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Abstract

The work in this treatise has dual aims. The first is the numerical distillation of the Gentlest

Ascent Dynamics (GAD) in order to develop a numerically stable and globally convergent index-1

saddle-point-finding algorithm. This is for the purpose of solving an important but difficult problem

in computational chemistry and physics of finding the transition point along the minimum energy

paths on potential energy surfaces. These transition points are index-1 saddle points. The second

aim is to construct a global optimisation algorithm that takes advantage of the Morse-theoretic

properties of saddle points.

The solution trajectories of the GAD autonomous differential equations escape the basins of attrac-

tion of minima and converge at the low-lying index-1 saddle points. However, the GAD equations

suffer from an unfavourable property in numerical implementation of easily being unstable. The

work in this thesis presents modified GAD algorithms that are computationally cheap, numerically

stable and convergent. In addition, a solution algorithm that is able to find all the saddle points

on a function is introduced.

Furthermore, a novel deterministic algorithm is proposed for the unconstrained global optimisation

of non-convex and nonlinear objective functions. The method makes use of the solution trajectories

of the aforementioned GAD equations that converge at saddle points. The saddle points are then

used as transition points to aid exploring a multimodal function with the goal of always finding

better minimisers at every iteration. Numerical experiments are conducted on prescribed standard

test problems from literature are reported together with an application to the global optimisation

of the potential energy surfaces of Lennard-Jones clusters.
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Glossary

En n-dimensional space of real numbers satisfying the properties of a metric space.

Rn n-dimensional space of real numbers.

GAD Gentlest Ascent Dynamics.

GMRES Generalised Minimal Residual.

7→ “maps to”.

→ “maps to”.

∈ “member of”.

ODE Ordinary Differential Equation.

⊂ “subset of”.

17



1
Introduction

For since the fabric of the universe is most perfect and the work of a most wise Creator,

nothing at all takes place in the universe in which some rule of the maximum or minimum

does not appear.

– Leonhard Euler, 1744 [1]

We are faced with decision problems on a daily basis. As an example, one may ask: what time

should I wake up to make it for my meeting on time? This scenario may seem banal at first but

a less cursory examination will make one realise there are certain interesting intricacies that are

associated with this question. It is easy to realise that the most basic information the person needs

in order to make this decision is what time the meeting is starting and how long it takes to get to

there. Using this knowledge the person can easily estimate the best time to wake up.

However, this simple problem can easily become complex after some thought. It is obvious at

this point that whatever decision that will be made will depend on how much the person knows

and what resources the person has. This decision will attempt to make the best use of this knowl-

edge and resources. Now let’s assume that there are many possible routes that this person could

use to get to work. This would in turn mean that the best decision will be determined by the

person’s knowledge of what the best and quickest route to work is. So, if this person is convinced

that a certain route is the quickest then this knowledge will factor into the decision of what the

best time to wake up is. We can now ask very beguiling questions: what if this person’s estimation

of the quickest way to get to work is inaccurate? What if there is a quicker way he or she did

not know about? In that case, the decision may be the best one with respect to the person’s local

knowledge but not the best one globally.

Generally, to optimise involves making the best decision in order to make the best use of re-

sources [2]. As illustrated from the example, optimisation problems are embroidered in all the

decisions people make because they conceptualise the notion of making the best use of resources
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and knowledge one has available. These decisions may be locally or globally optimal depending

on the knowledge one has. But everyone, if given a choice, would want to be omniscient in order

that they make the globally optimal decision every time — and that is the motivation for global

optimisation.

1.1. A Brief Overview of Optimisation Theory and Non-linear

Multi-modal Functions

Optimisation can be compactly but clearly defined as the selection of a best element from some set

of available alternatives, usually with some criteria [2, 3]. The measure of goodness of an alternative

is specified by an objective function [2]. Therefore, optimisation is a field of applied mathematics

and numerical analysis that deals with finding the extremal value of an objective function in its

domain of definition, subject to various constraints [4]. This is mathematically written out as:

maximise/minimise
x

F (X)

subject to fi(x) ≤ bi, i = 1, . . . ,m.
(1.1)

where F (X) is called the objective function and fi(x) ≤ bi is the set of constraints.

A commonly used categorisation of optimisation problems, also referred to as mathematical pro-

gramming problems, is in relation to the convexity of the objective function [4]. Using this discrim-

ination then problems can either be convex or non-convex.

A problem is convex if it reduces to a minimisation of a convex function where the admissible

optimal points are said to be within what is called a convex set [4]. From the illustration in Figures

1.1 and 1.2, a convex function is one with a single trough and generally “∪” shaped, while a concave

function is its mirror image and has a single “bump” and “∩” shaped. Because of this symmetry,

it suffices to talk only about the minimisation of a convex objective function and we will adhere to

this convention for the rest of this thesis. Since a convex function has a single lowest point, finding

this optimum point would constitute as finding both the local and global minimum point on the

curve. This is a fundamental result of the analysis of convex functions [4]. This result is practically

important because optimisation algorithms perform termination tests at each iteration and it is

thus imperative that they are computationally efficient. As a result, all termination conditions

of these algorithms are local conditions as they test whether the current solution is optimal with

respect to a predefined neighbourhood. [4]. Therefore, if the defined problem is convex, then that

is enough to guarantee that a solution is globally optimal [4].

On the other end of the spectrum are non-convex problems. These problems have many different

local optima. An intuitive illustration is shown in figure 1.3 below where the objective function is

convex in some sections and concave in others yielding the multiple optima.

The reason this problem is non-convex is because the admissible points are within a non-convex set.

Finding the globally optimal point among the numerous locally optimal points in such problems

is an extremely difficult task, and the field dealing with finding the extremal points of non-convex
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x

y

Figure 1.1.: Convex curve

x

y

Figure 1.2.: Concave curve

x

y

Figure 1.3.: Non-Convex curve

functions is called Global Optimisation [4]. Continuing with the intuition introduced in the example

from the proceeding section, this is analogous to one making decisions that consider all the possible

information rather than taking into consideration only the local information one has. From the

wide range of current uses of optimisation available from the advances in the theory made so far,

it is evident that attaining the goal of global optimisation will greatly improve the quality of our

lives [5].
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1.2. Premise of this Research

Non-linear and non-convex functions appear naturally in numerous models representing the real

world. A vast majority of the objective functions that represent decision problems are non-convex.

Because these functions have numerous maxima and minima, they have numerous saddle points

too. A saddle point is a point in the domain of a function that is a stationary point but is neither a

local maximum or minimum. The name is derived from an observation in a prototypical surface in

two dimensions as illustrated in figure 1.4. It is formed as the result of a surface that curves up in

one direction and curves down in a different direction; it appears as a saddle or a mountain pass.

Figure 1.4.: Illustration of a two dimensional saddle point (Source: Wikimedia Commons)

A very good example of non-convex functions occurring in the real-world are the potential energy

functions that represent the energy changes in atoms undergoing a chemical change. A common

and important problem in theoretical chemistry and in condensed matter physics is the calculation

of the rate of transitions in phenomena such as chemical reactions. The configuration of atoms

changes in some way during this transition. The interaction between the atoms can be obtained

from a determined potential energy function. Research has shown that all these transitions happen

in such a way that they seek out a minimum energy path that converges at the globally stable

minimum of this function as a final state. This minimum energy path is shown to traverse through

a transition state that is a saddle point before reaching the final stable state with minimal energy [6].

As a result of the importance of this transition state, there has been a lot of research into saddle-

point-finding methods. However, there has not been a single successful method that is able to

differentiate and target the different types of saddle points depending on the number of minima

they are connected to. Finding a saddle point is a much more difficult task than finding a minimum

point. The class of algorithms that have shown much promise are the basin-escaping methods that

have inspired a large number of new methods including the Gentlest Ascent Dynamics (GAD)

[6, 7, 8, 9].
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The previously described natural processes performs a stability-based global optimisation of a

non-convex potential energy function. It does this with the least energy by following a path that

goes through a saddle point. This illustrates the natural relationship between saddle points and

global optimisation.

Generally, problems in global optimisation are formulated in terms of finding a point, say x, in

a solution space set X, called the feasible region, where an objective function f : X → T attains

a minimum (or maximum) value. T, in this case, is any ordered set and is usually a subset of the

set of real numbers R. X, on the other hand, is usually a subset of the vector space Rn and may

be bounded by constraints, a case that will not be considered in this thesis. The extremal point x

can then be written out as (x1, ..., xn), and the xi’s are called decision variables.

The class of global optimisation problems that are of interest in this thesis are those that have

non-linear and non-convex objective functions. These functions have a large number of local min-

ima and maxima and finding an arbitrary local optimum is a straightforward task of applying any

local optimisation methods like a gradient method. However, finding the global optimum, a global

minimum in our case, of such functions is a difficult task. As stated in the previous section, most

optimisation algorithms are iterative in nature and perform termination tests at each iteration. As

a result, all termination conditions of these algorithms are local conditions as they test whether

the current solution is optimal with respect to a predefined neighbourhood. They start at an arbi-

trary initial point and generate a sequence of iterates that converge at a locally optimal point [2].

Therefore, to find a global minimum, the initial point should be as close as possible to the global

minimiser.

Ideally, a global optimisation algorithm tries to search the whole solution space for the most op-

timal solution. Historically, the first methods used in global optimisation are divide-and-conquer

methods and they came with the advent of computers [4]. From then, there has been an explosion

of global optimisation algorithms and they can be can be split into two categories: deterministic

and stochastic [4].

Most global optimisation algorithms have two separate phases. The first is the global phase which

involves an exhaustive exploration of search space. The method used to do this can either be deter-

ministic or stochastic. At each iteration of this global phase, a local optimisation procedure is called

to identify a locally optimal point. This is known as the local phase and is usually deterministic.

Most global optimisation methods use local optimisation methods as a tool. Most calculations take

place during the local phase; therefore, a robust and reliable local optimisation algorithms with

fast convergence is important [4].

1.3. Contribution of this Research

This work has dual aims. The first goal is to develop a numerically stable and globally convergent

index-1 saddle-point-finding algorithm. The second aim is to construct a global optimisation algo-

rithm that takes advantage of the Morse-theoretic properties of saddle points.
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(a) Saddle Point (b) Global Optimisation

Figure 1.5.: Dual Aims: Saddle Point Finding and Global Optimisation Using Saddle Points
(Source: Wikimedia Commons)

The construction of the saddle-point finding method is inspired by the work of Weinan E and Zhou

in [7] on Gentlest Ascent Dynamics (GAD). They present a set of differential equations whose

dynamics converge toward the index-1 saddle points of the objective function.

Generally, the invariant sets or the fixed points of the dynamics of differential equations corre-

spond to the stationary or critical points of the analogous underlying function. These critical

points can be maxima or minima. Each of these fixed points have an associated basin of behaviour

having all initial conditions from which the dynamics lead to or lead away from that fixed point as

time goes to infinity. These basins are separated by separatices on which the dynamics converge

to saddle points on the original objective function. The GAD seeks out this separatrix with the

saddle-point-attracting behaviour and its solution trajectories escape the basins of attraction of

minima and converge at the low-lying index-1 saddle points.

However, the GAD equations suffer from an unfavourable property in numerical implementation of

easily being unstable due to some assumptions made during their construction.

The work in this thesis seeks to overcome the challenges that arise in trying to discretise and

convert GAD into a robust, complete and convergent numerical algorithm.

Furthermore, a novel deterministic algorithm is proposed for the unconstrained global optimisation

of non-convex and nonlinear objective functions. The method makes use of the solution trajectories

of the aforementioned GAD equations that converge at saddle points. The saddle points are then

used as transition points to aid exploring a multimodal function with the goal of always finding

better minimisers at every iteration of its global phase.

The objectives of this work are:

• Construct a numerically stable and globally convergent saddle-point finding algorithm that

uses GAD;
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• Construct GAD-based algorithm that is able to explore any non-linear differentiable function

and find all its saddle points;

• Design and construct a global optimisation algorithm that uses saddle points as transitional

points;

• Compile and analyse of the numerical results from testing on the all the algorithms con-

structed in this work;

• Apply the constructed global optimisation algorithm on the global optimisation of the poten-

tial energy functions of Lennard-Jones clusters.

1.4. Outline of this paper

Chapters 2 to 5 contain background material relevant to this project. These chapters have a semi-

didactical purpose and are meant to give a semi-substantial and intuitive overview of the necessary

background material needed in this work. This was done in order to make this a self-sufficient

treatise given the divergent underpinning concepts. Readers can skip the background chapters

containing material they are already familiar with and go straight to chapter 5, and refer to the

relevant preceding material when needed. Chapters 6 to 12 contain the main body of work.

The outline of the rest of this thesis is as follows:

• Chapter 2: This chapter introduces basic notions in differential topology and Morse theory

required for this work;

• Chapter 3: This chapter offers background material on Ordinary Differential Equations and

Continuous Dynamical Systems;

• Chapter 4: This chapter gives an overview of local and global optimisation theory, and

global descent functions;

• Chapter 5: This chapter introduces notions on the Gentlest Ascent Dynamics pivotal to

this work;

• Chapter 6: This chapter involves the conversion of the Gentlest Ascent Dynamics into a

stable and convergent numerical algorithm;

• Chapter 7: This chapter deals with solving the problem of finding all the saddle points on

a function;

• Chapter 8: This chapter concerns the design, construction and development of a global

optimisation algorithm using saddle points found with the Gentlest Ascent Dynamics;

• Chapter 9: Contains a compilation and analysis of the numerical results from tests on the

all the algorithms developed in this thesis;

• Chapter 10: This chapter concerns the results of applying the global optimisation algorithm

on the free energy minimisation of the potential energy functions of Lennard-Jones clusters;
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1.4. Outline of this paper

• Chapter 11: This chapter critically examines the numerical results found in the preceding

two chapters in the light of the previous state of the subject matter, and includes judgments

on what has been learnt in this work;

• Chapter 12: This is the final chapter of this treatise with conclusions, recommended future

work and final thoughts.
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2
Background:

Elementary Differential Topology and Morse

Theory

This chapter introduces the basic notions in Differential Topology and Morse Theory used in this

work.

2.1. Sets, Maps and Spaces

A map or a function from a set X to a set Y is a set of ordered pairs from X and Y with a restriction

that every element of X is mapped to only one element in Y , referred to as the uniqueness of

image property [10, 11, 2].

Definition 2.1.1. (Function/Map)

A map f : X → Y is a relationship such that for all x ∈ X there exists a unique y ∈ Y related to

the given x.

This function or map can be represented as y = f(x) or f : X → Y : x 7→ f(x). This can be

imagined to be a set of coordinates (x, y) in the graph of a function f(X) [10].

We will now generalise these sets X and Y and delve into the notion of spaces. Our treatment will

be restricted to an intuitive one as intricate details are not required to understand the concepts

that follow. Furthermore, delving into such details would cloud the purpose of this chapter.

The best example of a space is the three-dimensional Euclidean space model of the physical universe

in which we exist. It considers any three directions that do not lie in the same plane. This is basically

a set of triples representing the coordinates in this three-dimensional point space. This is referred to

as the E3, the three-dimensional Euclidean space. With this space, we can also define a vector space
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where, intuitively, a vector is a directed arrow from one point in E3 to another. Therefore, we have

a vector space of triples R3 and a point space of triples E3. The important fact to grasp is that E3

consists of points represented by coordinates p = (p1, p2, p3) while the directed difference between

a pair of such points p, q is a vector in R3 pq or q− p with components (q1−p1, q2−p2, q3−p3) [10].

This can be generalised to dimensions higher than 3. So, we can have have point spaces and

vector spaces En and Rn, respectively, where n = 1, 2, 3, 4, ...; of course, in dimensions higher than

3, the extra directions will arise from other features than ordinary space – such as time, tempera-

ture, pressure, among others [10].

The spaces described above are examples of a larger class of spaces known as topological spaces

whose precise definition we will not delve into. In general, the spaces En and Rn are the same

space. However, it is important to note that there are spaces, such as manifolds and metric spaces,

that are specialisations of topological spaces with extra constraints. The examples given above are

both examples manifolds and metric spaces.

Now we can define maps of the form f : Rn → Rm with n,m = 1, 2, 3, 4, ... where the relationship

is between spaces or manifolds.

2.2. Parameterisation of Functions

This section introduces the concept of parametric functions, an important tool in many areas of

mathematics. To appreciate why one may need to parameterise a function, let’s begin with an

arbitrary function y = f(x).

As described earlier, and as can be seen from the figure 2.1, a curve is presented as a graph of

a function f(x). As x is varied, y = f(x) is computed by the function f , and the pair of coordi-

nates (x, y) sweeps out the curve. This is called the explicit form of the curve [12].

y = f(x)

x

y

Figure 2.1.: Illustartion of a curve for the function y = f(x)

The problems with using this explicit form can be best illustrated by using a circle’s representation.

The limitations of the explicit form are:
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• Single-Valued due to Uniqueness Property: Based on the definition of a function, the

curve is single-valued along any line parallel to the y axis. For example, only parts of the

circle may be defined explicitly as shown in figure 2.2 [12].

y = f(x)

x

y

Figure 2.2.: Illustration of the Single-Valued due to Uniqueness Property on a Circle y = f(x)

• Infinite Slope: An explicit curve cannot have infinite slope; the derivative f ′(x) is not

defined parallel to the y-axis. Hence there are two points on the circle that cannot be defined

as shown in figure 2.3 [12].

y = f(x)

x

y

Figure 2.3.: Illustration of the Infinite Slope on a Circle y = f(x)

• Transformation Problems: Any transformation, such as rotation or shear, may cause an

explicit curve to violate the two points above [12].

The problems outlined above can be overcome by using an alternative representation of a function.

This done using parametric functions. This form of representation provides a method, known as

parameterisation, that defines motion on the curve defined by the function. The motion on the

curve refers to the way that the point (x, y) traces out the curve. This parameterisation uses an

independent parameter or variable to compute points on the curve. It gives the motion of a point

on the curve [10, 11, 13].
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2.3. Curves and Surfaces

Let’s consider a curve that lies in the X − Y plane. It can be defined by two functions, x(t) and

y(t), which use the independent parameter t. x(t) and y(t) are coordinate functions, since their

values represent the coordinates of points on the curve. As t varies, the coordinates (x(t), y(t))

sweep out the curve [12, 13].

The independent parameter t can be any suitable variable such as a number, an angle, or even

a length but it must satisfy the following conditions:

1. Each point on the curve must be related to a unique value of the parameter [13];

2. Each value of the parameter must give coordinates of only one point on the curve [13].

Any of the conditions above can be relaxed to facilitate a variety of properties. The explicit form

of the equation can be found by eliminating the parameter t [13].

A good physical model for parametric curves is that of a moving particle and we will adhere

to this convention for the rest of the discussion. In this model the parameter t represents time.

Thus, at any time t, the position of the particle is denoted as (x(t), y(t)) [12].

Now let’s consider manifolds En and Rn. If we have a point x ∈ En and vector y ∈ Rn, then

there exists another point z ∈ En such that:

z = x+ y

Therefore the line segment from x (in the direction of vector y) to q, parameterised by t ∈ [0, 1], is

given by:

LS : [0, 1]→ Rn : t 7→ x+ ty

The manifolds En and Rn can be used interchangeably since in this context they refer to the same

space; we only distinguished them in earlier discussions to illustrate notions of points and vectors.

We can now define a curve.

Definition 2.3.1. (Curve)

A parameterised continuous curve in Rn (n = 2, 3, ...) is a continuous map C : I → Rn , where

I ⊂ R is an open interval (of end points −∞ ≤ a < b ≤ ∞) [14].

This can be imagined to be as shown in figure 2.4.

It is imperative to that we distinguish the notion of a curve and its trace. Using our physical world

model, a curve describes the motion of a particle in n-space, and the trace is the trajectory of the

particle. If the particle follows the same trajectory, but with different speed or direction, the curve

is considered to be different. Therefore, the curve is the map C and it’s trace is the map’s image

set [10, 12, 14].

For the purposes of our discussion, we required that the curve is continuous because we want

to assume that a curve is differentiable. This enables us to have a way of finding the velocity of
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a b
t

(a) Set of parameter values t

C : I → Rn

(b) Map of the curve C

x

y

C(t)

(c) Trace of the curve C(t)

Figure 2.4.: Illustration of a parameter set t, map of a Curve C and its trace C(t)

a particle C ′(t) and its acceleration C ′′(t) [10, 12]. A function that is differentiable to any desired

degree is referred to as a smooth function. We will consider these type of functions in this chapter.

From this we can now explore the idea of a surface. The notion of a surface is a generalisa-

tion of that of a curve: a surface is a continuous image of a product of (any kinds of) intervals;

intuitively, we can imagine that we make surfaces like a patchwork quilt, from a collection of over-

lapping pieces, each piece being a curve [10, 14]. For the purpose of this discussion, we will restrict

ourselves to dimensions 2 and 3.

Definition 2.3.2. (Surface)

A parametrized continuous surface in R3 is a continuous map S : U → R3, where U ⊂ R2 is an

open, non-empty set [14].

It is often be convenient to consider the pair of parameters (u, v) ∈ U to be a set of coordinates of

points in a u− v plane and the surface S to the image S = σ(U) [10].

2.4. Morse Theory

Morse theory investigates how functions defined on a manifold are related to the geometric aspects

of that manifold [15]. In other words, it is a tool that analyses the topology of a manifold by using

differentiable functions defined on it. In the section we will look at Morse theory on surfaces.

2.4.1. Basics: One-Dimensional Case

Let us consider a function y = f(x) in one variable, where x, y ∈ R. We know that we can use

calculus to study the increase and decrease of f by first differentiating it to get f ′(x), and then

finding x0 that satisfies f(x0) = 0, and then study the changes of f ′(x) around x0 [15].

Definition 2.4.1. (Critical Point of a Function of One Variable)

A point x0 that satisfies

f ′(x0) = 0

is called a critical point.
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To study the changes of f ′(x) around x0, we make use of the second derivative f ′′(x). With this

we can define types of critical points.

Definition 2.4.2. (Critical Point Degeneracy for One-Dimensional Functions)

Let point x0 be a critical point. If

f ′′(x0) = 0

then x0 is called a degenerate critical point. If

f ′′(x0) 6= 0

then x0 is called a non-degenerate critical point.

To get an intuitive handle on what this means, let us consider real-valued functions in one variable

of the form y = xn with n = 2, 3, ... where x and y are real numbers.

The quadratic function y = x2 has the critical point x = 0 (y′ = 2x, and y′ = 0 when x = 0

) and the second derivative is y′′ = 2. Therefore, the critical point x = 0 of the quadratic function

y = x2 is non-degenerate [15].

For functions with n ≥ 3, the critical point x = 0 is degenerate since the second derivative of

those functions y = xn has the form y′′ = n(n− 1)xn−2 which is zero at x = 0 [15].

Now, looking at the graphs of functions y = x2, y = x3 and y = x4 in figure 2.5, we notice

that there is a higher degree of tangency to the horizontal x-axis for degenerate critical points than

for non-degenerate critical points [15]. From the figure, the tangency of the horizontal axis at x = 0

for y = x3 and y = x3 is greater than that of for y = x2 at x = 0.

(a) y = x2 (Non-degenerate) (b) y = x3 (Degenerate) (c) y = x4 (Degenerate)

Figure 2.5.: Graphs of functions y = x2, y = x3 and y = x4 to illustrate critical point degeneracy

Another difference between degenerate and non-degenerate critical points arises when we perturb

the functions functions slightly [15]. Let’s consider only two of those functions; y = x2 which has a

non-degenerate critical point at x = 0 and y = x3 which has a degenerate critical point at x = 0.

Let’s then change them by adding a linear function y = ax+ b [15].

For the quadratic function y = x2 the perturbation yields:

y = x2 + ax+ b.
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2. Background: Elementary Differential Topology and Morse Theory

Differentiating it gives

y′ = 2x+ a;

thus the critical point is

x = −a
2

which is non-degenerate as y′′ = 2. Therefore, after perturbation, the critical point x = −a
2 that

appears near the non-degenerate critical point x = 0 is also non-degenerate. We notice that the

“non-degeneracy” is “preserved”.

For the cubic function y = x3, the changes give:

y = x3 + ax+ b.

Differentiating yeilds

y′ = 3x2 + a,

and setting y′ to zero gives

x = ±
√
−a
3
.

For a > 0 no real solutions exists; thus, after the change, we lose critical points for a > 0.

For a < 0 real solutions exists and we obtain two critical points. Since y′′ = 6x, the critical

points take non-zero values and are thus non-degenerate.

After perturbation, the degenerate critical point x = 0, for a > 0, disappears and for a < 0 it

splits into two non-degenerate critical points x = ±
√
−a
3 . Of course, all this depends on the way

we perturb the function [15].

We observe that the “degeneracy” is not preserved after perturbation.

The main point to take away from this illustration is that non-degenerate critical points are “stable”

in that they are predictable; on the other hand, degenerate critical points are “unstable” due to

their unpredictable nature [15].

2.4.2. Two-Dimensional and Multi-Dimensional Case

As stated earlier, our major concern is the Morse theory on surfaces. Therefore, we need to extend

the ideas from the previous section to a higher dimensional case. An analysis in two-dimensions

will suffice for our current exposition because the goal is not to be rigorous but illustrative and

intuitive. Of course, all the concepts that will be illustrated using examples and definitions in

two-dimensions can be naturally extended to higher dimensions.

Let us consider a two-dimensional real-valued smooth function

z = f(x, y) (2.1)
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2.4. Morse Theory

where x and y are real numbers. It would be helpful if we considered the pair (x, y) to be a point

on an XY -plane so that the function (2.1) is defined on this plane. Thus, the function will be such

that it assigns each point on this plane to a real number — or, intuitively, to its elevation as shown

in the figure 2.6 [15].

Figure 2.6.: Surface of function z = x2 − y2

We can now to extend the previously defined idea for this case.

Definition 2.4.3. (Critical Points of Functions of Two Variables)

A point p0 = (x0, y0) in the XY -plane is a critical point of a function z = f(x, y) if:

∂f

∂x
(p0) = 0,

∂f

∂y
(p0) = 0.

or

∇f(x0, y0) = 0 (2.2)

[15]

Having done this, a subsequent natural question is: how do we now define degenerate and non-

degenerate critical points for functions of two variables?

Firstly, we know that the degeneracy is specified by the second derivative. Thus, for the multi-

variate case, it will be specified by the characteristics of the Hessian matrix.

Definition 2.4.4. (Critical Points Degeneracy)

1. Suppose a point p0 = (x0, y0) is a critical point of a function z = f(x, y). The matrix of

second order partial derivatives evaluated at p0 ∂2f
∂x2

(p0)
∂2f
∂x∂y (p0)

∂2f
∂x∂y (p0)

∂2f
∂y2

(p0)


is called the Hessian, which we will denote as ∇2f .
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2. Background: Elementary Differential Topology and Morse Theory

2. A critical point p0 of z = f(x, y) is degenerate if the Hessian is singular; that is, the

determinant of the Hessian is equal to zero, that is:

det ∇2f(x0, y0) = 0 (2.3)

3. A critical point p0 of z = f(x, y) is non-degenerate if the Hessian is non-singular; that

is, the determinant of the Hessian is NOT equal to zero, that is:

det ∇2f(x0, y0) 6= 0 (2.4)

[15]

To extend these concepts, we will now define a Morse function and state an important lemma in

Morse Theory.

Definition 2.4.5. (Morse Function)

A smooth scalar function is called a Morse function if all of its critical points are non-degenerate

[16].

Lemma 2.4.1. (The Morse Lemma)

Let p0 be a non-degenerate critical point of a function f of two variables. Then we can choose a

local coordinate system (X,Y) such that we can express the function f in terms of (X,Y) in one of

these three forms:

1. f = X2 + Y 2 + c,

2. f = X2 − Y 2 + c,

3. f = −X2 − Y 2 + c,

where c is a constant ( c = f(p0) ) and the p0 is the origin origin is p0 = (0, 0) [15].

Figure 2.7.: Graph of z = x2 − y2 (saddle point)

The main gist of this lemma is that a function looks simple near a non-degenerate critical point;

that is, using a suitable coordinate system, a function of two variables can be transformed into a

simple form that aids in having an intuitive handle on the nature of non-degenerate critical points.
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2.4. Morse Theory

(a) z = x2 + y2 (minima) (b) z = −x2 − y2 (maxima)

Figure 2.8.: Graphs of z = x2 + y2 and z = −x2 − y2

Figures 2.8 and 2.7 show how these forms look like with c = 0. One important observation is that

after this transformation one observes that there is no other critical point near the origin, which is

the non-degenerate critical point. In other words, one deduces that non-degenerate critical points

are isolated and are thus easier to analyse [15].

We now define an important concept related to non-degenerate critical points.

Definition 2.4.6. (Index of a Non-Degenerate Critical Point)

Let p0 be a non degenerate critical point of a function f in two variables.

Let the function f be transformed into a form specified by Morse lemma.

Then the index of a non-degenerate critical point p0 is

0 for f = X2 + Y 2 + c;

1 for f = X2 − Y 2 + c; and

2 for for f = −X2 − Y 2 + c.

It’s fairly obvious that the index of the critical point is analogous to the number of minuses in the

transformed equation. To get an intuitive feel of the concepts presented thus far, we’ll use a classic

example in Morse theory.

Let’s consider a mountainous landscape. The peaks correspond to the maxima, the basins to

minima and passes to saddle points — all critical points. Now let’s imagine that there is an ex-

plorer who has a large ball and she is looking for points on this landscape where where she could

place this ball and it would remain stationary. The answer is fairly obvious that the points she

is looking for are the critical points. If the ball is placed at any other points then it would roll

downhill under the influence of gravity. So, the question now becomes how stable are these critical

points in relation to keeping the ball stationary? The mountain peak is obviously the most unstable

since there are many directions that the ball could roll off. The basin is the most stable since if

a ball is placed there and is pushed, it returns to the basin. So, there are no unstable directions

there. The pass, on the other hand, has a degree of instability midway between that of the basin

and the mountain peak since it curves upwards in one direction and downwards in another. This

notion of “unstable directions” or “degree of instability” encapsulates the idea of the index of a
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2. Background: Elementary Differential Topology and Morse Theory

non-degenerate critical point. Thus, building from the definition given earlier, the index of the

basin (minima) is 0, the index of a pass (saddle point) is 1, and the index of the mountain peak is

2 [15, 17, 18, 16]. Figures 2.8 and 2.7 illustrate this.

Formally, the degree of instability is defined as the number of negative eigen-values of the Hes-

sian matrix [16]. This corresponds to the intuitive notion that the index is the number of directions

in which a function f decreases at a critical point.

One question that Morse theory tries to address is the classification of critical points. So, if

we restrict our attention to Morse functions then we will be able to classify all critical points based

on their degree of instability. This restriction is justified because it can be shown that any smooth

scalar function can be slightly perturbed to remove all degeneracies and hence obtain a Morse

function [15, 16].

2.5. Summary

This chapter covered the basics of differential topology and Morse theory that are used in this

work. It starts by introducing notions of maps and spaces and building on that to introduce

parameterised curves and surfaces. The rest of the chapter delves in to the ideas of critical point

stability in relation to the manifold that a map is defined on and this is used to introduce the

notion of degenerate and non-degenerate critical points and their indices.
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3
Background:

Ordinary Differential Equations and

Continuous Dynamical Systems

This chapter explores the background on differential equations and continuous dynamical systems

used in this work.

3.1. Introduction

Differential equations are important in mathematics and engineering because many physical laws

and relationships in nature appear mathematically in the form of differential equations [19, 20, 21].

They usually arise after the process of formulating a problem as a mathematical expression in terms

of variables, functions, among other things. The resulting expression is referred to as a model. If

this model is an equation which contains one or several derivatives of various orders of an unknown

function then this model is a differential equation [19, 20].

3.2. Ordinary Differential Equations

The main concern of this section is that of ordinary differential equations because they are very

well suited for numerical computation. We start by defining them.

Definition 3.2.1. (Ordinary Differential Equation - ODE)

An Ordinary Differential Equation (ODE) is an equation containing an unknown function of a

single independent variable and its derivatives [19, 20].

The term ordinary is used to show a distinction from other differential equations that may be

defined in terms of an unknown function dependent on several variables. This other type of dif-

ferential equation is said to contain partial derivatives and are therefore called partial differential
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3. Background: Ordinary Differential Equations and Continuous Dynamical Systems

equations [20].

In order to make our discussion more illustrative, let us denote the unknown function to be y(x)

where x is independent variable and y is the dependent variable. This will allow us to denote the

unknown function alternatively as y = y(x).

An ODE is said to be of order n if the nth derivative of the unknown function y(x) is the highest

derivative of y(x) in the equation. As one can imagine, this can make the study of ODEs an

extremely sophisticated one because of the many forms that they can take. We will therefore try

to classify ODEs based on the various forms that they can take as this will help us have a more

structured grasp on how to deal with these varied forms.

Definition 3.2.2. (Explicit Form of an ODE)

Let F be a given function of x, y, and derivatives of y. Then an equation of the form

y(n) = F (x, y, y′, y′′, ..., y(n−1)) (3.1)

is called an explicit ordinary differential equation of order n [19, 20].

Definition 3.2.3. (Implicit form of an ODE)

Let F be a given function of x, y, and derivatives of y. Then an equation of the form

F (x, y, y′, y′′, ..., y(n)) = 0 (3.2)

is called an implicit ordinary differential equation of order n [19, 20].

Unfortunately, there are many more classifications than the ones given above.

Definition 3.2.4. (Linear ODE)

An ODE is said to be linear if it can be written as a linear combination of the derivatives of y:

y(n) =

(n−1)∑
i

aiy
(i) + r(x) (3.3)

where ai(x) and r(x) are functions of x. In engineering, the function r(x) is usually called the

input or the source term and the unknown function y(x) is usually called the output or the

response term [19, 20].

Naturally, it follows that ODEs that cannot be written in the form specified above are referred to

as Non-linear ODEs.

This introduction of the idea of source term r(x) that influences the response term y(x) allows

us to classify ODEs further.

Definition 3.2.5. (Homogeneous ODE)

An ODE is said to be homogeneous if its source term r(x) = 0 [19, 20].

Definition 3.2.6. (Non-Homogeneous ODE)

An ODE is said to be non-homogeneous if its source term r(x) 6= 0 [19, 20].
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3.2. Ordinary Differential Equations

The source term r(x) is simply the part of the ODE that is a function of x and is also independent

of any derivative of y. This classification is important as it helpful in determining how a particular

ODE will be solved.

In our discussion thus far, we have considered the variable x to be the independent variable and y

to be dependent variable where the independent variable x appears explicitly in the ODE. However,

there is a class of ODEs which do not explicitly contain the independent variable (usually denoted

by time t).

Definition 3.2.7. (Autonomous ODE)

An autonomous ODE is an ODE of the form

d

dt
x(t) = f(x(t)) (3.4)

where x ∈ Rn and t is usually time [19, 20, 22, 23]. The usual shorthand for d
dtx(t) is ẋ.

d

dt
x(t) = ẋ

ODEs are essentially equations and thus it is imperative that we take time to discuss what a solution

to an ODE is.

Definition 3.2.8. (Solution of an ODE)

A function

y = h(x)

is a solution of the ODE

F (x, y, y′, y′′, ..., y(n)) = 0

on some open interval x ∈ (a, b) if h(x) is continuous and n-times differentiable over this interval

and

F (x, h, h′, h′′, ..., h(n)) = 0

[19, 20].

A graph of a solution is called a solution curve. As one can imagine, obtaining solutions to an

ODE involves integration — a process that introduces an arbitrary constant. Solutions that include

this arbitrary constant are called general solutions of the ODE. Geometrically, general solutions

of ODEs are an infinite number of solution curves, one for each possible value of the arbitrary

constant, and they are usually called a family of solutions as illustrated by figure 3.1.

A solution corresponding to specific instantiation of c is called a particular solution of the ODE

and it does not contain any arbitrary constants.

In many cases it is possible to obtain a unique solution of a given ODE from its general solu-

tion by using an initial condition that is usually specified as y0 = y(x0). In this case, the values x0

and y0 are specified and are used to find the value of the arbitrary constant.
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3. Background: Ordinary Differential Equations and Continuous Dynamical Systems

x

y

Figure 3.1.: Example of Solution Curves

Definition 3.2.9. (Initial Value Problem - IVP)

An initial value problem is an ODE together with an initial condition which is the specified value

of the unknown function at a given point in the domain of the solution. It is expressed in the form

y(n) = F (x, y, y′, y′′, ..., y(n−1)), y(x0) = y0 (3.5)

[19] [20].

Geometrically, an initial value problem (IVP) just specifies that the solution should pass through

a particular point (x0, y0) in the space where the solution is defined [20].

3.3. Qualitative Analysis of Ordinary Differential Equations

In this section we will explore the qualitative aspects of solutions to ODEs by exploring their

geometric features when they are graphed. A first-order ODE

y′ = f(x, y)

has a very simple geometric interpretation. We know from calculus that the derivative y′(x) of y(x)

is the slope or the gradient of function y(x) or the slope of the line that’s a tangent at a point x

on the function. Therefore, if a solution passes through a point (x0, y0) then it follows that

y′(x0) = f(x0, y0).

If we represented the gradient y′(x) by short directed lines inclined at the specified gradient and

located tangent to a particular point in the xy-plane, we can generate a graphical representation

of the solutions of the ODE above. This representation is called a Slope Field (or Direction

Field). We can then approximate solution curves passing through the slope fields.

Definition 3.3.1. (Slope/Direction Field)

A slope field (or direction field) is a graphical representation of the solutions of a first-order ODE

[19] [20].

Using slope fields can be viewed as a creative way to plot a real-valued function of two real vari-
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3.3. Qualitative Analysis of Ordinary Differential Equations

ables f(x, y) in the xy-plane. For a given pair (x, y), a vector with the components

[
1

f(x, y)

]
is

drawn at the point on the x, y-plane. Usually, the vector is made to be of unit length in order to

make the plot better looking for a human eye. The advantage of using slope fields is that one can

approximate the solution to an ODE without actually solving it [19, 20, 22, 23].

Let us consider a simple example of a first order ODE

dy

dx
= 2x.

In order to generate the direction fields of this ODE in a structured fashion, let us start by finding

the values of x where dy
dx = 0. It’s fairly obvious that we are looking for x = 0. So, at points where

x = 0 in the xy-plane we plot horizontal directed vectors

[
1

0

]
. We then pick values where x > 0

and x < 0 and plot vectors

[
1
dy
dx

]
in the same fashion. The resulting plot should look like figure 3.2.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−4

−3

−2

−1

0

1

2

3

4
Slope field and isoclines for dy/dx = 2x

x

y
(x

)

Figure 3.2.: Direction Field of non-autonomous ODE dy
dx = 2x

So why should we be interested in direction fields? There are two main reasons for this.

1. Graphical Sketch of solutions. Since the vectors in the direction fields are in fact tangents

to the actual solutions to the ODE we can use these as guides to sketch the graphs of solutions

[19].

2. Examine Long Term Behavior. There may be cases where we are not interested in the
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3. Background: Ordinary Differential Equations and Continuous Dynamical Systems

actual solutions to the ODEs but in how the solutions behave as time passes. Direction fields

can be used to find information about this long term behaviour of ODE solutions [19].

The first point is quite easy to understand from the example we have just looked at. If we were

interested in a particular solution that passed through a point (x0, y0), we could simply pick it out

from the generated directed field.

The second point is a more interesting one since it speaks of the collective behaviour of all the

solutions of an ODE. Notice that there is an idea of time involved. For this, we need to remember

autonomous ODEs — ODEs that have an independent variable that does not appear explicitly

in the ODE. In our case, this independent variable is time t.

Let us consider as example an autonomous ODE

ẏ =
dy(t)

dt
= y′ = (y − 1)(y − 2).

As before, in order to generate the direction fields of this ODE in a structured fashion, let us start

by finding the values of y when y′ = 0, that is, solve f(x, y) = (y − 1)(y − 2) = 0. As shown in

figure 3.3, the values of y where y′ = 0 are y = 1 and y = 2. At these values, we draw the direction

fields as horizontal vectors

[
1

0

]
.

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

y

ẏ

Figure 3.3.: Plot of parabola f(x, y) = (y − 1)(y − 2)

Let us denote y1 = 1 and y2 = 2. We can now examine the values of y′ around y1 and y2. We

can start by choosing values of y > y2, say y = 2.5, and plot the associated vectors. We continue

with the process on values of y1 < y < y2 and also y < y1 and plot the vectors

[
1

f(x, y)

]
and the

resulting direction field plot will look something like what is shown in figure 3.4.

Before we can discuss the implication of what we have found, let us make a few observations.

Firstly, the autonomous ODE y′ has constant solutions at points where ẏ = y′ = 0. This is because

if we have y′ = 0 then, by integration, the solution is y = constant. These solutions are called

equilibrium solutions or equilibrium points. They are also called critical points [20].

Definition 3.3.2. (Equilibrium Point/Solution))
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4
Slope field and isoclines for dy(t)/dt=(y−1)(y−2)
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Figure 3.4.: Direction Field of autonomous ODE ẏ = (y − 1)(y − 2)

If

ẋ =
dx(t)

dt
= f(x),

then the equilibrium points of the ODE are solution(s) to the equation

ẋ = 0.

From figure 3.4, we notice the direction field shows the behaviour of the solution as t increases.

The “long term behaviour” of the solutions is dependent on the initial value of y at time t = 0,

y(0). This is called the initial condition [19, 20].

For solutions where y(0) < 1, we notice that y → 1 as t → ∞. And for those with initial

conditions in the range 1 < y(0) < 2, y → 1 as t→∞. Furthermore, for y(0) > 2, we can see that

y →∞ as t→∞.

Value of y(0) Behaviour as t→∞
y(0) < 1 y → 1

1 < y(0) < 2 y → 1

y(0) > 2 y →∞

The equilibrium solutions y = 1 and y = 2 have different characteristics in terms of how solutions

with initial conditions near them behave. Solutions close to y = 1 for some t remain close to it for

all further t. Therefore, y = 1 is a stable equilibrium solution. The solution y = 2, on the other
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hand, is unstable because all solutions close to it at time t do not remain close to it for further t.

Definition 3.3.3. (Stable Equilibrium Solution)

An Equilibrium solution is stable if solutions close to it at time t remain close to it for all further

times t [20].

Definition 3.3.4. (Unstable Equilibrium Solution)

An Equilibrium solution is unstable if solutions close to it at time t do not remain close to it for

all further times t [20].

3.4. Continous Dynamical Systems

The classification of the equilibrium solutions adds a new dimension to our study of ODEs — an

aspect of how solutions of an ODE evolve in time. This idea of studying the long term behaviour

of solutions to ODEs has its roots in the study of motion of particles and systems of this kind are

referred to as Dynamical Systems. Generally, dynamical systems are mathematical rules that

describe the time dependence of a point’s position in its surrounding space [22, 23].

Dynamical systems theory is important because it aids in the study of evolution of processes

in time. Despite being motivated by autonomous ODEs, there is a much more general and broader

treatment that it gives to this evolution behaviour. There is a treatment that deals with discrete

time steps, and other variants that deal with other ideas of what form the time should take. In this

chapter, we are interested in dynamical systems that we can construct from autonomous ODEs.

These dynamical systems are called continuous dynamical systems. Before we unify what we have

looked at in ODEs with the notions we are about to introduce, let’s define a continuous dynamical

system.

Definition 3.4.1. (Continous Dynamical System)

Let M ⊂ Rn. A continuous dynamical system is a map

D : R×M →M.

It is also called a flow [23].

A concept central to dynamical system is that of evolution trajectories or orbits. These are

essentially parameterised curves. Using the previous example of the analysis of the ODE ẏ =

(y−1)(y−2), trajectories are analogous to the solutions or the direction fields of the ODE because

they encapsulate the general behaviour of the solutions of the ODE with time. The space having

these trajectories is called the phase space. A phase portrait corresponding to the example is

shown in figure 3.5. Therefore, given an initial point it is possible to determine all its future

positions. And this collection of points is what we call a trajectory or orbit [19, 20, 22, 23, 24].

1 2 y

Figure 3.5.: Phase portrait for ẏ = (y − 1)(y − 2)

We observed that the equilibrium solutions tended to be unique in that solutions with initial
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conditions near them presented interesting properties. With dynamical systems, the equilibrium

orbits are also called fixed points.

Definition 3.4.2. (Stable Fixed Point)

A fixed point P0 is stable if trajectories close to it at time t remain close to it for all further t;

precisely, if for every disk Dε of radius ε > 0 and centre P0 there is a disk Dδ of radius δ > 0

and also with centre P0 such that every trajectory of the dynamical system that has a point P1

(corresponding to, say, time t = t1) in Dδ has all its points corresponding times t ≥ t1 in Dε.

Fixed point P0 is called stable and attractive or asymptotically stable if P0 is stable and

every trajectory that has a point in Dδ approaches P0 as t→∞ — it is called an attractor [20].

Definition 3.4.3. (Unstable Fixed Point)

A fixed point P0 is unstable if trajectories close to it at time t do not remain close to it for all

further t.

Fixed point P0 is called a repeller or asymptotically unstable if P0 is unstable and every

trajectory that has a point in Dδ moves away from P0 as t→∞ [20, 23, 24].

The definitions above introduce several interesting new ideas. Firstly, the most obvious is the idea

of being asymptotically stable or unstable. The gist of this classification is that attractors “attract”

trajectories near them and repellers “repel” them as t→∞.

Secondly, a more subtle idea that is introduced is that of basins of attraction for attractors.

A basin of attraction is basically a set where all initial conditions of the trajectories approach the

attractor as t→∞. In the definition above, this was simply the disk Dδ. Basins of attractions can

be thought to be “trapping regions” of trajectories that eventually approach an attractor. In the

analysis of trajectories their long term behaviour is called the dynamics of the dynamical system.

For example, the dynamics of the autonomous ODE we looked at ẏ = (y − 1)(y − 2) are that the

fixed point y = 1 is an attractor and the fixed point y = 2 is a repeller.

There are instances where the notion of fixed points can be extended to represent them as sets.

In such cases, they are called invariant sets. So in the discussion of dynamical systems, it is

common to speak of “basins of attractions of invariant sets”. So, in a phase plane of trajectories,

there may be intervals that have different behaviour depending on what invariant sets are close

by. Such intervals are delimited by separatrices where a separatrix is a boundary separating two

modes of behaviour of a dynamical system.

3.5. Summary

In this chapter we explored concepts dealing with ordinary differential equations (ODEs)and con-

tinuous dynamical systems. This background is necessary in this work because most of the analysis

will involve autonomous ODEs which are used to construct dynamical systems that are essential

in the modelling of the ascent and descent steps of the algorithms this work presents.
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4
Background:

Non-Linear Local and Global Optimisation

Theory

We now explore the parts of optimisation theory used in this work.

4.1. Formulation

We consider the optimisation problem

minimise
x

f(x)

subject to x ∈ Ω.
(4.1)

The real-valued function f : Rn → R we wish to minimise is the objective function. The vector of

independent components x = [x1, x2, ..., xn] that we wish to find is called the minimiser of f . The

independent components of x are also referred to as decision variables and they characterise the

best decision when the optimisation problem is viewed as a decision problem. There may be more

than one minimiser for a particular problem. Finding any of these usually suffices [2].

This formulation of the problem is termed as constrained because we have imposed a restriction on

the minimiser x that it should be in the set Ω. This set Ω is called the feasible region. However,

if the set Ω = Rn then the problem is referred to as an unconstrained optimisation problem. We

will restrict our discussion of the generalised optimisation problem to the unconstrained case [2].

Using this characterisation of the problem we will define two types to minimisers.

Definition 4.1.1. (Local Minimiser)

Let f : Rn → R be a real-valued function defined on some set Ω ⊂ Rn. A point x∗ ∈ Ω is a
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local minimiser of f over Ω if there exists ε > 0 such that f(x∗) ≤ f(x) for all x ∈ Ω \ {x∗} and

‖x− x∗‖ < ε [2].

Definition 4.1.2. (Global Minimiser)

Let f : Rn → R be a real-valued function defined on some set Ω ⊂ Rn. A point x∗ ∈ Ω is a local

minimiser of f over Ω if f(x∗) ≤ f(x) for all x ∈ Ω \ {x∗} [2] .

If these definitions switch the “≤” with “<”, then we get a strict local minimiser and a strict global

minimiser, respectively. Pedagogically, the optimisation problem 6.6 we defined is only solved when

a global minimiser is found. However, realistically, these are extremely hard to find so in practice

finding local minimisers suffices [2].

4.2. First and Second Order Conditions

We will now look at the conditions that a point x∗ should satisfy in order to be local minimiser.

Since our formulation 6.6 has a feasible set Ω, there is a possibility that x∗ might lie on its boundary.

For this reason we introduce the idea of feasible directions.

Definition 4.2.1. (Feasible Direction)

A vector d ∈ Rn, d 6= 0, is a feasible direction at x ∈ Ω if there exists α0 > 0 such that x+αd ∈ Ω

for all α ∈ [0, α0] [2].

The intuition behind feasible directions is fairly simple. From a point x ∈ Ω, a feasible direction d

is a direction that one can move and still be in the feasible region Ω. We now state and prove two

important theorems.

Theorem 4.2.1. (First-Order Necessary Condition - General Case)

Let the feasible set Ω ⊂ Rn and objective function f be once continuously differentiable function

defined on Ω. If x∗ is a local minimiser of f over Ω then for all feasible directions d at x∗ we have

d>∇f(x∗) ≥ 0

Proof. Let us first parameterise x with α

x(α) = x∗ + αd ∈ Ω

then let’s define a composite function with f dependent on α

φ(α) = f(x(α))

Using a Taylor series expansion of φ(α) about α = 0 gives

φ(α) = φ(0) + φ′(α− 0) +
1

2
(α− 0)2φ′′(0) + ...

⇒ φ(α) = φ(0) + φ′(0) +
1

2
α2φ′′(0) + ...

Considering a first order approximation gives

⇒ φ(α)− φ(0) = φ′(α)
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4. Background: Non-Linear Local and Global Optimisation Theory

But φ(α) = f(x(α)) and φ′(α) = d>f(x(α))

⇒ f(x(α))− f(x(0)) = d>∇f(x(0))

And, from the definition of x(α), we have x(0) = x∗, where x∗ is the minimiser, so

⇒ f(x(α))− f(x∗) = d>∇f(x(0))

To get

f(x(α))− f(x∗) = d>∇f(x(α)) (4.2)

Since x∗ is a minimiser, then

f(x∗) ≤ f(x(α))⇒ f(x∗) ≤ f(x∗ + αd)

and thus

f(x∗ + αd)− f(x∗) ≥ 0

using this on equation 4.2 gives

d>∇f(x(α)) ≥ 0

as required. Hence proved.

Theorem 4.2.2. (First-Order Necessary Condition - Interior Case)

Let the feasible set Ω ⊂ Rn and objective function f be once continuously differentiable function

defined on Ω. If x∗ is a local minimiser of f over Ωand if x∗ is an interior point of Ω then

∇f(x∗) = 0

[2]

Proof. Let x∗ be an interior point of Ω and be a minimiser of f(x). Since x∗ is an interior point,

then the whole Rn is a feasible direction at x∗. Thus, for any d ∈ Rn, we have

d>∇f(x(α)) ≥ 0

and

−d>∇f(x(α)) ≥ 0

which implies

∇f(x∗) = 0

as required. Hence proved.

We now state and prove two second order necessary conditions for minimisers.

Theorem 4.2.3. (Second-Order Necessary Condition - General Case)

Let Ω ⊂ Rn, f be a twice differentiable function defined over Ω, x∗ be a minimiser of function f

over Ω, and d be a feasible direction at x∗. If ∇f(x∗) = 0 then

d>∇2f(x∗)d ≥ 0
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where ∇2f(x∗) is the Hessian [2].

Proof. We prove this by contradiction. Let us suppose that we have a feasible direction d such

that d>∇f(x∗) = 0 and d>∇f(x∗)d < 0. Let us define a composite function where f is defined in

terms of α as before

φ(α) = f(x(α)) = f(x∗ + αd)

Using a second order Taylor series approximation of φ(α) about α = 0 we get

φ(α) = φ(0) + (α− 0)φ′(0) +
1

2
(α− 0)2φ′′(0)

⇒ φ(α) = φ(0) + αφ′(0) +
1

2
α2φ′′(0)

But we supposed that d>∇f(x∗) = φ′(0) = 0 so

φ(α) = φ(0) +
1

2
α2φ′′(0)

⇒ φ(α)− φ(0) =
1

2
α2φ′′(0)

re-writing in terms of f

f(x(α))− f(x(0)) =
1

2
α2d>∇2f(x(0))d

⇒ f(x∗ + αd)− f(x∗) =
1

2
α2d>∇2f(x∗)d

but we also supposed that d>∇2f(x∗)d < 0 so

f(x∗ + αd)− f(x∗) < 0

which contradicts the assumption that x∗ is a minimiser.

Therefore,

d>∇2f(x∗)d ≥ 0

as required. Hence proved.

Theorem 4.2.4. (Second-Order Necessary Condition - Interior Case)

Let Ω ⊂ Rn, f be a twice differentiable function defined over Ω, x∗ be an interior point of Ω. If x∗

is a minimiser of function f over Ω then

∇f(x∗) = 0

and the Hessian ∇2f(x∗) is positive semi-definite, that is, for any feasible direction d ∈ Rn at x∗

d>∇2f(x∗)d ≥ 0

[2].

Proof. Let x∗ be an interior point of Ω and be a minimiser of f(x).
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4. Background: Non-Linear Local and Global Optimisation Theory

Since x∗ is an interior point, we use theorem 4.2.2 to get

∇f(x∗) = 0

We also know that for the interior case the whole Rn is a feasible direction at x∗. Using theorem

4.2.3 for any d ∈ Rn we get

d>∇2f(x(α))d ≥ 0

as required. Hence proved.

The theorems we have stated so far are only necessary and not sufficient conditions for minimisers

[2]. Therefore, we need a stronger characterisation of a minimiser that would serve as a sufficient

condition. We now define the idea of the Rayleigh’s Inequalities and then state and prove a theorem

that does this.

Definition 4.2.2. (Rayleigh’s Inequalities)

If n× n matrix P is a real symmetric positive definite, then

λmin(P)‖x‖2 ≤ x>Px ≤ λmax(P)‖x‖2

where λmin(P) and λmax(P) are the smallest and largest eigenvalues of P, respectively [2].

Theorem 4.2.5. (Second-Order Sufficient Condition - Interior Case)

Let f be a real-valued function defined on a region where x∗ is an interior point. Suppose that

1. ∇f(x∗) = 0

2. ∇2f(x∗) > 0

then x∗ is a strict local minimiser of f [2].

Proof. By the assumption that ∇2f(x∗) > 0 we know that the Hessian is positive definite.

Using the Rayleigh’s Inequalities, we can deduce that for any feasible direction d ∈ Rn, with

restriction d 6= 0, we can write

0 < λmin(∇2f(x∗))‖d‖2 ≤ d>∇2f(x∗)d

Now, using a Taylor series second order expansion of composite function f(x∗ + αd) about α = 0

gives

f(x∗ + αd) = f(x∗) + d>∇f(x∗) +
1

2
d>f(x∗)d

but the first assumption says ∇f(x∗) = 0 so

f(x∗ + αd) = f(x∗) +
1

2
d>f(x∗)d

And

⇒ f(x∗ + αd)− f(x∗) = d>f(x∗)d

Using the our characterisation of the Rayleigh’s inequality 0 < λmin(∇2f(x∗))‖d‖2 ≤ d>∇2f(x∗)d

we get the relationship

f(x∗ + αd)− f(x∗) =
1

2
d>f(x∗)d ≥ 1

2
λmin(∇2f(x∗))‖d‖2
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⇒ f(x∗ + αd)− f(x∗) ≥ 1

2
λmin(∇2f(x∗))‖d‖2

So, for all d where ‖d‖ is sufficiently small, then

f(x∗ + αd) > f(x∗)

as required, which completes the proof [2].

4.3. Gradient Descent Methods

In practice, optimisation problems are solved by iterative algorithms. Given a real-valued function

f : Rn → R, an iterative algorithm that seeks to minimise this function is of the form

xk+1 = xk + αkdk (4.3)

The vector dk is called the search direction and αk is called step-size which satisfy αk ≥ 0. The

intuition behind the algorithm depicted by iterative equation 4.3 is that it starts an an initial point,

say x0, and calculates the direction d0 in which to move in order to minimise f and the associated

step-size α0 and uses these to move to the next point x1, and so on [2]. The general algorithm is:

Algorithm 4.1 General Gradient Descent Algorithm

1. Given point xk

2. Derive search direction d ∈ Rn

3. Decide on step-size αk

4. Move to next point

xk+1 = xk + αkdk

A common choice for dk is usually characterised by the gradient of the function f at xk. The

most obvious choice for dk is one such that the function decreases (d>k∇f(xk) < 0). After some

thought, it’s fairly obvious that −∇f(xk) is the direction of maximum decrease of the function.

Other variants of characterising dk exist such as those that also consider second order derivatives [2].

The choice for αk is one that aims to achieve the condition:

f(xk+1) < f(xk)

This makes sense since it is desirable that the algorithm seek out points that minimise the function.

The choice of αk can be thus be imagined to one that seeks to ensure that, given we have a direction

of descent dk, αk is the step-size ensuring function f is minimum in that direction [2]. Formally,

we seek to minimise

φk(α) = f(x+ αd) (4.4)

This function is in terms of α and this therefore one-dimensional. Thus αk is

αk ∈ argminf(xk + αdk) (4.5)
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This one-dimensional optimisation is called a line search. A type of gradient descent algorithm

that uses the step-size characterisation above and dk = −∇f(xk) is called the steepest descent

algorithm, which can be described as:

Algorithm 4.2 Steepest Descent Algorithm

1. Given point xk

2. Compute gradient at xk and derive search direction

dk = −∇f(xk)

3. Decide on step-size αk, (αk ≥ 0)

αk ∈ argminf(xk + αdk)

4. Move to next point

xk+1 = xk + αkdk

The consideration above presumes we are able to find the exact solution to the line search problem.

Therefore, the line search phase is usually called an exact line search. In practice, however, many

things could go wrong. Firstly, solving the problem may be computationally demanding and may

take longer than we desire. Secondly, a minimiser to the problem may not exist. It is for these

reasons that in practice inexact line searches are use that approximate the solution to the optimi-

sation problem by using pre-defined termination conditions. The goal is to ensure that the there

is a sufficient decrease in f from one iteration to the next despite having an approximate value of

ak. This is done by ensuring that the value of ak is not too large or not too small [2].

The set of inequalities that used to perform this inexact line search are called Wolfe conditions.

Definition 4.3.1. (Wolfe Conditions)

Let φk(α) = f(xk + αdk) be an objective function. A step-size ak is said to satisfy the Wolfe

Conditions if the following hold:

1. f(xk + αkdk) ≤ f(xk) + ε1αkd
>
k∇f(xk)

2. d>k∇f(xk + αkdk) ≥ ε2d>k∇f(xk)

where 0 < ε1 < ε2 < 1 [2].

The first condition ensures that αk is not too large and the second one ensure that it is not too

small. The first condition is commonly referred to as Armijo’s Rule. A simple and practical inexact

line search algorithm that makes use of the Armijo’s Rule is called Armijo’s Backtracking [2]. The

Algorithm is shown in algorithm
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Algorithm 4.3 Armijo’s Backtracking Algorithm

Initialise k = 0, τ ∈ (0, 1);

Choose initial α0 > 0;

while ( αk NOT satisfy Amijo’s Rule ) {

1. αk+1 = ταk ;

2. k = k + 1;

}

The intuition behind this algorithm is that it starts at an initial αk and checks if it satisfies Armijo’s

Rule. If it does, this initial αk is used as the step-size. Otherwise, we iteratively decrease it by

a factor τ ∈ (0, 1) and re-check if the new value satisfies Armijo’s Rule. This algorithm is said

to “backtrack” because after j iterations, we have αk = τ jα0; so, indadvertedly, the algorithm

backtracks from the initial value α0 until the Armijo’s Rule is satisfied [2].

4.4. Penalty Methods

Let us consider a constrained optimisation problem

min {f(x) : x ∈ Ω}.

We will now discuss methods that solve the problem above using techniques from unconstrained

optimisation. Essentially, we want to approximate the problem above as the unconstrained opti-

misation problem

min {f(x) + γP (x)},

where γ ∈ R is a positive constant and P : Rn → R is a given function. We solve this problem and

use its solution to approximate the solution to the original problem. The constant γ is called the

penalty parameter and the function P the penalty function [2].

Definition 4.4.1. (Penalty Function)

A function P : Rn → R is called a Penalty Function of a constrained optimisation problem if it

satisfies the following conditions:

1. P is continuous;

2. P (x) ≥ 0 for all x ∈ Rn; and

3. P (x) = 0 if and only if x is feasible, that is x ∈ Ω.

For the unconstrained problem to be a good approximation of the original constrained problem

then P should be specified appropriately. The role of the penalty function is to penalise points

outside the feasible set [2].

4.5. Global Optimisation and the Global Descent Functions

As already stated in the introductory chapter, researchers have developed sound theories and effi-

cient numerical techniques for solving convex optimisation problems. However, most optimisation
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problems are non-convex in nature and the existence of multiple locally optimal solutions makes

global optimisation a great challenge. From the uses of optimisation available from the advances

in the theory made so far, it is evident that attaining the goal of global optimisation will greatly

improve the quality of our lives [5].

In this section we will look at general continuous global optimisation problem of the form

min {f(x) : x ∈ X}. (4.6)

If X = Rn, then the problem above is an unconstrained global optimisation problem. The goal here

is to find the global minimiser of f(x) over x ∈ X. Generic global optimisation algorithms have two

separate phases. The first is the global phase which involves an exhaustive exploration of search

space. The method used to do this can either be deterministic or stochastic. At each iteration of

this global phase, a local optimisation procedure is called to identify a locally optimal point. This is

known as the local phase and is usually deterministic. Most global optimisation methods use local

optimisation methods as a tool. Most calculations take place during the local phase; therefore, a

robust and reliable local optimisation algorithm with fast convergence is important [4].

However, in this section, we are interested in a particular approach to global optimisation that

is usually referred to as the function modification approach (see, e.g., [5, 25, 26, 27]). This way of

approaching global optimisation is one of the most promising paradigms for solving general global

optimisation problems. This method is able to facilitate the transcending of a current local min-

imiser at each iteration to find a better one by adopting some appropriate modifications of the

objective function f [5]. The general solution procedure of algorithms following this a paradigm is

composed of the two-phased cycle shown in algorithm 4.4.

Algorithm 4.4 Function Modification Global Optimisation Algorithm

Phase 0 (initialisation): Select a feasible initial point xini and set the iteration
count at Niter := −1. Use xini as the initial point of the local search in Phase 1.

Phase 1 (local search): Start from a given feasible point and use any suit-
able local minimisation method to search for a local minimiser x of f over X. Update
the iteration count Niter := Niter + 1. Perform the global search in Phase 2.

Phase 2 (global search): Construct an auxiliary function (a proper modifica-
tion of f) such that its minima are not worse than (or preferably better than) x and use
it to search for a feasible point x such that f(x) ≤ f(x∗) (or preferably f(x) < f(x)).
If such a transitional point is obtained, then use x as the initial point of the local
search in Phase 1. If no such transitional point is obtained, stop the iteration process
and return x as a (putative) global minimiser of problem

min {f(x) : x ∈ X}

In order to use the function modification approach we are going to make the following assumptions

about the problem 4.6:
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Assumption 1. X ⊂ Rn is a compact and connected set with its interior, int(X), nonempty

[5].

Assumption 2. f : X 7→ R is a continuously differentiable function that satisfies the follow-

ing Lipschitz condition for any pair of x1 and x2 in X:

|f(x1)− f(x2)| ≤ L||x1 − x2||,

where 0 < L <∞ is the Lipschitz constant and || · || is the usual Euclidean norm [5].

Assumption 3. The set of the values of all local minima

{f∗ = f(x∗) : x∗ is a local minimiser of f over X}

is finite [5].

Assumption 4. All global minimisers of f are contained in int(X) [5].

Let us discuss, albeit briefly, the implications of the above stated assumptions. To begin with,

assumption 1 implies that there exists a positive constant K such that

0 < max ||x1 − x2|| ≤ K <∞,

with x1, x2 ∈ X [5].

Assumption 2, on the other hand, implies that there is a positive constant M such that the norm

of the gradient of the function f is bounded by M , that is,

0 < max ||∇f(x)|| ≤M <∞,

with x ∈ X [5].

Assumption 3 does not exclude cases in which the number of local minimisers of f over X is

infinite. Assumption 4 allows for non-global minimisers to be located on the boundary of X. It

is also worth noting that when the function f is coercive, that is, f(x) → ∞ as ||x|| → ∞, there

always exists a box containing all global minimisers of f . Therefore, the unconstrained global op-

timisation problem we want to solve, minf(x) : x ∈ Rn, can be reduced into an equivalent problem

formulation in equation 4.6 [5].

One efficient approach to global optimisation that uses the function modification methodology

is that of filled functions introduced by Ge in [25], which we will now define.

Definition 4.5.1. (Filled Function)

Let x∗ be an isolated local minimiser of f over X. A function Fx∗ is said to be a filled function

of f at x∗ if it satisfies the following conditions:

(P1) x∗ is a maximiser of Fx∗ and the whole basin B∗ of f at x∗ becomes part of a hill of Fx∗;
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(P2) Fx∗ has no minimisers or saddle points in any basin of f higher than B∗;

(P3) if f has a basin B∗∗ at x∗∗ that is lower than B∗ , then there is a point x′ ∈ B∗∗ that minimises

Fx∗ on the line through x∗ and x′′ for every x′′ in some neighbourhoods of x∗∗.

[5, 25]

Let’s try to elucidate what this means from a topological perspective. Firstly, the intuition behind

the name “filled function” is described by property (P1) and is as follows: an objective function f

with an isolated local minimiser x∗ will have this minimiser located in a basin or “trough” or “hole”

on that function which becomes a hill on the corresponding filled function Fx∗ at x∗; therefore,

these hills on the filled function can “fill” the basins on the analogous objective function.

Property (P2) just says what was described that the local minima on the original objective function

f inscribed on the corresponding filled function will include the minimiser x∗ and better minimisers

that yield values of f lower that f(x∗). In other words, the filled function ignores or the minimisers

that are worse that x∗. Some thinking will make one realise that this is actually a very good

property to have especially when dealing with global optimisation because we are always looking

for better minimisers. This prevents us from wasting time on worse minimisers that are of no

consequence in the global optimisation scheme.

The last property (P3) is the most interesting. It says that if the objective function f has an-

other local minimiser x∗∗ with an associated basin B∗∗ that is better than our minimiser x∗ and

its basin B∗, then there exists an intermediate point x′ with x′ ∈ B∗∗ that minimises Fx∗ along a

straight line passing through x∗ and all the points x′′ in the neighbourhood of the better minimiser

x∗∗. In other words, we can find a point close to the better minimiser on the original function f

by minimising the filled function Fx∗ ; we can do this by initialising a local optimisation algorithm

from a point near x∗.

As one can imagine, a filled function has the beauty of being applicable in many different ar-

eas and contexts. Many researchers have incorporated filled functions into their algorithms (see,

e.g., [28, 29, 30, 31]) and others have applied it to practical problems (see, e.g., [32, 33, 34, 35, 36]).

However, filled functions have their problems. Firstly, as pointed out by Ge and Qin [37], filled

functions suffer from a problem in numerical implementation in that changes in both the filled func-

tions and the gradient are indistinguishable when ||x− x∗|| is large. In addition to this numerical

problem, one major weakness associated with the underpinnings of the filled function methods is

that the aforementioned properties (P1) – (P3) do not guarantee a minimiser of the domain of the

minimiser Rn for the filled function [5]. There are even cases where a filled function has no local

minimiser in its domain Rn even though the current minimiser of f is not the global minimiser [5].

To deal with the shortcomings of the filled functions are global descent functions that en-

hance the concept of filled functions to retain all their attractive properties and also guarantee that

if there is a better minimiser than the current minimiser x∗ then we should be able to find the

minimiser of x′ with f(x′) < f(x∗) in the neighbourhood of the better minimiser x∗∗. Let’s define

the global descent functions.
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Definition 4.5.2. (Global Descent Function)

Let x∗ be a known local minimiser of an objective function f where x∗ is an interior point of the

feasible set, x∗ ∈ int(X). We also let

X̂(x∗) = {x∗ ∈ int(X) : x 6= x∗, f(x) ≥ f(x∗)}

A function Gx∗ : X 7→ R is the Global Descent Function of f at x∗ if it satisfies the following

conditions:

(C1) x∗ is strict local maximiser of Gx∗ over X;

(C2) Gx∗ has no stationary points in the set X̂(x∗);

(C3) If the function f has a minimiser x∗∗ ∈ int(X) with f(x∗∗) < f(x∗) then Gx∗ has a minimiser

x′ such that x′ ∈ Nε(x
∗∗) ⊂ X and f(x) < f(x∗) for all x ∈ Nε(x

∗∗), where Nε(x
∗∗) is the

ε-neighbourhood of x∗∗.

For the purpose of the work in this dissertation, we will make use of the family of two-parameter

global descent functions defined by Ng, Li and Zhang in [5] which are as follows:

Definition 4.5.3. (Family of Two-Parameter Global Descent Functions)

Gµ,ρ,x∗ = Aµ(f(x)− f(x∗))− ρ||x− x∗||, (4.7a)

Aµ(y) = y · Vµ(y), (4.7b)

Vµ(y) : R 7→ R, (4.7c)

where ρ > 0, 0 < µ < 1 are problem dependent parameters and Vµ(y) : R 7→ R is continuously

differentiable function that satisfies the following conditions:

(V1) Vµ(−τ) = 1, Vµ(0) = µ, and Vµ(y) ≥ cµ for all y;

(V2) V ′µ(y) < 0 for all y < 0 and −c′µ ≤ V ′µ(y) ≤ 0 for all y > 0,

where V ′µ(y) is the derivative of Vµ, τ > 0 is a sufficiently small number, 0 < c ≤ 1 is a constant,

and c′ ≥ 0 is a constant or a function of µ with limµ→0 cµ = 0.

For complete proofs of the properties given in the definition above, the reader can refer to [5].

Ng, Li and Zhang went on to describe a solution algorithm shown in algorithm 4.5. It is obvi-

ous from the structure of the algorithm that it uses the function modification framework specified

in algorithm 4.4.

Phases 0 (initialisation) and phase 1 (local search) are obvious and quite intuitive as they mirror the

description given in 4.4; however, the global search phase in the algorithm is the most interesting

one so let’s take some time to understand what is going on.

In phase 2(a) a set of m initial points is generated to minimise Gµ,ρ,x∗ . Any method can be

used to generate these points as long as they are distributed efficiently enough to yield a better

minimiser. One way to do so is to distribute the m start points symmetrically around the current
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local minimiser x∗. Another approach to take may be to generate m random points uniformly on

X [5].

Phase 2(c) covers the case where the algorithm’s current point xcur is in a lower basin than the

current minimiser x∗ by satisfying f(xcur) < f(x∗). Because of this, we can break away from the

global phase and start any local minimisation algorithm from xcur and find a better minimiser than

xcur.

Phase 2(d) is slightly more involving. What the algorithm is doing in this step is trying to modify

the constant µ until the conditions

Gµ,ρ,x∗(xcur) 6→ and (xcur − x∗)>∇Gµ,ρ,x∗(xcur) < 0

hold simultaneously. Why is this important? We want to modify Gµ,ρ,x∗ in order to guarantee that

we are able to find a minimiser while searching from xcur. One of the results proved during the

construction of of the global descent function in [5] is that if f(xcur) ≥ f(x∗) and µ is sufficiently

small, then xcur cannot be a stationary point of Gµ,ρ,x∗ . Notice that (xcur − x∗) is a descent direc-

tion of Gµ,ρ,x∗ at xcur because we already know that f(xcur) ≥ f(x∗). Consequently, we modify µ

so that the above conditions hold.

The advantage that the global descent function has over the prototypical filled function is that

it ensures that Gµ,ρ,x∗ has a minimiser in the domain int(X). Therefore, we can use any paradigm

to get the descent direction D of Gµ,ρ,x∗ at xcur in phase 2(e) to approach the minimiser of Gµ,ρ,x∗ .

Examples of the direction paradigms that can be employed is the steepest descent direction or the

Newton’s direction, among others [5].

However, this search on Gµ,ρ,x∗ should be done with caution. A local search that is too aggressive

with a large step-size may lead to a solution trajectory outside the the basin at the minimiser.

Therefore, limiting the step-size in the line search scheme is a key to success in the global search

phase [5].

The constant ρ used for the global descent function Gµ,ρ,x∗ should be selected to be small enough

because there could be no minimiser for Gµ,ρ,x∗ , even when xcur is in a basin of f lower than the

basin at the current minimiser x∗. Thus, the value of ρ is reduced to a preselected fraction of itself,

ρ̂, in phase 2(g) of the solution process if no better solution is found while minimising Gµ,ρ,x∗ . If

the value of ρ reached its predefined lower bound ρL and no better minimiser is found , then the

current minimiser is taken to be (putative) global minimiser of f [5].

During any implementation of this algorithm the constants used may not be easy to estimate

and therefore need to guessed and fine-tuned.
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4.5. Global Optimisation and the Global Descent Functions

Algorithm 4.5 Global Descent Method for Global Optimisation

Phase 0: Initialisation

(a) Choose a function vµ satisfying conditions (V1) and (V2).

(b) Choose ρini > 0 (the initial value of ρ), 0 < µini < 1 (the initial value of µ), µL > 0 (the
lower bound of ρ), 0 < ρ̂ < 1(a fraction for the reduction of ρ), 0 < ρ̂ < 1 (a fraction for the
reduction of µ), ε > 0 (the radius of a small neighbourhood of x∗), κ > 0 (a small tolerance),
and λU > 0 (the maximum step-size for a line search).

(c) Set ρ := ρini and µ := µini.

(d) Choose/generate an initial point xini ∈ X for problem

min {f(x) : x ∈ X}

and set the current iterative point xcur := xini and the iteration count Niter := −1.

(e) Perform the local search in Phase 1.

Phase 1: Local Search

(a) Starting from xcur, use any local minimisation method to search for a local minimiser x∗∗ of f
over X. Update the current local minimiser x∗ := x∗∗ and the iteration count Niter := Niter+1.

(b) Perform the global search in Phase 2.

Phase 2: Global Search

(a) Generate a set of m initial points: {xini(i) ∈ X\Nε(x
∗) : i = 1, 2, ...,m}. Set i := 1.

(b) Set the current iterative point xcur := xini(i)

(c) If f(xcur) < f(x∗), then perform the local search in Phase 1.

(d) If
||∇Gµ,ρ,x∗(xcur)|| < κ and (xcur − x∗)>∇Gµ,ρ,x∗(xcur) ≥ 0,

then choose a positive integer l such that µl := µlµ and

||∇Gµ,ρ,x∗(xcur)|| ≥ κ or (xcur − x∗)>∇Gµ,ρ,x∗(xcur) < 0.

Update µ := µl.

(e) Choose a descent direction D of Gµ,ρ,x∗ at xcur Find a new x along D by a line search method
such that Gµ,ρ,x∗ can reduce to a certain extent and the step-size of the line search λ ≤ λU
; then set xcur := x and go to Phase 2(c). However, if x attains the boundary of X during
minimisation, then go to Phase 2(f);

(f) Set i := i+ 1. If i ≤ m, then go to Phase 2(b);

(g) Set ρ := ρ̂ρ and reset µ := µini. If ρ ≥ ρl, then go to Phase 2(a). Otherwise, the algorithm is
incapable of finding a minimiser of f better than the current local minimiser x∗ starting from
the initial points x(i) : i = 1, 2, ...,m. The algorithm stops, and x∗ is taken as a (putative)
global minimiser.
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4. Background: Non-Linear Local and Global Optimisation Theory

4.6. Summary

This chapter is an overview of the optimisation theory used in this work. It covers the concepts in

non-linear local and global optimisation theory, including global descent functions.
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5
The Gentlest Ascent Dynamics (GAD)

We are interested in the opposite dynamics: the dynamics of escaping a basin of attraction.

– Weinan E and Xiang Zhou, 2011 [7]

This chapter gives an overview of the work by Weinan E and Zhou in [7] on the Gentlest Ascent

Dynamics (GAD).

5.1. Formulation

The work in this chapter presents dynamical systems that escape from basins of attraction of at-

tractors. The stable fixed points of these dynamics are index-1 saddle points.

To get a picture of the implication of this result, let us consider a function V defined on Rn.

Let x denote the independent variable that we will parameterise with time t to get x(t). If we are

interested in the minima of this function V (x(t)), we can write its steepest descent dynamics as

dx(t)

dt
= −∇V (x(t)) (5.1)

or more commonly as

ẋ = −∇V (x). (5.2)

After some thought, it is easy to realise that if some x(t) is the solution of the autonomous differen-

tial equation (5.2), then the original function V (x(t)) is a decreasing function of t. This makes sense

since we formulated equation (5.2) as “Steepest Descent Dynamics” by seeking out the direction of

steepest decrease with respect to t. Therefore, if this solution exists, then V (x(t)) is decreasing in

t.

We can further observe that the stable fixed points of the dynamics presented by (5.2) are the

local minima of V . This is quite intuitive since we know that the fixed points of (5.2) correspond
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5. The Gentlest Ascent Dynamics (GAD)

to the stationary points of V ; since the dynamics of (5.2) seek out the minima, its fixed points will

correspond to the minima of V . Continuing with this idea, we know that each of these fixed points

or minima have basins of attractions associated with them where all initial conditions from which

the steepest descent dynamics described by (5.2) converges to that local minimum as time goes

to infinity. These can be viewed as trapping regions for the particular minima. Thus, each basin

of attraction can be thought to define its own behaviour of the differential equation (5.2) in its

region. From dynamical systems theory as outlined in section 3.4, we remember that a separatrix

is a boundary separating two modes of behaviour in a differential equation. Thus, these basins

of attractions are separated from each other by separatrices, on which the dynamics converge to

saddle points [7].

However, the goal in this exposition is to find the opposite dynamics — dynamics that escape

these basins of attraction. One may suggest we reverse the sign for (5.2) but that would convert

the dynamics (5.2) into the steepest ascent dynamics and will find the local maxima instead. This

is not what we want. What we want is the gentlest way in which the dynamics can escape or

“climb out” of a basin of attraction. Since we know that basins of attractions have separatrices on

which the dynamics converge to saddle points, all we need is to find dynamics that converge to the

index-1 saddle points of V .

Weinan E and Zhou found that the following dynamics serve this purpose:

ẋ = −∇V (x) + 2
〈∇V, v〉
〈v, v〉

v (5.3a)

v̇ = −∇2V (x)v +
〈v,∇2V v〉
〈v, v〉

v. (5.3b)

They showed that the stable fixed points of the dynamics of equation (5.3a) are precisely the index-

1 saddle points of the function V and that the equation (5.3b) showed the unstable directions at

the saddle points.

The intuition behind the idea is quite straightforward. The equation (5.3b) attempts to find the

unstable directions of function V ’s index-1 saddle points by finding the direction that corresponds

to the smallest eigenvalue of the Hessian ∇2V . The first equation (5.3a) is the normal steepest

descent dynamics plus a “noise term” that makes the unstable directions derived in the second

equation (5.3b) the ascent direction.

In the formulation of the differential equations (5.3a) and (5.3b), we started out with a dynam-

ical system (5.2) that involved the “gradient” of function V . These are called gradient systems.

Weinan E and Zhou showed that this idea can be extended to more general non-gradient systems

or dynamical systems of the form

ẋ = F (x). (5.4)

Therefore, we can talk about about the stable fixed points of the dynamics of (5.4) and how to

escape their basins of attraction as we did before. More specifically, we can talk about the finding

the index-1 saddle points of F (x). However, there is no guarantee that, under the influence of small

“noise”, the escape path will be via saddle points [7, 8].
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5.1. Formulation

Thus, for non-gradient systems of the form of (5.4), the differential equations (5.3a) and (5.3b)

have to be modified to

ẋ = F (x)− 2
〈F (x), w〉
〈w, v〉

v, (5.5a)

v̇ = (∇F (x))v − α(v)v, (5.5b)

ẇ = (∇F (x))>w − β(v, w)w. (5.5c)

The two direction vectors v and w are required in order to follow both the right and left eigenvectors

of the Jacobian ∇F (x ). Given the matrix ∇F (x ), the scalar valued functions α(v) and β(v ,w)

are defined by

α(v) = 〈v, (∇F (x))v〉, (5.6a)

β(v, w) = 2〈w, (∇F (x))v〉 − α(v). (5.6b)

In the original paper, Weinan E and Zhou denoted the normalisation 〈v, v〉 = 1 and 〈w, v〉 = 1.

They showed at as long as this held initially it would be preserved. Therefore, if one lets v = w,

then the equations (5.5a)–(5.5c) can be reduced to equations (5.3a)–(5.3b).

In order to illustrate the insight behind the idea of GAD, let us consider dynamics represented

by force F at an arbitrary point x. The force is simply what causes the dynamics, and in this

case can be imagined to be −∇V (x). Let v1 and v2 be the unstable and stable right eigenvectors,

respectively; let w1 and w2 represent the corresponding left eigenvectors. It is worth noting that

with this description, unstable left eigenvector w1 is orthogonal to the stable right eigenvector v2

and so are the other to, that is,

w1 ⊥ v2

w2 ⊥ v1

Therefore F is decomposable into

F = F1 + F1 = c1v1 + c2v2,

where the coefficient c1 is

c1 =
〈F, w1〉
〈v1, w1〉

.

We know that the GAD represents the opposite of the unstable directions of F escaping the basin

of attraction. So, if we denote GAD by F̄, then

F̄ := −F1 + F2

⇒ F̄ = −F1 + (F− F1)

⇒ F̄ = F− 2F1

⇒ F̄ = F1 − 2c1v1

F̄ = F1 − 2c1v1

which matches 5.5a. An illustration is on figure 5.1.
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5. The Gentlest Ascent Dynamics (GAD)

Figure 5.1.: Illustration of GAD from Weinan E and Zhou paper [7]

5.2. Analysis

In this section we will state one important proposition and one theorem from the Weinan E and

Zhou paper.

Definition 5.2.1. (Vector Field)

Let I ⊂ Rn, a vector field V is a vector-valued function V : I → Rn.

In this section we will consider a vector field F defined in Rn that we will assume is three times

continuously differentiable.

Proposition 5.2.1. (Fixed Point of GAD)

If (x , v ,w) is a fixed point of the GAD (5.5a) – (5.5c) and v , w are normalised such that v>v =

v>w = 1, then v and w are the right and left eigenvectors , respectively, of ∇F (x ) corresponding

to one eigenvalue λ∗, that is,

(∇F (x ))v = λ∗v ,

(∇F (x ))>w = λ∗w ,

and x is a fixed point of the original dynamics system, that is, F (x ) = 0.

Proof. Let (x∗, v∗, w∗) be a fixed point.

We have the GAD

ẋ = F (x)− 2
〈F (x), w〉
〈w, v〉

v,

v̇ = (∇F (x))v − α(v)v,

ẇ = (∇F (x))>w − β(v, w)w,

with scaler valued functions

α(v) = 〈v, (∇F (x))v〉,

β(v, w) = 2〈w, (∇F (x))v〉 − α(v).
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5.2. Analysis

At fixed point v̇ = ẇ = 0, so we get

(∇F (x∗))v∗ = α(v∗)

(∇F (x∗))>w∗ = β(v∗, w∗)w∗

Rewriting the definition of β and using result above and the normalisation condition gives

α(v∗) = ∇F (x∗),

β(v∗, w∗) = 2〈w∗, (∇F (x∗))v∗〉 − α(v∗) = 2w∗>(∇F (x∗))v∗ − α(v∗) = 2w∗>(α(v∗))v∗ − α(v∗)

⇒ β(v∗, w∗) = 2w∗>(α(v∗))v∗ − α(v∗) = 2α(v∗)− α(v∗) = α(v∗)

⇒ β(v∗, w∗) = α(v∗)

This means that v∗ and w∗ share the same eigenvalue which we will denote as λ∗. So

λ∗ = α(v∗) = β(v∗, w∗)

From the fixed point condition, ẋ = 0 and normalisation condition we obtain

F (x∗)− 2w∗>F (x∗)v∗ = 0

⇒ F (x∗)− 2w∗>F (x∗)v∗ = 0

getting inner product of the equation above with by w∗

w∗>F (x∗)− 2w∗>F (x∗)w∗>v∗ = 0

⇒ w∗>F (x∗)− 2w∗>F (x∗) = 0

⇒ w∗>F (x∗) = 0

and, consequently,

⇒ F (x∗) = 0

Therefore, from the condition ẋ = F (x∗)− 2w∗>F (x∗)v∗ = 0, we obtained F (x∗) = 0, as required.

Theorem 5.2.1. (Stable Fixed Point of GAD)

Let xs be a fixed point of the original dynamical system ẋ = F (x). If the Jacobian matrix

J(xs) = ∇F (xs) has n distinct real eigenvalues λ1, λ2, ..., λn and n linearly independent right and

left eigenvectors, denoted by vi and wi correspondingly, that is,

J(xs)vi = λivi,

J(xs)
>wi = λiwi,

i = 1, ..., n

and, in addition, we impose the normalisation condition v>i vi = w>i vi = 1 (∀i), then for all
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5. The Gentlest Ascent Dynamics (GAD)

i = 1, ..., n (xs, vi, wI) is a fixed point of the GAD

ẋ = F (x)− 2
〈F (x), w〉
〈w, v〉

v,

v̇ = (∇F (x))v − α(v)v,

ẇ = (∇F (x))>w − β(v, w)w.

Furthermore, among these n fixed points, there exists one fixed point (xs, vj , wj) which is linearly

stable if and only if xs is an index-1 saddle point of the original dynamical system ẋ = F (x) and

the eigenvalue λj corresponding to this vj , wj is the only positive eigenvalue of J(xs).

Proof. We only provide an overview of this proof. For the details, refer to [7].

An overview of the proof is as follows: at a fixed point, the Jacobian matrix of the GAD will

be zero elsewhere apart from the diagonal elements. Therefore, the eigenvalues and eigenvectors of

the Jacobian at the fixed point can be calculated from the diagonal block elements. From the the

characteristics of the resulting eigenvalues such as the multiplicities one can deduce the properties

stated in the theorem.

5.3. Example: Analysis of a Gradient System

Since the work in this thesis deals with only gradient systems, we will examine an example of that

type and apply GAD to it. We will use the form shown in equations 5.3a and 5.3b.

In order to have a better grasp on the dynamics described by GAD, we will reduce it to a very

simple form. Firstly, by using the normalisation condition v>v = 1 and using a relation parameter

τ for the direction of v, we get

ẋ = −∇V (x) + 2〈∇V, v〉v,

τ v̇ = −∇2V (x)v + 〈v,∇2V v〉v.

In order to get a closed system for x, we will let τ → 0, to obtain only

ẋ = −∇V (x) + 2〈∇V, v(x)〉v(x), (5.7)

where v(x) is simply just the eigenvector of ∇2V (x) corresponding to the smallest eigenvalue.

Now lets consider the following two-dimensional system

V (x, y) =
1

4
(x2 − 1)2 +

1

2
µy2

where µ is a positive parameter. The contour and surface plots of this system are shown on figure

5.2. The two stable critical points (and hence the two stable fixed points of the associated dynamics)

are at (1, 0) and (−1, 0). It is also visible from the illustration that (0, 0) is the index-1 saddle point.

The gradient and Hessian of V are
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Figure 5.2.: Contour and Surface plot of V (x, y) = 1
4(x2 − 1)2 + 1

2µy
2

∇V (x, y) =

[
x(x2 − 1)

µy

]
,

∇2V (x, y) =

[
3x2 − 1 0

0 µ

]
.

The eigenvalues and eigenvectors of the Hessian at a point (x, y) are

λ1 = 3x2 − 1 and v1 =

[
1

0

]
;

λ2 = µ and v1 =

[
0

1

]
.

We know that µ > 0, so the smallest eigenvalue of the Hessian will depend on which is smaller

between λ1 and λ2. The GAD direction will depend on this comparison. Therefore, the direction

corresponding to the smallest eigenvalue that will be picked by GAD, which we will denote as

vGAD, is

vGAD(x) =


v1, if |x| <

√
1+µ
3

v2, if |x| >
√

1+µ
3

(5.8)

So, if we define

V1(x, y) = −1

4
(x2 − 1)2 +

1

2
µy2

and

V2(x, y) =
1

4
(x2 − 1)2 − 1

2
µy2,

where are choice for the signs in V1 correspond to the GAD direction VGAD = v1 and V2 to that of

VGAD = v2.

We can deduce from all this that the value of µ determines what direction GAD chooses. Therefore,

in order to use the GAD (5.8), we define a modified version of the function V , which we will call
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5. The Gentlest Ascent Dynamics (GAD)

VGAD, that will serve as the underlying function that will drive the GAD (5.8) as

VGAD = V1(x, y) · 1
|x|<

√
1+µ
3

+ V2(x, y) · 1
|x|>

√
1+µ
3

(5.9)

where 1(x) an an indicator function — a function that is 0 when an element is not a member of a

specified set and is 1 if it is.

The introduction of this definition of VGAD may be quite confusing at first but it is easier to

think of it as a manipulated version of the function V . After this manipulation, the point (0, 0),

instead of being an index-1 saddle point of V , will now be a stable fixed point of VGAD and the

two points (1, 0) and (−1, 0) are the saddle points of VGAD — they swap places. A closer look

at VGAD will show that it is similar to the index-1 function forms prescribed by Morse’s lemma.

This manipulation is dependent on the directions v1 and v2 and is done for illustrative purposes

to show the the effect of using these directions as ascent directions. In other words, when we use

these directions v1 and v2, it is as though the function V is actually VGAD — or, VGAD is the

behaviour of V after perturbation by direction directions v1 and v2. Therefore, applying GAD to

V is analogous to applying normal steepest descent dynamics to VGAD — the attractors of both

dynamics are the index-1 saddle points of V .

The function VGAD is not continuous at |x| = ±
√

1+µ
3 (figure 5.3). The point (0, 0) becomes

the unique local minimum of V1, with a basin of attraction {(x, y) : −1 < x < 1}. Outside this

basin of attraction, the dynamics tend to (x = ±∞, y = 0) and the value of V1 falls to −∞. This

shown by figure 5.4.

Figure 5.3.: Illustration of the discontinuity of VGAD(x, y = 0) at |x| = ±
√

1+µ
3 from the Weinan

E and Zhou paper. Left: µ < 2, right: µ > 2

For V2, as shown by figure 5.5, the point (0, 0) is the unique local maximum and all solutions of

the dynamics go to (x = ±1, y = ±∞).

If we start the GAD on V with an initial value x± = (±1, 0), its two attractors, there are two

possible ways that the dynamics escape them that depend on whether µ < 0 or µ > 0. Although
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4(x2 − 1)2 + 1

2µy
2

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) Contour Plot

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

xy

V
2
(x

,y
)

(b) Surface Plot

Figure 5.5.: Contour and Surface plot of V1(x, y) = −1
4(x2 − 1)2 + 1
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2

the behaviour that GAD induces makes x± behave like a saddle point for any µ 6= 2, the unstable

direction for µ < 2 is ±v2 while the unstable directions for µ > 2 is ±v1, as illustrated by figure

5.6 from [7]. Furthermore, from figure 5.6 and the discussion so far, it is clear that the basin of

attraction of the function VGAD is −
√

1+µ
3 < x <

√
1+µ
3 for µ < 2 and −1 < x < 1 for µ > 2 —

larger than the basins of attractions for the Newton-Raphson method [7]. As a result, the GAD

with an initial value (x0, y0) near the local minimum x± of V escapes its basin of attraction and

then converges to point (0, 0) of our interest when µ > 2 and |x0| < 1.

The above discussion shows and suggests that GAD may not necessarily converge globally and

instabilities can occur when GAD is used as a numerical algorithm. When instabilities occur, one

may simply re-initialise the initial position or the direction [7].
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5. The Gentlest Ascent Dynamics (GAD)

Figure 5.6.: The contour plots of V , VGAD for µ = 1 and VGAD for µ = 3, from the top to the bottom,

respectively. For the plot of VGAD, the plot of V1 lies in the region −
√

1+µ
3 < x <

√
1+µ
3

and for V2 it’s on the two outer regions. The arrows show the direction of the flow of
GAD equation (5.7).
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5.4. Conclusion

5.4. Conclusion

In this chapter we have introduced GAD which describes dynamical systems that escape the basins

of attraction of minima and converge to index-1 saddle points. With further exposition and analysis

on the case on gradient systems, it was discovered that GAD may not always converge toward an

index-1 saddle point as time goes to infinity despite being able to escape the basins of attraction of

the maxima and minima. This is due to some a phenomenon that can be only be flimsily described

as a form of sensitivity to initial conditions. This may be a problem for numerical algorithms that

may want to use the GAD paradigm.
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6
Distillation of the Gentlest Ascent Dynamics

into a Numerical Algorithm

6.1. Introduction

Our goal now is to construct a numerical algorithm from the GAD equations. Before proceeding,

we need to define the context that we will use in solving the problem at hand.

Sticking to the conventions in topology, we will think of this problem in terms of finding the

saddle points on of a surface or, more generally, a hyper-surface. We will use the word surface for

the sake of brevity. Let us consider a real-valued function V (x), where x ∈ Rn, whose saddle points

we want to find using the GAD equations

ẋ = −∇V (x) + 2
〈∇V (x),v〉
〈v,v〉

v, (6.1a)

v̇ = −∇2V (x)v +
〈v,∇2V (x)v〉
〈v,v〉

v. (6.1b)

In order to simplify the equations above to a less clattered form we will assume the normalisation

condition v>v = 1 holds and, borrowing from the convention used in the illustration of GAD for

non-gradient systems by Weinan E and Zhou in [7], we will denote the force −∇V (x) as F(x).

The force here can be imagined as what “causes” the direction of the trajectories’ movement of the

steepest descent dynamics. We can also let the Hessian ∇2V (x) be denoted as H(x). Therefore,

the resulting simplified version of the GAD equations becomes

ẋ = F(x)− 2〈F(x),v〉v (6.2a)

v̇ = −H(x)v + 〈v,H(x)v〉v. (6.2b)
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6.2. Discretisation of the GAD Equations

As before, the second equation defines the dynamics of the “ascent” direction v. The first term

−H(x)v on the right hand side makes sure that v converges to the eigenvector corresponding to

the smallest eigenvalue of the Hessian H(x) and the second term 〈v,H(x)v〉v ensures that v is of

unit length. The first equation perturbs the steepest descent dynamics by making them follow the

“ascent” direction [7, 9].

6.2. Discretisation of the GAD Equations

An important step in constructing a numerical algorithm using GAD is discretising the dynamics

because we want to make use of numerical evaluations implemented on a computer. For the first

equation 6.2a,

ẋ = F(x)− 2〈F(x),v〉v,

⇒ dx

dt
= F(x)− 2〈F(x),v〉v, where t is time.

Considering discrete time steps
∆x

∆t
= F(x)− 2〈F(x),v〉v

⇒ xt+1 − xt
∆t

= F(xt)− 2〈F(xt),vt〉vt

⇒ xt+1 − xt =
[
F(xt)− 2〈F(xt),vt〉vt

]
×∆t

which becomes

xk+1 = xk + F(xk) ·∆t− 2〈F(xk),v〉v ·∆t.

And for the second equation 6.2b,

v̇ = −H(x)v + 〈v,H(x)v〉v,

⇒ dv

dt
= −H(x)v + 〈v,H(x)v〉v

Considering discrete time steps gives

∆v

∆t
= −H(x)v + 〈v,H(x)v〉v

⇒ vt+1 − vt
∆t

= −H(xt)vt + 〈vt,H(xt)vt〉vt

⇒ vt+1 − vt =
[
−H(x)vt + 〈vt,H(xt)vt〉vt

]
×∆t

which yields

vt+1 = vt −H(x0)vt ·∆t+ 〈vt,H(xt)vt〉vt ·∆t.

Therefore, the discretised GAD equations are

xk+1 = xk + F(xk) ·∆t− 2〈F(xk),v〉v ·∆t (6.3a)

vt+1 = vt −H(x0)vt ·∆t+ 〈vt,H(xt)vt〉vt ·∆t. (6.3b)

We will now proceed to formulate a numerical algorithm.
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6.3. Basic and Natural GAD Numerical Algorithm

Now that we have the discretised equations, we now need to think about what conditions must be

true initially for our algorithm.

Naturally, we can have an initial point x0 and a random initial direction v0 and then apply GAD

on them iteratively. This gives rise to the basic algorithm shown in algorithm 6.1 .

Algorithm 6.1 Basic and Natural GAD Numerical Algorithm

Require: Initial point x0

Require: Initial normalised direction v0

Require: Function V (x)
Require: Force F(x) and Hessian H(x)
Require: Tolerance parameters τ1, τ2 and τ3
Require: Time-step ∆t
Require: Set k = 1

1: while (ε1 > τ1 & ε2 > τ2 & ε3 > τ3 ) do
Evaluate force F (xk);
Evaluate Hessian H(xk);
Move to next point

xk+1 = xk + F(xk) ·∆t− 2〈F(xk),v〉v ·∆t

Get new direction
vk+1 = vk −H(xk)vk ·∆t

Normalise direction
vk+1 =

vk+1

|vk+1|
Calculate parameters for termination conditions

ε1 = V (xk+1)− V (xk)

ε2 = ||F(xk)− 2〈F(xk),v〉v||

ε3 = ||F(xk)||

Set flag for next iteration
k = k + 1

This algorithm starts with an initial point x0 and normalised random direction v0 and calculates

the values of the force F and Hessian H at the point x0. The algorithm then uses these values

to calculate the next point and the next normalised direction, then it iterates. This sequence of

using the GAD sub-equations is in the true spirit of GAD because it simulates the gradual cooling

process which eventually converges on a separatrix. It is from this separatrix that the GAD dynam-

ics converge toward a saddle point. This is why we have called this algorithm both basic and natural.

Notice that in our treatment we use extra information to aid the iteration such as the step-size ∆t

and error tolerances τ . The error tolerances are used to implement termination conditions for the

algorithm. In the case of the algorithm 6.1, the conditions used are based on three key aspects of

the function. These are:
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1. Change in Function Value: V (xk+1)− V (xk) < τ ;

2. Norm of the Residual: ||F(xk)− 2〈F(xk),v〉v|| < τ ; and

3. Norm of the Gradient: ||F(xk)|| < τ .

The first condition relies on the fact that at a solution the change in the function value between

iterations will be very small. The second condition uses the knowledge that at a fixed point the

residual ẋ ≈ 0. The third condition uses the property of the gradient at any critical point. In this

case, the norm of the gradient being 0. The value that can be set for τ is dependent on the degree

of accuracy required.

On the other hand, the step-size ∆t is used to determine how far in the GAD direction the next

point will be in each iteration. The value must be small enough to allow the algorithm to stabilise

into a separatrix. Of course, this will in turn result in a large number of iterations for the trajectory

to stabilise. On the other hand, a large step-size may be too aggressive and the algorithm may

never converge. For the basic algorithm, this value is set to be a small fixed value like 0.1 or 0.05.

So does this algorithm actually work? Let us try it on the same example function V (x, y) =
1
4(x2 − 1)2 + 1

2µy
2 with µ = 3 used in the GAD exposition chapter. This function V (x, y) has

minima at (±1, 0) and a saddle point at the origin (0, 0) as shown in the figure 6.1. Various initial-

Figure 6.1.: Function V (x, y) = 1
4(x2 − 1)2 + 3

2y
2 with minima at (±1, 0) and a saddle point at the

origin (0, 0).

isations of the algorithm with ∆t = 0.1 and τ = 0.005 give very interesting results.

Figure 6.2 shows the GAD solution trajectory with the algorithm initialised at point (−0.51, 0.31)

with a random initial direction [−1, 0]. As illustrated, the trajectory is stable and converges toward

the saddle point at (0, 0). As can also be seen from the elevation plot in figure 6.2, the trajectory

escapes the basin of attraction of the minima at (−1, 0) and “gently ascends” toward the saddle
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point. The trajectory does not head toward the saddle point directly but eventually “cools” from

the initial configuration until it stabilises into a separatrix before it converges toward the saddle

point. This is expected as it was stated by Weinan E and Zhou in the original paper.

(a) Stable GAD Solution Trajectory (b) GAD Elevation Plot

Figure 6.2.: GAD trajectory and elevation plots on V (x, y) with algorithm initialised from point
(−0.51, 0.31) with initial direction [−1, 0]. The minima at (±1, 0) and a saddle point
at the origin (0, 0)

Now, let’s try to change the initial direction to [0,−1] and see what happens. As can be seen from

figure 6.3 the resulting trajectory is unstable as it is heading higher and away from the saddle

point. Other initialisations done nearer to the minima (−1, 0) yield similar results as seen from

figure 6.4b.

(a) Unstable GAD Solution Trajectory (b) GAD Elevation Plot

Figure 6.3.: GAD trajectory and elevation plots on V (x, y) with algorithm initialised from point
(−0.51, 0.31) with initial direction [0,−1]. The minima at (±1, 0) and a saddle point
at the origin (0, 0)

We were warned about this instability in [7] and E and Zhou advised reinitialising either the initial

direction or the initial point. However, this is undesirable. What we want is an algorithm that
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(a) A Gradually Stable GAD Solution Trajectory (b) An Unstable GAD Solution Trajectory

Figure 6.4.: Other GAD solution trajectories on function V (x, y) = 1
4(x2 − 1)2 + 3

2y
2

is numerically stable and always converges toward an index-1 saddle point. Our task now is to

achieve this.

6.4. Improvements on the Natural GAD Numerical Algorithm:

Initial Conditions

In order to solve the instability problem we need to figure out what initial conditions lead to stable

trajectories. To do this, we need to gain insight into the inner workings of GAD. The problem of

finding saddle points close to local minima means that trajectories need to escape the basins of

attraction of the minima along preferential directions in a multidimensional configurational space.

The difficulty we are facing now is being able to have a theoretical handle on these preferential

directions because they represent only a very small fraction of all directions emanating from locally

stable fixed point on the high dimensional surface.

The task at hand now is to reduce the size of the configurational space by selecting a small fraction

of it that represents our preferential directions. Firstly, from dynamical systems theory, we know

that the reason some initial conditions led to unstable GAD solution trajectories is that these initial

conditions caused the trajectories to cross the boundary of behaviour dividing the part of the phase

space where GAD is well behaved to where it is not. So, if we had an idea of where this boundary

is or how to ensure our dynamics do not cross it then we can solve the problem. In other words,

we want to find the initial conditions that always ensure our algorithm is initialised in the basin of

attraction of the saddle points with respect to GAD.

To proceed with this line of thought, we remember that each fixed point (stationary points or

critical points) have associated with them sets where the dynamics are influenced by this point.

Let us consider the steepest descent dynamics for a real valued function V (x) such as

ẋ = −∇V (x).
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In this case, a local minimum (locally stable fixed point) has an associated basin of attraction

where all the dynamics converges to that local minimum as time goes to infinity. This basin of

attraction is called the stable manifold/set of the locally stable fixed point. Trajectories with

initial conditions within this set eventually converge toward this stable fixed point as time passes.

This is shown in figure 6.5a. Similarly, a local maximum (locally unstable fixed point) has an

associated basin of “repulsion” where all the steepest dynamics diverge away the local maximum as

time goes to infinity. This basin of “repulsion” is called the unstable manifold/set of the locally

stable fixed point. This is also shown in figure 6.5b. Trajectories with initial conditions within this

set eventually diverge away this unstable fixed point as time passes.

(a) Stable attracting fixed point and its stable manifold (b) Unstable repelling fixed point and its unstable manifold

Figure 6.5.: Attractor and Repellor and their associated Manifolds (Source: Wikimedia Commons)

There is another type of fixed point that has the combined behaviour of the two aforementioned

fixed point types because it has both stable and unstable manifolds. These are saddle points. This

means that for the steepest descent dynamics above these distinct stable and unstable manifolds

for the associated distinct stable and unstable fixed points are separated by separatrices on which

the dynamics converge toward saddle points. This is shown in figure 6.6. Therefore, we can sur-

mise that a separatrix will occur in between any two fixed points. Why? Because their basins of

behaviour interact to form this separatrix. This knowledge tells us that our initial point for GAD

should be in the vicinity of at least two fixed points, preferably in between two fixed points, in

order to ensure it is in the basin of attraction of the saddle point. Intuitively, this is equivalent

to saying that on a mountainous surface with many hills and troughs you will find a saddle point

close to any two hills or valleys.

What about the initial direction? What insight can we use to ensure they led to stable GAD

trajectories? Samanta and E in [9] observed that in materials physics many deformation processes

proceed along minimum energy paths and they can be easily traced using the softest eigenmodes of

the Hessian. Why is this important to us? As stated in the introductory chapter, the dynamics of

many complex systems proceed via sequences of metastable states and when the system is a sim-

ple Potential Energy Surface (PES) like the aforementioned deformation process the path between
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Figure 6.6.: Saddle point. Blue lines are on Separatrix (Source: Wikimedia Commons)

these states follows a minimum energy path that passes through a saddle point [9].

This insight and analysis now enables us to define the desirable initial conditions for the numerical

GAD algorithm.

Definition 6.4.1. Desirable Initial Conditions for GAD

1. The initial point x0 must be close to at least two local fixed point or close to a saddle point;

2. The initial direction v0 must correspond to the eigenvector with the smallest eigenvalue of the

Hessian at the point x0 close to the local fixed point.

The first point in the definition is self-explanatory. All it says is that the point must be within

the vicinity of at least two minima or maxima, or between a minimum and a maximum. This is in

order to ensure it’s close to a saddle point. This condition is quite easy to satisfy if the function

has a large number of local maxima and minima, as is the case with the functions we are interested

in, because practically every point is in the vicinity of at least two stationary points.

The second condition, however, is quite interesting. It states that the initial direction must be

the most unstable eigenvector of the Hessian of the initial point. Traditionally, negative eigenval-

ues correspond to unstable eigenvectors of the Hessian. Therefore, the smaller the eigenvalue of an

eigenvector then the more unstable it is. In other words, during initialisation, we need to choose an

initial direction corresponding to the “softest” or the “smallest” eigenvalue because this direction is

part of the configuration space that would enable the GAD to gradually relax into the the correct

trajectory toward a saddle point.

Algorithm 6.2 shows an improved Natural GAD numerical algorithm based on our new insights.

In order to ensure that the initial point x0 is in the vicinity of at least two locally fixed points one

may simply run a few steps of the steepest descent algorithm and start the GAD algorithm at the

point much closer to a minimum. Or find the the closest minimiser to a random start point and
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then slightly perturb from this point to get the starting point x0.That is, from a random point xr,

we do a local minimisation

xlm = min {f(xr)},

and then perturb this local minimiser xlm by small number ε in a direction e to get our start point

x0; that is,

x0 = xlm ± εe.

For the initial direction v0, we find the softest eigenvector of the Hessian H at a point x0 by solving

the problem

v0 = min {v>Hv : v>v = 1},

and use the resulting x0 and v0 in the algorithm.

In cases where determining the eigenvectors with the smallest eigenvalues is computationally de-

manding or infeasible Samanta and E in [9] discovered that the unit force vector at a point close to

a locally stable fixed point has similar characteristics to the low-lying eigenvectors that correspond

to the preferential directions. Therefore, this can be used as an initial direction in those cases.

Algorithm 6.2 Natural GAD Numerical Algorithm

Require: Initial point x0 close to at least two local fixed points.
Require: Initial normalised direction v0 corresponding to minimum eigenvalue of Hessian at x0.
Require: Function V (x)
Require: Force F(x) and Hessian H(x)
Require: Tolerance parameters τ1, τ2 and τ3
Require: Time-step ∆t
Require: Set k = 1

1: while (ε1 > τ1 & ε2 > τ2 & ε3 > τ3 ) do
Evaluate force F (xk);
Evaluate Hessian H(xk);
Move to next point

xk+1 = xk + F(xk) ·∆t− 2〈F(xk),v〉v ·∆t

Get new direction
vk+1 = vk −H(xk)vk ·∆t

Normalise direction
vk+1 =

vk+1

|vk+1|
Calculate parameters for termination conditions

ε1 = V (xk+1)− V (xk)

ε2 = ||F(xk)− 2〈F(xk),v〉v||

ε3 = ||F(xk)||

Set flag for next iteration
k = k + 1
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Implementation of the algorithm 6.2 and testing it on functions

V (x, y) =
1

4
(x2 − 1)2 +

1

2
3y2

with µ = 3 and

V (x, y) = sin(x)cos(y),

which is shown in figure 6.7, resulted in contour plots and trajectories as shown in figures 6.8 and

6.9.

(a) V (x, y) = 1
4
(x2 − 1)2 + 1

2
3y2 (b) V (x, y) = sin(x)cos(y)

Figure 6.7.: Test Functions for the Natural GAD Algorithm

This algorithm is stable unlike the basic algorithm postulated in the previous section. However,

it suffers in the aspect that it only achieves local convergence — that is, it can be unstable if the

initial conditions do not satisfy the Desirable Initial Conditions defined previously. In fact, this

result is hardly surprising because it is in the spirit that the GAD ODEs were derived in that the

trajectories must gradually cool into the correct configuration. This gives us an intuitive idea about

the bounds of the basin of attraction of the GAD which, as one can imagine, is much larger than

local optimisation algorithms because it spans over the vicinities different types of critical points

[7].

Tests on this algorithm showed some interesting observations which are listed below.

1. GAD algorithm works with initial conditions near maxima: As can be seen in figure

6.9, the GAD algorithm initiated near a locally unstable fixed point (maximum) still converged

toward a saddle point. This makes sense because the unstable manifold of this unstable fixed

point are much easier to find and hence the preferential directions for the GAD are easily

found.

2. Trajectory seeks out the closest saddle point: The GAD equations and algorithm

simulate a gradual process. The dynamics move from initial conditions and gradually “cool”

toward an index-1 saddle point. During this relaxation process, anything can happen as the

trajectory can even escape the basin of attraction depending on how large the step-size is.

As can be seen from solution trajectories on figure 6.8, these trajectories can have long and

81



6. Distillation of the Gentlest Ascent Dynamics into a Numerical Algorithm

(a) Initial point close to minimum

(b) Inital point from higher elevation (c) Example Elevation plot

Figure 6.8.: Solution Trajectories for the Natural GAD Algorithm on V (x, y) = 1
4(x2 − 1)2 + 1

23y2

(a) Initial point close to a minimum (b) Initial point close to a maximum

Figure 6.9.: Solution Trajectories for the Natural GAD Algorithm on V (x, y) = sin(x)cos(y)

winding paths before relaxing to the softest eigenvector in the vicinity of a saddle point and

thus converge toward it. With the initial conditions we have defined, the trajectories always

head toward the closest index-1 saddle point if the step-size is small enough. For higher
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dimensional cases, the Natural GAD will converge at the closest higher-index saddle point if

the step-size used is not small enough for the algorithm to strictly follow GAD and find an

index-1 saddle point. In general, if the step-size is small enough, the Natural GAD algorithm

will converge at the closest index-1 saddle point. However, if the step-size is not large enough,

the algorithm will converge at the closest saddle point regardless of its degree of instability.

3. Trajectory elevation fluctatuatation: As GAD has a gradual direction relaxation con-

vergence scheme, some steps may be ascent steps and others may be descent steps as can be

seen from the elevation plot in figure 6.8. This is as a result of the algorithm’s tendency to

gradually relax toward the separatrix; consequently, the resulting trajectory may ascend and

descend on the function during this process. This is a problem because it’s harder to efficiently

implement a traditional step-size strategy. This will be discussed in section 6.6 of this chapter.

6.5. Rayleigh GAD Numerical Algorithm: Rayleigh Optimisation

At this point we have an effective algorithm using GAD to find saddle points. However, the Natural

GAD has the following short-comings:

1. No Global Convergence: If the initial conditions do not satisfy the Desirable Initial Con-

ditions for GAD, then the algorithm does not converge. Specifically, if a point is not in

the vicinity of at least two fixed points, which less is likely in a multimodal function, then

convergence fails.

2. Rate of Relaxation to a Separatrix: In the previous section, we observed that for the

Natural GAD to work very well it needed to have a small enough step-size. This was for the

purpose of allowing the solution trajectory to gradually relax into a separatrix before it can

converge toward a saddle point. This relaxation process is slow and takes up a large fraction

of the iterations of the algorithm.

3. Use in Global Optimisation: Our goal is to use a GAD-based algorithm to find saddle

points that we want to use as transitional points for a global optimisation algorithm. The

Natural GAD algorithm suffers from the fact that it requires a large number of iterations in

order to converge. This large number of iterations translates to a larger number of function,

gradient and Hessian evaluations which may be detrimental to algorithm complexity.

So, we ask the following questions: Is it possible to have a GAD-based algorithm that is never

unstable regardless of the initial conditions? Can we construct such an algorithm with a faster rate

of convergence toward a separatrix? Can we build an algorithm that converges at a saddle point

with fewer iterations? Constructing such an algorithm is the goal of this section.

To take on this task we need to take a closer look at the GAD equations:

ẋ = F(x)− 2〈F(x),v〉v (6.4a)

v̇ = −H(x)v + 〈v,H(x)v〉v. (6.4b)

As before, the second equation defines the dynamics of the “ascent” direction v. The first term

−H(x)v on the right hand side makes sure that v converges to the eigenvector corresponding to

the smallest eigenvalue of the Hessian H(x) and the second term 〈v,H(x)v〉v ensures that v is of
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unit length. The first equation perturbs the steepest descent dynamics by making them follow the

“ascent” direction [7, 9].

The second ODE can be constructed from the classical optimisation problem

minimise
v

v>Hv

subject to v>v = 1.
(6.5)

A term of the form
v>Hv

v>v

is called the Rayleigh Quotient and it reduces to v>Hv with the constraint v>v = 1. The op-

timisation above is called the Rayleigh optimisation and is a classical formulation finding the

eigenvector corresponding to the smallest eigenvalue of a symmetric matrix [38]. The objective

function in this case is f(v) = v>Hv. Differentiating it gives ∇f(v) = Hv and because of the

steepest descent minimisation the force is −∇f(v) = −Hv. Adding the constraint v>v = 1 the

trajectory of the minimisation is

v̇ = −Hv + 〈v,Hv〉v

which is essentially equation 6.4b.

If we replace the second ODE with the Rayleigh optimisation in our GAD algorithm then we

speed up the rate at which the algorithm “cools” or relaxes toward a separatrix and, in turn, a

saddle point. Thus, within each GAD iteration, we do many iteration steps to solve the Rayleigh

optimisation at a point and one step to go to the next point as shown by algorithm 6.3 below.

The Rayleigh optimisation is not necessarily easy to do so any other calculation that yields the

minimum eigenvector is fine for this step. However, caution should be taken because the matrix H

is not necessarily positive definite to solve the resulting ∇f(v) = 0 as required by many algorithms.

As a result, methodologies such as the Generalised Minimal Residual (GMRES) Method which do

not need this requirement are desirable. Eigenvalue and eigenvector finding algorithms can also be

used.

Testing this algorithm results the surface contours with trajectories shown in figures 6.10 and

6.11.

The tests on this algorithm show that it behaves well for cases where the initial conditions satisfy

the Desirable initial Conditions. However, when the Desirable Initial Conditions are not satisfied,

the convergence of the algorithm is peculiar because it converges at a point close to the minimum

that is not a saddle point. This can be seen from the GAD solution trajectories shown in figure

6.10. This point, however, is not as random as it seems. We know that at a fixed point the value

of ẋ from the GAD ODEs is 0. During the tests it was observed that the value of ẋ ≈ 0. This

makes sense because the initial conditions are outside the basin of attraction (the Desirable Initial

Conditions are not satisfied) and the odd point is the “most similar” to a saddle points in relation

to the GAD ODEs. This result goes to validate the Desirable Initial Conditions defined before.
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Algorithm 6.3 Rayleigh GAD Numerical Algorithm

Require: Initial point x0.
Require: Function V (x).
Require: Force F(x) and Hessian H(x).
Require: Tolerance parameters τ1, τ2 and τ3
Require: Time-step ∆t
Require: Set k = 1

1: repeat
At point xk, calculate vk satisfying

minimise
v

v>H(xk)v

subject to v>v = 1.
(6.6)

Move to next point using 1st ODE with minimiser vk from above.

xk+1 = xk + F(xk) ·∆t− 2〈F(xk),v〉v ·∆t

Calculate parameters for termination conditions

ε1 = V (xk+1)− V (xk)

ε2 = ||F(xk)− 2〈F(xk),v〉v||

ε3 = ||F(xk)||

Set flag for next iteration

k = k + 1

2: until (ε1 > τ1 & ε2 > τ2 & ε3 > τ3 )

So, this algorithm can be used to test if the initial point satisfied the Desirable Initial Conditions.

If the algorithm terminates at a saddle point, we know that the Desirable Initial Conditions were

satisfied initially.

This absurd convergence is less likely as the number of fixed points on a function increases. It

should be noted the toy example is only used to illustrate the aspects of Morse theory we want to

exploit while solving the GAD ODEs. In reality, the we want to use this algorithm on a non-convex

multimodal function that has numerous maxima and minima. In such cases, this peculiar result is

highly unlikely. As can be seen in 6.11, this algorithm is well behaved as long as the Desirable Initial

Conditions are satisfied, as is the case in the realistic non-linear multidimensional and multimodal

functions we are interested in.

It is worth adding that because of the inclusion of an optimisation process in every iteration,

this algorithm is more computationally demanding than its counterpart in the previous section.

Also, as we had set out to do, the Rayleigh GAD algorithm relaxes to the desired direction at

a much faster rate because it aggressively finds the most unstable direction at each point in the

trajectory.

This algorithm behaves in the same way as the Natural GAD algorithm in how it responds to
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(a) Initial points satisfying the Desirable Initial Conditions

(b) Initial points NOT satisfying the Desirable Initial Conditions - outside GAD’s basin of attraction

(c) Initial point much farther out and NOT satisfying the
Desirable Initial Conditions

Figure 6.10.: Solution Trajectories for the Rayleigh GAD Numerical Algorithm on V (x, y) = 1
4(x2−

1)2 + 3
2y

2.

the set step-sizes. That is, if the step-size is small enough, the Rayleigh GAD algorithm will con-

verge at the closest index-1 saddle point. On the other hand, if the step-size is not large enough,

the algorithm will converge at the closest saddle point regardless of its degree of instability. We

must note, however, that because of the aggressive nature of this algorithm the relative magnitudes
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(a) Initial points near minimum satisfying the Desirable Initial Conditions

(b) Initial points near minimum satisfying the Desirable Initial Conditions

(c) Initial point near maximum satisfying the Desirable Ini-
tial Conditions

Figure 6.11.: Solution Trajectories for the Rayleigh GAD Numerical Algorithm on V (x, y) =
sin(x)cos(y).

of the step-sizes that might be deemed as “small enough” might be different for both algorithms.
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6.6. Step-Size Strategy

As stated earlier, the true nature of GAD is a gradual process whose solution trajectory must first

find a separatrix before it can converge toward an index-1 saddle point. Therefore, for a GAD-

based algorithm to work as specified by the GAD mathematical formulation, the step-size used in

traversing the trajectory must be very small. Any step-size that is larger might be too aggressive

and cause the trajectory to cross the separatrix and not converge.

As a consequence of this, the matter of step-sizes becomes crucial in determining the speed con-

vergence of the algorithms. To deal with this we need a step-size strategy that takes into account

both the importance of convergence and the speed of convergence. In other words, a step size strat-

egy is required in order to ensure that we get the fastest possible convergent GAD-based algorithm.

A majority of traditional step-size strategies often use function-value based minimisations. This

approach will not work for GAD-based algorithms that we have devised because some steps along

the solution trajectory may be ascent steps and others may be descent steps. To combat this, we

need to use a more neutral objective metric to determine how far in a direction we should move

per iteration.

Firstly, we realise that the overall goal of the is to find a fixed point with ẋ = 0. We also know

that

ẋ = F(x)− 2〈F(x),v〉v,

so we can define a residual-based construct that we want to be reduced at every iteration. Loosely

speaking, a residual is the error in a result of an approximation of a function value. In this case,

our goal is to get ẋ = 0 which is equivalent to saying ||ẋ|| = 0. Therefore, we can define a residual

function R as

R(x) = ||F(x)− 2〈F(x),v〉v||.

Since we now have a function we can minimise in order to determine the appropriate step-size in

every iteration, we need to think about the constraints that we must set on this optimisation for

it converge at the fastest rate. To do this, we remember that there are some iterations that the

direction does not minimise the residual R and have a step size of 0. For these cases, we need to

set the step-size to the minimal value which we will call αmin. For the cases where the direction

in an iteration does manage to minimise the residual function then we need to restrict the upper

bound of the step-size in order to prevent it from being “too aggressive”. Let’s call this upper

bound αmax. For a direction d determined during an iteration, the resulting step-size strategy has

the formulation
minimise

α
r(α) = R(x + αd)

subject to αmin ≤ α ≤ αmax.
(6.7)

Experimentation of this strategy showed that its efficiency is dependent on the bounds αmin and

αmax. As can be seen from the first two plots in figures 6.12 and 6.13, for both the Natural GAD

and Rayleigh GAD algorithms, a fixed step-size yielded a smooth graph that eventually converged

to having a residual of 0. This is how the GAD paradigm behaves in its essence. The initial section

with the ascending graph shows the part where the algorithm is seeking out the separatrix. After
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this separatrix is found we notice that the graph smoothly descends as the residual minimises until

it becomes zero.

Comparing case with the smaller step-size and the one with the larger step-size show that the

case with the larger step-size yielded a lower number of iterations. This shows that the correct

parameterisation of the step-size can greatly improve the speed of convergence of the algorithms.

Testing the implementation of the step-size strategy showed interesting results too. From the

respective plots in figures 6.12 and 6.13, it is apparent that a step-size with the appropriate param-

eterisation of the lower and upper bound step-sizes does further improve the speed of convergence.

Another minor but intriguing observation is that when the step-size strategy is used the resulting

plot is jagged by having interleaving sections with ascending and descending values of the residual.

We know that the various sections with the ascending graph correspond to the search for a separa-

trix and the sections with the descending graph happen after a separatrix is found and an attempt

to converge toward a saddle point is made. Since the search of a saddle point after a separatrix

is found uses a much larger step-size it tends to be aggressive and the solution trajectory leaves

the separatrix. The subsequent iterations then seek out a path back toward the separatrix which

causes the residual to increase. This causes the jagged nature of the plots. This just illustrates the

importance of tuning the correct upper and lower bounds of the step-size parameters in this strategy.

As a final note, we have used exact line-search principles to illustrate the step-size strategy ap-

proach for the GAD-based algorithms that we have formulated. However, inexact line searches can

be used to implement this strategy but they must adhere to the principles outlined in this section.
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6. Distillation of the Gentlest Ascent Dynamics into a Numerical Algorithm

(a) Natural GAD with smaller fixed step-size (b) Natural GAD with larger fixed step-size

(c) Natural GAD using step-size strategy

Figure 6.12.: Residual vs. Iteration plots for Natural GAD to test effect of various sizes and the
Step-size Strategy
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(a) Rayleigh GAD with smaller fixed step-size (b) Rayleigh GAD with larger fixed step-size

(c) Rayleigh GAD using step-size strategy

Figure 6.13.: Residual vs. Iteration plots for Rayleigh GAD to test effect of various sizes and the
Step-size Strategy

91



6. Distillation of the Gentlest Ascent Dynamics into a Numerical Algorithm

6.7. Convergence, Complexity and Implementation Issues

The Basic and Natural GAD algorithm shown in algorithm 4.4 has an optimistic big-Oh complexity

of O(n). This shows that in their naive form GAD-based algorithms are relatively cheap algorithms

as E and Zhou pointed out in [7]. However, the reality is that when we add the calculations of the

gradient, Hessian, eigenvalues, eigenvectors, optimal step-sizes, and Rayleigh minimisers in every

iteration of the algorithm the story is different. The complexity of the implemented algorithm will

be dependent on the methods used to calculate the aforementioned values. Because the algorithms

formulated in temselves give free reign to the implementer on which methods to use, it is advisable

to use the most efficient means possible for users who seek the most efficient algorithm.

On the matter of convergence, the error tolerance and step-size strategy that are used determine

the overall convergence-centric aspects of the algorithm.

6.8. Conclusion

In this chapter we designed stable and convergent numerical algorithms based on the Gentlest

Ascent Dynamics (GAD) to find index-1 saddle points and formulated the Desirable Initial Condi-

tions required to always achieve this. We started by constructing a basic and natural GAD-based

numerical algorithm that is initialised by an initial point and direction. However, this algorithm

suffers from convergence based on initial conditions where only small fraction of the whole config-

urational space for the initial directions lead to stable dynamics converging at index-1 saddle points.

To solve this problem, two distinct algorithms were proposed as improvements on this basic one.

The first algorithm is inspired by observations in molecular physics where energy changes during

deformation processes proceed via saddle points. Using notions from dynamical systems theory

and molecular physics we formulated two impositions on the initial conditions that are desirable to

ensure the GAD algorithms always converge toward a saddle point. The conditions are:

1. The initial point x0 must be close to at least two local fixed point or close to a saddle point;

2. The initial direction v0 must correspond to the eigenvector with the smallest eigenvalue of

the Hessian at the point x0 close to the local fixed point.

The second algorithm is a modification of the first by incorporating Rayleigh optimisation into

the algorithm to ensure quick relaxation of the algorithm to the desired directions and faster

convergence onto the separatrix. This algorithm has the advantage of never being unstable but

still needs to satisfy the Desirable Initial Conditions in order to find a saddle point.
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7
Finding All the Saddle Points On Surfaces

Using the GAD Numerical Algorithm

7.1. Introduction

In this chapter we take the next step in our quest to develop a global optimisation algorithm. At

this point, we have a numerical algorithm that is able to find saddle points and in this chapter

we will further improve on this algorithm such that, given enough time, it can find all the saddle

points on a generic surface.

7.2. Problem Formulation

In order to develop an algorithm that finds all the saddle points on a generic n-dimensional surface

we need to find an abstract way to formulate this problem. This is to make our task easier and

more susceptible to treatment by conventional computer science and mathematical formalisation.

For the purpose of this discussion, it will be assumed that we have a multimodal surface with

multiple maxima and minima, and the goal is to find all the saddle points on this surface. Ideally,

what we want is the ability to exhaustively explore the surface by having an algorithm starting

at one point and then finding all the saddle points. We can think of this as a classical graph

exploration problem where goal is to be able to visit all nodes on a graph.

One way to abstract a graph out of this problem is to use topologically-inspired notions where

basins and saddle points are connected. On a surface with multiple minima the space between the

minima will have a point where the surface folds in two opposite directions. As already described

in previous chapters, that is how a saddle point is formed. A good real-life example of this is a

mountain pass. Therefore, using this line of reasoning, the nodes in this case will be the minima

and the saddle points where the a saddle point is connected to an adjacent minimum point and vice
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7. Finding All the Saddle Points On Surfaces Using the GAD Numerical Algorithm

versa. Figure 7.1 below illustrates an example of an incomplete graph representing an abstraction

of the exploration of a multidimensional surface that we have described.

Minimum

Saddle Point

Minimum

Minimum

Saddle Point

Minimum

Figure 7.1.: Example of an incomplete exploration graph abstracted from a multidimensional sur-
face.

In summary, the problem at hand is to explore an unknown graph with nodes that are saddle

points and minima. As a result, solving this problem involves building the graph while it is being

explored.

7.3. The GAD “Chaining” Algorithm

Since we have the decided to abstract the saddle-point-finding problem using a graph exploration

formalisation, developing an algorithm is a less daunting task. Why is this so? It’s because we can

pretend we are exploring a simple graph rather than a complex and intimidating multidimensional

surface.

The easiest way to go about the problem is to use the Breadth First Search (BFS) inspired approach

where we start at a random point and first find a saddle point using the GAD algorithm. From

the saddle point we can then find all the minima associated with this saddle point using a simple

local minimisation algorithm and so on.

Of course, this is not as simple as it sounds because there are many things to worry about. Firstly,

although this fact is trivial, the minima and saddle points are fixed points so both the GAD and

local minimisation algorithms may get stuck there. Therefore, we need a way to perturb the these

points in order to generate new starting points for the algorithm to proceed. For example, after

finding the first saddle point, how do we determine where to start the local minimisation algorithms

in order that they can find all the associated minima? Also, at the minima, how can we determine

where to start the GAD algorithm so that we can find the next saddle points? The answer here

is to slightly perturb these fixed points in suitable directions to generate new points. Using this
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7.3. The GAD “Chaining” Algorithm

paradigm, we can explore the whole surface.

So what are these suitable directions? How do we find them? In order answer these questions

we need to get an intuitive understanding of this problem. To do so we will use a 2 dimensional

example shown in figure 7.2.

(a) Graph of function z = x2 − y2 (b) Contour plot of function z = x2 − y2

(c) Phase plot of a generic 2 dimensional saddle point
(Source: Wikimedia Commons)

Figure 7.2.: A graph and contour plot of z = x2 − y2, and a generic phase plot of a 2 dimensional
saddle point.

Figure 7.2a shows a plot of the function z = x2− y2 which has a saddle point at the origin marked

by the red dot. From the diagram it is easy to notice that the surface folds upwards in one direction

and downwards in another. This is also evident from the corresponding contour plot in figure 7.2b.

Therefore, it is logical to surmise that the direction to look for the minima is the one corresponding
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7. Finding All the Saddle Points On Surfaces Using the GAD Numerical Algorithm

to the to the part where the surface folds downwards and the function value decreases.

So how do we find this direction where the function value is decreasing and the surface is folded

downwards? To generalise the approach of how we’ll answer this question let us consider a phase

plot of a generic saddle point shown in figure 7.2c. Take note that this is not the phase plot of

the function z = x2 − y2. In this plot, we notice several interesting things. Firstly, this point is

an attractor for particular trajectories and at the same time repeller for others. Secondly, for each

attracting direction the negation of this direction is also an attracting direction; this also holds for

the repelling directions. With respect to the saddle point, the trajectories heading away from the

saddle point are heading towards a sink or, more commonly, a minimum. This direction is unstable

with respect to the saddle point. From stability theory, we know that the unstable directions are

the eigenvectors corresponding to the negative eigenvalues of the Hessian. At an index-1 saddle

point in this case, we are guaranteed that one eigenvalue will be negative. The positive and negative

eigenvector corresponding to this negative eigenvalue is what we need to follow to find a minimum.

Therefore, this is the direction we need to perturb in order to get a good starting point for a local

minimisation algorithm that finds a minimum.

At a minimum, the perturbation scheme is simpler since we attempt to distribute the new staring

points for the GAD algorithm evenly about the point. Therefore, the best way to do this most

effectively is to do it in the positive and negative directions of all the eigenvectors of the Hessian.

The resulting algorithm is referred to as GAD “Chaining” because intermittent runs of the GAD

algorithm are “chained” together using local minimisation algorithms. The algorithm is shown in

figure 7.1.

This algorithm starts at a point xk and keeps track of starting points using a queue Q. We first find

the nearest saddle point xSP using the GAD algorithm and then evaluate the unstable eigenvectors

of the Hessian there which are simply the directions corresponding to the negative eigenvalues. We

then find new starting points for a local minimisation algorithm by perturbing in the positive and

negative unstable directions. From these points we start a local minimisation algorithm to find the

associated minima. At the minima, we get the complete eigen-space of the Hessian and use it to

find the new starting points for the GAD algorithm in the next iteration and we add them to the

queue Q.

Of course, we need more graph-theoretic data structures to keep track of what is going on. We

want to be able to know what stationary points we have found so far and their adjacency. As a

result, we will need the following data structures:

1. Node List: Keeps track of what stationary points that have been found so far.

2. Node Type List: Keeps track of the types of the stationary points — whether they minima

or saddle points — that have been found so far.

3. Adjacency Matrix: Keeps track of what stationary points are adjacent to each other.

Many other data structures can be incorporated into the algorithm depending on what the user

wants to keep track of. For example, a user may want to also keep track of the function value at the
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Algorithm 7.1 GAD ‘Chaining’ Algorithm

Require: Node List N
Require: Node-type List NT
Require: Adjacency List A
Require: Queue Q
Require: Start point x0

Require: Add x0 to Q
1: loop

Get item at front of Q as start point xk of GAD;
Get nearest saddle point xSP;
Add saddle point to Node List N and enter the node-type in NT;
Get Hessian at saddle point;
Find directions corresponding to negative eigenvalues of Hessian — unstable directions;
Obtain start points obtained after “perturbing” the saddle points in positive and negative

unstable directions;
Use starting points for local minimisation to get minima;
Add minima to Node List N and enter the node-types in NT;
Add adjacency to Adjacency List A;
Get Hessian at the minima;
Find eigenspace of the minima;
Find new start points obtained after “perturbing” the minima in positive and negative

directions of the all directions in eigenspace;
Add new start points to Q;

stationary point. To do this one simply adds a new data structure to keep track of this information.

So does this algorithm work? For illustration, the algorithm was tested on the following 2 di-

mensional non-linear multi-modal functions:

1. Sinusodal Function: f(x, y) = sin(πx)cos(πy)

2. Ackley function: f(x, y) = −20e(−0.2
√

( 1
2
(x2+y2))) − e(

1
2
(cos(2πy)+cos(2πy))) + 20 + e

The plots of these functions are shown in figure 7.3.

(a) Sinusodal Function (b) Ackley function

Figure 7.3.: Graphs of test functions for the GAD “Chaining” Algorithm.
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The solution trajectories resulting from the runs of the GAD “Chaining” Algorithm on the func-

tions is shown in figures 7.4 and 7.5. From the illustrations, it is easy to see that the algorithm

works well in exploring a surface searching for minima and index-1 saddle points. It must be noted

that the searching sequence is determined by the order of the starting points in the queue Q. As a

result of this, in order to modify the way that the algorithm explores the surface, one must modify

the way starting points are selected from Q.

This algorithm, given enough time, can explore an entire surface. In fact, if the surface of ex-

ploration is constrained and bounded, then it is guaranteed to execute and explore that whole

surface in finite time. We will now proceed to discuss the practical and implementation aspects of

this algorithm in the next section.

Figure 7.4.: Solution Trajectories of the GAD “Chaining” Algorithm on the Sinusodal Function.

Figure 7.5.: Solution Trajectories of the GAD “Chaining” Algorithm on the Ackley Function.

98



7.4. Complexity and Implementation Issues

7.4. Complexity and Implementation Issues

The algorithm proposed in this chapter involves keeping track of numerous amount of information

as its execution progresses. Because this algorithm is is explorative in nature, it is important to

also include a method for checking if an item already exists in a data structure. This way, a check

is made to see if an item already exists in the data structure before inserting it. Doing this prevents

the data structures from containing duplicates and consequently makes it easier to manipulate and

make use of them.

The GAD “chaining” algorithm has 3 main ingredients: the GAD algorithm, a local minimisa-

tion algorithm and a perturbation scheme. As we have already covered the implementation issues

in both the GAD algorithm and local optimisation algorithm in previous chapters, we will only

look at the implementation issues relating to the perturbation scheme in this section.

Perturbation simply displaces a point with small noise in a particular direction. Therefore, in

the simple form, we can define a perturbation scheme as shown below.

Definition 7.4.1. (Perturbation Scheme)

Given a point x ∈ Rn with a displacement direction d ∈ Rn and noise constant ε, then the Pertur-

bation Scheme P that generates a new point P(x,d, ε) ∈ Rn is given by

P(x,d, ε) = x + εd (7.1)

The above definition is simple in itself because it succinctly describes what we want perturbation

to achieve. The value of the noise constant ε is problem dependent but it is recommended that it be

made small enough to allow the generated start point be displaced enough from the original critical

point to allow the succeeding algorithm to converge at the next critical point. This constant may

be very small for some functions and larger in others. In most cases, it is important to consider

the truncation errors associated with the numerical calculations that may indadvertedly cause the

algorithm to be trapped by the original critical point.

As a final note, we make a comment on how to prevent the trajectory from visiting the same

saddle point more than once within successive iterations. There are many ways to do this but the

recommended method is to use a penalty function where the algorithm keeps track of the parent

saddle point x∗sp in the preceding iteration. Using this saddle point the algorithm ensures that

GAD trajectories emanating from points perturbed from the minimisers are penalised by a penalty

function P (x) that is defined in terms of the distance from the current point to the saddle point

x∗sp.

7.5. Conclusion

In this chapter we have designed a numerical algorithm that is able to explore a generic surface and

find all the saddle points on it given enough time. This algorithm had been called GAD “Chain-

ing” because it interleaves intermittent runs of the GAD algorithm with local minimisation runs.

This algorithm starts at a point xk and finds the nearest saddle point from which various local

minimisation runs are used to find all the minima associated with the saddle point, and so on. A
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Morse theoretic approach is used to deal with the issue of ensuring all the associated minima are

found.

The problem as a whole is formulated as a graph-theoretic exploration problem where the goal

is to explore an unknown graph whose nodes are saddle points and minima. As a result, solving

this problem involves building the graph while it is being explored and the solution trajectories

follow a breadth first search paradigm.
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8
Global Optimisation using the Gentlest

Ascent Dynamics and the Global Descent

Policy

8.1. Introduction

At this point we have developed an effective algorithm that is able to explore and find all the

saddle points on a function. This algorithm, in itself, is very important and can lend itself to the

many uses in areas where one may need to find saddle points. A good example of such an area

is molecular physics. In this area, atomic interactions have energy levels that traverse via saddle

points of the associated potential energy surfaces.

However, the ability find saddle points on a function has an even a deeper implication. Since

saddle points are located at points where the hyper-surfaces fold in different directions, they are

points that give enough information about a function’s curvature and critical point distribution in

that vicinity. In fact, it suffices to say that if one is able to find all the saddle points on a function

then one knows how the function behaves everywhere.

In this chapter we want to use our newly developed saddle point finding ability to find the global

optimum of an objective function.

8.2. Problem Formulation and Solution Strategy

It is obvious that if we let the GAD “Chaining” algorithm developed in the previous chapter to run

indefinitely it will explore the whole function and it will develop a complete graph representation

of it. One can modify this algorithm to always keep track of the best minimiser found so far and

by the time the algorithm terminates it can return the global minimiser. However, this approach
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has the drawback that it can run forever on an unbounded function and is thus computationally

infeasible. In other words, we want an algorithm that converges to the global minimum as fast as

possible in a practical time frame.

So how can we ensure that we find a globally optimal point with the saddle point finding strategy?

The most obvious approach is to ensure that we always find better minimisers at every iteration.

Let us call this strategy the Global Descent Policy. In this chapter we develop two methods

that follow this strategy. Both methods make use of saddle points as transitional points to find the

global minimiser of a function. We will look at each method in turn.

8.3. Global Optimisation Approach 1: Using Global Descent

Functions at Saddle Points

We currently have the following tools in our arsenal: the GAD algorithm and the global descent

policy. If we were somehow able to explore a surface in such a way that we always find a saddle

point located at a lower elevation at every step then we would indirectly be finding better minimis-

ers.

One of the tools we can make use of is the global descent function (from [5]) that we described

in section 4.5. As a quick reminder, a global descent function G of an objective function f at a

local minimiser x∗ is a type of filled function where this point x∗ exists as a maximiser on G and

that if there is a better minimiser x∗∗ of f then it will exist on G along a decent direction line

from the maximiser x∗. Figure 8.1 below illustrates this on the three-hump camelback function.

In other words, the global descent function G can be used to find a new starting point for a local

minimisation algorithm to a better minimiser.

(a) Function f(x) with minimiser at (x∗, f(x∗)) (b) Global Descent Function G(x) with maximiser at (x∗, 0)

Figure 8.1.: Illustration of what a Global Descent Function is on a the three-hump camelback func-
tion (Source: [5]).
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So we can ask an interesting question: Can we use a global descent function at a saddle point xsp of

a function f to find a better saddle point? One may ask why we want to do this and the answer is

quite straightforward. As stated before, a lower saddle point implies a lower minimiser. Therefore,

if we interleave runs of the GAD algorithm with uses of the global descent function at the saddle

points we are indirectly be seeking out a better minimisers at every iteration.

However, we still need to think about how to make the global descent function to work for saddle

points because its theoretical construction is based on minimisers. We know that a saddle point

partially behaves like a minimiser by being a stationary point (since ∇f(xsp) = 0) and that it is

stable in some directions around it. Therefore, if we restrict the global descent function to work on

a constrained subspace of the area around the saddle point where it behaves like a minimiser then

we can solve this problem.

Firstly, the implication of the global descent function at the saddle point working as we want

it to is that we will have a way of finding points at a lower basin than our current saddle point.

Any of these new points could easily be the minimiser connected to the current saddle point because

it it at a lower basin by definition. We don’t want this. What we want is a better saddle point

that is farther away from the closest minimisers. How do we ensure this? We can make the descent

step that we take on the global descent function G be slightly larger. That way, we unsure that we

escape the neighbourhood of the current saddle point and search farther away. This condition of a

larger step-size is a disparity from the original algorithm in [5].

Secondly, another change we can make to the original algorithm is to deal with the fact that a

saddle point behaves like a minimiser only in particular directions. This set is formally called the

stable manifold of the saddle point. Therefore, searching on the global descent function should be

constrained to those directions where it behaves like a minimiser - that is, its stable manifold. To

ensure this, we can search in the directions corresponding to the positive eigenvalues of the Hessian

at the saddle point. This may seem odd at first thought because the stable manifold of a saddle

point on a function corresponds to the part of the function in the vicinity of the saddle point where

its value is increasing (folded upwards). However, one needs to remember that this part that is

folded upwards on the original function f will be folded downwards on the global descent function

G, and it is this descent search space that we want to access.

Thirdly, an important thing to note is that we are searching for a global minimiser. Therefore, at

every step that we find a better saddle point, we should find the better minimiser associated with

that saddle point. As a result, the algorithm will generate a pair of critical points (a saddle point

and a minimiser) at every iteration.

The resulting algorithm is shown in algorithm 8.1; for easier reading, a more compact version

of the algorithm is shown in algorithm 8.2.

So what is going on in algorithm 8.1? As can be seen by the compact version in algorithm 8.2,

we start at a point xk and use GAD to find the closest saddle point x∗sp and a local minimisation

algorithm to find the closest minimiser x∗∗. From here, our surface exploration proceeds by forming

103



8. Global Optimisation using the Gentlest Ascent Dynamics and the Global Descent Policy

Algorithm 8.1 Global Optimisation using GAD and Global Descent Function

Require: Critical Point Storage List L
Phase 0: Initialisation

(a) Choose a function vµ satisfying conditions (V1) and (V2).

(b) Choose ρini > 0 (the initial value of ρ), 0 < µini < 1 (the initial value of µ), µL > 0 (the
lower bound of ρ), 0 < ρ̂ < 1(a fraction for the reduction of ρ), 0 < ρ̂ < 1 (a fraction for the
reduction of µ), ε > 0 (the radius of a small neighbourhood of saddle point x∗sp), κ > 0 (a
small tolerance), and λU > 0 (the maximum step-size for a line search).

(c) Set ρ := ρini and µ := µini.

(d) Choose/generate an initial point xini ∈ X for problem

min {f(x) : x ∈ X}

and set the current iterative point xcur := xini and the iteration count Niter := −1.

(e) Perform the local search in Phase 1.

Phase 1: Local Search for Closest Saddle Point and Minimiser

(a) Starting from xcur, use any local minimisation method to search for a local minimiser x∗∗ of
f over X and the GAD algorithm to find the closest saddle point xsp. Update the current
saddle point x∗sp := xsp and the iteration count Niter := Niter + 1.

(b) Store current minimiser x∗∗ and saddle point x∗sp in list L.

(c) If x∗∗ is NOT better than previous minimisers then exit;

(d) Perform the global search in Phase 2.

Phase 2: Global Search

(a) Find stable directions at x∗sp. Generate a set of m initial points distributed
around saddle point x∗sp but outside the immediate neighbourhood of {x∗sp:
xini(i) ∈ X\Nε(x

∗
sp) : i = 1, 2, ...,m} perturbed in stable directions by step-size ε (radius of a

small neighbourhood). Set i := 1.

(b) Set the current iterative point xcur := xini(i)

(c) If f(xcur) < f(x∗), then perform the local search in Phase 1.

(d) If
||∇Gµ,ρ,x∗sp(xcur)|| < κ and (xcur − x∗)>∇Gµ,ρ,x∗sp(xcur) ≥ 0,

then choose a positive integer l such that µl := µlµ and

||∇Gµ,ρ,x∗sp(xcur)|| ≥ κ or (xcur − x∗)>∇Gµ,ρ,x∗sp(xcur) < 0.

Update µ := µl.

(e) Choose a descent direction D of Gµ,ρ,x∗sp at xcur. Find a new x along descent direction D
by a line search method such that Gµ,ρ,x∗sp can reduce to a certain extent and the step-size
of the line search λ ≤ λU (this step-size must be large enough to escape the basin with the
adjacent minimiser); then set xcur := x and go to Phase 2(c). However, if x attains the
boundary of X during minimisation, then go to Phase 2(f);

(f) Set i := i+ 1. If i ≤ m, then go to Phase 2(b);

(g) Set ρ := ρ̂ρ and reset µ := µini. If ρ ≥ ρl, then go to Phase 2(a). Otherwise, the algorithm is
incapable of finding a minimiser of f better than the current local minimiser x∗ starting from
the initial points x(i) : i = 1, 2, ...,m. The algorithm stops, and x∗ is taken as a (putative)
global minimiser.

a global descent function at the saddle point x∗sp, seeking out a better starting point located in a

lower basin in stable descent directions at that saddle point, and then finding the closest saddle

point and minimiser to this starting point, and so on. This algorithm does indeed seek out better
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minimisers at every iteration. Concerning termination conditions, this algorithm terminates in two

cases:

1. When the global descent problem-dependent parameters hit their lower bounds (as specified

in [5]),

2. When no better minimiser can be found.

As one can imagine, the dependence on problem specific parameters could lead to situations where

the algorithm may terminate with a minimiser that may not necessarily be a true global optimiser.

We will address this issue in section 8.5.

Algorithm 8.2 Compact Global Optimisation using GAD and Global Descent Function

Require: Critical Point Storage List L
Require: Starting point x0

Require: k = 0
Require: Initialise start point to xk

Require: Initialise Global Descent Function parameters
1: loop

Get nearest saddle point x∗sp to starting point xk;
Get nearest minimum point x∗∗ to starting point xk;

2: if x∗sp and x∗∗ are the lowest lying saddle point and minimiser found so far then
Store the current saddle point x∗sp and minimiser x∗∗ in list L;
Use the global descent function at x∗sp and search the stable manifold of x∗sp to get a new

starting point at a lower basin;
Set xk+1 as new better starting point;
k = k + 1;

3: else
Take current saddle point x∗sp and minimiser x∗∗ as the lowest lying critical points;
Take minimiser as putative global minimiser;
break;

To quickly summarise, as stated before, the key to making this algorithm work is to ensure that

the step-size of the line search on the Global Descent algorithm is large enough for the next point

to be far enough from original saddle point. This is to ensure that we escape the saddle point’s

GAD basin of attraction. Secondly, searching on the global descent function defined at a saddle

point should be constrained to those directions where it behaves like a minimiser - that is, its stable

manifold. Both these conditions are a disparity from the original algorithm.

8.4. Global Optimisation Approach 2: Using GAD “Chaining”

and Unbounded Line Searches

The algorithm described in the previous section relies on global descent functions which have prob-

lem they need the correct specification of problem-dependent parameters in order to work properly.

These parameters may be difficult to estimate and, in some cases, their appraisement may be as

hard as the original problem. In this section we devise a simpler method that achieves the same

goal as the global descent functions above.
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Of course, as a prerequisite, we want our approach to use saddle points and follow the Global

Descent Policy. As a result, the method we are formulating will be a result of modifying the GAD

“Chaining” Algorithm to follow the Global Descent Policy.

To recap, the GAD “Chaining” Algorithm iteratively finds a saddle point and the minimisers

connected to this saddle point. Therefore, if we can find a way of being able to identify a lower

basin from a saddle point without resorting to the global descent function then we would have a

second approach. Fortunately, this is possible.

We know, from definition, that a saddle point is a point where a surface folds in different di-

rections. As stated earlier in the chapter, they are points that give enough information about a

function’s curvature and critical point distribution in that vicinity.

The suggested modification to the GAD “Chaining” is as follows: when we reach a saddle point,

our goal is to find another saddle point that is in a lower basin. To do this, we perform a line

search in the direction of the unstable manifold at the point in order to find the step-size that

minimises the function the most in that direction. To reiterate, the direction in this case is that of

the negative eigenvalue; that is, the direction where the minimum connected to this saddle point

is. So, for a function f with unstable direction d at a saddle point xsp, we try to find the step-size

λ that minimises the function the most in direction d we do

min g(λ) = min f(xsp + λ · d). (8.1)

Since adjacent minima will always be along this line with respect to the saddle point we will always

be guaranteed to get the lowest basin in that direction. The worst possible case is getting the

minimum adjacent to the saddle point and the best case is getting a point lower than the minimum

next to the current saddle point. In either case we will be finding better minimisers because minima

within a certain radius are likely to be along this direction and this find the best one. From this

lowest point, we can find the closest minimum and in turn find the next saddle point, and so on.

The algorithm showing the described algorithm is shown in algorithm 8.3.

It is worth pointing out that usual line searches place a constraint on the step-size λ such as

0 ≤ λ ≤ N , where usually N = 1. However, the line search we do in algorithm 8.3 above and

shown in equation 8.1 is a one dimensional unconstrained minimisation with λ ∈ R. This is why

the line search in the algorithm is referred to as unbounded.
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Algorithm 8.3 Global Optimisation using GAD “Chaining” and Unbounded Line Search Algo-
rithm
Require: Objective function f
Require: Node List N
Require: Node-type List NT
Require: Queue Q
Require: Start point x0

Require: Add x0 to Q
1: loop

Get item at front of Q as start point xk of GAD;
Get nearest saddle point xsp;
Add saddle point to Node List N;
Get Hessian at saddle point;
Find directions corresponding to negative eigenvalues of Hessian — unstable directions, d;
Do a line search in unstable directions and find step-size λ∗ that minimises function value

the most;

min g(λ) = min f(xsp + λ · d).

Obtain start points obtained after “perturbing” the saddle points in positive and negative
unstable directions with step-size from previous step;

Use starting points for local minimisation to get minima;
2: if current minimisers are better minimisers than other minimisers found so far then

Add minima to Node List N and enter the node-types in NT;
Get Hessian at the minima;
Find eigenspace of the minima;
Find new start points obtained after “perturbing” the minima in positive and negative

directions of the all directions in eigenspace;
Add new start points to Q;

3: else
Take lowest lying minimisers as putative global minimisers;
break;

8.5. Convergence, Implemenation and Complexity Issues

Both variants of the global optimisation algorithms described in the previous sections terminate

when they cannot find a better minimiser from the current point of an iteration. Therefore, all the

global optimisers they find are putative. For the cases with multiple global minimisers, different

initialisations of the algorithm can be done.

For the first algorithm which uses the global descent function, another possible reason for ter-

mination may be due to the problem dependent parameters reaching their lower bounds. The

global descent function works well with a predicator-corrector approach to fine tune the parame-

ters. Therefore, it is possible that at termination better minimisers could have been missed. An

effective way to deal with this when implementing the algorithms shown in 8.1 to 8.3 is to wrap

the algorithm in another function that reinitialises the algorithm for the global minimiser. This

wrapper algorithm is shown in algorithm 8.4.

Another implementation issue worth noting one more time is that the degree of accuracy that the

minimisers and saddle points are estimated is dependent on the termination conditions specified
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8. Global Optimisation using the Gentlest Ascent Dynamics and the Global Descent Policy

Algorithm 8.4 Global Optimisation Algorithm Wrapper Function

Require: Starting point xk
Require: Global minimiser storage list G

1: loop
Run Global minimisation algorithm from xk to get global minimiser x∗g;

2: if G is not empty and x∗g is better than all minimisers in G then
Set xk = x∗g;
continue;

3: else
Set x∗g to be the best minimiser in G;
break;

Return global minimiser x∗g;

for the underlying GAD and minimisation algorithms. It is recommended that the underlying algo-

rithms use the residual, gradient and point change differentials as part of the termination conditions

to get good results.

Of course, the the eigenvalue finding mechanisms that are employed have a huge impact on the

performance of the algorithm as the dimensionality grows. Therefore, trade off have to be made to

ensure the best performance. For example, one may resort to use the ‘Natural’ GAD variant for

high dimensional cases in order to avoid a large number repetitive computation of eigenvalues and

eigenvectors in every iteration to sacrifice the rate of convergence for efficient use computational

resources.

As a final note, it must be mentioned that the modification of the use of the global descent function

G at a saddle point where the search directions on G are restricted to the critical points unsta-

ble manifold can be relaxed. This may be useful in terms of efficiency where one may need to

reduce the number of times eigenvalue/eigenvector calculations are done. The relaxation allows

one to randomly distribute new starting points around the saddle point or any other method the

implementer prefers.

8.6. Conclusion

In this chapter we devised two global optimisation algorithms that make use of saddle points and

employ a policy that ensures that better minimisers are found at every iteration. The first algorithm

makes use of the global descent function from [5] with some modifications to make it work at saddle

points; the second algorithm is a novel approach to global optimisation that makes use of a saddle

point’s unstable manifolds to search for better minimisers.
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9
Numerical Results

God made the natural numbers; all else is the work of man.

– Leopold Kronecker, (1823-1891) [39]

9.1. Introduction

The proposed algorithms in the previous chapters encompassing the main body of this work have

been implemented in MATLAB. The aim of this chapter is to present the numerical experience

from using the proposed algorithms.

9.2. Design of the Computational Experiments

The algorithms have been implemented in MATLAB Release 2013a and run on an iMac with a 2.7

GHz Intel Core i5 processor and 8 GB 1600 MHz DDR3 memory. The tests are split in two parts:

1. Convergence Theory of the GAD and Global optimisation algorithms;

2. Measuring performance of the GAD and Global optimisation algorithms.

The set of problems which were used for the tests are shown below:

• Problem 1: Ackley function (with n = 2, 3, 5, 10, 20);

• Problem 2: Rastrigin function (with n = 2, 3, 5, 10, 20); and

• Problem 3: Schwefel function (with n = 2, 3, 5, 10, 20).

More information on the test functions is in appendix A. Table 9.1 summarises the important as-

pects of the problems stated above.

For the part of the tests dealing with the convergence theory (convergence rate), the model we will

use is the Quotient-convergence (Q-convergence) model. This model uses the quotient between two
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9. Numerical Results

Table 9.1.: Problem Statistics

Problem
Name No. of variables Hypercube of Definition Global Minimiser x∗ f(x∗)

1 (Ackley) 2 xi ∈ [−32.768, 32.768] (0,...,0) 0
3 xi ∈ [−32.768, 32.768] (0,...,0) 0
5 xi ∈ [−32.768, 32.768] (0,...,0) 0
10 xi ∈ [−32.768, 32.768] (0,...,0) 0
20 xi ∈ [−32.768, 32.768] (0,...,0) 0

2 (Rastrigin) 2 xi ∈ [−5.12, 5.12] (0,...,0) 0
3 xi ∈ [−5.12, 5.12] (0,...,0) 0
5 xi ∈ [−5.12, 5.12] (0,...,0) 0
10 xi ∈ [−5.12, 5.12] (0,...,0) 0
20 xi ∈ [−5.12, 5.12] (0,...,0) 0

3 (Schwefel) 2 xi ∈ [−500, 500] (420.9687, 420.9687) −837.9658
3 xi ∈ [−500, 500] (420.9687, 420.9687, 420.9687) −1256.9487
5 xi ∈ [−500, 500] (420.9687, ..., ..., 420.9687) −2094.9145
10 xi ∈ [−500, 500] (420.9687, ..., ..., 420.9687) −4189.829
20 xi ∈ [−500, 500] (420.9687, ..., ..., 420.9687) −8379.658

successive terms which is given by:

lim
k→∞

|xk+1 − L|
|xk − L|q

= R (9.1)

where L is the number that the sequences xk converge toward, q is the convergence order and R is

the rate of convergence [40, 41, 42].

For q = 1, if the sequence converges, and

• R = 0, then the sequence is said to converge super-linearly,

• R = 1, then the sequence is said to converge sub-linearly [40, 41, 42].

For q > 1, if the sequence converges to L, with R <∞ then

• q = 2 is called quadratic convergence,

• q = 3 is called cubic convergence,

• q = 4 is called quartic convergence,

• q = 5 is called quintic convergence,

• etc [40, 41, 42].

Therefore, the easiest way to analyse the rate of convergence is by plotting a graph of the error

|xk+1 − L| vs. the number of iterations. To get the the rate we study the logarithmic scale plot of

the same graph and it will give the value of q; that is, if the corresponding logarithmic scale plot

is linear, then q = 1, if it is quadratic, then q = 2, etc.

For the other part of the test dealing with the accuracy and performance of the algorithms we

will define a metric to measure performance. The performance of all the proposed GAD algorithms
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was evaluated using the following performance index:

PI =
f(x∗ini)− f(x∗sp)

f(x∗ini)− f(x∗actual sp)
, (9.2)

where x∗ini is the initial point, x∗sp is the saddle point returned by the algorithm and x∗actual sp is

the true saddle point.

Furthermore, the performance of all the proposed global optimisation algorithms was evaluated

using the following performance index:

PI =
f(x∗ini)− f(x∗final)

f(x∗ini)− f(x∗global)
, (9.3)

where x∗ini is the initial point, x∗final is the final minimiser returned by the algorithm and x∗global
true global minimiser.

Thus, 0 ≤ PI ≤ 1. For the two extreme cases, PI = 1 means that the algorithm succeeds in

finding the concerned critical point and PI = 0 means that no improvement from the initial point

has been made.

The computational results for the performance and accuracy tests are given in tables 9.2, 9.3,

9.4 and 9.5. For each entry, 2 experiments were performed, the results averaged and entered in the

tables where the notation is as follows:

• Problem = notation of the problem;

• Name = name of the objective function;

• n = number of decision variables;

• Niter = average number of iterations;

• Ngradient = average number of gradient evaluations;

• Nhessian = average number of Hessian evaluations;

• Neig = average number of eigenvalue-eigenvector evaluations;

• Texec = average CPU execution time in seconds;

• NPI = the average performance indices;

In the next section we present the the relevant results from these computational experiments on

the prescribed problems. They are presented as graphs and tables. For more information on the

test functions, implementation-centric parameters used, and the complete set of the results refer to

appendices A, B and C, respectively. The analyses of these results will be done in chapter 11, the

discussion chapter.

9.3. Results of Computational Experiments

This section contains the results of computational experiments. However, a majority of the graphi-

cal plots for the convergence rate have been omitted and only the relevant ones in high dimensions
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have been included. This is because of their voluminous nature. For the complete set of results,

refer to appendix C. The results now follow:

Table 9.2.: Results and solution statistics for Natural GAD

Problem
Name n Niter Ngradient Nhessian Neig Texec PI

1 (Ackley) 2 46 47 47 2 0.9323 1
3 77 78 78 2 2.3589 1
5 20 21 21 2 1.1036 1
10 11 12 12 2 1.6169 1
20 19 20 20 2 6.5468 1

2 (Rastrigin) 2 41 42 42 2 2.5714 1
3 112 113 113 2 9.4933 1
5 38 39 39 2 8.4202 1
10 23 24 24 24 10.2352 1
20 36 37 37 37 31.8601 1

3 (Schwefel) 2 144 145 145 2 8.6552 1
3 151 152 152 2 13.6435 1
5 107 108 108 2 43.2022 1
10 123 124 124 2 37.4938 1
20 567 568 568 2 331.9135 1

Table 9.3.: Results and solution statistics for Rayleigh GAD

Problem
Name n Niter Ngradient Nhessian Neig Texec PI

1 (Ackley) 2 10 11 11 11 2.3566 1
3 51 52 52 52 10.0858 1
5 65 66 66 66 22.0817 1
10 103 104 104 104 80.6100 1
20 19 19 19 19 40.4132 1

2 (Rastrigin) 2 92 93 93 93 8.3496 1
3 247 248 248 248 28.2447 1
5 137 138 138 138 27.5040 1
10 103 104 104 104 46.1129 1
20 224 225 225 225 225 1

3 (Schwefel) 2 157 158 158 158 14.9944 1
3 172 173 173 173 25.2781 1
5 167 168 168 168 43.3048 1
10 174 174 174 174 86.7005 1
20 185 186 186 186 228.4269 1
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Table 9.4.: Results and solution statistics for Global Optimisation Approach 1 - Saddle Points and
Global Descent Functions

Problem
Name n Niter Ngradient Nhessian Neig Texec PI

1 (Ackley) 2 12 625 701 152 14.7518 1
3 9 2935 2857 116 86.8983 1
5 5 2626 6188 52 92.9138 1

2 (Rastrigin) 2 1 29 31 4 2.4126 1
3 1 60 62 4 6.6653 1
5 1 15 17 4 3.9685 1
10 1 31 33 4 11.5332 1

Table 9.5.: Results and solution statistics for Global Optimisation Approach 2 - Saddle Points and
Unbounded Line Searches

Problem
Name n Niter Ngradient Nhessian Neig Texec PI

1 (Ackley) 2 10 173 199 199 30.2412 1
3 4 238 246 246 32.7275 1
5 6 439 465 465 106.5899 1

2 (Rastrigin) 2 10 333 353 50 23.0188 1
3 12 232 256 60 26.1143 1
5 30 1016 1076 150 163.9899 1
10 46 8588 8680 20 3798.9 1

113



9. Numerical Results

Figure 9.1.: Rate of Convergence Results for Natural GAD on Problems 1,2 and 3 for n = 20

(a) Ackley Function, n = 20: Error vs. Iterations (b) Ackley Function, n = 20: Log Error vs. Iterations

(c) Rastrigin Function, n = 20: Error vs. Iterations (d) Rastrigin Function, n = 20: Log Error vs. Iterations

(e) Schwefel Function, n = 20: Error vs. Iterations (f) Schwefel Function, n = 20: Log Error vs. Iterations
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Figure 9.2.: Rate of Convergence Results for Rayleigh GAD on Problems 1,2 and 3 for n = 20

(a) Ackley Function, n = 20: Error vs. Iterations (b) Ackley Function, n = 20: Log Error vs. Iterations

(c) Rastrigin Function, n = 20: Error vs. Iterations (d) Rastrigin Function, n = 20: Log Error vs. Iterations

(e) Schwefel Function, n = 20: Error vs. Iterations (f) Schwefel Function, n = 20: Log Error vs. Iterations
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9. Numerical Results

Figure 9.3.: Rate of Convergence Results for Global Optimisation Approach 1 - Saddle Points and
Global Descent Functions on Problems 1 and 2 for n = 5, 10

(a) Ackley Function, n = 5: Error vs. Iterations (b) Ackley Function, n = 5: Log Error vs. Iterations

(c) Rastrigin Function, n = 10: Error vs. Iterations (Done
in 1 iteration)

(d) Rastrigin Function, n = 10: Log Error vs. Iterations
(Done in 1 iteration)
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Figure 9.4.: Rate of Convergence Results for Global Optimisation Approach 2 - Saddle Points and
Unbounded Line Searches on Problems 1 and 2 for n = 5, 10

(a) Ackley Function, n = 5: Error vs. Iterations (b) Ackley Function, n = 5: Log Error vs. Iterations

(c) Rastrigin Function, n = 10: Error vs. Iterations (d) Rastrigin Function, n = 10: Log Error vs. Iterations
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9.4. Summary

In this chapter we have presented the results of numerical experimentation on the algorithms

developed in this thesis. We first presented problems from literature and carried out experiments

that were split in two parts:

1. Convergence Theory of the GAD and Global optimisation algorithms;

2. Measuring performance of the GAD and Global optimisation algorithms.

The set of problems which were used for the tests are shown below:

• Problem 1: Ackley function (with n = 2, 3, 5, 10, 20);

• Problem 2: Rastrigin function (with n = 2, 3, 5, 10, 20); and

• Problem 3: Schwefel function (with n = 2, 3, 5, 10, 20).

More information on the test functions and implementation details is in appendices A and B,

respectively. An analysis of these results is done in chapter 11.
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10
Example Problem: Global Optimisation of

Lennard-Jones Clusters

10.1. Introduction

We now apply our algorithms to a practical problem that has attracted both theoretical and com-

putational research. This problem is the minimisation of the potential energy function of Lennard-

Jones atomic clusters. There are two main reasons why this is an interesting problem.

Firstly, the practical importance of discovering the low energy configurations of a cluster of atoms

is important in molecular conformation research [43]. For example, in chemical physics, researchers

are interested in finding the lowest energy configurations of a macro-molecular structure [44, 45].

A specific application of this is in protein folding where the native structure is related to the global

minimum of its potential energy function [44, 45].

Secondly, the minimisation of the Lennard-Jones potential energy function is an easy to state

problem and yet it poses enormous difficulties for any unbiased global optimisation algorithm [43].

Therefore, it serves as a good test system for global optimisation algorithms.

10.2. Problem Formulation

The Lennard-Jones (L-J) potential, first proposed in 1924 by John Lennard-Jones, is given by

E = 4ε
∑
i<j

[( σ
rij

)12
−
( σ
rij

)6]
(10.1)

or more commonly as

E = ε
∑
i<j

[(rm
rij

)12
− 2
(rm
rij

)6]
(10.2)
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10. Example Problem: Global Optimisation of Lennard-Jones Clusters

where ε and rm = 21/6σ are the pair equilibrium well depth and separation, respectively [43] [45].

For our treatment as in many others, we will employ reduced sizes ε = σ = 1 throughout to give

E =
∑
i<j

[( 1

rij

)12
−
( 1

rij

)6]
. (10.3)

To get the intuition behind the equation above, we remember that molecular conformation prob-

lems involve finding the global minimum of the potential energy function which depends on the

relative positions of the atoms. In the L-J model, all atoms are considered equal and only pairwise

interactions are included in the definition of the potential energy [43, 45]. Let us take N ≥ 2 be

an integer representing the total number of atoms. The L-J pairwise potential energy function is

defined as follows: if the distance between the centres of a pair of atoms is r, then their contribution

to the total energy is defined to be

v(r) =
1

r12
− 2

r6
(10.4)

and the L-J potential energy which we will call E of the molecule is defined as

E(X) = E(X1, X2, ..., XN ) =
∑
i<j

v(||Xi −Xj ||) (10.5)

where Xi ∈ R3 represents the coordinates of the centre of the i-th atom and the norm is used is

the usual Euclidean one [43, 45]. The optimal L-J configuration X∗ = {X1, X2, ..., XN} is defined

as the solution to the global optimisation problem

LJN = E(X∗) = min
X∈R3

E(X). (10.6)

It is this problem that we will be solving with our algorithm in this chapter.

10.3. Design of the Computational Experiments

As before, the algorithms have been implemented in MATLAB Release 2013a and run an iMac

with a 2.7 GHz Intel Core i5 CPU with 8 GB 1600 MHz DDR3 memory. The goal of the tests is to

measure the performance and accuracy of the Global optimisation algorithms on the Lennard-Jones

clusters.

The set of problems which were used for the tests are shown below:

• Problem 1: L-J potential energy function (with N = 2);

• Problem 2: L-J potential energy function (with N = 3);

More information on the test functions is in appendix A. The table below summarises the important

aspects of the problems stated above.

Table 10.1.: Problem Statistics

N energy (Emin) reference

2 −1.0000 [44, 46, 47]

3 −3.0000 [44, 46, 47]
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As was done with the tests in the numerical experience chapter, we will define a metric to measure

performance. The performance of all the proposed global optimisation algorithms was evaluated

using the following performance index:

PI =
f(X∗ini)− f(X∗final)

f(X∗ini)− f(X∗global)
, (10.7)

where X∗ini is the initial configuration, X∗final is the final minimising configuration’s energy returned

by the algorithm and X∗global true global minimising configuration.

Thus, as before, 0 ≤ PI ≤ 1. For the two extreme cases, PI = 1 means that the algorithm

succeeds in finding the concerned critical point and PI = 0 means that no improvement from the

initial point has been made.

The computational results for the performance and accuracy tests are given in tables 10.2 and

10.3. For each entry, 2 experiments were performed, the results averaged and entered in the tables

where the notation is as follows:

• Problem = notation of the problem;

• Name = name of the objective function;

• N = Number of atoms;

• Niter = average number of iterations;

• Ngradient = average number of gradient evaluations;

• Nhessian = average number of Hessian evaluations;

• Neig = average number of eigenvalue-eigenvector evaluations;

• Texec = average CPU execution time in seconds;

• NPI = the average performance indices;

In the next sections we present the results of these tests; for information on implementation-centric

parameters used refer to appendix B. An analysis of these results is done in chapter 11.

10.4. Results of Computational Experiments

In this section we present the results of the computational experiments carried out on L-J clusters

with 2 and 3 atoms. These results are shown in the tables that follow.

Table 10.2.: Solution statistics for Global Optimisation Approach 1 (Global Descent Functions) on
L-J Clusters

Problem
Name N Niter Ngradient Nhessian Neig Texec PI

L-J Potential Energy Function 2 1 70 72 4 49.3584 1
3 1 3 5 4 1.8206 1
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Table 10.3.: Solution statistics for Global Optimisation Approach 2 (Unbounded Line Searches) on
L-J Clusters

Problem
Name N Niter Ngradient Nhessian Neig Texec PI

L-J Potential Energy Function 2 1 71 75 7 23.9450 1
3 2 13 25 18 12.6516 1

10.5. Summary

In this chapter we have presented the results of numerical experimentation of the global optimisa-

tion algorithms developed in this thesis tested on the L-J clusters problem.

The set of problems which were used for the tests are shown below:

• Problem 1: L-J potential energy function (with N = 2);

• Problem 2: L-J potential energy function (with N = 3);

More information on the test functions and implementation details is in appendices A and B,

respectively. An analysis of these results is done in chapter 11.
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Discussion

11.1. Introduction

The purpose of this chapter is to discuss and analyse the results of the experiments and numerical

experience in the preceding two chapters. The goal is to critically examine these numerical results

in the light of the previous state of the subject matter in this thesis, and includes judgments on

what has been learnt in this work.

11.2. Analysis of Results on the GAD-based Saddle-Point-Finding

Algorithms

One of the major aims of this work was to develop a computationally efficient, numerically stable

and globally convergent GAD-based saddle-point-finding algorithm. We started out by postulating

the Desirable Initial Conditions that were used in the Natural and Rayleigh Optimisation versions

of the GAD-based algorithms.

Based on the GAD equations, we know that these algorithms have a two-phased approach for

finding a saddle point. The first phase involves finding the separatrix associated with a saddle

point and once this is achieved the second stage is converging toward the saddle point itself. With

our devised algorithms, we observed that each of these stages required its own optimal step-size

where the separatrix hunting phase usually needed a smaller step-size in contrast to the final stage

that required a much larger and more optimistic one. Therefore, the best results were achieved

with an optimal step-size strategy that took the needs of both phases into account. As a result,

the first stage where the solution trajectory is finding a separatrix involves a larger fraction of the

algorithm’s iterations in comparison to the subsequent phase.

As can been seen from each of the Iterations vs Error plots in chapter 9, the separatrix find-
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ing stage involved an increasing error; once the separatrix was found, the error decreased sharply

until the solution trajectory converged at a saddle point. The corresponding Iterations vs log Error

showed that each of these phases had linear convergence. This means that the overall convergence

rate of the devised GAD-based saddle-point-finding algorithms is linear.

Concerning the reasons for the different versions of the algorithms, the motivation for develop-

ing the Rayleigh GAD algorithm was to find a way of designing an algorithm that converges

towards the separatrix at a much faster rate than its counterpart following the natural approach.

From the performance results, it is evident that it achieves this goal by reaching the separatrix and

eventually finding the saddle point in less iterations. However, it does so in more time than the

natural approach. This shows the tradeoff that needs to be made by implementers of the paradigms

that have been proposed in this work. Of course, it is evident that faster implementations of the

techniques used within the Rayleigh GAD method could make it a much superior algorithm.

Amidst all this success of the devised algorithms are the Desirable Initial Conditions. The re-

sults in the tables and plots show that the importance of these conditions are in intertwined in

two aspects. Firstly, it ensures that the generated GAD solution trajectory is guaranteed to find a

separatrix. Secondly, it prevents unstable trajectories.

During the numerical experience, it was discovered that the parameters used by the algorithm

such as the error tolerances and step-sizes were highly dependent on the geometry of the underly-

ing function. For example, in higher dimensional Ackley functions, a correctly set constant step-size

was more efficient than using a line search step-size strategy. Furthermore, the Rastrigin function

required step-sizes with much smaller orders in comparison with the Schwefel function that needed

step-sizes with upper bounds as high as 1 to 1.5.

So, on the whole, did this work manage to achieve the task of creating a computationally effi-

cient, numerically stable and globally convergent GAD-based saddle-point-finding algorithm? Let

us answer this question in terms of its constituent parts.

In terms of computational efficiency, in as much as the performance of the algorithm is quite

impressive, the GAD-related statistics shown in tables 9.2 and 9.3 are intriguing. The number

of gradient, Hessian and eigenvalue/eigenvector calculations in comparison to the number of algo-

rithm iterations is quite alarming. Despite the general 1 : 1 ratio of these numbers to the number

of iterations, these calculations are expensive operations in themselves. Therefore, it is desirable to

perform as few of them as possible. Furthermore, for higher dimensional cases, this could become

a bottleneck for the algorithm and may, in turn, affect its scalability. This is made even worse in

cases where one may need to set very small step-sizes that may invoke an even higher number of

iterations. In the same vein, the issue of computational complexity is entangled with the issue of

time versus number of iterations trade-off aspects of the algorithm.

Are the algorithms globally convergent? Not necessarily. Because the algorithms need to abide

by the Desirable Initial Conditions to ensure convergence, the global convergence aspect is lost.

However, as already mentioned, these conditions can easily be achieved and the question of global
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11.3. Analysis of Results on the Global Optimisation Algorithms

convergence is not such an important one for practical high dimensional cases.

The question of numerical stability is also connected to that of global convergence and the De-

sirable Initial Conditions. Was it achieved? Of course. With the correct parameters, the algorithm

will always find the closest saddle point. Even so, the saddle point found will not necessarily be

an index-1 saddle point. Therefore, the pool of saddle points includes those of all indices as long

as they are in proximity of the initial conditions. But, as already stated earlier, for very small

step-sizes, the GAD trajectory will find an index-1 saddle point.

As a final note on the issue of finding saddle points, researchers in this space are always seeking to

formulate methods that target particular types of saddle points. The GAD paradigm was derived

in order to seek out the index-1 saddle points. Unfortunately, for our algorithm to achieve the

task of finding this particular type of saddle points in higher dimensional spaces, its computational

efficiency suffers.

11.3. Analysis of Results on the Global Optimisation Algorithms

The other major goal in this dissertation was to design and construct a global optimisation algo-

rithm that uses saddle points as transitional points. Two algorithms were developed using this

paradigm. The first used the global descent function at saddle points and the other made use of

unbounded line searches. Both proposed algorithms were based on the GAD “Chaining” algorithm

and were very successful in the regard of using saddle points to find global minimisers.

Firstly, these global optimisation algorithms were developed around the policy that at every itera-

tion better minimisers should be found. This policy ensured that each transition through a saddle

point served as an improvement on the current minimiser. However, this way of approaching the

global optimisation problem has the fault of being dependent on the geometry of the function.

The hurdles of using this approach are in two aspects. To start with, the first stumbling block of

using this prescribed approach is that if the next best minimiser is not in a bounded vicinity of the

current transitional saddle point then the algorithm will fail to improve the current minimiser. The

second drawback is that the approach may be ineffective on geometrically deceptive functions. As

previously noted, this is because of the approach’s dependence on the objective function’s geome-

try. Since the resulting solution trajectory hops between minimisers with the overall goal of always

improving on the preceding one, the paradigm essentially assumes that the global minimiser will

be in the vicinity of other good minimisers. However, for cases where the global minimiser does

not exist in close proximity with other better minimisers the algorithm may face difficulties. To

succeed, the algorithm may need to be initialised at a point in the domain space that can enable it

to eventually transition though a saddle point whose unstable directions are oriented in the direc-

tion of the global minimiser. And, as one can imagine, for higher dimensional cases this may take

considerable time to happen for the worst scenarios.

It is for the reasons outlined in the previous paragraph that a multi-start approach to the global

optimisation algorithm may be beneficial. Strategic distribution of starting points around the do-

main of definition of the objective function would help a great deal in overcoming this geometry
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11. Discussion

dependence.

Moreover, because of this topological and Morse-theoretic dependence of the transitions through

saddle points, the question of termination conditions becomes a very imperative one. Throughout

the development of the global optimisation methods in this dissertation, the termination condition

used was designed to stop if a better minimiser could not be found. But with the geometric-

dependence it may be necessary to allow the algorithm to make “mistakes” by finding some worse

minimisers in the hope that the subsequent transition process can yield a better minimiser overall.

This way the algorithm can hopefully correct itself depending on the geometry of the objective

function in question.

Based on the test results shown in chapter 9, the devised algorithms work. However, from the

graphical plot in figures , and those in appendix C, the convergence rate of all the global optimi-

sation algorithm is linear. Furthermore, it should be noted that the a large fraction of the time

during the execution of the algorithm was spent finding saddle points. Therefore, using a faster

saddle-point-finding method can greatly improve the algorithm’s speed.

The global optimisation algorithms developed in this work are not without their shortcomings.

The most prominent drawback is the parametric nature of the algorithms. This is the best de-

scribed by the multiple scenarios where an optimal set of parameters needs to be set in order for

the algorithm to be most efficient. In as much as it is understandable that this is the problem with

practically any numerical algorithm, it is worth pointing out in this case. The types of parame-

ters include and are not limited to error parameters, termination-centric tolerances and even the

number of times to allow the algorithm to make “mistakes”.

11.4. Analysis of Results from the Tests on Lennard-Jones

Clusters

The global optimisation algorithms devised in this thesis were applied to the global minimisation of

the potential energy functions of L-J clusters with 2 and 3 atoms. From the results in the previous

chapter, the algorithm was successfully able to determine the most optimal configurations of atoms

with the lowest energy levels.

It must be mentioned that this problem has a large number of local and global minimisers. There-

fore, performance depends on the initial conditions and the transitional points used in the higher

demential space. The problems used with 2 and 3 atoms have dimensionality of 6 and 9, respectively.

As stated in the previous section, the phases involving finding the saddle points were the most

expensive and therefore better saddle-point-finding methods may be useful.

11.5. Summary

In this chapter we discuss and analyse the results of the experiments and numerical experience in

the preceding two chapters. The developed GAD-based saddle-point-finding algorithms are effective
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11.5. Summary

in their task except from concerns related to computational efficiency in higher dimensional spaces.

This concern is in relation to the number of times the algorithm calculates the gradient, Hessian

and eigenvector/eigenvalue pairs each run. For the global optimisation algorithms using saddle

points, they are equally effective except that their dependence on the geometry of the objective

function in order to work well could be a serious hurdle. To mitigate for this problem a multi-start

solution is suggested. The last section of the chapter briefly outlines the results of applying the

global optimisation algorithms to the L-J clusters problem.
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12
Conclusions

In opposition to the foolish “ignorabimus” our slogan shall be: We must know — we will

know!

– David Hilbert, 1930 [48]

12.1. Summary of Work

The work in this treatise had dual aims. The first was the numerical distillation of the GAD in

order to develop a numerically stable and globally convergent index-1 saddle-point-finding algo-

rithm. The second aim was to construct a global optimisation algorithm that took advantage of

the Morse-theoretic properties of saddle points by using them as transitional points to find better

minimisers.

We started out by first developing two effective and linearly convergent GAD-based saddle-point-

finding algorithms that make use of the postulated Desirable Initial Conditions to ensure conver-

gence. On one hand, these algorithms are different because the first one follows the natural essence

of the GAD autonomous ODEs and the other ensures that convergence toward a saddle point

takes place in less iterations. It does so by infusing a Rayleigh optimisation into the algorithm.

On the other hand, these algorithms are also complimentary in that the aggressive nature of the

second approach makes it harder for it to find lower index saddle points and may be ineffective for

some functions. These algorithms are important because they can now be part of the repertoire

of algorithms that are useful in finding saddle points. This is especially useful in the analysis of

transitional points of minimum energy paths in areas not limited to computational physics and

chemistry but also in the atomistic simulation of rare events [9].

The GAD ”Chaining” Algorithm was developed based on GAD-algorithms. This algorithm has

the goal of finding all the saddle points on a non-linear differentiable function. It abstracts the
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12.2. Problems to Overcome, Research Issues and Future Directions

search for saddle points as a graph exploration problem. The nodes on this graph are saddle points

and minimisers. The algorithm uses the breadth first search approach to explore the function for

saddle points. The name GAD “Chaining” comes from the fact that intermittent runs of the GAD

algorithm are interleaved with local minimisation runs. This algorithm, in itself, is very useful be-

cause knowing all the saddle points on a function means that one knows how the function behaves

everywhere.

The next phase in the development of this work was the proposition of the two global optimisation

algorithms. The global optimisation algorithms that were developed are essentially modifications

of the GAD “Chaining” algorithm except that they follow a policy where they seek out better

minimisers at every iteration. The first was dependent on a modified use of the global descent

function at saddle points where the function exploration is restricted in such a way that only better

saddle points from a current saddle point are explored. The role of the global descent function is to

find a new starting point for the GAD and local minimisation algorithm to find a better minimiser

and saddle point. The second approach replaces the use of the the global descent function with an

unbounded line search in the unstable directions at the saddle points to find a new starting point

for the GAD and local minimisation algorithm to find a better minimiser and saddle point. The

resulting global optimisation algorithms are both linearly convergent.

12.2. Problems to Overcome, Research Issues and Future

Directions

Firstly, the major area where the work presented in this thesis requires improvement is that of

efficiency. Finding more efficient ways to simulate the Rayleigh optimisation would be a major

boost to the strength of this work. Furthermore, research into ways of of reducing the overhead of

calculating the gradient, Hessian and eigenvalue/eigenvalue pairs in the algorithms would greatly

improve their efficiency. Outside of this, an interesting approach would be to find ways of simulat-

ing GAD without excessive use of the gradient and Hessian.

Secondly, the dependence of the proposed global optimisation algorithms on the geometry of the

objective functions is an interesting problem in itself. As suggested earlier, multi-start approaches

are one way to combat this. It would be interesting to explore possible multi-start paradigms for

global optimisation algorithms that suffer from this problem. Additionally, finding other ways apart

from multi-start methods to combat this ‘geometric’ dependence is an intriguing area of research

considering that most global optimisation algorithms need to be biased in one way or another for

them to be able to optimise geometrically deceptive functions.

Thirdly, research work that could use stochastic versions of GAD as suggested by Weinan E and

Samanta in [9] on the proposed global optimisation algorithms would be interesting. This would

give a theoretical handle on stochastic saddle-point-finding methods. Additionally, it would also

aid in a comparison and analysis of the cost-benefit examination of using stochastic methods versus

using deterministic methods for saddle-point-centric global optimisation algorithms.

Lastly, research into better saddle-point-finding methods is imperative. An exploration of us-
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ing the Dimer method or another approach to find saddle points instead of the Gentlest Ascent

Dynamics (GAD) is an interesting prospect. Would those methods be more efficient? Would

these other algorithms be faster? Would they involve less calculations of the gradient, Hessian and

eigenvalues/eigenvectors? Moreover, exploring different ways of using saddle points to do global

optimisation present a fascinating and compelling area of research.

12.3. Conclusion

The main result in this treatise is not necessarily the proposed set of effective saddle point find-

ing and global optimisation algorithms, although these proposed linearly convergent methods have

been analysed and their performance discussed. The major contribution of this work is the postu-

lation of the premise that saddle points can be important transitional points in the area of global

optimisation. All in all, the work presented in this treatise has achieved all its objectives and has

posed interesting questions on the place that saddle points have in the global optimisation sphere.
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A
Test Functions

A.1. Ackley Function

Figure A.1.: 2 dimenstional plot of the Ackley function

The Ackley function is widely used for testing optimisation algorithms. In its two-dimensional form,

as shown in the plot above, it is characterised by a nearly flat outer region and a large hole at the

centre. The function poses a risk for optimisation algorithms, particularly hill-climbing algorithms,

to be trapped in one of its many local minima [49, 50, 51, 52].

Recommended variable values are: a = 20, b = 0.2 and c = 2π [49, 50, 51].
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A. Test Functions

A.1.1. Input Domain

The function is usually evaluated on the hypercube xi ∈ [−32.768, 32.768], for all i = 1, ..., n

although it may also be restricted to a smaller domain such as 15 ≤ xi ≤ 30 [49, 50, 51, 52].

A.1.2. Global Minimum

The global minimum: x∗ = (0, ..., .., 0), and f(x∗) = 0 [49, 50, 51, 52].

A.2. Rastrigin Function

Figure A.2.: 2 dimenstional plot of the Rastrigin function

The Rastrigin function has several local minima. It is highly multimodal, but locations of the

minima are regularly distributed. It is shown in the plot above in its two-dimensional form [52, 53].

where d is the dimensionality of the problem.

A.2.1. Input Domain

The function is usually evaluated on the hypercube xi ∈ [−5.12, 5.12], for all i = 1, 2, ..., n [52, 53].
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A.3. Schwefel Function

A.2.2. Global Minimum

The global minimum: x∗ = (0, ..., ..., 0), and f(x∗) = 0 [52, 53].

A.3. Schwefel Function

Figure A.3.: 2 dimenstional plot of the Schwefel function

The Schwefel function is complex, with many local minima. Schwefel’s function is deceptive in

that the global minimum is geometrically distant, over the parameter space, from the next best

local minima. Therefore, the search algorithms are potentially prone to convergence in the wrong

direction. The plot shows the two-dimensional form of the function [52, 54, 55].

A.3.1. Input Domain

The function is usually evaluated on the hypercube xi ∈ [−500, 500], for all i = 1, 2, ..., n [52, 54, 55].

A.3.2. Global Minimum

The global minimum: x∗ = (420.9687, ..., ..., 420.9687), and f(x∗) = −n× 418.9829, where n is the

dimensionality of the function [52, 54, 55].
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A. Test Functions

A.4. Lennard-Jones Potential Function

The Lennard-Jones (L-J) potential, first proposed in 1924 by John Lennard-Jones, is given by

E = 4ε
∑
i<j

[( σ
rij

)12
−
( σ
rij

)6]
(A.1)

or more commonly as

E = ε
∑
i<j

[(rm
rij

)12
− 2
(rm
rij

)6]
(A.2)

where ε and rm = 21/6σ are the pair equilibrium well depth and separation, respectively [43] [45].

For our treatment as in many others, we will employ reduced sizes ε = σ = 1 throughout to give

E =
∑
i<j

[( 1

rij

)12
−
( 1

rij

)6]
. (A.3)

To get the intuition behind the equation above, we remember that molecular conformation prob-

lems involve finding the global minimum of the potential energy function which depends on the

relative positions of the atoms. In the L-J model, all atoms are considered equal and only pairwise

interactions are included in the definition of the potential energy [43, 45]. Let us take N ≥ 2 be

an integer representing the total number of atoms. The L-J pairwise potential energy function is

defined as follows: if the distance between the centres of a pair of atoms is r, then their contribution

to the total energy is defined to be

v(r) =
1

r12
− 2

r6
(A.4)

and the L-J potential energy which we will call E of the molecule is defined as

E = (X) = E(X1, X2, ..., XN ) =
∑
i<j

v(||Xi −Xj ||) (A.5)

where Xi ∈ R3 represents the coordinates of the centre of the i-th atom and the norm used is the

usual Euclidean one [43, 45].. The optimal L-J configuration X∗ = {X1, X2, ..., XN} is defined as

the solution to the global optimisation problem

LJN = E(X∗) = min
X∈R3

E(X). (A.6)
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B
Details of Computational Experiments

The algorithms have been implemented in MATLAB Release 2013a and run on an iMac with a 2.7

GHz Intel Core i5 CPU and 8 GB 1600 MHz DDR3 memory.

B.1. Introduction

The tables used throughout this chapter contain the implementation details used in the numerical

experience documented in this thesis. The notation used is supposed to be interpreted as follows:

• Problem = notation of the problem;

• Name = name of the objective function;

• α = step-size;

• αf = fixed step-size;

• αl = lower bound step-size;

• αu = upper bound step-size;

• τ = Minimal Tolerance Parameter;

• n = number of variables;

• N = number of atoms;

• Niter = average number of iterations;

• Ngradient = average number of gradient evaluations;

• Nhessian = average number of Hessian evaluations;

• Neig = average number of eigenvalue-eigenvector evaluations;

• Texec = average CPU execution time in seconds;

• NPI = the average performance indices;

135



B. Details of Computational Experiments

B.2. Implementation Details

Table B.1.: Implementation details for Convergence Theory: Rate of Convergence of Natural GAD

Problem
Name n Step-Size Initial Point τ

1 (Ackley) 2 αf = 0.1 (0.4, 0.6) 10−26

3 αf = 0.1 (0.23, 8, 5) 10−26

5 αf = 0.1 (0.23, 8, 5, 1, 1) 10−26

10 αf = 0.1 (0.23, 8, 5, 1, 1, 1, 2, 3, 4, 5) 110−26

20 αf = 0.1 (0.23, 8, 5, 1, 1, 1, 2, 3, 4, 5, 0.23, 8, 5, 1, 1, 1, 2, 3, 4, 5) 10−26

2 (Rastrigin) 2 αl = 10−3;αu = 10−1 (1, 1) 10−26

3 αl = 10−3;αu = 10−1 (1, 1, 1) 10−26

5 αl = 10−3;αu = 10−1 (1, ..., 1) 10−26

10 αl = 10−3;αu = 10−1 (1, ..., 1) 10−26

20 αl = 10−3;αu = 10−1 (1, ..., 1) 10−26

3 (Schwefel) 2 αl = 0.2;αu = 1.0 (270, 370) 10−26

3 αl = 0.2;αu = 1.0 (270, 370, 270) 10−26

5 αl = 0.2;αu = 1.0 (270, 370, 270, 370, 270) 10−26

10 αl = 0.2;αu = 1.0 (1,...,1) 10−26

20 αl = 0.2;αu = 1.0 (1,...,1) 10−26

Table B.2.: Implementation details for Convergence Theory: Rate of Convergence of Rayleigh GAD

Problem
Name n Step-Size Initial Point τ

1 (Ackley) 2 αl = 10−2;αu = 10−1 (0.4, 0.6) 10−8

3 αl = 10−4;αu = 10−2 (0.23, 8, 5) 10−8

5 αl = 10−4;αu = 10−2 (0.23, 8, 5, 1, 1) 10−8

10 αl = 10−4;αu = 10−2 (0.23, 8, 5, 1, 1, 1, 2, 3, 4, 5) 10−8

20 αl = 10−3;αu = 10−1 [0.23, 8, 5, 1, 1, 1, 2, 3, 4, 5, 0.23, 8, 5, 1, 1, 1, 2, 3, 4, 5] 10−8

2 (Rastrigin) 2 αl = 10−3;αu = 10−1 (1, 1) 10−8

3 αl = 10−4;αu = 10−1 (1, 1, 1) 10−8

5 αl = 10−3;αu = 10−1 (1, ..., 1) 10−8

10 αl = 10−3;αu = 10−1 (1, ..., 1) 10−8

20 αl = 10−3;αu = 10−1 (1, ..., 1) 10−8

3 (Schwefel) 2 αl = 0.1;αu = 0.9 (270, 370) 10−8

3 αl = 0.1;αu = 0.9 (270, 370, 270) 10−8

5 αl = 0.1;αu = 0.9 (270, 370, 270, 370, 270) 10−8

10 αl = 0.1;αu = 0.9 (270, 370, ..., ..., ..., 270, 370) 10−8

20 αl = 0.1;αu = 0.9 (270, 370, ..., ..., ..., 270, 370) 10−8
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B.2. Implementation Details

Table B.3.: Implementation details Global Optimisation Approach 1: Global Descent Functions

Problem
Name n Step-Size Initial Point τ

1 (Ackley) 2 — (30, 30) 10−3

3 — (30, 30, 30) 10−3

5 — (30, ..., ..., 30) 10−3

2 (Rastrigin) 2 — (5, 5) 10−8

3 — (5, 5, 5) 10−8

5 — (5, ..., 5) 10−8

3 (Schwefel) 2 — (270, 370) 10−8

3 — (270, 370, 270) 10−8

5 — (270, 370, 270, 370, 270) 10−8

Table B.4.: Implementation details Global Optimisation Approach 2: Unbounded Line Searches

Problem
Name n Step-Size Initial Point τ

1 (Ackley) 2 — (30, 30) 10−3

3 — (30, 30, 30) 10−3

5 — (30, ..., ..., 30) 10−3

2 (Rastrigin) 2 — (5, 5) 10−8

3 — (5, 5, 5) 10−8

5 — (5, ..., 5) 10−8

3 (Schwefel) 2 — (270, 370) 10−8

3 — (270, 370, 270) 10−8

5 — (270, 370, 270, 370, 270) 10−8

Table B.5.: Implementation details for Perfomance and Accuracy of Global Optimisation Using
Global Descent Functions at Saddle Points – L-J Clusters

N energy (Emin) reference Initial point X0 ∈ R3N

2 −1.0000 [44, 46, 47] (1, 0.2, 3, 0.4, 0.5, 0.6)

3 −3.0000 [44, 46, 47] (1, 0.7, 0.6, 0.3, 1, 0.2, 0.2, 0.3, 1)

4 −6.0000 [44, 46, 47] (−0.3616353090, 0.0439914505, 0.5828840628)

5 −9.103852 [44, 46, 47] (−0.2604720088, 0.7363147287, 0.4727061929)

Table B.6.: Implementation details for Perfomance and Accuracy of Global Optimisation Using
GAD “Chaining” and Unbounded Line Searches – L-J Clusters

N energy (Emin) reference Initial point X0 ∈ R3N

2 −1.0000 [44, 46, 47] (1, 0.2, 3, 0.4, 0.5, 0.6)

3 −3.0000 [44, 46, 47] (1, 0.7, 0.6, 0.3, 1, 0.2, 0.2, 0.3, 1)

4 −6.0000 [44, 46, 47] (−0.3616353090, 0.0439914505, 0.5828840628)

5 −9.103852 [44, 46, 47] (−0.2604720088, 0.7363147287, 0.4727061929)
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C
Complete Results of Computational

Experiments

Table C.1.: Solution statistics for Natural GAD

Problem
Name n Niter Ngradient Nhessian Neig Texec PI

1 (Ackley) 2 46 47 47 2 0.9323 1
3 77 78 78 2 2.3589 1
5 20 21 21 2 1.1036 1
10 11 12 12 2 1.6169 1
20 19 20 20 2 6.5468 1

2 (Rastrigin) 2 41 42 42 2 2.5714 1
3 112 113 113 2 9.4933 1
5 38 39 39 2 8.4202 1
10 23 24 24 24 10.2352 1
20 36 37 37 37 31.8601 1

3 (Schwefel) 2 144 145 145 2 8.6552 1
3 151 152 152 2 13.6435 1
5 107 108 108 2 43.2022 1
10 123 124 124 2 37.4938 1
20 567 568 568 2 331.9135 1
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Table C.2.: Solution statistics for Rayleigh GAD

Problem
Name n Niter Ngradient Nhessian Neig Texec PI

1 (Ackley) 2 10 11 11 11 2.3566 1
3 51 52 52 52 10.0858 1
5 65 66 66 66 22.0817 1
10 103 104 104 104 80.6100 1
20 19 19 19 19 40.4132 1

2 (Rastrigin) 2 92 93 93 93 8.3496 1
3 247 248 248 248 28.2447 1
5 137 138 138 138 27.5040 1
10 103 104 104 104 46.1129 1
20 224 225 225 225 190.6497 1

3 (Schwefel) 2 157 158 158 158 14.9944 1
3 172 173 173 173 25.2781 1
5 167 168 168 168 43.3048 1
10 174 174 174 174 86.7005 1
20 185 186 186 186 228.4269 1

Table C.3.: Results and solution statistics for Global Optimisation Approach 1 - Saddle Points and
Global Descent Functions

Problem
Name n Niter Ngradient Nhessian Neig Texec PI

1 (Ackley) 2 12 625 701 152 14.7518 1
3 9 2935 2857 116 86.8983 1
5 5 2626 6188 52 92.9138 1

2 (Rastrigin) 2 1 29 31 4 2.4126 1
3 1 60 62 4 6.6653 1
5 1 15 17 4 3.9685 1
10 1 31 33 4 11.5332 1

Table C.4.: Results and solution statistics for Global Optimisation Approach 2 - Saddle Points and
Unbounded Line Searches

Problem
Name n Niter Ngradient Nhessian Neig Texec PI

1 (Ackley) 2 10 173 199 199 30.2412 1
3 4 238 246 246 32.7275 1
5 6 439 465 465 106.5899 1

2 (Rastrigin) 2 10 333 353 50 23.0188 1
3 12 232 256 60 26.1143 1
5 30 1016 1076 150 163.9899 1
10 46 8588 8680 20 3798.9 1

139



C. Complete Results of Computational Experiments

Figure C.1.: Rate of Convergence Results for Natural GAD on Problems 1,2 and 3 for n = 2

(a) Ackley Function, n = 2: Error vs. Iterations (b) Ackley Function, n = 2: Log Error vs. Iterations

(c) Rastrigin Function, n = 2: Error vs. Iterations (d) Rastrigin Function, n = 2: Log Error vs. Iterations

(e) Schwefel Function, n = 2: Error vs. Iterations (f) Schwefel Function, n = 2: Log Error vs. Iterations
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Figure C.2.: Rate of Convergence Results for Rayleigh GAD on Problems 1,2 and 3 for n = 2

(a) Ackley Function, n = 2: Error vs. Iterations (b) Ackley Function, n = 2: Log Error vs. Iterations

(c) Rastrigin Function, n = 2: Error vs. Iterations (d) Rastrigin Function, n = 2: Log Error vs. Iterations

(e) Schwefel Function, n = 2: Error vs. Iterations (f) Schwefel Function, n = 2: Log Error vs. Iterations
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C. Complete Results of Computational Experiments

Figure C.3.: Rate of Convergence Results for Natural GAD on Problems 1,2 and 3 for n = 3

(a) Ackley Function, n = 3: Error vs. Iterations (b) Ackley Function, n = 3: Log Error vs. Iterations

(c) Rastrigin Function, n = 3: Error vs. Iterations (d) Rastrigin Function, n = 3: Log Error vs. Iterations

(e) Schwefel Function, n = 3: Error vs. Iterations (f) Schwefel Function, n = 3: Log Error vs. Iterations
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Figure C.4.: Rate of Convergence Results for Rayleigh GAD on Problems 1,2 and 3 for n = 3

(a) Ackley Function, n = 3: Error vs. Iterations (b) Ackley Function, n = 3: Log Error vs. Iterations

(c) Rastrigin Function, n = 3: Error vs. Iterations (d) Rastrigin Function, n = 3: Log Error vs. Iterations

(e) Schwefel Function, n = 3: Error vs. Iterations (f) Schwefel Function, n = 3: Log Error vs. Iterations
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C. Complete Results of Computational Experiments

Figure C.5.: Rate of Convergence Results for Natural GAD on Problems 1,2 and 3 for n = 5

(a) Ackley Function, n = 5: Error vs. Iterations (b) Ackley Function, n = 5: Log Error vs. Iterations

(c) Rastrigin Function, n = 5: Error vs. Iterations (d) Rastrigin Function, n = 5: Log Error vs. Iterations

(e) Schwefel Function, n = 5: Error vs. Iterations (f) Schwefel Function, n = 5: Log Error vs. Iterations
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Figure C.6.: Rate of Convergence Results for Rayleigh GAD on Problems 1,2 and 3 for n = 5

(a) Ackley Function, n = 5: Error vs. Iterations (b) Ackley Function, n = 5: Log Error vs. Iterations

(c) Rastrigin Function, n = 5: Error vs. Iterations (d) Rastrigin Function, n = 5: Log Error vs. Iterations

(e) Schwefel Function, n = 5: Error vs. Iterations (f) Schwefel Function, n = 5: Log Error vs. Iterations
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C. Complete Results of Computational Experiments

Figure C.7.: Rate of Convergence Results for Natural GAD on Problems 1,2 and 3 for n = 10

(a) Ackley Function, n = 10: Error vs. Iterations (b) Ackley Function, n = 10: Log Error vs. Iterations

(c) Rastrigin Function, n = 10: Error vs. Iterations (d) Rastrigin Function, n = 10: Log Error vs. Iterations

(e) Schwefel Function, n = 10: Error vs. Iterations (f) Schwefel Function, n = 10: Log Error vs. Iterations

146



Figure C.8.: Rate of Convergence Results for Rayleigh GAD on Problems 1,2 and 3 for n = 10

(a) Ackley Function, n = 10: Error vs. Iterations (b) Ackley Function, n = 10: Log Error vs. Iterations

(c) Rastrigin Function, n = 10: Error vs. Iterations (d) Rastrigin Function, n = 10: Log Error vs. Iterations

(e) Schwefel Function, n = 10: Error vs. Iterations (f) Schwefel Function, n = 10: Log Error vs. Iterations
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C. Complete Results of Computational Experiments

Figure C.9.: Rate of Convergence Results for Natural GAD on Problems 1,2 and 3 for n = 20

(a) Ackley Function, n = 20: Error vs. Iterations (b) Ackley Function, n = 20: Log Error vs. Iterations

(c) Rastrigin Function, n = 20: Error vs. Iterations (d) Rastrigin Function, n = 20: Log Error vs. Iterations

(e) Schwefel Function, n = 20: Error vs. Iterations (f) Schwefel Function, n = 20: Log Error vs. Iterations
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Figure C.10.: Rate of Convergence Results for Rayleigh GAD on Problems 1,2 and 3 for n = 20

(a) Ackley Function, n = 20: Error vs. Iterations (b) Ackley Function, n = 20: Log Error vs. Iterations

(c) Rastrigin Function, n = 20: Error vs. Iterations (d) Rastrigin Function, n = 20: Log Error vs. Iterations

(e) Schwefel Function, n = 20: Error vs. Iterations (f) Schwefel Function, n = 20: Log Error vs. Iterations
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C. Complete Results of Computational Experiments

Figure C.11.: Rate of Convergence Results for Global Optimisation Approach 1 - Saddle Points and
Global Descent Functions on Problems 1 and 2 for n = 2

(a) Ackley Function, n = 2: Error vs. Iterations (b) Ackley Function, n = 2: Log Error vs. Iterations

(c) Rastrigin Function, n = 2: Error vs. Iterations (Done in
1 iteration)

(d) Rastrigin Function, n = 2: Log Error vs. Iterations
(Done in 1 iteration)
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Figure C.12.: Rate of Convergence Results for Global Optimisation Approach 1 - Saddle Points and
Global Descent Functions on Problems 1 and 2 for n = 3

(a) Ackley Function, n = 3: Error vs. Iterations (b) Ackley Function, n = 3: Log Error vs. Iterations

(c) Rastrigin Function, n = 3: Error vs. Iterations (Done in
1 iteration)

(d) Rastrigin Function, n = 3: Log Error vs. Iterations
(Done in 1 iteration)
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C. Complete Results of Computational Experiments

Figure C.13.: Rate of Convergence Results for Global Optimisation Approach 1 - Saddle Points and
Global Descent Functions on Problems 1 and 2 for n = 5

(a) Ackley Function, n = 5: Error vs. Iterations (b) Ackley Function, n = 5: Log Error vs. Iterations

(c) Rastrigin Function, n = 5: Error vs. Iterations (Done in
1 iteration)

(d) Rastrigin Function, n = 5: Log Error vs. Iterations
(Done in 1 iteration)

Figure C.14.: Rate of Convergence Results for Global Optimisation Approach 1 - Saddle Points and
Global Descent Functions on Problem 2 for n = 10

(a) Rastrigin Function, n = 10: Error vs. Iterations (Done
in 1 iteration)

(b) Rastrigin Function, n = 10: Log Error vs. Iterations
(Done in 1 iteration)
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C.1. Other Results

C.1. Other Results

Figure C.15.: Rate of Convergence Results for Global Optimisation Approach 2 - Saddle Points and
Unbounded Line Searches on Problems 1 and 2 for n = 2

(a) Ackley Function, n = 2: Error vs. Iterations (b) Ackley Function, n = 2: Log Error vs. Iterations

(c) Rastrigin Function, n = 2: Error vs. Iterations (d) Rastrigin Function, n = 2: Log Error vs. Iterations
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C. Complete Results of Computational Experiments

Figure C.16.: Rate of Convergence Results for Global Optimisation Approach 2 - Saddle Points and
Unbounded Line Searches on Problems 1 and 2 for n = 3

(a) Ackley Function, n = 3: Error vs. Iterations (b) Ackley Function, n = 3: Log Error vs. Iterations

(c) Rastrigin Function, n = 3: Error vs. Iterations (d) Rastrigin Function, n = 3: Log Error vs. Iterations
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C.1. Other Results

Figure C.17.: Rate of Convergence Results for Global Optimisation Approach 2 - Saddle Points and
Unbounded Line Searches on Problems 1 and 2 for n = 5

(a) Ackley Function, n = 5: Error vs. Iterations (b) Ackley Function, n = 5: Log Error vs. Iterations

(c) Rastrigin Function, n = 5: Error vs. Iterations (d) Rastrigin Function, n = 5: Log Error vs. Iterations

Figure C.18.: Rate of Convergence Results for Global Optimisation Approach 2 - Saddle Points and
Unbounded Line Searches on Problem 1 for n = 10

(a) Rastrigin Function, n = 10: Error vs. Iterations (b) Rastrigin Function, n = 10: Log Error vs. Iterations
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