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Abstract

Inductive logic programming (ILP) is a field of machine learning and Artificial Intelligence

concerned with generalisation of positive and negative examples with respect to the back-

ground knowledge. Most existing ILP systems handle with classical clausal programs, espe-

cially Horn logic programs, and has limited applications on ILP problems with non-monotonic

logic programs. A recent Horn theory learning procedure Induction on Failure (IoF) real-

izes that using bridge formulas with multiple hierarchically related clauses in ILP can result

in better performance over using simple Inverse Entailment (IE) bridge formulas. This re-

port provides a new ILP proof procedure Induction with Completion and Connected Theories

(ICC) which is an extension of IoF and can be applied on ILP tasks with normal program set-

tings. The ICC procedure is designed based on a new operational ILP approach α-Connected

Theory Generalisation which is defined and proved in this report. A preliminary implemen-

tation icc.pl for ICC procedure is provided and tested. The result shows the system works

well on ILP tasks with small problem size.

II



Contents

Acknowledgement I

Abstract II

1 Introduction 1

1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Achievement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Common background 6

2.1 Definite Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Selective Linear Definite clause (SLD) Resolution . . . . . . . . . . . . . . . . 7

2.2 Normal Logic Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Negation as Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Normal Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

SLDNF Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Stable Model Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Abductive Logic Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Open Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

The Kakas-Mancarella Proof Procedure . . . . . . . . . . . . . . . . . . . . . 16

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Inductive Logic Programming (ILP) and Related Works 17

3.1 A formal Framework of ILP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Inverse Entailment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Induction on Normal Programs . . . . . . . . . . . . . . . . . . . . . . . . . . 21

XHAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Induction From Answer Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Connected Theory 27

4.1 Connected Theory Generalisation (CTG) . . . . . . . . . . . . . . . . . . . . 27

III



4.2 Induction on Failure (IoF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Normal Connected Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Introduction to Induction with Completion and Connected Theories (ICC)

Procedure 34

6 α-Normal Connected Theory Generalisation 36

7 Proof Procedure 41

7.1 Loop Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.2 Subsumption Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8 Implementation and Evaluation 56

8.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

9 Conclusion and Future Work 63

Appendix 68

Example soldier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Example 7.4 in Section 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Example bird . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Example Yamamoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Example mother . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Example odd & even . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Example nonealike . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Example highroll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Example trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

IV



List of Figures

4.1 Graph for IoF procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Graph for ICC procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.1 Search tree for r(2)← w(2), s(2), t(2) . . . . . . . . . . . . . . . . . . . . . . . 47

7.2 Search tree for r(3)← w(3), s(3) . . . . . . . . . . . . . . . . . . . . . . . . . 48

8.1 Example of constraints on hypotheses . . . . . . . . . . . . . . . . . . . . . . 57

V



List of Algorithms

7.1 The NoLoop(l, C, T ) Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 The Search(T ) Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.3 The SearchDefs(T ) Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.4 The Main(P,E, n) Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.5 The SaturateSet(T ) Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.6 The PossibleBodyLiteral(C) Procedure . . . . . . . . . . . . . . . . . . . 52

7.7 The NctSearch(h, T pos, i) Procedure . . . . . . . . . . . . . . . . . . . . . . 53

7.8 The AddSE(T ) Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

VI



CHAPTER 1

Introduction

Inductive Logic Programming (ILP) [20] is an important machine learning technique con-

cerned with learning first order (or relational) rules [17, 20] that explain the given examples

relative to some background knowledge. Different from other forms of machine learning, ILP

delivers an approach to use expressive logical languages to represent the background knowl-

edge. This feature of ILP has benefited many knowledge discovery areas that have plenty of

sources of background knowledge [22].

1.1 Motivation and Objectives

Many learning systems use the Inverse Entailment (IE) approaches to learn Horn theories

[11, 17, 21, 25]. These systems compute the solution in a bottom-up manner which firstly

compute a most specific hypothesis then search through formulas subsume it. Instead of

assuming every clause in a hypothesis H must individually explain at least one example E [21]

or each clause must be responsible for at least one abducible ∆ from the example E [25], the

recent ILP proof procedures Induction on Failure (IoF) [11] allows multiple connected clauses

to explain one example. Connected means body conditions in some clauses are explained by

some other clauses. The IoF systems, therefore, allows the computation of hypotheses with

in a larger search space.

The IoF procedure has four main steps. Given the background knowledge B which is a

definite program, and sets of definite clause examples E+ and E−, the first step for IoF is to

select a seed example e+ from E−. Then, it computes a set of ground definite (connected)

clauses T such that B ∪ E explains e+. The third step is to perform a subsumption search

on T to generate a more general hypothesis T from T . Lastly, it removes the examples in

E+ that are explained by H and start the procedure with remainders in E+ again. The loop

stops when all the examples in the original E+ are explained.
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This monotonic IoF procedure is designed to learn from definite logic programs and may fail

to learn hypotheses accurately on normal programs. Consider the following example:

Example 1.1. [15]

B =


obeys(X,Y )← ¬officer(X), officer(Y )

wears hat(price)

wears hat(osbourne)

has stripes(osbourne)


U = {officer}

E =
{
obeys(price, osbourne)

}
H⊥ = { officer(osbourne)← wears hat(osbourne), has stripes(osbourne) }

H ′ = { officer(X)← wears hat(X) }

B is a normal logic program represents the background knowledge. U is a set of open

predicates which indicates what predicates are not completely defined by the background

B and therefore can be learned in the hypothesis. E is an example need to explain by the

hypothesis. H⊥ is the most specific ground hypothesis can be learned from IoF. H ′ is a

possible generalisation of H⊥ and can possibly returned by the IoF procedure. However, the

clause in H ′ failed to explain obeys(price, osbourne) in E since it makes both officer(osburne)

and officer(price) true.

This is mainly because IE is based on deduction theorem, but it is known that the deduction

theorem does not hold in non-monotonic logics in general [29]. The incremental learning in

IoF procedure and generalisation technique used in IoF will not be sound in normal program

settings. The subsumption search step in IoF system assumes the most specific ground

hypotheses H⊥ can be freely extended with additional assumptions. This makes the system

unsuccessful to find the best hypotheses H for the non-monotonic problem if the hypothesis

H generalised from H⊥ does not capture the relative negative information from examples.

There are several ILP systems which allows background theories and hypotheses to be nomal

logic programs. For example, Corapi et al.[4] provides a top-down ILP system Top-directed

Abductive Learning (TAL) that maps the ILP into an equivalent ALP (Abductive Logic

Programming) programming and can learn correct hypotheses with appropriate top theory.

Induction from Answer Set (IAS) [28] builds a bottom-up theory of induction from non-

monotonic logic programs. It introduces an algorithm to construct hypotheses from the

answer sets of an extended logic program. The eXtended Hybrid Abductive Inductive Learn-

ing (XHAIL) [26] also uses the stable model semantics to make the system works on normal

programs. However, none of these systems or procedures systematically find a solution by us-
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ing a bottom-up search and simultaneously allows clauses in the hypotheses to be connected.

This project aims to provide a bottom-up procedure that is generalised from IoF procedure

but which can learn Connected Theories [11] in a normal program setting.
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1.2 Achievement

This report provides a new inductive proof procedure that can work on ILP problems with

normal program settings and new operational ILP approach called α-Connected Theory Gen-

eralisation.

The clauses in the hypotheses that computed by the procedure provided in this report are

allowed to be connected. Connected means the body conditions in some clauses in a hypoth-

esis are explained by some other clauses in that hypothesis. For example, Given the following

background knowledge B which is a normal program, a set of literal examples E, and a set

of predicates to be learned in U ,

Example 1.2.

B =



obeys(X,Y )← ¬officer(X), officer(Y )

wears hat(price)

wears hat(osbourne)

has merit(osbourne)

has stripes(X)← has badge(X)


,

E =
{
obeys(price, osbourne)

}
,

U =
{

officer , has badge
}
.

Assume predicate has merit and has stripes are allowed to be in the bodies of clauses in

the hypotheses, then the following H ′ and H are possible ground and flat hypotheses that

can be computed by the procedure provided in this report. Note the hypothesis H in above

example is subsumed by officer(X)← has merit(X), it may be preferred in some particular

situation (e.g. when a hypothesis with more clauses but less number of body literals in each

clause is preferred).

H ′ =

{
officer(osbourne)← has merit(osbourne), has stripes(osbourne)

has badge(osbourne)← has merit(osbourne)

}

H =

{
officer(X)← has stripes(X)

has badge(X)← has merit(X)

}

Here, in both H ′ and H, the second clause is the explanation for the body condition with

predicate has stripe in the first clause since there is a clause has stripes(X)← has badge(X)

in the background B.

The new operational ILP approach α-Connected Theory Generalisation which is based on

the notion of α-Connected Theory [15] is defined. The soundness of this approach is proved.

It is a similar approach to Connected Theory Generalisation [15] and has been proved that
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the hypothesis space of α-Connected Theory Generalisation is at least as large as Connected

Theory Generalisation.

An preliminary implementation icc.pl is provided and is evaluated based on several small

to medium ILP tasks with both definite and normal program settings. It shows the current

procedure is able to solve small ILP tasks but the scalablity, generating floundered hypotheses

and incompleteness are issues remained to solve.

1.3 Overview

This rest part of this report is organised as follows:

Chapter 2 provides the necessary background information on logic programming including

definite programs, normal programs and abductive logic programming.

Chapter 3 gives an overview of Inductive Logic Programming with respect to its formal

framework and terminologies, Inverse Entailment and two related works - XHAIL and Induc-

tion from Answer Set.

Chapter 4 gives the formal definition of a Connected Theory and Connected Theory Gener-

alisation, describes the IOF proof procedure and provides definitions of a Normal Connected

Theory and Normal Connected Theory Generalisation.

Chapter 5 gives an overview of the new proof procedure ICC.

Chapter 6 gives the formal definition and characterisation of a α-Connected Theory and

α-Connected Theory Generalisation, and contains proofs of the soundness and a bottom line

of its completeness.

Chapter 7 gives detailed algorithms of the new proof procedure ICC.

Chapter 8 gives a implementation icc.pl of ICC procedure and provides a evaluation on the

procedure based on the implementation.

Chapter 9 concludes the work and gives the possible future work.
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CHAPTER 2

Common background

This chapter introduces the logical terminologies that will be used throughout this report

and describes how automated deductive and abductive reasoning is performed.

2.1 Definite Programs

Before giving the definition of the definite program, the following definitions for term, formula,

literal and clause is firstly given. These are basic terminologies for logic programs and most

of them can be found in Lloyd’s book [16].

Definition 2.1. (First-Order Term [16]). A term is defined as follows:

• A constant is a term.

• A variable is a term.

• If f is an n-ary function symbol and t1, · · · , tn are terms, then f(t1, · · · , tn) is a term.

A ground term is a term which does not contain any variables.

Definition 2.2. (First-Order Formula [16]). A (well-formed) formula is defined as follows:

• If p is an n-ary predicate symbol and t1, · · · , tn are terms, then p(t1, · · · , tn) is a formula,

called an atom. A ground atom is an atom which does not contain any variables.

• If ϕ and ϕ are formulas, then ¬ϕ, (ϕ∧ψ), (ϕ∨ψ), (ϕ→ ψ) and (ϕ↔ ψ) are formulas.

• If ϕ is a formula, and X is a variable, then ∃Xϕ and ∀Xϕ are formulas.

Definition 2.3. (Literal [16]). A literal is an atom or the negation of an atom. If A is an

atom, then A is a positive literal and A is a negative literal.

For example
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Example 2.1.

p(1, a,X, s) and q(f(c), 2, X) are atoms

and

p(1, a,X, s), ¬p(1, a,X, s), q(f(c), 2, X) and ¬q(f(c), 2, X) are literals.

Definition 2.4. (Clause [16]). A clause is a finite disjunction of zero or more literals. The

clause with zero literals is called the empty clause and denoted �.

For example

Example 2.2.

¬p(1, a,X, c) ∨ q(f(c), 2, X) ∨ t(2, b) is a clause.

Definition 2.5. (Theory [16]). A theory is a finite set of clauses.

A definite program is set of definite clauses where a definite clause is a special from of clause,

defines below:

Definition 2.6. (Definite Clause [16]). A definite clause is a clause containing exactly one

positive literal.

For example.

Example 2.3.

¬p(1) ∨ ¬q(2) ∨ t(f(b)) is a definite clause.

Definition 2.7. (Definite Program [16]). A definite program is a finite set of definite clauses.

Definition 2.8. (Definition of a Predicate [16]). Let p be a predicate symbol. The definition

of p in a definite program Π is the set Πp of all clauses in Π with p in the head. Then p is

defined by Πp.

Definition 2.9. (Definite Goal [16]). A definite goal is a clause of the form

← B1, · · · , Bk,

with an empty consequent. Each atom Bi (1 ≤ i ≤ n) is a subgoal of this goal.

Definition 2.10. (Horn clause [16]). A Horn clause is a clause that is either a definite clause

or a definite goal.

Selective Linear Definite clause (SLD) Resolution

SLD Resolution is a refinement of resolution, introduced by Kowalski [10]. The definitions

for resolution are given below:
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Definition 2.11. (Substitution [24]). A substitution θ is a finite set of the form

{X1/t1, · · · , Xn/tn},

where {X1, · · · , Xn} are distinct variables and {t1, · · · , tn} are terms. Each ti is substituted

for Xi, and each Xi/ti is a binding for Xi. The substitution θ is a ground substitution if

every ti is ground.

Definition 2.12. (Expression [24]). An expression is a term, or a conjunction of literals, or

disjunction of literals.

Definition 2.13. (Instance [24]). Let ϕ be an expression and θ be a substitution. Then ϕθ,

the instance of ϕ by θ, is the expression obtained by applying θ to the variables of ϕ. If ϕθ is

ground, then ϕθ is a ground instance and θ is a ground substitution for ϕ.

Definition 2.14. (Unifier [24]). A unifier for the set of expressions ϕ1, · · · , ϕn is a substitu-

tion θ such that ϕ1θ = ϕ2θ = · · · = ϕnθ.

Definition 2.15. (Most General Unifier [24]). If θ is a unifier for a set of expressions Σ,

and, for any unifier σ for Σ, there exists a substitution γ such that σ = θγ, then θ is called

a most general unifier or mgu for Σ.

Definition 2.16. (Factor [24]). Let C be a clause, let L1, · · · , Ln (n ≥ 1) be some unifiable

literals in C and let θ be an mgu for the set {L1, · · · , Ln}. The clause obtained by deleting

{L2θ, · · · , Lnθ} from Cθ is a factor of C.

Definition 2.17. (Binary Resolvent [24]). Let C1 = L1 ∨ · · · ∨ Li ∨ · · · ∨ Lm, and let

C2 = M1 ∨ · · · ∨Mj ∨ · · · ∨Mn be two clauses which are standardized apart. If θ is an mgu

for the set {Li,Mj}, then the clause

(L1 ∨ · · · ∨ Li−1 ∨ Li+1 ∨ · · · ∨ Lm ∨M1 ∨ · · · ∨Mj−1 ∨Mj+1 ∨ · · · ∨Mn)θ

is a binary resolvent of C1 and C2. The literals Li and Mj are the literals resolved upon.

Definition 2.18. (Resolvent [24]). Let C1 and C2 be two clauses. A resolvent C of C1 and

C2 is a binary resolvent of a factor of C1 and factor of C2, where the literals resolved upon

are the literals unified by the respective factors. C1 and C2 are called the parent clauses of C.

The definition for SLD Derivation is given below:

Definition 2.19. (SLD Derivation [16]). Let Π be a definite program and let G0 and Gk

be definite goals. An SLD derivation of Gk from ∪ {Gk} is a sequence G0 = G,G1, · · · , Gk
of definite goals such that each Gi(i > 0) is a binary resolvent of Gi−1 and a definite clause

Ci ∈ Π, using the head of Ci and a selected atom in Gi as the literals resolved upon.

The clauses Ci are the input clauses of this SLD derivation. An SLD derivation of � from

Π ∪ {G} is an SLD refutation of Π ∪ {G}.
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Definition 2.20. (SLD Derivation [16]). Let Π be a definite program and let G be a definite

goal. An SLD tree for Π ∪ {G} is a tree satisfying the following:

1. Each node of the tree is a (possibly empty) definite goal.

2. The root node is G.

3. Let N =← A1, · · · , Ai, · · · , Ak be a node in the tree, where Ai is the selected atom.

Then, for each clause A← B1, · · · , Bl in Pi such that Ai and A have mgu θ, N has a

child

← (A1, · · · , Ai−1, B1, · · · , Bl, Ai+1, . · · · , Ak)θ.

4. Empty nodes have no children.

Branches of the tree ending in an empty node are success branches, branches ending in a non-

empty node are failure branches and branches that do not terminate are infinite branches.

9



2.2 Normal Logic Programs

This section introduces the inference rule Negation as Failure (NAF) for negative literals,

the Normal Program, the automated reasoning procedure SLDNF Resolution Procedure for

normal programs and the Stable Model Semantics.

Negation as Failure

Closed World Assumption (CWA) is an inference rule introduced by Reiter [27], which allows

us to draw negative conclusions based on the lack of positive informations. However, for a

definite program Π and a definite goal ← A, the derivation from Π∪ {← A} may be infinite.

For example

Example 2.4.

Π =

{
f(a)

f(X)← f(X)
.

}

A = f(c)

Thus to show that Π 6|= A may take infinite number of steps. Negation as Failure (NAF) [3]

is a weaker notion of CWA in which ¬A can be inferred if there is a finitely failed SLD tree

for← A. NAF results in a non-classical semantics, since Π 6|= A is not equivalent to Π |= ¬A.

However. this can be easily implemented and allows negated atoms to be inferred.

Normal Programs

Since NAF allows ¬A to be inferred, it is possible to include negated atoms in the body of

a clause. Programs allowed to include such clauses are called normal programs and thus are

more expressive than definite programs.

Definition 2.21. (Program Clause [16]). A program clause is a formula of the form

A← L1, · · · , Ln,

where A is an atom and L1, · · · , Ln are literals.

Definition 2.22. (Normal Program [16]). A normal program Pi is a finite set of program

clauses.

Definition 2.23. (Normal Goal [16]). A normal goal is a formula of the form

← L1, · · · , Ln,

where L1, · · · , Ln are literals.

Although NAF would result in a non-classical semantic, the semantics of normal programs

is correct with respect to the completion of the logic programs [3]. The semantics is cap-

tured by completing the definition of predicates in the program. The completed definition,

10



compdef(p,Π) of a predicate p in the program Π is obtained by transforming the set of ’if’

formulas into a single ’if and only if’ formula.

Definition 2.24. (Clark’s Equality Theory [12]). The equality theory EQ comprises the

following set of axioms:

• c 6= d where c and d are distinct constants

• ∀(f(X1, · · · , Xn) 6= c) where f is a function symbol and c is a constant

• ∀(f(X1, · · · , Xn) 6= g(Y1, · · · , Yn)) where f and g are distinct function symbols

• ∀(t[X] 6= X) where t[X] is any term containing X that is not X

• ∀(X = X)

• ∀((X1 6= Y1) ∨ · · · ∨ (Xn 6= Yn)→ f(X1, · · · , Xn) 6= f(Y1, · · · , Yn)) where f is a function

symbol

• ∀((X1 = Y1) ∧ · · · ∧ (Xn = Yn)→ f(X1, · · · , Xn) = f(Y1, · · · , Yn)) where f is a function

symbol

• ∀((X1 = Y1) ∧ · · · ∧ (Xn = Yn) → (p(X1, · · · , Xn) → p(Y1, · · · , Yn))) where p is a

predicate symbol

Definition 2.25. (Completed Definition [3]). Let p be an m-ary predicate, defined in the

program Π by k clauses as follows:

p(t11, ..., t1m)← B1

...

p(tk1, ..., tkm)← Bk

and for each Bi, let the set of variables appearing in Bi that are not members of {ti1, ..., tim}
be {Y11, ..., Y1m}. The variables t11, ..., t1m are local to Bi. The completed definition of p in

Π, written compdef(p,Π), is defined as follows:

• If k = 0, then

compdef(p,Π) = ∀X1...∀Xm¬p(X1, ..., Xm).

• If k > 0, then

compdef(p,Π) = ∀X1...∀Xm(p(X1, ..., Xm)↔ (E1 ∨ ... ∨ Ek)).

where X1, ..., Xm are variables not appearing in any clause in the definition of p, and Ei is

∃Yi1...Yij(X1 = ti1 ∧ ... ∧Xm = tim ∧Bi).
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Definition 2.26. (Set of Completed Definitions, [12]). Let Π be a normal program, and let

P be the set {p1, ..., pn} of predicates. The set {compdef(p1,Π), ...,

compdef(pn,Π)} of completed definitions of predicates in P is denoted by compdefs(P,Π).

Definition 2.27. (Completion [3]). Let Π be a normal program. The completion of Π,

denoted by comp(Π), is the set of completed definitions of the predicate symbols in Π, together

with the equality theory.

For example, the completion of background knowledge B in Example 1.1 is

Example 2.5.

comp(B) =


obeys(X,Y )↔ ¬officer(X) ∧ fficer(Y )

wears hat(X)↔ X = price ∨X = osburne

has stripes(X)↔ X = osbourne

 ∪ EQ

Therefore, the purpose of logic programming with a normal program Π is to determine the

formulas that are logical consequences of comp(Π).

The procedure provided in this report is going to work on the ILP problems normal program

settings and therefore can also apply on ILP problems with definite program settings.

SLDNF Resolution

SLDNF resolution is the SLD resolution with NAF. If a negative literal ¬A is selected in a

SLD derivation, then a new derivation for goal ¬A is triggered. If there is a finitely failed

SLDNF tree for ¬A, the original resolution procedure will remove ¬A as a proved literal and

continue. The detailed definitions are provided below.

Definition 2.28. (SLDNF Derivation [16]). Let Π be a normal program and G be a normal

goal. An SLDNF derivation of Π ∪ {G} consists of a (possibly infinite) sequence G0 =

G,G1, · · · of normal goals, a sequence C1, C2, · · · of variants of clauses in Π or ground negative

literals, and a sequence θ1, θ2, · · · of substitutions such that, for each i, either

1. Gi = � and Gi is the last goal in the sequence, or

2. Gi is ← L1, · · · , Li, · · · , Lm, Li is selected, Li is an atom, and either:

a) Gi+1 is derived from Gi and Ci+1 using i+1, or

b) there is no clause in Π whose head unifies with Li and Gi is the last goal in the

sequence, or

3. Gi is ← L1, · · · , Li, · · · , Lm, Li is selected, Li is a negative literal, and either:

a) Li = ¬Ai is ground and there is a finitely failed SLDNF tree for Π ∪ {← Ai}. In

this case, Gi+1 is ← L1, · · · , Li−1, Li+1, · · · , Lm, i+1 = ∅ and Ci+1 is ¬Ai. Or

there is no clause in Π whose head unifies with Li and Gi is the last goal in the

sequence, or

12



b) Li is not ground, or Li = ¬Ai is ground and there is no finitely failed SLDNF tree

for Ai. In this case, Gi is the last goal in the sequence.

Definition 2.29. (SLDNF Tree [16]). Let Π be a normal program and G be a normal goal.

An SLDNF tree for Π ∪ {G} is a tree satisfying the following:

1. Each node of the tree is a (possibly empty) normal goal.

2. The root node is G.

3. If a node N = �, then N has no children.

4. Let N = L1, · · · , Li, · · · , Lm be a non-empty node in the tree, with Li selected. Then

the child nodes of N are defined as follows.

a) If Li is an atom, then for each clause C = A ← M1, · · · ,Mq in Π such that Li

and A have mgu θ, N has a child derived from N and C using θ. In this case, N

has no other children.

b) If Li is a ground negative literal ¬Ai and there is a finitely failed SLDNF tree for

Π ∪ {¬Ai}, then N has a child ← L1, · · · , Li−1, Li+1, · · · , Lm. In this case, N has

no other children.

c) If Li is not an atom or a ground negative literal ¬Ai such that there is a finitely

failed SLDNF tree for Π ∪ {¬Ai}, then N has no children.

Definition 2.30. (Floundering [16]). Let be a normal program and G be a normal goal. A

derivation of Π∪ {G} flounders if a goal is reached which contains only non-ground negative

literals.

Definition 2.31. (Safe Computation Rule [16]). A safe computation rule is a function from

a set G of normal goals, such that no goal in G consists entirely of non-ground negative

literals, to a set of literals, such that the value of the function for each goal is either a positive

literal or a ground negative literal, called the selected literal, in that goal.

2.3 Stable Model Semantics

Stable Model Semantics is one of the most successful declarative semantics for logic pro-

grams with negations. Since the semantic is defined based on Herbrand model, the following

definitions for Herbrand model is given first.

Definition 2.32. (Herbrand Universe [16]). Let L be a first-order language. The Herbrand

universe UL for L is the set of all ground terms that can be formed from the constants and

function symbols appearing in L. In the case that L has no constants, then a constant is

added in order to form ground terms.

Definition 2.33. (Herbrand Base [16]). Let L be a first-order language. The Herbrand

base BL for L is the set of all ground atoms that can be formed from the predicate symbols

appearing in L and the terms in the Herbrand universe for L.
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Definition 2.34. (Herbrand Pre-Interpretation [16]). Let L be a first-order language. The

Herbrand pre-interpretation for L is the pre-interpretation where:

1. the domain is the Herbrand universe UL;

2. all constants in L are mapped to themselves;

3. if f is an n-ary function symbol in L, then f is assigned a mapping Jf from UnL to UL

such that Jf (t) = f(t).

Definition 2.35. (Herbrand Interpretation [16]). Let L be a first-order language. A Her-

brand interpretation of L is any interpretation based on the Herbrand pre-interpretation for

L.

Definition 2.36. (Herbrand Model [16]). Let L be a first-order language, Σ be a set of

formulas in L, and I be a Herbrand interpretation of L. If I is a model of Σ, then I is a

Herbrand model of Σ.

Definitions for Stable Model and the implication under Stable Model Semantics is given bellow.

Definition 2.37. (Reduct of Program [6]). Let Π be a normal program and let M ⊆ UΠ be a

set of atoms. The reduct of Π with respect to M is the ground definite program ΠM , obtained

from the set of all ground instances of clauses in by deleting

1. each clause containing a negative literal ¬A in its body where A ∈M , and

2. all negative literals in the bodies of the remaining clauses.

Definition 2.38. (Stable Model [6]). Let Π be a normal program and let M ⊆ UΠ be a set

of atoms. Then M is a stable model of if and only if M is the least Herbrand model of ΠM .

Definition 2.39. (Implication Under Stable Model Semantics [17]). Let Π be a normal

program such that Π has a unique stable model M , and let φ be a closed formula. If M

satisfies φ then is implied by Π under the stable model semantics, denoted φ |=st φ.
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2.4 Abductive Logic Program

Abductive Logic Program (ALP) extends normal logic program by allowing some predicates

to be incompletely defined, namely abducible predicates. Given the knowledge base, some

observations and constraints, the task of ALP is to derive some hypotheses on these abducible

predicates such that, together with the knowledge base, these hypotheses explains those

observations and satisfy the constraints. The formal framework of ALP is given in the

Section 2.4. The Section 2.4 introduces the KakasMancarella ALP procedure which is used

in the new ILP procedure proposed in this report.

Open Programs

Abduction is implemented in logic programming through an open logic program. An open

program has three components 〈Π, U, I〉. Π is a logic program. U is a set of predicates that

are not completely defined in Π. I is known as integrity constraints that constrain which fact

can be abduced.

Definition 2.40. (Open Program [5]). An open program is a triple 〈Π, U, I〉, where Π is a

program, U is a set of predicates called undefined or abducible, and I is a set of first-order

axioms. A ground literal with predicate p ∈ U is called an abducible literal.

The semantic of an open program P is given by the completion comp(P ), defined as following:

Definition 2.41. (Open Program Completion [1]). Let L be a first-order language, let Pred

be the set of predicates in L and let P = 〈Π, U, I〉 be an open program in L. The completion,

comp(P ), of P is

EQ ∪ {p(t1, · · · , tn)← φ ∈ Π | p ∈ U} ∪ {compdef(q,Π) | q ∈ Pred ∧ q 6∈ U}.

In practice, it is often simpler for ALP task if none of the predicates in U are defined in Π.

Such an open program is called disjoint open program.

Definition 2.42. (Disjoint Open Program [12]). Let P = 〈Π, U, I〉 be an open program. If

Π does not contain a definition of any predicate in U , then P is a disjoint open program.

Moreover, An open program can be transformed into a disjoint open program by introducing

auxiliary clauses and predicates [9]. For Example,

Example 2.6. the open program P1

P1 = {{p(1)← q(1)}, {p},∅}

can be transformed into the disjoint open program P2

P2 =
{
{p(1)← q(1), p(X)← p′(X)}, {p′},∅

}
by introducing a new predicate p′.

15



The Kakas-Mancarella Proof Procedure

The KakasMancarella (KM) proof procedure [24] implements abductive logic programming.

This procedure interleaves two derivation phases - abductive derivation phase and consistency

derivation phase that are modified from SLD resolution. The details of the procedure is not

given here but can be found in [8].

Given an disjoint open program P = 〈B,U, I〉. The KM procedure starts with a list of goals G

and returns a list of abductive explanations ∆ for G. The ∆ contains a set of positive literals

with predicates in U and all negative literals that are assumed to be false. For example,

Example 2.7. Given the disjoint open program P = 〈B, {q, r},∅〉, and goal set G = {p}

B =

{
p← q,¬r
r ← t

}
.

The result computed by the KM procedure would be

∆ = {q,¬r,¬t}.

Although t is not an abducible predicate, it is also returned by the KM procedure.

The KM procedure has several constraints, called KM Safe Computation Rule, on the goals

list at each iteration when running. Since the procedure in the Section 7 is designed and

implemented based on the KM procedure, the definition of these constraints are give below:

Definition 2.43. (KM Safe Computation Rule [8]). A KM safe computation rule is a func-

tion from a set G of normal goals, such that every goal in G contains either a positive

non-abducible literal or a ground literal, to a set of literals, such that the value of the function

for each goal is either a positive non-abducible literal or a ground literal, called the selected

literal, in that goal.

2.5 Summary

This chapter has presented background information on definite and normal programs and ab-

ductive logic programming. The common proof procedures for definite and normal programs

have also been given.

The next section introduces the inductive logic programming and the related work on the

topic of this project.
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CHAPTER 3

Inductive Logic Programming (ILP) and Related Works

Inductive Logic Programming (ILP) is a particular form of declarative machine learning which

uses logic programs to represent examples, background knowledge and hypotheses. It is a

sub-field of artificial intelligence that attempts to perform the induction of the hypothesised

results based on the examples and background knowledge [17, 23]. ILP is different from

other forms of machine learning as it delivers an approach to use expressive logical languages

to represent the background knowledge. This feature of ILP has benefited many knowledge

discovery areas that have plenty of sources of background knowledge [22]. This chapter will

firstly give an introduction to ILP and its formal framework. Then, a brief description of

Inverse Entailment (IE) with IoF system will be presented. Lastly, this chapter will give a

short discussion about the related works on ILP problems with normal program settings.

3.1 A formal Framework of ILP

Given the logically encoded background knowledge B and a set of logically represented exam-

ples E, ILP systems (procedures) will construct a hypothesis H that entails all the positive

examples E+ within E and none of the negative ones E− in terms of B.

In order to construct the hypothesis H in an ILP system, the following four logical require-

ments should be satisfied: (where |= is logical entailment and ∧ is logical and)

• Necessity: B 6|= E+

• Sufficiency: B ∧H |= E+

• Weak Consistency: B ∧H 6|= false

• Strong Consistency: B ∧H ∧ E− 6|= false

The requirement necessity indicates that there is no redundant example or we only consider

those examples E+ that are not provable according to the background knowledge B. The
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requirement sufficiency meets the aim of constructing a hypothesis H that can explain all

the positive examples E+ with the background knowledge B. [20, 23, 24]. The weak (strong)

consistency simply means the derived hypothesis H should be satisfiable with the background

knowledge B (and negative examples E−).

Since the hypotheses space is always large in ILP problems, a mode declaration is always

defined as a part of the ILP problem. A mode declaration is a language restriction and can

effectively restrict the search space of the hypotheses.

Definition 3.1. (Mode Declaration [4]) A mode declaration is either a head or body declara-

tion, respectively modeh(s) and modeb(s) where s is a ground literal called schema. schema

can contain placemarker. A placemarker is either ’+type’, ’−type’ or ’#type’, which stand,

respectively, for ground terms, input termss and output terms of a predicate type. The mode

declaration restricts the predicates can be involved in the head and body of the hypothesis.

Since this project works on the ILP problems with disjoint open program settings, the ter-

minologies for this kind of ILP problems are defined by Kimber [13] and are given below:

Definition 3.2. (Hypothesis [13] ). Let P = 〈B,U, I〉 be an open program, let E be a set of

clauses, and let LH be a language. A set of clauses H ⊆ LH is a hypothesis for P and E

only if H only defines predicates in U .

Definition 3.3. (Complete Hypothesis [13] ). Let P = 〈B,U, I〉 be an open program, let E+

and E− be sets of clauses and let H be a hypothesis for P , E+ and E−. Then H is complete

with respect to E+ if and only if B ∪H |= E+.

Definition 3.4. (Consistent Hypothesis [13] ). Let P = 〈B,U, I〉 be an open program, let

E+ and E− be sets of clauses and let H be a hypothesis for P , E+ and E−. Then H is

consistent with respect to E− if and only if B ∪H ∪ I ∪ E− is satisfiable.

Definition 3.5. (Correct Hypothesis [13]). Let Let P = 〈B,U, I〉 be an open program, let

E+ and E− be sets of clauses and let H be a hypothesis for P , E+ and E−. H is correct with

respect to E+ and E− if and only if H is complete with respect to E+, and H is consistent

with respect to E−. A correct hypothesis is also called an inductive solution.

18



3.2 Inverse Entailment

Inverse Entailment (IE), which is firstly introduced by Muggleton [21], has been widely

applied in ILP systems.

Theorem 3.1. (Inverse Entailment [21]). Let B be a Horn program, and let H and E be

Horn clauses. Then B ∧H |= E if and only if B ∧ ¬E |= ¬H.

Most IE based ILP systems first construct amost specific hypothesisH⊥ from a seed example

E such that

B ∧ ¬E |= ¬H⊥,

then, use subsumption search to find a better hypothesis H such that

H |= H⊥

Definition 3.6. (Clause Subsumption [16]) Let C and D be first-order clauses. C subsumes

D, write C � D, if there is a substitution θ such that Cθ ⊆ D (every literal in Cθ appears in

D).

However, the relationship between the hypothesisH and the most hypothesisH⊥ is not always

going to be H |= H⊥. For example, given the background knowledge B = {(p← q), a} and

example {x}, the most specific hypothesis generated by IoF [11] is possibly going to be

H⊥ = {(x← a, p), (q ← a)}. And a possible hypothesis H can be {x← a}. It is obvious H

subsumes H⊥ with respect to the background knowledge B since x ← a subsumes x ← a, p

and q ← a in H⊥ is an auxiliary clause for the atom p. In this case, however, without

considering the background knowledge B, H does not necessarily entails H⊥.

One typical ILP system using IE method is the Progol system [21]. Give the background

knowledge B and a set of examples E, the system firstly picks one positive example e+ and

negates it into a set of ground literals e+ and if e+ is not ground then a skolem substitution

is applied.

Definition 3.7. (Skolem Substitution [24]) Let Σ be a set of clauses and C be a clause. Let

X1, · · · , Xn be the variables appearing in C and a1, · · · , an be distinct constants not appearing

in Σ or C. Then the substitution {X1/a1, · · · , Xn/an} is a Skolem substitution for C with

respect to Σ. The symbols a1, · · · , an are Skolem constants.

Then, the system constructs a disjunction of the ground literals B ∪ e+ and search if there is

a better clause H that implies B ∪ e+.

The HAIL [25] system widens the search space of Progol as it allows to generate a set of

clauses (a theory) in response to a seed example. It defines a Kernel Set K as its most

specific hypothesis.
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Definition 3.8. (Kernel Set [25]) Let B be a Horn theory and E be a Horn clause such

that B 6|= E. Then a ground Horn theory K = {C1, · · · , Ck}(K ≥ 1) is a Kernel Set of

B and E if and only if each clause Ci, 1 ≤ i ≤ k is given by Ai0 ← Ai1, · · · , Ain, where

B ∪ {A1
0, · · · , Ak0} |= E+, and B ∪ E− |= {A1

1, · · · , Aknk
}

To compute the Kernel, the system firstly computes the ground abductive explanations ∆ =

{α0, ..., αn} for e+ (e+ is Skolemised if it is not a ground example). Then the system finds

sets of atoms βi (1 ≤ i ≤ n) can be directly deduced from the background knowledge B and

the body of e+ to construct the Kernel Set:

K =


β0 → α0

...

βn → αn

 .

Finally, the system tries to find a better hypothesis H such that H � K. Here, H � K

means that every clause in K is subsumed by at least one clause in S.

Definition 3.9. (Kernel Set Subsumption [25]) Let B be a Horn theory and E be a Horn

clause such that B 6|= E. A set of Horn clauses H is said to be derivable from B and E by

Kernel Set Subsumption , denoted B,E `KSS H, if and only if there is a K such that K is

a Kernel Set of B and E, and H � E.
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3.3 Induction on Normal Programs

This section presents and gives short discussions on two related works on ILP problems

[26, 28] with normal program settings by using bridge formulas.

XHAIL

Extended Hybrid Abductive Inductive Learning (XHAIL) introduced by Ray [26] is an ILP

system that is generalised from XHAIL and can solve ILP problems with normal program

settings. Given a normal program B and a set of literal examples E, the system firstly

generates a XHAIL Kernel set K then search through hypotheses H such that H � K. The

XHAIL Kernel set is a set of ground clauses

K =


α1 ← l11, · · · , l

m1
1

...

αn ← l1n, · · · , lmn
n

 ,

where {α1, · · · , αn} is an abductive explanation for E with respect to B such that B ∪
{α1, · · · , αn} |=st E, and {l11, · · · , lmn

n } is a set of ground literals such that for each ljii (1 ≤
i ≤ n, 1 ≤ j ≤ m), B ∪ {α1, · · · , αn} |=st l

ji
i . for exmaple, given the following background

knowledge B, examples E and mode declaration M ,

Example 3.1. [26]

B =



bird(X)← penguin(X)

bird(a)

bird(b)

bird(c)

penguin(d)


,

B =


flies(a)

flies(b)

flies(c)

¬flies(d)

 ,

M =


modeh(flies(+bird))

modeb(penguin(+bird))

modeb(¬penguin(+bird))


the corresponding XHAIL Kernel set K is

K =


flies(a)← ¬penguin(a)

flies(b)← ¬penguin(b)

flies(c)← ¬penguin(c)

 .
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and the hypothesis H satisfies H � K and B ∪H |=st E is

H =
{
flies(X)← ¬penguin(X)

}
.

There are several similarities between XHAIL and the procedure ICC procedure which is

the new ILP procedure proposed in this report. First, both XHAIL and ICC process all the

examples in one go. Second, both XHAIL and ICC uses a ground set of clauses as a bridge

formula between the original examples and the derived hypothesis.

However, the Kernel set K in XHAIL is quite different from the bridge formula T (details

in Sections 6) used in ICC. Given a normal program B and a set of literal examples E. In

XHAIL, the Kernel set K is not necessarily an explanation for E with respect to B. However,

the relation B ∪ T |= E is always hold in ICC. For example [26], if

B = { b← e }
E = { e },

then K ′ = {e ← b} is a Kernel Set of B and e. However, B ∪K ′ 6|= E. Furthermore, The

XHAIL system, as the author himself notes in [26], has an intrinsic drawbacks. That is the

system may generate some redundant clauses in its Kernel Set since the abductive phase

of XHAIL allows the abductive explanation of the example not to be the minimal. Given

background knowledge B and examples E, if an abductive explanation ∆ for B and E is said

to be minimal, then there is no strict subset of ∆ is a abductive explanation with respect to

B and E. Consider the Yamamoto’s example [30],

Example 3.2. [30]

B =

{
even(s(X))← odd(X)

even(0)

}

E =

{
odd(s3(0)), odd(s5(0)),

¬even(s1(0)),¬even(s3(0))

}

Modeh = { odd(+any) }

Modeb = { even(+any),+any = s(−any) }.

A possible non-minimal abductive explanation ∆′ for B and E is

∆′ = {odd(s1(0)), odd(s3(0)), odd(s4(0)), odd(s5(0)), }.

It is obvious that the clause formed from odd(s4(0)) will be a redundant clause. However,

22



ICC will use the minimal abductive result ∆ for B and E

∆ = {odd(s3(0)), odd(s5(0))}

and gradually generalise it to a larger theory T relative to B. Therefore, there would be no

redundant clause in T .

Induction From Answer Set

Sakama [28] has given a set of related methods Induction From Answer Set (IAS) for learning

inductive hypotheses from normal programs (and extended programs). Since this project

works only on the ILP problems with normal program settings, we only discuss the application

of Sakama’s methods on normal programs.

Given the background knowledge B and a literal example L, The key part of Sakama’s

methods IASpos is to construct a bridge formula R which is related to literal L such that

B 6|=st R. The Proposition 3.1 and Proposition 3.2 show below imply that B 6|=st R is a

necessary condition for R, together with B,to be an explanation for L.

Proposition 3.1. [28] Let B be a program and R a rule such that B ∪ {R} is consistent.

For any ground literal L, B ∪ {R} |=st L and B 6|=st R imply B 6|=st L.

Proposition 3.2. [28] Let B be a program and R a rule such that B ∪ {R} is consistent.

For any ground literal L, B ∪ {R} 6|=st L and B |=st R imply B 6|=st L.

If L is a positive example, the corresponding procedure is IASpos. The first step of IASpos

procedure is to compute a set of literals S+ such that

S+ = S ∪ {¬A | A ∈ Atoms and A 6∈ S}.

where Atoms is the set of all ground Atoms in the language of the program and S is a

stable model (it is ‘answer set’ here in the original paper, but it is been proved that when an

extended logic program is an normal program, answer sets coincides with stable models [6])

of B. Then, it computes a set of literals Γ such that Γ ⊆ S+ and each element in Γ is related

to L. Thus, the following relation holds:

B 6|=st ← Γ.

Since B 6|=st L, ¬L is included in Γ. Thus a ground bridge formula R is formed:

R ≡ L← Γ′

where Γ′ = Γ−{¬L}. The clause C involved in the hypothesis H can is generalised from H ′

such that Cθ ≡ R for some substitution θ. An example is illustrated below:
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Example 3.3. [28]

B =


bird(X)← penguin(X)

bird(tweety)

penguin(polly)

 ,

L = flies(tweety).

The S+ is

S+ =

{
bird(tweety), bird(polly), penguin(polly),

¬penguin(tweety),¬flies(tweety),¬flies(polly)

}
.

The literals related to L in S+ are

Γ =

{
bird(tweety),

¬penguin(tweety),¬flies(tweety),

}
.

And

← Γ ≡ ← bird(tweety),¬penguin(tweety),¬flies(tweety).

Therefore, by shifting flies(tweety) to the head, the ground R is

R ≡ flies(tweety)← bird(tweety),¬penguin(tweety).

And the generalised H is

H = {flies(X)← bird(X),¬penguin(X)}.

where θ = {X/tweety}.

If L is a negative example, the corresponding learning procedure IASneg is slightly changed

from IASpos. Since the following purpose for R remains unchanged

B 6|=st R.

the clause ← Γ is generated as in IASpos. However, the way of constructing ground bridge

formula R from ← Γ is different from IASpos. The procedure IASneg shift a literal K

(¬K ∈ Γ) to the head of the clause where K is a literal on which L negatively depends. Then

the clause C in hypothesis H is computed by anti-instantiation of R and dropping every body

literal with a predicate which strongly and negatively depends on the predicate of K. An

example is illustrated below,
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Example 3.4. [28]

B =


flies(X)← bird(X),¬ab(X)

bird(X)← penguin(X)

bird(tweety)

penguin(polly)

 ,

L = flies(polly).

The set of literals Γ that satisfies the stable model of B and is related to L is

Γ = {bird(polly), penguin(polly), f lies(polly),¬ab(polly)}

and the clause ← Γ and the ground bridge formula R are

← Γ ≡ ← bird(polly), penguin(polly), f lies(polly),¬ab(polly)

R ≡ ab(polly)← bird(polly), penguin(polly), f lies(polly).

The literal ab(polly) is shifted because it is strongly and negatively depended by the negative

example flies(polly). Then the following H generalised from R is a possible hypothesis for

the problem:

H = {ab(X)← bird(X), penguin(X)}

The literal flies(X) is dropped since the predicate flies is strongly and negatively depend

on the predicate ab.

The Sakama’s method has two main limitations. The first one is the incompleteness caused

by the loop checking on negative literals. Since IAS procedure requires that each hypothesis

should be negative-loop-free on the predicate level, it will treat some correct hypotheses as

incorrect hypotheses. For example,

Example 3.5.

B =
{
father(peter, chris)

}
,

L = parent(peter, chris).

The bridge formula R computed by IAS would be

R ≡ parent(peter, chris)← father(peter, chris),¬father(chris, peter),¬parent(chris, peter)

which would generalised to a flat clause C that satisfies Cθ ≡ R, θ = {X/peter, Y/chris}:

C ≡ parent(X,Y )← father(X,Y ),¬father(Y,X),¬parent(Y,X).

Since in clause C the predicate parent in body is strongly and negatively depended on the
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predicate parent in head, IAS will not return H. However, H is a correct hypothesis for

the problem. This incompleteness problem also happens in the procedure proposed in this

report.

The second main problem of IAS, is that when IAS is applied on ILP problems with multiple

examples, it performs a incremental learning, as noted by the author, it is not guaranteed

that the hypotheses learned will correctly explain the examples [28]. However, the procedure

propose in this report does not have this problem. Since the procedure proposed in this

report uses α-Connected Theory Generalisation (see Section 6) and solves all the examples

as a whole, the hypothesis computed must can explain all the examples.

3.4 Summary

This chapter briefly describes the inductive logic programming in terms of its formal frame

work, inverse entailment and gives short discussion on two related works - Ray’s XHAIL

system and Sakama’s IAS procedure. The next chapter will introduce Kimber’s works on

ILP problems with definite program and normal program settings.
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CHAPTER 4

Connected Theory

The HAIL system allows a theory to be derived from a single seed example in case the

example has multiple abducibles from the background knowledge. However, it is possible to

use a theory to explain one abducible in the sense that some clauses in the theory are used

to explain other clauses. Kimber et al. [11] introduces an proof procedure called Induction

on Failure (IoF) to achieve this based on the notion of Connected Theory Generalisation.

This chapter will firstly introduce this Connected Theory Generalisation and the Induction

on Failure Procedure. Then, a short discussion on Kimber’s Normal Connected Theory

Generalisation which is closely related to the ILP approach used in ICC procedure will be

provided.

In the rest part of this report including this chapter, we will use T h and T b to denote head

and body literals of clauses in a given theory T . And we will use T pos and Tneg to denote

the clauses with positive and negative head literals in theory T .

4.1 Connected Theory Generalisation (CTG)

A Connected Theory (CT) is a set of ground definite clauses such that a clause may depend

on some other clauses.

Definition 4.1. (Connected Theory [11]). Let P = 〈B,U, I〉 be a definite open program, and

let E be a ground atom. Let T1, · · · , Tn be n disjoint sets of ground definite clauses defining

only predicates in U . T = T1 ∪ · · · ∪ Tn (n ≥ 1) is a Connected Theory for P and E if and

only if the following conditions are satisfied:

1. B |= T bn ,

2. B ∪ T hn ∪ · · · ∪ T hi+1 |= T bi , for all i (1 ≤ i < n),

3. B ∪ T h1 |= E, and
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4. B ∪ T ∪ I is consistent.

A CT T is viewed as n sub-theories and each sub-theory Ti (1 < i ≤ n) is ‘connected’ to some

body literals of clauses in its adjacent sub-theory Ti−1. For example, given the following open

program P = 〈B, {x, q, s},∅〉 and example E

Example 4.1.

B =


p← q

s← t

a


E =

{
x
}

a possible CT T for P and E is

T =


x← a, p

q ← a, s

s← a

 .

There are three layers in T :

T1 = {x← a, p},
T2 = {q ← a, s},
T3 = {s← a}.

It is obvious that T h2 ∪B explains p in T b1 and T h3 ∪B explains s in T b2 .

A set of Horn clauses which entails a CT is said to be derivable by Connected Theory Gen-

eralisation (CTG), defines below

Definition 4.2. Let P = 〈B,U, I〉 be a definit open program and E be a ground Horn clause

such that B 6|= E. A set H of Horn clauses is said to be derivable from B and E by Connected

Theory Generalisation, denoted B,E `CTG H, if and only if there is a T such that T is a

Connected Theory for B and E and H |= T .
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4.2 Induction on Failure (IoF)

Induction on Failure (IoF) [11] is an ILP system that implements the Connected Theory

Generalisation (CTG). The procedure firstly defines a ground Connected Theory (CT) CT

as its most specific hypothesis and then searchs for hypotheses subsumes it. The main work

flow of IoF procedure is shown in Figure 4.1

P, E, H

Abduce

Saturate Set

Search
Add

Secondary
Example

Return 

Hypothesis H

1

2

3

45

Abduce

Pick e+ 

Add
hypothesis h

to H

6

7

from E+

Figure 4.1: Graph for IoF procedure

For the better illustration, this section will descibe the IoF procedure using the following

Example 4.2

Example 4.2.

B =


p← q

s← t

a


U =

{
q, t

}
I = ∅

E =
{
p
}

The procedure starts with P , E and an empty list H. The first step is to pick one seed

example from E+ (box 1). Here, the seed example picked is p. The next step is to abduce

the seed example p and get {q} (box 2). Then, the process goes to the box 3 which is to

add as many as body literals to the clauses in the anductble set of the seed example (box 4).
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This produces a first ground theory T0

T0 = {q ← a}

Next, a subsumption search procedure is applied on the theory (T0) produced from the last

step to see if there is a theory h such that it subsumes T0, has a better structure than T0 and

do not prove any negative examples in E (box 4). Suppose we define the ’better structure’

of a theory to be larger number of clauses and larger number of body literals in each clause.

Then the best hypothesis h searched from T0 would be h = {p← a}. After this search step,

the procedure has two options, it can either add a secondary example to T0 (box 5) or add

h to H as a part of the final hypothesis (box 6). In this case, there is a secondary example

s can be added, the procedure will go to box 5. By adding the secondary example s and its

abductive explaination {t} to the theory t0 and saturating it again (box 5 then box 3), a new

ground CT T1 is formed:

T1 =

{
q ← a, s

t← a

}
.

The search procedure is called again on T1 and h is updated (box 4). Since we assume a

larger hypothesis is more preferable, the hypothesis h becomes

h =

{
q ← a, s

t← a

}
.

And h is added to the list H because there is no secondary example can be added into T1.

Thus, the cover loop for the seed example p is finished. If there are other positive examples

in E, the procedure will go to box 1 again and start another cover loop. However, in this

case, there is no other examples in E, the procedure end up with returning H

H =

{
q ← a, s

t← a

}
.
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4.3 Normal Connected Theory

The main reason for the existing Horn theory based ILP system fail to be successfully applied

on normal programs is that those system assume the logic is monotonic. Monotonic means the

consequence of any set of formulas are preserved when more formulas are added. Formally,

let Γ, ∆ and Φ be sets of formulas, the logic is monotonic is to say if ∆ |= Φ then ∆∪Γ |= Φ.

This property of definite programs allows these system to perform incremental learning.

However, the program completion is non-monotonic. Incremental learning can hardly applied

on ILP problems with normal program settings. Consider the following example of an ILP

problem with a normal disjoint program P = 〈B,U,∅〉 and examples E,

Example 4.3.

B =


w(1), w(2), w(3),

s(2), s(3),

t(2),

p(X)← q(X),¬r(X)


E =

{
p(1), r(2), r(3)

}
Modeh (U) = { q(+any), r(+any) }

Modeb = { w(+any), s(+any), t(+any) }

If an incremental learning is performed, then following partial hypotheses h1, h2 and h3 can

be learned from seed examples e1, e2 and e3:

e1 = p(1) ⇒ h′1 = {q(1)← w(1)} ⇒ h1 = {q(X)← w(X)}
e2 = r(2) ⇒ h′2 = {r(2)← w(2)} ⇒ h2 = {r(X)← w(X)}
e3 = r(3) ⇒ h′3 = {r(3)← w(3)} ⇒ h3 = {r(X)← w(X)}.

It satisfies
comp(B ∪ h1) |= {e1}
comp(B ∪ h2) |= {e2}
comp(B ∪ h3) |= {e3}.

However, it does not satisfy

comp(B ∪ h1 ∪ h2 ∪ h3) |= {e1, e2, e3}

since comp(B ∪h2 ∪h3) proves r(1) and makes comp(B ∪h1 ∪h2 ∪h3) fail to prove p(1) (e1).

The undlying problem of this is at the generalisation phase. In ILP problems with definite

program, since the logic is monotonic, it is free to replace ground terms in the hypothesis by

variables. In above case, however, generalise h′2 to h2 is equal to add every other instances
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of r(X)← w(X) including r(1)← w(1) to the hypothesis. However, comp(B ∪ h1 ∪ {r(1)←
w(1)} 6|= p(1).

The way poroposed by Kimber [15] to overcome this problem is to find a bridge formula T

called Normal Connected Theory (nCT) for P and E such that the negative infomation are

as explicit as the positive in T . The hypothesis H is generalised such that compdefs(U,H)

implies this T .

Definition 4.3. (Normal Connected Theory [15]) Let P = 〈B,U, I〉 be an open program, and

let E be a set of ground literals. Let T1, ..., Tn be n (n ≥ 1) disjoint sets of ground clauses of

the form L0 ← L1, ..., Lk where Li is a literal for all i (0 ≤ i ≤ k), defining only predicates

in U . T = T1 ∪ ... ∪ Tn is a Normal Connected Theory for P and E if and only if

1. comp(P ) |= T−n

2. comp(P ) ∪ T+
n ∪ ... ∪ T+

i+1 |= T−i , for all i (1 ≤ i ≤ n)

3. comp(P ) ∪ T+
1 |= E

4. comp(P ) ∪ T ∪ I is consistent.

for some n ≥ 1

Since both positive and negative information are explicitly included in a nCT T , it always

satisfy

comp(P ) ∪ T |= E.

Proposition 4.1. [12] Let P = 〈B,U, I〉 be an open program, let E be a set of ground literals.

If T is a normal connected theory for P and E, then comp(P ) ∪ T |= E.

The definition of Normal Connected Theory Generalisation (nCTG) is give below.

Definition 4.4. (Normal Connected Theory Generalisation [15]). Let P = 〈B,U, I〉 be an

open program, let E be a set of ground literals. A set H of normal clauses is derivable

from P and E by Normal Connected Theory Generalisation, denoted P,E `nCTG H, if

and only if there is a T such that T is a Normal Connected Theory for P and E, and

compdefs(U,H) |= T , and comp(P ) ∪ compdefs(U,H) ∪ I is consistent.

For the Example 4.3, a possible nCT T is

T =


q(1)

r(2)← s(2)

r(3)← s(3)

¬r(1)← ¬s(1)

.


And the hypothesis H satisfies compdefs(U,H) |= T is

H =

{
q(X)

r(Y )← s(Y )

}
.
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4.4 Summary

So far we have introduced all the related knowledge of this project. The rest part of this

report introduces a new proof procedure which can solve ILP problems with normal program

settings and describes the relationship between the new ILP system and Kimber’s Normal

Connected Theory Generalisation. The next chapter will give a brief view on the new ILP

system.
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CHAPTER 5

Introduction to Induction with Completion and Connected

Theories (ICC) Procedure

This chapter gives a brief informal description about the Induction with Completion and

Connected Theories (ICC) procedure. The procedure is a generalisation of IoF, which, same

as IoF, interleaves top-down subsumption-based search with bottom-up generalisation of a

ground normal connected theory T . The main steps in ICC procedure is shown in Figure 5.1

P, E

Abduce

Saturate Set

Search
Add

Secondary
Examples

Return 

Hypothesis H

1

2

34 5

Figure 5.1: Graph for ICC procedure

The procedure starts with a disjoint open program P and a set of literal examples E. The

example set E is firstly abuduced according to P (box 1). And a set of abductive facts ∆

is generated. The second step is to saturate the set ∆ (box 2). Saturation means adding
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all the possible literals into the bodies of clauses in ∆ under the predefined language bias.

The saturation is different here from the saturation in IoF. In ICC, only clauses with positive

heads are saturated. More details will come in Chapter 7. Thus, the first ground theory

T for P and E is formed. The next step is to use a subsumption-based search to derive a

most successful hypothesis H from T (box 3). The H is derived by generalising the positive

part of T and check it against the negative literals in T (for details, see Section 7.2). If the

current T can be generalised by adding a secondary example, then a secondary example and

its abductive explanations are added in to T (box 4) and the new theory T is saturated again

(box 2). The hypothesis H is than updated by searching the new theory T (box 3). If there

is no secondary example can be added into T , then the current H is returned (box 5).

There are two main differences between ICC and IoF. First, IoF performs an incremental

learning on E, whereas ICC processes all examples together. That is to say the ground

normal connected theory T in ICC is produced by all the examples in E rather than one

seed example e in E. Second, the “subsumption” search step in ICC uses a new operational

way called α-Normal Connected Theory Generalisation (α-nCTG) (defined in Section 6). It

is a similar approach as Normal Connected Theory Generalisation (nCTG) in [15], and can

derive all the hypotheses that are derivable from nCTG given the normal open program P and

examples E (see Proposition 6.1). By using α-nCTG, If hypothesis H can be derived from

P,E, then it is guaranteed that all the relevant negative information in T will be retained in

this generalised hypothesis H, where T is a α-Normal Connected Theory for P and E. The

next chapter provides more details on this α-Normal Connected Theory Generalisation.
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CHAPTER 6

α-Normal Connected Theory Generalisation

This section proposes a new approach to ILP, called α-Normal Connected Theory General-

isation (α-nCTG). This approach is based on the notion of a α-Normal Connected Theory

(α-nCT), which is a special form of normal connected theory and is defined in the Section 4.3.

It is proved that the hypotheses that are derivable from Normal Connected Theory Gener-

alisation (nCTG) are also derivable from α-Normal Connected Theory Generalisation given

the normal disjoint open program P and literal examples E.

Given a normal open program P = 〈B,U, I〉 and a set of literal examples E, if the hypothesis

H is derivable from nCTG, then, by definition, it must satisfy

compdef(U,H) |= T, (6.1)

where T is a Normal Connected Theory and satisfy also

comp(P ) ∪ T |= E. (6.2)

This means for each predicate p appearing in T , there should be one or more completed

definitions for p that implies all the clauses in T related to p.

Returning to Example 1.1, the completion of P = 〈B,U,∅〉 is

B =


∀X∀Y (obeys(X,Y )↔ ¬officer(X) ∧ officer(Y ))

∀X(wears hat(X)↔ X = price ∨X = osbourne)

∀X(has stripes(X)↔ X = osbourne))
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and both bridge formulas

T1 =

{
officer(osbourne)← wears hat(osbourne)

¬officer(price)← wears hat(price)

}

and

T2 =

{
officer(osbourne)← has stripes(osbourne)

¬officer(price)← ¬has stripes(price)

}
are Normal Connected Theories.

However, there is no non-ground hypothesis H that satisfies 6.1 can be generalised from T1

In the case of T1, the most specific ground hypothesis hg is

hg = {office(osbourne)← wears hat(osbourne)}.

Two flat hypotheses generalised from hg are

H1 = {office(X)← wears hat(X)},

H2 = {office(X)}.

However, both

compdef({officer}, H1) = {∀X(office(X)↔ wears hat(X))} and

copmdef({officer}, H2) = {∀X(office(X))}

do not imply the second clause ¬officer(price)← wears hat(price) in T1.

In the case of T2, a non-ground hypotheses {office(X) ← has stripe(X)} that satisfies 6.1

can be generalised from the first clause in T1.

This difference between T1 and T2 implies that if a procedure is designed based on nCTG,

then it is not trivial to find a way that can generate the ground theory at the completed level.

The proof procedure proposed in this report uses a new operational approach of nCTG called

α-nCTG, defines below:

Definition 6.1. (α-Connected Theory) Let P = 〈B,U, I〉 be a disjoint normal open program

and E be a set of ground literals such that comp(P ) 6|= E. A set of normal clauses T is said

to an α-Connected Theory for P and E if and only if

• T is a Normal Connected Theory for P and E
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• T is in the form of

T =



A1 ← L1
1, · · · , L1

m1

...

An ← Ln1 , · · · , Lnmn

nL1

...

nLk


,

where Ai for 0 ≤ i ≤ n are ground atoms, Liji for 1 ≤ i ≤ n and 1 ≤ j ≤ mi are ground

literals, nLu for 1 ≤ u ≤ k are ground negative literals.

The definition of α-nCTG is very similar to nCTG. The only different part is that the

hypotheses H generated by α-nCTG should satisfy comp(P ) ∪ compdefs(U,H) |= T where

T pos. This is because in an α-nCT, clauses with negative literal in heads has no body literals.

Therefore, these clauses cannot be simply entailed by compdefs(U,H).

Definition 6.2. (α-Connected Theory Generalisation) Let P = 〈B,U, I〉 be a disjoint normal

open program and E be a set of ground literals such that comp(P ) 6|= E. A set H of normal

clauses is said to be deriable from P and E by α-Connected Theory Generalisation, denoted

P,E `α−nCTG H, if and only if there is a T such that T is an α-Normal Connected Theory

for P and E, and comp(P )∪ compdefs(U,H) |= T , and compdefs(U,H) |= T pos where T pos

is the set of clauses with positive heads in T , and comp(P )∪compdefs(U,H)∪I is consistent.

For example, a possible α-Normal Connected Theory T for Example 1.1 is

Example 6.1.

T =

{
officer(osbourn)← wears hat(osbourne), has stripe(osbourne)

¬officer(price)

}
.

The soundness of α-nCTG is proved below:

Lemma 6.1. [12] If P = 〈B,U, I〉 be a disjoint open program, and H is a set of clauses

defining only predicates in U , then, comp(B ∪H) = comp(P ) ∪ compdefs(U,H).

Theorem 6.1. (Soundness of α-Connected Theory Generalisation) Let P = 〈B,U, I〉 be a

disjoint open program, let E be a set of ground literals such that B 6|= E, and let H be an

inductive hypothesis for P and E. if P,E `α−nCTG H then H is a correct hypothesis for P

and E.

Proof. By assuming that H is an inductive hypothesis for P and E, and by Definition

6.2, comp(P ) ∪ compdefs(U,H) ∪ I is consistent. So, by Lemma 6.1 comp(B ∪ H) ∪ I
is consistent. Thus, by Definitions 3.5 to show that H is a correct hypothesis for P and

E it is sufficient to show that comp(B ∪ H) |= E. By Definition 6.2 there is a T such

that T is a α-Normal Connected Theory and therefore a Normal Connected Theory for P
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and E, and comp(P ) ∪ compdefs(U,H) |= T . Therefore, by monotonicity and reflexiv-

ity of |=, comp(P ) ∪ compdefs(U,H) |= comp(P ) ∪ T . Furthermore, by Proposition 4.1,

comp(P ) ∪ T |= E, and so comp(P ) ∪ compdefs(U,H) |= E by transitivity of |=. Thus, by

Lemma 6.1, comp(B ∪H) |= E.

Thus α-nCTG is a sound inductive learning method for disjoint normal programs. Proposition

6.1, below, shows that the hypotheses space of α-nCTG is at least as large as the hypotheses

space of nCTG.

Proposition 6.1. Let P = 〈B,U, I〉 be a disjoint open program, let E be a set of ground

literals such that B 6|= E. The set of hypotheses derivable from P and E by Normal Connected

Theory Generalisation is also derivable by α-Normal Connected Theory Generalisation.

Proof. Assume P,E `nCTG H where H is a set of normal clauses. Then, by definition of

nCTG, there are some Normal Connected Theories T such that compdefs(U,H) |= T . let T

be in the following form

T =



A1 ← L1
1, · · · , L1

m1

...

An ← Ln1 , · · · , Lnmn

NL1 ← Ln+1
1 , · · · , Ln+1

mn+1

...

NLk ← Ln+k
1 , · · · , Ln+k

mn+k+1


,

and T ′ be

T ′ =



A1 ← L1
1, · · · , L1

m1

...

An ← Ln1 , · · · , Lnmn

NL1

...

NLk


,

where Ai for 0 ≤ i ≤ p are ground atoms, Liju for 0 ≤ i ≤ p + k and 1 ≤ j ≤ m and

1 ≤ u ≤ n+ k are ground literals, nLu for 1 ≤ u ≤ k are ground negative literals. We show

comp(P ) ∪ comdefs(U,H) |= T ′ and compdefs(U,H) |= T ′pos.

First, we show that comp(P ) ∪ T |= T ′. By reflexivity of |=, we have comp(P ) ∪ T |=
{A1 ← L1

1, · · · , L1
m, · · · , Ap ← Lp1, · · · , L

p
m}. By Lemma 6.2, we have comp(P ) ∪ T |=

{A1, · · · , Ap, nL1, · · · , nLk}. By reflexivity of |=, {A1 · · · , Ap, nL1, · · · , nLk} |= {nL1, · · · , nLk}.
By transitivity of |=, comp(P ) ∪ T |= {nL1, · · · , nLk}. Therefore, comp(P ) ∪ T |= {A1 ←
L1

1, · · · , L1
m, · · · , Ap ← Lp1, · · · , L

p
m} ∪ {nL1, · · · , nLk} which is same as comp(P ) ∪ T |= T ′

Now, we show comp(P ) ∪ comdefs(U,H) |= T ′. To proof comp(P ) ∪ comdefs(U,H) |= T ′,

it is sufficient to show compdefs(U,H) |= comp(P ) → T ′ by definition of |=. Furthermore,
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by comp(P ) ∪ T |= T ′ and definition of |=, we have T |= comp(P ) → T ′. Therefore, by

transitivity of |= and compdefs(U,H) |= T , we have compdefs(U,H) |= comp(P )→ T ′.

Second, we show compdefs(U,H) |= T ′pos. This is simple, by reflexivity of |=, we have T |=
T ′pos. Therefore, by transitivity of |= and compdefs(U,H) |= T , we have compdefs(U,H) |=
T ′pos.

Hence, P,E `nCTG H only if P,E `α−nCTG H

Lemma 6.2. [15] Let P = 〈B,U, I〉 be a disjoint open program, let E be a set of ground literals

such that B 6|= E, let T be an n-layered normal connected theory for P and E, T comprises

n disjoint subsets T1, · · · , Tn, such that comp(P ) |= Tn, and comp(P ) ∪ T hn ∪ · · · ∪ T hi+1 |=
T bi (1 ≤ i < n). Then, comp(P ) ∪ T |= T hn ∪ · · · ∪ T h1 for all T hi (n ≥ i ≥ 1).

The proof for the Lemma 6.2 shown below is a part of the proof for Proposition 4.1 in [15].

To complete the proof of Proposition 6.1, it is also presented here.

Proof. This is shown by induction on i. The base case is to show that comp(P ) ∪ Tn |= T hn .

Since comp(P ) |= T bn, and Tn ∪ T bn |= T hn , then comp(P ) ∪ Tn |= T hn . Assume the inductive

hypothesis that: comp(P ) ∪ T |= T hn ∪ · · · ∪ T hj for all j (n ≥ j > i). Therefore, comp(P ) ∪
T |= T hn ∪ · · · ∪ T hi+1 by the inductive hypothesis. So, by reflexivity of |=, comp(P ) ∪ T |=
comp(P ) ∪ T hn ∪ · · · ∪ T hi+1. Then, since comp(P ) ∪ T hn ∪ · · · ∪ T hi+1 |= T bi , by transitivity

of |=, comp(P ) ∪ T |= T bi . So, since Ti ⊂ T , then comp(P ) ∪ T |= Ti ∪ T bi by reflexivity,

and since Ti ∪ T bi | |= T hi , by transitivity comp(P ) ∪ T |= T hn ∪ · · · ∪ T hi . Therefore, since

comp(P ) ∪ T ∪ Tn |= T hn , by induction on i, comp(P ) ∪ T |= T hn ∪ · · · ∪ T h1 .

Thus, this section has defined α-Normal Connected Theory Generalisation and has proved its

soundness and the bottom line of its hypotheses space. The next chapter will provide details of

ICC that applies α-Normal Connected Theory Generalisation. The procedure firstly compute

a most specific α-Normal Connected Theory T , then search through all possible hypotheses

H such that comp(P ) ∪ compdef(U,H) |= T .

40



CHAPTER 7

Proof Procedure

This chapter describes a proof procedure called Induction with Completion and Connected

Theories (ICC). Given a normal open program P = 〈B,U, I〉 and sets of literal examples

E+ and E−, ICC computes a hypothesis H that is a normal program, by generalising an α-

Normal Connected Theories for P and E. The chapter is separated into three sections. The

first two sections introduce two key features in ICC. The last section gives detail algorithms

for ICC procedure.

7.1 Loop Checking

This section introduces a new loop checking method used in ICC and can successfully applied

on ILP problems with normal program setting setting.

In IoF, the approach used to prevent loops is based on the notion of a dependencies list. If

a theory is built, each clause in that theory has a dependencies list which is a collection of

atoms which are depend on the head tom of that clause. For example, given the following

open program P = 〈B, {x, u},∅〉

Example 7.1.

B =
{
u← a,

}
E = {x}

A possible Connected Theory T for P and E is

T =

{
x← u, ({})
a ({x, u})

}

The list in the bracket at the end of each clause is the dependencies list. Since to prove u
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and x we need a, both u and x are in the dependencies list of the second clause second. So,

if a literal l is going to be added into the body of the second clause in T , both l and the

abductive explanations for l should not be x or u. This prevent the theory like T ′ shown in

Example 7.2 to be learned.

Example 7.2.

T ′ =

{
x← u,

a← x

}

In the ILP problem with the normal program setting, however, the dependencies list cannot

solve all the loop problems. This is because, in an ILP problem with normal program setting,

the loop can be caused by not only the positive atoms but also the negative literals. For

example, given the ILP program in Example 7.3

Example 7.3.

B =

{
p(X)← ¬r(X),

r(X)← s(X), t(X)

}

E =
{
a(1), s(2)

}
modeh =

{
a(+any), s(+any), t(+any)

}
modeb =

{
p(+any)

}

A possible α-nCT T loop and a possible hypothesis H loop is given below.

T loop =


a(1)← p(1)

s(2)← p(2)

¬t(1),¬t(2)

 ,

H loop =

{
a(X)← p(X)

s(X)← p(X)

}
.

Note, we assume the Kakas-Mancarella’s abductive procedure [8] is used here. Thus one

possible abductive result for p(1) would be {¬t(1),¬r(1)}. Some other abductive system

may generate different abductive result for p(1). For example, A-System would generate

{¬s(1)} and {s(1),¬t(1)} for p(1).

Here, H loop has a loop is because, if we query ?a(1) in Sicstus Prolog, by the first clause in

H loop, the Prolog will then query ?p(1). By p(X) ← ¬r(X) in B, the next query would be

?fail r(1). To fail r(1) then Prolog will query r(1) to prove that r(1) is not provable, by
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r(X)← s(X), t(X) in B, the Prolog will firstly query ?s(1). However, ?s(1) lead to an query

p(1) already exists in the previous queries, then it goes into an infinite loop:

?a(1)→ ?p(1)→?fail r(1)→?r(1)→?s(1)→ ?p(1)→ · · ·

The question is how can we detect a looped hypothesis H loop can be learned from the ground

α-nCT T loop. The answer proposed in this report is to assign indices to the predicates in

the head modes. The details of the loop checking is present in the Algorithm 7.1. And the

procedure can also applied for literal that is a secondary example.

Algorithm 7.1 The NoLoop(l, C, T ) Procedure

Require: l is a ground literal, C is a normal clause
Ensure: b is either true or false

1: b := true
2: for all (∅,∆l) := Abduce(l) do
3: if ∆+

l ∩ depend(C) 6= ∅ then
4: b := false
5: return b
6: else if index(∆−l ) ≥ index(Ch) then
7: b := false
8: return b
9: end if

10: end for
11: return b

The loops caused by positive literals are checked the same way as the loop checking in IoF

(lines 3-5). The loops caused by negative literals are detected in the way shown in lines 6-8.

The basic idea is for this loop checking procedure is that for any clause

HA← Ts

learned from the system, where HA is the head atom and Ts is set of body literalfor the

clause, there should not exist a literal l ∈ Ts which is explained by some ¬l′ where the

predicate of l′ has a equal or higher index than index of the predicate of HA.

This idea is very similar to the idea of stratification in logic programs.

Definition 7.1. (Stratified Program [16]) A normal program Π is stratified if there is a level

mapping of Π such that, for every clause p(t1, · · · , tn) ← L1, · · · , Lm in Π, the level of the

predicate symbol of every positive literal in L1, · · · , Lm is less than or equal to the level of p,

and the level of the predicate symbol of every negative literal in L1, · · · , Lm is less than the

level of p.

The difference are that the levels are only mapped on those abduciable predicates and the

stratification only happens when a literal has negative abduciables.
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Returning to the example 7.3. The ground α-nCT T loop will never be generated if we apply

NoLoop procedure when building the theory. For example, if we give the following indices to

the predicates in modeh

Indices =


index(a, 3),

index(s, 2),

index(t, 2)

 .

Then, the only α-nCT can be found are

T1 =


a(1)← p(1)

s(2)

¬t(1)

 , T2 =


a(1)← p(1)

s(2)

¬s(1)

 .

The reason of T loop cannot be learned is that the second clause s(2)← p(2) in T loop can never

be formed since a possible adductive explanation for p(2) is {¬s(2)} and ¬s(2) has the same

predicate as the head atom s(2). Although t(2) is assumed to be false and T loop is a sound

α-nCT, it will not be generated since the possible loop cause by its generalisations.
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7.2 Subsumption Search

Given a open disjoint program P = 〈B,U, I〉, a set of literal examples E and an α-nCT T for

P and E. This section provides a procedure that can generate a hypothesis H that subsumes

the positive part of T and guaranteed comp(P ) ∪H also proves the negative part in T .

The details of Search procedure is provided in Algorithm 7.2. It performs an incremental

learning on each predicate appears in T .

Algorithm 7.2 The Search(T ) Procedure

Require: ground α-normal connected theory T
Ensure: H is a normal program

1: H = ∅
2: while T 6= ∅ do
3: pick a set of clauses T sub ∈ T that has same predicate in heads
4: T := T - T sub

5: h := best(SearchDefs(T sub))
6: if h 6= ∅ then
7: H := H ∪ h
8: else
9: return false

10: end if
11: end while
12: return H

Returning to Example 4.3, given ILP probem with a disjoint open program P = 〈B,U,∅〉
and examples E,

B =


w(1), w(2), w(3),

s(2), s(3),

t(2),

p(X)← q(X),¬r(X)


E =

{
p(1), r(2), r(3)

}
Modeh(U) = { q(+any), r(+any) }

Modeb = { w(+any), s(+any), t(+any) }

A possible α-nCT T would be

T =


q(1)← w(1)

r(2)← w(2), s(2), t(2)

r(3)← w(3), s(3)

¬r(1)

 .
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If the Search Procedure is applied on the T , a group of clauses T sub which is the subsect of

T and has same head predicate will be first chose (line 3).

T sub =
{
q(1)← w(1)

}
.

And the rest of T (line 4) is

T rest =


r(2)← w(2), s(2), t(2)

r(3)← w(3), s(3)

¬r(1)

 .

After picking the T sub, a new non-deterministic procedure SearchDefs will be run on T sub.

The SearchDefs performs a top down subsumption search and searches for sets of possible

clauses that subsumes the positive part in T sub and ensure that those clauses will not prove

the negative literals in T sub. By this way, it implicitly compute a nCT that is implied by the

comp(U,H). The procedure SearchDefs is shown in the Algorithm 7.3.

Algorithm 7.3 The SearchDefs(T ) Procedure

Require: ground α-normal connected theory T , abductive explanations ∆, Mode declaration
M

Ensure: h is a normal program

1: h = ∅
2: while T pos 6= ∅ do
3: pick a clause C ∈ T pos
4: Anti-instantiate C
5: c := Ch

6: if the current c is not learnable by M then
7: return false.
8: else if the clause c in the current node does explain the original ground literal

and fails to prove all the literals in Tneg with respect to comp(P ) ∪∆ then
9: if c is subsumed by some clauses in h then

10: h := h
11: else
12: remove all clauses that are subsumed by c in h
13: h := h ∪ c
14: end if
15: else
16: add one more body literals from C to c and go back to line 6
17: end if
18: end while
19: return h

By applying SearchDefs on T sub, we have the first part of the hypothesis {p(X)}. The process
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of the search is shown in Algorithm 7.3:

p(X), Succeed

The search starts from p(X) (line 5). Since p(X) proves p(1) and there is no negative literal

with predicate p, the clause p(X) satisfies the condition in line 8. Therefore, it is returned

as a possible definition for predicate p.

Then, the Search procedure will be applied on the rest clauses in T (T rest). Since T rest

only has clauses with head predicate r, it will be passed to SearchDefs procedure. Suppose

the clause r(2) ← w(2), s(2), t(2) is chosen first, then by anti-instantiation we have r(X) ←
w(X), s(X), t(X).

r(X)

r(X)← w(X) r(X)← s(X),Succeed r(X)← t(X),Succeed

r(X)← w(X), s(X),Succeed r(X)← w(X), t(X),Succeed

Figure 7.1: Search tree for r(2)← w(2), s(2), t(2)

The search tree for r(2)← w(2), s(2), t(2) is given in Figure 7.2. The search starts from the

top node r(X) and expand this node by adding one body literal. Since it dose not satisfy

the condition in line 8, the node will be expand by adding one body literal (lines 10-11). In

this case, it has three options: w(X), s(X) and t(X). By adding s(X) and t(X) into the

body (The middle and right branch in the graph), the procedure stops with succeed since it

explains r(2) and fails r(1) (line 9). However, the left branch is not closed since r(X)← w(X)

proves r(1). Thus this brunch will be expanded by adding one more body literals. And both

r(X)← w(X), s(X) and r(X)← w(X), t(X) will be successfully returned.

For another clause r(3)← w(3), s(3), the search tree is shown below
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r(X)

r(X)← w(X) r(X)← s(X),Succeed

r(X)← w(X), s(X),Succeed

Figure 7.2: Search tree for r(3)← w(3), s(3)

Thus, we have four possible clauses for r(2) and two possible clauses for r(3)

Clauses for r(2) =


r(X)← w(X), s(X)

r(X)← w(X), t(X)

r(X)← s(X)

r(X)← t(X)

 ,

Clauses for r(3) =

{
r(X)← w(X), s(X)

r(X)← s(X)

}
.

Combine with p(X) learned previously (lines 9-14), there are five different results computed

by the SearchDefs procedure:

Hpossible
1 =

{
p(X)

r(X)← s(X)

}
, Hpossible

2 =


p(X)

r(X)← t(X)

r(X)← s(X)

 ,

Hpossible
3 =


p(X),

r(X)← t(X)

r(X)← w(X), s(X)

 , Hpossible
4 =

{
p(X)

r(X)← w(X), s(X)

}
,

Hpossible
5 =


p(X)

r(X)← w(X), t(X)

r(X)← w(X), s(X)

 .

If a hypothesis with less number of clauses and less number of body literals in each clause

is more preferable (line 5 in Algorithm 7.2), then the Search procedure will return the

hypothesis Hpossible
1 as the best hypothesis H for T :
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H =

{
p(X)

r(X)← s(X)

}
.
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7.3 Procedure

Given a normal open disjoint program P = 〈B,U, I〉, and a set of literal examples E, ICC

computes one or more than one correct hypotheses H that is a normal program. The top

level procedure is shown in Algorithm 7.4.

Algorithm 7.4 The Main(P,E, n) Procedure

Require: P is a normal open disjoint program
Require: E is a set of literals
Require: n is positive integer and is larger than |E+|
Ensure: H is a correct inductive hypothesis for P,E

1: ∆ := ∅
2: H := E
3: for all consistent ∆ such that ∆ := AbduceAll(E) do
4: H ′ := H
5: T := SaturateSet(∆)
6: H := NctSearch(H ′, T, n)
7: end for
8: return H

Different from IoF in which picks a seed example at the beginning of the procedure, the

ICC procedure starts by abducing all the examples in E (line 3). Then, a hypothesis H

will be computed (lines 4-8) and comp(B ∪H) will successfully explains all the examples in

E. The integer n is a parameter that restricts the maximum number of ground clauses in

the T pos. Initially, H is set to be E. Thus, if no hypothesis searched is preferable than E,

the procedure will return E+. The criteria used to determine whether one hypothesis H is

preferred over another is simply the structure of the hypothesis: number of clauses, length

of each clause. The exact choice is implementation-specific, and does not form part of this

procedure. Moreover, the indices of the head mode predicates (see Section 7.1) is also a part

of the problem, therefore not included in the this procedure.

Example 7.4.

B =


w(1), w(2), w(3),

s(2), s(3),

t(2),

p(X)← q(X),¬r(X)


E =

{
p(1), r(2), r(3)

}
Modeh = { q(+any), r(+any) }

Modeb = { w(+any), s(+any), t(+any),¬q(+any),¬r(+any) }
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The above example is slightly modified from Example 4.3 where two new body modes

¬r(+any) and ¬q(+any) are allowed. For the better illustration, we assume the index as-

signed to q, r are 1 and 2:

Indices =

{
index(q, 1),

index(r, 2)

}
.

The first step is to compute sets of abductive explanations ∆ for E (line 3 in Algorithm 7.4).

Here, there is only one abductive explanation ∆ = {q(1),¬r(1), r(2), r(3)}.

The next step is to saturate ∆+ = {q(1), r(2), r(3)} (line 5 in Algorithm 7.4). The SaturateSet

procedure adds all possible body literals to members in {q(1), r(2), r(3)} that do not require

extra clauses to explain them.

Algorithm 7.5 The SaturateSet(T ) Procedure

Require: T is a ground α-normal connected theory
Ensure: T is a α-ground normal connected theory in which the positive part is saturated

1: while T has clause atom in head do
2: Choose a clause C ∈ T with positive head
3: T := T − C
4: for all L := PossibleBodyLiteral(C) do
5: body(C) := body(C) ∪ {L}
6: end for
7: T ′ := T ′ ∪ {C}
8: end while
9: T ′ := T ′ ∪ T

10: return T ′

The procedure PoosibleBodyLiteral returns those possible body literals for a given clause

C. Since the negative literals are allowed to be inferred in the normal program setting, the

criteria for adding a literal into the body of a clause in a bit more complicated than criteria

in IoF. The loop checking procedure NoLoop (details in Section 7.1) will used here. The

detailed description of the procedure is shown in Algorithm 7.6.

Generally speaking, the procedure PossibleBodyLiteral returns a literal l which can be

proved by comp(P ) ∪ ∆ and cannot cause any loop in both ground theory and generalised

hypotheses if it is added into the clause C.

The key part of PossibleBodyLiteral is that all positive and negative literals in ∆mbθ are

included in T h’. In addition to the saturation phase in IoF, those literals that have some

extra negative abducibles that have head mode predicates are treated as secondary examples,

and therefore can not be added into the picked clause. For example, the positive literal p(2)

does not satisfy this condition since to prove p(2) we need to prove ¬r(2). The predicate r
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Algorithm 7.6 The PossibleBodyLiteral(C) Procedure

Require: ground normal clauseC, normal program B, mode declaration M , abductive ex-
planations ∆

Ensure: T is a ground literal

1: L := ∅
2: Choose a body mode mb in M
3: instantiate the inputs of mb using terms in C
4: (θ,∆mbθ) := Abduce(mb)
5: if ∆mbθ is consistent with ∆

and all positive and negative literals in ∆mbθ are included in T h

and true := NoLoop(mb,C, T ) then
6: L := mbθ
7: end if
8: return L

is an open predicate so we cannot infer ¬r(2). Therefore, in case we want to add p(2) into

some clauses’ bodies, an auxiliary clause ¬r(2) is needed.

For the Example 7.4, after saturate the set of abductive explanations ∆. The first 1-layered

α-Normal Connected Theory T0 is built:

T0 =


q(1)← w(1),

r(2)← w(2), s(2), t(2)

r(3)← w(3), s(3)

¬r(1)

 .

Then, the procedure NCTSearch, showed in Algorithm 7.7, will be called and searches for

all hypotheses with n = i = 4 clauses or fewer. Similar to the CTSearch procedure in IoF

[11]. The NCTSearch procedure gradually generalises T0 to a larger ground α-nCT (line

9) relative to B and simultaneously searches hypotheses from each α-nCT by the procedure

Search introduced in 7.2 (line 4, 7). The Compare procedure simply returns the more

preferable hypothesis between two input hypotheses.

The procedure AddSE in Algorithm 7.8 adds secondary examples in T . The idea of AddSE

procedure is simple. The secondary example is either a positive or negative literal and needs

some extra clauses that do not exist in T to explain.

Recall that the indices for q, r are 1, 2, we can form the following theories by adding secondary
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Algorithm 7.7 The NctSearch(h, T pos, i) Procedure

Require: h is a normal program
Require: T is a ground α-Normal Connected Theory
Require: i is positive integer
Ensure: h′ is a normal program

1: if |T pos| > i then
2: h′ := h
3: else if |T pos| = i then
4: h′ := Search(T )
5: h′ := Compare(h′, h)
6: else
7: h′ := Search(T )
8: h′ := Compare(h′, h)
9: for all non-empty T ′ such that T ′ := AddSE(T ) do

10: h′ := NctSearch(h′, T ′, i)
11: end for
12: end if
13: return h′

examples ¬q(2) and ¬q(3)

T1 =


q(1)← w(1)

r(2)← w(2), s(2), t(2),¬q(2)

r(3)← w(3), s(3)

¬r(1),¬q(2)

 ,

T2 =


q(1)← w(1)

r(2)← w(2), s(2), t(2)

r(3)← w(3), s(3),¬q(3)

¬r(1),¬q(3)

 ,

T3 =


q(1)← w(1)

r(2)← w(2), s(2), t(2),¬q(2)

r(3)← w(3), s(3),¬q(3)

¬r(1),¬q(2),¬q(3)

 .

No secondary example that is instantiated from ¬r(+any) is added into any of clauses in

Ti(0 ≤ i ≤ 3). It is because r(X) (X can be any terms in P ) has the predicate index 2 and

none of the clause in Ti(0 ≤ i ≤ 3) has a head atom whose predicate has a index larger than

2. Similarly, q(1) is not added into the first clause in T0 since q(1)← w(1) has the predicate

p in head.

Each of these Ti (0 ≤ i ≤ 3) will be searched by the procedure Search. Assume a hypothesis

with less number of clauses and less number of body literals in clauses is more preferable, the

53



Algorithm 7.8 The AddSE(T ) Procedure

Require: normal disjoint open program P , ground α-normal connected theory T , mode declaration
M

Ensure: T ′ is a ground α-normal connected theory

1: T ′ := ∅
2: Choose a clause C ∈ T
3: Choose a body mode mb in M
4: instantiate mb with ground terms in P
5: if mb 6∈ Cb

and true := NoLoop(mb,C,T) then
6: (∅,∆mb) := Abduce(mb)
7: if mb 6∈ body(C)

and ∆mb is consistent with Th then
8: T ′ := T − {C}
9: C ′ := C

10: T ′ := T ′ ∪∆mb

11: body(C ′) := body(C ′) ∪ {mb}
12: T ′ := T ′ ∪ {C ′}
13: T ′ := SaturateSet(T ′)
14: end if
15: end if
16: return T ′

hypothesis learned from each Ti is shown below:

T0 =


q(1)← w(1)

r(2)← w(2), s(2), t(2)

r(3)← w(3), s(3)

¬r(1)

⇒ H0 =

{
q(X)

r(X)← s(X)

}

T1 =


q(1)← w(1)

r(2)← w(2), s(2), t(2),¬q(2)

r(3)← w(3), s(3)

¬r(1),¬q(2)

⇒ H1 =

{
q(X)

r(X)← s(X)

}

T2 =


q(1)← w(1)

r(2)← w(2), s(2), t(2)

r(3)← w(3), s(3),¬q(3)

¬r(1),¬q(3)

⇒ H2 =

{
q(X)

r(X)← s(X)

}

T3 =


q(1)← w(1)

r(2)← w(2), s(2), t(2),¬q(2)

r(3)← w(3), s(3),¬q(3)

¬r(1),¬q(2),¬q(3)

⇒ H3 =

{
q(X)

r(X)← ¬q(X)

}
.

Since all of Hi(0 ≤ i ≤ 3) have same number of clauses and same number of body literals,

the best hypothesis can be any of Hi(0 ≤ i ≤ 3).

54



So far, we have presented the detail algorithms for ICC. The next section will present an

implementation of ICC and critically evaluated the ICC procedure based on that implemen-

tation.

55



CHAPTER 8

Implementation and Evaluation

This chapter will firstly gives a brief description of the implementation of ICC procedure

icc.pl with respect to its top level predicates and the format of input file that describes the

problem. Then, a short evaluation on the system will be provided.

8.1 Implementation

icc.pl is an implementation of the ICC procedure. It was written in Sicstus Prolog. The

implementation is designed to prefer hypotheses with smaller structure, i.e. smaller number

clauses and smaller number of literals in clauses. The main predicates in icc.pl are listed

below.

• main(+FileName,−Best)
This is the toppest predicate in icc.pl. It integrates the predicates for abduction, sat-

uration, adding secondary examples and searching together. Argument FileName is

the name of the input file. And Best is the original data type of the best hypothesis

returned. For example, if there is a prolog file FileName.pl that defines an ILP prob-

lem, then query main(FileName,B) will give the result for this problem. The main/2

is defined in an non-deterministic manner. The number of outputs returned by this

predicate depends on the number of abductive explanations for the examples and open

program defined in FileName.pl.

• ct search/8
It is the correspond implementation of NCTSearch procedure which interleaves the

AddSE procedure and Search procedure. The function takes a list of different sat-

urated theories as the input and returns the most successful hypothesis derived from

these theories by continuously adding secondary examples and update the current best

hypothesis.

56



• saturate CT (+ToSat,−Saturated)

It is the correspond implementation of SaturateSet procedure. The function contains a

sub-function possibe body literal/2 which is the implementation of PossibleBodyLiteral

procedure. As noted by Kimber [14], different selection order of clause to saturate could

result in different consequences. The function is implemented in a non-deterministic

manner and can generate all the possible results (Saturated) by saturating ToSat.

Therefore, this predicate is always used with the Prolog built-in function findall/3 to

generated a list contains all possible saturated sets and followed by some procedures

that can remove duplicates in that list.

• Abduce/4
Abduce/4 is the correspond implementation of AbduceAll procedure. And the Kakas-

Mancarella’s (KM) interpreter is used as the underlying abductive engine. The function

takes a list of ground literal example as the input and returns a set of abduciables and a

set of transformed form of abduciables for the input examples. The transformed form of

an abduciable is simply a list representation of a clause. Such a list contains a ground

clause, a corresponding flattened clause, mode declarations for literals in the clause,

ground terms in the clause which can be used as inputs, bindings from the flattened

clause to the ground clause and the dependencies list (details in Section 7.1) of the

clause.

The input file which describes the ILP problem is compsed by four parts. The first part is a

set of parameters constrains the hypothesis space. An example of the constraints is shown in

set_max_clause_length(4).

set_max_ground_clauses(10).

set_complete_saturation(0).

set_connected(1).

set_clause_weight(5).

set_literal_weight(1).

Figure 8.1: Example of constraints on hypotheses

The set max clause length(4) defines the maximum length of each clause in the returned

hypothesis, it defines the maximum depth of the search tree (see Section 7.2). Here, this

maximum depth is 4. set max ground clauses(10) restrict the maximum ground clause with

positive head in the bridge formula to be 10. It also means the maximum number clauses in

the returned hypothesis is 10. set complete saturation/1 is the switch of the completed sat-

uration. The completed saturation means try every selection orders of clause when saturate a

theory. In ICC procedure, each ground theory is formed by all the examples in ICC, the size of

the bridge formula would be considerably larger than bridge formulas in those systems which

perform an incremental learning. Moreover, in most case of simple ILP problem, the com-

pleted saturation of a theory would result in a same saturated theory. Thus, it would be useful

to give an restriction on saturation. The parameter 0 in set complete saturation/1 means
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the system do not perform a completed saturation. And 1 means do perform completed satu-

ration when Saturate CT is called. The set connected/1 with parameter 1 means secondary

examples are allowed and 0 otherwise. In icc.pl, each hypothesis is assigned a score which

is calculated from set clause weight/1 and set literal weight/1. Here, set clause weight(5)

and set literal weight(1) means a hypothesis with n clauses and m literals will have a score

n∗5+m∗1. Since icc.pl is designed to prefer a hypothesis with smaller structure, a hypothesis

with a lower score is more preferable.

The other three parts are similar to the way that most ILP systems define the problem.

They are a set of Prolog rule which represents background knowledge, a list of ground literal

examples and two lists of mode declaration (one for head modes and another for body modes).

Detailed examples of this input file can be found in Appendix. The indices for the head mode

predicates is set automatically. The indeices of predicates appearing at the left hand said of

the list are assigned a lower index than the predicates appearing at the right hand side. For

example, if we have the following head modes,

Example 8.1. head_modes( [p(+any), q(+any), r(+any)] ).

then, the indices assigned to each predicates would be

indices =


index(p/1, 0)

index(q/1, 1)

index(r/1, 2)

 .
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8.2 Evaluation

Generally speaking, the ILP system icc.pl successfully retain the idea of using secondary

examples to widen the hypotheses space under definite program settings [11] and extend it to

solve ILP problems with normal program settings. A typical case study to show this nature

of the system is

Example 8.2.

B =



flies(X)← bird(X),¬ab(X)

bird(X)← penguin(X)

bird(tweety)

penguin(polly)

penguin(peter)

has big wings(peter)

has big wings(X)← has big wings2(X)

ab2(X)← penguin(X), has big wings(X)



,

E =

{
flies(tweety), f lies(peter),

¬flies(polly)

}
,

Modeh (U) = { has big wings2(+any), ab(+any) },

Modeb =


bird(+any), ¬bird(+any),

penguin(+any), ¬penguin(+any),

ab2(+any), ¬ab2(+any)

 .

The above example is modified from classic bird-penguin problem which is widely use in

demonstrating the non-monotonicity of normal programs. Aside from tweety and polly, a

new member peter who is a penguin can fly is added to the background knowledge and

example. And the bird like peter are viewed as a new kind of abnormal, defined by ab2.

Given the disjoint normal open program P = 〈B,U, I〉 and examples E, We are going to

learn rules for ab and has big wings2. Note here, has big wings2 has a lower index than ab.

The task’s objective is to learn the rule ab(X)← penguin(X),¬ab2(X).

If icc.pl runs with this example with proper constraints, it will firstly compute the following

abduciables

∆ = {ab(polly),¬flies(polly),¬ab(peter),¬ab(tweety)}.
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Then by saturation, a theory T0 without using any secondary examples is computed

T0 =


ab(polly)← bird(polly), penguin(polly)

¬ab(peter)
¬ab(tweety)

 .

and no hypothesis is searched from T0. If secondary examples are allowed, then there are two

possible secondary examples - ab2(polly) and ¬ab2(polly) and obviously they cannot exist in

the same clause. By using positive secondary example ab2(polly), a new theory T1 is formed

T1 =


ab(polly)← bird(polly), penguin(polly), ab2(polly)

has big wings2(polly)← bird(polly), penguin(polly)

¬ab(peter),¬ab(tweety)

 .

and again no hypothesis is drived. However, if the negative secondary example ¬ab2(polly)

is used, then a new theory T3 is computed

T3 =


ab(polly)← bird(polly), penguin(polly),¬ab2(polly)

¬ab(peter),¬ab(tweety)

¬has big wings2(polly)

 .

and the objective rule ab(X) ← penguin(X),¬ab2(X) can be derived from T3. The output

generated by icc.pl is shown below:

---- Abductive Result: ----

[ab(polly),not(flies(polly)),not(ab(peter)),not(ab(tweety))]

---- The GROUND hypothesis is: ----

ab(polly) :- bird(polly), penguin(polly), not(ab2(polly))

not(ab(peter))

not(ab(tweety))

not(has_big_wings2(polly))

----**** The Best hypothesis is: ****----

ab(A) :- penguin(A), not(ab2(A))

Time Cost: 0.010000000000000009 seconds

The system is also tested on the soldier example (see Example 1.1) in [15], Example 7.4 and
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several ILP tasks with definite program settings including Yamamoto’s example (see Example

3.2) [30] and examples collected in [2]. It performs well in most of the case. The details are

provided in Appendix. It is also showed that by allowing negative literals to be included

in the body of a clause, some better hypotheses may generated (see Example oddeven in

Appendix).

However, at the present time, the procedure still have some problems. The most significant

problem is that if a negative body mode has output argument, a floundered hypothesis may

be searched and even be returned as the best hypothesis. Consider the following example

Example 8.3.

B =
{
q(3, 3)

}
,

E =

{
p(1), p(2)

¬p(3)

}
,

Modeh (U) = { p(+any) },

Modeb =
{
¬q(+any,−any)

}
.

and the rule h = {p(X) ← ¬q(X,Y )} can be derived from the ground formula T by ICC

procedure. Note the theory T shown below is not a fully saturated theory produced by ICC

procedure.

T =


p(1)← ¬q(1, 2)

p(2)← ¬q(2, 1)

¬q(3, 3)

 .

In Sicstus Prolog, the clause p(X)← ¬q(X,Y ) will be treated as{
p(X)← ¬p′(X)

p′(X)← q(X,Y )

}
(8.1)

and it will be a correct hypothesis if it is run under Sicstus Prolog. However, h is not a

valid hypothesis in many other systems since there is a negative non-ground sub-goal in the

SLDNF-tree (floundering) when it is used to explain examples in E. Thus, such body modes

with outputs like p(+any,−any) is currently not allowed in icc.pl. A possible way to solve

this is to add a transformation procedure in the Search procedure (Section 7.2) such that the

procedure will automatically transform clauses like p(X)← ¬q(X,Y ) into the form of 8.1 by

invent new predicates like p′. An informal description of this procedure is shown below

• Let H ← Body be a clause in a node of the Search procedure.

• For any negative body literal ¬Pred(Terms) in Body where Pred is the predicate, and

Terms are the terms in this literal, if it is generalised from an instantiation of a body
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mode M which has some placemarkers for outputs, then Replace ¬Pred(Terms) by

¬Pred′(Terms′) where Terms′ are terms in Terms and has corresponding placemarker

with ‘+’ or ‘#’ in M .

• Lastly, add an extra clause Pred′(Terms′)← Pred(Terms) to the node.

However, because the time is limited for this project, we cannot decide whether it is a feasible

way to solve this problem.

The second problem is concerned with the scalability of current system. The system is very

sensitive to the problem size. It performs well on small problems. However, the computation

time and memory requirement dramatically increased when the problem size is going large.

The system was tested on east-west train problem [18]. In this ILP problem, there are five

trains {e1, e2, e3, e4, e5} moving towards east and treated as positive examples (details see

Appendix). If all five trains are used the Prolog will point out there is no sufficient memory.

The same situation happened when four of these eastbound trains are used. However, the

correct hypothesis will be returned if three trains are use. But the whole process cost a huge

amount of time (See appendix). If only two of the trains are used, then the system will also

give the correct hypothesis but just cost a small amount of time. This issue is not easy to

solve currently since the procedure is designed to process all examples together, and this

makes the system inevitably requires a large memory when running on big tasks. However,

icc.pl may not be the best way to implement ICC procedure. Improvements like using a

better data structure or reduce re-computation are feasiable solutions for this problem.

The last main problem of ICC procedure is the loop checking. As mentioned before, the

way ICC procedure deals with loops caused by negative literals is similar to perform a global

stratification. This makes some correct hypotheses to be treated as invalided hypothesis as

showed by Example 3.5.

B =
{
father(peter, chris)

}
,

E = {parent(peter, chris)},

H = {parent(peter, chris)← father(peter, chris),¬father(chris, peter),¬parent(chris, peter)}.

The H is a correct hypothesis for the problem if parent/2 is allowed in the head and predicates

father/2, negations of father/2 and negations of parents/2 are allowed to be in the body.

However, the current ICC procedure do not allow the hypothesis clause with a negative body

literal which has the same predicate of the head. A new heuristic that can perform a “locoal

stratification” on negative loop checking would be necessary. Since the current procedure

lost some hypotheses in the hypotheses space of α-Coonected Theory Generalisation.

62



CHAPTER 9

Conclusion and Future Work

This report has presented a new ILP procedure Induction with Completion and Connected

theories (ICC) which can solve ILP problems with non-monotonic settings. The procedure

is based on the new operational ILP approach called α-Normal Connected Theory Generali-

sation (α-nCTG).

The concept of α-nCTG is generated based on Kimber’s Normal Connected Theory Gener-

alisation (nCTG). It has been defined and has been proved that this new operational ILP

approach will not lose any hypotheses that are learnable from nCTG.

The ICC procedure has been developed to compute α-Normal Connected Theories (α-nCT)

from normal background programs. The ICC procedure is designed based on Kimber’s IoF

proof procedure [11] which is designed for learning inductive hypotheses from definite back-

ground programs. ICC procedure processes all the examples in one go, and therefore overcome

the difficulties associated with iterative leaning approach. Some α-nCTs are build based on

examples and are used as a bridge formulas in the learning process. The generalisation process

is designed based on the α-nCTG. And new loop checking and subsumption search procedures

are introduced. An preliminary implementation icc.pl is provided and is evaluated based on

several small to medium ILP tasks with both definite and normal program settings. It shows

the current procedure is able to solve small ILP tasks but not scalable to ILP problems with

medium or large problem size. Other issues including generating floundered hypotheses and

incompleteness caused by “global stratification” are remained to solve.

Following from the evaluation, the first and the most urgent future investigation is to redesign

the search procedures and make sure that the hypotheses generated by ICC procedure are

at least “correct”. The way of defining a sub-procedure for inventing new predicates and

transforming the clauses into an acceptable form in the search phase would be a possible

solution. However, it still needs a much deeper investigation and testing. Reimplementing the

63



current icc.pl to improve the efficiency would also be an good area for the future investigation.

The reimplementation includes using new data structures, reducing re-computation in the

current system and use more efficient abductive engine. Moreover, the procedure for loop

checking can be modified so that relief the problem of incompleteness caused by stratification

to some extent. Finally, On the theory side, the completeness of α-nCTG would be an good

area to explore, although it seems that it makes no extension on Kimber’s nCTG.
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Appendix

Example soldier

The input file soldier.pl:

set_max_clause_length(4).

set_max_ground_clauses(10).

set_complete_saturation(0).

set_connected(0).

set_clause_weight(5).

set_literal_weight(1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Soldier Example

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% background %%

begin_of_background.

obeys(X,Y) :- not(officer(X)),officer(Y).

wears_hat(price).

wears_hat(osbourn).

has_stripe(osbourn).

end_of_background.

%% examples %%

examples( [obeys(price,osbourn), not(obeys(osbourn,price))] ).

%% mode declaration %%

%

% NOTE: Only ’+’’#’ can be included in not(_) currently
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head_modes( [officer(+any)] ).

body_modes( [

wears_hat(+any), has_stripe(+any),

not(wears_hat(+any)), not(has_stripe(+any))

] ).

The output produced by icc.pl:

---- Abductive Result: ----

[not(obeys(osbourn,price)),officer(osbourn),not(officer(price))]

---- The GROUND hypothesis is: ----

officer(osbourn) :- wears_hat(osbourn), has_stripe(osbourn)

not(officer(price))

----**** The Best hypothesis is: ****----

officer(A) :- has_stripe(A)

Time Cost: 0.009999999999999787 seconds
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Example 7.4 in Section 7

The input file problem2.pl

set_max_clause_length(4).

set_max_ground_clauses(10).

set_complete_saturation(0).

set_connected(1).

set_clause_weight(5).

set_literal_weight(1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Simple Example

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% background

begin_of_background.

w(1).

w(2).

w(3).

s(2).

s(3).

t(2).

p(X) :- q(X), not(r(X)).

end_of_background.

% examples

examples( [p(1),r(2),r(3)] ).

% mode declaration

%

% NOTE: Only ’+’’#’ can be included in not(_) currently

head_modes( [q(+any), r(+any)] ).

body_modes( [w(+any), s(+any), t(+any),

not(p(+any)), not(q(+any)), not(r(+any))] ).

The output produced by icc.pl

---- Abductive Result: ----
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[r(3),r(2),not(r(1)),q(1)]

---- The GROUND hypothesis is: ----

q(1) :- w(1)

r(2) :- w(2), s(2), t(2), not(q(2))

r(3) :- w(3), s(3), not(q(3))

not(r(1))

not(q(2))

not(q(3))

----**** The Best hypothesis is: ****----

q(A)

r(A) :- s(A)

Time Cost: 0.019999999999999574 seconds
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Example bird

It’s the Example 8.2. The input file bird.pl

set_max_clause_length(4).

set_max_ground_clauses(10).

set_complete_saturation(0).

set_connected(1).

set_clause_weight(5).

set_literal_weight(1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Classic bird penguin problem

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%:- dynamic bird/1,penguin/1,flies/1,ab/1,ab2/1.

% background

begin_of_background.

flies(X) :- bird(X), not(ab(X)).

bird(X) :- penguin(X).

bird(tweety).

penguin(polly).

penguin(peter).

has_big_wings(peter).

has_big_wings(X) :- has_big_wings2(X).

ab2(X) :- penguin(X), has_big_wings(X).

end_of_background.

% examples

examples( [

flies(tweety),

flies(peter),

not(flies(polly))

] ).

% mode declaration

%

% NOTE: Only ’+’ ’#’’ can be included in not(_) currently

head_modes( [has_big_wings2(+any), ab(+any)] ).
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body_modes( [

bird(+any), not(bird(+any)),

penguin(+any), not(penguin(+any)),

ab2(+any), not(ab2(+any))

] ).

The output produced by icc.pl

---- Abductive Result: ----

[ab(polly),not(flies(polly)),not(ab(peter)),not(ab(tweety))]

---- The GROUND hypothesis is: ----

ab(polly) :- bird(polly), penguin(polly), not(ab2(polly))

not(ab(peter))

not(ab(tweety))

not(has_big_wings2(polly))

----**** The Best hypothesis is: ****----

ab(A) :- penguin(A), not(ab2(A))

Time Cost: 0.010000000000000009 seconds
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Example Yamamoto

The input file yamamoto.pl

set_max_clause_length(4).

set_max_ground_clauses(10).

set_complete_saturation(1).

set_connected(1).

set_clause_weight(5).

set_literal_weight(1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Yamamoto’s Example

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% background

begin_of_background.

even(s(X)) :- odd(X).

even(0).

end_of_background.

% examples

examples( [odd(s(s(s(0)))),

odd(s(s(s(s(s(0)))))),

not(even(s(0))),not(even(s(s(s(0)))))

] ).

% mode declaration

%

% NOTE: Only ’+’’-’ can be included in not(_) currently

head_modes( [odd(+any)] ).

body_modes( [even(+any), =(+any,s(-any))] ).

The output produced by icc.pl

---- Abductive Result: ----

[not(odd(s(s(0)))),not(even(s(s(s(0))))),not(odd(0)),

not(even(s(0))),odd(s(s(s(s(s(0)))))),odd(s(s(s(0))))]
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---- The GROUND hypothesis is: ----

odd(s(0)) :- s(0)=s(0), even(0)

odd(s(s(s(0)))) :- s(s(s(0)))=s(s(s(0))), s(s(0))=s(s(0)),

s(0)=s(0), even(0), even(s(s(0)))

odd(s(s(s(s(0))))) :- even(s(s(s(s(0))))), s(s(s(s(0))))=s(s(s(s(0)))),

s(s(s(0)))=s(s(s(0))), even(s(s(0))), s(s(0))=s(s(0)), s(0)=s(0), even(0)

odd(s(s(s(s(s(0)))))) :- s(s(s(s(s(0)))))=s(s(s(s(s(0))))), even(s(s(s(s(0))))),

s(s(s(s(0))))=s(s(s(s(0)))), s(s(s(0)))=s(s(s(0))), s(s(0))=s(s(0)),

s(0)=s(0), even(0), even(s(s(0))), even(s(s(s(s(s(0))))))

not(odd(s(s(0))))

not(odd(0))

----**** The Best hypothesis is: ****----

odd(A) :- A=s(B), even(B)

Time Cost: 0.060000000000002274 seconds
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Example mother

The input file mother.pl

set_max_clause_length(4).

set_max_ground_clauses(10).

set_complete_saturation(0).

set_connected(0).

set_clause_weight(5).

set_literal_weight(1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Mother Example

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% background

begin_of_background.

person(s1).

person(s2).

person(s3).

person(s4).

person(s5).

person(m1).

person(m2).

person(m3).

person(m4).

person(m5).

male(s1).

male(s2).

male(s3).

male(s4).

male(s5).

female(m1).

female(m2).

female(m3).

female(m4).

female(m5).

child(s1,m1).

child(m5,m4).

child(s2,m1).
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child(m3,s1).

child(m2,m1).

child(s3,s1).

end_of_background.

% examples

examples( [

mother(m1,s1), mother(m1,m2),

not(mother(s1,m3)), not(mother(s1, s3)),

not(mother(m2,m4)), not(mother(s2, s3)),

not(mother(m1,m3))

] ).

% mode declaration

%

% NOTE, Only ’+’’#’ can be included in not(_) currently

head_modes( [mother(+person,+person)] ).

body_modes( [male(+person),female(+person), child(+person,+person)] ).

The output produced by icc.pl

---- Abductive Result: ----

[not(mother(m1,m3)),not(mother(s2,s3)),not(mother(m2,m4)),

not(mother(s1,s3)),not(mother(s1,m3)),mother(m1,m2),mother(m1,s1)]

---- The GROUND hypothesis is: ----

mother(m1,m2) :- female(m1), female(m2), child(m2,m1)

mother(m1,s1) :- male(s1), female(m1), child(s1,m1)

not(mother(m1,m3))

not(mother(s2,s3))

not(mother(m2,m4))

not(mother(s1,s3))

not(mother(s1,m3))

----**** The Best hypothesis is: ****----

mother(A,B) :- female(A), child(B,A)
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Time Cost: 0.0 seconds
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Example odd & even

The example is slightly different from the original one. The positive examples are modified

from {even(0), even(4), odd(3), odd(5)} to {even(0), even(2), even(4), odd(3), odd(5)} where a

new positive example even(2) is added. Without doing this, the system will give a ‘better’

hypothesis {even(0), even(4), odd(X)← succ(Y,X), even(Y )} over the target one. Moreover,

in order to get the objective hypothesis, connected theories are used.

The input file oddeven.pl

set_max_clause_length(4).

set_max_ground_clauses(10).

set_complete_saturation(0).

set_connected(1).

set_clause_weight(5).

set_literal_weight(1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% oddeven Example

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% background

begin_of_background.

num(0).

num(s(0)).

num(s(s(0))).

num(s(s(s(0)))).

num(s(s(s(s(0))))).

num(s(s(s(s(s(0)))))).

num(s(s(s(s(s(s(0))))))).

succ(X,s(X)) :- num(X),num(s(X)).

end_of_background.

% examples

examples( [

even(0),

even(s(s(0))),

even(s(s(s(s(0))))),

odd(s(s(s(0)))),

odd(s(s(s(s(s(0)))))),
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not(even(s(0))), not(even(s(s(s(0))))),

not(odd(0)), not(odd(s(s(s(s(0))))))

] ).

% mode declaration

%

% NOTE, Only ’+’’#’ can be included in not(_) currently

head_modes( [even(’#’(num)), even(+num), odd(+num)] ).

body_modes( [succ(-num,+num), odd(+num), even(+num)] ).

The output produced by icc.pl

---- Abductive Result: ----

[not(odd(s(s(s(s(0)))))),not(odd(0)),not(even(s(s(s(0))))),not(even(s(0))),odd(s(s(s(s(s(0)))))),odd(s(s(s(0)))),even(s(s(s(s(0))))),even(s(s(0)))]

---- The GROUND hypothesis is: ----

even(0).

even(s(s(0))) :- succ(s(0),s(s(0))), succ(0,s(0)), odd(s(0)), even(0)

even(s(s(s(s(0))))) :- succ(s(s(s(0))),s(s(s(s(0))))), succ(s(s(0)),s(s(s(0)))),

odd(s(s(s(0)))), succ(s(0),s(s(0))), even(s(s(0))), succ(0,s(0)), odd(s(0)), even(0)

odd(s(0)) :- succ(0,s(0)),even(0)

odd(s(s(s(0)))) :- succ(s(s(0)),s(s(s(0)))), succ(s(0),s(s(0))), even(s(s(0))),

succ(0,s(0)), odd(s(0)), even(0)

odd(s(s(s(s(s(0)))))) :- succ(s(s(s(s(0)))),s(s(s(s(s(0)))))),

succ(s(s(s(0))),s(s(s(s(0))))), even(s(s(s(s(0))))), succ(s(s(0)),s(s(s(0)))),

odd(s(s(s(0)))), succ(s(0),s(s(0))), even(s(s(0))), succ(0,s(0)), odd(s(0)), even(0)

not(odd(s(s(s(s(0))))))

not(odd(0))

not(even(s(s(s(0)))))

not(even(s(0)))

----**** The Best hypothesis is: ****----
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even(A) :- succ(B,A), odd(B)

even(0).

odd(A) :- succ(B,A), even(B)

Time Cost: 4.89000000000000001 seconds

If a new mode bode not(odd(+num)) is allowed, a better hypothesis is then be learned

...

----**** The Best hypothesis is: ****----

even(A) :- not(odd(A))

odd(A) :- succ(B,A), even(B)

Time Cost: 17.58 seconds
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Example nonealike

The input file nonealike.pl

set_max_clause_length(4).

set_max_ground_clauses(10).

set_complete_saturation(0).

set_connected(0).

set_clause_weight(5).

set_literal_weight(1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Simple Example

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% background

begin_of_background.

face(1).

face(2).

face(3).

face(4).

face(5).

face(6).

eq(X,X) :- face(X).

diff(X,Y) :- face(X),face(Y), X \== Y.

end_of_background.

% examples

examples( [

nonealike(1, 2, 3, 4, 5),

nonealike(1, 3, 4, 5, 6),

not(nonealike(2, 2, 3, 4, 5)), not(nonealike(1, 3, 3, 4, 6)),

not(nonealike(1, 2, 3, 3, 5)), not(nonealike(2, 3, 4, 5, 5))

] ).

% mode declaration

%

% NOTE, Only ’+’’#’ can be included in not(_) currently

head_modes( [nonealike(+face,+face,+face,+face,+face)] ).
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body_modes( [eq(+face,+face), diff(+face,+face)] ).

The output produced by icc.pl

---- Abductive Result: ----

[not(nonealike(2,3,4,5,5)),not(nonealike(1,2,3,3,5)),not(nonealike(1,3,3,4,6)),

not(nonealike(2,2,3,4,5)),nonealike(1,3,4,5,6),nonealike(1,2,3,4,5)]

---- The GROUND hypothesis is: ----

nonealike(1,2,3,4,5) :- eq(1,1), eq(2,2), eq(3,3), eq(4,4), eq(5,5),

diff(1,2), diff(1,3), diff(1,4), diff(1,5), diff(2,1), diff(2,3),

diff(2,4), diff(2,5), diff(3,1), diff(3,2), diff(3,4), diff(3,5),

diff(4,1), diff(4,2), diff(4,3), diff(4,5), diff(5,1), diff(5,2),

diff(5,3), diff(5,4)

nonealike(1,3,4,5,6) :- eq(1,1), eq(3,3), eq(4,4), eq(5,5), eq(6,6),

diff(1,3), diff(1,4), diff(1,5), diff(1,6), diff(3,1), diff(3,4),

diff(3,5), diff(3,6), diff(4,1), diff(4,3), diff(4,5), diff(4,6),

diff(5,1), diff(5,3), diff(5,4), diff(5,6), diff(6,1), diff(6,3),

diff(6,4), diff(6,5)

not(nonealike(2,3,4,5,5))

not(nonealike(1,2,3,3,5))

not(nonealike(1,3,3,4,6))

not(nonealike(2,2,3,4,5))

----**** The Best hypothesis is: ****----

nonealike(A,B,C,D,E) :- diff(A,B), diff(B,C), diff(C,D), diff(D,E)

Time Cost: 3.84 seconds
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Example highroll

The input file highroll.pl

set_max_clause_length(3).

set_max_ground_clauses(10).

set_complete_saturation(0).

set_connected(0).

set_clause_weight(5).

set_literal_weight(1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% highroll Example

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% background

begin_of_background.

face(1).

face(2).

face(3).

face(4).

face(5).

face(6).

sum(2).

sum(3).

sum(4).

sum(5).

sum(6).

sum(7).

sum(8).

sum(9).

sum(10).

sum(11).

sum(12).

add(X,Y,Z) :- face(X), face(Y), Z is X + Y, sum(Z).

greaterThan(X,Y) :- sum(X), sum(Y), X > Y.

end_of_background.

% examples

examples( [
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high(3, 5), high(6, 3), high(6, 6),

not(high(1, 1)), not(high(2, 3)), not(high(4, 1)),

not(high(3, 3)), not(high(5, 2))

] ).

% mode declaration

%

% NOTE, Only ’+’ ’#’ can be included in not(_) currently

head_modes( [high(+face,+face)] ).

body_modes( [

add(+face,+face,-sum),

greaterThan(+sum,’#’(sum))

] ).

The output produced by icc.pl

---- Abductive Result: ----

[not(high(5,2)),not(high(3,3)),not(high(4,1)),not(high(2,3)),not(high(1,1)),

high(6,6),high(6,3),high(3,5)]

---- The GROUND hypothesis is: ----

high(3,5) :- add(3,3,6), add(3,5,8), add(5,3,8), add(5,5,10),

greaterThan(3,2), greaterThan(5,4), greaterThan(5,3), greaterThan(5,2),

add(3,6,9), add(5,6,11), add(6,3,9), add(6,5,11), add(6,6,12),

greaterThan(6,5), greaterThan(6,4), greaterThan(6,3), greaterThan(6,2),

greaterThan(8,7), greaterThan(8,6), greaterThan(8,5), greaterThan(8,4),

greaterThan(8,3), greaterThan(8,2), greaterThan(10,9),

greaterThan(10,8), greaterThan(10,7), greaterThan(10,6),

greaterThan(10,5), greaterThan(10,4), greaterThan(10,3),

greaterThan(10,2), greaterThan(9,8), greaterThan(9,7), greaterThan(9,6),

greaterThan(9,5), greaterThan(9,4), greaterThan(9,3), greaterThan(9,2),

greaterThan(11,10), greaterThan(11,9), greaterThan(11,8),

greaterThan(11,7), greaterThan(11,6), greaterThan(11,5),

greaterThan(11,4), greaterThan(11,3), greaterThan(11,2),

greaterThan(12,11), greaterThan(12,10), greaterThan(12,9),

greaterThan(12,8), greaterThan(12,7), greaterThan(12,6),

greaterThan(12,5), greaterThan(12,4), greaterThan(12,3),

greaterThan(12,2)
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high(6,3) :- add(3,3,6), add(3,6,9), add(6,3,9), add(6,6,12),

greaterThan(3,2), greaterThan(6,5), greaterThan(6,4), greaterThan(6,3),

greaterThan(6,2), greaterThan(9,8), greaterThan(9,7), greaterThan(9,6),

greaterThan(9,5), greaterThan(9,4), greaterThan(9,3), greaterThan(9,2),

greaterThan(12,11), greaterThan(12,10), greaterThan(12,9),

greaterThan(12,8), greaterThan(12,7), greaterThan(12,6),

greaterThan(12,5), greaterThan(12,4), greaterThan(12,3),

greaterThan(12,2)

high(6,6) :- add(6,6,12), greaterThan(6,5), greaterThan(6,4),

greaterThan(6,3), greaterThan(6,2), greaterThan(12,11),

greaterThan(12,10), greaterThan(12,9), greaterThan(12,8),

greaterThan(12,7), greaterThan(12,6), greaterThan(12,5),

greaterThan(12,4), greaterThan(12,3), greaterThan(12,2)

not(high(5,2))

not(high(3,3))

not(high(4,1))

not(high(2,3))

not(high(1,1))

----**** The Best hypothesis is: ****----

high(A,B) :- add(A,B,C), greaterThan(C,7)

Time Cost: 2.21 seconds
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Example trains

The input file soldier.pl

set_max_clause_length(4).

set_max_ground_clauses(10).

set_complete_saturation(0).

set_connected(0).

set_clause_weight(5).

set_literal_weight(1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Trains Example

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% background

begin_of_background.

% eastbound train 1

short(car_12). % 0

closed(car_12). % 1

long(car_11). % 2

long(car_13).

short(car_14).

open_car(car_11). % 3

open_car(car_13).

open_car(car_14).

shape(car_11,rectangle). % 4,5

shape(car_12,rectangle).

shape(car_13,rectangle).

shape(car_14,rectangle).

load(car_11,rectangle,3). % 6,7,8

load(car_12,triangle,1).

load(car_13,hexagon,1).

load(car_14,circle,1).

wheels(car_11,2). % 9,10

wheels(car_12,2).

wheels(car_13,3).

wheels(car_14,2).

has_car(east1,car_11). % 11,12

has_car(east1,car_12).

has_car(east1,car_13).

87



has_car(east1,car_14).

% eastbound train 2

has_car(east2,car_21).

has_car(east2,car_22).

has_car(east2,car_23).

short(car_21).

short(car_22).

short(car_23).

shape(car_21,u_shaped).

shape(car_22,u_shaped).

shape(car_23,rectangle).

open_car(car_21).

open_car(car_22).

closed(car_23).

load(car_21,triangle,1).

load(car_22,rectangle,1).

load(car_23,circle,2).

wheels(car_21,2).

wheels(car_22,2).

wheels(car_23,2).

% eastbound train 3

has_car(east3,car_31).

has_car(east3,car_32).

has_car(east3,car_33).

short(car_31).

short(car_32).

long(car_33).

shape(car_31,rectangle).

shape(car_32,hexagon).

shape(car_33,rectangle).

open_car(car_31).

closed(car_32).

closed(car_33).

load(car_31,circle,1).

load(car_32,triangle,1).

load(car_33,triangle,1).

wheels(car_31,2).

wheels(car_32,2).

wheels(car_33,3).
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% eastbound train 4

has_car(east4,car_41).

has_car(east4,car_42).

has_car(east4,car_43).

has_car(east4,car_44).

short(car_41).

short(car_42).

short(car_43).

short(car_44).

shape(car_41,u_shaped).

shape(car_42,rectangle).

shape(car_43,elipse).

shape(car_44,rectangle).

double(car_42).

open_car(car_41).

open_car(car_42).

closed(car_43).

open_car(car_44).

load(car_41,triangle,1).

load(car_42,triangle,1).

load(car_43,rectangle,1).

load(car_44,rectangle,1).

wheels(car_41,2).

wheels(car_42,2).

wheels(car_43,2).

wheels(car_44,2).

% eastbound train 5

has_car(east5,car_51).

has_car(east5,car_52).

has_car(east5,car_53).

short(car_51).

short(car_52).

short(car_53).

shape(car_51,rectangle).

shape(car_52,rectangle).

shape(car_53,rectangle).

double(car_51).

open_car(car_51).

closed(car_52).

closed(car_53).

load(car_51,triangle,1).
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load(car_52,rectangle,1).

load(car_53,circle,1).

wheels(car_51,2).

wheels(car_52,3).

wheels(car_53,2).

% westbound train 6

has_car(west6,car_61).

has_car(west6,car_62).

long(car_61).

short(car_62).

shape(car_61,rectangle).

shape(car_62,rectangle).

closed(car_61).

open_car(car_62).

load(car_61,circle,3).

load(car_62,triangle,1).

wheels(car_61,2).

wheels(car_62,2).

% westbound train 7

has_car(west7,car_71).

has_car(west7,car_72).

has_car(west7,car_73).

short(car_71).

short(car_72).

long(car_73).

shape(car_71,rectangle).

shape(car_72,u_shaped).

shape(car_73,rectangle).

double(car_71).

open_car(car_71).

open_car(car_72).

jagged(car_73).

load(car_71,circle,1).

load(car_72,triangle,1).

load(car_73,nil,0).

wheels(car_71,2).

wheels(car_72,2).

wheels(car_73,2).

% westbound train 8
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has_car(west8,car_81).

has_car(west8,car_82).

long(car_81).

short(car_82).

shape(car_81,rectangle).

shape(car_82,u_shaped).

closed(car_81).

open_car(car_82).

load(car_81,rectangle,1).

load(car_82,circle,1).

wheels(car_81,3).

wheels(car_82,2).

% westbound train 9

has_car(west9,car_91).

has_car(west9,car_92).

has_car(west9,car_93).

has_car(west9,car_94).

short(car_91).

long(car_92).

short(car_93).

short(car_94).

shape(car_91,u_shaped).

shape(car_92,rectangle).

shape(car_93,rectangle).

shape(car_94,u_shaped).

open_car(car_91).

jagged(car_92).

open_car(car_93).

open_car(car_94).

load(car_91,circle,1).

load(car_92,rectangle,1).

load(car_93,rectangle,1).

load(car_93,circle,1).

wheels(car_91,2).

wheels(car_92,2).

wheels(car_93,2).

wheels(car_94,2).

% westbound train 10

has_car(west10,car_101).

has_car(west10,car_102).
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short(car_101).

long(car_102).

shape(car_101,u_shaped).

shape(car_102,rectangle).

open_car(car_101).

open_car(car_102).

load(car_101,rectangle,1).

load(car_102,rectangle,2).

wheels(car_101,2).

wheels(car_102,2).

end_of_background.

% type definitions

int(0). int(1). int(2). int(3).

car(car_11). car(car_12). car(car_13). car(car_14).

car(car_21). car(car_22). car(car_23).

car(car_31). car(car_32). car(car_33).

car(car_41). car(car_42). car(car_43). car(car_44).

car(car_51). car(car_52). car(car_53).

car(car_61). car(car_62).

car(car_71). car(car_72). car(car_73).

car(car_81). car(car_82).

car(car_91). car(car_92). car(car_93). car(car_94).

car(car_101). car(car_102).

shape(elipse). shape(hexagon). shape(rectangle). shape(u_shaped).

shape(triangle). shape(circle). shape(nil).

train(east1). train(east2). train(east3). train(east4). train(east5).

train(west6). train(west7). train(west8). train(west9). train(west10).

% examples

examples( [

eastbound(east1),

eastbound(east2),

eastbound(east3),

eastbound(east4),

eastbound(east5),

not(eastbound(west6)),

not(eastbound(west7)),
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not(eastbound(west8)),

not(eastbound(west9)),

not(eastbound(west10))

] ).

% mode declaration

%

% NOTE: Only ’+’ ’#’ can be included in not(_) currently

head_modes( [eastbound(+train)] ).

body_modes( [

short(+car),

closed(+car),

long(+car),

open_car(+car),

double(+car),

jagged(+car),

shape(+car,’#’(shape)),

load(+car,’#’(shape),’#’(int)),

wheels(+car,’#’(int)),

has_car(+train,-car)

] ).

Since icc.pl has limited scalability, the trains example is only tested with three or two positive

examples. The outputs produced by icc.pl

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Test with e1, e2, e3

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

---- Abductive Result: ----

[not(eastbound(west10)),not(eastbound(west9)),not(eastbound(west8)),

not(eastbound(west7)),not(eastbound(west6)),eastbound(east3),eastbound(east2),

eastbound(east1)]

---- The GROUND hypothesis is: ----

eastbound(east1) :- has_car(east1,car_14), has_car(east1,car_13),

has_car(east1,car_12), has_car(east1,car_11), short(car_12), short(car_14),

closed(car_12), long(car_11), long(car_13), open_car(car_11), open_car(car_13),

open_car(car_14), shape(car_11,rectangle), shape(car_12,rectangle),
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shape(car_13,rectangle), shape(car_14,rectangle), load(car_11,rectangle,3),

load(car_12,triangle,1), load(car_13,hexagon,1), load(car_14,circle,1),

wheels(car_11,2), wheels(car_12,2), wheels(car_13,3), wheels(car_14,2)

eastbound(east2) :- has_car(east2,car_23), has_car(east2,car_22),

has_car(east2,car_21), short(car_21), short(car_22), short(car_23),

closed(car_23), open_car(car_21), open_car(car_22), shape(car_21,u_shaped),

shape(car_22,u_shaped), shape(car_23,rectangle), load(car_21,triangle,1),

load(car_22,rectangle,1), load(car_23,circle,2), wheels(car_21,2),

wheels(car_22,2), wheels(car_23,2)

eastbound(east3) :- has_car(east3,car_33), has_car(east3,car_32),

has_car(east3,car_31), short(car_31), short(car_32), closed(car_32),

closed(car_33), long(car_33), open_car(car_31), shape(car_31,rectangle),

shape(car_32,hexagon), shape(car_33,rectangle), load(car_31,circle,1),

load(car_32,triangle,1), load(car_33,triangle,1), wheels(car_31,2),

wheels(car_32,2), wheels(car_33,3)

not(eastbound(west10))

not(eastbound(west9))

not(eastbound(west8))

not(eastbound(west7))

not(eastbound(west6))

----**** The Best hypothesis is: ****----

eastbound(A) :- has_car(A,B), short(B), closed(B)

Time Cost: 83.07 seconds

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Test with e2, e3, e4

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

---- Abductive Result: ----

[not(eastbound(west10)),not(eastbound(west9)),not(eastbound(west8)),

not(eastbound(west7)),not(eastbound(west6)),eastbound(east4),eastbound(east3),

eastbound(east2)]
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---- The GROUND hypothesis is: ----

eastbound(east2) :- has_car(east2,car_23), has_car(east2,car_22),

has_car(east2,car_21), short(car_21), short(car_22), short(car_23),

closed(car_23), open_car(car_21), open_car(car_22), shape(car_21,u_shaped),

shape(car_22,u_shaped), shape(car_23,rectangle), load(car_21,triangle,1),

load(car_22,rectangle,1), load(car_23,circle,2), wheels(car_21,2),

wheels(car_22,2), wheels(car_23,2)

eastbound(east3) :- has_car(east3,car_33), has_car(east3,car_32),

has_car(east3,car_31), short(car_31), short(car_32), closed(car_32),

closed(car_33), long(car_33), open_car(car_31), shape(car_31,rectangle),

shape(car_32,hexagon), shape(car_33,rectangle), load(car_31,circle,1),

load(car_32,triangle,1), load(car_33,triangle,1), wheels(car_31,2),

wheels(car_32,2), wheels(car_33,3)

eastbound(east4) :- has_car(east4,car_44), has_car(east4,car_43),

has_car(east4,car_42), has_car(east4,car_41), short(car_41), short(car_42),

short(car_43), short(car_44), closed(car_43), open_car(car_41),

open_car(car_42), open_car(car_44), double(car_42), shape(car_41,u_shaped),

shape(car_42,rectangle), shape(car_43,elipse), shape(car_44,rectangle),

load(car_41,triangle,1), load(car_42,triangle,1), load(car_43,rectangle,1),

load(car_44,rectangle,1), wheels(car_41,2), wheels(car_42,2), wheels(car_43,2),

wheels(car_44,2)

not(eastbound(west10))

not(eastbound(west9))

not(eastbound(west8))

not(eastbound(west7))

not(eastbound(west6))

----**** The Best hypothesis is: ****----

eastbound(A) :- has_car(A,B), short(B), closed(B)

Time Cost: 48.9 seconds

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Test with e3, e4, e5
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

---- Abductive Result: ----

[not(eastbound(west10)),not(eastbound(west9)),not(eastbound(west8)),

not(eastbound(west7)),not(eastbound(west6)),eastbound(east5),eastbound(east4),

eastbound(east3)]

---- The GROUND hypothesis is: ----

eastbound(east3) :- has_car(east3,car_33), has_car(east3,car_32),

has_car(east3,car_31), short(car_31), short(car_32), closed(car_32),

closed(car_33), long(car_33), open_car(car_31), shape(car_31,rectangle),

shape(car_32,hexagon), shape(car_33,rectangle), load(car_31,circle,1),

load(car_32,triangle,1), load(car_33,triangle,1), wheels(car_31,2),

wheels(car_32,2), wheels(car_33,3)

eastbound(east4) :- has_car(east4,car_44), has_car(east4,car_43),

has_car(east4,car_42), has_car(east4,car_41), short(car_41), short(car_42),

short(car_43), short(car_44), closed(car_43), open_car(car_41),

open_car(car_42), open_car(car_44), double(car_42), shape(car_41,u_shaped),

shape(car_42,rectangle), shape(car_43,elipse), shape(car_44,rectangle),

load(car_41,triangle,1), load(car_42,triangle,1), load(car_43,rectangle,1),

load(car_44,rectangle,1), wheels(car_41,2), wheels(car_42,2), wheels(car_43,2),

wheels(car_44,2)

eastbound(east5) :- has_car(east5,car_53), has_car(east5,car_52),

has_car(east5,car_51), short(car_51), short(car_52), short(car_53),

closed(car_52), closed(car_53), open_car(car_51), double(car_51),

shape(car_51,rectangle), shape(car_52,rectangle), shape(car_53,rectangle),

load(car_51,triangle,1), load(car_52,rectangle,1), load(car_53,circle,1),

wheels(car_51,2), wheels(car_52,3), wheels(car_53,2)

not(eastbound(west10))

not(eastbound(west9))

not(eastbound(west8))

not(eastbound(west7))

not(eastbound(west6))

----**** The Best hypothesis is: ****----
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eastbound(A) :- has_car(A,B), short(B), closed(B)

Time Cost: 42.94 seconds

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Test with e1, e2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

---- Abductive Result: ----

[not(eastbound(west10)),not(eastbound(west9)),not(eastbound(west8)),

not(eastbound(west7)),not(eastbound(west6)),eastbound(east2),eastbound(east1)]

---- The GROUND hypothesis is: ----

eastbound(east1) :- has_car(east1,car_14), has_car(east1,car_13),

has_car(east1,car_12), has_car(east1,car_11), short(car_12), short(car_14),

closed(car_12), long(car_11), long(car_13), open_car(car_11), open_car(car_13),

open_car(car_14), shape(car_11,rectangle), shape(car_12,rectangle),

shape(car_13,rectangle), shape(car_14,rectangle), load(car_11,rectangle,3),

load(car_12,triangle,1), load(car_13,hexagon,1), load(car_14,circle,1),

wheels(car_11,2), wheels(car_12,2), wheels(car_13,3), wheels(car_14,2)

eastbound(east2) :- has_car(east2,car_23), has_car(east2,car_22),

has_car(east2,car_21), short(car_21), short(car_22), short(car_23),

closed(car_23), open_car(car_21), open_car(car_22), shape(car_21,u_shaped),

shape(car_22,u_shaped), shape(car_23,rectangle), load(car_21,triangle,1),

load(car_22,rectangle,1), load(car_23,circle,2), wheels(car_21,2),

wheels(car_22,2), wheels(car_23,2)

not(eastbound(west10))

not(eastbound(west9))

not(eastbound(west8))

not(eastbound(west7))

not(eastbound(west6))

----**** The Best hypothesis is: ****----

eastbound(A) :- has_car(A,B), short(B), closed(B)
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Time Cost: 1.1400000000000006 seconds

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Test with e2, e3

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

---- Abductive Result: ----

[not(eastbound(west10)),not(eastbound(west9)),not(eastbound(west8)),

not(eastbound(west7)),not(eastbound(west6)),eastbound(east3),eastbound(east2)]

---- The GROUND hypothesis is: ----

eastbound(east2) :- has_car(east2,car_23), has_car(east2,car_22),

has_car(east2,car_21), short(car_21), short(car_22), short(car_23),

closed(car_23), open_car(car_21), open_car(car_22), shape(car_21,u_shaped),

shape(car_22,u_shaped), shape(car_23,rectangle), load(car_21,triangle,1),

load(car_22,rectangle,1), load(car_23,circle,2), wheels(car_21,2),

wheels(car_22,2), wheels(car_23,2)

eastbound(east3) :- has_car(east3,car_33), has_car(east3,car_32),

has_car(east3,car_31), short(car_31), short(car_32), closed(car_32),

closed(car_33), long(car_33), open_car(car_31), shape(car_31,rectangle),

shape(car_32,hexagon), shape(car_33,rectangle), load(car_31,circle,1),

load(car_32,triangle,1), load(car_33,triangle,1), wheels(car_31,2),

wheels(car_32,2), wheels(car_33,3)

not(eastbound(west10))

not(eastbound(west9))

not(eastbound(west8))

not(eastbound(west7))

not(eastbound(west6))

----**** The Best hypothesis is: ****----

eastbound(A) :- has_car(A,B), short(B), closed(B)

Time Cost: 0.45000000000000284 seconds
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Test with e3, e4

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

---- Abductive Result: ----

[not(eastbound(west10)),not(eastbound(west9)),not(eastbound(west8)),

not(eastbound(west7)),not(eastbound(west6)),eastbound(east4),eastbound(east3)]

---- The GROUND hypothesis is: ----

eastbound(east3) :- has_car(east3,car_33), has_car(east3,car_32),

has_car(east3,car_31), short(car_31), short(car_32), closed(car_32),

closed(car_33), long(car_33), open_car(car_31), shape(car_31,rectangle),

shape(car_32,hexagon), shape(car_33,rectangle), load(car_31,circle,1),

load(car_32,triangle,1), load(car_33,triangle,1), wheels(car_31,2),

wheels(car_32,2), wheels(car_33,3)

eastbound(east4) :- has_car(east4,car_44), has_car(east4,car_43),

has_car(east4,car_42), has_car(east4,car_41), short(car_41), short(car_42),

short(car_43), short(car_44), closed(car_43), open_car(car_41),

open_car(car_42), open_car(car_44), double(car_42), shape(car_41,u_shaped),

shape(car_42,rectangle), shape(car_43,elipse), shape(car_44,rectangle),

load(car_41,triangle,1), load(car_42,triangle,1), load(car_43,rectangle,1),

load(car_44,rectangle,1), wheels(car_41,2), wheels(car_42,2), wheels(car_43,2),

wheels(car_44,2)

not(eastbound(west10))

not(eastbound(west9))

not(eastbound(west8))

not(eastbound(west7))

not(eastbound(west6))

----**** The Best hypothesis is: ****----

eastbound(A) :- has_car(A,B), short(B), closed(B)

Time Cost: 1.240000000000009 seconds
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Test with e4, e5

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

---- Abductive Result: ----

[not(eastbound(west10)),not(eastbound(west9)),not(eastbound(west8)),

not(eastbound(west7)),not(eastbound(west6)),eastbound(east5),eastbound(east4)]

---- The GROUND hypothesis is: ----

eastbound(east4) :- has_car(east4,car_44), has_car(east4,car_43),

has_car(east4,car_42), has_car(east4,car_41), short(car_41), short(car_42),

short(car_43), short(car_44), closed(car_43), open_car(car_41),

open_car(car_42), open_car(car_44), double(car_42), shape(car_41,u_shaped),

shape(car_42,rectangle), shape(car_43,elipse), shape(car_44,rectangle),

load(car_41,triangle,1), load(car_42,triangle,1), load(car_43,rectangle,1),

load(car_44,rectangle,1), wheels(car_41,2), wheels(car_42,2), wheels(car_43,2),

wheels(car_44,2)

eastbound(east5) :- has_car(east5,car_53), has_car(east5,car_52),

has_car(east5,car_51), short(car_51), short(car_52), short(car_53),

closed(car_52), closed(car_53), open_car(car_51), double(car_51),

shape(car_51,rectangle), shape(car_52,rectangle), shape(car_53,rectangle),

load(car_51,triangle,1), load(car_52,rectangle,1), load(car_53,circle,1),

wheels(car_51,2), wheels(car_52,3), wheels(car_53,2)

not(eastbound(west10))

not(eastbound(west9))

not(eastbound(west8))

not(eastbound(west7))

not(eastbound(west6))

----**** The Best hypothesis is: ****----

eastbound(A) :- has_car(A,B), short(B), closed(B)

Time Cost: 1.1299999999999955 seconds
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