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Abstract

Mobile crowdsourcing (MCS) is a fast-growing field with many applications which are due to the
rapid adoption, ubiquity and powerful capabilities of current smartphones and other mobile devices.
While the applications are various and novel, their building blocks can often be reduced to common
operations involving data handling, user interactions, mobile or server analytics, and managing user
participation. The development of a system that performs such actions is time-consuming and can
be difficult to address the unique MCS challenges given that the parties interested in MCS can be
diverse and with different backgrounds. This project offers a general software framework, Hive,
which allows its users to focus working only on the novel aspects of the mobile crowdsourcing
application without needing to reinvent the wheel for any of the common functionality. Hive makes
it easy to specify new MCS tasks with quite reduced development effort, or in some cases — none
at all. There is only one other framework (Medusa [25]) with similar to Hive’s goals but it has its
limitations. The lack of such solutions in the literature has reinforced the motivation behind this
project.

Hive enables non-technical MCS task specification and the reuse of already implemented so-
lutions in new tasks. What is specific about Hive is that it is oriented towards the support of
third-party developers who can easily extend its functionality — a practical yet a demanding fea-
ture to realize that ensures the framework’s future generality and extensibility. The presented
system is shown to be more succinct and requiring less technical expertise than Medusa in the
declaration of new MCS tasks — something which Medusa is already quite successful at when
compared to ad-hoc MCS applications. Furthermore, the design choices made for Hive make it
more scalable and create the foundation for the specification of general tasks — ones that are not
only done on the mobile device but in fact interleave MCS with cloud processing, such as training
machine learning services. Also, because of the way the system concerns are separated between
the client and the server, the little dependence the client has of the server when it comes to task
execution, the client’s robust performance, and the close to real-time client notifications, Hive en-
ables the execution of tasks which would not be possible when using Medusa. Lastly, the design
and implementation provided for a part of the framework — the mobile client, result in a novel
mobile application which acts as a framework to other applications built by third-party developers
and yet controlled by the framework application. This design may be adapted for other, non-MCS
related topics that also require mobile applications acting as frameworks.
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Chapter 1

Introduction

In the past five years the computing industry has been going through a trend which many now label
as the beginning of the post-PC era. The term refers to the behavioural shift from using of a single
computing device, often a desktop one, per person to a lifestyle of mixing different devices of various
forms and capacity. The proliferation of rich web services and cloud computing, advancements
in battery capacity and CPU energy efficiency, adoption of new UI interaction patterns and the
availability of cheap storage as an enabler for Big Data machine learning have altogether contributed
to the formation of an environment in which people rely on several computing devices depending
on the context they are in. In such environment, smartphones and tablets are thriving.

Equipped with various sensors – gyroscope, GPS, camera, digital compass, accelerometer, mi-
crophone, light and proximity sensors – smartphones are not only excellent communication and
computation devices but they are also very suitable for ubiquitous computing use cases. Through
their mobility and ubiquity, smartphones can act as an enabler for large-scale sensing applications
which in the past would have been only ad-hoc and would have incurred a much larger deployment
cost due to the need of expensive specialized hardware.

What is more, the numbers of smartphone owners is growing at a tremendous rate. The precise
number is not publicly available but can be approximated from the number of smartphones sold.
According to analysts, more than 700 million smartphones were sold worldwide in 2012, a 44 per
cent increase compared to 2011 [12], [1]. 2013 is said to be the year when more than a billion
smartphones are sold [9] with 70 to 80 percent of the annual growth attributed to developing
countries [4] — places where technology proliferation has historically been very difficult due to
lacking infrastructure and high costs. This statistic alone points to the rapid increase in new users.

With these observations it is reasonable to say that smartphones – through both their ubiquity
and growing pervasiveness – can be a great opportunity to impact people’s lives on an unprecedented
in the computing history scale.

1.1 Project Motivation

The accelerated improvement and adoption of smartphones is in the process of creating new in-
dustries to work in and opportunities to research and innovate. One such domain is mobile crowd-
sourcing. It leverages the intelligence of large amounts of ordinary smartphone users to obtain
information. As a complement to crowdsourcing, mobile crowdsensing seeks to use the data avail-
able from the multiple sensors present on modern smartphones. A significant challenge is assessing
the data validity and whether it is still relevant (i.e., up-to-date). Both mobile crowdsensing and
crowdsourcing are closely related topics and they will be collectively referred to as MCS. As the
literature review will show, MCS poses new challenges and the field is still in its early stages of
development. A common approach to evaluating MCS research is the development of a MCS sys-
tem for the particular application and assessing how well the proposed combination of sensor data
and/or user input solves the particular problem. Such problems can be obtaining real-time traffic
conditions and pothole locations [23], joint control of a robot’s interface [18] or receiving a real-time
instructive assistance for blind people [3].
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8 CHAPTER 1. INTRODUCTION

However, it is still the case that for any new MCS task, a new system is built from the very
beginning. This often includes a mobile application (client) built for at least one mobile operating
system and a server back-end. This ad hoc architecture approach creates several issues:

• The software built is usually a proof-of-concept and is only a means for evaluation of the
proposed approach. Yet, the system design challenges and development effort involved may
be a barrier for conducting the actual research of how MCS can be used to solve the given
problem. In the very least, they will slow down the research work significantly or affect the
quality of the evaluation.

• Some of the key problems characterizing MCS may not be addressed (for example, due to
time constraints) if they are not the focus of the research. Such problems are privacy, al-
lowing different levels of human involvement as well as the impact on the normal use of the
phone — battery drain, phone responsiveness, and blocked sensors for normal uses. However,
addressing these problems is important for any real solution that is to be deployed.

• There is a good amount of functionality overlap between different MCS applications — all
of them involve some form of data collection, processing, and storage which require specific
kinds of infrastructure and services. In addition, the data collected itself may be relevant to
more than one application. However, the above ad hoc approach does not allow for any reuse
of any created solutions or straightforward data sharing.

• For the large scale adoption that is needed for MCS to become useful, installing a mobile
app for every new problem is impractical and stifles the user involvement. This in turn
further reduces the usefulness of MCS. A large-scale involvement is especially important for
responsiveness close to real-time and data collection for machine learning problems.

In parallel to the work done in the field of MCS, the machine learning (ML) community has
been developing algorithms designed for crowdsourced data. Its main purpose has been obtaining
ground truth from the data at minimum crowd cost (number of people asked to perform the same
task). The literature review for this project has identified a lack of research at the intersection of
between crowdsourced machine learning algorithms and MCS. A hybrid approach between the two
areas could be quite beneficial — if the ML model is stuck or produces output with low certainty
then the crowd’s input could be leveraged, with greater focus on the identified experts in the crowd.
On the other hand, if the model is fairly certain in its output, then it can work automatically, with
no reliance on the crowd, which will be more efficient in both time and cost. Furthermore, a ML
approach would allow for the MCS to scale much better (greater use of the data will be made if
it can be trusted and a ML algorithm can help with this) which is one of its key requirements for
MCS to be useful. However, these two research fields are quite large on their own and therefore
joining them together will require plenty of additional work. Having a framework that simplifies the
process of data collection and user participation, application of ML, and then mixing the two would
be beneficial as it will allow the the work to be focused only on relevant parts without needing to
”reinvent the wheel” for the remaining components of the system.

1.2 Project Goals

This project is motivated by the problems described in the previous section. It aims to facilitate
or ease future work at the intersection of mobile crowdsourcing and machine learning through
simplifying the workflow for researchers and anyone else who requires mobile crowdsourcing.

The project’s main goal is to provide a software framework which alleviates, partially or com-
pletely, the need to design and build a new system for every new data collection or mobile crowd-
sourcing task, thus saving a lot of time and effort to interested parties. This goal creates several
requirements for the framework:

• The framework should provide a way to specify in a high-level way what is to be done
to perform a mobile crowdsourcing task. The specification process should not require any
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technical knowledge and implementation effort, given that the framework users may be non-
experts (for example, a journalist leveraging the crowd to collect photos from an event or
a ML researcher with little mobile development experience needing mobile sensor data). To
achieve this, the framework should offer a collection of common functionality units — plugins,
which can be combined in the high-level task specification way to achieve the task’s goals. If
all the functionality is available, then there should be no need to do any development work
whatsoever.

• If on the other hand, there are parts of the MCS task that cannot be solved with any of the
available plugins, then the framework should make it most convenient and straightforward
to extend its functionality, and for the newly-developed plugin to fluently interact with the
rest of the system. This will allow the developer to reuse everything that’s available in the
system while only having to focus on the novel parts of their specific task needs.

• It is imperative for the software’s generality and adoption to allow these novel plugins to
be contributed to the collection of framework plugin solutions so that others can later make
use of them, thus gradually growing the project’s usefulness. It is necessary that the devel-
opment and contribution of a framework plugin imposes a minimal technical burden to the
developers, given their potentially different backgrounds. This requirement means that the
framework must be oriented towards third-party developers — demanding no knowledge of
the overall framework functionality but must only understand how to implement the plugin
itself. This also requires that the system is designed for decentralized plugin development
and distribution.

• The software must not impact negatively the user experience on the mobile client by abusing
the device’s limited resources or affecting the phone’s performance and usability. This means
that the framework should be developed in agreement with mobile development best practices.
In addition, the impact of plugins needs to mitigated without restricting their functionality.

• Preserve privacy — the user’s personal data is often the main target of a MCS task. However,
such information can often be misused so it needs to be treated with care. Furthermore,
given that third-party plugins are to be encouraged, additional privacy concerns arise. The
framework should ensure the user is in full control and understanding of what data is being
accessed and how it is being used. Such guarantee can be made only by the framework
completely owning the user data and controlling the plugins’ access to it.

To meet the main goal and the requirements derived from it, this project sets out to create a
mobile application which acts as an extensible framework on the mobile device. The application
will allow its users to browse MCS tasks — descriptions of work — and view their details and
requirements. The application should enable the users to participate concurrently in multiple
tasks, given that this does not violate the integrity of any of the tasks. The application is also
to provide the necessary infrastructure and supporting services to enable the functioning of the
framework plugins. It is the framework application that will automatically manage the entire task
execution process by orchestrating the needed plugins to perform the required work. The mobile
framework should be as little dependent on the cloud back-end for the execution orchestration as
possible; this will allow for more robust execution, make the framework more scalable, and will
enable certain location-based tasks that may have connectivity limitations as a side effect.

The plugins are only meant to serve as data generating units. They should be running on the
device only when started by the framework. In any other case, the framework must ensure they
do not run (and thus, impact the device’s usability) because in such cases the plugins perform
no useful work for a task which should be their only purpose. The plugins themselves are to be
separate mobile applications. They are to be completely decoupled from the main application in
terms of development and distribution — developed by third-party developers and provided to
the user through the various mobile application distribution channels, or through the framework’s
cloud back-end. The framework must ensure that plugins are easy to develop and that only minimal
development overhead is created for requiring them to work with the framework application. Lastly,
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it is important that the framework application establishes total control over the plugins and provides
this control to the user. It is to be used to manage the lifecycle of the plugins but more importantly
— the access to the user’s data. The framework should become the single point of trust for the
user data; it should securely hold any data generated by a plugin and completely control the access
to it. Through the framework, the user should be allowed to manage the plugins’ access and thus,
manage their own privacy.

In addition to the mobile framework client and any developed plugins which will be the main
focus of the project, the objective is to also create the server back-end part of the framework in
the form of a cloud service. It is meant to enable the high-level MCS task specification and plugin
distribution process, described in the requirements. The server is also to provide all the necessary
infrastructure needed for managing user participation in the tasks and the collection and use of
the crowdsourced data. If needed, the server should also collaborate with the mobile client in the
orchestration of the task execution. For example, if dynamic interaction between the cloud service,
the task creators, and task participants is needed, then such client-server collaboration will be
important. In addition, the current project aims to provide the design and lay the foundations
for future work which is to enable the framework to perform more sophisticated execution of tasks
such as interleaving machine learning and mobile crowdsourcing plugins in a task execution and
combining their results.

Finally, given that it is in the very nature of MCS tasks to target the participation of many
users with the data they generate, it is imperative that both the server and the mobile client are
designed for performance and in a way which permits the overall system to operate at a large scale.
For example, it is crucial that the client-server communication patterns are made to scale for many
users, given the expected large amounts of data uploads, task sign ups and updates.

1.3 Contributions

The first contribution of this project is the presentation of the current MCS literature and the
identification of the lack of research work which investigates the capabilities of combining mobile
crowdsourcing with crowdsourced machine learning in one integrated system.

The main contribution is the presented Hive framework. It is a framework for mobile crowd-
sourcing that identifies and addresses the new challenges that mobile devices present in contrast to
wireless sensing — putting the human in the loop of a task’s workflow, having a strong focus on
data privacy and device usability, and generality of task specification. Due to time constraints, the
project does not address the mobile context and data reuse challenges but it proposes design and
discusses how to proceed with their realization. The framework’s novelty comes from addressing
the above challenges while meeting its main goals — providing a straightforward way to declare
MCS tasks and managing many of the common aspects of a MCS task. Hive has been evaluated
to be more scalable and to have better mobile performance than the only other existing framework
with similar goals — Medusa. Hive makes it possible to reuse existing functionality when specify-
ing tasks and thus may require no implementation effort. What is unique about Hive is that its
generality relies on the design choice of making the framework extensible by third-party developers
which is a much more realistic and scalable approach than a centralized solution.

The last contribution of the project is the design and implementation of the mobile client which
is part of the Hive framework, and more precisely, its main framework application-plugin application
relationship. The presented work creates a mobile application that acts as a framework to others,
is able to control their lifecycle and orchestrate them into execution to reach a larger goal. The
framework has full control over sensitive data and mediates any plugin requests for it. Yet, the
plugins are separate applications which are independently developed and distributed, the developers
are not required to have any knowledge of how the framework’s internal system functions, and have
full functionality freedom. This design is not specific for the purposes of a MCS framework but can
also be adapted to other systems that require similar mobile application framework with third-party
plugin architecture. To the best of the author’s knowledge, such work has not been presented for
the present mobile smartphone operating systems. Such task is thought to be more difficult, given
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their stricter application constraints and control, compared to general-purpose desktop operating
systems where such systems are not uncommon.

1.4 Report Outline

The rest of the report is organized as follows. Chapter 2 describes the relevant literature. It
focuses mainly on MCS solutions but also discusses relevant ML literature. The chapter also
gives an overview of the technology used in the project. Chapter 3 describes the design principles
that guided the project and presents the resulting architectures for the mobile client and server
cloud service. Chapter 4 discusses the details of the implementation, what practical choices were
made, the problems encountered during the implementation and how they were resolved. Chapter
5 critically evaluates the Hive framework and compares it with the few other solutions. Lastly,
Chapter 6 provides an overview of what has resulted from the this project and presents pointers
for future work.
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Chapter 2

Background & Literature Review

The goals of this project set it within the context of mobile crowdsourcing (MCS). However, given
the long-term goal to integrate MCS with machine learning, the ML literature, in particular obtain-
ing truthful information from untrustworthy crowd, will be reviewed briefly. The following sections
discuss the relevant literature for both and provide the necessary background.

It is important to point out that during the review of the relevant literature, it was observed
that there was very little if any significant research at the intersection of these two topics. While
MCS often involves analytics, these so far have come down to aggregate analytics. Using machine
learning algorithms specialized for crowdsourcing will enrich the capabilities and robustness of such
systems.

It is the main goal of this project to facilitate work in precisely this area by removing the need
to build MCS systems for the purpose of training ML algorithms or working on crowdsourcing
machine learning. In order for the project to meet its goals, the framework produced should
be general enough to allow for different uses of MCS and interleave it with machine learning.
Furthermore, the challenges typical for MCS and yet not problem-specific should be solved by the
framework. Finally, it should be possible to implement the use cases found in the literature. All of
these are discussed below.

2.1 Mobile Crowdsourcing and Sensing

In the most general case, crowdsourcing deals with problems that are too difficult for computers
yet easy if not even trivial for people to solve. Hence, solutions are sought by assigning micro
tasks to multiple people – workers, and relying on their efforts and expertise. Multiple workers are
assigned the same task so that greater certainty about the answer is obtained. The issue of trust
is discussed later on in this chapter.

Crowdsourcing has gained traction with the introduction of gamified techniques introduced by
von Ahn in [31, 32] where people enjoy playing a game and the crowdsourced data is a by-product.
Such techniques may be difficult to devise for some problems, however, and hence in these cases
users would lack motivation to contribute.

On a larger scale, the creation of the Amazon Mechanical Turk (AMT) [20] marketplace has
been quite beneficial to the crowdsourcing research community. AMT offers an infrastructure for
creation of tasks – Human Intelligence Tasks (HITs) – which are then offered to a human workforce.
Common HITs involve labeling images, translating snippets of text, and filling in surveys. In the
relevant literature that was reviewed, there were only one or two cases where AMT had not been
used as a part of the proposed solution.

2.1.1 Mobile Crowd

The use of smartphones enriches the possibilities in crowdsourcing — in addition to the crowd
explicit input, the data obtained from the sensors can also be leveraged. This is called crowdsensing.

13
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Lane et al. [16] give a good survey of the present mobile smartphone sensing capabilities,
current systems, and key challenges. The authors distinguish the various scales at which mobile
sensing is being researched. They are personal, group, and community (crowdsensing). Personal
sensing works on an individual scale by obtaining data for one’s own interest such as tracking
exercise. Group sensing is similar to community sensing although at a smaller scale and usually
the people involved know and trust each other which creates different privacy and ground truth
characteristics, compared to community sensing. This project focuses on community sensing which
is the least explored of the three due to the additional difficulties of scale and workflow, compared
to the other two. Yet, experience in building personal and group sensing applications is relevant
for crowdsensing ones as their workflow often is included in the crowdsensing one such as the data
collection and possible preprocessing steps as is the case in [21].

Lane et al. [16] also discuss two sensing paradigms — opportunistic and participatory. Oppor-
tunistic sensing is a fully-automated approach to data collection — it relies solely on the multimodal
sensor streams and perhaps local analytics. The benefit of this is that it lessens the requirements
on the end-user who may have little incentive to actively participate. The authors note that this is
especially true for community sensing scale where the immediate benefit from the application may
not be lucrative enough. However, opportunistic sensing does not utilize resources well and can be
susceptible to the context problem discussed in §2.3. Participatory sensing requires the user’s active
involvement — to initiate sensing, to approve and/or submit the data. It creates a bigger burden
on the end-user but it leverages their intelligence as a workaround to the context problem. Lane
et al. [16] expect that many applications of mobile crowdsensing will involve a hybrid approach.
This view is shared by Ganti et al. [8] who suggest the term mobile crowdsensing should span a
wide spectrum of user involvement. The current project has adopted this stance, with the addition
of mobile crowdsourcing (i.e., provision of labels of any kind from the user). Mobile crowdsourcing
can be thought to be at the very end of the participatory sensing spectrum. Hence, the abbreviation
MCS is used — it can be read as both mobile crowdsourcing and mobile crowdsensing.

In their survey, Lane et al. [16] note that at present there is only ”limited experience in building
scalable sensing systems” and that the same is true for both participatory and opportunistic sensing
applications. This observation has been made by several other researchers, too, such as Ganti et al.
[8], Ra et al. [25], and Xiao et al. [36]. In their respective works, it is noted that acquiring a critical
mass of engaged users (i.e., scaling up) is crucial to the success of any MCS application.

In their survey, Ganti et al. [8] focus entirely on mobile crowdsensing at crowd scale. They
note that MCS has some unique characteristics. The authors make a strong case against building
application silos — creating specific server and mobile client from the ground-up for each new
application. They argue that it is difficult to design the applications and that it should not be the
focus of the researchers to reinvent the wheel; furthermore, it’s inefficient since different apps may
handicap one another if they are not aware of their co-existence. For example, if they access the
same sensors, the apps may cause erroneous data or more likely, one may starve the others. Hence
it will be better for one application to orchestrate them because it will have a holistic view of what
is going on. Furthermore, any processing the data undergoes, may be relevant to the other app
and thus reusable.

Ganti et al. [8] suggest that in order to overcome the limitations of MCS application develop-
ment and deployment, there should be a ”unifying architecture” that allows developers to specify
the application’s data needs in a high level language and identify commonalities of the require-
ments among applications. The system should then identify which smartphones are applicable,
and delegate with instructions to the phones.

2.1.2 Use cases

This section details the various applications of MCS that were found in the literature. Studying the
use cases, the applications’ architectures and considerations that have been made provides valuable
information for the purposes of this project since part of the requirement is for the framework to
allow such applications to be built. There has been a great variety of uses in the literature and
only a few are considered here. Other uses are, for example, constructing a noise map, obtaining
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real-time traffic conditions, noise levels or pot hole locations [23], measuring the quality of biking
routes, and tracking bird patterns and sightings, to name a few.

As the survey will show, while at a high level all system architectures include a mobile client
that does the sensing and a server component delegating the work, the systems often differ in their
details. Lane et al. [16] observe that ”it is not clear what architectural components should run on the
phone and what should run on the cloud” and that where various components run depends on the
application’s considerations. Such are privacy, reducing communication cost, better responsiveness,
and sensor fusion requirements [16].

VizWiz [3] is a talking application aimed to help blind people by answering their queries in
nearly real-time. Bigham et al. [3] achieve timely interaction with AMT by recruiting the workers
while the user is in the process of taking a photo of what interests him/her and recording a voice
query. Both the picture and sound are then uploaded, with the sound being transcribed on the
server. Then an AMT task is created through the AMT API. Nowadays, it will be possible to
transcribe the audio locally, hence saving bandwidth and time. The authors create the quickTurkit
module which has the goal of managing the workers. Because the goal is to allow blind users to
have an interactive experience (i.e., allow more than one related questions), quickTurkit engages
the workers with additional work so that they remain available until a new query arrives or until
some timeout period. Worker replies and instructions are sent to the phone as text which then uses
Text-to-Speech (TTS).

A use case that is described is finding the location of an object close to the user. The crowd-
sourced task is the question of how much the person should move and rotate. This information is
then sent to the mobile phone which relies on the accelerometer and compass to find out the angular
cosine distance from the direction in which the camera is pointed at to the object of interest. Then,
the information is passed to a local sonification module that guides the user with sound of how
much and in what direction he should move.

In their paper, in addition to the research contributions made, the authors provide good insight
of the unique challenges blind people have and how beneficial a crowdsourcing tool such as VizWiz
can be.

Legion [18] is a system that allows a real-time control of various existing interfaces by relying on
the crowd’s input. The system consists of a client that controls the interface and the user selects
which parts of it are to be delegated to the crowd. Then the client streams a video of the UI to
the server. The server is responsible to forwarding the stream to a web interface through which
the crowd provides input. The server also has to mediate the crowd’s input into one UI command,
and recruit and manage the workers. The server uses quickTurkit [3] to maintain an active list of
workers.

Lasecki et al. [18] offer different ways of unifying (mediating) the crowd input at the server.
Because of the nature of the problem of controlling a UI(for example, trying to navigate a robot
towards a given goal), it is beneficial to have effectively only a small subset of users controlling the
interface at any small period of time. The evaluation confirms this, and in fact, the best cases are
when leaders – individuals who at a given point have had the most support from others through
action agreement – were given the explicit control. This is very similar to a basic crowdsourced
machine learning algorithm where every participant’s trustworthiness is evaluated. Hence the
results hint at the usefulness of a machine-learning trust approach.

Lasecki also presents real-time conversational assistant system – Chorus – in [17]. It mediates
crowd input and presents the crowd’s replies as a single agent to the end user; the goal is to answer
the user’s queries. The paper is scarce on detail about the architecture but the author discusses
a multi-tiered reward scheme that should keep the crowd engaged. Each worker is rewarded per
interaction; if the worker agrees with the mediated response, then the reward is bigger. The reward
is greatest for the worker who proposed the mediated response. Such incentives could again be
useful in the crowdsourced machine learning where experts and non-experts are paid according to
the value of their contribution.
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SoundSense [21] is framework that models sound events and is able to recognize the context the
smartphone is in. While it is meant to work on a personal, not crowd scale, it provides useful
insights. It adapts to the usage patterns of the particular user through unsupervised learning — it
identifies new contexts and then asks the user to confirm the new context, or they can command
the application to no longer track this context. Because it deals with sound recordings, privacy
can be quite an issue. Privacy is one of the reasons why SoundSense does all the processing locally
and never uploads the sound recording. It actually does not have a back-end server.

Another interesting feature of SoundSense is that it performs a two-tier analytics. First, it
applies the supervised learning algorithms that were deployed with the app to decide if the sound is
voice, music, or neither (ambiance). In the second step, a specialied algorithm is applied, depending
on the first step. In the case for ambiance, the algorithm is updated with the newly-discovered
contexts. SoundSense has a pipeline architecture on the mobile phone. After obtaining the raw
input, the application preprocesses it by segmenting it into frames. Some frames are filtered out
before the remaining are presented to the first-tier algorithms.

Sherchan et al. [30] present a platform – CAROMM – which focuses on the contextual aspect of
sensing and the data collection process in MCS. CAROMM’s long-term purpose is to collect sensed
data in real-time, aggregate and collate it, and correlate it with social networks such as Facebook
and Twitter. Then, interested parties from the social circles can obtain real-time information
through a service that runs analytics on the data streams and sends queries to the mobile devices.
The aggregated information could be in the form of light, noise levels as well as multimedia and
social network updates.

However, in contrast with this project’s goals, CAROMM is not meant to execute MCS tasks
of various types, nor accept their specification through describing executable steps the task is
composed of. Instead, it is intended to provide an infrastructure level which can be leveraged by
a single service making use of the collected data. For example, in the presented work, the authors
build a localized social-oriented service on top of CAROMM that allows for running analytics on a
per-location basis and also performing real-time queries about locations using fresh mobile data and
social network updates. Furthermore, CAROMM’s main goal is the continuous collection of data
on the mobile device and its accurate reporting to the server with minimal performance impact.
This is in contrast with the goal of this project to obtain data in steps, only as a means towards
the accomplishment of a well-defined task. Lastly, the authors do not aim for CAROMM itself
to be extensible (and certainly not by third-party developers) but instead its functionality is to
be wrapped around by a service that runs analytics. For these three differences, even though the
authors of the platform refer to it as a framework, in the context of this project’s goals CAROMM
cannot be thought of as a framework but as an infrastructure layer, a platform. The differences
in goals compared to the current project mean that the design direction set for CAROMM will be
significantly different from this project’s. For example, there are very scarce considerations made
about data privacy in CAROMM.

Nevertheless, the data collection insights the authors present are worth taking into account.
The core of the work presented in [30] is the data collection model and system which is meant to
run on the mobile client. The authors’ primary goal is to improve the client performance according
to the cost models they develop. They achieve this goal through a data mining approach. The client
has five modules in total — a UI that controls the user preferences and initiates sensing, a module
that manages the interplay between the other modules, a module that interfaces with the sensors
and manages media, and a module responsible for communication with the cloud and uploading
the data. The last module is the core one — it deals with data analysis. It incorporates local
analytics to cluster the sensed data and only sends updates to the cloud if there are significant
changes — a new cluster. The significance is a user-controlled setting which directly impacts
the phone’s performance. The authors rely on an open source toolkit for data mining — Open
Mobile Mining [11] to perform clustering on the sensed data. OMM could have been useful for the
current project, if the crowdsourcing requirements are for sparse updates. Still, it was not possible
to find any documentation or source code and hence its capabilities (and potential usefulness)
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are unknown. In their evaluation, Sherchan et al. [30] report significant savings in battery and
bandwidth according to their developed battery cost models, because the updates happen only
upon context change. The results present a good argument for performing analytics on the data
before uploading it, and also show that data mining may not necessarily be application-specific.

The authors do not go into much detail about the server side of their implementation since
their focus is the client. Still, they use Amazon’s Elastic Compute Cloud (EC2) to host a web
service which is queried through REST. The web service performs the aggregation per location.
The sensor data is stored on a non-relational database – Amazon SimpleDB, while the media data
from the user – on a relational database – Amazon Simple Storage Service (S3).

TurKit [19] is a toolkit that facilitates crowdsourcing but without considering any usage of mobile
smartphones. It provides a library of function calls that interface with AMT, hiding away the entire
process of crowdsourcing. TurKit expects that AMT tasks might take a lot of time to run and hence
the program itself might crash. Hence, it opts to store the outcomes of remote operations (such as
AMT Human Intelligence Tasks), while replaying the logged local operations since they are cheap
and fast to run. This way, if TurKit is restarted, it can quickly restore to its pre-crash state. The
authors provide the syntax constructs and their semantics for programming their ”crash-and-rerun”
model.

2.1.3 Existing MCS Frameworks

The literature review has identified only two mobile crowdsensing frameworks that share some of
the motivation and goals of this project. The main difference with the current project’s goals
is either the lack of server execution support, missing support for third-party development and
framework extensibility, or no straightforward ways for defining MCS tasks.

Medusa, presented by Ra et al. [25], is a framework comprised of both a mobile client (Android)
and services running on a server infrastructure. Its goals and motivation come closest to the ones
of this project.

The Medusa framework offers a high-level language for the specification of new tasks. The
language allows the user to input the steps needed to complete a task and what actions should
be done at each step — i.e., to define a state-action model. The task provider (referred to as
tasker or requestor) can also specify what is to be done if a step fails thus enabling a more robust
execution. Each step of the task specification corresponds to a type of an executable library which
is developed and provided by the framework’s core developers. The libraries are well-defined in
their purpose and can be used in different tasks. This facilitates reusability and simplifies the task
creation process — the tasker need not implement the steps if they are already available but only
piece them together through the high-level task specification language. The centralized provision
of the libraries enables the authors to maintain control over the kind of functionality the libraries
possess which allows them to better preserve user privacy and the mobile device’s usability. For
example, before any collected data is uploaded from the phone, the user is asked for permission
because it is part of the functionality of the only library with connectivity that is provided by the
framework; any other library with Internet access is not allowed. Medusa supports stages with
various levels of user involvement – from none (e.g, processing video) to a HIT such as recording a
video or providing a label.

The framework comprises of services some of which run on the the smartphone, while others —
on the cloud infrastructure. They are built with concurrent task execution, robustness and privacy
in mind. On the cloud, the server accepts new task specifications, manages the running tasks,
stores on a persistent storage the state of task progress per individual participant, and pushes new
steps to be executed to clients, according to the task script. On the client, stages which are part
of tasks the user has signed up for are executed, possibly in parallel, and status updates are sent
to the server.

The Medusa workflow begins on the server where new tasks are specified in text – in XML –
which is later verified according to the framework’s requirements. Relying on XML means that
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the tasker needs to understand its form and know what stages are available, and what all the
parameters that each stage library requires are. A better way to do this would be to have a
UI that hides away the XML and presents the available library stages, thus making it easier to
specify tasks. Using such an UI is important, since some of the targeted groups of taskers are
non-experts and are not expected to have technical knowledge, as Ra et al. [25] point out, too. A
UI will also enforce the state and overall requirements to which the framework is committed, and
hence simplifying the post-processing of the XML. A flexible UI with appropriate stage-specific
constraints can be challenging to design, however. Once a new task is submitted, the core Medusa
module – Task Tracker, is initialized with the task parameters. This module runs on the server
and orchestrates the entire execution, receiving updates from both other server components and
the mobile clients. The system creates one instance of the module per task. The module uses
another part of the system, the Worker Manager, to recruit participants. The manager is told
using the task specification how many workers to recruit and with what incentive. The Worker
Manager relies on Amazon Mechanical Turk to publish and advertise tasks. Potential users are
expected to visit AMT through their mobile devices, browse through tasks and sign up for the
ones that interest them. The reliance on AMT has both advantages and disadvantages — from
one hand, a community that is already used to crowdsourcing is leveraged, but on the other hand,
using AMT limits who can participate by requiring that users have an AMT account. Also, the
framework cannot fully control the task execution process but is instead dependent on AMT, and
its availability and regulations. The alternative is to completely circumvent the usage of AMT
through the provision of equivalent functionality in the framework. This would give the framework
full control over the task browsing and sign up process, and provide the opportunity to present the
tasks to the user in a way that is tailored to the MCS and ML tasks which are the sole purpose of
the framework, unlike AMT which caters for a much broader set of possible tasks. Such approach
can open possibilities for a more flexible interaction between the mobile clients and the server.

The Task Tracker gets notified by the Worker Manager whenever a participant sign up.
The participation of different users for the same task can happen at different times which is why
the framework makes sure to separately manage the execution for each individual. The Task
Tracker is the module that orchestrates the execution for every mobile device. The module sends
instructions through a notification service to the mobile device, telling it what stage it should
execute and giving it any additional parameters it will need. The mobile device itself does not
have the entire description of the task(s) it has signed up for. From a design perspective, it can
be thought of as a execution unit that runs the binaries it is given. The mobile device only has to
respond to status update queries from the Task Tracker, and, upon stage execution completion,
notify the server about it, and provide it with its state information. The state includes pointers
to the data produced. This state is stored in the Task Tracker’s table which contains the state
information of all participants for the given task.

On the client side, the Medusa framework comprises of a stateless Stage Tracker which is
responsible for handling the received notifications and downloading (and caching) stage executable
libraries when they are needed. The main purpose of the Stage Tracker, however, is overseeing
the execution of the stages and interfacing with the user. The stage execution itself happens in
MedusaBox. It tightly controls the access of the binary to the phone’s resources. The stateless
stage tracker refers to the above-mentioned lack of knowledge of the task specification on the mobile
client. This lack results in no knowledge of how far has the mobile client progressed in executing
the task. The authors justify this design choice (‘dumb smartphone design principle’) with making
the mobile device more robust — they have opted for storing all of the state of each task for each of
the involved participants on the server; if the mobile device crashes, it is of no importance because
the relevant state has been saved on the server and the client can be told from where to restart
execution. It is not clear, however, why this would have been any different if the task and stage
progress was stored on the phone’s persistent storage, and the client simply resumed itself, making
use of the Android built-in process management. This could have resulted in faster recoveries after
a client crash with significantly less strain on the server. The server load is in terms of storage
— as there is a need to track all the state of every participant in every task. The strain on the
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server is also communication one — the device is completely dependent on the server and has to
ping it every time it needs to do its next step. Furthermore, if tasks self-manage, this would have
reduced the dependence of the client on the server, making possible the execution of tasks where
connectivity is lacking which can be a common problem given the inherent mobility of smartphone
devices.

Medusa relies on AMT for another purpose — notifications. The server leverages it for initiating
new stage steps via notifications it sends. This is done by using AMT’s API to send an SMS with
state and stage parameters, specified in XML which is then parsed and interpreted by the client. It
is not very clear why this step has been complicated with the use of AMT messaging; the authors
report it to be quite slow, relative to any part of the overall system running time (excluding steps
with human involvement). This delay impacts the applicability of the framework where close to
real-time crowd interaction is necessary. The Android system used could have been utilized with
its push channels.

Overall, the Medusa framework addresses several challenges that are present in MCS and pro-
vides a valuable insight of how the problems can be solved. The way tasks are to be created —
through a composition of preexisting stages when available, and in a high-level language meant
for non-experts, and the different levels of user involvement that the framework supports are char-
acteristics that overlap with some of the goals of this project. Furthermore, multiple tasks can
be executed at the same time, as the user is enabled to switch between interacting with the exe-
cuting stages. A key difference, however, is that the availability of stage libraries depends on the
framework owners. There is no support for third-party developers to contribute new libraries in a
distributed fashion, and more importantly, there is no functionality in the framework that allows
the developers to build the libraries as plugins without needing to learn how the entire framework
functions. Furthermore, Medusa by design is entirely focused on tasks being executed on the mobile
client and the server is to coordinate and orchestrate the execution; this can create a barrier for
creating tasks that involve the training of a machine learning algorithm, or its usage in conjunction
with a mobile stage. These differences have affected some of the decisions made during Medusa’s
design and implementation. They should be taken into account, together with the criticism of some
of the techniques detailed, when working on the current project.

PRISM is a framework presented by Das et al. [5]. It relies on pushing untrusted application
binaries to the mobile client (Windows Mobile 5) provided from task requestors — the taskers can
use any library in their application which is then packaged as a binary and made available to the
PRISM server to distribute. This allows for great generality because any binary that can run on
the mobile client will be ran by the framework.

There are problems with such approach, however. The authors claim code reusability. However,
it is not on the same level as desired by this project — while indeed one can make use of pre-existing
libraries, when end-to-end functionality is considered, i.e. an executable task or a well-defined part
of a task with a specific purpose, there is no support from the framework. There are no ‘modules’
offered to a tasker who can then chose to combine these to form a task. It is entirely up to the
tasker to piece together on their own any libraries they need to form a working application. This
means that the taskers still need to design and implement an entire application, building any control
flow, infrastructure and persistence layers that the application may need. The benefit of using the
framework in conjunction with the developed application is instead in the application’s distribution
to relevant participants. It is not in the task specification, orchestrated control flow, and provided
additional services. Lastly, because the binaries are packaged per task, their size is expected to be
big, and if there is more than one task using the same library in its binary, it will be duplicated.
This is undesirable for a mobile device with constrained bandwidth.

Since the binaries are not certified, it is imperative to protect the phones from malicious applica-
tions. They are executed in a sandboxed environment using system call interposition. The sandbox
blocks all system calls to the mobile OS and instead only exposes a controlled API. The sandbox is
designed with additional measures relevant to mobile sensing. Such is resource metering – the client
keeps track of per application and cumulative resource use and controls applications based on set
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policies. The control could include slowing down the use of the resources, regulating the resource
access time, and also killing the entire application. In addition, the mobile client allows the user to
set sensor access preferences. Even with resource metering, a malicious application could still take
advantage by slowly doing work in the background within the policy limits. Hence, the sandbox has
the feature of forced amnesia. It is based on the assumption that most crowdsensing applications do
not have long-running tasks; instead, after performing some sensing and preprocessing, they would
upload the results. Hence, the authors propose wiping the application’s state at a regular interval
if it is still running. This is a strong assumption and may affect the generality of the framework.
In addition, the mobile client allows the user to set sensor access preferences.

PRISM’s authors argue against using a pull approach for distributing tasks because that could
cause large server load. Instead, the authors opt for a push approach by having the clients register
with the server and the server would push only relevant tasks. It is argued that this achieves better
scalability at the cost of some privacy (because of the registration). The authors argue that the
users will poll all the tasks but participate in only few which will lead to large strain on the server
and unnecessary data sends. This signifies the way tasks are thought of — only as their executable
binaries. If, instead, tasks were considered as a meta description together with the binary that
belongs to it, than a user pulling the task descriptions would not cause much load, given the often
relevantly small sizes of meta descriptions.

Registrations time out and in follow-up re-registrations the same user cannot be recognized
because of an added anonymization layer. However, this extra layer also would prevent the use of
crowdsourced machine learning since a model of a person’s reliability and expertise is built. Hence,
such approach is not applicable, at least not without further modifications. The concerns regarding
the pull method could have perhaps been addressed with a better query design. Both should be
considered with this project’s work.

PRISM relies on a sandbox (through system call interposition) to control all the binaries.
However, it is thought not possible for this to be done in Android (the OS that was chosen for this
project) by a standard application, as briefly described in [28]. This is because of the unique start
up process the system has for applications — only a special process, Zygote, has the privileges
to start new processes. No application can do this. The process contains the Dalvik VM and all
the core libraries linked. Zygote forks itself for every application. Thus, each application is in
a separate Dalvik VM which also acts as a sandbox. None of the application processes is able to
perform direct system calls, instead it can only use the Dalvik VM. However, none of the application
processes created by Zygote is able to monitor the system calls of the Dalvik VM and therefore
a standard application cannot create a sandbox environment around another application.

With the applications from the previous section and frameworks discussed here, a few observa-
tions can be made. Some techniques are often useful across different use cases. Preprocessing the
sensed data can resolve some privacy concerns. It is likely to be application-specific, however, so
means to do this should be provided in this project’s mobile client. In addition, removing outlier
data points (which could be due to poor sensing conditions) could also be beneficial. One step
further could be the application of data mining techniques locally on the phone before sending the
output to the server for aggregate processing and machine learning, such as in [23, 21]. All of these
can save bandwidth and upload time. Furthermore, there will be less strain on the server which
can be a factor when at a large-scale participation, especially if there are tight time constraints.

2.2 Crowdsourcing Machine Learning Approaches

The topic of obtaining ground truth from many sources has been well studied in the machine
learning community. With the advent of crowdsourcing facilities, mainly the Amazon Mechanical
Turk, the research has accelerated and scaled up. The ML techniques are used on data obtained
from many users(workers) and the aim is to infer some target label about every data point. Unlike
normal supervised learning, there is no ground truth to be used during the training phase. Instead,
the algorithms use the ones provided from the crowd.
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The involvement of people to provide labels creates additional problems, however. The main
one is accessing the trustworthiness of each participant. Usually, no assumptions can be made
about them and hence they cannot be trusted individually — a participant might be lacking the
knowledge to provide the correct answer, may have misunderstood the task, or could be acting in
an interest that conflicts with providing the right answer. It is therefore necessary that a large
number of workers is involved so that any ’noise’ in the provided solutions is drowned. However,
this can be expensive and time-consuming and therefore it is essential that trustworthy participants
are queried more often while others’ input is given less individual significance.

In the mobile crowdsensing context, trustworthiness is also a function of phone quality — the
sensors can be poorly calibrated or misbehave in some context (such as indoor GPS), as Ganti
et al. [8] note.

The algorithms that have been studied all have the common feature that use graphical models
to represent the relationship between the data, workers, provided labels, and ground truth. In
addition, some authors also model the difficulty of the task [2, 34]. The data and the provided
labels are the only observable variables while the rest are latent and need to be estimated. The
estimation is done through the computation of a Maximum Likelihood or, if a prior distribution
on the latent variables is introduced, Maximum A-Posteriori estimation. The way this is done in
the reviewed literature [2, 26, 27, 33, 34] is through an iterative approach, using the expectation
maximization (EM) algorithm. When some ground truth can be established for some of the data
points, it can have a positive impact on the performance, as Bachrach et al. [2] show. This can
be relevant to the current project. For example, by verifying some of the users’ input with sensor
data, if there is strong certainty about the sensor being correct.

2.3 Key Challenges

In this section, some of the key challenges that any framework in the context of MCS needs to
consider are discussed. set out in the Goals section (§1.2). These are mostly inherent from the
challenges specific for MCS (and not present in the subject of wireless sensing, for example), yet the
addition of interleaving machine learning algorithms into the workflow will cause some requirements
on the format of the data.

2.3.1 Mobile Context

The mobile context arises from the smartphone’s inherent mobility — the phone could be in circum-
stances not expected by the task provider and hence the data obtained may be incorrect. Mobile
context has been identified several times in the reviewed literature [16], [8], [15] as an important
issue that needs to be addressed in MCS applications. The framework should aim to enable precise
context specification as part of the task declaration which is then verified at the client before and
during the execution of a step in the workflow.

One way is to rely on participatory sensing, i.e. on the user’s involvement, to fix it. However,
this will often be either too frustrating for them, or incorrect, or both. There needs to be a mixture.
The reviewed techniques for local analytics are a viable candidate for at least reducing the problem.
Furthermore, full use of the underlying operating system’s APIs should be made since these APIs
are likely to be optimized and relying on internal functionality and knowledge not available for
application developers. For example. recently geofencing and simple user activity recognition have
been introduced to the Android system.

2.3.2 Privacy

The user should be given enough control of what the application will sense and upload to the server.
This is especially true for identifying information such as sound, location, photos and video. As it
was seen in the literature review, a potential way to minimize privacy concern is processing the raw
data into a feature vector or similar representation that does not identify the user but is yet useful
to the task provider. Medusa [25] always confirms with the user before performing any upload.
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Ganti et al. [8] suggest data perturbation as an effective way to preserve anonymity – noise that
is centered around 0 is added to every individual data point and so the aggregate is not changed
but the individual information is no longer identifying. This can be only useful for sensor data,
however, not user media and other input.

2.3.3 Phone Usability

The performance of the phone should not be compromised by running the MCS application. Oth-
erwise, the users will not adopt the application no matter its merits. Hence, the entire client should
act optimally on every step – collecting, processing and uploading data, interacting with the user,
running analytics and detecting context. Data should be re-used where possible, and it should be
uploaded only once if needed for multiple purposes. If there are multiple tasks active at the same
time they may not only interfere with one another but also have a compounded effect on the phone’s
performance and usability (for example, creating a deadlock between two tasks which results in the
user being unable to have their voice heard during calls). Therefore, there should be one application
that has ‘global’ knowledge and is able to oversee what tasks the user is participating in.

2.3.4 Generality

The software should allow task providers to express their data needs and give the context in which
they want the data to be obtained. This can happen either through a high-level specification like
in Medusa [25] or through a tightly controlled UI that will also ensure correct specification and
will not require verification. Either way, the specification of the task should be flexible enough
to accommodate the various MCS applications found in the literature. Furthermore, the software
should be general — it should provide functionality that is thought to be common among MCS
applications and hence could be implemented only once, removing the need for the task creators
to handle the design and implementation challenges.

2.3.5 Scale

Xiao et al. [36] note that scale is ”key to the success of crowdsensing applications” because users
are generally unreliable and hence the usefulness of the system suffers unless it has large user base.
The authors discover that the research literature has rarely used more than 1000 participants [36].
Xiao et al. [36] identifies three issues for scaling - heterogeneity, burden on users, and network
bandwidth demands. They are ”ramifications of the deployment model in vogue today, where
participation in each crowdsensing activity requires a separate application”. In order to scale, the
client-server communication patterns and the separation of concerns between the two will be crucial
for scalability.

2.3.6 Data reuse

Data reuse can be a large boost, both to the participants in MCS but also the task providers
because it will decrease the effort needed to provide and obtain data. It would be very beneficial
if the system is able to recognize when the data the worker has already obtained or submitted is
applicable to other tasks. Hence, both the phone and the server portions should maintain persistent
storage and the context of the data. This will speed up the entire process. The data should be
reused only if the client signs up to the task.

This realization gives another argument for the creation of a single application that manages
all assigned tasks.
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2.4 Technology Used

2.4.1 Android

The Android [14] mobile operating system is a system that includes a modified version of the
Linux kernel, a set of core C/C++ libraries such as support for SQLite and media playback, the
application framework, and the Dalvik Virtual Machine. The VM holds all the core Java libraries
that an application might leverage and any Android-specific classes [22]. The system runs every
mobile application in a separate instance of the VM, and hence each process is isolated from the
rest. All of the application’s parts execute in the same process (unless otherwise specified — but
still in the same VM), and on the same thread — the main thread, unless the application does
not create new threads, directly or through using particular functionality. The main thread is the
only one where UI interaction can happen. Conversely, slowing down the main thread will result
in unresponsive UI.

2.4.1.1 Terminology

An Android application is comprised of standard Java classes in combination with Android-specific
ones that come with the Android SDK. The latter make up the primary parts of an Android
application while the former are used only for supporting roles. An application is comprised of
four major components — Activities, Services, Content Providers, and Broadcast Receivers, each
of which has different usage patterns.

An Activity is a visual component through which the user interacts with the application. It
corresponds to a single screen. It should only contain the view representation and possibly a simple
controller of the underlying data that is shown.

A Service does not have a visual component but instead is meant to run in the background. It
is suitable for long-running operations that should continue working even after the Activities that
may have started it have been recycled by the runtime. The fact that it can live on its own sets it
apart from a Java Thread which lives only as long as its parent Android component.

A Broadcast Receiver responds to system-wide announcements. These can be about a sensor
or service being switched on or off. The broadcasts can also originate from other applications. A
Broadcast Receiver is meant to be a lightweight component which is only created to handle an
announcement to which it has subscribed. The handling itself should be very fast; usually the
receiver will just decide how to handle it but not do it itself. Instead, the receiver will start the
needed service to handle the broadcast or create a notification for the user.

2.4.1.2 Data Storage & Sharing

The last component of the four main ones that comprise an application is the Content Provider. It
is one of the different ways to access Android’s storage. For simple operations, one can directly use
the file storage which each application is allowed by the system. By default, this storage is private
to the application unless it is on the external memory card where access permissions cannot be
enforced. Android also offers a working SQLite database which can be directly accessed through
SQL queries. However, while it is convenient to do this for small applications, for more complex
ones it is recommended [14] to use Content Providers despite that they are more complicated to
build. Furthermore, Providers are needed if data is to be shared between application in an efficient
manner.

Content Providers declare a unique URI path to which the particular Provider will respond
— since a mobile device can have multiple applications with multiple Providers, it is important
that each one of them defines a unique path; usually java package naming conventions are used.
A Content Provider offers an API (and is the one that must be implemented) that behaves like a
relational database. However, its underlying storage need not be a database at all; it can be the
filesystem or even the Internet. It is up to the developer how they will handle the implementation.
The counterpart to a Content Provider is a Content Resolver. A Resolver is what is used to access
the data held by the Provider. The Resolver uses a URI to ask the Android system to access the
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data corresponding to the given URI. The system will check whether the application using the
Provider has permission to access it and will then instantiate the Provider which will in turn access
the underlying data source and respond.

The benefit of content providers is that they are well supported by functionality in the Android
SDK that deals with data loading on the UI. Content Providers are a key to making a complex UI
that is robust and fast. The other benefit is that Providers can operate with URIs and a single
URI can be made to address a collection of data as finely or crudely as needed — it is up to the
developer. This is beneficial because URIs can be used to grant temporal access permissions to
other applications to data that would normally be out of their reach.

2.4.1.3 Process Management & Lifecycle

A primary difference compared to software applications developed for computers is that Android
applications do not manage themselves their own lifecycle. Instead, it is the operating system which
does this. The process and memory management is done by the kernel which will kill processes
with low priority. The priority is determined by the kind of applications hosted in the process
(usually one). In turn, the priority of an application is determined by the highest priority of its
components. Components are given different priorities depending on how important they are to the
user — for example, interacting with a visible Activity is important while an Activity from another
application that has been in the background for a while is unlikely to be needed; it is quite possible
that the Android runtime will kill the second one, if it is the only component in the application.
Furthermore, a Service performing work for a user is more important than one which is waiting
for something to happen. In addition, the users actions affect the lifecycle of the components, too.
For example, pressing the Back button on a device will destroy the current Activity.

The combined effect of the user’s actions and the system mean that from a development point
of view, the application cannot expect to have object references between its components. Instead,
the components need to be designed to be independent and only work together through messaging
(Intents). Alternatively, when it is deemed good design, one could use a globally shared singletons
that provide the needed objects. However, this can have large resource implications and needs to
be justified.

To adjust to Android’s control over the lifecycle, the application developer has access to callback
functions that provide different call guarantees and semantics — for example, onPause() is called
every time an Activity goes into the background even if only partially. However, onStop which
is called when fully in the background is not guaranteed to be called before an application is
killed. According to Meier [22], managing the components’ lifecycles is vital for proper resource
management and good user experience.

2.4.2 Web services

A web service is a way of making functionality of a system available over a network to other other
parts of the system or other systems.

There are two different approaches to building web services. One way is using a combination of
Web Services Description Language (WSDL) and the SOAP protocol; this approach will be referred
to as WS-*. The other way to create web services is to follow the Representational state transfer
(REST)[7] architectural design style.

The first approach focuses on the semantics of each of the components and their complex
interaction between one another. The interaction is suitable if intermediaries are involved and it can
comprise of several steps (i.e., stateful communication). WS-* web services rely on each component
knowing precisely how to interact with others and the interaction happening through messages
following precise formal contracts. In this way, WS-* web services behave just like components in
a distributed system — the focus is on the interaction via the exposed API functionality of each
component.

On the other hand, a RESTful approach focuses on the data in the system. There is a constraint
on the connector semantics between components/services because REST services are most often
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based on the HTTP standard which permits only the GET, PUT, DELETE, and POST operations.
RESTful web services are centered around the representation and exchange of the state of the
data (a Resource). RESTful communication is stateless and most suitable for a point-to-point
interaction.
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Chapter 3

Design

This chapter presents the principles that drove the system design and led to the software’s archi-
tecture, also described in the chapter. The principles were chosen in order to meet the framework’s
goals outlined in §1.2 and address challenges discussed in §2.3. The main goal of the project is to
provide a flexible solution that allows the fulfillment of various user-defined mobile crowdsourcing
tasks and alleviates unnecessary development burdens. In the remainder of this report, a Task
is defined to be a collection of concrete executable units of work which, if followed, achieves the
desired outcome. Each such unit of work may require specific circumstances under which it is
executed and will be referred to as a Stage.

3.1 Design Principles

3.1.1 Make A Framework

As identified in the literature review, building a software solution for every new MCS problem does
not scale for the expected ’crowd’ size in crowdsourcing and poses numerous challenges that can
significantly slow down work in the area. Instead, there is a need for a shared functionality that
offers solutions to common problems – whether these issues are to do with infrastructure on the
mobile clients and servers, or the actual data collection and processing on either. A software library
would be an improvement over an ad-hoc solution, yet it is still unsuitable as it will require that
its user learns how the library functions before using it. Furthermore, the user still needs to do
the entire work of building a system that integrates such a library and controls the task execution.
Also, the user will have to implement any additional processing work that is not provided by the
library, even if others may have already implemented such functionality for their own needs. These
observations mean that a software library does not solve the problems motivating this project. A
software framework, on the other hand, is intended to offer generic solutions that can be adjusted,
if needed, to the needs of the user through modifying only its peripheral functionality. It also allows
the provision of novel solutions aimed at new use cases and their future reuse in the framework. A
key benefit of a framework is that it hides away the complexity of its functionality at a system level,
unlike a library which does this only on a module level requiring the user to learn the intricacies
of how the modules should be combined.

The core principles on which a framework is built are modularity, extensibility, and inversion of
control. The software needs to be modular because parts of the software may need to be replaced by
alternative ones in order to create a satisfactory solution for the task at hand. The richer the library
of interchangeable modules, the wider applicability of the framework. Conversely, to increase its
applicability, the framework needs to be extensible. During the initial design, it is impossible to
predict all future use cases that may arise, and what their common and unique characteristics are.
Therefore, the framework will certainly need to be modified or have additional functionality added.
It is important that the design flexibly accommodates such extensions.

Such flexibility becomes possible only if each of the framework’s components has a single, well-
defined purpose and any interaction with it happens only through precise interfaces. On the server
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side, as it will be seen, this is achieved through web services, while on the client – through the
design of a interprocess interface.

The last important aspect when building a framework is maintaining inversion of control — it
is the framework, not the user relying on it, that controls the execution flow through orchestrating
the system’s components. This makes possible maintaining the framework’s core behaviour intact
and keeps the complexity of its inner workings hidden to its users. It also allows to impose control
over what the additionally provided extensions are capable of. Inversion of control is crucial to
meeting the project’s goals.

Collectively, these tree aspects guide a design in which there is a distinction between the core
framework functionality that controls the behaviour of the entire system, and the peripheral points
of the system that are to be interchanged, extended or modified. This distinction is sometimes
made using the terms frozen spots and hot spots [24]. The frozen spots, as the name suggests, do
not change often, if at all. On the other hand, hot spots are meant to be points in the system
where module implementations can be interchanged, and new functionality added. The way this
is achieved is through conforming to an interface required by the framework. In exchange, the hot
spots often have access to an interface exposed by the framework which offers relevant framework
core functionality.

3.1.2 Decentralized Extensibility

A principle followed in this project is designing with third-party developers in mind. The success
of the framework depends on its applicability to problems and hence, extensibility. However, it
is unfeasible to satisfy and even predict every use case. Instead, when there are new needs that
cannot be solved by the current framework functionality, it should be made straightforward that a
third-party developer can add just the new functionality in the form of a plugin – a new kind of
stage. Such new processing stages should fit into the framework as if they are part of the originally
provided functionality, yet it should not be needed for the third-party plugins to be packaged
with the original framework as this creates a bottleneck on the framework’s side. Instead, the
plugins are to be distributed separately and on demand, thus making the framework’s extensibility
decentralized.

Decentralized extensibility is well supported by following the framework design characteristics
described in the previous section as the framework’s hot spots are ideal for plugin addition. A
framework is already meant to have extensible architecture. Furthermore, the inversion of control
means that the provider of new functionality does not need to know how to operate the entire
system as long as the new plugin fulfills the required interface requirements. This is especially
important since the framework developers can be of different backgrounds such as machine learning
researchers or smartphone developers and hence may find it difficult to understand parts of how the
core functionality works. To make it more suitable for third-party developers, however, the software
should also actively guide the developers with what is required of them, and what is available to
them. This can be achieved through self-documenting interfaces and precise error messages.

Some of the requirements the framework has to impose on the plugins are because of the decen-
tralized principle. They are to ensure that plugin behaviour does not act against the framework’s
and users’ interests. These requirements are derived from the principle discussed next.

3.1.3 Put The User In Control

The reviewed literature has shown that one of the key challenges faced by MCS work is letting the
user decide what data is shared and respecting their privacy. For an ad-hoc application, such design
can easily be achieved since the targeted user group is well-defined and usually the data needs are
well-known in advance. Hence, the details of data privacy can be precisely agreed on. However, for
a general framework that is to be extended, this is more challenging. Even more so with the goal of
allowing third-party developers provide their own new processing work units — such plugins need
to be transparent in their intentions. Transparency can be achieved by imposing requirements on
the plugins through interfaces. That way, in order to utilize the framework, the plugin will need to
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provide all the relevant information which is then to be presented to the end user. Furthermore,
the system should be able to exert strong control over the plugin execution. This control can
then be offered suitably to the end user to meet their own personal preferences. Such control can
be achieved through relying on inversion of control and also limiting the capabilities of the APIs
offered to the plugin — for example, any personal data access from a plugin should happen through
the core framework functionality. The data is to be owned by the framework itself, and the plugin
should ask for permission to access it.

Also, a much better privacy control can be achieved if each plugin has a single very well-
defined purpose, and a complex task behaviour is constructed only through the composition of
such plugin stages. Such approach not only facilitates good software development practices but
also improves end user understanding because smartphone operating systems such as Android
provide ways (through application permissions declarations) that hint at what an application will
do internally. If a for example, a stage plugin that is meant to be only post-processing locally
some sensitive private information but the system has reported it to be also using the Internet
connectivity, then perhaps the user will not trust it.

3.1.4 The Smartphone Is Smart

A design strategy followed by the Medusa framework discussed in the literature review is giving the
least amount of meta information to the mobile client, having a stateless client, and maintaining
the client’s progress on the server. The server is the one which orchestrates the workflow. However,
this has significant negative implications on the overall system scalability. Such model puts a large
communication burden on the server because after each stage completion or crash, the mobile client
will need to update the server and ask for further steps to perform. This also creates a storage and
computational burden — the server needs to maintain the progress of every smartphone and has
to make any additional computational decisions for what the clients should do next. Finally, there
is a usability issue — the mobile client is dependent on the server for further work. This means
that no progress can be made while the client device is offline. This will slow down task progress,
and even limit the applicability of certain tasks (for example, taking a set of photos along a route
in the mountain where there might be no cellphone coverage). Given that limited connectivity is
an important characteristic of mobile devices, such server dependencies need to be brought to a
minimum. All of these issues will fast become significant problems if the system scales in number
of users which is its main goal, considering the purpose of obtaining data at crowd scale. The
solution to the above three issues proposed in this project is to take the load off the server — trust
that the mobile client is capable of complex work, build execution self-management in it, and let
it communicate with the server only when really necessary.

3.1.5 Performance & Scalability

The performance of the mobile device is one of the key challenges identified in the previous chapter.
Given the decentralized extensibility principle discussed earlier, the framework must ensure plugins
do not have negative impact on the user experience. Hence, the framework must put tight control
of the lifecycle of the plugins, and the way the interaction between the main application and the
plugins is performed. The stage plugins should run only as long as necessary and not any longer.
Furthermore, communication between the client and server, and between the framework and plugins
should be minimal in size and quantity, yet still giving control to the main application over the
plugins, and also allowing the plugin to provide accurate and up-to-date information of its work.

Performance and scalability should be kept in mind when building the server, too. The main
requirement is to be able to cope with large number of users and to handle data between web
services in an efficient manner.
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3.2 Data Model & Storage

At the center of the framework’s goals is the collection and processing of data as a fulfillment to
various user-specified tasks. This section discusses the modeling of the different types of data and
the design decision of how to store it given the way it will be used. This section discusses both the
client and the server aspects of the data model.

The data can be logically separated into two – meta information and the actual data. The meta
information is modeled as tasks. A Task holds any information describing the overall unit of work.
It is the highest entity in the hierarchy of the data model. It holds a collection of Stages, and
each stage encapsulates any needed parameters. The other type of data is the actual data which is
produced or consumed by a Stage, whether it is on the client or server. It is this actual data that
is of interest to the user specifying the Task (the tasker). The above distinction is needed as the
two kinds have different characteristics which affect their modeling and storage.

The data is produced by task participants on their mobile clients and then some representation
of it is sent to the server. However, the client devices will need the meta information in order to
produce the data. In Ra et al. [25], the Medusa framework relies only on sending the individual stage
details because the authors follow a ’dumb smartphone’ design principle, as described in §2.1.3.
In contrast, this project’s design decision of having smartphone clients self-manage themselves
whenever possible means that the clients will require additional information that describes the
entire task. This results in even larger overlap between the kind of meta information stored on the
server and on the client. However, there are still differences between what is stored on one and what
– on the other. It is important that the differences are identified for a few reasons. First, sending
unnecessary data to the client only increases the communication load and storage requirements.
While for today’s standard, a couple of extra kilobytes are insignificant, if there is a very large
number of tasks on the server (as is the case with Amazon Mechanical Turk) and the client queries
them all, then wasteful data sending and storing can quickly become noticeable, both for the client
and server. But even more importantly, the tasker may not wish to expose some information to
the task participants. For example, he may wish to hide what kind of analytics (which will be a
stage in the task execution flow, to be run on the server) are performed on the collected data, or
who else is participating in the task, or what kind of trust machine learning algorithms are used.

With these considerations in place, the meta information has been modeled as the class hierarchy
shown on Figure 3.1 where part of the model is shared between the client and the server, and while
the remainder is not.

Note that most of the attributes defined on that diagram, such as name, description and
flags relating to the status of the task or stage – finished and successful, are attributes
that deal mostly with providing the end user – the participant – with feedback information. Such
attributes can either be set as constants or set programatically by the concrete plugin imple-
mentations. The only crutial parameters in the data model are the intentString and the
parameters. The intentString is named as such because of an implementation detail to do
with Android. This attribute’s value is the name of the unique executable work unit of which the
Stage is the meta description of. The parameters attribute contains all the input parameters
required by the work unit (plugin) and provided by the tasker (not the plugin developer). The
parameters are interpreted by the plugin in its own manner. They can be completely different
between plugin types. It is therefore not possible to design in advance for all possible parameters
without also limiting future plugins. Instead, it is better to let the plugin declare what parameters
it needs and these be handled in a general way by the framework. This is discussed in more detail
in the server section (§3.6). Lastly, there are attributes that provide information about the input
data the stage requires. If these are non-standard, then they could be added to the parameters
Map and handled by the plugin.

The data produced by plugin stages is to be stored in files as a binary stream. This is suitable
because of the data’s heterogeneity and because it will be needed in its entirety, unlike the meta
information which is to be accessed regularly, and often only parts of it queried or modified. This
is the case for the produced data for both the server and the client. The meta information, on the
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Figure 3.1: Task Data Model

other hand, is structured and only textual which makes it suitable for storing in a database. As
seen in Figure 3.1, there is a chained has-a relationship between the classes in the order of Task,
Stage, Parameters and Context. As it will become clear from the later sections in this chapter,
the server uses the meta information only as a logically grouped unit – grouped per task. Such
usage is referred to as aggregate, and the data – aggregate data [29] . In such usage pattern,
a NoSQL database becomes a viable option as it offers horizontal server scalability. It is also
allows for easier and speedier development because it simplifies the data storage and access model,
compared to a relational database where the data would need to be normalized and spread across
several tables, after which join operations performed on every query that needs the aggregate
form — the entire Task. Since this project’s focus has been predominantly on the client, there
is no complex functionality that would need the advantages of a relational database (column-wise
operations and rich queries). With the addition of such requirements, a relational database will
gradually become a better option.

On the client however, the access patterns of this same meta information are different. Because
of the mobile devices’ small form-factor, there is limited space to display information. This means
that that complex information such as a Task object is displayed over several screens. Because of
the lifecycle of Android Activities (they can be disposed when no longer visible), and the design
goal of not impacting the smartphone’s usability, it is not suitable to share an entire object between
activities, or to hold such objects in memory only to access a particular single field. Furthermore,
some of the fields in the meta information will change on the client and the UI will need to
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immediately reflect this change. If separation of concerns and low coupling are to be maintained,
then the modifying components (which can be more than one) should not update the UI. Instead,
the UI should subscribe directly to the model, and the subscription should be only for the bits of
meta information that the UI displays. Lastly, the client relies on rich queries to operate — for
example, only activate tasks that the user is registered for, or get the outputs of particular stages.
With these considerations in place, a relational database is definitely better suited to store the
meta information on the client.

3.3 Task Workflow

The Task has a collection of Stage work units. More precisely, the collection is designed as an
ordered list. This forms a sequential workflow for the tasks — a task is complete once all the stages
in the list have been executed in the predetermined order. This approach is in line with the workflow
design of the Medusa [25] framework which defines connectors between stages to have only one
output end. Allowing only for sequential workflow does impose restrictions on the task flexibility.
However, there are a couple of factors that ameliorate this problem. First, each of the executable
Stages can be a complex composition of services and interactions with the user, all working
towards the common goal of the plugin stage. A stage could incorporate flows such as looping
(iterative progress updates through iterative interactions with the user) and concurrent processing.
For example, recording multiple sensors at the same time, or asking the user to provide labels for
several pictures in a row with other activities interleaved. Such composition is best managed by the
plugin itself. All the framework execution should do in these cases is to maintain the stage progress
when the plugin lifecycle has been (temporarily) ended, so that it can later be resumed from the
appropriate point, to control the plugin, and to provide the necessary functionality. Furthermore,
as it can be seen in the data model in Figure 3.1, each Stage can contain pointers to the data it
needs from other stages. In other words, the data flow is not sequentially pipelined but instead a
Stage can access (if permitted) any of the data items produced by earlier stages, similar to the
Medusa framework [25]. Since the framework mainly deals with producing and processing data, it
is this data flow flexibility that is more important. Accessing the output of any stage allows for
extra flexibility. For example, optional stages that post-process data while the original data is still
intact and preserved; this means that later it can be used by some other stage and task which can
improve data reusability between tasks. A distinction with Medusa is that any stage can produce
any number of outputs, rather than only one, or a collection of the same-type variables. This
enables a finer-grained possibilities for the stage plugins which can selectively get only some of the
data output – for example, filtering by MIME type because only some of the types are supported
by the plugin.

Together, the sequential control flow execution and the unidirectional data access provide sim-
plicity while still a good amount of flexibility as it will be shown for the plugins discussed in the
Evaluation Chapter §5. The simplicity is important from the point of view of the participant who
is to understand what the task requires to be done before signing up, and it is also useful from
a performance perspective given the limited mobile device resources — developing and running a
complex execution flow engine may not be appropriate.

Despite the above points, while the design decision is a viable one for the mobile clients which
are the main focus of this project, there can still be limitations for the kind of tasks that can be
ran on the server, and these could be avoided with a more flexible control flow. This issue could
be addressed by future work.

3.4 Framework Usage

Before going into the detailed design of the client and server, this section briefly describes the
envisioned usage of the overall system. The specifics of each of the steps involved will be described
in the appropriate sections.



3.5. CLIENT 33

The framework will offer a collection of already available plugins, able to solve common sub-
tasks. One way to use it is to contribute a new plugin to that collection by registering its required
and optional parameters for the new type of stage. The stage can be listed as part of the available
framework solutions that can be combined to specify a task.

Another, and the more common starting point of using the framework, will be the desire to
perform a new MCS task. The tasker will navigate to the task creation client provided by the
server, and define a task with parameters such as what stages to include, what is their order and
what parameter values they should be given, and how many participants should the system allow.
The new task will then be available to be viewed by anyone who has the mobile client application
installed and anyone can sign up to participate. If they do not have the needed stages installed,
the users will first need to do this which can be managed by the mobile client. The mobile client
will manage the task execution workflow; some steps are likely to generate data, while others —
process it or upload it. On the server, the management of the participants and data will happen.
Steps of the workflow that are on the server will also be executed. Ideally, the tasker will be able
to monitor to task progress.

3.5 Client

The client plays a significant role in the project since most executable stages will be run on the
mobile device. It is therefore essential that the principles discussed in the previous section be fol-
lowed. The mobile client is a smartphone application. Its main purpose is to provide means for the
user to participate in tasks and control their execution on the device, to show users relevant infor-
mation (such as progress and stage description), and to orchestrate third-party plugin applications
that are needed to accomplish a task. The orchestration is necessary to avoid data incorrectness,
interference with the phone’s usability, and for better performance.

The main application holds the core framework functionality which comprises of services and
infrastructure built on top of the smartphone’s operating system. These provide solutions to both
the main application and, through it, to the plugin stage applications. A key decision to the overall
framework design and implementation is to keep all the data generated by any of the plugins in
the main framework application and completely control the access to it. This is done for two
reasons. The first is derived from the principle of putting the user in control and respecting their
privacy. Given that the framework encourages third-party plugins, it is not possible to control
what the plugins do with the user data without restricting their functionality freedom (as does
Medusa, which does not allow plugins using the device’s Internet connectivity). Nevertheless, the
user’s privacy is of primary concern and there needs to be a way to monitor what is using the user
data and when but more importantly, allow or deny for the access to happen. Such monitored and
controlled access is only possible if the plugins can access the data only through the framework.
By default, no plugin should have access to any data, even to the one output by itself at some
earlier point for an earlier task. Permission to data should be granted only temporally and only for
a most-precise set of data. The power to grant such permission should be held only by the main
framework application, and through it — by the end user.

The second reason for this decision is to make the framework more flexible and efficient in the
handling of data between plugins. Given that data is at the center of each task’s purpose, such
handling is bound to always happen. If the data is held by and accessed through the framework,
then the access pattern becomes star-like with the framework at its center and the plugins at the
edges. This will make the data access standard and will allow for access to data (if permitted)
between any two stages.

The main application consists of several layers conceptually built on top of one another. The
overall architecture is presented in Figure 3.2. Modules that are part of higher layers are designed
to depend on the ones in lower layers. It is expected that modules in high layers are to change often
or that new modules are added. Low layers are more foundational and their modules are unlikely
to change.
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Figure 3.2: Client Architecture

The User Interface layer contains only visual representation meant for the user. It does not
contain any functionality other than what’s needed for interacting with lower layers and presenting
information to the user. The user interacts with the UI to see, for example, what the available
tasks are, view their descriptions and obtain information on the tasks’ progress.

The framework’s main funcitonality is in the layers beneath the UI layer. The Task Manager
is the service that orchestrates behind the scenes the entire task execution and acts as a mediator
between other components.

There are several modules meant for creating, accessing and modifying both meta informa-
tion and generated data. The data model used by the modules has been discussed separately in
§3.2. In terms of the modules’ purpose, they provide different levels of storage abstraction in or-
der to meet the various needs of the Task Manager, the UI, the Context Service, and the
Communicator. The different Data Access Objects(DAOs) are abstracted the highest; they
work on a Task, Stage, and Stage Parameter basis as specified in the data model in §3.2.
They are to be used when there’s a need to work with an entire entity such as a task or stage.
The DAOs are most needed by the Task Manager and Communicator. The Meta Content
Provider, on the other hand, is a relational database abstraction which allows for a more fine-
grained access to the above meta information. Such access is useful to the UI which has only limited
screen estate on which to display information. The DAOs use the Content Provider internally
and wrap around the provider’s relational interface to provide application-specific data access. The
Data Content Provider handles file storage. It is used by the Task Manager to create and
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access files in which any kind of stage-produced data is stored, and to also grant permissions to
other stage applications to access it.

The Server Communicator manages the entire communication with the server. It has knowl-
edge of the server’s endpoints and their API. The Communicator is encapsulates the knowledge
of how the data needs to be presented to the server and the form in which it is retrieved. The
Communicator transforms this representation back and forth using parsing and serialization and
deserialization techniques and then relies on the DAOs to update the client’s data model. Because
of this, no other module has any exposure to the server’s implementation (and even its existence).
All modules excluding the Communicator only work with the local data model. This encapsu-
lation allows for communication improvement techniques to take place such as data caching with
transparency to any of the other modules.

The Notification Service and Notification Receiver handle broadcast notifica-
tions that can originate either from the server or from a Context Service. These notifications
can then be presented visually to the user. Lastly, the Context Service is a background service
that follows the current context of the client and which of the registered tasks with their current
stages have contextual requirements that are made possible.

Some of the client’s modules need to be discussed in greater detail which is done in the following
sections.

3.5.1 Managing Stages

One of the problems discussed in the reviewed literature that is present with ad-hoc crowdsourcing
solutions is the interference such applications can have to one another and their compounded
impact on the user experience. Following the design principle of creating a framework solves this
problem because of the centralized control. In the designed system this is done through the Task
Manager. It is the single point in the system that orchestrates the entire control flow of multiple
tasks and gives permission for data flow to happen between the framework and a plugin. This
organization makes it easy to fulfill the design goal of putting the user in control — allow the
user to control the Task Manager and thus control the stages. The Task Manager is meant to
run as a background service, however, so the user actions in the UI are to be forwarded to it, not
directly applied. The module performs three main actions. They are all assigned to it because each
one of them affects its internal state which the module needs to maintain and hence having them
in altogether makes the design it more cohesive. The Task Manager facilitates signing up for
tasks by delegating work to the Server Communicator and adjusting its own state accordingly
once the server response is received. The module also handles resets of tasks and stages. The reset
is made as a step-wise process, working on the current stage in a task, and then going one step
back, and so on until the beginning of the task is reached. Resetting a stage involves not only
resetting the plugin process but also updating the data model, cleaning up any produced data, and
optionally notifying the server. The last and most important functionality of the Task Manager
is to interact with plugin stages — control their lifecycle and obtain status updates. The details
of the interaction are presented in the next section. However, in order to perform such action, the
Task Manager needs to keep track of several things in its internal state.

The module needs to maintain an up-to-date information of what stages the user is registered for
and which are currently running. The Task Manager must to do this for several reasons. Clearly,
such information is needed so that the manager can actively communicate in the background with
the running stages. Such information also puts additional security in place because any plugin that
is started will immediately report (discussed in the next section, too) its existence to the Task
Manager. If the manager has not allowed the execution of the plugin (which in turn means the
user has not allowed it either), then the manager has the option to kill the plugin process (as the
current system does) or to ignore it. Tracking the active stages allows the manager to maintain
the overall Task progress. Since it is the Task Manager that follows the workflow specified by
the task meta description, it needs to know what is the current step in the workflow, what is its
progress and if there is a next step. The module does not provide an interface which allows the
user, through the UI, or in any other way, to execute an arbitrary stage in the task’s workflow. This
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would be wrong as some stages will depend on the data produced by others and those may not have
executed yet. If arbitrary execution is allowed, this will lead to the participants providing corrupt
data, if any. Instead, what the Task Manager exposes is a functionality to begin or continue the
execution of a Task from where it last stopped. As discussed in §3.3, the control flow is linear
and hence the Task’s progress can be maintained by a simple pointer to the current executable
stage. This pointer is to be incremented once the current stage is finished and is successful. The
task is complete if there are no more stages to perform, and the last one was successful. In cases
where there have been failures, the user can rollback the overall Task progress through resetting
the stage’s progress.

Finally, the Task Manager needs to have the most recent information of the active stages in
order to manage their lifecycles. Such management is needed to ensure that when a plugin stage is
no longer needed to be running, it is fully shutdown and that way the smartphone’s performance
is maintained as well as possible. While the underlying operating system also performs process
management, the framework can be more aggressive since it has additional information about the
plugin stages and knows their intended purpose. Furthermore, a need for lifecycle management can
arise when the user starts a stage of a given type, performs some work, and then switches to another
task and starts its current stage which happens to be of the same type. Such interaction is likely to
happen often and hence is part of the framework’s goals to allow it. The Android implementation
presents some complications which are discussed in the Implementation chapter. Here, however, it
must be pointed out that in such cases, the Task Manager needs to ensure both instances of the
same plugin application are in a sound state which is a function of the task they are part of, the
input parameters, and the progress achieved so far. The soundness can be achieved by either by
relying on the plugin to manage the multiple stages, or by letting the framework do this and have
the plugin only focus on its job with a particular instance of parameters. The second option is
much more convenient for third-party developers and more appropriate given the wider view of the
tasks the framework has, compared to a plugin. Hence, it is the second approach that is chosen.

3.5.2 Extensible Stage App Library

By design, the Task Manager does not distinguish between different types of executable stages
in terms of how it interacts with them — the type is not of importance to the operation of the
manager, given its responsibilities discussed in the previous section. Each plugin application is
thought of as a separate from the framework, self-contained process. The process, however, should
not be independent but controlled by the framework. To this end, the manager communicates with
and orchestrates the stages through a pre-defined interprocess communication protocol (IPC) that
is part of the framework and is provided as a ready implemented solution to the third-party plugins.
This provision is done through a self-contained library that can be deployed in the plugin application
during development. The library is minimal — it hides all the complexity of interacting with the
framework application and only requires to implement a couple of straightforward functions, such
as reporting the stage’s progress as a fraction number. These are discussed in more detail at the
end of this section. In exchange to committing to the interface (and thus the protocol), the plugin
becomes available to the framework and hence useful to all its users.

As it can be seen from the client architecture diagram (Figure 3.2), all of the components of
a plugin application — any UI and any background services, are considered to be in the highest
layer of the framework’s architectre and hence expected to change often and be of various form.
These are the framework’s hot spots. But it is not them that the framework directly interacts with.
Instead, there is a single point through which this happens. All plugin components depend on this
single point to obtain and relay information from and to the framework, and are also controlled
through it. This point is the stage application.

The stage application is a singleton that holds the entire state that is relevant to the framework
— any information about the plugin’s progress, a collection of the received and parsed parameters,
any dynamically received input, and most importantly — it has an implementation of the IPC
protocol which the Task Manager also uses. The stage application is a singleton because from
the framework’s perspective each stage is thought of as a whole, a unit that has a single, well-
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defined purpose and the singleton is the logical entity that embeds all the functionality needed to
achieve this purpose. Concretely, this means that each and every one part of the plugin application
is actively working towards the fulfillment of this one goal; all of these components are children
of the stage application singleton in the plugin’s logical hierarchy. They should only exist as
long as the singleton exists, and should only work towards furthering its progress. Note that, as
shown on the Figure 3.2, the application singleton is shown to be part of the framework. This
is so because it is essential for the control and information exchange to happen according to the
well-defined communication protocol and therefore the implementation should be provided by the
framework. However, the information provision of the stage’s progress, how stage progress is
internally coordinated between the plugin’s components (for example, exposed global state or an
internal interface), and how some of the control orders are passed along to these components should
be left to the plugin developer.

The provided IPC protocol facilitates control and information exchange. Its implementation
comprises of several parts and the overall design is presented in Figure 3.3.
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Figure 3.3: Role of the provided library in the control and information exchange between the
framework and third-party stage applications

Each stage application has a message inbox which receives messages and handles them sequen-
tially – a Handler. The messages contain a minimal representation of the communication type
(constants defined in the protocol specification) and any additional data needed. The Handler
then dispatches calls to appropriate functions in the module to which it belongs to — Task
Manager or the stage application singleton. Similarly, to initiate communication, a messenger
handle is maintained to the other side and the messages are sent through it. In the case of the
Task Manager, such handle is needed for every active stage. This is achieved through the in-
ternal functionality (hidden from the third-party developer) of the provided plugin library. Upon
initialization of the stage singleton, the process will bind to the Task Manager and offer its own
communication handle. This approach has a few benefits. One is keeping track of the handles.
Another is that such binding acts as an immediate notification to the Task Manager that a plu-
gin stage has been started, and the manager can react accordingly — send a begin message once
the initialization is done, or kill it, if it has not been authorized by the manager. On the plugin
application side, the library provides an API to communicate progress or make requests (for storage
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or data) to the manager while hiding away all the details of the communication. The IPC protocol
and the functionality it offers has been summarized in Table 3.1.

Communication
Type

Initiator When Payload Init Payload reply
(N/A if no reply)

Status TM/Stage Occasional
timer/upon
Progress

None/Status
Data Structure

Status Data
Structure/None

Create TM TM starts a
Stage

Stage Param-
eters, Extra
Input

N/A

Bind Stage Initialization Stage Own Re-
ceiver

TM Own Re-
ceiver

Ready Stage Initialization
done

None N/A

Begin TM Stage is ready None N/A

File RQ Stage Need to store
data in a new file

number of files
and MIME
type(s)

Uri(s)

Data Access RQ Stage Need access to
data

task and stage
ids that pro-
duced the data

Uri(s)

Kill TM Stage done or
not allowed;new
stage same type
is to be started

None Status

Finished Stage Stage com-
plete and self
terminating

Status N/A

Table 3.1: IPC protocol between Task Manager (TM) and Stage applications

With the IPC protocol implementation in the library, the plugin application using it has access
to the framework and through it — access to data that has been produced by other tasks and stages,
given that the user grants access permission. In order to use the library, the plugin application needs
to implement the required interface which is minimal. Most of it deals with obtaining information
in a format that the framework can present to the user — for example, a textual and numeric
representation of the stage’s progress and status (running, finished, successful). There are only two
requirements that are more demanding development-wise — the plugin must parse the parameters
it has received, and it also needs to keep track of its produced data which knowledge is later to
be transferred to the Task Manager (note, only the URIs, not the data itself, are passed, since
the stage plugin never owns the data — it is only given permission to write it to the file storage).
However, both of these requirements are something quite necessary to do anyway, regardless if an
application with such specifications is to be written as an ad-hoc one or a plugin implementation
to this framework. Lastly, parsing the input parameters is ultimately controlled by the plugin
developer who, when registering the plugin with the server (discussed in the Server section – §3.6)
declares what kind of parameters are required for the functioning of the stage, and what can be
optionally supplied. This declaration is then imposed by the server when specifying new Tasks.

The precise interface implementation of the library is shown and explained in §4.2.1.

3.5.3 Notification Service

One of the design principles the project follows is trusting the smartphone client to self manage the
task execution. However, there are use cases where there will be a need for dynamic input from the
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server. For example, interleaving classification of machine learning algorithms with human input.
The Notification Service module shown in the client architecture diagram (Figure 3.2) is a
scalable solution to this need. The service is designed to be used for ‘push’ notifications. This is a
common communication pattern that comprises of the client registering itself to the server and when
something of interest happens on the server, the server notifies every client that has subscribed for
such events. Push notifications are suitable for the design goals of this project and are preferred
over its alternative, polling, for several reasons. One such is that the clients need to know about the
event as soon as possible to enable some of the use cases found in the literature, such as providing
further answers to subsequent queries of blind people [3]. However, such dynamic events do not
happen very often and are unevenly distributed, which makes it quite unfeasible for a resource-
limited device such as a smartphone to constantly poll the server for updates. Furthermore, polling
is not scalable, because a large number of such update requests will keep the server frequently busy
without any added benefit.

It is worth pointing out that the Notification Service is meant to work on a frame-
work level, not task. All server notifications are to happen through the same channel. The
Notification Receiver listens to the channel for notifications directed at the framework.
It then passes such to the Notification Service. The Notification Service verifies
the soundness of the notification, and handles it depending on its type. The notification is then
presented to the user in a standard for the framework way, with the only differentiating part being
the information shown in the presentation. This part is based on the Task and Stage to which
the notification refers to and is obtained from their meta description. Finally, it is then up to the
Task Manager to process the notification and to appropriately pass along the sent payload to
the correct process. The way it is processed by the manager is identical to which a user pressing
the start button in the UI — this is intentionally so because interacting with the notification is
intended to have precisely the same user–smartphone meaning as pressing the button. Reusing
the same functionality also makes for more streamlined Task Manager interface and internal
implementation.

The kind of notifications the Notification Service handles is starting a stage with new
input and canceling previous notifications before they have been interacted with (for when the
server no longer needs such work to be done).

3.5.4 Context Service

In addition to dynamic input from the server, the Notification Service can be leveraged
for an extra use. In its conceptual design, the module is meant to signify to the smartphone user
there has been a change in some state which affects one or more of the tasks to which the user has
signed up for. The will user in turn interact with the UI and consequently — the Task Manager.
This purpose makes the Notification Service suitable not only for handling dynamic server
input but also for reacting to changes of mobile context. As discussed in the literature review,
mobile context is crucial to obtaining more accurate data from the clients [16], [8]. The contextual
information is provided by the mobile operating system. It broadcasts context-related information
upon contextual changes such as the enabling of the wireless antenna, a GPS location update, or
a change in the user’s activity. Any application is able to receive and react to these messages.
However, just like the need to manage multiple tasks active at the same time, there is a need to
manage the mobile context centrally. Otherwise phone performance and usability will be heavily
influenced because every task for which the user has signed up for will need to have its current
stage plugin application running and listening for such events at any one time, not only during
the stage execution. Furthermore, it will require that the third-party developer implements this
functionality which should not be needed given that the possible combinations of mobile context are
not that many, and they are independent of the particular stage type. In other words, many stages
are likely to have similar, often overlapping, contextual requirements (including none, too). Such
overlap only makes the case for a single centralized context handling even stronger because there
notifications about the same contextual item need to be handled only once no matter how many
tasks are affected. Hence the designed Context Service in the framework. The Context
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Service provides a simple interface of verifying whether a Stage is within the right context,
which in turn can be used for deciding if it can be executed and also whether it can still continue to
execute. This is achieved through using the Stage’s meta description that contains the contextual
parameters (as shown in the data model in Figure 3.1). The other, and in fact main, purpose of the
Context Service is to listen to all system broadcasts about context that are currently relevant.
This relevancy is determined by combining all the contextual requirements of all the tasks that the
user is currently registered for. This the module maintains as an internal representation which is
actively updated upon task registration and progress.

Upon any system broadcast with relevant context, the Context Service verifies if any of the
tasks’ current stages have become applicable and interacts with the Notificaiton Service.
The Context Service creates a notification for the user to see, letting them know that a stage’s
execution is possible, using precisely the same interface that the server would use to create a
notification with the needed information.

From a end-user point of view, both dynamic input from the server and contextual updates,
signify an opportunity to participate in a Task. Pressing the notification should let them do
precisely that. Therefore, there is no need to for different kind of interaction once a notification has
been created. The internal handling from the UI and the Task Manager perspective is entirely
the same, regardless whether the user has pressed a Begin button, the server has sent a notification
containing new input, or the Context Service has created a notification to start a Task’s current
stage.

3.5.5 UI

The User Interface is intended to address a few precise goals. The UI needs to show the user
the most up-to-date information regarding the available tasks on the server, and also the current
progress of any tasks to which the user has signed up for. Such freshness of data is essential because
the framework will be managing several ongoing plugin stages in which the user is participating —
for example, recording sensors for one in the background while using the camera to capture video
for another. When displaying each of the task’s description to the user, any progress that they have
made and that has not been reflected on the UI will only confuse them and could lead to erroneous
data being produced or, more likely, their involvement to stop.

Such UI responsiveness is achieved by requiring that the data model, discussed in §3.2, is
updated immediately upon any progress. This means that the Task Manager uses the information
received from the third-party plugins to combine it with its own knowledge of the overall task
progress to update the status of the tasks. This is done through delegation to the data access
objects services. Then, it is for the different parts of the UI that are currently visible to subscribe
to parts of the data model (for the specific tasks and stages displayed) and listen for any notifications
about data changes upon which the data is reloaded.

3.6 Server

The framework’s mobile counterpart is a intended to be a cloud service — an always on, networked
server which provides its functionality over the Internet. The purpose of the server is to collect the
data produced by the mobile clients and organize it. The server also manages user registration and
participation in tasks which the server makes available to the users. Lastly, the server is meant to
allow the creation and distribution of tasks, and the execution of the parts of the tasks that are to
be run on the server, such as training a machine learning algorithm with user-obtained data.

3.6.1 RESTful web services

Following the design principle of building a framework, the server’s design is to be made extensible
and comprised of components with a single, well-defined purpose that can be flexibly used. Web
services are very suitable for such a goal as they are meant to be completely self-contained and they
provide external interfaces to be interacted with. Any user-facing functionality is to be achieved
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with a thin client that wraps around the necessary web services. Such design decouples the server’s
responsibilities into modules that can be individually modified without impact on the rest of the
system. Web services offer better opportunity for scaling and also make it easier to be orchestrated.

When designing the server architecture, a decision had to be made about the choice of kind of
web services to be used – RESTful or WS-* (SOAP) (briefly outlined in §2.4.2). The choice between
the two is a design, not an implementation one to be made; the decision sets a design style in place
which affects the overall server architecture and how its components are used. Simply put, WS-*
architecture would have less components but each of them will have more verbs (i.e., richer and more
complex API). The focus will be on the interface semantics and the complex stateful interaction
with the components. On the other hand, a functionally equivalent RESTful architecture will focus
on the data representation. It will have more services representing the different kinds of Resources
that need to be exposed and the available API on them will be limited to CRUD(Create, Read,
Update, Delete) operations because of the HTTP protocol (most often used with REST services)
which only allows four operations — GET, PUT, DELETE, and POST.

RESTful web services were deemed a better choice for the project’s purposes compared to WS-
* services for their simplicity, performance, and lightweight communication. A REST approach
guides a design where communication with the web service is stateless. Designing for stateless
communication forces building services that interact in one step. This is useful when dealing
with mobile devices because their limited and unreliable connectivity may cause inconsistency
problems. Furthermore, the framework’s functionality focuses on data handling much more than
on computation, and it only involves simple CRUD operations on data – for example, collect data via
the client application, perhaps process it, and then upload it to the server. On the server, the data
can be used to update the state of a machine learning algorithm. There are no critical parts that
require, for example, a 2-phase commit transaction of the data, or a complex interaction between
the client and the server. In such cases, SOAP web services would have been the better option.
For this framework, however, the interaction is a simple data transfer. If an operation fails, then it
can be safely redone (given its not a POST operation where additional internal functionality will
be needed) because of the idempotency of the GET, PUT and DELETE methods. The safety and
idempotency of these operators needs to be ensured by the designed web services. Lastly, stateless
communication improves the web service performance on the server side since, by definition, there is
no state to maintain. The sole purpose of the server becomes the to generate appropriate response
for each received request.

RESTful web services are quite suitable for mobile devices for two more reasons. One is that
the web service has the freedom to represent the data in a format that the developer chooses, which
means that bandwidth and resource requirements can be reduced with an appropriate choice. This
is in contrast to SOAP web services that enforce using the verbose and slow to parse (compared
to other solutions) XML. The other reason is that REST responses can be cached and hence the
communication between the client and server completely skipped. This is beneficial not only for
the mobile device but also for the server’s load. Overall, RESTful web services a more lightweight
and simpler to interact with, which benefits the mobile client.

3.6.2 Resources

The overall server architecture is presented in Figure 3.4. The server exposes several resources as a
RESTful API. With the exception of the Machine Learning and the Client Notification
resources, the resources deal with simple CRUD operations which follow the data model presented
on Figure 3.1. Each of them is backed up by a DAO which in turn either abstracts away a NoSQL
database or a filesystem storage.
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Figure 3.4: Server Architecture

The Meta Specifications is the resource representing the description of plugin stages.
This includes the required and optionally accepted parameters needed for the execution of the
described plugin. The resource also contains the unique name of the Android Intent action
that the framework application should use to invoke the plugin. The resource is to be used by
third-party developers when registering their new plugin. It is also to be used by the task creation
client through which new tasks are to be submitted. The client’s UI can be dynamically populated
depending on the stages the user selects to specify in the new task. The client can then locally
verify that the provided input parameters meet the plugins’ requirements. If the test passes, then
the representation of a Task resource is sent via POST to the Tasks resource.

The Tasks resource is a collection of children Task resources. It represents all the Generalized
Task meta specifications that have been input in the system. Upon receiving the POST request
from the task creation client, the Tasks resource also verifies the input after which it creates a full
representation of a Generalized Task that reflects the data model shown in §3.2 and stores it
using the Task DAO. One important part to note about Tasks resource and the Generalized
Task class that it represents is that when the mobile client asks for the available tasks, all the
Generalized Stages that the task contains that are not meant to be executed on the mobile
client will not be shown to the user. Instead, the stage will be replaced by a generic one which can
optionally block the user from progressing further in the task until notified by the server through a
notification in the background. This is done to allow for workflow in which the task requires that
the server finishes performing some work before the user carries on with their part of the task.

Participants represents all users and contains information of their involvement in tasks and
the ids of their devices which can be used to send notifications to.
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The Stages Data resource represents the data produced by a given stage. It organizes this
data per user which is useful for crowdsourced machine learning and also potentially for controlling
access to the data on a per user basis.

The Client Notification resource represents a web service able to send notifications to
all participants of a task who are at a specific stage in the task execution. The web service ensures
that a notification is sent to all of the tracked devices of a participant. The service leverages an
external service — Google’s Cloud Messaging. It does this by sending a POST request with the
data to be sent to participants, along with their device ids.

The design of the Machine Learning resource requires more attention because of what it
represents. Externally, the ML resource is another RESTful web service. What is represents,
however, is not a simple structure of data but a machine learning algorithm. The algorithm’s data
model can be seen on Figure 3.5. An algorithm training is initiated by executing a POST request
which contains the type (ML Box) of algorithm to be created, together with the URI of the Stage
Data resource which is to be used for training and cross validation. The details of how the data is
used by the ML Box to train the algorithm are of no concern to the framework, as long as the ML
Box provides an interface to be trained, given an URI, to classify a new data point, and to report
its status. These three actions are later used by the ML resource when generating responses. The
POST request returns the URL at which the newly-created ML resource can be accessed at. In the
meantime, the ML Box has begun training the algorithm in the background. In other words, the
POST request is asynchronous. This is on purpose, given the long training time requirements that
can be expected of a machine learning algorithm.

status
dataURI
datasetSize
testError
modelType
bestPrediction

ML Algorithm

label
certainty

ML Prediction

1..*1

Figure 3.5: Data model of the ML Resource.

Performing a GET request on the new URL will return the representation shown in the presented
data model. Note the attribute status. This signifies whether the algorithm has finished training,
or is still in the process. This can be used by the ML clients to check when they can begin using the
resource. Once done with the training, then it can be used for new data. This is achieved through
POST requests to the new URL which contain the new data point. The received representation as a
response is again the ML Algorithm object but both its bestPrediction and the collection of
ML Predicition are non-empty. ML Prediction is a simple two-attribute class representing
a label and the certainty with which the algorithm has classified the item to belong to the label.
That way, whoever is using the web service can decide whether the certainty is satisfactory. To this
end, the ML Algorithm’s attribute, testError, can also be used. It holds the error measure
obtained during the cross validation of the algorithm.

The presented server architecture is entirely comprised of web services that can function indepen-
dently. For the execution of more sophisticated tasks that include operations not only on the mobile
client but also on the server, such as interleaving machine learning and mobile crowdsourcing, a
module that interprets the task and orchestrates the entire execution is needed. However, because
the focus of the project has been on the client, this module has not been created. Nevertheless,
the simplistic nature of the RESTful web services and their modularity make it possible to have
an execution engine which orchestrates such execution. In other words, it is not required that this
module is part of the framework, given the web services’ accessibility and generality.



44 CHAPTER 3. DESIGN

3.7 Data Flow

With the client and server designs explained in the previous sections, here the overall framework
usage is briefly described. This is done with the help of Figure 3.6 which gives a lenient repre-
sentation of the expected data flow. The direction of the arrow signifies the direction of the data
transfer.

The framework is designed so that third-party developers build their plugin stages, and register
them with the server. A tasker interested in collecting data or training a machine learning algorithm,
or combining both, will then specify a general task. This task, along with others, is what potential
participants can browse through their mobile clients via interaction with the Tasks resource. When
the users sign up for a task, they can begin executing the mobile part of it on their clients, and
thus generating data during the various stages the task is comprised of. Some of the stages will be
to upload parts of the generated data to the server. At this point, the machine learning resource
can be activated by being given the URL to the stage data. The last step (seven) – training the
algorithm, sending notifications to the user, and generating more data, is repeated until the task
is completed.
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Chapter 4

Implementation

This chapter discusses the implementation choices that were made, some of the problems encoun-
tered in the process and how they were solved while building the system as designed in the previous
chapter. The system has been named Hive. When considering a choice between alternative imple-
mentation options (for example, libraries, development techniques, internal data structure repre-
sentations), the choice allowing to follow the project’s design principles the closest was deemed most
appropriate. For example, performance in the form of responsiveness and usability are essential for
the client; this consideration has strongly influenced the choices of a serialization library and the
UI and communication implementation. The difficulties that were encountered and choices that
needed to be made showcase the need for the existence of the framework this project has set out
to deliver because they are not straightforward to address and can be quite time-consuming.

The project has focused on solving the challenges present on the client side of the targeted
software. The client is meant to be a smartphone application acting as a framework to other
applications — stages, which are to be provided by the framework or by third-party developers,
and no distinction is to be made between the two. The Android operating system was chosen
for the client’s implementation. Section §2.4.1 gives more details on the relevant terminology and
behaviour. It was selected for its rich APIs and broad popularity which can make the framework’s
adoption easier. Most of all, however, it was chosen for its known flexibility and freedom, relative
to other mobile platforms, in allowing non-typical applications to be built — a framework app that
treats other third-party applications as controllable plugins is certainly such a case. Establishing
such control has been one of the key implementation challenges, even in Android. This is be-
cause the Android OS runs every application in a sandbox that completely isolates the application
process from other processes’ influence, and treats each application as an independent one. The
programming language implicitly selected with the choice of Android is Java.

The server is implemented to run REST web services backed up with a file and a NoSQL
database. Its implementation is in Java, its web services are offered via Java Servlet containsers
using Jetty and running on Google’s App Engine platform. Additionally, some amount of HTML
code and Javascript was written to build the task creation web client.

4.1 Main Application

The implemented application closely follows the architecture presented(§3.5) in the Design chap-
ter. Its classes have been grouped in packages that approximate the modules in the designed
architecture. The only missing part in the system is the Context Service which, due to time
limitations, was not implemented — there are DAO, data structures and interfaces put in place for
its support but there was insufficient time to tie everything together for a working service.

Interaction between the system’s modules happens through interfaces. Unlike normal Java
development, however, this is not done through having an object reference but instead through
messaging (Intents) between Components of the application. It is crucial that this difference is
well-understood and respected during development because it is within the core nature of how An-
droid functions and affects the smartphone’s performance and usability. Because it is the Android
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system that handles the lifecycle of an application and its components, not the running application,
it is not suitable to maintain such object references between components — otherwise, the system
will either break the references when it has cleaned the components up (and the application will
crash), or, if forced by the implementation, the system may never clean them up, even when they
are not used and the system needs to free up resources. This second option affects overall phone
performance and will have negative impact on the battery and usability. From the Android system
perspective, it can be viewed as a memory leak. This can be a common pitfall for novice Android
developers.

The minimum Android SDK version used is 15 (Android 4.0.3) which limits some of the potential
users with older phones but ensures the framework built can make use of more robust and optimized
APIs and techniques (such as HTTP response caching and Loaders).

4.1.1 User Interaction

The framework application provides the user with interface to view all available tasks on the server,
see their description, and participate. The UI comprises of two main screens that are built using
Android’s Activity and a combination of visual elements available from Android. Android’s
design guidelines were followed and the static UI was created in XML while anything dynamic is
done in code. The two main screens the user interacts with are presented on Figure 4.1. Note that
each of the lists, one showing the tasks, the other – the stages a task involves, are dynamically
loaded. The lists are directly linked to the underlying data model which, upon update of the precise
URI of the displayed data, will notify any listeners of the change. The UI will in turn reload the
data. This is done with the more complex to implement Android Loaders which are loading data
from a Content Provider and subscribe to data changes. This is all done asynchronously and
in the background. It is worth pointing out that the Loaders access only the Task and Stage
meta information that is to be displayed, not the entire objects, ensuring there are no wasteful data
loads and transfers. The choice of using Loaders in combination with the decision to implement
Content Providers which are to be used in the framework is essential for the design goal of
responsive and up-to-date UI.

Notice the refresh button in the Task Store Activity which works with the Communicator
module, and the three buttons in the View Task screen — these correspond to the three ac-
tions that the Task Manager performs and are later detailed. In likeness to the Task Store
Activity, another Activity can be made, reusing its functionality but showing only the tasks
the user has registered for and are still unfinished, or tasks contextually possible at the moment.
However, its functionality would be identical to the Task Store Activity — only the filtered
data would be different. Hence, it was not given high priority to implement.
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Figure 4.1: Task Store and View Task screens.

Before the user can sign up for and participate in any tasks, they need to register on the server
with an unique user id, needed for several purposes such as machine learning and data privacy. The
process also requires that the device itself is registered with the server (needed for notifications).
Both actions happen in the most convenient way to the user — the user id is the user’s Google
account which every Android device has (if there are more than one accounts, the user is prompted
to confirm which), and the device registration happens completely transparently to the user. This
information is then sent for the server whenever it is needed.

The View Task Activity guides the user with the task’s progress. As the user progresses,
each of the stages receives a textual and graphical representation of their status. This is shown on
Figure 4.2. The progress information is obtained from the stage plugin applications involved in the
task — it is part of the interface that each plugin needs to agree to. For example, Figure 4.2 shows
the progress of collecting sensor input for ten seconds from three sensors, capturing two images,
and then uploading the five files produced by these stages. Notice how the Upload Stage had
first failed. Such status is up to the stage plugin to decide. The user can simply retry the stage.

While the UI is not visually advanced, in order for it to work fluently and to be always fresh, a
lot of work happens behind the scenes. This work is presented in the following sections.
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Figure 4.2: Visual and Textual progress feedback.

4.1.2 Storage & Data Handling

Data is retrieved from the server and also communicated between the framework application and
the plugin stages. The data is complex and structured and hence it would be tedious and error-
prone development to transfer it flatly. Instead, it needs to be serialized and deserialized as a
structure. There are multiple ways to achieve this. One of the several reason for choosing RESTful
webservices over WS-* has been the freedom to chose data representation format. JSON is a much
more readable and compact format than XML which is the enforced format by WS-* services.
Furhermore, XML is computationally more expensive to parse, regardless if relying on the DOM
(Document Object Model), or SAX (Simple APIs for XML). Therefore, both to save bandwidth
and computation time, JSON is the preferred option. This is essential for mobile phones where
communication bandwidths are small and larger payloads result in the phone’s radio being in ON
state for longer which can have battery implications [13]. There is a plethora of high-performance
serialization/deserialization libraries for parsing JSON. Jackson [6] has been benchmarked [10] to
be one of the fastest (native Java and Android parsers included) library in many aspects. Jackson
also has a binary transfer module which can also be leveraged if further optimization is needed.
Considerations about serialization and transfer size were made to make certain there’s minimum
impact on the phone, given the expected frequent meta information transfers between client and
server and between the framework and the plugins.

The storage modules involve a few classes that operate on different abstraction levels, meeting
different needs. As per design, the meta information is to be stored in a relational database.
Android provides a working SQLite implementation which can be set up through SQL queries.
However, the database is not thread-safe and it is up to the developer to ensure this. This can
become a problem when multiple instances of a Content Resolver — one of Android’s ways of
accessing data, are instantiated from different places and the data is updates. This has been solved
by ensuring that the database instance on which the resolvers depend on, is the same. That way,
if there are any collisions, only one will succeed and the data will remain in a sound state.

To ensure there are not any discrepancies between the database definition through SQL, the
data model, and the Content Providers (which externally are seen as a relational database,
too), several contract classes were created with all the constants that describe the columns in each
table and the URI paths. The URIs are Android’s way to navigate all Content Providers
that are available on the device. Tables for Task, Stage, Stage Context were created for their
normalized forms.

Once created, the SQLite database instance is obtained by the Meta Content Provider.
When a Content Resolver from any application tries to access some data through providing a
URI, the Android system finds the Content Provider to which the data belongs through this
URI. It then verifies whether the accessing application has permission to access the content. The
Meta Content Provider does not give permission to any application to access it, including the
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plugin applications; it is visible only to the framework application. The way meta information is
transferred is through copying only the relevant Stage information in the Intent that is sent to
the plugin application.

All data changes happen through the Meta Content Provider. Furthermore, the provider
operates with URIs which allow subscribing listeners to them. Therefore, it was most suitable
to implement in the Meta Content Provider the functionality to notify entities which have
subscribed to the given URI. Upon an insert or update, the Meta Content Provider will check
for any changes to the database and if so, will send notifications. The URI has been made flexible
enough (in the Meta Content Provider handling) to address a single entity or a group of
entities in a given table, or across tables. It can be general enough to point to the entire table, too.

The DBDAO provides higher level abstraction. Rather than working with columns as the Meta
Content Provider does, it operates with Tasks, Stages, and Stage Contexts. Inter-
nally, it still uses the provider to perform updates but the DBDAO’s purpose is to offer convenience
methods for the Communicator and Task Manager.

In addition to holding the meta information, the framework application also owns all the data
produced by any of the plugin applications. This is done both for putting the user in control of
their data privacy and also for flexible data sharing between plugins that is not restricted by the
plugins’ lifetime nor their sequence order in the task. It is normally the case that data stored
by an application in its own Android-provided storage is accessible only to itself. If there is data
sharing to be done, then a Content Provider needs to be exported and other applications will
have access to the data it points to. However, this results in a very coarse data access – all or
nothing, which does not meet the framework’s goals. Instead of exporting such provider, Android’s
FileProvider has been used. It has been extended into a Data Content Provider with
additional convenience functionality. This provider grants read and/or write permissions on a per
URI basis which is ideal for the framework — as long as the URIs are constructed in such a way
that a URI signifies the output of a particular stage plugin for a particular task, then the data access
can be tightly controlled. The URIs are constructed only by the Data Content Provider and
have the form of file : //[framework constant]/[taskid]/[stageid]. The permissions granted can
be revoked at any time meaning that even the plugin application that created the data in the past
will not have access permissions unless it requests it and the user allows it. The interaction is
shown on Figure 4.3.

Additionally, the Data Content Provider handles requests for creating new empty files
which are to be used by a plugin stage, or for cleaning up a stage’s data output, if it is being reset.
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Figure 4.3: Sequence of a plugin performing storage access request.
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4.1.3 Task Manager & Interprocess Control

As per design, the Task Manager (TM) is at the center of the framework’s functionality. It is
implemented as an Android Service that runs in the background for as long as the framework
application is running. This is so because of its role as a mediator between all other modules.

The Task Manager internally keeps track of all the active (i.e., currently running, whether
on the foreground or background) tasks. While it is tasks that are being managed, it is worth
reminding that at any one point, due to the sequential control workflow design decision (§3.3),
there is only one stage running per task. It is stage plugins – separate applications – that the
TM controls. The TM does the tracking by keeping a Map with ExecutableTask, keyed by the
unique task id. An ExecutableTask is an extension of the Task data model presented in §3.2
that has the additional functionality of ‘knowing’ when the task is completed, being able to track
its current progress and hence, current stage, and generating the Intent that is needed to start
the current stage. The latter two functions is what makes the class an Android-dependent one,
unlike the plain Java object which is Task. The created Intent contains all the meta information
that is needed by a stage application — i.e., the information stored in the Stage model. Any
additional dynamic stage input from the server is also added. The information is serialized using
Jackson and stored in the Intent which is later to be used to invoke a new process — the plugin
application. There, the contents will be deserialized by the plugin library and made available to
the plugin’s components.

Additionally, the Task Manager needs to keep a Map of the type of active stages that are
currently running. A stage’s type refers to the application that is used to perform it. Android’s
model of invoking specific Activities (and as a consequence of that, its application instance)
is through using Intents containing well-defined unique strings. It is this unique string that is
used as a type indicator. The string is the action to which the primary component of the plugin
application will respond to. This is defined during the plugin registration on the server side. The
type information needs to be maintained for the case when another stage of the same type is started
by the user and the Task Manager needs to handle the transition. How and why this is done is
explained later in this section.

Lastly, the Task Manager keeps track of all the handles used to for interprocess communi-
cation with the active plugin stages. There is an outgoing handle for each plugin and its imple-
mentation is provided by Android — a Messenger. As described in §3.5.2, they are used to send
messages following the framework’s predefined protocol. The Task Manager makes it possible
for other components to bind to it, and upon this binding, the components offer their Messenger
handles. This is all done by the plugin library upon plugin initialization.

The way the Task Manager is interacted with from within the framework is through Intents
that contain sufficient information to perform one of its three main duties regarding tasks — start,
register(sign up), reset (curent stage). Intents make for a standard interface that can be used not
only by the UI but also by the Notification Service and hence, by the Context Service.
Each of the three actions involve a complex interaction with other application components, the
plugin applications as well as internal work for the manager. The interactions are detailed in the
following sequence diagrams.
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Figure 4.4: A user signs up for a task.

Signing up for a task involves interacting with the server. This is required because some taskers
might want to restrict their costs (whether monetary or server load) and limit the number of users
who sign up for a task. The sign up sequence involves ensuring the user has picked up a registration
name, and using the Communicator to register the user at the server providing the user details.
Centralizing the sign up for a task at the server ensures that the maximum number of users is
always respected. If this was done locally and only later verified with the server, then there could
have been discrepancies because of the delayed update. If the server allows the task sign up, then
the Communicator will use the Meta Content Provider to update the registration column
of the given task. This update will in turn trigger a notification to the UI because it is the same
URI the Communicator uses that was also used to look up the task data from the UI. Hence the
data will be reloaded. The UI can then adjust to the new values by making the ‘Begin’ button
available.
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Figure 4.5: The current progress is iteratively reset.

The reset action is an iterative process which works on two levels. The first is on Stage
progress — if the current stage of the task has achieved some progress, then this progress is reset.
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Any data that was generated by the stage plugin (for this particular task only!) is cleaned up, and
the stage’s status is reset. If it was the final stage and was complete (hence, the task was complete)
then the task’s status is also updated. If, on the other hand, there has been no progress at the
current stage, using reset works on a higher level — the overall Executable Task progress. In
this case, since an Executable Task keeps track of its current stage, and the workflow is linear,
a reset action backtracks one step, provided that a previous stage exists. In either case, the meta
information is updated in the storage which causes the UI again to be notified and updated to
reflect the changes. This is also the case for the other two actions. As shown on the diagram, the
Task Manager also relies on these callbacks but that reliance is not fully needed — since it is the
TM from which the action originates, it can internally update its own state in a more convenient
manner.
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Figure 4.6: Start/Resume a stage plugin.

The most complex of the three actions the TM performs is the one used the most often —
beginning or resuming a task. When the TM receives a begin Intent, the intent must contain the
stage id and task id to be started. The TM then verifies whether the required stage plugin has
been installed and notifies the user if not. It also checks whether the task is one the user has
registered for. Most importantly, however, the Task Manager checks whether the stage plugin in
question is already running, whether because the user was interacting with it up to now (but not
any longer), or whether because the plugin has not shut down itself and the Android OS has kept
it alive. The second option is possible when the plugin has not finished all the work needed from
its previous instance but has been ignored by the user. In such cases, the plugin developer may not
have handled the stage’s lifecycle properly. Regardless of the reason, if a plugin instance is already
running, the TM will need to ensure a smooth transition. The Task Manager will send the plugin
a command to save its progress and shutdown. The plugin will reply its compliance including the
latest status, after which it will ask the Android system to immediately kill its own process. After
receiving the reply from the plugin, the TM proceeds to start a new activity – the plugin’s Main
Activity which corresponds to the unique plugin type specified upon registering the plugin with
the server. Starting the new activity involves sending all the necessary data over to it. The plugin’s
Main Activity, by library requirement, must be an extension of Stage Activity, as shown
on Figure 4.8. The data in the intent the Main Activity receives is deserialized into a Stage
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and it is stored in the stage signleton – <Plugin>StageApp which extends the MCSStageApp
the library provides. Any plugin-specific work is done subsequently through the library interface
and is controlled by the MCSStageApp. During initialization, the MCSStageApp binds to the
Task Manager. More details on the plugin side of the interaction and why the TM needs to kill
the existing plugin instance is given in §4.2.1.

Once binded (and allowed to exist by the TM), the stage application receives a begin command
from the Task Manager which is then passed to the function begin() that the developer needs to
implement. From then on, the plugin will respond to status queries from the TM in the background
without the developer needing to do additional work other than to progress towards the stage’s
goal, whether via user interaction or through computation.

4.1.4 Notifications, Server Communication & Caching

Push notifications provide a scalable and energy efficient solution to dynamic interaction with the
client. The implementation involves registering in the framework app a Broadcast Receiver
which listens to a particular kind of messages. The implementation leverages Google Cloud Messag-
ing (GCM) service which comprises of a separate server maintaining a channel to the smartphone.
This channel is used by all of Google’s applications and other third-party applications, too, and
it the fastest and most energy efficient way [14] to send push notifications to Android devices. In
order to use GCM, the device needs to register with the framework server by providing its unique
device id — this is done through a periodic service which notifies the server, if needed. The peri-
odicity ensures the server has up to date information and allows the user to be notified across all
active devices. There is a limit of 4KB on the payload size of the notification but this is more than
enough for textual input, often sufficient for a JSON representation of structured data, too. If more
is needed (for example, for image classification) then the payload can be the URL from which the
image is to be fetches. The input type does not matter because it is meant for the specific needs
of the stage plugin which knows what to expect.

The work of the Broadcast Receiver is to listen for notifications originating from the frame-
work’s server, verify their soundness by checking the message contains the needed identification data
such as task id and stage id, and create a notification. It can also verify whether the message is
still relevant to the user — if the task does not have as current stage the stage referred to in the
message, then the notification is no longer needed. The notification is subsequently handled upon
pressing it by the Task Manager via an intent containing the task and stage ids, together with
the payload, and the stage plugin application is started as would have otherwise been started, with
the addition of the payload. As shown on Figure 4.7, the notification shows the user the precise
stage that will be started and its description but the notification itself is part of the framework,
not the stage plugin.

Figure 4.7: Framework notification indicating which is the relevant stage to be activated.

In addition to the push notifications, the client also directly communicates with the framework
server. This work is done by the Communicator class which is used to register the user and device,
to obtain task meta descriptions from the server, and to sign up for tasks. Through followings the
Android’s recommended way of handling Http connections [35] (i.e, not using Apache Http client
but instead using the Android specific client), the Communicator is able to set up transparent
response compression and fully cached HTTP responses which can completely eliminate the need
to communicate with the server when the information in the cache is still valid.
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4.2 Stage Plugin Applications

From the very beginning, the goal has been to create a framework application that allows third-
party plugins. This is implemented by providing a standalone, self-contained library that acts
as an intermediary between the framework and the plugin. This section discusses the provided
plugin library and the applications that were built to showcase the framework’s flexibility. The
varying applications that were built demonstrate that applications with similar usage patterns can
also be created. All of the below applications are completely separate applications from Android’s
point of view. They can be installed and uninstalled separately. There is no knowledge of the
framework that was required when building the applications other than what is demanded by the
plugin library.

The library implementation ensures that the stage developer does not need to think about
managing the state of different Stage specifications (instances) that the plugin will be executing
at different, possibly interleaved, points in time. The developer only needs to focus on building
an application that, when handed in a Stage with its parameters, is able to perform the plugin’s
purpose. The stage application should be thought of a processing unit that produces output for a
given user and data input combination. The other work is done by the framework.

4.2.1 Plugin Library & Plugin State

The library consists of four classes and is presented on Figure 4.8 where it is also shown how the
plugin application is meant to be used the library.

The MCSStageApp needs to be extended by the developer and declared in the Android
Manifest as the application’s Application implementation. The MCSStageApp provides func-
tionality to the plugin, such as requesting files to write to, data URIs to access, and also ways to let
the framework know of its own progress. The StageActivity should be extended by the plugin
Activity that will respond to the unique intent action which is specified upon plugin registration
on the server. Extending these two classes requires the implementation of the ExecutableStage
interface and the begin() method. These are the only requirements on the plugin developer re-
garding the library use. From then on, the developer can do anything with their application. Once
the plugin completes its work, it should call notifyOfFinish() and everything will be handled
by the library.
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initStageApp():void
selfTerminate():void
notifyOfFinish():void
sendStatus():void
sendStatusUponKill():void
requestNewFile(FileRequestor r, 
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successful(): boolean
initStageSpecific(Stage s, HashMap 
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Figure 4.8: Provided plugin library and its relation to third-party applications.

One of the implementation’s main challenges has been controlling the lifecycle of the stage
plugin. A stage plugin is comprised of the stage application singleton, provided by the framework,
together with its extended class and all of the stage application’s Android components (com-
prising the plugin’s actual functionality) which are developed by the third-party developer. The
library implementation of the singleton class, MCSStageApp, is itself is an extension of Android’s
Application class. As is the case for the framework, so does the Android system treat the
Application class as a singleton. There is only one instance of the class, and it is instantiated
whenever any of the application’s components is created. It is this realization that the Android
Application and the designed stage singleton are conceptually on the same level in an applica-
tion’s hierarchy and therefore the stage singleton should extend Application that helped solve
some of the implementation issues that were had in the beginning. Earlier approaches were to
try with using the starting Activity to hold the input parameters but this left out stages that
were meant to be only a background process without any user interaction. Also, cases where the
initiated from the framework Main Activity is destroyed if it was no longer used (in cases of a
complex multi-screen plugin, or a background-only plugin) meant that either the plugin developers
would need to have good knowledge of how to manage the Main Activity or that they should
do additional work with the received data. A Service could have been provided to provide the
IPC protocol implementation, but again the developer would need to know how to work with it,
and its lifecycle could not be guaranteed which was unacceptable. None of the options above is a
realistic option for a third-party developer. Lastly, it is important that the binding to the Task
Manager happens at the very beginning of the plugin’s process creation. This can be ensured only
if it is done through the Application.

Therefore, the choice to extend the Application was a very good decision but it did not
solve every problem. There was still the problem of interleaving the execution of stage plugins
of the same type. A stage plugin that is instantiated to perform work for one stage cannot be
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instantiated for another task without interfering with the first instance. This is because Android’s
Application object is treated (and rightly so) as a singleton by the system — if there are more
than one instances of the same component class, they will all share the same Application object.
Furthermore, having multiple instances of the same component could have complicated matters for
the plugin developer who would have then been burdened with ensuring all instances relevant to
the same stage input parameters are only interacting with one another but not with components
instantiated with other Stage parameters. So rather than complicating the singleton object with
complex tracking of multi-instance parameters, it was deemed more appropriate to treat the entire
plugin application, and each of its components, as singletons. This makes the plugin development
much more straightforward.

However, achieving such behaviour had one major complication. The Android system is ulti-
mately the entity that manages the applications’ lifecycles. It runs each application in a separate
sandbox and treats them as independent. On the other hand, the framework requires that while
the plugins are indeed to be separate processes, they should not be independent but instead con-
trolled by it. A conflict between the two can arise when some of the plugin’s components signifies
to the Android system that it should be restarted if it is killed. Most often a background Service
would do this. In such case, the Android system will normally oblige and restart the component.
In the process of doing this, the plugin Application singleton will also be instantiated by the
Android system if it did not exist. However, the plugin application is useless without the input
provided by the Task Manager, i.e. without being started by the TM. By design, the plugin and
all of its components are not meant to do anything else other than perform work for the framework
and hence should not exist if not needed by the framework. What such useless existence achieves,
however, is to prevent a subsequent ‘clean slate’ instantiation of the plugin with proper parameters
received from the Task Manager. This happens because of Android’s internal way of starting
new Activities — if the Application singleton already exists, then there is no need to re-create
it, so none of the callbacks that are crucial to the library’s control over the plugin will get called.
Meanwhile, the singleton will continue to be in an invalid state and the plugin will not be able
to operate, the Task Manager will not be able to control it (because the callbacks were not ex-
ecuted), thus resulting in a seemingly broken application. Therefore, it is crucial to prevent the
Android system from maintaining the Application singleton alive for any longer than the Task
Manager needs it to be. However, it was not known how to prevent the system from doing this
and so the next best option was chosen — to ensure that, if the Android system does instantiate
the singleton, then it immediately lets the Task Manager know of its existence. The TM will then
check whether the plugin was authorized by the user through the Task Manager or not. If it is
not meant to be active anymore, then the TM will send a kill command, which the plugin singleton
will follow and thus ensuring the entire plugin process does not exist. This has been verified in
several ways and has been shown to work.

Such additional work would have not been needed if the plugins were to be developed by
developers who knew that they should end the plugin’s lifecycle immediately after getting the work
done, and that there should be no lingering components keeping the singleton alive. However, such
a requirement is unrealistic for third-party developers who may allow this to happen for different
reasons but most likely it will be unintentionally. This is why the above measures were put into
the framework library to prevent this from happening and thus ensure a ‘clean slate’ for the plugin,
regardless of the developer’s actions.

Treating plugins and their components as singletons has the limitations that stages of the same
type can only execute one at a time. However, this is not a significant problem, since, as it can be
observed, a user can interact only with one application at any given time. Plugins that perform only
background computation (such as processing data) are the only kind of plugins that can benefit
from parallel execution, although it is to be seen what is the likelihood of more than one instance
of such plugin is activated at the same time. Background plugins that deal with data production
such as sensing, on the other hand, should not be aimed to run in multiple instances for several
tasks. Instead it is the generated data that should be made available to all tasks which is in the
framework’s ultimate goals.
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Given the plugin library described, the plugin applications that were built using it are described
next. The goal when selecting what plugins to build was to make them widely useful and also to
make them different from one another to demonstrate possible use cases.

4.2.2 Sensor Sensing

The MCSSensorCapture plugin application collects data from all the sensors specified in An-
droid’s Sensor class (such as gyroscope, accelerometer, barometer, light sensor). It requires as
input parameters the Android constants that are used to denote sensor types. It also requires
the frequency with which each sensor type is to be updated (an Android constant, too) and also,
how often (in milliseconds) should its value be recorded, and for how long (seconds) should there
be a continuous recording. These are all specified upon task creation through the web interface
at /create task server resource. So is the case with all the parameters for the other plugins
discussed next.

Figure 4.9: Actionable notification of an ongoing sensor collection.

The plugin requests one file per sensor from the framework with the provided file request API.
It is there that the readings are stored and later can be used by other stages. It has an optional
UI Activity that displays the collected data. The UI also allows to start and stop collection
but this can also be done through the Notification shown to the user as shown on Figure 4.9. The
MCSSensorCapture showcases the framework’s ability to support plugins that request files to
write to and run in the background while having a UI with which the background process is tied
with, and a foreground running notification also controlling the background service.

4.2.3 Data Upload

The MSCUploadData plugin stage has the purpose of taking the produced data from any other
stage and uploading it to the framework’s server. The ids of the stages is the required input for
the plugin. The plugin also allows to specify an alternative URL to which to perform the upload.
The URL must point to a service supporting a multiform POST HTTP request. This is used
because the plugin does not know in advance how many output files there are, nor their MIME
type — these are established dynamically which provides the flexibility of being able to upload any
number of files of any kind. The POST is done over a secure connection and also contains the user
information which helps protect their privacy since the data stored on the server is grouped per
user. The only permission that the plugin uses is the Internet. It does not even require access to
storage. These permissions are visible to the user and make it clear what the plugin does. It is
such tight, well-defined purpose that is intended for the framework’s plugins. A user can see the
description of the plugin and decide if its functionality matches the permissions the application
requires.

The plugin runs entirely in the background, only showing a notification of its progress to the
user. It is this same progress that is also reported to the main application upon changes, and hence,
can be monitored from the framework’s application, too.

4.2.4 Text Labeling

The MCSClassifyText plugin has the purpose to leverage the user for text classification. The
user is asked to provide one of several labels which are specified upon task creation. The other
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input parameter for the stage is how many such classifications should an individual user perform
before the task is complete. It’s main screen is shown on Figure 4.10.

Figure 4.10: Classify text received from the server through a notification.

The differentiating part of this stage application is that it relies solely on dynamic input through
server notifications. This makes it much more flexible and it serves as an example of how a mobile
crowdsourced solution could be combined with a machine learning algorithm on the server — such
notifications can be sent to the user when the algorithm has low certainty; it could be later canceled
through the same server API to avoid the user doing work that is no longer required (and furthering
their progress). In an analogous way, instead of labeling text, the server can send an image URL
which is to be downloaded and shown to the user. This can be used, for example, for the dynamic
and interactive assistance for blind people in a similar way to Bigham et al. [3].

The stage’s output are all the labels the user has provided. The labels could also additionally
be sent directly from the current stage upon the user’s confirmation of the label.

4.2.5 Camera Capture

The MCSCameraCapture stage is a plugin that can be tasked to either take pictures or videos,
and parameterized how many times to do this. The plugin interacts with another application —
the built-in camera, to capture photos, which are then saved to a file requested from the framework
(in the background with no notice to the user that he has used three, not one application). Once
captured, the plugin screen shows a preview of the image captured. Its output are the items the
user has captured.

While simple, this plugin showcases how a plugin still has the freedom to work with any other
applications over a few screens to achieve its stage goal.
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4.3 Server

As stated at the beginning of the project, the majority of work was focused on the mobile client.
The work on the server was mostly creating the necessary supporting infrastructure for the mobile
client and also laying the groundwork for future work for allowing more sophisticated tasks —
ones that allow mixing server execution with client execution, which will enable a more flexible
interleaving of machine learning and MCS.

Because the server implementation closely follows the design presented in §3.6 and since the
desired cloud service implementation did not involve any major implementation issues that have
required special adjustments, this section will not go into much detail about the server implemen-
tation. Only a few interesting points will be discussed. It is worth mentioning, however, that just
like on the mobile client, there was a plethora of small implementation problems that individually
do not pose a challenge but during the development would often arise. This in turn resulted in a
large amount of time being spent on such implementation issues. To quickly name a few — library
dependency and version incompatibilities, serialization conflicts, non supported libraries by Google
App Engine, and more. Such issues are not presented because of their individual insignificance but
have contributed to the author’s confidence that a framework such as Hive is indeed necessary;
less experienced developers would greatly benefit from not having to deal with the implementation
issues that the framework solves.

The use of Google App Engine (GAE) was decided as a convenient, out-of-the-box solution to
server horizontal scalability. GAE is a Platform-as-a-Service (PaaS) that provides infrastructure
and a layer of abstraction from the underlying hardware. It enables the developer to entirely focus
on the application without needing to deal with system administration such as sharding a database,
reliability, or creating new server instances to handle increased server load. In the context of this
project’s work, these considerations do not matter but if the framework is to be used broadly as
it is ultimately designed, then they will become important. Lastly, having the server be always
available and easily kept up-to-date with the current codebase simplified the development-testing-
development iteration workflow between the client and server.

Amazon Web Services (AWS) and Heroku were also considered. In retrospect, perhaps AWS
would have been a better choice in the long-term because it does not have as much restrictions
as GAE does (for example, the kind of databases and file storage one can use are restricted to
the ones provided by Google) but would have required more setup work and administrating the
infrastructure which would have been of little benefit for the project.

4.3.1 Resources

The server design section (§3.6) already gives a good overview of what each of the functional
RESTful resources does and in response to what kind of HTTP request. Therefore there is no for
these to be repeated here. Here a few implementation details are discussed.

The Tasks resource relies on the Jackson serialization library, just as the mobile client does.
It is the shared Task, Stage, and StageParams classes that are used but also the server-specific
extensions. The former are used only when sending the specifications to the mobile devices while
the latter — for the servers internal functionality.

The server’s web services are implemented using Jersey which is a JAX-RS reference imple-
mentation. Jersey provides a simplified approach to building RESTful web services. It allows the
developer to build normal Java classes which can then be converted into a Resource by providing
annotations. Such annotations are the URL path to which the Resource corresponds, the kind of
HTTP method to which the Java method responds to, and the parameters (URL path parameters,
or content ones) that are injected by the Jersey framework.

Not all Resources (as presented in §3.6) allow all four REST operations. Instead, only the ones
that have been needed are implemented. For example, some resources either required a PUT or a
POST but not both. Nevertheless, each of the Resources has a safe and idempotent implementation
of the GET operation allowing the sound usage of caching.
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4.3.2 Storage

The data mode described in §3.2 discussed the simple role that the server comes when handling
the data. In its current design, it only performs CRUD operations on it, and most importantly, it
handles the data by logical entities — whether it is the meta task description or the actually pro-
duced data, and hence the decision to use a NoSQL database. In GAE, Datastore is the NoSQL
solution used for any non-binary storage such as meta information about tasks and participants.
On the other hand, Blobstore is used for storing the data produced by stages; it is the equivalent
of a file system in GAE.

The BlobDAO wraps around the Blobstore to provide access to a stage data on a per user
basis, which is then used by the Stage Data resource to serve the data to the same user upon
request, or to get all the data from all users which is something only accessible to the Machine
Learning resource.

The ParticipantDAO and TaskDAO both use the Datasore. Normally, the Datastore re-
quires to be accessed through the Java Data Object (JDO) or Java Persistence API (JPA) interface
implementations. However, these were deemed too low-level and over-accomplishing for the needs
of the server and hence a more abstract external library was used — Objectify. Objectify uses
annotations on POJO objects to persist them in a typed manner. Later, the persisted objects can
be queried by this same type (i.e. class). The ParticipantDAO is only a thin layer that enables
CRUD operations on a Participant. On the other hand, the TaskDAO performs plenty of error
checking by relying on the MetaSpecification resource, to ensure that any task stored in the
database is sound. Furthermore, the TaskDAO converts GeneralTasks — which are the server’s
representation of the task meta description, and are also meant to contain GeneralStages which
can run on the server, into their mobile client version. This involves ensuring that the mobile Task
contains only stages meant to execute on the mobile client. Any stages that are to run on the
server are replaced by the generic placeholder stage which can optionally block the task progress
until notified by the user.

4.3.3 Task Creation Client

The client is a web page built with a simple combination of HTML and Javascript. Despite its
simplicity, it is the essential final step that builds on top of a large number of parts of the framework
which enable the specification of a new task without the need to do any development work. Instead,
only a couple of parameters need to be specified. The UI is shown on Figure 4.11.
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Figure 4.11: Part of the dynamic web interface for task creation.

The UI is much more convenient and successful in guiding the tasker during the task creation
process, compared to the Medusa framework where the user needs to specify the task in XML. The
web client works as follows. Upon loading the static HTML, the web browser is also instructed
to perform a GET to the Meta Description resource, obtaining all the necessary and optional
parameters for each stage type, and also the overall task. The call is asynchronous. Once done,
the UI is updated to present the user with the available stages; the user can keep adding stages
to the new task, which on the UI creates an additional table with the needed parameters for that
particular stage type. Upon clicking the submit button, the parameters are locally checked against
the meta descriptions, and if everything is in order, then a POST request is sent to the Tasks
resource. Currently the local error checking is only about having filled the required parameters. If
there is to be type checking for each one, this would require a more detailed specification of the
parameters. The library used for handling the requests is jQuery.
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Chapter 5

Evaluation

This chapter discusses the framework resulted from the project’s work. Its evaluation is based on
the goals (§1.2) and challenges (§2.3) the project set out to address. The evaluation also contains
a qualitative comparison with the only other framework identified in §2.1.3 that has similar goals
as this project — Medusa [25]. Comparisons to the other framework, PRISM [5], are also made.
However, given the larger difference in goals, such comparisons may not always be possible.

During the development and the evaluation of the framework, its correctness was established
in various ways and use cases. Different tasks and stages were created, testing for edge cases. Such
cases were the interleaved concurrent execution of multiple tasks; the verification that stages of the
same type — background or UI related, do not interfere with one another when the user switches
between them; the affect of stage resets have on the stage’s workflow, data, and soundness; and
performing UI work for one task while another was active in the background making progress for
the other, to name a few test scenarios. During the tests, extensive use was made of the available
Android tools to inspect and debug the execution of the different components, log their behaviour,
and also track resource usage.

5.1 Simplified Task Creation

In order to fulfill the main goal of the project — removing the need to design and implement a
MCS system for a new task, the system must present a high-level way through which the task
workflow is to be specified. Medusa relies on defining a high-level language — the user has to
use XML and the predefined XML schema to specify the workflow of a task, the type of stages
and their parameters, and what the stage-action transitions should be. However, this solution still
requires expert knowledge — the specific syntax of XML and the requirement of how the stages
and connectors need to be declared is non-trivial and does require technical background. The user
needs to know the names of the executable stages and also precisely what are the parameters they
require which is error-prone and burdensome. On the other hand, the presented project — Hive,
provides a dynamic web UI (presented in §4.3.3) which wraps around the complexity of specifying
a new task correctly. The UI guides the user with the parameters they need to provide, unlike
Medusa. In Hive, the tasker is able to specify a new task with only writing the very minimal —
only the actual parameter values. In contrast, the Medusa framework requires three times the
amount of typing Hive does — in addition to the parameters themselves, the tasker also needs to
specify the parameter names — the opening and closing XML tags which are approximately of the
same size as the parameter value itself, and any additional XML tags. The Medusa authors report
task definitions averaging between 50 and 100 lines of code, compared to only 10-15 lines for Hive
of similar task size.

This difference between the two is expected, given the extra layer of encapsulation that the
project has; nevertheless it is important for the end user and precisely why should be implemented.
For both frameworks, the minimal amount of task specification might be all the work needed to
create a new MCS task without any implementation whatsoever. However, if parts of the task have
no equivalent plugins available, these will need to be developed, in addition to the task specification.

65
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Such development will be fully needed when building an ad-hoc application, too. The benefit of
the framework over ad-hoc application is in providing a solution to any of the parts of the task for
which there is a plugin.

Despite being more verbose than Hive and requiring technical knowledge, Medusa, too, is
deemed highly efficient, compared to the normal ad-hoc mobile crowdsourcing development process.
In the case of ad-hoc applications, there is no task specification part but only the actual application
implementation in the programming language of choice. These standalone implementations are
likely to measure in the thousands of lines of code; in fact, in their evaluation, Ra et al. [25]
report that Medusa is two orders of magnitude shorter than the compared corresponding standalone
application. Such a vast difference in the development work is the driving motivation for frameworks
like Hive and Medusa.

PRISM [5] is an interesting case. It too, like ad-hoc solutions, does not have an extra abstraction
for a task description; it only relies on the executable. However, in the very unlikely case where
the entire task is equivalent to something which already exists and it is setup with precisely the
parameters needed, then there is no development and no task specification to be done whatsoever.
Only the binary is to be supplied to the system which will distribute it to clients. In other words,
its the most succinct way possible. However, it is highly improbable for this to happen given that
PRISM is not designed for combining binaries to achieve a single task, unlike Medusa and Hive but
instead is meant to be a execution engine that can run any binary. PRISM relies that the taskers
will find ways to combine existing libraries on their own. This puts a much bigger technical burden
on the tasker, compared to Hive. Therefore, in the the realistic case, the PRISM users will need to
develop their own solution which in size will be of the same order as ad-hoc solutions.

Despite meeting one of the primary project goals, Hive’s task creation process can be improved
in one or more ways. First of all, the UI should provide a richer guidance to the user of the type
of the parameter they should provide — integer, a collection of integers, a string. Currently this
is not done but instead it is relied that this information is being inferred by the appropriately
named parameters and that the tasker has had some instruction of how to use the system. Such
additional information presentation requires that the underlying declarations of the plugins become
more explicit and provide type information about each parameter and possibly — a range of values.
However, this can make the plugin registration more cumbersome and hence needs to be addressed
in such a way that both the plugin developers, and the taskers benefit.

In addition, the UI should provide tools to edit tasks and track their progress, the number of
participants, and also provide access to the implemented notification service in a more convenient
way than the current (which is knowing the precise URL to which to send the payload). These are
mostly additions that deal with the presentation to the user, not the underlying server workings so
they should not pose a challenge but only require time to implement.

5.2 Generality

The four plugins that were provided (§4.2) can be combined in any permutation to form a task
of arbitrary number of stages. The plugins were selected and developed as such to showcase the
support Hive gives to plugins and to act as an example to new plugins. Each one of them performs
differently from a application behaviour point of view — one interacts with other applications,
another works completely in the background. The third plugin presents both a UI and a notification
through which to interact with a background service, while the forth relies on dynamic input from
the server to operate. These different aspects of theirs can be, of course, all leveraged in a single
plugin. What’s important is that at least one of these patterns will occur in almost any kind of stage
plugin which means that such plugins can be built in a similar fashion and the four plugins. There
is no restriction on the kind of APIs that can be used — a plugin has the full power of a standard
Android application. This means that any of the data post-processing approaches discussed in
the literature review can be implemented as plugins; these are important for more complex task
workflows.
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Given the freedom on the plugin level, what is left to consider is the flexibility of specifying
tasks. Hive is slightly less flexible than Medusa in terms of the kind of tasks that can be specified;
this is due to the sequential workflow that is only supported by the framework while Medusa also
allows a fork-join construct. For example, it will not be possible to specify and execute tasks
that concurrently run stages on the client and also on the server, or run concurrently more than
one plugin on the client. The second issue, as as pointed out in the workflow section (§3.3), is
not significant and can be easily circumvented by creating a plugin which internally achieves the
concurrency. Nevertheless, it may involve some functionality duplication. However, when it comes
to concurrent client and server stage execution, this is indeed a limitation. Similar to Hive, Medusa
does not support such a task, either. In fact, Medusa’s goal is the execution of stages on the client;
there is no design involved for the server to perform any work specified by the task. In contrast,
this project has presented a very modular server design that has independent components with
precise and simple external APIs (REST). The server is implemented to allow the orchestration of
the components through these APIs. What is currently lacking is the engine itself but it may not
even be needed to be part of the framework, given the simple APIs. For example YAML or JOpera
could be used to orchestrate the RESTful web services on the server externally.

In principle, PRISM should be able to achieve what Medusa and Hive cannot — concurrent
client and server workflow, given the complete binary freedom but it must be stressed that it is up
for the task requestor, not the framework, to create such workflow. PRISM itself does not control
it; it is the task binary should contain the execution control. Such design strongly conflicts with
the project’s goal of non-programmatic task creation and code reusability.

Given the use cases of MCS found in the literature (§2.1.2), this paragraph discusses if they can
be implemented and how in the Hive framework.

VizWiz [3] provides an interactive dialogue between blind people and the crowd which offers
navigational and recognition assistance. The Hive realization of this use case can be a task repre-
senting a user needing assistance. Users who sign up for the task signify their readiness to help.
When a blind person takes a photo and uploads it to the server (which can be another task, and
both tasks be linked through a server stage plugin which leverages the notification service), a noti-
fication is sent to the participants who can then activate the ‘assistance’ plugin stage that is part of
the task and respond. Upon the pre-agreed number of assists or their own desire, the participants
can end their work and claim any rewards. The final stage, returning the collected crowd input to
the user is done through another notification, this time sent to the person requesting the help. The
notification can trigger a stage plugin meeting the special needs of VizWiz — guiding with sound
the blind user of an objects location or the other options discussed in [3].

To achieve the task, several plugins need to be used. The camera capture and upload plugins
are already available, while the text classification plugin can be used as a template for creating the
photo assistance plugin — instead of text, display an image to provide textual feedback of. It is
only the server stage plugin of tying together the output from the upload plugin (i.e., data stored
on the server) as an input to the follow up stage of using the server notification service that needs
to be implemented. It is fully supported, however. Legion [18], the crowd-curated software UI
control can be implemented in a very similar task structure the task to replicate VizWiz.

Mohan et al. [23] present a MCS application for detecting traffic conditions and pot holes along
the road. The data collection plugin itself is already available. What such a task should include is
additionally the server plugin stage that analyzes the data. Such stage can be based on the machine
learning service, presented in §3.6.2. However the service itself is not implemented so currently the
full application is not possible — only its data collection.

In summary, while the chosen workflow does provide some limitations, these can be worked
around to implement the MCS tasks discussed in the literature review. Tasks can be specified in a
high-level way with no implementation needed if there is an available plugin. The Hive framework
requires less technical knowledge and is less input from the tasker, compared to Medusa, which is
already successful at reducing the burden of creating new mobile crowdsourcing tasks. The mobile
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client supports any kind of processing plugins and its usability can fast grow, given the decentralized
extensibility discussed next. The key drawback of the Hive framework is that in its current form
does not provide execution of stages on the server. However, this is an implementation matter
only because on a design level it has been made possible, given the presented web services. The
resolution of this drawback is key to enabling server stages that rely on machine learning and hence
the long-term goal of interleaving ML with MCS.

5.3 Decentralized Extensibility

The delivered framework has been designed from the very beginning with third-party developers in
mind. Hive provides a library that guides the development and interaction between the framework
application and third-party plugins. This library is self-contained and can be deployed during the
development of any plugin; there is no need for the developer to have any access to the source
code of the main application nor to understand how it functions but only to know where in the
conceptual design does their plugin and the framework fit together. Also, it is up to the developer
how to distribute the plugin; as long as it is registered with the framework, it can be used in tasks.
These form a distinguishing feature which cannot be made possible without certain design decisions.
Such decisions are the creation of the plugin library, the management of the plugin lifecycle Hive
does, and also the full control over the user’s data. Such decentralized extensibility is not present
on Medusa where only the framework’s developers and anyone else who has full understanding of
the system and access to the framework’s entire source code can provide new plugins. It is one of
the main differences between the two frameworks.

The library requirements are straightforward. Each of the library’s public methods have well-
documented source code and error checking to ensure the library is understood by the developer.
There are nine methods that are absolutely necessary to be implemented by any plugin; there are an
additional two methods if the plugin needs to write data and access data produced by others. Seven
out of these eleven interface methods, however, are quite trivial. In all of the four plugins that were
developed, these seven methods (which perform actions such as returning information about plugin
status and progress, and getting the plugin’s output URI) were all implemented by a maximum of
three lines of code but on most places, one line was sufficient. Even more, the implementations of
these seven methods between the different plugins were very similar if not identical — for example,
each of the stages presents the progress as the fraction of completed items over the total number
of required items.

This observation also suggests, however, that such functionality could have been handled by
the framework, given the commonality between the plugins. Yet, not every plugin might have the
same kind of progressing as the ones implemented. For example, there may be stages that have
no precise finish point but instead it is up to the user to decide when they would like to stop
and move on to the next stage. Such plugins will need to present the progress and handle their
status in a different way to the developed four plugins. Nevertheless, the ideal solution would have
been to decouple the plugin status and progress reporting from the rest of the library and present
the available options of reporting progress to the plugin developer — either through the plugin
library, or upon plugin registration with the cloud service. However, this is quite a simple issue,
and given the minimal development effort these methods need, perhaps the proposed change is an
overengineered one.

The remaining four functions that will usually be needed to be implemented are more involved.
Yet, these methods are a small part of what needs to be implemented for the overall functionality
of the plugin. For the four plugins developed for the framework — multiform HTTP upload,
capturing photos or video, capturing sensors, labeling dynamically provided text, all the library
implementations (that is the entire StageApp class implementation) are between 70 and 90 lines
of code. In fact, all these classes have only one method which is longer than 5 lines of code —
that is the initStageSpecific() method which receives the Stage description and any input
parameters from the framework application which are handled according to the plugin’s needs.
This method is on average 20 lines of code.
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The important thing to note is that many plugins are likely to have similar sort of library
implementation size. As the complexity of the actual work the plugin increases, the size of the part
conforming to the library interface will be more and more negligible in the overall development size
and time spent, at the added benefit of the plugin being reusable by anyone using the framework. As
an illustration, three out of four of the developed plugins have in total (StageApp implementation
included) of 300 LoC each while the sensor capture plugin has 600 lines of code.

A testimony to the simplicity of the plugin library requirements is the fact that the last two
plugins which were developed as part of the project — the text classification and stage upload
were developed fairly fast. Given the already gained Android experience during the project work,
it took the author only 3 days to develop both plugins. Granted, this would have taken more time
to someone who has not worked with the library. However, the development process would have
taken significantly longer if in addition to writing the core plugin functionality, the author had to
implement the following features as part of the 2 applications: a server with a web service to send
notifications leveraging GCM, a web service to receive multiform HTTP upload, a hosted storage for
the uploads, an SQL database on the mobile phone to track progress between application lifecycles
and different tasks, a server database tracking user sign ups and participation in the application,
and a way to access the uploaded data.

5.4 Data Privacy

The framework encourages the development of plugins that have a single purpose which makes it
easier for the end-user to understand the plugin’s capabilities. For example, the plugins cannot
write to the external storage (and thus potentially expose sensitive data to uncontrolled access from
any application) unless it declares this in its own Android manifest. The user can leverage this
information to decide whether to install the plugin or not, as it is done with any other application
on the Android Market. More importantly, however, is that Hive has total control over the private
data generated by any of the third-party plugins. Conversely, none of the plugins has any access
to it or a permission write to the framework’s private storage unless the user allows it when asked
by the Task Manager. Through the TM, the user has complete control over their data which is
at the very core of their privacy.

To a similar conclusion have reached the Medusa authors who perform static code analysis to
detect any stages which access the Internet or the file storage in which case these stages are rejected.
In this way they are able to ensure that the user’s data stays on the mobile device and is never
moved from Medusa’s application. However, their approach also means restricting that no plugin
can access the Internet which affects the kind of tasks the framework supports.

However, Medusa is less obtrusive to the user than Hive because Medusa will ask the user’s
consent only when uploading data to the server unlike Hive which does this upon any data access
which can be annoying to the user. Hence, Hive can be improved by providing a more sophisticated
control over the data. For example, remembering previous permissions over a period of time or
per task, and allowing the user to set preferences regarding their privacy would be really useful.
Fine-grained control over the device’s sensors would also be beneficial, not only for the user’s
privacy but also battery drain — for example, only allowing a subset of sensors to be active. Such
functionality is present in PRISM but not in Medusa. However, limiting sensors can clash with
task requirements, to there needs be a clear way to let the user know about the trade off between
participating in a task and their privacy settings. Lastly, as suggested by [8], data perturbation is
a post-processing way to make sensor data non-identifying. As shown in the previous section about
Generality, such type of plugins is certainly possible to create and use in the framework.

5.5 Performance

This section will briefly discuss the performance on the mobile client. The performance of the
server cloud service has not been investigated because of its lightweight purpose which makes the
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evaluation mostly an evaluation of the underlying infrastructure.

The Android Dalvik Debug Monitor Server (DDMS) tool was used when profiling the perfor-
mance of the application. It provides a holistic view of all the processes running on the mobile
device and allows to time and view the CPU use of each method executed in the system.

The aspects that were profiled were the device registration with the server, the notification
service, downloading the server’s available tasks, and the communication between the framework
application and the plugin. These were deemed to have the biggest impact on the user experience
and the application performance.

The device registration is a service that executes from time to time (whenever the underlying
GCM system channel that is being leveraged changes the id assigned to the device). The im-
plementation follows the recommended way [14] of checking when to update the server with the
device’s id. The device registration was profiled to awake and send the details to the server and
then completely close until the next time; it does not linger in the background. This process itself
takes on average 350ms which is roughly the request-response average latency for the server given
the minimal payload that is sent.

More interesting is its counterpart — the Notification Service. The entire time to process a
notification — from the moment it is received by the Android system to the moment the user is
shown the notification (which involves querying the database to obtain the stage’s details to include
in the notification), is always between 35 and 45 milliseconds. In conjunction with the framework’s
server average latency of 300 ms and assuming (and having observed in every test during devel-
opment) similar response and handling latency by Google’s GCM servers, the overall cumulative
time is still less than a second! In the author’s view, of all the performance measurements, both
for this report and Medusa’s, the notification delay has one of the biggest overall impacts on the
framework. The delay is not only a performance measure but a measure towards the framework’s
generality — the low notification delay acts as an enabler for tasks that require near to real time
responsiveness. For example, for MCS applications such as the the interactive help for the blind
[3], as shown in the literature review. Contrast this delay with Medusa’s delay which is reported
in the presented paper to be between 17 to 78 seconds. An application cannot be called interactive
with such a delay. The delay is because the authors rely on email-to-SMS gatewaying and AMT to
distribute the notifications and therefore such delay is to be expected. Even if Medusa is made to
reuse the same underlying Android channel as Hive is, it is still unlikely its notifications will reach
the 35-45ms latency on the mobile device as Hive does. This is due to the design choices made for
Medusa — the mobile client does not have the entire task description; instead, every stage is sent
via a notification only when its time has come. This, however, makes the notification much more
cumbersome — both in size and computation, compared to Hive’s. In Hive, the notification only
has two parts of information. The absolute minimal task identifying information — task and stage
ids, and the optional payload for dynamic input.

The next part of the system that is viewed to have a big impact on the system and hence profiled
is the Task Manager. Its main purpose is to act as a mediator, and through this mediation
— to perform plugin orchestration. Therefore, it is not the Task Manager alone that needs to
be profiled but its interactions with the plugins. The most frequent action the TM does is starting
stages. What was profiled is the time to prepare the data for a new stage, send it, and have the stage
bind to the Task Manager. On the test device — a Samsung Galaxy S3, it takes 200 ms for this
to happen. It takes the SensorCapture plugin, the most complex of the four provided, another
200-300ms to initialize itself, send a ready message to the TM, and receive a begin command. This
time involves plugin-specific initialization but also deserializing the received Stage description and
parameters (recall that the framework and plugin applications are separate processes and hence
any data exchange happens through messaging). The deserialization takes longer than compared
to the same action on the TM because it is done by a new Jackson object.

The TM, on the other hand, uses a Jackson object that is shared together with every other
element of the framework application. This was an implementation decision. It allows Jackson
to cache its internal workings which enables a great speedup. During the benchmarks performed,
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the fresh Jackson object would take close to 100ms to write a Task into to a JSON string while
after its first run, this time would be reduced to 3-4 milliseconds. It is similar with creating a Java
object from a JSON string, although it does take slightly longer than the former action because a
more complex object is created in the VM. Such a large difference in time between fresh and cached
serialization stresses the importance of having searched for a fast JSON serialization library such
as Jackson because other libraries may be less capable of such runtime amortization. A slowdown
could have been felt when there are multiple concurrent stages. As seen on Table 5.1, Jackson’s
efficiency also benefits the time to communicate with the server.

In addition to the begin action, the TM actively interacts with the plugins for status updates.
This is the most common interaction between the two sides which is why it was made by design
to be lightweight. The status exchange contains only primitive data types that need not require
serialization and deserialization. When profiled, it was found out that handling a status update
takes on average 25 ms, including the database update. The other types of messages, such as file
access request and file creation request take slightly less — 18-20ms. If there are many active
plugins, the updates can be completely parallelized per plugin as they do not affect one another.

Lastly, the performance of the client-server communication when retrieving the available tasks
is measured. This is directly visible to the user, unlike for example, the TM-plugin interactions,
which is why it is useful to optimize it. What was profiled was the time it takes to communicate
with the server, deserialize the received data, store it and display it to the user. Only the last part
is done on the main thread (i.e. UI thread) which affects the user’s perception of responsiveness.
The results are summarized in Table 5.1. The time displayed was averaged over 5 runs.

Method Initial Cached Response

send and receive GET 1050 450

JSON to Object 550 (cold start) 70

store tasks 75 12 (skipped)

load tasks to UI 60 0 ms (skipped)

Table 5.1: Refreshing 4 fully specified tasks from the server. Time is averaged over 5 trials, in msec

Recall that by following Android implementation guidelines [35], the mobile client was enabled
to rely on cached server responses. These can be seen in the table. As it can be seen, the cache
reduces in half the time to browse the four tasks that were set up on the server. As the number
of tasks grows, this benefit will grow even more even if only subsets of the available tasks are
retrieved. This is because the 450 ms of the Cached Response are only the wait time to receive a
‘nothing changed’ response from the server, i.e. response does not contain the task data. Finally,
the size of the data itself was measured. The JSON generated for the four tasks was 4.5 KB. On
the other hand, the XML representing the same tasks is 10.5KB. As discussed in previous chapters,
this difference matters, given the large-scale goals of a crowdsourcing framework.

In conclusion, the implementation choices — selecting Jackson, following Android principles for
building the notification and communication services, and having a lightweight library for control
over the plugins, have enabled the framework to achieve its functionality with minimum impact on
the user experience and the phone battery — the achieved fast running times of actions such as
status updates and serialization are the result of a low CPU needs. This in turn has an impact on
the battery. On the other and, IO bound actions such as the refresh from the server or receiving
notification, are important for the application’s perceived usability as they are directly observable
by the end user.

5.6 User Experience

The user experience comprises of the direct interaction with the application and the indirect impact
the framework application has on the mobile device. The indirect influence is directly linked to the



72 CHAPTER 5. EVALUATION

application’s performance which was already assessed. To add, only the Task Manager is active
during the entire lifespan on the framework application; however, it performs no work if there are
no plugins active and hence has minimal impact over the CPU.

As shown in the previous section, the application is fairly fast in its operations which allows for
fluent UI. During the various test scenarios that were described in the beginning of the chapter, the
UI was always kept up to date with progress information about all the tasks, no matter the screen
transitions that were tried. This showed the good decoupling that existed between the view and
model implementations in the application. The UI also allows viewing available tasks directly from
the application which is a better option, compared to Medusa where the user is asked to browse
and sign up for tasks through visiting AMT’s website using the browser. Medusa’s solution takes
much longer (loading additional HTML and images for the web page) than refreshing from the
server shown in the last section.

However, the user experience can be much improved. The UI should provide much richer
information about the stages and also about the current tasks that the user has signed up for.
Sifting tasks using various filters such as the type of stage plugins used, sensor usage, or current
contextual applicability will be quite beneficial.

5.7 Summary

The newly proposed framework meets its main goal of making it very easy for a non-expert to create
a new MCS task without requiring any development, or in the worst case, the development effort
is reduced. The evaluation has shown that the requirements such a goal sets were overall met.
In several key aspects, such as support for third-party developers, scalability, and task creation
guidance, Hive surpasses the only other framework that provides such functionality — Medusa.
However, there are aspects in which Medusa is better (such as task creation verification) and
additional shortcomings that should be addressed. The comparison between the two frameworks
is summarized in Table 5.2.
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Item Medusa Hive

Task Creation

Reuse plugins Yes Yes

No programming needed if
possible

Yes Yes

Error checking Yes(level unknown) Basic

Non-technical entry No Yes

Minimal Typing No Yes

Tracks task progress and other
tools

Unknown No

Generality

Fork-join construct Yes Only via plugin

Limited APIs for plugins Yes – no storage or Internet
use

No

Execute stage on server No Designed; groundwork imple-
mentation

Restricted by server connec-
tivity

Yes No

Postprocess data Yes Yes

Decentralized Extensibility

Extensible Yes Yes

Requires full core framework
understanding

Yes No

Requires access to framework
source code

Yes No

Provides plugin library
adapter

No Yes

Data Privacy

User in control Yes Yes

Plugins can write to disk No(static code analysis) Up to user

Plugins can use connectivity No(static code analysis) Yes

Control access to private data No Yes

Plugins have access to private
data by default

No Yes

Minimal attention needed
from user

Yes No

Performance

Real-time notifications No Yes

Client-Server Comm Approx. 1 second Sub-second

Scalable No(§2.1.3) Yes

Lightweight serialization No Yes

Communication Caching Unknown Yes

User Experience

UI always up-to-date Unknown Yes

Robust and responsive UI Unknown Yes

Integrated task browsing and
information viewing

No(visit AMT page) Yes

Table 5.2: Summarized comparison between Hive and Medusa according to the project’s goals.
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Chapter 6

Conclusion

6.1 Project Outcome

This project set out to ameliorate, completely or at least substantially, the need to design and
implement a mobile crowdsourcing system — something requiring both a server and a mobile ap-
plication, whenever a new way to leverage the crowd is thought of, or someone needs to simply
collect and process data from the crowd. The goal was motivated by the fact that often the devel-
opment of such a system consumes a lot of time and effort. The author of this report was convinced
of this first-hand while working on the presented framework — in addition to the discussed design
and implementation challenges, there were other smaller implementation issues that on their own
are still non-trivial to overcome but nevertheless not worthy of a mention due to their obvious
solution. However, when accumulated and combined with the larger challenges, these issues be-
come a major roadblock to realizing the system’s purpose and only add to the serious time and
development commitment needed to implement the entire system. Such effort feels unjustified if
the MCS system itself is not of much interest but is only seen as a prerequisite to the evaluation
of a MCS application, the training of a ML algorithm, or simply getting input of the crowd for
non-technical purposes.

As the evaluation has shown, the project’s main goal has been accomplished — a new MCS
system need not be implemented for the above purposes. The presented framework, Hive, is a
solution which can be leveraged for performing various MCS tasks with no or substantially reduced
development effort. It is comprised of a mobile client and a server, both of which provide common
functionality that can be reused for new MCS tasks, removing the need to deal with many design
and implementation issues. Some of these services are managing user participation, empowering
the user to control their data privacy, and the actual orchestration of task execution. Hive offers a
high-level way to declare the workflow of a task and requires an additional implementation only if
there is no plugin satisfying a given part of the task’s requirements. The new framework is much
more succinct in the task specification than Medusa which is already quite efficient when compared
with MCS ad-hoc solutions which are actual source code. Hive also requires less technical knowledge
than Medusa because it hides away the complexity of task representation; this makes it possible
for it to be used by non-technical people.

There are other aspects in which Hive stands out; such is its practical extensibility. When
Hive’s plugin collection is insufficient and new plugins are needed, they can be easily developed and
contributed to the framework. What makes Hive unique is its orientation towards third-party de-
velopers. This has been achieved by ensuring that developing for the framework is straightforward,
does not impose a large burden on the developer, and does not require knowledge of the frame-
work’s internal structure and implementation. The design of the plugin library is what makes this
possible. It acts as an adapter that hides away all the framework’s complexity and also performs
some ‘heavy-lifting’ work in the background, so that on the surface it is a simple API that can be
leveraged by the plugin to fit into the framework. The conformance to the library’s interface, as
suggested by the results obtained in the Evaluation chapter, comprises a small part of the overall
plugin implementation and it is unlikely to change in size, whether it is part of a simple plugin or
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a very complex one. No other solution in the literature has aimed to meet the goal of extensibil-
ity through such decentralized, third-party plugin support while still offering a non-expert way to
specify tasks by reusing existing functionality. The only other two MCS frameworks do one of the
two but not both — PRISM allows for any code execution but there is no solution reuse or, in fact,
any task specification, only implementation. Medusa, on the other hand, does not offer any help to
third-party developers — they must know the entire system in order to contribute a plugin to it.
Yet, decentralized extensibility is the most realistic and practical way to ensure the framework’s
growing generality and hence, its future use. The alternative — a centralized-only contribution, is
a bottleneck to the framework’s extensibility and speed of development.

As the Design and Implementation chapters have shown, making the framework ‘friendly’ to
third-party developers was not a trivial feature to achieve — an additional view had to be taken
on data privacy and how it can be safely shared between plugins, a working implementation for a
non-typical Android application — one controlling others which are not implemented by the same
developer, had to be built, and performance and interference between plugins of the same type had
to considered. The resulting framework application is able to exert total control over the plugins’
lifecycles, to orchestrate them for its own purposes (task execution), and ensure restricted access to
private data, while at the same time not limiting their functional freedom nor the flexibility with
which the plugins can be combined and their output data — used. In the context of the present
popular smartphone operating systems and to the best of the author’s knowledge, such solution
has not been presented before. Its design and functionality is not specific to the subject of MCS
and therefore can be adapted to other contexts and projects which require a mobile application
behaving like a framework and necessitating similar relationship with third-party plugins.

Finally, Hive solves some of the challenges unique for MCS which means that instead of such
solutions missing from an ad-hoc MCS application, as it can often happen, they are offered to
Hive’s users as a ready implementation. The framework has a strong focus on preserving the user’s
privacy. Furthermore, as shown in the performance section of the Evaluation chapter, the mobile
client is a robust and fast application. Combined with the design choices about the server, and
also the decided separation between the client’s and the server’s responsibilities such as the mobile
clients self-managing the task execution and the server not needing to track the entire state of each
participant for each task, these characteristics collectively render Hive as a more scalable solution
than Medusa.

Nevertheless, not all of the project’s goals and requirements were fully completed. In addition,
this project can act as the starting point for a few future projects. These are discussed next.

6.2 Future Work

The Evaluation chapter has pointed to some of the unfinished implementation work and improve-
ments which can be made to increase the usefulness and capabilities of the presented framework.
For example, there is a need for a more sophisticated guidance of the task creation process —
the user should not have to infer the type (integer, list, and so on) of the parameters from their
names. These should be part of the framework and error checking performed during task entry.
Furthermore, the tasker should be presented with a set tools to view information about the ongoing
tasks they have specified, and the framework’s collection of plugins should be expanded with new
plugins that solve additional common problems. Such additions can be, for example, classifying
images, performing local analytics, or pointing locations of specific interest on a map. Enhancing
the mobile client’s capabilities will be quite useful, too.

Also, it will be much beneficial to the mobile user and it will lead to improved task participation
if the users were provided with filtering functionality with which to sift through the available
tasks. Furthermore, the UI should present more comprehensive information about plugins, their
capabilities and the input parameters that they are set up with for the given task. Lastly, the
machine learning service needs to be completed. While the experiments undertaken with Weka
have led to some preliminary results showing that the implementation will certainly work, the
service is not fully completed and hence the framework currently cannot support tasks which can
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involve the training and usage of a ML algorithm.

However, these are additions are mostly implementation-related enhancements and their main
requirement is the time needed to add them. There are, however, a few major directions that future
works could explore.

Of great importance is completing the mobile context service solution on the mobile client
which design was discussed in §3.5.4 but due to time constraints was not possible to make fully
operational. The Context Service will improve the user experience in finding suitable tasks
because when combined with the filters, the user will be able to look for tasks that are specifically
applicable to their current context. Such ‘niche’ tasks could be of higher reward, given that not
everyone will be able to participate which will increase the importance of each potential participant
to the tasker. In fact, the very existence of such tasks will be made possible — without a guarantee
than the data collected is from a specific location, time, activity, or some combination of these, it
is likely that the data produced will be very poor and no tasker would trust the framework with
a task with such requirements. Equally important, the context service will have a positive impact
on the accuracy of any data collected — the mobile context could be used as extra information
that will help to better assess the circumstances in which the data was collected and thus gauge
its trustworthiness.

The use of mobile context as a data attribute will be a stepping stone to addressing the second
main shortcoming of the framework — data reuse. While access and reuse to the framework’s data
is currently possible, it is only through explicit pointers between stages. This means that in order
to reuse the data, the tasker must know of the existence of the containing task and stage; this
makes the current data reuse possible only in a very limited scenarios. Of great benefit would be
the addition of an automatic service which is able to determine that the data produced from one
stage instance of one particular type can also be treated as the output from another stage instance
of the same type. An even more advanced solution would be the detection of data that can be
reused for another stage instance but of different type. This will require comparing not only the
initializing parameters of the stage instance as the first solution will, but also an analysis of the
type of sensors used to produce data as well as the function calls the plugin does — i.e., the use
of code analysis techniques. Such solutions can easily be a project on their own and hence it was
decided that it was not possible to fit them within this project’s time frame.

The server’s capabilities can also be the focus of future work. First of all, it should be experi-
mented and decided which option is better — having an external workflow execution engine such
as YAML, BPEL, or JOpera, or developing one internally, as it was the case for the mobile client.
This decision might result in some design choices — it is not expected that any of the existing
parts will change given their independence but there might be new parts added to the system that
will need to be integrated in a way that respects the framework’s goals. For example, an external
engine will require translating the task specification (or extending it) to the needs of the engine
while an internal one will mean designing a module with goals and considerations similar to the
mobile client’s Task Manager.

Once the choice of how to implement the execution module is done, the framework will be
able to support tasks that specify execution both on the server and client. This will enable the
integration of ML into MCS tasks.
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Plugin Implementations of Library
Requirements

Listing A.1: Upload Plugin’s implementation of the framework requirements

1 import com.dp.mcs.shared.bean.Stage;

public class UploadApp extends MCSStageApp {

public static f inal String STAGE_ID = "stage_ids";
6 public static f inal String ALTERNATIVE_URL = "alternative_url";

private static f inal String DEFAULT_URL = "https://mobilecrowdsrc.appspot.com/api/tasks/";

List<Uri> files;
ArrayList<Integer> stage_ids;

11

int filePtr;
boolean finished;
String url;
protected boolean successful;

16

String fileUploadName;

@Override
public String getProgress() {

21 return String.format("%d/%d", filePtr, files.size());
}

@Override
public f loat getProgressFloat() {

26 return (( f loat) filePtr)/files.size();
}

@Override
public boolean finished() {

31 return finished;
}

@Override
public boolean successful() {

36 return successful;
}

@Override
public void initStageSpecific(Stage s, HashMap<String, Object> params, String dyn_input) {

41 files = new ArrayList<Uri>();
stage_ids = new ArrayList<Integer>();

String[] stages = ((String)params.get(STAGE_ID)).split("\\s*,\\s*");
for(String str:stages){
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46 stage_ids.add(Integer.valueOf(str));
}
i f(params.containsKey(ALTERNATIVE_URL)

&& ((String) params.get(ALTERNATIVE_URL)).trim().length() > 0){
url = (String) params.get(ALTERNATIVE_URL);

51 } else {
url = DEFAULT_URL + String.format("%d/%d",

getUnderlyingStage().getTask_id(),
getUnderlyingStage().getStage_id());

}
56 fileUploadName = String.format("task%dUploadStage%dUser-%s",

getUnderlyingStage().getTask_id(),
getUnderlyingStage().getStage_id(),
getUserName());

}
61

@Override
public ArrayList<Uri> getOutput() {

return null;
}

66

@Override
public void reset() {}

@Override
71 public void aboutToSelfTerminate() {

}

public String getFileName() {
return fileUploadName;

76 }

}
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Listing A.2: Sensor Capture Plugin’s implementation of the framework requirements

public class SensorCaptureApp extends MCSStageApp {
2 public static f inal String TYPE_PARAM = "sensor_type(s)";

public static f inal String RATE_PARAM = "update_rate(s)";
public static f inal String RECORD_INTERVAL = "record_interval(msec)";
public static f inal String DURATION_PARAM = "duration(sec)";

7 boolean finished;

public ArrayList<Uri> output;

public ArrayList<Integer> sensor_types;
12 public ArrayList<Integer> sensor_rates;

long record_interval;
int duration;
int elapsed;

17 @Override
public String getProgress() {

return String.format("%d/%d", elapsed,duration);
}

22 @Override
public f loat getProgressFloat() {

return (( f loat) elapsed)/duration;
}

27 @Override
public boolean finished() {

return finished;
}

32 @Override
public boolean successful() {

return finished && elapsed >= duration;
}

37 @Override
public void initStageSpecific(Stage s, HashMap<String, Object> params, String dyn_input) {

duration = Integer.valueOf("" + params.get(DURATION_PARAM));
record_interval = Integer.valueOf("" + params.get(RECORD_INTERVAL));

42 String[] types = ((String)params.get(TYPE_PARAM)).split("\\s*,\\s*");
String[] rates = ((String)params.get(RATE_PARAM)).split("\\s*,\\s*");
i f(types.length != rates.length || types.length == 0){

throw new RuntimeException("Provided paramters were not valid");
}

47

elapsed = 0;
output = new ArrayList<Uri>();

sensor_types = new ArrayList<Integer>(rates.length);
52 sensor_rates = new ArrayList<Integer>(rates.length);

finished = fa lse;
for (int i = 0; i < rates.length; i++) {

sensor_types.add(Integer.valueOf(types[i]));
sensor_rates.add(Integer.valueOf(rates[i]));

57 }
}

@Override
public ArrayList<Uri> getOutput() {

62 return output;
}
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@Override
public void reset() {

67 elapsed = 0;
output = new ArrayList<Uri>();
finished = fa lse;

}

72 @Override
public void aboutToSelfTerminate() {
}

}



82 APPENDIX A. PLUGIN IMPLEMENTATIONS OF LIBRARY REQUIREMENTS

Listing A.3: Text Classification Plugin’s implementation of the framework requirements

public class ClassifyApp extends MCSStageApp{

public static f inal String COUNT_PARAM = "count";
public static f inal String LABELS_PARAM = "labels";

5

int progress;
int count;
String[] labels;
boolean finished;

10

String text;

ArrayList<Uri> output = new ArrayList<Uri>(1);//will need only 1

15

@Override
public String getProgress() {

return String.format("%d/%d", progress, count);
}

20

@Override
public f loat getProgressFloat() {

return (( f loat) progress)/count;
}

25

@Override
public boolean finished() {

return finished || progress == count;
}

30

@Override
public boolean successful() {

return progress >= count;
}

35

@Override
public void initStageSpecific(Stage s, HashMap<String, Object> params, String dyn_input) {

count = Integer.valueOf("" + params.get(COUNT_PARAM));
labels = ((String)params.get(LABELS_PARAM)).split("\\s*,\\s*");

40 //labels, unlike dynamic input, are static input, they are always the same, hence throw. There’s no need to save progress
i f(labels.length == 0){

throw new RuntimeException("Provided parameters were not valid");
}

45 progress = ((int) (s.getProgress() * count)); //resume progress
output = new ArrayList<Uri>();

text = dyn_input;
}

50

@Override
public ArrayList<Uri> getOutput() {

return output;
}

55

@Override
public void reset() {
}

60 @Override
public void aboutToSelfTerminate() {
}

}



83

Listing A.4: Camera Capture Plugin’s implementation of the framework requirements

1 import com.dp.mcs.shared.bean.Stage;

public class CameraCaptureApp extends MCSStageApp {
public static f inal int PICTURE_MODE = 1;
public static f inal int VIDEO_MODE = 2;

6

public static f inal int NO_LIMIT = -1;

public int mode;

11 public int pic_count;
public int video_duration;

public int count; //TODO fix for video
public int required_count;

16 public boolean finished;
public String description;
public String extention;

public ArrayList<Uri> output;
21

Intent getStageIntent() {
Intent i = new Intent(getCameraIntentString());
return i;

26 }

public boolean finished() {
return finished;

}
31

public boolean successful() {
return finished() && count >= required_count;

}

36 public ArrayList<Uri> getOutput() {
return output;

}

public void reset(){
41 finished = fa lse;

count = 0;
output = new ArrayList<Uri>();

}

46

public String getProgress() {
i f(required_count == NO_LIMIT)

return Integer.toString(count);
else

51 return String.format("%d/%d", count,required_count);
}

public f loat getProgressFloat() {
i f(required_count == NO_LIMIT)

56 return Math.abs(count);
else

return (( f loat)count)/required_count;
}

61 private String getCameraIntentString() {
i f(mode == PICTURE_MODE)

return MediaStore.ACTION_IMAGE_CAPTURE;
else



84 APPENDIX A. PLUGIN IMPLEMENTATIONS OF LIBRARY REQUIREMENTS

return MediaStore.ACTION_VIDEO_CAPTURE;
66 }

public void initStageSpecific(Stage s, HashMap<String,Object> params, String dyn_input){

int c = Integer.valueOf((String) params.get("count"));
71 String type;

this.mode = Integer.valueOf((String) params.get("mode"));
i f(mode == PICTURE_MODE){

pic_count = c;
video_duration = -1;

76 type = "picture(s)";
}
else i f (mode == VIDEO_MODE){

video_duration = c;
pic_count = -1;

81 type = "video(s)";
}
else

throw new RuntimeException("Unexpected camera mode");

86 this.required_count = c;
output = new ArrayList<Uri>();
count = 0;
description = String.format("Create %d %s", required_count, type);
extention = (mode == PICTURE_MODE)? ".jpg":".mp4";
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