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Abstract

Recently, the battery dissipation of portable smartphone and tablet devices has become a topic of
major concern. These devices provide power hungry features that become even more demanding in
resources as they improve over time. Many studies focus on battery lifetime prediction, but most
of the models proposed are not capable of working in lightweight portable devices.

In this work, we present a battery lifetime prediction model that uses battery related as well
as context related information in order to make predictions. The core of the model is an instance-
based machine learning engine which uses the distance-weighted k-NN algorithm to make accurate
estimations of battery lifetime based on usage patterns and characteristics. The model does not use
statically defined power profiles, but adapts dynamically to the usage characteristics of the user. We
also improved an Android-based application called Open Battery, which monitors battery related
data and makes them available on-line for academic purposes. The new version of Open Battery
is designed to use the prediction model we developed and provide valuable information regarding
battery consumption. The last part of this project consists of the statistical analysis of the data
collected with Open Battery and the demonstration of our results.
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Chapter 1

Introduction

Smartphones are one of the fastest growing technological types of devices in the current mobile
networks. Google has recently announced in Google I/O 2013 [18] that there have been over 900
million Android device activations to date. If we compare that to 100 million in 2011, and 400
million in 2012, it is obvious that the circulation of Android devices has increased immensely.

Their rapidly expanding appeal on a vaster consuming target group has steadily created the need
on personalized services, as well as customizing the resource management of smartphones, accord-
ing to individual customers requirements. Android smartphones and tablet devices offer several
power consuming hardware components (Wi-Fi, 3G, GPS etc) and the application developers are
exploiting them in order to provide revolutionary and high level user experience. However, the
battery life has not increased at the same rate to support the power demand [11].

This fact implicates the necessity of usage pattern analysis, using real log data from real smart-
phones users. The studies realized towards this goal are basically aiming on achieving the optimiza-
tion of battery usage, the best possible accuracy of predictions of battery lifetime and the detection
of abnormal processes and intrusions, through user identification data [26].

In order to enhance the understanding of how and where the energy is used and distributed
throughout the several utilities and applications of a smartphone, several studies have been re-
alized, analysing the motif of power consumption performed by certain devices under multiple
usage scenarios, which differ according to the individual’s needs and preferences.

The implications on battery life and energy usage caused by specific users’ behaviour, such as
battery charging habits and customizing aiming to diminish energy consumption when needed (i.e.
alteration of the default brightness level), established a gradually emerging searching field, known
as Human-Battery Interaction (HBI), which has provided astonishing findings referring to real us-
age patterns [38].

In this project we plan to improve an existing application for Android platform called Open Bat-
tery that logs battery data and make it available on-line for academic research purposes and create
a model to predict future battery performance. The model uses a machine learning engine that
recognizes usage patterns and makes estimations based on user-specific characteristics. The data
collected are published on-line under the Open Data Commons Public Domain Dedication and
License (PDDL) [12], which allows free access for purposes of redistribution and re-evaluation.

1.1 Motivation

Improvement of models regarding battery usage Several models have been proposed in
previous studies, processing several monitored data and proposing techniques to predict battery
consumption. Although, the feasibility of these systems has been proved in certain occasions, the
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need of acquiring the highest possible accuracy and performance of prediction algorithms should
not be considered a trivial issue.

The need of free battery data for academic purposes One of the basic obstacles that have
occasionally shifted the progress of previous studies is the fact that the collection of user data lies
under the protection of privacy agreements. As a result, the data is restricted and forbidden to
be shared outside the named researchers original proposal. Thus, because of the inevitability that
different devices and different operating scenarios will display different behaviour, the fact that an
innovating, more efficient way of collecting real users data, easily accessed for further academic or
commercial usage is been strongly emphasized.

1.2 Objectives

Research on models for predicting battery consumption. In literature there are many
approaches regarding battery modelling and prediction of battery consumption. These models
will be studied and evaluated in order to develop a technique for prediction of battery drain in a
commercial application like Open Battery.

Rewrite the Open Battery application introducing new features. The Open Battery
is a project that has to be rewritten in order to improve its performance and its usability. The
Graphical User Interface (GUI) of the Android application will be redesigned, new methods of data
representation, analysis and visualization will be introduced and a cache model will be designed
in order to improve the overall behaviour of the system. Moreover, a prediction model will be
implemented, in order to make an estimation on when the battery will be empty or fully charged.

Demonstrate the application and results regarding battery consumption of Android
smartphone devices. The improved Open Battery application will be used in Android devices
in order to demonstrate its functionality. We will also use the battery data to visualize the en-
ergy consumption of the handsets and give conclusions according to the data retrieved regarding
smartphone usage patterns.

1.3 Thesis Outline

We start by defining in a greater depth what a Lithium-ion (Li-ion) battery used in smartphone de-
vices is and by presenting some related technical concepts and details of Android Operating System
(OS) and machine learning methods in Chapter 2. This is important in order to better understand
the context of our work and to present the theoretical background that will be useful for the rest
of this project. It will also help in better understanding concepts presented in the next chapter. In
Chapter 3 we present the related work of other researchers in this field, discussing in more depth
the advantages and disadvantages of existing battery performance prediction models and systems.
Some of the ideas presented in this section are used to form the basis of this project. In Chapter 4
we present the formal description of the battery lifetime prediction model we developed and we
present the design of the Open Battery system describing its software components and the inter-
action between them. We also discuss the implementation details of each of these components and
any technical issues that arise through the development of Open Battery. In Chapter 5 we present
the evaluation of our work pointing out the limitations of our approach, providing qualitative and
quantitative analysis regarding the accuracy and performance of our prediction model after run-
ning a number of experiments and presenting some valuable statistics from the analysis of our data.
Finally, in Chapter 6 we conclude this work and consider directions for further work in this project.
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Chapter 2

Technical Background

This chapter presents the basics regarding battery lifetime and especially of Lithium-ion batteries
which are used in smartphone and tablet devices. It also presents an overview of Android OS
and application development basics as well as background knowledge of the k-nearest neighbour
machine learning algorithm that is used in our prediction model which will be discussed in more
depth in Chapter 4.

2.1 Battery basics

2.1.1 Electrochemical cells

A battery consists of one or more electrochemical cells connected in series or in parallel. In these
cells, a electrochemical reaction converts stored chemical energy into electrical energy. A cell is
composed of an anode holding charged ions, a cathode holding discharged ions and the electrolyte
separating the two electrodes. An electrochemical cell is illustrated in Figure 2.1

Figure 2.1: Schematic representation of an electrochemical cell [23]

During the discharge of the battery two reactions take place, one at the anode and one at the
cathode of the electrochemical cell. More specifically, at the anode an oxidation reaction takes
place, where a reductant (R1) donates m electrons which are released into the connected circuit.
On the other hand, on the cathode a reduction reaction occurs, where m electrons are accepted by
an oxidant (O2) [23]. The reactions during battery discharge are:

17



{
R1 → O1 +me− at the anode

O2 + ne− → R2 at the cathode

Ideal battery properties

Among the many properties that a battery has, the two most important regarding battery usage
are voltage and capacity. The voltage is expressed in volts (V ), while the charge capacity of the
battery is typically given in terms of Amp-hours (Ah) or milliAmp-hours(mAh) and is called the
battery’s C rating. Under ideal circumstances, a battery has a constant voltage throughout a
discharge which drops instantaneously to zero when the battery becomes empty and has constant
capacity as shown in Figure 2.2.

Figure 2.2: Characteristics of an ideal battery: Constant voltage and constant capacity. [33]

For constant loads, the calculation of the battery’s lifetime is easy, given by the equation:

L =
C

I
(2.1)

where L is the lifetime of the battery, C is its capacity and I is the discharge current. However,
due to some properties that are present in real circumstances this equation does not hold for real
batteries. These properties are discussed next.

Non-Ideal battery properties

While ideally the voltage and the capacity of the battery remain constant, in real conditions both
vary widely. The two effects that make battery performance sensitive to discharge profile are the
Rate Capacity Effect and the Recovery Effect. It is very important to mention that these effects
occur for all types of batteries but the magnitude of their impact on the battery’s lifetime depends
on each battery type, making the formal modelling of batteries a very complicated process.

Rate Capacity Effect The Rate Capacity Effect is the phenomenon where the voltage slowly
drops while the battery is discharging and the capacity is lower for high discharge currents. This
behaviour is illustrated in Figure 2.3a which shows the capacity as a function of the discharge rate
which is given in terms of C rating. In this figure we can see the loss of effective capacity with
increasing high discharge rates for a typical NiCd battery.

Recovery effect During periods of time when little or no discharge occur the battery actually
recovers the capacity that it lost in periods of high discharge. The degree of the battery recovery
depends on the discharge profile, the length and distribution of the idle periods and the details
regarding the battery construction [40]. This effect of non-linearity is shown in Figure 2.3b.
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(a) The Rate Capacity Effect (b) The Recovery Effect

Figure 2.3: Non-Ideal battery properties [28]

2.1.2 Lithium-ion battery

Lithium-ion batteries are rechargeable batteries and they are considered as the fastest growing bat-
tery systems. They are widely used in high-performance devices such as laptop computers, digital
cameras, mobile phones and lately in smartphone and tablet devices due to their high energy den-
sity, light weight, long service lifetimes and low-discharge currents. The schematic representation
of a lithium-ion battery is shown in Figure 2.4. As we can see from the figure it consists of the
positive electrode LixC6, the negative electrode LiyMn2O4 and a plasticized electrolyte [43]. A
variety of substances are used in lithium batteries, but a common combination is a lithium cobalt
oxide cathode and a carbon anode.

When discharging, the electrochemical reactions that take place are:{
LixC6 → Li0C6 + xLi+ + xe− at the anode

Liy−xMn2O4 + xLi+ + xe− → LiyMn2O4 at the cathode

On the other hand during charging, the electrochemical reactions that take place are:{
Li0C6 + xLi+ + xe− → LixC6 at the anode

LiyMn2O4 → Liy−xMn2O4 + xLi+ + xe− at the cathode

As we can observe from these formulas, lithium ion de-inserts from solid particles of the anode and
inserts into solid particles of the cathode during discharging . This process is reversed during the
charge process.

Figure 2.4: Schematic representation of a lithium-ion battery [43]
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Rechargeable battery properties

Lithium-ion battery is a rechargeable type of battery which has properties that are not applicable
for the basic battery model discussed earlier in this chapter. During the charging process, a
rechargeable battery may regain its capacity lost during discharging. Generally, a discharge process
and the charge process following it are called a cycle. The capacity of a lithium-ion battery tends
to decrease when the number of cycles increases resulting in a phenomenon called Cycle Ageing
Phenomena. Moreover, the battery’s temperature seems to have a major influence on the impact
of cycle aging. Unfortunately, high battery temperature results in low life cycle of the battery
making an accurate prediction of battery lifetime even more complicated than the prediction in
non-rechargeable batteries [43]. According to a wide research on a total of 85 commercial lithium-
ion batteries [19] their capacities tend to decrease by 10-40% during the first 450 cycles. Therefore,
the lack of knowledge regarding the temperature and the cycle life of the battery makes lifetime
predictions inaccurate in real lithium-ion batteries.

2.2 Android Operating System

The Lithium-ion batteries that were described in the previous section are used nowadays in high
performance portable devices such as smartphones and tablet computers. These devices have sev-
eral power hungry features, such as colorful Organic Light-Emitting Diode (OLED) screens, Wi-Fi
and cellular connectivity and GPS. Taking consideration the major popularity of these portable
devices, their battery consumption is a major issue and many researchers have tried to investigate
how to predict it and minimize it.

Android is an open-source Linux-based operating system originally designed for mobile devices,
such as smartphone and tablet computers, originally developed by Android Inc. In August 2005,
Google acquired Android Inc. and the first Android based smartphone was released in August 2008
running Android version 1.0. Android-based devices gained increasing popularity during the last
five years dominating nearly 70% of smartphone market, according to [29]. During the same period
more than 10 new versions of the system have been released, as shown in Table 2.1. The version
distribution of active Android devices is illustrated in Figure 2.5 showing that devices running
Android OS versions prior to 2.3 tend to disappear nowadays. Its high usage around the globe as
well as its well-developed Software Development Kit (SDK) and the adaptability of the system to
different portable devices made the decision of which platform will Open Battery be developed an
easy choice.

In this section we discuss some fundamental technical details of the architecture of Android OS
as well as application development in this platform that are essential for understanding topics
regarding Open Battery implementation covered in Chapter 4.

2.2.1 Android system architecture

The Android OS can be considered as a software stack of layers, where each layer is a group of dif-
ferent components, as shown in Figure 2.6. This stack consists of the Linux kernel, basic libraries,
an application framework and built-in applications.

The basic layer of the stack is the Linux kernel. Android OS is built on top of the Linux ker-
nel version 3.x (version 2.6 prior to Android 4.0) with some further architectural changes made by
Google outside the typical Linux kernel development cycle. Although it is built on top of the Linux
kernel, Android is not identical to Linux, since it does not include the full set of standard Linux
utilities. The kernel is responsible for interacting with the hardware of the device and contains all
the essential hardware drivers.

The Libraries layer is built on top of the Linux kernel layer and consists of many essential na-

20



Figure 2.5: Distribution of Android versions [16]

Version Codename Release date API level Distribution

4.2.x Jelly Bean November 13, 2012 17 4.0%

4.1.x Jelly Bean July 9, 2012 16 29.0%

4.0.x Ice Cream Sandwich December 16, 2011 15 25.6%

3.2 Honeycomb July 15, 2011 13 0.1%

3.1 Honeycomb May 10, 2011 12 0%

2.3.3 - 2.3.7 Gingerbread February 9, 2011 10 36.4%

2.3 - 2.3.2 Gingerbread December 6, 2010 9 0.1%

2.2 Froyo May 20, 2010 8 3.2%

2.0 - 2.1 Eclair October 26, 2009 7 1.5%

1.6 Donut September 15, 2009 4 0.1%

1.5 Cupcake April 30, 2009 3 0%

1.1 - February 9, 2009 2 0%

1.0 - September 23, 2008 1 0%

Table 2.1: Usage share of the different Android platform versions on June 3, 2013 [16]

tive libraries written in C or C++. An important native library related to this project is SQLite,
which is a lightweight transactional database engine used in Android OS as a back end for data
storage purposes.

Android layered architecture provides a powerful Application Framework for application devel-
opment. Android applications are written in the Java programming language, while the GUI
components are preferably declared in lightweight sets of Extensible Markup Language (XML)
resource files. The Android SDK tools are responsible for compiling the code into an Android
package, which is a file with an .apk extension. The code in an .apk file is considered to be one
single application and Android-based devices use this file in order to install the current application
in the internal memory of the device.

2.2.2 Android power management

One of the changes that Google made to the original Linux kernel was the addition of Android’s
power driver to the kernel 2.6.33. The new driver was added considering that the portable devices
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Figure 2.6: Android layered architecture diagram [17]

running Android OS have limited battery capacity and the provided power saving features are
different than the ones of personal computers.

In the Application Framework layer a Power Management API is developed as shown in Fig-
ure 2.7. Android applications request CPU resources using mechanisms called wake locks through
the Application Framework, the Libraries and Linux kernel layers. Wake locks are Power Manager
features used to control the power state of the host device. A wake lock that is considered in locked
state prevents the system from accessing suspend or low-power states, according to its type. As
illustrated in Figure 2.7, when application App1 needs CPU resources, it sends a request to the
Power Manager API which transfers the request to the power driver located in the Linux kernel
layer. When the wake lock is created the Power Manager reports the incident back to App1. Ac-
cording to the type of the wake lock the appropriate resources are consumed. In Table 2.2 different
wake lock types are shown.

Wake lock type CPU Display Keyboard

PARTIAL WAKE LOCK ON OFF OFF

SCREEN DIM WAKE LOCK ON DIM OFF

SCREEN BRIGHT WAKE LOCK ON BRIGHT OFF

FULL WAKE LOCK ON BRIGHT BRIGHT

Table 2.2: Different types of wake locks in Android OS

2.2.3 Android application fundamentals

In this section we introduce some basic details of Android application development. The techni-
cal details presented here are essential for understanding specific implementation topics of Open
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Figure 2.7: Android power management architecture

Battery that are presented in Chapter 5.

Android application components

From the developer’s perspective, the foundation elements of Android OS are the application com-
ponents. They represent different entry points of the Android application, since applications in
Android do not have a single entry point (ie. there is no main() method), unlike applications on
most other systems. There are five different types of application components, each of whom plays
a distinct role and has a specific lifecycle that defines how the component is created and destroyed.

• Activities An activity is a component that represents a single screen of the Android appli-
cation, since it offers the means to render the user interface of each screen. Although the
activities are working together in order to present the screen sequence of the application, each
activity is considered to be an independent entity in the Android system.

• Widgets A widget is a view of the application’s most important data and functionality that
is accessible from the home screen of the device. Widgets can be moved across the home
screen panels and can be resized according to the users’ preferences.

• Services A service is a non-graphical component that represents an operation running in the
background of the application. Services run in the main thread of the application just like the
other components and communication between them can be achieved through an interface
that the service exposes.
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• Content providers A content provider is responsible for managing and exposing shared data
to applications. The data can be stored in the local file system, an SQLite database, on the
web, or any other storage location the application can have write access. Other applications
can read or even modify the data, through the mechanisms of the content provider.

• Broadcast receivers A broadcast receiver is a component that receives broadcast events
of the Android OS and responds appropriately. Broadcast receivers do not display any GUI
but they are able to create a status bar notification when a broadcast event occurs. Some
examples of Android OS broadcast events include events sent when the battery of the device
is low, when the device originally boots or when a picture is captured.

The manifest file

Every application must have a manifest file named AndroidManifest.xml in its root directory that
describes the set of all components that it uses, as well as the functionality and requirements of the
application to the Android OS. AndroidManifest.xml is generated automatically during the build
process, and the XML found within Properties\AndroidManifest.xml is merged with the XML
file that is generated based on custom attributes. The declaration of the components is important
since Android OS must be aware of which of them exists in the developed application, before it
runs any of its code.

Except of just declaring the components used in the application, the manifest file:

• Creates the unique identifier of the application by giving a name to its Java package.

• States all the user permissions that are required by the application, such as Internet access,
external SD card read/write access or SMS messages monitoring.

• Declares the minimum level of the Android Application Programming Interface (API) that
the application requires, based on the APIs that it uses.

• Declares any external libraries that the application must be linked against.

Resource management mechanism

Android applications consist of the source code and external resources, such as images, audio files,
layout definitions, user interface strings and generally everything involved into the graphical presen-
tation of the application. Dealing with application external resources makes it very easy to update
its GUI without modifying the written code and optimize the application behavior for different
device configurations.

Every resource is identified by a resource ID which can be used for referencing the resource from
the application source code. For instance, for an image file named image.jpg located in the
res/drawable/ directory, the SDK tools generate a resource ID named R.drawable.image, that
can be used as a reference in the source code and any other resources described in XML format,
such as GUI layout definitions. This is a very practical and simple way to insert images or any
other graphical elements into the GUI of the application

The most important reason of separating the source code from the static resources of the ap-
plication is the ability of providing alternative resources for different device configurations. An
example of this aspect is multi-language support and application localization. Since the applica-
tion may run on devices in many regions, the resources should be handled appropriately according
to the locale where the application will be used. Declaring the strings displayed in the GUI of the
application in XML resource files make it possible to distribute the translations of these strings into
separate files located in different directories according to a language qualifier that is appended to
the resource directory’s name. The resource system uses the ISO3166-1 two letter country codes.

24



For instance, if the XML resource file strings.xml containing the string values of the application
in Italian is located in res/values-it, then the Android OS will automatically use this file when
a device is configured to use Italian language according to the user’s preferences.

2.3 Machine learning

Machine learning is a specific area of artificial intelligence which involves algorithms and methods
that can learn from data and improve by gaining experience. In [34] Tom M. Mitchell provided
a formal definition of machine learning as ”A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P , if its performance at tasks
in T , as measured by P , improves with experience E”. Machine learning allows customizable
development of adaptable computer programs which operate according to the automated analysis
of datasets rather than the intuition of software engineers who have programmed them. Machine
learning overlaps considerably with Statistics, since both fields study data analysis. In this section,
we discuss some topics in Machine learning that are relevant to the development of the battery
lifetime prediction algorithm described in Chapter 4.

2.3.1 Instance-based learning

In Machine learning, instance-based learning or lazy learning is a family of learning algorithms that
compare new problem instances with instances observed during the training process. The training
process simply stores the data in memory and any computation on these data is postponed until
an explicit query is made. The main four steps of instance-based learning when a new instance
arrives are:

1. Search the memory for similar instances according to a similarity measure.

2. Retrieve the solutions of these instances.

3. Adapt these solutions to the current instance.

4. Store the new instance in memory.

A remarkable point regarding the instance-based learning methods is that they can create a differ-
ent approximation to the solution of the problem for each new query instance, since different set of
instances are considered as similar each time a new instance arrives. This behaviour makes these
methods suitable for complex or incomplete problem domains especially where a complex solution
can be represented as a set of less complex local approximations.

The major advantage of instance-based learning has over other methods of Machine learning is
that the training process is very fast because it consists only of storing the training data, but the
query time complexity can grow along with the size of the dataset. In the worst case scenario of
n training instances stored in an array, the computational overhead of query time can be O(n),
resulting in low performance.

2.3.2 The k-nearest neighbour algorithm

The k-nearest neighbour algorithm (k-NN) is one basic instance-based learning method that is
widely used due to its simplicity and its remarkably good performance and accuracy. According to
this algorithm, each instance xi has n attributes where the value of attribute r is denoted as ar(xi).
Thus, xi can be represented as a n-dimensional vector or equivalently a point in the Rn space:

xi = (a1(xi), a2(xi), ..., an(xi)) (2.2)
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The training process of k-NN consists of just storing all training examples 〈xi, f(xi)〉 in the mem-
ory. Considering the algorithm for real-valued function approximation, given a query instance xq
the estimation for xq is computed as the mean of target values of the k nearest neighbours of xq:

f̂(xi) =

∑k

i=1
f(xi)

k
(2.3)

The k neighbours selected by the algorithm are the instances that have the minimum distance from
query instance xq. The distance between two instances xi, xq is calculated according to a similarity
measure. Some of them are described next:

Manhattan distance

The Manhattan distance is the distance between two points that is based on horizontal and vertical
paths as seen in Figure 2.8a. The equation of this distance metric between instances xi, xq is given
below:

d(xi, xq) =
∑n

r=1
|ar(xi)− ar(xq)| (2.4)

Euclidean distance

The Euclidean distance is the distance between two points defined as the square root of the sum of
the squares of the differences between the coordinates of the points. The equation of this distance
metric between instances xi, xq is given below:

d(xi, xq) =

√∑n

r=1
(ar(xi)− ar(xq))2 (2.5)

The Euclidean distance between two points in 2D space is illustrated in Figure 2.8b

(a) The Manhattan distance in 2D space
(b) The Euclidean distance in
2D space

Figure 2.8: Differences between the Manhattan distance and the Euclidean distance

Minkowski distance

The Minkowski distance is a metric that can be considered as a generalization of the Manhattan
distance and the Euclidean distance. The equation of the Minkowski distance of order p between
instances xi, xq is given below:

d(xi, xq) =
(∑n

r=1
(|ar(xi)− ar(xq)|)p

) 1
p

(2.6)
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From the equation above it is clear that when we substitute p = 1 we get the Manhattan distance
while when we substitute p = 2, we get the Euclidean distance.

Chebyshev Distance

The Chebyshev Distance or L-infinity norm is defined as the distance the greatest of the differences
between two vectors along any coordinate dimension. The equation of this distance metric between
instances xi, xq is given below:

d(xi, xq) = maxr|ar(xi)− ar(xq)| (2.7)

Chebyshev distance is a special case of Minkowski distance when p → ∞ and can be used for
ordinal as well as quantitative variables.

Hamming distance

The Hamming distance between two vectors is simply defined as the minimum number of substi-
tutions required to change one vector into the other. The Hamming distance was originally used
for error detection and error correction in digital communication. The equation of the Hamming
distance is given below:

d(xi, xq) =
∑n

r=1
|ar(xi)− ar(xq)|

ar(xi) = ar(xq)⇒ d = 0

ar(xi) 6= ar(xq)⇒ d = 1

(2.8)

It should be noted that all three aforementioned distance measures are only valid for continuous
variables. For binary variables the Hamming distance is preferable, since it has the same results as
the others and its computation overhead is extremely low, due to the fact that it can be computed
efficiently using the ⊕ operation between the two binary vectors. An example of the Hamming
distance of two binary vectors is shown in Figure 2.9. The highlighted values in positions 1 and 5
are different between these vectors, thus the Hamming distance is 2.

Figure 2.9: The hamming distance between two binary vectors

2.3.3 The distance-weighted k-nearest neighbour algorithm

According to this variant of the k-NN algorithm, the contribution of each of the k nearest neigh-
bours is weighted to the average, in accordance with their distance from the query instance xq,
giving higher weight wi to closer neighbours. The estimation for xq is computed as:

f̂(xi) =

∑k

i=1
wif(xi)∑k

i=1
wi

(2.9)
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where the weight is defined as:

wi =
1

d(xi, xq)2
(2.10)

In this variant of the algorithm it is reasonable to consider all instances and not only the k nearest
neighbours, since their contribution to the result is weighted making a global estimation. The main
disadvantage of this approach is the high time complexity of the calculations needed.

2.4 Summary

In this chapter we presented the background material of this thesis. We discussed some basic
topics of how batteries work and discussed some ideal and non ideal-properties that several types
of batteries have, focusing on lithium-ion batteries that modern portable devices use. We also
presented the Android OS, which is the most popular platform of smartphone and tablet devices
and discussed how Android OS manages power resources using the mechanism of wake locks. In
the last part of this chapter we presented the k-NN instance-based learning algorithm, a variant of
which our prediction model uses.

In the next chapter we present the related work of this project, consisting of various studies re-
garding battery modelling and lifetime prediction.
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Chapter 3

Related Work on Battery Power
Modelling

In this chapter we present different approaches for battery lifetime prediction that have been pro-
posed as well as their advantages and disadvantages. This will be useful for completeness reasons
as well as for locating and describing technical details related to this project.

In the literature there many approaches regarding battery modelling, battery lifetime prediction
and generally power management in embedded devices. Many attempts have similar research di-
rections, thus we present the related work in this field in five separate parts each highlighting
significant research themes. The order we present these themes is from theoretical battery oriented
approaches to usage pattern oriented approaches on which many battery lifetime prediction systems
are based.

3.1 Battery Analytical Models

Analytical models make a description of the behaviour of batteries in an abstract manner. Accord-
ing to these models, the properties and the behaviour of the battery are modelled using sets of
equations, some of them simple and some of them more complex. Generally, these models describe
specific types of batteries and most of them use parameters that depend on the battery’s specifica-
tions. For the implementation of these models it is necessary to determine these parameters which
actually form their input data.

3.1.1 Peukert’s law Model

The simplest analytical model of prediction of battery life under constant load is based on empirical
Peukert’s relationship [28]:

α = IbL (3.1)

where L is the lifetime of the battery, I is the current and α > 0 , b > 0 are constants which
depends on the battery. In ideal circumstances, α would be equal to the capacity of the battery,
while b = 1. However, this power law does not hold when current is changing over time, thus it
contradicts experimental observations. In practice α has a value close to battery capacity and b
lies between 1.2 and 1.7 for most batteries [33].

In their work [39], Rakhmatov and Vrudhula present an extended version of Peukert’s law for
variable loads. In Equation (3.1) I is replaced by the average current until t = L, yielding to the
next equation:
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α =

∑n

k=1
Ik−1(tk − tk−1)

L

b

L (3.2)

where tk are the points of time of current change. Although the Equation (3.2) seems to be simple,
the unknown variable L appears inside the n-term sum as well, since tn = L. For n = 1 Equation
(3.2) reduces to Equation (3.1).

Advantages The model is simple and the results obtained by applying Peukert’s law for predict-
ing battery lifetimes give a reasonably good approximation for constant continuous loads.

Disadvantages As we mentioned before, the Peukert’s law does not hold for variable loads (when
the current average does not adequately represent the battery discharge conditions), therefore it
cannot be used in practice. Even though the extended version of the model can handle variable
discharge profiles, it is still not realistic, since only average discharge is taken into account and the
recovery effect is not modeled.

3.1.2 Kinetic Battery Model (KiBaM)

The Kinetic Battery Model (KiBaM) is the analytical model proposed by Manwell and McGowan [30,
31, 32].

Figure 3.1: The two-tank model of KiBaM [23]

Charge Model

According to this model, battery charge is distributed over two tanks, as shown in Figure 3.1. The
first tank is the available-charge tank and the second is the bound-charge tank. The available-
charge tank supplies electrons to the load, while the bound-charge tank supplies electrons to the
available-charge tank. The width of each tank is c and 1−c respectively. The electrons are supplied
with a rate that depends on the heights of the tanks and on a fixed parameter k. The change of
the charge in both tanks is defined as a set of differential equations:

dq1
dt

= −I − k(h1 − h2)

dq2
dt

= k(h1 − h2)

(3.3)
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where q1 is the available charge and q2 is the bound charge. The height in each tank is given by
the volume divided by the area, that is: 

h1 =
q1
c

h2 =
q2

1− c

(3.4)

The differential equations can be solved using the Laplace transforms. Apart from the charge in
the battery, KiBaM models the voltage during discharge. This model is described next.

Figure 3.2: Schematic representation of the voltage model [30]

Voltage Model

The KiBaM also models the voltage during discharge in which battery is described as a voltage
source in series with a resistance, as illustrated in Figure 3.2. The voltage is given by:

V = E − IR0 (3.5)

where I is the discharge current, R0 the internal resistance and E is the internal voltage which is
given by:

E = E0 +AX +
CX

D −X
(3.6)

where E0 is the internal voltage of the charged battery. The parameter A represents the initial
variation of the internal battery voltage with the state of charge, parameters C and D reflect the
decrease of voltage when he battery is progressively discharged and X is the normalized charge
removed from the battery. The aforementioned parameters can be obtained from discharge data.

Advantages The KiBaM model was developed to model lead-acid storage batteries. It has also
been used for modelling Ni-MH batteries. Moreover, the two-tank model is simple, accurate and
describes both the rate capacity and the recovery effect. Because of these properties, KiBaM is
widely used in battery simulations.

Disdvantages However, the equations of the model does not hold for the modern batteries
that are used in smartphone and tablet devices such as lithium-ion batteries which have a sloped
discharge profile.
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3.1.3 Rakhmatov and Vrudhula’s Diffusion Model

In their work [39], Rakhmatov and Vrudhula present an analytical model that describes the diffusion
process of the active material in the battery. In this model, the processes at both anode and cathode
are assumed identical , therefore only one of the electrodes is considered.

Model Description

According to the model, the diffusion is considered to be one-dimensional in a region of length w.
C(x, t) is the concentration of the active material at time t ∈ [0, L] and distance x ∈ [0, w] from the
electrode, where L is the time when the reaction can no longer take place at the electrode surface.
The battery lifetime can be determined by computing the specific time at which the concentration
C(0, t) drops below the cutoff threshold Ccuttoff . Concentration behaviour due to one-dimensional
diffusion is given by the Fick’s laws [4]:

−J(x, t) = D
∂C(x, t)

∂x

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2

(3.7)

where J(x, t) is the flux (diffusion speed) of the active material at time t and distance x and D
denotes the diffusion coefficient. Laplace transform can be used in order to obtain analytical solu-
tions from this set of differential equations. From these solutions the next equation can be derived
relating the battery lifetime L, the load and the battery parameters:

α =

∫ L

0

i(τ)√
L− τ

dτ + 2
∑∞

m=1

∫ L

0

i(τ)√
L− τ

e−
β2m2

L−t dτ (3.8)

where β =
2√
D

, α = vFA
√
πDC∗ρ(L), C∗ is the initial concentration and ρ(L) = 1− C(0, L)

C∗
.

The authors also define Equation (3.8) for the special case of constant load. In this case i(τ) = I
and the Peukert’s law applies. The constant I can be brought out of the integrals, yielding:

α = 2I{
√
L+ 2

∑∞

m=1
[
√
Le−

β2m2

L − βm
√
πΦ̄(

βm√
L

)]} (3.9)

where Φ̄(x) = 1− 2√
π

∫ x

0
e−y

2
dy, which is the complementary error function.

A good approximation for α is the first ten terms of the infinite series. Thus, a prediction of
the battery’s lifetime can be made given the discharge current. Before the proposed model can be
used, quantities α and β need to be estimated from experimental data.

Advantages The model of Rakhmatov and Vrudhula can be used to model lithium-ion batteries
and performs really well having very high accuracy, since it takes into consideration both the
rate-capacity and the recovery effects.

Disadvantages Although the model’s performance is high, the computational load makes the
on-line battery prediction highly time-consuming in practice. For simplicity, this model considers
both electrode reactions as identical, which is not true in reality.

3.2 Battery Stochastic Models

While in analytic modelling the battery properties are modelled using sets of equations, in stochastic
modelling the battery charging and discharging are described as stochastic processes. We will next
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describe some models of battery that fall into this category.

3.2.1 Chiasserini and Rao

Between 1999 and 2001 Chiasserini and Rao published a series of papers [7, 6, 9, 8] regarding
battery lifetime stochastic modeling using discrete-time Markov chains.

Figure 3.3: The basic Markov chain battery model by Chiasserini and Rao [7]

Basic Model

In their first work [7], they present a model of a lithium-ion battery of a mobile communication
device that transmits packets. The battery is described as a discrete-time Markov chain with N+1
states as shown in Figure 3.3. The number of states represents the number of charge units available,
while one charge unit corresponds to the energy needed to transmit one packet. According to this
basic model, each time slot either a charge unit is consumed with probability a1 = q or a charge
unit recovers with probability a0 = 1 − q. The battery is considered to be empty either when the
state 0 is reached or T charge units have been consumed, where T is equal to the capacity of the
battery.

Model Extensions

In the same work, they present an extension of this model where at each time slot more than a unit
can be consumed, modelling fluctuations in battery consumption. They also strengthened their
model by adding the property of non-zero probability of staying in the same state, modelling the
situation where neither consumption nor recovery takes place in a single time step.

In their following work on stochastic models [6, 9, 8], Chiasserini and Rao improve their model
even more in order to make it more realistic. In their extended model, the probability of recovery
becomes state dependent and phase dependent. More specifically, when less number of charge units
are available, the recover probability decreases, making the probability dependent on the state.
Moreover, they introduced the phase number f as a function of the charge units that has been con-
sumed. As the number of the consumed time units increases, f also increases causing the decrease
of the recovery probability making the probability phase dependent.
The extended model is illustrated in Figure 3.4. During idle periods, in state j the battery either
recovers one charge unit with probability pj(f) or stays in the same state with probability rj(f).
The recovery probability in state j and phase f is defined as:

pj(f) = q0e
−(N−j)gN−gC(f) (3.10)

where gN and gC(f) depend on the recovery capability of the battery. The probability to remain
in the same state of charge j while being in phase f is defined as:

rj(f) = q0 − pj(f) (3.11)
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Figure 3.4: The extended Markov chain battery model by Chiasserini and Rao [8]

It is important to mention at this point that different loads can be modelled by setting the transition
probabilities in an appropriate way, but it is impossible to model fixed load patterns and compute
their impact on the battery life, since the order of taken transitions is uncontrollable [23].

Advantages The model of Chiasserini and Rao were the first stochastic models regarding battery
lifetime. The results of their work show that the stochastic models give a good qualitative repre-
sentation of battery behaviour, modelling charging process, discharging process and the recovery
effect.

Disdvantages Although the model of Chiasserini and Rao has been proven to work theoretically,
it is not certain how well this model performs with real batteries, since there are no numerical data
proving high accuracy in battery lifetime and only relative numbers of lifetime are compared.
Moreover, the rate capacity effect is not modelled increasing the uncertainty of the model for real
battery data.

3.2.2 Fluid Queue Battery Model

A fluid queue is a mathematical model that is used to describe the level of fluid in a storage facility
subject to randomly determined periods of continuous filling and emptying. The model was first
introduced by Pat Moran in 1954 [35] and has many applications in computer networks modelling
the performance of routers [15], the IEEE 802.11 protocol [3] and P2P file sharing systems [14] to
mention some.

Recently it was proposed that fluid queue networks could be used to model the problem energy
producers face in routing and allocating energy produced from renewable sources. Understanding
the way these networks work will become very important as renewable power becomes a popular
source of generating capacity. [21].

Formal Definition

Formally, a fluid queue is a bivariate stochastic process (Jt, Xt) with an associated input rate vector
λ and service rate scalar µ. The process Jt is a Continuous Time Markov Chain on the state space
S = {1, 2, ..., n} usually referred to as background process, driving process or environment process
and r = λ− µ · 1 is an n-dimensional vector. Xt is a stochastic process such that at time t, when
Jt is in state i the evolution of the process satisfies:

dXt

dt
=

{
ri if Xt > 0

max(ri, 0) if Xt = 0
(3.12)

The output process of a fluid queue Yt is given by:
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Yt =

{
µ if Xt > 0

λi if Xt = 0
(3.13)

The process Xt is continuous and piecewise linear with the rate determined by the process Jt. The
time period when the fluid queue has a positive fluid level is referred to as busy period. This is the
time period starting when fluid initially enters the queue ending when the queue is empty again.

Figure 3.5: Sample trace from a fluid queue [20]

Fluid queues modelling battery lifetime

Recently fluid queues were used to model battery life of modern electronic devices [22]. More
specifically it was shown using the fluid queuing mathematical model that a power-save mode
activated when battery level falls a specific threshold level V (ie 20%) can significantly improve
the battery life. Battery was modelled as a reservoir having infinity capacity of B and the flow
of charge as an incompressible fluid, meaning that battery charging can be thought as adding
fluid to the reservoir. The charge level in the battery was modelled subject to random charging
and discharging periods one following consecutively the other. An example of this approach is
illustrated in Figure 3.5. The figure shows a sample trace from a fluid queue model with just two
states {charging, discharging}. The grey background represent the time in charging periods
while the white background areas represent periods when the battery was discharging.

Advantages The fluid queue modelling of battery is a new novel idea that has introduced a new
field of study. The theoretical results seem to be very promising showing that this model can be
used to optimize some power requirement of battery usage. This theoretical model is suitable for
off-line data analysis and it can be used for prediction of battery lifetime.

Disadvantages The model has high computation load and may not be suitable for on-line anal-
ysis of data, especially when the state space becomes very big and new parameters are introduced
to the model. Although the model has been proven to work in theory there is no evaluation yet
using real battery data in the literature.

3.2.3 Others

There are also other stochastic models that describe the battery properties such as the Stochastic
version of KiBaM [40]. However, that system cannot model Lithium-ion batteries like its predecessor
and is beyond the scope of this thesis.

3.3 Power Model Generation

The analytical and stochastic models that were previously discussed have limitations that make
them unusable in practice for on-line adaptive battery life predictions in mobile and embedded
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systems. Most of them require a big number of parameters as their input and the computational
cost of the calculations of these models is very high, especially for the analytical simulation models.

Another approach for estimating battery dissipation is to generate a power model of the device and
predict the battery lifetime based on this. Researchers have successfully generated such models for
smartphones correlating the battery consumption with the hardware components of the devices.
Some models require external equipment for power measurements, while others make predictions
based on benchmarks of each hardware element of the device. Some recent studies in this field are
presented next.

3.3.1 Application-level Prediction of Battery Dissipation

Krintz, Wen and Wolski in their work [27] present a system that predicts the power consumption
of an arbitrary application based on application-level measurements of battery drain for a set of
benchmarks running on the entire device, obviating the need for benchmarks running for isolated
hardware components that other approaches are focused on.

System Overview

This system observes the dissipation characteristics of an application according to a black-box ap-
proach where the drain battery behaviour is being profiled for a set of power benchmarks that each
executes one type of instruction. The authors define four categories of instruction types: integer
register operations, integer stores and loads, floating point register operations and floating point
stores and loads.

In order to make a prediction, the system construct a set of dissipation curves from the benchmark
profiles and determine the battery dissipation rate associated with a specific instruction type. A
comparison of these rates is illustrated in Figure 3.6. The dissipation curves change over time,
so the specific instruction’s impact on the battery lifetime will change following the same pattern.
Therefore, a battery dissipation curve can be constructed for the target random application. The
rate of drain of the application is computed directly from the rate of dissipation of the benchmarks
associated to the specific instructions of the application, observed by execution statistics.

Figure 3.6: Comparison of battery drain rates for all benchmarks [27]

Advantages The power model of Krintz, Wen and Wolski uses benchmarks associated with
specific instruction types running on the entire device and not to each hardware component and is
capable of implementation as part of a dynamic compiler that can predict the battery consumption
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of a program. This technique may also have many other applications such as in voltage scaling,
dynamic code generation, quality-of-service etc.

Disadvantages However, the benchmarks used in this approach consume a lot of energy them-
selves, especially when the frequency of execution is high. Reducing the frequency of sampling may
result into low accuracy of the system. Moreover, this power model considers only CPU related
power consumption and does not take into consideration wireless communications, file input/out-
put and display, which are highly used in portable devices. Thus, since their impact to battery
lifetime is not taken into account, the model is oversimplified for real devices.

3.3.2 PowerBooter and PowerTutor

Zhang et al. in [45] present PowerBooter, an automated power model generation method which
uses the battery voltage sensors of Android smartphone devices and knowledge of battery discharge
behaviour to monitor power consumption and PowerTutor, a power management tool that uses the
model generated by PowerBooter in order to make accurate on-line power estimations.

Figure 3.7: Wi-Fi interface power states according to PowerBooter [45]

PowerBooter

PowerBooter produces models that take into account power consumption in power-intensive com-
ponents such as CPU, GPS, LCD, audio as well as Wi-Fi and cellular communication components.
The proposed models are based on the influence of the power management and states of hardware
modules on the system’s overall power consumption. The states of Wi-Fi interface according to
PowerBooter are illustrated in Figure 3.7. Hardware units are associated with system variables and
coefficients that are used in power estimation of each unit.

Figure 3.8: Power model construction [45]

The modelling process is illustrated in Figure 3.8 and consists of three steps:
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1. Computation the battery discharge curve for each hardware component individually, where the
battery starts in a fully charged state.

2. Computation of the battery consumption for each component’s state. In this step the state
of an individual hardware component is varied while others are working on low-power states.
For the computation of power consumption, the battery voltage is logged at the beginning
and at the end of the power discharge time interval and the device is placed in a low-power
state immediately before any voltage recording in order to eliminate the impact of the voltage
decrease across the battery’s internal resistance.

3. Regression to derive the power model. After the collecting the data, they are used in order to
compute the average power consumption within the fixed time intervals. Then, multi variable
regression is used to construct the power model.

P0

P1

...

Pn

 = βi ·


U01

U11

...

Un1

+ · · ·+ βm ·


U0m

U1m

...

Unm

+ c (3.14)

where Uij denotes system variable i in the jth state, Pj is the power consumption when
all system variables are in the jth state and constant c is the minimum system power con-
sumption. The inputs for regression are the systems variables and the outputs are the power
coefficients βi.

PowerTutor

PowerTutor[37] is an on-line power estimator based on PowerBooter implemented for Android plat-
form devices. This application provides real-time power estimates for hardware components such
as CPU, LCD display, GPS, Wi-Fi and cellular interfaces. PowerTutor can be used by developers
in order to identify inefficient behaviour caused by inappropriate use of hardware components as
well as smartphone users in order to determine power hungry applications, a process that may help
them decide which of them to use or buy.

PowerTutor has been released in the Android market in 2009 and has been downloaded by more
than 100,000 users, while in 2011 the source code of the project has been released.

Advantages The power model generator takes consideration almost all hardware components of
smartphone devices making accurate estimations. The high accuracy of this approach is shown in
the evaluation of the work using real Android devices. Moreover, built-in sensors are used for the
voltage data logging and there is no need for external measurement equipment.

Disadvantages However, an off-line computation of all voltage curves regarding each hardware
component is required before any power estimation and users have to choose a trade-off between
model construction time and estimation accuracy.

3.3.3 Others

Another work that is relevant to this field is DevScope [24]. DevScope is a automatic power
analysis tool very similar to PowerBooter that generates accurate power models and overcomes
several limitations of on-line power modeling with a built-in Battery Monitoring Unit. Another
power model was presented in [10], which focuses on energy consumption of mobile devices running
an older Operating System called Palm OS.
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3.4 Context-aware power management

A recent definition of context-awareness is the one of Dey and Abowd [1] who defined it as ”any
information that can be used to characterise the situation of an entity, where an entity can be a
person, place, or physical or computational object”. They went on to define context-aware comput-
ing as ”the use of context to provide task-relevant information and/or services to a user, wherever
they may be”. The concept of context-aware power management has already been proposed and
used in relation to assisted living and residential monitoring [44]. Recently, the same approach was
adopted to the field of battery management in the system CABMAN that will be described next.

3.4.1 Context-aware Battery Management for Mobile Phones (CABMAN)

System Overview

CABMAN is a system created to warn the user after detecting that the phone battery could run
out before the next charging opportunity is encountered [41]. The substantial algorithms of this
system predict the estimated upcoming charging opportunity availability, the total duration of
call-time required by the user in the interim, and the lifetime of the battery given that the current
set of applications would continue to execute. Several algorithms where proposed to process users
location traces and call-logs in order to make the foreseen predictions. CABMAN consists of three
key components: Firstly, the use of context information such as location to predict the next charging
opportunity, secondly more accurate battery life prediction based on a discharge speedup factor
and thirdly the notion of crucial applications, such as telephony.

Figure 3.9: CABMAN system architecture [41]

System Design

The main architecture of the system is illustrated in Figure 3.9, where we can see a multi-layered
design consisting of several modules in each layer. The most vital components of the system are
the Charging Opportunity Predictor, the Call Time Predictor and the Battery Lifetime Predictor
which will be discussed next.

Charging Opportunity Predictor This predictor is based on location sensing as a way of
finding the next charging opportunity. It uses the ID of the cell that a phone is connected to, by
marking a subset of them as opportunities of charging (ie those at home or work) and estimate
the time needed for the user to reach them. The time prediction is based on pattern-matching the
current trace of cell movement against a dataset of past movement traces.
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Call Time Predictor Assuming that telephony is the most crucial application of mobile phones,
this module predicts the call time needs of the phone’s user. The prediction is made in a dynamic
manner by using past telephony behavior of the user in order ot find the average amount of minutes
that the user needs regarding giving or receiving calls during each hour of the day. This is used as
an upper bound on the call time that is required in a specific time interval.

Battery Lifetime Predictor In order to make an estimation on the battery lifetime, this mod-
ule uses a the battery’s discharge curve when the device is in idle mode called the base curve.
The predictor compares the discharge when the phone is used regularly with many applications
running, against the base curve. It is important to mention here that this procedure requires an
off-line computation of the base curve before making any prediction. After computing the base
curve, the predictor measures the battery capacity c1 and c2 at times t1 and t2 when the device
is used regularly. Then, it finds the time instances t3 and t4 which correspond to c1 and c2 in the
base curve and compute the discharge speedup factor defined as:

t4 − t3
t2 − t1

(3.15)

Then the lifetime of the battery in the base curve is divided by the discharge speedup factor to
obtain an estimation on the remaining lifetime of the battery.

Advantages CABMAN is a sophisticated system that uses context information in order to predict
the next charging opportunity as well as the remaining lifetime of the battery. According to the
evaluation of the system using traces of real users and against experiments on real devices, the
battery lifetime prediction algorithm that is used is very accurate for PDAs and laptops running
several applications, having average errors of between 4 and 12 minutes depending on the device
used .

Disadvantages It should be pointed out that charging-opportunity predictor and call-time pre-
dictor perform reasonably well for an average user whose life entropy is not very high, implying
that additional context information would be needed in order to improve the accuracy of these
prediction algorithms for users with different lifestyles. In addition, the majority of users nowa-
days, charge their phones in their cars while driving. For such users, it is not always possible to
associate charging with location. The Charging Opportunity Predictor would have to associate
charging with the users presence in the car, and should be able to predict when the user will be in
the car next. This would also require additional context information to be logged.

3.5 Analysis of battery usage patterns in smartphones

The initiative for energy efficient design in smartphone devices was enhanced as a result of human-
battery interaction (HBI) observations, a reciprocal process which includes the users’ reaction to
limited battery lifetime through information received by indicators for charge levels and battery
interfaces [38]. Other studies, such as [13] focus on user interaction with the device and the applica-
tions installed and users’ behavior regarding the usage of battery hungry smartphone features such
as Wi-Fi, 3G and GPS. According to these observations, users should be provided with options on
how to better manage the remaining battery, and, to some extent, automated power features can
also help them use the device as intended. A new research field based on this concept focuses on
battery lifetime prediction models which depend on usage patterns through definition of several
mobile states, according to the device’s functions. Some recent and very interesting approaches are
discussed next.
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3.5.1 Kang, Seo and Hong’s Personalized Battery Lifetime Prediction

Kang, Seo and Hong have recently presented a personalized battery prediction model for mobile
devices based on usage patterns in [25] and their data analysis using this model in [26] . In their
work, they define a model of a mobile device having several states that affect battery consumption
and make an on-line estimation of the remaining battery lifetime based on the usage time and
battery’s dissipation over these states.

Figure 3.10: Architecture of the personalized prediction system of Kang, Seo and Hong [25]

System Design

Figure 3.10 illustrates the architecture of the system. The State Detector discovers the operational
state of the mobile device by collecting data regarding the call status, the Wi-Fi and 3G status
and the screen status from the operation system of the device. The information of the detector
then passes to the Data Manager unit which stores battery related data and usage duration time
in each state. The Battery Consumption Calculator computes the average battery consumption
and the use time rate for each state based on the real-time data of the Data Manager. Then, the
Usage Pattern Analyzer determines a usage pattern distribution representing the time spent in
each state of the device. Finally, the Lifetime Predictor predicts the remaining battery life, based
on the average battery consumption rate and the usage pattern.

Subsystem S0 S1 S2 S3 S4 S5 S6 S7

LCD ON ON ON ON OFF OFF OFF OFF

VOICE ON ON OFF OFF ON ON OFF OFF

DATA ON OFF ON OFF ON OFF ON OFF

Table 3.1: Possible states of a mobile device according to Kang, Seo and Hong

Prediction Model

The model defines a mobile device having n possible states. Conceptually, each state of the device
is constructed as the set of the subsystems of the device described by binary variables according
to whether they are activated or not. All possible states of a mobile device using the subsystems
LCD, VOICE and DATA is shown in Table 3.1. According to the model, the average battery
consumption in each state is defined as a vector:

B = (B1, . . . , Bn) (3.16)

where Bi is the average battery consumption rate in state i. The usage pattern is also defined as
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a vector:

p = (p1, . . . , pn) (3.17)

where pi is the use time rate in state i, which satisfies the equation:∑n

i=1
pi = 1 (3.18)

The remaining battery lifetime is predicted using the following equation:

T =
V∑n

i=1
piBi

(3.19)

where T is the estimated value of the battery lifetime and V is the total battery capacity. Since
each user has a different vector p according to his usage characteristics, each user’s battery has a
different remaining lifetime. The model can be also used to determine variable life patterns, such as
usage during weekdays and weekend etc. This can be achieved by dividing each week into several
modes based on these variable patterns and predict the lifetime using the pattern vector p of the
specific mode.

Advantages This model predicts battery lifetime on an individual basis, since it takes into
account personal usage characteristics that previous prediction models which use a static battery
consumption rate do not consider. Moreover, this model is capable of real-time prediction since it
does not require high computational time for making the battery’s lifetime estimations.

Disadvantages However, the authors present only statistics regarding the usage patterns of
real smartphone users and a case study demonstrating the usage of the model. Although this
analysis is interesting in a conceptual manner, there is no evaluation regarding the accuracy of the
prediction model or any comparison to other modeling approaches making the its real performance
questionable.

3.5.2 Others

Falaki et al. in their work [13] have done a wide survey regarding smartphone usage characterizing
user interactions and their impact on the device’s battery. They show by analysing traces from users
of Android and Windows Mobile smartphone platforms that although the variance in energy usage
is high even for the same user, there are patterns in the user’s behavior that can be considered for
accurate estimations. The large scale work of Oliver and Keshav in [36] complements the study of
Falaki et al. evaluating a huge dataset of Blackberry related data. In the same work they present the
Energy Evaluation Toolkit (EET) which is a tool that gives developers the opportunity to evaluate
their applications in terms of battery consumption and the Energy Management Oracle (EMO)
which is a framework designed to provide hints regarding battery consumption to applications in
runtime.

3.6 Summary

In this chapter we presented various studies relevant to our project, pinpointing their advantages
and disadvantages. Firstly we discussed about analytical battery models which model the be-
haviour of the battery using sets of complex equations. Another category discussed here is the
stochastic models which describe the battery’s charging and discharging behaviour as stochastic
processes. We also described how power modelling tools generate battery models according to
hardware benchmarks and how context-aware power management systems use context information
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in order to make predictions. In the last part of this chapter we focused on studies covering battery
models that are based on usage patterns.

In the next chapter we present our prediction model which is capable of making battery life-
time estimations based on usage patterns. We also present Open Battery tool, an Android-based
application that logs battery and system related data and provides statistics of battery usage.
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Chapter 4

Open Battery: a battery data analysis
software tool

In this chapter we present our prediction model, which makes battery lifetime estimations based
on usage characteristics using an instance-based learning engine. We also present the design and
implementation of Open Battery, a battery data analysis application for Android-based devices
which provides battery and system diagnostics, as well as battery lifetime estimations using the
aforementioned prediction model.

4.1 Battery lifetime prediction model based on usage patterns

Most of the battery dissipation prediction models and systems presented in Chapter 3 are either
not capable of on-line analysis in lightweight devices such as smartphones and tablets due to their
heavy computation overhead or they need specific battery and hardware related data that are not
always applicable in order to work properly and give accurate results. In this section we present
our prediction model which is based on usage pattern recognition and aims to tackle the problems
that previously mentioned models have.

4.1.1 Exploiting usage characteristics for battery lifetime prediction

In Chapter 3 we presented various studies regarding battery lifetime prediction from different re-
search perspectives. Some of the models presented the are highly used in practice, while others are
more theoretical. However, the adaptation of most of these models in portable devices for on-line
analysis of data and battery lifetime prediction is not always applicable.

Analytical and stochastic models are designed for off-line analysis and need a lot of time-consuming
complex calculations in order to predict the battery dissipation. The heavy workload of these mod-
els make their adaptation to lightweight portable devices impractical. Moreover, they use several
parameters taken from the battery’s specifications as input which can only be provided hard-coded.
On the contrary, the context-aware power management systems do not involve complex equation
solving but the data they use include sensitive information, such as GPS location. However, there
are some major privacy concerns regarding the use of such sensitive data, making the practical use
of these systems questionable. The power model generation tools use the hardware specifications
of specific devices for modelling and some of them use external equipment for measurements that
cannot be taken directly from the OS of the device. Taking into consideration the diversity of An-
droid devices nowadays, we can clearly see that these models cannot work equivalently in all devices.

There are many studies presented in Chapter 3 that tried to identify high-level characteristics
of smartphone usage. The main idea behind these approaches is that users tend to have recurrent
behaviour on how they use their devices. Users usually use Wi-Fi connectivity while they are at
home and 3G while they are away. Moreover, many users do not use their phones at early hours
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in the weekdays since they are at school or university if they are young or are at work if they are
older. Others have their phone charging at night when the phone is in idle mode and check their
emails and social messages every morning and every night before sleeping.

These characteristics indicate different device usage and different battery consumption in each
case. In our approach we try to model and recognise these patterns dynamically as new data are
becoming available and predict the future lifetime based on them.

4.1.2 Model overview

According to a very interesting and recent survey presented in [11], the future direction of power
management in Android-based devices is applications that use a learning engine for prediction in-
stead of statically defined profiles. Our model follow this trend and uses an instance-based learning
engine in order to predict the future battery lifetime based on usage patterns. A general picture of
our model is illustrated in Figure 4.1.

Figure 4.1: Prediction model using a learning engine based on usage patterns

The model uses periodically logged battery and context related information that is considered
as the input of the instance-based learning engine. The term context information refers to infor-
mation regarding power hungry subsystems of the device, such as CPU usage, display, Wi-Fi and
cellular connectivity. The learning engine is capable of recognizing patterns relevant to the device
usage which are used to make an estimation of the future battery lifetime.

4.1.3 Preliminaries

In this section we present the basic blocks of our prediction engine. Before discussing the details
of the algorithm, it would be very useful to make a short introduction to these fundamental blocks
in order to have a better understanding on how the proposed method works.

Subsystem state

In our work, we consider several power consuming subsystems that a portable device may have,
including CPU, OLED display screen, Wi-Fi and cellular 3G interfaces and GPS. According to
our model, each subsystem is modelled as a binary variable according to its current usage state
(ON/OFF). We list the subsystems that we take into consideration in Table 4.1. While we use
these specific subsystems, it is very simple to add to the model other types such as telephony,
audio, video, Bluetooth and many others. We chose this set of subsystems because they are the
most power consuming features of a modern portable device.
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Subsystem ON state OFF state Description

CPU 1 0 CPU is considered to be in ON state if its usage level
(%) is above the global average of CPU measurements.
Otherwise is considered to be in OFF state.

Display 1 0 The display is considered to be in ON state if the
screen is active. Otherwise it is considered to be in
OFF state.

Wifi 1 0 Wifi is considered to be in ON state if the user uses
a Wifi connection. Otherwise it is considered to be in
OFF state.

3G 1 0 3G is considered to be in ON state if the user uses
a 3G cellular connection. Otherwise it is considered
to be in OFF state. If the device do not support 3G
connectivity, the default state is the OFF state.

GPS 1 0 GPS is considered to be in ON state if the user uses the
GPS. Otherwise it is considered to be in OFF state.

Table 4.1: Different subsystems and their states according to Open Battery prediction model

Device state (Context Information)

The device state is the context information of our model. The device is modelled as an entity that
consists of its subsystems. More formally, we define the device state as a vector d of size n that
consists of the current states si of its n subsystems:

d = (s1, s2, ..., sn) (4.1)

Figure 4.2 illustrates an example of the device state notation. Vector (1,0,1,0,1) denotes a device
which has CPU usage above the global average, its display screen is not active, has connected to
Wi-Fi, is not connected to 3G network and has its GPS system activated.

Figure 4.2: An example of a device state in Open Battery prediction model

Battery state (Battery Information)

The battery state consists of information related to the battery a specific moment. This includes
the battery capacity and the current status of the battery. Formally, the battery state is modelled
as a tuple:

b = (c, σ) (4.2)
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where c ∈ Z is the battery capacity measured in % and σ ∈{charging, discharging} is the status
of the battery. For example, vector (34, charging ) represents a battery that has capacity 34%
and it is charging.

Measurement

A measurement is an entity that consists of the appropriate battery and context information needed
for our model concatenated with the timestamp when it was taken. A measurement is a vector
defined as:

m = (t)‖b‖d (4.3)

where t ∈ Z is the timestamp of the measurement. The measurements are taken and logged
periodically in a constant rate (ie. every 1 minute) and saved in files and in database storage. The
measurement vector (251668, 34, charging, 1, 0, 1, 0, 1) denotes a measurement with timestamp
251668, that has been taken from a device with a battery that has capacity 34% currently charging
and has CPU usage above the global average, its display screen is not active, has connected to
Wi-Fi, is not connected to 3G network and has its GPS system activated.

Usage Pattern

The model was designed to recognise device usage patterns and predict the battery lifetime ac-
cording to them. The usage patters in our case are consecutive series of device states taken from
logged measurements. A usage pattern of size n containing device states measured in a fixed rate
is defined as a n-tuple:

p = (d1, d2, ..., dn) (4.4)

For instance, the pattern p1 = ((10001), (10001), (10001), (11001)) measured in 1 minute intervals
denotes the behaviour of a person who uses his device in high CPU power and has the GPS system
activated for three consecutive minutes and then suddenly activates the display of his device.

4.1.4 Training process

Our model use an instance-based learning engine. The training algorithm is a typical instanced-
based algorithm where new instances are simply stored in the memory. In our case the instances
are fixed size usage patterns and our target function maps them to the consumption rate of the
usage patterns that follow them.

Data preprocessing

The data stored as a huge list of measurements are not in a form that can be easily handled by our
model. The construction of two data structures is essential for improving the performance of both
training and prediction processes.

Construction of the State consumption/recovery rate tables Before making our predic-
tion, we need to easily access the average consumption and recovery rate at each device state. The
consumption rate is the percentage of battery capacity that is depleted during discharging periods
while the recovery rate is defined as the percentage of battery capacity replenished when plugged
in a power source. From our observations on our data we can clearly see that the rates are different
between charging and discharging periods. One easily can tell that the charging process is faster
than the discharging. Treating them equally will make the model not realistic. Therefore, we need
two tables, one for discharging and one for charging called State consumption rate table and State
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recovery rate table respectively. Next we discuss the construction of the former but the process is
almost the same in both cases.

Firstly, we collect all measurements that have σ = discharging. Then, we iterate the collected
measurements from the oldest to the newest looking for identical consecutive device states. As-
suming that we started iterating at timestamp t = t1 having battery capacity c = c1 and observed
the same device state d until t = t2 where c = c2, we can compute the consumption rate r1 as:

r =
|c2 − c1|
t2 − t1

(4.5)

Then, the device state d is mapped with the consumption rate r. We continue this process until
we run out of data. If a specific device state is mapped with more than one rate, then the final
rate of the device state is computed as the average of its mapped rates.

Figure 4.3: The construction of the state consumption table

An example is illustrated in Figure 4.3. We can see some fictional time series of battery level
over time. The periods highlighted are the discharging periods. Suppose the blue colour is chosen
for device state d1 =(0,0,0,0,1) and red colour for device state d2 =(0,1,0,0,1). In the first charging
period the rate r1 is mapped to d1, while r2 is mapped to d2. In the next charging period we
compute r3 and map it to d1. In the end we take the averages and the final table is shown in the
bottom of the figure.

Construction of the Pattern table The next data structure that is needed for battery lifetime
estimation is the pool that will hold the usage patterns of our model. The Pattern table is designed
to be the mapping of all fixed sized usage patterns of size pSize seen so far to the average energy
consumption of the usage pattern of size fSize following them. There is no obligation for the
following pattern to have the same size as their predecessors. In order to distinguish the sizes we
use the parameters pSize and fSize respectively. Formally:
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(di, di+1, ..., di+pSize)→

∑fSize

j=1
cons(di+pSize+j)

fSize
(4.6)

where, cons(d) is a function that returns the consumption rate of device state d from the state
consumption table.

Figure 4.4 depicts how the pattern table can be popularised from a sequence of device states
using parameters pSize=3 and fSize=2. The sequential series of device states d1, d2, d3 of size 3
are translated into a usage pattern p1 which is mapped with the average consumption rate of the
device states d4, d5 (which actually form the following usage pattern of size 2). Next, we continue
the same process for the sequential series of device states d2, d3, d4 acting like a sliding window
until we reach the end of our device state series.

Figure 4.4: The construction of the pattern table with parameters pSize=3 and fSize=2

4.1.5 Prediction algorithm

Since we have covered the basic blocks and the training process of our model, we can now present
our prediction algorithm. The estimation is based on the distance-weighted variant of the k-NN
algorithm that was discussed in detail in Chapter 2. Firstly, we compute the most recent usage
pattern of size pSize from our device state sequence taken from our measurements. Having a device
state sequence (d1, d2, ..., dn) the most recent usage pattern is defined as:

precent = (dn−pSize, ..., dn−2, dn−1, dn) (4.7)

This is the pattern that we feed into the k-NN algorithm as an input. The algorithm will return
the k most similar patterns from the pattern table according to a similarity measure. Since our
patterns are represented as binary data, the most suitable distance metric for our case is the Ham-
ming distance which overcomes the others in terms of performance in binary data. As mentioned
earlier the time efficient ⊕ bitwise operation between two binary vectors gives the Hamming dis-
tance. After obtaining the k most similar patterns we compute the consumption rate estimation as:

r̂ =

∑k

i=1
wif(pi)∑k

i=1
wi

(4.8)

where f(p) is our target function that returns the rate of the usage pattern following p from the
pattern table and the weight is defined as:

wi =
1

d(xi, xq)2
(4.9)

Since we computed the consumption rate estimation, the remaining lifetime of the battery can be
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computed as:

λ̂ =

{
(Cmax − c)/r̂ if σ = charging

c/r̂ if σ = discharging
(4.10)

where λ̂ is the estimation of the remaining battery lifetime, r̂ is our consumtpion rate estimation,
Cmax is the maximum capacity of the battery, c is the current capacity of the battery and σ its
current status.

4.2 Software Architecture of Open Battery

In this section we present the overview of Open Battery software tool. We discuss some details
about the previous version of the software as well as its limitations and present the features that
the new version was designed to have. Next, we present the architecture of the system focusing on
the Android application client that was the essential part of this project.

4.2.1 The original version of Open Battery

This project is based on the software tool Open Battery which is a prior work of Gareth L. Jones,
who is a PhD student in the AESOP research group at Imperial College London. Open Bat-
tery was released in the Google Play appstore in July 2012 and its source code is available at
https://code.google.com/p/openbattery/.

Overview

The original version of the tool was developed for Android-based portable devices, while its primary
aim was to collect battery related data for academic purposes and provide some statistics that can
be viewed online at http://www.openbattery.com/data-analysis.php. The mobile client was
designed to listen for changes in the battery state and log information about the state each time
there is an alteration in the battery. The logged data are sent to a web server while the device is
charging for further statistic analysis. Technical details of the original version of Open Battery are
presented in Appendix A.

Limitations

Although the original version of Open Battery is functional, it has some essential limitations. The
GUI of the application is minimal consisting of only two screens. Since the analysis of the data are
only available on-line, redirecting to a web page in order to view the device’s statistics was a rather
bad design option, since certain charts cannot be viewed in the web browser, possibly because of
the lack of support of Adobe Flash tool in recent Android distributions (version 4.1+).

Another limitation of the system is that the computation and the visualization of the statistics
were designed to be responsibilities of the web server. As a result, statistic analysis is not appli-
cable without an active internet connection, leading to poor user experience. Data caching is not
available for off-line processing, making the on-line web page redirection the only solution.

The logged data are stored in large Comma-Saparated Values (CSV) files in the local storage
of the device. Opening a raw CSV file requires a Text Viewer built-in application of Android OS.
Taking into account the frequency of the periodic data measurements, we can easily assume that
the CSV files can be huge, thus very demanding in memory. Loading the entire CVS file into the
Text Viewer may be a very slow procedure regarding the number of records that this file contains
and may cause fatal memory errors.
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Last but not least, the application does not support any languages other than English, which
is a big disadvantage for an application distributed worldwide by the Google Play appstore.

4.2.2 Goals and requirements

The new Open Battery is designed to achieve specific goals and tackle the problems that the
previous version had, providing new features, rich user experience and valuable feedback to the
user regarding power management. Briefly, the new version of Open Battery is designed to:

1. have a creative and effective GUI that take advantage of the graphic features that Android
OS provides.

2. log periodically battery and context related information and store the data in local CSV files.

3. send the logs to the Open Battery web server for academic purposes.

4. provide a cache model using a local database storage for off-line analysis on the data.

5. use a prediction model in order to make battery lifetime estimations.

6. grant battery and hardware related feedback to the user, including interesting graphs and
analytics regarding device usage and battery consumption.

7. have a built-in viewer for visualization of the recent historical data.

8. provide options for customizing the application according to the users’ needs.

Except from the goals that the application have to achieve, it also have to fulfill some technical
requirements. According to these requirements, Open Battery should:

1. make use of the Android OS resource management mechanism in order to provide multi-
language support.

2. be extensible and capable of hosting different types of prediction algorithms in the future.

3. not consume inconsiderately hardware resources such as memory, CPU and battery.

4. be able to work properly to as much Android-based devices as possible.

4.2.3 Open Battery architecture and design

In this section we give a detailed description of the architecture of the Open Battery system as well
as the high level design of the new version of the Android application, discussing the reasons that
made us follow these specific software design paradigms.

System architecture

The entire software system follows a Three-Tier architecture where lightweight Android collect
periodically battery data and make requests to the business logic server. The business logic server
sends requests to the database server in order to save the data. The architecture is shown in
Figure 4.5. In this architecture, application behaviour is implemented as stored procedures running
in the database. It is very important that the system can scale up the each tier as required
without affecting the other. For example, adding more smartphone and tablet clients, buying a
bigger database server or even clustering the database can be accomplished independently without
affecting the robustness of the system.
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Figure 4.5: The Three-Tier software architecture of Open Battery

Android client design

The Android client application follows the Model-View-Controller (MVC) design paradigm, firstly
introduced by Trygve Reenskaug [42]. This architectural pattern organises a graphical application
into three types of objects:

1. Model The model implements the application’s logical behaviour.

2. View The view renders the current state of one or more model objects to the user.

3. Controller The controller translates input events into model commands in order to change
its state.

The MVC architecture is clearly shown in Figure 4.6. This separation of responsibilities allows
flexibility in large projects, as well as better and easier code maintenance. Each component is
unaffected by the others, thus any future changes in specific components of the application can
be applied without ruining the entire codebase. Since we wanted the code to be extensible and
maintainable, MVC was definitely a suitable design pattern for our application.

Figure 4.6: The Model-View-Controller software paradigm

In the Open Battery, the view component consists of the GUI of the application. Android OS pro-
vides a structured hierarchy of views, making the construction of these modules a simple process.
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The model consists of the application data, which are the logged battery measurements, whereas
the controller consists of all necessary modules responsible for mediating input and converting it
to commands for the model or view. The design of the new Open Battery Android application is
illustrated in Figure 4.7

Figure 4.7: The design of Open Battery Android application

Each component shown in the figure has a specific role in the design, but interaction with the
others is essential for providing the required functionality. Next we present each of these compo-
nents along with a short description of its role:

Android Application GUI The GUI is the visual part of the application and is considered as
the view entity of the MVC design. It is the only part of the application that the user interacts with
and consists of all the screens of the application as well as its widgets, icons, charts and animations.

Data Access Object Factory This component is the model entity of our implementation of
MVC paradigm. For the efficient management of our persistent data we used the Data Access
Object (DAO) software pattern. According to DAO, the type of data access that application needs
is separated from how these requirements are fulfilled in terms of implementation. In other words,
DAOs provide some specific data operations without exposing details of the underlying storage
system. Using the same interface defining read/write operations, we were able to manage different
types of storage systems, such as:

1. a local SQLite database for data analysis without internet connection.

2. a set of flat CSV files for compatibility with the original Open Battery and data analysis in
non-application context.

Application Info Controller This component is part of the controller entity of MVC design,
like all the other controller components that will be presented from now on. Application Info
controller is responsible for listing all processes running in of the device and sorting them according
to their CPU usage. Since the gathered information is not needed for further analysis it is not
saved in storage but provided directly to the GUI of the application for display purposes.
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Battery Info Controller This controller is responsible for retrieving battery related details from
the Android OS, such as the state of the battery, its level, its voltage, its temperature, its type,
and many others. These technical details are essential for the prediction model of Open Battery,
since they are part of the measurements used as training data of its learning engine.

System Info Controller This controller is responsible for retrieving system related details from
the Android OS, including the device name, its model, its unique device ID, its CPU usage level,
its screen state, its Wi-Fi interface state, its 3G interface state, its GPS state and many others.
Part of these data are also used in the prediction model of Open Battery as the context part of the
measurements forming the training data of its learning engine.

Battery Logging Service This service is also part of the controller entity of the application and
has the responsibility of gathering the measurements of the prediction model. This service starts
automatically when the device boots and takes measurements in a constant rate defined by the
user. It uses the Battery Info Controller and the System Info Controller units in order to retrieve
the appropriate data. Each time a measurement is taken, the service feeds the data to the DAO
Factory which is responsible for data management and storage.

Chart Controller The Chart Controller is responsible for retrieving the appropriate data from
the DAO Factory needed for displaying time series charts in the application. These include the
time series of the battery level, battery temperature, battery voltage, CPU usage and others.

Statistics Controller This controller is responsible for making a statistic analysis of the data.
It retrieves the logged measurements from the DAO Factory component and make an analysis on
them. The statistics include the proportion of time that the device spend charging/discharging,
the proportion of time that the device is charged by AC or USB and the frequencies of battery
level at start of charging periods during the day. The results of the analysis are provided to the
GUI of the application which is responsible for visualising the findings in the form of charts.

Battery Life Prediction Controller This controller encapsulates the functionality of the bat-
tery lifetime predictor of the system. It uses the monitored data provided by the DAO Factory and
makes an estimation of the battery lifetime. The mathematical model behind the predictor was
presented in detail in the previous chapter.

4.3 Implementation Details

In this section we discuss implementation details of the Open battery application. In the previous
section we focused on the top-level architecture of the application hiding any technical details
regarding each software component presented there. In this section we focus on technical details
of the basic Android application components of Open Battery and our prediction model. We also
discuss about our persistent data storage implementation and the mechanisms we used in order to
make our tool extensible and maintainable. Everything presented here can be considered as a low-
level layer of the design presented in the previous chapter. Software diagnostics of the application
are presented in Appendix C.

4.3.1 Basic Android application components of Open Battery

We start our discussion by giving a detailed presentation of the most important basic application
components of Open Battery. These components include the application’s activities, widgets,
services and broadcast receivers. General topics regarding these components and their role in
Android application development were discussed in Chapter 2.
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Activities

Here we present the set of activities that our application has. The activities are the GUI com-
ponents of the Open Battery providing the human-computer interaction. Designing the graphical
user interface in portable devices and especially smartphones, should not be considered as a trivial
part of application development, since a well-developed application is written to work equivalently
in different display screen types and sizes. In the development stage of this project we focused on
designing the GUI to be user friendly and easy to navigate by benefiting of all the GUI capabilities
of the Android OS. A transition graph showing the sequence of the activities in our implementation
is illustrated in Figure 4.8, while the visuals of the tool are shown in Appendix B. We continue by
analysing each activity individually.

Figure 4.8: The activity sequence of Open Battery

Splash Screen Activity The first activity represents a simple splash screen. This is the first
screen launched when the application starts. The screen shows the logo of Open Battery and is
displayed for 4 seconds before the Home Screen Activity launches. However, it does not provide
any further functionality and is used as an introduction screen.

Home Screen Activity The Home Screen Activity represents the main screen of the applica-
tion. It displays information regarding the battery of the device and system details as well as
interesting time-series charts. However, the size of the data needed for display is large and re-
trieving them from the storage can be very demanding in terms of execution time. In order to
prevent the application to freeze when it retrieves the needed data, we encapsulated the process in
a separate asynchronous task called GraphDataLoadingTask which extends the AsyncTask class.
This way the execution of the data retrieval is performed in a separate thread without affecting the
GUI thread of the application. The structure of an asynchronous task is depicted in Listing 4.1.
The AsyncTask provides also methods for updating the GUI with progress information about the
task, while the time consuming process is implemented in the doInBackground() method.

As mentioned earlier, this activity displays both battery and system related information. In order
to separate the visuals of each category we split the GUI into two fragments hosted in a TabHost

class. Users can navigate to each fragment by tapping each tab in the same screen. The charts
displayed in both fragments are based on an open source library called AChartEngine [2]. This
library supports fully customizable line charts, scatter charts, bar charts, pie charts, time, charts,
bubble charts and many others accessible using a very well-written API.

Listing 4.1: Structure of an AsyncTask

private class MyTask extends AsyncTask<String, Void, Boolean> {
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@Override

protected void onPreExecute() {

//initialization before the execution of the task.

}

@Override

protected Boolean doInBackground(final String... args) {

//the background work.

}

@Override

protected void onPostExecute(final Boolean success) {

//things to be done after the execution of the task.

}

}

Application List Screen Activity This Application List Screen can only be accessed from the
Home Screen and lists all the processes that are currently running on the device and shows their
usage in CPU resources. Again, a separate task called ApplicationsLoadingTask is executed in
order to avoid long waiting times before the list is ready to display. Working in the background,
this task uses the ApplicationInfoController, responsible for obtaining the requested list from
the Android OS.

Although Android platform provides an API through the ActivityManager for retrieving the run-
ning processes of the device along with the name of the host application, there is no support from
the API regarding the retrieval of the CPU usage of each process. However, by executing the com-
mand top -n 1 in the runtime environment through Runtime.getRuntime().exec("top -n 1");

method invocation, we collected CPU related data including the CPU usage per process. Com-
bining the results, we were able to construct the process list and sort it according to their CPU
usage.

History Screen Activity The History Screen Activity is responsible for displaying the most
recent measurements to the user. The measurements are visualized as a list of entries displaying
the measurement’s timestamp, the battery level, its voltage, its temperature and the values of the
current. Before the launch of the activity, an asynchronous task called MeasurementsLoadingTask

starts in order to retrieve the requested measurements from storage. When the measurements are
loaded in memory, the list view is populated through an ItemAdapter which is responsible for the
initialization of each entry of the list.

Statistics Screen Activity The role of the Statistics Screen Activity is to display the visuals
of our statistic analysis. There is a total of four graphs that are displayed in separate tabs. For
better user experience we used android-support-v4 library which implements a mechanism that
enables swiping between the tabs’ contents. This behaviour allows horizontal swiping across the
selected tab’s contents for navigating to adjacent tabs, without having to directly interact with the
tabs themselves.

Preferences Screen Activity The Preferences Screen Activity has the role of a screen of op-
tions, where the user can choose to enable some customizable features of the application. Pref-
erences are stored as key-value mappings, where hard-coded keys representing the available pref-
erences of the application are mapped to values representing the active preference options. For
instance, the key history_log mapped to value true represents the preference of enabling history
logging.

Widgets

The Open Battery widget The widget of the application is a view that can be placed any-
where in the home screen and displays the battery’s level, the battery’s temperature as well as an
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estimation of when the battery will be full or empty, according to its status. The technical specifi-
cations of the widget, such as size and update rate are defined in an XML file called widget_info

in res/xml direcory. After the widget is created, it executes a service called Update Service in
order to update the data displayed in the view. More details regarding the application’s services
are discussed next.

Services

The Open Battery application uses two services that run in the background. Their execution is
designed to be transparent to the user. Here we present some technical implementation details for
each one of them.

Update Service This service is executed from the Open Battery widget’s content provider imple-
mented in the ApplicationWidgetProvider class and is responsible for updating the data displayed
in the view. The service make use of a broadcast receiver listening to the ACTION_BATTERY_CHANGED
system event. This event is sent by the Android OS when the status of the battery changes. When
such changes occur, the service uses the Battery Info Controller to retrieve new battery data and
the Battery Life Prediction Controller to get an estimation of the remaining battery duration.
The Battery Life Prediction Controller uses the concrete implementation of our prediction model
described in the next subsection. When the necessary data become available from the controllers,
it displays the results. The entire process is illustrated in Figure 4.9.

Figure 4.9: The widget updating process.

Battery Logging Service The Battery Logging Service is responsible for taking a single mea-
surement and save it locally. Moreover, when a certain amount of traces is collected, this service
prepares the data in order to send them to the Open Battery server. Each time a measurement
is taken, the service spawns a new thread for doing the appropriate background work. We chose
this implementation in order to avoid blocking the main GUI thread of the application when a new
measurement is taken. The service is designed to start when the device boots or a new version of
the application is installed. The Android application component that executes this service when
the device boots is the Boot Broadcast Receiver which is described next.

Broadcast receivers

Boot Broadcast Receiver This component listens for BOOT_COMPLETED and PACKAGE_REPLACED

system actions. The former is sent when the device boots, while the latter when an application
is installed or updated. When such an action is received by the Boot Broadcast Receiver, an new
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instance of AlarmManager is created. This class provides access to the system alarm services and
is responsible for scheduling future events. In our implementation the AlarmManager instantiates
and executes a Battery Logging Service periodically in its setRepeating() method.

4.3.2 Prediction Model

In this section we describe the implementation of our prediction model. The abstract func-
tionality of the prediction system is defined in an interface called Predictor shown in List-
ing 4.2. The method train() feeds the engine with the necessary training data while the method
computeRemainingBatteryLife() returns the battery’s remaining lifetime estimation measured
in seconds. The concrete implementation of the instance-based engine is defined in a class called
IBModelPredictor which implements the interface. Our design leaves room for other prediction
models, since a new model has to implement only these two abstract methods in order to be used
in Open Battery application.

Listing 4.2: The Predictor interface

public interface Predictor {

//the training process.

public void train(List<Measurement> measurements);

//estimates the remaining battery lifetime in seconds.

public Long computeRemainingBatteryLife(BatteryStatus status, BatteryLevel level);

}

In the concrete implementation of our prediction model, the train() method stores the list of
measurements taken as a parameter into the main memory and process it in order to populate the
State consumption/recover rate table and the Pattern table. The former is computed in the method
computeDeviceStateRateTable(), while the latter in the computePatternTable() method. For
the computation of the pattern table, two parameters are needed:

• PATTERN_WINDOW_SIZE: The size of each usage pattern. These patterns are candidates for
similarity matching with the most recent one and they act as keys in the pattern table.

• FUTURE_PATTERN_WINDOW_SIZE: The size of each chronologically adjacent pattern. Their
consumption rates are used as values in the Pattern table.

The implementation of the prediction algorithm is defined in computeRemainingBatteryLife()

method. Firstly, the most recent pattern of size PATTERN_WINDOW_SIZE is computed in the method
called computeLastPattern(). Then, this pattern is compared with all the others in the pattern
table and the closest k are returned from the KNNalgorithm() method which implements the k-
NN search algorithm. All patterns of the pattern table are stored in a priority queue and and
first k are selected, according to the similarity measure of the algorithm. We used the Hamming
distance as the similarity measure, since it has the same results as the others for binary vectors
and its computation time is low comparing it to the computation time of other metrics. The last
stage of the algorithm defined in method computeDistanceWeightedKNN() is the calculation of the
consumption rate’s estimation based on the distance-weighted k-NN property.

4.3.3 Persistent data management

The persistent data of Open Battery are the logged measurements. Any other data, such as the
active process list and the CPU usage of each process are not saved since they are not used in our
prediction model and they are not considered important. Open Battery supports both local and
remote storage systems.

Local storage

We provide two mechanisms for local data storing; an SQLite database and CSV flat files. We
describe each one of them next.
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Figure 4.10: The SQLite local database

SQLite Database The measurements of Open Battery are saved locally in an SQLite Database.
The schema of the database consists of a single table as illustrated in Figure 4.10, while each record
in the table consists of 15 attributes in text format. A brief description of each attribute is provided
next:

• id: The key of the table used to uniquely identify measurements.

• timestamp: The exact time when the measurement was taken.

• level: The current level of battery capacity measured in %.

• scale: The maximum battery level capacity measured in %.

• voltage: The current battery voltage measured in mV.

• temperature: The current battery temperature measured in C.

• plugged: Attribute indicating whether the device is plugged in to a power source.

• status: Attribute indicating the status of the battery. For instance, it may be charging,
discharging or full.

• health: Attribute indicating the condition of the battery.

• current: The current that is received from the power source measured in mA.

• cpu: The level of CPU usage measured in %.

• screen: The state of the display screen.

• wifi: The state of the Wi-Fi interface.

• 3G: The state of the 3G cellular interface.

• gps: The state of the GPS system.

The database plays the role of a local cache which holds the last 10,000 logged measurements. After
reaching this limit, each time a new measurement is taken the oldest one is deleted from storage,
acting like a sliding window.
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CSV flat files The history of the traces are also saved in a CSV file called battery_log.csv in
the internal storage of the device. The exact location of the file is \OpenBattery\. Each entry of
these files contains a user trace with the exact attributes that a record in the database has. The
entries are separated by a line break while the attributes are separated by a ’;’ delimiter character.
The data saved as CSV files can be processed by other software suites such as Matlab and Microsoft
Office.

Remote storage

The data collected from Open Battery are sent to the web server which connects to a PostgreSQL
database. The data are sent using an Hypertext Transfer Protocol (HTTP) client, defined in
HttpDataSender class. The system provides automatic device registration the first time a connec-
tion between the Android client and the web server is established and periodical data submission of
blocks consisting of 100 measurements. The PostgreSQL database schema is shown in Figure 4.11.

Figure 4.11: The PostgreSQL remote database

4.3.4 Software extensibility

Open Battery follows specific software design patterns in order to be extensible. In this section we
discuss how new features can be added without affecting and breaking the existing codebase.

Figure 4.12: The DAO implementation of two different types of storage
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Adding new types of storage

In our implementation we make use the DAO design pattern as discussed in the previous chapter.
Since we consider only measurements as the persistent data of Open Battery, we created an in-
terface called MeasurementDAO, which defines all the operations that our abstract storage should
perform regarding this type of object. The interface is shown in Listing 4.3.

Any type of storage should implement this interface and provide a concrete implementation of
any of these methods needed in the client program, although it is suggested to implement all of
them for completeness reasons. The classes already implementing the interface are shown in the
UML diagram of Figure 4.12. Each type of MeasurementDAO is instantiated by the corresponding
DAOFactory, which is defined as an abstract class which produces DAO objects. When a new type
of storage is added, a new DAO class should implement the MeasurementDAO interface and define
a factory subclass of DAOFactory responsible for instantiating the specific DAO object.

Listing 4.3: The MeasurementDAO interface

public interface MeasurementDAO {

//adds a new measurement to storage.

public void addMeasurement(Measurement measurement);

//returns a measurement from storage.

public Measurement getMeasurement(int id);

//returns the last num measurements.

public List<Measurement> getMeasurements(int num);

//returns all the measurements.

public List<Measurement> getAllMeasurements();

//returns the number of the logged measurements.

public int getMeasurementsCount();

//updates a measurement.

public int updateMeasurement(Measurement measurement);

//deletes a measurement.

public void deleteMeasurement(Measurement measurement);

//deletes all measurements.

public void deleteAllMeasurements();

}

Adding new subsystem states

Open Battery provides also a mechanism for adding new subsystem states. The functionality of
the state is defined in an interface called State. All existing subsystems states implement this
interface. When a new state is introduced, it should also implement the State interface and should
be added as a field in the DeviceState class.

Adding new prediction models

A new prediction model can be added easily in Open Battery. The class representing the new
model just has to implement the interface Predictor and provide a concrete implementation of
the methods defined there.

Multi-language support

The new Open Battery tool provides multi-language support. The application is translated in
English, Greek, French and German already by specifying the entire set of strings used in the
application in four different XML files, one for each language. A new translation can be added by
simply creating a new XML file called strings.xml containing all strings translated in the new
language and storing it to the res/values-{language-code} folder.

62



4.4 Summary

In this chapter we gave a detailed presentation of the prediction model that we developed. We
started by discussing the limitations of other similar studies and giving an overview of our ap-
proach. We modeled a portable device state as set of the binary states of its subsystems and
a usage pattern as a sequence of consecutive device states. The model uses an instanced-based
learning engine which is capable of recognizing them. The engine chooses the most similar patterns
to the most recent one using the distance-weighted k-NN algorithm and estimates the battery’s
remaining lifetime based on the selected patterns.

In this chapter we also presented the Open Battery tool. We started by describing the limita-
tions of the previous version of the application and setting the goals that the updated version is
planned to achieve. Then, we presented the top-level architecture of the entire system which follows
the Three-Tier paradigm and focused on the software design of the Android client which follows the
Model-View-Controller pattern. The view consists of all the GUI components of the application,
the model includes all the data that are collected periodically, while the controllers translate GUI
event into commands to the model. In the last part of the chapter we gave a brief description of
each component of the design.

Moreover, we presented some important implementation details of the new version of Open Bat-
tery. We focused on the Android application components of the tool and the technical details of the
prediction model we developed. We showed which operations a prediction model should implement
and how our model provided the given functionality. We also presented our storage system, con-
sisting of two types of storage, while in the last part of the chapter, we discussed how new features
can be added to the application.

Next we present our evaluation part of this thesis, presenting a statistical analysis of real data
from two Android-based devices.
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Chapter 5

Evaluation and Discussion

In this chapter we evaluate our work both quantitatively and qualitatively using real data. We
start by presenting our dataset and how we worked on this in order to get valuable results for our
system. Next, we perform a statistical analysis on our data and we show which usage patterns are
discovered. In the next two sections we discuss the performance of our prediction model in terms of
accuracy and computation time as well as the resource consumption of Open Battery application
itself. In the last part of this chapter we discuss the limitations of our approach.

5.1 Mobile data analysis

5.1.1 Dataset details

Our dataset consists of 70,000 measurements taken from real Android-based devices, a Samsung
I9300 Galaxy S3 smartphone and an Acer Iconia A1-810 tablet device, both running Android 4.1
platform. The Galaxy S3 device has a Quad-core 1.4 GHz Cortex-A9 CPU and uses a 2100mAh
battery, while the Iconia tablet has a Quad-core 1.2 GHz CPU and uses a 4960mAh battery. From
now on, the users of these devices will be referred to as User 1 and User 2 respectively. The duration
of data logging was approximately one month, from July 19th 2013 to August 26th 2013. Data
were collected periodically in 1 minute intervals and include battery related information, such as
battery level, voltage and temperature as well as system related information such as CPU level and
the states of the device’s subsystems as described in Chapter 4. We have to point out here that
due to the limited amount of Android devices that we had in our possession and the limited time
that this project lasted, it was not possible to get a larger dataset for our analysis.

5.1.2 Analysis results

Our analysis on the data consists of three parts. In the first of we process our time-series data and
convert them into an appropriate form for evaluating a regression model. Next, we provide some
useful statistics on how users interact with their devices, recognizing specific usage patterns. Our
last part of our analysis also focuses on identifying patterns in usage behaviour after merging the
device states into larger clusters.

Regression curve fitting

Regression analysis is a very useful process for estimating correlations among a set of variables.
We use this model in our evaluation to find relationships between time and battery properties
such as level, voltage and temperature. Before starting our regression analysis we decomposed the
dataset into two segments, including measurements of discharging and charging periods respectively.
Firstly, we took into consideration our battery related data and tried to investigate the relationship
between them and time, using a cubic fit regression model. Our original data were measurements
logged as time-series, thus we had to convert them to in a way to be processed using relative time.
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Battery Level
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(a) Battery Level vs Time during discharging peri-
ods. Here we show the cubic fitting of our data with
coefficients p1 = −7.157e − 008, p2 = 0.00016033,
p3 = 0.14358 and p4 = 99.015. The norm of resid-
uals is 2490.9
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(b) Battery Level vs Time during charging periods.
Here we show the cubic fitting of our data with coef-
ficients p1 = −1.514e − 006, p2 = 0.00054164, p3 =
0.26982 and p4 = −0.76093. The norm of residuals is
437.74
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Battery Voltage           
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(c) Battery Voltage vs Time during discharging peri-
ods. Here we show the cubic fitting of our data with
coefficients p1 = −6.3929e − 007, p2 = 0.00014154,
p3 = −1.1923 and p4 = 4216.2. The norm of residuals
is 19702
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Battery Voltage
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(d) Battery Voltage vs Time during charging peri-
ods. Here we show the cubic fitting of our data with
coefficients p1 = −7.6705e − 007, p2 = 0.0015346,
p3 = 1.6123 and p4 = 3555.2. The norm of residu-
als is 6722.8

0 200 400 600 800 1000 1200 1400
10

15

20

25

30

35

40

45

50

Time (minutes)

B
at

te
ry

 T
em

pe
ra

tu
re

 (
°C

)

 

 
Battery Temperature
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(e) Battery Temperature vs Time during discharging
periods. Here we show the cubic fitting of our data
with coefficients p1 = −3.4265e − 010, p2 = 4.636e −
006, p3 = −0.0072507 and p4 = 28.144. The norm of
residuals is 936.71
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Battery Temperature
   Cubic Fitting

(f) Battery Temperature vs Time during charging pe-
riods. Here we show the cubic fitting of our data with
coefficients p1 = 1.5036e − 007, p2 = −3.8577e − 005,
p3 = −0.0070454 and p4 = 35.575. The norm of resid-
uals is 316.44

Figure 5.1: Our dataset regarding battery consumption
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For the battery level data of the discharging segment we started from relative time t0 = 0 and
maximum battery level l0 = 100. Then, we iterated the data until a discharging period was over at
time t1. At this point we reseted the time to t0 and repeated the same procedure. A tricky point in
this process is that we are not guaranteed that the next discharging period will start at l0 = 100.
For instance, a user could have stopped charging his device when it reached level 45%. We wanted
to have each discharging period starting from the same point. In order to tackle this problem we
considered also relative values in the x axis for computing the regression curve. By relative values
we mean that when a new discharging period started we also reseted the battery level to l0 = 100
and then computed the relative differences from the real values. For instance, the battery level
trace (45, 45, 44, 43, 43, 42) was converted to (100, 100, 99, 99, 99, 98). When a new period started
we also reseted the voltage level as well as the temperature level and we did the same processing
for the charging segment of data.

Our results using cubic curve fitting are shown in Figure 5.1. As we can clearly see, battery level
and voltage values tend to decrease while the battery is discharging, while they increase during
charging periods. This behaviour reflects the non-ideal battery properties discussed in Chapter 2.
The fitted curves shown in black colour can be used for the prediction of battery’s lifetime. From
the same figure we can see that the time needed for a full cycle last approximately 1900 minutes,
1500 for the charge process and 400 for the discharge process. The difference between the duration
of the two processes indicates that the consumption and recovery rates of the battery are consid-
erably different. That is the main reason why we used one rate table for each battery status in our
prediction model. However, the battery temperature values do not follow the same pattern and
they cannot be used for predicting the battery performance over time.

Statistics identifying usage patterns

In this part of our analysis on the data collected from Open Battery tool, we try to observe how
users interact with their devices and identify some usage patterns. This analysis focuses on vali-
dating our original hypothesis that each user has different usage characteristics which can be used
for personalized services on power management. Figure 5.2 shows the proportion of time that each
device spent in charging, discharging and full states. As we can see from the figure, User 1 leaves
his device charging almost six times more than User 2, while both users use their devices powered
with full battery almost the same amount of time. These results show that the usage behaviour
and the charging habits of these two users are slightly different. .
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Figure 5.2: Proportion of time spent charging/discharging

The next pair of charts in Figure 5.3 shows a comparison of the power sources that both users
use. We consider USB and AC power sources, where USB provides slower charge than normal AC
chargers. Generally, USB is preferred for short charges, while AC for regular long charges. Here
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the difference between the charging preferences of the two users is clear. User 1 mostly charges
his device using USB while User 2 uses regular chargers almost always. The proportion of time
charging his device using USB is less than 1%. If we combine these results with our previous ones
we can assume that User 1 spends so much time charging his smartphone because he uses USB
very frequently. We can also assume that User 1 is frequently near a computer where a USB power
source is available, while User 2 works in a place where an AC power source is reachable or connects
his device to an AC power source while he sleeps at night.
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Figure 5.3: How the device is being charged

The next pair of charts in Figure 5.4 shows the battery level at the moment when charging begins.
User 1 usually charges his device when its battery level is lower than 40%, while User 2 prefers
to charge his tablet when its battery level ranges between 10 % and 20%. More specifically, User
1 chooses to charge his device when its battery level reaches the lowest limit of 0%, while User 2
seems to be more conservative. Before charging his device he ensures that it has at least 10% of
battery level.
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Figure 5.4: Battery level at start of charging periods

Our next charts illustrated in Figure 5.5 show when the two users charge their devices during the
day as well as the battery level at start of charging periods. Each bubble represents the start of a
charging process. The visualization consists of three dimensions; battery level, time and frequency.
Frequency is highlighted by both size and colour, where small yellow bubbles indicate low frequen-
cies while big red ones indicate high frequencies. As we can see in Figure 5.5a, User 1 charges
his device more frequently than User 2 and he prefers charging it between 15:00 and 21:00, with
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a majority initiating charging when battery level is 40%. On the other hand User 2 charges his
device less frequently and especially between 00:00 and 05:00.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Hours of the day (00:00 − 23:59)

B
at

te
ry

 L
ev

el
 (

%
)

 

 
Frequency

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

(a) User 1 (Samsung Galaxy S3)

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

Hours of the day (00:00 − 23:59)

B
at

te
ry

 L
ev

el
 (

%
)

 

 
Frequency

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

(b) User 2 (Acer Iconia A1-810)

Figure 5.5: Battery level during the day at start of charging periods

From our analysis we observed that both users have different charging preferences and their usage
behaviour varies a lot. User 1 charges his smartphone more frequently by USB short charging
processes in the evening, while User 2 prefers charging his tablet rarely using an AC charger at
night. Since we identified some charging characteristics from our data, it would be very interesting
to know the most frequent device states when the devices are charging and discharging. Figure 5.6
illustrates the distribution of the device states. States with frequency lower than 1% are considered
very rare and are not shown. The device state (00100) is the most frequent during both periods.
This is expected, since users leave their Wi-Fi open very often, even though the screen of their de-
vice is off. Moreover, we can see that the second more frequent state during discharging is (01100)
while the second most frequent during charging is (00000). This shows that users interact with
their devices when the battery is discharging but they do not use it when they plug it in a power
source. We have to point out here that some device states had zero frequency, meaning that the
devices used in our experiments have never been in those states. An example of a state that has
never been logged is (11111), where all subsystems of the device are activated and the CPU is
overloaded.
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Figure 5.6: Frequencies of device states during charging and discharging periods

Our analysis on the data collected from two different users shows that each user has different usage
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behaviour and follow specific usage patterns, as we expected. We mainly focused on charging char-
acteristics. There are significant differences on which types of power sources are used for charging
and which parts of the day users prefer to charge their devices. There is also difference on which
subsystems of the device are enabled more frequently during charging and recharging periods. Next,
we focus on how users interact with their devices in terms of the usage of the features these devices
offer. In order to simplify our model, we merged the device states of our model into larger sets of
operational states.

Merging device states

Our model takes into consideration 5 subsystem states modelled as binary variables. The state
space of our approach consists of 25 = 32 individual device states. As mentioned before, some of
them were never reached according to our data. We can tackle this problem and simplify our model
by reducing the number of possible states. We can minimize the complexity by merging some states
in order to model the real operational states of a portable smartphone or tablet device. As shown
in Table 5.1, we created four operational states, IDLE, WIFI, 3G and GPS. We also consider an ETC

state consisting of all device states that do not fall to any merged state category.

IDLE WIFI 3G GPS

00000 00100 00010 00001

01000 01100 01010 01001

10000 10100 10010 10001

10000 11100 11010 11001

Table 5.1: The merged operational states of a portable device

Figure 5.7 illustrates a state transition diagram of a portable device after merging the possible
device states. When the device boots, it stays in the IDLE state. When a user enables the Wi-Fi,
the current state changes to WIFI and when he disables it, the current state returns back to state
IDLE. When a user enables data communication using 3G, the current state changes to 3G and after
disabling it, the current states returns back to the state IDLE. Finally, when a user enables the GPS
system, the current state changes to GPS state and returns back to IDLE when GPS is disabled.

Figure 5.7: A simple transition diagram with merged device states

Now that the state space is limited, it is easier to identify patterns regarding the usage of the device.
In Figure 5.8 we show the time spent in each merged state. According to our results both users
leave their devices into the IDLE state almost the same amount of time. However, User 1 seems to
be a heavy Wi-Fi user who rarely uses 3G for data transmission, while User 2 almost never uses
data communication. Moreover, there is a big difference between these two users on the way they
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use the GPS system of their devices. User 1 spends almost 10% of time using GPS in contrast to
User 2 who spends more than 60% of time interacting with applications that use the GPS system.
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Figure 5.8: Spent time in each merged operational state

Our results show clearly the magnitude of the different usage characteristics that two individual
users have. User 1 probably spends his time browsing the web or using applications that require
internet connection while he is somewhere where Wi-Fi is available, like his residence or maybe at
work. However, the behaviour of User 2 is completely different. He almost never interacts with
applications which require internet access and uses a lot location-based services that the device
provides. We may assume that he is probably a professional driver who uses his tablet for map
services while he is working, where internet connection is not available.

5.2 Prediction model Evaluation

In this section we evaluate our instance-based learning engine. Our basic concerns are the prediction
model’s accuracy and its performance.

5.2.1 Accuracy

For our experiments we took into consideration the traces logged from User 1 consisting of 45,000
measurements and used the 10-cross validation method for observing the error. We used the nine
tenths of the dataset as the training set and the one tenth as the test set. Since our traces are
logged from real users who charge their devices randomly, they do not include complete cycles
of discharging and charging periods. Thus, we predict when the next 1% of battery depletion or
recovery will occur and we measure the error as the average of the absolute difference between the
actual duration and our prediction. In our experiments we consider four parameters:

• Parameter k : The number of the nearest neighbours that k-NN algorithm returns.

• Dataset size: The number of measurements in the dataset.

• Parameter pSize : The size of each usage pattern used in the k-NN algorithm.

• Parameter fSize : The size of each chronologically adjacent pattern.

We did three experiments in total to measure the accuracy of our model. In each experiment we
tested different parameters while some of them were set as constants, as described in Table 5.2.
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Parameter k Dataset size Parameter pSize Parameter fSize

Experiment 1 1-40 45,000 10 5

Experiment 2 5,30 500-45,000 10 5

Experiment 3 30 45,000 1-15 1-15

Table 5.2: Parameters used for our experiments

Experiment 1

Firstly, we compare the accuracy of the k-NN and the distance-weighted k-NN algorithms for
various values of parameter k. In this experiment we set pSize and fSize as constants with values
10 and 5 respectively. Our results are illustrated in Figure 5.9. As we can see, our model has an
error of approximately 9 seconds per 1% battery dissipation (or recovery), which is satisfying for
a battery estimation according to related studies. Both algorithms perform almost the same for k
values lower than 7. However, the distance-weighted k-NN variant performs better when k > 25 and
has a difference of 0.1 seconds with the basic algorithm. We also see that the minimum error values
of the basic k-NN are observed using k values between 1 and 10, while the distance-weighted variant
performs better with k values between 20 and 40. This happens because the basic algorithms do
not calculate weights for closest neighbours and the target function values are averaged. Thus,
when the number of neighbours becomes bigger it take into consideration equally close neighbours
and neighbours that may have large distance from the query pattern as well. On the contrary, the
distance-weighted k-NN need a lot of neighbours to perform well, since it weighs the contribution
of each neighbour according to their distance from the query pattern.
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Figure 5.9: Error vs parameter k for k-NN and distance-weighted k-NN algorithms

Experiment 2

In this experiment, we show how both algorithms perform when different datasets are used. In this
experiment we took again pSize and fSize as a constant with values 10 and 5 respectively and we
ran the algorithms for different random subsets of the original dataset. Our results for k = 5 and
k = 30 are shown in Figures 5.10a and 5.10b respectively.
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(b) k=30

Figure 5.10: Error vs Size of dataset

As we can clearly see, the behaviour of the two algorithms is similar for both values of k. When
few training examples are used, the error is high, reaching 18 seconds when k = 5 and 13.3 seconds
when k= 30. It is also remarkable that the curves have volatile behaviour when the datasets used
consist of less than 10,000 measurements. However, the behaviour of the curves tend to stabilize
when more than 10,000 measurements are used as training data, reaching an average error ranged
from 9 to 10 seconds. Therefore, 10,000 measurements are considered enough for an accurate esti-
mation of our model. A larger set of data will be a waste of space without significant differences
in results.

Experiment 3

In our last experiment we show which are the optimal values of pSize and fSize in terms of
minimizing the error. We used the entire dataset of 45,000 measurements taken in 1 minute intervals
and we tested the distance-weighted k-NN algorithms for several values of pSize and fSize. Our
results are illustrated in Figure 5.11. Each square of the diagram represents a combination of pSize
and fSize. The darker an area is, the lower is the error for this combination of parameters.
As we can see from the figure, the error is high for pSize < 5 regardless the values of fSize,
reaching approximately 11 seconds per 1% of battery dissipation (or recovery). When higher
values for parameter pSize are used, the error drops to almost 9 seconds. The combination of high
values of pSize and low values of fSzise seems to be the optimal as shown in the dark upper left
corner of the diagram. This is reasonable, since we predict the next 1% drop or recovery of the
battery and our prediction is short-term. The parameter fSize represents the size of the patterns
which follow the ones that are returned from the k-NN search algorithm. The size is considered as
a metric of the time duration of a pattern. More specifically, it denotes the time spent in the device
states that form it. Patterns having fSize = 3 last 2 minutes and represent the future horizon of
the estimation. Thus, they are most accurate for short-term predictions.

5.2.2 Performance

Our model is designed to work in lightweight portable devices, thus its time efficiency is a topic of
major concern. Therefore, the next thing we tested is the time complexity of the two processes of
our learning engine, the training process and the prediction process. In this experiment we used
many different subsets of our original dataset. Our time measurements were taken from the Sam-
sung Galaxy S3 smartphone device using the system instruction System.nanoTime(). Our results
are illustrated in Figure 5.12.

In Figure 5.12a we can see how the duration of the training process oscillates when different
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Figure 5.12: Time complexity of the instance-based learning engine

sized datasets are used for training. Moreover, we also see how long it takes to construct the
State consumption/recovery tables and the Pattern table, which are the basic operations of the
training process. As expected, the duration of constructing these tables as well as the duration
of the entire training process increases when larger datasets are used. The training process using
a small dataset of 10,000 measurements requires almost 0.03 seconds, while using a larger set of
45,000 traces requires approximately 0.12 seconds, showing a linear increase in duration. We can
also see from the same figure that the construction of the Pattern table is the most time-consuming
operation of the training process and grows rapidly when larger datasets are used. On the contrary,
the construction of the State consumption/recovery tables has lower requirements in time, having
a peak of only 0.03 seconds when 40,000 measurements are used.

Figure 5.12b shows the duration of the prediction process. For our experiments we used both
k-NN and distance-weighted k-NN algorithms and measured their time complexity using datasets
of various sizes. We used the same value for parameter k = 30 when we tested the performance
of the two algorithms. According to our results, the time needed for the termination of both algo-
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rithms increases as the datasets used become larger. Both algorithms perform almost equally for
small datasets, containing less than 20,000 traces. However, the time requirements of the distance-
weighted version of the k-NN algorithm increase steeply when datasets containing more than 25,000
measurements are used having a peak in 0.022. This happens because of the calculations of weights
that the algorithm performs. On the other hand, the basic k-NN algorithm performs better in
terms of time, having a peak in 0.017 seconds when 40,000 measurements are processed. Although
the basic k-NN terminates faster, the difference is not noticeable practically and does not overcome
the superiority of the accuracy of the distance-weighted k-NN algorithm.

5.3 Software Evaluation

In this section we evaluate our software tool regarding its consumption in hardware resources, such
as battery dissipation, CPU usage and memory consumption. It is very important for a power man-
agement tool not to be a high consumer itself. In order to calculate the dissipation in resources,
we took measurements using the Dalvik Debug Monitor Server (DDMS) tool of Android OS in the
Samsung Galaxy S3 device.

Firstly, we consider battery dissipation. The most power hungry feature of Open Battery is the
battery logger which takes measurements in a constant rate. We expect that the battery con-
sumption will decrease if the logging time intervals become larger. Our chart in Figure 5.13 shows
exactly that. The battery consumption of the tool is approximately 21% when the logger takes
measurements every 1 minute. The consumption almost halves when the rate quintuples, while the
lowest battery dissipation is approximately 8% where the time interval between two consecutive
measurements is 10 minutes.
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Figure 5.13: Battery consumption vs Logging rate

The CPU usage follows the same pattern as the battery consumption. As shown in Figure 5.14,
the CPU level is almost 4.5% when the logger takes measurements every minute. The CPU drops
slightly to 4% when the logging rate doubles and decreases even more to 1.6% when the logging rate
is 5 minutes. However, when the logging rate changes from 5 to 10 minutes there is not any signif-
icant difference in CPU usage. Therefore, a logging rate of 5 minutes is a very good option for the
implementation of Open Battery logger, since it does not overload the CPU and is frequent enough.
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Figure 5.14: CPU usage vs Logging rate

Our last experiment focuses on calculating the heap size allocated for Open Battery application
for different sizes of datasets. When the application does not retrieve any data from the local
database, it uses a heap of 13.1 MB. For a dataset containing 500 measurements the Open Battery
application uses 13.6 MB of RAM in average and for 1000 measurements the memory requirements
increase to 15 MB of RAM. From this point the memory requirements increase almost linearly,
reaching nearly 18 MB when Open Battery uses a dataset of 3000 measurements. In general, the
memory requirements are not very high, but using a larger dataset may cause memory allocation
exceptions in older devices running previous versions of Android OS.
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Figure 5.15: Memory heap vs Dataset size
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5.4 Limitations and areas of improvement

In our analysis we used 70,000 measurements taken from two Android-based devices during approx-
imately one month. Although through our analysis we draw some reasonable conclusions and we
evaluated our initial hypotheses regarding usage patterns, our dataset is considered small compared
to the datasets presented in other studies. As we discussed earlier, many device states were not
reached at all for both devices and we did not have enough information to compute their consump-
tion and recovery rates. The lack of data is due to the fact that there was not sufficient time and
resources in devices for a large-scale analysis. However, the new version of Open Battery will be
released soon in Google Play appstore and we will be able to collect a lot of data in the Open
Battery servers from a huge variety of smartphone and tablet devices.

The general performance of Open Battery is very satisfying according to our results when the
analysis was performed off-line but it has some limitations under specific circumstances. Our pre-
diction model requires a lot of data in order to perform accurately. As we observed the more data
it has, the more accurately it predicts the remaining battery lifetime. However, there is always
the trade-off between accuracy and complexity. From our results, the computation time of creat-
ing the pattern table is the most time-consuming procedure of the training process, even using a
small dataset of 10,000 measurements. The construction of this table is performed, just before the
predictor estimates the battery lifetime, resulting in delays in the Open Battery widget where the
estimation is displayed. A feasible solution could be the infrequent computation of the table in a
constant rate. For example, the table could be populated daily and saved in the local database as
persistent data.

5.5 Summary

In this chapter we presented the evaluation of our work, using real data collected from two Android-
based devices. We used a regression model on our dataset and measured the difference between
charging and discharging durations. According to our results, discharging lasts almost four times
more than charging. We also presented some useful statistics and showed how two users may
have completely different charging and usage preferences, validating our original hypothesis on us-
age patterns. In the next part of this chapter we did experiments using our prediction model and
calculated the error of our predictions which is approximately 9 seconds for each 1% of battery con-
sumption (or recovery). We also compared the k-NN and the distance-weighted k-NN algorithms
in terms of accuracy and duration. Our results show that the distance-weighted k-NN algorithm
is more accurate but terminates later than the basic k-NN. Moreover, we tested the Open Battery
application using different parameters and measured its requirements in hardware resources. In
the last part of the chapter we discussed the limitations of our work and suggested some possible
solutions.

Next we conclude this thesis and present some ideas for further work on Open Battery.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Smartphones and tablet computers are two of the most popular and fastest growing types of portable
devices in the modern mobile networks. They are powered from batteries that have limited size
and capacity. Therefore, the optimal power management of these devices is a major research topic
and there are many tools in the market that present diagnostics and provide estimations of the
remaining battery lifetime. However, most of them predict the battery dissipation using statically
defined profiles and do not take into consideration usage characteristics.

In this thesis we presented a lightweight battery lifetime prediction model that uses an intelli-
gent learning engine to make estimations recognizing usage patterns. Our original hypothesis was
that we can recognize these patterns by analysing users’ activity and charging behaviour on smart-
phones and tablets. Therefore, both battery and context information is needed to train the engine.
We modelled the subsystems of the device as binary variables having two states, ON and OFF.
The device state was defined as a set of the binary states of its subsystems and the usage pattern
as a sequence of chronologically adjacent device states. The core of our model is a learning engine
which is trained with fixed-size usage patterns and uses the distance-weighted k-NN algorithm in
order to obtain the most similar patterns to the most recent one. Using the consumption rate of
these patterns, our model estimates the remaining battery lifetime. The training process is fast and
space efficient, thus is suitable for lightweight devices, such as smartphones and tablets. Moreover,
the model adapts to the user’s behaviour and is not based on statically defined consumption rates.

We also redesigned from scratch an application for Android devices called Open Battery. The
application monitors battery and system related data and provides statistics regarding the usage
of the device. It stores the collected data in a database which acts as a local cache and also exports
them as CSV files in the file system of the device for further off-line analysis. Moreover, the data
are sent periodically to a remote server for academic purposes. Open Battery uses our prediction
model in order to estimate the future lifetime of the battery which is displayed in the widget of
the application. Although our prediction model fits our goals, the tool was designed to be exten-
sible and host new algorithms for prediction in the future. We also showed that the application
has limited consumption in hardware resources and it can be lowered even more by adjusting the
parameters of the logging system.

The last part of our project was the statistical analysis of data from real Android-based devices. By
analysing the usage patterns of 70,000 traces logged in a two-month period from one smartphone
and one tablet computer, we showed that users have different behaviour on how they use their
devices and that the operational states of the handhelds have significant variation in consumption
rates, validating our initial hypothesis.
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6.2 Further Work on Open Battery project

The work presented in this thesis has potential for many future improvements. One option is to im-
prove the existing prediction model. The Open Battery application can be easily adapted to collect
any kind of context information from the Android OS, such as audio, video and telephony states.
However, the choice of the number of the subsystems used in the prediction model should be consid-
ered carefully to avoid constructing a large state space and make the system fine-grained. Moreover,
more elegant data structures can be used for storing the pattern instances of the distance-weighted
k-NN algorithm. A suitable choice is a k-dimensional tree which is a geometric data structure used
for organizing points in a k-dimensional space [5]. The nearest neighbour search of our prediction
model can be performed efficiently by using the k-dimensional tree’s properties in order to eliminate
large segments of the search space.

It would be also very interesting to investigate how other prediction models perform using the
data collected from Open Battery tool. Since the device states are already defined in our work,
another model can use them in order to make estimations of battery’s lifetime. A good option
might be a Hidden Markov Model, where similar states could be merged in order to decrease the
state space. The adaptation of other prediction models in Open Battery is a simple process, since it
is designed to be able to make use of any new prediction algorithm without breaking its functionality.

Last but not least, a large-scale analysis could be made using the data reported in the remote
server of Open Battery, hoping that using a larger dataset of different types of portable devices
could provide a more concrete validation of this work. More pattern distributions could be shown
as well as prediction results and comparisons between more users.
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Appendix A

Technical details of the original Open
Battery Android application

For completeness reasons, in this chapter we present some technical details of the original Open
Battery Android client, developed by Gareth L. Jones.

A.1 Graphical User Interface

The GUI of the application is illustrated in Figure A.1. It is minimal and consists of two screens, the
home screen and the statistics screen as a redirected web view of the http://www.openbattery.com/
website. In the home screen there is a toggle button enabling or disabling the battery logging. Op-
tions for submitting data automatically are displayed also in the home screen. Access to the log
file and the statistics screen is provided by an application menu.

(a) The Home Screen of the original Open Battery (b) The Statistics Screen of the original Open Battery

Figure A.1: The GUI of the original Open Battery application
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A.2 UML class diagram

In this section we present a UML class diagram of the application. The original Open Bat-
tery application does not follow a specific architectural pattern and consists of only five classes
hosted in the same package uk.ac.imperial.doc.aesop.openbattey as shown in Figure A.2.
The BootUpReceiver is responsible for starting a new service when the device boots. The service
is implemented in OpenBatteryService class and performs periodic measure loggings. The imple-
mentation of a log is written in the Log class. Finally, the OpenBattery class is the main activity
of the application and submitDataTask is an inner class responsible for the data submission to the
Open Battery web server.

Figure A.2: UML diagram of the original Open Battery Android application
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Appendix B

Open Battery User Guide

B.1 Installation

Open Battery application has been tested in Android OS versions 2.1+. The installation file is
called OpenBattery.apk. In order to install it from the Android Debug Bridge (ADB) using a
laptop or a PC, the following command has to be issued:

adb install OpenBattery.apk

Alternatively, the installation can be performed by simply copying the .apk file into an Android-
based device and locate it using the local File Manager. The automatic installation process begins
after tapping the OpenBattery.apk file icon and selecting the Install option.

B.2 Open Battery Screens

In this section we present the main screens of Open Battery.

Splash Screen

When the Open Battery application launches, the splash screen is displayed, as shown in Figure B.1.
This screen does not provide any functionality and is used as an introduction screen.

Figure B.1: The Splash Screen of Open Battery
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Home Screen

This is the home screen of the application. It consists of two tabs implemented as separate GUI
fragments as shown in Figure B.2. These tabs show battery and system related information as well
as interesting time-series graphs.

(a) The battery information fragment (b) The system information fragment

Figure B.2: The Home Screen of Open Battery

Navigation across the screens is provided through the blue action bar on top of the screen. The
button in the left top corner returns the application to the home screen, while the other three
buttons redirect the user to other screens of the application. More specifically, the user may
navigate to the Application Process Screen, the History Screen and the Preferences Screen.

(a) The list of running processes (b) The Application Manager

Figure B.3: The Application Process Screen of Open Battery
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Application Process Screen

In this screen the user can see which processes are running in his device, as well as some relevant
information, such as the PID of each process and its usage in CPU resources, as illustrated in
Figure B.3a. By tapping an entry of the process list, the application redirects to the Application
Manager of Android OS, where the user can see more detailed information regarding the process
and terminate it, as shown in Figure B.3b.

History Screen

In this screen the most recent logged battery related measurements are listed, in reversed chronolog-
ical order. A measurement consists of its timestamp, the battery level, its voltage, its temperature
and the current of the power source used for charging, as shown in Figure B.4. The user can see
older measurements by scrolling down the list.

Figure B.4: The History Screen of Open Battery

Statistics Screen

From the History Screen the user is able to navigate to the Statistics Screen where four charts
are displayed, providing statistics regarding the charging characteristics of the user. Each chart is
displayed individually in tabs and navigation across the charts is provided by swiping horizontally
across the selected tab’s contents. The four charts are shown in Figure B.5

Preferences Screen

This screen is reachable from all other screens of Open Battery and displays the application’s
customizable options as a list, as illustrated in Figure B.6. The user can change his preferences
by tapping an entry of the list and choose on of the available option values. More specifically, the
user may enable/disable the battery logger and decide whether he prefers to save the log in a CSV
file or not. Moreover, the user is able to choose the update rate of the logging procedure and the
maximum size of the history data. The user is also offered several display options regarding the
charts and the option to enable/disable the automatic submission of data to the Open Battery
server.
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(a) Chart 1 (b) Chart 2

(c) Chart 3 (d) Chart 4

Figure B.5: The Statistics Screen of Open Battery
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Figure B.6: The Preferences Screen of Open Battery

B.3 Widget

In this section we present the Open Battery widget, which displays the battery’s level, its tempera-
ture as well as an estimation of its remaining lifetime. When the device is discharging, the battery
lifetime estimation is displayed in red colour. On the contrary, when it is plugged in to a power
source, the prediction is displayed in blue colour.

(a) The Open Batter widget when the device is dis-
charging

(b) The Open Batter widget when the device is charg-
ing

Figure B.7: The Open Battery widget
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Appendix C

Software diagnostics of the new Open
Battery application

In this chapter we present some technical details regarding the development of Open Battery. We
also show the list of the software packages of the tool, as well as the package dependency graph.

C.1 Software engineering tools

In this section we list the software tools that have been used in this project.

• Programming languages Java, php, sql

• Code documentation Javadoc

• Android development Android SDK tools, Android ADT, DDMS

• IDE Eclipse ver. 4.2.1

• Unit testing JUnit

• Database SQLite, PostgreSQL

• Package dependencies analysis Stan4J

• Graph visualization MatLab ver. R2011a

• Code analysis CodePro Analytix

C.2 Software metrics

Table C.1 shows some technical details and software metrics of Open Battery Android application.

Metric Value

Number of packages 14

Number of classes 59

Number of interfaces 9

Average block depth 0.85

Lines of code 6,402

Comments ratio 12.5%

Table C.1: Software metrics of Open Battery tool
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C.3 List of packages and classes

In this section we present the packages and the classes of the Open Battery Android application.

Figure C.1: The packages of Open Battery tool
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C.4 Dependency graph

In Figure C.2 we present the package dependency graph of the Open Battery application. As we
can clearly see, the graph is acyclic, reflecting a good software architecture.

Figure C.2: The package dependency graph
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