
Imperial College London

Department of Computing

Session Types Extractor for MPI Programs

by

He Xiao

Supervised by Professor Nobuko Yoshida

Submitted in partial fulfilment of the requirements for

the MSc Degree in Computing Science / Machine Learning of Imperial College London

September 2013

Abstract

The MPI (Message Passing Interface) languages are very popular all over of the world and there are

a few theoretical works on data flow analysis in MPI programs [13, 29, 10, 30]. It is both beneficial

and risky to use MPI paradigm in parallel computing. The performance of an MPI program can

be extremely high if it is used properly; however, considerable amount of energy may be lost due

to communication errors in MPI programs. In order to make full use of MPI paradigm and avoid

the potential runtime errors, some static type checking is desired. However, to analyse a real MPI

source code at compile time is difficult in general because of the lack of easy-to-use analysis tool. A

reasonable approach to solve this problem is to develop user friendly analysis tools in the framework

of Session Type Theory [18, 34]. Session type theory aims to ensure runtime communication safety

through statically analyse the session types of the programs and it also shows interest in analysing

MPI programs. There is a previous application [23] which can judge whether an MPI program

conforms to a given protocol; however, it suffers from the soundness problem and its underlying

basis – the session type theory has evolved. In order to capture the latest parameterised feature

[26] of session type theory, this project developed a stand-alone and portable analysis tool for MPI

programs. The tool is able to extract parameterised protocol from a C project (which may involve

multiple source files), which specifies the communication pattern of the target MPI program. It can

not only extract the abstract structure of the source program, but also analyse the basic semantics

of MPI operations behind their lexical representations. The semantics analysis is achieved by

simulating the execution of target MPI program and it enhances the precision of analysis. Apart

from the software application, there are also several theoretical innovations: LFP (least fixed point)

of protocols 16, strength of matching 14 and concepts of ranges and conditions 8. In this report,

the design and evaluation of the session type extractor application will be explained in detail.

2

Contents

1 Introduction 7

1 This project . 8

2 Motivation . 9

3 Contributions . 10

4 Orgnization . 10

2 Background 12

1 Session Types . 12

1.1 Motivation Of Developing Session Type Theory 12

1.2 Basic Concept Of Session Types . 13

1.2.1 basic syntax of session types . 13

1.2.2 basic properties of session types . 15

1.3 Protocols in Multiparty Session Types . 16

1.4 Operational semantics of Session Types . 18

1.5 Typing System of Session Types . 21

1.6 Evolution of Session Types . 23

2 Pabble . 25

2.1 Syntax . 27

2.2 The advantages of using Pabble . 27

3 Message Passing Interface MPI . 28

4 static type checking . 29

4.1 Motivation of Static Type Checking . 29

5 Traditional Analysis Of MPI Programs . 29

5.1 MPI-CFG . 30

5.2 pCFG . 30

6 MPI and Parameterised Session Type Protocols . 32

3 Design & Implementation 33

1 Terminologies and Concepts used in design and implementation 33

1.1 Rank Variable . 33

1.2 Range and Condition . 33

1.2.1 Range . 33

1.2.2 Condition . 34

1.3 Rank-Related or Non-Rank-Related . 34

1.4 Executor and Target of MPI operation . 34

1.5 Unilateral MPI operations . 35

1.6 Roles . 35

3

1.7 Skeleton of MPI tree . 36

2 Toolset . 36

2.1 LLVM Infrastructure and Clang Compiler . 36

3 Design Goals . 37

4 Unsupported cases . 37

5 Input and Output of The Program . 41

6 Reading Multiple Source Files . 42

7 Architecture Of The Session Type Extractor . 43

8 In-depth explanation of Range and Condition . 45

8.1 AND operation . 45

8.1.1 AND operation for Range . 45

8.1.2 AND operation for Condition . 46

8.2 NEGATION operation . 47

8.3 All the other manipulations on Range and Condition 48

9 Data Structures Used In The Application . 50

9.1 Abstract Syntax Tree . 50

9.1.1 AST Consumer . 50

9.1.2 AST Traversal . 50

9.2 Communication Tree . 51

9.2.1 Construction of CommTree . 52

9.3 MPI tree . 53

9.4 Optimisation of CommTree . 54

10 Simulation . 54

10.1 The Design of Simulation . 56

10.2 Multiple Roles, Single Tree . 56

10.3 Blocking and Deadlock . 57

10.4 Unblocking roles and Marking nodes . 58

10.5 Optimisation of Simulation . 59

11 Extract Condition From Expression . 59

11.1 Condition in boolean expression . 59

11.2 Condition in Target Expression . 60

12 Analysis of Language Constructs In The MPI program 61

12.1 Assignment . 61

12.2 Choice . 62

12.3 Loop . 64

12.3.1 While . 64

12.3.2 For . 64

12.4 Little summarise of the language constructs 64

13 MPI Primitives . 65

13.1 Non-blocking operations . 66

14 Matching of MPI operations . 67

14.1 Perfect matching and Occasional matching 67

14.2 Techniques for identifying the matching of MPI operations 68

15 Generation of Protocol . 70

4

16 LFP . 72

17 The Challenges . 73

4 Test & Evaluation 75

1 Compare with the previous project . 75

2 Test Cases . 80

2.1 Condition Extraction Test . 80

2.1.1 Simple conditions . 80

2.1.2 Complex conditions . 81

2.2 Simple Constructs Test . 83

2.3 Unsupported Cases Test . 85

2.4 Deadlock tests . 87

2.4.1 Classic deadlock . 87

2.4.2 Deadlock caused by MPI Wait . 88

2.4.3 Deadlock caused by collective operations 89

2.5 Testing of complex program with multiple source files 91

2.6 LFP examples . 92

2.7 Matching examples . 92

2.8 Real MPI Program Test: Ring topology 96

5 Conclusion 97

1 Future Work . 98

5

List of Figures

2.1 The structure before delegation . 14

2.2 The structure after delegation . 15

2.3 Multiparty Session types hierarchical relationships 17

2.4 operational semantics . 18

2.5 session initiation: step1 . 19

2.6 session initiation: step2 . 19

2.7 session initiation: step3 . 20

2.8 Some typing system rules . 22

2.9 Pabble Syntax . 27

2.10 . 27

2.11 . 28

2.12 MPI-CFG . 30

2.13 constant propagation in pCFG . 31

3.1 The skeleton of MPI tree for the sample prgram: We can find that the rank-related

choices are ignored and only the most important structures which are visible to every

process are stored in the skeleton of MPI tree. 36

3.2 Dataflow of the application . 44

3.3 The special range [startIndex..endIndex] is equal to the union of two normal ranges:

{[0..endIndex],[startIndex..N-1]}. 46

3.4 CommTree and MPITree in different phases . 53

3.5 Pruning of CommTree . 54

4.1 The roles generated from code 4.3 . 81

4.2 The roles generated from code 4.4 . 82

4.3 Protocol for code 4.5 . 84

4.4 Output of analysing code 4.6 from cmd . 85

4.5 Output of analysing code 4.9 . 88

4.6 Output of analysing code 4.10 . 89

4.7 Output of analysing code 4.11 . 90

4.8 Project structure in test case . 91

4.9 Output of analysing code 4.12 using 100 processes 93

4.10 Output of analysing code 4.12 using 5 processes . 93

4.11 Output of analysing code 4.13 . 94

4.12 Output of analysing code 4.14 . 95

4.13 Output of analysing code 9 . 95

6

List of Tables

3.1 The basic information of the CommNodes used in the application. 52

4.1 Characteristics comparison between old and current applications 80

7

1 Introduction

The computing services have become prevalent in modern life. Every field can benefit from intro-

ducing computing devices, and the demands of greater computing power are increasing steadily over

time. There are generally two possible ways to improve computing capability: increasing the speed

of a single processor or making multiple processors cooperate. Due to the limitation of silicon, the

Moore’s Law is about to end [22], and it has become increasingly difficult to speed up the hardware

with the exponential rate like before. Moreover, the computationally intensive and dynamic tasks

such as environmental simulations and simulations in aerospace engineering, which need much more

computing power than their counterparts, cannot be performed by a single machine in time so that

the results are still valid and useful. Therefore, in the above situations, parallelising the tasks seems

to be a rescue. As a result, the parallel computing becomes an increasingly important research

area.

In parallel computing, the communication technology is a key component; and therefore it has

gained great attentions due to the popularity of parallel computing methodology. There are

two classical paradigms for communication: shared address space and message passing. In the

former approach, different processors communicate with each other by writing to and reading

from the shared memory. In ideal scenario where a CRCW (Concurrent-read, Concurrent-write)

PRAM(Parallel random access machine) model is used, the communication cost is negligible but

in real life, it may suffer from a variety of overheads issues such as cache thrashing and contention

in shared accesses [14, pp. 31,61-62]. More over, due to the uncertainty, it is hard to make an

accurate model of the communication costs for shared memory communication. Therefore, the

latter message passing approach, which has more predictable costs, gains greater popularity and is

massively used in large amounts of parallel applications.

The Message Passing Interface (MPI) is a parallel computing paradigm that adopts the message

passing approach. It defines the syntax and semantics of communication functions so that the users

can write portable and scalable large-scale parallel programs in C or Fortran 77 [33].

Although there are well-tested and efficient implementations for the MPI library routines. There is

no guarantee that the combination of these routines is still safe. So MPI program can have amazing

performance if being used properly, but communication error like deadlock and type mismatch may

occur if the program is designed carelessly. In communication-oriented applications, the major cost

comes from the interactions among processors and communication failure will incur huge costs.

Therefore, in order to exploit the benefits provided by MPI thoroughly without worrying about the

potential hazards, there is a need to verify the communication safety and reliability.

In contrast, the session type theory and the related implementations not only guarantee the com-

munication safety in concrete applications, but also give a clear representation of the structure of

the whole conversation in a highly abstracted level, making it possible to identify and eliminate the

8

redundant communication in the design phase. Using session type theory, the communication in a

program can be abstracted to session types which are written in Scribble syntax [17]; The session

types can be analysed separately. If the session type is correct and the program conforms to it,

then the communication part of the program will be guaranteed to be correct directly. Further-

more, session-based programming has a comprehensive toolchain to cover every step in product

development which facilitates the development of concrete applications.

However, the session-based languages such as SessionJ [21] and SessionC [27] are domain specific

languages which introduce new keywords. They are currently available only inside the laboratory;

so their user base is greatly smaller than that of MPI. It is not easy to let most of the MPI

programmers turn to session-based languages; however, it is quite feasible to use the session type

theory to guide the MPI programming so that most of the errors can be detected at compile time.

The benefits can be preserved while the defects can be weakened if MPI combines with Session

Type Theory properly. This report will explore one of the possible ways to analyse MPI code:

extracting the protocol followed by the MPI source code in Scribble syntax, which can be analysed

by the Scribble tool later.

1 This project

The aim of this project is the implementation of an independent tool in C++ such that, given

a standard MPI program written in C language, it should be able to extract the parameterised

session types from the source code and produce the protocol in Scribble syntax. The tool should

be able to read the MPI source code from an external file and output the Scribble protocol to an

external file. It should be able to analyse the semantics of different language constructs such as

choice (E.G. if and switch), recursion (like for and while loop) as well as the basic MPI primitives

(will be introduced in detail later in chapter 3, section:13). Some error-prone programming style

(ref:chapter 3, section 4) can be detected during the parsing and the warning message will be shown

to the console.

2 Motivation

As described in the introduction, both the MPI paradigm and the session type theory have notice-

able drawbacks.

The compiler used for compiling MPI C program is mpicc and the static type checking is quite

weak. Neither the type mismatch (E.G. process A is sending an integer to process B while B is

trying to receive a double) nor the participants missing (E.G. process A is trying to receive an

integer from process B while B does not attempt to send any data to A) can be detected. This

makes the execution of the MPI program not reliable. When a program is running, we do not

know whether it will corrupt in the next moment (it might be the case that the execution is in

the erroneous branch but it has not hit the error point). What is worse, even if the program runs

perfectly for this execution, we cannot guarantee that it is correct for all the execution path (There

might be many execution path, and the error point is not in the current path). The dynamic

testing can prove a program is incorrect by giving counter examples, but this approach cannot

prove correctness by enumerating because there are infinitely many cases.

9

For the session type theory, the session based programming languages are mainly designed as

extensions of major languages such as Java or C but they do not support all the latest features

of the original languages. The programmers need to familiarise themselves with the new syntax

and semantics before they can enjoy the benefits of session types; this slows down the growth of

session-based languages. The small user base also makes the potential bugs of these domain specific

languages hard to detect.

But the above problems might be overcome by combining the advantages of MPI and session type

theory. The session type theory and the toolchain can be known by more programmers while the

MPI program can gain more safety guarantee. At present, the technique of writing high quality

MPI-like code from Session Type protocols (SessionC [27]) has already been developed. However,

the technique is quite insufficient for the other way around. There was a project [23] in 2012 which

can extract the MPI primitives from the source code; however, the purpose of that extraction is

to build rank trees but not to generate protocols; furthermore, the application developed in the

previous project does not support parameterised protocol. Therefore, in order to generate the

parameterised protocol from the MPI source code, it is necessary to develop a new application.

3 Contributions

The major contribution of this project is the creation of an independent application which can

extract the parameterised session type protocol from MPI C programs. It is more scalable than

the previous project [23] (more details of the comparison can be found at ref: 1). The extraction

of session types is the very first step of the static type checking of MPI programs. And to achieve

this overall objective, several milestones are made first:

1. Invent a basic mechanism which supports multiple source files as input.

2. Create a subclass of RecursiveASTVisitor to traverse the AST of the MPI program which is

able to find the function recursion.

3. Invent a mechanism for representing and manipulating ranges(intervals) and set of ranges

(1.2).

4. Build a mechanism for simulating the execution of MPI programs (10). This mechanism can

judge whether a prospective MPI operation can actually happen. It is also able to detect

deadlocks caused by type mismatching and absence of interaction participants.

5. Propose the concept of least fixed point for protocols of MPI programs (16).

4 Orgnization

The remaining report is organised as follows:

• Chapter 2 : The motivation and basic concept of session type theory are introduced briefly

and then the operational semantics and typing system are explained through a brand-new

example. The evolutionary history and current work on session types are introduced at the

end of this chapter;

10

• Chapter 3 : The compiler upon which this application is built is described in detail at first.

The required program input and the expected output are introduced and the unsupported

cases are listed. Then the architecture of the application is introduced briefly. Then the

brand-new representation of interval is exemplified; and how this new design can facilitate

the internal representation of processes with specific conditions is explained in detail. The

important data structures used by the application are introduced with concrete examples.

Then an extensive description of the mechanism used for analysing the language constructs

of the source MPI program is given. After that, a brand-new mechanism for simulating the

execution of the MPI program is introduced. At last, the problems encountered and the

corresponding solutions are also discussed.

• Chapter 4 : In the test and evaluation chapter, we will first use the toy examples to show

the important application features. Then we will test real-world MPI programs. At last, a

comparison between the application produced in this project and the application designed

in the previous project will be given, showing the aspects at which the application in this

project has improved a lot.

• Chapter 5 : In this last conclusion chapter, the challenges in the static analysis of MPI program

will be reviewed and the possible future extensions of the current application is discussed.

11

2 Background

1 Session Types

1.1 Motivation Of Developing Session Type Theory

As we have mentioned in the introduction part, the communication among processes has become an

increasingly important aspect of modern software. As a result, various technologies appear, aiming

to increase the reliability of communications while preserving expressive power. However, as some

authors suggested in their papers [18, 21], the traditional mechanisms for communications among

processes suffer from different problems. For instance, the RMI (Remote Method Invocation) is

not very flexible; It can describe a single interaction step well, but it cannot directly abstract the

whole scene; To give a concrete example, think about buying some goods in a market. You can

ask the seller the price of a specific item and then may or may not bargain. After that, you may

or may not decide to buy the item. This process can repeat several times to represent buying

multiple goods. There are numerous possible ways to combine the above actions to simulate the

buying behaviour of a customer. The RMI API is able to articulate any specific action but not

the whole behaviour. The approach of socket programming, on the other hand, is more flexible;

However, it often transmits untyped raw byte data, resulting in the lost of communication safety.

Socket programming may also use protocols,like the example given by the Oracle’s Java tutorial

[28]. However,as shown in that tutorial, only server uses a protocol. It makes communication

safer in the clients’ points of view because server’s behaviour is predictable, however,this unilateral

conformance to a protocol also makes the server vulnerable to the vicious clients. The lack of

compiler support makes the conformance to protocol an option but not a mandatory requirement.

In order to overcome the above-mentioned shortcomings of existing approaches, session type theory

incorporates the basic sending/receiving actions with the concepts borrowed from traditional pro-

gramming language such as, selection/branching, recursion and delegation. Session type is able to

represent a series of reciprocal interactions as a single but complete unit. With the typing system

and runtime monitor, the session-based programs can be checked both statically and dynamically.

It is therefore both sound and expressive.

1.2 Basic Concept Of Session Types

The central idea of session-based programming is the session. A session is a series of interactions

between two parties (in classic binary sessions [18]) or among multiple parties (in multi-party

sessions [19, 24]). A session type gives a single type to the series of interactions need to be performed

in the viewpoint of a participant of the conversation. A session type consists of a sequence of

interactions, each of which describes both the direction of the communication(send or receive) and

the types of the transmitted data. Any interaction between two parties of a session is conducted

over a private channel, preventing the occurrences of interferences. The communication between

12

two endpoints can happen only if their session types are compatible. Two session types are called

compatible with each other if both of them are the co-type of the other [18]. The compatibility of

session types among communicating parties can be checked statically to avoid interaction errors at

runtime.

1.2.1 basic syntax of session types

Most syntax and semantics of session types correspond naturally to those of object-oriented pro-

gramming languages. The notations used in this report are borrowed from [18] and [34]. Some

basic session-based programming constructs are introduced here, and more complex communication

structures can be generated by combining these basic operations.

The session initiation is used to establish a fresh channel over which the subsequent interactions

can be performed. It has the form:

request a(k) in P accept a(k) in P (initiation of session)

request a(k) represents the action of requesting the initiation of a new session via public channel ‘a’,

a fresh channel k will be generated and used by program P to perform the later communications.

This is similar to ‘new Type()’ in Object-Oriented Programming languages where ‘Type’ is a public

name and the expression ‘new Type()’ will return a fresh address in memory through which we can

access the object. The difference is that ‘new Type()’ will create a new object which does not exist

before; whereas in session based programming, when we call request statement, the participant has

already existed, and we only get a new approach to access that participant.

k!〈ẽ〉;P k?(ẽ) in P (data sending/receiving)

The k!〈T 〉 represents to send data of type T along channel k. The session pattern k!〈e1〉... k!〈en〉.k?(en+1)

is similar to the Java’s method invocation ‘en+1 k.someMethod(e1, ..., en)’ i.e. first send some data

as arguments, and then expect an output.

k / l;P k . {l1 : P1 ‖ ...‖ ln : Pn} label selection/branching

The label selection and branching are mapped to switch block in programming languages. The

selector makes a choice by sending a label to the receiver; The receiver reacts by executing the

program which is bound with the received label.

µt...t recursion.

The recursion in session types is just like the recursion in traditional programming languages.

Whenever a symbol ‘t’ is encountered, the control flow will come to the position labelled by ‘t’.

throw k〈k′〉 catch k(x) in P channel sending/receiving (delegation)

The channel transfer is similar to transport of value; The difference is that, in a delegation, instead

of moving primitive data type like number or String, a communication channel (or more precisely,

one end of a communication channel) is moved from one agent to another. E.g.

Before the delegation, A and B can communicate with each other via channel s, which has two

13

Figure 2.1: The structure before delegation

Figure 2.2: The structure after delegation

ends (s1 and s2), held by A and B respectively. Similarly, B and C are connected by channel t.

During delegation, B performs s2!〈t1〉, while A performs the dual type s1?(x)[t1/x]

After the delegation, B granted A to interact with C on his/her behalf. After getting B’s port ‘t1’,

A can communicate with C as if he were B. C does not need to notice this change.

1.2.2 basic properties of session types

There are several common characteristics followed by all the session types. The properties listed

below are summarised by Raymond Hu and Rumyana Neykova in their papers [21], [20] and [24].

1. Asynchrony: The asynchrony property is achieved by embedding queues inside the com-

munication channel. The channel is not just a communication medium, it also becomes a

buffer with some storage capability. In session initiation, local configurations (the input and

output buffers) are also prepared at both endpoints of the channel ([20]). The send operation

is therefore non-blocking and the frequency of synchronisation is decreased in this design.

One agent can take part in multiple conversations, which might interleave with each other.

The transport of session request messages via shared channel is unordered, while the com-

munication in an established session is order preserving due to the FIFO (First in First out)

signature of queue ([20]). For example, both Message m1 and m2 are sent to B by A; m1 was

sent earlier than m2; then it is guaranteed that m1 will arrive before m2.

2. Linearity: According to Hu’s definition in his paper [21], linearity means the receiver of a

control message should be unique. For example, in the delegation, it is not allowed to send

the same channel to multiple destinations. Any kind of concurrent usage of sockets(the end

points of a channel) are prohibited to avoid the competition for using channels. Think about

the situation where both agent D and E hold a socket k1 with session type “!String!int”, on

the other side of the channel, B has the co-type “?String?int”. D sends a String first and

then E also sends a String through socket k1; however, B can only receive one String and the

next received data is expected to have type int, which finally turns out not to be the case;

Therefore, non-linear usage of session sockets will break the integrity of session types and are

prohibited by the typing system.

3. Safety: Communication safety means that the interactions in a session will never incur any

communication errors. For the basic correctness requirement, according to Dezani-Ciancaglini

14

and DeLiguoro, only data of the expected type is exchanged (2010, cited by Neykova [24]).

The communication safety in session types is an extension of this basic requirement and gives

more safety guarantees [24].

4. Liveness: The liveness property means deadlock-free in communication. Once a session

is started, the participants should be able to eventually make progress and finally complete

the session without falling into deadlocks. This property can be guaranteed as long as the

program passes the type checking [24].

5. Fidelity: Session fidelity means the progress of the communications follows the scenario

prescribed in the session type[24]. This property indicates the behaviours of an agent in a

conversation is predictable.

1.3 Protocols in Multiparty Session Types

In common software development process, the very first step is always producing specifications to

capture the user requirements, specify what the systems can do and give clear criteria for evaluating

the product. Conforming to the specification does not necessarily mean the product satisfies the

user requirements, but violating the specification always signifies failure. Therefore, conforming to

predefined specification is a necessary condition for developing a piece of good software. In order

to conform to the specification, we need be able to understand the specification thoroughly, which

in turn requires the specification is of good quality.

Luckily, all the above-mentioned requirements can be supported by the toolchain of Session Types.

In the phase of writing specification, the dedicated protocol description language ‘Scribble’ is used

to give clear and verifiable communication specifications for both the system as a whole and each

individual agent within the system. The protocol of a session-based programming language is

similar to a specification of a traditional software application; The subtle difference is that the

former omits the description for local computation due to its communication-oriented nature.

Session Theory uses a global type (protocol) to capture the communication behaviours of agents

and their dependencies in an outsider’s viewpoint at the very beginning. The global type is then

projected to local types for all members that participate in the conversation. The global type de-

scribes the communication behaviours within the whole system whereas the local type concentrates

on a specific participant and only depicts the required actions for that particular participant [17]. A

toy example from [24] is revised and used to describe the hierarchical relationships between global

type, local types and actual programs.

As shown in the figure 2.3, in the global view, agent A needs to pass a String to B, and then agent

B needs to transport a String to C. In this simple scenario, after projection, it is clearly shown in

the local type TB that agent B first needs to receive a String from A and then pass another String

to C. There are various ways to implement the concrete programs, but whatever the programs look

like, they need to conform to their local types. The verification of conformance is performed in the

static type checking, which will be explained in detail later. In the example, program B conforms

to local type TB because the String concatenation is still a String. The projection from global type

15

TC

PB

TB

PA

Type
Checking

TA

Projection

PC

G
Global

Type

Local

Types

Programs

G =A B <String>;
B C <String>; end

TB= ?<A, String>; !<C,String>; end

PB= s?(x). t!<“Hello: ”+x>; end

Figure 2.3: Multiparty Session types hierarchical relationships

to local types has such an effect that as long as the programs conform to the local types, they

will automatically conform to the global type. Therefore, in type checking, only the local type is

needed to be checked against.

The purpose of protocol or global type is to give a high level abstraction so that the overall

behaviours of the target system can be understood at a glance. In the situations where every

participant plays exactly one role, the terms ‘participant’ and ‘role’ are interchangeable. However,

in the dynamic environment, the participants can dynamically join or leave conversations while the

roles are still stable and describe predefined behaviours [12]. For example, ‘lecturer-X’ may refer

to a fixed role which requires the lecturer to teach students knowledge and answer questions with

regard to module X; There might be multiple persons who are competent to do the job and for

the same person, there might be multiple modules that he/she can teach. Therefore, it is likely in

the real life, one person stops teaching the current module and begins to teach another one and

the remaining work required by the old role can be delegated to a candidate. It is also possible

for a powerful and energetic person to teach more than more module at the same time. As we can

feel in the example, the introduction of role-based session types increases the expressive power and

flexibility of session theory dramatically.

1.4 Operational semantics of Session Types

The operational semantics are expressed by the reduction rules listed in figure 2.4. This figure was

produced by Hu in paper [20] to illustrate the operational semantics of SessionJ, but the underlying

concepts are similar. These operational semantics indicate which operations are allowed to happen

and the effects of executing them. They describe the ways in which the system can evolve and

therefore can be used to predict the behaviours of the system.

In session initiation phase, the participants involved in the conversation exchange identification

information between each other and local IO(input and output) queues are generated by each

participant. [Request 1] describes that during the session initiation, a fresh channel with endpoints

s and s̄ is created. Counterintuitively , both endpoints are created by the requestor in Hu ’s

work. Because the requestor should not have foreknowledge about the acceptor before the session

is completely established, it might be more natural for the session requestor to wait for the reply

from the acceptor instead of assuming a predefined port used by the acceptor side. This will also

give more freedom to the acceptor with regard to what endpoint to be used.

The details of session initiation are shown by the diagrams step by step.

16

Figure 2.4: operational semantics

source: Hu et al. (2010) [20].

Figure 2.5: session initiation: step1

17

At first, the requestor A generates its input and output queues and transmits a request message

(include the address of its input mailbox and the session type information) to agent B via public

channel a. A does not know the address of agent B for this session yet so the output queue is not

labelled.

Figure 2.6: session initiation: step2

As shown in figure 2.6, after receiving agent A ’s session request, agent B accepted and created

the local queues. Because the request message contains session type information, agent B is aware

of the overall communication structure. Agent B also received A’s private socket address, he/she

knows where the messages in output queue should go. Agent B then put his/her private address

for this session to the output queue and later it will be sent to A.

As shown in figure 2.7, in step 3, the requestor A will get the private address of agent B via its

input queue. The address of B will be used when the messages for B need to be sent. After step 3,

both agent A and B knew each other and the session has been established.

N.B. S+ and S− can be regarded as the addresses of input queues for A and B respectively, while

the addresses of output queues are totally private and only visible to the owners.

The communications on the established session are simple. Thanks to the input and output queues,

both sending and receiving messages are non-blocking; Each time a new session is established, a

new mailbox dedicated for that conversation will be created and the agent can check all his/her

mailboxes fairly and regularly. Therefore the same agent can participate in multiple sessions si-

multaneously without worrying the possibility of deadlocking caused by bad scheduling (Eg. the

circular wait problem) (Note that the characteristic of non-blocking receiving is not a nature of

session types but just an implementation choice).

The queues or bufferers are used to avoid frequent synchronisation so that the computations in

different agents can be performed more independently [16]. In practice, the messages stored in

the output buffer are usually sent when the buffer is full or maybe the flush command is executed

periodically. In the synchronisation between the sender and the receiver, the message in the front

of the sender’s output queue will be removed and sent to the receiver; When the message arrives at

18

Figure 2.7: session initiation: step3

19

the destination, it will be appended to the end of the recipient’s input queue. Each time a correct

action is performed, the corresponding part in the session type is removed to reflect the update.

The transition rule Sel and Bra are similar to basic data sending and receiving. But instead

of transmitting primitive value, a special label is transferred from the selector to the options

provider. According to the label being transferred, the proceeding actions are decided by each

party independently. For instance, look at the Sel rule in diagram 2.4. After selecting label Li,

the label Li is added to the end of output queue and the remaining session type associated with

the channel becomes Si. After the selection, the selector will continue by executing the program

Pi which was associated with the label Li. For the agent who offers the branching, in receiving

a label, the actions opposite to those of the selector are performed, which can be summarised as

co-type of selector’s session type.

1.5 Typing System of Session Types

The typing system is used for checking the well-formedness of a program. It can report syntax

errors as well as enforce the types of expressions are valid and compatible with the expectations

according to the definitions in the program. The stronger a typing system is, the more errors can be

found in compile time and the fewer errors will be encountered at runtime. Session-based language

has a typing system such that the runtime properties such as communication safety, progress and

fidelity can be guaranteed through static type checking.

Take the definition in [18], the major typing system is of the form:

θ; Γ ` P . ∆

The above formula means the process P conforms to typing ∆ under the environment θ; Γ. “Sorting

Γ specifies the protocols at the free names of P , while typing ∆ specifies P ’s behaviours at its free

channels”, the explanation given in [18] clearly shows how to reduce the typing rules.

Figure 2.8: Some typing system rules

source: Honda et al. (1998) [18]

In the rules [ACC] and [REQ], the environment specifies the protocol at the free name a is α and

α respectively. Because free channel k has been bound to a session type α or α in the session

initiation, there is no free channel k in the program; ∆ only concerns the behaviours of P at its

free channels, therefore, the entry k should be removed from Delta.

In the [SEND] rule, k is a free channel. Therefore, according to the order of executing program, a

list of data with types S̃ is output to channel k, followed by the session type α which describes the

actions performed by P at channel k. [RCV] rule is similar.

20

The binary session typing system ensures that in any conversation, the two participants have

compatible session types. Informally, two session types are compatible if they are co-type to each

other. We use the type with an overline to denote the co-type. E.g. !〈T 〉;S (sending some data of

type T and then co-type of S) is the co-type of ?〈T 〉;S (receiving some data of type T and then

type S); &{Li : Ti} (branching) is the co-type of ⊕{Li : Ti} (selecting).

There are also sub-typing system integrated in the system to support subtypes so that anywhere

a super type is expected, the corresponding sub-types can appear. Generally speaking, due to

multiple paths may be available at runtime (E.g if-else blocks), and we require the execution

preserves the typing; Therefore, we may need a session type to be a sub-type of its updated version

(i.e. after an execution, the session type is updated and the new type will become a super type of

the old type).

1.6 Evolution of Session Types

Session types theory has existed for almost two decades now. Since the first paper on this theory

published, many subsequent extensions were developed, making session types theory more expres-

sive and more robust. In this section, some milestones of session theory will be briefly introduced.

Binary Session Types The papers [31] and [18] established the theoretical basis of session types.

The language primitives and basic typing system was introduced in [31]. The paper [18] enhanced

the expressive power by introducing the concept of delegation, making the first step towards higher-

order session types. However, the syntax of the rule [PASS] in the [18] is too conservative; In some

cases, even if the delegation is valid, it just cannot happen. The paper [34] overcame this limitation

by introducing the concept of polarised channels. In the updated theory, the two ends of a channel

should be explicitly distinguished. Channels become runtime entities created by rule [LINK] and

should not appear in the static programs. For example, after some channel k is created in the

session initiation phase, the ends k+ and k− will be allocated to the two participants connected

by k respectively. Any communication happens on the channel k in the later stage should specify

which end of the channel is used.

Multiparty Session Types Although many communication patterns can be captured by combi-

nations of binary session types, in many circumstances, it is more elegant and suitable to allow more

than two participants communicate in one session. Therefore, in 2008, multiparty asynchronous

session types theory was introduced in [19]. A new concept called global types is introduced to de-

scribe the shared protocol among all the participants in a multi-party session. The actions required

by each participant are described by local types which can be derived by projection of global type.

However, the progress property can only be guaranteed within a single session in the system pro-

posed by paper [19]. In a protocol where several sessions interleaved with one another, the global

progress cannot be guaranteed. To overcome this limitation, a novel static session type system

was introduced in paper [9] to ensure the global progress property in the dynamically interleaved

multi-party asynchronous sessions; In the system proposed by authors of [9], after session initiation,

every participant will share the private session name and get a channel indexed by its role in the

session. When a participant with role p output a message m via its channel, the message m will be

labelled by the sender’s role p and then appended to the end of the queue of the session. Receive

21

operation is similar, the role of the receiver will be used to check whether the head of the queue is

a message whose recipients list contains the receive operation’s requestor.

Parameterised Session Types The traditional Scribble protocols describe the interactions among

different roles explicitly. However, this hard coding mechanism is verbose and inflexible. For exam-

ple, in a ring topology, to capture a scenario where every process sends an integer to its neighbour

in turn, the traditional protocol needs to specify 100 individual interactions if there are 100 pro-

cesses involved: i.e. we need to explicitly state that process 1 sends an int to process 2, process

2 sends an int to process 3, ..., process 99 sends an int to process 100, process 100 sends an int

to process 1. What’s worse, if the number of processes changes, then both the global and local

session types need to be modified to reflect the changing environment. The parameterised session

type theory overcomes this limitation by introducing the parameterised protocol concept and add

that concept into session-based languages. The paper [26] proposes the toolchain for parameterised

session C. A variant of Scribble named “Pabble” is developed to write parameterised protocols. The

corresponding projection algorithm is also provided to transform the parameterised global proto-

col into parameterised local protocols. Different processes are classified into a number of logical

groups according to their communication patterns. The processes within the same logical group

perform the same role and are distinguished by indices. The number of required local protocols

is reduced dramatically and the same parameterised protocol can be reused by instantiated with

a new number if the number of participants changes. In the earlier example, the scenario can be

described by just two lines: process i sends an integer to process i+ 1 if i is between 1 and N − 1,

and process N sends an integer to process 1, where N is the number of processes that participate

in the conversation.

Multi-role Session Types In order to enforce safe communications, the traditional multiparty

session types require the number of participants is fixed when the session starts. In actual appli-

cations, any number of participants may dynamically join or leave a session. The new multi-role

extension presented in paper [12] makes session types applicable in such dynamic environments. In

that paper, the concept of ‘role’ is defined as classes of local behaviours. Each session is equipped

with a registration process which maintains a mapping between roles and participants (for each

role, there is a corresponding participants set, the members of which all play that role). When an

agent asks to join a session via a public channel, its identification will be added to a participants

set according to the role it intended to play. The multi-role extension increases the flexibility of

session types greatly.

Nested Protocol The paper [11] uses nested protocol to describe sub-sessions. A direct benefit of

using nested protocol is to initiate a session only when necessary, and this lazy initiation reduces

complexity and resource usage of the program. Nested protocol also allows one to call multiple

versions of the same protocol with different arguments, which increases its modularity and flexibility

[11].

Reconnection-Based Delegation It is well known that in a delegation, the passive party does

not have to notice the change of his/her partner. But in fact, that phenomenon only happens

in systems where the indefinite redirection mechanism is used to implement delegation. In the

indefinite redirection mechanism, after a delegation, even if the session sender has already delegated

the remaining tasks to the session receiver and logically finished, it still needs to redirect the

22

messages so that the communications between the passive party and session receiver can continue.

There is no extra things needed at the passive party side but the overheads at the session sender

side are increased. The paper [21] compares and contrasts the indefinite redirection strategy and

reconnection based strategy, and proposes two reconnection-based delegation implementations to

reduce the delegation overheads.

Toolchain

A set of comprehensive tools is developed to support the applications of session types theory.

The toolchain is still developing but has already covers every stage of software development. The

protocol description language ‘’Scribble’ [17] can facilitate the design of protocols. The latest

parametrised protocol allows the designers to get rid of the tedious repetition and customise the

protocol conveniently. After writing global protocols, the corresponding local types can be derived

automatically by algorithms. There are many examples of using protocols in [16].

There are also many language extensions for session types which can be used in the implementation

stage. These include Session Java [21, 20], Session C [27], Session Python [25]. These language

extensions have extended syntax and typing system to make session constructs expressible and

compilable. These session-based languages are always evolving to reflect the latest achievements in

session types theory.

2 Pabble

Pabble (Parameterised Scribble) is a variant of the traditional Scribble language. The original

Scribble is not suitable for describing MPI programs due to the issues listed below.

There is only one keyword recur to denote loops in the current Scribble language and it cannot

represent the number of iterations explicitly. This might be fine in certain situations because in a

classic object-oriented programming model, an object is just a passive service provider. An object

will perform some actions only if it was asked to do so. For example, in the travel agency scenario,

the agency is like an object and it only replies to the customer if the customer made a request

at an earlier point. Therefore, it is the customer who dominates the conversation. Therefore,

the number of iterations do not need to be represented explicitly. The dominating party tells the

dominated party what to do by sending an appropriate label. Therefore the party that dominates

the conversation can make a decision to terminate the loop of communications unilaterally.

However, it is not the case for MPI programs. MPI programs typically use “single program multiple

data” paradigm. The processes that run the MPI program are team mates but not master and

workers. Different processes execute the program independently, and therefore, most of the decisions

can be made on its own without consulting others. So it is possible that process 0 decides to send

an integer to process 1 three times via a loop while the process 1 is waiting to receive an integer

for five times. The number of iterations is significant in this situation however it is not expressible

by the current Scribble syntax.

This problem can be solved by using the Pabble, which offers the keyword foreach to specify the

number of iterations. The unpublished paper [26] written by Nick Ng proposed the language Pabble

and gave an in-depth explanation. The basic concepts will be briefly explained here.

23

2.1 Syntax

Figure 2.9: Pabble Syntax

source: Nicholas Ng and Nobuko Yoshida [26]

The syntax is quite similar to that of the traditional Scribble except the introduction of indices

notation and the keyword foreach.

2.2 The advantages of using Pabble

To capture the communication scenario using the traditional Scribble protocol is tedious in some

certain cases. For example, to describe the communication pattern of circulating information

repeatedly in a ring topology, the traditional Scribble protocol will be something like this:

Figure 2.10

source: Nicholas Ng and Nobuko Yoshida [26]

One role is needed for each individ-

ual participant. The protocol will

be quite long if the number of par-

ticipants is large. What is worse,

the whole protocol needs to be recre-

ated if the number of participants

changes. Therefore, the traditional

Scribble protocol is not very flexi-

ble when facing the changing require-

ments. But if we observe the tradi-

tional Scribble protocol carefully, it

is easy to notice that the interac-

tions can be classified into two logical

groups; in the first group, the Workeri+1 receives a message from Workeri ; and in the second

group, the Worker with largest index sends a message to the Worker1.

After analysing the two logical groups, we can find that every roles in the same group share the

same communication pattern. The whole scenario of this ring topology can therefore be represented

by five line of Pabble protocol (shown on the left hand side); and amazingly, the contents of the

24

protocol does not need to be changed when the number of workers changes; the only thing needed

to do is to instantiate the protocol with the desired number. Through the explanation of this

example, it is quite clear that Pabble is more flexible, compact and reusable. As a result, the

Session Type Protocol extractor produced in this project chooses Pabble protocol as its output.

3 Message Passing Interface MPI

Figure 2.11

source: Nicholas Ng and Nobuko Yoshida [26]

Message Passing Interface (MPI) is

a widely used message-passing pro-

gramming paradigm used for pro-

gramming in parallel computers [14].

It is designed by a group of re-

searchers from academia and industry

[33]. Since the first release in June

1994 [33], it has evolved a lot. At

present, the standard has several popular versions: MPI-1, which emphasizes message passing

and has a static runtime environment, and MPI-2, which includes new features such as dynamic

process management [33].

An MPI program can either be written in asynchronous or loosely synchronous paradigms [14]. All

concurrent tasks can be executed asynchronously in the former; but that also makes the reasoning

of programs harder and result in non-deterministic behaviour [14]. In contrast, the latter is a good

compromise between the parallelism and predictability. The program written in loosely synchronous

paradigm only synchronise when perform interactions, and the tasks can be executed independently

between the interactions [14].

Most MPI programs are written using the Single Program Multiple Data (SPMD) approach [14]. In

this approach, all the processes execute the same source code. They may behave differently because

of the different ranks they have. In the SPMD approach, there may exist special conditionals (the

choices related to the rank variable, like “if(rank==0)”), specifying the process-specific task (E.G.

only process with rank 0 can execute the statements in the previous if block,). The application in

this project assumes the MPI programs are written in SPMD approach.

4 static type checking

4.1 Motivation of Static Type Checking

There exist two major approaches to reason a program: static analysis and dynamic monitoring.

The advantage of static type checking is based on its low cost; The more errors can be detected at

compile time, the fewer will be encountered at runtime. The runtime monitoring might be easier

but once the error happens, it causes loss; the loss caused by communication error can be extremely

huge if thousands of or even millions of cores are involved.

However, MPI applications are more difficult to analyse statically because [13, 29] :

1. number of MPI processes are unknown at compile time.

25

2. the existence of conditional statement enables a segment of the program only being executed

by a subset of the processes, while the code that resides outside of the special conditionals

should be executed by all the processes.

3. applications use complex arithmetic expressions to define the processes.

4. The meaning of ranks may change according to the MPI communicators that the MPI calls

use;

5. MPI provides several non-deterministic primitives such as MPI ANY SOURCE and MPI Waitsome

which makes static mappings between send and receive operations very difficult.

5 Traditional Analysis Of MPI Programs

The authors of [10, 13] suggested a compiler analysis framework to perform the analysis task. In

the next two sections, the basic concepts of MPI-CFG (MPI control flow graph) and pCFG (parallel

control flow graph) will be briefly introduced.

26

5.1 MPI-CFG

Figure 2.12: MPI-CFG

source: Strout et al. (2006) [30]

begin program (0)

x=0 (1)

z=2 (2)

b=7 (3)

if (rank == 0) then (4)

x=x+1 (5)

b=x*3 (6)

send(x) (7)

else (8)

receive(y) (9)

z=b*y (10)

endif (11)

f = reduce(SUM,z) (12)

end program (13)

The above pseudo code program and the corresponding MPI-CFG (MPI Control Flow Graph) come

from paper [30]. The MPI-CFG extends the traditional CFG by adding communication edges, which

are represented by dashed arrows. The communication edge comes from the sender and points to

the recipient. And the nodes connected by the communication edges are called communication

nodes. The ordinary nodes in the MPI-CFG are blocks of local computations which can be done

independently while in communication nodes, processes need to communicate with others in order

to make progress.

Some interesting analysis can be performed via this MPI-CFG such as the constant propagation.

That is a test for evaluating whether a variable can hold some constant value after some execution

of the program; It uses forward slicing techniques to test the scope which will be affected by a

particular assignment.

The technique of constant propagation may be used to extract the programs executed by a particular

process from a standard MPI program. After a rank is being assumed, every occurrence of the

variable that stores the rank can be replaced by the constant. If there is any if statement whose

condition is comparing the rank of the process with a value, then the evaluation can be performed

and the block of programs which is irrelevant to the process can be eliminated. This can be a good

start for the later static type checking.

5.2 pCFG

Parallel Control Flow Graph (pCFG) is another extension of traditional CFG for analysing MPI

programs.

The pCFG extends the traditional CFG to parallel application and it still uses the corresponding

CFG in the dataflow analysis. Each pCFG node is a collection of process sets; and each process

set within a pCFG node is associated with a CFG node which means all the processes in that set

are currently executing at that CFG node.

27

In pCFG, all the processes are in the same group at the beginning of the program. Later, when the

discrepancies between different processes appear, the processes will be divided into a finite number

of groups according to their behaviours. The groups are dynamically updated during the running

of the program. A group of processes will be divided into several subgroups in the next step if

theses processes need to perform different actions.

Figure 2.13: constant propagation in pCFG

source: Greg Bronevetsky (2009) [10]

There is a typo in this diagram, after sending the value of x to process 1, process 0 will receive a

value from process 1 and assigns that value to its local variable y. The statement receive y← 0

should be receive y← 1. The other cascading errors should also be corrected to make it consistent.

Despite this small typo, this diagram from [10] illustrates the idea of pCFG clearly.

Graph(a)is the source code while(b)is its control flow graph. Due to statement A is a branching

with regard to process id and therefore, process 0 will go to state B while process 1 will further to

F ,and all the remaining processes will go to the end state I. This split the original single set into

three different subsets. Note that, after process 1 entered the state F , it blocked until process 0

reached state C, at which point, they can communicate and both evolve to the next states. This

idea can be useful in verifying progress property of the MPI program.

In this simple example, the progress over pCFG is linear because all the involved processes have

a deterministic timeline. This is not always true because in some situations, a process may have

different paths to follow in the CFG, resulting in the corresponding pCFG also have multiple

outgoing edges. This may be represented as branching logic but due to the space limitation, it will

not be explained here.

6 MPI and Parameterised Session Type Protocols

The above two approaches use CFG like technologies to analyse the data flow and control flow

of MPI programs. However, there is no clear specification for the output. The output of those

algorithms is just some internal CFG representation; therefore it is hard for other programs to

make use of the analysis results.

28

In contrast, the Scribble protocol from Session Type Theory has syntax defined in BNF notation.

After the application generate the Scribble protocol for the MPI program, that protocol can be

used by other Scribble tools later. This seamless connection increases the re-usability of the output.

After getting a correct protocol, the programmer can freely optimise the implementation. As long

as the generated protocol is still the same as the original correct one, there is no semantic change

in the communication aspect.

Another important reason for choosing Scribble protocol as the analysis out is: there is natural

correspondence between MPI program and the Scribble protocol. Both the MPI program and the

Scribble global protocol describe the overall scenario for the whole communication. Well, more

precisely, both of them contain the overall communication scenario; the MPI program is not just

about communication. Such similarity can still be found even if we switch to the finer-grained

view. The global protocol can be projected to local protocol which describes what the endpoint

agent needs to do, while the actual program executed by each process can also be extracted from

the original MPI program.

To sum up, there are strong relationships between MPI program and Scribble Protocol, which

makes the combination of them meaningful.

29

3 Design & Implementation

1 Terminologies and Concepts used in design and implementation

1.1 Rank Variable

The rank variable means the variable which stores the rank number for the processes. The

name of the rank variable can be obtained by analysing the MPI function “int MPI Comm rank(

MPI Comm comm, int *rank)”. For example, in the code:

1 MPI Comm rank(MPICOMMWORLD, &rank) ;

The rank variable is rank.

1.2 Range and Condition

1.2.1 Range

The concept “Range” specifies a wraparound interval within which the process rank can be. The

rank can be any integer between 0 and N-1 where N is the number of processes. The notation used to

represent range is [startIndex..endIndex], which is borrowed from [26]. The notation is wraparound

because the start index might be greater than the end index. For example [5..2] denotes all the ranks

that are either greater than 4 or less than 3; The two intervals ([5..N-1] and [0..2]) are adjacent in

the context of MPI program, therefore it is more compact to shrink them to the single range [5..2].

The wraparound range is just an internal representation of the scope of processes for computation

convenience, in the output protocol, it is represented as relative index. For example, the interaction

Data(MPI INT) from MPI COMM WORLD[0..N-1] to MPI COMM WORLD[1..0] will be repre-

sented as Data(MPI INT) from MPI COMM WORLD[rank:0..N-1] to MPI COMM WORLD[rank+1]

if rank is the rank variable.

The notation range can also be used to represent the range of any variable with consecutive values.

A variable will have consecutive range of values in the conditional block. For example, in the code:

1 i f (i>1 && i <6){
2 MPI Bcast (buf0 , bu f s i z e ,MPI INT , i ,MPICOMMWORLD) ;

3 }

the variable i has range [2..5].

1.2.2 Condition

A Condition represents a collection of Ranges. It describes the set of all the possible values a

process rank can be. For instance, if there is a choice in the program like this:

30

1 i f (rank > 2 && rank < 6 | | rank > 9) {
2 MPI Send (buf0 , bu f s i z e , MPI INT , (rank+1) % numOfProcs , 0 , MPICOMMWORLD) ;

3 }

Then the condition for the processes that execute the code will be MPI COMM WORLD{[3..5],[10..N-

1]} (suppose the rank variable is associated with the MPI world group). The target of the MPI send

operation (the recipients) can be represented by the condition MPI COMM WORLD{[4..6],[11..0]}

The Range and Condition are two low level data structures which have been equipped with all the

necessary operations such as AND, OR and NEGATION, etc. The mechanism for manipulating

these data structures will be detailed in section 8.

1.3 Rank-Related or Non-Rank-Related

The terms rank-related and non-rank-related will appear frequently in this report. They describe

the characteristics of the conditions owned by variables or CommNodes 9.2. If a condition contains

every number in range [0..N-1], then it is non-rank-related because it is related to all the processes

regardless of their rank numbers; otherwise, the condition is rank-related because it only refers a

subset of the processes.

1.4 Executor and Target of MPI operation

Most of MPI operations (except some Collective operations) have clear two parties: the party which

sends data and the party which receives data. The executor of an MPI operation is the party which

performs the operation while the target is the opposite party of the communication. As shown in

the last example, in a sending operation like MPI Send, the executor is the sender and the target

is the receiver. For a receiving operation, it is the opposite; the recipient is the executor while

the sender is the target. We can also find such relationship in some simple collective operations;

for example, the MPI Bcast is just a special form of sending operation where the executor is the

broadcaster and the target is all the other processes in the communicator group. Both the executor

and the target of an MPI operation can be represented by a Condition which has already been

introduced in the previous paragraph.

1.5 Unilateral MPI operations

All the basic MPI interactions involve two parties and the collective operations require all the

processes of the communicator group to participate. However, for a basic MPI operation, MPI

programs usually specify the behaviours of the two parties separately. In the previous program

snippet 1.2.2, the MPI Send statement only specify that the executor of that operation needs to

send data to the target; it is only an instruction for the senders in this case. However, if there is

no corresponding recipients receiving data, the interaction will not happen. In this report, all the

prospective MPI interactions are called unilateral operations before the communications actually

happen.

31

1.6 Roles

The concept Role in the application is a bridge between the participant of MPI operation and

the role concept role in session type protocol. A Role in the application has a field of Range so

that it can represent the executor (or partial executor) of an MPI operation. A Role is extracted

from the boolean expression of a conditional block. Thanks to the low level operations have been

defined well for Range and Condition, the Role can be easily created and split into several smaller

Roles. As a participant of the protocol, in the simulation phase (details in section 10), the Role

will traverse the CommTree and pick up the relevant MPI operations to execute.

32

Figure 3.1: The skeleton of
MPI tree for the
sample prgram:
We can find that
the rank-related
choices are ignored
and only the most
important struc-
tures which are
visible to every
process are stored
in the skeleton of
MPI tree.

1.7 Skeleton of MPI tree

The skeleton of a MPI tree only contains the basic non-rank-related language constructs. It is just

like a CommTree (details in section 9.2) which has all the rank-related sub-trees eliminated. For

example, in the code below:

1 i f (t e s t==0){
2 i f (rank==1)

3 MPI Send (buf0 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD) ;

4

5 i f (rank==0)

6 MPI Recv (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD, &s ta tu s) ;

7 }
8

9 e l s e {
10 i f (rank==0)

11 MPI Send (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD) ;

12

13 i f (rank==1)

14 MPI Recv (buf0 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD, &s ta tu s) ;

15 }

The skeleton of the MPI tree has the structure shown in the diagram 3.1.

2 Toolset

2.1 LLVM Infrastructure and Clang Compiler

The application developed in this project is an MPI source code analysis tool based on LLVM

infrastructure and Clang compiler. LLVM is not an acronym but the full name of a project which

produces a collection of reusable compiler and toolchain technologies [7]. At first, LLVM was

just a research project at the University of Illinois, which aims to provide a modern, SSA-based

(SSA: static single assignment) compilation strategy capable of supporting both static and dynamic

compilation of arbitrary programming languages; now, it has included many sub-projects on a wide

range, such as code optimisation and code generation [7].

Clang is one of the sub-projects of LLVM. It is a C/C++/ObjC front-end for LLVM compiler

33

which offers fast compiles and low memory usage [3]. It is suitable for different kinds of clients. If a

user wants to debug a program written in C language family, then Clang can offer very expressive

diagnostic information and accurate locations of the errors. If the client wants to refactor or perform

an in-depth semantic analysis, then she needs to get highly detailed information about the source

code; in this case, Clang compiler can generate a complete AST (Abstract Syntax Tree) for the

original program [2].

In the application produced by this project, thanks to the golden combination of LLVM back-end

and Clang front-end, the lexical analysis and AST generation can be performed by invoking just

several library functions. This greatly reduces the amount of low level tedious work, and as a result,

the main focus can be put on the high level analysis.

3 Design Goals

As mentioned at the beginning, the final delivered software is expected to extract the parameterised

session types from the standard MPI program and produce the protocol in Scribble syntax. It should

be able to trace the control flow of program, starting from the first line of the main function of the

program being analysed.

After the implementation, all the basic requirements have been satisfied. However, the control

flow analysis is constrained by the information available at compile time. Due to the fact that

the IF statement is heavily used to distinguish the work of different processes, the analysis of IF

statements becomes quite difficult. Due to these difficulties and most importantly, the limited time

available, some rare cases are ignored so that the major efforts can be made to improve the quality

of the software in its supported area. The unsupported scenarios are listed in the section 4.

4 Unsupported cases

In order to make the program robust and generate the correct outcome, some premises are intro-

duced. The program will check whether the required preconditions are satisfied, if not, then the

program will throw an exception and stop immediately. The details of these preconditions will be

discussed.

• Nesting non-rank related choice within rank-specific block when there are MPI operations

within the non-rank related choice.

There are two kinds of choice in MPI program: the rank-related choice and non-rank-related

choice. The rank-related choice is the choice whose condition involves rank variable. For

example, the expression “if(rank==0)” indicates a rank-related choice if the variable rank

stores the rank number of the process which executes the program. Only process with rank

0 can execute the then block of “if(rank==0)”; while the non-rank-related choice is the

one that has impact on the behaviour of all the processes and does not relate to partial

processes directly. For instance, “if(test==1)” is the head of a non-rank-related choice given

the variable test is not relevant to the rank number. If the variable test is evaluated to 1,

then all the processes will enter the body of the then block; otherwise, everyone will go to

the else block. Now consider the program below:

34

1 i f (rank==0){
2 bool nonRank0=f a l s e ;

3 /∗some c a l c u l a t i o n here ∗/
4 i f (nonRank0) {
5 MPI Recv (buf0 , bu f s i z e , MPI DOUBLE, 1 , 0 , MPICOMMWORLD, &s ta tu s) ;}
6

7 e l s e {
8 MPI Send (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD) ;

9 }}
10

11 i f (rank==1){
12 bool nonRank1=f a l s e ;

13 /∗some c a l c u l a t i o n here ∗/
14 i f (nonRank1) {
15 MPI Recv (buf0 , bu f s i z e , MPI DOUBLE, 0 , 0 , MPICOMMWORLD, &s ta tu s) ;}
16

17 e l s e {
18 MPI Send (buf0 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD) ;

19 }}

It is quite clear that the behaviour of this MPI program is non-predictable because the effects

of the calculations are not deterministic. If process 0 and process 1 both enter if block or

they both enter else block, i.e. the boolean variables test0 and test1 are set to both true

or both false, then there will be a deadlock. The program can execute without deadlock in

other possible paths. This non-deterministic execution will make the static analysis extremely

difficult. And using the conservative analysis, this case will be regarded as deadlock.

In contrast, if the program can be refactored to the code below, then a perfect analysis result

can be obtained. Even though the communication pattern is still unknown at compile time,

at least we are confident that there will not be any deadlock.

1 bool nonRank=f a l s e ;

2 /∗some non−rank r e l a t e d c a l c u l a t i o n here ∗/
3 i f (nonRank) {
4 i f (rank==0){
5 MPI Send (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD) ;

6 }
7 i f (rank==1){
8 MPI Recv (buf0 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD,& s ta tu s) ;

9 }
10 } e l s e {
11 i f (rank==0){
12 MPI Recv (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD,& s ta tu s) ;

13 }
14 i f (rank==1){
15 MPI Send (buf0 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD) ;

16 }
17 }

• Mixture of rank-related and non-rank-related conditions in boolean expression.

35

In complex boolean expressions it is normal to have several smaller expressions connected by

logical conjunction (&&) or logical disjunction (||) operator. It is easier to analyse single item.

For example, if we see the boolean expression “if(rank==0)”, we know its enclosed block can

only be executed by the process with rank number zero; for the expression “if(rank¿1)”, it

is clear that it is related to the processes with rank number greater than one. We can even

assume that a block with non-rank related condition (like “if(nonRank==0)”) is accessible

by any process, because in SPMD, every process has exactly the same values for the same

non-rank variable.

The author of the previous MPI type checking report [23] designed very complex mechanism

for handling the if statement. He enumerated many different combinations of boolean condi-

tions. He distinguished the rank-related conditions from the non-rank-related conditions. For

example, according to his report, if a if block has condition if(rank1&&(nonRank&&nonRank)),

then only processes whose rank numbers satisfy the rank-related variable rank1 can access

the block. This mechanism looks rational at first because every process may satisfy the

non-rank-related condition while the rank-related condition can only be satisfied by certain

processes. However, the author of the previous project only considers the situation in if block

but little about the else block. If we consider the negation of the previous condition, which

is !(rank1&&(nonRank&&nonRank)); we can find that this negation can be transformed

to !rank1||!nonRank||!nonRank, which can be further deduced to all rank condition(every

process might find the negation of a non-rank variable true). And here is the problem, for

the processes specified by the rank-related condition rank1, they may execute either if or

else block; and the issues caused by non-determinism have already been discussed in the first

unsupported scenario. In order to remove this non-determinism, the behaviour of mixing

rank-related and non-rank-related conditions is forbidden. Although some expressive power

is losing, the predictability and accuracy have been enhanced a lot.

• Multiple possible values for executor or target of MPI operation.

1 i f (t e s t 1==0){
2 x=0;

3 } e l s e {
4 x=1;

5 }
6

7 MPI Bcast (buf0 , bu f s i z e ,MPI INT , x ,MPICOMMWORLD) ;

8 MPI Gather (sendarray , 100 , MPI INT , rbuf , 100 , MPI INT , x , MPICOMMWORLD) ;

9

After the execution of the non-rank related block, there are two possible values for variable

x, 0 or 1. This makes the output protocol non-deterministic; either process 0 performs a

broadcast followed by a gather, or process 1 does the same task. Unfortunately, this scenario

cannot be described by simply making a sequence of choices. For example, if we write the

scenario like this: process 0 broadcasts or process 1 broadcasts; process 0 gathers or process 1

gathers , then the semantic meaning of the original program will be changed because process

36

1 broadcasts followed by process 0 gathers is not permitted in the original program. Even if

we design sophisticated mechanism to capture the semantics of this kind of program correctly,

we might face the risk of state explosion (each time a non-rank-related choice is encountered,

the possible execution paths will be doubled). Therefore, to make the program manageable,

once the executor or target of an MPI operation is found to have multiple possible values,

the program will throw an exception and terminate.

5 Input and Output of The Program

The user can offer the program starting arguments in two approaches: through console or via

configuration file. The detailed instruction for running the application can be found in the user

manual. In this section, only a brief introduction will be given.

There are four arguments can be identified: the MPI source files list, the library including path,

the number of processes, and the warning level. The first argument is compulsory while the others

are optional. The MPI source file list is the collection of all the MPI source files which are needed

for the analysis. If there are multiple files, then the paths need to be separated by “;”. The first

path must point to the file which contains the main function. The library including path is the

path of the library used in the application. These paths are used to initialise the header search

paths of Clang. The user needs to specify the path of MPI’s include folder and the OS’s default

include folder, either by command arguments or configuration file (will be introduced in the user

manual).

The number of processes can be any positive number and the presence of an exact number facilitates

the simulation of the MPI program. If the user does not specify the number of processes, then

a default value 100 is used. The number of processes is necessary because for most of the MPI

prorams, it is not possible to find a generic protocol capable of describing all the possible executions

with different number of processes. As we know, the user can specify the number of processes when

executing an MPI program. For example, in the code below:

1 i f (rank==5){
2 MPI Send (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD) ;

3 }
4

5 i f (rank==6){
6 MPI Recv (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD,& s ta tu s) ;

7 }

• If the user set the number of processes to a number less than 6 (the largest possible rank is

at most 4), then the program terminates normally, though there is no communication at all.

• If the number of processes is equal to 6, then there will be a process with rank 5 which can

execute the MPI Send operation; however, the program will end with a runtime error due to

there is no process with rank number 6.

• If the number of processes is greater than 6, then the communication happens successfully

and the generated protocol is stable (it will not change due to the increase of the number of

processes).

37

There will be more discussion about the impact of the number of processes on the generated protocol

in the section 16 of the current chapter.

The warning level argument is used to adjust the strictness level. It is indicated by the boolean

variable STRICT in the application code. If the variable STRICT is set to false, then the matching

of MPI operations is performed more loosely; the matching of MPI operations will not consider

the types of the transmitted data; this makes the matching successful even if the data type is

not matched (example of data type mismatch: process A is sending integer to B but process B is

receiving a double value from A). If the warning is set to strict level, then the data type mismatch

will be detected and the matching will be more conservative.

6 Reading Multiple Source Files

It is easy to compile a C project with multiple source files. In the command line, simple type:

gcc -o executable sourcefile 1.c sourcefile 2.c ... sourcefile n.c

and then an executable will be produced from compiling all the input c files [4]. We can achieve

the same effect using Clang compiler, but when Clang is used to analyse code, the AST will only

be created for the main file even if multiple source files are relevant.

Although the Clang compiler only constructs a single AST for each translation unit, it will include

the files specified by #include statements in the analysed unit. The problem is that, in most

cases, instead of directly including other implementation files, only a header file containing function

skeletons is used. This is a good programming habit which reduces the degree of coupling; however,

when we analyse the main source code, we want to get the bodies of the functions when they are

invoked; but for the functions whose definitions are given in other files, we can only get the function

specifications from the headers, which prevents the control flow to be traced.

The author of [23] considered to get ASTs for each single file and then combine them. However, it

is too difficult to do that in a short time. Therefore, the author of this report invented a simple but

working method: when the application starts, the user needs to specify all the arguments, among

which is the source files list; the paths of all the relevant implementation files can be extracted

from the source file list; subsequently, a copy of the main-file (which contains main function) will

be created (with a suffix), and for each implementation file “somePath/x.c”, there will be a

statement “#include somePath/x.c” inserted to the beginning of the main-file’s copy. After

the insertions complete, instead of the original main-file, the main-file’s copy which contains the

extra include statements will be sent to Clang for AST generation. The temporary copy of the

main-file will be deleted before the application terminates and the original main-file will not be

modified.

7 Architecture Of The Session Type Extractor

The data flow diagram 3.2 depicts the high level structure of the project. At first, the MPI

source code is parsed by the Clang compiler instance and the corresponding abstract syntax tree is

generated. Then the MPI type checking consumer will traverse the abstract syntax tree, starting

38

Figure 3.2: Dataflow of the application

39

from the main function and tracing the basic control flow. During the traversal, the CommTree(see

section 9.2) containing the unilateral MPI operations and the stub of MPITree(see section 9.3)

will be constructed. The roles corresponding to the MPI processes will be created from analysing

the choice statement and recursion statement. After all the statements in main function has been

traversed successfully, the complete CommTree and skeleton of MPITree have been built. And the

MPISimulator will let all the roles created in the AST traversal phase traverse the CommTree from

root node. The roles will try to match MPI operations and once a successful matching is found,

the actually happened operation will be inserted to the MPITree skeleton. When the simulation

finishes, the construction of MPITree will have been completed. Finally, the protocol generator

can traverse the MPITree to produce the parameterised Scribble Protocol (Pabble).

In the traversal of AST, the MPI type checking consumer will analyse the assignment statement and

perform a simple constant propagation in order to increase the accuracy of the generated protocol

(Some MPI operation has its target or executor stores in a variable). The details of analysing

values of variables and the simple constant propagation will be explained in the section 12.1. In

the traversal, different rules are defined to handle different language constructs, the details will be

described in section 12.

40

8 In-depth explanation of Range and Condition

In the terminology introduction part, a high level description of Range and Condition has already

been given. In this section, an extensive description of the basic operations on them will be given

in order to understand the remaining part of the report better.

8.1 AND operation

8.1.1 AND operation for Range

The AND operation for Range is defined to model the intersection of two ranges. This operation

can reflect the semantics of logical operator “&&” as well. For example, in the code below:

1 i f (rank>2 && rank<7) { . . . }

Two boolean expressions are combined by the logical operator &&. These two expressions represent

range [3..∞] and [-∞..6] respectively; and the intersection of these two ranges is [3..6], which

is exactly the range denoted by the whole boolean expression ‘rank>2 && rank<7 ’. In fact,

every boolean expression which involves rank variable needs to perform a AND operation with the

complete range of processes: [0..N-1] to ensure that the Condition of a rank-related variable is

always falling into the legal range [0..N-1].

There are several helper methods are defined to facilitate the computation of AND.

• bool Range::isThisNumInside(int num) is implemented to test whether a given number is

inside the current range.

• bool Range::hasIntersectionWith(Range other) is implemented to test whether the current

range has intersection with the given range.

The implementation is quite simple, if either range has whichever ending point falling inside

the other range, then return true, otherwise return false.

There are several cases in handling the AND operation of two ranges. Whichever case it is, an

intersection testing will be performed first, if there is no intersection between the two ranges, then

the resulting intersection is definitely empty set.

Implementation of AND operation on Range: Given range1 = [s0..e0], range2 = [s1..e1],

where s0, e0, s1, e1 are all integers within [0..N-1] (N is the number of processes) and range1 has

intersection with range2.

• Case 1: If the two operands are both normal ranges (end index > start index) or both

special ranges (end index < start index), then the intersection of range1 and range2 is

[max(s0,s1)..min(e0,e1)].

• Case 2: One of the two operands is special range and the other is normal range. As shown

in the diagram 3.3:

Assume range1 is the special range, then range2 must be a normal range. From the figure

3.3, it is clear that range1 is equal to {[0..e0], [s0..N-1]}. Then the final intersection of range1

and range2 will be the union of [s1..min(e0,e1)] and [max(s0,s1)..e1].

41

Figure 3.3: The special range
[startIndex..endIndex]
is equal to the union
of two normal ranges:
{[0..endIndex],[startIndex..N-
1]}.

8.1.2 AND operation for Condition

Sometimes, it is not enough to compute a single range. For example, in the code:

1 i f ((rank<=2 | | rank>=5 && rank<=7) &&

2 (rank>=1 && rank<=3 | | rank>=4 && rank<=6)) { . . . }

The processes described by the boolean expression is the intersection of Conditions {[0..2],[5..7]}
and {[1..3],[4..6]}. The AND operation operating on Conditions is based on the AND operation

for Range.

Implementation of AND operation on Condition:

Algorithm 1 Conjunction of two Conditions

1: Input Data: Condition A:{ranA0,...,ranAm}, B :{ranB0,...,ranBn}
2: Result: A ∩ B

3: function AND(A, B)
4: Condition C = {}; . C is used to hold the final result
5: for all (ran1, ran2) ∈ A×B do
6: C = C ∪ (ran1 AND ran2) . AND operation for ranges was defined earlier
7: end for
8: return C
9: end function

In the algorithm 1, for each pair (ran1, ran2) in Cartesian Product of Condition A and B, the inter-

mediate intersection ran1 AND ran2 is computed. The union of all these intermediate intersections

is the final intersection of Condition A and Condition B.

42

8.2 NEGATION operation

The range and condition concepts are mainly used to describe the intervals of processes. Therefore,

the negation of a range is designed to be its complementary set in the universal set [0..N-1]. The

negation of a condition ‘c’ can be obtained by using a recursive function to intersect the negations

of all the member ranges in condition ‘c’.

Algorithm 2 Negation of Range and Condition

1: Input Data: Range ran: [s..e], s, e ∈ N
2: Result: Condition c which is the negation of ran

3: function Negate(ran)

4: if ran covers all numbers in [0..N-1] then

5: return {}
6: else if s==0 then

7: return {[e+1..N-1]}
8: else

9: if s > e then

10: return {[e+1..s-1]}
11: else

12: return {[0..s-1],[e+1..N-1]}
13: end if

14: end if

15: end function

1: Input Data: Condition A:{ranA0,...,ranAm}
2: Result: Condition X which is the negation of A

3: function Negate(A)

4: if A == {} then

5: return {[0..N-1]}
6: else if A == {ran} then . condition A contains a single range ‘ran’

7: return Negate(ran); . calculate the negation of ran

8: else

9: return AND(Negate(ranA0), Negate({ranA1,...,ranAm}))
10: end if

11: end function

8.3 All the other manipulations on Range and Condition

Similar to the logical reasoning, all the operations on Range and Condition can also be defined

on top of the basic NEGATION and AND operations. In the implementation of Diff(Condition

other), which computes all the processes which are inside the current condition but not present in

the condition other, this idea is used. As a result, the implementation is simply one line of code:

this-¿AND(Condition::negateCondition(other));

43

There are many helper methods being defined to facilitate the manipulation of ranges and condi-

tions, due to the space limitation, they will not be covered in detail here.

44

9 Data Structures Used In The Application

9.1 Abstract Syntax Tree

In this subsection, we will briefly introduce the AST consumer and AST traversal algorithm used

in this project.

9.1.1 AST Consumer

In order to gather useful information from the AST of the MPI program, an AST consumer has to

be implemented. The AST consumer used in the Session Type Extractor is based on two interfaces

from Clang’s AST library: the RecursiveASTVisitor and the ASTConsumer ; the former specifies

the order of traversing the AST nodes while the latter defines the way of extracting information

from the nodes. Because the traversing and extracting are highly interleaved, a single class named

MPITypeCheckingConsumer is chosen to implement both interfaces.

9.1.2 AST Traversal

The recursive traversal mechanism has already been defined in Clang’s AST library and all the

Traverse*Stmt have already been implemented by Clang. Therefore, in most cases, only the corre-

sponding Visit*Stmt function needs to be implemented.

When the HandleTopLevelDecl(DeclGroupRef d) method is invoked, all the top level declarations

are iterated. If the function declaration main is found, it will be recorded by the variable mainFunc;

after all the top level declarations are visited, the method HandleTranslationUnit(ASTContext

&Ctx) will be called. If there are no compilation errors found, the main function will be visited

formally by calling VisitDecl(mainFunc);. Then the recursive traversal will be started from the

main function.

The high level control flow tracing is achieved by two methods: VisitFunctionDecl(FunctionDecl

*funcDecl) and VisitCallExpr(CallExpr *E). During the traversal of statements in the main func-

tion, if a function invocation is found by the method VisitCallExpr, then the basic information

of the function will be extracted; if the function has a body defined, then the control flow will be

switched to the function being called by executing the code VisitFunctionDecl. If the function being

called does not have a body, then the function name will be checked; if the function is a supported

MPI operation, it will be caught by an appropriate if block and some further manipulation can be

conducted. The current application can only support invoking user-defined function with return

type void. Due to the limitation of available time, the mechanism of passing arguments has not

been implemented, therefore for the function calls with arguments, the accuracy of analysis cannot

be guaranteed.

The analysis of the program is in fact a process of decomposition. The body of any function is just

a compound statement, the traversal mechanism implemented by Clang’s RecursiveASTVisitor can

guarantee all the sub-statements in the compound statement being traversed properly, regardless

of what statement types the enclosed statements may have.

1 i n t main (i n t argc , char ∗argv [])

2 {
3 i n t a=2;

45

4

5 i f (a==1) { . . . }
6 e l s e { . . . }
7

8 f o r (i n t i =0; i <5; i++) { . . . }
9 whi l e (a>0) { . . . }

10

11 return 0 ;

12 }

In the code snippet shown in 9.1.2, there are totally five statements in the compound statement (the

body of main function). The TraverseStmt method inherited from RecursiveASTVisitor guarantees

that each of five enclosed statements can be traversed recursively in turn when we traverse the

compound statement.

The statement types of these five enclosed statements are DeclStmt, IfStmt, ForStmt, WhileStmt

and ReturnStmt. When the recursion statement like ForStmt and WhileStmt are traversed, the

conditions are evaluated first and then the body will be traversed by invoking method TraverseStmt.

For the IfStmt, after the boolean condition has been analysed, the body in the then block and the

body in the else block will be traversed in turn.

Each time a user-defined function is called, its name will be put into a function stack. Each time a

ReturnStmt is encountered, one item will be popped from the stack. When a function name is being

pushed onto the stack, a checking will be performed. If the function name going to be inserted

can be found on the top of the stack, then a function recursion is found; and an exception will be

thrown because the current application does not support function recursion. A special mechanism

will be applied to make sure the void function without ReturnStmt can be handled correctly.

9.2 Communication Tree

The CommTree is a tree which contains all the basic language constructs and unilateral MPI

operations (1.5). If we regard the unilateral MPI operations as unfinished tasks, then the CommTree

will be a tree of tasks. The language constructs are intermediate nodes and the MPI operations are

the leaves. Each node in the tree has a condition which specifies what kind of role is allowed to visit

it. In the simulation, different roles traverse the same CommTree from the root node. Every role

needs to visit the non-rank-related nodes but the traversal path may vary when the rank-related

nodes are encountered. The details of the simulation will be explained in section 10.

9.2.1 Construction of CommTree

The CommTree is made up of CommNode. There are different types of CommNode, corresponding

to various programming constructs. A complete description of CommNode is listed in table 3.1.

The CommTree is gradually constructed during the traversal of AST of the MPI program. There is

a temporary node called curNode which references the node that we currently working on. At first,

curNode references the root node which represents the compound statement in the main function.

Each time a construct is recognised, the corresponding type of CommNode will be generated and

inserted to the current node. Each time an intermediate node is inserted to the tree, it will

46

Node Type Corresponding Language Constructs Is Intermediate Node ?

ROOT Compound Statement yes

CHOICE If Statement and Switch Statement yes

RECUR While loop and For loop with indefinite iteration number yes

FOREACH For loop with fixed iteration number yes

CONTINUE Continue Statement no

WAIT MPI Wait operation no

BARRIER MPI Barrier operation no

SEND MPI operations related to sending data no

RECV MPI operations related to receiving data no

Table 3.1: The basic information of the CommNodes used in the application.

become the new curNode. Therefore, the statements surrounded by language constructs can have

correct parents. Furthermore, when all the inner statements of a construct have been traversed, the

curNode will go up one level to avoid the later parallel statements being captured unexpectedly.

Therefore, the hierarchy of the CommTree can be correctly constructed. To facilitate the traversal

of the tree, every node keeps a reference to its right sibling; each time a new node is going to be

inserted to curNode, a reference of the new node will be passed to the last child of the curNode for

updating its right sibling reference.

9.3 MPI tree

While CommTree is used for holding the tasks, the MPITree is created for storing the program

simulation result. It can collate the available information so that a better output can be produced

by traversing its nodes. The skeleton of MPITree is created when the program’s AST is traversed.

During the simulation, if a successful matching of MPI operations is found, then the actually

happened MPI operation will be inserted to a proper node of the MPITree. The whole process will

be depicted in a use case below.

MPI program:

1 f o r (i n t i =0; i <5; i++){
2 i f (rank==0)

3 MPI Send (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD) ;

4

5 i f (rank==1)

6 MPI Recv (buf0 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD, &s ta tu s) ;

7 }

Corresponding CommTree and MPITrees in different phases are shown in figure 3.4. As shown in

the diagram, the CommTree is constructed via a depth first pre-order traversal. Each time a new

node is inserted to the CommTree, the index number will be increased by one and stored by the new

node. If the node is non-rank-related, then it will be used to generate an MPI node. Assume the

node has index x and the generated MPI node is MPINode *mpiNode, then the tuple (x, mpiNode)

will be inserted to the map “IndexAndMPINodeMapping”. These data structures are very useful

in the simulation, which will be introduced in the next section.

47

Figure 3.4: CommTree and MPITree in different phases

48

9.4 Optimisation of CommTree

Figure 3.5: Pruning of CommTree

Sometimes, after the CommTree is con-

structed, the condition for some node is false,

i.e. no processes can visit the node. There-

fore, the CommTree will be pruned before

the simulation starts. This can speed up the

traversal of the tree a little. After this op-

timisation, the CommTree in figure 3.4 will

become the tree shown in the figure 3.5.

10 Simulation

Recall the analogy between unilateral MPI operations and tasks. Only two complementary uni-

lateral MPI operations can match and make the interaction actually happen; this is similar to

dividing a task into two parts; only both parts of the task are performed, can the overall task be

accomplished. In the example described by figure 3.4, there are two tasks posted on node 4 and

node 8 respectively. When a legitimate role visits the task node, it will simulate the process of

performing the task by reporting it to the MPISimulator. The simulator is responsible for checking

whether the newly reported task is complementary with any previous unmatched tasks. If there is

no matching, then the task will be inserted to the pending list and becomes one of the unmatched

tasks. In the other case, a successful matching is found, then the communication happens and the

MPI operation representing this interaction will be inserted to the right MPINode in the MPITree.

The simulator is able to find the accurate MPINode because of the data structures which are men-

tioned in last section. The simulator starts from the node where the communication happens and

queries its ancestor nodes recursively until a non-rank-related node is found; then, by looking up

the map “IndexAndMPINodeMapping”, the desired MPINode can be found. After a successful

interaction, both tasks participating the interaction will be consumed.

When the simulation starts, every role will start visiting the root node. Each time a new node

49

is encountered, the role will compare its own condition and the condition of the node. There are

several possibilities here:

• If the conditions match perfectly, then the role may go deeper to visit the first child of the

node if the node is an intermediate node, or perform the corresponding task if the visited

node is an MPI operation node;

• If these two conditions do not have intersection, then the role will go to the right sibling of

the current visited node;

• If these two conditions have overlap but not the same, then

– If the current visited node is a task node, then the task on the node cannot be reported

completely because of absence of partial executors. For example, in the code:

1 i f (rank>1 && rank<6)

2 MPI Send (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD) ;

Suppose the role with condition {[2..3]} visits the Send node. However, the whole task

requires a role with condition {[2..5]} to perform. In this case, the old task will be divided

into two pieces, the piece with condition {[2..3]} will be reported to the simulator while

the other piece with condition {[4..5]} will preserve the unreported status. The visitors

can only perform the unreported tasks in order to avoid the same task to be performed

multiple times.

– If the current visited node is an intermediate node, then the role (the visitor) will be

divided to two new roles according to the intersection of the conditions of the role and the

node. For example, in the previous code snippet, assume the visitor role has condition

{[4..9]}. When the role visits the root node of the if statement, the role will be replaced

by two new roles: one with condition {[4..5]} and the other with condition {[6..9]}. The

role with condition {[4..5]} will go deeper to visit the children of the current node while

the role with condition {[6..9]} will go to visit the right sibling of the current node.

10.1 The Design of Simulation

• The simulation cannot be performed easily by roles only due to their short-sightedness. When

a role finds a unilateral MPI operation, it is not able to decide whether there exists a comple-

mentary operation without looking ahead enough nodes. This looking ahead is tedious and

involves a lot of repetitions.

• The simulation cannot be accomplished by MPISimulator alone. Some MPI operation is

blocking and the executor cannot continue until a successful matching is found. Therefore,

when a blocking MPI operation is encountered, we cannot simply report it and continue to

next node. If we record the conditions for the blocked processes and does not report the

tasks related to them until they are unblocked, then there will be many nodes left unmarked

even if they have been visited. The order of traversal will be very unpredictable if only an

MPISimulator is used.

Therefore, the design of simulation is this project separates the responsibilities of roles and sim-

ulator clearly. The roles are only responsible for traversing the CommTree and report the doable

50

unilateral MPI operation, leaving the job of judging whether the operation can actually happen to

the MPISimulator.

10.2 Multiple Roles, Single Tree

In the phase of CommTree construction, a single CommTree and probably multiple roles are cre-

ated. All the roles share the same CommTree so that any update of the tree will take effect without

any delay. In the example shown by diagram 3.4, there will be four roles generated: role{[0..0]},
role{[1..N-1]}, role{[1..1]} and role{[0..0],[2..N-1]}. At first, all these four roles will be initialised

in such a way that all of them point to the root node with index 0.

The simulation is performed in a while loop and the simulation will not terminate unless a deadlock

is found or the root node of CommTree has been marked. In each iteration, all the roles in the role

list will traverse the CommTree in turn. In each traversal, the role will not return unless it is split

up into several new roles or it encounters an operation.

In the example, role{[0..0]} will traverse the CommTree first. It will continuously go deeper until

it reaches the node with index 4 (the SEND node). There will be an MPI send operation in the

pending list and the node with index 4 will be marked after this traversal of role{[0..0]}.

Then role{[1..N-1]} will performs its first traversal. When it reaches the choice node, it will choose

the ELSE branch to visit; and it will directly mark the root of ELSE branch because that node

does not have any children. After several steps, role{[1..N-1]} reaches the node 7, which is the root

of IF branch of the second choice. Role{[1..N-1]} will be divided into two new roles: role{[1..1]}
and role{[2..N-1]}. Note that we have already had a role{[1..1]} in our role list ; however, the

previous role{[1..1]} will be overwritten by the new one because the newly created role is visiting

a node whose index is larger (closer to the end of the tree).

When role{[1..1]} traverses the tree, it will start from node 7 and find the unilateral receive opera-

tion quickly. After that receive operation is reported by role{[1..1]}, role{[1..1]} will return and be

blocked. But the simulator will conclude that this receive operation matches the send operation in

the pending list and the actually happened operation (process 0 sends an integer to process 1) will

be inserted to the MPITree. As a result of successful matching, the role{[1..1]} will be unblocked

and the RECV node will be marked.

All the other traversals are trivial and will be skipped here. An intermediate node will be marked

if all of its children have been marked. Therefore, the root node will finally be marked and the

simulation will terminate.

10.3 Blocking and Deadlock

A role may become blocked if it encounters a blocking operation. For example, a blocking receive

operation or a synchronisation operation like MPI Wait or MPI Barrier. If all the active roles (the

roles which have not finished the traversal of the tree) are blocked, then it is not possible to make

any progress; As a result, a deadlock happens and the program terminates with warning message.

There is a dedicated class called “CollectiveOPManager” to check whether there are deadlocks

in collective operations. Because collective operations are blocking, the process participating a

51

blocking operation cannot continue before finishing; therefore the collective operations can only

happen one by one; as a result, the CollectiveOPManager will only record at most one collective

operation at any time. After the current monitored collective operation is finished, the reference

to it will be set to null.

Recall that during the simulation, the roles will traverse CommTree to search MPI operations. If

a collective operation is reported by a role and the collective operation monitored by the Collec-

tiveOPManager is null, then the newly reported operation will be monitored by the CollectiveOP-

Manager. If there is a second collective operation found by any role before the current monitored

collective operation is finished, then there is some process who has not finished the first collective

operation but waiting to execute some other collective operation; as a result, neither operation can

finish normally and a deadlock occurs.

10.4 Unblocking roles and Marking nodes

Unblocking roles The blocking is not achieved by directly changing the status of the role because

quite frequently, not all the processes in the blocking role can be unblocked after an interaction

happens. For example:

1 i f (rank==0)

2 MPI Send (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD) ;

3

4 i f (rank==1 | | rank==2)

5 MPI Recv (buf0 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD, &s ta tu s) ;

In the previous code snippet, we can find that the role{[1..2]} is the executor of the receive opera-

tion. However, after the interaction (process 0 sends an integer to process 1) happens, only partial

processes are unblocked, therefore, we cannot directly unblock the whole role; instead, we create a

new role{[1..1]} to reflect the fact that process 1 is able to continue.

Marking nodes We have known that an intermediate node will be marked if all of its children

have been marked. We need to define the base case to make the mechanism works.

For a task node, whether it should be marked depends on whether all the tasks on it have been

done. Each time an interaction happens, the executor conditions of both involving operations will

be updated accordingly. If the executor of an operation can be ignored, then the task has been

accomplished and the node it inhabits will be marked. In the example code shown in paragraph of

Unblocking roles, if there is another statement at the end:

1 i f (rank==0)

2 MPI Send (buf0 , bu f s i z e , MPI INT , 2 , 0 , MPICOMMWORLD) ;

then the task of receiving integer from process 0 will be done (the executor processes of the task are

process 1 and process 2 and both of them have accomplished the task). So finally the MPI Recv

node will be marked.

10.5 Optimisation of Simulation

The simulation can be optimised by emptying the role list in synchronisation point (like MPI Barrier

node or other collective operation nodes). Because a collective operation node cannot be marked

52

unless it has been visited by all the processes, we can just put a single role with range [0..N-1] to

the role list and continue simulation.

11 Extract Condition From Expression

There are different kinds of expressions, and those having numeric values or range of numeric

values can be represented by conditions. In this section, the technique of extracting conditions

from expressions will be introduced. The most basic cases will be introduced first so that the

more complex structures can be analysed by method of divide and conquer. The analysis of MPI

operations in complex language constructs can be greatly simplified after the conditions related to

the constructs are extracted.

11.1 Condition in boolean expression

• Evaluable expressions

If the boolean expression can be evaluated as an integer or boolean value by Clang, then let

Clang evaluate the expression. If the expression is a non-zero constant or boolean true, then

just return the full range:{[0..N-1]}. If the expression is evaluated to zero or false, then return

empty condition {}.

• Non-rank-related Variables

If the expression is a non-rank-related variables, then the value of it is non-deterministic and

it is likely to be true, therefore a complete range {[0..N-1]} will be returned.

• The expression with parenthesis

The condition of its sub-expression (the inner expression without parenthesis) will be re-

turned.

• The negation expression

The condition for the sub-expression without negation operator will be computed first and

then use the negation function of condition to get the resulting condition.

• Binary expressions

1. operator is ‘&&’

Get the conditions from its left hand side (LHS) and right hand side (RHS) expressions.

Return the intersection of them.

2. operator is ‘||’

Get the conditions from its LHS and RHS expressions. Return the union of them.

3. both LHS and RHS are variables

Return complete range{[0..N-1]}.

4. both LHS and RHS are not relevant to rank variables

Return complete range{[0..N-1]}.

53

5. One rank-related variable and one number

There is a dedicated method defined to handle the operation between a rank-related

variable and a number. For example, the expression rank ¿ 2 will produce a condition

{[3..N-1]}. Here N can be arbitrary instantiated number (the number of processes has

been given as a program argument).

6. all the other cases

To predict conservatively, every uncovered cases are likely to be true, so return the

complete range{[0..N-1]}.

11.2 Condition in Target Expression

The target expression refers to the expressions representing targets of MPI operations. For example,

in code snippet:

1 i f (rank>0 && rank<6)

2 MPI Send (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD) ;

The target of this MPI Send operation is rank+1, which is an expression which cannot be directly

obtained. However, in this context, the rank related variable rank has already been bound to

{[1..5]}, therefore, rank+1 can be obtained by simple arithmetic calculation.

To extract conditions from target expression is similar to that from boolean expression. However,

the comparison expressions and pure boolean values are not allowed.

The main possibilities are listed here:

• Constant number

If the expression can be evaluated as a constant number x, then the condition returned will

be {[x..x]}

• Variable

If the variable has been associated with a condition, then just return that condition.

• binary operators

If the target expression are combined by a binary operator, then use the following rules:

1. + or - operators

Get the conditions for LHS and RHS. If neither LHS nor RHS is a number, then throws

an unsupported operation exception. Otherwise, get the condition for the non-number

expression and do the corresponding arithmetic manipulation on the derived condition,

using the number-expression as the operand. To add a number on a condition is easy:

for each of the ranges in the condition, add the number on its starting position and

ending position.

2. % operator

Currently, the % operation is only supported when the right operand is a number equiv-

alent to N. The calculation is similar to + and - operations.

54

3. / operator

Currently, the division operation is only supported when both LHS and RHS are num-

bers. After the quotient q is derived, the condition {[q..q]} will be returned.

4. All the other cases

For all the other situations, an exception will be thrown because the targets of MPI

operations needs to be clear (The MPI ANY SOURCE is not supported in the current

application).

12 Analysis of Language Constructs In The MPI program

12.1 Assignment

Assignment is frequently used in any programming language. It is also vital in the analysis of MPI

programs; the target of MPI operation is often not a simple constant. For example, in a code

snippet like this:

1 l e f t n e i g h b o r = (rank−1 + N)%N;

2 r i gh t n e i ghbo r = (rank+1)%N;

3

4 MPI Isend(&my rank , 1 ,MPI INT , l e f t n e i g hbo r , tag ,MPICOMMWORLD,&reqSend) ;

5 MPI Irecv(&data rece ived , 1 ,MPI INT , r i gh t ne i ghbor , tag ,MPICOMMWORLD,&reqRecv) ;

The targets of MPI Isend and MPI Irecv are both variables. However, the values of the variables

are deterministic at the time when the operations happen: both rank and N have deterministic

values, and the neighbour variables are only dependent on rank and N. Therefore, the assignment

to variables is also analysed to prepare for the potential usage.

It is a trade-off between the accuracy and performance. It is hard to estimate whether a variable

will be used as target of an MPI operation. It seems that any integer variable can be used as target.

But luckily, the assignment only needs to be analysed once even if it is in a loop.

Sometimes, we may encounter such a situation:

1 l e f t n e i g h b o r = (rank−1 + N)%N;

2 r i gh t n e i ghbo r = (rank+1)%N;

3

4 i f (rank==1)

5 MPI Isend(&my rank , 1 ,MPI INT , l e f t n e i g hbo r , tag ,MPICOMMWORLD,&reqSend) ;

6

7 i f (rank==0)

8 MPI Irecv(&data rece ived , 1 ,MPI INT , r i gh t ne i ghbor , tag ,MPICOMMWORLD,&reqRecv) ;

When we evaluate the condition of neighbours, the condition of rank is {[0..N-1]}. However, when

these variables are used, the context changes and the conditions of rank shrink; as a result, the

previous values of neighbour variables are not valid any more. To solve this problem, an expression

string is associated with the variable if its condition depends on some changeable variable. When-

ever the actual condition of a variable is going to be used, this expression string will be checked;

if the string is not empty, then the value of the condition will be recomputed from the expression

string (the function of extracting condition from expressions have been introduced in section 11.2).

55

12.2 Choice

The choice construct is both interesting and complex. Some structures of choice statement are

syntactically correct but error-prone. To ensure the analysis is stable and accurate, these cases are

not supported, which has been explained in section 4.

However, with the help of the concepts range and condition, the analysis of choices becomes ex-

tremely easy for most of common cases.

• Arbitrary number of combinations of sub-conditions

The condition for a compound boolean expression composed of arbitrary number of sub-

expressions with the same nature (rank-related or non-rank-related) can be computed recur-

sively: the condition of the simplest expression can be computed; and combining boolean

expressions via && and || can be simulated by the AND(Condition cond1, Condition cond2)

and OR(Condition cond1, Condition cond2) respectively.

An example of this case:

1 i f (rank==0 | | rank>7 && (rank<N−5 | | rank==N−2)) { . . . }

• Arbitrary number of nesting

In a nesting IF statement, both inner and outer if statements are related to condition. If a

process can enter the inner if block, it must first enter the outer one. Therefore, the inner

if must first obey the condition of the outer one. This can be achieved easily by using the

AND operation on conditions. For example:

1 i f (rank < 7) {
2 i f (rank==2 | | rank>4) { . . . }
3 }

The inner if has the condition described by expression “rank < 7 && (rank == 2 || rank >
4)”, which is {[2..2],[5..6]}.

To make the mechanism more generally, in any nesting environment, the inner constructs will

inherit the condition from its intermediate wrapper constructs. To implement this mecha-

nism, whenever a child node is inserted to the CommTree, its condition will be updated by

intersecting with the condition of its parent node.

• Condition in ELSE block The condition in else part is just the negation of that of if part,

therefore, it can be computed easily via invoking the Negate(Condition cond) function.

12.3 Loop

12.3.1 While

The while statement is the most basic recursion construct. After the condition of while statement

is extracted, a CommNode with type “RECUR” and extracted condition will be inserted to the

CommTree. Then the body of the while statement will be traversed.

56

12.3.2 For

The for statement is a special form of while statement which may have clear iteration number.

The structure of a for statement is like this:

1 f o r (i n i t i a l i s i n g statement ; c ond i t i o na l exp r e s s i on ; updating exp r e s s i on)

We can get the starting position and ending position candidates from analysing the initialising

statement and conditional expression. If the condition in the conditional expression does not

contain the initial value of the target variable, then the condition of the for statement cannot be

satisfied even in the first iteration; as a result, the whole for statement will be ignored and is not

inserted to the CommTree. The updating expression decides whether the for loop has a definite

number of iterations. For example, in the code:

1 f o r (i n t i =0; i <5; i−−) { . . . }

this might be an infinite loop and does not have a definite number of iterations. In contrast, after

analysing the code below, it can be known that the condition of variable i in the for loop is {[0..4]}
and the number of iterations is 5.

1 f o r (i n t i =0; i <5; i++) { . . . }

12.4 Little summarise of the language constructs

The rules for analysing different language constructs are defined separately and invoked during

the AST traversal in order to construct CommTree and skeleton of MPITree. Some variable

and condition mappings are only valid inside certain area; for example, the variable condition

mapping generated from boolean expressions of if, for and while statements are only valid inside

the body of these constructs. The temporary mappings will be removed after leaving the valid area.

This removal is achieved by using two data structures, a variable-condition map and a temporary-

variable-condition map. Each time a if, for or while statement is encountered, the newly defined

variables can be found through analysing the headers. Then the old values for these variables will

be backed up; and then the entries in the formal mapping can be updated. After the body of the

construct is traversed, the formal mapping will be restored to the state before visiting the construct

by reading the backups.

13 MPI Primitives

There are more than three hundred MPI functions being defined in MPI-V2.2 [8]. Due to the limited

time, the session type extractor application can only analyse several most important routines.

Among the supported functions, the API of some typical operations are listed here:

• int MPI Send(void *buf, int count, MPI Datatype datatype, int dest, int tag, MPI Comm

comm)

• int MPI Isend(void *buf, int count, MPI Datatype datatype, int dest, int tag, MPI Comm

comm, MPI Request *request)

57

• int MPI Recv(void *buf, int count, MPI Datatype datatype, int source, int tag, MPI Comm

comm, MPI Status *status)

• int MPI Irecv(void *buf, int count, MPI Datatype datatype, int source, int tag, MPI Comm

comm, MPI Request *request)

• int MPI Bcast(void *buffer, int count, MPI Datatype datatype, int root, MPI Comm comm)

• int MPI Reduce(void *sendbuf, void *recvbuf, int count, MPI Datatype datatype, MPI Op

op, int root, MPI Comm comm)

• int MPI Allreduce (void *sendbuf, void *recvbuf, int count, MPI Datatype datatype, MPI Op

op, MPI Comm comm)

• int MPI Wait(MPI Request *request, MPI Status *status)

The arguments in the function specifications have these meaning:

1. buf, buffer, sendbuf, recvbuf: these are the buffer addresses used in the procedures. For

example, in MPI Recv, it is the receive buffer.

2. count: the number of elements in the buffer.

3. datatype: the type of the transmitted data.

4. root, dest, source: root is the executor of the collective operations like MPI Bcast and

MPI Reduce, while dest and source are the target processes of the corresponding operations.

5. op: op is the MPI operator.

6. request: the request object which represents the process which needs to wait until the non-

blocking operation finishes; status: the state of whether the pending operation has finished.

7. comm: comm is the communicator group. The supported communicator group in the appli-

cation is MPI COMM WORLD.

8. tag: tag is the message tag.

13.1 Non-blocking operations

MPI Isend and MPI Irecv are two non-blocking operations. The calling of a non-blocking operation

may return even if it is not semantically safe to do so [14]. It has less overhead than blocking

operation but in order to ensure the safety of sensitive data, it is usually used together with check-

status operations or MPI Wait operations [14].

There is a dedicated mechanism for handling MPI non-blocking operations. The non-blocking

operations will not be blocked on the operations but may be blocked by synchronisation nodes like

MPI Barrier or the MPI Wait if the request object matches. In order to simulate this process, the

semantics are mimicked. When a MPI Wait function is encountered, the request variable name

will be extracted and then the non-blocking operation with that request object will be searched

from the CommTree: the search will start from the most recently inserted node and go back step

58

by step; if an MPI Wait operation who has the same request object is found, then the search

will terminate and the MPI Wait node will not be inserted to the tree (if the process can pass the

previous wait operation, it definitely can pass this one); if the MPI operation with the same request

object is found, then the MPI Wait node will be inserted to CommTree, and the operation will also

record the address of the wait node. Therefore, in the simulation, when a non-blocking operation

visits a wait node with the same request name, the operation will be blocked. If the non-blocking

operation actually happens, then the simulator will inform the wait node so that the role (the

processes performing the non-blocking operation) waiting in the wait node can be unblocked. If

the non-blocking operation finishes before the role visits the wait node, the wait node will still be

informed so that it will not block the role.

14 Matching of MPI operations

14.1 Perfect matching and Occasional matching

A perfect matching is a stable matching. Once the matching can be found at a configuration where

the number of processes is N, then the matching will always be found for all the configurations

where the number of processes is greater than N.

Listing 3.1 : Example Of Perfect Matchings and Occasional Matchings

1 // p e r f e c t matching examples :

2

3 // sender and r e c e i v e r are both bounded va r i a b l e s

4 // the cond i t i on s r epre s ented by the exp r e s s i on s are a l s o bounded

5 i f (rank==5){
6 MPI Send (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD) ;

7 }
8

9 i f (rank==6){
10 MPI Recv (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD,& s ta tu s) ;

11 }
12

13 i f (rank== N/2) {
14 MPI Send (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD) ;

15 }
16

17 i f (rank== N/2+1){
18 MPI Recv (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD,& s ta tu s) ;

19 }
20

21 // //

22 // the ranks o f sender and r e c e i v e r are both repre s ented by constant number

23 i f (rank==0){
24 MPI Send (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD) ;

25 }
26

27 i f (rank==1){
28 MPI Recv (buf0 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD,& s ta tu s) ;

59

29 }
30

31 // //

32 // //

33 // only matched i f N i s equal to 28

34

35 i f (rank==N/4) {
36 MPI Send (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD) ;

37 }
38

39 i f (rank==8){
40 MPI Recv (buf0 , bu f s i z e , MPI INT , 7 , 0 , MPICOMMWORLD,& s ta tu s) ;

41 }

In the code snippet 3.1, all the examples except the last one are perfect matchings and will be

finally stable with the increment of process quantity. In contrast, in the last example, the matching

only happens when the number of processes is 28.

14.2 Techniques for identifying the matching of MPI operations

The MPI operations can be classified into two categories: collective operations and non-collective

operations. No matter which category an operation belongs to, there exists a generic mechanism

for judging whether it can match with another operation. The mechanism is shown in algorithm 3.

60

Algorithm 3 Algorithm for checking whether two MPI operations are complementary

1: Input Data: MPIOperation op1, op2
2: Result: boolean value indicating whether op1 is complementary operation of op2

3: function complementary(op1, op2)
4: if op1 and op2 have different categories then
5: return false
6: else if op1 and op2 are in different branches then
7: return false;
8: else if data types of op1 and op2 are different then
9: return false;

10: else if op1 is collective operation then
11: if function names of op1 and op2 are different then
12: return false;
13: else if op1 is reduce operation && reduce operators of op1 and op2 are different then
14: return false;
15: else if executor conditions of op1 and op2 are different then
16: return false;
17: else
18: return true;
19: end if
20: else
21: if op1 and op2 are both sending operation or both receiving operation then
22: return false;
23: else
24: return true;
25: end if
26: end if
27: end function

In the algorithm, the phrase “in different branches” means in different paths of a non-rank-related

choice. For example, in the following code snippet 14.2, the process with rank number 0 is not

possible to communicate with process 1: for the non-rank-related choice, both processes will enter

the same branch but in any branch, there is only a single unilateral operation, which cannot happen

anyway.

1 i f (nonRankVar==2){
2 i f (rank==0)

3 MPI Send (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD) ;

4 } e l s e {
5 i f (rank==1)

6 MPI Recv (buf0 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD,& s ta tu s) ;

7 }

15 Generation of Protocol

The syntax and semantics of Pabble protocol is very similar to those of traditional Scribble protocol.

Therefore, in order to generate a valid protocol which is compatible with the current tool-chain,

the implementation of the protocol generating method is heavily based on the BNF specification

of Scribble language [32]. There will be adequate examples of generated protocols in the Test &

61

Evaluation chapter, so only some high level optimisation of the output protocols will be discussed

here.

In the simulation, in order to ensure the accuracy, the traversal of the CommTree and matching of

MPI operations are quite strict. As a result, a single interaction in the source code might be split

up to several pieces. For example, in code snippet 15:

1 i f (rank>=5 && rank<=7){
2 MPI Recv (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD,& s ta tu s) ;

3 }
4

5 i f (rank>=6 && rank<=8){
6 MPI Send (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD) ;

7 }

Processes with range [5..7] will be blocked on the MPI Recv node. Only Process 8 can escape

and go to visit the MPI Send node. After process 8 sends the data to process 7, process 7 can be

unblocked and subsequently it will go to unblock process 6... After several iterations, the overall

interaction can be accomplished. However, the interactions extracted by the simulator is a set of

small interactions: {8 −→ 7, 7 −→ 6, 6 −→ 5} but not a single unit {[6..8] −→ [5..7]}. If the raw

debug output is directly used to produce the protocol, then with the number of involved processes

increases, the contents of the protocol will be occupied by repetitions of the same communication;

the advantages of using parameterised protocol will be buried in that situation.

In order to make the generated protocol concise and compact, there is an optimisation performed

when the actually happened MPI operations are inserted to the MPITree. The operations with

the same pattern will be combined together during the optimisation and the methods used are

introduced in the algorithm 4.

We have known from the section Matching of MPI operations that occasional matching is not

stable; therefore the interaction generated from occasional matching of operations is not allowed

to be combined with other interactions, even if they satisfy the normal requirements. For example,

there are two interactions in the code snippet 15 if the number of processes N equals 28; however,

one of the interactions will not happen if N 6= 28; therefore, it is not appropriate to combine these

two interactions.

1 i f (rank==N/4) {
2 MPI Send (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD) ;

3 }
4

5 i f (rank==8){
6 MPI Recv (buf0 , bu f s i z e , MPI INT , 7 , 0 , MPICOMMWORLD,& s ta tu s) ;

7 MPI Send (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD) ;

8 }
9

10 i f (rank==9){
11 MPI Recv (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD,& s ta tu s) ;

12 }

The non-collective operations are divided into three groups: unicast, multicast and gather, accord-

ing to their executors and targets. A unicast operation has same number of executors and targets.

62

Algorithm 4 Algorithm for combining two MPI operations with the same pattern

1: Input Data: MPIOperation op1, op2
2: Result: null pointer or the combination of op1 and op2

3: function combine(op1, op2)
4: if op1 or op2 is created from an occasional matching of unilateral MPI operations then
5: return null pointer;
6: end if
7: Condition op1Exec= the executor of op1
8: Condition op2Exec= the executor of op2
9: Condition op1Tar= the target of op1

10: Condition op2Tar= the target of op2
11: MPIOperation *result;
12: if both op1 and op2 are unicast operations with the same span then
13: if op1Exec is adjacent to op2Exec && op1Tar is adjacent to op2Tar then
14: result− >executor= the union of op1Exec and op2Exec
15: result− >target= the union of op1Tar and op2Tar
16: return result;
17: else if op1Exec equals op2Exec && op1Tar is adjacent to op2Tar then
18: result− >executor= op1Exec
19: result− >target= the union of op1Tar and op2Tar
20: return result;
21: else if op1Tar equals op2Tar && op1Exec is adjacent to op2Exec then
22: result− >executor= the union of op1Exec and op2Exec
23: result− >target= op1Tar
24: return result;
25: else
26: return null pointer;
27: end if
28: else if both op1 and op2 are multicast operations or gather operations then
29: if op1Exec equals op2Exec && op1Tar is adjacent to op2Tar then
30: result− >executor= op1Exec
31: result− >target= the union of op1Tar and op2Tar
32: return result;
33: else if op1Tar equals op2Tar && op1Exec is adjacent to op2Exec then
34: result− >executor= the union of op1Exec and op2Exec
35: result− >target= op1Tar
36: return result;
37: else
38: return null pointer;
39: end if
40: else
41: return null pointer;
42: end if
43: end function

63

For example, [2..5] −→ [3..6] is a unicast; A multicast is an operation where a single executor

sends data to multiple targets. For example, [1..1] −→ [3..6] is a multicast; A gather operation is

the inverse of multicast, it refers to an operation where a single process receives data from multiple

other processes. For instance, [2] ←− [3..6] is a gather operation.

The term span refers to the range between the executor and target of a unicast. It is a vector

whose magnitude is the distance between the executor and target. For example, in the operation

[2..5] −→ [3..6], the span is 1; while in the operation [3..6] −→ [2..5], the span is -1.

16 LFP

The concept LFP (Least Fixed Point) is borrowed from the modal logic [15]. In this application,

it refers to a point at which the protocol becomes fixed. The purpose of introducing the concept

LFP is to find a valid interval for the generated protocol. In the section 5, We have shown by

example that for some programs, it is impossible to write a generic protocol applicable to all the

configurations. The changing of number of processes may have a major impact on the behaviour

of the program. Even though there is no silver bullet, we need to make our solution as generic as

possible, and that is also the most important objective of the parameterised protocol. In an ideal

situation, we can make the parameterised protocol applicable to a new use case by changing its

parameters appropriately. The concept LFP is an attempt to make the protocol generated from

actual program as generic as possible, in order to capture the characteristics of the program as

comprehensive as possible.

17 The Challenges

• Interprocedural Analysis The interprocedural analysis is a particular difficult part due

to the function recursion and parameter passings. The body of a recursive function may be

executed multiple times but it is hard to analyse the exact number of iterations. As a result,

it is not easy to analyse the interactions inside the body of a recursive function. Although

the author of this report has found a high level similarity between the recursive functions and

do while loops, due to the time limitation, the transformation from recursive functions to do

while loops cannot be implemented in time.

• Analysis of non-deterministic operations There are several non-deterministic MPI op-

erations, such as receive from MPI ANY SOURCE and MPI Waitany. Their runtime be-

haviours are not predictable and as a result, it is difficult to analyse their semantics and

simulate their executions. However, if we do not care the accurate order of the actually

happened interactions, their behaviours can still be estimated statically. For example, in the

code snippet 17:

1 i f (rank==0){
2 MPI Recv (buf1 , bu f s i z e , MPI INT , MPI ANY SOURCE, 0 , MPICOMMWORLD, &s ta tu s) ;

3

4 MPI Recv (buf1 , bu f s i z e , MPI INT , MPI ANY SOURCE, 0 , MPICOMMWORLD, &s ta tu s) ;

5 }
6

7 i f (rank==1){

64

8 MPI Send (buf1 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD) ;

9 }
10

11 i f (rank==2){
12 MPI Send (buf1 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD) ;

13 }

It is clear that although the source process in a receive operation can be arbitrary, the

destination of a sending operation is deterministic after the program starts. Therefore, if we

do not care whether it is process 1 or process 2 sends data to process 0 first, then this pattern

can be analysed without problem. However, the difficult of analysing this pattern will be

increased dramatically if the receiver tries to receive data from multiple arbitrary processes

via a loop. Again, due to the available time is limit, the analysis of these non-predictable

operations are not implemented.

• Communications in other communication groups The application developed in this

project only supports the single global group: MPI COMM WORLD. This is because the

creation of new groups involves the indices re-computations and it is hard to find the rank

mappings between the WORLD group and the newly created groups.

65

4 Test & Evaluation

Evaluation of Application Features

• Portability: the application is portable because the paths of machine-dependent resources

can be specified by the users when program starts. It has been compiled for both Windows

and linux like systems. In the testing, the executables work well on Windows 7 64 bit,

Windows 8 64 bit and Ubuntu 12.04 32 bit.

• Multiple source files: the application is able to analyse a project which has single main

function and multiple implementation files.

• Simple Analysis of Variables: If a variable stores a constant value in some point, then

the value of that constant can be computed. This might be helpful to determine the target

condition of an MPI operation if that target is represented by a variable.

1 Compare with the previous project

There was a project which is able to extract MPI primitives and basic program constructs for each

rank and judge whether each end-point program conforms to the corresponding end-point protocol

[23]. In the remaining part of this section, a compare and contrast between the current project

and the previous project will be given and the improvements on the previous application will be

highlighted.

• Portability

The previous MPI type checker is heavily dependent on Session-C and can only be executed

in Unix-like system. The user has to build Session-C before the type checker can be installed.

What is worse, if the dependencies changed, the previous application may not function well.

The author of this report spent a whole afternoon to try to build the previous application

and remove the compiling errors caused by API changes of Clang; In contrast, the Session

Type Extractor developed in this project is a stand-alone application. On windows OS, as

long as the user has installed the “Microsoft Visual C++ 2012 Redistributable Package”, then

the exe program can be executed easily on command line. On Unix-like system, it is also

very easy to execute the binary program, given the paths to the libraries have been specified

correctly.

• Scalability

The previous project also gave an implementation of extracting the MPI primitives and

language constructs; but that approach is not scalable because for every individual process it

will construct a rank tree to hold the structure information. That works for small number of

processes. However, what if the number of processes is, say, 100,000?

66

In contrast, the application designed by the author of this report is more scalable because it

only generates two extra trees: CommTree and MPITree, besides the default abstract syntax

tree offered by Clang. The major computation time is spent on two areas: the CommTree

construction and the simulation of MPI program execution. The time spent on CommTree

construction is only relevant to the complexity of program source code while the maximum

time spent on simulation depends on two factors: the number of communications and the

number of rank-related choices. For example, in the code below:

1 i f (rank>2 && rank<6){/∗Some MPI p r im i t i v e s ∗/}

There are three ranges of processes: [0..2], [3..5] and [6..N-1]. No matter how large the number

N is, like 100 or 100,000, as long as N >= 6, the whole processes can be represented by these

three ranges, or more accurately, six numbers.

• Analysis of Programming Constructs

The previous project used very complex mechanism for handling IF statements. However,

the analysis is only based on the enumeration of possible cases, which cannot cover every

possibilities. Furthermore, the correctness is doubted by the author of this report. As stated in

section 4 of design chapter, there will be non-determinism in the IF statement if its conditional

expression mixes non-rank-related condition and rank-related condition. In that mechanism

which allows the mixture of conditions, it might be the case that, both the MPI primitives

occur in if and else block are eligible to be inserted to the same rank tree. For example, in

the code snippet 4.1:

Listing 4.1 : Mix rank and non-rank conditions in boolean expression

1 i f (rank==0 && nonRank==1){/∗Some MPI p r im i t i v e s ∗/}
2

3 e l s e {/∗Some other MPI p r im i t i v e s ∗/}

Process 0 might enter the then block of this IF statement because the non-rank variable can be

1. However, the negation of the IF condition is “rank 6= 0 || nonRank 6= 1 ”. Any value can be

held in the non-rank variable, so “nonRank 6= 1 ” is also satisfiable and the whole expression

will be evaluated to the condition {[0..N-1]}; as a result, there will be an unlimited access

to the else block for every process. The problem is where to insert these two nodes. They

should not be siblings because they cannot happen together in any scenario. If divide them

into different branches, the complexity of analysis will be increased dramatically because of

the non-determinism issues.

In contrast, the analysis of IF statement is greatly simplified by the author of this report.

Using the concepts of range and condition created for this project, the rules for extracting

conditions from the simplest conditional expression are defined. The conditions of arbitrary

complex conditional expression can be obtained by decomposing the complex expression and

invoking the extraction method recursively. Finally, the conditions for every sub-expression

67

can be easily combined to get the overall condition for the original complex expression, with

the help of the basic operations which can manipulate the range and condition.

• Soundness and Completeness

In my ISO report, the concept of Soundness and Completeness of an MPI program has been

defined. According to my previous proposed definition, a program is said to be sound over a

protocol if all the communications in that program have been described by the protocol, i.e.

Comm(Program) ⊆ Comm(Protocol). A program is said to be complete over a protocol if

all the communications described by the protocol have been performed by the program, i.e.

Comm(Protocol) ⊆ Comm(Program). Using these definitions, the application in previous

project can be classified as complete but not sound, which means it performs all the required

actions but may also do something not prescribed by the protocol. In fact, the situation

is worse, the previous application simply ignores the processes which are not monitored by

protocols. As a result, a lot of deadlocks caused by the unmonitored processes will not be

detected. For example, in the test case 4.2, the program performs all the communications

required by the protocol but deadlock still occurs.

Listing 4.2 : Example of Complete But Not Sound Program

1 //Program code sn ippet :

2 i f (rank==0){
3 MPI Recv (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD,& s ta tu s) ;

4 MPI Send (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD) ;

5 }
6

7 i f (rank==1){
8 MPI Send (buf0 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD) ;

9 MPI Recv (buf0 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD,& s ta tu s) ;

10 }
11

12 i f (rank==2)

13 MPI Recv (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD,& s ta tu s) ;

14

15 // //

16 // Sc r i bb l e Protoco l :

17 g l oba l p ro to co l

18 P

19 (r o l e R0 , r o l e R1)

20 {
21 (MPI INT) from R1 to R0 ;

22 (MPI INT) from R0 to R1 ;

23 }

In contrast, the current application developed in this project not only checks the static struc-

ture, but also simulate the executions. The deadlock in this example can be easily detected

because there is no matching operation for the receive operation performed by process 2.

• Semantics Analysis

68

Previous Application This Application

Reading Multiple Source Files ×
√

Stand-alone Application ×
√

Need to know Number of Processes
√ √

Performance Degraded Due To Number of Processes Increases
√

×
Checking Conformance of Program Against Protocol

√
×

Table 4.1: Characteristics comparison between old and current applications

The previous application focused on the static program structure analysis and the support

for semantics analysis is poor. In MPI program, the non-blocking operations can be paired

with the blocking operations. For example, a blocking operation like MPI Send can match

a non-blocking operation like MPI Irecv. However, the previous application only recognise

operations by their names but not their semantic meaning; as a result, the previous application

may report deadlocks when there is not any. In contrast, the application developed in this

project overcome this problem by classifying the MPI operations according to their properties.

Any operation which sends data to destinations is regarded as a sending operation. Similarly,

any operation that receives data from others is a receiving operation. Any sending operation

can be matched with any receiving operation if they satisfy the preconditions which are

specified in algorithm 3.

• Variable Analysis

There is only a simple mechanism for analysing variables in the previous application. For

example, after evaluating the variable declaration “int to=2 ”, the previous application will

associate the variable to with the constant 2. After the mapping established, it will not be

updated by later statements such as to=to + 1;. To summarise, the previous application

does not support constant propagation. In this application, a simple constant propagation

is performed to make the variable analysis more accurate. Each time a variable declaration

statement or assignment statement is encountered, the right hand side value will be evaluated

recursively to get an accurate result; then the left hand side variable can be associated with

that result. Each time a mapping is established or changed, the relevant entries in the data

structure will be updated immediately to reflect the changes.

• Deadlock Detection

The previous application only focused on the static structures of MPI sending, receiving

operations but many deadlocks are caused by synchronisation operations like MPI Barrier

or MPI Wait. While the previous application simply ignore these operations, the application

developed in this project models the MPI Barrier and MPI Wait explicitly. In the simulation,

a barrier node will block every visitor until it is unblocked; and it cannot be unblocked unless

it has been visited by all the processes. An MPI Wait node will block the processes which

have unfinished non-blocking operations if the request variable matches. To sum up, the two

synchronisation operations have been simulated successfully in the current application, and

any deadlock caused by these two operations can be detected.

69

In table 4.1, a clear comparison between the current application and the previous application is

listed in terms of the program features.

To summarise, the type checker developed in [23] is suitable to be used in developing new programs,

where the correct Scribble Protocol has already been written at the beginning. For the large scale

legacy code which does not have a corresponding protocol in the first place, it is inapplicable; In

contrast, the session type extractor developed in this project is applicable for both new programs

and legacy code. It is also more scalable than the previous application when number of processes

increases.

2 Test Cases

2.1 Condition Extraction Test

2.1.1 Simple conditions

Listing 4.3 : Extract Simple Conditions

1 #inc lude ”mpi . h”

2 i n t main (i n t argc , char ∗∗ argv) {
3 i n t rank=−1;
4 i n t nprocs = −1;
5

6 MPI Init (&argc , &argv) ;

7 MPI Comm size (MPICOMMWORLD , &nprocs) ;

8 MPI Comm rank (MPICOMMWORLD , &rank) ;

9

10 i f (rank==0){} e l s e {}
11

12 i f (rank==1 && rank==2){}
13

14 i f (rank==1 | | rank==5){}
15

16 i f (rank>2 && rank <7 | | rank>10){}
17

18 MPI Barrier (MPICOMMWORLD) ;

19 MPI Final ize () ;

20 }

70

Ready to simulate the execution of the MPI program now!
There are 1 communicator groups involved
The param role name is MPI_COMM_WORLD
The actual roles for this param role are:
The role 0 is MPI_COMM_WORLD[0..N-1]
The role 1 is MPI_COMM_WORLD[0..0]
The role 2 is MPI_COMM_WORLD[1..N-1]
The role 3 is MPI_COMM_WORLD[1..1]
The role 4 is MPI_COMM_WORLD[5..5]
The role 5 is MPI_COMM_WORLD[6..0]
The role 6 is MPI_COMM_WORLD[2..4]
The role 7 is MPI_COMM_WORLD[3..6]
The role 8 is MPI_COMM_WORLD[11..N-1]
The role 9 is MPI_COMM_WORLD[0..2]
The role 10 is MPI_COMM_WORLD[7..10]

1

Figure 4.1: The roles generated from code 4.3

As we can see from the figure 4.1, there are ten roles with different ranges generated from the pro-

gramming constructs of the source code. These roles are created just for unit test and demonstration

purpose. Only the role with range {[0..N-1]} will participate the simulation at the beginning.

In the first IF statement, range {[0..0]} for if block can be identified from the conditional expression

‘if(rank==0)’; and range {[1..N-1]} for else block can be deduced by performing a negation oper-

ation on the range {[0..0]}. The condition for the second if statement is empty, as a result, a full

range [0..N-1] will be generated for the implicit else part. The third IF statement will produce two

ranges [1..1], [5..5] for the if block and the corresponding else block will be {[0..0],[2..4],[6..N-1]}
(the range [6..N-1] is adjacent to [0..0], so [6..0] will be generated). For the last IF statement, range

[3..6] and [11..N-1] will be created for the if block and their complementary part {[0..2],[7..N-1]}
will be created for the else block. According to the output, it is clear that all the conditions have

been extracted successfully.

2.1.2 Complex conditions

Listing 4.4 : Extract Complex Conditions

1 #inc lude ”mpi . h”

2 i n t main (i n t argc , char ∗∗ argv) {
3 i n t rank=−1;
4 i n t nprocs = −1;
5 i n t t e s t =0;

6

7 MPI Init (&argc , &argv) ;

8 MPI Comm size (MPICOMMWORLD , &nprocs) ;

9 MPI Comm rank (MPICOMMWORLD , &rank) ;

10

11 i f (rank>2 && rank <7){
12 i f (rank==1 | | rank==5){}
13 }

71

14

15 i f (t e s t==2){
16 f o r (i n t i =0; i <10; i++){
17 i f (rank==7){}
18 }
19 } e l s e {
20 i f (rank==22){}
21 }
22

23 MPI Barrier (MPICOMMWORLD) ;

24 MPI Final ize () ;

25 }

Ready to simulate the execution of the MPI program now!
There are 1 communicator groups involved
The param role name is MPI_COMM_WORLD
The actual roles for this param role are:
The role 0 is MPI_COMM_WORLD[0..N-1]
The role 1 is MPI_COMM_WORLD[3..6]
The role 2 is MPI_COMM_WORLD[5..5]
The role 3 is MPI_COMM_WORLD[6..6]
The role 4 is MPI_COMM_WORLD[3..4]
The role 5 is MPI_COMM_WORLD[0..2]
The role 6 is MPI_COMM_WORLD[7..N-1]
The role 7 is MPI_COMM_WORLD[7..7]
The role 8 is MPI_COMM_WORLD[0..6]
The role 9 is MPI_COMM_WORLD[8..N-1]
The role 10 is MPI_COMM_WORLD[22..22]
The role 11 is MPI_COMM_WORLD[0..21]
The role 12 is MPI_COMM_WORLD[23..N-1]

1

Figure 4.2: The roles generated from code 4.4

There are thirteen ranges recognised during analysing the source code 4.4. The range [0..N-1] will

be created for any source code. All the other ranges are related to the conditionals of the source

code. Usually, for each IF conditional expression, three ranges will be extracted: one for then part

and two for the else part. The range for the then part of the first IF statement is [3..6]. There

is an inner IF statement and the inner IF will inherit the properties from its parent construct.

Therefore, instead of producing ranges {[1..1],[5..5]} for then block and {[0..0],[2..4],[6..N-1]} for

else block, the inner IF statement generates {[5..5]} for then block and {[3..4],[6..6]} for then block.

After constructing conditions for the then block of the first IF, its then block will be analysed. The

complementary set of [3..6] is {[0..2], [7..N-1]}. The conditions in non-rank related IF and FOR

statements are {[0..N-1]} and the else part of a non-rank-related choice also has range [0..N-1].

That is why both [7..7] and [22.22] can be generated from the send IF statement.

2.2 Simple Constructs Test

72

Listing 4.5 : Simple Program and corresponding protocol

1 i f (rank>=0 && rank<=7){
2 MPI Irecv (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD, &req) ;

3 MPI Isend (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD, &req2) ;

4 MPI Recv (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD,& s ta tu s) ;

5

6 MPI Wait (&req , &s ta tu s) ;

7 MPI Wait (&req2 , &s ta tu s) ;

8 }
9

10 i f (rank>=1 && rank<=8){
11 MPI Irecv (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD,& req) ;

12 MPI Isend (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD,& req2) ;

13 MPI Send (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD) ;

14

15 MPI Wait (&req2 , &s ta tu s) ;

16 MPI Wait (&req , &s ta tu s) ;

17 }
18

19 i n t root =5;

20 MPI Comm comm=MPICOMMWORLD;

21 i f (rank==0 | | rank==2){
22 MPI Gather (sendarray , 100 , MPI INT , buf0 , 1 , MPI INT , 0 , comm) ;

23 MPI Reduce (buf0 , buf1 , 100 , MPI INT , MPI SUM, root , comm) ;

24 }
25

26 e l s e i f (rank==1 | | rank>2){
27 MPI Gather (sendarray , 100 , MPI INT , buf0 , 1 , MPI INT , 0 , comm) ;

28 MPI Reduce (buf0 , buf1 , 100 , MPI INT , MPI SUM, root , comm) ;

29 }
30

31 MPI Bcast (buf0 , bu f s i z e ,MPI INT , 0 ,MPICOMMWORLD) ;

73

/*The protocol generated is stable!*/

const N= 10..Inf

global protocol simple_ProToCoL (role MPI_COMM_WORLD[0..N-1])
{
Data(MPI_INT) from MPI_COMM_WORLD[rank:0..7] to
MPI_COMM_WORLD[rank+1];

Data(MPI_INT) from MPI_COMM_WORLD[rank:1..8] to
MPI_COMM_WORLD[rank-1];

Data(MPI_INT) from MPI_COMM_WORLD[rank:1..8] to
MPI_COMM_WORLD[rank-1];

Data(MPI_INT) from MPI_COMM_WORLD[0..N-1] to MPI_COMM_WORLD[0]

Data(MPI_INT) from MPI_COMM_WORLD[0..N-1] to MPI_COMM_WORLD[5]

Data(MPI_INT) from MPI_COMM_WORLD[0] to MPI_COMM_WORLD[0..N-1]
}

1

Figure 4.3: Protocol for code 4.5

As shown in the program 4.5, there are three pairs of basic sending/receiving operations at the

beginning. The first two operations are non-blocking operations, therefore, no deadlock will occur

even if the receiving operations are placed before sending for both parties. The MPI Wait opera-

tion is a blocking operation, it forces the processes to finish the relevant unfinished non-blocking

operations. Deadlock can occur if such kind of blocking operations are not used properly. Later,

an example of deadlock caused by misusing MPI Wait will be introduced. Well, let’s go back to

this program. After the basic operations, there are several collective operations. The first two

collective operations are split into two parts. A collective op cannot finish until all the processes

participate the operation. In this example, the processes in IF and ELSE block can be combined

to the complete range and the orders of the operations are also correct, therefore these collective

operations can happen without problem.

2.3 Unsupported Cases Test

This application is not perfect, but it tries to identify all the unsupported cases and perform

correct analysis in its supported area. There are several unsupported cases listed below to show

this application is capable of identifying what it cannot handle.

Listing 4.6 : Mixture of Rank And NonRank Conditions

1 MPI Init (&argc , &argv) ;

2 MPI Comm size (MPICOMMWORLD , &nprocs) ;

3 MPI Comm rank (MPICOMMWORLD , &rank) ;

4

5 i n t nonRankVar=2;

6

7 i f (rank==0 && nonRankVar==1){

74

8 MPI Send (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD) ;

9 }
10

11 i f (rank==1){
12 MPI Recv (buf0 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD,& s ta tu s) ;

13 }
14

15 MPI Barrier (MPICOMMWORLD) ;

16

17 MPI Final ize () ;

Figure 4.4: Output of analysing code 4.6 from cmd

As shown in the output 4.4, an exception will be thrown and application terminates with a warning

message.

Listing 4.7 : Unsupported Nesting

1 MPI Init (&argc , &argv) ;

2 MPI Comm size (MPICOMMWORLD , &nprocs) ;

3 MPI Comm rank (MPICOMMWORLD , &rank) ;

4

5 i n t nonRankVar=2;

6

7 i f (rank==0){
8 i f (nonRankVar==0){
9 MPI Send (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD) ;

10 }
11 e l s e {
12 MPI Send (buf0 , bu f s i z e , MPI INT , 2 , 0 , MPICOMMWORLD) ;

13 }
14 }
15

16 i f (nonRankVar==1){
17 i f (rank==1)

18 MPI Recv (buf0 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD,& s ta tu s) ;

19 } e l s e {

75

20 i f (rank==2)

21 MPI Recv (buf0 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD,& s ta tu s) ;

22 }

This kind of unsupported nesting has been discussed in section 4 of design & implementation chap-

ter. An exception with error message “The current node is not allowed to insert MPI operation!”

will be thrown.

Listing 4.8 : Unsupported Non-deterministic sender

1 MPI Init (&argc , &argv) ;

2 MPI Comm size (MPICOMMWORLD , &nprocs) ;

3 MPI Comm rank (MPICOMMWORLD , &rank) ;

4

5 i f (rank==0)

6 MPI Send (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD) ;

7

8 i f (rank==1)

9 MPI Recv (buf0 , bu f s i z e , MPI INT , MPI ANY SOURCE, 0 , MPICOMMWORLD,& s ta tu s) ;

The MPI ANY SOURCE is not supported in the current application. Therefore, an exception with

message “The MPI ANY SOURCE is not supported at present, sorry about that.” will be thrown

when encounter such situation.

2.4 Deadlock tests

When a deadlock is detected, the application terminates and prints the stack of pending operations

when the deadlock occurs. This can help the debugging a little.

2.4.1 Classic deadlock

The first deadlock example is a classic one and it comes from the ISP website [5].

Listing 4.9 : Classic Deadlock

1 /∗ −∗− Mode : C; −∗− ∗/
2 /∗ Creator : Bronis R. de Supinsk i (b r on i s@ l l n l . gov) Fr i Mar 17 2000 ∗/
3 /∗ no−e r r o r . c −− do some MPI c a l l s without any e r r o r s ∗/
4

5 #inc lude <s t d i o . h>

6 #inc lude ”mpi . h”

7

8 #de f i n e b u f s i z e 128

9

10 i n t main (i n t argc , char ∗∗ argv)
11 {
12 i n t nprocs = −1;
13 i n t rank = −1;
14 char processor name [1 2 8] ;

15 i n t namelen = 128 ;

76

16 i n t buf0 [b u f s i z e] ;

17 i n t buf1 [b u f s i z e] ;

18 MPI Status s t a tu s ;

19

20 /∗ i n i t ∗/
21 MPI Init (&argc , &argv) ;

22 MPI Comm size (MPICOMMWORLD, &nprocs) ;

23 MPI Comm rank (MPICOMMWORLD, &rank) ;

24 MPI Get processor name (processor name , &namelen) ;

25 p r i n t f (”(%d) i s a l i v e on %s \n” , rank , processor name) ;

26 f f l u s h (stdout) ;

27

28 MPI Barrier (MPICOMMWORLD) ;

29

30 i f (nprocs < 2)

31 {
32 p r i n t f (”not enough ta sk s \n”) ;
33 }
34 e l s e i f (rank == 0)

35 {
36 memset (buf0 , 0 , b u f s i z e) ;

37

38 MPI Recv (buf1 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD, &s ta tu s) ;

39

40 MPI Send (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD) ;

41 }
42 e l s e i f (rank == 1)

43 {
44 memset (buf1 , 1 , b u f s i z e) ;

45

46 MPI Recv (buf0 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD, &s ta tu s) ;

47

48 MPI Send (buf1 , bu f s i z e , MPI INT , 0 , 0 , MPICOMMWORLD) ;

49 }
50

51 MPI Barrier (MPICOMMWORLD) ;

52

53 MPI Final ize () ;

54 p r i n t f (”(%d) Fin i shed normally \n” , rank) ;

55 }
56

57 /∗ EOF ∗/

As shown in output figure 4.5, the deadlock is detected during the simulation. Because both

processes 1 and 2 are performing the blocking operation: MPI Recv, no one can move forward to

the sending operation. As a result, the deadlock occurs and leave the unfinished operations on the

pending list.

2.4.2 Deadlock caused by MPI Wait

77

Deadlock occurs!!!
The current pending operations are:
MPI_Recv (buf1, buf_size, MPI_INT, 1, 0, MPI_COMM_WORLD,
&status)
MPI_Recv (buf0, buf_size, MPI_INT, 0, 0, MPI_COMM_WORLD,
&status)

No pending collective operation!

1

Figure 4.5: Output of analysing code 4.9

Listing 4.10 : Deadlock caused by misusing synchronisation operation MPI Wait

1 MPI Init (&argc , &argv) ;

2 MPI Comm size (MPICOMMWORLD , &nprocs) ; /∗ nprocs=100∗/
3 MPI Comm rank (MPICOMMWORLD , &rank) ;

4

5 i f (rank==0){
6 MPI Isend (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD, &req) ;

7

8 MPI Wait (&req , &s ta tu s) ;

9

10 MPI Irecv (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD, &req2) ;

11 }
12

13 i f (rank==1){
14 MPI Isend (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD,& req2) ;

15

16 MPI Wait (&req2 , &s ta tu s) ;

17

18 MPI Irecv (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD,& req) ;

19 }
20

21 MPI Barrier (MPICOMMWORLD) ;

22 MPI Final ize () ;

Deadlock occurs!!!
The current pending operations are:
MPI_Isend (buf0, buf_size, MPI_INT, rank+1, 0, MPI_COMM_WORLD,
&req)
MPI_Isend (buf0, buf_size, MPI_INT, rank-1, 0, MPI_COMM_WORLD,
&req2)

No pending collective operation!

1

Figure 4.6: Output of analysing code 4.10

As shown in the diagram 4.6, a deadlock is detected when analysing this program. Both process

0 an 1 are trying to send data to the other but no one is prepared to receive data before entering

the blocking node MPI Wait. Therefore, both processes are blocked and no one can proceed to the

78

receive statement. As a result, an impasse happens.

2.4.3 Deadlock caused by collective operations

Listing 4.11 : Deadlock by Collective Operations

1 MPI Init (&argc , &argv) ;

2 MPI Comm size (MPICOMMWORLD , &nprocs) ; /∗ nprocs=100∗/
3 MPI Comm rank (MPICOMMWORLD , &rank) ;

4

5 MPI Comm comm=MPICOMMWORLD;

6 i n t gatherRoot=0;

7 i n t reduceRoot=5;

8

9 i f (rank==0 | | rank==2){
10 MPI Gather (sendarray , 100 , MPI INT , buf0 , 1 , MPI INT , gatherRoot , comm) ;

11

12 MPI Reduce (buf0 , buf1 , 100 , MPI INT , MPI SUM, reduceRoot , comm) ;

13 }
14

15 i f (rank>=1){
16 MPI Gather (sendarray , 100 , MPI INT , buf0 , 1 , MPI INT , gatherRoot , comm) ;

17

18 MPI Reduce (buf0 , buf1 , 100 , MPI INT , MPI SUM, reduceRoot , comm) ;

19 }

Deadlock occurs!!!
The current pending operations are:

MPI_Reduce(buf0, buf1, 100, MPI_INT, MPI_SUM, reduceRoot,
comm)

1

Figure 4.7: Output of analysing code 4.11

The deadlock shown in figure 4.7 is caused by process 2. According to the program, process

2 will perform gather operation twice while all the other processes only execute that operation

once. When the first gather operation happens successfully, process 0 and 2 are still inside the

first IF statement. The other processes with condition {[1..1],[3..N-1]} will continue visiting the

reduce node and report the MPI Reduce operation to CollectiveOperationManager. Some time

later, process 2 comes to the second IF statement and report the gather operation again. The

CollectiveOperationManager will detect the deadlock immediately as soon as it knows process 2 is

trying to perform a gather operation.

2.5 Testing of complex program with multiple source files

The session type extractor developed in this project supports the analysis of an MPI project which

involves multiple source files. To demonstrate this feature, a project which contains multiple source

files in different levels is created. Its hierarchy is shown in figure 4.8.

The complete list of these source files can be found in the appendix 1.

79

ROOT

outermain

inner

Figure 4.8: Project structure in test case

There are five source files in the project and the file “main.c” contains the main function. Each

of the other four files defines one function which contains MPI operations. The first function

being called from main function is “helloUncle()” from “uncle.c” and within that function, “void

testMulti2()” is defined. The function testMulti2() is quite interesting because in the header of

FOR loop, the variable i is bound to range [0..2]. Then in the conditional expression, the rank

variable is bound to variable i, which makes the executor of the MPI operations within the IF block

have range [0..2]. Therefore, the actually happened operation is processes [0..2] send data to their

right neighbours [1..3]. In the protocol, the indices of the processes are either represented by range

or bounded variables.

The function testDiffRanksCallSameMethod() in sib.c is quite complex and it tests two ways of

calling the function “testFor2()”: call it from rank-related node and call it from non-rank-related

node. The conditional expression ‘nprocs > 9 && nprocs < 20’ is a non-rank-related global

choice; therefore both then block and else block will be analysed and in the final output; the

sub-protocol for then block and the sub-protocol for else block will be generated separately and

combined by the keyword or. There are several nested structures within the testFor2() function.

The most interesting one is the last inner FOR loop “for(intj = 17; j >= 0; j−−)”. In that loop,

processes with range [2..8] send and then receive data from process 1. Process 1 uses a FOR loop

“for(intc = 2; c <= 8; c+ +)” to gather from processes [2..8] and multicast to processes [2..8].

The function “void testWait()” is defined in “parent.c” and a similar test case has been given in

the deadlock testing. However, the function testWait does not have deadlock. Even though there

are multiple MPI Wait, the repeated one will be ignored.

The function “void testMultiSenderAndMultiRecver()” in “child.c” is quite challenging because it

involves multicast performed by multiple processes. There are two ways to interpret the interac-

tions in the function. They can be regarded as all processes within range [3..7] perform multicast

to processes [0..2] independently, or processes with range [0..2] gather data from process [3..7]

separately.

80

The full protocol generated by the application is available in the appendix.

2.6 LFP examples

Listing 4.12 : An MPI program having stable protocol

1 MPI Init (&argc , &argv) ;

2 MPI Comm size (MPICOMMWORLD , &nprocs) ;

3 MPI Comm rank (MPICOMMWORLD , &rank) ;

4

5 i f (rank==5)

6 MPI Send (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD) ;

7

8 i f (rank==6)

9 MPI Recv (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD,& s ta tu s) ;

/*The protocol generated is stable!*/

const N= 8..Inf

global protocol lfp_ProToCoL (role MPI_COMM_WORLD[0..N-1])
{
Data(MPI_INT) from MPI_COMM_WORLD[rank:5..5] to
MPI_COMM_WORLD[rank+1];

}

1

Figure 4.9: Output of analysing code 4.12 using 100 processes

/*The protocol generated is NOT stable!*/
/*The current protocol is only applicable when number of
processes is 5*/

const N= 5;

global protocol lfp_ProToCoL (role MPI_COMM_WORLD[0..N-1])
{}

1

Figure 4.10: Output of analysing code 4.12 using 5 processes

The figure 4.9 and the figure 4.10 analyses the same code 4.12 but using different number of

processes. As we can see, their results are quite different. When there are only 5 processes, the

only interaction from the program cannot actually happen and therefore, nothing will be produced.

However, if the number of processes is greater than or equal to 8, then the protocol will remain the

same forever. This is an easy example for showing the value of LFP in analysing the communication

patterns of MPI programs.

81

2.7 Matching examples

Listing 4.13 : An MPI program with perfect matching

1 MPI Comm size (MPICOMMWORLD , &nprocs) ;

2 MPI Comm rank (MPICOMMWORLD , &rank) ;

3

4 i f (rank==(nprocs /5))

5 MPI Send (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD) ;

6

7 i f (rank==(nprocs /5)+1){
8 MPI Recv (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD,& s ta tu s) ;

9 MPI Send (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD) ;

10 }
11

12 i f (rank==(nprocs /5)+2)

13 MPI Recv (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD,& s ta tu s) ;

/*The protocol generated is stable!*/

const N= 4..Inf

global protocol combi_ProToCoL (role MPI_COMM_WORLD[0..N-1])
{
Data(MPI_INT) from MPI_COMM_WORLD[rank:(N/5)..(N/5)+1] to
MPI_COMM_WORLD[rank+1];

}

1

Figure 4.11: Output of analysing code 4.13

As we can see in diagram 4.11, the protocol is stable because the MPI operations in the program

will always happen in the same pattern: processes with range [N/5..N/5+1] will send data to their

right neighbours. The protocol always has the same content as long as the number of processes is

greater than or equal to the fixed point ‘4’. Here, the least fixed point is estimated conservatively,

considering the possibility that the largest known rank ‘2’ may communicate with the process with

rank ‘N-1’; therefore, the largest rank number may reach 3 and as a result, 4 is chosen as the

minimum number of processes.

Listing 4.14 : An MPI program with imperfect matching

1 MPI Comm size (MPICOMMWORLD , &nprocs) ;

2 MPI Comm rank (MPICOMMWORLD , & rank) ;

3

4 i f (rank==(nprocs /5))

5 MPI Send (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD) ;

6

7 i f (rank==21){
8 MPI Recv (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD,& s ta tu s) ;

9 MPI Send (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD) ;

10 }
11

82

/*The protocol generated is NOT stable!*/

/*The current protocol is only applicable when number of
processes is 100*/

/*There is imperfect matching of MPI operations; Plz use
perfect matching.*/

const N=100;

global protocol combi2_ProToCoL (role MPI_COMM_WORLD[0..N-1])
{
Data(MPI_INT) from MPI_COMM_WORLD[rank:(N/5)] to
MPI_COMM_WORLD[rank+1];

Data(MPI_INT) from MPI_COMM_WORLD[rank:21..21] to
MPI_COMM_WORLD[rank+1];

}

1

Figure 4.12: Output of analysing code 4.14

/*The protocol generated is stable!*/

const N= 2..Inf

global protocol online_ProToCoL (role MPI_COMM_WORLD[0..N-1])
{
Data(MPI_INT) from MPI_COMM_WORLD[my_rank:0..N-1] to
MPI_COMM_WORLD[(my_rank-1+N)%N];

}

1

Figure 4.13: Output of analysing code 9

12 i f (rank==22)

13 MPI Recv (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD,& s ta tu s) ;

As we can see from figure 4.12, the protocol is only applicable when the number of processes is

100. This is caused by the imperfect matching of SEND and RECV operation. In the program,

the process with rank N/5 is trying to send data to its right neighbour; however, number N is not

bound until the MPI program starts executing. If number N is set t to 100 by the user when the

MPI program is executed, then the interaction between process 20 (computed from N/5) and 21

can happen; otherwise, a deadlock will happen.

2.8 Real MPI Program Test: Ring topology

The figure 4.13 is the protocol for an on-line tutorial MPI program 9. That tutorial program is used

for showing non-blocking operations within a ring topology and the communication part is quite

simple: only two MPI operations are involved. The trick here is, the target of the operation is repre-

83

sented by a rank-related variable; as a result, the target process of the operation is dependent on the

executor. Although there is only one line of “MPI Isend(&my rank,1,MPI INT,left neighbor,tag,

MPI COMM WORLD,&reqSend); ” in the source code, it will be interpreted differently by dif-

ferent processes during the execution. Therefore, we need to capture the communication pattern

in a generic way; otherwise, the protocol has to be changed each time the number of processes

changes. After analysing and generalising, it is found that the program describes a communication

patter in a wraparound ring, where everyone sends data to its left neighbour. However, both the

executor and the target of the operation have range [0..N-1]. Therefore, we need to figure out the

relations between the senders and receivers and compute the relative indices of target processes;

otherwise, the senders and receivers will be the same. To resolve this problem, an extra field “ex-

ecString” is created for class Condition and aims to hold the string presentation of the right hand

side expression each time an assignment operation is encountered. To make it consistent in the

generated protocol, inside this string, the variable stores the number of processes will be replaced

by ‘N’. After an assignment operation, the condition for the right hand side expression will be

generated and associate with the l.h.s variable. Therefore, when the l.h.s variable is encountered

in the MPI operation, the associated condition can be retrieved from the mapping. Because the

“execString” field of the condition has been set in the assignment, therefore, we can finally find the

string representation of the initial expression.

Another difficulty is to extract the target condition from the complex mathematical expression. In

the code 9, variable ‘left neighbor’ and ‘right neighbor’ are represented by mathematical expressions

which involve plus, minus and modulo operations. Thanks to the well-defined recursive extraction

function, the complex expression can be decomposed repeatedly and gradually solved. Although

the mathematical expression is simulated, the complexity is not as high as that of executing the

real program: the calculation in the loops are not simulated multiple times.

84

5 Conclusion

In conclusion, the major goals that were mentioned in section “This project” (1) have been achieved.

To summarise, the main aim is to extract the parameterised protocols from MPI programs. In

order to achieve the final goal, three sub-goals are established to facilitate the realisation of the

final mission: 1) extract the communication skeleton of the MPI program (see 9.2); 2) prune the

raw communication skeleton to get the tree of interactions that actually happened (see 10); 3)

gather the information from the pruned communication tree and generate parameterised protocol

(see 15). These three sub-goals are achieved in sequence and the output of the previous one is

the input of the next one. To achieve the first sub-goal, the traversal of the AST of the MPI

source code is performed with the help of Clang’s recursive AST visitor. After getting the common

structure and MPI primitives nodes, a simulation is conducted to estimate the interactions that

actually happened in the real execution and the relevant information is recorded in a tree structure.

Finally, the tree which stores the information about the actually happened interactions is traversed

and the protocol is generated according to Scribble’s syntax.

The accuracy of the static analysis will be weakened when the checker only uses the direct knowledge

from the static structure without inference. The poor accuracy of previous application [23] is an

example of this. The application developed in this project enhances the semantics support and

deadlock detection ability by simulation. Much useful information can be inferred during the

simulation, such as which process can interact with which process and whether the matching of

two unilateral MPI operations is perfect or not.

In addition to generating the protocols, the application tries to make the protocols as generic as

possible and investigate the applicability of the generated protocols. It has quite a few limitations

due to the time limits; however, the application developed in this project, together with this report,

try to capture and specify the limitations of the application. Through the diagnostic information

provided by the application, the users of the application are more likely to know whether a problem

is caused by the MPI program or the limitation of the application. Through the unsupported cases

explained in the report, the later developers can be more clear about the difficulties.

To summarise, this project made contributions to the development of the MPI type checking via

session type theories and produced a working software application to achieve the goal. The software

can be used by MPI programmers to judge whether an MPI program behaves as expected in terms

of communication. The theoretical innovations of this report may enlighten the future researchers

and developers in some aspect.

1 Future Work

There are several possible directions for future developments in the project of static analysis of

MPI programs using Scribble Protocol.

85

Further analysis on currently unsupported cases As explained in the design & implemen-

tation chapter, in order to make the application perform well in its supported domain, it ignores

some cases and simply throws an exception when encounter these cases. If more time is available,

some further deduction can be performed to make the analysis more accurate; and the diagnostic

information for the deadlocks can be made more expressive, E.G, including the reason of deadlock

and the location where error occurs.

Interprocedural analysis The interprocedural analysis is interesting because it may involve

both arguments passing and sophisticated control flow analysis. A function can have local variables

and receive arguments from invoker. The values of local variables are only valid inside the block

where they reside. Therefore, if multiple variables with the same name are defined in different

places, then they need to be checked carefully to ensure that they have correct values at the places

where we encounter them. Although in general it is hard to analyse the values stored in variables

statically, we can start from the variables which are important in MPI analysis(the variables inside

the MPI operation’s target expression) and then perform a backward slicing.

Not only the complexity of data flow analysis increases in function invocation, the control flow

analysis is also increased by function recursion. It is expected by the author that the function

recursion can be transformed to some kind of do-while loop. For example, the code snippet 5.1

shows the basic idea;

Listing 5.1 : Idea about transform function recursion to do while loop

1 // the r e cu r s i on func t i on

2 void rec (i n t t e s t) {
3

4 i f (t e s t <0){/∗ throw except ion ∗/}
5

6 e l s e i f (t e s t==0){/∗MPI ope ra t i on s : b lock 0∗/}
7

8 e l s e i f (t e s t==1){/∗MPI ope ra t i on s : b lock 1∗/}
9

10 e l s e {
11 /∗MPI ope ra t i on s : b lock X∗/
12 rec (t e s t −1) ;
13 }
14 }
15

16

17

18

19

20 // a f t e r the t rans fo rmat ion :

21 do{
22 i f (t e s t <0){/∗ throw except ion ∗/}
23

24 e l s e i f (t e s t==0){/∗MPI ope ra t i on s : b lock 0∗/}
25

26 e l s e i f (t e s t==1){/∗MPI ope ra t i on s : b lock 1∗/}
27

86

28 e l s e {
29 /∗MPI ope ra t i on s : b lock X∗/
30 te s t −−;
31 }
32 } whi le (! t e s t <0 && ! t e s t==0 && ! t e s t==1)

As shown in the code snippet 5.1, the loop condition of the do-while loop is obtained by analysing

the condition of the branch in which the recursive function is invoked. The function recur is invoked

in the else branch, therefore, the condition of the do-while loop is the negation of that condition.

The idea is very clear, but again, due to the limitation of the time available, this part has to be

implemented in the future.

Conformance to given protocol Due to the limited time, the current application does not

support the function of projecting the generated global protocol to local protocols and reading

external protocols. If more time is available, these feature should be added and the actual protocol

of MPI program can be checked against the expected protocol, making the type checking more

comprehensive.

More languages Both the previous and the current project only analyse the MPI programs

written in C language but in fact in can be written in several other languages, such as C++.

The analysis of object-oriented (O-O) languages is very challenging because both the syntax and

semantics of O-O languages are more complex.

More communication groups Currently, only the global communication group ‘MPI COMM WORLD’

is supported. However, there are a considerable amount of MPI operations on manipulating com-

munication groups and many MPI programs use these operations to create new communication

groups. In order to make the analysis tool support more language features and applicable to more

MPI programs, it is quite desirable for the application to support more communication groups.

87

Acknowledgements

Thanks my supervisor Professor Yoshida, for the guidelines and suggestions about the topic, the

materials provided by her is really helpful. Thanks Socrates Katsoulacos, the author of the

previous report [23], his report gave me an initial impression on static analysis of MPI programs.

Thanks Mr. Nicholas Ng for the discussion and test cases, and the notations used in the project is

greatly influenced by his unpublished report [26]. Finally, thanks my lovely girlfriend for giving

me support in my everyday life and I also got inspiration from some discussion with her.

Bibliography

[1] A Solution to A simple Jacobi iteration. http://www.mcs.anl.gov/research/projects/mpi/

tutorial/mpiexmpl/src/jacobi/C/solution.html. [Online; accessed 3-September-2013].

[2] Clang - Features and Goals. http://clang.llvm.org/features.html#diverseclients. [On-

line; accessed 20-August-2013].

[3] Clang: a C language family frontend for LLVM. http://clang.llvm.org. [Online; accessed

20-August-2013].

[4] Compiling multiple files. http://crasseux.com/books/ctutorial/

Compiling-multiple-files.html. [Online; accessed 28-August-2013].

[5] ISP Test Results. http://www.cs.utah.edu/formal_verification/ISP_Tests/. [Online;

accessed 3-September-2013].

[6] Lecture 5. http://www.cfm.brown.edu/people/gk/APMA281A/LECTURES/. [Online; accessed

3-September-2013].

[7] The LLVM Compiler Infrastructure. http://llvm.org. [Online; accessed 20-August-2013].

[8] MPI: A Message-Passing Interface Standard Version 2.2. http://mpi-forum.org/docs/

mpi-2.2/mpi22-report.pdf, September 2009. [Online; accessed 26-August-2013].

[9] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-

Ciancaglini, and Nobuko Yoshida. Global progress in dynamically interleaved multiparty

sessions. In CONCUR, pages 418–433, 2008.

[10] Greg Bronevetsky. Communication-Sensitive Static Dataflow for Parallel Message Passing

Applications. In Proceedings of the CGO 2009, The Seventh International Symposium on

Code Generation and Optimization, Seattle, Washington, USA, March 22-25, 2009, pages

1–12. IEEE Computer Society, 2009.

[11] Romain Demangeon and Kohei Honda. Nested protocols in session types. In CONCUR, pages

272–286, 2012.

[12] Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In POPL, pages

435–446, 2011.

[13] Ganesh Gopalakrishnan, Robert M. Kirby, Stephen F. Siegel, Rajeev Thakur, William Gropp,

Ewing L. Lusk, Bronis R. de Supinski, Martin Schulz, and Greg Bronevetsky. Formal analysis

of MPI-based parallel programs. Commun. ACM, 54(12):82–91, 2011.

[14] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction to Parallel

Computing Second Edition. Benjamin/Cummings, 2003.

89

http://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/src/jacobi/C/solution.html
http://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/src/jacobi/C/solution.html
http://clang.llvm.org/features.html#diverseclients
http://clang.llvm.org
http://crasseux.com/books/ctutorial/Compiling-multiple-files.html
http://crasseux.com/books/ctutorial/Compiling-multiple-files.html
http://www.cs.utah.edu/formal_verification/ISP_Tests/
http://www.cfm.brown.edu/people/gk/APMA281A/LECTURES/
http://llvm.org
http://mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

[15] Ian Hodkinson. lecture notes of modal and temporal logic. note.

[16] Kohei Honda, Raymond Hu, Rumyana Neykova, Tzu-Chun Chen, Romain Demangeon, Pierre-

Malo Denielou, and Nobuko Yoshida. Structuring communication with session types. note.

[17] Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko Yoshida.

Scribbling Interactions with a Formal Foundation. In Distributed Computing and Internet

Technology - 7th International Conference, ICDCIT 2011, Bhubaneshwar, India, February

9-12, 2011. Proceedings, pages 55–75. Springer, 2011.

[18] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language Primitives and

Type Discipline for Structured Communication-Based Programming. In Programming Lan-

guages and Systems - ESOP’98, 7th European Symposium on Programming, Held as Part of

the European Joint Conferences on the Theory and Practice of Software, ETAPS’98, Lisbon,

Portugal, March 28 - April 4, 1998, Proceedings, pages 122–138. Springer, 1998.

[19] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.

In POPL, pages 273–284, 2008.

[20] Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda. Type-

Safe Eventful Sessions in Java. In ECOOP 2010 - Object-Oriented Programming, 24th European

Conference, Maribor, Slovenia, June 21-25, 2010. Proceedings, pages 329–353. Springer, 2010.

[21] Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-Based Distributed Programming in

Java. In ECOOP 2008 - Object-Oriented Programming, 22nd European Conference, Paphos,

Cyprus, July 7-11, 2008, Proceedings, pages 516–541. Springer, 2008.

[22] Michio Kaku. Tweaking Moore’s Law and the Computers of the Post-Silicon Era. http:

//www.youtube.com/watch?v=bm6ScvNygUU/, April 2012. [Online; accessed 17-April-2013].

[23] Socrates Katsoulacos. Safety checking for mpi programs via multiparty session types. Master’s

thesis, Imperial College London, 2012.

[24] Rumyana Neykova. Communication assurance with session types. note.

[25] Rumyana Neykova. Session types go dynamic or how to verify your python conversations. In

PLACES, 2013.

[26] Nicholas Ng and Nobuko Yoshida. Practical message-passing programming with parameterised

session types. note.

[27] Nicholas Ng, Nobuko Yoshida, and Kohei Honda. Multiparty Session C: Safe Parallel Pro-

gramming with Message Optimisation. In Objects, Models, Components, Patterns - 50th In-

ternational Conference, TOOLS 2012, Prague, Czech Republic, May 29-31, 2012. Proceedings,

pages 202–218. Springer, 2012.

[28] Oracle. Socket Programming. http://docs.oracle.com/javase/tutorial/networking/

sockets/clientServer.html. [Online; accessed 1-May-2013].

[29] Dale R. Shires, Lori L. Pollock, and Sara Sprenkle. Program Flow Graph Construction For

Static Analysis of MPI Programs. In Proceedings of the International Conference on Parallel

90

http://www.youtube.com/watch?v=bm6ScvNygUU/
http://www.youtube.com/watch?v=bm6ScvNygUU/
http://docs.oracle.com/javase/tutorial/networking/sockets/clientServer.html
http://docs.oracle.com/javase/tutorial/networking/sockets/clientServer.html

and Distributed Processing Techniques and Applications, PDPTA 1999, June 28 - Junlly 1,

1999, Las Vegas, Nevada, USA, pages 1847–1853. CSREA Press, 1999.

[30] Michelle Mills Strout, Barbara Kreaseck, and Paul D. Hovland. Data-Flow Analysis for MPI

Programs. In 2006 International Conference on Parallel Processing (ICPP 2006), 14-18 August

2006, Columbus, Ohio, USA, pages 175–184. IEEE Computer Society, 2006.

[31] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language and its

typing system. In PARLE, pages 398–413, 1994.

[32] The Scribble team. Scribble Language Reference. http://www.doc.ic.ac.uk/~rhu/

scribble/main.html, July 2013. [Online; accessed 27-August-2013].

[33] wikipedia. Message Passing Interface. http://en.wikipedia.org/wiki/Message_Passing_

Interface. [Online; accessed 18-August-2013].

[34] Nobuko Yoshida and Vasco Thudichum Vasconcelos. Language primitives and type discipline

for structured communication-based programming revisited: Two systems for higher-order

session communication. Electr. Notes Theor. Comput. Sci., 171(4):73–93, 2007.

Appendix: Source Files of Test Cases 2.5 and 4.13

Listing 2 : parent.c

1 #inc lude ”main/ spec . h”

2

3 void testWait () {
4

5 i f (rank>=0 && rank<=7){
6 MPI Irecv (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD, &req) ;

7 MPI Isend (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD, &req2) ;

8 MPI Recv (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD,& s ta tu s) ;

9

10 MPI Wait (&req , &s ta tu s) ;

11 MPI Wait (&req2 , &s ta tu s) ;

12 MPI Wait (&req , &s ta tu s) ;

13 MPI Wait (&req2 , &s ta tu s) ;

14 }
15

16 i f (rank>=1 && rank<=8){
17 MPI Irecv (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD,& req) ;

18 MPI Isend (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD,& req2) ;

19 MPI Send (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD) ;

20

21 MPI Wait (&req2 , &s ta tu s) ;

22 MPI Wait (&req , &s ta tu s) ;

23 MPI Wait (&req , &s ta tu s) ;

24 MPI Wait (&req2 , &s ta tu s) ;

25 }
26 }
27

91

http://www.doc.ic.ac.uk/~rhu/scribble/main.html
http://www.doc.ic.ac.uk/~rhu/scribble/main.html
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface

28 void he l l oParent () {
29 p r i n t f (”He l lo from %s \n” , ”Parent”) ;

30

31 testWait () ;

32 }

Listing 3 : uncle.c

1 #inc lude ” . . / main/ spec . h”

2

3 void t e s tMu l t i 2 () {
4

5 f o r (i n t i =0; i <3; i++){
6 i f (rank==i)

7 MPI Isend (buf0 , bu f s i z e , MPI INT , rank+1, 0 , MPICOMMWORLD, &req2) ;

8

9 i f (rank==i +1)

10 MPI Recv (buf0 , bu f s i z e , MPI INT , rank−1, 0 , MPICOMMWORLD,& s ta tu s) ;

11 }
12

13 }
14

15 void he l l oUnc l e () {
16 p r i n t f (”He l lo from %s \n” , ”Uncle ”) ;

17

18 t e s tMu l t i 2 () ;

19 }

Listing 4 : main.c

1 #inc lude ” spec . h”

2

3

4 i n t nprocs = −1;
5 i n t rank = −1;
6 i n t sendarray [1 0 0] ;

7 char processor name [1 2 8] ;

8 i n t namelen = 128 ;

9

10 i n t main (i n t argc , char ∗∗ argv)
11 {
12 MPI Init (&argc , &argv) ;

13 MPI Comm size (MPICOMMWORLD , &nprocs) ;

14 MPI Comm rank (MPICOMMWORLD , & rank) ;

15 MPI Get processor name (processor name , &namelen) ;

16

17 MPI Comm comm=MPICOMMWORLD;

18

19 he l l oUnc l e () ; // t e s tMu l t i 2 () ;

20 h e l l o S i b () ; // testDiffRanksCallSameMethod () ;

21 he l l oParent () ; // testWait () ;

22 he l l oCh i l d () ; // testMult iSenderAndMultiRecver () ;

92

23

24

25 MPI Barrier (comm) ; // r e l e a s e mode : 7 .156 s

26

27

28 i n t check ;

29 p r i n t f (”Checking i f p r o c e s s o r i s a v a i l a b l e . . . ”) ;

30 i f (system (NULL)) puts (”Ok”) ;

31 e l s e e x i t (EXIT FAILURE) ;

32 p r i n t f (”Executing command DIR . . . \ n”) ;
33 check=system (” d i r ”) ;

34 p r i n t f (”The value returned was : %d .\n” , check) ;

35

36

37 MPI Final ize () ;

38 p r i n t f (”(%d) Fin i shed normally \n” , rank) ; r e turn 0 ;

39

40 }

Listing 5 : sib.c

1 #inc lude ” spec . h”

2

3

4 void te s tFor2 () {
5 f o r (i n t i =2; i <7; i++){
6

7 i f (rank>=0 && rank<7)

8 MPI Bcast (buf0 , bu f s i z e ,MPI INT , i ,MPICOMMWORLD) ;

9 e l s e

10 MPI Bcast (buf0 , bu f s i z e ,MPI INT , i ,MPICOMMWORLD) ;

11

12 i f (rank>2 && rank <8)

13 MPI Send (buf0 , bu f s i z e , MPI INT , rank+2, 0 , MPICOMMWORLD) ;

14

15 i f (rank>=5 && rank<=9)

16 MPI Recv (buf0 , bu f s i z e , MPI INT , rank−2, 0 , MPICOMMWORLD,& s ta tu s) ;

17

18

19 f o r (i n t j =17; j>=0; j−−){
20 i f (rank>1 && rank <9){
21 MPI Send (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD) ;

22 MPI Recv (buf0 , bu f s i z e , MPI INT , 1 , 0 , MPICOMMWORLD,& s ta tu s) ;

23 }
24

25 i f (rank==1)

26 f o r (i n t c=2; c<=8; c++){
27 MPI Recv (buf0 , bu f s i z e , MPI INT , c , 0 , MPICOMMWORLD,& s ta tu s) ;

28 MPI Send (buf0 , bu f s i z e , MPI INT , c , 0 , MPICOMMWORLD) ;

29 }
30 }
31

32 }}

93

33

34 void testDiffRanksCallSameMethod () {
35 i f (nprocs>9 && nprocs <20){
36 i f (rank==0){
37 te s tFor2 () ;}
38 e l s e {
39 te s tFor2 () ;}
40 } e l s e {
41 MPI Barrier (MPICOMMWORLD) ;

42 te s tFor2 () ;}
43 }
44

45

46

47 void h e l l o S i b () {
48 p r i n t f (”He l lo from %s \n” , ” S i b l i n g1 ”) ;

49

50 testDiffRanksCallSameMethod () ;

51

52 }

Listing 6 : spec.h

1 #i f n d e f spec H

2 #de f i n e spec H

3

4 #inc lude <s t d i o . h>

5 #inc lude <s t r i n g . h>

6 #inc lude <mpi . h>

7 #inc lude <s t d l i b . h>

8

9 #de f i n e b u f s i z e 128

10 i n t buf0 [b u f s i z e] ;

11 i n t buf1 [b u f s i z e] ;

12 MPI Status s t a tu s ;

13 MPI Request req ;

14 MPI Request req2 ;

15

16 extern i n t nprocs ;

17 extern i n t rank ;

18 extern i n t sendarray [1 0 0] ;

19 extern char processor name [1 2 8] ;

20 extern i n t namelen ;

21

22 void he l l oUnc l e () ;

23 void h e l l o S i b () ;

24 void he l l oParent () ;

25 void he l l oCh i l d () ;

26

27

28 #end i f

94

Listing 7 : child.c

1 #inc lude ” . . / spec . h”

2

3 void testMult iSenderAndMultiRecver () {
4 i f (rank>=3 && rank<8)

5 f o r (i n t i =0; i <3; i++)

6 MPI Isend (buf0 , bu f s i z e , MPI INT , i , 0 , MPICOMMWORLD, &req2) ;

7

8 i f (rank>=0 && rank<3)

9 f o r (i n t i =3; i <8; i++)

10 MPI Recv (buf0 , bu f s i z e , MPI INT , i , 0 , MPICOMMWORLD,& s ta tu s) ;

11

12 }
13

14

15

16 void he l l oCh i l d () {
17

18 p r i n t f (”He l lo from %s \n” , ” ch i l d ”) ;

19

20 testMult iSenderAndMultiRecver () ;

21

22 }

Listing 8 : protocol for the whole program

1

2 /∗The pro to co l generated i s NOT s t ab l e ! ∗/
3

4 /∗The cur rent p ro to co l i s only app l i c ab l e when number o f p r o c e s s e s i s 100∗/
5

6 /∗There i s imper f e c t matching o f MPI ope ra t i on s ; Plz use p e r f e c t matching . ∗/
7

8 const N=100;

9

10 g l oba l p ro to co l main ProToCoL (r o l e MPICOMMWORLD[0 . . N−1])

11 {
12 fo r each (i : 0 . . 2) {
13 Data (MPI INT) from MPICOMMWORLD[rank : i] to MPICOMMWORLD[rank +1] ;

14

15 }
16

17 cho i c e at MPIPROGRAM

18 {
19 fo r each (i : 2 . . 6) {
20 Data (MPI INT) from MPICOMMWORLD[i] to MPICOMMWORLD[0 . . N−1]
21 }
22

23 fo r each (i : 2 . . 6) {
24 Data (MPI INT) from MPICOMMWORLD[rank : 3 . . 7] to MPICOMMWORLD[rank +2] ;

25

26 }

95

27

28 fo r each (i : 2 . . 6) {
29 fo r each (j : 1 7 . . 0) {
30 Data (MPI INT) from MPICOMMWORLD[2 . . 8] to MPICOMMWORLD[1] ;

31

32 }
33 }
34

35 fo r each (i : 2 . . 6) {
36 fo r each (j : 1 7 . . 0) {
37 fo r each (c : 2 . . 8) {
38 Data (MPI INT) from MPICOMMWORLD[1 . . 1] to MPICOMMWORLD[c] ;

39

40 }
41 }
42 }
43 }
44

45 or

46

47 {
48 fo r each (i : 2 . . 6) {
49 Data (MPI INT) from MPICOMMWORLD[i] to MPICOMMWORLD[0 . . N−1]
50

51 Data (MPI INT) from MPICOMMWORLD[rank : 3 . . 7] to MPICOMMWORLD[rank +2] ;

52

53

54 fo r each (j : 1 7 . . 0) {
55 Data (MPI INT) from MPICOMMWORLD[2 . . 8] to MPICOMMWORLD[1] ;

56

57

58 fo r each (c : 2 . . 8) {
59 Data (MPI INT) from MPICOMMWORLD[1 . . 1] to MPICOMMWORLD[c] ;

60

61 }
62 }
63 }
64 }
65

66 Data (MPI INT) from MPICOMMWORLD[rank : 0 . . 7] to MPICOMMWORLD[rank +1] ;

67

68

69 Data (MPI INT) from MPICOMMWORLD[rank : 1 . . 8] to MPICOMMWORLD[rank −1] ;

70

71

72 Data (MPI INT) from MPICOMMWORLD[rank : 1 . . 8] to MPICOMMWORLD[rank −1] ;

73

74

75 fo r each (i : 0 . . 2) {
76 Data (MPI INT) from MPICOMMWORLD[3 . . 7] to MPICOMMWORLD[i] ;

77

78 }
79 }

96

Listing 9 : A ring topology [6]

1 #inc lude <mpi . h>

2 #inc lude <s t d i o . h>

3

4 i n t main (i n t argc , char ∗∗ argv)
5 {
6 i n t my rank , ncpus ;

7 i n t l e f t n e i g hbo r , r i gh t n e i ghbo r ;

8 i n t da ta r e c e i v ed=−1;
9 i n t tag = 101 ;

10 MPI Status statSend , statRecv ;

11 MPI Request reqSend , reqRecv ;

12

13 MPI Init(&argc , &argv) ;

14 MPI Comm rank(MPICOMMWORLD, &my rank) ;

15 MPI Comm size (MPICOMMWORLD, &ncpus) ;

16

17 l e f t n e i g h b o r = (my rank−1 + ncpus)%ncpus ;

18 r i gh t n e i ghbo r = (my rank+1)%ncpus ;

19

20 MPI Isend(&my rank , 1 ,MPI INT , l e f t n e i g hbo r , tag ,MPICOMMWORLD,&reqSend) ; // comm

s t a r t

21 MPI Irecv(&data rece ived , 1 ,MPI INT , r i gh t ne i ghbor , tag ,MPICOMMWORLD,&reqRecv) ;

22

23 // maybe do something u s e f u l here

24

25 MPI Wait(&reqSend , &statSend) ; // complete comm

26 MPI Wait(&reqRecv , &statRecv) ;

27

28 p r i n t f (”Among %d proce s s e s , p roce s s %d re c e i v ed from r i gh t ne ighbor : %d\n” ,

29 ncpus , my rank , da t a r e c e i v ed) ;

30

31 // c l ean up

32 MPI Final ize () ;

33 re turn 0 ;

34 }

97

	Introduction
	This project
	Motivation
	Contributions
	Orgnization

	Background
	Session Types
	Motivation Of Developing Session Type Theory
	Basic Concept Of Session Types
	basic syntax of session types
	basic properties of session types

	Protocols in Multiparty Session Types
	Operational semantics of Session Types
	Typing System of Session Types
	Evolution of Session Types

	Pabble
	Syntax
	The advantages of using Pabble

	Message Passing Interface MPI
	static type checking
	Motivation of Static Type Checking

	Traditional Analysis Of MPI Programs
	MPI-CFG
	pCFG

	MPI and Parameterised Session Type Protocols

	Design & Implementation
	Terminologies and Concepts used in design and implementation
	Rank Variable
	Range and Condition
	Range
	Condition

	Rank-Related or Non-Rank-Related
	Executor and Target of MPI operation
	Unilateral MPI operations
	Roles
	Skeleton of MPI tree

	Toolset
	LLVM Infrastructure and Clang Compiler

	Design Goals
	Unsupported cases
	Input and Output of The Program
	Reading Multiple Source Files
	Architecture Of The Session Type Extractor
	In-depth explanation of Range and Condition
	AND operation
	AND operation for Range
	AND operation for Condition

	NEGATION operation
	All the other manipulations on Range and Condition

	Data Structures Used In The Application
	Abstract Syntax Tree
	AST Consumer
	AST Traversal

	Communication Tree
	Construction of CommTree

	MPI tree
	Optimisation of CommTree

	Simulation
	The Design of Simulation
	Multiple Roles, Single Tree
	Blocking and Deadlock
	Unblocking roles and Marking nodes
	Optimisation of Simulation

	Extract Condition From Expression
	Condition in boolean expression
	Condition in Target Expression

	Analysis of Language Constructs In The MPI program
	Assignment
	Choice
	Loop
	While
	For

	Little summarise of the language constructs

	MPI Primitives
	Non-blocking operations

	Matching of MPI operations
	Perfect matching and Occasional matching
	Techniques for identifying the matching of MPI operations

	Generation of Protocol
	LFP
	The Challenges

	Test & Evaluation
	Compare with the previous project
	Test Cases
	Condition Extraction Test
	Simple conditions
	Complex conditions

	Simple Constructs Test
	Unsupported Cases Test
	Deadlock tests
	Classic deadlock
	Deadlock caused by MPI_Wait
	Deadlock caused by collective operations

	Testing of complex program with multiple source files
	LFP examples
	Matching examples
	Real MPI Program Test: Ring topology

	Conclusion
	Future Work

