
Imperial College London
Department of Computing

AutoPig - Improving the Big Data user experience

Benjamin Jakobus

Submitted in partial fulfilment of the requirements for the MSc degree in Advanced Computing of

September 2013

Abstract

This project proposes solutions towards improving the ”big data user experience”. This means

answering a range of questions such as how can deal with big data more effectively1, identify the

challenges in dealing with big data (both in terms of development and configuration) and improving

this experience. How can we make the big data experience better both in terms of usability and

performance?

1Within a Hadoop setting

i

ii

Acknowledgements

First and foremost I would like to thank my supervisor Dr. Peter McBrien, whose constant guid-

ance and thoughts were crucial to the completion of this project. Dr. McBrien provided me with

the input and support that brought reality and perspective to my thinking.

I would like to thank Yu Liu, PhD student at Imperial College London, who, over the course of

the past year helped me with any technical problems I encountered. At any moment, Yu willingly

gave his time to teaching and supporting me. His knowledge was invaluable to my understanding

of the subject.

To my parents who provided me with a home, supported me throughout my studies and helped me

in so many ways; thanks.

Apache Hive developers Edward Capriolo and Brock Noland: you endured and answered my many

(and often times silly) questions and supervised my patch development. Thanks.

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Motivation and Objectives . 1

1.2 Report structure . 3

1.3 Statement of Originality . 4

1.4 Publications . 5

2 Background Theory 6

2.1 Introduction . 6

2.2 Literature Survey . 6

2.2.1 Developmet tools, IDE plugins, text editors 6

2.3 Schedulers . 7

2.3.1 FIFO scheduler . 7

2.3.2 Fair scheduler . 9

2.3.3 Capacity scheduler . 11

2.3.4 Hadoop on Demand (HOD) . 11

2.3.5 Deadline Constraint Scheduler . 12

v

vi CONTENTS

2.3.6 Priority parallel task scheduler . 13

2.3.7 Intelligent Schedulers . 13

2.4 Benchmark Overview . 14

3 Problem Analysis and Discussion 19

3.1 Unanswered questions - How should we configure Hadoop? 20

3.2 How do Pig and Hive compare? How can the two projects be improved upon? 21

3.3 How can we improve the overall development experience? 21

4 Advanced Benchmarks 22

4.1 Benchmark design . 23

4.1.1 Test Data . 23

4.1.2 Test Cases . 25

4.1.3 Test Setup . 26

4.2 Implementation . 27

4.3 Results . 28

4.3.1 Hive (TPC-H) . 28

4.3.2 Pig (TPC-H) . 30

4.4 Hive vs Pig (TPC-H) . 33

4.5 Configuration . 37

4.6 ISO addition - CPU runtimes . 38

4.7 Conclusion . 39

5 Pig and Hive under the hood 42

5.1 Syntax Trees, Logical and Physical Plans . 42

5.1.1 General design quality and performance . 49

CONTENTS vii

5.1.2 Naming conventions . 69

5.1.3 Codesize, coupling and complexity . 70

5.1.4 Controversial . 72

5.2 Concrete example - JOIN . 73

5.3 Evolution over time . 74

5.4 The Group By operator . 75

5.5 Hive patch implementation . 77

5.6 Conclusion . 77

6 Developing an IDE 79

7 Architecture 82

7.1 Benchmarking Application Design . 82

7.2 HDFS file manager . 83

7.3 Unix file manager . 84

7.4 Script editor . 84

7.5 Notification engine . 85

7.6 Result analyzer . 85

7.7 Runtime-manager . 85

7.7.1 Scheduler . 86

7.8 User Interface . 86

7.9 Package Structure . 87

7.10 Architectural Strategies . 87

7.10.1 Policies and Tactics . 87

7.10.2 Design Patterns . 88

viii CONTENTS

7.11 User Interface Design . 89

7.11.1 Main Screen . 89

7.12 Summary . 90

8 Implementation 92

8.1 Language Choice . 92

8.2 Tools and Technologies . 93

8.3 The Script Editor . 93

8.3.1 Syntax highlighting . 94

8.3.2 Search and replace . 94

8.3.3 Refactoring . 96

8.3.4 Workspace management . 97

8.4 Remote File Manager . 98

8.5 Runtime configuration variables . 99

8.6 Git interface . 104

8.7 Code auto-completion . 104

8.8 Script configuration . 104

8.9 Remote path checker . 105

8.10 Auto-deployment, local execution and debugging . 105

8.11 Error Detection and Recovery . 105

8.12 Data Persistence . 106

8.13 Concurrency and Synchronization . 106

9 Testing 107

9.1 IDE . 107

CONTENTS ix

9.1.1 Test Goals . 107

9.1.2 Unit Testing . 108

9.1.3 System Testing . 108

9.1.4 Usability Testing . 108

9.1.5 Test Specification . 108

9.2 Test Results . 114

9.2.1 Unit Test Results . 114

9.2.2 Usability Test Results . 115

9.3 Hive Patches . 116

9.4 Summary . 116

10 Conclusion 118

10.1 Overview . 118

10.2 Project Outcome . 121

10.3 Future Work . 122

10.4 Summary of Thesis Achievements . 122

Appendices 123

A Legend: script abbreviations 124

B Scripts, Logical Plans, Physical Plans, MR Plans 126

C Hive codebase issues 135

D Java code optimization test cases. 145

E Static Analysis Results 153

F Unit Test Results 161

G Usability Test Scenarios 165

H Usability Questionnaire 168

Bibliography 175

x

List of Tables

2.1 The percentage (in terms of real time) that Pig is faster than Hive when performing

arithmetic operations . 15

2.2 The percentage (in terms of real time) that Pig is faster than Hive when filtering

10% of the data . 15

2.3 The percentage (in terms of real time) that Pig is faster than Hive when filtering

90% of the data . 15

2.4 The percentage (in terms of real time) that Pig is faster than Hive when joining

two datasets . 16

4.1 TPC-H benchmark schema for the part table as per the TPC-H specification [18]. . 25

4.2 TPC-H benchmark schema for the supplier table as per the TPC-H specification [18]. 25

4.3 TPC-H benchmark schema for the partsupp table as per the TPC-H specification

[18]. 25

4.4 TPC-H benchmark results for Hive using 6 trials (time is in seconds, unless indicated

otherwise). 28

4.5 TPC-H benchmark results for Hive using 6 trials. 29

4.6 TPC-H benchmark results for Pig using 6 trials (time is in seconds, unless indicated

otherwise). 31

4.7 TPC-H benchmark results for Pig using 6 trials. 32

5.1 The percentage (in terms of real time) that Pig is faster than Hive when performing

arithmetic operations . 42

xi

xii LIST OF TABLES

5.2 Summary of issues found within the Pig and Hive codebase. 51

9.1 Test Hardware Configuration. 109

9.2 Test Hardware Configuration. 112

9.3 Test Hardware Configuration. 114

C.1 All issues found within the Hive codebase. 136

C.2 All issues found within the Hive codebase. 137

C.3 All issues found within the Hive codebase. 138

C.4 All issues found within the Hive codebase. 139

C.5 All issues found within the Hive codebase. 140

C.6 All issues found within the Hive codebase. 141

C.7 All issues found within the Hive codebase. 142

C.8 All issues found within the Hive codebase. 143

C.9 All issues found within the Pig codebase. 144

E.1 The Pig codebase: classes mapped to the number of optimization issues (in ascending

order). 154

E.2 The Pig codebase: classes mapped to the number of optimization issues (in ascending

order). 155

E.3 The Pig codebase: classes mapped to the number of optimization issues (in ascending

order). 156

E.4 The Hive codebase: classes mapped to the number of optimization issues (in ascend-

ing order). 157

E.5 The Hive codebase: classes mapped to the number of optimization issues (in ascend-

ing order). 158

E.6 The Hive codebase: classes mapped to the number of optimization issues (in ascend-

ing order). 159

E.7 The Hive codebase: classes mapped to the number of optimization issues (in ascend-

ing order). 160

F.1 Unit Test Results. 161

xiii

xiv

List of Figures

4.1 The TPC-H schema as per the TPC-H specification 2.15.0 24

4.2 Real time runtimes of all 22 TPC-H benchmark scripts for Hive. 30

4.3 Real time runtimes of all 22 TPC-H benchmark scripts for Pig. 33

4.4 Real time runtimes of all 22 TPC-H benchmark scripts contrasted. 34

4.5 The runtime comparison between Pig and Hive (plotted in logarithmic scale) for the

Group By operator. Taken from the ISO Report[13]. 35

4.6 The total average heap usage (in bytes) of all 22 TPC-H benchmark scripts contrasted. 36

4.7 Real time runtimes contrasted with a variable number of reducers for join operations

in Pig. 38

4.8 Real time runtime contrasted with CPU runtime for the ISO Pig scripts run on

dataset size 5. 39

5.1 Pig logical plan for the script arithmetic.pig . 47

5.2 Summary of the issues found with the Pig codebase. 50

5.3 Summary of the issues found with the Hive codebase. 52

5.4 Hive - number of issues per 100 lines of code . 53

5.5 Pig - number of issues per 100 lines of code . 54

5.6 Comparison of the number and types of optimization issues found in the Pig and

Hive codebases. 60

5.7 Hive codebase mistake categories . 68

xv

5.8 Pig codebase mistake categories . 69

5.9 The number of optimization issues in the Pig and Hive codebases over time. Note

that the x-axis should be read as version numbers. For example, 1.0 refers to version

0.1.0, 11.1 refers to version 0.11.1 . 74

5.10 The number of optimization issues as well as the number of lines of code (LOC) in

the Pig and Hive codebases over time. Note that the x-axis should be read as version

numbers. For example, 1.0 refers to version 0.1.0, 11.1 refers to version 0.11.1 75

7.1 AutoPig component structure. 83

7.2 AutoPig’s user interface. 90

8.1 Renaming a variable. 97

8.2 The workspace tree displays projects and their contents. 98

8.3 The HDFS file manager as a Netbeans plugin. 100

8.4 The HDFS file manager as a Netbeans plugin. 101

B.1 Explanation of Pig TPC-H script q21 suppliers who kept orders waiting.pig 133

B.2 Explanation of Pig TPC-H script q22 global sales opportunity.pig 134

xvi

Chapter 1

Introduction

Apache Hadoop is an open-source distributed data processing framework derived from Google’s

BigTable. Its purpose is to facilitate the processing of large volumes of data over many machines

and has been adopted by many large corporations1 including Yahoo!, Google and Facebook.

Despite its popularity, the Hadoop user experience is still plagued by difficulties. The Pig and Hive

codebases are in their infancy. Development can be cumbersome. No mature Pig/Hive develop-

ment tools or IDEs exist. Users are often faced with the question whether to use Pig or Hive and

no up-to-date scientific studies exist to help them answer this question. In addition, performance

differences between Pig and Hive are not really well understood and not much literature in the

field exists which examines these performance differences. This project proposes solutions towards

improving this ”big data user experience”. This means answering a range of questions such as how

one can deal with big data more effectively2, identify the challenges in dealing with big data (both

in terms of development and configuration) and improving this experience. How can we make the

big data experience better both in terms of usability and performance?

1.1 Motivation and Objectives

The project’s deliverables are subdivided into four steps:

1In fact, it possibly is the most widely used distributed data processing framework at the moment
2Within a Hadoop setting

1

2 Chapter 1. Introduction

1. Development Environment - To develop a toolset that allows for more effective development

when using Pig and Hive. It should aid the benchmarking process by allowing for the generation of

benchmark datasets and result analysis and automate mundane development tasks such as script

deployment, file transfer to and from the Hadoop filesystem, script development, job termination

notification, error detection, debugging and script scheduling.

2. Advanced benchmarking - Run benchmarks similar to those presented in the individual

study option, however using more complex datasets, varying the number of map tasks and trying

different schedulers. The explicit aim of this should be to determine a) the root cause of the per-

formance differences between Pig and Hive and b) discover optimal cluster configuration in terms

of the type of schedulers to use, the ratio of map and reduce tasks per job etc. That is: Which

scheduler is best? What are the different schedulers good at? Given the cluster, what should the

ratio of map and reduce tasks be? Currently it appears as though Hive is less efficient than Pig;

is there a way of making Hive scripts more efficient? How and based on what should I choose a

specific scheduler? Hadoop schedulers, such as the fair schedulers, seem to be designed for large

clusters (that is, clusters containing hundreds of nodes)[6], therefore, strategies such as waiting (to

be discussed in more detail in section ?? may not work well in small to medium sized clusters. For

example, Zaharia et al show that in large clusters, jobs finish at such a high rate that resources

can be reassigned to new jobs without having to kill old jobs (more on this later)[6]. Can the same

be said for small to medium sized clusters? Why is it that previous benchmarks carried out by

the author (see 2.4 showed that Pig outperformed Hive? What is it that the Pig compiler does

differently to Hive? What results do we get if we vary other factors (such as io.sort.mb)?

3. Analyse the Pig and Hive codebase - Providing that the performance differences discovered

as part of earlier research hold, how can they be explained? Can they be attributed to differences

in the logical, physical or map-reduce plans? What about the map-reduce plans? Does either

codebase contain performance bottlenecks or security issues? Can these be proven experimentally?

What about overall code quality, design and structure? Which codebase is easier to maintain?

Which is more prone to errors? How mature are the codebases really?

4. Knowledge integration - In essence, this answers the question as to how the big data expe-

rience can be improved. This involves developing a way to utilize the knowledge gathered in steps

1.2. Report structure 3

2, 3 and 4, combine it with the developed IDE (named ”AutoPig”) and make recommendations as

to how the Pig and Hive codebase may be improved upon. Are there any optimization recommen-

dations that should be followed? Can these optimizations be demonstrated to be effective? Are

there any specific design recommendations that should be followed? Can any of the optimizations

be implemented?

1.2 Report structure

This document is divided into ten chapters:

Chapter 2

This chapter begins by introducing fundamental terminology to the reader, and then moves on

to discussing existing literature and outlining the project motivation. The chapter concludes

by summarizing the factors that could contribute towards improving big data development

environments and cluster utilization.

Chapter 3

This chapter analyses the problems faced by the system’s development and proposes suitable

solutions. It focuses on the three distinct types of challenges that, if overcome, will improve

the way we deal with big data.

Chapter 4

This chapter describes the experimental setup and discusses relevant problems and potential

shortcomings. It presents the benchmark results and discusses the causes for any differences.

Chapter 5

This chapter compares and contrasts the logical, physical and map-reduce plans for Pig and

Hive. It then moves on to analyse the codebases, identify short comings and illustrates

concrete recommendations to fix these shortcomings.

Chapter 6

This chapter briefly presents the issues associated with developing an IDE.

Chapter 7

This chapter outlines the system’s architecture and discusses the employed design strategies.

4 Chapter 1. Introduction

The chapter begins by giving an overview of the system’s primary components and then

elaborates on the project’s internal packet structure. It then describes the development

process’ design strategies (such as the type of design patterns used, the prevision of error

handling etc) and finishes by discussing the system’s UI.

Chapter 8

This chapter describes, in detail, the implementation of the system’s core components. It

utilizes pseudocode, Java code snippets, flowchart diagrams and screenshots where applicable.

Chapter 9

This chapter analyses the system in terms of validity, correctness and usability. It outlines

four levels of testing (Unit Testing, System Testing, Stress Testing and Usability Testing),

describes the test designs for each level and concludes by presenting their results.

Chapter 10

This chapter provides a summary of the project and begins by outlining and reviewing the

key project components. The chapter then moves on to re-iterating the project’s outcome,

discusses the project’s future research potential and concludes by proposing a set of future

project improvements.

1.3 Statement of Originality

In signing this declaration, you are confirming, in writing, that the submitted work is your own

original work, unless clearly indicated otherwise, in which case, it has been fully and properly

acknowledged.

I hereby declare that:

− this is all my own work, unless clearly indicated otherwise, with full and proper accreditation;

− with respect to my own work: none of it has been submitted at any educational institution

contributing in any way towards an educational award;

− with respect to another’s work: all text, diagrams, code, or ideas, whether verbatim, para-

phrased or otherwise modified or adapted, have been duly attributed to the source in a

scholarly manner, whether from books, papers, lecture notes or any other student’s work,

whether published or unpublished, electronically or in print.

1.4. Publications 5

Name: Benjamin Jakobus

Signed:

Date:

1.4 Publications

Publications here.

Chapter 2

Background Theory

2.1 Introduction

2.2 Literature Survey

2.2.1 Developmet tools, IDE plugins, text editors

There exist a wide variety of development tools, IDE plugins and text editor plugins for writing Pig

and Hive scripts. However none provide the capabilities needed by the benchmarking application

proposed in section ??. In fact, a majority of the existing tools are not quite mature enough to

allow for effective development. What follows is a list of text editor and IDE plugins.

• PigPen (Eclipse Plugin)

• TextMate Plugin

• Vim Plugin

• PigEditor (Eclipse Plugin)

• CodeMirror: Pig Latin mode (online Pig editor)

Initial websearches returned no useful Hive QL editors.

6

2.3. Schedulers 7

2.3 Schedulers

To date, several Hadoop schedulers have been developed. Although smaller, less well known sched-

ulers may exist, the most notable schedulers are:

2.3.1 FIFO scheduler

This is the default, and most basic of schedulers. It basically consists of a FIFO queue of pending

jobs. As a node completes a task, it notifies the scheduler that it has an empty task slot. The

scheduler then assigns tasks in the following order: failed tasks are chosen first. If no failed tasks

exist, non-running tasks are assigned. If neither failed nor non-running tasks exist, the scheduler

uses ”speculative execution” to choose a task to assign.[4] That is, it monitors the progress of

individual tasks and assigns them a progress score. This score ranges between 0 and 1. The

progress score for a map task is simply the fraction of input data read. For a reduce task, each of

the following phases accounts for one third of the score:

1. The fraction of data processed during the copy phase

2. The fraction of data processed during the sort phase

3. The fraction of data processed during the reduce phase

As stated by [4]:

Hadoop looks at the average progress score of each category of tasks (maps and reduces)

to define a threshold for speculative execution: When a task’s progress score is less than

the average for its category minus 0.2, and the task has run for at least one minute, it

is marked as a straggler. All tasks beyond the threshold are considered ”equally slow,”

and ties between them are broken by data locality. The scheduler also ensures that at

most one speculative copy of each task is running at a time.

Note that the FIFO principle still contributes to the selection process: that is, jobs submitted

earlier do still take priority over jobs submitted later.

8 Chapter 2. Background Theory

One problem with the aforementioned calculation of progress score is that it only works well within

a homogeneous environment. That is, an environment in which all nodes use the same hardware

and can process data at the same rate. To allow for effective scheduling within a heterogeneous

environment, the LATE, algorithm developed in 2008 by Zaharia et al at the University of Cal-

ifornia, Berkeley, was introduced. LATE, short for (Longest Approximate Time to End), is used

when running Map-Reduce jobs within a heterogeneous environment[4] since the original scheduler

rested on the following assumptions[4]:

1. Nodes can perform work at roughly the same rate.

2. Tasks progress at a constant rate throughout time.

3. There is no cost to launching a speculative task on a node that would otherwise

have an idle slot.

4. A task’s progress score is representative of fraction of its total work that it has

done. Specifically, in a reduce task, the copy, sort and reduce phases each take

about 1/3 of the total time.

5. Tasks tend to finish in waves, so a task with a low progress score is likely a straggler.

6. Tasks in the same category (map or reduce) require roughly the same amount of

work.

Given a heterogeneous environment, assumptions 1 and 2 may not hold (since different nodes may

have different hardware) which resulted in Hadoop falsely identifying correct nodes as being faulty

and hence not allocating them any work. LATE alleviates this problem by allowing for different

pluggable time estimation methods, the default of which measures the progress rate of a given task

using the simple formula:

ProgressScore

T

where T is the amount of time the task has been running for.

The ProgressScore is then used to predict the amount of time it takes for the task to complete:

1− ProgressScore

ProgressRate

2.3. Schedulers 9

The tasks with the best score are launched. However to achieve best results, LATE defines a ”slow

node threshold” - tasks are only submitted to nodes that are above this threshold.

As noted by the authors:

The LATE algorithm has several advantages. First, it is robust to node heterogeneity,

because it will relaunch only the slowest tasks, and only a small number of tasks. LATE

prioritizes among the slow tasks based on how much they hurt job response time. LATE

also caps the number of speculative tasks to limit contention for shared resources. In

contrast, Hadoop’s native scheduler has a fixed threshold, beyond which all tasks that

are ”slow enough” have an equal chance of being launched. This fixed threshold can

cause excessively many tasks to be speculated upon. Second, LATE takes into account

node heterogeneity when deciding where to run speculative tasks.

2.3.2 Fair scheduler

As the name implies, this scheduler schedules jobs in such a way that each receive an equal share

of the available resources. Developed through a collaboration between Facebook, Yahoo! and the

University of California, the scheduler was introduced with Hadoop version 0.21[6]. In essence, the

fair scheduler’s primary design goal is to allow for cluster sharing, ensuring that smaller jobs make

progress even in the presence of large jobs without actually starving the large job. As discussed

above, this is an aspect that the FIFO scheduler does not necessarily allow for.[5].

Hadoop’s Map-Reduce implementation was conceived for batch jobs [6] and as such sharing the

cluster between different users, organizations or processes was not an inherent design consideration.

However as Hadoop became more widely adopted, sharing became an ever more prevalent use-case

which resulted in the inevitable conflict between data locality and fairness. That is, how can

one ensure that all users get an equal (or allocated) share of the system whilst at the same time

minimizing network overhead by ensuring that jobs are run on the nodes that contain their input

data. Zaharia et al discuss present a solution to this problem in their 2010 paper ”Delay Scheduling:

A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling”[6], which resulted

in the implementation of the ”fair scheduler”. Using Facebook’s 600-node Hadoop cluster as a test

bed, the authors begin by asking the question as to what should be done when submitting a new

10 Chapter 2. Background Theory

job to the scheduler if not enough resources exist to execute the job. Should running tasks be killed

to allow the new job to run? Or should the new job wait until enough tasks finish execution? At

first, both approaches seem undesirable[6]:

Killing reallocates resources instantly and gives control over locality for the new jobs,

but it has the serious disadvantage of wasting the work of killed tasks. Waiting, on the

other hand, does not have this problem, but can negatively impact fairness, as a new

job needs to wait for tasks to finish to achieve its share, and locality, as the new job

may not have any input data on the nodes that free up.

Zaharia et al decide that waiting is the better approach after having shown that in large clusters

jobs finish at such a high rate that resources can be reassigned to new jobs without having to kill

old jobs. However pre-emption is included in the scheduler such that ”if a pool’s minimum share

is not met for some period of time”, the scheduler may ”kill tasks from other pools to make room

to run.”[1].

Next, the authors address the problem of locality, since [6]

[...] a strict implementation of fair sharing compromises locality, because the job to be

scheduled next according to fairness might not have data on the nodes that are currently

free.

An algorithm dubbed ”delay scheduling” resolves this issue by, as is implied in its name, waiting

for a fixed period of time until a job on the desired node completes execution (if not, then the job

is allocated to a different node).

To summarize, fair scheduling is achieved by creating a set of pools (a pool represents a user or a

user group). Pools are configured with the number of shares, constraints on number of jobs and

guaranteed minimum shares and the scheduler then uses a combination of waiting and pre-emption

to allocate the job to a node with emphasis on data locality.

2.3. Schedulers 11

2.3.3 Capacity scheduler

Basically a more fine-grained version of the fair scheduler designed to impose access restrictions

and limit the waste of excess capacity . It differs to the aforementioned fair scheduler in that in

that a) it is designed for large clusters that are shared by different organizations, b) developed by

Yahoo!, c) instead of pools, it uses configurable queues. Jobs are submitted to a queue[3] and each

queue can be configured to use a certain number of map and reduce slots, guaranteed capacity, pri-

oritization etc. Queues are also monitored, so that when a queue isn’t using its allocated capacity,

the excess capacity is temporarily allocated to other queues.[2]

The capacity scheduler also supports pre-emption. Pre-emption with the capacity scheduler differs

to fair scheduling pre-emption in that it uses priorities as opposed to time.

Furthermore, the capacity scheduler supports access controls[2]:

Another difference is the presence of strict access controls on queues (given that queues

are tied to a person or organization). These access controls are defined on a per-queue

basis. They restrict the ability to submit jobs to queues and the ability to view and

modify jobs in queues.

Capacity scheduler queues can be configured using the following properties:

• Capacity percentage

• Maximum capacity

• Priorities enabled / disabled

Queue properties can be changed at runtime.

2.3.4 Hadoop on Demand (HOD)

[2]

12 Chapter 2. Background Theory

The HOD approach uses the Torque resource manager for node allocation based on

the needs of the virtual cluster. With allocated nodes, the HOD system automatically

prepares configuration files, and then initializes the system based on the nodes within

the virtual cluster. Once initialized, the HOD virtual cluster can be used in a rela-

tively independent way. HOD is also adaptive in that it can shrink when the workload

changes. HOD automatically de-allocates nodes from the virtual cluster after it detects

no running jobs for a given time period. This behavior permits the most efficient use

of the overall physical cluster assets.

The HOD scheduler is no longer actively supported has never achieved wide-spread use due to the

fact that it violated data locality, making network bandwidth a serious bottleneck.[10]

As a side note, Seo et al addressed the general issue of data locality by implementing the High

Performance MapReduce Engine (HPMR, available as part of Hadoop 0.18.3+) which pre-fetches

and pre-shuffles data in an effort to reduce the execution time of a map-reduce job - an effort which

was highly successful and reduces overall execution time by up to 73%[7].

The idea of pre-fetching is to reduce network traffic and minimize I/O latency, whilst pre-shuffling

aims to reduce the overhead produced by the actual shuffling phase by analysing the input split

and predicting the target reducer where the key-value pairs are partitioned[7].

2.3.5 Deadline Constraint Scheduler

The deadline constraint scheduler is based on the following problem statement[9]:

Can a given query q that translates to a MapReduce job J and has to process data of

size σ be completed within a deadline D, when run in a MapReduce cluster having N

nodes with Nm map task slots, Nr reduce task slots and possibly k jobs executing at

the time.

Rao and Reddy review the deadline constraint scheduler in [8]. The basic concept behind this

scheduler is to increase system utilization whilst at the same time meeting given deadlines. The

scheduler first constructs a job execution cost model using a variety of system properties such as

the size of the input data, map-reduce runtimes and data distribution. Next, it acquires deadlines

2.3. Schedulers 13

for a given job and then uses constraint programming to compute the best slot for the given job.

One disadvantage of this scheduler is that it assumes a homogeneous system - that is, one in wich

all nodes process data at an equal rate and that the data is processed in a uniform manner across all

nodes.[9] Of course such an assumption conflicts with data locality and may significantly increase

network overhead, possible to the point were network bandwidth becomes a serious bottleneck1

2.3.6 Priority parallel task scheduler

One shortcoming of the fair scheduler is that users cannot control and optimize their usage of

the given cluster capacity nor can they respond to run-time problems such as node slowdowns or

high network traffic. [10] Consequently, Sandholm and Lai[10] devised a scheduler that works on

economic principles: map-reduce slots are (dynamically) assigned costs, based on various factors

such as demand. Every user is assigned a ”spending budget” which in essence is the equivalent

to the fair scheduler’s minimum and maximum capacity. If a user wants to execute a job, he will

need to pay the corresponding ”price” for that job. As demand fluctuates, so does pricing, and

hence users can make more flexible and efficient decisions as to which job to run at what given time.

It should be noted that it appears as though the scheduler is still within its experimental stages -

at least at the time of publishing.

2.3.7 Intelligent Schedulers

At the moment, Apache is also developing two ”intelligent” schedulers, MAPREDUCE-1349

and MAPREDUCE-1380. The former is a ”learning scheduler” whose purpose is to maintain

a given level of CPU utilization, network utilization and/or disk utilization under diverse and dy-

namic workloads.

The latter, MAPREDUCE-1380, is a so called ”adaptive scheduler” whose aim is to dynamically

adjust a job’s resources (CPU, memory usage) based on some pre-defined criterion.

1This statement is a personal speculation by me and is not based on hard evidence.

14 Chapter 2. Background Theory

It should be noted that, as discussed by Rao and Reddy[8], much research is currently done on

making schedulers resource aware. That is, current schedulers all use static configuration. Instead,

it may be beneficial to have ”intelligent” approaches, such as the aforementioned MAPREDUCE-

1380 and MAPREDUCE-1349.

In their paper, Rao and Reddy discuss two possible mechanisms to make schedulers ”smarter”.

The first is to have the task tracker dynamically compute slot configurations using some resource

metric. The second is to borrow the concept of advertisements and ”markets” from multi-agent

systems: nodes would ”advertise” their ”resource richness” and, instead of allocating jobs to the

next available node, the job tracker would use these advertisements together with predicted runtimes

to allocate the job to the most suitable node.[8]

2.4 Benchmark Overview

Note: The following is a summary of the author’s ISO. Tables and figures stem from

this ISO report.[13]

The essence of this dissertation builds on early work carried out by the author as part of an inde-

pendent study option (ISO) titled ”Data Management in Big Data”. The aim of this project was

to examine existing big data solutions and determine which performed best (if at all). Specifically,

existing literature in the field was reviewed and the resulting map-reduce jobs produced by the big

data languages Pig Latin and Hive QL were benchmarked and compared to each other as well as

contrasted to PostgreSQL.

Of specific interest was the finding that Pig consistently outperformed Hive (with the exception of

grouping data - see tables 5.1, 2.2, 2.3 and 2.4). Specifically[13]

• For arithmetic operations, Pig is 46% faster (on average) than Hive

• For filtering 10% of the data, Pig is 49% faster (on average) than Hive

• For filtering 90% of the data, Pig is 18% faster (on average) than Hive

• For joining datasets, Pig is 36% faster (on average) than Hive

2.4. Benchmark Overview 15

This conflicted with existing literature that found Hive to outperform Pig: In 2009, Apache’s own

performance benchmarks[14] found that Pig was significantly slower than Hive. These findings

were validated in 2011 by Stewart and Trinder et al[17][13] who also found that Hive map-reduce

jobs outperformed those produced by the Pig compiler and that Hive was in fact only fractionally

slower than map-reduce jobs written using Java.

Dataset size % Pig being faster

1 0.061%
2 3%
3 32%
4 72%
5 83%
6 85%

Avg.: 46%

Table 2.1: The percentage (in terms of real time) that Pig is faster than Hive when performing
arithmetic operations

Dataset size % Pig being faster

1 -1.8%
2 36%
3 25%
4 68%
5 82%
6 86%

Avg.: 49%

Table 2.2: The percentage (in terms of real time) that Pig is faster than Hive when filtering 10%
of the data

Dataset size % Pig being faster

1 -9%
2 0.4%
3 3%
4 25%
5 41%
6 50%

Avg.: 18.4%

Table 2.3: The percentage (in terms of real time) that Pig is faster than Hive when filtering 90%
of the data

16 Chapter 2. Background Theory

Dataset size % Pig being faster

1 -3%
2 12%
3 25%
4 71%
5 76%
6 -

Avg.: 36%

Table 2.4: The percentage (in terms of real time) that Pig is faster than Hive when joining two
datasets

Furthermore, the ISO confirmed the expectation that relational database management systems are

always a better choice (in terms of runtime), providing that the data fits[13]. The benchmarks

proving this argument were supported by earlier experiments carried out at the University of Tunis

in which researchers applied TPC-H benchmarks to compare Oracle SQL Engine to Apache’s Pig

(2012)[15]. These findings came of no surprise as a study conducted in 2009 by Loebman et al[16]

using large astrophysical datasets already produced the same conclusion.

As part of the ISO’s conclusion, it was hypothesized that this initial performance difference be-

tween Pig and Hive were due to bugs in the Pig compiler as well as issues with the compiler’s logical

plan[13]. Upon examining Apache’s Pig repository, two releases stood out:

29 July, 2011: release 0.9.0

This release introduces control structures, changes query parser, and performs semantic cleanup.

24 April, 2011: release 0.8.1

This is a maintenance release of Pig 0.8, contains several critical bug fixes.

Closer inspection found that the following tickets appeared to account for the aforementioned prob-

lems:

PIG-1775: Removal of old logical plan

PIG-1787: Error in logical plan generated

PIG-1618: Switch to new parser generator technology.

PIG-1868: New logical plan fails when I have complex data types

PIG-2159: New logical plan uses incorrect class for SUM causing

2.4. Benchmark Overview 17

As will be discussed in chapter 5, this hypothesis was largely correct.

The ISO also found that[13]

[...] the number of map tasks cannot be set manually using either Hive or Pig. Instead,

the JobTracker calculates the number of map tasks based on the input, the number of

input splits and the number of slots per node (this is configured using Hadoop’s MapRed-

site.xml configuration file or by setting mapred.min.split.size amd mapred.max.split.size

inside your script. i.e. when changing these configuration options and keeping

them relative to the input, one can force both Hive and Pig to use a certain

number of map tasks) and the number of jobs already running on the cluster. There-

fore one can vary the number map tasks by manipulating the split sizes. The number of

reduce tasks are set in Hive this is using the set mapred.reduce.tasks=num tasks;

statement; in Pig one uses the PARALLEL keyword).

As seen in section ??, Hive allocates only 4 map tasks for the given dataset when using

the default configuration, whilst Pig’s translation into Map-Reduce results in 11 map

tasks. This appears to be the primary reason as to why Pig requires only 29% of the

time that it takes Hive to perform the JOIN on the two datasets (Pig has an average

real time runtime of 168.44 seconds; Hive on the other hand takes 581.25 seconds) as

fewer map tasks results in less parallelism.

Furthermore:

The map-reduce job produced by Hive also appears to be slightly less efficient than

Pig’s: Hive requires an average total CPU time of 824.23 seconds whilst Pig requires

796.3 seconds (i.e. Pig is 3% faster than Hive in terms of CPU time).

Of interest is also the fact that Hive is 28% faster at mapping (241.51 seconds (CPU

time) on average as opposed to Pig’s 337.12 seconds (CPU time)), yet 26% slower at

reducing (622.06 seconds (CPU time) on average) than Pig (458.77 seconds (CPU time)

on average).

18 Chapter 2. Background Theory

When forced to equal terms (that is, when forcing Hive to use the same number of

mappers as Pig), Hive remains 67% slower than Pig when comparing real time runtime

(i.e. it takes Pig roughly 1/3 of the time to compute the JOIN (as seen in table ??)).

That is, increasing the number of map tasks in Hive from 4 to 11 only resulted in a 13%

speed-up. [...]

It should also be noted that the performance difference between Pig and Hive does not

scale linearly. That is, initially there is little difference in performance (this is due to

the large start-up costs). However as the datasets increase in size, Hive becomes con-

sistently slower (to the point of crashing when attempting to join large datasets).

Chapter 3

Problem Analysis and Discussion

Only over the past 3 years or so have big data technologies caught on with main stream tech

companies. Before then, the likes of Hadoop (conceived in 2005) and Cassandra (2009) were used

primarily by just a small handful of large corporations, such as Google and Yahoo, to solve very

domain specific problems. Fast forwarding to 2013, this means that the big data environment is

still living its teenage years and consequently exhibits many immature behaviour patterns: erratic

performance difference, frequent and drastic changes to codebases, incomplete development tools,

few scientific studies examining performance differences and poorly understood codebases. This

begs the question as to how the situation can be improved upon.

Naturally the scope of this dissertation is limited, and therefore so are the number of issues that

can be addressed. Careful consideration suggests that there are three distinct types of challenges

that, if overcome, will improve the way we deal with big data:

• Language - More specifically, language choice when it comes to writing Hadoop jobs. Which

is better: Pig or Hive? And why? How can either be improved upon?

• Tools - The need for good development tools is crucial. How can development be made more

efficient?

• Configuration - How should Hadoop be configured? What types of schedulers are best?

What is the ratio for map and reduce tasks? So on, so forth.

19

20 Chapter 3. Problem Analysis and Discussion

3.1 Unanswered questions - How should we configure Hadoop?

The independent study option presented in section 2.4 produced interesting results which resulted

in further questions that need to be answered before the project’s core question of how the overall

Hadoop experience can be improved, can be answered. Specifically, the following issues need to be

addressed:

• What initially caused Hive to outperform Pig[17][15][14]?

• Given previous benchmark results[13], how do the logical and physical plans generated by

Pig and Hive differ? What makes Pig outperform Hive?

• How do Pig and Hive perform as other Hadoop properties are varied (e.g. number of map

tasks)?

• Do more complex datasets and queries (e.g. TPC-H benchmarks) yield the same results than

the ISO?

• How does real time runtime scale with regards to CPU runtime?

• What should the ratio of map and reduce tasks be?

Having answered these questions, the question as to which scheduler is best needs to be answered.

To this end, TPC-H benchmarks would be run using different schedulers under different conditions.

What are the different schedulers good at? How and based on what should I choose a specific sched-

uler?

If the benchmark results show significant performance differences (as is to be expected given the

benchmarking outcome observed as part of the ISO), how can these differences be rectified? Is

there a way of making the cluster more efficient? What causes the differences in runtime (this

intersects with section 3.2?

One significant obstacle in answering these questions is time: running the TPC-H benchmarks on

a relatively small dataset (300GB) takes approximately 3 days. Consequently mistakes in analysis,

lost results or incorrect setup may waste large amounts of time.

3.2. How do Pig and Hive compare? How can the two projects be improved upon? 21

3.2 How do Pig and Hive compare? How can the two projects be

improved upon?

As discussed in section 2.4 there exist significant performance difference between Pig and Hive. To

come to the bottom of this, a systematic dissection of both projects needs to be undertaken. First

we must confirm initial results presented in [13] by running more advanced benchmarks. If results

coincide, as is to be expected, we must take a top-to-bottom approach by comparing the logical,

physical and map reduce plans generated by both compilers. How do they differ semantically (if at

all)? Are there any logical differences in how operations are interpreted? Do the order or types of

map-reduce operations differ? And so on. Next (and this is by far the largest task), the codebase

of Apache Pig and Apache Hive needs to be scrutinized. Naturally, the manner in which this is

done depends on the findings of the logical, physical and map-reduce plan analysis (for example, if

significant differences in the logical plans exist it follows that emphasis is placed on examining the

logical plan generator) however the overall approach should consider flawed code / bugs, general

design issues, areas in which the code could be made more efficient, complexity, codesize etc.

Objective metrics for code quality should be used, such as n-path complexity, cyclomatic complexity,

number of issues per lines of code (e.g. number of issues per 100 lines of code) contrasted against

well-known, mature software projects. The primary challenges in answering these questions are that

a) the Pig and Hive codebases are very large and complex and b) poorly documented. Together

they consist of over 342,000 lines of code. Analysing and examining such large codebases will

require a considerable amount time.

3.3 How can we improve the overall development experience?

Last but not least: what were some of the common problems and challenges when developing and

running the benchmarks? Did suitable tools for overcoming these challenges exist? If not, why?

How can Hadoop (i.e. Pig and Hive) development be streamlined and made more efficient? The

development of an IDE is quite complex - can it be accomplished within a reasonable amount of

time? The fact that many mature and usable IDEs for dozens of different languages exist should

be used as an advantage as one clearly knows what features are desirable, what type of UI is most

effective and what functionality is useful but missing in existing IDEs. Nevertheless, developing an

IDE from scratch will be challenging.

Chapter 4

Advanced Benchmarks

As previously noted, the TPC-H benchmark was used to confirm the existence of a performance

difference between Pig and Hive. TPC-H is a decision support benchmark published by the Trans-

action Processing Performance Council [12] (Transaction Processing Performance Council (TPC)

is an organization founded for the purpose to define global database benchmarks). As stated in the

official TPC-H specification[18]

[TPC-H] consists of a suite of business oriented ad-hoc queries and concurrent data

modifications. The queries and the data populating the database have been chosen

to have broad industry-wide relevance while maintaining a sufficient degree of ease of

implementation. This benchmark illustrates decision support systems that

• Examine large volumes of data;

• Execute queries with a high degree of complexity;

• Give answers to critical business questions.

The performance metrics used for these benchmarks are the same than those used as part of the

ISO [13] benchmarks:

• Real time runtime (using the Unix time command)

• Cumulative CPU time

• Map CPU time

• Reduce CPU time

22

4.1. Benchmark design 23

In addition, 4 new metrics were added:

• Number of map tasks launched

• Number of reduce tasks launched

• HDFS reads

• HDFS writes

The TPC-H benchmarks differ to the ISO benchmarks and that a) they consist of more queries

and b) the queries are more complex and intended to simulate a realistic business environment.

4.1 Benchmark design

4.1.1 Test Data

As stated in the ISO report[13], the original benchmarks attempted to replicate the Apache Pig

benchmark published by the Apache Foundation on 11/07/07[?] which served as a baseline to com-

pare major Pig Latin releases. Consequently, the data was generated using the generate data.pl

perl script available for download on the Apache website.[?] which produced tab delimited text files

with the following schema[13]

name - string age - integer gpa - float

Six separate datasets were generated1 in an order to measure the performance of, arithmetic, group,

join and filter operations. The datasets scaled scaled linearly, whereby the size equates to 3000 *

10n: dataset size 1 consisted of 30,000 records (772KB), dataset size 2 consisted of 300,000 records

(6.4MB), dataset size 3 consisted of 3,000,000 records (63MB), dataset size 4 consisted of 30 million

records (628MB), dataset size 5 consisted of 300 million records (6.2GB) and dataset size 6 consisted

of 3 billion records (62GB).

One obvious downside to the above datasets is their simplicity: in reality, databases tend to be

much more complex and most certainly consist of tables containing more than just three columns.

Furthermore, databases usually don’t just consist of one or two tables (the queries executed as

part of the original benchmarks[13] involved 2 tables at most. In fact all queries, except the join,

1These datasets were joined against seventh dataset consisting of 1,000 records (23KB)

24 Chapter 4. Advanced Benchmarks

involved only 1 table).

The benchmarks produced within this report address these shortcomings by employing the much

richer TPC-H datasets generated using the TPC dbgen utility. This utility produces 8 indi-

vidual tables (customer.tbl consisting of 15,000,000 records (2.3GB), lineitem.tbl consisting of

600,037,902 records (75GB), nation.tbl consisting of 25 records (4KB, orders.tbl consisting of

150,000,000 records (17GB), partsupp.tbl consisting of 80,000,000 records (12GB), part.tbl consist-

ing of 20,000,000 records (2.3GB), region.tbl consisting of 5 records (4KB), supplier.tbl consisting

of 1,000,000 records (137MB)) as illustrated in figure 4.1.

Figure 4.1: The TPC-H schema as per the TPC-H specification 2.15.0

As per the TPC-H specification, the dataset schema is as follows[18]:

4.1. Benchmark design 25

Column Name Datatype Requirements

P PARTKEY identifier
P NAME variable text, size 55
P MFGR fixed text, size 25
P BRAND fixed text, size 10
P TYPE variable text, size 25
P SIZE integer
P CONTAINER fixed text, size 10
P RETAILPRICE decimal
P COMMENT variable text, size 23
Primary Key P PARTKEY

Table 4.1: TPC-H benchmark schema for the part table as per the TPC-H specification [18].

Column Name Datatype Requirements

S SUPPKEY identifier
S NAME fixed text, size 25
S ADDRESS variable text, size 40
S NATIONKEY Identifier
S PHONE fixed text, size 15
S ACCTBAL decimal
S COMMENT variable text, size 101
Primary Key S SUPPKEY
Foreign Key S NATIONKEY to N NATIONKEY

Table 4.2: TPC-H benchmark schema for the supplier table as per the TPC-H specification [18].

Column Name Datatype Requirements

PS PARTKEY Identifier
PS SUPPKEY Identifier
PS AVAILQTY integer
PS SUPPLYCOST Decimal
PS COMMENT variable text, size 199
Primary Key PS PARTKEY, PS SUPPKEY
Foreign Key PS PARTKEY to P PARTKEY
Foreign Key S SUPPKEY

Table 4.3: TPC-H benchmark schema for the partsupp table as per the TPC-H specification [18].

4.1.2 Test Cases

The TPC-H test cases consist of 22 distinct queries, each of which were designed to exhibit a high

degree of complexity, consist of varying query parameters and various types of access. They are

explicitly designed such that each query examines a large percentage of each table/dataset[18].

26 Chapter 4. Advanced Benchmarks

4.1.3 Test Setup

The ISO experiments whose results are quoted throughout this document were run on a cluster

consisting of 6 nodes (1 dedicated to Name Node and Job Tracker and 5 compute nodes). Each

node was equippted with a 2 dual-core Intel(R) Xeon(R) CPU @2.13GHz and 4 GB of memory.

Furthermore, the cluster had Hadoop 0.14.1 installed, configured to 1024MB memory and 2 map

+ 2 reduce jobs per node. Our experiment was run on a 32-node cluster (totalling 500 GB of

memory), with each node being equipped with an 8-core 2.70GHz Intel(R) Xeon(R))[13]. Several

modifications have been made to the cluster since then, which now consists of 9 hosts:

• chewbacca.doc.ic.ac.uk - 3.00GHz Intel(R) Core(TM)2 Duo CPU, 3822MiB system mem-

ory. Running Ubuntu 12.04.2 LTS, Precise Pangolin.

• queen.doc.ic.ac.uk - 3.20GHz Intel(R) Core(TM) i5 CPU, 7847MiB system memory. Run-

ning Ubuntu 12.04.2 LTS, Precise Pangolin.

• awake.doc.ic.ac.uk - 3.20GHz Intel(R) Core(TM) i5 CPU, 7847MiB system memory. Run-

ning Ubuntu 12.04.2 LTS, Precise Pangolin.

• mavolio.doc.ic.ac.uk - 3.00GHz Intel(R) Core(TM)2 Duo CPU, 5712MiB system memory.

Running Ubuntu 12.04.2 LTS, Precise Pangolin.

• zim.doc.ic.ac.uk - 3.00GHz Intel(R) Core(TM)2 Duo CPU, 3824MiB system memory. Run-

ning Ubuntu 12.04.2 LTS, Precise Pangolin.

• zorin.doc.ic.ac.uk - 2.66GHz Intel(R) Core(TM)2 Duo CPU, 3872MiB system memory.

Running Ubuntu 12.04.2 LTS, Precise Pangolin.

• tiffanycase.doc.ic.ac.uk - 2.66GHz Intel(R) Core(TM)2 Duo CPU, 3872MiB system mem-

ory. Running Ubuntu 12.04.2 LTS, Precise Pangolin.

• zosimus.doc.ic.ac.uk - 3.00GHz Intel(R) Core(TM)2 Duo CPU, 3825MiB system memory.

Running Ubuntu 12.04.2 LTS, Precise Pangolin.

• artemis.doc.ic.ac.uk - 3.20GHz Intel(R) Core(TM) i5 CPU, 7847MiB system memory.

Running Ubuntu 12.04.2 LTS, Precise Pangolin.

Both the Hive and Pig TPC-H scripts are available for download from the Apache website.

4.2. Implementation 27

As noted in sections 4.4 and 5.2, additional benchmarks were run to test Hive’s join operations

using two transitive self-join datasets consisting of 1,000 and 10,000,000 records (the scripts and

dataset generator used for this benchmark were provided by Yu Liu).

Section 4.6 presents additions to the ISO[13] benchmarks - the datasets and scripts used are iden-

tical to those presented in the ISO report.

Note: The Linux time utility was used to measure the average wall-cock time of each operation.

For other metrics (CPU time, heap usage, etc) the Hadoop logs were used.

4.2 Implementation

Bash scripts were written to automate the benchmarking and to re-direct the output to files (see

Appendix). At later stages, the IDE developed by the author (and discussed in chapters 6, 7 and

8) was used.

To reduce the size of this report, the TPC-H scripts are not included in the Appendix. The scripts

are available for download from: https://issues.apache.org/jira/browse/PIG-2397 (Pig Latin) and

https://issues.apache.org/jira/browse/PIG-2397 (Hive QL).

Additions to the ISO benchmarks were performed using the original ISO benchmark scripts and

datasets - see [13] for implementation details.

28 Chapter 4. Advanced Benchmarks

4.3 Results

This section presents the results for both Pig and Hive.

4.3.1 Hive (TPC-H)

Running the TPC-H benchmarks for Hive produced the following results:

Script Avg. run-
time

Std. dev. Avg. cu-
mulative
CPU time

Avg. map
tasks

Avg. re-
duce tasks

q1 623.64 26.2 4393.5 309 81
q2 516.36 3.94 2015 82 21
q3 1063.73 8.22 10144 402.5 102
q4 344.88 70.74 0 0 0
q5 1472.62 28.67 0 0 0
q6 502.27 7.66 2325.5 300 1
q7 2303.63 101.51 6 5 2
q8 1494.1 0.06 13235 428 111
q9 3921.66 239.36 48817 747 192
q10 1155.33 44.71 7427 416 103
q11 434.28 1.26 1446.5 59.5 15
q12 763.14 11.4 4911.5 380 82
q13 409.16 11.31 3157 93.5 24
q14 515.39 9.82 3231.5 322 80
q15 687.81 14.62 3168.5 300 80
q16 698.14 69.94 14 3 0
q17 1890.16 36.81 10643 300 80
q18 2147 38.57 5591 300 69
q19 1234.5 13.15 17168.5 322 80
q20 1228.72 36.92 91 13 3
q21 3327.84 16.3 10588.5 300 80
q22 580.18 26.86 158 14 0

Table 4.4: TPC-H benchmark results for Hive using 6 trials (time is in seconds, unless indicated
otherwise).

4.3. Results 29

Script Avg. map
heap us-
age

Avg. re-
duce heap
usage

Avg.total
heap us-
age

Avg. map
CPU time

Avg. re-
duce CPU
time

Avg. total
CPU time

q1 1428 57 1486 6225 2890 9115
q2 790 162 953 18485 13425 31910
q3 1743 241 1985 54985 22820 77805
q4 0 0 0 0 0 0
q5 0 0 0 0 0 0
q6 0 0 0 0 0 0
q7 561 174 737 3275 4285 7560
q8 1620 469 2092 31625 23975 55600
q9 1882 199 2082 18055 12585 30640
q10 3960 367 4328 268270 233640 501910
q11 1468 254 1722 60365 33730 94095
q12 1588 145 1733 5665 4565 10230
q13 1663 349 2013 134420 42070 176490
q14 1421 57 1478 5525 2180 7705
q15 0 0 0 0 0 0
q16 216 0 216 14435 0 14435
q17 0 0 0 0 0 0
q18 0 0 0 0 0 0
q19 1421 71 1493 5250 2395 7645
q20 0 0 0 0 0 0
q21 0 0 0 0 0 0
q22 1202 0 1202 159390 0 159390

Table 4.5: TPC-H benchmark results for Hive using 6 trials.

Note: script names were abbreviated. See appendix A for a mapping from abbreviation to actual

names.

30 Chapter 4. Advanced Benchmarks

Figure 4.2: Real time runtimes of all 22 TPC-H benchmark scripts for Hive.

4.3.2 Pig (TPC-H)

Running the TPC-H benchmarks for Hive produced the following results:

4.3. Results 31

Script Avg. run-
time

Std. dev. Avg. cu-
mulative
CPU time

Avg. map
tasks

Avg. re-
duce tasks

q1 2192.34 5.88 0 0 0
q2 2264.28 48.35 0 0 0
q3 2365.21 355.49 0 0 0
q4 1947.12 262.88 0 0 0
q5 5998.67 250.99 0 0 0
q6 589.74 2.65 0 0 0
q7 1813.7 148.62 0 0 0
q8 5405.69 811.68 0 0 0
q9 7999.28 640.31 0 0 0
q10 1871.74 93.54 0 0 0
q11 824.42 103.37 0 0 0
q12 1401.48 120.69 0 0 0
q13 818.79 104.89 0 0 0
q14 913.31 3.79 0 0 0
q15 878.67 0.98 0 0 0
q16 925.32 133.34 0 0 0
q17 2935.41 178.31 0 0 0
q18 4909.62 67.7 0 0 0
q19 8375.02 438.12 0 0 0
q20 2669.12 299.79 0 0 0
q21 9065.29 543.42 0 0 0
q22 818.79 14.74 0 0 0

Table 4.6: TPC-H benchmark results for Pig using 6 trials (time is in seconds, unless indicated
otherwise).

32 Chapter 4. Advanced Benchmarks

Script Avg. map
heap us-
age

Avg. re-
duce heap
usage

Avg.total
heap us-
age

Avg. map
CPU time

Avg. re-
duce CPU
time

Avg. total
CPU time

q1 3023 400 3426 187750 12980 200730
q2 3221 861 4087 69670 43780 113450
q3 1582 631 2218 110120 46090 156210
q4 633 363 999 1340 9190 10530
q5 3129 878 4010 56020 28550 84570
q6 0 0 0 0 0 0
q7 1336 372 1713 20410 12870 33280
q8 5978 882 6865 306900 162330 469230
q9 874 348 1222 2670 8620 11290
q10 0 0 0 0 0 0
q11 2875 807 3686 172670 46840 219510
q12 1016 751 1771 33880 49830 83710
q13 600 346 950 1740 9860 11600
q14 115 0 115 710 0 710
q15 2561 559 3123 67130 24960 92090
q16 3538 576 4116 606220 70250 676470
q17 375 174 551 5470 3740 9210
q18 965 385 1353 9090 13810 22900
q19 328 175 504 4700 5390 10090
q20 3232 858 4094 69820 48000 117820
q21 1668 486 2160 34440 16800 51240
q22 989 417 1409 20260 13080 33340

Table 4.7: TPC-H benchmark results for Pig using 6 trials.

Note: script names were abbreviated. See appendix A for a mapping from abbreviation to actual

names.

4.4. Hive vs Pig (TPC-H) 33

Figure 4.3: Real time runtimes of all 22 TPC-H benchmark scripts for Pig.

4.4 Hive vs Pig (TPC-H)

As shown in figure 4.5, Hive outperforms Pig in the majority of cases (12 to be precise). Their

performance is roughly equivalent for 3 cases and Pig outperforms Hive in 6 cases. At first glance,

this contradicts all results of the previous ISO experiments[13].

34 Chapter 4. Advanced Benchmarks

Figure 4.4: Real time runtimes of all 22 TPC-H benchmark scripts contrasted.

Upon examining the TPC-H benchmarks more closely, two issues stood out that explain this dis-

crepancy. The first is that after a script writes results to disk, the output files are immediately

deleted using Hadoop’s fs -rmr command. This process is quite costly and is measured as part

the real-time execution of the script (however the fact that this operation is expensive (in terms of

runtime) is not catered for). In contrast, the Hive QL scripts merely drop tables at the beginning

of the script - dropping tables is cheap as it only involves manipulating the meta-information on

the local filesystem - no interaction with the Hadoop filesystem is required. In fact, omitting the

recursive delete operation reduces runtime by about 2%. In contrast, removing DROP TABLE in Hive

does not produce any performance difference.

The aforementioned issue only accounts for a small percent of inequality. What causes the actual

performance difference is the heavy usage of the Group By operator in all but 3 TPC-H test scripts.

Recall from [13] that Pig outperformed Hive in all instances except when using the Group By

operator: when grouping data Pig was 104% slower than Hive[13].

4.4. Hive vs Pig (TPC-H) 35

Figure 4.5: The runtime comparison between Pig and Hive (plotted in logarithmic scale) for the
Group By operator. Taken from the ISO Report[13].

For example when running the TPC-H benchmarks for Pig, script 21 (q21 suppliers who kept orders waiting.pig)

had a real-time runtime of 9065.29 seconds. 41% (or 3748.32 seconds) were required to execute

the first Group By. In contrast, Hive only required 1031.23 seconds for the grouping of data. The

script grouped data 3 times:

-- This Group By took up 41% of the runtime

gl = group lineitem by l_orderkey;

[...]

fo = filter orders by o_orderstatus == ’F’;

[...]

ores = order sres by numwait desc, s_name;

36 Chapter 4. Advanced Benchmarks

Consequently, the excessive use of the Group By operator skews the benchmark results significantly.

Re-running the scripts whilst omitting the the grouping of data produces the expected results. For

example, running script 3 (q3 shipping priority.pig) whilst omitting the Group By operator signif-

icantly reduces the runtime (to 1278.49 seconds real time runtime or a total of 12,257,630ms CPU

time).

The fact that the Group By operator skews the TPC-H benchmark in favour of Apache Hive is

supported by further experiments: as noted in section 5.2 a benchmark was carried out on a

transitive self-join (the datasets consisted of 1,000 and 10,000,000 records. The scripts and dataset

generator used for this benchmark were provided by Yu Liu). The former took Pig an average of

45.36 seconds (real time runtime) to execute; it took Hive 56.73 seconds. The latter took Pig 157.97

and Hive 180.19 seconds (again, on average). However adding the Group By operator to the scripts

turned the tides: Pig is now significantly slower than Hive, requiring an average of 278.15 seconds2.

Hive on the other hand required only 204.01 to perform the JOIN and GROUP operations.

Figure 4.6: The total average heap usage (in bytes) of all 22 TPC-H benchmark scripts contrasted.

Another interesting artefact is exposed by figure 4.6: In all instances, Hive’s heap usage is sig-

2As always, this refers to real time runtime

4.5. Configuration 37

nificantly lower than that of Pig. This is explained by the fact that Hive does not need to build

intermediary data structure, whilst Pig, being a declarative language, does.

4.5 Configuration

Manipulating the configuration of the original ISO benchmarks in an effort to determine optimal

cluster usage produced interesting results.

For one, data compression is important and significantly impacts runtime performance of JOIN

and GROUP BY operations in Pig. For example, enabling compression on dataset size 4 (which

contains a large amount of random data) produces a 3.2% speed-up in real time runtime.

Compression in Pig can be enabled by setting the pig.tmpfilecompression flag to true and then

specifying the type of compression pig.tmpfilecompression.codec to either gzip or lzo. Note

that gzip produces better compression whilst LZO is much faster in terms of runtime.

By editing the entry for mapred.reduce.slowstart.completed.maps in Hadoop’s conf/mapred-

site.xml we can tune the percentage of map tasks that must be completed before reduce tasks can

be created. By default, this value is set to 5% which was found to be too low for our cluster.

Balancing the ratio of mappers and reducers is critical to optimizing performance: reducers should

be started early enough so that data transfer is spread out over time and thus preventing network

bottlenecks. On the other hand, reducers shouldn’t be started late enough so that they do not use

up slots that could be used by map tasks. Performance peaked when reduce tasks were fired after

70% of map jobs completed.

The maximum number of map and reduce tasks per node can be specified using mapred.tasktracker.map.tasks.maximum

and mapred.tasktracker.reduce.tasks.maximum. Naturally care should be taken when config-

uring these: having a node with a maximum of 20 map slots but a script configured to use 30 map

slots will result in significant performance penalties as the first 20 map tasks will run in parallel,

but the additional 10 will only be spawned once the first 20 map tasks have completed execution

(consequently requiring one extra round of computation). The same goes for the number of reduce

tasks: as is illustrated by figure 4.7, performance peaks when a task requires just little below the

maximum number of reduce slots per node.

38 Chapter 4. Advanced Benchmarks

Figure 4.7: Real time runtimes contrasted with a variable number of reducers for join operations
in Pig.

4.6 ISO addition - CPU runtimes

One outstanding item of the ISO report[13] was the contrasting between real time runtime and

CPU runtime. As expected, cumulative CPU runtime was higher than real time runtime (since

tasks are distributed between nodes).

4.7. Conclusion 39

Figure 4.8: Real time runtime contrasted with CPU runtime for the ISO Pig scripts run on dataset
size 5.

4.7 Conclusion

Running the discussed experiments allowed for the answering of 5 questions asked in chapter 3

1. How do Pig and Hive perform as other Hadoop properties are varied (e.g. number

of map tasks)? Balancing the ratio of mappers and reducers had a big impact on real time

runtime and consequently is critical to optimizing performance: reducers should be started early

enough so that data transfer is spread out over time and thus preventing network bottlenecks. On

the other hand, reducers shouldn’t be started late enough so that they do not use up slots that

could be used by map tasks. Performance peaked when reduce tasks were fired after X% of map

jobs completed.

Care should also be taken when setting the maximum allowable map and reduce slots per node.

For example having a node with a maximum of 20 map slots but a script configured to use 30 map

slots will result in significant performance penalties as the first 20 map tasks will run in parallel,

40 Chapter 4. Advanced Benchmarks

but the additional 10 will only be spawned once the first 20 map tasks have completed execution

(consequently requiring one extra round of computation). The same goes for the number of reduce

tasks: as is illustrated by figure 4.7, performance peaks when a task requires just little below the

maximum number of reduce slots per node.

2. Do more complex datasets and queries (e.g. TPC-H benchmarks) yield the same

results than the ISO? At first glance, running the TPC-H benchmarks contradicts the ISO re-

sults - in nearly all instances, Hive outperforms Pig. However closer examination revealed that

nearly all TPC-H scripts relied heavily on the Group By operator - an operator which appears to

be poorly implemented in Pig and which greatly degrades the performance of Pig Latin scripts (as

demonstrated by the ISO benchmarks [13]). This leads to the conclusion that TPC-H is not an

accurate benchmark as operators are not evenly distributed throughout the scripts: if one operator

is poorly implemented, then this will skew the entire result set - as can be seen in section 4.4 with

the Group By operator.

3. How does real time runtime scale with regards to CPU runtime? As expected given

the cluster configuration (9 nodes). The real time runtime was between 15%-20% of the cumulative

CPU runtime.

4. What should the ratio of map and reduce tasks be? The ratio for map and reduce tasks

can be configured through mapred.reduce.slowstart.completed.maps Hadoop’s conf/mapred-

site.xml. The default value of 0.05 (i.e. 5%) was found to be too low. The optimal for the given

cluster was at about 70%.

It should also be noted that the excessive use of the Group By operator within the TPC-H bench-

marks skew results significantly (recall from [13] that Pig outperformed Hive in all instances except

when using the Group By operator: when grouping data Pig was 104% slower than Hive[13]). Re-

running the scripts whilst omitting the the grouping of data produces the expected results. For

example, running script 3 (q3 shipping priority.pig) whilst ommitting the Group By operator sig-

nificantly reduces the runtime (to 1278.49 seconds real time runtime or a total of 12,257,630ms

CPU time).

4.7. Conclusion 41

Additional benchmarks were run - their results support the above claim.

No clear answer can be given with regards to which schedulers ”is best”3. Benchmarks run on the

FIFO scheduler and fair scheduler prove that they do exactly as intended and that the choice of

scheduler really depends on your intentions. Similarily, earlier in this report, the question ”what are

the different schedulers good at?” was posed. Results do not vary from the descriptions presented

in the background analysis chapter (although it should be noted that due to time constraints the

Deadline Constraint Scheduler and Intelligent Schedulers were not benchmarked).

5. How and based on what should I choose a specific scheduler?

The type of scheduler needed depends on your organisational needs. If you are running a small,

single-user cluster then the FIFO scheduler is perfectly appropriate. As the name implies, the fair

scheduler schedules jobs in such a way that each receive an equal share of the available resources

and ensures that smaller jobs make progress even in the presence of large jobs without actually

starving the large job. Thus the fair scheduler is idea sharing a cluster between different users

within the same organization and when jobs are of varied / mixed sizes.

The capacity scheduler should be used for large clusters shared between different organizations or

third parties. As discussed in chapter 2, the capacity scheduler is a more fine-grained version of

the fair scheduler and imposes access restrictions as well as limits the waste of excess capacity .

The capacity scheduler also supports pre-emption. Pre-emption with the capacity scheduler differs

to fair scheduling pre-emption in that it uses priorities as opposed to time.

The HOD scheduler is no longer actively supported and should consequently not be used within

a production environment. The same goes for the deadline constraint scheduler, priority parallel

task scheduler and the intelligent schedulers discussed in chapter 2 which are scientific proves of

concept rather than production standard schedulers.

The reason for Hive outperforming Pig’s Group By operator will be discussed in the next chapter.

Chapter 5

Pig and Hive under the hood

5.1 Syntax Trees, Logical and Physical Plans

Recall that the ISO benchmarks showed a significant performance difference between Hive and

Pig. For example, as illustrated in table 5.1 below, Pig is, on average, 46% faster than Hive when

performing arithmetic operations.

Dataset size % Pig being faster

1 0.061%
2 3%
3 32%
4 72%
5 83%
6 85%

Avg.: 46%

Table 5.1: The percentage (in terms of real time) that Pig is faster than Hive when performing
arithmetic operations

In an effort to come to the bottom of this difference in performance, the logical plans of the

scripts were examined. To this end, the EXPLAIN keyword was prepended to the Hive QL query

resulting in the parser printing the abstract syntax tree (ABS) and logical plan for the script (as

opposed to compiling and executing it) as follows1:

EXPLAIN

SELECT (dataset_30000000.age ∗ dataset_30000000.gpa + 3) AS F1,

1Map and reduce configuration information were omitted and formatting was adjusted to make the ABS easier to
read.

42

5.1. Syntax Trees, Logical and Physical Plans 43

(dataset_30000000.age/dataset_30000000.gpa − 1.5) AS F2

FROM dataset_30000000

WHERE dataset_30000000.gpa > 0;

ABSTRACT SYNTAX TREE:

(TOK_QUERY

(TOK_FROM (TOK_TABREF (TOK_TABNAME dataset_30000000)))

(TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE))

(TOK_SELECT

(TOK_SELEXPR

(+

(*

(. (TOK_TABLE_OR_COL dataset_30000000) age)

(. (TOK_TABLE_OR_COL dataset_30000000) gpa)

) 3)

F1)

(TOK_SELEXPR

(-

(/

(. (TOK_TABLE_OR_COL dataset_30000000) age)

(. (TOK_TABLE_OR_COL dataset_30000000) gpa)

) 1.5)

F2))

(TOK_WHERE (> (. (TOK_TABLE_OR_COL dataset_30000000) gpa) 0)))

)

As expected, the ABS references the correct table: (TOK TABREF (TOK TABNAME dataset 30000000)).

Before defining the operations, Hive specifies that the output for the query should be written to

a temporary file before it is written to stdout (i.e. the console): (TOK INSERT (TOK DESTINATION

(TOK DIR TOK TMP FILE)). Next, the order of the arithmetic operations is defined:

44 Chapter 5. Pig and Hive under the hood

Extract column ”age” from dataset

Extract column ”gpa” from dataset

Apply multiplication operator

Add 3 to the result

F1

Extract column ”age” from dataset

Extract column ”gpa” from dataset

Apply division operator

Add 1.5 to the result

F2

Then, the selection constraint is applied to the overall expression:

TOK WHERE (> (. (TOK TABLE OR COL dataset 30000000) gpa) 0).

Consequently, we can conclude that the Abstract Syntax Tree generated by Hive corresponds to

the original query and that hence any performance difference between Pig and Hive must be either

due to the interpretation of the syntax tree by the Hive logical plan generator, differences between

the Pig and Hive optimizers or due to differences in how the physical plans are translated.

Hive logical plans are composed of individual ”steps”. These ”steps” are called stages, each of

which may be dependent on another stage. Every stage is either a map job, a reduce job, a merge

or sampling job or a limit2. The more complex a query, the more stages a logical plan will contain

(and consequently the more processing is require to execute the job)[19].

Our logical plan’s first stage (see Appendix B for the complete plan) uses a TableScan operation

to take the entire table, dataset 30000000, as input and produce two output columns, col0 and

col1. The Filter Operator ensures that the Select Operator only considers rows in which the

gpa column has a value greater than zero. The Select Operator then applies two arithmetic

expressions to produce col0 and col1 (the former being produced by ((age * gpa) + 3) and the

latter by ((age / gpa) - 1.5)). All of this is done in the job’s map task (indicated on the third

line via the string Alias -> Map Operator Tree) - nothing is done inside the reduce side of the

job (and hence the logical plan does not contain a reduce section for either stages (i.e. the plan

contains no reduce operator tree):

2There do exist other types of (less common) stages, but to keep things simple this report will only refer to the
aforementioned stages.

5.1. Syntax Trees, Logical and Physical Plans 45

Stage: Stage-1

Map Reduce

Alias -> Map Operator Tree:

dataset_30000000

TableScan

alias: dataset_30000000

Filter Operator

predicate:

expr: (gpa > 0.0)

type: boolean

Select Operator

expressions:

expr: ((age * gpa) + 3)

type: float

expr: ((age / gpa) - 1.5)

type: double

outputColumnNames: _col0, _col1

We can further see that data compression is disabled and that the input is treated as text:

compressed: false

GlobalTableId: 0

table:

input format: org.apache.hadoop.mapred.TextInputFormat

output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

Since the script does not make use of the LIMIT clause, Stage-0 is a no-op stage:

Stage: Stage-0

Fetch Operator

limit: -1

Executing pig -x local -e ’explain -script arithmetic.pig’ produces both the logical and

physical plan for the corresponding Pig Latin script (see Appendix B for the complete logical and

physical plans. Pig’s logical plan loosely corresponds to Hive’s Abstract Syntax Tree). As can be

inferred below, Pig’s logical plan is slightly more complex and intricate than the one produced by

the Hive interpreter.

B: (Name: LOStore Schema: #49:double,#54:double)

ColumnPrune:InputUids=[38, 43]ColumnPrune:OutputUids=[38, 43]

|

|---B: (Name: LOForEach Schema: #49:double,#54:double)

| |

| (Name: LOGenerate[false,false] Schema: #49:double,#54:double)

| | |

| | (Name: Add Type: double Uid: 49)

| | |

46 Chapter 5. Pig and Hive under the hood

| | |---(Name: Multiply Type: double Uid: 46)

| | | |

| | | |---(Name: Cast Type: double Uid: 20)

| | | | |

| | | | |---age:(Name: Project Type: bytearray Uid: 20 Input: 0 Column: (*))

| | | |

| | | |---(Name: Cast Type: double Uid: 21)

| | | |

| | | |---gpa:(Name: Project Type: bytearray Uid: 21 Input: 1 Column: (*))

| | |

| | |---(Name: Cast Type: double Uid: 47)

| | |

| | |---(Name: Constant Type: int Uid: 47)

| | |

| | (Name: Subtract Type: double Uid: 54)

| | |

| | |---(Name: Divide Type: double Uid: 52)

| | | |

| | | |---(Name: Cast Type: double Uid: 20)

| | | | |

| | | | |---age:(Name: Project Type: bytearray Uid: 20 Input: 2 Column: (*))

| | | |

| | | |---(Name: Cast Type: double Uid: 21)

| | | |

| | | |---gpa:(Name: Project Type: bytearray Uid: 21 Input: 3 Column: (*))

| | |

| | |---(Name: Constant Type: double Uid: 53)

| |

| |---(Name: LOInnerLoad[0] Schema: age#20:bytearray)

| |

| |---(Name: LOInnerLoad[1] Schema: gpa#21:bytearray)

| |

| |---(Name: LOInnerLoad[0] Schema: age#20:bytearray)

| |

| |---(Name: LOInnerLoad[1] Schema: gpa#21:bytearray)

|

|---A: (Name: LOLoad Schema: age#20:bytearray,gpa#21:bytearray)ColumnPrune:RequiredColumns=[1, 2]ColumnPrune:InputUids=[21, 20]ColumnPrune:OutputUids=[21, 20]RequiredFields:[1, 2]

Unlike the one produced by Hive, Pig’s logical plan flows from bottom to top with the lines con-

necting the operators indicating the exact flow path. Each line contains an operator, each of which

have an attached schema and, optionally, an expression. Each operator in turn is connected to

another operator, and as such, one can loosely interpret an operator as a ”stage” or ”step” in the

plan’s execution. Starting from bottom to top, the first such step is the Load operation which,

as its name implies, tells the compiler what data to use. Next, a for-loop is used to extract the

relevant columns (gpa and age) from each row. The extracted fields are cast to their appropriate

type (double) and the relevant arithmetic operations are applied (since the plan reads from bottom

to top, the addition of the constant is applied last since it appears at the top of the plan). The

plan is illustrated in figure 5.6 below.

5.1. Syntax Trees, Logical and Physical Plans 47

Figure 5.1: Pig logical plan for the script arithmetic.pig

Next, the logical plan is fed to the optimizer, which attempts to make the entire operation more

efficient by replacing redundant statements and pushing filters as far up the plan as possible (ensur-

ing that less data needs to be processed in subsequent steps). This optimizer produces the physical

plan which it in turn uses to construct the map-reduce plan. Note that unlike Hive, which considers

execution in different stages (some of which may be map-reduce) Pig seems to view everything in

terms map tasks and reduce tasks.

48 Chapter 5. Pig and Hive under the hood

That is, the difference between the logical and physical plan lie with the operators: the logical plan

describes the logical operations that have to be executed by Pig; the physical plan describes the

physical operators that are needed to implemented the aforementioned logical operators.

In order to produce a set of map-reduce tasks, the physical plan is scanned sequentially and in-

dividual map and reduce operations are identified. Once this is complete, the Pig compiler once

again tries to optimize the plan by, for example by identifying sorts and pushing them into the

shuffle phase.

#--

Map Reduce Plan

#--

MapReduce node scope-22

Map Plan

B: Store(hdfs://ebony:54310/user/bj112/dataset_30000000_projection:PigStorage) - scope-21

|

|---B: New For Each(false,false)[bag] - scope-20

| |

| Add[double] - scope-8

| |

| |---Multiply[double] - scope-5

| | |

| | |---Cast[double] - scope-2

| | | |

| | | |---Project[bytearray][0] - scope-1

| | |

| | |---Cast[double] - scope-4

| | |

| | |---Project[bytearray][1] - scope-3

| |

| |---Cast[double] - scope-7

| |

| |---Constant(3) - scope-6

| |

| Subtract[double] - scope-17

| |

| |---Divide[double] - scope-15

| | |

| | |---Cast[double] - scope-12

| | | |

| | | |---Project[bytearray][0] - scope-11

| | |

| | |---Cast[double] - scope-14

| | |

| | |---Project[bytearray][1] - scope-13

| |

| |---Constant(1.5) - scope-16

|

|---A: Load(/user/bj112/data/4/dataset_30000000:PigStorage(’’)) - scope-0--------

Global sort: false

5.1. Syntax Trees, Logical and Physical Plans 49

We can conclude that there is no difference in how arithmetic operations are treated at a logical

level. Both load the table, perform casts where appropriate and then perform multiplication,

division, addition and subtraction in line with the rules of mathematics. Similarly, the map-reduce

plans for both are exactly the same. These findings are supported when analysing the plans of

TPC-H (and consequently more complex) scripts (see appendix B)

These findings lead to the assertion that the performance difference between Pig and Hive can be

attributed to the fact that at a bytecode level, Hive’s implementation of the map-reduce plans are

less efficient than Pig. As will be discussed in the following sections, Pig consists of more high-

quality code than Hive.

The partial publication of the ISO results on an online tech discussion board[20] and the Pig/Hive

developers mailing list confirmed the suspicion that performance differences between Pig and Hive

are attributed to the bytecode level as opposed to the logical interpretation of the Hive QL or Pig

Latin scripts. As one user going by the pseudonym zsxwing pointed out[20]:

Hive’s JOIN implementation is less efficient than Pig. I have no idea why Hive needs to

create so many objects (Such operations are very slow and should have been avoided)

in the Join implementation. I think that’s why Hive does Join more slowly than Pig. If

you are interested in it, you can check the CommonJoinOperator code by yourself. So

I guess that Pig usually more efficient as its high quality codes.

Indeed, examining the most recent, stable release of both projects (Hive v.0.11.0 and Pig v.0.11.1)

yielded interesting results.

5.1.1 General design quality and performance

Although lines of code (LOC) is an imprecise metric for comparing the quality between software

projects, an overall rule of thumb is the less code, the better. As such, Pig scores higher than Hive,

with a total code (and comment) base of 154,731 LOC (25% comments, 13% blank lines and the

rest consists of actual code). Hive, although more sparsely documented, consists of 187,916 LOC

50 Chapter 5. Pig and Hive under the hood

(23% comments, 12% blank lines and the rest consists of actual code). That is, Pig’s codebase is

nearly 18% smaller than Hive. Furthermore, a static code analysis of both projects showed 134,430

issues in the Hive codebase (that’s 71.5 issues per 100 lines of code) and 38,452 issues with the Pig

codebase (that’s 24.85 issues per 100 lines of code). The code analysed included all test classes and

the analysis was concerned with identifying general bad coding practices (such as serializable inner

classes, suspicious reference comparisons to constants, confusing method names etc), correctness

(an example of incorrect code would be a call to equals(null), infinite loops or an illegal format

string), malicious code vulnerabilities and security issues, performance bottlenecks, questionable or

redundant code (such as unread fields), overall coding style, duplicate code as well as dependency

analysis.

Figure 5.2: Summary of the issues found with the Pig codebase.

For Pig, the issue summary is as follows:

5.1. Syntax Trees, Logical and Physical Plans 51

Issue category Num. of issues in Pig Num. of issues in Hive

Code size 1104 3718
Design 1883 6778
Coupling 147 1014
Naming 5100 16764
Optimization 17660 59366
Security vulnurabilities 68 165
Unnecessary code 3 134
Basic 80 430
Unused code 286 1055
Controversial code 6897 27666
Missing braces 1961 4518
J2EE issues 25 140
Bad commenting 0 0
String and StringBuffer issues 179 790
Type resolution issues 316 1891
Clone implementation issues 39 35
Empty code 103 223
Finalizer issues 1 1
Import Stmts 26 37
JUnit issues 0 2687
Logging issues 198 701
Migration issues 22 426
Strict exceptions / Bad exception
handling

489 745

Misc 1862 5016

Table 5.2: Summary of issues found within the Pig and Hive codebase.

52 Chapter 5. Pig and Hive under the hood

Figure 5.3: Summary of the issues found with the Hive codebase.

Although the Hive codebase contains much more issues, the distribution of the types of code issues

are approximately equal in each codebase (as can be seen in figures 5.3 and 5.2): 42.2% of the

problems with the Hive codebase were related to code optimization as opposed to 45.93% in the

Pig codebase. Similarly, both codebases have roughly the same percentage of design flaws: 5.05%

for Hive and 4.9% for Pig. The same goes for codesize issues (2.87% for Pig, 2.77% for Hive),

naming issues (13.26% for Pig, 12.48% for Hive) and security vulnurabilities (0.18% for Pig and

0.12% for Hive). Interestingly however, Pig does not exhibit any JUnit test issues (whilst 2% of

the issues found in Hive’s codebase relate to JUnit tests), indicating that possibly a lot of emphasis

has been placed on testing.

The fact that an equal percentage of found issues relate to correct naming of variables, methods

and classes may be explained by the fact that inexperienced programmers (students, interns, recent

graduates etc) may have contributed to fractions of the codebase. As one can assume that every

company or software project would roughly allocate the same amount of rookies to a project the

percentage of ”rookie mistakes” may be similar across software projects.

5.1. Syntax Trees, Logical and Physical Plans 53

In terms of issues per lines of code, Pig is vastly superior to Hive (see figures 5.4 and 5.5): Hive has

31.59 optimization issues per 100 lines of code (LOC); Pig only 11.41. Furthermore Hive is 3.61

design problems per 100 LOC; Pig only 0.71 (indicating that Pig’s codebase is of vastly superior

design). Although relatively little unused code (0.56 unused code issues per 100 LOC), Hive’s

codebase still contains 3 times as much unused code as Pig (0.18 unused code per 100 LOC). Hive’s

codebase is also far more bloated than Pig’s: at 1.98 code size issues for every 100 LOC, Hive code

is nearly 3 times as complex as Pig’s.

Figure 5.4: Hive - number of issues per 100 lines of code

54 Chapter 5. Pig and Hive under the hood

Figure 5.5: Pig - number of issues per 100 lines of code

The optimizations that could be applied to Hive’s codebase are as follows:

1. Use StringBuffer when appending strings - In 184 instances, the concatination operator

(+=) was used when appending strings. This is inherintly inefficient - instead Java’s StringBuffer

or StringBuilder class should be used. 12 instances of this optimization can be applied to the

GenMRSkewJoinProcessor class and another three to the optimizer. CliDriver uses the + operator

inside a loop, so does the column projection utilities class (ColumnProjectionUtils) and the

aforementioned skew-join processor. Tests showed that using the StringBuilder when appending

strings is 57% faster than using the + operator (using the StringBuffer took 122 milliseconds

whilst the + operator took 284 milliseconds - see appendix D for the test case). The reason as to

why using the StringBuffer class is preferred over using the + operator, is because

String third = first + second;

gets compiled to:

5.1. Syntax Trees, Logical and Physical Plans 55

StringBuilder builder = new StringBuilder(first);

builder.append(second);

third = builder.toString();

Therefore, building complex strings inside loops requires many instantiations (and as discussed

below, creating new objects inside loops is inefficient)[21].

2. Use arrays instead of List - Java’s java.util.Arrays class asList method is more efficient

at creating lists from arrays than using loops to manually iterate over the elements (using asList is

computationally very cheap, O(1), as it merely creates a wrapper object around the array; looping

through the list however has a complexity of O(n) since a new list is created and every element in

the array is added to this new list[?]).[24] As confirmed by the experiment detailed in Appendix

D, the Java compiler does not automatically optimize and replace tight-loop copying with asList:

the loop-copying of 1,000,000 items took 15 milliseconds whilst using asList is instant.

Four instances of this optimization can be applied to Hive’s codebase (two of these should be

applied to the Map-Join container - MapJoinRowContainer) - lines 92 to 98:

for (obj = other.first(); obj != null; obj = other.next()) {

ArrayList<Object> ele = new ArrayList(obj.length);

for (int i = 0; i < obj.length; i++) {

ele.add(obj[i]);

}

list.add((Row) ele);

}

3. Unnecessary wrapper object creation - In 31 cases, wrapper object creation could be

avoided by simply using the provided static conversion methods. As noted in the PMD documentation[?],

”using these avoids the cost of creating objects that also need to be garbage-collected later.”

For example, line 587 of the SemanticAnalyzer class, could be replaced by the more efficient

parseDouble method call:

56 Chapter 5. Pig and Hive under the hood

// Inefficient:

Double percent = Double.valueOf(value).doubleValue();

// To be replaced by:

Double percent = Double.parseDouble(value);

Our test case in Appendix D confirms this: converting 10,000 strings into integers using Integer.parseInt(gen.nextSessionId())

(i.e. creating an unnecessary wrapper object) took 119 on average; using parseInt() took only

38. Therefore creating even just one unnecessary wrapper object can make your code up to 68%

slower.

4. Converting literals to strings using + ”” - Converting literals to strings using + "" is

quite inefficient (see Appendix D) and should be done by calling the toString() method instead:

converting 1,000,000 integers to strings using + "" took, on average, 1340 milliseconds whilst using

the toString() method only required 1183 milliseconds (hence adding empty strings takes nearly

12% more time).

89 instances of this using + "" when converting literals were found in Hive’s codebase - one of these

are found in the JoinUtil.

5. Avoid manual copying of arrays - Instead of copying arrays as is done in GroupByOperator

on line 1040 (see below), the more efficient System.arraycopy can be used (arraycopy is a native

method meaning that the entire memory block is copied using memcpy or mmove).

// Line 1040 of the GroupByOperator

for (int i = 0; i < keys.length; i++) {

forwardCache[i] = keys[i];

}

Using System.arraycopy on an array of 10,000 strings was (close to) instant whilst the manual

copy took 6 milliseconds. 11 instances of this optimization should be applied to the Hive codebase.

6. Avoiding instantiation inside loops - As noted in the PMD documentation, ”new objects

created within loops should be checked to see if they can created outside them and reused.”[?].

5.1. Syntax Trees, Logical and Physical Plans 57

Referring to the test case in Appendix D, declaring variables inside a loop (i from 0 to 10,000) took

300 milliseconds whilst declaring them outside took only 88 milliseconds (this can be explained

by the fact that when declaring a variable outside the loop, its reference will be re-used for each

iteration. However when declaring variables inside a loop, new references will be created for each

iteration. In our case, 10,000 references will be created by the time that this loop finishes, meaning

lots of work in terms of memory allocation and garbage collection). 1623 instances of this opti-

mization can be applied.

7. Making local variables and method arguments final - This optimization is arguable -

some authors claim[?] that making local variables final improves garbage collection. However as

the final keyword does not actually appear in class files, they may not impact performance and

garbage collection. Regardless, using the final keyword is good practice and should be followed

(the codebase contains 23,600 instances in which local variables could be made final; 33,815 in-

stances in which method arguments could be final).

8. Replacing startsWith with charAt - There are 9 instances in which this optimization can

be applied.

The Pig codebase suffers from the same performance issues, albeit there are fewer of them:

1. Use StringBuffer when appending strings - This optimization can be applied 62 times.

2. Use arrays instead of List - This optimization can be applied once.

3. Unnecessary wrapper object creation - This optimization can be applied 15 times.

4. Converting literals to strings using + ”” - This optimization can be applied 12 times.

5. Avoid manual copying of arrays - This optimization can be applied 14 times. Two of these

performance bottlenecks are found in the class responsible for implementing a for-each, POForEach,

58 Chapter 5. Pig and Hive under the hood

and one in POSkewedJoin.

6. Avoiding instantiation inside loops - 494 optimizations of this type can be applied. Most

of these are found in the plan generator, optimizer and HBase storage classes however several are

also found in the relational operator classes: LOSort, LOJoin, LOGenerate, LOUnion, LOCogroup.

7. Making local variables and method arguments final - Although questionable whether it

actually improves performance, 7962 local variables and 9084 method arguments could be final.

8. Replacing startsWith with charAt - There are 10 instances in which this optimization can

be applied.

There is also an 8th optimization that could be applied:

9. Replacing vectors with array lists - Vectors synchronized, making them slower than array

lists. Therefore using vectors in circumstances where thread-safety is not an issue will decrease

performance. The test code in Appendix D added 9,999,999 integers to a vector: this took 2367

milliseconds. Adding them to an array list on the other hand took only 934 milliseconds.

6 instances of this optimization can be applied.

Furthermore, several optimization issues shared between the two codebases can be attributed to

inefficient string operations:

1. Inefficient StringBuffer appends - When using the StringBuffer, it is more efficient to

append an individual character as a character as opposed to a string (i.e. sb.append(’a’) instead of

sb.append(”a”)). The test case in Appendix D showed that a string append took 52 milliseconds

whilst a char append took 44 milliseconds (the letter ’a’ was appended 1,000,000 times). It should

be noted that this optimization is is hardly relevant for the Hive codebase: only 4 instances of

inefficient appends exist, none of which are inside core classes. Pig on the other hand contains 37

of these instances, 5 of which inside the class used for arithmetic evaluations.

2. Inefficient use of indexOf() - When looking up the index of a single character, the character

5.1. Syntax Trees, Logical and Physical Plans 59

should be specified as type char and not string (i.e. indexOf(’a’) executes faster than indexOf(”a”).

The test case presented in Appendix D used a string of 1000 characters and performs a call to

indexOf 5,000 times for each string and character look-ups: passing a string to indexOf took 9

milliseconds whilst passing a character to indexOf took 3 milliseconds. Relatively few of these

optimizations can be applied to either codebase: 6 for Pig and 17 for Hive.

4. Dublicate strings - In 111 cases, Pig contains dublicate strings that should be replaced by

constants; the same goes for 680 cases in the Hive codebase.

5. Unneccesary call to toString() - Calling toString() on a String object is unnecessary

and should be avoided. Fortunately, relative few instances of this bad practice were found in either

codebase.

Other minor optimizations include making final fields static (24 in Hive; 1 in Pig) and this decreasing

runtime overhead for the given object[?].

Another interesting observation is the fact that Pig’s MR compiler and logical plan builder contain

the most optimization issues. That is, having counted the number of optimization issues per class3,

the classes with the most amount of optimization issues are MRCompiler, LogicalPlanBuilder and

LogToPhyTranslationVisitor). For Hive, it is the ThriftHiveMetastore and the SemanticAnalyzer.

For a complete listing of classes and their number of optimization issues see Appendix E.

3Note: This refers to first 8 optimization issues listed above and does not include string optimization issues.

60 Chapter 5. Pig and Hive under the hood

Figure 5.6: Comparison of the number and types of optimization issues found in the Pig and Hive
codebases.

Pig and Hive both share many of the same design issues, however the Hive codebase is plagued

by many more than Pig. For one, both codebases contain many deeply nested if-statements (this

complicates the code unnecessarily and makes it difficult to maintain.). The Hive codebase contains

56 deeply nested conditionals. For example methods in the class responsible for implementing the

Group By operator GroupByOperator.java, contain if-statements of depth 5:

if (sfs.size() > 0) {

StructField keyField = sfs.get(0);

if (keyField.getFieldName().toUpperCase().equals(

Utilities.ReduceField.KEY.name())) {

ObjectInspector keyObjInspector = keyField.getFieldObjectInspector();

if (keyObjInspector instanceof StandardStructObjectInspector) {

List<? extends StructField> keysfs =

((StandardStructObjectInspector) keyObjInspector).getAllStructFieldRefs();

if (keysfs.size() > 0) {

5.1. Syntax Trees, Logical and Physical Plans 61

// the last field is the union field, if any

StructField sf = keysfs.get(keysfs.size() − 1);

if (sf.getFieldObjectInspector().getCategory().equals(

ObjectInspector.Category.UNION)) {

unionExprEval = ExprNodeEvaluatorFactory.get(

new ExprNodeColumnDesc(TypeInfoUtils.getTypeInfoFromObjectInspector(

sf.getFieldObjectInspector()),

keyField.getFieldName() + ”.” + sf.getFieldName(), null,

false));

unionExprEval.initialize(rowInspector);

}

}

}

}

}

Likewise, Pig contains 38 instances of deeply-nested if-statements. For example,

DuplicateForEachColumnRewrite.java:

if (exp.getFieldSchema()!=null) {

if (flatten && (exp.getFieldSchema().type == DataType.BAG || exp.

getFieldSchema().type == DataType.TUPLE)) {

List<LogicalFieldSchema> innerFieldSchemas = null;

if (exp.getFieldSchema().type == DataType.BAG) {

if (exp.getFieldSchema().schema!=null) {

if (exp.getFieldSchema().type == DataType.BAG) {

// assert(fieldSchema.schema.size() == 1 && fieldSchema.

schema.getField(0).type == DataType.TUPLE)

if (exp.getFieldSchema().schema.getField(0).schema!=null

)

innerFieldSchemas = exp.getFieldSchema().schema.

getField(0).schema.getFields();

} else {

62 Chapter 5. Pig and Hive under the hood

if (exp.getFieldSchema().schema!=null)

innerFieldSchemas = exp.getFieldSchema().schema.

getFields();

}

}

}

Rookie mistakes such as uncommented empty constructors (641 in Hive; 126 in Pig), uncommented

empty methods (161 in Hive; 126 in Pig) and missing braces (in Hive, 4490 if-statements were

missing braces, 14 if-else-statements and 14 for-loops missed braces. Pig’s codebase contains 1205

if-statements with missing braces 632 if-else-statements with missing braces and 109 for-loops with

missing braces) were painstakingly common. Whilst other design issues are easily forgiveable, such

basic mistakes should not be in release versions of any software. Other instances of rather basic

bad practices include:

• Unnecessary local variable assignments before returns (for example int x = something();

return x; instead of just return doSomething()).

• Missing breaks inside switch statements.

• Missing static methods in non-instantiatable classes (this means that the given methods

cannot actually be used since the class constructors themselves are private and there is no

way of calling the non-static methods. Fortunately only one such class exists in the Pig

codebase and two in Hive (indicating incomplete or obsolete code).

• Empty methods in abstract classes are not tagged as abstract (making methods abstract helps

improve readability and prevent inappropriate usage).

• Unclear object comparison - in 23 instances in both the Pig and Hive codebase, objects

were compared using the == operator. However using this operator only checks for reference

equality - it does not check for . A better practice would be to use the equals method.

• Not making classes with private constructors final. As noted in the official Java documenta-

tion, declaring a class as final makes it immutable (meaning that it cannot be subclassed).

Since the classes’ constructors are private, cannot be subclassed. Consequently declaring the

class final would be good practice.

5.1. Syntax Trees, Logical and Physical Plans 63

• Method-level synchronization (it is generally considered better practice to use block-level

synchronization).

• Re-assignment of parameters (again, this is generally considered bad practice).

• Using interfaces as containers for constants (Hive uses 5 interfaces to store constants; Pig

violates this usage pattern only once).

• Default keyword not being at the end of switch statements.

• Abstract classes without abstract methods (by convention, abstract classes should contain

abstract methods. The lack of abstract methods suggests incomplete development. The Hive

codebase contains 7 such classes; Pig 6).

• A high ratio of labels inside switch statements (i.e. high switch density) indicate poor read-

ability and unnecessarily complex code - a better approach would be to introduce methods

and/or subclasses.

• 1019 switch-statements in Hive and 27 in Pig do not include a default option to catch

unspecified cases. This is generally considered bad practice and may prevent the application

from failing gracefully.

Furthermore, in both codebases, there were many instances in which boolean expressions, condi-

tionals and boolean returns could have been simplified. For example the unnecessary comparison

on lines 1455 - 1456 in Hive’s SemanticAnalyzer.java could be removed:

if (joinTree.getNoSemiJoin() == false

&& condn.getToken().getType() == HiveParser.DOT) {

In addition, both codebases contained many confusing ternaries (that is, negations within if-else-

statements). Other, more minor design issues shared by the two codebases included:

• Missing factory patterns - In 514 instances within the Hive codebase and 2 instances in Pig,

factory patterns could be introduced to avoid duplication of code and to provide a sufficient

level of abstraction.

• Unsafe usages of static fields.

64 Chapter 5. Pig and Hive under the hood

• Instance checks in catch-causes - Instead of using the instanceof keyword in catch-clauses,

exceptions should be handled by their own clauses. For example, lines 1336 - 1355 in Hive’s

HiveMetaStore.java:

try {

drop_table_core(getMS(), dbname, name, deleteData, envContext);

success = true;

} catch (IOException e) {

ex = e;

throw new MetaException(e.getMessage());

} catch (Exception e) {

ex = e;

if (e instanceof MetaException) {

throw (MetaException) e;

} else if (e instanceof NoSuchObjectException) {

throw (NoSuchObjectException) e;

} else {

MetaException me = new MetaException(e.toString());

me.initCause(e);

throw me;

}

} finally {

endFunction(”drop table”, success, ex, name);

}

...should be replaced with:

try {

drop_table_core(getMS(), dbname, name, deleteData, envContext);

success = true;

} catch (IOException e) {

ex = e;

throw new MetaException(e.getMessage());

5.1. Syntax Trees, Logical and Physical Plans 65

} catch (MetaException me) {

// do stuff

} catch (NoSuchObjectException noe) {

// do more stuff

}

} finally {

endFunction(”drop table”, success, ex, name);

}

• Calling overridable methods within a class’ constructor. As noted by the PMD documenta-

tion: ”Calling overridable methods during construction poses a risk of invoking methods on

an incompletely constructed object and can be difficult to debug. It may leave the sub-class

unable to construct its superclass or forced to replicate the construction process completely

within itself, losing the ability to call super().”[?]

• Fields that should be final but arent’.

• Singletons that are not thread-safe (this can be resolved by synchronizing the instantiation

method).

• Calls to toArray that do not specify array sizes.

• Loosing the stack trace when throwing exceptions.

• Returning null values when other values may be more appropriate. For example, returning

null when instead an empty array could be returned makes the application susceptible to null

pointer exceptions.

• Not specifying a locale when using date objects.

• Unnecessary fields - That is, fields whose scope is limited to one method do not need to be

fields - they could just be local variables.

The Hive codebase is also plagued by additional design issues not shared with Pig. In 93 instances4,

streams were not being closed which may result in the loss of buffered data or the failure to re-

lease unused resources. In several cases, switch-statements also contained none-case labels which

4A majority of these were in test classes. Nevertheless, resources also remained open in core classes, such as
HiveConnection.java

66 Chapter 5. Pig and Hive under the hood

was confusing (albeit correct). In 808 instances, switch-statements should have been replaced with

if-statements (since they contained too few branches). Few instances also used incorrect null com-

parisons (comparing null by calling equals() as opposed to ==).

By dividing the aforementioned code issues into categories according to the experience level re-

quired to notice or avoid them, we get three categories: rookie mistakes, intermediate mistakes and

expert mistakes.

Rookie mistakes indicate lack of basic understanding of Java’s coding principles, rushed and messy

implementations or general lack of effort. Any Java 101 class should provide the programmer with

sufficient knowledge to avoid these mistakes. The category contains the following issues: jumbled

incrementers, for-loops that should be while loops, overriding both equal() and hashcode(), re-

turning from a method inside a finally block, unconditional if-statements (e.g. if (true) {}),

boolean instantiation, collapsible if-statements, misplaced null checks, using hardcoded octal val-

ues, explicitly extending Object, BigInteger instantiation, missing braces, uncommented methods

and constructors, empty code, unusued code, bad naming practices and unnecessary imports.

Intermediate mistakes indicate that these mistakes were possibly made by intermediate program-

mers (i.e. those with a good knowledge of the language but possibly little practical experience).

Any knowledgable programmer should be able to spot unnecessary code and general design issues.

Intermediate mistakes include: unnecessary code, violating security Code guidelines, n-path com-

plexity of 200 or more, excessive method length, methods with too many parameters, excessively

large classes, high cyclomatic complexity, disproportionately many public methods, disproportion-

ately many fields, high NCSS (Non-Commenting Source Statements) method count, high NCSS

type count, high NCSS constructor count, classes with too many methods, high degree of coupling,

excessive imports, violating the law of Demeter (again, this leads to a high degree of coupling),

the aforementioned optimization (instantiating objects inside loops, unnecessary wrapper object

creation, inefficient string appends etc) and design (e.g. deeply nested conditionals, unsimplified

boolean expressions, missing break and default statements, high switch density, empty methods

etc) issues as well as general bad practices involving the use of String and StringBuffer objects.

Expert mistakes indicate mistakes made despite possible expert knowledge. These include type

5.1. Syntax Trees, Logical and Physical Plans 67

resolution issues (e.g. implementing the clone() method without having the class implement

Cloneable, throwing Exception as opposed to the precise exception (e.g. IOException)), JUnit

mistakes (e.g. failing to include asserts in JUnit tests, assertions with missing messages, empty test

classes, unnecessary boolean assertions, etc), general controversial code (e.g. unnecessary construc-

tors, null assignments to variables outside of their declaration, methods with more than one exit

point, missing constructors, imports from the sun.* packages, unnecessary parentheses, dataflow

anomalies, explicit garbage collection etc), bad Java Bean practices, violation of JDK migration

rules, catching throwable, using exceptions as flow control, throwing NullPointerException,

throwing raw exceptions, re-throwing exceptions, extending java.lang.Error (because Error is

meant only for system exceptions), catching generic exceptions, violating rules related to J2EE

implementations, controversial error logging and questionable usages of finalizers.

As illustrated in figures 5.7 and 5.8, a larger percentage of Hive’s code issues are composed of

expert mistakes; Pig on the other hand contains more intermediate mistakes. Although this may

make the Hive codebase appear superior at first, the Hive contains many more issues than Pig (as

discussed above Hive contains 71.5 issues per 100 lines of code whilst Pig only consists of 24.85

issues per 100 lines of code):

• 12 rookie mistakes per 100 LOC (a total of 23027 rookie mistakes).

• 38 intermediate mistakes per 100 LOC (a total of 71965 intermediate mistakes).

• 18 expert mistakes per 100 LOC (a total of 34292 expert mistakes).

68 Chapter 5. Pig and Hive under the hood

Figure 5.7: Hive codebase mistake categories

Pig on the other hand:

• 5 rookie mistakes per 100 LOC (a total of 7556 rookie mistakes).

• 14 intermediate mistakes per 100 LOC (a total of 21044 intermediate mistakes).

• 5 expert mistakes per 100 LOC (a total of 7987 expert mistakes).

5.1. Syntax Trees, Logical and Physical Plans 69

Figure 5.8: Pig codebase mistake categories

5.1.2 Naming conventions

The Pig codebase exposes a wider range of naming convention abuse (albeit less than Hive): a total

of 5,100 issues were found. Hive on the other hand contains 16,764 violations of 3 types:

• Abstract class naming - Abstract classes should always be prefixed ”Abstract”[25]. 97 classes

in the Hive codebase violate this convention.

• Methods with the same field name - In 131 instances, methods had the same name than their

corresponding field (for example private int foobar = 0; public void foobar() { ... }).

• Field name matching class name - 6 classes contain fields that had a matching class name.

Pig’s violations consist of:

• Abstract class naming (as described above) - 94 violations.

• Methods with the same field name (as described above) - 59 violations.

• Field name matching class name (as described above) - 4 violations.

70 Chapter 5. Pig and Hive under the hood

• BooleanGetMethodName - As stated in the PMD documentation: ”methods that return

boolean results should be named as predicate statements to denote this. I.e, ’isReady()’,

’hasValues()’, ’canCommit()’, ’willFail()’, etc. Avoid the use of the ’get’ prefix for these

methods.”[?]. There exist 15 instances of this violation.

• Long field and variable names - Names exceeding 17 characters tend to impact readability.

• Not adhereing to Java method naming conventions - As stated in the official Java specification,

method names should[26]:

– Begin in lowercase.

– Be a verb or a multi-word name that begins with a verb.

– Words of multi-word names should begin with a capital letter (except for the first word).

• Not adhereing to Java package naming conventions

• Not adhereing to variable naming conventions - As stated in the official Java specification,

variable names should[27]:

– Begin with a letter (not a number or underscore).

– Not use abbreviations.

– Be one-word or multi-word. In the case of the latter, the first letter of each subsequent

word should be capitalized.

– Be capitalized if the variable is a constant.

• Short method and variable names - This may indicate that they are not for meaningful and

may impact readability.

• ShortVariable

• Suspicious constant field name

• Suspicious equals method name

5.1.3 Codesize, coupling and complexity

The codesize and the code complexity of both codebases could be improved upon (again, Hive

could do with many more improvements than Pig). Thomas J. McCabe’s ”cyclomatic complexity”

metric is used to measure the independent paths through both programs[28]. Typically, the lower

5.1. Syntax Trees, Logical and Physical Plans 71

the cyclomatic complexity the better. It should be stressed that lowering cyclomatic complexity

only moves the complexity around to other parts of the program - it does not actually remove com-

plexity. Consequently, lowering cyclomatic complexity results in additional classes, interfaces and

methods and hence may mean finding trade-offs between other undesireable design properties such

as increasing code size or lowering cohesion. Analysis of the Hive codebase using PMD resulted in

the discovery of 1,955 classes and methods which exceeded the cyclomatic complexity threshold (one

class that stood out was CommonJoinOperator.java: it contained 4 instances of high cyclomatic

complexity, one of which was the genObject method with a complexity of 27). Overall, the aver-

age cyclomatic complexity is very low: 2.3. Methods with the highest cyclomatic complexity are

SemanticAnalyzerFactory::get (complexity of 69), DDLSemanticAnalyzer::analyzeInternal

(complexity of 67) DDLTask::alterTable (complexity of 67), SemanticAnalyzer::doPhase1 (com-

plexity of 52)

SemanticAnalyzer::genFileSinkPlan (complexity of 44).

Cyclomatic complexity analysis of the Pig codebase identified 606 classes and methods that ex-

ceeded the threshold. Interestingly, the average cyclomatic complexity is close to Hive’s 2.4 some

methods have a staggering complexity: for example POCast::convertWithSchema has a complex-

ity of 102. Ranked just below it are Main::run (complexity of 64), JobControlCompiler::getJob

(complexity of 53), GroovyScriptEngine::registerFunctions (complexity of 50) and

BinInterSedes::readDatum (complexity of 49).

The n-path complexity refers to the number of acyclic execution paths through that method. The

more paths there are, the more complex the method is. Using a threshold of 200, running the PMD

analyzer over the Hive codebase allowed for the identification of 677 methods whose complexity

should be reduced and whose readability should be increased. Pig on the other hand contains only

198 methods which exceed this threshold, allowing us to safely conclude that the Pig codebase

is generally easier to read and understand than Hive. This assertion is supported the fact that

Hive contains a lot more excessively large classes than Pig (61 vs 19). The same goes for excessive

method lengths (161 in Hive vs 89 in Pig) and the amount of methods and fields in different classes:

in the Pig codebase, only 134 classes were found to contain an excessive amount of methods. In

Hive on the other hand it is 586. Numerous classes in Hive were also found to contain too many

fields, indicating that the developers did a bad job at grouping related fields.

72 Chapter 5. Pig and Hive under the hood

Unlike the Pig codebase, Hive also suffers from a high degree of coupling: by counting the number

of fields, local variables and return types, 22 classes were found to have a high degree of coupling

(”high” referring to over 20 references to other classes). This assertion is confirmed by examining

imports: 62 classes in the Pig codebase seem to import an excessive amount of classes; contrast

this to 120 instances in Hive! Furthermore, the Hive codebase does badly on loose coupling: In

872 cases, implementation types were used over interface types which can make code maintaince

/ change introduction difficult. In contrast, Pig only used implementation types in 81 instances

(although this is still quite a lot).

Hive’s codebase also contains methods and constructors with large amounts of parameters, making

their usage rather complex and difficult. Take Hive’s CreateIndexDesc constructor for example:

public CreateIndexDesc(String tableName, String indexName,

List<String> indexedCols, String indexTableName, boolean deferredRebuild,

String inputFormat, String outputFormat, String storageHandler,

String typeName, String location, Map<String, String> idxProps, Map<String,

String> tblProps,

String serde, Map<String, String> serdeProps, String collItemDelim,

String fieldDelim, String fieldEscape, String lineDelim,

String mapKeyDelim, String indexComment)

5.1.4 Controversial

Controversial issues are bad practices that are not derived from the official Java specification.

Instead they are subjective interpretations of what ”good code” should look like. The following

controversial practices were found in both the Pig and Hive codebase:

1. Making assignments inside operands - For example: if ((time = getTime()) == 8000).

Making such assignments impacts readability.

2. Missing constructors - Every class should contain at least one constructor. 3. Final local

variables - Where possible, it may make sense to turn final local variables into fields. 4. Data

flow anomalies - As stated in the PMD documentation[?]

5.2. Concrete example - JOIN 73

The dataflow analysis tracks local definitions, undefinitions and references to variables

on different paths on the data flow. From those informations there can be found various

problems. 1. UR - Anomaly: There is a reference to a variable that was not defined

before. This is a bug and leads to an error. 2. DU - Anomaly: A recently defined

variable is undefined. These anomalies may appear in normal source text. 3. DD -

Anomaly: A recently defined variable is redefined. This is ominous but don’t have to

be a bug.

5. Failing to call super() inside constructor

6. NullAssignment - As stated in the PMD documentation[?]:

Assigning a ”null” to a variable (outside of its declaration) is usually bad form. Some-

times, this type of assignment is an indication that the programmer doesn’t completely

understand what is going on in the code. NOTE: This sort of assignment may used in

some cases to dereference objects and encourage garbage collection.

For a full table of issues see Appendix C.

5.2 Concrete example - JOIN

As described in [13], Hive’s join operations are significantly slower than in Pig. These results were

confirmed by running additional benchmarks, including two transitive self-join experiments on

datasets consisting of 1,000 and 10,000,000 records (the scripts and dataset generator used for this

benchmark were provided by Yu Liu). The former took Pig an average of 45.36 seconds (real time

runtime) to execute; it took Hive 56.73 seconds. The latter took Pig 157.97 and Hive 180.19 seconds

(again, on average). The fact that Hive’s join implementation is less efficient than Pig’s can be ex-

plained by examining Hive’s join operator implementation .org.apache.hadoop.hive.ql.exec.CommonJoinOperator.java:

in essence, the methods responsible for the join recursively produce arrays of bitvectors. Each entry

in the bitvector denotes whether an element is to be used in the join. (if the element is null, then

it won’t be used). Not only does recursion result in a large memory footprint, but it also means

that an unnecessary amount of objects are created for each join operation (object creation in Java

is expensive)5, making the entire join operations a lot less efficient than Pig’s.

5Smaller optimization issues, object instantiation inside loops, contribute to this performance difference. An
example of this can be found inside the checkAndGenObject() method on line 666.

74 Chapter 5. Pig and Hive under the hood

5.3 Evolution over time

As is evident from figures 5.9 and 5.10, both codebases evolved quite differently. Initially the Hive

codebase was much smaller than Pig’s, and so were the number of optimization issues per 100 LOC.

Hive version 0.10.0 saw a sudden explosion in size as many new features were introduced (such as

fixes to the ZooKeeper driver (HIVE-3723), ability to group sets (HIVE-3471) or the addition of

the ”explain dependency” command (HIVE-3610)). The focus with Pig on the other hand seems

to have been efficiency: the number of optimization issues in version 0.10.0+ dropped and then

stabilized. This supports the argument presented by the author in [13] that fixes to the Pig codebase

in 2011 accounted for the results by some studies that showed Hive to initially outperform Pig.

Figure 5.9: The number of optimization issues in the Pig and Hive codebases over time. Note that
the x-axis should be read as version numbers. For example, 1.0 refers to version 0.1.0, 11.1 refers
to version 0.11.1

5.4. The Group By operator 75

Figure 5.10: The number of optimization issues as well as the number of lines of code (LOC) in the
Pig and Hive codebases over time. Note that the x-axis should be read as version numbers. For
example, 1.0 refers to version 0.1.0, 11.1 refers to version 0.11.1

5.4 The Group By operator

As was discussed in chapter 4, runtime numbers show that Pig’s Group By operator is outperformed

by Hive. CPU times show that the mappers for this operator are very slow[13].

Reviewing the original query we see an algebraic UDF function: COUNT:

a = LOAD ’$input/dataset’ using PigStorage(’\t’) AS (name, age, gpa)

PARALLEL $reducers;

b = GROUP a BY name PARALLEL $reducers;

c = FOREACH b GENERATE flatten(group), COUNT(A.age) PARALLEL $reducers;

STORE c INTO ’$output/dataset_group’ using PigStorage() PARALLEL $reducers;

Pig is a procedural language, and being younger and less popular within the database community,

is less optimized than SQL-like languages. As such, Pig creates aliases (intermediary datastruc-

tures) with each step of the query. That is, every time a mapper finishes, it writes this data to

76 Chapter 5. Pig and Hive under the hood

disk. As noted by core developer Cheolsoo Park, the way Hadoop works is that when data comes

out of a map task, it is being serialized so that the size of the output buffer can be determined

quickly (Java lacks a sizeof operator). Next, a special Hadoop process, called a ”combiner” reads

these datastructures (byte streams) back into memory and deserializes them. Consequently, for

each ”stage” in the query, one requires disk I/O operations as well as serialization/deserialization;

which is expensive and not worth it unless the data reduction is significant.

Looking at the script used to generate the test dataset (https://issues.apache.org/jira/browse/PIG-

200), we see that a lot of random keys are generated. Consequently, one will end up with a large

number of small bags rather than a small number of large bags. If that’s the case, the combiner

will only add overhead to mappers and data reduction per bag will be insignificant and will be

outweighed by the cost of serialization and disk I/O. Therefore disabling the combiner (using set

pig.exec.nocombiner true;) produces signficant performance advantages (although the algorith-

mic problem of having too many stages will persist. For example, Pig creates 99 map jobs for the

given script and dataset; Hive only 8). The number of bags can be computed via:

total number of input records

(reduce input groups . number of reducers)

Additionally, Pig 0.10+ allows for in-memory aggregation6. If enabled, Pig will buffer map outputs

in memory and apply combiners without having to serialize/deserialize and perform disk read-

/writes.

It should also be noted that DISTINCT should be used in place of GROUP BY whenever possible as

the former is more efficient (the output of a DISTINCT contains only the column(s) to which the

operation was applied, whilst the output of the GROUP BY relation is a key and bag which contains

all of the tuples that have the same group key).

6In-memory aggregation can be enabled/disabled by setting the pig.exec.mapPartAgg flag.

5.5. Hive patch implementation 77

5.5 Hive patch implementation

Two patches were developed and submitted: HIVE-5018 (implementing recommendation 1 from

section 5.1.1 and resulting in a 2.6% performance increase when it comes to arithmetic operations)

and HIVE-5019 (implementing recommendation 6 in section 5.1.1).

5.6 Conclusion

In section 3.1 the question ”what initially caused Hive to outperform Pig[17][15][14]” was

posed. The data presented in this and the previous chapter answers this question by illustrating

that the results presented by [15] are questionable: Hive most likely did not outperform Pig - the

TPC-H benchmarks are flawed as one operator dominates the outcome of the entire script. Con-

sequently they are not a realistic assessment as in reality not every query would be relying on a

dominant set of operators. Furthermore, as noted in section ??, the differences presented by [17]

and [14] can be explained by initial problems with the Pig compiler as well as issues with the com-

piler’s logical plan[13]. Recall that upon examining Apache’s Pig repository, two releases stood out:

29 July, 2011: release 0.9.0

This release introduces control structures, changes query parser, and performs semantic cleanup.

24 April, 2011: release 0.8.1

This is a maintenance release of Pig 0.8, contains several critical bug fixes.

Closer inspection found that the following tickets PIG-1775 (removal of old logical plan), PIG-1787

(error in logical plan generated), PIG-1618 (switch to new parser generator technology), PIG-1868

(new logical plan fails when I have complex data types), PIG-2159 (new logical plan uses incorrect

class for SUM causing) appeared to account for the aforementioned problems.

Analysis of the Pig and Hive codebases revealed that overall, Pig’s source code is of higher quality

than that of Hive:

• Pig’s codebase is nearly 18% smaller than Hive: Pig consists of a total code (and comment)

78 Chapter 5. Pig and Hive under the hood

base of 154,731 LOC (25% comments, 13% blank lines and the rest consists of actual code).

Hive, although more sparsely documented, consists of 187,916 LOC (23% comments, 12%

blank lines and the rest consists of actual code).

• The Hive codebase contains 71.5 issues per 100 lines of code7; Pig contains 24.85 issues per

100 lines of code.

• In terms of issues per lines of code, Pig is vastly superior to Hive: Hive has 31.59 optimization

issues per 100 lines of code (LOC); Pig only 11.41.

• Both codebases have roughly the same percentage of design flaws: 5.05% for Hive and 4.9%

for Pig.

• The Pig codebase exposes a wider range of naming convention abuse (albeit less than Hive):

a total of 5,100 issues were found.

• The Pig codebase seems more professional: 5 rookie mistakes per 100 LOC (as opposed to 12

rookie mistakes per 100 LOC for Hive).

• 14 intermediate mistakes per 100 LOC (as opposed to 38 intermediate mistakes per 100 LOC

for Hive).

• 5 expert mistakes per 100 LOC (18 expert mistakes per 100 LOC for Hive).

In terms of cyclomatic complexity however, both codebases are the same. Although Pig has a much

lower n-path complexity than Hive (supporting the argument that Pig’s codebase is much easier to

understand and maintain).

Any performance differences between Pig and Hive should be attributed to code quality: on a

logical level, translation of scripts into map-reduce jobs are the same.

As a concluding remark, it should be noted that both codebases are still far from mature and both

could be greatly improved upon. They are not nearly as mature as Apache Ant for example (which

contains 16.84 issues per 100 LOC8).

7”Issues” refer to either basic violations of good practices, problems related to code size or complexity, bad
commenting / bad code documentation, code that is deemed controversial, high or inappropriate coupling between
classes, general bad design practices, empty or redundant code, violations related to naming of variables, classes and
methods, various optimization issues, bad exception handling, unused code, security vulnerabilities, problems related
to type resolution as well as suboptimal usage of strings and string buffers.

8The analysis of Apache Ant v.1.9.2 (consisting of 259,711 LOC) resulted in 43,756 issues

Chapter 6

Developing an IDE

IDEs are development tools designed to aid software development and as such are an essential

aspect of maximizing programmer productivity and development speed. IDEs tend to have similar

user interfaces and provide a wide array of features for debugging, compilation, configuration, au-

thoring and software deployment.

As noted in section 2.2.1, no cohesive development tool for writing big data scripts in Pig Latin or

Hive QL exists to date. Having tried a variety of different tools throughout the ISO, local devel-

opment with each tool still proved tedious. For one, no existing IDE allowed for easy deployment

of scripts: one had to always either transfer them using SSH commands, SFTP transfer clients

such as FileZilla or write deployment scripts. Furthermore, browsing the Hadoop filesystem and

transferring files to and from is time consuming when using only a terminal: for example if one

works from at home and requires access to the Hadoop cluster at Imperial College London, one

first needs to SSH into shell1.doc.ic.ac.uk and from there onto ebony.doc.ic.ac.uk. On ebony one

can then use the hadoop fs command line utility to explore the file system (there is no reason why

an editor should not be able to do this automatically).

Furthermore, version control of the scripts was inconvenient: the Git plugin for Eclipse is faulty and

difficult to setup (and under less popular Linux distributions, such as Sabayon, seemingly impossible

to configure) and stand-alone Pig/Hive development tools included no form of version control at all.

Quite some time was also lost when running batches of benchmarks, only to discover that the path

79

80 Chapter 6. Developing an IDE

to some data files in the Hadoop filesystem was incorrect (this happened quite a lot, especially

when administrators reconfigured various nodes within the cluster). No existing big data editors

contain features that automatically check the Hadoop filesystem for the existence of datafiles upon

encountering a LOAD statement in the code.

As already discussed, specifying configuration settings, such as the number of map and reduce jobs

is rather awkward and to date no editor contains features that make this easier.

Scripts processing big data often take many hours (if not days) to execute. The obvious, and

rather tedious way of determining when a script has finished is to regularly check the job tracker.

Alternatively, one could write his/her own script that periodically check the tracker and notify the

user when a task (or set of tasks) has successfully completed execution. Both methods seem archaic

- why not include a notification engine with the IDE? Such a notification engine could easily be

coupled with a runtime manager which would submit new tasks to the cluster as others complete

their execution. Furthermore, a result analyzer could automatically analyse task runtimes and

compute elementary statistics such as mean, median and mode of real time runtimes, total CPU

runtime, CPU map time and CPU reduce time as well as their variance and standard deviation

and plot these results as line, bar and pie charts.

Of course an IDE’s defining feature is the script editor which allows for the authoring, display and

editing of Hive and Pig scripts and possibly containing undo / redo functions, as well as a syntax

checker and code completion features. The next chapter will discuss all these features in more detail.

Last but not least the question arises as to whether modify an existing IDE (for example Netbeans

or Eclipse) or to write one from scratch. The latter option was chosen for the following reasons:

• Existing IDEs such as Netbeans (204MB) and Eclipse (244MB) are bloated and contain many

features not needed when developing Pig/Hive scripts. Consequently, why require the user

to install either one of these if most of their features are not needed?

• A stand-alone IDE is faster. Due to their size and complexity, Netbeans and Eclipse take

some time to load and can be sluggish and difficult to use at times.

81

• Bigger challenge. On a personal note, I found it fulfilling to be able to claim that “I wrote

my own IDE”.

• Ease of use - the user interfae Eclipse and Netbeans IDE can be quite overwhelming at first

and take some time to get used to. Keeping the UI minimal and only including the necessary

controls makes the software much easier to use.

However by design, AutoPig’s code is modular and any component can be turned into a Netbeans

Platform module. As proof of this, the HDFS file manager was turned into a Netbeans plugin (see

chapter 8.4).

Chapter 7

Architecture

7.1 Benchmarking Application Design

The previous sections reviewed the existing state of big data development tools introduced the main

problems and constraints faced by the application’s development. This section aims to describe

the architecture that makes the implementation of these solutions possible. Only core components

and core design features will be discussed.

AutoPig consists of 7 distinct components (as illustrated below).

82

7.2. HDFS file manager 83

Figure 7.1: AutoPig component structure.

7.2 HDFS file manager

The HDFS file manager is, as its name implies, a module for managing files within the (remote)

HDFS filesystem. That is, it is a front-end for the hadoop fs command set and supports:

• Copying files to and from the Hadoop filesystem and an external file system. Equivalent to

hadoop fs copyFromLocal and hadoop fs -copyToLocal.

• Transferring files across a network using scp as well as automatic deployment and execution

of scripts.

• Change group association of files. Equivalent to hadoop fs -chgrp.

• Change the permissions of files. Equivalent to hadoop fs -chmod

• Change the owner of files. Equivalent to hadoop fs -chown

• Copy files from source to destination. Equivalent to hadoop fs -cp

• Displays aggregate length of files. Equivalent to hadoop fs -du.

84 Chapter 7. Architecture

• Empty the trash. Equivalent to hadoop fs -expunge.

• Display stats on a file. Equivalent to hadoop fs -ls.

• Takes path uri’s as argument and creates directories. Equivalent to hadoop fs -mkdir

• Moves files from source to destination. Equivalent to hadoop fs -mv.

• Delete files. Equivalent to hadoop fs -rm.

• Recursively delete files. Equivalent to hadoop fs -rmr.

• Outputs the file in text format. Equivalent to hadoop fs -text.

• Test dataset generation.

7.3 Unix file manager

Just as the HDFS file manager above, the Unix file manager is a module for managing files within

standard Unix / POSIX compliant remote hosts. That is, it is a front-end for executing filesystem-

related shell commands and supports:

• Copying files to and from the remote host using scp.

• Automatic deployment and execution of scripts.

• Change the permissions and ownership of files using chmod and chown.

• Copying and moving files from source to destination using cp and mv.

• Display disk usage information using du -h.

• Listing files and changing directories using ls and cd.

• Creating directories and deleting directories using mkdir and rm -r.

• File deletion using rm.

7.4 Script editor

The script editor will allow for the creation, display and editing of Hive and Pig scripts. Specifically,

the editor supports:

7.5. Notification engine 85

• Creation of new files. Saving of files.

• Editing of existing files.

• Pig and Hive QL syntax highlighting.

• Easy viewing of datasets referenced in the script.

• Path checking. That is, if the user accesses a file (or table, as is the case in Hive QL), the

script editor will interface with the Hadoop file manager and check whether the actual data

file (and table) exist within the Hadoop file system. If not, a warning will be displayed.

• Undo / redo functions.

• Possibly auto-complete and syntax validity checker.

• Inbuilt Git version control.

7.5 Notification engine

The notification engine interfaces with the Hadoop job tracker and notifies the user (by email or by

displaying a message on screen) when a scheduled job completes execution. It also reacts to error

messages and advises the user on a possible course of action.

7.6 Result analyzer

This module allows for the fast analysis of benchmarks. Specifically it allows the user to:

• Calculate mean, median and mode of real time runtimes, total CPU runtime, CPU map time

and CPU reduce time as well as their variance and standard deviation.

• Plotting of the given results as line, bar and pie charts.

• Export of the given results into CVS and PDF formats.

7.7 Runtime-manager

Exact features of this module are still to be determined and will become clearer as development

progresses. However in essence it should monitor the execution of scripts and interface with the

86 Chapter 7. Architecture

scheduler and notification engine. It should counter-act errors where possible. For example if an

out-of-disk space error seems imminent, it should try and remove temporary files or move data files

that are currently not needed to another server until the script terminates.

Furthermore, the IDE should support local execution of scripts as well as a debugger and dataset

viewer.

7.7.1 Scheduler

Allows for simple scheduling of scripts.

7.8 User Interface

The User Interface Component’s sole responsibility is the presentation and visualization of data.

These can be summarized as:

1. Graphical file system representation and a graphical method to interface with the Hadoop

file manager.

2. Visualization of the script editor and its accompanying features.

3. The construction and visualization of various user interface controls such as windows, buttons

and text fields.

4. The conversion of UI events into interactions between the remaining system components.

To serve this purpose, the UI component is divided up into three sub-components, one for each of

the other 6 system components.

1. The file manager package handles visualization of the hadoop file system.

2. The editor package handles the visualization of the script editor.

3. The notification package provides auxiliary services to the notification engine compo-

nent for the visualization messages and customization of emails.

4. The analysis package handles visualization of the result analyzer.

7.9. Package Structure 87

5. The scheduler package handles visualization of the scheduler.

6. The runtime package handles visualization of the runtime manager.

7.9 Package Structure

The Benchmark Application project tree is organized into a set of 10 packages, each of which can

contain sub-packages. Navigating from the source node downwards, the project tree’s package

structure is as follows:

• hadoopdevtool - Contains the application’s Main class as well as the Conf class which holds

runtime configuration variables for the entire application.

• assets - Contains application assets such as icons and configuration files.

• exception - Contains application specific exceptions (see section 8.11).

• remote - Composes the HDFS and Unix file manager (see section 7.2).

• ui - Composes the UI Component (see section ??

• editor - Composes the script editor (see section 7.4).

• notification - Composes the notification engine (see section 7.5).

• analysis - Composes the result analyser (see section 7.6).

• runtime - Composes the runtime manager (see section 7.7).

• scheduler - Composes the scheduler (see section 7.7.1).

7.10 Architectural Strategies

7.10.1 Policies and Tactics

Design policies and tactics that do not have sweeping architectural implications, but which nonethe-

less affect the system’s implementation are as follows:

1. All development constraints outlined in section ?? are met.

88 Chapter 7. Architecture

2. JAVAC is the Java bytecode compiler of choice. The latest stable release (JAVAC 1.6.014, May

28, 2009) is used for all development and deployment. The compiler is licensed under a GNU

General Public License.

3. Where possible, design patterns are used (see section 7.10.2 for details).

4. Traceability matrices are used to ensure that development meets the specified requirements

/ problem solutions.

5. Deliverables are built using the default Netbeans 7.3 and Ant Scripts.

7.10.2 Design Patterns

Design patterns are applied wherever possible for the following reasons[11]:

1. Decoupling - The purpose of decoupling is to divide the system into components in such a

way that individual parts can be built, changed, replaced, and reused independently (i.e. the

aim is to minimize the cost of change).

2. Integration - This is closely related to decoupling in that integration patterns ensure that

independently developed components work together. Most patterns promoting integration

also promote decoupling.

3. Control - The purpose of control patterns lies with managing object access and execution

control flow.

4. Convenience - Miscellaneous patterns whose sole objective is to simplify code.

The most prevalent patterns within the application are:

1. Abstract Data Type (Class)

Category: Decoupling.

Purpose: To hide algorithm implementations behind a change-insensitive interface.

Implementation: Use of Java’s interface or abstract functionality.

2. Manager (Collection)

Category: Decoupling.

7.11. User Interface Design 89

Purpose: To aggregate collection-related methods (such as creation/deletion, registration

e.t.c.) into a single class and controls all collection access.

Implementation: Abstracting data access into one class.

3. Module

Category: Decoupling.

Purpose: The grouping of components that work towards a common goal into a single class,

effectively hiding their workings behind a change-insensitive, public interface.

Implementation: Aggregation of classes so that they can be hidden behind a public interface.

4. Singleton

Category: Control.

Purpose: Limiting the maximum number of instances of a class. Also used to ensure that

data is shared between consumers.

Implementation: Declaring a class’ constructor to be private and creating a public accessor

that creates and returns instances of the class based on a counter.

5. Convenience Patterns

Category: Convenience.

Purpose: The simplification of method invocations.

Implementation: Defining specialized methods that call the general methods, supplying

frequently used parameter combinations.

7.11 User Interface Design

7.11.1 Main Screen

The main screen (as seen in figure ?? and implemented by the MainUI class) is the central hub for

the entire application.

It is from this screen where the user can access all of the application’s different features. Essentially

these features are made accessible by four main components:

90 Chapter 7. Architecture

1. A menu bar that contains a set of menu items that group features according to their overall

functionality / purpose.

2. A tabbed pane that contains panels for holding the script editor window, the log viewer,

project file manager and the HDFS file manager. By selecting individual tabs, the user can

switch between the editor and other components.

3. A side panel displayed at the left hand side of the screen presenting project structures.

4. A JFrame container in which the above two components are held.

Netbeans’ ”Matisse GUI Builder” is used to design and construct the user interface.

Figure 7.2: AutoPig’s user interface.

7.12 Summary

This chapter explained the application’s architecture, its internal component and package structure,

the visual design decisions. To summarize:

• The application consists of 7 distinct components, each dedicated to a distinct set of tasks.

• Error detection, error recovery and concurrency have all been put under careful consideration.

7.12. Summary 91

• Various design patterns have been employed to address the issues of decoupling, integration,

control and convenience.

• The user interface has been implemented according to best industry practices.

The next chapter will focus on how the core problems faced by the system are implemented following

the design and architecture described in this chapter.

Chapter 8

Implementation

This section focuses on how AutoPig came about. The tools, methodology, algorithms and their

implementation are discussed in detail in the hope of giving the reader a complete understanding

of the application’s inner workings.

8.1 Language Choice

Java is the development technology of choice based on three factors:

1. Support on platforms/devices - Given that the application serves as a complete, func-

tional IDE, specific device requirements are unknown. Given that the Java VM is supported

on all major platforms, it proved to be the best choice when considering availability and

deployment effort.

2. Productivity - Due to the project’s tight deadline, a relatively high-level language that

would offer good support for visualization and networking operations was required. Again,

Java proved to be the best choice given that:

• The author (Benjamin Jakobus) was already familiar with the language (and hence

would not be required to spend time learning a new technology).

• The Java platform comes with a rich set of APIs and is maintained by a large community

of developers.

• The language has stood the test of time - Java has matured nicely and has been tested

and deployed in many industries.

92

8.2. Tools and Technologies 93

• Java has a large user base and therefore many third party APIs and development tools

are readily available.

3. Performance - The resulting application should be of reasonable computational perfor-

mance. Although faster solutions (such as C) exist, Java’s performance is acceptable.

8.2 Tools and Technologies

As noted above, the system is developed in Java (with Netbeans 7.3 being the IDE of choice),

relying Swing/AWT for user interface and 2D visualization.

Git is used as a version control system, with local version control being handled by the Netbeans

IDE. A remote Git repository was created and is hosted by Bitbucket.com. The repository is

private, so only a dedicate set of users may access the codebase.

8.3 The Script Editor

As already stated in section 7.4, the logic for the script editor is contained in the editor package.

This package contains 23 classes and 2 interfaces, the most notable of which the Workspace class.

The workspace is responsible for initializing and managing the development environment and it

interfaces directly with the user interface, receiving and responding to action events and control-

ling the project workspace. It is one of the ”controllers” that form the application’s MVC model;

user interface components that form the script editor (e.g. editor buttons such as ”Save Script”)

delegate their work to this class.

To initialize the user interface, a Workspace object must first be created and then passed to the

user interface object:

// Create a new workspace

Workspace ws = new Workspace();

// Create application user interface

94 Chapter 8. Implementation

IMainUI mainUI = new MainUI(ws);

mainUI.setVisible(true);

8.3.1 Syntax highlighting

Syntax highlighting is accomplished using only the 3 classes contained inside editor.syntax. The

syntax checker for each project type (currently the editor supports only Hive and Pig projects)

is represented by a separate class (PigSyntaxChecker.java and HiveSyntaxChecker.java), all

of which inherit the syntax checker’s core from SyntaxChecker.java. Stating that the individual

syntax checkers for the different projects inhert ”the syntax checker’s core” means that they the

logic for identifying and highlighting keywords is contained inside this superclass. The subclasses

only define the keywords that are unique to the language which they represent.

The two key methods within this context are highlightSyntax() and highlightCurrentString().

The former takes the entire script and walks through it line by line, applying the appropriate syntax

highlights as necessary. That is, for each word on every line, it checks the reservedKeywords array

whether this word is contained in the array. If it is, then the word’s font colour is changed (to

blue). If it isn’t, it is ignored.

highlightCurrentString on the other hand only checks whether the word that the user has last

typed (i.e. the ”current string that the user is working on”) is a reserved keyword; if it is, high-

lighting is applied in the same manner as above.

The commentIdentifier is, as its name implies, the string that identifies comments and is set

accordingly by the syntax checker’s subclasses. For example, the comment identifier for a Pig

Latin syntax checker is ”–”.

8.3.2 Search and replace

The script editor supports three search modalities: find all, find next and find previous. Search

can be either case sensitive or case insensitive and the user is also presented with the option of

8.3. The Script Editor 95

replacing all occurrences of a given string with a new, user specified, string.

When searching for a string, matches are highlighted in yellow. The actual search capabilities are

implemented by the SearchEngine class contained inside the editor package. The class exposes

six public methods (all methods are static):

• clearHighlights - Removes all highlighters added by the search engine. As a match is

found, the search engine adds a highlighter to the JTextPane on which the match was found,

using the offset of the match (i.e. it highlights the match). This method removes all these

added highlighters (it is used when the user cancels a search, or when the user starts a new

search. Alternatively, it is also used by findNext and findPrevious to clear the highlights

of the previous matches).

• findAll - Finds and highlights all occurrences of a given word.

• findNext - Finds and highlights the occurrence of the next match.

• findPrevious - Finds and highlights the occurrence of the previous match.

• replaceAll - Finds and replace all occurrences of a given keyword.

• reset - Resets the search engine’s private members. These members keep track of the previous

match offsets (so as to allow for the find next and find previous search capability) and of the

added highlighters (so that we can efficiently remove them after).

At the core of the search engine lies the following snippet (note: it varies slightly depending on the

search modality used):

while ((lastIndex = content.indexOf(keyword, lastIndex)) != −1) {

int endIndex = lastIndex + wordLength;

try {

highlighter.addHighlight(lastIndex, endIndex, painter);

highlighters.add(painter);

// Increment the number of matches

96 Chapter 8. Implementation

matchCount++;

} catch (BadLocationException e) {

e.printStackTrace();

}

if (firstOffset == −1) {

firstOffset = lastIndex;

}

lastIndex = endIndex;

}

The above code is self-explanatory: we search the text pane’s contents for the occurrence of the

given search term, starting off at the offset of the last found term, and incrementing this offset with

each new match. The loop terminates once no more matches have been found (i.e. as soon as the

indexOf function returns -1).

8.3.3 Refactoring

At the time of writing, the refactoring capabilities are limited to renaming variables within a script.

Selecting a string within your script and then using the key combination CTRL + R allows the user

to rename all occurrences of the string within the script at once (see figures 8.1 and ??) whilst

seeing all highlighted occurrences of the given string. This feature is identical to those of major

IDE’s such as Netbeans whose ”Refactor - Rename” capability results in Netbeans updating the

source code within a project to reference the element by its new name.

To exit the renaming mode, the user has to simply press enter. To this end, the JTextPane used as

the script editor (txtScript) no longer uses Java’s default DefaultStyledDocument class; instead

it uses a subclass, StyledScriptDocument, that catches return key events if the user is performing

a refactor rename.

8.3. The Script Editor 97

Figure 8.1: Renaming a variable.

The overall logic behind this is contained inside the MainUI class. SearchEngine is used to find an

highlight all occurrences of the selected string.

8.3.4 Workspace management

Workspace management concerns the management of projects and their associated script files. A

(script) project consists of a directory (called the project directory) inside the workspace directory.

The project directory carries the same name than the actual project and contains a collection of

script files as well as one project identifier file. The project identifier file is an empty file called

project.hbt.ql (the project identifier files for Pig Latin projects end with ”.pig”) and are used by

the application to identify projects (i.e. consider that a workspace may be a user’s home directory

and hence might contain other, non-project related, directories. The project identifier hence allows

the application to determine which directory is a project directory and which isn’t).

Workspace management revolves around 4 central classes: editor.Workspace.java handles project

creation, script creation, relevant UI updates as well as data persistence. It receives messages

solemnly from MainUI.java and updates its JTree component which represents the workspace tree

(see figure ??).

98 Chapter 8. Implementation

[H]

Figure 8.2: The workspace tree displays projects

and their contents.

The workspace object keeps track of open

projects by maintaing a list of ScriptProject

instances - the ScriptProject encapsulates the

notion of either a Pig Latin or Hive QL project.

Each ScriptProject consists of a collection

of Script objects (subclassed into HiveScript

and PigScript) and is responsible for manag-

ing these.

Each script instance contains an undo log which

allows for the recovery of changes made to the

script as the user is working on his/her project.

The undo log is a stack: before a change is ap-

plied to the script, its current version is pushed

onto the stack. Only then is the change applied

to the script itself. An ”undo” action simply

involves popping the top of this stack: the top

element is displayed in the script editor and is also pushed on top of the redo stack (which allows

the user to redo (i.e. ”undo undo”) a change).

The user can interact with the workspace tree in order to move, rename or delete files and projects.

These operations are handled by the ui.com.mnu package which contains the logic and interface

code for the project tree’s pop-up menu. File movement is handled through the workspace tree’s

drag events (users can drag script files into other projects) using the TreeTransferHandler.java

(an original version of the tree transfer handler was written and published by Craig Wood on

coderanch.com).

8.4 Remote File Manager

The remote package contains the three classes that are responsible for interfacing with remote

filesystems (either the remote HDFS filesystem or a standard Unix filesystem). Both FileManager

and HadoopFileManager rely on RemoteServer for connectivty and session handling (RemoteServer

8.5. Runtime configuration variables 99

on the other hand relies on the the Java JSch SSH library). RemoteServer exposes three dif-

ferent ways of connecting the the remote filesystem: calling connect() will establish a directl

SSH session with the project server; tunnelProjectServerConnect() will tunnel through an

intermediary host and then establish a connection with the project server (that is, assuming

that shell1.doc.ic.ac.uk is your intermediary and ebony.doc.ic.ac.uk is your project server, calling

tunnelProjectServerConnect() will be equivalent to first SSHing into shell1 and from there exe-

cuting the command ssh user@ebony.doc.ic.ac.uk). Similarily, tunnelHDFSConnect() will connect

to the Hadoop server through an intermediary host.

Once connected, the following methods can be executed:

sendFile - Transfers a file from the localhost to the remote host.

downloadFile - Downloads file from remote host to the localhost.

sendCommand - Executes a given command on the remote host.

disconnect - Closes the SSH session(s).

As implied by its name, the HadoopFileManager class encapsulates the Hadoop file system (in

essence it executes Hadoop shell commands by calling sendCommand in RemoteServer. Likewise,

FileManager encapsulates the Unix filesystem on the remote host. It should be noted that Win-

dows or other none POSIX compliant operating systems are currently not supported (the reason

for this is two-fold: firstly, Hadoop is generally not run on Windows servers and secondly ease of

implementation).

As a proof of AutoPig’s modularity, the Hadoop file system manager was also turned into a Netbeans

plugin (see figures 8.3 and 8.4).

8.5 Runtime configuration variables

The runtime configuration variables are contained in hadoopdevtool.conf and are as follows:

projectFolder - Refers to the absolute path of the project folder. That is, the folder in which all

project directories will be created. e.g. /home/benjamin.

100 Chapter 8. Implementation

currentProjectNode - The application uses Swing’s JTree component to display the project struc-

ture in the form of a tree. With ”Projects” being the root node and any project being its childr

(whose children in turn are .the individual script files that form the project). For example, a project

called ”FooBar” that contains 2 files, A1.pig and A2.pig, would take the form of: Projects - FooBar

- {child 1: A1, child 2: A2}.

1.png

Figure 8.3: The HDFS file manager as a Netbeans plugin.

8.5. Runtime configuration variables 101

4.png

Figure 8.4: The HDFS file manager as a Netbeans plugin.

The currentProjectNode refers to the node in the tree that is currently selected by the user (i.e.

the node which the user last clicked). This is necessary to keep track of what the user is currently

working on, hence allowing us to save changes to the correct script file, etc. This configuration

variable is set inside the ui.MainUI class.

currentProject - By default null, this variable is the name of the project that is currently loaded

into the workspace (i.e. it keeps track of the project on which the user is currently working on). Its

purpose is similar to the above mentioned currentProjectNode variable in that it allows changes

to be made to the correct project.

currentScript - This variable references the script that is currently loaded into the editor. As

should be obvious to the reader, this variable is needed in order to determine which file the user is

currently editing and to consequently allow the program to make changes to this file or to apply

various other actions (such as refactoring or searching the script for a given keyword). Null by

default.

unsavedScripts - A hashmap mapping strings to strings. Specifically, it maps the name of the

unsaved script to its contents (the contents being the draft and not the actual saved contents of

102 Chapter 8. Implementation

the script). Again, it is rather obvious that this is used in order to allow the user to switch between

scripts without having to save them (the editor displays the contents from an unsaved script by

querying this hashmap; otherwise the contents is loaded from the actual script object by calling

getContents(). It should be noted that initially all scripts of open projects are loaded from file

into memory). Furthermore, the unsavedScripts map is queried as the user closes the program:

if it is not empty, then the user is prompted with a message dialog asking him/her whether he/she

would like to save the unsaved changes. If so, the contents of unsavedScripts is written to the

script denoted by its corresponding key.

currentNodeInFocus - Initially an empty string, this variable contains the name of the node from

the project tree that is currently in focus (i.e. the name of the node from the JTree that the user

clicked on last). The variable is only accessed by the MainUI and EntryEditor class and is used

when the user wishes to rename a node: as the renaming event is triggered, the original name of

the node is lost. Hence we access currentNodeInFocus in order to rename the file represented by

this node to the new name specified by the user.

deployDir - A string that points to a directory on the remote host to which script files should be

deployed and run (empty by default). Used by the auto-deploy feature.

useTunnel - A flag indicating whether or not to use the SSH tunnel settings when connecting to

remote hosts (i.e. whether to tunnel through a given host if connecting to the project server or

Hadoop filesystem).

projectServerHost - The hostname of the machine on which the project files are located. Auto-

deployments of project files will be made on this host.

projectServerUsername - The username used to access the machine on which the project files are

located.

projectServerPassword - The password used to access the machine on which the project files are

located.

8.5. Runtime configuration variables 103

sshTunnelHost - The host which to use as a SSH tunnel when connecting to the Hadoop filesystem

or the project server.

sshTunnelUsername - The username used to access the machine which to use as an SSH tunnel.

sshTunnelPassword - The password used to access the machine which to use as an SSH tunnel.

hadoopHost - The hostname of the machine on which the Hadoop filesystem is to be accessed.

hadoopUsername - The username used to access the machine on which the Hadoop filesystem is to

be accessed.

hadoopPassword - The password used to access the machine on which the Hadoop filesystem is to

be accessed.

remoteWD - Working directory on the remote host (used by the remote file manager). This variable

is not saved to the configuration file upon exit (since the file manager is stateless, this variable is

needed when transferring files to the server using the UI since the UI may represent a state different

to the default state (the default state being the home directory)).

clipBoard - The clipboard is a non-persistent global variable that holds a reference to the file that

is currently being copied (this information is used by the remote file managers).

gitRemotePaths - Maps remote repository URLs to local repositories. Used by the Git interface.

104 Chapter 8. Implementation

8.6 Git interface

The Git interface uses the local Git installation to provide the user with version control. The

interface implements the most basic Git commands: init, add, push, pull, diff and commit. Two

packages (a total of 13 classes) contain the code necessary for this feature: ui.com.git (contains the

”front-end” i.e. Swing UI components for visualizing the actual Git interface) and ui.com.mnu.git

(contains the action listeners and console wrapper). The interface is ”plugged” into the main ap-

plication through the project tree’s pop-up menu: ui.com.mnu.ProjectPopupMenu.

The committedFiles hashmap inside the project tree renderer is used to color committed (black)

and uncommitted (blue) entries.

8.7 Code auto-completion

Code auto-completion can be triggered by pressing CTRL-Space as one types a word into the script

editor. Three classes, editor.syntax.PigAutoComplete, editor.syntax.HiveAutoComplete and

editor.syntax.CodeAutocomplete implement this feature, whereby CodeAutocomplete is the ab-

stract superclass implementing the code-completion logic (PigAutoComplete and HiveAutoComplete

are subclasses that merely instantiate the keyword array used to create code suggestions).

8.8 Script configuration

Scripts are configured on a local basis (there is no global script configuration) through the project’s

file menu. The configuration UI is a front-end (ui.com.ScriptConfigurationUI that detects ex-

isting configurations or applies new configurations to a script file without the user having to actually

modify any code. The interface is ”plugged into” the main application through the project tree’s

pop-up menu: ui.com.mnu.ProjectPopupMenu.

The configuration UI allows for the setting of:

• mapred.min.split.size

• mapred.max.split.size

8.9. Remote path checker 105

• mapred.reduce.tasks

• mapred.max.jobs.per.node

8.9 Remote path checker

The remote path checker is implemented by editor.syntax.PathChecker and scans the script for

references to files on the remote HDFS using the remote file manager (see section 8.4). Custom

highlighters were implemented to underline references to files in the code that do not exist on the

remote server.

8.10 Auto-deployment, local execution and debugging

These three features are an extension of the file manager and console interface and as such are

self-explanatory (see section 8.4). The debugger re-writes Pig scripts temporarily: it identifies

all aliases in the script and adds an ILLUSTRATE statement to them. Similarly, Hive scripts are

re-written as to include EXPLAIN statements.

8.11 Error Detection and Recovery

Errors are reports of the applications’ inability to respond to an action request. Within the context

of this document, the term ”error” and ”exception” may be used interchangeably.

The AutoPig’s error system is designed in such a way that errors produced by individual compo-

nents do not destabilize or halt the entire application. Each object processes internal errors or, if

necessary, propagates these errors to other objects / components.

Users are notified of errors that occur as a result of invalid data input.

Depending on the error severity, errors are either silently discarded (this is done when error severity

is extremely low and does not influence future operations), are displayed to the user via the UI (if

the error is due to a bad command or input) or are written to standard output. Stack traces are

included as part of every error report written to standard output.

106 Chapter 8. Implementation

All errors take the form of Java Exceptions

Once an exception is thrown, the current operation/service is aborted to prevent the error from

migrating to other levels of the system. In the case of errors that are reported to the user, the

service’s restart will depend on the user. On the other hand, exceptions that are caught but that

are not logged (i.e. low severity errors due to, for example, a very short interruption in the user’s

network connectivity) will result in the automatic restart of the affected service.

8.12 Data Persistence

Data persistence is handled by the Conf class in which the runtime configuration variables are

located (see section 8.5). Upon termination of the program, the contents of the configuration

variables are encrypted using 256-bit AES (CBC and padding) and are written to a file, conf,

inside the application’s root directory. The same file is decrypted and read when the application

starts and the Conf object is updated respectively.

8.13 Concurrency and Synchronization

To prevent race conditions or other concurrency related problems, Java’s in-built concurrency

safeguards are used whenever threads are forked / new processes are being spawned. This means

that:

1. All threads are derived using java.lang.Thread.

2. Methods shared by two or more threads are synchronized upon declaration to prevent race

conditions.

3. Possible occurrences of InterruptedException are dealt within the thread’s implementation

of Runnable.

4. Data structures that are shared by two or more threads are made thread-safe by defining

them using Java’s Collections class which offers thread-safe implementations of all common

data structures.

Chapter 9

Testing

This chapter details the testing procedures applied to the development of the AutoPig IDE as

well as the Hive patches. IDE development follows the IEEE 892 standard for software testing

documentation. The chapter begins by introducing the types of tests used as part of the sys-

tem’s development process, and then moves on to discuss the individual test specifications and test

executions. The chapter concludes by presenting the results for each testing process and briefly

highlights remedies applied to the reported faults / incidents.

The IDE underwent three levels of testing: unit testing, system testing, and usability testing. The

details for each type are addressed in their appropriate section.

9.1 IDE

9.1.1 Test Goals

The testing of the AutoPig IDE aims to achieve the following quality levels:

1. No outstanding high severity faults prior to software release.

2. No outstanding product requirements prior to software release.

3. Highest possible quality of user interface, intuitiveness and ease of use.

4. Not more than one fault of the highest severity per 1000 lines of code.

Furthermore, testing aims to identify strengths and opportunities for future improvement.

107

108 Chapter 9. Testing

9.1.2 Unit Testing

Unit testing is defined as ”a method by which individual units of source code are tested to determine

if they are fit for use”[11]. JUnit (a Java Unit Testing Framework) is used to conduct the unit tests

undertaken by the author. Using a testing framework allows for the execution of the code body

outside of its natural environment. That is, every unit of code on which a test is performed, is

executed outside of the calling context for which it was originally created. This approach has the

advantage that it allows for the identification of unnecessary dependencies whilst at the same time

making it easy to construct test cases.

9.1.3 System Testing

System testing is ”conducted on a complete, integrated system to evaluate the system’s compliance

with its specified requirements”. A black box testing approach is undertaken, whereby all aspects

of the system are tested in an effort to detect any inconsistencies between individual components or

between the system and the requirements specification. System testing is undertaken by Benjamin

Jakobus.

9.1.4 Usability Testing

Usability testing is performed by and independent test team whereby each team member is asked

to complete a set of scenarios contained on a task sheet. Upon completion, the participants are

asked for feedback by completing a questionnaire.

9.1.5 Test Specification

Unit Test Design Specification

Unit testing utilizes the JUnit testing framework and is carried out by Benjamin Jakobus.

Encountered problems as well as their solutions are discussed in section 9.2.

Unit tests are divided into three phases:

Pre-test: Prior to starting the test, the test cases for each individual class must be recorded in a

text file following the naming scheme of ≤class name.unitversion.txt≥ (for example, the test

9.1. IDE 109

case for the first unit test of class MainUI must be recorded in a file called MainUI.1.txt).

Test cases must include input values and expected output values.

Test execution: As the unit test is executed, the output values are recorded in the test case

report file.

Post-test: The record is examined to identify potential errors.

All unit tests must be performed using JUnit and every class of the system must be tested. A test

case passes when:

1. No errors have occurred.

2. The test’s produced output matches the expected output.

If the above criteria are not met, then the test fails.

Due to the system’s size, test cases are not included as part of this report, but are available upon

request.

All unit tests are run on the hardware listed in table 9.1.5.

Model Name: MacBook

Model Identifier MacBook 6,1

Processor Name: Intel Core 2 Duo

Processor Speed: 2.26 GHz

Number Of Processors: 1

Total Number Of Cores: 2

L2 Cache: 3 MB

Memory: 4 GB

Bus Speed: 1.07 GHz

Graphics Chipset Model: NVIDIA GeForce 9400M

Graphics Chipset Type: GPU

Graphics Chipset Bus: PCI

Graphics Chipset VRAM
(Total):

256 MB

Operating System: Mac OS X (Snow Leopard)

Table 9.1: Test Hardware Configuration.

System Test Design Specification

System testing falls within the scope of black-box testing; a method of software testing that tests

the functionality of an application without consideration for or knowledge of the internal code.

110 Chapter 9. Testing

Therefore all of the system’s features were tested over a period of 2 days without regards for the

internal structure of the application.

Encountered problems as well as their solutions are discussed in section ??.

The system test requires all aspects of the system to be tested without exceptions.

The test builds will be delivered using Netbeans 7.3 and Ant.

Bitbucket’s bug tracker will be used to track bugs.

The pass criteria for the system test is as follows:

1. All processes will execute with no unexpected errors.

2. All processes will finish update/execution in an acceptable amount of time1.

The system test may be suspended partially or fully on a given build if any of the following criteria

are met:

1. Files are missing from the new build.

2. There is a fault with a feature that prevents its testing.

3. An excessive amount of bugs that should have been caught during the component/unit test

phase are found during more advanced phases of testing.

4. A severe problem has occurred that does not allow testing to continue.

5. Development has not corrected the problem(s) that previously suspended testing.

6. A new version of the software is available to test.

The system test should verify all of the following:

1The precise time is be based on subjective experience.

9.1. IDE 111

1. Syntax highlighting.

2. Auto-deployment.

3. HDFS file manager.

4. Remote file manager.

5. Secure setting storage and data persistence.

6. Tunneling.

7. Git interface.

8. Dataset viewer.

9. Data analysis.

10. Script scheduling and notification.

11. Syntax checker.

12. Code auto-complete.

13. Code auto-formatting.

14. HDFS path checker.

15. Script configuration wizard.

System testing was completed twice, once on each of the hardware configurations outlined in table

9.2.

Usability Test Design Specification

Usability testing is carried out by an independent team of 5 participants over a period of 5 days

whereby each test session is one hour in length.

The usability test aims to identify the application’s:

• Ease of use.

• Overall appeal.

112 Chapter 9. Testing

Model Name: MacBook

Model Identifier MacBook 6,1

Processor Name: Intel Core 2 Duo

Processor Speed: 2.26 GHz

Number Of Proces-
sors:

1

Total Number Of
Cores:

2

L2 Cache: 3 MB

Memory: 4 GB

Bus Speed: 1.07 GHz

Graphics Chipset
Model:

NVIDIA GeForce
9400M

Graphics Chipset
Type:

GPU

Graphics Chipset
Bus:

PCI

Graphics Chipset
VRAM (Total):

256 MB

Operating System: Mac OS X (Snow
Leopard)

Model Name: iMac

Model Identifier iMac 11,3

Processor Name: Intel Core 2 Duo

Processor Speed: 2.8Ghz

Number Of Proces-
sors:

1

Total Number Of
Cores:

2

L2 Cache: 3 MB

Memory: 16 GB

Bus Speed: 1.07 GHz

Graphics Chipset
Model:

ATI Radeon HD
5750

Graphics Chipset
Type:

GPU

Graphics Chipset
Bus:

PCI

Graphics Chipset
VRAM (Total):

256 MB

Operating System: Mac OS X (Snow
Leopard)

Table 9.2: Test Hardware Configuration.

• Degree of immersion.

• Faults that remained undiscovered during previous testing levels.

• Strong and weak points.

Furthermore, the test aims to:

• Identify general usability problems.

• Establish benchmarks for future comparisons.

The ideal target participants are as follows:

Gender: Males and Females

Age: 18 - 65

Professional Background: Students / IT

All participants met the target participant specification outlined in sub-section ??.

Test subject demographic is as follows:

9.1. IDE 113

Gender: 4 males, 1 female.

Age: 22 - 30.

Professional Background: 3 participants are master students and 2 participants are professional

software developers.

Comfort with the IT: All 5 participants reported a high level of comfort with IT.

All test participants were presented with three scenarios (refer to Appendix G for the worksheet)

that had to be completed within a one hour time-frame.

The usability test scenarios can be summarized as follows:

Test Scenario 1: Familiarization with the system. The user should:

1. Adjust various application parameters.

2. Create new Hive project.

3. Add script files to the project.

4. Use the editor to write simple scripts.

5. Make use of code auto-completion and the syntax checker.

6. Deploy the project.

7. Run the scripts on the remote Hadoop server.

8. Exit the application.

Test Scenario 2: The same than scenario 1, however using Pig (as opposed to Hive).

Test Scenario 3: Using the remote file manager and scheduler. The user should:

1. Configure project server connection settings.

2. Use the remote file manager to connect to the project server (both using tunnelling and

direct connection).

3. Use the file manager to upload, download and create files on the remote server.

4. Use the file manager to delete files.

5. Mark the auto-deployment directory.

6. Use the HDFS manager and repeat steps 1-4.

114 Chapter 9. Testing

7. Use the script scheduler to deploy and run files.

8. Exit the application.

Upon completion of the three test scenarios, each participant is asked to complete a feedback

questionnaire (see Appendix H).

Usability testing was performed on the hardware configurations outlined in table9.3.

Model Name: MacBook

Model Identifier MacBook 6,1

Processor Name: Intel Core 2 Duo

Processor Speed: 2.26 GHz

Number Of Proces-
sors:

1

Total Number Of
Cores:

2

L2 Cache: 3 MB

Memory: 4 GB

Bus Speed: 1.07 GHz

Graphics Chipset
Model:

NVIDIA GeForce
9400M

Graphics Chipset
Type:

GPU

Graphics Chipset
Bus:

PCI

Graphics Chipset
VRAM (Total):

256 MB

Operating System: Mac OS X (Snow
Leopard)

Model Name: Dell Precision
Workstations

Model Identifier Dell Precision
T1500 Tower

Processor Name: Intel CoreTM

Processor Speed: 3.1 GHz

Number Of Proces-
sors:

1

Total Number Of
Cores:

2

L2 Cache: 3 MB

Memory: 16 GB

Bus Speed: 1.07 GHz

Graphics Chipset
Model:

ATI FirePro
V4800

Graphics Chipset
Type:

GPU

Graphics Chipset
Bus:

PCI

Graphics Chipset
VRAM (Total):

512 MB

Operating System: 1x Windows 7
Professional, 1x
Ubuntu Linux
10.0

Table 9.3: Test Hardware Configuration.

9.2 Test Results

9.2.1 Unit Test Results

Unit testing occurred throughout the application’s development. However due to the size of the

result set, only the results of the system’s final unit test are presented in this section.

9.2. Test Results 115

Unit test results are listed in table F.1. All classes passed their test cases, although in some cases,

several test iterations were required. Each test carries a unique ID, whereby the ID is a number

ranging from 1 to n (where n denotes the total number of classes). Repeated tests for any single

class are composed of the class’s test ID and the ID of the repeated separated by a period. e.g.

Performing three tests for the class FooBar would produce an ID range of 1.0, 1.1 and 1.2 etc.

The overall unit test results for the application are extremely positive: All classes passed with only

5 classes (out of a total of 83) requiring repeated tests. That is, 6% of all classes required repeated

testing to eliminate identified bugs. This means that the quality level set out to be achieved by the

testing process has been exceeded: A 6% error rate indicates 1 bug per 3,000 lines of code (given

that the application consists of an approximate total of 16,000 lines of code) whilst the initial QoL

assumed an error rate of 1 bug for every 1,000 lines of code.

9.2.2 Usability Test Results

Five individuals participated in the usability test which aimed to assess AutoPig’s overall appeal

and ease of use. The questionnaire’s responses are summarized by figures ?? to ?? below (the

figure’s labels indicate the statement with which the subject was presented. The figure’s legend

denotes the choice of possible answers).

Feedback is mostly very positive. The only criticism voiced lies with the responsiveness of the

remote file manager: All participants agreed that the HDFS file manager was somewhat slow. This

however was to be expected, given network overhead and communication overhead with HDFS.

The application’s strong point lies with its consistent, easy-to-use interface: All participants agreed

with the statement that ”it was easy to learn to use this system” and believed that they could be-

come productive quickly using this system. Furthermore, the participants indicated that the system

recovered quickly from errors, presented all information in a manner that was easy to understand

and that it was very easy to modify application settings.

Another notable point is the application’s stability: Over the period of trials, the application never

crashed or became unusable.

116 Chapter 9. Testing

Concluding; the usability test’s overall verdict is extremely positive and exceeds initial expectations.

9.3 Hive Patches

Patch testing and development consists of 3 stages:

1. Proof of concept: Experiments are carried out to prove that the patch does indeed lead to a

performance improvement (see chapter 5).

2. Patch is implemented. For each implementation stage, Hive is re-compiled from scratch

(meaning that the project is cleaned and maven and ivy dependencies are downloaded and

integrated) against Hadoop version 1.2.1.

3. Checkstyle tests are run locally to ensure that the produced source code adheres to Apache

Hive coding guidelines.

4. A git diff is performed to produce the patch. Submitting only a difference ensures that

”patches” only the changes to the source code and hence avoids issues of change integration

where several people are working on the same file at the same time.

5. Once submitted, the Apache Hive development team compiles the patch, applies checkstyle

tests and runs various JUnit tests. If the test does not pass with a score of +1 then the patch

is rejected.

6. If the test passes, a core developer will review the submitted ticket. If the ticket passes the

review, then the patch is accepted.

9.4 Summary

This chapter has analysed the application in terms of correctness, validity and usability using three

levels of testing: unit testing, system testing, and usability testing. Each level of testing success-

fully identified bugs and short-comings, all of which have been resolved. Overall test results were

very positive, with a small number of flaws having been identified. Identified strong points however

include a good degree of usability, an extremely low bug rate and a highly efficient 2D visualization

9.4. Summary 117

process.

Chapter 10

Conclusion

This chapter presents an overview of the project, reviews its accomplishments and discusses future

development plans.

The project’s aim was to improve the ”big data user experience”. This meant answering a range of

questions: what are the challenges of dealing with big data? How can we deal with big data more

effectively? And, last but not least, how can we improve the big data experience both in terms

of usability and performance? To this end, several different benchmarks were run, the Pig and

Hive codebases were analysed and findings were discussed with Apache developers. The gathered

knowledge was utilized to produce patches for Hive, recommendations for both the Pig and Hive

codebases as well as cluster configuration recommendations. Optimizations to the Hive codebase

were demonstrated to be effective and a complete IDE, consisting of over 16,000 lines of code was

implemented from scratch. The IDE’s codebase was modularized to allow for easy integration into

existing IDEs (as a proof of concept, the Hadoop file system manager was integrated into Netbeans

7.3).

10.1 Overview

From the perspective of the software developer, a primary problem associated with using or working

with a big data context is the lack of development tools. Of the few available tools, none provide

the capabilities needed to effectively work on industry standard applications. Using existing IDEs

118

10.1. Overview 119

and text editors, the deployment of scripts was still tedious: one had to always either transfer

them using SSH commands, SFTP transfer clients such as FileZilla or write deployment scripts.

Browsing the Hadoop filesystem and transferring files to and from is time consuming when using

only a terminal and none of the surveyed tools provided support for version control. The con-

sequence of this and other missing features was the development of a stand-alone Pig/Hive IDE

containing a syntax highlighter, auto-deployment functionality, file managers for interacting with

remote file systems (HDFS and ”normal”), tunnelling, a Git interface, data analysis capability,

script scheduling, syntax checkers, code auto-completion, HDFS path checking as well as a script

configuration utility. As a proof of concept, a Netbeans plugin was developed to demonstrate the

code’s modularity and portability.

The application of further benchmarks produced several interesting results. For one, it answered

the question as to how to best balance the ratio of mappers and reducers and demonstrated the

impact that this ratio has on performance. It showed that reducers should be started early enough

so that data transfer is spread out over time and thus preventing network bottlenecks but should

not be started too early as to not use up slots that could be used by map tasks.

The experiments also found that care must be taken when specifying the maximum allowable map

and reduce slots per node. For example, having a node with a maximum of 20 map slots but a

script configured to use 30 map slots will result in significant performance penalties as the first 20

map tasks will run in parallel, but the additional 10 will only be spawned once the first 20 map

tasks have completed execution (consequently requiring one extra round of computation). The

same goes for the number of reduce tasks.

At first glance, the TPC-H benchmarks seemed to contradict earlier results in which Pig outper-

formed Hive. However closer examination revealed that nearly all TPC-H scripts relied heavily on

the Group By operator - an operator which appears to be poorly implemented in Pig and which

greatly degrades the performance of Pig Latin scripts (as demonstrated by the ISO benchmarks

[13]). This supports the argument that TPC-H is not an accurate benchmark as operators are not

evenly distributed throughout the scripts: if one operator is poorly implemented, then this will

skew the entire result set - as can be seen in section 4.4 with the Group By operator. The excessive

use of this operator within the TPC-H benchmarks skewed results significantly (recall from [13] that

120 Chapter 10. Conclusion

Pig outperformed Hive in all instances except when using the Group By operator: when grouping

data Pig was 104% slower than Hive[13]). Re-running the scripts whilst omitting the the grouping

of data produces the expected results. For example, running script 3 (q3 shipping priority.pig)

whilst omitting the Group By operator significantly reduces the runtime (to 1278.49 seconds real

time runtime or a total of 12,257,630ms CPU time).

Furthermore, the benchmarks confirmed that the CPU runtime scaled with real time runtime as

expected.

Analysis of the Pig and Hive codebases resulted in the development of optimizations for Apache

Hive (HIVE-5018.1.patch.txt (avoiding object instantiation in loops) speeds arithmetic operations

up by approximately 2.6% (tested on dataset size 4, standalone mode, ISO benchmark script

arithmetic.ql - the patched version of Hive took, on average, 303.39 seconds of real time runtime

to complete the operations; the unpatched version took X seconds of real time runtime) Running

the patched version of Hive on a small dataset consisting of 30,000,000 records (standalone mode)

showed that the patched version was 2.6% faster than the unpatched version.”) and revealed that

overall, Pig’s source code is of higher quality than that of Hive:

• Pig’s codebase is nearly 18% smaller than Hive: Pig consists of a total code (and comment)

base of 154,731 LOC (25% comments, 13% blank lines and the rest consists of actual code).

Hive, although more sparsely documented, consists of 187,916 LOC (23% comments, 12%

blank lines and the rest consists of actual code).

• The Hive codebase contains 71.5 issues per 100 lines of code1; Pig contains 24.85 issues per

100 lines of code.

• In terms of issues per lines of code, Pig is vastly superior to Hive: Hive has 31.59 optimization

issues per 100 lines of code (LOC); Pig only 11.41.

• Both codebases have roughly the same percentage of design flaws: 5.05% for Hive and 4.9%

for Pig.

1”Issues” refer to either basic violations of good practices, problems related to code size or complexity, bad
commenting / bad code documentation, code that is deemed controversial, high or inappropriate coupling between
classes, general bad design practices, empty or redundant code, violations related to naming of variables, classes and
methods, various optimization issues, bad exception handling, unused code, security vulnerabilities, problems related
to type resolution as well as suboptimal usage of strings and string buffers.

10.2. Project Outcome 121

• The Pig codebase exposes a wider range of naming convention abuse (albeit less than Hive):

a total of 5,100 issues were found.

• The Pig codebase seems more professional: 5 rookie mistakes per 100 LOC (as opposed to 12

rookie mistakes per 100 LOC for Hive).

• 14 intermediate mistakes per 100 LOC (as opposed to 38 intermediate mistakes per 100 LOC

for Hive).

• 5 expert mistakes per 100 LOC (18 expert mistakes per 100 LOC for Hive).

In terms of cyclomatic complexity however, both codebases are the same. However Pig has a much

lower n-path complexity than Hive (supporting the argument that Pig’s codebase is much easier to

understand and maintain).

Any performance differences between Pig and Hive should be attributed to code quality: on a

logical level, translation of scripts into map-reduce jobs are the same.

Investigation into schedulers did not produce any interesting or conclusive results.

10.2 Project Outcome

Over the course of its development, AutoPig achieved significant real-world contributions in three

areas: open source, science and industry:

1. Open Source - Based on the analysis performed as part of this project, several patches have

been developed and accepted as a contribution to Apache Hive. Patches HIVE-5018 and

HIVE-5019 are available as part of the core Hive codebase and are available for download

via https://issues.apache.org. Benjamin Jakobus is listed as an official contributor to Apache

Hive. Furthermore the developed IDE

2. Industry - Apache Hive has a wide range of adopters, including Netflix and Amazon. As

the author’s patches form part of Apache Hive 12.0, the contributed optimizations and per-

formance improvements have a real-world value.

122 Chapter 10. Conclusion

10.3 Future Work

Whilst much has been achieved given the tight development schedule, development will continue

in order to exploit the project’s full potential. From September 2013 onwards, AutoPig will be

extended to include:

• Auto-formatter for AutoPig. To date no official style guide for either Hive or Pig exist so a

style needs to be determined upon.

• Code refactoring.

• Spell-checker.

• Code templates.

Further patches for Hive will be implemented following the recommendations made as part of this

report. A fix for Pig’s Group By operator will be explored.

10.4 Summary of Thesis Achievements

To summarize, research over the past three months resulted in the following achievements:

• Apache Hive patchs.

• AutoPig - A complete IDE for Pig/Hive.

• A Netbeans plugin for remote file management in HDFS.

• Benchmark results.

• Cluster configuration knowledge.

Appendices

123

Appendix A

Legend: script abbreviations

Mapping of script abbreviations to script names for the TPC-H benchmarks (Hive).

Abbreviation Script names

q1 q1 pricing summary report.hive

q2 q2 minimum cost supplier.hive

q3 q3 shipping priority.hive

q4 q4 order priority.hive

q5 q5 local supplier volume.hive

q6 q6 forecast revenue change.hive

q7 q7 volume shipping.hive

q8 q8 national market share.hive

q9 q9 product type profit.hive

q10 q10 returned item.hive

q11 q11 important stock.hive

q12 q12 shipping.hive

q13 q13 customer distribution.hive

q14 q14 promotion effect.hive

q15 q15 top supplier.hive

q16 q16 parts supplier relationship.hive

q17 q17 small quantity order revenue.hive

q18 q18 large volume customer.hive

q19 q19 discounted revenue.hive

124

125

Abbreviation Script names

q20 q20 potential part promotion.hive

q21 q21 suppliers who kept orders waiting.hive

q22 q22 global sales opportunity.hive

Appendix B

Scripts, Logical Plans, Physical Plans,

MR Plans

The Pig Latin script for performing arithmetic operations on dataset size 4 (map and reduce

configuration information omitted).

A = load ’/user/bj112/data/4/dataset_30000000’ using PigStorage(’\t’)

as (name, age, gpa) PARALLEL 8;

B = foreach A generate age * gpa + 3, age/gpa - 1.5 PARALLEL 8;

store B into ’dataset_30000000_projection’ using PigStorage() PARALLEL 8;

The Abstract Syntac Tree and Logical Plan generated for the Hive QL script used to perform

arithmetic operations on dataset size 4 (ISO benchmarks):

ABSTRACT SYNTAX TREE:

(TOK_QUERY (TOK_FROM (TOK_TABREF (TOK_TABNAME dataset_30000000)))

(TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE))

(TOK_SELECT (TOK_SELEXPR (+ (* (. (TOK_TABLE_OR_COL dataset_30000000) age)

(. (TOK_TABLE_OR_COL dataset_30000000) gpa)) 3) F1)

(TOK_SELEXPR (- (/ (. (TOK_TABLE_OR_COL dataset_30000000) age)

(. (TOK_TABLE_OR_COL dataset_30000000) gpa)) 1.5) F2))

(TOK_WHERE (> (. (TOK_TABLE_OR_COL dataset_30000000) gpa) 0))))

126

127

STAGE DEPENDENCIES:

Stage-1 is a root stage

Stage-0 is a root stage

STAGE PLANS:

Stage: Stage-1

Map Reduce

Alias -> Map Operator Tree:

dataset_30000000

TableScan

alias: dataset_30000000

Filter Operator

predicate:

expr: (gpa > 0.0)

type: boolean

Select Operator

expressions:

expr: ((age * gpa) + 3)

type: float

expr: ((age / gpa) - 1.5)

type: double

outputColumnNames: _col0, _col1

File Output Operator

compressed: false

GlobalTableId: 0

table:

input format: org.apache.hadoop.mapred.TextInputFormat

output format: org.apache.hadoop.hive.ql.

io.HiveIgnoreKeyTextOutputFormat

Stage: Stage-0

Fetch Operator

limit: -1

128 Appendix B. Scripts, Logical Plans, Physical Plans, MR Plans

The Logical Plan generated for the Pig Latin script used to perform arithmetic operations on

dataset size 4 (ISO benchmarks):

#---

New Logical Plan:

#---

B: (Name: LOStore Schema: #49:double,#54:double)ColumnPrune:InputUids=[38, 43]

ColumnPrune:OutputUids=[38, 43]

|

|---B: (Name: LOForEach Schema: #49:double,#54:double)

| |

| (Name: LOGenerate[false,false] Schema: #49:double,#54:double)

| | |

| | (Name: Add Type: double Uid: 49)

| | |

| | |---(Name: Multiply Type: double Uid: 46)

| | | |

| | | |---(Name: Cast Type: double Uid: 20)

| | | | |

| | | | |---age:(Name: Project Type: bytearray Uid:

20 Input: 0 Column: (*))

| | | |

| | | |---(Name: Cast Type: double Uid: 21)

| | | |

| | | |---gpa:(Name: Project Type: bytearray Uid:

21 Input: 1 Column: (*))

| | |

| | |---(Name: Cast Type: double Uid: 47)

| | |

| | |---(Name: Constant Type: int Uid: 47)

| | |

| | (Name: Subtract Type: double Uid: 54)

| | |

| | |---(Name: Divide Type: double Uid: 52)

129

| | | |

| | | |---(Name: Cast Type: double Uid: 20)

| | | | |

| | | | |---age:(Name: Project Type: bytearray Uid:

20 Input: 2 Column: (*))

| | | |

| | | |---(Name: Cast Type: double Uid: 21)

| | | |

| | | |---gpa:(Name: Project Type: bytearray Uid:

21 Input: 3 Column: (*))

| | |

| | |---(Name: Constant Type: double Uid: 53)

| |

| |---(Name: LOInnerLoad[0] Schema: age#20:bytearray)

| |

| |---(Name: LOInnerLoad[1] Schema: gpa#21:bytearray)

| |

| |---(Name: LOInnerLoad[0] Schema: age#20:bytearray)

| |

| |---(Name: LOInnerLoad[1] Schema: gpa#21:bytearray)

|

|---A: (Name: LOLoad Schema: age#20:bytearray,gpa#21:bytearray)

ColumnPrune:RequiredColumns=[1, 2]ColumnPrune:InputUids=[21, 20]

ColumnPrune:OutputUids=[21, 20]RequiredFields:[1, 2]

#---

Physical Plan:

#---

B: Store(hdfs://ebony:54310/user/bj112/dataset_30000000_projection:PigStorage)

- scope-21

|

|---B: New For Each(false,false)[bag] - scope-20

| |

130 Appendix B. Scripts, Logical Plans, Physical Plans, MR Plans

| Add[double] - scope-8

| |

| |---Multiply[double] - scope-5

| | |

| | |---Cast[double] - scope-2

| | | |

| | | |---Project[bytearray][0] - scope-1

| | |

| | |---Cast[double] - scope-4

| | |

| | |---Project[bytearray][1] - scope-3

| |

| |---Cast[double] - scope-7

| |

| |---Constant(3) - scope-6

| |

| Subtract[double] - scope-17

| |

| |---Divide[double] - scope-15

| | |

| | |---Cast[double] - scope-12

| | | |

| | | |---Project[bytearray][0] - scope-11

| | |

| | |---Cast[double] - scope-14

| | |

| | |---Project[bytearray][1] - scope-13

| |

| |---Constant(1.5) - scope-16

|

|---A: Load(/user/bj112/data/4/dataset_30000000:PigStorage(’’)) - scope-0

#--

131

Map Reduce Plan

#--

MapReduce node scope-22

Map Plan

B: Store(hdfs://ebony:54310/user/bj112/dataset_30000000_projection:PigStorage)

- scope-21

|

|---B: New For Each(false,false)[bag] - scope-20

| |

| Add[double] - scope-8

| |

| |---Multiply[double] - scope-5

| | |

| | |---Cast[double] - scope-2

| | | |

| | | |---Project[bytearray][0] - scope-1

| | |

| | |---Cast[double] - scope-4

| | |

| | |---Project[bytearray][1] - scope-3

| |

| |---Cast[double] - scope-7

| |

| |---Constant(3) - scope-6

| |

| Subtract[double] - scope-17

| |

| |---Divide[double] - scope-15

| | |

| | |---Cast[double] - scope-12

| | | |

| | | |---Project[bytearray][0] - scope-11

| | |

132 Appendix B. Scripts, Logical Plans, Physical Plans, MR Plans

| | |---Cast[double] - scope-14

| | |

| | |---Project[bytearray][1] - scope-13

| |

| |---Constant(1.5) - scope-16

|

|---A: Load(/user/bj112/data/4/dataset_30000000:PigStorage(’’))

- scope-0--------

Global sort: false

133

Figure B.1: Explanation of Pig TPC-H script q21 suppliers who kept orders waiting.pig

134 Appendix B. Scripts, Logical Plans, Physical Plans, MR Plans

Figure B.2: Explanation of Pig TPC-H script q22 global sales opportunity.pig

Appendix C

Hive codebase issues

Issues found in the Hive codebase:

135

136 Appendix C. Hive codebase issues

Issue Num. of issues Issue category

AbstractClassWithoutAbstractMethod 7 Design
AbstractClassWithoutAnyMethod 2 Design
AbstractNaming 97 Naming
AccessorClassGeneration 514 Design
AddEmptyString 89 Optimization
AppendCharacterWithChar 4 String and String-

Buffer issues
ArrayIsStoredDirectly 98 Security vulnura-

bilities
AssignmentInOperand 62 Controversial

code
AssignmentToNonFinalStatic 6 Design
AtLeastOneConstructor 19 Controversial

code
AvoidAccessibilityAlteration 1 Controversial

code
AvoidArrayLoops 11 Optimization
AvoidCatchingNPE 5 Strict exceptions

/ Bad exception
handling

AvoidCatchingThrowable 176 Strict exceptions
/ Bad exception
handling

AvoidConstantsInterface 5 Design
AvoidDeeplyNestedIfStmts 56 Design
AvoidDuplicateLiterals 680 String and String-

Buffer issues
AvoidFieldNameMatchingMethodName 131 Naming
AvoidFieldNameMatchingTypeName 6 Naming
AvoidFinalLocalVariable 79 Controversial

code
AvoidInstanceofChecksInCatchClause 212 Design
AvoidInstantiatingObjectsInLoops 1623 Optimization
AvoidPrintStackTrace 245 Logging issues
AvoidProtectedFieldInFinalClass 6 Design
AvoidReassigningParameters 393 Design
AvoidRethrowingException 64 Strict exceptions

/ Bad exception
handling

AvoidSynchronizedAtMethodLevel 112 Design
AvoidThrowingNullPointerException 72 Strict exceptions

/ Bad exception
handling

AvoidThrowingRawExceptionTypes 410 Strict exceptions
/ Bad exception
handling

AvoidUsingHardCodedIP 7 Basic
AvoidUsingOctalValues 7 Basic

Table C.1: All issues found within the Hive codebase.

137

Issue Num. of issues Issue category

AvoidUsingShortType 3162 Controversial
code

AvoidUsingVolatile 3 Controversial
code

BeanMembersShouldSerialize 4392 Misc
BooleanGetMethodName 128 Naming
BooleanInstantiation 7 Basic
BooleanInversion 4 Controversial

code
ByteInstantiation 3 Migration issues
CallSuperInConstructor 416 Controversial

code
CheckResultSet 22 Basic
ClassNamingConventions 22 Naming
ClassWithOnlyPrivateConstructorsShouldBeFinal9 Design
CloneMethodMustImplementCloneable 34 Type resolution

issues
CloneThrowsCloneNotSupportedException 17 Clone implemen-

tation issues
CloseResource 93 Design
CollapsibleIfStatements 171 Basic
CompareObjectsWithEquals 23 Design
ConfusingTernary 571 Design
ConstructorCallsOverridableMethod 219 Design
CouplingBetweenObjects 22 Coupling
CyclomaticComplexity 1955 Code size
DataflowAnomalyAnalysis 7181 Controversial

code
DefaultLabelNotLastInSwitchStmt 16 Design
DefaultPackage 2325 Controversial

code
DoNotCallSystemExit 52 J2EE issues
DoNotExtendJavaLangError 1 Strict exceptions

/ Bad exception
handling

DoNotThrowExceptionInFinally 5 Strict exceptions
/ Bad exception
handling

DoNotUseThreads 74 J2EE issues
DontImportJavaLang 6 Import Stmts
DoubleCheckedLocking 2 Basic
DuplicateImports 4 Import Stmts
EmptyCatchBlock 134 Empty code
EmptyFinallyBlock 3 Empty code
EmptyIfStmt 18 Empty code
EmptyMethodInAbstractClassShouldBeAbstract 73 Design
EmptyStatementNotInLoop 38 Empty code
EmptySwitchStatements 30 Empty code
EqualsNull 3 Design

Table C.2: All issues found within the Hive codebase.

138 Appendix C. Hive codebase issues

Issue Num. of issues Issue category

ExceptionAsFlowControl 12 Strict exceptions
/ Bad exception
handling

ExcessiveClassLength 61 Code size
ExcessiveImports 120 Coupling
ExcessiveMethodLength 186 Code size
ExcessiveParameterList 29 Code size
ExcessivePublicCount 87 Code size
FinalFieldCouldBeStatic 24 Design
FinalizeShouldBeProtected 1 Finalizer issues
ForLoopShouldBeWhileLoop 2 Basic
ForLoopsMustUseBraces 14 Missing braces
IfElseStmtsMustUseBraces 14 Missing braces
IfStmtsMustUseBraces 4490 Missing braces
ImmutableField 464 Design
ImportFromSamePackage 16 Import Stmts
InefficientEmptyStringCheck 3 String and String-

Buffer issues
InefficientStringBuffering 1 String and String-

Buffer issues
IntegerInstantiation 25 Migration issues
JUnit4TestShouldUseAfterAnnotation 29 Migration issues
JUnit4TestShouldUseBeforeAnnotation 37 Migration issues
JUnit4TestShouldUseTestAnnotation 310 Migration issues
JUnitAssertionsShouldIncludeMessage 2476 JUnit issues
JUnitSpelling 6 JUnit issues
JUnitTestsShouldIncludeAssert 86 JUnit issues
JUnitUseExpected 13 Migration issues
LocalVariableCouldBeFinal 23600 Optimization
LongInstantiation 6 Migration issues
LongVariable 4633 Naming
LooseCoupling 872 Coupling
MethodArgumentCouldBeFinal 33815 Optimization
MethodNamingConventions 2093 Naming
MethodReturnsInternalArray 67 Security vulnura-

bilities
MissingBreakInSwitch 85 Design
MissingSerialVersionUID 337 Misc
MissingStaticMethodInNonInstantiatableClass 2 Design
NPathComplexity 677 Code size
NcssConstructorCount 1 Code size
NcssMethodCount 64 Code size
NcssTypeCount 12 Code size
NonCaseLabelInSwitchStatement 1 Design
NonStaticInitializer 3 Design
NonThreadSafeSingleton 4 Design
NullAssignment 2799 Controversial

code

Table C.3: All issues found within the Hive codebase.

139

Issue Num. of issues Issue category

OnlyOneReturn 11181 Controversial
code

OptimizableToArrayCall 28 Design
OverrideBothEqualsAndHashcode 21 Basic
PositionLiteralsFirstInComparisons 111 Design
PreserveStackTrace 225 Design
ProperCloneImplementation 18 Clone implemen-

tation issues
ProperLogger 187 Misc
ReplaceHashtableWithMap 1 Migration issues
ReturnEmptyArrayRatherThanNull 10 Design
ReturnFromFinallyBlock 8 Basic
ShortInstantiation 2 Migration issues
ShortMethodName 4 Naming
ShortVariable 7123 Naming
SignatureDeclareThrowsException 304 Type resolution

issues
SimpleDateFormatNeedsLocale 33 Design
SimplifyBooleanAssertion 1 JUnit issues
SimplifyBooleanExpressions 63 Design
SimplifyBooleanReturns 7 Design
SimplifyConditional 9 Design
SimplifyStartsWith 9 Optimization
SingularField 104 Design
StringInstantiation 43 String and String-

Buffer issues
StringToString 16 String and String-

Buffer issues
SuspiciousConstantFieldName 98 Naming
SuspiciousEqualsMethodName 331 Naming
SuspiciousOctalEscape 20 Controversial

code
SwitchDensity 15 Design
SwitchStmtsShouldHaveDefault 1019 Design
SystemPrintln 456 Logging issues
TestClassWithoutTestCases 1 JUnit issues
TooFewBranchesForASwitchStatement 808 Design
TooManyFields 60 Code size
TooManyMethods 586 Code size
TooManyStaticImports 11 Import Stmts
UncommentedEmptyConstructor 641 Design
UncommentedEmptyMethod 161 Design
UnconditionalIfStatement 183 Basic
UnnecessaryBooleanAssertion 32 JUnit issues
UnnecessaryCaseChange 17 String and String-

Buffer issues
UnnecessaryConstructor 135 Controversial

code

Table C.4: All issues found within the Hive codebase.

140 Appendix C. Hive codebase issues

Issue Num. of issues Issue category

UnnecessaryConversionTemporary 3 Unnecessary code
UnnecessaryFinalModifier 66 Unnecessary code
UnnecessaryLocalBeforeReturn 77 Design
UnnecessaryParentheses 279 Controversial

code
UnnecessaryReturn 48 Unnecessary code
UnnecessaryWrapperObjectCreation 31 Optimization
UnsynchronizedStaticDateFormatter 16 Design
UnusedFormalParameter 112 Unused code
UnusedImports 1553 Type resolution

issues
UnusedLocalVariable 259 Unused code
UnusedModifier 668 Unused code
UnusedPrivateMethod 16 Unused code
UseArraysAsList 4 Optimization
UseAssertEqualsInsteadOfAssertTrue 14 JUnit issues
UseAssertNullInsteadOfAssertTrue 16 JUnit issues
UseAssertSameInsteadOfAssertTrue 55 JUnit issues
UseCollectionIsEmpty 247 Design
UseCorrectExceptionLogging 100 Misc
UseEqualsToCompareStrings 4 String and String-

Buffer issues
UseIndexOfChar 17 String and String-

Buffer issues
UseLocaleWithCaseConversions 238 Design
UseProperClassLoader 14 J2EE issues
UseSingleton 63 Design
UseStringBufferForStringAppends 184 Optimization
UselessOverridingMethod 17 Unnecessary code
UselessStringValueOf 5 String and String-

Buffer issues
VariableNamingConventions 2098 Naming

Table C.5: All issues found within the Hive codebase.

141

Issue Num. of issues Issue category

AbstractClassWithoutAbstractMethod6 Design
AbstractNaming 94 Naming
AccessorClassGeneration 2 Design
AddEmptyString 12 Optimization
AppendCharacterWithChar 37 String and StringBuffer issues
ArrayIsStoredDirectly 41 Security vulnurabilities
AssignmentInOperand 43 Controversial code
AssignmentToNonFinalStatic 3 Design
AtLeastOneConstructor 2 Controversial code
AvoidArrayLoops 14 Optimization
AvoidCatchingNPE 7 Strict exceptions / Bad excep-

tion handling
AvoidCatchingThrowable 10 Strict exceptions / Bad excep-

tion handling
AvoidConstantsInterface 1 Design
AvoidDeeplyNestedIfStmts 38 Design
AvoidDuplicateLiterals 111 String and StringBuffer issues
AvoidFieldNameMatchingMethodName59 Naming
AvoidFieldNameMatchingTypeName 4 Naming
AvoidFinalLocalVariable 9 Controversial code
AvoidInstanceofChecksInCatchClause 8 Design
AvoidInstantiatingObjectsInLoops 494 Optimization
AvoidPrintStackTrace 32 Logging issues
AvoidReassigningParameters 117 Design
AvoidRethrowingException 122 Strict exceptions / Bad excep-

tion handling
AvoidStringBufferField 1 String and StringBuffer issues
AvoidSynchronizedAtMethodLevel 15 Design
AvoidThrowingRawExceptionTypes 347 Strict exceptions / Bad excep-

tion handling
AvoidUsingShortType 15 Controversial code
AvoidUsingVolatile 8 Controversial code
BeanMembersShouldSerialize 1727 Misc
BooleanGetMethodName 15 Naming
BooleanInstantiation 8 Basic
BooleanInversion 3 Controversial code
CallSuperInConstructor 207 Controversial code
ClassWithOnlyPrivateConstructorsShouldBeFinal11 Design
CloneMethodMustImplementCloneable35 Type resolution issues
CloneThrowsCloneNotSupportedException3 Clone implementation issues
CollapsibleIfStatements 61 Basic
CompareObjectsWithEquals 23 Design
ConfusingTernary 438 Design
ConstructorCallsOverridableMethod 27 Design
CouplingBetweenObjects 4 Coupling
CyclomaticComplexity 606 Code size

Table C.6: All issues found within the Hive codebase.

142 Appendix C. Hive codebase issues

Issue Num. of issues Issue category

DataflowAnomalyAnalysis 3085 Controversial
code

DefaultLabelNotLastInSwitchStmt 1 Design
DefaultPackage 666 Controversial

code
DoNotCallGarbageCollectionExplicitly 2 Controversial

code
DoNotCallSystemExit 1 J2EE issues
DoNotUseThreads 16 J2EE issues
DontImportJavaLang 9 Import Stmts
DuplicateImports 3 Import Stmts
EmptyCatchBlock 35 Empty code
EmptyIfStmt 39 Empty code
EmptyMethodInAbstractClassShouldBeAbstract 69 Design
EmptyStatementNotInLoop 25 Empty code
EmptyWhileStmt 4 Empty code
ExceptionAsFlowControl 3 Strict exceptions

/ Bad exception
handling

ExcessiveClassLength 19 Code size
ExcessiveImports 62 Coupling
ExcessiveMethodLength 89 Code size
ExcessiveParameterList 2 Code size
ExcessivePublicCount 12 Code size
FinalFieldCouldBeStatic 1 Design
FinalizeDoesNotCallSuperFinalize 1 Finalizer issues
ForLoopShouldBeWhileLoop 3 Basic
ForLoopsMustUseBraces 109 Missing braces
IfElseStmtsMustUseBraces 632 Missing braces
IfStmtsMustUseBraces 1205 Missing braces
ImmutableField 358 Design
ImportFromSamePackage 14 Import Stmts
InefficientStringBuffering 13 String and String-

Buffer issues
InstantiationToGetClass 6 Design
InsufficientStringBufferDeclaration 2 String and String-

Buffer issues
IntegerInstantiation 4 Migration issues
JUnit4TestShouldUseAfterAnnotation 4 Migration issues
JUnit4TestShouldUseBeforeAnnotation 2 Migration issues
LocalVariableCouldBeFinal 7962 Optimization
LongInstantiation 3 Migration issues
LongVariable 478 Naming
LooseCoupling 81 Coupling

Table C.7: All issues found within the Hive codebase.

143

Issue Num. of issues Issue category

MethodArgumentCouldBeFinal 9084 Optimization
MethodNamingConventions 29 Naming
MethodReturnsInternalArray 27 Security vulnura-

bilities
MissingBreakInSwitch 41 Design
MissingSerialVersionUID 2 Misc
MissingStaticMethodInNonInstantiatableClass 1 Design
NPathComplexity 198 Code size
NcssMethodCount 26 Code size
NcssTypeCount 1 Code size
NonThreadSafeSingleton 9 Design
NullAssignment 279 Controversial

code
OnlyOneReturn 2497 Controversial

code
OptimizableToArrayCall 33 Design
OverrideBothEqualsAndHashcode 8 Basic
PackageCase 161 Naming
PositionLiteralsFirstInComparisons 31 Design
PreserveStackTrace 98 Design
ProperCloneImplementation 36 Clone implemen-

tation issues
ProperLogger 109 Misc
ReplaceHashtableWithMap 1 Migration issues
ReplaceVectorWithList 7 Migration issues
ReturnEmptyArrayRatherThanNull 8 Design
ShortInstantiation 1 Migration issues
ShortMethodName 5 Naming
ShortVariable 4040 Naming
SignatureDeclareThrowsException 13 Type resolution

issues
SimpleDateFormatNeedsLocale 1 Design
SimplifyBooleanExpressions 38 Design
SimplifyBooleanReturns 10 Design
SimplifyConditional 52 Design
SimplifyStartsWith 10 Optimization
SingularField 19 Design
StringInstantiation 1 String and String-

Buffer issues
StringToString 2 String and String-

Buffer issues
SuspiciousConstantFieldName 6 Naming
SuspiciousEqualsMethodName 1 Naming
SwitchDensity 2 Design

Table C.8: All issues found within the Hive codebase.

144 Appendix C. Hive codebase issues

Issue Num. of issues Issue category

SwitchStmtsShouldHaveDefault 27 Design
SystemPrintln 166 Logging issues
TooManyFields 17 Code size
TooManyMethods 134 Code size
UncommentedEmptyConstructor 70 Design
UncommentedEmptyMethod 126 Design
UnnecessaryCaseChange 3 String and String-

Buffer issues
UnnecessaryConstructor 10 Controversial

code
UnnecessaryLocalBeforeReturn 23 Design
UnnecessaryParentheses 71 Controversial

code
UnnecessaryReturn 3 Unnecessary code
UnnecessaryWrapperObjectCreation 15 Optimization
UnusedFormalParameter 42 Unused code
UnusedImports 268 Type resolution

issues
UnusedLocalVariable 16 Unused code
UnusedModifier 190 Unused code
UnusedPrivateField 30 Unused code
UnusedPrivateMethod 8 Unused code
UseArrayListInsteadOfVector 6 Optimization
UseArraysAsList 1 Optimization
UseCollectionIsEmpty 117 Design
UseCorrectExceptionLogging 16 Misc
UseIndexOfChar 6 String and String-

Buffer issues
UseLocaleWithCaseConversions 11 Design
UseProperClassLoader 8 J2EE issues
UseSingleton 42 Design
UseStringBufferForStringAppends 62 Optimization
UseStringBufferLength 2 String and String-

Buffer issues
UselessOverridingMehod 8 Misc
UselessStringValueOf 1 String and String-

Buffer issues
VariableNamingConventions 208 Naming
WhileLoopsMustUseBraces 15 Missing braces

Table C.9: All issues found within the Pig codebase.

Appendix D

Java code optimization test cases.

/∗∗

∗ String concatination − comparing + to StringBuffer

∗/

public static void main(String[] args) {

String str1 = ”asdasdasfdfgfgasdasdasfdfgfgasdasdasfdfgfgasdasda”

+ ”sfdfgfgasdasdasfdfgfgasdasdasfdfgfg”

+ ”sfdfgfgasdasdasfdfgfgasdasdasfdfgfg”

+ ”sfdfgfgasdasdasfdfgfgasdasdasfdfgfg”

+ ”sfdfgfgasdasdasfdfgfgasdasdasfdfgfg”

+ ”sfdfgfgasdasdasfdfgfgasdasdasfdfgfg”

+ ”sfdfgfgasdasdasfdfgfgasdasdasfdfgfg”

+ ”sfdfgfgasdasdasfdfgfgasdasdasfdfgfg”

+ ”sfdfgfgasdasdasfdfgfgasdasdasfdfgfg”

+ ”sfdfgfgasdasdasfdfgfgasdasdasfdfgfg”

+ ”sfdfgfgasdasdasfdfgfgasdasdasfdfgfg”;

String str2 = ”vcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvc”

+ ”vbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcv”

+ ”vbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcv”

+ ”vbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcv”

+ ”vbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcv”

+ ”vbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcv”

145

146 Appendix D. Java code optimization test cases.

+ ”vbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcv”

+ ”vbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcv”

+ ”vbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcvvcvbcv”;

// Concatinate

long start = System.currentTimeMillis();

String result = ””;

for (int i = 0; i < 500; i++) {

result += str1 + str2;

}

long end = System.currentTimeMillis();

System.out.println(”+ operation took ” + (end − start) + ” milliseconds”);

StringBuffer sb1 = new StringBuffer(str1);

StringBuffer sb2 = new StringBuffer(str2);

StringBuffer rsb = new StringBuffer(””);

start = System.currentTimeMillis();

for (int i = 0; i < 500; i++) {

rsb.append(sb1.append(sb2).toString());

}

end = System.currentTimeMillis();

System.out.println(”SB operation took ” + (end − start) + ” milliseconds”);

}

/∗∗

∗ Comparing the performance of Java's asList method to tight−loop copying.

∗/

public static void main(String[] args) {

// Create array of 10,000 random strings

SessionIdentifierGenerator gen = new SessionIdentifierGenerator();

147

String[] array = new String[1000000];

for (int i = 0; i < array.length; i++) {

array[i] = gen.nextSessionId();

}

List<String> copy = new ArrayList<>();

long start = System.currentTimeMillis();

for (int i = 0; i < array.length; i++) {

copy.add(array[i]);

}

long end = System.currentTimeMillis();

System.out.println(”loop copy took ” + (end − start) + ” milliseconds”);

start = System.currentTimeMillis();

List<String> copy2 = Arrays.asList(array);

end = System.currentTimeMillis();

System.out.println(”asList copy ” + (end − start) + ” milliseconds”);

}

public static final class SessionIdentifierGenerator {

private SecureRandom random = new SecureRandom();

public String nextSessionId() {

return new BigInteger(130, random).toString(32);

}

}

/∗∗

∗ Examine the effect of unnecessary wrapper object creation.

∗/

public static void main(String[] args) {

148 Appendix D. Java code optimization test cases.

int j;

SessionIdentifierGenerator gen = new SessionIdentifierGenerator();

long start = System.currentTimeMillis();

for (int i = 0; i < 10000; i++) {

j = Integer.valueOf(gen.nextSessionId()).intValue();

}

long end = System.currentTimeMillis();

System.out.println(”unnecessary wrapper object creation took ” + (end − start) + ”

milliseconds”);

start = System.currentTimeMillis();

for (int i = 0; i < 10000; i++) {

j = Integer.parseInt(gen.nextSessionId());

}

end = System.currentTimeMillis();

System.out.println(”using parseInt() took ” + (end − start) + ” milliseconds”);

}

public static final class SessionIdentifierGenerator {

private SecureRandom random = new SecureRandom();

public String nextSessionId() {

return new String(”” + random.nextInt());

}

}

/∗∗

∗ Examine the performance difference between declaring variables inside loops

∗ and declaring them outside of loops.

149

∗/

public class InLoopInstantiationTest {

public InLoopInstantiationTest() {

long start = System.currentTimeMillis();

SessionIdentifierGenerator gen = new SessionIdentifierGenerator();

for (int i = 0; i < 10000; i++) {

FooBar f = new FooBar();

Integer i1 = new Integer(i);

String s = gen.nextSessionId();

}

long end = System.currentTimeMillis();

System.out.println(”in loop instantiation took ” + (end − start) + ” milliseconds”);

start = System.currentTimeMillis();

FooBar f;

Integer i1;

String s;

for (int i = 0; i < 10000; i++) {

f = new FooBar();

i1 = new Integer(i);

s = gen.nextSessionId();

}

end = System.currentTimeMillis();

System.out.println(”avoiding in loop instantiation took ” + (end − start) + ”

milliseconds”);

}

public static void main(String[] args) {

new InLoopInstantiationTest();

}

150 Appendix D. Java code optimization test cases.

private class FooBar {

private String foo = ”asdasdasdasdasdasdasdasdasdasdasdasdasdasdasdasd”

+ ”asd”

+ ”asd”;

}

public final class SessionIdentifierGenerator {

private SecureRandom random = new SecureRandom();

public String nextSessionId() {

return new BigInteger(130, random).toString(32);

}

}

}

/∗∗

∗ Contrasting the performance between Vector and ArrayList.

∗/

public static void main(String[] args) {

// Create array of 10,000 random strings

List<Integer> arrayList = new ArrayList<>();

Vector<Integer> vector = new Vector();

long start = System.currentTimeMillis();

for (int i = 0; i < 9999999; i++) {

vector.add(i);

}

long end = System.currentTimeMillis();

151

System.out.println(”vector took ” + (end − start) + ” milliseconds”);

start = System.currentTimeMillis();

for (int i = 0; i < 9999999; i++) {

arrayList.add(i);

}

end = System.currentTimeMillis();

System.out.println(”ArrayList copy ” + (end − start) + ” milliseconds”);

}

/∗∗

∗ Contrasting the performance between string and character appends.

∗/

public static void main(String[] args) {

StringBuffer sb = new StringBuffer();

long start = System.currentTimeMillis();

for (int i = 0; i < 1000000; i++) {

sb.append(”a”);

}

long end = System.currentTimeMillis();

System.out.println(”string append took ” + (end − start) + ” milliseconds”);

sb = new StringBuffer();

start = System.currentTimeMillis();

for (int i = 0; i < 1000000; i++) {

sb.append('a');

}

end = System.currentTimeMillis();

System.out.println(”char append took ” + (end − start) + ” milliseconds”);

}

/∗∗

152 Appendix D. Java code optimization test cases.

∗ Contrasting the performance between string and character indexOf().

∗/

public static void main(String[] args) {

ASessionIdentifierGenerator gen = new SessionIdentifierGenerator();

String str = new String();

for (int i = 0; i < 1000; i++) {

str += gen.nextSessionId();

}

long start = System.currentTimeMillis();

for (int i = 0; i < 5000; i++) {

int index = str.indexOf(”d”);

}

long end = System.currentTimeMillis();

System.out.println(”string indexOf took ” + (end − start) + ” milliseconds”);

start = System.currentTimeMillis();

for (int i = 0; i < 5000; i++) {

int index = str.indexOf('d');

}

end = System.currentTimeMillis();

System.out.println(”char indexOf ” + (end − start) + ” milliseconds”);

}

153

154 Appendix E. Static Analysis Results

Appendix E

Static Analysis Results

Class Num. of opti-
mization issues

FileInputLoadFunc.java 1
AccumulatorEvalFunc.java 2
ComparisonFunc.java 3
IllustrateDummyReporter.java 4
SortColInfo.java 5
PrimitiveEvalFunc.java 6
Expression.java 7
PigHadoopLogger.java 8
ConfigurationUtil.java 9
ColumnInfo.java 10
AlgebraicEvalFunc.java 11
HSeekableInputStream.java 12
StoreFuncWrapper.java 13
PigBooleanRawComparator.java 14
StoreFunc.java 15
NoopStoreRemover.java 16
EvalFunc.java 17
AccumulatorOptimizer.java 18
ResourceStatistics.java 19
InputSizeReducerEstimator.java 20
POJoinPackage.java 21
TypedOutputEvalFunc.java 22
ConstantExpression.java 23
MergeJoinIndexer.java 24
PODemux.java 25
LoadFunc.java 26
hadoop/HDataType.java 27
FuncSpec.java 28
POStream.java 29
POUserComparisonFunc.java 30
DataByteArray.java 31
POCounter.java 32
SampleOptimizer.java 33

Table E.1: The Pig codebase: classes mapped to the number of optimization issues (in ascending
order).

155

Class Num. of opti-
mization issues

BackendException.java 34
POBinCond.java 35
PigGenericMapBase.java 36
POCollectedGroup.java 37
HPath.java 38
AppendableSchemaTuple.java 39
SchemaTupleBackend.java 40
HDataStorage.java 41
data/SchemaTupleFrontend.java 42
ResourceSchema.java 43
PigSplit.java 44
PhysicalOperator.java 45
HExecutionEngine.java 46
DataReaderWriter.java 48
PigException.java 50
COR.java 51
PlanPrinter.java 52
PigJrubyLibrary.java 53
PhyPlanSetter.java 54
MapReduceOper.java 55
JsonMetadata.java 56
PhysicalPlan.java 57
JarManager.java 58
FrontendException.java 59
PushDownForEachFlatten.java 60
shock/SSHSocketImplFactory.java 61
scripting/js/JsFunction.java 63
POPartialAgg.java 64
PigOutputCommitter.java 65
PigInputFormat.java 67
TextLoader.java 68
POMergeJoin.java 69
PigGenericMapReduce.java 70
DryRunGruntParser.java 71
POUserFunc.java 72
PigStorage.java 73
Utf8StorageConverter.java 74
POProject.java 79
DNFPlanGenerator.java 82
Main.java 85
POForEach.java 88
LineageTrimmingVisitor.java 94
Storage.java 96
JobStats.java 97
Launcher.java 99
SecondaryKeyOptimizer.java 100
MapRedUtil.java 101
QueryParserDriver.java 105
PigMacro.java 106
ExpToPhyTranslationVisitor.java 107
ProjectStarExpander.java 111

Table E.2: The Pig codebase: classes mapped to the number of optimization issues (in ascending
order).

156 Appendix E. Static Analysis Results

Class Num. of opti-
mization issues

MapReduceLauncher.java 113
FileLocalizer.java 119
LineageFindRelVisitor.java 121
ColumnPruneHelper.java 138
HBaseStorage.java 140
GroovyAlgebraicEvalFunc.java 147
RubySchema.java 149
SchemaTupleClassGenerator.java 154
CombinerOptimizer.java 160
DataType.java 162
BinInterSedes.java 167
GruntParser.java 168
AugmentBaseDataVisitor.java 193
TypeCheckingRelVisitor.java 211
JobControlCompiler.java 219
PigServer.java 248
MultiQueryOptimizer.java 250
POCast.java 254
Schema.java 260
OperatorPlan.java 277
SchemaTuple.java 345
LogToPhyTranslationVisitor.java 364
LogicalPlanBuilder.java 457
MRCompiler.java 528

Table E.3: The Pig codebase: classes mapped to the number of optimization issues (in ascending
order).

157

Class Num. of opti-
mization issues

GetVersionPref.java 4
ReflectiveCommandHandler.java 5
ObjectPair.java 6
BufferedRows.java 7
DistinctElementsClassPath.java 8
AbstractCommandHandler.java 9
TableOutputFormat.java 10
SQLCompletor.java 11
Rows.java 12
TestCliDriverMethods.java 13
Base64TextOutputFormat.java 14
HCatException.java 15
HCatDriver.java 17
TestHiveLogging.java 18
DefaultHCatRecord.java 19
TypedBytesRecordReader.java 20
MetricsMBeanImpl.java 21
Metrics.java 22
Reflector.java 23
DataType.java 24
DatabaseConnection.java 25
MiniCluster.java 26
HBaseTestSetup.java 27
QFileClient.java 28
RCFileCat.java 29
TypedBytesWritableOutput.java 30
HCatSemanticAnalyzer.java 31
hcatalog/cli/HCatCli.java 33
ColorBuffer.java 34
TestHCatRecordSerDe.java 35
TestDefaultHCatRecord.java 36
HCatRecordSerDe.java 37
index/AggregateIndexHandler.java 38
HiveStatement.java 39
TypedBytesSerDe.java 40
InternalUtil.java 41
AlreadyExistsException.java 42
QTestGenTask.java 43
HCatMapReduceTest.java 44
SymlinkTextInputFormat.java 45
HBaseStorageHandler.java 46
TestHCatLoaderComplexSchema.java 47
Version.java 48
TestHCatMultiOutputFormat.java 49
SkewedValueList.java 50
TableAccessAnalyzer.java 51
HBaseRevisionManagerUtil.java 52
BinaryColumnStatsData.java 53
HCatBaseInputFormat.java 54

Table E.4: The Hive codebase: classes mapped to the number of optimization issues (in ascending
order).

158 Appendix E. Static Analysis Results

Class Num. of opti-
mization issues

EnvironmentContext.java 55
SerDeUtils.java 56
HiveServer.java 57
ColumnStatistics.java 58
JsonSerDe.java 59
HiveHBaseTableInputFormat.java 60
BeeLineOpts.java 61
HiveObjectPrivilege.java 62
HCatRecord.java 63
IndexUtils.java 64
HiveConnection.java 65
QueryPlan.java 66
PrivilegeGrantInfo.java 67
Type.java 68
TempletonControllerJob.java 69
HCatBaseStorer.java 70
PTFDeserializer.java 71
metastore/api/Schema.java 72
PigHCatUtil.java 73
HiveObjectRef.java 74
ThriftCLIServiceClient.java 75
TRowSet.java 76
HiveMetaTool.java 77
HBaseHCatStorageHandler.java 78
ZKUtil.java 79
HadoopJobExecHelper.java 80
TestLazyHBaseObject.java 81
OrcStruct.java 82
StatsTask.java 83
CommonJoinOperator.java 85
QBParseInfo.java 86
HCatUtil.java 87
MapredLocalTask.java 88
HBaseSerDe.java 89
SessionState.java 90
TestRevisionManager.java 92
AvroSerializer.java 93
ColumnStatsSemanticAnalyzer.java 94
HCatClientHMSImpl.java 95
metastore/api/SkewedInfo.java 97
TestHCatStorer.java 98
Operator.java 99
BinarySortableSerDe.java 100
AbstractBucketJoinProc.java 104
GenMRSkewJoinProcessor.java 105
HiveStringUtils.java 106
metastore/api/Partition.java 107
QueryPlan.java 108
HiveDatabaseMetaData.java 109
HiveConf.java 110
Index.java 111

Table E.5: The Hive codebase: classes mapped to the number of optimization issues (in ascending
order).

159

Class Num. of opti-
mization issues

Complex.java 113
MultiOutputFormat.java 115
Stage.java 116
FileOutputCommitterContainer.java 117
CliDriver.java 118
TestHBaseDirectOutputFormat.java 119
Task.java 121
TestHBaseInputFormat.java 123
OpProcFactory.java 125
WindowingTableFunction.java 126
CubeQueryContext.java 127
TestHBaseSerDe.java 128
ExecDriver.java 129
PrincipalPrivilegeSet.java 132
GenMRFileSink1.java 133
BaseSemanticAnalyzer.java 134
TestOrcFile.java 135
TestAvroDeserializer.java 138
PTFPersistence.java 139
Server.java 140
TestHBaseBulkOutputFormat.java 142
NPath.java 143
Operator.java 144
PlanUtils.java 147
HiveDatabaseMetaData.java 152
Commands.java 156
HivePreparedStatement.java 158
Driver.java 160
HivePreparedStatement.java 161
BeeLine.java 166
DDLWork.java 168
CubeMetastoreClient.java 171
ReduceSinkDeDuplication.java 172
GenMapRedUtils.java 173
DummyRawStoreControlledCommit.java 185
DummyRawStoreForJdoConnection.java 186
RecordReaderImpl.java 188
ObjectInspectorUtils.java 190
RCFile.java 193
FunctionRegistry.java 194
MetaStoreUtils.java 200
TestLazyBinarySerDe.java 204
QTestUtil.java 208
WriterImpl.java 220
HcatDelegator.java 225
MapJoinProcessor.java 230
ColumnPrunerProcFactory.java 259
HiveBaseResultSet.java 285

Table E.6: The Hive codebase: classes mapped to the number of optimization issues (in ascending
order).

160 Appendix E. Static Analysis Results

Class Num. of opti-
mization issues

PTFTranslator.java 287
HiveMetaStoreClient.java 296
HiveBaseResultSet.java 297
HiveCallableStatement.java 332
HiveCallableStatement.java 336
TestHiveMetaStore.java 338
HiveMetaStore.java 411
Utilities.java 486
DDLSemanticAnalyzer.java 543
DDLTask.java 592
OrcProto.java 863
ObjectStore.java 891
ThriftHive.java 962
TCLIService.java 1696
SemanticAnalyzer.java 2037
ThriftHiveMetastore.java 11526]

Table E.7: The Hive codebase: classes mapped to the number of optimization issues (in ascending
order).

Appendix F

Unit Test Results

Table F.1: Unit Test Results.

Test ID Class Test Suite Result Notes

1.0 BenchmarkItem JUnit Passed -

2.0 HiveTPCHParser JUnit Passed -

3.0 Job JUnit Passed -

4.0 PigTPCHParser JUnit Passed -

5.0 ScreenImage JUnit Passed -

6.0 ScriptExecution JUnit Failed Err. removing

DS.

6.1 TPCHParser JUnit Passed Resolved problem

from 6.0. Test re-

run.

7.0 ScriptDocumentTransferHandler JUnit Failed - Clipboard prob-

lem.

7.1 SearchEngine JUnit Passed - Resolved prob-

lem from 7.0.

Test re-run.

8.0 StyledScriptDocument JUnit Failed Test re-run.

8.1 TextLineNumber JUnit Failed Test re-run.

161

162 Appendix F. Unit Test Results

8.2 Workspace JUnit Passed Resolved problem

from 8.1. Test re-

run.

9.0 LightBlueHighlighter JUnit Passed -

10.0 YellowHighlighter JUnit Passed -

11.0 HiveProject JUnit Passed -

12.0 PigProject JUnit Passed -

13.0 ProjectTreeRenderer JUnit Passed -

14.0 SchedulerCellRenderer JUnit Passed -

15.0 ScriptProject JUnit Passed -

16.0 HiveScript JUnit Passed -

17.0 PigScript JUnit Passed -

18.0 Script JUnit Passed -

19.0 CodeAutoComplete JUnit Passed -

20.0 HiveAutoComplete JUnit Passed -

21.0 HiveSyntaxChecker JUnit Passed -

22.0 PathChecker JUnit Failed Err. HDFS con-

nect.

22.1 PigAutoComplete JUnit Failed Err. word dis-

tance.

22.2 PigAutoComplete JUnit Failed Err. word dis-

tance.

22.3 PigAutoComplete JUnit Failed Err. word dis-

tance.

22.4 PigAutoComplete JUnit Passed Resolved problem

from 22.3. Test

re-run.

23.0 PigSyntaxChecker JUnit Passed -

24.0 SyntaxChecker JUnit Passed -

25.0 LineHighlightPainter JUnit Passed -

26.0 Conf JUnit Passed -

27.0 HadoopDevTool JUnit Passed -

163

28.0 NotificationEngine JUnit Passed -

29.0 FileManager JUnit Passed -

30.0 HadoopFileManager JUnit Passed -

31.0 RemoteServer JUnit Passed -

32.0 RuntimeManager JUnit Passed -

33.0 EntryEditor JUnit Passed -

34.0 InfoPanel JUnit Passed -

35.0 MainUI JUnit Passed -

36.0 BenchmarkAnalysisUI JUnit Passed -

37.0 FileStatsUI JUnit Passed -

38.0 HadoopFileStatsUI JUnit Passed -

39.0 ProjectCreationUI JUnit Passed -

40.0 ScriptConfigurationUI JUnit Passed -

41.0 ShellUI JUnit Failed Problem with

console

41.1 ShellUI JUnit Passed Resolved problem

from 41.0. Test

re-run.

42.0 TextAreaOutputStream JUnit Passed -

43.0 DnDUtils JUnit Passed -

44.0 FileUploadTransferHandler JUnit Passed -

45.0 FolderTransferHandler JUnit Passed -

46.0 HadoopFileUploadTransferHandler JUnit Passed -

47.0 HadoopFolderTransferHandler JUnit Passed -

48.0 JLabelDragSource JUnit Passed -

49.0 JLabelTransferable JUnit Passed -

50.0 TreeTransferHandler JUnit Passed -

51.0 GitCommitMessageUI JUnit Passed -

52.0 GitDiffUI JUnit Passed -

53.0 GitPullUI JUnit Passed -

54.0 GitPushUI JUnit Passed -

164 Appendix F. Unit Test Results

55.0 GitRemoteRepoUI JUnit Failed Problem with re-

mote.

55.1 GitRemoteRepoUI JUnit Failed Problem with re-

mote.

55.2 GitRemoteRepoUI JUnit Failed Problem with re-

mote.

55.3 GitRemoteRepoUI JUnit Passed Resolved problem

from 55.2. Test

re-run.

56.0 ConfigurationActionListener JUnit Passed -

57.0 FileDeleteActionListener JUnit Passed -

58.0 FileManagerPopupMenu JUnit Passed -

59.0 HadoopFileManagerPopupMenu JUnit Passed -

60.0 LogPopupMenu JUnit Passed -

61.0 NewFileActionListener JUnit Passed -

62.0 ProjectPopupMenu JUnit Passed -

63.0 SchedulerPopupMenu JUnit Passed -

64.0 ScriptEditorPopupMenu JUnit Passed -

65.0 AddActionListener JUnit Passed -

66.0 CommitActionListener JUnit Passed -

67.0 Console JUnit Passed -

68.0 DiffActionListener JUnit Passed -

69.0 Git JUnit Passed -

70.0 InitActionListener JUnit Passed -

71.0 PullActionListener JUnit Passed -

72.0 PushActionListener JUnit Passed -

73.0 SearchBox JUnit Passed -

74.0 HadoopSettingsUI JUnit Passed -

75.0 ProjectServerSettingsUI JUnit Passed -

76.0 ProjectSettings JUnit Passed -

77.0 TunnelSettingsUI JUnit Passed -

Appendix G

Usability Test Scenarios

18-08-2013

AutoPig Usability Test Task Sheet Author: Benjamin Jakobus

This task sheet is to be used testing purposes only. Please complete all three scenarios in order

and provide your feedback via the attached answer sheet.

Scenario 1: Familiarization The purpose of this scenario is to familiarize yourself with the

application.

1. Start the application by either double-clicking on AutoPig.jar or typing java -jar AutoPig.jar

into your console.

2. Wait for the UI to initialize.

3. Familiarize yourself with the UI by navigating it using your mouse and keyboard.

4. Adjust various application parameters such as your project directory / workspace.

5. Create a new Hive project.

6. Add three scripts to this project.

7. Solve supplied excercises.

8. Save and run the scripts when ready.

165

166 Appendix G. Usability Test Scenarios

9. Exit the application.

Test Scenario 2: Working on Pig projects The purpose of this scenario is to create and work

with a Pig Latin project.

1. Start the application by either double-clicking on AutoPig.jar or typing java -jar AutoPig.jar

into your console.

2. Wait for the UI to initialize.

3. Create a new Pig project.

4. Add three scripts to this project.

5. Solve supplied exercises.

6. Save and run the scripts when ready.

7. Exit the application.

Test Scenario 3: Using the remote file manager The purpose of this scenario is to work with

the remote file managers.

1. Start the application by either double-clicking on AutoPig.jar or typing java -jar AutoPig.jar

into your console.

2. Wait for the UI to initialize.

3. Edit the project server connection settings.

4. Connect to the project server using no tunnel.

5. Connect to the project server using a tunnel.

6. Auto-deploy and run your project files.

7. Play with the scheduler - pause execution, resume execution, move scripts up and down the

queue.

8. Edit the HDFS connection settings.

9. Download a file from the remote HDFS.

167

10. Upload a file.

11. Create a new directory.

12. Copy files.

13. Exit the application.

Appendix H

Usability Questionnaire

18-08-2013

AutoPig Usability Report Form Name:

Once you are confident that you have completed the AutoPig testing process, then please fill this

report form. The author, Benjamin Jakobus, would like to thank you for generously volunteering

your time to participate in this usability testing.

1. I feel that I have successfully completed all the tasks on the task sheet.

2. In relation to other software I have used, I found the AutoPig to be: (Tick one box only)

1. Very easy to use

2. Easy to use

3. OK to use

4. Difficult to use

5. Very difficult to use

3. I found the script editor very easy to use: (Tick one box only)

168

169

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly Disagree

3. I found the code auto-complete feature very easy to use: (Tick one box only)

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly Disagree

3. I found the script editor’s responsiveness to user input to be: (Tick one box only)

1. Very good

2. Good

3. OK

4. Bad

5. Unacceptable

4. I found the HDFS file manager’s responsiveness to user input to be: (Tick one box only)

1. Very good

2. Good

3. OK

170 Appendix H. Usability Questionnaire

4. Bad

5. Unacceptable

5. I found the remote file manager’s responsiveness to user input to be: (Tick one box only)

1. Very good

2. Good

3. OK

4. Bad

5. Unacceptable

6. The controls were well organized and easy to find. (Tick one box only)

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly Disagree

7. I found the remote file manager very easy to use. (Tick one box only)

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly Disagree

8. I immediately understood the function of each feature. (Tick one box only)

171

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly Disagree

9. All of the functions I expected to find in an industry standard IDE were present. (Tick one box

only)

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly Disagree

10. I found it very easy to modify application settings. (Tick one box only)

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly Disagree

11. The system never crashed or froze during the time that I used the system. (Tick one box only)

1. Strongly agree

2. Agree

3. Neither agree nor disagree

172 Appendix H. Usability Questionnaire

4. Disagree

5. Strongly Disagree

12. I would buy and use this system software. (Tick one box only)

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly Disagree

13. I could effectively complete the tasks and scenarios using this system. (Tick one box only)

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly Disagree

14. I felt comfortable using this system. (Tick one box only)

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly Disagree

15. It was easy to learn to use this system. (Tick one box only)

173

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly Disagree

16. I believe I could become productive quickly using this system. (Tick one box only)

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly Disagree

17. The system gave error messages that clearly told me how to fix problems. (Tick one box only)

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly Disagree

18. Whenever I made a mistake using the system, I could recover easily and quickly. (Tick one

box only)

1. Strongly agree

2. Agree

3. Neither agree nor disagree

174 Appendix H. Usability Questionnaire

4. Disagree

5. Strongly Disagree

19. Using the system enhanced my productivity. (Tick one box only)

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly Disagree

20. The information provided by the system was easy to understand. (Tick one box only)

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly Disagree

21. I felt the system difficult to use. (Tick one box only)

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly Disagree

22. I was able to complete the tasks and scenarios quickly using this system. (Tick one box only)

175

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly Disagree

Bibliography

[1] Hadoop Apache ”Fair Scheduler,”. http://hadoop.apache.org/docs/stable/fair scheduler.html,

Visited 30/05/2013

[2] Jones T. M., IBM ”Scheduling in Hadoop - An introduction to the pluggable sched-

uler framework,”. http://www.ibm.com/developerworks//library/os-hadoop-scheduling/, Vis-

ited 30/05/2013

[3] Hadoop Apache ”Capacity Scheduler Guide,”. http://hadoop.apache.org/docs/stable/capacity scheduler.html,

Visited 30/05/2013

[4] Zaharia M., Konwinski A., Joseph A. D., Katz R., Stoica I. (2008) ”Improving MapReduce

performance in heterogeneous environments”,. Proceedings of the 8th USENIX conference on

Operating systems design and implementation San Diego, California.

[5] Apache (2009) ”Fair Scheduler Design Document”,.

[6] Zaharia M., Borthakur D., Sen Sarma J., Elmeleegy K., Shenker S., Stoica I. (2010) ”Delay

Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling”,.

In EuroSys 2010.

[7] Seo S., Jang I., Woo K., Kim I., Kim J-S., Maeng S. (2009) ”HPMR: Prefetching and pre-

shuffling in shared MapReduce computation environment”,. IEEE International Conference on

Cluster Computing and Workshops, 2009.

[8] Thirumala Rao B., Reddy L.S.S. (2011) ”Survey on Improved Scheduling in Hadoop MapReduce

in Cloud Environments”,. International Journal of Computer Applications (0975 - 8887) Volume

34 - No.9.

[9] Kc K., Anyanwu K. (2010) ”Scheduling Hadoop Jobs to Meet Deadlines”,. Proc. CloudCom,

2010, pp.388-392.

176

BIBLIOGRAPHY 177

[10] Sandholm, Thomas, Lai, Kevin (2010) ”Dynamic proportional share scheduling in Hadoop”,.

Proceedings of the 15th international conference on Job scheduling strategies for parallel pro-

cessing.

[11] Sommerville, I., (2010), ”Software Engineering”,. 8th Edition, Pearson Publishing.

[12] Transaction Processing Council ”Transaction Processing Council Website,”.

http://www.tpc.org/, Visited 18/06/2013

[13] Jakobus B. (2013) ”Data Managment in Big Data,”. Independent Study Option, Imperial

College London

[14] Apache Software Foundation. (2009), ”Hive, PIG, Hadoop benchmark results”,.

https://issues.apache.org/jira/secure/attachment/12411185/hive benchmark 2009-06-18.pdf,

Visited 03/01/2013

[15] Moussa, R. (2012), ”TPC-H Benchmarking of Pig Latin on a Hadoop Cluster”,. Communica-

tions and Information Technology (ICCIT), 2012 International Conference, pages 85 - 90.

[16] Loebman S.; Nunley D.; Kwon Y.; Howe B.; Balazinska M.; Gardner. J.P. (2012), ”Analyzing

massive astrophysical datasets: Can Pig/Hadoop or a relational DBMS help?”,. Cin Proc. of

CLUSTER. 2009, pages 1 - 10.

[17] Stewart Robert J.; Trinder P.; Loidl H. (2011), ”Comparing High Level MapReduce Query

Languages”,. Springer Berlin Heidelberg, Advanced Parallel Processing Technologies, pages 58-

72.

[18] Transaction Processing Performance Council (TPC) (2013), ”TPC Benchmark H”,. Standard

Specification, Revision 2.15.0, Transaction Processing Performance Council (TPC), Presidio of

San Francisco

[19] Rutherglen J.; Wampler D.; Capriolo E. (2012), ”Programming Hive”,. O’Reilly, ISBN: 978-1-

449-31933-5

[20] Stackoverflow. (2013), ”Performance: Pig vs Hive”,. http://stackoverflow.com/questions/17422005/performance-

pig-vs-hive, Visited 03/07/2013

[21] Stackoverflow. (2013), ”Why to use StringBuffer in Java instead of the string concatenation op-

erator”,. http://stackoverflow.com/questions/65668/why-to-use-stringbuffer-in-java-instead-of-

the-string-concatenation-operator2005/performance-pig-vs-hive, Visited 17/07/2013

178 BIBLIOGRAPHY

[22] PMD. (2013), ”Java Optimization”,. http://pmd.sourceforge.net/pmd-

5.0.4/rules/java/optimizations.html Visited 17/07/2013

[23] Java Documentation, Oracle. (2013), ”Class Arrays - Javadoc”,.

http://docs.oracle.com/javase/6/docs/api/java/util/Arrays.html#asList%28T...%29 Vis-

ited 17/07/2013

[24] Java Documentation, Oracle. (2013), ”Writing Final Classes and Methods”,.

http://docs.oracle.com/javase/tutorial/java/IandI/final.html Visited 21/07/2013

[25] Java Documentation, Oracle. (2013), ”JavaTM Platform, Standard Edition 6 API Specifica-

tion”,. http://docs.oracle.com/javase/6/docs/api/ Visited 24/07/2013

[26] Java Documentation, Oracle. (2013), ”Defining Methods”,.

http://docs.oracle.com/javase/tutorial/java/javaOO/methods.html Visited 24/07/2013

[27] Java Documentation, Oracle. (2013), ”Variables”,. http://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html

Visited 24/07/2013

[28] McCabe J. T. (1976), ”A Complexity Measure”,. IEEE Transactions on Software Engineering,

Vol. SE-2, No. 4.

[29] The Apache Software Foundation (2013), ”Apache Pig”,.

https://blogs.apache.org/pig/entry/apache pig it goes to Visited 25/08/2013

