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Abstract

Diagnosis of Alzheimer’s disease is a global problem. Automated image-based classification for

individual patients plays a pivotal role in computer-assisted diagnosis. The Alzheimer’s Disease

Neuroimaging Initiative provides a large amount of images for researchers to find approaches to

help clinicians with their diagnosis. In this work, magnetic resonance images from it is taken into

account. However, there might be a small number of mistakes in the diagnostic labels. This work

tries to find them out via machine learning techniques.

This work includes a review of many recent papers about automated diagnosis of Alzheimer’s

disease based on machine learning. We therefore did large-scale statistics on the data based on

voxels in the whole brain and around the hippocampus. Several data which is believed as classified

correctly was pick up. The best classification accuracy we achieved is 86.77%, which is between ADs

and controls on voxels around hippocampus. Our best accuracy is comparable to other published

studies. We also assessed the quality of different clinical sites, discovering that almost all clinical

sites provided equally reliable imaging data and diagnostic labels.

This paper then developed a framework of multiple instance learning to identify potentially mis-

labelled data. We used volumes of hippocampus as the feature in this part. In the first stage,

we generated the synthetic data according to the distribution of real data to test and improve the

model. Then we applied the model to the real data to unearth the potential mis-classified individ-

uals.

In conclusion, the results suggest that the model in this work could be applied to support the

clinical diagnosis by helping to identify labelling errors. Future work may contribute to simplify

the whole procedure, improve the robustness of the algorithms, and it may also consider different

modalities, including PET imaging.
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1 Introduction

1.1 Alzheimer’s Disease

Alzheimer’s disease (AD) is a common type of dementia that occurs in the middle-aged and elderly

population. The progressive dementia may result in a brain disorder. If one suffers from dementia,

their memory and other cognitive functions would decline when compared to their previous level

of function. AD is partly diagnosed by a history of decline in performance and by abnormalities

noted from clinical examination and psychological tests. Presence of neurofibrillary tangles and

neuritic plaques and degeneration of specific nerve cells are pathologic characteristics of AD [42].

Dementia is highly heritable but genetically complex [24]. Definite AD diagnosis requires histopatho-

logic confirmation [42]. Currently there is no definite cure for AD. However, Sano et al [54] reported

that the progression of AD might be slowed down if the patient’s impairment is moderate.

Since a definite AD diagnosis is difficult to attain, McKhann et al [42] proposed a clinical criteria

dividing the AD into probable, possible, and definite categories. If one is clinically probable AD,

he/she must have a typical insidious onset of dementia and meanwhile the dementia should have

been progressed. In addition, AD should be the only fact that accounts for the decline in cognitive

functionality. If the patient suffered from other significant diseases apart from AD, which also may

cause the progressive decline of cognitive functionality but AD is the most likely pathogenic factor,

then a possible AD diagnosis is issued.

AD patients might exhibit a cognitive decline for more than 10 years before a clinical onset of

the disease [25]. For the earliest preclinical stage of AD, there is a term called mild cognitive

impairment (MCI) [25]. If one is detected as MCI, it does not mean he suffers from dementia at

all. Individuals with MCI may only have more defects in cognition than normal people in the same

ages. However, not all the patients suffering MCI will remain clinically normal. Some of them,

who remain stable are called stable MCI (sMCI); the others are progressive, which is known as

progressive MCI (pMCI). We can diagnose pMCI before it progressed to the most severe stage.

During the long-time progress, pMCI patients could be diagnosed at different time points since

patients can progress at different rates and to progress from MCI to AD can take many years.

With the development of the disease, the cognitive and functional performance of a patient greatly

declined in clinics. Meanwhile, plaques and tangles grow fast. Figure 1.1 shows the progression in

detail. It is clear that with the progression of the disease, the cognitive and functional performance

of patients declined faster and faster.

In 2006, there were 26.6 million cases of AD in the world. Predictions indicate that by the year

of 2050, the worldwide prevalence of AD will grow to 106.8 millions [5]. The ageing of the world’s

population may lead to an increase of AD patients. As a result of it, more and more patients may

1



Figure 1.1: AD progression. From normal ageing to dementia, the cognitive and functional
performanced delined rapidly. More and more plaques and tangles appear with
the progression of AD. This figure is downloaded from http://openi.nlm.nih.

gov/detailedresult.php?img=3022870_1741-7015-8-89-2&query=Alzheimer’

sDiseaseprogression&fields=all&favor=none&it=g&sub=none&uniq=0&sp=

none&req=4&npos=77&prt=.

require hospitalisation, which will challenge the national healthcare systems to meet the require-

ments. The costs spent by the healthcare system for AD treatment will grow rapidly.

1.2 Biomarkers for Alzheimer’s Disease

There are various biomarkers which might prove to be significant diagnosis tools for AD, includ-

ing cerebrospinal fluid (CSF), neurofibrillary tangles (NFTs), amyloid plaques, plasma biomarkers,

anatomical markers, as well as imaging biomarkers [6]. These biomarkers play pivotal roles in AD.

Figure 1.2 shows the change of biomarkers with the progression of the disease.

The whole brain can be parcellated into three parts: white matter (WM), grey matter (GM),

and the CSF [6]. Some biochemical changes that occur in the brain might be reflected in the

CSF. Therefore, proteins in CSF can act as biomarkers for neurological diseases, including AD. In

addition, both magnetic resonance imaging (MRI) and positron emission tomography (PET) scans

can provide a visualization of the whole brain from which we are able to see the CSF.

NFTs [6] and the amyloid plaques, shown in Figure 1.3, are the other factors of AD. Similar to

CSF, both of them are related to AD. In terms of CSF, the molecular composition can be used

to measure the change in the brain. NFT refers to the intracellular filamentous aggregates of the

2
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Figure 1.2: AD biomarkers. It was detected that there are five biomarkers playing pivotal roles
in AD progression. A patient from normal to abnormal, the biomarkers magnitudes
increase significantly. However, different biomarkers increases most rapidly in different
stages. This figure is downloaded from http://adni.loni.ucla.edu/.

micro-tubule, binds protein tau, which can be used as AD biomarkers. In the left part of Figure

1.3, we can see that each neuron and its surroundings are smooth and healthy. The Alzheimer’s

picture (right part of Figure 1.3) shows obvious pathological changes in those areas because of the

presence of NFTs and amyloid plaques.

Collecting CSF is invasive and unlikely to become a routine procedure in geriatric clinics [6].

It motivates scientists to find peripheral biomarkers to assist in AD diagnosis. They reported

that Aβ in plasma is valuable in AD diagnosis. However, Chintamaneni et al [6] revealed that

the use of Aβ 42 as the sole biomarker is not very reliable. Additionally they proposed to use the

ratio of plasma Aβ 42/Aβ 40 to identify whether a normal individual would progress to MCI or not.

Cerebral atrophy and macroscopic vascular alterations are two AD anatomical biomarkers [6].

As it is shown in Figure 1.4, there is a severe atrophy associated to a patient’s brain (right part),

compared with a healthy one (left part). The atrophy may result in a dilation of the ventricular

system and a widening of cortical sulci. According to Figure 1.4, the degree of atrophy could also

be used as as a marker of disease progression.

The hippocampus plays a key role in diagnosis of AD [17]. Hippocampus is sensitive to AD be-

cause it is a key anatomical structure to the consolidation of memory. Therefore it is of particular

interest in AD research and its diagnosis. Particularly, the atrophic change of the hippocampus

has attracted large amounts of interest due to the assumption that the hippocampal tissue loss is

related to AD. In terms of atrophy, early studies focused on the measurements of the volume of

hippocampus, which has been proposed as one of the main diagnostic symptom.

3
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Figure 1.3: NFTs and amyloid tangles.In the left picture, it shows a brain area of neurons in normal.
The picture in the right dipicts the same area where there are some pathological changes
due to the presence of NFTs and amyloid plaques. They could be the causes of AD.
This figure is downloaded from http://pakmed.net/.

Figure 1.4: Brain atrophy. The left half of the brain is from a healthy individual. The right half of
the brain comes from an advanced AD patient. It is obvious that the AD patient’s brain
has a severe atrophy. This figure is downloaded from http://adni.loni.ucla.edu/.

4
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1.3 Neuroimaging

As we mentioned above, it is extremely difficult to diagnose AD. Although physical examinations

and psychological testing help clinicians with the diagnosis, only microscopic examination of brain

tissue can provide an absolute confirmation [30]. However, with the development of neuroimaging

techniques, clinicians are able to examine the structural and functional changes in the brain by way

of medical imaging. Among all the techniques in this area, MRI, PET, X-ray computed tomography

(CT), singe-photon emission computed tomography (SPECT), and diffusion tensor imaging (DTI)

are widely used [22]. In this work, we will only focus on MRI, which exploits the phenomenon

of nuclear magnetic resonance (NMR) to produce high quality structural images of the internal

organs and other tissues. Typically, the structural changes in the brain associated with AD can be

non-invasively assessed using MRI.

Magnetic Resonance Imaging

The internal organs and other tissues in our bodies can be scanned in high quality with the help

of the phenomenon of NMR [22]. The patient is always asked to lie in a powerful static magnetic

fields, then a structural MRI begins to scan the body. The magnetic field aligns the spins of hy-

drogen atoms in the body. The application of a radio frequency (RF) electromagnetic pulse can

perturb this alignment, which results in the resonance emission of a measurable RF signal. The

quality of the obtained images depends on the strength of the static magnetic field. Generally, it

is 1.5T or 3T. The magnetic field gradients determined the spatial localisation within the body.

The frequency of the resonance signal detected therefore becomes dependent on the location from

which it was emitted. Hence, different RF signals can distinguish different tissues.

According to structural MRI, the GM of AD patients decreases significantly, especially in the

parahippocampal gyrus, the hippocampus, the amygdala, the posterior association cortex and the

subcortical nuclei including the cholinergic basal forebrain [23]. In longitudinal studies, the rate of

changes in neuropsychology test and atrophy of brain regions might reflect the progression of the

disease, as well as measuring the effects of treatment by using MRI. Figure 1.5 shows the detection

of potential disease-modifying treatment effects. In the first graph, before withdrawal of treatmen-

t, the cognitive function with disease-modifying decreases slower than with treatment of placebo.

After the withdrawal of treatment, the symptomatic decline of cognitive function becomes more

rapid than with the treatment of placebo while the disease-modifying decline of cognitive func-

tion is still slower than with the treatment of placebo. Hence, in terms of neuropsychology, the

disease-modifying treatment can slow down the decline of cognitive function. In the second graph,

the difference between the rate of symptomatic decline and the rate of decline with placebo is not

significantly obvious. However, cognitive function decreases slower with the treatment of disease-

modifying treatment. Similarly, the rate of brain atrophy can also be slow down with the help of

disease-modifying treatment. All the rates are obtained by MRI measurements on the volume of

brain regions.

Hampel et al [23] reported high reliability in the measurements of volumes from repeated MRI

scans. As a result, the volumes of the region of interest (ROI) in the brain can be used as a

5



Figure 1.5: Detection of disease-modifying treatment effects. In Graph a, the red solid line depicts
the cognitive dicline with the disease-modifying or symptomatic treatment. The red
and orange dashed lines indicate the cognitive decline after the withdrawal of treatment.
The green solid line demostrates the cognitive decline with placebo. In Graph b, the
upper blue line describes the cognitive decline with disease-modifying treatment. The
lower blue line shows the it with symptomatic treatment. The green line characterize
the atrophy in the brain with a treatment of placebo. These figures are generated by
Hampel et al[23].

biomaker of AD. The most commonly used ROI is hippocampus, whose volumes are measured by

visual inspection or manual drawing on MRI slices. However, manual drawing is labour intensive.

People have already proposed some automated techniques to handle it and several automatic tech-

niques have been put forward. For instance, Wolz et al[60] proposed an automatic hippocampus

segmentation method.

1.4 Thesis Outline

Research presented in this work makes contributions to the image-based classification of AD vs CN,

pMCI vs CN, as well as pMCI vs sMCI. In particular, a framework of multiple instance learning,

which could be used to detect the mis-labelled instances in the training data, is presented.

In Chapter 2, two machine learning techniques will be introduced in detail. The first one is

the support vector machine (SVM), which is a supervised learning method. It will be introduced

in three stages: linear, soft-margin, and kernel SVM forms. The soft-margin SVM will be wide-
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ly used in our following experiments. The second machine learning method is multiple instance

learning. It is a semi-supervised learning method. Because of this, it could be based on both

supervised and unsupervised learning methods. In terms of multiple instance learning, we will

employ supervised-based and unsupervised-based techniques, which are Citation-kNN and Diverse

Density, respectively. Both of them will be used in Chapter 6.

In the past five years, numerous papers on the medical image analysis focused on two of the main

issues on AD. One is feature extraction and the other one is classifier selection. Whole brain images

typically consist of several million voxels, many of which may contain redundant information that

may mislead global classification as well as adding to the computational borden to process them.

However, if very few simple features are extracted from the raw data, ensuring the computation

efficiency, much useful information may be lost, which may also mislead the overall classification.

Therefore, there is a trade-off between feature extraction and classifier selection. In Chapter 3,

many relevant papers about feature extraction and classification are reviewed.

In Chapter 4, we will describe the data used in this work. Firstly, there is a brief introduction on

Alzheimer’s Disease Neuroimaging Initiative, which is the source of our data. Then we will discuss

how the data was pre-processed, including registration, segmentation, and intensity normalization.

In the third stage, the whole data will be divided in different groups, including AD, CN, pMCI and

sMCI. According to different experiments, different features will be extracted, which includes the

voxels of whole brains and around the hippocampus and the volumes of hippocampus.

In Chapter 5, statistical analysis in terms of the ADNI data is performed. In this chapter, d-

ifferent training algorithms, cross-validation strategies, and comparison groups are assessed. It is

clear that in this case, the voxels of hippocanpus towers over the whole brain voxels in terms of

classification between both AD and CN and pMCI and sMCI. Also, the classification error rate of

scans from different clinical sites is assessed, which results in that instances from most clinical sites

are fairly accurate. However, there are few clinical sites from which instances tend to have a high

classification error rate.

Chapter 6 details a novel framework of multiple instance learning, which stands between super-

vised learning and unsupervised learning. Multiple instance learning copes with the situation where

not all the labels from the training instances can be completely trusted. Under this assumption, a

small number of instances whose labels are definitely true are recognized as negative while others

are regarded as positive. Then we can put several instances into a bag. For each bag, if it contains

no positive instance, its label is negative; otherwise it is positive. As a result, binary classification

could be conducted on bags. It is easy to test the label of an instance by manually assigning it to

bags and testing the labels of those bags. Based on our own model, a small number of mis-labelled

ADs and CNs are discovered.

Finally, our overall conclusion, contributions of this work and possible future work are presented

in Chapter 7.
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2 Machine Learning Methods

2.1 Support Vector Machine

In 1980s, neural network was one of the most popular supervised learning techniques [2]. It was

based on the idea that certain kinds of functions, which are or can be derived from basic elementary

functions, are able to represent the target mapping. According to it, neural networks were used in

regression, classification and etc. However, under the circumstance of binary classification, there

was not sufficient theoretical support for neural networks. In 1992, Vapnik et al [59] developed

a state-of-the-art classification technique called support vector machine, known as SVM. It was

a milestone in supervised learning because it combines theoretical and practical worlds together.

Practically, SVM is committed to find the maximum margin between two classes. Theoretically,

it is a optimal programming procedure. As a result, SVM became the most popular classification

method instead of neural networks. In addition, the research following Vapnik et al improved SVM

significantly such that it is able to deal with the misclassification situations. Further, multi-class

SVM and kernel tricks were developed.

It is a common knowledge that in supervised learning, each instance has a given label and we

need to bridge a mapping between the instances and their labels. In this paper, we define a set of

training data consisting of N points,

(xi, yi), i = 1, ..., N

xi is the feature vector in n dimensions that describes the data point and yi is the corresponding

label of xi. We only take binary classification into account. Therefore if xi is positive, its yi is

+1; otherwise, yi is −1. In supervised learning, we have to find a function f(x), which is able to

predict the y for each unseen x.

2.1.1 Linear SVM

From very beginning, the SVM was to classify two classes. In addition, it was assumed that there

should be a linear function that could reach the goal. That means there exists a hyperplane in n

dimensions, which could linearly separate the two classes. In this case, we define the equation as

below:

f(x) = wTx + b = 0 (2.1)

In Equation (2.1), f(x) is the mapping that we have to find. w is the normal vector to the hyper-

plane. b is the bias. To explain more simply, if the dimension is 1, then f(x) is a straight line in 2D

Euclidian space. w is its slope and b is the intercept on y-axis. Two classes locate at opposite sites

of the hyperplane. Therefore we may use the hyperplane as the discriminant of the two classes.
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For a unseen data points, if f(xi) > 0 then it locates at the upper side of the hyperplane. Thus its

predicted label should be 1. One the other hand, if f(xi) < 0 the data point locates at the lower

side the the hyperplane such that it should be labelled as −1. Hence f(x) in equation (2.1) will be

the decision rule.

However, there is no wonder that there should be more than one hyperplanes meeting the re-

quirements mentioned above. The obvious motivation to solve it is to find the only one hyperplane

which is able to distinguish the two classes most significantly. Specifically, we have to find out the

largest margin between the two classes and the hyperplane in the middle the the maximum margin

will be the right one we need. Mathematically, in order to use the hyperplane for classification, we

have to use a constant to scale w and tune b properly to make

wTxi + b ≥ +1 then yi = +1

wTxi + b ≤ +1 then yi = −1
(2.2)

These equations represent parallel bounding hyperplanes that separate the data. Geometrically, the

perpendicular distance between the parallel bounding hyperplanes is 2/‖w‖. To simplify Equation

(2.2), it is possible to combine them together into one equation as

yi(w
Txi + b) ≥ 1 (2.3)

Therefore, to find the maximum margin is to maximize the perpendicular distance between the

bounding hyperplanes, which is to minimize ‖w‖/2. We can summarize it as a particular in

quadratic programming

min
1

2
wTw

s.t. yi(w
Txi + b) ≥ 1 i = 1, ..., N

(2.4)

Intuitively, the two parallel bounding hyperplanes must go through some of the data points; other-

wise there would be more space for them to make the margin larger. In this way, those data points

with f(x) = ±1 are called support vectors. SVM therefore is the machine finding the support

vectors because once support vectors are found, it becomes easy to find the largest margin between

the two classes. Hence the discriminant hyperplane becomes surfaced. That means finding support

vectors is the key problem in this case. Therefore this method was named after the support vectors.

Figure 2.1 describes the core idea of the algorithm. In the figure, the margin between two dashed

lines are the fattest. When predicting new points, if it locates in the left of the solid line, it belongs

to the blue class; otherwise it belongs to the red class.

Equation (2.5) cannot be solved directly. It is a constrained optimization problem. We may use

Lagrangian multipliers to transform it into unconstrained form. The optimization problem could

then be re-expressed as

min
w,b

max
α

{
1

2
wTw −

N∑
i=1

λi[yi(w
Txi − b)− 1]

}
s.t. λi ≥ 0

(2.5)

9



Figure 2.1: The illustration of SVM. Red circles and blue circles represent data points belonging
to two different classes. The circles with dashed contours are support vectors. The
margin between two parallel dashed hyperplanes is the largest. The solid line dipicts
the discriminant hyperplane.

According to Equation (2.5), the normal vector w could be derived as

w =
m∑
i=1

λiyixi

which is a linear combination of the feature vectors. According to the theory of quadratic pro-

gramming, the optimizers could only be reach at the boundary of the feasible region. That means

the λi will be zero if the corresponding data point xi is not the support vector. Suppose there are

overall Nsv support vectors in this case, then the b could be found by

b =
1

Nsv

Nsv∑
i=1

(wTxi − yi)

It is the average error between all the wTxi and yi.

The primal form of the Lagrangian L(w, b, λ) may be equivalently written in dual form by

substituting the above expression for w. The dual form,

max
λ

L̃(λ) = max
λ


N∑
i=1

λi −
1

2

∑
i,j

λiλjyiyjx
T
i xj


s.t. λi ≥ 0 and

N∑
i=1

λiyi = 0

(2.6)
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expresses the optimization criterion in terms of inner products of the feature vectors. This is an

important property for the creation of non-linear SVM classifiers.

2.1.2 Soft-margin SVM

Under some practical circumstances, the real data may be corrupted by the noise, which results in

that there is no linear hyperplane that can separate the data. In this case, we have to find a new

hyperplane, which can minimally mis-classify the data. Therefore, we introduce a slack variable ξ,

which can measure the degree of misclassification of the feature vectors. The optimization becomes a

trade-off between maximizing the margin and minimizing the degree of misclassification. A penalty

parameter C is required to control this trade-off. Consequently, the constrained optimization should

be expressed as

min
w,ξ,b

{
1

2
wTw + C

N∑
i=1

ξi

}
s.t. yi(w

Txi − b) ≥ 1− ξi and ξi ≥ 0

(2.7)

Similarly, we use Lagrangian Multiplier Algorithm to transform the constrained problem into

unconstrained form as

min
w,ξ,b

max
λ,β

{
1

2
wTw + C

N∑
i=1

ξi −
N∑
i=1

λi[yi(w
Txi − b)− 1 + ξi]−

N∑
i=1

βiξi

}
s.t. λi, βi ≥ 0

(2.8)

Additionally, its dual form is

max
λ

L̃(λ) = max
λ


N∑
i=1

λi −
1

2

∑
i,j

λiλjyiyjx
T
i xj


s.t. 0 ≤ λi ≤ C and

N∑
i=1

λiyi = 0

(2.9)

It is clear that the only difference between linear SVM and the soft-margin SVM is that the λi has

an upper bound C in soft-margin SVM.

2.1.3 Kernel SVM

In cases where the training data are not linearly separable but they can be non-linearly separate,

seen in the left part in Figure 2.2, there may exist a non-linear function φ(x) that can map the

original data into a higher-dimensional space where the data could be linear separate, seen in the

right part in Figure 2.2. The non-linear function phi is called the kernel function. By using ker-

nel tricks, the non-linear classification problem is able to be transformed into linear classification

problem, which could be solve by SVM.

As we mentioned above, we may use the dual form of SVM to add the kernel tricks into it by

11



Figure 2.2: Illustration of kernel tricks. The orignial data is non-linearly separable. After the
mapping of a trick function φ, they can be linearly separate.

replacing the inner product of original feature vectors with the inner product of feature vectors

with kernels. It could be expressed as below:

L̃(λ) =

N∑
i=1

λi −
1

2

∑
i,j

λiλjyiyjφ(xi)
Tφ(xj) (2.10)

The optimization criterion is thus expressed in terms of inner products of the transformed feature

vectors. Different non-linear mapping φ could map the vectors into different non-linear spaces in

terms of a kernel function k(xi,xj) = φ(xi)
Tφ(xj). It provides us with an explicit way to perform

the mapping.

The Gaussian radial basis function [3], known as the RBF, is one of the most commonly used

kernel functions. The RBF kernel on two samples xi and xj , represented as feature vectors in the

training data set, is defined as

k(xi,xj) = exp

(
−‖xi − xj‖22

2σ2

)
(2.11)

‖xi − xj‖22 may be recognized as the squared Euclidean distance between the two feature vectors.

σ is a free parameter. An equivalent, but simpler definition involves a parameter γ = − 1
2σ2 . Hence,

the kernel function can be re-expressed as

k(xi,xj) = exp(γ‖xi − xj‖22) (2.12)
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2.1.4 Application to AD Diagnosis

In AD diagnosis, clinicians used to wonder whether a patient is AD or not based on the MRI. They

commonly compared the patient’s data with those in the database. The data in the database should

be trained to generate a classifier. By using the trained classifier, the patient could be predicted

that whether he/she is AD or not. In addition, for MCI patients, they should be traced checking

whether they have processed to pMCI or even to AD. In this case, it is also necessary to classify

between sMCI and pMCI.

Practically, features such as clinical ROI are extracted from patients’ MRIs. One or more than

one kind of features are organized into a vector x. A number of those vectors consist of the training

dataset. A SVM could be trained based on the dataset and the labels of following instances can be

predicted by it.

2.2 Multiple Instance Learning

In machine learning, techniques could be divided into supervised, unsupervised, semi-supervised

and reinforcement learning based on whether the training data have the given labels. For supervised

learning, all the instances have the corresponding given labels while for unsupervised learning, all

the instances do not have their labels. For example, SVM mentioned above is one of the classical

supervised learning method and Gaussian Mixed Model is one of the unsupervised learning method.

For reinforcement learning, the instances have labels but the labels are delayed. Particularly, for

semi-supervised learning, some of the instances have labels but the others do not. As a result, al-

gorithms solving semi-supervised problems can be on a basis of both supervised and unsupervised

learning. Not surprisingly, there are various semi-supervised algorithms. Multiple instance learning

is a class of semi-supervised learning. It was firstly introduced by Dietterich et al [11] in 1997.

In multiple instance learning, the training set is composed of many bags each contains several

instances. A bag is positively labelled of it contains at least one positive instance; otherwise it is

labelled as negative. The task is to learn some concepts from the training set for correctly labelling

unseen bags. It has a number of different algorithms, including Diverse Density [41], Citation-kNN

[58], eMIL [32], MIForests [33], multi-instance ensembles [36], Bayesian-kNN [58], mi-SVM [12],

mi-DS [47], as well as IL-SMIL [29]. In fact, most of those algorithms are modified from supervised

learning. Based on different conditions, researched may develop different strategies on multiple

instance learning to fit their problems properly. Therefore multiple instance learning does not have

a sole expression like SVM.

Generally, it is extremely difficult to use multiple instance learning to discriminate the label of

an unseen instance. If an unseen bag is predicted as negative, then all the instances in the bag

are negative. However, if the bag is predicted as positive, the instances in it could never been

predicted. In addition, it is possible to regard each instance as a bag because not all the instances

were assigned a label.

Multiple instance learning has achieved a notable success in various fields. From very begin-
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ning, Dietterich et al [11] investigated it in the problem of drug activity prediction. Then it was

widely used. Ding et al [12] used multiple instance learning in breast ultrasound image classifica-

tion. Leung et al[35] handled the label noise in video classification via multiple instance learning.

Maron et al [40] classified the natural scenes with multiple instance learning. Raykar et al [52] auto-

matically selected the features and transferred them inductively by using multiple instance learning.

2.2.1 Diverse Density

The Diverse Density algorithm [41] is one if the most renowned multiple instance learning algorith-

m, which regards each bag as a manifold. Intuitively, in negative bags the diverse density at each

point is low while in positive bags it is high particularly where there are a number of both positive

and negative instances. It is assumed that a positive bag intersects all positive feature manifolds

but it never intersect any negative feature manifolds. As a result, in the feature space, diverse

density at a point describes the density of different bags near that point [63]. Specifically, the more

the different positive bags are near that point, the higher the diverse density is. The further the

negative instances are from that point, the higher the diverse density is. In this way, searching for

a point in the feature space whose diverse density is high is the key task of this algorithm. In front

of it, we need to define the diverse density in formal mathematics.

Diverse density is derived from the idea of a molecular example by Maron et al [41]. Assume

that a feature vector can represent the shape of a candidate molecule. Therefore, a point in n-

dimensional feature space indicates a instance of the molecule. Since the shape of the molecule

usually changes rigidly and non-rigidly in n-dimensional space, the change of the shape may trace

out a manifold. In Figure 2.3a, there are four molecules changed their shapes and it shows their

paths. Particularly, the three positive bags intersect at one point.

(a) The different shapes that a molecule can take on are rep-
resented as a path. The intersection point of positive
path is where they took on the same shape.

(b) Samples taken along the paths. Section B is a high den-
sity area, but point A is a high diverse density area.

Figure 2.3: The heuristics of diverse density. Both of the two sub-figures were generated by Maron
et al[41]. They are definitely classic figures to clarify the core ideas of diverse density.

According to the biology [41], if a molecule is labelled as positive, then there is at least one

place along the manifold, taking the right shape for it to fit into the target protein. Otherwise,
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if no points on the manifold may be right for it to fit into the target protein, it will be labelled

as negative. Suppose that only one shape that will bind the molecule to the target protein, all

positive manifolds will intersect at the point corresponding to that shape, without intersecting any

other negative manifolds. In Figure 2.3a, Point A is the right shape point and all the three positive

manifolds intersect at it.

However, in the practical science discovery, including drug research, we are never accessible to

the right result at the beginning. We have to do large amount of statistics and try to discover

potential regular patterns behind the data we collected. Therefore, we may only sampled a small

number examples from our experiments and use them to estimate the distribution of the whole

data. If we do sampling on the model in Figure 2.3a, we may get the result shown in Figure 2.3b,

which indicates the fact that we have to study the location at Point A in Figure 2.3a by approx-

imating it in in Figure 2.3b. The reason is in in Figure 2.3b, there may not be an exact Point A

since different positive manifold may not exactly intersect with each other after discretization. As

a result, instead of finding an intersection point, we are motivated to find an area where the density

of positive points is high and meanwhile that of negative points is low. That means we are trying

to find an area where the diverse density is high. To illustrate more clearly, for example in Figure

2.3b, the density of an area of Section B is high because there are many negative points in that

area. However, all the instances are negative. Therefore the diverse density is low. On the other

hand, in the area near Point A, the diverse density is high due to that there are both positive and

negative instances around there.

To formally define the algorithm of diverse density. We define B+
i as the i-th positive bag, B+

ij

as the j-th point in that bag, and B+
ijk as the value of the k-th feature of that point. Similarly, B−ij

represents a negative point. Suppose that the true concept is a single point c, we can find it by

maximizing

Pr(x = c|B+
1 , . . . , B

+
n , B

−
1 , . . . , B

−
m)

over all points x in feature space. According to Bayesian rule, we may use an uninformative prior

knowledge over the concept location to transform the problem into maximizing the likelihood

Pr(B+
1 , . . . , B

+
n , B

−
1 , . . . , B

−
m|x = c)

. In addition, assume that the bags are conditionally independent given the target concept c, the

best hypothesis is

arg max
x

∏
i

Pr(B+
i |x = c)

∏
i

Pr(B−i |x = c)

If we use Bayesian rule and an uniform prior concept location again, this is equivalent to

arg max
x

∏
i

Pr(x = c|B+
i )
∏
i

Pr(x = c|B−i ) (2.13)

Equation (2.13) is the general definition of maximum diverse density. In [39], Maron gave out the

numerical solutions to it. However, we have to instantiate terms in the products. Maron et al [41]

indicated a noisy-or model to handle it. Their model suggested that the probability that not all
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points missed the target is

Pr(x = c|B+
i ) = Pr(x = c|B+

i1, B
+
i2, . . . ) = 1−

∏
j

(1− Pr(x = c|B+
ij ))

and similarly,

Pr(x = c|B−i ) =
∏
j

(1− Pr(x = c|B−ij ))

The model defined

Pr(x = c|Bij) = exp(−‖Bij − x‖2)

as the causal probability of an individual instance on a potential target. It is based on the Euclidean

distance since the diverse density is related to the distance between bags. Specifically, if the diverse

density at a point x is high, it should be in close of an instance in a positive bag. If the diverse

density at a point x is low, it may be near an instance in a negative bag. Particularly, based on

the definition of the causal probability, diverse density at an intersection of n bags is exponentially

higher than it is at an intersection of n− 1 bags. However, all it takes is one well placed negative

instance to drive the diverse density down.

In Euclidean space, Euclidean distance is commonly used to measure the length from one in-

stance to another based on the features. It regards all the features are relevant or equally weighted.

However, there are also some circumstances where not all the features are relevant or some of them

overweight others. Using the same framework, not only the best location in feature space, but also

the best weighting of the features could be found. Finding the best weighting of the features under

the same framework is to find the best scaling of the individual features. The diverse density could

be the best weights for each feature [41].

2.2.2 Citation-kNN

As we mentioned above, there are various algorithms that can classify an unseen bag. Dietterich

et al [11] proposed the Diverse Density method, which has been described before. It is a distinc-

tive multiple instance learning technique. However, there are also a number of methods based on

classic machine learning methods, including supervised learning, unsupervised learning, as well as

inductive logic programming [44]. Many of them are eager learning techniques.

However, Wang et al [58] adapted the lazy learning to multiple instance learning problems. In

lazy learning, the predicted label of an unseen example will only depend on its ”neighbours”, which

are most similar to it to some extent. In k-nearest-neighbour (kNN) [44] is one of the most famous

lazy learning algorithm. The similarity defined in kNN is mainly the distance and usually it is

Euclidean distance or modified Euclidean distance. It trains all the training examples and selects

the corresponding ”neighbours”. However, in multiple instance learning the training instances are

bags, which is composed of a number of instances. As a result, the elementary kNN cannot adapt

to multiple instance learning directly. In the first stage, we have to define the distance between

bags. It is one of the key problems.
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Wang et al [58] proposed that the Hausdorff distance could be used to measure the distance

between bags in multiple instance learning because it provides a metric function between subsets

of a metric space. According to the definition of Hausdorff distance, two sets A and B are within

Housdorff distance d of each other iff every point of A is within distance d of at least one point of

B, and every point of B is within distance d of at least one point of A. Formally, provided that

two sets of points A = {a1, . . . , am} and B = {b1, . . . , bn}, the Housdorff distance is defined as

H(A,B) = max{h(A,B), h(B,A)}

where

h(A,B) = max
a∈A

min
b∈B
‖a− b‖

However, Wang et al [58] also mentioned that the Hausdorff distance is very sensitive to even a

single outlying point of A or B. For example, consider A = {1, 2, 3} and B = {4, 5, 20}, where the

20 is some large distance away from every point of A. In this case, H(A,B) = 17, which means

that the distance is solely determined by this outlying point. As a result, we cannot adapt original

Hausdorff distance directly in our case. To improve the robustness of this distance with respect

to noise, they modified the original Hausdorff distance. The modification focused on replacing the

global maximum-ranked distance by the k-th ranked distance, which is

hk(A,B) = kth
a∈A

min
b∈B
‖a− b‖

where hk(A,B) is the k-th ranked value. Particularly, when k = m, hk(A,B) = H(A,B), which

is the maximum value. On the other hand, when k = 1 the global distance between A and B is

dependent on the minimal distance between points in the two sets. Since

h1(A,B) = min
a∈A

min
b∈B
‖a− b‖ = min

b∈B
min
a∈A
‖a− b‖ = h1(B,A)

in this case,

H(A,B) = h1(A,B) = h1(B,A)

They call this measure the minimal Hausdorff distance.

In fact, using the Hausdorff distance was still not sufficient to adapt kNN to the multiple in-

stance learning [58]. Conventional kNN algorithm cannot handle the situation where the numbers

of instances in positive and negative bags are not balanced. The reason is the positive and negative

bags cannot be selected in the nearest neighbours equally. As a result, it is more valid to predict

the unseen instance, which belongs to the class who has more training instances by chance. For

example, we have 3 positive bags and 23 negative bags and we choose k = 3. The current nearest

neighbours are two positive bags and one negative bag. According to the algorithm, we should set

the new bag as positive. However, if it is predicted as negative, the overall classification accuracy

will be higher.

In multiple instance learning, there are both negative and positive instances in positive bags
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while there are only negative instances in negative bags. Assume that the numbers of positive and

negative bags are balanced and there are equal number of instances in each bag. It is obvious

that the overall number of negative instances is more than positive ones. Therefore, the negative

instances in positive bags may affect negative bags. For example, Wang et al [58] drew a simple

figure of Figure 2.4 to illustrate the particular case. In Figure 2.4, the instances in negative bags are

represented as round dots and the instances in positive bags as square blocks. Given {P1, P2, N1}
as three training bags, N2 will be classified as positive. Given {N1, N2, P1} as three training bags,

P2 will be classified as negative.

Figure 2.4: Illustration of kNN in multiple instance learning. The figure was generated by Wang et
al [58]. It dipicts a 2-dimensional feature space. N1 and N2 are two negative bags and
P1 and P2 are two positive bags. Round circles are negative instancs and square blocks
are positive instances.

To handle the problem, Wang et al [58] developed a citation approach to adapt kNN algorithm

to multiple instance learning more properly. They were motivated by the notion of citation from

library and information science. In library and information science, document indexing is one the

the most significant research topic as it is difficult for a researcher to find a specific paper that

he/she wants among masses of papers. One of the most popular method is based on references

and citers. In terms of reference, a paper is related to the reference of another paper if it is cited

by that paper. Likewise, a paper is related to the citer of another paper if it cites that one. As a

result, any paper are related to both references and citers.

In this case, we have to consider the ”neighbours” of a bag b according to the Hausdorff distance

and meanwhile take all the other bags into account, which recognize b as a ”neighbour”. It is

suggested that we may use both references and citers of an unseen instance to predict its label. In

terms of reference, we should consider the R-nearest neighbours of b, which is simple. However,

defining the citers of the bag is complex. Set n be the number of all example bags B = {b1, . . . , bn},
then for an example b ∈ B, all other examples B\b = {bi|bi ∈ B, bi 6= b} can be ranked according to

the similarity to the example b. We use Rank(a, b) to represent the rank of the example a ∈ B\b.
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Particularly, set Rank(b, b) to be ∞. In this way, the C-nearest citers of b could be defined as

Citers(b, C) = {bi|Rank(bi, b) ≤ C, bi ∈ B}

In addition, the C-nearest citers may also be defined based on distance [58].

To combine R-nearest references and the C-nearest citers together to predict the label of an

unseen bag [58], assume that there are Rp positive bags and Rn negative bags for the R-nearest

references and there are Cp positive bags and Cn negative bags for the C-nearest citers. There are

overall p positive bags and n negative bags. Therefore, p = Rp + Cp, and n = Rn + Cn. p and n

could be computed by the Hausdorff distance. If p > n, then the class of the bag b is predicted as

positive; otherwise, it is negative. Until now, the prediction is completed. It should be noted that

when a tie happens, the class of b is set to be negative.
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3 Literature Review

Since 2008 there were a number of studies involving in techniques of AD diagnosis. Papers we

reviewed are the most highly cited since then. The main work focused on feature extraction as well

as classifiers choosing and optimization. We listed a table (Table 3.1) to conclude and compare

between different studies in four aspects, including the data, the features, the classifier, as well

as the accuracy. In terms of the data, we are concerned about the number of participants that

each paper used, whether they are from Alzheimer’s Disease Neuroimaging Initiative (ADNI), and

what kind of comparison group did they focus on. In addition, we consider what kind the features

were extracted, what kind of classifiers they selected, and how was their best classification accuracy.

3.1 Data

The data of the studies was typically from professional organizations and institutes, such as ADNI

and Harvard Medical School. Data from these places are widely used in the world, which means

they are proved to be valid by numerous experiments.

In most of the reviewed papers, the classification concentrated on AD patients and normal con-

trols. It is a basic start point to develop a system to distinguish between definite patients and

healthy individuals. More importantly, our final goal should be distinguishing MCI subjects and

normal people and distinguishing AD patients and MCI individuals. Once one has been definitely

diagnosed as AD or healthy, there is no need to diagnose them by computer techniques. On the

other hand, it is more meaningful to detect whether a ”healthy” one is on the way to MCI or not

and whether an MCI patients is going to be AD or not. For example, if we are confident one who

is suffering on MCI will be an AD patient, a series of medical cares could be provided for him/her

in order to slow down the progress of the disease.

In terms of the number of participants involving in those papers, it ranges from 30 to more than

600. In our opinion, participants less than 100 might not be valid. The classification methods used

in the papers tended to be machine learning technologies. They needed to perform cross-validation

to evaluate their algorithms. 10-fold-cross-validation is one of the most popular method to do the

evaluation. According to Mitchell’s book [44], the statistically-based methods call for large numbers

of samples in learning and validation stages. He pointed out that at least 30 samples are needed

in each fold when performing k-fold cross-validation. Therefore, at least 300 examples are required

when training classifiers. For those who performed leave-one-out cross-validation, it also calls for

at least 100 samples. As a result, to be more convincing, many studies, including, [14], [10] and

[19] should take more samples.
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Table 3.1: Literature Review. The first column shows the authors of each work. The second column
represents the number of participants used. The third and fourth columns indicate the
classifiers they selected and the features they extracted, respectively. The fifth column
demonstrates the best accuracy achieved by every work. The sixth column records
whether the data comes from ADNI. The last colomn marks the comparison group of
each work.

Author # Partici-
pants

Classifier Features Accuracy
(%)

ADNI Comparison
group

Vemuri et al
[57]

380 SVM STAND-
score

89.3 No AD vs CN

Fan et al [14] 30 SVM ROI 100 No AD vs MCI

Davatzikos et
al [10]

30 SVM GM, WM,
CSF

90 No AD vs MCI

Klöppel et al
[31]

90 SVM Whole
brain

96 No AD vs CN

Gerardin et al
[18]

71 SVM SPHARM
coefficients

94 No AD vs CN

Magnin et al
[38]

38 SVM ROI 94.5 No AD vs CN

Misra et al [43] 103 SVM ROI 90.38 Yes AD vs CN

Ramı́rez et al
[50]

104 SVM ROI 93.2 No AD vs CN

Zhang et al
[62]

202 SVM ROI 93.2 Yes AD vs CN

Illán et al [27] 79 SVM Image fac-
torization

96.91 No AD vs CN

Graña et al
[19]

45 SVM Pearson’s
correlation

100 No AD vs CN

Filipovych et
al [15]

359 SVM Diagnostic
information

82.91 Yes AD vs CN

Colliot et al [7] 74 Boostrap Hippocampi 84 No AD vs MCI

Ecker et al [13] 44 SVM GM 86 No AD vs CN

Querbes et al
[49]

382 NTI Cortical
thickness

85 No AD vs CN

Sun et al [56] 72 Logistic re-
gression

Cortical G-
MD maps

86.1 Yes AD vs CN

Rao et al [51] 129 Logistic re-
gression

GM volume 85.26 No AD vs CN

Iglesias et al
[26]

120 KNN SSO simi-
larity

89 No AD vs CN

Aggarwal et al
[1]

60 Decision
tree

Statistical
coefficients

89.58 Yes AD vs CN

Gray et al [20] 287 Random
forest

MRI ROI,
PET voxels

90 No AD vs CN

Sateesh et al
[55]

198 PBL-
McRFN

VBM 77.56 Yes AD vs CN

Liu et al [37] 643 Sparse cod-
ing

ROI 90.5 No AD vs CN

Natarajan et
al [46]

297 Bagging ROI 76 Yes AD vs CN

Morra et al
[45]

70 AdaBoost Hippocampi 84 Yes AD vs CN
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3.2 Feature

There are various of features could be extracted from the raw image. Some papers like [31] use

just the whole brain voxel intensities, which means they do not do too much to cope with the data.

However, most studies extracted different features, including the ROI, the hippocampus and the

cortical thickness. The region of interest tends to be the GM, the WM, as well as the CSF. These

features are the common favourites.

In addition, there are also some studies developing their own features. For example, Gerardin et

al [18] extracted their own features, called spherical harmonics (SPHARM) coefficients. They used

the SPHARM coefficients to model the shape of the hippocampus. It means they considered the

geometrical information of the hippocampus, rather than the intensity or the volume.

Further more, general studies only take one modality of features such as MRI or PET into ac-

count. However, considering multi-modality features seems more significant because each modality

has it advantage to detect some part of information. If we combine more than one modalities to-

gether, it might be more convincing. For instance, Gray et al [20] combined MRI features and PET

features together. Later, in [21], they added CSF features and genetic features into the previous

feature combination. Their results showed a notable success.

However, according to Cuingnet et al’s study [9], the use of feature selection did not improve

the performance but substantially increased the computation times. The idea of their work is

that they thought it is difficult to compare between different papers because different paper use d-

ifferent data. Therefore they used the uniform data to test different works and drew the conclusion.

There is no doubt that feature extraction is computationally cost. Besides, if we only extract

extremely abstract features, we may lose useful information. For example, if we chose the volume

of hippocampus as the feature. We have the right part volume and the left part volume, which

is a 2-dimensional vector. Compared with the whole brain, which contains millions of voxels, it

is obvious that most information has been lost. In addition, for some popular features such as

hippocampus, there are many papers studying at how to segment it from the brain. It is fair to

state that there is a standard strategy of extraction although the extracting algorithms may differ.

For those features which are not very popular, there is not be a mature extracting method. As a

result, the following classification might be affected. Also, feature extraction should fit with the

classifier selected. Specifically, some high dimension features are suitable for the efficient classifiers;

otherwise it could be time-consuming.

3.3 Classifier

According to Table 3.1, it is clear that SVM is the most popular classifier while the remaining is

consisted of other supervised learning methods, some ensemble learning algorithms, as well as some

classifiers developed by the authors. Figure 3.1 shows the percentages that each classifier accounts

for among all the papers we reviewed.
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Figure 3.1: Classifiers. This pie chart shows the percentage that each paper reviewed accounts for.
There are overall 11 kinds of classifiers we have reviewed. It is clear that the SVM is
the most popular one.

Figure 3.1 shows that there are 48% papers utilizing SVM as the classifier among all the papers

we reviewed. It is the binary classification in this case, which only needs to classify between AD

and CN or AD and MCI. SVM is expert in this kind of classification. It could find out the furthest

distance between two classes. In addition, kernel tricks in SVM can help to handle the condition

where the gap between two classes is non-linear. Some studies not only used the standard SVM,

they also did some modifications with it. The other reason why the SVM is popular is likely to be

its efficiency. Mathematically, the SVM classification problem could be transformed into quadrat-

ic programming problems, which could be solved by mature numerical algorithms. The solutions

do not need too many iterations and the computational complexity is not as high as other methods.

There are also some other supervised learning algorithms, including KNN, logistic regression, as

well as decision tree, being used in classification. In our opinion, they are greatly limited. One

of the most obvious shortages is that the corresponding features extracted from the raw data are

commonly abstract. For instance, Rao et al [51] employed grey matter volume as the features,

which is in very low dimension. As mentioned before, these sort of features cannot represent all the

information of the raw data. However, these classifiers are difficult to handle the high dimensional

problems. Concerning KNN, it is a lazy learning algorithm, which only considers other samples

in certain distance. It can never cope with the effect of noise. Also, it requires large amount of

memory space to run KNN. In terms of decision tree, the main problem is that it is easy to over-fit

the data and the tree-pruning process is not simple to deal with. Similarly, the logistic regression

cannot perform well in high dimensional features.

To reach the trade-off between the dimension of features and the computation of classifiers, some

studies like [7], [46], and [45] combined some weak classifiers together, which is called ensemble

learning. Its advantage is it is not easy to be misled by one classifier and combine many classifier
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together to improve the final results. However, when combining different classifiers, there should

be more space to store the examples compared with individual classifiers. In addition, ensemble

classifiers like Adaboost call for numerous iterations [16], which is significantly time-consuming.

In addition, there are some papers, such as [49] and [55], developed their own classifiers. For

Querbes et al, they measured the cortical thickness on the baseline MRI volume for each subject.

The resulting cortical thickness map was parcellated into 22 regions and a normalized thickness

index was computed using the subset of regions that optimally distinguished stable MCI from

progressive MCI. Sateesh Babu et al [55] presented their novel approach with Voxel-Based Mor-

phometry (VBM) detected features using a proposed ”Projection-Based learning for Meta-cognitive

Radial Basis Function Network (PBL-McRBFN)” classifier. McRBFN emulates human-like meta-

cognitive learning principles. As each sample was presented to the network, McRBFN uses the

estimated class label, the maximum hinge error and class-wise significance reduce the computa-

tional effort used in training. The similarity between those two classifiers is that both of them only

can train the features extracted corresponding to themselves. It is difficult to build up an adaptive

system for the whole process.

3.4 Accuracy

As we mentioned above, we picked up the best classification accuracy in Table 3.1 for each paper.

According to the table, most accuracies are above 85%.

For classification between AD and CN, it usually around 90%. However, it is unbelievable that

Fan et al [14] and Graña et al [19] achieved 100% accuracy. It is a common knowledge that there

must be some trivial elements like noise will slightly effect the data, particularly in large dataset.

Although they may not deeply affect the classification, people cannot obtain a perfect accuracy

without any misclassification. One of the possibilities is that the number of participants in both of

the two papers are fairly small. In [14], there were only 30 participant and in [19], there were only

45 participants. Few participants may not represent the global scene.

Except those two particular cases, the fact is to achieve high accuracy, there is no need to extract

abstract features or develop complex classifiers. For instance, in [55], the authors developed a very

complicated system to extract features and do the classification but their result was surprisingly

low, which never reached 80%. For other studies like Zhang et al [62], they just use the ROI and

SVM classifier but got 93.2% accuracy. Note that their had 202 participants, which is not fairly few.

It is interesting to note that feature selection plays a pivotal role in ensemble learning. Among

our reviewed papers, only [20] and [21] got good accuracies because it combines multi-modalities

and all the features extracted from different modalities are common. However, other ensemble

methods, including [7], [46], and [45]. They employed simple features but never got encouraging

results.
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3.5 Conclusion

In conclusion, it cannot be fair if the number of training data is less than 300. In addition, features

and classifiers influence with each other. Both of them have to depend on the original data. In

our story, if the feature is extracted as voxels, the SVM and modified SVM are the most efficient

classifiers. Not surprisingly, the classification accuracy between AD and CN could range from 85%

to 90%. If more features are extracted and more complicated classifiers are selected, the accuracy

may rise up to 95%. For the comparison group of sMCI and pMCI, the SVM classification accuracy

would only be around 80% based on voxels.
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4 Imaging Data

Data used in the preparation of this article were obained from the ADNI database (http://adni.

loni.ucla.edu/). The ADNI was launched in 2003 by the National Institute on Aging (NIA),

the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug

Administration (FDA), private pharmaceutical companies and non-profit organisations as a $60

million, five-year public-private partnership. The primary goal of ADNI has been to test whether

serial MRI, PET, other biological markers, and clinical and neuropsychological assessment can be

combined to measure the pregresion of MCI and early AD. Determination of sensitive and specific

markers of very early AD progression is intended to aid researchers and clinicians to develop new

treatments and monitor their effectiveness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, M.D., VA Medical Center and

University of California - San Francisco. ADNI is the result of efforts of many co-investigators from

a broad range of academic institutions and private corporations, and subjects have been recruited

from over 50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults,

ages 55 to 90, to participate in the research - approximately 200 cognitively normal older individuals

to be followed for three years, 400 people with MCI to be followed for three years, and 200 people

with early AD to be followed for two years. Further up-to-date information, including detailed

eligibility criteria is available on the ADNI information website (http://www.adni-info.org).

4.1 Participants

In this study, we will use a subset of the 796 MRI data from ADNI, which are all baseline MRI.

There are more baseline MRI in ADNI. In addition, according to the latest data, we got some

further information on the original data, especially for the pMCIs. As we know, the data of sub-

jects collected by ADNI is traced every 6 to 12 months. Later, they would also be invited to the

screening for several times. The pMCI subjects are assigned different labels according to the time

point when they firstly assessed as AD. Specifically, one was assessed as baseline soon after his

screening visit. His label is ”bl”. That means he converted to AD between the screening visit and

the baseline visit. Since the time between screening and baseline is quite short, these patients were

borderline-AD at screening. We have 4 ”bl” subjects. Individuals who were detected that have

converted to AD in 6 months were labelled as ”m06”. Similarly, we also obtained ”m12”, ”m18”,

”m24”, ”m36”, and ”m48” subjects. Note that we only have 4 ”bl” subjects and 2 ”m48” subjects.

To make each group balanced, we combine ”bl”s and ”m06”s together and that means subjects

converting within 6 months. Similarly, we combine ”m36” and ”m48” cases together, meaning

subjects converting within 3 to 4 years. Table 4.1 shows the number of participants in each group

in detail. It is clear that there are 157 pMCI subject among the overall 796 individuals. However,

there are 162 individuals in ”m06”, ”m12”, ”m18”, ”m24”, and ”m36” Groups since there are a
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small number of sMCIs being assessed as ”m36” or ”m48”.

Table 4.1: Number of participants in each group.

Group Number Group Number

AD 189 m06 26

pMCI 157 m12 46

sMCI 230 m18 32

CN 220 m24 32

m36 26

4.2 MRI Acquisition

We downloaded the pre-processed baseline from the LONI Archive in NIfTI format. These had

been acquired according to a standard protocal described in [28], involving two scans per subject

that were based on a 3D MPRAGE imaging sequence and acquired using Siemens, GE and Philips

MRI scanners.

4.3 Pre-processing

In this study, all the images used were skull-stripped using multi-atlas segmentation [34] and the

intensity was normalized at a global scale using a piecewise linear function [48]. Intensity normal-

ization was carried out following an iterative scheme, where all images are normalized to a common

template/subject, then the template was changed and all the images were re-normalized to the

new template. This was repeated N times, where N is the number of subjects to aid in removing

normalization bias [8]. In this work, we set the subject whose ID is ADNI 002 S 0295 as the

common subject. The original image of it could be seen in Figure 4.1. Figure 4.2 shows the ADNI

002 S 0295 that has been skull-stripped. Also, all images were transformed to a common space,

the MNI152 template, which is shown in Figure 4.3, and hence re-sliced and re-sampled to and

isotropic voxel size of 1mm. A coarse free-form-deformation [53], using a control point spacing

of both 2.5mm and 10mm, was carried out to remove gross anatomical variability while aligning

anatomical structures in order to focus on more local variation. Figure 4.4 displays the images that

the subject of ADNI 002 S 0295 registered to MNI template.

4.4 Feature Extraction

In our research, we chose voxels of the whole brain and around the hippocampus and the volumes

of the hippocampus as our features. To extract the hippocampus, we projected a hippocampus

mask to every image to obtain the hippocampus data of each subject. The mask, which is shown

in Figure 4.5 was obtained by adding all ADNI segmentations in MNI space, then dilating the

resulting mask. The segmentation of hippocampus of the ADNI images was described by Wolz

et al[60], using LEAP, which is short for Learning Embeddings for Atlas Propagation. Figure 4.6
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Figure 4.1: The original images of common subject ADNI 002 S 0295. The subject is before skull-
stripping and registration. The images from left to right are slices in axial, sagittal and
coronal direction, respectively.

Figure 4.2: The skull-stripped images of subject ADNI 002 S 0295. The images from left to right
are slices in axial, sagittal and coronal direction, respectively.

Figure 4.3: The MNI template. The images from left to right are slices in axial, sagittal and coronal
direction, respectively.

shows the images of subject ADNI 002 S 0295 with an overlay of the hippocampus segmentation

in native space. That means the image has not been registered. After registration to MNI template,

the images look like Figure 4.7. In addition, we also extract the volumes of hippocampus, which

consists of the left and right halves of the brain according to LEAP. As a result, we employ both

intensities and volumes of hippocampus of each image.

28



Figure 4.4: The subject of ADNI 002 S 0295 registered to MNI template. The images from left
to right are slices in axial, sagittal and coronal direction, respectively.

Figure 4.5: The mask with an overlay of the MNI template and the hippocampus region of interest.
The red regions shown in images are the hippocampus. The images from left to right
are slices in axial, sagittal and coronal direction, respectively.

Figure 4.6: The images with an overlay of the hippocampus segmentation in native space. The red
regions shown in images are hippocampus. The images from left to right are slices in
axial, sagittal and coronal direction, respectively.
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Figure 4.7: The images with an overlay of the hippocampus segmentation in MNI space. The red
regions shown in images are hippocampus. The images from left to right are slices in
axial, sagittal and coronal direction, respectively.
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5 Statistical Data Analysis

In this chapter, we will do large-scale statistics on ADNI data. The features are voxels from whole

brain and the ROI around hippocampus. The classifiers are linear and RBF SVM. Our final goal is

to find whether there are a small number of instances, which are definitely diagnosed correctly. We

will also compare the features and kernels of SVM. In addition, performance of different clinical

sites will be assessed based on the results of statistics.

5.1 Feature Comparison

In this section, we use the voxels from both the whole brain and a ROI around the hippocampus as

two kinds of features. According to our literature review in Chapter 3, SVM is the most popular

classifier, which indicates that SVM is suitable for the classification between different data groups

in AD MRI. Therefore, we employ SVM as our classifier in this part. In addition, two kinds of

kernels of SVM are considered, which are linear and RBF kernels. Concerning the parameter γ in

RBF kernel, we will manually tune it using cross-validation. In this section, leave-one-out cross-

validation technique is used. The results of the classification focus on the sensitivity, the specificity,

and the accuracy. Note that the number of examples in individual pMCI group is usually smaller

than that in sMCI and CN groups. To handle the situation of unbalance, we sampled instances

from the larger group to keep it balanced. These processes were repeated for 100 times and the

results in the tables below are the mean numbers.

In the first stage, we compare between sMCI group and different pMCI groups, including the

whole pMCI, m06, m12, m18, m24, and m36. The results are shown in Figure 5.1. According to

the bar chart, it is obvious that the earlier the patient transferred to AD, the easier to classify them

with sMCI. That means the faster their disease progressed, the more significant they distinguished

from sMCI patients. In addition, the overall pMCIs can also distinguish with sMCIs at a high

accuracy compared with individual pMCI groups. However, all the classification indexes are below

60% and some of them are even below 50%. For example, the m36 group versus sMCI group, all

the three indexes are below 50%. That means there is meaningless to do this classification because

it cannot be better than by chance. At this point of view, it is not significant to use linear SVM

to classify the whole brain voxels to distinguish pMCIs and sMCIs.

Then we continue using linear SVM to classify CN group and different pMCI groups and AD

group. The feature is still the whole brain voxels. The resulting bar chart are Figure 5.2. According

to the results, the accuracy of AD vs CN exceeds 80% and the specificity even exceeds 90%. That

means it is possible to use linear SVM to classify ADs and controls within respect of whole brain

voxels. However, the classification results between CN and individual pMCI groups are still low,

with tend to be between 60% and 70%. The worst results are still in m36 versus CN comparison,
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Figure 5.1: Linear SVM classification on sMCI group and pMCI groups in terms of whole brain
voxels. The blue, red, and green bars stand for sensitivity, specificity and accuracy,
respectively.

which even never reach 60%. It confirms the fact that the longer the patients converted to AD, the

more difficult to recognize them.

Figure 5.2: Linear SVM classification on CN group and pMCI groups and AD group in terms of
whole brain voxels. The blue, red, and green bars stand for sensitivity, specificity and
accuracy, respectively.

In the next step, we repeat the experiment above by using SVM classifier with RBF kernel in-

stead of linear kernel. Figure 5.3 shows the results in terms of pMCI groups versus sMCI group.

Compared with that classified by linear SVM, the overall trend of the results are similar, but the

all the sensitivity, specificity and accuracy degrade faster when the conversion takes longer. Par-

ticularly, the accuracy of the m36 versus sMCI decreases to no more than 30%, which is absolutely
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unacceptable. Likewise, RBF SVM is not suitable for classifying between sMCI group and pMCI

group, either.

Figure 5.3: RBF SVM classification on sMCI group and pMCI groups in terms of whole brain
voxels. The blue, red, and green bars stand for sensitivity, specificity and accuracy,
respectively.

Figure 5.4 describes the results within respect of pMCI groups versus controls. Different with

it in linear SVM, the accuracy of AD and CN is not as high as that in linear SVM, which is only

74.33%. However, results from other comparison groups are approximately flat with that in linear

SVM except the last comparison group. The accuracy of m36 versus CN falls down below 50%,

which is worse than chance.

Comparing the four groups of results, it is easy to find that the sensitivities, specificities and

accuracies from pMCI groups and AD group versus CN group is slightly higher than they versus

sMCI group. Intuitively, the more obvious to discover the difference between two classifying group-

s, the higher the results are. The difference between pMCIs and controls is more significant than

sMCIs. The difference between ADs and controls is the most obvious such that this comparison

group could achieve the highest results.

In the second stage, we repeated all the experiments above with the voxels of hippocampus,

rather than those of whole brain. The classification results in terms of pMCI groups and sMCI

group are in Figure 5.5. The trend of each index is similar to the experiments before. However,

it is notable that sensitivities, specificities and accuracies are higher than before which typically

are around 60%. Even the worst group, which is m36 versus sMCI, the specificity is over 50%.

Although linear SVM also cannot be used in this case, there is a significant improvement when

extracting hippocampus as the feature.

Not surprisingly, the results of CN group versus pMCI groups and AD group are better than

before, which are shown in Figure 5.6. Almost all the accuracies have exceeded or are approaching
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Figure 5.4: RBF SVM classification on CN group and pMCI groups and AD group in terms of
whole brain voxels. The blue, red, and green bars stand for sensitivity, specificity and
accuracy, respectively.

Figure 5.5: Linear SVM classification on sMCI group and pMCI groups in terms of hippocampus
voxels. The blue, red, and green bars stand for sensitivity, specificity and accuracy,
respectively.

80%, which seems to be a threshold in weighing whether the classification makes sense or not. Even

the accuracy of comparison group of m36 versus CN is more than 60%, which is much higher than

before which cannot reach 50%. Apart from it, the difference between early conversion groups and

later conversion groups and CN group becomes less significant. Specifically, the classifier can also

perform well on later conversion groups and controls.

In terms of the RBF SVM classification between sMCI group and pMCI groups on voxels of

hippocampus, although the results are significantly improved than on whole brain voxels, which
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Figure 5.6: Linear SVM classification on CN group and pMCI groups and AD group in terms of
hippocampus voxels. The blue, red, and green bars stand for sensitivity, specificity and
accuracy, respectively.

is shown in Figure 5.7, the accuracies have not yet reached 70%. Among all the accuracies, the

best one is 63.01% on whole pMCI group versus sMCI group. The worst one is still the m36 group

versus sMCI group, whose accuracy even never reaches 50%. Likewise, the RBF SVM is also not

feasible in classification between pMCI groups and sMCI group.

Figure 5.7: RBF SVM classification on sMCI group and pMCI groups in terms of hippocampus
voxels. The blue, red, and green bars stand for sensitivity, specificity and accuracy,
respectively.

The last series of classification is based on CN group and pMCI groups and AD group in terms

of voxels of hippocampus. The results obtained are the best among these series of classification
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experiments. For the best condition where the comparison group is AD versus CN, the sensitivity,

specificity and accuracy are all over 80%. For other pMCI groups, including m06, m12, and m18,

versus CN, the accuracies tower over 70% and even approach 80%. In spite of the worst comparison

group, m36 versus CN, its accuracy is slightly more than 60%.

Figure 5.8: RBF SVM classification on CN group and pMCI groups and AD group in terms of
hippocampus voxels. The blue, red, and green bars stand for sensitivity, specificity and
accuracy, respectively.

To sum up, voxels of hippocampus perform better under all circumstances of classification than

that of whole brain. It is expected that voxels in other parts of the brain may not play a pivotal role

in AD. On one hand they are likely to act as noise in classification. On the other hand, one example

is a vector whose length is nearly 2 million when it features as a whole brain but if it is from a

pair of hippocampus, the length would be more than 30 thousands. The higher the dimension of

training vectors, the more difficult to reach the trade-off in soft-margin SVM.

In terms of classification results, there is no significant advantages for RBF SVM. As we men-

tioned before, RBF kernel increases the amount of computation because we need to map the original

data into higher space. Besides, the parameter γ in RBF is necessary to be tuned manually. If it

cannot tower over linear SVM, it is not necessary to pay more to do it. However, whether RBF

kernel is better or worse than linear kernel, it should have more evidence.

5.2 Kernel Comparison

In this section, we will study on the correct rate of individual instances. The comparison groups

will be AD and CN and sMCI and pMCI. To achieve the balance between two classes, we will

still sample numbers of examples from two classes. For each iteration, we will divide the training

examples into 2 and 10 folds randomly, one of which will be used as the validation set. That

means we adopt two strategies, including leave-10%-off and leave-50%-off. We will overall run 1000
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iterations. As a result, for leave-10%-off method, each instance could be tested around 100 times

and for for leave-50%-off method, each instance could be tested around 500 times. Therefore, for

each instance, we may calculate its classification correct percentage. We would like to use the

histograms to compare linear and RBF kernel. Specifically, we would divided the accuracy region,

which is from 0 to 1, into 20 parts. In each small region, such as 0 to 0.05, we count the number

of instances whose correct accuracies are in this small region. As a result, we could obtain a global

distribution of correct accuracy.

We use histograms to show the distribution of the correct accuracies in terms of different clas-

sification groups. Figure 5.9 is the histogram, which focuses on the classification between AD and

CN groups on whole brain voxels. The strategy is leave-10%-out. It indicates that most instances

are absolutely classified as correctness. There are a small number of instances have never been

correctly classified. Extremely few examples are hardly to be correctly classified or mis-classified.

Through this figure, we can see that RBF kernel increases the frequency of instances that never

been correctly classified and meanwhile decreases the frequency of instances been perfectly classified.

Figure 5.9: Histogram of classification on individual data point between AD and CN groups. 10%
of the data points are set as validation. The feature voxels come from the whole brain.
The blue bar stands for the results of linear kernel and the red bar represents that of
RBF kernel.

If we adopt leave-50%-out strategy, seen in Figure 5.10, the overall trend never changed but it is

interesting to note that the frequencies of instances whose accuracies are between 0 to 1 increase

significantly. Intuitively, if more data points are left as validation, there must be more points being

tested at one iteration. Once all iterations are completed, the testing times of each instance will

significantly increase. Therefore the corresponding frequencies grow up significantly.

In terms of the comparison group of sMCI versus pMCI under the condition of leave-10%-out,

seen in Figure 5.11, there are more instances that have never been correctly classified. Accordingly,

there are less instances could be perfectly classified. In addition, more instances are classified with

accuracies that slightly more than 0 and less than 1. The reason is likely to be that the difference

between pMCIs and sMCI is not sufficiently obvious, which also results in that more instances have

37



Figure 5.10: Histogram of classification on individual data point between AD and CN groups. 50%
of the data points are set as validation. The feature voxels come from the whole brain.
The blue bar stands for the results of linear kernel and the red bar represents that of
RBF kernel.

accuracies between 0.1 to 0.9. In this scenario, RBF kernel still cannot perform better than the

linear kernel.

Figure 5.11: Histogram of classification on individual data point between sMCI and pMCI groups.
10% of the data points are set as validation. The feature voxels come from the whole
brain. The blue bar stands for the results of linear kernel and the red bar represents
that of RBF kernel.

As it is shown in Figure 5.12, there more instances being classified with 100% accuracy by RBF

kernel than by linear kernel but there are also more examples being classified with 0% accuracy

by RBF kernel than by linear kernel. In addition, when using leave-50%-out strategy, there would

be a number of instances being classified with accuracies ranging from 0.1 to 0.9, which may also

result from the unclear difference between sMCIs and pMCIs.

When using voxels of hippocampus, the fact changes significantly. As it is shown in Figure 5.13,
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Figure 5.12: Histogram of classification on individual data point between sMCI and pMCI groups.
50% of the data points are set as validation. The feature voxels come from the whole
brain. The blue bar stands for the results of linear kernel and the red bar represents
that of RBF kernel.

almost all the instances are classified with 100% accuracy, where we perform leave-10%-out on AD

and CN. There also a smaller number of instances that have never been classified correctly. Hardly

any instances are classified with accuracies ranging from 0.1 to 0.9. Similarly, RBF kernel never

takes more advantages than the linear kernel.

Figure 5.13: Histogram of classification on individual data point between AD and CN groups. 10%
of the data points are set as validation. The feature voxels come from the hippocampus.
The blue bar stands for the results of linear kernel and the red bar represents that of
RBF kernel.

If we take leave-50%-out method to repeat the experiments shown in Figure 5.13, we could ob-

tain the results in Figure 5.14. The distribution never changes significantly. The increase of the

testing times of each instance only results in that less instances are classified with 100% accuracy

and correspondingly the number of instances with other accuracies grows up. The RBF kernel still

never show its advantages.
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Figure 5.14: Histogram of classification on individual data point between AD and CN groups. 50%
of the data points are set as validation. The feature voxels come from the hippocampus.
The blue bar stands for the results of linear kernel and the red bar represents that of
RBF kernel.

In terms of sMCI and pMCI groups, it is similar to that in Figure 5.11 where the number of

absolutely mis-classified examples increases significantly while that of definitely classified examples

decreases manifestly. Apart from it, there still more instances with accuracy of 0 by RBF kernel

than by linear kernel.

Figure 5.15: Histogram of classification on individual data point between sMCI and pMCI group-
s. 10% of the data points are set as validation. The feature voxels come from the
hippocampus. The blue bar stands for the results of linear kernel and the red bar
represents that of RBF kernel.

For the last series of experiments, represented by Figure 5.16, the disadvantage of RBF kernel

appears more apparently. There are nearly 60 instances never being classified correctly by RBF

kernel, which is approximately twice more than by linear kernel in case of sMCI versus pMCI with

leave-50%-out strategy. However, for the instances never been mis-classified, RBF kernel performs

40



only slightly better than linear kernel.

Figure 5.16: Histogram of classification on individual data point between sMCI and pMCI group-
s. 50% of the data points are set as validation. The feature voxels come from the
hippocampus. The blue bar stands for the results of linear kernel and the red bar
represents that of RBF kernel.

To sum up, admittedly RBF kernel may perform slightly better than linear kernel but in most

cases, there is not any significant evidence that can show the advantage of RBF kernel compared

with linear kernel. It might be resulted from the manual adaptation of RBF parameter because it

is difficult to reach a global optima and even a local optima. On the other hand, the manual adap-

tation boosts the computation cost. Therefore in the following experiments, we will only consider

the linear SVM as our classifier.

5.3 Assessment on Clinical Sites

In this section, we will combine the achievements obtained from the above two sections. Firstly, the

hippocampus voxels will be the features in the following experiments, which is also been confirmed

in Section 5.2. Secondly, we will only use linear SVM as the classifier. Thirdly, both of the two

sections above suggest that the comparison group AD versus CN is better than pMCI and sMCI

for us to do assessment on different clinical sites because the overall classification accuracy in group

AD versus CN is averagely higher. However, there is a trade-off between two testing strategies,

which are leave-10%-out and leave-50%-out. In this scenario, we will still take them into account.

According to the numerous results achieved in Section 5.2, we can do statistics to assess the

performance of various clinical sites. Firstly, we order the correct accuracies of individual AD and

CN groups in terms of the codes of the clinical sites. It is easy to count the number of scan-

s from each site. Concerning the examples in each site, if the correct accuracy of one example

is lower than 20%, which is a threshold we set, then it is confident for us to state this example

may not be classified correctly. That means the diagnostic label may be wrong. Otherwise, it is

acceptable. Therefore, it is not difficult to calculate the acceptance rate of each clinical site. Specif-
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ically, we can calculate how do the acceptable scans account for all the scans from one site. We do

this in cases of both leave-10%-out and leave-50%-out testing. The results are shown in Figure 5.17.

According to Figure 5.17, most sites achieve 100% accuracies in both leave-10%-out and leave-

50%-out testing strategies. Particularly, for sites like 941, 011 and 018, the difference of two

strategies is significant. It may due to that the over-fitting occurs in case of leave-10%-out or

leave-50%-out testing. Another reason is likely to be the numbers of instances from those sites are

small such that the error may occur. For example, for clinical site Number 941, there are only 4

scans. In case of leave-10%-out testing, 2 of them are acceptable while in case of leave-50%-out

testing, 3 of them are acceptable. However, for clinical site Number 035, both of the two testing

strategies do not provide satisfactory results. Although it only has 4 scans, it is necessary for it to

improve its scanning quality.

5.4 Conclusion

In conclusion, we have found that there are a number of ADs and controls that have never been

mis-classified. In addition, voxels from ROI around hippocampus are more useful to distinguish

between patients and healthy individuals. Based on the voxels the linear SVM performs more effi-

cient than the RBF SVM. Moreover the difference between the AD vs CN group is more significant

than that between the pMCI vs sMCI group. Besides, the images from almost all clinical sites are

highly reliable.
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6 ADNI MRI Label Correction via Multiple

Instance Learning

6.1 Motivation

It still is a long time for AD to progress in terms of a patient. There is no doubt that the earlier

the disease is detected, the better it is for the patient. Although there is no cure for AD patients

currently, psychological or some related treatments can be conducted on them to slow down the

progress. In AD diagnosis, empirical diagnosis is widely used because of the difficulties to distin-

guish between CN and AD or even MCI. For some advanced diagnosis, clinicians may compare

the candidate’s data with that in the database from some professional organizations like ADNI,

which probably improves the accuracy of diagnosis. However, the data from the ADNI is also from

the clinical sites, which cannot be definitely sure that there is not any mistakes. As a result, it is

meaningful to inspect the data in ADNI dataset.

In this chapter, we will employ techniques of multiple instance learning to detect whether there

are some data from ADNI being mis-labelled or not. Particularly, it will be the welfare for the

potential AD patients, who are mis-labelled as CNs. They and their doctors could pay more at-

tention for the potential disease.

6.2 Synthetic Data

The data used in this chapter is still the MRI from ADNI. We selected the volumes of the hip-

pocampus as the feature. According to Chapter 5, the training data will be those who never been

mis-classified in cases of both leave-10%-out and leave-50%-out in terms of linear SVM classification

on voxels from hippocampus between AD and CN. We overall have 409 AD and CN examples. We

obtain hippocampus volumes of 403 among them, which could be divided into two groups. One

is the training group, which consists of 90 ADs and 96 CNs. The other one is the testing group

composed of 217 instances.

Because of the small number of the training data, we cannot test the capability of models of

multiple instance learning. Before the formal experiments on the real data. We need to simulate

large amount of synthetic data to test the algorithms. On one hand, we could select a better

one between the two candidates based on the synthetic data. On the other hand, for the target

algorithm, we could use the synthetic data to find out whether it is able to detect the mis-labelled

instances and discover the robustness of the algorithm.
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Intuitively, to generate the synthetic data, we have to ensure that it obeys the same distribution

with the real data in order that it is consistent to the real data. Therefore in the first stage, we

guess that the training data is submitted to a 2-dimensional normal distribution. To prove it, we

plot the QQ-plot in terms of the training data, which is shown in Figure 6.1. In statistics, a normal

QQ-plot compares a set of data on the vertical axis to a statistical population on the horizontal

axis, which provides a graphical view of how similar or different are two distributions. As both of

the two dimensions of the data are well fitted according to the figure, it is confident for us to claim

that the training data obey for a 2-dimensional normal distribution.

Figure 6.1: QQ plot of training data. The blue and green crosses stand for the data in two dimen-
sions respectively. The blue and green dashed lines are the linear fitting lines to the
two dimensions of data crosses respectively. Intuitively, the better the crosses are fitted
by the dashed lines, the more they are submitted to normal distributions.

We firstly calculate the means and the covariance matrix of the AD and CN data respectively,

which are

µAD =

[
1865.04

1770.73

]
ΣAD =

[
173223.32 145861.97

145861.97 161376.55

]

µCN =

[
2318.17

2274.86

]
ΣCN =

[
97459.08 80168.96

80168.96 89301.20

] (6.1)

According to the parameters calculated, it is possible to figure out the graphs of the probability

density functions (PDF) of AD and CN, respectively. Figure 6.2 shows the two PDFs in the same

graph. In the figure, we can see that hippocampus volumes of AD and CN obey similar normal

distributions, whose shape is narrow and long, which could be reflected by the large covariance

between the volumes from left and right parts of the brain. It indicates that the two parts of

hippocampus are linked closely. On the other hand, it is obvious that hippocampus from healthy
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individuals are larger than the patients in average, which could be seen by the fact that the peak

belongs to CN is higher than that belongs to AD in Figure 6.2. In addition, the figure also reveals

that the two distributions overlaps with each other manifestly, which may bring about interference

to our following experiments.

Figure 6.2: Probability density distribution of hippocampus volumes of AD and CN. Both of AD
and CN obey for normal distributions whose shape is narrow and long. Obviously,
the distribution with higher peak is density of CN because the average hippocampus
volumes of healthy people are larger than the patients.

6.3 Model Comparison

Once obtaining the synthetic data, we can simulate a sufficient number of data in the experiments.

In this chapter, two different algorithms are selected as candidates, which are Diverse Density and

Citation-kNN. They have been introduced in Chapter 2. As we know there is not any machine

learning technique that is able to cater for all the situations. A successful model has to be designed

according to the data. In our case, we firstly have to test whether the two algorithms can work

properly on our synthetic data or not.

In this part, we focus on testing the algorithms in two conditions. One is the best condition

where there is no negative instances in positive bags. It means that positive bags will never af-

fect the negative bags. The other one is the normal situation where there are both negative and
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positive instances in positive bags. We wonder how do the two algorithms work under these two

circumstances. However, in multiple instance learning, it is difficult to deploy the number of bags

and that of instances. To achieve an overview, we will test various structures. The number of bags

ranges from 10 to 50 and the number of instances is from 5 to 50. Therefore the minimum number

of all instances is 50 and the maximum is 2500. In addition, we believe that the number is instances

cannot be more than the number of bags. Note that both hippocampus volumes of AD and CN

are submitted to similar normal distributions. It is believed that there is no significant difference

in deciding setting AD or CN as negative. All the experiments in this section will set AD as negative.

Under the first condition where there is no negative instances in positive bags, the classification

results are shown in Table 6.1 and Table 6.2, respectively. Leave-one-out cross-validation is used

to validate the learning process. Table 6.1 reflects the classification performed by Citation-kNN.

Almost all the accuracies are over 90%. Table 6.2 presents the results achieved from Diverse Den-

sity. The best accuracy is 80%, which is acceptable while the worst is just 48%, which is totally

unsatisfactory. In this case, Citation-kNN is more suitable than Diverse Density for our data.

Table 6.1: Classification accuracies under different configurations by Citation-kNN. In this case,
there is no negative instances in positive bags. The results are shown in percentage.

5 instances 10 instances 20 instances 30 instances 50 instances

10 bags 100 100 - - -

20 bags 95 95 100 - -

30 bags 96.67 96.67 93.33 90 -

50 bags 94 96 94 98 86

Table 6.2: Classification accuracies under different configurations by Diverse Density. In this case,
there is no negative instances in positive bags. The results are shown in percentage.

5 instances 10 instances 20 instances 30 instances 50 instances

10 bags 80 80 - - -

20 bags 85 85 55 - -

30 bags 70 60 53.33 50 -

50 bags 62 50 50 48 50

In the second case where there are both positive and negative instances in positive bags, it

is the normal structure in multiple instance learning. We randomly generate positive and nega-

tive instances for each positive bag but we ensure that there are at least one positive instance in

each positive bag such that it satisfies the requirement of the definition. The results achieved by

Citation-kNN and Diverse Density are displayed in Table 6.3 and Table 6.4, respectively. According

to Table 6.3, the results in all kinds of structures are still exciting, which are even slightly better

than the first condition. Only the structure of 50 bags, each of which contains 50 instances does

not reach 80% accuracy. It is still normal while the other structures which may not contain too

many instances is likely to be occurred by over-fitting. In addition, the overlap between AD and

CN may also lead to it. On the other hand, the performance of Diverse Density is always discour-

aging. When the situation becomes worse, the accuracies it obtained also fall down significantly.

According to Table 6.4, the best accuracy is only 60%. In spite of it, it occurs in the case of there
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are only 10 bags, each of which only contain 5 instances, where over-fitting may occur.

Table 6.3: Classification accuracies under different configurations by Citation-kNN. In this case,
positive bags contains random positive and negative instances. In addition, there is at
least one positive instance in each positive bag. The results are shown in percentage.

5 instances 10 instances 20 instances 30 instances 50 instances

10 bags 100 100 - - -

20 bags 100 95 90 - -

30 bags 100 100 86.67 80 -

50 bags 100 100 100 80 78

Table 6.4: Classification accuracies under different configurations by Diverse Density. In this case,
positive bags contains random positive and negative instances. In addition, there is at
least one positive instance in each positive bag. The results are shown in percentage.

5 instances 10 instances 20 instances 30 instances 50 instances

10 bags 60 50 - - -

20 bags 50 55 50 - -

30 bags 43.33 53.33 50 50 -

50 bags 52 50 48 48 46

To sum up, Citation-kNN performs significantly better than Diverse Density in this case. Ad-

mittedly Diverse Density has its advantages in multiple instance learning but it never fits our data

well. Therefore, we will choose Citation-kNN as our model in the following work.

6.4 Experiments on Synthetic Data

Before applying Citation-kNN to the real data to detect the potential mis-classified data, we have

to test it more deeply because the results from previous experiment are not sufficient to clarify the

its feasibility.

In the first stage, we continue the experiments in the section above. We wonder how does

Citation-kNN work under the worst circumstance where there is only one positive instance in each

positive bag. The classification results are displayed in Table 6.5. It is no wonder that the accu-

racies cannot be as good as before. Particularly, under the situation where there are overall 2500

instances, there are only 64% accuracy, which is unacceptable in reality. Fortunately, the number

of our real data is small and the results shown in Table 6.5 reflect the high accuracy where there are

not too many instances in bags, such as 5 instances and 10 instances. To this extent, Citation-kNN

is feasible to the task.

In the second stage, we have to test whether Citation-kNN is possible to detect the mis-labelled

instances. To handle this problem, we have to consider how to predict the label of one instance by

using multiple instance learning. One idea may be put the instance in a bag and do the predic-

tion for it. However, all the training bags contain a number of instances, which may lead to the

unbalance if the testing bag only contains one instance. Our idea is to put the unseen instance
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Table 6.5: Classification accuracies under different configurations by Citation-kNN. In this case,
each positive bag only contains one positive instance. The results are shown in percent-
age.

5 instances 10 instances 20 instances 30 instances 50 instances

10 bags 90 90 - - -

20 bags 100 75 75 - -

30 bags 100 100 73.33 80 -

50 bags 100 100 100 70 64

into each negative bag and then classify it again. If the predicted label changes, then the unseen

instance could be labelled as positive; otherwise it is negative. The experiments in this section

above confirm that Citation-kNN has achieve a notable success in coping with the situation where

there is only one positive instance in positive bags. When there is many negative bags, we can

set a threshold ξ. Specifically, if the number of negative bags who changed their labels once being

assigned the unseen instance is greater than ξ, then the unseen instance is positive; otherwise it

is negative. For example, there are overall 10 bags, 5 of which are negative. Now an unseen in-

stance needs to be classified and it is assigned to each negative bag respectively. For each negative

bag, once being assigned of the unseen data, it is left out. Then this negative bag is to be clas-

sified based on the other bags. We set ξ = 1. That means if one negative bag changes its label

when being assigned the unseen instance, the unseen instance is regarded as positive. If ξ = 5, then

the unseen instance is negative unless all the negative bags change their labels when being assigned.

Considering the small number of our real data, we prefer the number of instances in each bag to

be 5. Firstly, all the experiments based on Citation-kNN provide us with perfect accuracies where

there are 5 instances in each bag. Secondly, for different numbers of bags, the overall number of

instances is maximumly 250, which never exceeds the number of real data significantly. If it exceeds

significantly, there must be several same instances in the bags, which may affect the classification.

On the other hand, there is no significant difference in using different numbers of bags. As a result,

combining classification results of different bags together may improve the global results further.

According to our task, each instance to be classified has a previous label, which could be regarded

as a reference. Once the instance having been classified, we could compare the new labels which

are from where there are different numbers of bags with the reference. If all the four new labels are

consistent with the previous one, then it is confident for us to state that this instance has never

been mis-classified. Otherwise, we recognize it was mis-classified.

To set the experiments in this stage, we let each bag contain 5 instances and we will try 10 bags,

20 bags, 30 bags, as well as 50 bags. Under each situation, we firstly utilize all the synthetic data

to train a Citation-kNN classifier. Then flip 10% of the overall number of instances out and set

their label to the opposite. Thirdly, we adopt the classification strategy mentioned above to detect

whether the classifier could sense the wrong labels. In this case, we set AD and CN as negative,

respectively. The results are presented in Table 6.6. When AD is set as negative, it is 93.5%

correct in detecting the mis-labelled CNs while the accuracy is only 12% accuracy in mis-labelled

AD detection. It is similar when CN is set as negative. Therefore, we may set AD as negative to

detect the instances whose previous label is CN and vice versa.
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Table 6.6: Detection of mis-labelled instances. The first and second rows show the condition where
AD and CN are set to negative respectively. In terms of the first column, we set all the
instance to be detected as AD originally. In the second column, we set all the instances
to be detected as CN in truth. The results are presented as mean accuracy (standard
variance). All the numbers are in percentage.

AD detection CN detection

AD as negative 12 (17.43) 93.5 (7.45)

CN as negative 97.25 (8.96) 11.5 (12.58)

6.5 Experiments on Real Data

Experiments on synthetic data are successful and we are encouraged to apply the strategy men-

tioned in Section 6.4 to the real data. When applying it to the real data, it is helpful by considering

the statistical results obtained in Chapter 5. As we mentioned in the beginning in this chapter,

the training data are those who never been mis-classified in Chapter 5. It is also believed that

the mis-classified probability of those who only achieved less than 20% accuracies in Chapter 5

under both testing strategies is high. As a result, we only consider those instances as potential

mis-classified ones.

Applying our proposed method to the real data, we overall find 20 CNs and 10 ADs that might

be mis-classified. In terms of the number, it makes sense since it is widely known that there about

10% mis-diagnosis in clinical. In our case, the percentage is 7.33%. Nevertheless, we should in-

vestigate the patients’ clinical information, which is shown in Table 6.7. It is clear that there are

5 CNs converting to MCI at some time points, which could be regarded as mis-labelled subjects.

Unfortunately, there are 11 individuals withdrawing the screening, which results in that is there

no evidence to state whether they were mis-labelled or not. Particularly, we even cannot chase

the following progress for the withdrawn CNs. More depressingly, some individuals suffered from

other diseases like strokes and depression, which may interference the AD monitoring. There is one

individual leaving no information to ADNI although he/she never withdraws the screening. The

other one subject was diagnosed with mild confidence.

By way of conclusion, although our multiple instance model achieves notable success on synthetic

data, its performance on real data still cannot be assessed objectively because of the missing of

many patients’ clinical information. In addition, if a person labelled as CN converted to MCI or

even AD at some time point, then it is confident for us to claim that he/she might be in early stage

of disease, which could not be realized. However, if one was diagnosed as AD, whose symptoms

are not brought about by AD (he/she is mis-labelled), it is extremely difficult for us to verify the

truth of prediction.

6.6 Discussion

In this section, we will discuss and try to analyse some interesting aspects in our work. Someone

may propose that we have to normalize the hippocampus volumes. It is because the volumes of

human brains vary between different individuals. Someone who has a larger brain, he/she may
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Table 6.7: Mis-labelled instances detected. The first column presents the subject IDs. The second
column displays their original labels. The third column shows the changes in diagnosis.
The fourth column indicates when the candidates withdrew the screening. The last
column gives some other comments.

Subject ID Original label Change in di-
agnosis

Withdrawal
time point

Other comments

ADNI 002 S 0685 CN

ADNI 003 S 0907 CN

ADNI 007 S 0316 AD Month 24

ADNI 007 S 1304 AD Month 24 Stroke(s) at month
12

ADNI 010 S 0419 CN

ADNI 013 S 0592 AD After baseline

ADNI 013 S 1276 CN Month 36

ADNI 023 S 0963 CN Passed away
after month 36
(cancer)

ADNI 023 S 1289 AD No information after
month 6

ADNI 027 S 0850 AD Some depression

ADNI 029 S 0824 CN Some depression

ADNI 029 S 0845 CN

ADNI 032 S 1169 CN Converted to
MCI at month
60

ADNI 033 S 0889 AD Month 24

ADNI 033 S 0920 CN

ADNI 033 S 1098 CN

ADNI 035 S 0048 CN Month 36

ADNI 035 S 0156 CN Converted to
MCI at month
84

ADNI 036 S 0576 CN Month 24

ADNI 036 S 0759 AD

ADNI 067 S 0059 CN Converted to
MCI at month
84

ADNI 067 S 0812 AD

ADNI 068 S 0210 CN Converted to
MCI at month
48

ADNI 068 S 1191 CN Month 6

ADNI 098 S 0172 CN

ADNI 098 S 0896 CN Only mild confi-
dence in diagnosis at
month 6 and 12

ADNI 126 S 0606 AD

ADNI 128 S 0740 AD Month 12

ADNI 137 S 0283 CN Month 36

ADNI 941 S 1202 CN Converted to
MCI at month
24
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have a larger hippocampus. Despite he/she suffers from AD and there is an atrophy on his/her

hippocampus, it may still be larger than the normal ones’. Concerning this case, we study whether

the normalized hippocampus volumes obey for normal distributions or not. We also draw the QQ

plot for the normalized data, which is displayed in Figure 6.3. Obviously, after normalization the

data is still submitted to normal distribution. Therefore we can use the proposed model to the

normalized real data to detect the potential mis-classified subjects. However, the results are the

same as before. Consequently, normalization does not affect the results in this case.

Figure 6.3: QQ plot of normalized training data. The blue and green crosses stand for the data in
two dimensions respectively. The blue and green dashed lines are the linear fitting lines
to the two dimensions of data crosses respectively. Intuitively, the better the crosses
are fitted by the dashed lines, the more they are submitted to normal distributions.

In terms of model selection, we compared two algorithms, namely Diverse Density and Citation-

kNN. According to our experiments on synthetic data, the Diverse Density failed to fit our data.

Remember we mentioned in Chapter 2, the Diverse Density intends to find the intersections of

positive bags, where they are believed to be the highest diverse density. For an unseen bag, if

it comes across the intersections, it would be classified as positive; otherwise negative. However,

Figure 6.2, there is a fairly overlap between hippocampus volumes of AD and CN, which may result

in negative bags are able to come across the intersections. As a result, the negative bags are easier

to be mis-classified. In addition, instances in our training data may not be viewed as a curved line

as it is shown in Figure 2.3b because they are in 2 dimensions. Probably, there might be circles or

crosses, which may also lead to mistakes.
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On the other hand, Citation-kNN does not consider all the instances. Due to its property of

lazy learning, it only take the most related bags into account. Particularly, unlike the elemen-

tary kNN algorithm, it cares all the instances related to the current bag. As shown in Figure

6.4, provided that the red circle is the current bag. If we do elementary kNN to it and k = 3,

only the three blue ones will be considered. However, note that the red circle is also the near-

est neighbour in terms of the yellow circle. Therefore, in Citation-kNN, the yellow circle is also

taken into account. In this way, we are able to find all the instances that related to the current bag.

Figure 6.4: Sketch of Citation-kNN. Provided there are overall 5 bags, who are represented as
circles. The red circle is the current one. The blue circles are the nearest neighbouts of
the red one. The red circle is the nearest neighbour of the yellow circle.

However, although Citation-kNN has advantages mentioned above, it is not significantly robust.

In kNN, it is difficult to decide the exact number of k. Similarly, in Citation-kNN, the two param-

eters ref and cite cannot be fixed as both of them play pivotal roles in the whole algorithm. To

handle the problem, we have to do grid search for each run. For example, we set the number is

bags is 20 and the number of instances in each bag is 10 and generate the synthetic data to test the

accuracies with different ref and cite. Table 6.8 shows the grid parameter search for the model. We

can find that when ref = 6 and cite = 15 and ref = 15 and cite = 17, the classification accuracies

are the highest, which is 95%. However, if ref = 3 and cite = 16 or ref = 19 and cite = 14, the

accuracies is only 25%, which is the minimum. Additionally, there is not any significant patterns

could be found according to Table 6.8. As a result, to achieve an acceptable classification result, it

is compulsory to do the serious grid search each time.

Not surprisingly, when predicting the labels of unseen instances, we apply the idea of ensemble

learning in our story. Specifically, we assign the unseen instances to each negative bag respectively

and predict the label of each bag again. Finally we combine the results by voting strategy. Note

that we set a threshold ξ in voting, which at our point of view, is also sensitive to the results.

For example, we have 5 negative bags. In one case, there are 2 bags change their labels and the

remaining do not. Under this condition, ξ = 2 or ξ = 3 is key to the prediction. If ξ = 2, the

unseen instance will be predicted as positive while if ξ = 3, the prediction will be positive. There

is no doubt that the smaller the ξ is, the more sensitive the classifier is and meanwhile the more

mis-classification will occur. There is a trade-off between the number of ξ and the rate of accuracy.

Hence, how to decide the number of ξ also needs careful consideration based on the real data.
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In terms of the results, although we obtained higher accuracy in mis-classification detection on

synthetic data, we cannot definitely confirm the subjects we found were mis-labelled yet. It is due

to we do not have the absolutely accurate evaluation standard. For individuals who were labelled as

CN, it is easier to examine our prediction. If he/she converted to MCI or even AD at the following

screening, then our prediction is valid. However, if the subject withdrew the screening, there is no

idea to validate it. Concerning the AD patients, although the previous diagnosis was wrong, it is

difficult to validate our prediction because as he/she was detected as AD, he/she must have some

symptoms related to AD, which may also obstruct our validation.

To apply our contribution to the real life, there is no doubt that it may assist the clinicians

to avoid mistakes. Specifically, if a subject is diagnosed as CN but our model regards it as mis-

classification, then the person himself/herself as well as his/her doctors should pay more attention

to the following screening. It would be the best if the clinicians introduce more methods to syn-

thetically diagnose the patient.
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7 Conclusion

To draw an overall conclusion, we will firstly review what we prepared for this work and what we

contributed to the problem. Then we will propose some recommendations for future work, which

may solve the problem more robustly.

7.1 Contributions

From the beginning, we investigated the machine learning techniques and a number of papers

concerning AD diagnosis in recent five years. According to the investigation, we determined the

materials and general ideas of our work. These work are presented in Chapter 2 and Chapter 3.

In Chapter 5, we tested the 796 subjects from ADNI in terms of MRI. Based on the experiments,

we found out that voxels of hippocampus play more significant roles than whole brain voxels. In

addition, linear SVM is a feasible classifier in classification between AD and CN concerning the

voxels of hippocampus. More importantly, we did large amounts of statistics to pick up a number

of instances that may be definitely diagnosed as well as several potential mis-labelled ones. Be-

sides, the statistical data helps up with the quantitative assessment on clinical sites who provide

the patients data. The assessment results show that almost all the clinical sites scanned candidates

with high quality. Only countable sites may not perform as well as expectation.

According to the statistical analysis done in Chapter 5, we tried to detect all the labels of in-

stances who were potentially mis-labelled in Chapter 6. As the limited number of training data,

we generate numerous synthesis data according to the distribution of the real data to validate the

feasibility of the model. In this chapter, we compared the performance between two multiple in-

stance learning algorithms, namely Diverse Density and Citation-kNN. The experiments confirmed

Citation-kNN is more suitable for our data. Therefore we focused on testing Citation-kNN more

deeply in the next step. We tested its classification capability under the worst circumstances, which

gave out encouraging results. Further more, we flipped a small number of instances and reversed

their labels. Then we combined Citation-kNN classifiers with different bags together to obtain an

ensemble. The fact is the ensemble was able to detect almost all the mistakes, which proved that

our model is useful in correction of wrong labels. Finally, we applied our method to the real data.

It seems that the results are good. But because many subjects’ clinical information is missing, we

are unable to definitely evaluate the performance on the real data.
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7.2 Future Work

This research has thrown up many questions in need of further investigation. First of all, the

preprocessing, including segmentation, registration, and normalization needs to be put together.

Specifically, it would be interesting to build up a comprehensive system where we input the raw

images and we can obtain the features as the output. More importantly, the system should be

sufficiently robust that we could set all the different parameters in one platform.

In addition, further investigation may focus on the user-friendly design. The current study did

large scale statistics on the extracted features to collect some useful information, such as which

individuals are the potential mis-classified ones. This work did not address the issue that the statis-

tics could improve itself with the increase of the number of subjects. It is significant for clinicians

to obtain the more accurate diagnosis when more patients attend the screening.

Moreover, features from more modalities worth our consideration. In this work, we only just

volumes of hippocampus in the label correction, which is in single modality. PET imaging and

biochemical markers from the blood and/or CSF may provide us with more useful information.

Therefore, we can not only combine different structures of classifiers, but we can combine different

feature modalities. [21] reported a notable success in AD and CN classification using multiple

modalities. It is believed that multi-modality could play better than single modality.

Apart from that, it would be interesting to assess more algorithms to solve this problem. Al-

though we have achieve satisfactory results, the model is not as robust as we expected. More

research is required on the development of the model. On one hand, under the framework of mul-

tiple instance learning, it is possible to try more algorithms like mi-Graph [61]. Different multiple

instance learning methods have different backgrounds. For instance, the Citation-kNN is based on

kNN method. Similarly, the mi-Graph is based on graph models. Future trials should assess a

number of other multiple instance learning methods and compare them with each other. A more

robust algorithm or ensemble method might be found. On the other hand, more semi-supervised

learning and weakly supervised learning methods should be considered. For example, it is interest-

ing to assess the co-training method [4].

57



Bibliography

[1] Namita Aggarwal and R Agrawal. Computer Aided Diagnosis of Alzheimer’s Disease from

MRI Brain Images. Image Analysis and Recognition, pages 259–267, 2012.

[2] Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in Machine

Learning, 2(1):1–127, 2009.

[3] Koji Tsuda Bernhard Scho olkopf and Jean-Philippe Vert, editors. Kernel methods in compu-

tational biology. Cambridge, MA: MIT Press, July 2004.

[4] A Blum and T Mitchell. Combining labeled and unlabeled data with co-training. In Proceedings

of the eleventh annual conference on computational learning theory, pages 92–100, 1998.

[5] Ron Brookmeyer, Elizabeth Johnson, Kathryn Ziegler-Graham, and H Michael Arrighi. Fore-

casting the global burden of Alzheimer’s disease. Alzheimer’s & dementia : the journal of the

Alzheimer’s Association, 3(3):186–91, July 2007.

[6] Meena Chintamaneni and Manju Bhaskar. Biomarkers in Alzheimer’s disease: a review. ISRN

pharmacology, 2012, January 2012.

[7] Olivier Colliot, G Chételat, and M Chupin. Discrimination between Alzheimer Disease, Mild

Cognitive Impairment, and Normal Aging by Using Automated Segmentation of the Hip-

pocampus1. Radiology, 248(1):194–201, 2008.
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