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Abstract

In many medical imaging scenarios dynamic image sequences are acquired from patients during
interventions. In these image sequences there is often a significant amount of cardiac and/or
respiratory motion and this can make it difficult for the surgeon to navigate and perform intricate
procedures. One way to overcome this is through the use of virtual stabilisation. Obtaining good
stabilisation largely depends on the motion estimation which is more challenging when it comes to
dealing with deformable tissue.

In this project we investigate the post-processing stabilisation technique suggested by Grund-
mann et al. in [1] for its application on cardiac video sequences. We also explore a possible tech-
nique for stabilisation based on manifold learning. An extension of both techniques for predictive
stabilisation is also investigated.

The project found that applying 2D stabilisation techniques to deformable surfaces such as
that of the heart can lead to a considerable reduction of respiratory and cardiac motion even if the
surface deformation is non-linear, however, it is not without a few issues.
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Chapter 1

Introduction

This chapter introduces the motivation for this research project, its objectives and the work
that we have carried out. The chapter ends with an outline of the report structure.

1.1 Motivation

Many surgical procedures are being performed using minimally invasive techniques. Minimally
invasive surgery (MIS) or laparoscopic surgery is beneficial for patients as it results in fewer tissue
damage, minimal pain and faster recovery time. This type of modern surgery tends to rely more on
external imaging devices than it is the case with exploratory surgery. A small camera is typically
inserted through a small incision and a video feed is relayed back to the surgeon. Most of the
medical image sequences acquired from MIS tend to have a significant amount of cardiac and/or
respiratory motion which makes it more difficult and demanding to navigate and perform intricate
procedures even for the most skilled surgeon. Applying virtual video stabilisation to the acquired
video would be of major benefit to the surgeon.

The aim of video stabilisation is the removal of undesired motion. In computer vision, stabili-
sation can be achieved by 2D or 3D techniques. There has been a lot of work in regards to digital
stabilisation to remove shaking and high frequency jitter introduced by filming with a hand-held
camera. The 2D stabilisation algorithm [1] that we mainly investigate in this project was designed
to address such types of undesired motion. It is incorporated in the YouTube Video Editor as an
enhancement feature to provide users the possibility to remove the camera shake from their videos
yielding a more pleasing viewing experience.

Apart from digital video stabilisation there exists two other types of video stabilisation: Me-
chanical and optical. The former is done by physically moving the actual camera in accordance to
the detected motion from sensors (gyroscopes, accelerometers, ...), the latter typically involves a
moving lens that adjusts the path of the light before it reaches the digital sensor. Both of these
techniques require a specialised set-up.

Video stabilisation can typically achieve really good results when the underlying scene being
stabilised contains rigid objects which are necessary for obtaining a good global motion estimate
using a linear model. In medical image sequences however, the deformation of the cardiac surface
is non-rigid, which makes describing the global motion with a simple linear model a non-trivial
task. Nonetheless, considering that the camera is usually close to the filmed surface in the medical
imaging scenarios, then the motion, locally if not globally, could be approximated with a linear
model. The advantage of using 2D stabilisation techniques is that they offer more chances to be
integrated in existing MIS workflows that rely on monoscopic cameras and are also less computa-
tionally expensive than alternative 3D techniques.
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1.2 Aims

The aims of the project are as follows:

• To investigate the effectiveness of the post-processing 2D stabilisation algorithm [1] at re-
moving cardiac and respiratory motion typically present in cardiac video sequences obtained
during MIS.

• To investigate possible alternative means for 2D stabilisation for cardiac sequences.

• To investigate if it is possible to extend the post-processing stabilisation techniques into
predictive stabilisation.

1.3 Contributions

• An implementation of the L1 optimal paths stabilisation algorithm [1].

• An implementation of a modified specular highlight detection and in-painting algorithm based
on the algorithm in [2].

• An investigation and implementation of a 2D stabilisation technique based on manifold learn-
ing.

• A graphical user interface in MATLAB regrouping all the different elements into one location.

1.4 Report Structure

The report is structured as follows:

• Chapter 2 describes the related work.

• Chapter 3 describes some of the relevant background knowledge.

• Chapter 4 describes the theory behind the stabilisation algorithms and specular highlight
detection and in-painting.

• Chapter 5 describes the software implementation.

• Chapter 6 contains the first set of experiments and their results.

• Chapter 7 contains the second set of experiments and their results.

• Chapter 8 provides conclusions to the work done in this project and possible future work.

• Appendix provides information for running the code.
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Chapter 2

Related Work

This chapter goes through some of the related work in regards to video stabilisation and tracking
for deformable tissue.

2.1 Digital Video Stabilisation

Digital video stabilisation is the process of removing undesired motion with image processing
techniques. Different techniques have been suggested in the literature, but in essence the process
typically consists of the following main steps as identified in [3] and in [1]:

1. Estimating the original camera path from the video using a motion model that describes the
overall original motion.

2. Estimating a potentially smooth camera path from the estimated original camera path in the
form of motion model.

3. Synthesizing / Re-rending a new video from the smoothed path viewpoint.

Figure 2.1: Motion stabilisation overview

The end quality of the resulting video depends on the performance of each one of these steps.
Motion estimation has to be able to correctly identify the undesired motion that needs to be re-
moved in a scene that could typically consist of different moving objects and clutter.

In current approaches in 2D digital stabilisation, estimation of the camera path is usually done
by performing feature tracking between consecutive frames and then estimating the global mo-
tion in the scene between each frame in the form of a motion model represented by a geometric
transformation, which can consist of translation, scale, rotation, skew and perspective. This type
of motion estimation is used in [1] and [3]. The camera path would then be represented as a set
of consecutive geometric transformations between consecutive frames. Determining what feature
points tracked in the scene that go into estimating the geometric transformation is typically done
by applying a statistical algorithm such as the RANSAC algorithm [4] which aims to exclude points
that do not fit a given model. It can thus be used to determine tracked points that do not fit the
motion model especially those in the scene that belong to moving objects that do not form part of
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the rigid background.

For estimating the smooth camera path, Grundmann et al. propose in [1] the use of L1 optimal
camera paths which can be obtained by minimising the L1-norm of the first, second and third
order derivatives of the desired smooth camera path. They pose the problem as a constrained
linear optimisation program. They favour minimising the L1-norm as opposed to the L2-norm as
the latter tends to attempt to satisfy the properties on average (in a least squared sense) which
means that the end result will still have small non-zero motion in the direction of the shake, while
L1-norm will attempt to satisfy the properties exactly. Alternatively, Matsushita et al. [3] propose
to smooth the camera path by temporally smoothing local transformation between neighbouring
frames.

Estimating the camera path can also be done using 3D techniques such as Structure from Mo-
tion (SfM). 3D stabilisation is then achieved by attempting to simulate what the camera sees from
a 3D output path. This method is used by Liu et al. in [5] where they employ a SfM technique to
reconstruct the original camera motion, then an idealised camera motion such as a line, low-pass
filter or a parabola is fit to the original motion path. They also suggest the use of content preserving
warp to fake small viewpoint shifts when re-rendering, however the result is not physically accu-
rate but mostly plausible. A major limitation of this method is that SfM is more computationally
expensive than typical 2D video stabilisation.

In most of the methods for video stabilisation, when re-rendering, there is an inevitable decrease
in resolution due to the out of bounds regions that are introduced by the motion compensation.
As a result the video can be cropped and is either rescaled back up to the original video size or
simply re-rendered with the lower resolution. Methods using motion-in-painting are suggested in
[3] to overcome the loss of parts of the image but it is subject to undesirable artefacts. Usually,
depending on the frame rate and shutter speed of the camera, the stabilised video can exhibit
blurring in some frames so in [1] they suggest that a solution would be to introduce blur detec-
tion and preserving some of the original motion near the blurred frame at the cost of a smooth path.

2.2 Motion Estimation for Deformable Tissue

Most of the techniques mentioned above are intended with tackling video stabilisation for scenes
that have a rigid background which make it easier to get a good motion estimate. The techniques
will not usually work as expected when it comes to applying them to medical image sequences that
typically consist of non-rigid objects of deformable nature such as that exhibited by the deformation
of the cardiac surface. This is mainly due to the more challenging task of obtaining a good model
of the motion of the heart, since achieving good stabilisation requires good motion estimation.
There exists several techniques that have been proposed to attempt to deal with tracking non-
rigid deformable tissue. Before mentioning these techniques we first look at the issues typically
encountered in medical imaging scenarios that make tracking difficult.

2.2.1 Issues

The main challenges [6] that are commonly mentioned in existing research for applying vision
based techniques directly to medical image sequences are the following:

• The deformable nature of the tissue - the changing visual appearance due to tissue deformation
pose a big challenge for feature correspondence between two images. Correspondence is
usually an easier task when the features correspond to rigid objects.

• Poor illumination conditions and low contrast of the images.

• Noise introduced by the image acquisition system and image artefacts.
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• Specular reflections - the wet nature of the tissue gives rise to view dependent specular
reflections, which could result in them being detected as regions of interest by the feature
detector.

• Occlusions and dynamic scene changes due to the presence of medical instruments, bleeding
and smoke arising from cauterisation.

• The appearance of the tissue can vary from being homogeneous to textured, making it difficult
in some regions, especially homogeneous regions, to identify features.

2.2.2 Tracking

Motion estimation requires tracking of the position of landmark features / regions of interest
that are easy to identify between consecutive frames. The points can be tracked by either detecting
feature points on an image and then tracking where they go in the next image. The other method
is to detect features on both of the images then attempting to find the correct correspondence
between the points.

Associated to an image feature are what is called a feature descriptor which is a means to iden-
tify the characteristics of a given landmark. When dealing with deformable tissue more adapted
feature detectors are needed to ensure more robust tracking in the context of MIS. Some feature
descriptors can be made transformation invariant (such as scale and rotation) however there are
still problems due to the issues mentioned above. Mountney et al. did a study in [7] where they
evaluate the performance of different state-of-the-art computer vision feature descriptors for track-
ing deformable tissue. Yang et al. propose in [8] a probabilistic framework for tracking affine
invariant anisotropic regions under different visual appearances during MIS and its performance is
compared against that of other region detectors, such as the SIFT (DoG), the Harris-Affine Detec-
tor, the Hessian-Affine detector and the MSER (Maximally Stable Extremal Regions). A real-time
implementation is achieved using the computational power of graphics processing unit (GPU).

Tracking of deformable tissue can also be done by the use of stereo techniques which can yield
a more robust tracking and reconstruction, several approaches are suggested in the literature. Fea-
ture based motion tracking of deformable tissue using a combination of two feature detectors is
described in [9]. 3D tracking is used in [10] to reconstruct the cardiac surface deformation which
is then used to render an augmented reality stabilised view. An algorithm for 3D tracking of the
beating heart using a Thin-Plate Splines parametric model is proposed in [11]. Other techniques
for tracking the deformation of the heart by Magnetic Resonance imaging tagging have also been
proposed [12].

2.3 Conclusion

A limitation of 3D stabilisation techniques is that they are more computationally expensive.
Although non-linear models also seem necessary to model accurately the soft-tissue deformation,
work such as in [13] have showed that it is possible to locally model the deformation with a
linear model. Also previous work [14] that aimed at testing robust real-time feature tracking
on the beating heart report that the combination of speeded-up robust features (SURF) and the
differential tracking algorithm Lucas-Kanade gave good performance in terms of real-time tracking.
In this project we make use of these two finding for the motion estimation in particular for the
real-time considerations and the fact that we aim to investigate 2D stabilisation techniques.

In this chapter, we made mention of computer vision techniques related to tracking and stabil-
isation. We give more details about what they consist of in the subsequent chapter.
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Chapter 3

Background

In this chapter we go over some background information that was required for this project.

3.1 Notation

Frame / image is defined as a matrix I of dimensions H ×W ×C, where H is the height W is
the width and C is the number of channels. A color image in the red, green and blue color mode
(RGB) has 3 channels. A grayscale image has 1 channel. A pixel p(i, j) is defined as the entry in
the matrix at position I(i, j, :) where : refers to all the channels i.e. if there are 3 channels then the
pixel is the resulting combination of the 3 channels. For an 8-bit image, each entry in the matrix
can have an intensity value between 0 to 255.

Video is defined as a sequence of equally sized images/frames I1, . . . , It, . . . , IN , where It denotes
the image numbered t and N denotes the total number of frames.

A frame rate is associated to the video which denotes the number of frames per second (fps).
It defines the speed at which the sequence of images are to be played.

3.2 Image Features

An image feature can be thought of as being a local part of an image that has meaningful or de-
sirable properties, such as geometric (translation, scale and rotation) and photometric (brightness)
invariance. There exists several different detection algorithms each aiming to detect a specific type
of features that have a given set of properties. A feature is typically described by its location in the
image and by a feature descriptor that describes the characteristics around the detected feature.
Local features are usually better since they tend to be robust to occlusions.

Features are commonly used in computer vision for tasks such as motion tracking, object recog-
nition, image alignment, robot navigating, stereo correspondence and 3D reconstruction among
other applications.

Types of Image Features

Edges are locations in the image around which the intensity values changes sharply.

Corners capture corner like structures in the patterns of intensities. They do not necessary
correspond to the intersecting point of two lines. Corners are typically more stable than edges and
therefore are more interesting to track.

Regions of interest / Blobs capture image structures in regions that have a particular set of
properties (colour, brightness...) that distinguishes them from the surrounding area. Regions of
interest provide more details about regions than edges or corners.
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Figure 3.1: Example of edge detection on an image of a circuit. (Source: MATLAB documentation)

3.3 Feature Detection

Feature detection is the method of extracting image features that satisfy a set of criteria that
depend on the detection algorithm.

Typical corner detectors rely on a corner response (C) measure of each pixel location in an
image. Pixels having a corner value greater than a certain threshold are marked as a corner.
Typically such a measure is obtained through the following structure tensor which describes the
predominant directions of the gradient in the neighbourhood of a specified point

H =

[
Î2x ÎxIy

ÎxIy Î2y

]
(3.1)

H is also called Harris matrix. .̂ denotes the average in the local neighbourhood.

Shi-Tomasi Detector

The Shi-Tomasi Corner Detector [15] is based on the Harris-Stephens Corner Detector [16],
the difference is the corner selection criterion. A corner response is assigned to a pixel as C =
min(λ1, λ2). λ1 and λ2 being the eigenvalues of the Harris matrix.

FAST

Features from Accelerated Segment Test (FAST) [17] is a corner detection method. It relies
on local intensity comparison. It has the advantage that it is computationally efficiency. FAST is
faster than many other well-known feature detectors. The improved performance is obtained by
the use of machine learning making them suitable for real-time performance.

SIFT

Scale Invariant Feature Transform (SIFT) features [18] are obtained by convolution of the image
with a difference of Gaussians (DoG) at different scales and key locations having a maxima or a
minima are retained. A dominant orientation is assigned at each key location. SIFT descriptors
are then made robust to scale and rotation by considering pixels in the local neighbourhood of the
key location, by re-sampling local image orientations and blurring.

SURF

SURF (Speeded Up Robust Features) [19] is a feature detector partly inspired from SIFT and
is claimed to be faster. The technique relies on integral images for computing the convolutions.
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Figure 3.2: Example of detected FAST features (green) on an image of a circuit. (Source: MATLAB
documentation)

3.4 Motion Field

The motion field or velocity field is the apparent motion in the scene induced by relative motion
between the camera and the scene. It is defined by a set of 2D velocity vectors of each point in an
image. Finding the motion field makes it possible to track the motion of a given point across an
image sequence.

There exists several different techniques for estimating the motion field and these can be roughly
divided into two different types:

Differential techniques are based on the spatio-temporal variation of the intensity of pixels. It
is a direct method for motion estimation in the sense that two problems are solved simultaneously:
the correspondence between each pair of pixels and the apparent motion.

Matching techniques are an indirect method. First a set of features are selected in two frames.
The second step is matching each feature in one frame to the corresponding feature in the other
frame. Finding the set of matching correspondences is referred to as the correspondence problem.
After matching the features, the motion field is reconstructed.

A motion field can be dense i.e. each pixel in an image has a velocity vector or sparse i.e. only
a set of specific pixels have a motion vector.

Estimating a dense motion field is computationally expensive but it can in some cases be
more accurate. The algorithms usually rely on a global smoothness constraint and information for
homogeneous parts of an image are filled in from the boundaries. The technique however is more
sensitive to noise.

Estimating a sparse motion field is usually less sensitive to noise since it is a local method, it is
also more suited for real-time computation. In this project we rely on estimating a sparse motion
field.

3.4.1 Optical Flow

Optical flow is a differential technique for estimating the motion field. It is based on the
brightness consistency assumption, that is, if I(x, t) = I(x, y, t) represents the intensity located
at (x, y) and at time t, then in the ideal case, at the consecutive frame t + ∆t there should be a
displacement d = [∆x ∆y]T such that

I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t) (3.2)

By making the assumption that the displacement is small we can do a Taylor expansion. By
ignoring the higher order terms, the above equation becomes equivalent to:

∂I

∂x
dx+

∂I

∂y
dy +

∂I

∂t
dt = 0 (3.3)

17



∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t
= 0 (3.4)

(5I)Tv + It = 0 (3.5)

where v =

(dx
dt
dy
dt

)
and 5I =

( ∂I
∂x
∂I
∂y

)
.

For a pixel p located at (x0, y0), the optical flow equation is

Ix(p)vx + Iy(p)vy = −It(p) (3.6)

where Ix, Iy and It are obtained with the finite difference approximation of the derivatives.

Another assumption for the optical flow is that the surface should be lambertian i.e. the
apparent brightness does not depend on the viewing angle.

Unfortunately the above assumptions for the optical flow rarely hold. The problem is further
complicated due to the presence of noise.

(a) Two images of a rubik’s cube taken from slightly different angles. (b) The resulting optical flow.

Figure 3.3: Optical flow. (Source: [20])

Lucas-Kanade Method

The Lucas-Kanade (LK) method [21] for optical flow calculation is based on the assumption
that the flow is constant in the local neighbourhood of a pixel, by doing so, it is less sensitive
to noise. The displacement is calculated based on least squares.

By considering that the displacement between two consecutive image frames is small and ap-
proximately constant, for a given small neighbourhood R of size n = N × N (usually n = 5 × 5)
around the pixel located at (x, y), the velocity vector is chosen so as to minimise the sum of squared
error e defined by the following:

e(v) =
∑
pi∈R

[(5I(pi))
Tv + It(pi)]

2 (3.7)

In matrix form the optical flow equation we can write 3.6 for pixels p1 . . . pn that are located in
a neighbourhood R as:

Av = b (3.8)

where
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A =

Ix(p1) Iy(p1)
...

...
Ix(pn) Iy(pn)

 ,v =

(
vx
vy

)
,b = −

It(p1)...
It(pn)

 (3.9)

The algebraic solution to 3.8 is given by

v = (ATA)−1ATb (3.10)

Usually the assumption that the displacement is small between two frames does not hold as it
usually depends on the frame rate of the captured video and the speed at which the point in the
image moves. So the distances can be greater than the neighbourhood size. This can be overcome
by preforming the LK method on multiple levels of resolution by using image pyramids, where at
each level of the pyramid the resolution of the image is reduced by a factor of two compared to the
previous one. Applying the LK method starting from the lowest level of resolution then passing
the result to the next level to provide an initial estimate of the location of the point.

Figure 3.4: Pyramid Levels. (Credit: Matlab documentation on point tracker)

Issues

Issues that could affect the optical flow calculation and that should be dealt with:

Occlusions Objects in the scene can go out of frame or can disappear behind other objects
or new elements might appear in the scene.

Noise and Image Distortions The camera sensor can introduce noise which causes changes
in the grey values. Also the camera lens can introduce geometrical distortions.

Illumination The grey values could change in the scene due to illumination changes even
though nothing moves in the scene. A moving light source in a fixed scene would introduce inten-
sity changes even though there is no motion.
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Figure 3.5: In (a) we see that even if the sphere is spinning, there is no resulting optical flow. In
(b) we see that a moving light source can introduce apparent motion of the sphere that does not
reflect the motion of the sphere.(Source:[22])

3.4.2 Feature Matching

Feature matching techniques are indirect methods for estimating the motion field. It is usually
done by detecting a set of features between two frames and attempting to solve the correspondence
problem of finding matching pairs of features. The method for feature matching depends on the
feature descriptors used. Euclidean distance between the feature descriptors or normalized cross-
correlation can be used.

Figure 3.6: Example of feature matching. Two images of a desk taken at different angles. The su-
perposition shows the detected corner features and the corresponding matches. (Source: MATLAB
documentation.)

3.4.3 Feature Tracking

It can be computationally expensive to calculate the optical flow for each pixel in an image. A
more computationally efficient technique is to detect image features in an image and then track
them using the LK method.
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3.5 Motion Model

A motion model is used to describe the overall motion of the scene with a few degrees of freedom
(DOF). Doing this makes the computation less expensive.

A motion model can then be represented by a transformation matrix:

H =

 a c 0
b d 0
dx dy 1

 (3.11)

Depending on the DOF we can have different motion models to describe the motion from one
frame to the next.

• Translation has 2 DOF. Translation in the x and y direction.

H =

 1 0 0
0 1 0
dx dy 1

 (3.12)

(a) Original (b) Translation

• Similarity has 4 DOF. Translation, uniform scale and rotation.

H =

 a −b 0
b a 0
dx dy 1

 (3.13)

(c) Original (d) Similarity

• Affine has 6 DOF. Translation, rotation, independent scaling and shearing.

H =

 a c 0
b d 0
dx dy 1

 (3.14)

(e) Original (f) Affine

Given the homogeneous coordinates of a point (x0, y0, 1)T , the coordinates of the point after
the transformation are obtained as (x1, y1, 1) = (x0, y0, 1)H.
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3.6 RANSAC Algorithm

The RANSAC (RANdom SAmple Consensus) algorithm [4] is used for estimating the param-
eters of a model from a dataset containing many outliers. In the context of motion estimation,
RANSAC can be used for feature matching or to exclude tracked features that do not fit the motion
model.

A basic overview of the algorithm is as follows:

Data: M data points
Result: Estimated model and inlier points
initialization;
for L times do

Select randomly N data points;
Estimate the parameters of the model;
Find how many of the M original points fit the estimated model given a specified
tolerance ε. Call these inlier points.
if the number of inlier points exceeds a threshold τ then

Re-estimate the model using the inlier points;
Terminate;

end

end
Algorithm 1: RANSAC Algorithm

It should be noted that the outcome of RANSAC depends on the number of iterations L, the
higher the number, the more chances that a better fitting model can be found.

3.7 Manifold Learning

3.7.1 Overview

Manifold Learning is a set of non-linear dimensionality reduction techniques that aim to uncover
a considerably lower dimensional manifold while preserving the structure of the high dimensional
data. In the ideal case, the dimensionality of the uncovered manifold should be that of the intrinsic
dimensionality of the data. There exists a couple of powerful techniques that have been proposed
such as, Isomap [23] and Laplacian Eigenmaps [24], among others. In the context of medical image
analysis, the use of such techniques offers an appealing solution as images could typically consist of
millions of data points, so applying manifold learning can reduce the dimensionality of the image by
uncovering a lower dimensional embedding and facilitate the application of subsequent processing.
The powerful advantages offered by manifold learning has led to a considerable interest both in
machine learning and computer vision communities. Manifold learning has found many successful
application [25] such as pose estimation, video content analysis, image segmentation and object
tracking [26] based on dynamical models.

One interesting application of manifold learning of relevance to this project is the possibility of
being able to learn the cardiac and respiratory cycles from the video. Previous works have demon-
strated this [27], [28]. Laplacian Eigenmaps have been used in a hierarchical setting to learn the
different cardiac and respiratory motion occurring in real-time cardiac MRI sequence [29].

According to a survey [25] about manifold learning for images, a major limitation for manifold
learning is that methods usually define a mapping from the original space to the lower dimensional
one and not in the other way around. The inverse projection is still a challenge both theoretically
and practically for non-linear manifold learning. Some methods have been proposed to compute the
inverse but usually most methods do so by finding the nearest neighbours in the high dimensional
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(g) 3D input data arranged in a swiss roll (h) Low dimensional embedding

Figure 3.7: Manifold learning example, we see that even thought the data in (a) are described by
3 coordinates, there exists a 2D embedding as in (b). The aim of manifold learning is to uncover
such underlying embeddings. (Source: Created using Matlab)

space and then interpolating their respective embedded coordinates.

3.7.2 Laplacian Eigenmaps

Laplacian eigenmaps [24] employ spectral techniques to carry out non-linear dimensionality re-
duction. The technique aims to uncover a manifold that preserves local properties of the data. In
essence it aims to keep data points that are locally near each other in the high dimensional space
also locally near in the lower dimensional embedding.

Let X = (x1, ..., xN )T , xi ∈ RD be the input data points in the high dimensional space and
Y = (y1, ..., yN )T , yi ∈ Rd the projection of these points on the lower dimensional manifold, where
d � D. In the case of images, xi would be a vector of intensities and D the number of pixels or
the number of features extracted from the image.

To capture the local similarity, an undirected graph can be constructed by using n nearest
neighbours i.e. there is an edge between xi and xj if xi is one of the n nearest neighbours of xj
according to some distance measure. A weight Wij is associated to the edge connecting xi to xj .

A heat kernel can be used for the weights

Wij =

 e
−
||xi − xj ||2

t if i and j are connected
0 otherwise

or simply

Wij =

{
1 if i and j are connected
0 otherwise

The graph Laplacian is then defined as L = D −W where D is a diagonal matrix with Dii =∑
j Wij

The embedding is then found by minimising the following

f(Y ) =
∑
ij

||yi − yj ||2Wij = 2Y TLY (3.15)

subject to the constraint Y TDY = 1 which is needed in order to remove an arbitrary scaling
factor. The solution to 3.15 is given by the eigenvectors y corresponding to the lowest non zero
eigenvalues of the generalised eigenvalue problem Ly = λDy.
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3.8 Linear Programming

Given a linear function f(u1, ..., un), the aim of linear programming is to find the values of the
the variables ui, while being subject to a set of constraints, such that the value of the objective
function f is minimised (or maximised). Any point that satisfies the constraints is called a feasible
point. Linear programming offers a way to find the best feasible points such that the objective
function is minimised (or maximised).

A linear program is an optimisation problem typically of the form:

Minimise cTx

subject to Ax = b

x > 0,

where c ∈ Rn, b ∈ Rm and A ∈ Rm×n. Different variations of the above problem are possible.

3.9 Summary

In this chapter we have looked at what image features are, the notion of the motion field and
its approximation using optical flow. We have seen that there are different types of image feature
detectors and looked at methods by which we can track them across image sequences. We are
aiming to use these so as to be able to obtain a motion model that would represent the overall
motion in the scene between two consecutive frames which is estimated using a statistical algorithm
such as RANSAC.

Finally we looked at an algorithm for non-linear dimensionality reduction, of which the use will
be more clear in the next chapter.
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Chapter 4

Design / Theory

This chapter provides the methods and theories that go into the motion stabilisation techniques.
We also look at a specular highlights detection and in-painting procedure.

4.1 Video Stabilisation Overview

Before proceeding we remind the steps that go into video stabilisation:

1. Original motion estimation: This step consists of obtaining an estimate of the original
camera path from the video using a motion model that describes the overall original motion.

2. New path estimation: This consists in estimating a potentially smooth camera path from
the estimated original camera path.

3. Synthesising / Re-rending: A new video is recreated from the smoothed path viewpoint.

4.2 Motion Estimation

Motion estimation is done by first estimating a sparse motion field. To do this, we first detect
features (Shi-Tomsai, FAST or SURF) in the frame under consideration and track them into the
next frame using the pyramidal Lucas-Kanade (LK) differential tracking algorithm [21]. We could
also make use of SURF features matching technique as a possible feature tracking alternative. After
having estimated the motion field in the form of a sparse optical flow, the overall motion between
each pair of consecutive frames is described as a geometric transformation (the motion model).

Motion estimation can be done globally i.e. performing tracking on the entire scene and using
the location of all the tracked points to estimate the motion model, or locally i.e. performing
tracking on a specific fixed region or using an object tracker. In the the case of local and/or object
tracking, if the area being tracked is relatively small then a translation model would be better
suited, as the smaller the area is, the fewer tracked point we have to get a good estimate for the
model if it has a high DOF.

4.2.1 Tracking Using the Lucas-Kanade Method

Tracking is first done by selecting a set of points that could be easily tracked. The technique
usually performs well for tracking elements that do not change shape and/or if they have a visual
texture that makes it easy to detect features on them.

The tracker can be combined with different image feature detectors such as those mentioned
in the previous section. Points are reacquired periodically at each frame so that there is always a
consistent amount of tracked points.
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In this project we use the tracker with FAST or SURF features in a global motion estimation
setting. We use the SURF features predominately with the medical video sequences as it has been
shown to perform best for tracking cardiac sequences [14].

Outlier Rejection

Typically outliers are detected by using error measures such as the sum of squared difference
SSD or the normalised cross correlation NNC to compare the local neighbourhood around the es-
timated location of the tracked pixel. Points having an SSD and/or NNC measure above a certain
threshold are considered as outliers.

4.2.2 Median Flow Tracker

A method for detecting tracking failures based on the Forward-Backward (FB) error is proposed
here [30]. The tracker, called Median Flow, uses the pyramidal Lucas-Kanade method for tracking
detected points forwards and backwards and eliminates points that do not agree within a certain
threshold. This is justified by the fact that if a point is tracked well from the first frame to the
second then tracking it back from the second to the first should make it come back to its original
location.

Given two pairs of images It, It+1 and a bounding box, the tracker works by first initialising
points in a grid like fashion inside the bounding box. The points are then tracked using the LK
tracker. To each one of the points is associated an error FB, NCC and the SSD. A point is then
rejected if its FB error is greater than the median of the FB error of all the points. Similarly for
NCC and SSD. The remaining inlier points are used to predict the new position of the bounding
box in It+1 by calculating the median in the x and y directions. The scale of the bounding box
is also changed and is computed by calculating the ratio between the current distance and the
previous distance for each point and is then taken as the median of these ratios. The underlying
assumption for this is that the object is made of small rigid patches. Figure 4.1 shows a diagram of
the tracking procedure. It should also be noted that object tracking can be sensitive to initialisation.

We use this tracker in this project in an object tracking setting as well as a global motion
estimation setting. For the local object tracking setting we only estimate the motion according to a
translational motion model. It is calculated as being the translation of the centre of the bounding
box between consecutive frames. The proposed tracker has the size of the bounding box change
according to the tracked features. However by testing it on scenes with deformable tissue, where
there is relatively minimal depth variation, we noticed that the size of the bounding box tended in
some areas to increase continually due to the periodic contractions, so in this project we modified
it to so as it stays of the same constant size as in the initialisation.
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Figure 4.1: Diagram of Median Flow tracker. (Source: [30])

4.2.3 Tracking-Learning-Detection

Tracking Learning Detection (TLD) is an adaptive tracking framework proposed by Kalal et
al. [31] that aims at addressing long-term tracking of unknown objects in a video sequence. In
this framework, tracking an object in a scene is decomposed into 3 tasks: tracking, learning and
detection. Typical issues that arise in long term tracking are occlusions, object disappearing and
reappearing later in a scene, so the addition of an object detector can allow reinitialisations. Also
an object can change shape, so learning to detect the new shapes of the object is useful.

Figure 4.2: Block diagram of the TLD framework. (Source:[31])

We will briefly outline how the algorithm works without going much into details as the tracker
is not the main object of the project and is only mentioned for consideration as a possible future
direction to investigate for stabilisation.

The framework of the tracker can be seen in figure 4.2. The tracker estimates the motion of the
object between consecutive frames. If the tracker fails, whether it drifts off the object or the object
gets occluded or gets out of frame, then the tracker alone cannot recover. The detector considers
each frame as a new independent frame and scans it entirely to locate the objects in the image that
most resemble the description of the object. A detector usually makes errors. The learning step is
used to train the detector based on the trajectory of the tracker.

For initialisation, the area/object that is desired to be tracked is selected with a bounding box.
The image patch in the bounding box is used to build the initial object model in the form of
features. The object model can grow and change over time as more images patches that represent
the object are acquired in the learning step.

Subsequently, for each new frame:
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• The area is tracked using the Median Flow tracker.

• The detector scans the entire image in the form of a scanning window and makes decisions
whether the object is present or no. The number of image patches to be evaluated is large, so
an initial step using integral images eliminates the patches that have a variance lesser than
50% that of the object (certain calculations can be achieved faster on image integrals). Com-
parisons are then made and the nearest matches to the object are returned with confidence
values representing how close the matches are to the object.

• The final location of the object in the scene is obtained by the combination of both the position
of the tracker and the detector. The position of the tracker can be initialised or re-initialised
based on the confidence of the matches obtained from the detector and the confidence of the
area being tracked by the Median Flow tracker.

A limitation of the tracker as identified by the authors is that the tracker does not perform well
with full out-of-plane rotations and with articulated objects.

4.2.4 Estimating the Geometric Transformation

The geometric transformation between two consecutive frames is estimated using the RANSAC
algorithm [4] by using the tracked feature points as input.

When performing tracking on a small area, we use a translation model as given the small amount
of good features that can be detected, it is not possible to obtain a good estimate if the model
has higher DOF. We estimate the translation using the method as described for the Median Flow
tracker.

4.3 Camera Path

To perform stabilisation we need to estimate the motion of the camera path C(t) as a function
of time. Assuming it is obtained with a motion estimation technique, it can be defined at each
frame in discretised form as

Ct+1 = CtFt =⇒ Ct = F1...Ft (4.1)

Ft is the transformation matrix and it describes the motion model from frame It to It−1.

4.4 Zero Motion Stabilisation

A straight forward way to stabilise a video sequence to have zero motion is simply applying the
inverse of the original camera path Ct at frame t to get the zero motion Pt:

Pt = CtC
−1
t = I (4.2)

This works well assuming that we have a really good estimate of the camera path otherwise
errors would eventually accumulate. Another issue is that if the entire scene from the initial frame
goes out of frame then the stabilised video would also go out of frame. Which is why the technique
described in the next section is better suited in most cases.
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4.5 Stabilisation with L1 Optimal Camera Paths

The goal of the stabilisation technique by Grundmann et al. [1] is that given an original shaky
camera path C(t), to compute a stabilised camera path P (t) having characteristics as if it were shot
from a cinematic point of view, which is usually conveyed by the use of static, panning and dolly
shots. To achieve this, the problem is formulated as a constrained linear program to minimise the
first, second and third derivatives of the desired optimal camera path P (t). The techniques finds
optimal path segments of either static, linear or parabolic motion and avoids the superposition of
the three.

Each derivative minimised represents a different type of path:

• The first derivative: DP (t) = 0. A constant path.

• The second derivative: D2P (t) = 0. A constant velocity path.

• The third derivative: D3P (t) = 0. A constant acceleration path.

This is achieved by considering a crop window of a fixed aspect ratio and then moving it along a
path that is optimised to have the above properties while being subject to various constraints, such
as, an inclusion constraint so as to keep the crop window constantly within the bounds of the frame.

Assuming the original camera path C(t) is obtained by motion estimation, we would have

Ct+1 = CtFt =⇒ Ct = F1...Ft (4.3)

Ft represents the motion model from frame It to It−1. Given this path, the stabilised path can
be expressed as

Pt = CtBt (4.4)

where Bt represents the update transform that is applied to the original path to obtain the
smooth stabilised path. The aim of the stabilisation algorithm is to find the update transform Bt

for each frame. We have

Bt =

 at ct 0
bt dt 0
dxt dyt 1

 (4.5)

since it is also a geometric transformation matrix. So for a point x = (x1, x2), we write applying
the update Bt to x in the following form

A(x, pt) =
(
x1 x2 1

) at ct
bt dt
dxt dyt

 (4.6)

where pt = (dxt, dyt, at, bt, ct, dt)
T is a parametrisation vector of Bt.

4.5.1 Objective Function

The optimal path Pt is computed by minimising the following objective function:

f(P ) = w1 |D(P )|1 + w2

∣∣D2(P )
∣∣
1

+ w3

∣∣D(P )3
∣∣
1

(4.7)

subject to constraints which will be mentioned in the next subsection. The weights w1, w2 and w3

define the relative importance of each term.
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Minimising |D(P )|1 By using forward differencing |D(P )| =
∑

t |Pt+1 − Pt| and by using the
substitutions from 4.3 and 4.4 we get:

|D(P )| =
∑
t

|Ct+1Bt+1 − CtBt|

=
∑
t

|CtFt+1Bt+1 − CtBt|

≤
∑
t

|Ct| |Ft+1Bt+1 −Bt|

≤
∑
t

|Ct| |Rt|

where Rt = |Ft+1Bt+1−Bt|. Given that Ct is known, we therefore want to minimise the residual∑
t

|Rt| (4.8)

To make it more suited for the problem formulation we rewrite Rt in parameter form

Rt(p) = M(Ft+1)pt+1 − pt (4.9)

where M(Ft+1) is a linear operation transforming Ft+1 such that M(Ft+1)pt+1 would represent the
matrix multiplication Ft+1Bt+1 in vector form.

Minimising
∣∣D2(P )

∣∣
1

Forward differencing yields
∣∣D2(P )

∣∣ =
∑

t |DPt+2 −DPt+1|
=
∑

t |Pt+2 − 2Pt+1 + Pt|. However to model the error as additive, the difference of residual is
minimised directly instead ∑

t

|Rt+1 −Rt| =
∑
t

|Rt+1(p)−Rt(p)| (4.10)

Minimising
∣∣D3(P )

∣∣
1

Similarly we want to minimise:∑
t

|Rt+2 − 2Rt+1 +Rt| =
∑
t

|Rt+2(p)− 2Rt+1(p) +Rt(p)| (4.11)

Linear Programming (LP) To minimise the L1-norm of each of the residuals, slack variables
are introduced. Each one of the residuals will require the introduction of N slack variables, where
N is the dimension of the parametrisation (e.g. N = 6 for an affine motion model). Given that
there are 3 types of residuals, for n frames, a total of 3nN slack variables have to be introduced.

e.g. for |DP | we have
−e1t ≤ Rt(p) ≤ e1t (4.12)

with e1t > 0 a vector of length N . So the objective is to minimise

cT e1 =
∑

t=1...n

cT e1t (4.13)

where e1 = (e11, . . . , e
1
n). If c = 1, this would correspond to the minimisation of the L1-norm.

However since the translation part of pt is at a different scale than the strictly affine part, it is
necessary to weight the latter higher, e.g. for N = 6, cT = (1, 1, s, s, s, s), where s is the weighting.
It is suggested in [1] to choose s = 100.

Similarly for |D2P | and |D3P |.
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The Final Objective Function is obtained by combining the three functions:

cT (w1e
1 + w2e

2 + w3e
3) (4.14)

with w1, w2 and w3 being scalar weights associated to each one of the derivative constraints as
in equation 4.7.

4.5.2 Constraints

Proximity Constraints To avoid having excessive changes in scale and rotation which might
result from the chance that it could minimising the residuals better, hard constraints are imposed
to limit the amount they can deviate:

0.9 ≤ at, dt ≤ 1.1,−0.1 ≤ bt, ct ≤ 0.1,−0.05 ≤ bt + ct ≤ 0.05 and − 0.1 ≤ at − dt ≤ 0.1 (4.15)

Making use of an upper and lower bounds reformulation, the above can be rewritten as

lb ≤ Upt ≤ ub (4.16)

where U represents the linear combination over pt such that we would have the relations in
equation 4.15 be represented in matrix form.

Inclusion Constraint This constraint is necessary to insure that the crop window does not go
out of frame when it is transformed by the update transform. For this to be satisfied, the 4 cor-
ners of the crop window ci = (cxi , c

y
i ) i = 1..4 have to stay within the frame of height h and width w.

By posing CRi =

(
1 0 cxi cyi 0 0
0 1 0 0 cxi cyi

)
, we require:

(
0
0

)
≤ CRipt ≤

(
w
h

)
(4.17)

Figure 4.3: Inclusion constraint. (Credit: [1])

4.5.3 Additional Saliency Constraints

The formulation of the problem easily allows the introduction of saliency constraints, that is,
it is possible to specify that we want a given point or region at a specific frame to remain within
the crop window. Let sti be the set of salient points at frame It, we can introduce the constraint of
how far at least the salient point should lie from a given point (bx, by)(

1 0 sxi syi 0 0
0 1 0 0 sxi syi

)
pt −

(
bx
by

)
>

(
−εx
−εy

)
(4.18)

εx > 0 εy > 0 are new slack variables to be added to the LP. We could then introduce for each
point in sti a set of 4 bounds (bx, by) that would correspond to the 4 corners of the crop window.
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It is best if εx and εy are non-zero, otherwise they might conflict with the inclusion constraint and
disrupt the smoothness of the path.

4.5.4 Summary for the L1 Optimal Camera Paths

Overview

Figure 4.4: L1 optimal paths stabilisation algorithm main steps overview.

LP

Input: Frame pair transforms, Ft, t = 1..n
Output: Optimal camera path Pt = CtBt = CtA(pt)

Minimise cT (w1e
1 + w2e

2 + w3e
3)

w.r.t. p = (p1, ..., pn)

where ei = (ei1, ..., e
i
n), i = 1, 2, 3

subject to

smoothness


−e1t ≤ Rt(p) ≤ e1t
−e2t ≤ Rt+1(p)−Rt(p) ≤ e2t
−e3t ≤ Rt+2(p)− 2Rt+1(p) +Rt(p) ≤ e3t
eit ≥ 0

proximity { lb ≤ Upt ≤ ub
inclusion { (0, 0)T ≤ CRkpt ≤ (w, h)T , k = 1, 2, 3, 4

4.5.5 Video Re-rendering

After having solved the optimisation as per the above described algorithm, the computed up-
date transforms are applied to the crop window at each frame and is cropped to end up with a final
stabilised video.

We noticed that it is possible in some cases to maximise the size of the crop window so as to
keep as much of the image as possible, as it might happen that if we had chosen a bigger crop
window than necessary for the optimisation some parts that could stay within the frame could get
cropped even if they do not go out of frame. The maximised crop window is found by applying the
update transform to each of the four corners of the of the original image and finding their amount
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of displacement for the entire video, e.g. for the xcleft coordinate of the left side of the maximised
crop window

xcleft = min(xtopleft1 , . . . , xtopleftn , xbottomleft
1 , . . . , xbottomleft

n )

where xtoplefti is the x coordinate of the top left corner at frame i after applying the corresponding
update transform to it.

4.6 Stabilisation for Scenes with Periodic Motion

In this section we look at two things. First, at how we could possibly use the L1 optimal paths
stabilisation in a predictive scheme. Second, a possible alternative stabilisation technique based on
manifold learning.

The stabilisation algorithm in the previous section is a post-processing algorithm, that is, we
have to give it the entire video as input for it to work. This is much expected as the motion it
is supposed to be dealing with is unpredictable. However in the case of the some of the medical
image sequences, the motion that we desire to eliminate is that of the cardiac and respiratory
motion which is periodic, hence it is feasible to assume that given that the motion is periodic, the
stabilisation applied is bound to be periodic and repetitive. Solving the stabilisation for the entirety
of a periodic sequence seems unnecessary. However, this approach means that we are making the
assumption that the camera used to obtain the video is static, which unfortunately might not
always be the case, a moving camera would introduce a different type of apparent motion in the
scene. Also we assume that no new elements will be introduced in the scene to considerably affect
it.

In essence, to perform predictive stabilisation, what we could envision to do is solve the sta-
bilisation using the algorithm for an initial part of the video in which we see the periodic cycles a
sufficient number of times and then for subsequent frames, depending on where the motion is in
the cardiac and respiratory cycle, reapply the corresponding precomputed update transform.

4.6.1 Predictive Stabilisation Using K-Nearest Neighbour (K-NN)

We first perform motion estimation and stabilisation for an initial set of frames 1..N which we
call training set, so we would have a set of images I = I1, ..., IN and their corresponding set of
update transforms B = B1, ..., BN .

When we encounter a new frame It with t > N , we look for its closest match / nearest neighbour
in the training set and reuse its corresponding update. However there can usually be multiple close
matches / nearest neighbours that have different or similar update transforms due to various errors
(e.g. in the motion estimation), so the idea is to retrieve the K nearest neighbours and use them
to estimate the new update transform.

The reason why we opt to look for the closest image match is that although it seems computa-
tionally extremely efficient to just look for the closest image position, motion estimation is typically
prone to errors over time.

The predictive stabilisation would work as follows:

For a new frame It t > N we find its K nearest neighbours in the set I using the euclidean
distance and retrieve the corresponding K update transforms. We denote J as the set containing
the indices of the K nearest neighbours. The update transform for the new frame can be obtained
as a weighted interpolation

Bt =

∑
i∈J wiBi∑
i∈J wi

(4.19)
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The weight wi can be chosen as a function of the distance between Ii and It.

wi =
1

(||It − Ii||+ α)2
(4.20)

or wi = e

−||It − Ii||2

σ2

where α > 0 is needed to avoid dividing by zero. Using weighting based on the distance allows
to reduce the influence of distant matches.

Limitations

This technique is computationally expensive as we would be looking for the closest image
matches by comparing the distance between each pixel. We could rescale the image to a smaller
size to reduce the computational cost at the price of affecting the performance.

Also the technique would fail if the camera moves or if there is a new type of motion or ob-
jects that are introduced in the scene. However the method seems like the most straight forward
approach that we could initially try.

4.6.2 Stabilisation Using Manifold Learning

We explore in this section a technique that could be used to perform stabilisation based on
manifold learning.

In [29], when using Hierarchical Laplacian Eigenmaps to reduce MR images to two dimensions,
one embedded direction is found to be highly correlated to the heart cycle while the other being
highly correlated with the respiratory cycle. Given that the motion in the x and y direction should
depend on the position in the cardiac and respiratory cycle, we explore whether it is possible to find
a direct representation of the x and y coordinates as a linear function of the embedded coordinates.

Motion Estimation / Trajectory Reconstruction Using the Embedded Coordinates

Let I = (I1, ..., IN )T be the set of input images Ii ∈ RD represented in row vector form and
E = (E1, ..., EN )T , Et ∈ Rd the corresponding projection of I on the lower dimensional manifold,
where d� D. E is a matrix of N rows and d columns.

We perform tracking using a translation motion model on an initial set of frames 1..N and
obtain an estimated motion in the x and y direction, we then aim to find coefficients such that each
coordinate can be expressed as a linear function of the embedded coordinates, i.e. for an image at
frame t we aim to find an expression for the coordinates xt and yt in the form of

xt = ax0 +
∑

i=1...d

axiEti (4.21)

yt = ay0 +
∑

i=1...d

ayiEti (4.22)

with axi and ayi i = 0 . . . d the coefficients. In matrix form, the above equations can be written
as

X =
[
E 1

]
ax (4.23)

Y =
[
E 1

]
ay (4.24)
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with X =
(
x1, . . . , xN

)T
, Y =

(
y1, . . . , yN

)T
, ax =

(
ax0 , a

x
1 , . . . , a

x
d

)T
and ay =

(
ay0, a

y
1, . . . , a

y
d

)T
.

The overdetermined system can then be solved with least squares regression. An algebraic
solution can be written as

ax = (E1TE1)−1E1TX (4.25)

ay = (E1TE1)−1E1TY (4.26)

with E1 =
[
E 1

]
.

Stabilisation

To obtain the stabilisation, we perform motion estimation using tracking on an initial set of
frames in order to obtain an estimated x and y coordinates which are then used to perform regression
to obtain an expression of the x and y position as a function of the embedded coordinates.

We then express this as a translation model for the camera path Ct at frame t as

Ct =

 1 0 0
0 1 0
xt yt 1

 (4.27)

where xt and yt indicate the current position (and not the displacement between two consecutive
frames) and are obtained with equations 4.21 and 4.22.

The stabilisation is then obtained by doing

Pt = CtC
−1
t = I (4.28)

(as described in section 4.4).

Predictive Stabilisation

Using the above method it is also possible to attempt to perform predictive stabilisation using
K-NN.

Motion estimation using a translation model is first performed for an initial set of frames
I = I1, ..., IN so as to be able to obtain an expression for the x and y coordinates as a function of
the embedded coordinates.

Then, given a new image It t > N , we search for its K nearest neighbours in the set I and
express its estimated embedded coordinates

Et =

∑
i∈J wiEi∑
i∈J wi

(4.29)

where J is the set of indices of the K nearest neighbours.

Finally we find an estimated xt and yt using equations 4.21 and 4.22.

Summary for Stabilisation
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Figure 4.5: Stabilisation using manifold learning.

4.7 Specular Detection and Removal

The wet nature of the deformable tissue tend to cause a certain amount of specular highlights
which in turn can introduce a considerable amount of error for the motion estimation algorithms.
We look at two techniques for specular detection from [2] and [32] and use a modified specular
detection and in-painting scheme mostly inspired from [2] by eliminating a few steps. We did not
test whether we could achieve similar results as the method suggested in [2], but since we are
mostly interested in finding the location of the specular areas to eliminate the tracked points that
fall within it, the simplified scheme deemed sufficient.

4.7.1 Detection

In [32], they propose as a first step to convert the image from RGB to HSV (Hue, Saturation
s, Value v) and then a pixel p is marked as being a specular highlight if

s(p) < Ts, v(p) > Tv (4.30)

where Ts and Tv are thresholds, the values suggested in the paper are Ts = 0.35 and Tv = 0.75
(saturation and value vary from 0 to 1). For the next step, they segment the image into regions
having similar texture and colour. However a disadvantage according to [2] is that the segmentation
method they use is computationally expensive.

In [2], specular detection in the first step is done by using colour adaptive thresholds to find
the bright highlights. Colour balancing can introduce intensity offsets in the colour channels, so
they suggest normalising according to the ratios of the 95th percentile of their intensities to the
95th percentile of the grey/luma channel. The reason the grey intensity is used as opposed to the
red channel is because reddish colors are very common in medical videos, so if the red saturates it
cannot be only due to specular highlights.
With the luma channel being cL = 0.2989cR + 0.5870cG + 0.1140cR, with cR, cG and cB the

red, green and blue channel respectively, the ratios are computed as follows: rG =
P95(cG)

P95(cL)
and

rB =
P95(cB)

P95(cL)
, with P95(.) denoting the 95th percentile.

A pixel p is marked as a possible specular highlight if

cG(p) > rGT1 ∨ cB(p) > rBT1 ∨ cL(p) > T1 (4.31)

36



For the next step they propose applying a modified median filter over the image to find a
representative colour of the neighbourhood of each pixel and then performing a comparison with
the pixel. A pixel is considered as specular if the difference is greater than a certain threshold Tm.
In this project we choose to simply perform this second step on just the grey channel. We therefore
apply a median filter on the grey channel with a window size of [sx, sy] and obtain the filtered
image Imedian. A pixel p is marked as a specular area if

cL(p)− Imedian(p) > Tm (4.32)

We choose Tm = 40. For the median filter we choose [sx, sy] = 50 × 50 as the videos used
contain large specular areas.

The specular areas detected by equation 4.32 are more than those detected by equation 4.31.
In the paper they proceed with additional steps based on the image gradient to remove falsely
detected highlights, we however stop here.

4.7.2 In-painting

For the in-painting we use a technique inspired from [2]. The obtained binary mask from
equation 4.32 is dilated so as to avoid having visible borders around the detected areas. A Gaussian
filter is then applied to it. Before applying it as a transition mask to blend the original image Is
with Imedian, we add an additional step to avoid having the contrast of darker areas reduced which
could happen if they are located right next to a specular area. We therefore detect darker areas
with a threshold as follows

cL(p) < P50(cL) (4.33)

where P50(.) is 50th percentile. The obtained area is then filtered with a Gaussian filter to
smooth the border and the resulting mask is removed from mask. The final image with the in-
painting is obtain as

cns(p) = (1−mask(p))× cL(p) +mask(p)× Imedian(p) (4.34)

which results in the specular area being filled with the value from the median filtered image.
We can see in figure 4.6 the results of the specular highlight detection and in-painting.
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(a) Grey image of the heart having specular high-
lights

(b) In-painting

(c) Specular areas detected by equation 4.31 (d) Specular areas detected by equation 4.32

(e) Mask dilated and Gaussian filtered (f) Darker areas removed from the mask

(g) Median filter size 30 × 30 (h) Median filter size 50 × 50

Figure 4.6: Specular highlight detection
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4.8 Summary

In this chapter we have looked at the the theory behind the L1 optimal camera paths stabilisa-
tion technique. We suggested a possible naive scheme based on K-NN to use the update transforms
obtained from the stabilisation algorithm to perform predictive stabilisation.

We have also looked at a possible stabilisation technique based on manifold learning whereby
we seek to find an expression of the x and y coordinates as a linear function of the embedded
coordinates.

In the last section of the chapter we looked at a specular highlights detection and in-painting
method which should prove useful to have due to the nature of image sequences we are dealing with.
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Chapter 5

Implementation

This chapters provides information about the software implementation.

5.1 Development Tools

Programming Language

The implementation was carried out mostly in MATLAB (R2013a) as it provides a quick way
to start development and test out different things. This is mostly due to presence of different
specialised toolboxes. MATLAB also offers the possibility of integrating C and C++ code through
the use of MEX-files which are dynamically-linked subroutines that are loaded and executed by the
MATLAB interpreter.

MATLAB Toolboxes

We predominately use the image processing and vision toolboxes in MATLAB. The vision
toolbox provides the common computer vision functions such as feature detection, tracking and
estimating the geometric transformation, among others.

Important note: The implementation was carried in MATLAB (R2013a) in which the vision
toolbox has been slightly restructured, some function calls from the vision toolbox in MATLAB
(R2013a) do not exist in the previous versions.

We also make use of OPTimization Interface (OPTI) Toolbox1 which is a free MATLAB toolbox
for solving linear, nonlinear, continuous and discrete optimisation problems. The toolbox has a
range of open source and academic solvers. However the toolbox is delivered as an executable only
for a Windows machine. To using it on different operating systems the source code needs to be
compiled. We make use of this toolbox as it proved to be a faster solver than the existing solvers in
MATLAB. In our implementation, if the toolbox is not installed then the MATLAB solver is used.

Other Technologies Used

OpenCV (Open Source Computer Vision)2 is a library of computer vision C++ functions. It is
used for the implementation of the Median Flow and TLD trackers mainly for the LK algorithm.
It is integrated in MATLAB through the use of MEX-files.

GUI (graphical user interfaces)

The interface was created using MATLAB GUIDE (GUI development environment) which pro-
vides tools for designing user interfaces.

1http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php
2http://opencv.org/
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Platform

The development was carried out on a Windows machine. However MATLAB code can be used
on other platforms that have MATLAB installed although some external MEX files need to be
recompiled.

5.2 User Interface

We created a graphical user interface so as to provide us with a means to better organise and
view the results directly.

Figure 5.1: Main interface.

With the GUI, the user can...

Input related

• Load and playback the input video.

• The ability to exclude specular highlights from tracking or perform specular areas in-painting.

Tracking related

• Have the choice of selecting from 5 tracking methods and 3 different types of image features.
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• view the results of tracking, the optical flow and the detected features on a video as it is being
tracked.

• Generate plots so as to view the result of the estimated path.

• Have multiple tracking results stored in instances.

• Choose the number of frames to track.

Stabilisation related

• Select the size of the crop window manually or with a specified crop factor.

• Adjust the weight parameters.

• Stabilise the video and play the result.

• Plot the resulting smooth path.

• Export the stabilised video.

Manifold learning related

• Select between two manifold learning algorithms.

• Select the dimension and number of nearest neighbours for the manifold learning algorithm.

• Down-sample the image size with a factor.

• Different sets of plots related to the manifold.

• Play the video and see where each frame lies on the manifold with the evolution over time.

• Perform frequency analysis for the components.

• Use the results from manifold learning to perform motion estimation and stabilisation.

5.3 Tracking

LK Tracker

The vision toolbox in MATLAB provides the LK tracking algorithm. In our implementation
we make use of it. We also make use of the LK implementation of the algorithm from OpenCV in
MATLAB through the use of MEX-files.

TLD Tracker

The TLD[31] tracker is the result of the PhD thesis work of Zdenek Kalal, reimplementing the
tracker would take a considerable amount of time hence we make use of the open source code that
he provides3.

We perform slight modification to the tracker to integrate it with our existing GUI. We also
add to it a simple prediction scheme so as to see the effect of performance improvement that can
be introduced. Although the algorithm can already achieve real-time performance we make this
test to consider future possible work in incorporating a multi-tracking scheme to track multiple
landmarks such that if tracking on a landmark fails then that of the other landmarks could still
enable uninterrupted tracking.

3https://github.com/zk00006/OpenTLD
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Chapter 6

Results and Evaluation I

In this chapter we present a set of experiments that we have performed and their corresponding
evaluation.

In experiment 1, 2 and 3 we report the results of applying the stabilisation algorithm to 3
different videos, starting with a type of video that the stabilisation algorithm is intended for, for
the second experiment we use a video of a synthetic heart and for the third one we use a video of
the real heart.

6.1 Measurements

Before proceeding with the experiments, it would be beneficial to have some measurements that
we could use to assess the performance of the stabilisation.

Mean Image can serve as a measure to show the effectiveness of a stabilisation algorithm. If
there is a great amount of motion in the scene then the mean image would have a considerable
amount of distortion and blur. However if there is no motion then there should not be a distortion
as the images are all roughly the same and aligned.

The mean for N frames would be

Imean =
1

N

∑
i=1...N

Ii (6.1)

Modified Mean Image The stabilised video will end up being cropped, however we can still
obtain a mean image that has the same size as the original video by performing a mean for pixel
locations only when there is a value present. For a pixel p at a fixed location, we would have

Imean(p) =
1

N(p)

∑
i∈J)

Ii(p) (6.2)

where N(p) indicates the number images in which there was a non-zero value present at the
location of pixel p and J the set of indices of those N(p) images.

Inter-frame Error serves to assess the effectiveness of the stabilisation by assessing how much
the motion is reduced between consecutive frames. Large motion is expected to have larger inter-
frame error. It can be obtained by calculating the mean squared error (MSE) between two consec-
utive frames.

For two consecutive frames It and It+1 of size W ×H

eMSE(It, It+1) =
1

W ×H
∑

i=1...H

∑
j=1...W

(It(i, j)− It+1(i, j))
2 (6.3)
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Although it has been shown that such objective pixel-wise comparison measures, such as the
inter-frame error, do not usually correlate well with the perceived visual measurements [33] [34].
they are still commonly used, so we make use of them as they are easy to calculate and provide
an instantaneous indicative measure of quality. Another type of possible measure is a subjective
quality assessment such as a mean opinion score which consists of asking a set of observers to give
their subjective opinion as to how good they think the stabilisation is, the downside however is
that the process takes time. We do not make use of such measure.

6.2 Configurations

Another thing to note before proceeding with the experiments is that since there are different
types of phases that go into the stabilisation and that each phase has its own set of configurations,
testing each different possible configuration would be time consuming, hence they were set as per
usually recommended in the literature.

Nonetheless, We have tried to change some of the configurations, such as, the type of features
used, the number of detected features, the neighbourhood size for the tracker, the number of
samplings and threshold for the the RANSAC algorithm, there were slight observed differences in
the results but the overall conclusions remain the same.

6.3 Experiment 1: L1 Optimal Paths Stabilisation

6.3.1 Set-up and Results

In this section, we test the stabilisation algorithm on one of the original videos kindly provided
by Grundmann, the author of the paper [1], to see how well our implementation performs.

The video

The video is of a person jumping while walking, the camera follows the person while having a
considerable amount of shake, notably in the y direction. The 29fps video has a size of 640× 360.

Motion Estimation

The tracking is performed on 300 frames. We detect FAST features and use the LK algorithm
to track them. In figure 6.1 we have two frames taken from the video, we see that our outlier
rejection using RANSAC performs as expected. Almost all the points detected on the person are
correctly considered as outliers by the algorithm while almost all the points in the background are
considered as inliers. We can see the sparse optical flow field in figure 6.2 on 4 frames, note how
the background seems to have considerable amount of jittery movement, that the direction of the
vectors in the background are similar in their local neighbourhood and finally that the directions
of the vectors on the person are different than those belonging to the background.

Stabilisation

We then apply the stabilisation algorithm to the video by setting the crop window to 80% size
that of the original frame. In the original paper [1], they used saliency constraints from a face
detector to keep the person in the centre of the crop window, however here we do not do that.
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Figure 6.1: Two frames from a video with camera shake and a person jumping while waking. Red
points are outliers and green points are inliers.

(a) (b)

(c) (d)

Figure 6.2: Four frames taken 2/29 seconds apart from the shaky video showing the optical flow,
outlier points (red) and inlier points (green).

Figure 6.4 shows the original estimated camera path and the resulting smooth path from the L1
optimisation. We see that the smooth path tends to follow the direction of the original path while
having no shake. Figure 6.5 shows the the position of the crop window on the original frame and
the cropped stabilised result. We see that the stabilisation works as expected with the resulting
video having a smooth camera path. Although we cannot apply here a pixel-wise objective measure
to show the effectiveness of the stabilisation because the camera is moving, we can visually see the
results by recomputing the optical flow field. We see that in figure 6.3, note how the background
now has smoother motion which is exhibited by the constant direction and shortness of the vectors
in the background.
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(a) (b)

(c) (d)

Figure 6.3: Same four frames as in figure 6.2 taken from the stabilised video. Notice how the optical
flow field in the background is smooth.

Figure 6.4: Graphs showing the estimated original camera path and the L1 optimal camera path.
The crop window is 80% of the original frame. No saliency constraints have been used.
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Figure 6.5: Four pairs of frames showing the results of the stabilisation. The red box on the frame
above is the crop window on the original video and the the frame below is the cropped stabilised
video.
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6.3.2 Evaluation

We went through each step necessary for the stabilisation algorithm and applied it to a video
containing a rigid background. We found that our implementation yields good results indicating
that we have successfully implemented the algorithm.

6.4 Experiment 2: Phantom Heart

After having verified that the stabilisation algorithm works as expected, we now proceed to
testing it on a video of a synthetic heart.

6.4.1 Set-up and Results

The video

The 25fps 360×288 video is of a silicon heart phantom 1. The camera is static. The only visible
motion is that of the periodic cardiac motion. There is no respiratory motion. The surface contains
clearly visible landmarks. We use this video to see how well the stabilisation would perform in a
controlled environment.

Figure 6.6: Four frames from the phantom heart video

Motion Estimation

Figure 6.7: Four frames showing detected SURF features and outlier rejection with RANSAC. Red
points are outliers while green points are inliers.

We estimate the motion of the heart globally. We use SURF features although we could have
used the other features as there is no noticeable difference in regards to the end result. The features
are tracked for 300 frames. In figure 6.7 we see four frames with the detected inlier and outlier
SURF features, although the surface is not planar most of the points are detected as inliers by the
RANSAC algorithm indicating that the motion can be approximated by a linear model. In figure
6.8 we see the sparse optical flow field. The direction of the vectors, mostly those located in the left
bottom part, have the most amount of movement while those in back top right have less movement.
This is in accordance with the apparent motion.

1Source: Hamlyn Centre Laparoscopic / Endoscopic Video Datasets http://hamlyn.doc.ic.ac.uk/vision/
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(a) (b)

(c) (d)

Figure 6.8: Four frames 2/25 seconds apart showing the sparse optical flow field. The perceived
motion is that of the surface expansions and contractions with a perceived motion of the bottom
part moving up and down in the diagonal direction.

Stabilisation

The stabilisation algorithm is applied with a crop window of 90% size of the original frame
size. Figure 6.9 shows the estimated original path and the obtained smooth path. We see that
the former is in accordance with the expected motion of the periodic cardiac cycle, the latter is a
straight line indicating that as a result of the stabilisation we should expect no translation motion
in the x and y directions. The estimated original motion seems to indicate that we have a roughly
slowly descending trend in both directions.

We test to see the result of the stabilisation with the three different motion models. We find
that the best visual stabilisation is obtained with an affine model and that there is a considerable
reduction in motion. With the similarity and translation models, there is a reduction in motion
however we still observe wobbling. Figure 6.10 shows the mean image of 100 frames for the orig-
inal video and the stabilised video. We see that the original has blurring due to its motion while
the stabilised one has relatively no blurring, indicating that there is an effective reduction of the
original motion. In figure 6.11 we see the mean images for 300 frames, we can see the wobbling
motion in 6.11 (c) obtained using a similarity model, we also see that this time there is directional
blurring in the mean image stabilised using an affine model. However, looking at the inter-frame
error in table 6.1, we see that pixel-wise the stabilised videos have a reduction in the mean and a
considerable reduction in the variance.

49



In figure 6.12 we see four frames of the original video with the location of the crop windows
showed. The yellow crop window is the 90% size one that we used for the stabilisation algorithm,
the red crop window is the maximised one which we have proposed to add so as to prevent cropping
more than necessary.

Figure 6.9: Graphs showing the original estimated camera path (in red) and the computed stabilised
path (in blue) for the x and y direction over 300 frames using an affine model.

(a) Original video (b) Stabilised video

Figure 6.10: Mean images for 100 frames of the phantom heart video using an affine model
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(a) Original video (b) Stabilised video. Affine model.

(c) Stabilised video. Similarity model.

Figure 6.11: Mean image for 300 frames using an affine model

100 Frames 300 Frames

Original
Stabilised
(Affine)

Original
Stabilised
(Affine)

Stabilised
(Similarity)

Mean 28.7767 5.6208 27.8895 5.0408 5.6365

Variance 302.2192 13.6707 271.9184 9.4420 16.3036

Table 6.1: Inter-frame error for the phantom heart video.

Figure 6.12: Four frames showing the crops window on the original video (above) and the cropped
Stabilised video (bellow). The yellow crop window is the 90% size of the original frame used
for computing the stabilisation, the red one is the maximized crop window enabling us to avoid
cropping more than necessary.
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Motion Estimation Error

Looking again at figure 6.11 we see that there is blurring in the mean image of 300 frames using
the affine model which was not visible in figure 6.10 with 100 frames. If we look at figure 6.9 we see
that the original estimated path has a descending trend as noted previously, however when looking
at the original video, it does not have that type of motion. It seems that the motion estimation is
not accurate, the optimisation part of the stabilisation algorithm still works as expected as given
there seems to be a descent in the x and y directions and that there is room for the crop window
to stay fixed, then it can counteract that motion and give a fixed constant path. As a result we see
a directional drift in the stabilised video.

The drift is observed for the 3 different motion models (affine, similarity and translation) with
the most drift being with an affine model. We have tried increasing the number of detected features
on the surface and used the three different feature detectors employed in this project, there was a
slight improvement however the drift was not eliminated. This is most likely due to an accumulat-
ing error in the global motion estimation and also it being the usual problem with tracking over
long periods of time.

To see visually that there is no such movement in the original video, we look at an image
difference in figure 6.13 between two frames from the original video and two frames from the
stabilised one.

Although the drift might seem small for 300 frames, when we look at the motion estimation
for 1000 frames in figure 6.14 we see that over time the effect is more pronounced, with roughly 40
pixels drift in the x direction and 80 pixels drift in the y direction.

(a) Original video (b) Stabilised video

Figure 6.13: Image difference of frame 2 and frame 287 from roughly the same point of the cardiac
cycle.

The drift is also present using using the two other motion models. We track an area using the
Median Flow tracker for 1000 frames and show the result in figure 6.15 where we notice that there
is less drift in comparison to the affine model with roughly 15 pixels in the x direction and 20 pixels
in the y direction. In figure 6.16 we show the result of tracking using the TLD tracker, we see that
the drift is even less, although the envelope of the path is more jittery due to the corrections to
the tracking introduced by the detector.
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Figure 6.14: Graphs showing the drift in the original estimated camera path for the x and y
direction over 1000 frames.

(a) Tracked bounding box. Green points are inliers
while the red ones are outliers.

(b) Graphs showing the estimated camera path for the x and y direction.

Figure 6.15: Graphs showing the drift in the original estimated camera path for the x and y
direction over 1000 frames. Tracked using Median Flow as an object tracker.
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Figure 6.16: Graphs showing the camera path for the x and y direction over 1000 frames tracked
using TLD. We see that there is less drift, however the envelope is less smooth, this is due to the
correction to the position of the bounding box from the detector.
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6.4.2 Evaluation

We have applied the stabilisation algorithm to the phantom heart video and have seen that we
can obtain good stabilisation results, with the best visual result being from an affine model. The
mean image calculated for 100 frames and the inter-frame error all indicate a reduction in perceived
motion.

For longer tracking periods we noticed that there is a drift due an accumulation of errors in the
motion estimation which in turn introduces a drift in the stabilised video and ends up becoming
noticeable. The larger error observed using an affine model is most likely due to the model having
higher DOF, affine models also have a tendency to over-fit [1]. There is an error in the motion
estimation to a lesser extent using a translational model. The least error is observed using the TLD
tracker which is because the detection part of the TLD algorithm helps to correct the drift from
the LK algorithm.

Nonetheless, if the overall motion is captured correctly and even if there is a drift, then it is
still possible to have no drift in the end result. The reason why in figure 6.9 we have a resulting
optimal path of zero motion in the x direction is that the crop window still had space to move and
given that one of the constraints of the stabilisation algorithm is to have constant paths, then the
result is a constant path. To see this more clearly we apply the stabilisation on 700 frames using
a crop window of 95% to give it less room. We see in 6.17(a) that the smooth path follows along
with the estimated drifting path, as a result the update transform that would be applied to the
crop window as seen in (b) has relatively no drift.

(a) Graph showing the estimated original path and the
smooth path obtained after the update transforms are
applied to the estimated original path.

(b) The result of applying the update transforms to the
fixed point (0, 0)

Figure 6.17: Stabilisation for 700 frames of the phantom heart video with a crop window 95% size
of the original.

As a solution, one could possibly add additional saliency constraints such that the crop window
follows more in the direction of the estimated path such that even if there is an error in the motion
estimation and that the overall motion between consecutive frames is well captured, then it is
possible to obtain a good stabilisation result.

Another way to possibly adjust the drift is that we could reapply the stabilisation with a trans-
lation model. We tested this and saw it does lead to a considerable reduction in the drift in the
case of this video.

6.5 Experiment 3: Real Heart

We now test the performance of the stabilisation algorithm on a video of the real heart.
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6.5.1 Set-up and Results

The video

Figure 6.18: Four frames from the real heart video.

The video is of a real heart2 showing surface deformations and having both cardiac and respi-
ratory motion. The video contains view dependent specular highlights due to the wet nature of the
surface. The video size is 300× 250 and has a frame rate of 25fps. The video contains a noticeable
amount of blurring at certain frames due to the frame rate and the speed of the cardiac contractions.
This type of video is an example of the types of sequences that could be encountered in a real setting.

Motion Estimation

We estimated the motion globally. SURF features are used as they are said to be more suited
to be tracked with the LK algorithm on the beating heart according to [14]. In figure 6.19 we see
the sparse optical flow field, notice the amount of blurring causing the lesser number of detected
feature points. Also, during the contractions, we see that there are more points detected as outliers
due to the different motion directions of the vectors in different areas.

In figure 6.20(b) we see that some features detected in specular highlight areas are considered
inliers by RANSAC which means they have an impact on the motion estimation. The impact can
be seen more clearly in figure 6.21(a) and 6.21(b) where we show the estimated path obtained from
both cases. For the stabilisation, we use the result obtained by excluding the specular areas.

We perform motion estimation using an affine model in one case and a translation model in the
other case.

For the affine model, motion estimation is done globally. We found that performing motion
estimation using an affine model on a smaller area led to a considerable amount of errors which
is mostly due to the lower feature point count, attempting to increase the detected points did not
lead to an improvement as already, in order to obtain a sufficient number of points, the feature
detector was set with a really small threshold value.

With the translation model, we estimate it as per the Median Flow tracker, whereby the transla-
tion is calculated as the median of the displacement of the inlier points. We found that performing
tracking globally or selecting a smaller area (around 50% of the original frame size) lead to some-
what similar results, but on a smaller scale, we get slightly different results due to each part of the
surface moving a bit differently.

2Source: Dr. Eddie Edwards, St. Mary’s Hospital
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(a) (b)

(c) (d)

Figure 6.19: Four frames 2/25 seconds apart showing the sparse optical flow field.

(a) With specular highlight detection (b) Without specular highlight detection

(c) Mask of the specular highlight areas

Figure 6.20: Images showing the detected features on the heart video. Green points are inliers, red
points are outliers.
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(a) Estimated global motion in the x and y direction without specular removal.

(b) Estimated global motion in the x and y direction obtained by excluding the specular areas from the tracking.

Figure 6.21: Effects of specular highlights on the motion estimation (Affine model).

58



Stabilisation

We apply the stabilisation using a crop window of 70% size of the original video. The resulting
obtained smooth path for an affine model can be seen in figure 6.22 and for a translation model in
figure 6.23. We see that with an affine model the obtained smooth path does not result in a zero
motion while with the translation model we have an almost zero motion. The reason why with the
affine model we still have motion in the stabilised path is that at some points the crop window
reaches a boundary so it would have to move.

In figure 6.25 we see the mean images obtained for the original video and the stabilised one.
In-painting was used to get a clearer image as otherwise specular highlight would have introduced
white blotches. In (a) and (b), for 300 frames it is almost all a blur, although we can make out
traces of lines in the stabilised one. In order to get a better visual, we adjust the contrast of
the images by remapping the intensities such that 1% of the pixels are saturated at low and high
intensities. We see more clearly in (c) and (d), where both images exhibit blur, but it is a bit less
with the stabilised one. An important thing to note is that, unlike the phantom heart which had
no surface deformations, the tissue deformation will introduce blurring in the mean images due to
the contractions even if the resulting video is well stabilised. So we also look at the mean for 80
frames in (e) and (f) which should have lesser amount of blurring from the contraction, as a result
we can see more distinct areas indicating that more images are aligned, notably in the top left part.

Figure 6.26 shows the mean images obtained using the translation model.

Figure 6.22: Graphs showing the estimated original path and the corresponding smooth path in
the x and y direction.

Table 6.2 shows the inter-frame error, we see that there is reduction in both the variance and
the mean indicating that there is less inter-frame motion, we used in-painting as otherwise the high
values of the specular would have falsely increased the amount of error.
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Figure 6.23: Graph showing the estimated and smooth paths in the x and y direction using a
translation model.

300 Frames 80 Frames

Original
Stabilised
(Affine)

Stabilised
(Translation)

Original
Stabilised
(Affine)

Stabilised
(Translation)

Mean 84.3809 24.5556 19.8255 67.4547 23.1436 19.2247

Variance 1260.2893 353.7194 250.633681 2429.8824 633.6314 289.1361

Table 6.2: Inter-frame error for the real heart video.

Figure 6.24: Four images showing the crop window on the original frames with the corresponding
stabilised frames.
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(a) Original video - 300 frames (b) Stabilised video - 300 frames

(c) Original video - 300 frames (with contrast ad-
justment)

(d) Stabilised video - 300 frames (with contrast ad-
justment)

(e) Original video - 80 frames (with contrast adjust-
ment)

(f) Stabilised video - 80 frames (with contrast ad-
justment)

Figure 6.25: Mean images for 300 frames using an affine model. In-painting was used.
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(a) Stabilised video - 300 frames (b) Stabilised video - 80 frames

Figure 6.26: Mean images for 300 frames and 80 frames using a translation model. In-painting was
used.

Motion Estimation Error

Besides the issues from specular highlights, the motion estimation tends to accumulate errors.
We can see that more clearly by tracking for a longer period. In figure 6.27 we see the result of mo-
tion estimation in the x and y directions both for the affine and translation models. The position of
two images taken from the video that should have the same position are not so in the estimated path.
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(a) frame 378 (b) frame 633

(c) Estimated path in the x direction using an affine model. The position of the images is
indicated on the graph.

(d) Estimated path in the x direction using a translation model. The position of the images is
indicated on the graph.

Figure 6.27: Tracking carried out on 700 frames with the specular areas excluded. We see that
although the images should be at about the same position we have an error in the estimated
position.
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6.5.2 Evaluation

We saw here that the results for stabilisation obtained for the real heart are not as good as
those we had obtained for the phantom heart due to the more complicated nature of the surface
deformation, nonetheless there is a noticeable reduction in cardiac and respiratory motion as seen in
the mean images and the inter-frame error, with the translation model giving the least inter-frame
error.

Motion estimating is an important step for the stabilisation. We have seen that specular
highlights have a considerable effect on the global motion estimation and eliminating them from
tracking does lead to an improvement.

When it comes to capturing the overall motion, an affine model performs worse over time. This
is most likely due to the higher DOF which introduces a considerable amount of error over longer
periods. The result of this is that we end up with residual motion in the final video which manifests
more and more over time. Also another reason to consider is that since the surface deformation is
non-linear, capturing the motion globally with a just an affine model is not well suited. Another
type of non-linear motion model that could capture the deformation more accurately might be
needed to improve the stabilisation.

Using a translation model for the stabilisation gives a better result in capturing the overall
motion and eliminating somewhat most of the respiratory motion and some of the cardiac motion.
There remains a small residual motion in the final video but it is lesser than with using an affine
model. However with the translation model, we have no compensation for scale or rotation.

We should also note that the quality of the video is not good whereby there is a considerable
amount of motion blur due to the speed of the contractions which makes tracking more difficult.
Using a better quality video could possibly lead to an improvement in the motion estimation.

6.6 Conclusion

An important part that determines the effectiveness of the stabilisation is the motion estima-
tion. We have seen that for a video containing a rigid background, such as that in experiment
1, we can acquire a good estimate of the global motion using a linear model and that the outlier
rejection scheme is able to eliminate points not belonging to the background. The end result of the
stabilisation is a video which is smooth and jitter free.

In the case of the phantom heart we can get a global motion estimate which describes well the
movement of the beating synthetic heart, there is however an accumulation of error in the motion
estimation leading to a slow drift in the final video. The result depends on the dimensions of the
original crop window. We saw that having a smaller crop window allows the smooth path to follow
along with the drift resulting in no almost no drift in the final video.

When applied to the real heart we see that we had to deal with more issues that affect the
motion estimation, notably the specular highlights as well as the blurring caused by the speed of
the periodic contractions which is not possible to capture clearly with just 25fps. Nonetheless,
despite the accumulating errors in the motion estimation, we can see a noticeable reduction in
motion. A translation motion model has a lesser amount of deteriorating motion estimate over
time due to the lower DOF than it is the case with an affine model, at the cost of not compensating
for scale and rotation, but it still does capture better the overall motion.

An important thing to note that, in the real setting, other types of situation could also be
encountered that would introduce more errors in the global motion estimation, such as the intro-
duction of instruments which would inevitably be present and other related issues as mentioned in
section 2.2.1.
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Chapter 7

Results and Evaluation II

In this chapter we perform a second set of experiments. Experiment 4 is aimed at investigating
predictive stabilisation using K-NN based on the L1 optimal paths stabilisation algorithm.

In experiment 5 we investigate the effectiveness of obtaining a motion estimate using manifold
learning and using it to perform post and predictive stabilisation.

In experiment 6, we test the effectiveness of the TLD tracker at offering real-time stabilisation
for small tracked areas.

7.1 Experiment 4: Predictive Stabilisation Using K-NN

In this experiment we test the effectiveness of applying predictive stabilisation using K-NN as
described in section 4.6.1.

7.1.1 Phantom Heart

We use the first 500 frames for training and 200 frames for testing. The result is compared to
the stabilisation of all the 700 frames. For the stabilisation we use a crop window 95% size of the
original. Figure 7.1 shows the absolute error for K = 5 and K = 1. We see that there is a bit less
error with the former than the latter, however there a small amount of error with K = 5 on the
training set (frames 400 to 500). The error manifests in the video with small constant jitter. Table
7.1 shows the mean and variance of the absolute error in the x and y direction.

x direction y direction

Mean 2.7170 1.8813

Variance 1.9693 0.9761

Table 7.1: Absolute error in position for the phantom heart video using K-NN for predictive
stabilisation. (K = 5)
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(a) K = 5.

(b) K = 1.

Figure 7.1: Absolute error in the y direction for the phantom heart video using K-NN for predictive
stabilisation. Frames 400 to 500 belong to the training set. Frames 500 to 700 belong to the test
set.

7.1.2 Real Heart

We perform L1 optimal paths stabilisation on 700 frames using a crop window 70% size of the
original. We then use 500 frames for training and the last 200 frames for testing. We then compare
the result of the stabilisation with the original stabilisation. We take K = 7 as it gave the least
amount of error. Figure 7.2 shows the absolute error in the y direction. We see that from frame
400 to 500 the error is relatively zero, which is expected as they belong to the training set. Starting
from frame 500 we see that there is a non negligible amount of error and the curve is not smooth,
this manifests itself as constant jitter in the final video. Table 7.2 shows the mean and variance of
the absolute error in the x and y direction. The effect is worse if the specular highlights are not
excluded.
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Figure 7.2: Absolute error in the y direction for the real heart video using K-NN as predictive
stabilisation based on closest image match.

x direction y direction

Mean 8.70 7.95

Variance 119.30 90.01

Table 7.2: Absolute error in position for the real heart video using K-NN for predictive stabilisation.

7.1.3 Evaluation

We have seen in this experiment that we are not able to obtain good stabilisation results using
the nearest neighbour approach.

Even though there is small absolute error in the case of the phantom heart, the obtained video
still exhibits jitter. The main reason why we do not get a good result with the phantom heart is
because of the error in the motion estimation. To test for this, we redid the experiment using a
corrected motion estimate, the error obtained was really small and the jitter was almost eliminated.

In the case of the real heart, the technique performs even worse. Perhaps we could have ob-
tained a better result had we used more frames for training but we were limited by the length of
the video.

This was the simplest idea by which we could attempt to do predictive stabilisation and it turned
out that it does not work. Other methods could be more suited. For instance we could reduce
the amount of jitter by making the amount of stabilisation applied to the current frame depend on
the value applied to the previous so as to prevent having erratic motion. An improvement could
possibly be obtained if instead of looking for the closest image matches for one frame, we could
look for the closest matched sequences of images. However we did not test them in this project.
Other approaches are required.

Also, a limitation of this technique is that it is computationally expensive because we are looking
for the nearest neighbour using the euclidean distance between each of the images. Rescaling the
images to a smaller size does help but it could lead to less accurate results. Instead of comparing
entire images, another method would have been to perform tracking to obtain the position and
based on the position apply the corresponding update transform, however when we tried this, we
obtained worse results due to the errors in the motion estimate.
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7.2 Experiment 5: Using Manifold Learning

In this experiment we explore whether it is possible to obtain a good overall motion estimate
using manifold learning. We also test the effectiveness of the technique to perform post and pre-
dictive stabilisation.

7.2.1 Phantom Heart

We perform dimensionality reduction for 300 frames using Laplacian Eigenmaps with 3 dimen-
sions and 8 nearest neighbours.

(a) Manifold embedding (b) Evolution over time

(c) Evolution over time for the first component E1 (d) Amplitude Spectrum of the first component E1

Figure 7.3: Manifold obtained using 300 frames of the phantom heart video.

Motion Estimation Using Image Reorganisation

Looking at the obtained manifold in 7.3(a) we see that the points lie on a closed path. One
interesting thing we could do is reorganising the images according to their order along the manifold.
Doing this, we obtain a simulated high frame rate video of one cardiac cycle. When estimating the
camera path for the reorganised images, we see in figure 7.4 that the drift from frame 1 to frame
300 is roughly 3 pixels in the x direction and 1 pixel in the y direction.
The result is interesting in the sense that we can now simply apply the stabilisation and reorganise
the frames thus effectively having an extremely small error in the motion estimation. However this
only works well here because we are dealing with an ideal case such as that with the phantom heart
which has exactly the same repetitive motion for the entire video. By reorganising the frames, the
inter-frame displacement was effectively reduced, making the optical flow estimation more accurate.
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(a) The estimated original path and the stabilised path in the x and y direction for the reorganised video.

(b) Mean image for 300 frames using an affine model.
There is almost no distortion.

Figure 7.4: Image reorganisation according to their order on the manifold.

300 Frame

Original
Stabilised

(according to manifold)
Stabilised

(back in original order)

Mean 27.8895 2.2598 5.6733

Variance 271.9184 0.9902 15.9995

Table 7.3: Inter-Frame Error after reorganising the images of the phantom heart.
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Trajectory Reconstruction

Global We estimate the translation motion globally in the original video by applying the Median
Flow tracker on 300 frames. We then perform least squares regression to obtain an expression for
the x and y coordinates as a linear function of the embedded coordinates.

Figure 7.5 (a) shows the original estimated position y as a function of the embedded coordinates
E1 and E2 in blue, the result obtained by performing regression is in red. Notice how the blue
trajectory seems to be following as per the shape of the manifold but it is as if it is drifting which
is expected because of the drift in the tracking. The obtained red trajectory has no drift. Figure
7.5 (b) shows the position y as a function of the frame number for the original estimated tracked
position (blue) and the one obtained as a function of the embedded coordinates (red). We see
that the obtained shapes are similar. Figure 7.5 (c) shows the effect of the number of embedded
coordinates on the shape of the obtained path. We see that with 3 components we manage to get
a similar shape.
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(a) Graph showing the position y as a function of the first two components E1 and E2. The
estimated trajectory from tracking of 300 frames is in blue. The red trajectory is the one
obtained with regression.

(b) Graph showing the estimated motion (in blue) and the reconstructed motion using the first
3 components from the manifold (in red). Notice how there is no drift in the reconstructed
position.

(c) Reconstructed position using two compo-
nents

(d) Reconstructed position using three compo-
nents

Figure 7.5: Trajectory reconstruction using the manifold.
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Local We now perform tracking on a local region on 300 frames of the video. We also crop that
area and use the images to construct the manifold. We see that the manifold obtained has a slightly
different shape than the one obtained globally. We see the results in figure 7.6.

(a) Tracked area. The bounding box
is fixed.

(b) Obtained manifold for the the region shown
in (a).

(c) Graph showing the position y as a function
of the first two components E1 and E2 from the
manifold. The estimated trajectory from track-
ing of 300 frames is in blue. The red trajectory
is the one obtained with regression.

(d) Graph showing the position y as a function of the first two components E1 and E2 from
the manifold. The estimated trajectory from tracking of 300 frames is in blue. The red one is
obtained as a function of the embedded coordinates.

Figure 7.6: Trajectory reconstruction using manifold learning at a local region.
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Stabilisation

To perform stabilisation in the case of the paths obtained using manifold learning, we simply
apply the inverse transformation of the motion estimate, applying the L1 optimal paths stabilisa-
tion would yield the same result. For the stabilisation of the original tracking motion estimate we
apply the L1 optimal paths technique since the original tracking has errors.

(a) Stabilised with manifold learning (Local) (b) Stabilised with L1 optimal path using path
estimate from tracking (Local)

(c) Stabilised with manifold learning (Global) (d) Stabilised with L1 optimal path using path
estimate from tracking (Global)

(e) Original

Figure 7.7: Mean images (with contrast adjustment) for 600 frames for the global and local case.

Tracking is performed on 600 frames. The mean images obtained for the stabilisation for both
the local and global motion estimation mentioned previously are in figure 7.7. We see that the
stabilisation obtained by using the path estimate from the manifold yields the best result both
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in the global and local case. We see that in the case of (d) there is directional blurring in the y
direction due to the drift mentioned in the previous chapter. The drift is less pronounced with the
local motion estimation in (b) but nonetheless (a) is more sharp in the local tracked area indicating
that the area remains perfectly stable.

Predicting stabilisation for new frames based on manifold

We use 300 frames as the training set for estimating a function of the x and y coordinates as a
function of the embedded coordinates. We use K = 3 for the nearest neighbour. We then test the
prediction on 600 new frames. We see that we obtain a good stabilisation result as attested by the
mean images (figure 7.8), the inter-frame error (table 7.4) and the absolute error (table 7.5).

(a) Original (b) Obtained with predictive stabilisation

Figure 7.8: Mean images (with contrast adjustment) for 600 frames using predictive stabilisation
based on manifold.

600 frames
Original Stabilised

Mean 24.4481 8.0656

Variance 163.9536 25.9227

Table 7.4: Inter-frame error for 600 frames of the phantom heart using predictive stabilisation
based on manifold learning.

x direction y direction

Mean 0.018 0.021

Variance 0.00029 0.00047

Table 7.5: Absolute error in position for the phantom heart video.

7.2.2 Real Heart

We perform dimensionality reduction for 300 frames using Laplacian Wigenmaps with 3 dimen-
sions and 8 nearest neighbours. We use in-painting on the images so as to reduce the effect of the
specular highlights. Figure 7.9 (a) shows the obtained manifold. (f) shows the evolution of the
second component over number of frames without specular in-painting, we see when compared to
(d) that specular highlights have a considerable impact.
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(a) 3D Manifold embedding (b) 2D Manifold embedding

(c) Evolution over time for the first component E1 (d) Evolution over time for the second component E2

(e) Evolution over time (f) Evolution over time of the second component E2
without specular in-painting for the images

Figure 7.9: Manifold for the real heart.

Trajectory Reconstruction

Global We estimate the translation motion globally in the original video by applying the Median
Flow tracker on 300 frames. We then perform least squares regression to obtain an expression for
the x and y coordinates as a linear function of the embedded coordinates E1, E2 and E3. We
see the result of regression in red in figure 7.10 (a) and (b). Figure 7.11 (a) and (b) show the
reconstructed paths in the x and y position obtained using the first 3 components. We see that
overall the motion is similar apart from the drift in the motion estimate obtained from the tracking.
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(a) (b)

Figure 7.10: Graphs showing the position as a function of the first two components E1 and E2 from
the manifold. The estimated position from tracking of 300 frames is in blue. The red trajectory is
the one obtained with regression.

(a) Estimated x position (blue) and the reconstructed x position (red) as a function of first 3 embedded
coordinates.

(b) Estimated y position (blue) and the reconstructed y position (red) as a function of first 3 embedded
coordinates.

Figure 7.11: Reconstructing x and y as functions of the embedded coordinates
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Figure 7.12: Graph showing the estimated path from tracking and the reconstructed path. Notice
how there is no drift in the reconstructed path. For the same images at frame 379 and 633 shown
in figure 6.27 they are in the same position according to the reconstructed path.
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Local We perform local tracking on the bottom left hand side of the frame. The bounding box
is fixed. We use the Median Flow tracker.

(a) Tracked area. The bounding box is fixed. (b) Graph showing the position y over frames.
Estimated from tracking (Blue). Reconstructed
from the manifold (Red).

(c) Least squares regression for the y position.

Figure 7.13: Manifold learning for a local area.

Stabilisation

For the stabilisation, to see the effect over longer periods, we carry out the tracking on 700
frames in the global case.

Looking at the mean images obtained for the global stabilisation in figure 7.14, we that the
one obtained using manifold learning has the most distinct features. However when we look at
the inter-frame error in table 7.6, we see that it is slightly lower in the one obtained using the L1
optimal paths stabilisation. This is most likely due to the fact that by using the original tracked
estimate there is a bit more detail about small motion which is compensated for, something that
is not present in the reconstructed path using the manifold.

700 frames

Original
Stabilised

(L1 optimal paths)
Stabilised
(manifold)

Mean 72.036310 43.224052 48.832651

Variance 896.570364 565.865825 595.015015

Table 7.6: Inter-frame error for the whole frame (Global).
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(a) Stabilised with manifold learning (b) Stabilised with L1 optimal camera paths using
the estimated tracked path.

(c) Original

Figure 7.14: Mean images (with contrast adjustment) for 700 (Global)

For the local stabilisation we see that in the bottom left corner of the mean images in figure
7.15, the one obtained with manifold learning yields the best result. However in the inter-frame
error (table 7.7), the one obtained using the manifold is higher, which could be explained by the
fact it was calculated on the whole image and not in the local area on which we carried out the
stabilisation. This also shows that the inter-frame measure is merely indicative and does not fully
represent the perceived stabilisation.

300 frames

Original
Stabilised

(L1 optimal paths)
Stabilised
(manifold)

Mean 71.9481 49.7140 59.7316

Variance 851.2438 790.5801 824.4883

Table 7.7: Inter-frame error for the whole frame (Local).
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(a) Stabilised with manifold learning (b) Stabilised with L1 optimal paths using original
tracked estimate

(c) Original

Figure 7.15: Mean images (with contrast adjustment) for 300 (Local).

Predicting Stabilisation

We perform stabilisation using manifold learning on 700 frames. We use the first 500 frames of
the video as the training set i.e. the first 500 frames are used for the regression. We then perform
predictive stabilisation for last 200 frames. To test the values obtained from the prediction, we
also perform stabilisation using all the 700 frames to perform the regression in order to obtain the
absolute error. We use K = 7 for the nearest neighbour.

In figure 7.16 we see that there is a reduction in motion whereby it is possible to see some
features in the image. Table 7.8 shows the mean and variance of the absolute error of the x and
y direction. Figure 7.17 shows the absolute error in the y direction over frame. We see that this
time we have a considerably less amount of error in the absolute error.

x direction y direction

Mean 0.4612 0.4225

Variance 0.3347 0.3906

Table 7.8: Absolute error in position for the real heart video.
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(a) Stabilised with manifold learning (b) Original

Figure 7.16: Mean images (with contrast adjustment) for 300 using predictive stabilisation (Global).

Figure 7.17: Absolute error in the y direction for the real heart video using predictive stabilisation
based on nearest embedded coordinates.

7.2.3 Evaluation

We have seen that it is possible to obtain a good overall motion estimation using manifold
learning. We have performed motion estimation by tracking on an initial set of frames and computed
the corresponding manifold. We have found that we can express the x y coordinates as a linear
function of the embedded coordinates. The motion estimate obtained this way can be used to
perform stabilisation by simply applying the inverse of the motion estimate.

In the case of the phantom heart we have seen that we can obtain good global and local
stabilisation using the manifold learning technique. Although we can also obtain good stabilisation
using the L1 optimal paths, however it suffers from the problem of the accumulation of errors in
the motion estimate.

In the case of the real heart we see that using manifold learning for stabilisation yields a better
outcome whereby there is roughly no deviation over time due to an improved motion estimate. Using
the original motion estimate with the L1 paths algorithm, which seems to yield a lesser inter-frame
error than the case of manifold learning, is also capable of stabilising the video, however there is a
residual amount of motion which is seen in the mean image when attempting to track over longer
periods of time.

The manifold learning technique seems to offer a better solution when used with a translation
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model whereby it uses directly the motion estimate based on the manifold to perform the stabili-
sation by simply using the inverse to counteract the motion. Using the inverse is not possible with
the motion estimate obtained from tracking, as due to the errors in the motion estimate, the image
would eventually end up going out of frame.

We also saw that in the case of manifold learning, the predictive stabilisation yields much less
error than using directly the the update transforms as in experiment 4. However we should note
that we used an affine model in experiment 4 and not a translation model which could have yielded
a lower error.

A limitation for the predictive stabilisation based on the nearest neighbour approach is that
it is computationally expensive when used globally as we are comparing entire images. Using it
on a smaller sized image or locally can be more efficient. Also we should note that the specular
highlights in-painting technique can also be computationally expensive depending on the size of
the image.

7.3 Experiment 6: Tracking and Stabilising with TLD

For this experiment we briefly look the possibility to use the TLD tracker to perform real-time
tracking and stabilisation for medical image sequences. We select an area for tracking which can
be seen in figure 7.18. Tracking is performed twice on an initial set of 300 frames so as to increase
the chances of the detector learning and then tracking is carried on the entire video of 1000 frames.
Figure 7.19 shows the x and y coordinates of the centre of the bounding box, we see that the tracker
fails at some frames (indicated by the lack of connecting lines), this is due to the change incurred
to the area due to the contractions.

The result of simply cropping the bounding box at each frame to perform stabilisation is show
as a mean image in figure 7.20. We see that the result obtained suggests a good stabilisation result
whereby even in the mean image obtained with 1000 frames we can still distinguish the tracked
area, blurring is inevitable due to the surface deformations.

(a) The area used for tracking. (b) The Red bounding boxes indicate possible
matches according to the detector. The yellow
circle indicates the position.

Figure 7.18: Tracking using TLD

The reason why the TLD tracker is capable to perform well is that it is able to adjust the
position of the tracker by the addition of the adaptive detector.

Improving Performance

We could also note that, given that in the scene the motion is repetitive then it is possible to
increase the performance of the tracker by limiting the search space of the detector since it works
by scanning the whole image with a sliding window.

To reduce the search space we could perform the tracking on a smaller search area of the
frame after an initial tracking phase to determine the maximum distances covered in the x and y
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(a) The x position of the centre of the bounding box. The locations where there are no connecting lines is
where the tracker and detector failed.

(b) The y position of the centre of the bounding box. The locations where there are no connecting lines is
where the tracker and detector failed.

Figure 7.19: The x and y coordinates of the detected object over time.

(a) 300 frames. (b) 1000 frames

Figure 7.20: Mean images (with contrast adjustment, without specular in-painting).

directions.

An alternative method would be to implement a prediction scheme to determine the area to
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scan. We tested to see if it would work:

We repeat the tracking on an initial set of frames to get a better detection performance until
there was relatively a small amount of tracking failures, the missing locations are interpolated.
After that we determine the maximal amount of displacement between two consecutive frames
in order to determine a size for the search area box (we call this training phase). For the rest
of the video, the search box would move according to the position of the location of the object,
determining the search area for the next frame.

In the eventual case when the tracking fails, then the search box would still continue moving
according to the closest obtained path during the training phase. We determine this simply by
finding the closest segment match, in the paths obtained during training, of the segment just
before the tracking failed. The position of the search box would then move according to next
locations starting from the closest match found.

We have implemented this as a test and found that it does lead to an considerable improvement
in performance. Figure 7.21 shows frames from the tracking, the blue box is the reduced search
area. The tracking failed at frame 789 (b) the blue box continues to follow according to the previous
closest encountered trajectory from the training phase. The box deviates a bit in frame 799 (c). (e)
shows the re-detection. We have used here a small search box, we could consider using a slightly
larger search box to deal with situations like in (d).

Other methods might be more adapted for reducing the search area, but we have found that it
is possible to increase performance but adopting such prediction schemes.

(a) Frame 788 (b) Frame 789

(c) Frame 790 (d) Frame 799

(e) Frame 800 (f) Frame 801

Figure 7.21: Search area prediction scheme for TLD tracker. Blue box indicates search area.
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7.4 Conclusion

In experiment 4 we have seen that using the nearest neighbour approach to perform predictive
stabilisation using precomputed update transforms did not yield a satisfactory result. It would give
a good result in the case of the phantom heart if there were no error in the motion estimate. In the
case of the real heart however, the problem is still further exacerbated due to the type of motion of
the cardiac surface. Alternative means for extending the L1 optimal paths stabilisation algorithm
need to be found.

In experiment 5 we have seen that performing motion estimation and stabilisation using man-
ifold learning seems to give good results somewhat comparable to those obtained using the L1
optimal paths algorithm. The advantage in the manifold learning case is that it is possible to ob-
tain an estimate for the overall motion with there being no drift / error in the motion estimate. The
L1 optimal paths technique would yield better results if the motion estimate were more accurate.

We have only used three embedded coordinates from the manifold, we have tried using more
but it did not lead to an improvement and in some cases the results were worse.

The technique using manifold learning used in a post-processing setting gives good results, how-
ever for predictive stabilisation, even though we have obtained satisfactory results, the approach
is limited in the sense the scene has to be predicable. Using it in the real setting were different
and sometimes unpredictable situations would cause the method to fail, a simple case would be
if the camera were to move then it would be impossible to calculate the nearest neighbour accurately.

Stabilisation using adaptive trackers such as TLD, as briefly seen in the last experiment, seems
to offer a possible alternative solution for performing stabilisation and should require further in-
vestigation.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The motivation behind this project is to investigate 2D virtual motion stabilisation techniques
for their effectiveness at compensating cardiac and respiratory motion in medical image sequences
acquired during MIS interventions as it would be greatly of aid to the surgeon.

The aim of this project was to test the effectiveness of the current state of the art 2D stabilisation
technique proposed by Grundmann et al. [1] when applied to the medical image sequences contain-
ing cardiac and respiratory motion. We also aimed at exploring alternative methods by which we
could perform stabilisation. We have looked at using Laplacian Eigenmaps to learn the manifold
from the video and find a linear mapping from the embedded coordinates to the camera path co-
ordinates. The mapping obtained can then be used to perform stabilisation on the rest of the video.

We have successfully implemented both stabilisation techniques in MATLAB as well as a mod-
ified specular highlight detection and in-painting method.

In a first set of experiments we have tested the performance of the stabilisation algorithm on
three videos, and have seen that there is reduction in motion.

The first video was a hand-held video with considerable shake containing a rigid background,
the type of video the stabilisation algorithm was designed for. The end result of the stabilisation
is a video with a jitter free smooth camera path.

The second video was that of a phantom heart with a static camera, applying the stabilisation
algorithm with an affine model produces a video which eliminates the cardiac motion. However
due to an accumulation of errors in the motion estimation, the end result has a slow directional
drift which can be corrected.

For the third experiment we applied the algorithm to a video of the real heart, we have noticed
that there is a noticeable reduction in the motion from the cardiac and respiratory cycle, however
due to the complicated nature of the surface movement, the obtained global motion estimate is
not very accurate leading to the persistence of some residual motion. Nonetheless, the result is
satisfactory.

In the second set of experiments we looked at performing predictive stabilisation based on the
nearest neighbour approach. We also looked at alternative possible means for stabilisation.

In the forth experiment we have found that extending the L1 optimal paths algorithm into a
simple predictive stabilisation scheme based on K nearest neighbours does not lead to a satisfactory
stabilisation result. Alternative means to extend the algorithm should be investigated.

In the fifth experiment we have investigated whether it is possible to perform post and pre-
dictive stabilisation based on manifold learning. We have found that a stabilisation based on
a translation model is achievable and yields good overall stabilisation results. Using just three
embedded coordinates does not compensate for fine motion detail however. The predictive stabil-
isation scheme based on K nearest neighbour also leads to good results overall, but the technique
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is computationally expensive if applied globally.
In the last experiment we have briefly looked at the performance of an adaptive tracker called

TLD, we have seen that it is possible to achieve real-time stabilisation by tracking a specific area. It
is also possible to increase the real-time performance by adopting a prediction scheme. However the
tracker fails occasionally to detect the object even though it is still present in the scene due to the
rotation induced by the contractions. The limitation is identified by the authors [31]. Nonetheless
the tracker shows potential and should be further investigated.

8.2 Future Work

For future work we see two possible directions. One based on using manifold learning as a means
to perform stabilisation and the other is using local motion estimation by tracking landmarks using
adaptive trackers such as TLD.

With the manifold learning technique, we have seen that it is possible to achieve local stabili-
sation on different areas in the frame by computing the local manifold of that area. Exploring the
possibility of using hierarchical manifold learning [29] to obtain motion estimates in a hierarchical
manner seems like a good possibility. Having motion estimates for each of the local areas could
make it possible to actively change the stabilised area or to improve the global stabilisation. We
have only applied the technique to a translation model, one could also explore if it is possible to
obtain a motion model with higher DOF by using the motion estimate of all of the tracked areas.

We could also consider trying different manifold learning techniques and different distance
measures. Also we have modelled the relation between the x,y coordinates and the embedded coor-
dinates as linear, which turns out to yield good results, nonetheless we could still possibly explore
using a dynamical motion model instead as in [26].

With the TLD tracker, a possible direction would be looking for means to make it more suited
at detecting landmarks on deformable tissue and perhaps implementing multiple object trackers
to track different landmarks in the scene such that if tracking on one of landmarks fails then it is
possible to continue tracking from the other landmarks.

Lastly, Another thing one could possibly explore would be the challenging task of finding the
means of extending the L1 optimal paths technique into real-time.
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Appendix

Running the Code

In order for the full implementation to run, the following are required:

• MATLAB R2013a+

• OpenCV 2.4+

Running the main GUI in MATLAB can be done by executing the file stabilization gui.m.

Compiling the C++ code can be done through MATLAB by running the compile.m file, how-
ever a compiler has to be linked with MATLAB. Instructions on how to do that in MATLAB can
be obtained by typing the following mex - help. Typing mex -setup allows the user to select or
change the compiler configurations.

A readme file is provided with the code to give additional instructions.
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