovered by Gargov, Passy and Tinchev
in their investigations on Boolean modal logic and propositional dynamic logic.” [BvBW07, p. 828]
Finally, the most recent developments were started by Blackburn and Seligman, investigating very
expressive hybrid languages towards the end of the 1990s. [BvBW07, Chapter 14].

This work is mostly based on the findings by Blackburn and Seligman [BS95, BS98]. Particularly
relevant is [BS95], which investigates the Σ binder as part of a hierarchy of hybrid operators. The
authors show that it is strictly less expressive than first-order logic. As a by-product of proving the
hierarchy, they also show that Σ-sentences are preserved by a so-called “full internal bisimulation”.
However, this is not a characterisation, as the full internal bisimulation requires more than what is
necessary for Σ-sentences to be preserved. Finally, they give an intuition for the local and global
strength of the Σ-language and show that it is undecidable.

Tzakova also explored some very expressive hybrid languages. However, she did not investi-
gate bisimulation characterisations, but focussed on axiomatisation and tableau systems [Tza99a,
Tza99b].

The first characterisation of the kind we will present here was the characterisation of modal
logic by invariance under bisimulation and is due to van Benthem [vB76, vB85]. Turning to
hybrid logics, similar bisimulation-like characterisations (using different notions of bisimulation)
have been established for hybrid logics with both the @ and ↓ operators by Areces, Blackburn and

7

Marx [ABM01], with only the @ operator by ten Cate [tC05], with only the ↓ operator by Hodkinson
and Tahiri [HT10], and finally for the hybrid logic with the ∀ binder by Kouvaros [Kou11].

1.4 A Brief Introduction to Hybrid Logics

This section will give a brief introduction to hybrid logics to facilitate the overview of our results
in the next section. A more formal version will be given in Chapter 2. Just as modal logic, hybrid
logics operate on so-called Kripke models, which are directed graphs. The nodes are called worlds
and are connected by an accessibility relation R. A hybrid formula is always evaluated at a world.
It may contain variables naming some of these worlds, and so – like in first-order logic – we need an
assignment of these variables to worlds in the Kripke model. We have atomic formulas p, q, . . ., for
which an interpretation (part of the model) gives the worlds at which they evaluate to true. These
can then be combined with boolean operators. For instance, the following says that the formula
p ∧ x is true at a world t of model M under assignment g: M, g, t |= p ∧ x. This means that the
atom p is true at t and that the assignment g assigns just the world t to the variable x.

To move between worlds, modal logic adds the operator 3 with the following semantics:

M, g, t |= 3φ iff ∃u ∈ |M | : R(t, u) ∧M, g, u |= φ

So 3 moves along the R-edges. The hybrid logics we are concerned with also add the following
operators:

M, g, t |= Eφ iff ∃u ∈ |M | : M, g, u |= φ

M, g, t |= ↓xφ iff M, g′, t |= φ, where g′ is g with the assignment for x changed to t

M, g, t |= Σxφ iff M, g, t |= E↓xφ

The operator E moves the evaluation to any world in the model (we refer to this as a “jump”),
↓ binds a variable to the current world and Σ first moves the evaluation to any world in the model
and then binds this world to a variable. We name hybrid languages according to which of these
operators they are allowed to use, e. g. as ML + Σ (the full modal logic plus the Σ operator).

1.5 Achievements

Here we give an informal overview of our results and the research contributions of this work.
In [BS95], Blackburn and Seligman have shown that ML +E+ ↓ is equally expressive as first-

order logic, but that ML + Σ is strictly less expressive. This is the case, although Σ is just E↓. So
the order of first moving to another world and only then saving it is crucial. It is easy to see that Σ
can emulate E: Just use a variable y not occurring in the current formula φ, then Σyφ is equivalent
to Eφ. But this means that in ML + Σ we cannot bind the current world, because otherwise we
could also emulate ↓ and would be as strong as first-order logic. This reveals itself to be the major
restriction of the language.

However, once we use the Σ-operator, the new world of evaluation is bound to a variable. We
will show that once we reach that state, we can always give a name to (or bind) any new worlds
we reach through jumps or by travelling along the R-edges. If x is bound to the current world, we
can even move backwards along R using formulas like Σy3x. This binds y to an R-predecessor of
the world named by x. As we always bind these worlds and can go back to them later on (using
Σzx), this gives us the power to analyse the whole graph structure of a finite model. So essentially,
we only need an initial jump to become as strong as first-order logic. But this initial jump means
we lose track of the world we started with. Therefore the first-order properties we can check are
global properties, i. e. first-order sentences. More specifically and in terms of the hybrid logics, any
formula of the form Eφ with φ ∈ ML +E+ ↓ is equivalent to a Σ-formula.

Looking at it the other way around, what else can ML + Σ express? If we do not use the Σ-
operator, we obviously still have the full power of modal logic. Once we use the Σ-operator, we
might jump to any world in the model, so we lose all local knowledge. So then we really cannot

8

express any more than first-order sentences. Overall, any sentence in ML + Σ is equivalent to a
boolean combination of modal formulas and first-order sentences.

First-order sentences apply globally to the model, i. e. they are not tied to any world. The
same applies to formulas of the form Eφ with φ ∈ ML +E+ ↓. We will show that indeed for any
first-order sentence there is an equivalent sentence Eφ ∈ ML +E+ ↓. As mentioned above, these
formulas are also equivalent to Σ-formulas. Hence we know that for every first-order sentence there
is an equivalent sentence in ML + Σ. This implies undecidability of the Σ-language.

All these preliminary investigations help us to find a bisimulation-like characterisation. If we
do not use the Σ operator, we are still as strong as modal logic. So the characterisation will require
that the original worlds are indeed bisimilar. Once we use Σ, we lose the specific world we started
with but get the strength of first-order sentences. So the models have to be elementarily equivalent,
regardless of the initial point of evaluation. So the first bisimulation-like characterisation we prove
for ML + Σ, the “Σ-bisimulation”, means “bisimilar and elementarily equivalent” .

Isomorphisms are in some sense the limit of elementary equivalence. Two isomorphic models are
always elementarily equivalent and the converse holds for saturated models of the same cardinal-
ity [CK90, Theorem 5.1.13]. So we define “strongly Σ-bisimilar” as “bisimilar and isomorphic”. We
improve our characterisation by only requiring the weaker assumption of invariance under strong
Σ-bisimulation, providing the second bisimulation-like characterisation shown in this thesis.

Another type of characterisation is often given through games played on two models. Our game
for ML + Σ is a combination of the modal bisimulation game [vB10, Def. 3.5.1] and the Ehrenfeucht-
Fräıssé game for first-order logic [Doe96, Def. 3.45]. Every move in the game corresponds to a
non-boolean operator of the language. So we have two types of moves, one for 3 and one for Σ.
The 3-type move comes directly from the modal bisimulation game and moves along R-edges. The
Σ-type move steers the player to any world in the model. The saving of this world in a variable is
simulated using coloured pebbles, just as in some definitions of the first-order game. Ultimately, a
winning strategy for one of the players implies that the models are Σ-bisimilar.

As ML + Σ is basically a subset of first-order logic, we would like to know for a first-order
formula, whether it is equivalent to a sentence in ML + Σ. Using a technique called relativisa-
tion, which serves to restrict a part of a formula to only apply to a part of a model, we show
that a first-order sentence α is valid iff a derived sentence f(α) is invariant under Σ-bisimulation.
Therefore, as the validity of first-order sentences is undecidable, so must be invariance under Σ-
bisimulation. Given our characterisation this implies that it is undecidable whether a first-order
formula is equivalent to a sentence in ML + Σ.

Finally, we were quite surprised by finding a modal core of ML + Σ: We prove that when a Σ-
formula, which is always invariant under Σ-bisimulation, is also invariant under forward-generated
submodels, disjoint unions or p-morphisms, then it is equivalent to a modal formula.

We summarise our main results more concisely:

• We show that all sentences of ML + Σ are essentially equivalent to a boolean combination of
modal formulas and first-order sentences.

• We define a new type of bisimulation (“Σ-bisimulation”) to mean bisimilar and elementarily
equivalent. We then show that any first-order formula α(x) is invariant under Σ-bisimulation
if and only if it is equivalent to the standard translation of a formula in ML + Σ.

• We prove a second bisimulation characterisation for ML + Σ using “strong Σ-bisimulation”,
which means bisimilar and isomorphic.

• A third characterisation is given using a game combining aspects of the modal and first-order
games.

• We show that it is undecidable whether a first-order formula is invariant under Σ-bisimulation.

• We prove that any sentence in ML + Σ without nominals that is invariant under forward-
generated submodels, disjoint unions or p-morphisms is equivalent to a modal formula.

9

1.6 Outline

The rest of this thesis is structured as follows. Chapter 2 formally introduces the modal language
and, building up on that, a general notation for hybrid languages. We also present the modal
bisimulation and formally state the above mentioned characterisation by van Benthem. Thereby,
Chapter 2 consists of previous work we built our results on.

Chapter 3 investigates the expressiveness of the hybrid language with the Σ binder. We first
give an intuition for what kind of model properties can be expressed. We then investigate the
differences between the two hybrid languages ML + Σ and ML +E+ ↓. Finally, we relate the
hybrid languages to first-order logic.

Building upon these results, Chapter 4 establishes the major contributions of this work. We
prove the three characterisations of ML + Σ mentioned above. Chapter 5 establishes that invariance
by Σ-bisimulation is undecidable. Chapter 6 shows that those Σ-sentences that are invariant under
forward-generated submodels, disjoint unions or p-morphisms are equivalent to modal formulas.
In Chapter 7 we conclude this work by summarising our results and giving an outlook to future
research opportunities.

10

Chapter 2

Hybrid Languages

We will present hybrid languages as an extension of the modal language. Hence, before showing
the more advanced hybrid concepts, we will lay a foundation by formally introducing modal logic.
A lot of the concepts, like Kripke models and the Standard Translation apply to both modal and
hybrid logics.

2.1 Modal Language

2.1.1 Syntax of the Modal Language

Definition 1 (Modal signature). Let PROP and NOM be pairwise disjoint, countably infinite sets,
where PROP is a set of so-called propositional symbols (or (propositional) atoms) and NOM a set
of nominals. Then the pair (PROP,NOM) is called a modal signature.

We define modal languages over these modal signatures and where not specified differently we
implicitly use the signature (PROP,NOM).

Definition 2 (Basic Modal Language ML). Let (PROP,NOM) be a modal signature. We induc-
tively define the Basic Modal Language ML (the set of modal formulas):

1. > ∈ ML

2. if p ∈ PROP, then p ∈ ML

3. if i ∈ NOM, then i ∈ ML

4. if φ ∈ ML, then ¬φ ∈ ML and 3φ ∈ ML

5. if φ ∈ ML and ψ ∈ ML, then φ ∧ ψ ∈ ML

6. ML only contains the formulas generated by applying rules 1-5 finitely many times.

All unary operators bind tighter than the binary ∧ operator. As usual, we use parentheses to
modify or highlight the operator precedence. Let φ and ψ be modal formulas. For convenience, we
extend the minimal set of operators above with the following abbreviations:

⊥ := ¬>
2φ := ¬3¬φ

φ ∨ ψ := ¬(¬φ ∧ ¬ψ)

φ→ ψ := ¬(φ ∧ ¬ψ)

φ↔ ψ := ¬(φ ∧ ¬ψ) ∧ ¬(ψ ∧ ¬φ)

Most of this is known from first-order logic (see [CK90]). The new operators are read as Diamond
(3) and Box (2).

11

Remark. The inclusion of nominals in the definition of modal formulas is non-standard. Most
literature considers nominals to be a hybrid feature already, whereas our definition of hybrid logics
only starts when we add extra operators. We do this for convenience, as this means that we can
use several definitions for both modal and hybrid logic.

2.1.2 Semantics of the Modal Language

There exist several different semantics of the Modal Language. Throughout this thesis, we will
use the most prominent one, which is Kripke semantics. Here, modal formulas are evaluated at
different points (so-called worlds) of a Kripke frame.

Definition 3 (Kripke frame). Let W be a non-empty set of worlds and R ⊆ W ×W a binary
relation on W . Then the pair (W,R) is called a Kripke frame.

Definition 4 (Power set). If W is a set, then P(W) := {V |V ⊆W} is called the power set of W .

Definition 5 (Kripke model). Let F = (W,R) be a Kripke frame and h : PROP ∪ NOM →
P(W) ∪W a map specifying all worlds at which a given atom or nominal is true such that

• for all p ∈ PROP, h(p) ∈ P(W) and

• for all i ∈ NOM, h(i) ∈W .

Then M = (W,R, h) is called a Kripke model. For convenience, we sometimes simply write M =
(F, h) and |M | for W .

Definition 6 (Pointed model). Let M = (W,R, h) be a Kripke model and t ∈ W . Then the pair
(M, t) is called a pointed (Kripke) model.

Now we can inductively define how to evaluate an arbitrary modal formula at a world t:

Definition 7 (Modal truth). Let M = (W,R, h) be a Kripke model, t ∈W a world and φ a modal
formula. We write M, t |= φ (read φ is true at t in M) if and only if one of the following conditions
holds:

• φ = >

• φ = p for a propositional symbol p ∈ PROP and t ∈ h(p)

• φ = i for a nominal i ∈ NOM and t = h(i)

• φ = ¬ψ and M, t 6|= ψ

• φ = 3ψ and ∃u ∈W : R(t, u) ∧M,u |= ψ

• φ = ψ1 ∧ ψ2 and M, t |= ψ1 and M, t |= ψ2

Definition 8 (Modal equivalence). Let (M,m) and (N,n) be two pointed Kripke models. We say
(M,m) and (N,n) are modally equivalent (written (M,m) ≡mod (N,n)) iff they fulfil exactly the
same modal formulas, i. e. whenever φ is a formula in ML, it holds M,m |= φ iff N,n |= φ.

We defined truth of modal formulas essentially using statements about the relation R and the
truth of atoms and nominals. These definitions are expressible in first-order logic and thus we can
define a so-called Standard Translation of modal formulas into first-order logic. The signature for
this logic is derived from the modal signature:

Definition 9 (L-formula). An L-formula is a formula of first-order predicate logic with equality
defined over the signature L = {i | i ∈ NOM} ∪ {P | p ∈ PROP} ∪ {R}, where all i’s are constant
symbols, all P ’s are unary relation symbols and R is a binary relation symbol (the P ’s are just the
capitalised versions of the propositional symbols). This first-order language is usually called the
correspondence language (of modal or hybrid logic).

12

We use the symbols i and R in both modal (later hybrid) and first-order formulas (or models).
It will be clear from the context which one we mean. This is sensible because we also encode
the semantics of modal formulas into first-order logic, using the Standard Translation. Since the
evaluation of modal formulas depends on a world at which we evaluate, the Standard Translation
and thus the corresponding first-order formula has one more free variable to represent that world.

Definition 10 (Modal Standard Translation). The Standard Translation STx(φ) of a modal for-
mula φ w. r. t. a variable x into a first-order L-formula is inductively defined as follows:

• STx(>) := >

• STx(p) := P (x) for all propositional symbols p (associate p with P , q with Q, etc.)

• STx(i) := x = i for all nominals i

• STx(¬φ) := ¬STx(φ)

• STx(φ ∧ ψ) := STx(φ) ∧ STx(ψ)

• STx(3φ) := ∃y(R(x, y) ∧ STy(φ)), where y is a variable not occurring in φ.

It is easy to see that the Standard Translation is equivalent to the definition of truth in Def-
inition 7, i. e. it reflects the Kripke semantics. So truth of a modal formula in a modal model
corresponds to truth of the Standard Translation of that formula in the corresponding first-order
structure. More formally, we define:

Definition 11 (Induced first-order structure). Let M = (W,R, h) be a Kripke model. The first-
order structure induced by M is the first-order structure with domain W over the signature L,
where we interpret i (in L) as h(i) for all i ∈ NOM, R (in L) as R (in the Kripke model) and P as
h(p) for all p ∈ PROP.

When it is clear from the context, we may simply treat a Kripke model as its induced first-order
structure without introducing a new name for that. We also denote both modal and first-order truth
using “|=”. As modal truth always has a world on the left of |=, these are easily distinguishable.
For first-order truth, we either give an assignment on the left, as in M, g |= α, or, if α has only one
free variable, we write the domain element assigned to this variable in brackets after the formula:
M |= α[t]. For first-order sentences α, we simply write M |= α. The following theorem is a good
example, as it relates modal truth to first-order truth.

Theorem 1 (Adequacy of Standard Translation). Let φ be a modal formula, (M, t) a pointed
Kripke model and x a first-order variable. Then it holds:

M, t |= φ iff M |= STx(φ)[t]

Proof. Via induction on the structure of φ.

Remember that if M is a Kripke model, |M | denotes its set of worlds. To make this consistent
for the induced first-order structures, if N is a first-order structure, we let |N | denote its domain.
This means that whether we look at the Kripke model M as an actual Kripke model or as its
induced first-order structure, |M | refers to the same set.

Definition 12 (Elementarily equivalent). Let A and B be two first-order structures over L. We
say that A and B are elementarily equivalent (written A ≡ B) if and only if for all sentences φ over
L it holds A |= φ iff B |= φ.

Let M and N be two Kripke models. We say that M and N are elementarily equivalent iff
their induced first-order structures are elementarily equivalent.

13

2.1.3 Bisimulation

One way to characterise modal logic is by bisimulation. It relates Kripke models to one another,
given they fulfil certain conditions. If this is the case for two models, then these two models cannot
be distinguished by modal formulas. Formally, we define:

Definition 13 (Bisimulation). A bisimulation between two pointed models (M1, t1) and (M2, t2)
with M1 = (W1, R1, h1) and M2 = (W2, R2, h2) is a relation B ⊆W1 ×W2 such that the following
conditions hold:

• (t1, t2) ∈ B

• If (x, y) ∈ B then for all p ∈ PROP : (x ∈ h1(p)↔ y ∈ h2(p)).

• If (x, y) ∈ B then for all i ∈ NOM : (x = h1(i)↔ y = h2(i)).

• forth: If (x1, y1) ∈ R1 and (x1, x2) ∈ B, then there is a y2 ∈ W2 such that (x2, y2) ∈ R2 and
(y1, y2) ∈ B.

• back : If (x2, y2) ∈ R2 and (x1, x2) ∈ B, then there is a y1 ∈ W1 such that (x1, y1) ∈ R1 and
(y1, y2) ∈ B.

If there is a bisimulation between two pointed models (M1, t1) and (M2, t2), we say that (M1, t1)
and (M2, t2) are bisimilar (written (M1, t2)↔ (M2, t2)).

The following Theorems 2 and 3 constitute seminal work by van Benthem, characterising the
relationship between bisimulations and modal logic. For full proofs of see [BdRV02, Theorems 2.20
and 2.68]1.

Theorem 2. Let φ be a modal formula and (M1, t1) and (M2, t2) two bisimilar Kripke models.
Then M1, t1 |= φ if and only if M2, t2 |= φ.

Proof. Via induction on the structure of φ.

Definition 14 (Bisimulation-invariance). Let α(x) be an L-formula with at most one free variable
x. The formula α is said to be bisimulation-invariant (or invariant under bisimulation) if whenever
(M, t) and (M ′, t′) are bisimilar, then M |= α[t] iff M ′ |= α[t′].

Theorem 3 (after [Hod11b], originally van Benthem, 1976). An L-formula α(x) with at most one
free variable x is logically equivalent to the Standard Translation of a modal formula if and only if
α is bisimulation-invariant.

2.2 Extension to Hybrid Languages

Hybrid languages are based on the basic modal language and usually add some more operators.
Some examples of such operators are ↓, E and Σ. Depending on which and how many of these
additional operators are used, we obtain hybrid languages with different properties. We name these
languages extending the basic modal language ML in a natural way, e. g. as ML +E+ ↓ for the
hybrid language using the basic modal language extended by the additional operators E and ↓ (cf.
[BS98]).

1These theorems are proved for modal logic without nominals, but the proofs work in the same way for modal
logic with nominals.

14

2.2.1 Syntax of Hybrid Languages

We already mentioned that hybrid languages introduce concepts of first-order logic. One such
concept are variables, which are used across all hybrid languages we are concerned with in this
work. In the context of hybrid languages, they serve to name a specific world in the Kripke frame.
Some of the additional hybrid operators bind these world variables (“binding operators”) while
others do not. In the context of this work, we will use

• the binding operators ↓ and Σ

• the non-binding operator E.

The non-binding operator is in a sense modal, because it does not use world variables. We add
variables to our original modal signature:

Definition 15 (Hybrid signature). Let PROP, NOM and VAR be pairwise disjoint, countably
infinite sets, where PROP is a set of propositional symbols (or (propositional) atoms), NOM a set
of nominals and VAR a set of (world) variables. Then the triple (PROP,NOM,VAR) is called a
hybrid signature. Furthermore, we denote the set of world symbols as WSYM := NOM ∪VAR.

We define hybrid languages over these hybrid signatures and where not specified differently we
implicitly use the signature (PROP,NOM,VAR).

Definition 16 (Hybrid Language). We inductively define the Hybrid Language HL = ML +B1 +
B2 + . . . + Bn + N1 + N2 + . . . + Nk over the signature (PROP,NOM,VAR), where n, k ≥ 0, Bi

are binding operators in {↓,Σ} and Ni are non-binding operators in {E} as follows:

1. > ∈ HL

2. if p ∈ PROP, then p ∈ HL

3. if i ∈ NOM, then i ∈ HL

4. if x ∈ VAR, then x ∈ HL

5. if φ ∈ HL, then ¬φ ∈ HL and 3φ ∈ HL

6. if φ ∈ HL and ψ ∈ HL, then φ ∧ ψ ∈ HL

7. if φ ∈ HL, then Bixφ ∈ HL, where 1 ≤ i ≤ n and x ∈ VAR

8. if φ ∈ HL, then Niφ ∈ HL, where 1 ≤ i ≤ k

9. HL only contains the formulas generated by applying rules 1-8 finitely many times.

The elements of HL are called (hybrid) formulas over (PROP,NOM,VAR).

The recursive definition of hybrid formulas gives rise to a formation tree for each formula, with
the formula itself as the root of the tree.

Definition 17 (adapted from [Hod11a, Def. 8.3]). Let φ be a hybrid formula and x ∈ VAR a
variable occurring in φ. We say that an occurrence of x is bound if its position in the formation
tree of φ is below a binding operator Bix. Otherwise x is said to be free in φ.

Definition 18. A hybrid formula is called a sentence if all occurrences of variables in it are bound.

15

2.2.2 Semantics of Hybrid Languages

As in modal logic, the truth of a hybrid formula depends on the world we evaluate it at. Addition-
ally, it depends on the value of the world variables it contains, i. e. which worlds are named by them.
This value is determined by an assignment function, similar to the one known from first-order logic.

Definition 19 (Assignment). Let VAR be a set of world variables and F = (W,R) a Kripke frame.
A function g : VAR→W is called an assignment (function).

For the semantics of some of our operators, we will need to modify an existing assignment at
a specific variable. For that purpose we define an x-variant of an assignment following [Kou11,
Definition 1.2.6]:

Definition 20 (x-variant). Let g and g′ be assignments and x ∈ VAR. We call g′ an x-variant of
g, denoted g′

x∼ g, if and only if ∀y ∈ (VAR \ {x}) : g′(y) = g(y).

Definition 21 (Value of a world symbol). Let x ∈ WSYM be a world symbol, M = (W,R, h) a
Kripke model and g an assignment. Then we define the value [h, g](x) ∈W of x as

[h, g](x) :=

{
g(x) if x ∈ VAR

h(x) if x ∈ NOM

Definition 22 (Hybrid truth). Let M = (W,R, h) be a Kripke model, t ∈ W a world, g an
assignment and φ a hybrid formula. We write M, g, t |= φ (read φ is true at t in M under g) if and
only if one of the following conditions holds:

• φ = >

• φ = p for a propositional symbol p ∈ PROP and t ∈ h(p)

• φ = x for a world symbol x ∈WSYM and t = [h, g](x)

• φ = ¬ψ and M, g, t 6|= ψ

• φ = 3ψ and ∃u ∈W : R(t, u) ∧M, g, u |= ψ

• φ = ψ1 ∧ ψ2 and M, g, t |= ψ1 and M, g, t |= ψ2

• φ = Eψ and there is a world u ∈W such that M, g, u |= ψ

• φ = ↓xψ for some x ∈ VAR and there is an assignment g′ such that g′
x∼ g, g′(x) = t and

M, g′, t |= ψ

• φ = Σxψ for some x ∈ VAR and there are a world u ∈ W and an assignment g′ such that
g′

x∼ g, g′(x) = u and M, g′, u |= ψ

Modal formulas always stay in the part of the model that is reachable via the accessibility
relation. In contrast, the operators E and Σ are not restricted through R. They cross longer
distances within the Kripke model, in particular they can cross between the connected components
of the R-graph. Throughout this work, we will refer to this process of applying E or Σ and
thus bridging arbitrarily distant parts of the model as jumping. As we are mostly concerned with
ML + Σ, it will usually refer to the Σ operator, but this will be clear from the context.

Binding operators modify the assignment of the variable they bind and the modification does
not depend on the previous value of that variable. Therefore the truth of hybrid sentences does
not depend on the assignment for which we evaluate it.

Definition 23 (Hybrid truth for sentences). Let φ be a hybrid sentence, M a Kripke model and
t ∈ |M |. We write M, t |= φ iff for all assignments g it holds M, g, t |= φ.

16

Definition 24 (Valid). Let φ be a modal formula or a hybrid sentence. We say that φ is valid iff
for all Kripke models M and all worlds t ∈ |M | it holds M, t |= φ. If α is a first-order sentence,
then we say that α is valid iff for all first-order structures M it holds M |= α.

We are interested in what a logic – in particular ML + Σ – can express, i. e. which models it
can distinguish. If it cannot distinguish two models, they are equivalent with respect to the logic.

Definition 25 (Σ-equivalence). Let (M,m) and (N,n) be two pointed Kripke models. We say
(M,m) and (N,n) are Σ-equivalent iff they fulfil exactly the same Σ-sentences, i. e. whenever φ is
a sentence in ML + Σ, it holds M,m |= φ iff N,n |= φ.

The Standard Translation we gave in Definition 10 can easily be extended to hybrid logic using
the definition of truth from above. So both modal and hybrid logics are essentially subsets of
first-order logic.

Definition 26 (Hybrid Standard Translation). The Standard Translation STx(φ) of a hybrid
formula φ w. r. t. a variable x not occurring in φ into a first-order L-formula is inductively defined
as follows:

• STx(>) := >

• STx(p) := P (x) for all propositional symbols p (associate p with P , q with Q, etc.)

• STx(i) := x = i for all nominals i

• STx(y) := x = y for all variables y

• STx(¬φ) := ¬STx(φ)

• STx(φ ∧ ψ) := STx(φ) ∧ STx(ψ)

• STx(3φ) := ∃y(R(x, y) ∧ STy(φ)), where y is a variable not occurring in φ

• STx(Eφ) := ∃y STy(φ), where y is a variable not occurring in φ

• STx(↓yφ) := ∃y(x = y ∧ STx(φ))

• STx(Σyφ) := ∃y STy(φ)

As in the modal Standard Translation, we identify the symbols for nominals with the first-order
constant symbols. Additionally, we identify each hybrid variable with an equally-named first-order
variable as visible in the definitions above. It will be clear from the context which one we refer to.
As one would expect, there is no difference semantically:

Theorem 4 (Adequacy of Standard Translation). Let φ be a hybrid formula, x a variable not
occurring in φ, (M, t) a pointed Kripke model and g an assignment. Then for g′

x∼ g and g′(x) = t
it holds:

M, g, t |= φ iff M, g′ |= STx(φ)

Proof. Via induction on the structure of φ.

Remark. If φ in Theorem 4 is a sentence, then its hybrid evaluation does not depend on g. The
evaluation of STx(φ) only depends on the assignment of x, which is the only free variable. So then
it holds:

M, t |= φ iff M |= STx(φ)[t]

17

Chapter 3

On the Expressiveness of ML+ Σ

3.1 Introduction

In this section, we will give an intuition for the expressiveness of ML + Σ. We look at certain
properties of the Kripke model that can be expressed with Σ-formulas. This will guide the reader
to an intuition for the sensibility of the definitions occurring in subsequent sections.

From Definition 22, it is easy to see that Σxφ is equivalent to E↓xφ. In [BS95], Blackburn
and Seligman have shown that ML +E+ ↓ is equally expressive as the first-order correspondence
language over L, and furthermore that ML + Σ is strictly less expressive. So the restriction to the
specific pattern of first E and then (immediately) ↓x is crucial.

The fundamental restriction is that Σ-formulas cannot bind the world they are evaluated at (the
“current” world), because whenever they bind a variable, they first change the point of evaluation
to any world in the model. Circumventing that problem, suppose we already have a world variable
x bound to the current world. To illustrate the capabilities of Σ-formulas in this case, suppose we
have a model M = (W,R, h), a world t of its frame and an assignment g such that g(x) = t. Then
Σ-formulas can do the following.

They can force to evaluate a subformula ψ at any world named by any variable y (using a new
variable z that does not occur in ψ):

M, g, t |= Σz(y ∧ ψ) iff ∃u ∈ |M |, g′ z∼ g, g′(z) = u: M, g′, u |= y and M, g′, u |= ψ

iff ∃u ∈ |M |, g′ z∼ g, g′(z) = g′(y) = u: M, g′, u |= ψ

iff ∃g′ z∼ g, g′(z) = g(y): M, g′, g(y) |= ψ (as g′(y) = g(y))

iff M, g, g(y) |= ψ (as z does not occur in ψ and g′
z∼ g)

Hence for the following changes to the assignment, it is not important that we change the world
of evaluation as a side-effect. We can always go back to the original world (named by x) using the
method above. Formulas in ML + Σ can also bind a predecessor or a successor of the world named
by x to a variable y. The predecessor binding:

M, g, t |= Σy(3x ∧ ψ) iff ∃u ∈ |M |, g′ y∼ g, g′(y) = u: M, g′, u |= 3x and M, g′, u |= ψ

iff ∃u, v ∈ |M |, g′ y∼ g, g′(y) = u,R(u, v): M, g′, v |= x and M, g′, u |= ψ

iff ∃u, v ∈ |M |, g′ y∼ g, g′(y) = u,R(u, v), g′(x) = v: M, g′, u |= ψ

iff ∃u ∈ |M |, g′ y∼ g, g′(y) = u,R(u, g(x)): M, g′, u |= ψ (as g′(x) = g(x))

18

For the successor binding, let z be a variable not occurring in ψ.

M, g, t |= ΣyΣz(x ∧3y ∧ ψ)

iff ∃u ∈ |M |, g′ y∼ g, g′(y) = u: M, g′, u |= Σz(x ∧3y ∧ ψ)

iff ∃u, v ∈ |M |, g′ y∼ g, g′(y) = u, g′′
z∼ g′, g′′(z) = v: M, g′′, v |= x ∧3y ∧ ψ

iff ∃u, v ∈ |M |, g′ y∼ g, g′(y) = u, g′′
z∼ g′, g′′(z) = g′′(x) = v: M, g′′, v |= 3y ∧ ψ

iff ∃u ∈ |M |, g′ y∼ g, g′(y) = u: M, g′, g(x) |= 3y ∧ ψ
(as g(x) = g′′(x) and z does not occur in 3y ∧ ψ)

iff ∃u, v ∈ |M |, g′ y∼ g, g′(y) = u,R(g(x), v): M, g′, v |= y and M, g′, g(x) |= ψ

iff ∃u, v ∈ |M |, g′ y∼ g, g′(y) = u = v,R(g(x), v): M, g′, g(x) |= ψ

iff ∃u ∈ |M |, g′ y∼ g, g′(y) = u,R(g(x), u): M, g′, g(x) |= ψ

A slight variation of this formula is ΣyΣz(x∧3y∧2y∧ψ). It is easy to see that this additionally
ensures that y is the only successor of x: After binding y, the part Σz jumps back to the world
named by x (otherwise x would not hold afterwards). Since y only holds at exactly one world,
3y ∧ 2y ensures that the world named by y is indeed a successor of the current world, and that
there are no other successors.

We can also count the number of predecessors of the world named by x. The formula

φn = Σx1(3x ∧ Σx2(¬x1 ∧3x ∧ . . . ∧ Σxi(
i−1∧
j=1

¬xj ∧3x ∧ · · · ∧ Σxn(
n−1∧
j=1

¬xj) ∧3x) . . .)

is true iff the world named by x has at least n distinct predecessors. Using φn ∧ ¬φn+1, we can
ensure that the world has exactly n predecessors. The same works for successors, using the formulas

φn = Σx1Σx2(¬x1 ∧ · · · ∧ Σxi(
i−1∧
j=1

¬xj ∧ . . . ∧ Σxn(
n−1∧
j=1

¬xj ∧ Σz(x ∧
n∧

j=1

3xj) . . .)

instead. Finally, we can globally count the number of distinct worlds in a model using

φn = Σx1Σx2(¬x1 ∧ Σx3(¬x1 ∧ ¬x2 ∧ . . . ∧ Σxi(
i−1∧
j=1

¬xj ∧ . . . ∧ Σxn(
n−1∧
j=1

¬xj) . . .)

and the composition φn ∧ ¬φn+1 as before.
The preceding formula makes it possible to distinguish models with a different number of worlds,

as long as one of them is finite. In this case, it even gives names to all of the worlds. Using these
names and formulas like Σz(xi∧3xj) or Σz(xi∧¬3xj), we can check for the existence of arbitrary
edges between those worlds. Checking that an atom holds is also easily possible with Σz(xi ∧ p).

So if two finite models have the same number of worlds, we can name all of them as explained
above and also encode the existence or non-existence of the finitely many possible R-edges between
them. If we also encode whether p holds at world w for all worlds w and atoms p (finitely many),
we can distinguish finite models up to isomorphism (see Definition 30 defining isomorphisms). So
any two finite models fulfilling the same Σ-sentences need to be isomorphic.

Note that all of this relies on the binding of variables. However, once we use the first binding
operator Σ, we implicitly have to jump to an arbitrary world in the model. Hence we loose
the information of the distinguished point of the pointed model, and so the isomorphism is also
independent of the distinguished point.

We know that {ST(φ) |φ ∈ ML + Σ } is a subset of the first-order language over L. First-
order sentences are not able to distinguish models that are elementarily equivalent, so ML + Σ
cannot distinguish them either. Finite models are isomorphic if and only if they are elementarily
equivalent [Doe96, Theorem 2.3, Proposition 2.5]. But for infinite models, this is not necessarily the
case. So in the general case, elementary equivalence might be enough instead of the isomorphism
requirement mentioned above.

19

3.2 ML+ Σ and ML+E + ↓

In the previous section we gave an intuition for the expressiveness of Σ-formulas. We will now
turn this intuition into strict theory. Obviously ML + Σ ⊆ ML +E+ ↓, as Σ is equivalent to E↓.
Recall that the expressive capabilities we listed mostly depended on the current world already being
bound to a variable. This state could be achieved for a variable x simply by prefixing a formula
with ↓x, which we cannot do in ML + Σ. On the other hand, once we make a jump (in formulas:
anything after an E), we can always bind the current world after the jump using Σ. And once we
have that, we can also bind predecessors and successors.

This section is about this relation between ML + Σ and ML +E+ ↓. What exactly is the
nature of the requirement to first use an E before we can bind any variables? We start with a
formalisation of the mentioned properties when we already have a variable bound to the current
world. Remember that ML +E+ ↓ is as strong as first-order logic.

Lemma 1. Let φ be a formula in ML +E+ ↓, and x be a world variable not in φ. Then there is a
formula φx in ML + Σ such that for every model M = (W,R, h), every t ∈W and every assignment
g such that g(x) = t, we have M, g, t |= φ iff M, g, t |= φx.

Proof. Suppose φ is a formula in ML +E+ ↓ and x a world variable not in φ. We define φx

inductively by

(>)x := >
(p)x := p for all atoms p ∈ PROP

(i)x := i for all nominals i ∈ NOM

(x1)x := x1 for all world variables x1 ∈ VAR, x1 6= x

(¬ψ)x := ¬ψx

(ψ1 ∧ ψ2)x := ψx
1 ∧ ψx

2

(↓x1ψ)x := Σx1(x ∧ ψx)

(3ψ)x := ΣyΣz(x ∧3(y ∧ ψy))

(Eψ)x := Σy(ψy)

where y and z are variables not occurring in the respective subformulas ψ,ψ1 and ψ2.

We prove that for every model M = (W,R, h), every t ∈ W and every assignment g such that
g(x) = t, we have M, g, t |= φ iff M, g, t |= φx. We prove this via induction on the complexity of
φ. In the base cases for >, propositional symbols, nominals and world variables, the translation is
equal to the original formula and therefore equivalent in all circumstances.

In the inductive step, the negation and conjunction are easy. For both cases, line four follows
using the induction hypothesis, because the point of evaluation is still g(x) = t:

M, g, t |= (¬ψ)x (1)

iff M, g, t |= ¬ψx (2)

iff M, g, t 6|= ψx (3)

iff M, g, t 6|= ψ (4)

iff M, g, t |= ¬ψ (5)

M, g, t |= (ψ1 ∧ ψ2)x

iff M, g, t |= ψx
1 ∧ ψx

2

iff M, g, t |= ψx
1 and M, g, t |= ψx

2

iff M, g, t |= ψ1 and M, g, t |= ψ2

iff M, g, t |= ψ1 ∧ ψ2

20

The remaining three cases are more interesting:

M, g, t |= (↓x1ψ)x

iff M, g, t |= Σx1(x ∧ ψx)

iff ∃u ∈W, g′ x1∼ g : g′(x1) = u,M, g′, u |= x ∧ ψx

iff ∃u ∈W, g′ x1∼ g : g′(x1) = u = g′(x),M, g′, u |= ψx

iff ∃u ∈W, g′ x1∼ g : g′(x1) = u = g′(x),M, g′, u |= ψ (by induction hypothesis)

iff ∃u ∈W, g′ x1∼ g : g′(x1) = u = g(x),M, g′, u |= ψ (because g′
x1∼ g)

iff ∃u ∈W, g′ x1∼ g : g′(x1) = u = t,M, g′, u |= ψ (because g(x) = t)

iff ∃u ∈W, g′ x1∼ g : g′(x1) = u = t,M, g′, t |= ψ

iff ∃g′ x1∼ g : g′(x1) = t,M, g′, t |= ψ

iff M, g, t |= ↓x1ψ

M, g, t |= (3ψ)x

iff M, g, t |= ΣyΣz(x ∧3(y ∧ ψy))

iff ∃u ∈W, g′ y∼ g: g′(y) = u,M, g′, u |= Σz(x ∧3(y ∧ ψy))

iff ∃u, v ∈W, g′ y∼ g, g′′ z∼ g′: g′(y) = u, g′′(z) = v,M, g′′, v |= x ∧3(y ∧ ψy)

iff ∃u, v ∈W, g′ y∼ g, g′′ z∼ g′: g′(y) = u, g′′(z) = g′′(x) = v,M, g′′, v |= 3(y ∧ ψy)

iff ∃u, v ∈W, g′ y∼ g, g′′ z∼ g′: g′(y) = u, g′′(z) = g′′(x) = v,R(v, u),M, g′′, u |= ψy

iff ∃u, v ∈W, g′ y∼ g, g′′ z∼ g′: g′(y) = u, g′′(z) = g′′(x) = v,R(v, u),M, g′′, u |= ψ
(by induction hypothesis, as g′′(y) = u)

iff ∃u, v ∈W, g′ y∼ g: g′(y) = u, g′(x) = v,R(v, u),M, g′, u |= ψ
(because g′′

z∼ g′, z does not occur in ψ)

iff ∃u, v ∈W : g(x) = v,R(v, u),M, g, u |= ψ (because g′
y∼ g, y does not occur in ψ)

iff ∃u ∈W : R(t, u) ∧M, g, u |= ψ (because g(x) = t)

iff M, g, t |= 3ψ

M, g, t |= (Eψ)x

iff M, g, t |= Σy(ψy)

iff ∃u ∈W, g′ y∼ g : g′(y) = u,M, g′, u |= ψy

iff ∃u ∈W, g′ y∼ g : g′(y) = u,M, g′, u |= ψ (by induction hypothesis, as g′(y) = u)

iff ∃u ∈W : M, g, u |= ψ (because y does not occur in ψ, g′
y∼ g)

iff M, g, t |= Eψ

So for all possible formats of φ we proved that for every model M = (W,R, h), every t ∈ W and
every assignment g such that g(x) = t, we have M, g, t |= φ iff M, g, t |= φx.

If we start a formula with E, the current world does not matter, so the requirement on g is not
necessary anymore:

Theorem 5. Let Eφ be a formula in ML +E+ ↓, and x be a world variable not in φ. Then the
formula ψ := Σx(φ)x in ML + Σ is such that for every model M = (W,R, h), every world t ∈ W
and every assignment g and every world t: M, g, t |= Eφ iff M, g, t |= ψ.

21

Proof. Let φ be a formula in ML +E+ ↓ and x a world variable not occurring in φ, then it holds:

M, g, t |= Eφ

iff ∃u ∈W : M, g, u |= φ (Semantics of E)

iff ∃u ∈W, g′ x∼ g, g′(x) = u : M, g′, u |= φ (x does not occur in φ)

iff ∃u ∈W, g′ x∼ g, g′(x) = u : M, g′, u |= φx (using Lemma 1)

iff M, g, t |= Σx(φx) (Semantics of Σ)

Remark. The outlined construction does not always give the shortest equivalent formula in ML + Σ
because a leading E may make it possible to simplify the translation of certain φ formulas. For
example, E↓yp would be translated to Σx(↓yp)x = ΣxΣx1(x ∧ p), but the shortest equivalent
formula in ML + Σ is obviously Σyp.

Looking at it in the opposite way, what is the fragment of ML + Σ within ML +E+ ↓?
Theorem 6. Any formula φ in ML + Σ is equivalent to a formula φ′ built from atoms, nominals,
world variables, > and formulas of the form Eχ, where χ ∈ ML +E+ ↓, using only ¬,∧ and 3.

Proof. Via induction on the complexity of φ. In the base case, atoms, nominals, world variables
and > are already of the required form. In the inductive case, if φ = ¬ψ then ψ fulfils the inductive
hypothesis, so there is a formula ψ′ of the form described that is equivalent to ψ. But then φ′ := ¬ψ′
is also of the required form and equivalent to φ. The cases for φ = ψ1∧ψ2 and φ = 3ψ are similar.

The interesting case is φ = Σxψ. Again, ψ fulfils the inductive hypothesis and so there exists
a formula ψ′ that is equivalent to ψ and of the required form, so φ is equivalent to Σxψ′. By
definition of the Σ operator, φ′ := E↓xψ′ is then also equivalent to φ. As φ′ is of the form required,
this concludes the theorem.

The proof gives a translation, which is very easy to do. The primary observation is that all ↓
operators appear after E. This is already useful for our upcoming characterisations, but we can
still improve the result. As Eχ does not depend on the world we evaluate it at, there is no need to
have it following a Diamond:

Lemma 2. Let φ(q1, . . . , qk) be a formula built from atoms, nominals, world variables and > using
only ¬,∧ and 3, where q1, . . . , qk are atoms (there might also be other atoms in φ besides the
qi). Further let ψ1, . . . , ψk be formulas in ML +E+ ↓. Then φ(Eψ1, . . . , Eψk) is equivalent to the
formula

φ′ =
∧

S⊆{1,...,k}

∧
i∈S

Eψi ∧
∧

i∈{1,...,k}\S

¬Eψi

→ φ(QS
1 , . . . , Q

S
k)

where QS

i =

{
> if i ∈ S
⊥ otherwise

Proof. For the duration of this proof, let ≡ denote equivalence of hybrid formulas, i. e. φ1 ≡ φ2 if
and only if for all Kripke models M , all assignments g and all worlds t ∈ |M | it holds M, g, t |= φ1

iff M, g, t |= φ2. As conventionally done, we define
∧
i∈∅

yi as > for any formula yi.

We prove the theorem via induction on k. For k = 0, we have:

φ0 = φ (no explicit arguments)

φ′0 =
∧
S⊆∅

∧
i∈S

Eψi ∧
∧

i∈∅\S

¬Eψi

→ φ0

=

∧
i∈∅

Eψi ∧
∧

i∈∅\∅

¬Eψi

→ φ0

≡ φ0

22

We now show the inductive step from k to k + 1. Let φk+1 = φk+1(Eψ1, . . . , Eψk+1). Then

φ′k+1 =
∧

S⊆{1,...,k+1}

∧
i∈S

Eψi ∧
∧

i∈{1,...,k+1}\S

¬Eψi

→ φk+1(QS
1 , . . . , Q

S
k+1)

≡

∧
S⊆{1,...,k}

∧
i∈S

Eψi ∧
∧

i∈{1,...,k+1}\S

¬Eψi

→ φk+1(QS
1 , . . . , Q

S
k+1)

∧

∧
S⊆{1,...,k}

S′:=S∪{k+1}

∧
i∈S′

Eψi ∧
∧

i∈{1,...,k+1}\S′

¬Eψi

→ φk+1(QS′
1 , . . . , Q

S′
k+1)

≡
∧

S⊆{1,...,k}

∧
i∈S

Eψi ∧ ¬Eψk+1 ∧
∧

i∈{1,...,k}\S

¬Eψi

→ φk+1(QS
1 , . . . , Q

S
k ,⊥)

∧

∧
S⊆{1,...,k}

∧
i∈S

Eψi ∧ Eψk+1 ∧
∧

i∈{1,...,k}\S

¬Eψi

→ φk+1(QS
1 , . . . , Q

S
k ,>)

We handle both parts simultaneously, so let A ∈ {Eψk+1,¬Eψk+1} and B ∈ {>,⊥}, then

∧
S⊆{1,...,k}

∧
i∈S

Eψi ∧A ∧
∧

i∈{1,...,k}\S

¬Eψi

→ φk+1(QS
1 , . . . , Q

S
k , B)

≡

∧
S⊆{1,...,k}

¬
∧

i∈S
Eψi ∧A ∧

∧
i∈{1,...,k}\S

¬Eψi

 ∨ φk+1(QS
1 , . . . , Q

S
k , B)

≡

∧
S⊆{1,...,k}

∨
i∈S
¬Eψi ∨ ¬A ∨

∨
i∈{1,...,k}\S

Eψi

 ∨ φk+1(QS
1 , . . . , Q

S
k , B)

≡

∧
S⊆{1,...,k}

¬A ∨
∨

i∈S
¬Eψi ∨

∨
i∈{1,...,k}\S

Eψi

 ∨ φk+1(QS
1 , . . . , Q

S
k , B)

≡ ¬A ∨

∧
S⊆{1,...,k}

∨
i∈S
¬Eψi ∨

∨
i∈{1,...,k}\S

Eψi

 ∨ φk+1(QS
1 , . . . , Q

S
k , B)

≡ ¬A ∨

∧
S⊆{1,...,k}

∧
i∈S

Eψi ∧
∧

i∈{1,...,k}\S

¬Eψi

→ φk+1(QS
1 , . . . , Q

S
k , B)

≡ A→

∧
S⊆{1,...,k}

∧
i∈S

Eψi ∧
∧

i∈{1,...,k}\S

¬Eψi

→ φk+1(QS
1 , . . . , Q

S
k , B)

Applying this equivalence to φ′k+1 yields:

φ′k+1 ≡

¬Eψk+1 →
∧

S⊆{1,...,k}

∧
i∈S

Eψi ∧
∧

i∈{1,...,k}\S

¬Eψi

→ φk+1(QS
1 , . . . , Q

S
k ,⊥)

∧

Eψk+1 →
∧

S⊆{1,...,k}

∧
i∈S

Eψi ∧
∧

i∈{1,...,k}\S

¬Eψi

→ φk+1(QS
1 , . . . , Q

S
k ,>)

23

The last parameter of φk+1 is constant, so we can in-line it to get two formulas with only k
parameters:

≡

¬Eψk+1 →
∧

S⊆{1,...,k}

∧
i∈S

Eψi ∧
∧

i∈{1,...,k}\S

¬Eψi

→ φ1
k(QS

1 , . . . , Q
S
k)

∧

Eψk+1 →
∧

S⊆{1,...,k}

∧
i∈S

Eψi ∧
∧

i∈{1,...,k}\S

¬Eψi

→ φ2
k(QS

1 , . . . , Q
S
k)

Then φ1

k(q1, . . . , qk) and φ2
k(q1, . . . , qk) are also built from atoms, nominals, world variables and >

using only ¬,∧ and 3. Applying the inductive hypothesis twice gives us

≡
(
¬Eψk+1 → φ1

k(Eψ1, . . . , Eψk)
)

∧
(
Eψk+1 → φ2

k(Eψ1, . . . , Eψk)
)

≡ (¬Eψk+1 → φk+1(Eψ1, . . . , Eψk,⊥))

∧ (Eψk+1 → φk+1(Eψ1, . . . , Eψk,>))

We now show that for all Kripke models M , for all worlds t ∈ |M | and all assignments g it holds
M, g, t |= φk+1 iff M, g, t |= φ′k+1. So let M be a Kripke model, t ∈ |M | and g an assignment. First
notice that the Standard Translation of Eψk+1 is ∃zSTz(ψk+1) and thus its truth value does not
depend on the world we evaluate it at. Therefore we have exactly one of the following two cases:

1. It holds ∀s ∈ |M |: M, g, s |= Eψk+1 (∗).
Hence ∀s ∈ |M |: M, g, s |= ¬Eψk+1 → φk+1(Eψ1, . . . , Eψk,⊥) (∗∗). So

M, g, t |= φ′k+1

iff M, g, t |= (¬Eψk+1 → φk+1(Eψ1, . . . , Eψk,⊥))

∧ (Eψk+1 → φk+1(Eψ1, . . . , Eψk,>)) (by ≡, see above)

iff M, g, t |= Eψk+1 → φk+1(Eψ1, . . . , Eψk,>) (because of (∗∗))
iff M, g, t |= φk+1(Eψ1, . . . , Eψk,>) (because of (∗))
iff M, g, t |= φk+1(Eψ1, . . . , Eψk, Eψk+1) (see below)

The last step is a simple induction on the structure of φk+1. None of the operators handled
during the inductive step changes the assignment g. Therefore, in the base case handling the
formula Eψk+1, the assignment is still g and we can use (∗).

2. It holds ∀s ∈ |M |: M, g, s 6|= Eψk+1 (∗).
Hence ∀s ∈ |M |: M, g, s |= Eψk+1 → φk+1(Eψ1, . . . , Eψk,>) (∗∗). So

M, g, t |= φ′k+1

iff M, g, t |= (¬Eψk+1 → φk+1(Eψ1, . . . , Eψk,⊥))

∧ (Eψk+1 → φk+1(Eψ1, . . . , Eψk,>)) (by ≡, see above)

iff M, g, t |= ¬Eψk+1 → φk+1(Eψ1, . . . , Eψk,⊥) (because of (∗∗))
iff M, g, t |= φk+1(Eψ1, . . . , Eψk,⊥) (because of (∗))
iff M, g, t |= φk+1(Eψ1, . . . , Eψk, Eψk+1) (see below)

The last step is a simple induction on the structure of φk+1. None of the operators handled
during the inductive step changes the assignment g. Therefore, in the base case handling the
formula Eψk+1, the assignment is still g and we can use (∗).

This concludes the proof of the inductive claim and thus the lemma.

24

Theorem 7. Any formula φ in ML + Σ is equivalent to a formula φ′ built from

• hybrid formulas using only modal operators (i. e. essentially modal formulas, but including
world variables) and

• formulas of the form Eχ, where χ ∈ ML +E+ ↓,

using only ¬ and ∧.

Proof. We use Theorem 6 to get a formula equivalent to φ that is built from atoms, nominals, world
variables, > and formulas of the form Eχ where χ ∈ ML +E+ ↓, using only ¬,∧ and 3. The only
difference to the formula φ′ we require here is that formulas of the form Eχ might appear in the
scope of a 3. We list as explicit parameters Eχ1, . . . , Eχk all subformulas Eχi of φ that do not
appear below another E in the formation tree of φ, so then we have φ = φ(Eχ1, . . . , Eχk). Then
the formula φ(q1, . . . , qk) with additional atoms qi is built from atoms, nominals, world variables
and > using only ¬,∧ and 3. Now we use Lemma 2 to find the formula φ′ which is equivalent to
φ(Eχ1, . . . , Eχk) and built from hybrid formulas using only modal operators and formulas of the
form Eχ (χ ∈ ML +E+ ↓), using only ¬ and ∧.

Note that the Standard Translation of formulas of the form Eχ with χ ∈ ML +E+ ↓ are
first-order sentences. As Σ-sentences do not contain any free variables, their modal part according
to Theorem 7 is an actual modal formula (without world variables). So essentially sentences in
ML + Σ are equivalent to a boolean combination of first-order sentences and modal formulas.

3.3 First-Order Sentences and Hybrid Languages

The Standard Translation of hybrid sentences only has one free variable. If moreover the sentence
starts with E, its Standard Translation is a first-order sentence. We will see that this mapping
is surjective, i. e. that every first-order sentence of the correspondence language is equivalent to
a sentence Eφ ∈ ML +E+ ↓. For this purpose we define the following translation. A similar
translation has been mentioned towards the end of [BS95, Section 5].

Definition 27 (Hybrid Translation). Let α be an L-formula. We define the hybrid translation
HT(a) inductively as follows:

HT(>) := >
HT(P (x)) := E(x ∧ p) where x is a variable or a constant symbol

HT(R(x, y)) := E(x ∧3y) where x and y are variables or constant symbols

HT(x = y) := E(x ∧ y) where x and y are variables or constant symbols

HT(ψ1 ∧ ψ2) := HT(ψ1) ∧HT(ψ2) where ψ1 and ψ2 are L-formulas

HT(¬ψ) := ¬HT(ψ) where ψ is an L-formula

HT(∃xψ) := E↓xHT(ψ) where x is a variable and ψ is an L-formula

Lemma 3. Let α be an L-formula, M = (W,R, h) a Kripke model, g an assignment and M ′ the
first-order structure induced by M . Then for all t ∈W it holds: M ′, g |= α iff M, g, t |= HT(α).

Proof. Via induction on the complexity of α. Let t be any world in W . The case for α = > is
obvious. The remaining cases are as follows, where x and y are variables or constant symbols (note
that these correspond to world symbols in hybrid logic).

25

M ′, g |= P (x) iff h(p)([h, g](x))

iff M, g, [h, g](x) |= p

iff ∃w ∈W : [h, g](x) = w and M, g,w |= p

iff ∃w ∈W : M, g,w |= x and M, g,w |= p

iff ∃w ∈W : M, g,w |= x ∧ p
iff M, g, t |= E(x ∧ p)
iff M, g, t |= HT(P (x))

M ′, g |= R(x, y) iff R([h, g](x), [h, g](y))

iff ∃w, v ∈W : [h, g](x) = w, [h, g](y) = v,R(w, v)

iff ∃w ∈W : [h, g](x) = w,∃v ∈W : R(w, v) ∧ [h, g](y) = v

iff ∃w ∈W : [h, g](x) = w,∃v ∈W : R(w, v) ∧M, g, v |= y

iff ∃w ∈W : [h, g](x) = w,M, g, w |= 3y

iff ∃w ∈W : M, g,w |= x ∧3y

iff M, g, t |= E(x ∧3y)

iff M, g, t |= HT(R(x, y))

M ′, g |= x = y iff [h, g](x) = [h, g](y)

iff ∃w ∈W : w = [h, g](x) ∧ w = [h, g](y)

iff ∃w ∈W : (M, g,w |= x) ∧ (M, g,w |= y)

iff ∃w ∈W : M, g,w |= x ∧ y
iff M, g, t |= E(x ∧ y)

iff M, g, t |= HT(x = y)

M ′, g |= ψ1 ∧ ψ2 iff (M ′, g |= ψ1) ∧ (M ′, g |= ψ2)

iff (M, g, t |= HT(ψ1)) ∧ (M, g, t |= HT(ψ2)) (by induction hypothesis)

iff M, g, t |= HT(ψ1) ∧HT(ψ2)

iff M, g, t |= HT(ψ1 ∧ ψ2)

M ′, g |= ¬ψ iff M ′, g 6|= ψ

iff M, g, t 6|= HT(ψ) (by induction hypothesis)

iff M, g, t |= ¬HT(ψ)

iff M, g, t |= HT(¬ψ)

In the last case, we require x to be a variable:

M ′, g |= ∃xψ iff ∃g′ x∼ g: M ′, g′ |= ψ

iff ∃g′ x∼ g: M, g′, g′(x) |= HT(ψ) (by induction hypothesis)

iff ∃v ∈W, g′ x∼ g: g′(x) = v ∧M, g′, v |= HT(ψ)

iff ∃v ∈W : M, g, v |= ↓xHT(ψ)

iff M, g, t |= E↓xHT(ψ)

iff M, g, t |= HT(∃xψ)

Theorem 8. Let α be a first-order sentence over L. Then there is a sentence Eφ ∈ ML +E+ ↓
such that for all Kripke models M with induced first-order structures M ′ and all t ∈ |M | we have:
M, t |= Eφ if and only if M ′ |= α.

26

Proof. Let α be a first-order sentence over L. Define φ := HT(α), then Eφ is a sentence in
ML +E+ ↓. Let M = (W,R, h) be a Kripke model, g an assignment, t ∈W and M ′ the first-order
structure induced by M . Then it holds:

M, t |= Eφ iff M, g, t |= Eφ (φ is a sentence)

iff M, g, t |= EHT(α)

iff ∃u ∈W : M, g, u |= HT(α) (definition of E)

iff ∃u ∈W : M ′, g |= α (Lemma 3)

iff M ′, g |= α (independent of u)

iff M ′ |= α (α is a sentence)

The next two results follow directly from our previous theorems, but their ideas have already
been mentioned by Blackburn and Seligman in [BS95, Proposition 5.3, Corollary 5.1].

Corollary 1. Let α be a first-order sentence over L. Then there is a sentence φ ∈ ML + Σ such
that for all Kripke models M with induced first-order structures M ′ and all t ∈ |M | we have:
M, t |= φ if and only if M ′ |= α.

Proof. Follows directly from Theorem 8, Theorem 5 and the fact that the resulting formula in
ML + Σ is a sentence.

Corollary 2. The validity problem of ML + Σ is undecidable.

Proof. Let α be a first-order sentence over L. Deriving φ as in Corollary 1, the result implies that
φ is valid if and only if α is valid (note that all first-order structures over L are induced by some
Kripke model). Suppose for a contradiction that the problem was decidable for ML + Σ, then we
could decide whether φ and hence also α is valid. But since the validity of first-order L-sentences
is undecidable [BGG97, Theorem 4.0.1], this is a contradiction.

27

Chapter 4

Semantic Characterisations of ML+ Σ

The preceding investigations are the basis of the characterisations we show in this chapter. We
show two characterisations using a form of bisimulation, namely Σ-bisimulation and strong Σ-
bisimulation, and one using a game (Σ-game). Sections 4.1 to 4.3 will introduce them one by one
and establish implications between them. That the three notions are in fact characterisations will
be shown in Section 4.4 using a ring proof that builds on these implications.

4.1 Σ-Bisimilarity

Definition 28 (Σ-bisimulation). A Σ-bisimulation between two pointed Kripke models (M1, t1)
and (M2, t2) with M1 = (W1, R1, h1) and M2 = (W2, R2, h2) is a binary relation B ⊆W1×W2 such
that the following conditions hold:

• B is a bisimulation

• M1 and M2 are elementarily equivalent (M1 ≡M2)

If there is a Σ-bisimulation between two pointed models (M1, t1) and (M2, t2), we say that (M1, t1)
and (M2, t2) are Σ-bisimilar.

Lemma 4. Let Eφ be a sentence in ML +E+ ↓ and M1 = (W1, R1, h1) and M2 = (W2, R2, h2)
two elementarily equivalent Kripke models. Then for all worlds t1 ∈ W1 and t2 ∈ W2 it holds
M1, t1 |= Eφ iff M2, t2 |= Eφ.

Proof. Let M ′1 and M ′2 be the first-order structures induced by M1 and M2, respectively, and x a
variable not in φ. For all t1 ∈W1 and t2 ∈W2, it holds:

M1, t1 |= Eφ iff ∃u1 ∈W1: M1, u1 |= φ

iff ∃u1 ∈W1: M ′1 |= STx(φ)[u1]

iff M ′1 |= ∃x STx(φ)

iff M ′2 |= ∃x STx(φ) (by elementary equivalence)

iff ∃u2 ∈W2: M ′2 |= STx(φ)[u2]

iff ∃u2 ∈W2: M2, u2 |= φ

iff M2, t2 |= Eφ

Theorem 9. Let φ be a sentence in ML + Σ and B a Σ-bisimulation between the pointed Kripke
models (M1, t1) and (M2, t2). Then M1, t1 |= φ if and only if M2, t2 |= φ.

Proof. Let M1 = (W1, R1, h1) and M2 = (W2, R2, h2). By Theorem 6, φ is equivalent to a formula
φ′ built from formulas of the form

28

• atoms

• nominals

• world variables

• >

• Eχ, where χ ∈ ML +E+ ↓

using only ¬,∧ and 3. Because φ is a sentence, φ′ is also a sentence. Therefore, all variables in φ′

are bound, i. e. they only appear after ↓, hence they must be part of a formula Eχ, χ ∈ML +E+ ↓.
So effectively φ′ is built from atoms, nominals, > and Eχ (χ ∈ ML +E+ ↓) using only ¬,∧ and 3.
We now prove the theorem for φ′ via induction on the complexity of the formula. We regard Eχ as
a base case as we shall see, and therefore none of the cases we handle considers a binding operator.
Therefore the substructures to which we apply the induction hypothesis are still sentences.

For φ′ = p where p ∈ PROP:

M1, t1 |= p iff t1 ∈ h1(p)

iff t2 ∈ h2(p) (because t1 and t2 agree on atoms, as they are bisimilar)

iff M2, t2 |= p

For φ′ = i where i ∈ NOM:

M1, t1 |= i iff t1 = h1(i)

iff t2 = h2(i) (because t1 and t2 agree on nominals, as they are bisimilar)

iff M2, t2 |= i

For φ′ = >:

M1, t1 |= > iff M2, t2 |= >

The case φ′ = Eχ, χ ∈ ML +E+ ↓ follows from Lemma 4.

For φ′ = ¬ψ and ψ is of the required form, we have:

M1, t1 |= ¬ψ iff M1, t1 6|= ψ

iff M2, t2 6|= ψ (by induction hypothesis)

iff M2, t2 |= ¬ψ

For φ′ = ψ1 ∧ ψ2 and ψ1 and ψ2 are of the required form, we have:

M1, t1 |= ψ1 ∧ ψ2 iff M1, t1 |= ψ1 and M1, t1 |= ψ2

iff M2, t2 |= ψ1 and M2, t2 |= ψ2 (by induction hypothesis)

iff M2, t2 |= ψ1 ∧ ψ2

For φ′ = 3ψ and ψ is of the required form, we have:

M1, t1 |= 3ψ iff ∃u1 ∈W1: R(t1, u1) and M1, u1 |= ψ

iff ∃u2 ∈W2: R(t2, u2) and M2, u2 |= ψ
(by induction hypothesis, B(t1, t2) and forth/back with B(u1, u2))

iff M2, t2 |= 3ψ

29

4.2 The Σ-Game

Games have been used in the past as an alternative and much more accessible way to characterise
logics. Though they have clearly defined rules and are in this sense very strict, their informal nature
makes it easy to think about specific cases or to find an idea for a proof. The most classical games
of this sort, which are also closely related to the one we will define, are the bisimulation game for
modal logic [vB10, Def. 3.5.1] and the Ehrenfeucht game for first-order logic [Doe96, Def. 3.45].

They are usually played on two models of the logic. Two players are in dispute over whether or
not the logic can distinguish these models. For modal logic, this question corresponds to whether
the models are bisimilar; for first-order logic whether they are equivalent for the infinitary logic.
The player Spoiler tries to prove that the models can be distinguished, the player Duplicator tries
to prove the opposite. Their possible moves correspond to the operators of a formula of the logic.
If Spoiler wins after a finite number of rounds, his moves can be used to derive a formula that is
true in one model, but not in the other.

In this section, we introduce the Σ-game, which will be a second characterisation for ML + Σ.
Just as the Σ-language combines aspects of first-order sentences and modal formulas, the Σ-game
combines aspects of the bisimulation and Ehrenfeucht games.

Definition 29 (Σ-game). Two players Spoiler and Duplicator play against each other in turns,
starting with Spoiler. The playing field are two pointed Kripke models (M,m) and (N,n), for
which Spoiler tries to find a Σ-sentence to distinguish them, while Duplicator tries to prove that
they fulfil exactly the same Σ-sentences. They also play with pairs of pebbles where each pair has
a different colour. The two white pebbles are a distinguished pair, i. e. they will be played in a
different way than all other colours. When we speak of coloured pebbles, we mean those that are
not white. Initially, the white pebbles are placed on the worlds m and n.

The game is played in rounds, each consisting of one move by Spoiler and then one by Duplicator.
A round leads the game from one stage to another, and we usually denote such a stage by a pair
(s, t) ∈ |M | × |N | indicating the two worlds with the white pebbles on them. As there might also
be coloured pebbles in play, this does not fully specify the state of affairs in the game, but their
positions will be clear from the context. Accordingly, a “Σ-game starting at (s, t)” is one starting
with the white pebbles at worlds s and t.

The rounds are played as follows. If we are at a stage (x, y) of the game, then Spoiler starts by
choosing between two possible moves:

1. (As in the standard modal bisimulation game, cf. [vB10, Def. 3.5.1]) Choose a world w as
either x or y. Then choose an R-successor of w and move the white pebble from w to that
successor.

2. Choose one of the two models. Choose any world w in that model and a new colour. Put a
new pebble of that colour on w and move the white pebble in that model to w as well. We
call this a “jump” move.

Duplicator must then answer with one of the following moves, corresponding to the one Spoiler
made. That is, if Spoiler chose move 1, then Duplicator has to do a move of type 1 as well, and a
move of type 2 otherwise. In both cases, Duplicator acts in just the model Spoiler did not use.

1. Let v be the world in {x, y} Spoiler did not choose. Then choose an R-successor of v and
move the white pebble from v to that successor.

2. Choose any world v in the model Spoiler did not use. Put a new pebble of the colour Spoiler
chose in his move to that world, and also move the white pebble there.

If anyone cannot move, the other player wins. If during the course of the game and directly before
Spoiler moves, the worlds with the white pebbles disagree on any atom, any nominal or on any
other pebble colour present at that world, Spoiler wins. If Spoiler does not win after any finite
number of rounds, Duplicator wins.

30

The Σ-game has two types of moves. If we only play type 2, we basically simulate an infinite
Ehrenfeucht game [Doe96, Def. 3.45]. This makes it possible for Duplicator to transfer a possible
winning strategy.

Lemma 5 (Strategy transfer). Let (M,m) and (N,n) be two pointed Kripke models. If Duplicator
has a winning strategy WS in the Σ-game starting at (m,n), then WS gives rise to a winning
strategy for Duplicator in the infinite Ehrenfeucht game for first-order logic played on the induced
first-order structures of (M,m) and (N,n).

Proof. Regard the normal Σ-game as being played on the induced first-order structures of the
underlying Kripke models and compare it to the infinite Ehrenfeucht game for first-order logic. All
moves Spoiler can make in the latter are also valid moves for Spoiler in an infinite Σ-game, namely
“jump” moves. When Spoiler repeatedly does such a move in the Σ-game, Duplicator always has to
respond with a type 2 move as well. All such moves of Duplicator are also valid in the Ehrenfeucht
game for first-order logic. Of course the Σ-game has the additional white pebbles indicating the
current worlds. But as we only make jump moves, these are already marked by another pair of
coloured pebbles. Now let Duplicator use her winning strategy from the Σ-game in the first-order
game. That is, suppose Spoiler chooses world w in the first-order game. If Spoiler chose w in
the Σ-game by moving the white pebble there and putting a new coloured pebble on top, then
Duplicator would choose a corresponding world v in the other model, move the white pebble there
and put a pebble of the same colour on top. Then, in the first-order game, Duplicator chooses world
v in response to Spoiler choosing w. We claim that this is a winning strategy for Duplicator in the
first-order game, i. e. that at every finite stage of any game with Duplicator playing the strategy,
the moves made so far constitute a local isomorphism between M and N (see [Doe96, Def. 3.3]).
Suppose for contradiction that this is not the case, so in some Σ-game with only type 2 moves so
far, at a finite stage k with played pebble pairs (m1, n1), . . . , (mk, nk) of colours 1 to k, the simple
expansions (M,m1, . . . ,mk) and (N,n1, . . . , nk), interpreting the constant symbols ci as h1(ci) and
h2(ci) respectively, disagree on an atomic sentence φ. We will distinguish all possible shapes of this
sentence, but first we need the following facts. Let C := NOM ∪ {c1, . . . , ck}.

(∗) For all worlds w ∈ |M | and v ∈ |N | it holds: If there is a c ∈ C such that w = h1(c) ↔ v =
h2(c) does not hold, then Duplicator loses the game starting at (w, v).

This is so because

• If c ∈ NOM, then w = h1(c) 6↔ v = h2(c) means that w and v disagree on the nominal c, so
Duplicator loses immediately.

• If c = ci ∈ {c1, . . . , ck}, then w = h1(c) 6↔ v = h2(c) means that exactly one of the worlds w
and v is marked with a pebble of colour i, so Duplicator loses.

From the converse of (∗) we get

(∗∗) If Duplicator has a winning strategy from (w, v), then ∀c ∈ C: w = h1(c)↔ v = h2(c).

Now we will look at the possible shapes of the atomic sentence φ.

1. The sentence is c = c′ for some c, c′ ∈ C. W. l. o. g. we have M |= (c = c′), but N 6|= (c = c′).
Then it holds:

M |= (c = c′) N 6|= (c = c′)

iff h1(c) = h1(c′) iff h2(c) 6= h2(c′)

Now, in the Σ-game let Spoiler make a jump move to w = h1(c). If v is the world Duplicator
jumps to, then Duplicator must still have a winning strategy from (w, v). Hence by w = h1(c)
and (∗∗), we conclude that the world v is h2(c). But now there is the constant c′ such that
w = h1(c) = h1(c′), but v = h2(c) 6= h2(c′) and by (∗) Duplicator loses the game starting at
(w, v), which is a contradiction to her having a winning strategy from there.

31

2. The sentence is P (c) for some c ∈ C. Again, w. l. o. g. we have

M |= P (c) N 6|= P (c)

iff h1(c) ∈ h1(p) iff h2(c) 6∈ h2(p)

Suppose Spoiler chooses to make a jump move to w = h1(c) in the Σ-game. If v is the world
Duplicator jumps to, then Duplicator must still have a winning strategy from (w, v). Hence
by w = h1(c) and (∗∗), we conclude that the world v is h2(c). But then the worlds w and v
disagree on the atom p, so Duplicator loses which is again a contradiction.

3. Finally, the sentence could be R(c, c′) for some c, c′ ∈ C. Then w. l. o. g. it holds:

M |= R(c, c′) N 6|= R(c, c′)

iff (h1(c), h1(c′)) ∈ RM iff (h2(c), h2(c′)) 6∈ RN

Now let Spoiler jump to h1(c), then again by (∗∗) Duplicator has to jump to h2(c). Then let
Spoiler do a type 1 move to h1(c′), which he can do as there is a corresponding edge in RM .
Now Duplicator has to fulfil two conditions in her response:

(a) go via an RN edge (because she has to do a type 1 move)

(b) end up at h2(c′) (because otherwise the worlds disagree on constant c′ and by (∗) she
would lose)

But since (h2(c), h2(c′)) 6∈ RN , this is not possible so Duplicator loses, contradicting her
having a winning strategy.

All possible shapes of the atomic sentence on which the expansions disagree lead to a contradiction.
Hence our assumption that such a sentence exists was wrong and therefore we conclude that at every
finite stage of any game with Duplicator playing the strategy, the moves made so far constitute
a local isomorphism between M and N . Thus, by [Doe96, Def. 3.45], the strategy is a winning
strategy for Duplicator in the Ehrenfeucht game for first-order logic.

Lemma 6. Let (M,m) and (N,n) be two pointed Kripke models. If Duplicator has a winning
strategy in the infinite Σ-game with white pebbles at worlds m and n, then (M,m) and (N,n) are
bisimilar.

Proof. Let M = (WM , RM , hM) and N = (WN , RN , hN). We show that (M,m) and (N,n) are
bisimilar by proving that B := {(w, v) ∈ WM ×WN | Duplicator has a winning strategy in the
infinite Σ-game starting at (w, v)} is a bisimulation between (M,m) and (N,n). By our premise,
Duplicator has a winning strategy from (m,n) and thus (m,n) ∈ B. Now, let (x, y) be an arbitrary
element of B. By definition of B, Duplicator has a winning strategy from (x, y). This implies that
Duplicator has not already lost after 0 rounds, and so x and y must agree on atoms and on nominals.
We prove the remaining conditions back and forth, starting with the latter. Hence suppose there
is a world x∗ ∈ WM such that RM (x, x∗). We have to prove the existence of an RN -successor of y
that is bisimilar to x∗. In a Σ-game starting from (x, y), let Spoiler choose model M and move the
white pebble from x to x∗ along the edge connecting them (move of type 1). Using her winning
strategy, Duplicator can find an RN -successor y∗ of y to which she can move the white pebble in
model N , such that she still has a winning strategy from (x∗, y∗) (otherwise her original winning
strategy would be invalid). This means (x∗, y∗) ∈ B. So y∗ is a world in WN that fulfils both
RN (y, y∗) and B(x∗, y∗), and hence is the world required by the forth condition. The proof for the
back property is similar.

Theorem 10. Let (M,m) and (N,n) be two pointed Kripke models such that Duplicator has a
winning strategy in the infinite Σ-game starting at (m,n). Then (M,m) and (N,n) are Σ-bisimilar.

32

Proof. Suppose that (M,m) and (N,n) are two pointed Kripke models such that Duplicator has
a winning strategy in the infinite Σ-game starting at (m,n). By Lemma 6, (M,m) and (N,n)
are bisimilar. By Lemma 5, Duplicator also has a winning strategy in the infinite first-order
Ehrenfeucht game on the induced first-order structures. By [Doe96, Proposition 3.52], this implies
M ≡ N . Combined with the bisimilarity of the pointed models, we know that (M,m) and (N,n)
are Σ-bisimilar.

4.3 Strong Σ-Bisimilarity

Now we come to a strengthened version of the Σ-bisimulation, which will be used by our third
characterisation. It is based on bisimilarity and isomorphisms.

Definition 30. Let A and B be two first-order structures over L. A bijective function f : |A| → |B|
is called an isomorphism between A and B iff

1. For each k-ary relation symbol R of L with interpretations RA and RB in A and B, and for
all a1, . . . , ak ∈ |A| it holds that RA(a1, . . . , ak) iff RB(f(a1), . . . , f(ak)).

2. For each constant symbol i of L with interpretations iA and iB in A and B, it holds f(iA) = iB.

If there is an isomorphism between A and B, they are called isomorphic.

Let M and N be two Kripke models and M ′ and N ′ their respective induced first-order struc-
tures. If f is an isomorphism between M ′ and N ′, we also say it is an isomorphism between M
and N . If there is an isomorphism between M and N , we call M and N isomorphic.

Theorem 11. Let f be an isomorphism between two Kripke models M = (WM , RM , hM) and
N = (WN , RN , hN). Then for all worlds t ∈WM , it holds:

1. For each propositional atom p: t ∈ hM (p) iff f(t) ∈ hN (p)

2. For each nominal i: t = hM (i) iff f(t) = hN (i)

3. For all worlds s ∈WM : RM (s, t) iff RN (f(s), f(t))

Proof. Let M ′ and N ′ be the induced first-order structures of M and N , respectively. Note that
|M | = |M ′| and |N | = |N ′|, and so f : |M | → |N | is still bijective. The above properties follow
directly from the way we interpret the relational symbols and constant symbols in the induced
first-order structures and the fact that these are isomorphic.

Definition 31 (Strong Σ-bisimulation). A strong Σ-bisimulation between two pointed Kripke
models (M1, t1) and (M2, t2) with M1 = (W1, R1, h1) and M2 = (W2, R2, h2) is a binary relation
B ⊆W1 ×W2 such that the following conditions hold:

• B is a bisimulation

• M1 and M2 are isomorphic

If there is a strong Σ-bisimulation between two pointed models (M1, t1) and (M2, t2), we say that
(M1, t1) and (M2, t2) are strongly Σ-bisimilar.

Theorem 12. Let (M,m) and (N,n) be two strongly Σ-bisimilar pointed Kripke models. Then
Duplicator has a winning strategy in the infinite Σ-game starting from (m,n).

Proof. Suppose that (M,m) and (N,n) are two strongly bisimilar pointed Kripke models, i. e. they
are bisimilar and M and N are isomorphic. Let f : |M | → |N | be an isomorphism. We need to
show that Duplicator has a winning strategy in the infinite Σ-game starting from (m,n). We give
a strategy for Duplicator and prove it is a winning strategy by proving inductively for any stage
(s, t) of the game:

33

(a) If there have not been any jump moves, then (M, s) and (N, t) are bisimilar.

(b) If there has been at least one jump move, then f(s) = t.

(c) For all s ∈ |M |, s and f(s) agree on all pebble colours (of coloured pebbles).

(d) Duplicator does not lose the game until this stage.

At the beginning of the game, there have not been any jump moves, so (b) is trivially fulfilled. Since
(s, t) = (m,n) is the initial stage, we also know that (M, s) and (N, t) are bisimilar. Therefore, s
and t agree on all atoms and nominals. As furthermore no coloured pebbles have been played, we
get points (c) and (d).

For the inductive case, first suppose there have not been any jump moves so far and Spoiler’s
move is also of type 1. If the game is at (s, t) before Spoiler’s move, then by inductive hypothesis s
and t are bisimilar. W. l. o. g. let Spoiler act in M and let s′ be the RM -successor of s he chooses.
By bisimilarity, there is a world t′ ∈ N that is an RN -successor of t and bisimilar to s′. This is
the world Duplicator moves to in N , so point (a) is fulfilled. As no coloured pebbles are in the
game yet, point (c) is fulfilled. Since moreover the bisimilarity of s′ and t′ implies agreement on
atoms and nominals, Duplicator does not lose in this round, fulfilling point (d) given the inductive
hypothesis. Point (b) is trivially true.

Now suppose there has been at least one jump move or the current move by Spoiler is a jump
move. Suppose the game is at (s, t) before Spoiler’s move and w. l. o. g. Spoiler acts in M and
moves the white pebble to s′ (using any move type). Then let Duplicator move to t′ = f(s′). Why
is this a valid move? If Spoiler’s move was a jump move, then Duplicator can move to any world,
so the move is valid. If Spoiler’s move was of type 1, but there has been at least one jump move
before, then by inductive hypothesis t = f(s). As the move was of type 1, RM (s, s′). As f is an
isomorphism, RN (f(s), f(s′)), so there is also an edge from t = f(s) to t′ = f(s′) and Duplicator’s
move is valid. Why does (s′, t′) fulfil the inductive claim? Point (a) is trivially fulfilled as we just
did a jump move. Point (b) is fulfilled as we defined t′ as f(s′). For point (c), notice that the
possibly newly placed coloured pebbles are on two worlds connected by f , namely s′ and f(s′),
so all worlds connected by f agree on this pebble colour. By the inductive hypothesis, all worlds
connected by f also agree on all previous pebble colours, fulfilling point (c). In particular, s′ and
t′ = f(s′) agree on all pebble colours. Since moreover s′ and t′ agree on propositional atoms and
nominals as the isomorphism f assigns s′ to t′, Duplicator does not lose the game at this stage.
Together with the inductive hypothesis, this fulfils point (d).

Overall we proved that using the strategy given, Duplicator can always move and does not lose
at any finite stage of the game. This means that the strategy is a winning strategy for Duplicator
in the infinite Σ-game starting from (m,n).

Theorem 13. Let (M,m) and (N,n) be two countable pointed Kripke models. Duplicator has a
winning strategy in the infinite Σ-game with white pebbles at worlds m and n if and only if (M,m)
and (N,n) are strongly Σ-bisimilar.

Proof. For the left-to-right direction assume Duplicator has a winning strategy in the infinite Σ-
game starting at (m,n). Then by Lemma 6, (M,m) and (N,n) are bisimilar. By Lemma 5,
Duplicator’s winning strategy yields a winning strategy in the infinite Ehrenfeucht game on the
induced first-order structures. By [Doe96, Theorem 3.48] and the fact that M and N are countable
we conclude that M and N are isomorphic. Therefore (M,m) and (N,n) are strongly Σ-bisimilar.

The right-to-left direction follows from Theorem 12.

So far, we related strong Σ-bisimulation to the Σ-game, the Σ-game to Σ-bisimulation and Σ-
bisimulation to Σ-formulas, always going from a stronger notion to a weaker one. But if we restrict
to what first-order formulas can say about the models, the notions are all equivalent as we shall see.
To complement the ring proof, we need some additional concepts coming mostly from first-order
logic.

34

Definition 32 (Invariance for (strong) Σ-bisimulation). Let α(x) be an L-formula with at most
one free variable x. We say α is invariant for (strong) Σ-bisimulation if whenever two pointed
Kripke models (M,m) and (N,n) are (strongly) Σ-bisimilar, then M |= α[m] iff N |= α[n].

Definition 33 (Simple expansion, cf. [Doe96, 3.2]). Let L be a first-order signature and M an
L-structure. Further, let n be a natural number, a1, . . . , an ∈ |M | and L+ = L ·∪ {c1, . . . , cn},
where the ci are constant symbols. Then the simple expansion (M,a1, . . . , an) of M to L+ is the
L+-structure with domain |M | interpreting all elements of L just as M does, and ci as ai for all i.

Definition 34. Let M be an L-model and Σ(x) a set of L-formulas with at most one free variable
x. M is said to realise Σ(x) iff there is a ∈ |M | such that for all φ ∈ Σ(x) it holds M |= φ[a]. M
is said to finitely realise Σ(x) iff for every finite subset X ⊆ Σ(x) there is a ∈ |M | such that for all
φ ∈ X it holds M |= φ[a]. Equivalently, we might say that Σ(x) is (finitely) realised in M .

Definition 35 (ω-saturated, adapted from [BdRV02, Def. 2.63]). A first-order structure M over
the signature L is ω-saturated if for every finite subset {b1, . . . , bn} ⊆ |M |, the simple expansion
M+ = (M, b1, · · · , bn) to L+ = L ·∪{c1, . . . , cn} realises every set Σ(x) of formulas in L+ (with only
x occurring free) that is finitely realised in M+.

The following is the main theorem complementing the ring proof. It corresponds to the “back-
wards direction” of van Benthem’s theorem (Theorem 3).

Theorem 14. Let α(x) be a first-order formula in L with at most one free variable x. If α(x) is
invariant for strong Σ-bisimulation, then α is equivalent to the Standard Translation of a sentence
in ML + Σ.

Proof. The general idea and outer structure of the proof comes from the proof of van Benthem’s
modal version of the theorem as presented in [BdRV02, Theorem 2.68]. We assume that α(x) is
invariant for Σ-bisimulation and look at the set of its Σ-consequences:

CΣ(α) = {STx(φ) |φ is a sentence in ML + Σ and α(x) |= STx(φ)}

We first prove that if CΣ(α) |= α(x), then α(x) is equivalent to the Standard Translation of a
sentence in ML + Σ. Assume CΣ(α) |= α(x). We show that for some finite subset X ⊆ CΣ(α) it
holds X |= α(x). Suppose for a contradiction that for every finite subset X of CΣ(α), X ∪ {¬α}
has a model. Then, by compactness of first-order logic, CΣ(α) ∪ {¬α(x)} has a model. But this is
a contradiction to CΣ(α) |= α(x). So for some finite subset X ⊆ CΣ(α) we have X |= α(x). This
means that |=

∧
X → α(x). With |= α(x)→

∧
X, we get |= α(x)↔

∧
X. As every element in X

is the Standard Translation of a Σ-sentence, so is
∧
X. This proves the claimed implication.

Using this result, it is enough to show that CΣ(α) |= α(x), which we do by assuming that
M |= CΣ(α)[w] and showing M |= α(x)[w]. Let

T (x) := {STx(φ) |φ is a sentence in ML + Σ and M |= STx(φ)[w]}

We show that T (x) ∪ {α} is consistent. To find a contradiction, assume that it is inconsistent.
In this case, compactness of first-order logic requires that some finite subset of T (x) ∪ {α} is also
inconsistent. As T (x) is consistent, this subset must include α(x), so denote it by T0(x) ∪ {α}
with T0(x) ⊆ T (x). Its inconsistency implies |= α(x)→ ¬

∧
T0(x) and thus ¬

∧
T0(x) ∈ CΣ(α). It

follows M |= ¬
∧
T0(x)[w], but that contradicts T0(x) ⊆ T (x) and M |= T (x)[w].

So there are a first-order model N and a domain element v of N such that N |= T (x)∪{α(x)}[v].
We observe that w and v fulfil the same Σ-sentences: With M,w |= φ we have STx(φ) ∈ T (x) and
thus N, v |= φ. Conversely, M,w 6|= φ implies M,w |= ¬φ, therefore N, v |= ¬φ and N, v 6|= φ.

We now show that M ≡ N . Suppose for contradiction that they are not elementarily equivalent,
so w. l. o. g. there is a first-order sentence β such that M |= β, but N 6|= β. By Corollary 1, this
implies the existence of a sentence ψ ∈ ML + Σ such that for all s ∈ |M | and for all t ∈ |N | it holds
M, s |= ψ but N, t 6|= ψ. In particular it holds M,w |= ψ, but N, v 6|= ψ. This is a contradiction to
the Σ-equivalence of (M,w) and (N, v). Hence M ≡ N .

35

As M and N are elementarily equivalent, by [CK90, Proposition 3.1.4] there is a model B such
that both M and N are elementarily embedded in B, i. e. there are isomorphisms fM and fN from
M and N onto elementary submodels BM and BN of B, respectively. Furthermore, by [Hod97,
Corollary 8.2.2], there is an ω+-saturated and thus ω-saturated elementary extension B∗ of B. By
[CK90, Proposition 3.1.1. (iii)], BM and BN are also elementary submodels of B∗ and so both M
and N are also elementarily embedded in B∗. Looking at the pointed models, this means that there
are w∗, v∗ ∈ |B∗| such that (M,w) is elementarily embedded in (B∗, w∗) and (N, v) is elementarily
embedded in (B∗, v∗), where w∗ and v∗ are just those elements of |B∗| assigned to w and v by fM
and fN , respectively.

As (M,w) and (N, v) fulfil the same Σ-sentences and elementary embeddings preserve all first-
order formulas both ways, (B∗, w∗) and (B∗, v∗) are also Σ-equivalent. As ML ⊆ ML + Σ, they are
also modally equivalent. Moreover, B∗ is ω-saturated, and so we conclude by [BdRV02, Theorem
2.65] that (B∗, w∗) and (B∗, v∗) are bisimilar1. Obviously B∗ is isomorphic to itself, so (B∗, w∗)
and (B∗, v∗) are strongly Σ-bisimilar. Overall we have established:

N |= α(x)[v] iff B∗ |= α(x)[v∗] (elementary embedding preserves first-order formulas)

iff B∗ |= α(x)[w∗] (by strong Σ-bisimilarity and the premise of the theorem)

iff M |= α(x)[w] (elementary embedding preserves first-order formulas)

Since N |= α(x)[v], we therefore have M |= α(x)[w]. This concludes the theorem.

4.4 Characterising ML+ Σ

In this section, all of the results of this chapter come together. We prove the equivalence and
validity of the three characterisations for ML + Σ by means of a ring proof using the previous
theorems.

Theorem 15. Let α(x) be a first-order formula over L with at most one free variable x. Then the
following are equivalent:

(1) α is equivalent to the Standard Translation of a sentence in ML + Σ.

(2) α is invariant for Σ-bisimulation.

(3) For any two pointed Kripke models (M,m) and (N,n) it holds: If Duplicator has a winning
strategy in the infinite Σ-game starting with the white pebbles at m and n, then M |= α[m] iff
N |= α[n].

(4) α is invariant for strong Σ-bisimulation.

Proof. The proof from (1) to (2) follows directly from Theorem 9 using the adequacy of the Standard
Translation.

We prove that (2) implies (3). Suppose that (M,m) and (N,n) are two pointed Kripke models
such that Duplicator has a winning strategy in the Σ-game starting with the white pebbles at m
and n. We need to show that M |= α[m] iff N |= α[n]. By Theorem 10, (M,m) and (N,n) are
Σ-bisimilar. Assuming (2), we conclude M |= α[m] iff N |= α[n], so point (2) implies point (3).

We prove that (3) implies (4). Suppose that (M,m) and (N,n) are two strongly bisimilar
pointed Kripke models. We need to show that M |= α[m] iff N |= α[n]. By Theorem 12, Duplicator
has a winning strategy in the infinite Σ-game starting from (m,n). Assuming point (3), it then
holds M |= α[m] iff N |= α[n], proving the implication (3)→(4).

Finally, the proof from (4) to (1) is given by Theorem 14.

1The quoted theorem is proved for modal logic without nominals, but the proof works in the same way for modal
logic with nominals.

36

Chapter 5

Undecidability of Invariance by
Σ-Bisimulation

For a first-order L-formula α, we would like to know if it is equivalent to a sentence in ML + Σ. By
Theorem 15, this is equivalent to deciding if α is invariant for Σ-bisimulation. In this chapter we
show that the latter is undecidable.

Van Benthem proved in [vB96, Remark 4.19] that normal bisimulation-invariance is undecidable
for first-order formulas. This proof was adapted for quasi-injective bisimulations by Hodkinson and
Tahiri in [HT10, Theorem 4.1] and for proper generated submodelN isomorphisms by Kouvaros in
[Kou11, Theorem 4.0.7]. Our proof for Σ-bisimulation is mostly based on the version in [HT10].

One key idea is to create a disjunction whose two alternatives only apply to a part of the model.
In order to enforce this, we use a technique called relativisation:

Definition 36 (Relativisation). Let L be a first-order signature, α an L-formula and P a unary
relation symbol not occurring in L. We inductively define the relativisation of α to P (denoted
αP) as follows:

αP = α if α is atomic

(α1 ∧ α2)P = αP
1 ∧ αP

2

(¬α)P = ¬(αP)

(∃xα)P = ∃x(P (x) ∧ αP)

Lemma 7 (Relativisation lemma). Let L be a first-order signature and P a unary relation symbol
in L. Let M be a first-order structure over L with interpretation h, let P ′ = h(P) and g an
assignment such that g(x) ∈ P ′ for all variables x. Further let M�P be the model obtained by
restricting M to the domain P ′ and let h′ be its interpretation. That is, |M�P | = P ′ and all
relation symbols are defined by the intersection of their M -correspondents with P ′ and P ′ × P ′,
respectively. Then for all L-formulas α not containing P nor any constant symbols i with h(i) 6∈ P ′,
it holds

M, g |= αP iff M�P, g |= α

Proof. Via induction on the structure of α. In the base case, α is atomic, so let α = Q(x1, . . . , xn)
where Q is equality or any of the relation symbols in L \ {P}, and x1, . . . , xn variables or constant
symbols. For any interpretation h let h(=) denote equality. Then

M, g |= αP

iff M, g |= Q(x1, . . . , xn)

iff h(Q)([h, g](x1), . . . , [h, g](xn))

iff h′(Q)([h′, g](x1), . . . , [h′, g](xn)) (as [h, g](xi) ∈ |M�P | for all i)

iff M�P, g |= Q(x1, . . . , xn)

37

If α = ¬β or α = β1 ∧ β2, we conclude as follows, where in both cases the step from (3) to (4)
follows from the inductive hypothesis:

M, g |= (¬β)P (1)

iff M, g |= ¬(βP) (2)

iff M, g 6|= (β)P (3)

iff M�P, g 6|= β (4)

iff M�P, g |= ¬β (5)

M, g |= (β1 ∧ β2)P

iff M, g |= βP1 ∧ βP2
iff M, g |= βP1 and M, g |= βP2

iff M�P, g |= β1 and M�P, g |= β2

iff M�P, g |= β1 ∧ β2

The most interesting case follows. Let α = ∃xβ.

M, g |= (∃xβ)P

iff M, g |= ∃x(P (x) ∧ βP)

iff ∃a ∈ |M |, g′ x∼ g: g′(x) = a and M, g′ |= P (x) ∧ βP

iff ∃a ∈ |M |, g′ x∼ g: g′(x) = a, a ∈ P ′ and M, g′ |= βP

iff ∃a ∈ |M |, g′ x∼ g: g′(x) = a, a ∈ P ′ and M�P, g′ |= β
(by inductive hypothesis, as g′(x) ∈ P ′)

iff ∃a ∈ |M�P |, g′ x∼ g: g′(x) = a and M�P, g′ |= β (as |M�P | = |M | ∩ P ′)
iff M�P, g |= ∃xβ

Remark. If α in Lemma 7 is a sentence, then its value in either model does not depend on g. So
then it holds

M |= αP iff M�P |= α

Theorem 16. It is not decidable whether a given L-formula is invariant under Σ-bisimulation.

Proof. We first show that φ(x) = R(x, x) is not invariant under Σ-bisimulation. Let M be a
first-order structure with domain {w, v} interpreting R as {(v, w), (w,w)}. The relation B =
{(w,w), (v, w), (w, v)} is a Σ-bisimulation between (M,w) and (M,v) (for PROP = NOM = ∅).
However, M |= φ[w] and M 6|= φ[v], so φ is not invariant under Σ-bisimulation.

w v

w v

accessibility relation R

Σ-bisimulation B

Figure 5.1: Two copies of structure M and the Σ-bisimulation between them.

Now, define L′ := L \NOM, and let α be a first-order sentence over L′ and P a unary relation
symbol not in L′. Define f(α) over L′ ∪ {P} as

f(α) := φ(x) ∨ (∃xP (x)→ αP)

We prove that α is valid iff f(α) is invariant under Σ-bisimulation.

→: Assume α is valid. We first show that (∃xP (x) → αP) is valid, i. e. that for any model N
with N |= ∃xP (x), it holds N |= αP . As N |= ∃xP (x), |N�P | 6= ∅ and N�P is a model.
Hence it holds N�P |= α and thus, by Lemma 7, N |= αP as required. So (∃xP (x) → αP)
is valid, and so is f(α). This means that f(α) is equivalent to > and hence invariant under
Σ-bisimulation.

38

←: We show the contraposition, so assume α is not valid. That means there is a first-order
L′-model N such that N 6|= α. Let U be the disjoint union of M and N and let P be a new
unary predicate symbol made true in |N |.
Remember that φ(x) = R(x, x). With M |= φ[w] we get U |= φ[w] and hence U |= f(α)[w].
On the other hand, U |= ∃xP (x) as |N | 6= ∅. As N = U�P , we have U�P 6|= α. We can now
apply Lemma 7 and conclude U 6|= αP . Therefore U 6|= ∃xP (x) → αP . Since furthermore,
M 6|= φ[v] implies U 6|= φ[v], we get U 6|= f(α)[v]. Overall, as (U,w) and (U, v) are Σ-bisimilar,
U |= f(α)[w] but U 6|= f(α)[v], we know that f(α) is not invariant under Σ-bisimulation.

In order to conclude the theorem, suppose for a contradiction that it was decidable whether
a given L-formula is invariant under Σ-bisimulation. Then, for any first-order sentence α over
L′, we could construct f(α) and decide whether it is invariant under Σ-bisimulation. By the
equivalence above, this would also decide whether α is valid. However, as L′ contains the binary
relation symbol R, the validity of first-order L′-sentences is undecidable [BGG97, Theorem 4.0.1],
so this is a contradiction. Hence it is undecidable whether a given L-formula is invariant under
Σ-bisimulation.

39

Chapter 6

The Modal Core of ML+ Σ

In this chapter, we will look at the behaviour of Σ-sentences under three operations: forward-
generated submodels, disjoint unions and p-morphisms. Modal formulas are all invariant under
these operations, but for first-order formulas this does not hold in general. Looking at the results
of Theorem 7, we suspect that Σ-sentences that are invariant under such an operation are equivalent
to a boolean combination of first-order sentences that are invariant under the operation and modal
formulas. However, the actual results were much more interesting.

Definition 37 (P-morphism). Let M and N be Kripke models with M = (WM , RM , hM) and
N = (WN , RN , hN). A function f : WM →WN is called p-morphism from M to N iff

1. For all w ∈WM and p ∈ PROP it holds w ∈ hM (p) iff f(w) ∈ hN (p).

2. For all w ∈WM and i ∈ NOM it holds w = hM (i) iff f(w) = hN (i).

3. forth: For all w,w′ ∈WM with RM (w,w′) it holds RN (f(w), f(w′)).

4. back : For all w ∈ WM and v ∈ WN with RN (f(w), v) there is a world w′ ∈ WM such that
f(w′) = v and RM (w,w′).

Definition 38. Let α(x) be a first-order formula with at most one free variable x. We say that
α is invariant under p-morphisms iff for all pointed Kripke models (M,m) and (N,n) over the
same signature and all p-morphisms f from M to N such that f(m) = n, it holds M |= α[m] iff
N |= α[n].

Lemma 8 (Adapted from [Hod11c, Exercise 4.10]). Let N = (W,R, h), N ′ = (W ′, R′, h′) be Kripke
models and t ∈W, t′ ∈W ′ be worlds. Then (N, t) and (N ′, t′) are bisimilar iff there is a model M ,
a world u of its frame and p-morphisms f : M → N, f ′ : M → N ′ with f(u) = t and f ′(u) = t′.

Proof. First assume there is such a model M = (WM , RM , hM), a world u ∈WM and p-morphisms
f and f ′. Let B = {(f(m), f ′(m)) |m ∈WM}. B is a bisimulation between (N, t) and (N ′, t′):

• (t, t′) = (f(u), f ′(u)) ∈ B as u ∈WM

• For p ∈ PROP and (f(m), f ′(m)) ∈ B it holds f(m) ∈ h(p) iff m ∈ hM (p) iff f ′(m) ∈ h′(p).

• For i ∈ NOM and (f(m), f ′(m)) ∈ B it holds f(m) = h(i) iff m = hM (i) iff f ′(m) = h′(i).

• If (f(m), f ′(m)) ∈ B and (f(m), v) ∈ R for some v ∈WM , then – by the (back) property of p-
morphism f – there is a world m′ ∈WM with f(m′) = v and RM (m,m′). With m′ ∈WM we
know (f(m′), f ′(m′)) ∈ B and – by the (forth) property of p-morphism f ′ – R′(f ′(m), f ′(m′)).
The proof of the other direction is analogue.

For the converse assume that B is a bisimulation between (N, t) and (N ′, t′). We construct a model
M = (WM , RM , hM) with p-morphisms to N and N ′ as described by defining:

• WM = B

40

• RM ((w,w′), (v, v′)) iff R(w, v) and R′(w′, v′)

• (w,w′) ∈ hM (p) iff w ∈ h(p) for all p ∈ PROP

• (w,w′) = hM (i) iff w = h(i) for all i ∈ NOM

Further define the p-morphisms f : M → N as f(w,w′) = w and f ′ : M → N ′ as f ′(w,w′) = w′.
We show that f is a p-morphism: The preservation of atoms and nominals follows directly from
the definitions of hM and f . The (forth) condition follows directly from the definitions of RM and
f . The (back) condition: Let (w,w′) ∈WM = B and v ∈W such that R(f(w,w′), v), i. e. R(w, v).
As B is a bisimulation, there is v′ ∈W ′ such that (v, v′) ∈ B and R′(w′, v′). But now we have the
world (v, v′) ∈WM such that f(v, v′) = v and RM ((w,w′), (v, v′)).

Note that because B is a bisimulation, the last two definitions above are equivalent to (w,w′) ∈
hM (p) iff w′ ∈ h′(p) for all p ∈ PROP and (w,w′) = hM (i) iff w′ = h′(i) for all i ∈ NOM. These
are just the symmetric definitions for f ′ and thus the proof that f ′ is a p-morphism is the same as
for f .

To conclude the proof, we define u := (t, t′), so it holds f(u) = t and f ′(u) = t′.

For the rest of this chapter we only look at Σ-formulas over signatures with NOM = ∅. This
implies that the first-order formulas do not contain any constant symbols.

Definition 39 (Disjoint union). Let M = (WM , RM , hM) and N = (WN , RN , hN) be Kripke
models over the same signature such that WM ∩WN = ∅ (“disjoint Kripke models”). The model
M ·∪N = (WM ∪WN , RM ∪RN , h), where h(p) = hM (p)∪hN (p) for all propositional symbols p, is
called the disjoint union of M and N . If M and N are not disjoint, their disjoint union is defined
as the disjoint union of disjoint isomorphic copies of M and N .

Definition 40. Let α(x) be a first-order formula with at most one free variable x. We say that α is
invariant under disjoint unions iff for all disjoint Kripke models M and N over the same signature
and all w ∈ |M | it holds M |= α[w] iff (M ·∪N) |= α[w].

Definition 41 (Forward-generated submodel). Let M = (W,R, h) be a Kripke model and m ∈W .
The forward-generated (short f-generated or generated) submodel of (M,m) is the smallest Kripke
model N = (W ′, R′, h′) such that

• m ∈W ′

• W ′ ⊆W

• If w ∈W ′, v ∈W and R(w, v), then v ∈W ′.

• R′ = R ∩ (W ′ ×W ′)

• h′(p) = h(p) ∩W ′ for all p ∈ PROP

Definition 42. Let α(x) be a first-order formula with at most one free variable x. We say that
α is invariant under forward-generated submodels iff for each pointed Kripke model (M,w) with
forward-generated submodel (N,w) it holds M |= α[w] iff N |= α[w].

Theorem 17. Let α(x) be the Standard Translation of a Σ-sentence without nominals. Then the
following are equivalent:

(1) α is equivalent to the Standard Translation of a modal formula.

(2) α is invariant under bisimulation.

(3) α is invariant under forward-generated submodels.

(4) α is invariant under disjoint unions.

(5) α is invariant under p-morphisms.

41

Proof. The bisimulation characterisation of modal logic (Theorem 3) directly entails the back
and forth between (1) and (2). The direction from (1) to (3), (4) and (5) follows from the
adequacy of the Standard Translation and the fact that modal formulas are invariant under f-
generated submodels [BdRV02, Proposition 2.6], disjoint unions [BdRV02, Proposition 2.3] and
p-morphisms [BdRV02, Proposition 2.14].

We now show that if either of (3), (4) or (5) holds, so does (1). The beginning of the proof
is very similar to the proof of Theorem 14. We assume that α(x) is invariant under one of the
transformations listed above and look at the set of its modal consequences:

Cmod(α) = {STx(φ) |φ is a modal formula and α(x) |= STx(φ)}

We first prove that if Cmod(α) |= α(x), then α(x) is equivalent to the Standard Translation of
a modal formula. Assume Cmod(α) |= α(x). We show that for some finite subset X ⊆ Cmod(α) it
holds X |= α(x). Suppose for a contradiction that for every finite subset X of Cmod(α), X ∪ {¬α}
has a model. Then, by compactness of first-order logic, Cmod(α) ∪ {¬α(x)} has a model. But this
is a contradiction to Cmod(α) |= α(x). So for some finite subset X ⊆ Cmod(α) we have X |= α(x).
This means that |=

∧
X → α(x). With |= α(x)→

∧
X, we get |= α(x)↔

∧
X. As every element in

X is the Standard Translation of a modal formula, so is
∧
X. This proves the claimed implication.

Using this result, it is enough to show that Cmod(α) |= α(x), which we do by assuming that
M |= Cmod(α)[w] and showing M |= α(x)[w]. Let

T (x) := {STx(φ) |φ is a modal formula and M |= STx(φ)[w]}

We show that T (x) ∪ {α} is consistent. To find a contradiction, assume that it is inconsistent.
In this case, compactness of first-order logic requires that some finite subset of T (x) ∪ {α} is also
inconsistent. As T (x) is consistent, this subset must include α(x), so denote it by T0(x)∪{α} with
T0(x) ⊆ T (x). Its inconsistency implies |= α(x) → ¬

∧
T0(x) and thus ¬

∧
T0(x) ∈ Cmod(α). It

follows M |= ¬
∧
T0(x)[w], but that contradicts T0(x) ⊆ T (x) and M |= T (x)[w].

So there are a first-order model N and a domain element v of N such that N |= T (x)∪{α(x)}[v].
We observe that (M,w) and (N, v) are modally equivalent: With M,w |= φ we have STx(φ) ∈ T (x)
and thus N, v |= φ. Conversely, M,w 6|= φ implies M,w |= ¬φ, therefore N, v |= ¬φ and N, v 6|= φ.

Now, we need to distinguish our three cases, depending on the transformation α is invariant
under. The models involved are illustrated in Figure 6.1 to Figure 6.3.

(3) α is invariant under forward-generated submodels.
Let (M ′, w) and (N ′, v) be the f-generated submodels of (M,w) and (N, v). Let B be the
disjoint union of M ′ and N ′. Then (M ′, w) is also the forward-generated submodel of (B,w)
and (N ′, v) is the forward-generated submodel of (B, v). By [Hod97, Corollary 8.2.2], there is
an ω+-saturated and thus ω-saturated elementary extension B∗ of B.

Every modal formula is invariant under f-generated submodels [BdRV02, Proposition 2.6]. As
(M,w) and (N, v) are modally equivalent, so are (M ′, w) and (N ′, v), and subsequently (B,w)
and (B, v). Elementary extensions preserve all first-order formulas in both ways, in particular
the Standard Translations of all modal formulas. Hence (B∗, w) and (B∗, v) are also modally
equivalent and – by ω-saturation – bisimilar [BdRV02, Theorem 2.65]. Further B∗ ≡ B∗, so
(B∗, w) and (B∗, v) are Σ-bisimilar.

Now we can conclude that α holds subsequently in the models (N, v) (by definition of N, v),
(N ′, v) (α invariant under f-generated submodels), (B, v) (α invariant under f-generated sub-
models), (B∗, v) (elementary extension preserves all first-order formulas), (B∗, w) (by Σ-bisi-
milarity), (B,w) (elementary extension), (M ′, w) (f-generated submodel) and finally (M,w)
(f-generated submodel).

(4) α is invariant under disjoint unions.
Let B be the disjoint union of M and N . Again, by [Hod97, Corollary 8.2.2], there is an
ω-saturated elementary extension B∗ of B. As every modal formula is invariant under disjoint
unions [BdRV02, Proposition 2.3] and (M,w) and (N, v) are modally equivalent, so are (B,w)

42

and (B, v). As above we conclude that (B∗, w) and (B∗, v) are also modally equivalent and by
ω-saturation bisimilar. With B∗ ≡ B∗, we know that (B∗, w) and (B∗, v) are Σ-bisimilar.

Now α holds subsequently in (N, v) (by definition of N and v), (B, v) (α invariant under
disjoint unions), (B∗, v) (elementary extension preserves all first-order formulas), (B∗, w) (by
Σ-bisimilarity), (B,w) (elementary extension) and thus (M,w) (disjoint unions).

(5) α is invariant under p-morphisms.
By [Hod97, Corollary 8.2.2], there are ω-saturated models M ′ and N ′ elementarily extending
M and N , respectively. As all first-order formulas are invariant under elementary extensions
and (M,w) and (N, v) are modally equivalent, (M ′, w) and (N ′, v) are also modally equivalent
and by ω-saturation bisimilar. Then, by Lemma 8, there is a model (B, u) with p-morphisms
from u to w and from u to v.

Now α holds subsequently in (N, v) (by definition of N, v), (N ′, v) (elementary extension pre-
serves all first-order formulas), (B, u) (α invariant under p-morphisms), (M ′, w) (α invariant
under p-morphisms) and finally (M,w) (elementary extension).

In each case we have shown that M,w |= α and therefore Cmod(α) |= α(x). This concludes the
theorem.

M N

w v

≡mod

generated submodels≡
m

o
d

≡
m

o
d

M ′ N ′
w v

≡mod

generated submodels≡ m
od

≡
m

od

w v

≡mod

elementary extension

w v

↔
≡mod

B, disjoint union of
M ′ and N ′

B∗, ω-saturated

Figure 6.1: Illustration of the models involved for the forward-generated submodel case of the proof
of Theorem 17.

Given that we were surprised by these results, we will try to provide an intuitive explanation
after the fact: If a Σ-sentence was not equivalent to a modal formula, it would contain an essential
“first-order-sentence part”. But first-order sentences have all their variables bound and thus have
a global perspective.

As the theorem uses invariance, our operations can be looked at in both ways (e. g. either a
model that is a generated submodel or a model that has a generated submodel). In one way or
another, all of of the operations can be used to extend a model with a new connection component

43

M N

w v

≡mod

disjoint union≡ m
od

≡
m

od

w v

≡mod

elementary extension

w v

↔
≡mod

B

B∗, ω-saturated

Figure 6.2: Illustration of the models involved for the disjoint union case of the proof of Theorem 17.

M N

w v

≡mod

elementary extensions≡ m
o
d

≡
m

o
d

w v

M ′ N ′

↔
≡mod

u

p-morphisms

both ω-saturated

Figure 6.3: Illustration of the models involved for the p-morphism case of the proof of Theorem 17.

44

or to remove a distant connection component. This is very natural for the disjoint union, and both
p-morphisms and f-generated submodels have basically “local semantics”.

If the first binder in our first-order part is ∃, we can take a model fulfilling the Σ-sentence which
fulfills the first-order part only in a distant part of the model. Our operations can then remove that
distant part from the model and the resulting model will violate the sentence. So the Σ-sentence
is not invariant under the operation. If the first binder in our first-order part is ∀, we can extend
a model fulfilling the Σ-sentence with a new connection component that violates the first-order
statement and hence also the Σ-sentence. So the sentence is not invariant under the operation.

45

Chapter 7

Conclusions

7.1 Summary of Results

This thesis investigated the hybrid logic ML + Σ. We proved that any formula Eφ ∈ ML +E+ ↓
is equivalent to a formula in ML + Σ. Conversely, we showed that any sentence in ML + Σ is
equivalent to a boolean combination of modal formulas and formulas of the form Eφ with φ ∈
ML +E+ ↓.

As the Standard Translations of formulas of the form Eφ (φ ∈ ML +E+ ↓) are first-order
sentences, this means that all sentences of ML + Σ are essentially equivalent to a boolean combi-
nation of modal formulas and first-order sentences. Moreover, for every first-order sentence of the
correspondence language there is an equivalent sentence in ML + Σ. Hence ML + Σ is undecidable.

We then derived three different characterisations for the hybrid language with the Σ binder,
two of them using a form of bisimulation and one using a game. We defined Σ-bisimilar to mean
“bisimilar and elementarily equivalent” and strongly Σ-bisimilar as “bisimilar and isomorphic”.
The Σ-game used two different kinds of moves, one representing 3 and one representing Σ. It is a
hybrid game using aspects from the modal bisimulation game and the Ehrenfeucht-Fräıssé game for
first-order logic. We proved that if α(x) is a first-order L-formula, then the following are equivalent:

• α is equivalent to the Standard Translation of a sentence in ML + Σ.

• α is invariant for Σ-bisimulation.

• α is invariant for infinite Σ-games in which Duplicator has a winning strategy.

• α is invariant for strong Σ-bisimulation.

Given our characterisation of ML + Σ, we would like to use it to decide if a first-order formula
is equivalent to a sentence in ML + Σ. However, we showed that this is not possible, because it is
undecidable whether a first-order formula is invariant under Σ-bisimulation.

Finally, we found a modal core of the Σ-language: We proved that if a Σ-formula without
nominals is invariant under forward-generated submodels, disjoint unions or p-morphisms, then it
is equivalent to a modal formula.

7.2 Further Research

We propose the following directions for further research.
In Chapter 6, we proved that invariance under forward-generated submodels, disjoint unions

or p-morphisms are sufficient criteria for a Σ-sentence (without nominals) to be equivalent to a
modal formula. There might be more operations such that Σ-formulas that are invariant under
those operations are equivalent to modal formulas.

Interpolation is a property possessed by both modal logic (without nominals) and first-order
logic. It reads: “Let φ and ψ be modal formulas (first-order sentences) such that φ → ψ is valid.
Then there is a modal formula (first-order sentence) χ using only those propositional symbols

46

(relation symbols) that occur in both φ and ψ such that φ→ χ and χ→ ψ are valid.” As ML + Σ
is essentially a combination of modal logic and first-order sentences, we suspect that it also has the
interpolation property. It would be interesting to see if it really does.

The logics we were concerned with in this work are defined very concretely: We know how they
are syntactically constructed and what their exact semantics are. In contrast, abstract model theory
defines an abstract logic in terms of some essential properties it has to fulfil. Lindström’s theorem
is one of the best known results in abstract model theory. It states that an abstract logic that is
countably compact and fulfils the downward Löwenheim-Skolem property is equivalent to first-order
logic [CK90, Theorem 2.5.4]. There are also Lindström theorems for modal logic, differing in the
properties they require [BdRV02, Ben07]. One of these properties is bisimulation-invariance, so the
characterising property for the logic as a fragment of first-order logic is also used in the context of
abstract logics. Kouvaros proved a Lindström theorem for hybrid logic with the ∀ binder [Kou11,
Section 6]. By finding a Lindström theorem for ML + Σ (possibly using Σ-bisimilarity), we could
generalise the results we presented here.

47

Bibliography

[ABM01] Carlos Areces, Patrick Blackburn, and Maarten Marx. Hybrid logics: Characterization,
interpolation and complexity. Journal of Symbolic Logic, 66(3):977–1010, 2001.

[AQM+97] Serge Abiteboul, Dallan Quass, Jason Mchugh, Jennifer Widom, and Janet Wiener.
The lorel query language for semistructured data. International Journal on Digital
Libraries, 1:68–88, 1997.

[BdRV02] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 2002.

[Ben07] Johan Benthem. A new modal lindström theorem. Logica Universalis, 1:125–138, 2007.

[BGG97] Egon Börger, Erich Grädel, and Yuri Gurevich. The classical decision problem. Per-
spectives in mathematical logic. Springer, 1997.

[BS95] Patrick Blackburn and Jerry Seligman. Hybrid languages. Journal of Logic, Language
and Information, 4:251–272, 1995.

[BS98] Patrick Blackburn and Jerry Seligman. What are hybrid languages? In M. Kracht,
M. de Rijke, H. Wansing, and M. Zakharyaschev, editors, Advances in Modal Logic,
volume 1, pages 41–62. CSLI Publications, Stanford University, 1998.

[BvBW07] Patrick Blackburn, Johan van Benthem, and Frank Wolter, editors. Handbook of Modal
Logic. Studies in Logic and Practical Reasoning. Elsevier, 2007.

[CK90] C.C. Chang and H.J. Keisler. Model Theory. Studies in Logic and the Foundations of
Mathematics. North-Holland, 1990.

[Doe96] Kees Doets. Basic Model Theory. Studies in Logic, Language, and Information. CLSI
Publications, 1996.

[FdR06] Massimo Franceschet and Maarten de Rijke. Model checking hybrid logics (with an
application to semistructured data). Journal of Applied Logic, 4(3):279–304, 2006.

[Hod97] Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

[Hod11a] Ian Hodkinson. 140 Logic. Lecture slide deck, http://www.doc.ic.ac.uk/~imh/

teaching/140_logic/140.pdf, October 2011.

[Hod11b] Ian Hodkinson. 499 Modal and temporal logic. Lecture slide deck, http://www.doc.
ic.ac.uk/~imh/teaching/499_mtl/499.html, October 2011.

[Hod11c] Ian Hodkinson. MTL solutions. Solutions to exercises accompanying lecture 499 –
Modal and temporal logic, http://www.doc.ic.ac.uk/~imh/teaching/499_mtl/499.
html, October 2011.

[HS08] Christian Hoareau and Ichiro Satoh. Hybrid logics and model checking: A recipe for
query processing in location-aware environments. In 22nd International Conference on
Advanced Information Networking and Applications, pages 130–137, March 2008.

48

http://www.doc.ic.ac.uk/~imh/teaching/140_logic/140.pdf
http://www.doc.ic.ac.uk/~imh/teaching/140_logic/140.pdf
http://www.doc.ic.ac.uk/~imh/teaching/499_mtl/499.html
http://www.doc.ic.ac.uk/~imh/teaching/499_mtl/499.html
http://www.doc.ic.ac.uk/~imh/teaching/499_mtl/499.html
http://www.doc.ic.ac.uk/~imh/teaching/499_mtl/499.html

[HT10] Ian Hodkinson and Hicham Tahiri. A bisimulation characterization theorem for hybrid
logic with the current-state binder. The Review of Symbolic Logic, 3(2):247–261, June
2010.

[Kou11] Panagiotis Kouvaros. A characterization theorem for hybrid logic with the for-all binder.
Master’s thesis, Imperial College London, September 2011.

[SK12] Anders Søgaard and Søren Lind Kristiansen. Using hybrid logic for querying depen-
dency treebanks. Linguistic Issues in Language Technology, 7(5), January 2012.

[tC05] Balder David ten Cate. Model theory for extended modal languages. PhD thesis, Insti-
tute for Logic, Language and Computation, University of Amsterdam, 2005.

[Tza99a] Miroslava Tzakova. Hybrid Languages. PhD thesis, Universität des Saarlandes,
Saarbrücken, 1999.

[Tza99b] Miroslava Tzakova. Tableau calculi for hybrid logics. In Proceedings of the Interna-
tional Conference on Automated Reasoning with Analytic Tableaux and Related Meth-
ods, TABLEAUX ’99, pages 278–292, London, UK, 1999. Springer-Verlag.

[vB76] Johan van Benthem. Modal Correspondence Theory. PhD thesis, Mathematisch Insti-
tuut & Instituut voor Grondslagenonderzoek, University of Amsterdam, 1976.

[vB85] Johan van Benthem. Modal Logic and Classical Logic. Bibliopolis, Napoli, Italy, 1985.

[vB96] Johan van Benthem. Exploring Logical Dynamics. Studies in Logic, Language and
Information. CSLI Publications, 1996.

[vB10] Johan van Benthem. Modal Logic for Open Minds. CSLI lecture notes. Center for the
Study of Language and Information, 2010.

49

	Introduction
	Motivation
	Project Objectives
	Related Work
	A Brief Introduction to Hybrid Logics
	Achievements
	Outline

	Hybrid Languages
	Modal Language
	Syntax of the Modal Language
	Semantics of the Modal Language
	Bisimulation

	Extension to Hybrid Languages
	Syntax of Hybrid Languages
	Semantics of Hybrid Languages

	On the Expressiveness of ML+
	Introduction
	ML+ and ML+E+"3223379
	First-Order Sentences and Hybrid Languages

	Semantic Characterisations of ML+
	-Bisimilarity
	The -Game
	Strong -Bisimilarity
	Characterising ML+

	Undecidability of Invariance by -Bisimulation
	The Modal Core of ML+
	Conclusions
	Summary of Results
	Further Research

	Bibliography

