
Cloud Centered, Smartphone Based Long-term
Human Activity Recognition Solution

Lukasz Severyn Kmiecik

June 2013

Acknowledgements

I would like to thank my supervisor, Prof. Duncan Gillies for his guidance,
support and invaluable help throughout this project. I would also like to
thank my second marker, Prof. Moustafa Ghanem who was able to look at the
project from a different perspecive and share his useful remarks. Additionally,
I would like to thank Niklas Hambüchen for his patience and helpfulness in
explaining answers to my questions, not only thoroughout this project, but
throughout the whole course.

Abstract

This report documents the creation of a comprehensive, extremely scalable
modular solution for quantification of daily activities through use of smart-
phone accelerometer. The solution is achieved through tackling problems
from the areas of signal processing as well as machine learning. New,
very effective signal features that are used to recognise daily activities such
as walking, jogging or climbing stairs have been discovered. The solution
exploits the newest achievements in the area of cloud based services, bypassing
processing limits of the mobile platform by generating classifier models on
the Workstation Module and later uploading them to the cloud. Every
user of the solution is guaranteed to have most precise classifier model, as
the Mobile Module automatically checks and downloads most up to date
classifier model. As opposed to the approach of building the classifier model
locally, very little data has to be transferred between the Cloud Database
and the Mobile Module - there is no need to download multiple training
samples for the purpose of generating the model (1000 samples = 17MB)
and only classifier model has to be downloaded (complete classifier model =
0.0033MB). This allows re-generating the classifier model every day as more
training data is gathered, and immediately broadcasting it to thousands of
potential users. Additionally, the solution provides the user with motivation
to be more active physically active by offering user-friendly Web Module
where user, after logging in, is presented with daily activity reports, and most
dedicated users are awarded through leader board system. The classification,
done via custom implementations of Multivariate and Naïve Gaussian Bayes
Classifier algorithms, has been thoroughly precise and ready to be used in
recognition of daily activities.

Contents

1 Introduction 5
1.1 Context . 5
1.2 Motivation . 5
1.3 Contribution . 6

2 Background 8
2.1 Sampled Data . 8

2.1.1 Related Work . 8
2.1.2 Technical Research . 9

2.2 Feature Extraction . 10
2.2.1 Related Work . 10
2.2.2 Technical Research . 13

2.3 Machine Learning and Classification 17
2.3.1 Related Work . 17
2.3.2 Technical Research . 18

2.4 Development Platform Overview 20

3 Specification 22
3.1 Data Storage . 22
3.2 Sampled Data . 23
3.3 Activity Set . 24
3.4 Signal Feature Extraction . 24

1

3.4.1 Feature Set . 25
3.5 Workstation module . 27

3.5.1 Weak . 27
3.5.2 Analysis . 27

3.6 Machine Learning and Classification 28
3.6.1 Classification Algorithms 28

3.7 Mobile Module . 29
3.7.1 Activity Recording . 29
3.7.2 Activity Recognition 30

3.8 Web Module . 30

4 Implementation 32
4.1 Data Flow . 32
4.2 Web Module . 34

4.2.1 Database Connection 34
4.2.2 Daily Summary . 35
4.2.3 Real Time display . 35
4.2.4 Leaderboard . 37

4.3 Mobile Module . 38
4.3.1 Design . 38
4.3.2 Database connection 38
4.3.3 Accelerometer Monitoring 38
4.3.4 Activity Recording . 38
4.3.5 Activity Recognition 43

4.4 Feature Extraction . 47
4.4.1 AccFeat.java . 47

4.5 Workstation Module . 48
4.5.1 Weka Interface . 49
4.5.2 Classifier design . 49
4.5.3 Naïve Gaussian Bayes Classifier 49

2

4.5.4 Multivariate Gaussian Bayes Classifier 54
4.5.5 Uploading Classifier Models 58

5 Evaluation 60
5.1 Experiment 1: Algorithm Evaluation 60

5.1.1 Background . 60
5.1.2 Methodology . 63
5.1.3 Methodology Code . 64
5.1.4 Results . 64
5.1.5 Conclusions from the experiment 64

5.2 Experiment 2: Solution Performance Evaluation 66
5.2.1 Methodology . 66
5.2.2 Quantification . 67
5.2.3 Results . 67
5.2.4 Conclusion from the experiment 68

5.3 Treatment of “unknown” classification result 69
5.4 Compatibility with other Android Phones 69

5.4.1 Methodology . 69
5.4.2 Results . 69

5.5 Use of Gyroscope . 70
5.5.1 Methodology . 70
5.5.2 Results . 70

5.6 256 vs. 512 sample size . 70
5.7 Battery Life Impact . 71

5.7.1 Methodology . 71
5.7.2 Results and Conclusions 71

3

6 Conclusion 73
6.1 New Features . 73
6.2 Scalability . 74

6.2.1 Data Gathering . 74
6.2.2 Classifier Model Generation 74

6.3 Single Subject vs. Multiple Subjects 74
6.4 Future Work . 76

7 Bibliography 78

4

Chapter 1

Introduction

1.1 Context

In 2007, with the release of Apple iPhone, the idea of smartphones as we know
them today was born. In 2008, 12 million Android and Apple smartphones
were sold globally. (Digithoughts 2012) Four years later, in 2012, 17 million
smartphones were sold - every week. (Wilcox). This incredible growth,
coupled with more and more tight integration of smartphones into our lives
opens new opportunities for research into identifying daily activity patterns
of smartphone users, and exploiting this knowledge to improve quality of our
lives. Even before the advent of smartphones, research was done in direction
of developing human activity recognition systems - often using expensive
tri-axial acceleration sensors. Today, every smartphone is shipped with built
in accelerometer, making such solutions available to virtually everybody.

1.2 Motivation

This project is an investigation intro creation of a long-term human activity
recognition solution. Target user of the application is a person who tries
to make their lifestyle more active. Through use of the accelerometer built
into the smartphone, the Mobile module of the solution keeps track and
identifies activities of the user like walking, running and cycling during the
day, even outside specified workout sessions. As user walks or runs, readings
of vertical and horizontal acceleration received from the accelerometer differ.
By recording such data, application can later try to match new data to the
known patterns in order to identify current activity. This allows the user to

5

keep track of his daily physical activity, even outside of dedicated workout
sessions. This particular feature aims to motivate the user to change their
habits – for example – cycle to the workplace instead of taking a bus. By
saving daily activity distribution and combining it into regular reports, the
problem of not seeing progress when exercising is tackled – even if progress is
not apparent in users body, it is very visible when looking back at the past
week or month.
At its core, the problem tackled by the project is a combination of a signal
processing and a classification problem. As each activity is performed, accel-
eration data gathered (Sampled Data - 2.1) during the activity has a unique
set of features (Feature Extraction - 2.2) that can be used for classification
(Machine Learning - 2.3).
The report begins with looking at past work in the field of Human Activity
Recognition, and then exploring appropriate technical terms. Section 3
describes the specific goals of the project, influenced by researching the
background (4.5.5).
After goals are defined, implementation of the solution is described in detail
in section 4. The implementations of classification algorithms are described,
as well as the workings of mobile application and web interface.
In the end, the solution is evaluated. Methods of the evaluation, together
with their outcomes are laid out in section 5. This section focuses on the
performance of the solution, as well as decisions influenced by the evaluation

1.3 Contribution

State of the art has been reviewed, identifying approaches to activity recogni-
tion and design decisions that have proven to improve precision of classification
in the past research. Approach shown in (Jennifer R. Kwapisz 2010) work -
discovery of new methods of feature extraction has inspired new developments,
discovering and successfully employing new methods which have not been
used in past research. The new features have proven to be very effective in
the classification process, surpassing (in terms of Information Gain) some of
the traditionally used features like mean acceleration or correlations between
axes of acceleration.
Additionally, a new incredibly scalable approach to gathering data has been
explored, which exploits the cloud services. All of the data in the project
can be gathered away from the workstation, from any place on earth with

6

access to the Internet. This is in stark contrast to past works in the field,
which either used Bluetooth (maximum range 10 meters) or relied on manual
copying of data from the sensor. This approach allows employing thousands
of human subjects for data gathering process, which would be impractical in
case of past research.
The cloud-centred approach to the solution allows not-seen-before scalability,
with the solution ready to be deployed to thousands of potential users without
any change in the architecture. As the generation of classifier model is done
on a workstation instead of generating it locally on a phone, solution is not
limited by the processing power of the phone or the amount of by data-transfer
limits. If classifier was to be built on the phone, not only processing power
would be a concern, but also size of the training library. To put things into
perspective, 1000 samples take 17MB, while a complete classifier model built
from these 1000 samples takes only 0.0033MB.
Quantification of daily activities has proven to be accurate, correctly iden-
tifying currently performed activity even when provided with a very small
training library. It has been shown that only 192 seconds of sample recording
(5.1.5) per activity are needed to achieve 99% reliability in classifications.

7

Chapter 2

Background

2.1 Sampled Data

2.1.1 Related Work

Accelerometer location and number

Since research into activity recognition systems has begun, many systems,
which incorporate triaxial accelerometers, have been developed. Some of
these investigated the use of multiple accelerometers attached at locations
of subject’s body: (D. Minnen 2005);(U. Maurer and Deisher 2006);(M.
Ermes and Korhonen 2008). This approach provides higher precision in
recognition of performed activities, however it is not feasible for long-term
activity monitoring because of practical reasons like daily need of attaching
and detaching multiple sensors. This limits the potential for adoption of the
solution by general public, which conflicts with the aim of the project.

Use of Gyroscopes

Modern smartphones are equipped with a wide range of sensors, expanding
with each new generation. State-of-the-art Samsung Galaxy S4 released in
the UK in the month of May 2013 allows developers to access data from
barometer and temperature sensors, opening new opportunities for innovative
solutions. The sensor that started to be installed after accelerometers became
popular was the gyroscope. Gyroscopes measure angular speed, which can be
used to calculate rotation rate, which is how fast the device is spinning and

8

Figure 2.1: Minnen et al. - Sensor locations

the orientation of a body relative to a given frame of reference. As follows
from the capabilities of a gyroscope, research into use of activity recognition
via gyroscope measurements focused on recognition of activities that revolve
around activities involving rotation of the subject, one example being the
work of (Thomas Holleczek 2010). No works have been published which
incorporated gyroscopes into systems aiming to recognise daily activities -
this of course is motivated by questionable usefulness of gyroscope data in
context of activities like walking or climbing the stairs.

Sample parameters

In work by Ravi et al. (2005) sample size is of 256, recorded at a sampling
frequency of 50Hz. This means that each sample represents time slice of
5.12 seconds. As was shown, considering sample of this size was sufficient to
capture cycles in activities such as walking, running, climbing up stairs etc.
Additional reason stated for choosing sample of this particular size was that
it being a power of 2 enabled fast computation of FFTs used for one of the
features. System described in (Dominic Maguire 2009) closely follows from
Ravi’s (2005) work, with sample size being 256 as well, although the higher
sampling frequency of 75Hz made it equal to much shorter time slice of 3.4
seconds.

2.1.2 Technical Research

Some of the considerations on selecting sampling rate are shared between this
implementation and related works - specifically requirement of window size

9

being sufficiently long to capture natural features of data representing the
activity and sample size that allows easy FFT computation.
There are however, some additional unique factors that had to be taken into
account when deciding on sampling frequency. The sampling frequency could
not exceed the capabilities of popular smartphones, to maximise potential for
widespread adoption of the solution. Using the data from the article (Harris
2013) published on June 3rd, which compiled a list of most popular handsets
in UK, research was conducted into the capabilities of accelerometers built
into them. The average maximum sampling rate of built in accelerometers
among phones mentioned in the article was found to be in the area of 100Hz,
while even lower-mid range phones that have been released over two years
ago, like for example Samsung Galaxy S feature accelerometers capable of
sampling at 65Hz(Tasse 2012). Because the long-term aim of the solution
is to be widely deployed, this information set a limit on sampling rate that
could be considered in the implementation.
Additional consideration when designing a long-term activity monitoring
system that uses a sensor built into the phone, as opposed to dedicated one
has to be battery consumption. Running at maximum sampling frequency
would negatively impact the battery life of the phone, therefore an optimal
frequency had to be made.

2.2 Feature Extraction

Features are extracted from the raw accelerometer data samples. Choice of
features to extract was inspired by an attempt on discovering new features
that could prove to be more meaningful as well as past research in activity
recognition area.

2.2.1 Related Work

As accelerometers began to be installed in more and more of consumer
products, specifically mobile phones and MP3 players, activity recognition
gained attention as a research topic.
Many of feature extraction mechanisms employed in the implementation are
inspired by past work in the area. Through extensive background research,
it became apparent that many papers on the topic (Nishkam Ravi 2005),
(Dominic Maguire 2009) focus only on four features per axis, which are:

10

• Mean [3]

• Standard Deviation [3]

• Energy [3]

• Correlation [3]

Both in the paper by Ravi (2005) and the paper by Maguire (2009) the set
of activities that are attempted to be recognised includes walking up and
down the stairs. This makes precision in recognising climbing stairs a good
indicator of how effective using this particular subset of features is, when
compared to extended sets. Papers by Maguire(2009) and Ravi(2005) share
not only the activity set, but also the location of the sensor on the human
subject, which is particularly important if one tries to relate the works in
terms of accuracy. Although end result is partially dependent on the method
of classification, I have decided to focus on end accuracy evaluation on each of
these papers. In the paper by Maguire it is noted that “Walking up and down
stairs are shown to be to recognise with the latter only having a precision
value of 0.556”.

Figure 2.2: Ravi et al. - Confusion matrix

Precision of recognising this particular activity is even more unsatisfactory
when the confusion matrix 2.2 from Ravi’s(2005) work is considered. As it
can be seen, walking up the stairs is more often classified as walking down
the stairs (42% accuracy), whereas walking downs the stairs seems not to
be recognised correctly at all (0%). These unsatisfactory results pose the
question of the need of introducing additional features in order to get closer
to precise activity recognition. More recent research (Jennifer R. Kwapisz
2010) tackles this problem, and besides considering standard deviation and
mean, it introduces four new features that are extracted from accelerometer
data:

11

• Average Absolute Difference [3]: Average absolute difference be-
tween the value of each of the readings and the mean value over those
values

• Average Resultant Acceleration [1]: average of the square roots of
the sum of the values of each axis squared

• Time Between Peaks [3]: Time in milliseconds between peaks in the
sinusoidal waves associated with most activities (for each axis)

• Binned Distribution [30]: Range of values for each axis is determined
(maximum – minimum), divided into 10 equal sized bins, and then
fraction of the values falling within each bin is recorded.

Figure 2.3: Kwapisz et al. - Confusion matrix

If we consider the confusion matrix that has been produced, 2.3. we can
see that both precision of recognising walking up (61.4%) and walking down
(62.6%) the stairs has increased when compared to previous papers. In some
cases the increase is dramatic - 62% vs. 0% in case of walking down the stairs
when compared to work by Ravi(2005). This finding supports the hypothesis
that there are more features than just mean, standard deviation, energy
and correlation that could be extracted from accelerometer data in order to
improve precision of activity recognition.
Another of more recent papers in the field (A. M. Khan 2010) has considered
two other, unique features:

• Autoregressive Coefficients

• Signal Magnitude Area

Unfortunately, authors of the paper do not provide case-by-case accuracy
figures on precision of the recognition, therefore it is hard to relate impact of
considering the above features to previously mentioned work.

12

A good analysis of features that are used in activity recognition system has
been published in form of work by (Mohd Fikri Azli bin Abdullah 2012),
where past research has been aggregated and compared with each other to
give a reflection on the current state of this academic field.

Figure 2.4: Percentage of features group used for activity recognition classifi-
cation (Mohd Fikri Azli bin Abdullah 2012)

As is found by (Mohd Fikri Azli bin Abdullah 2012), nearly 80% (fig. 2.4)
of works use magnitude-based features, reason being the ease of calculation,
and only few researchers explore correlation as their feature for classification.

2.2.2 Technical Research

The following section focuses on theoretical background information on main
mathematical notions needed to be understood to review the implementation
of feature extraction.

Signal Magnitude Area

Signal magnitude area is calculated according to 2.5.

Figure 2.5:

Where x(i), y(i), and z(i) indicate the acceleration signal along x-axis , y-axis,
and z-axis respectively. According to research by (A. M. Khan 2010), SMA
has been found to be a suitable measure for distinguishing between static
vs. dynamic activities using triaxial accelerometer signals and the fact that
different activities register different SMA makes it a suitable distinguishing
feature.

13

Fourier Transform

Fourier Transform is one of the deepest insights ever made, widely used in
various scientific fields, including research focused around pattern recognition,
which encompasses, among many others: speech recognition, face recognition
and most importantly activity recognition.
The Fourier Transform is used in the solution in a following way: 1. A subject
is asked to perform an activity for one second, as accelerometer records values
of acceleration over time in three axes. 3. Values are fed into the Fourier
transform method, and as a result a vector of 256 values is returned. 4. The
vector of 256 values represents decomposition of the values of acceleration
into 128 sine and 128 cosine components that make up the original “wave” of
acceleration vs. time data.
Understanding the difference between the resulting vector of Fourier transform
and the vector of accelerometer readings is crucial to reaching understanding
of the Fourier transform itself. The accelerometer readings vector represents
changes in acceleration over time, therefore it is in the time domain. The
vector produced by the Fourier transform however, is in frequency domain,
as it represents distribution of values over a range of frequencies.
As processing accelerometer readings involves discrete data, focus is put on
discrete Fourier transform.

Figure 2.6: F[n] is the Discrete Fourier Transform of the sequence f[k]

Since the operation treats the data as if it were periodic, we evaluate the
DFT equation for the fundamental frequency and its harmonics, which is
generalised into the formula 2.6.
Exemplary Discrete Fourier Transform result is presented in the figure 2.7
below, and shows particularly well the difference between time and frequency
domain.

Autoregressive Coefficients

A signal is often modelled as a zero mean stationary stochastic process, and
its main characteristics of interest are described by its second-order statistics:

14

Figure 2.7: In this example, signal was sampled at 4Hz from t=0 to t=3/4.
Resultant magnitude of DFT coefficients presented.

15

the autocorrelation function, or earlier described 2.2.2 Fourier transform.
It can be shown that an given sufficiently high N, the AR signal constructed
has the same spectrum as the original signal. Hence, the AR coefficients
model a signal that exerts same second-order features as original signal - i.e.
is statistically “the same” as the original signal.
An AR process is described by the recursive difference equation: an =
a1xn− 1 + ...+ aNxn−M + en where en is white noise.

Low Pass Filter

Sampled acceleration values carry information on how acceleration in three
axes was changing over sampling period. However, recorded data due to
the nature of the sensor is not a perfect representation of the changes, and
therefore impact of noise has to be taken into account, especially for features
which are particularly sensitive to it, example being Time Between Peaks
- noise might be incorrectly identified as a peak and resulting feature value
will not be reflecting the real feature of the signal. For this purpose Low Pass
Filter can be employed.
Filtering describes the act of processing signal in a way that applies different
levels of attenuation to different frequencies within the data. A low pass
filter will apply minimal attenuation (i.e. leave altitude levels unchanged)
for low frequencies, but applies maximum attenuation to high frequencies -
smoothing peaks of the signal. Because movement is expressed mostly in low
frequencies, this filter allows smoothing of data without significant data loss.
Number of different filtering algorithms are used, however the most popular
and possibly the simplest one is the simple infinite impulse response filter
implementation. This implementation works by keeping a series of samples and
multiplying each of those samples by a fixed coefficient based on the position
in the series. The result of each of these multiplications is accumulated and
is returned as the output for that sample. The behaviour of the filter is fixed
by the selection of the filter coefficients.
The equation for particular sample i in the series can be expressed as 2.8
where RC is the time constant, expressed with the use of smoothing factor α
2.9

16

Figure 2.8: Low pass filter output for sample i

Figure 2.9: Time constant

2.3 Machine Learning and Classification

2.3.1 Related Work

The activity recognition is in essence a classification problem, therefore one of
it’s most important components is the classification algorithm used to classify
performed activities as appropriate types. In past works, the algorithm usually
is executed either on a desktop machine or smartphone. One of the concerns
which has to be taken into account when choosing the algorithm is the
capability of the processing platform to execute the algorithm. Performance
of the classification algorithm is measured via an evaluation method.
Through research of (Mohd Fikri Azli bin Abdullah 2012) in, which they have
aggregated and surveyed classification algorithms used in past solutions, it
becomes apparent that a small set of algorithms dominates the field.
“According to the survey, the most popular algorithms are Decision Trees,
k-Nearest Neighbour, Naïve Bayes, Support Vector Machine and Neural
Network.” (Mohd Fikri Azli bin Abdullah 2012)
Interesting point is made in the work (Mohd Fikri Azli bin Abdullah 2012)
which points out method of bypassing the limitations of processing power of
mobile phones, by generating the classification model on the workstation and
uploading it to the phone, so that the only computation phone is required to
carry out is the actual classification of the sample. This approach is taken in
the works of by (Poovandran 2008) and (S.-I. Yang 2008).

17

2.3.2 Technical Research

Naïve Gaussian Bayes Classifier

The Naïve Gaussian Bayes Classifier is a classification algorithm based on
Bayes rule, that assumes the attributes X1 . . . Xn* are all conditionally
independent of one another, given Y. This assumption greatly simplifies the
representation of P(X|Y), and the problem of estimating it from the training
data.
Consider an example where we are trying to classify sample having only two
features, X1 and Xn, and are checking confidence of it being of type Y. 2.10

Figure 2.10:

Second line follows from a general property of probabilities, and the third line
follows directly from the definition of conditional independence. As number
of features increases, this can be generalised to the following formula:2.11

Figure 2.11: Gaussian distribution

The values of multiplicands of the form P(Xi|P) for features of continuous
nature can be expressed through use of Gaussian probability density function
2.13 if we assume that data follows normal distribution. 2.12.

Figure 2.12: Gaussianity of continuous data is assumed

The Naïve Gaussian Classifier picks the prediction that maximises 2.11

Attribute Weighted Naïve Gaussian Bayes Classifier

Weighted Naïve Bayesian classifier relaxes the conditional independence as-
sumption to increase accuracy. Based on Information Gain calculation,

18

Figure 2.13: Gaussian probability density function

importance of each feature is analysed and appropriate weight is applied.
Features of Information Gain ratio below 1.0 are considered not crucial to
the goal of precise classification and are discarded. The impact of weight k
on probability calculation can be expressed as 2.14

Figure 2.14: Gaussian probability density function

Multivariate Gaussian Bayes Classifier

The “Naïve” part of the Naïve Gaussian Bayes Classifier algorithm comes from
a fact that it ignores relationships between attributes, assuming each attribute
is independent and contributes equally to the final hypothesis probability.
The Multivariate Gaussian Bayesian Classification overcomes this drawback by
employing the Multivariate Normal Distribution at its heart, with probability
density function of 2.15

Figure 2.15: Multivariate Normal Distribution probability density function

Therefore the class-conditional probabilities are: 4.14
Where:

• x is the vector of feature values of considered sample

• m is the vector of means of features across samples of same type i

• d is the dimension of the covariance matrix C

19

Figure 2.16: class-conditional probability for class i function

• C is the covariance matrix between features of the sample of type i. The
dimension of the matrix is equal to the number of considered features.

The exponent of the pdf function(4.14) is worth investigating as it is the key
component of deciding on the classification. When rewritten to an equivalent
form seen in 2.17

Figure 2.17: exponent

The exponent appears as a squared distance, but the inverse of covariance
matrix C acts like a metric (stretching factor) on the space. This is the
Mahalonobis distance, which is a descriptive statistic that provides a relative
measure of a data point’s distance from a common point. Mahalonobis
distance takes into account the correlations of the data set, and additionally
is scale-invariant. Seeing the importance of the exponent it can be concluded
that classification done via the means of multivariate normal distributions is
simply a minimum Mahalonobis distance classifier.

2.4 Development Platform Overview

Galaxy Samsung S3 is UK’s one of the UK’s most popular handsets, surpassing
even the hugely popular Apple iPhone 4S and Apple iPhone 5. (Johnson).
With over 40 million Galaxy S3 devices sold, developing for this platform
allows the solution to reach wide audience. Development for the Android
platform is done using extremely versatile and popular language – Java.
Familiar language and environment – Eclipse, allowed smooth learning of
Android specific syntax. Samsung Galaxy S3 is not only one of the most
popular handsets in the UK, it is also one of the most advanced ones. Beside
accelerometer sensor, which is crucial to the project, this handset offers
extremely powerful, quad-core processor clocked at 1.4GHz, coupled with
1GB of RAM memory. This hardware is of great use for hardware-accelerated
calculations. The solution has been developed with Android 4.0+ devices

20

in mind, with Samsung Galaxy S3 or equivalent being the recommended
device. Reasons for this particular choice are: popularity of the device, power,
familiarity and quality of built in sensors.

Chapter Summary:
First section (2.1) of the chapter concerned itself with practical
issues surrounding recording of accelerometer data. We have
looked at number of sensors and chosen recording parameters
such as sampling rate or sample size in researchers in the area.
Question of gyroscope use was also explored - no works have
been published which incorporated gyroscopes in recognising daily
activities because of its questionable usefulness in such scenario.
In the Evaluation (5) section, this is confirmed to be true, and
therefore gyroscope readings are not used in the final solution.
Research was made into capabilities of the most popular smart-
phones - although solution is developed primarily for Samsung
Galaxy S3, it is worth choosing such sample parameters that will
allow it to be ran on a wide range of smartphones.
Second section (2.2) of the chapter looks at the signal-processing
component of the problem - we look at effectiveness of using
different feature sets in past works in the area. It is noted that
more extensive feature set can improve the precision of feature
extraction. The Technical Research part of the section discusses
the theoretical background behind more complex notions used in
the implementation of signal feature extraction methods used in
this solution - Signal Magnitude area, Discrete Fourier Transform
and Autoregressive Coefficients
Section three (2.3), concerns itself with machine learning aspect
of the problem. We look at algorithms used for classifying daily
activities in past research. Some of the most popular and effective
algorithms - Naive and Multivariate Gaussian Bayes Classifiers
are described in detail in the Technical Research part.
In the final (2.4) section we introduce the development platform
used in the solution - Android operating system and Samsung
Galaxy S3 smartphone.

21

Chapter 3

Specification

3.1 Data Storage

One of the most fundamental choices that had to be made was on how data
will be stored and moved around the system. All of the related works have
employed either the traditional model of storing samples locally or trans-
mitting them to the workstation via WiFi or Bluetooth. These approaches,
while simple to implement are not scalable. As this solution aims for mass
adoption, scalability is a major concern.
Research has been undertaken into the direction of storing the data on
the workstation, allowing incoming Internet connections from the mobile
application to the workstation, enabling sending the samples over the Internet,
bypassing drawbacks of WiFi and Bluetooth which requires the subject to be
close to the workstation.
The choice of server-hosted database enables potential participation of thou-
sands of users submitting training data from any location in the world, which
leads to more robust classification mechanism.
However, having a workstation acting as a server requires it to be constantly
on as well as constantly on-line - these requirements could not be guaranteed
by equipment at hand, a home workstation, therefore research has been
directed into booming area of cloud services. The requirements, which the
provider had to satisfy, were as follows:

• Compatibility with Android devices

• Constant uptime

22

• Free price-plan

In the end the choice has been narrowed down tomongolab.com(MongoLab.com)
and iriscouch.com (irisCouch.com). Both service providers offer free price
plans and access via REST services which is convenient for Android mobile
applications. However as iriscouch.com imposes a read/write number limit
on free accounts, mongolab.com has been chosen as the service provider.
The cloud database is intended to be used for the following purposes:

• Storage of training samples

• Storage of the classification model

• Storage of individual classification results

• User database for the web module of the solution.

3.2 Sampled Data

This implementation focuses on single accelerometer activity recognition
system with main reason being wide adaption of accelerometer-equipped
smartphones, and therefore high potential for adaption of the solution by the
public. Works of (Nishkam Ravi 2005),(Dominic Maguire 2009), (A. M. Khan
2010) and (Jennifer R. Kwapisz 2010) explored the idea of single accelerometer
system.
Both in Ravi (2005) and Kwapisz (2010) system purpose-built accelerometer
is attached in pelvic region of the subject. In case of this implementation,
this particular sensor location is mimicked by placing the phone in trouser
pocket of the subject.
The system in Kwapisz’s (2010) work follows from the other two papers, with
main differences being the type of sensor used - built into the smartphone
vs. purpose-built and exact location - trouser pocket vs. attached to body.
These design choices closely line up with this implementation, and follow the
considerations of the project.
Each recorded sample consists of 256 raw values of acceleration on x, y and
z axes and is recorded via the mobile application, using the accelerometer
built into the phone. Samples are recorded with constant sampling frequency
of 40Hz that makes each sample represent time slice of 6.4 seconds. The

23

frequency was chosen based on researching capabilities of popular smartphones
on the market. Frequency of 40Hz is only 40% of maximum sampling rate of
Galaxy S3.
Similarly to previous works in the field, the implementation follows the pattern
of choosing sample size of power of two. This choice of course is dictated by
allowing fast computation of FFTs, which are used for some features. Samples
are manually labelled with appropriate label corresponding to the activity
sample represents. Option exists to switch to the twice-size mode, where each
sample will consist of vectors of size 512, which in turn represents 12.8 second
time slices.

3.3 Activity Set

The solution will build up on past research (Jennifer R. Kwapisz 2010),
(Nishkam Ravi 2005), aiming to improve on recognition precision of following
activities:

• Walking
• Fast Walking
• Jogging
• Walking up the stairs
• Walking down the stairs
• Sitting
• Standing

Additionally as mentioned in research by (Jennifer R. Kwapisz 2010) - “We
plan to improve our activity recognition in several ways. The straightforward
improvements involve: 1) learning to recognize additional activities, such as
bicycling”, the solution will include Cycling in the Activity Set.

3.4 Signal Feature Extraction

This implementation follows the direction taken by (Jennifer R. Kwapisz 2010)
work in trying to discover new relevant distinguishing features of accelerometer
signal in order to increase precision of activity recognition but includes the
tried-and-tested features employed in works of (Dominic Maguire 2009) and
(Nishkam Ravi 2005) as well. The considered feature set consists of all types

24

of features pointed out in (Mohd Fikri Azli bin Abdullah 2012) i.e. frequency
based features, magnitude based features, correlation based and finally custom
features like for example “Average Peak distance” feature.

3.4.1 Feature Set

Features of the sample considered in this implementation are as follows:

• Mean [3] - average acceleration on each axis

• Standard Deviation [3] - standard deviation of acceleration on each
axis

• Resultant Acceleration [1] - square root across sum of squared values
of three axes

• Energy [3] - sum of the squared discrete FFT component magnitudes
of the signal. See fig 3.1

Figure 3.1: Energy formula

• Correlation [3] - three values of correlation: x,y; y,z; x,z. See fig 3.2

Figure 3.2: Correlation formula

• Signal Magnitude Area [3] - SMA is calculated for each axis

Figure 3.3: SMA formula

25

• Maximum Displacement [3] - Difference between maximum and
minimum value of acceleration on each axis is calculated

• Average Peak Distance [3] - Distance between peaks in recorded
acceleration values is calculated and average for each axis. To prevent
noise and outlier values from affecting the result, signal will be passed
through low pass filter before extracting this feature.

• Acceleration histogram (binned distribution) [3][10] - An array
of 10 values is calculated for each axis, representing the distribution
of acceleration values. Histogram for each axis has different range, to
maximise relevance of data. Unified range for all values would not be
an effective feature as it would result in clusters of values dependent on
which axis the distribution represents. Therefore ranges were chosen
based on observation of values that acceleration was taking on each
axis.
As x-axis acceleration values were found to be bound in range of -5
m/s2 to 5 m/s for all of the measured activities, this range was chosen
for binned distribution of x values. Similarly for y-axis, range was
discovered to be between 5 m/s2 and 15m/s2, and this range was chosen.
For z-axis, range was selected to be between -8 m/s2 and 2m/s2.

• FFT histogram (binned distribution) [3][10] - Similarly to the
previously described feature, three histograms are generated, one for
each axis. Approach to selecting range differs from the previously
described feature however, as resultant vector of FFT transformation is
in frequency domain, instead of time, which allows us to use uniform
range for each axis when binning data. This feature is unique to this
implementation and was not considered in past works.

• Relative crossing count [3] - crossing count reflects frequency of
periodic changes in acceleration associated with measured activities.
This feature has not been considered in past works. It is calculated in
the following way:

1. 80th percentile and 20th percentile of data in analysed sequence is
retrieved.

2. If absolute difference between values is lower than set parameter,
data is considered to be consisting mainly of noise, and therefore
feature calculation is abandoned and the count is set to zero.

3. Otherwise, “zero” value is set to the mean between 80th and 20th
percentile values.

26

4. Iteration through data is performed, with step set to a parameter,
checking if currently considered value has fell below or above the
“zero” value, when compared to previously considered value. If
that was the case, count is increased.

• AR Coefficients [3][3] - Autoregressive Coefficients are computed
such that the corresponding AR signal will be of same second order
statistics (same spectrum) as original signal.

3.5 Workstation module

The main role of the workstation module of the solution is to provide an
interface between the cloud database and classification model generation. The
workstation module loads training samples from the cloud database, performs
batch feature extraction process and feeds feature values into appropriate
classification algorithms. The workstation module also provides functionality
of uploading generated modules back into the cloud database, as well as
performing classification on samples. The design of the Workstation Module
should allow plug-in nature of the classifier algorithms.

3.5.1 Weak

The Weka workbench is a collection of state-of-the-art visualization tools
and algorithms for data analysis and predictive modelling, combined with
graphical user interface enabling intuitive access to its functionality. One
of design considerations of the workstation module of the application is the
possibility of easy transfer of list of training samples from the custom ‘Accent’
format to the Weka .arff file format. This is to allow analysis of effectiveness
of extracted features in classifying data.

3.5.2 Analysis

Additional feature of the workstation module is capability of evaluating the
classification models and presenting the user with appropriate statistics both
in terms of percentage of correct classifications as well as in form of confusion
matrices.

27

3.6 Machine Learning and Classification

An approach identified in the work of (Mohd Fikri Azli bin Abdullah 2012) -
generating the classification model on the workstation and later uploading
it to the phone is chosen in this implementation. This approach combines
the advantages of workstation-based classification with convenience of mobile-
based. It’s main advantage is being very light on mobile processor but at the
same time not dependent on the constant availability of the workstation for
classification.
The classification model will be generated on the workstation and then
uploaded to the cloud database. The mobile application will check for a new
model upon start-up, and if such exists, it will replace the locally cached
model with the new one. The classification of the sample will be done based
on downloaded and cached model. This minimizes data transfer between
mobile module and the cloud database, as the only occasion when such has
to happen is upon model update.

3.6.1 Classification Algorithms

Naïve Gaussian Bayes Classifier

The Naïve Gaussian Bayes Classifier is one self-implemented classification
algorithms in the solution. Described in detail in the Technical Research
2.3.2 section, it is a simple yet very popular (described and employed in
multiple activity recognition research solutions ((Lau and David 2010), (L. Sun
2011), (T. S. Saponas and Landay), (Yang 2009))) and effective classification
algorithm - “In 2004, an analysis of the Bayesian classification problem showed
that there are sound theoretical reasons for the apparently implausible efficacy
of naive Bayes classifiers.”(Wikipedia)
The classification model of this particular classification algorithm is light on
data, consisting of 2n vectors for n classified types, of magnitude equal to
the number of features used in the classification. This is advantageous to the
solution, as less data transfer translates to lesser battery consumption, lesser
signal requirements as well as smaller data usage charges to the user.

Multivariate Gaussian Bayes Classifier

While Naïve Gaussian Bayes Classifier 2.3.2 has numerous technical advantages
to the solution, its main flaw is its “Naivety” - assumption that all features

28

exerted by the sample are independent from each other. This is why another
custom implementation of a classification algorithm is considered in the
solution - the Multivariate Gaussian Bayes Classifier. The Multivariate
Gaussian Classifier takes into account relationships between feature values
through use of covariance matrix. The workings of the algorithm are explored
in detail in Technical Research 2.3.2 section on the algorithm.
From point of view of viability to the solution, the Algorithm is expected to
offer more precise results, but at a cost of:

• Requiring more training data - Multivariate Classifier requires at least
as many samples per class as the number of considered features, however
it is a bare minimum and usually much more data is needed to allow for
accurate results. As (Kozmann G 1991) noted about use of Multivariate
Classifier: “(. . .) it is noted that in 30% of the cases only one, and
in 6% of the cases only two parameters could be used for statistical
group representation to ensure a reasonable reliability. In 56% of the
published cases the sample sizes could not guarantee this reliability
even for one feature or parameter.”

• Requiring more storage, hence more data needs to be transferred when
updating the model. This is caused by the need of storing n covariance
matrices of order d where n is the number of activity types and d is
the number of features considered in the classification.

• Requiring more computation on the mobile end of the solution - specifi-
cally performing multiple matrix transformation operations when exe-
cuting the probability density function. 2.15

3.7 Mobile Module

3.7.1 Activity Recording

The mobile module of the solution implements methods for recording data
samples through use of accelerometer built into the phone. Additionally,
it implements functionality for connection the cloud database in order to
facilitate easy addition of new training samples.
One of the main requirements of mobile module is to provide a clear interface
for previewing the recorded samples as well as easy to use sample-labelling
interface.

29

3.7.2 Activity Recognition

The mobile module retrieves the classification model from the cloud database
and caches it locally. The classification can be performed on a single sample
from the local library or alternatively by constant classification through
use of a sliding window with half-sample size overlap. The results of the
classification are sent to the cloud database for Web Module 3.8 use. User
is to be provided with both textual and graphical representation of probability
distribution for each classification. The classification results are cached locally
and can be browsed.

3.8 Web Module

The web module role is to provide motivation to the user to perform more
physical activities every day. The web module uses classification results from
the cloud database to provide the user with graphical and textual breakdown
of their daily activity. This is to motivate user to improve their habits and
also see how they progress over time, stimulating sense of achievement.
The additional motivational feature exists in form of a daily “leaderboard”
displaying first names and photos of users who have spent most time on
specific physical activities like running, climbing stairs etc. in the previous
day. The day-wide window is chosen to make appearance in the leaderboard
possible for every user, which would not have been the case if data from a
week was aggregated instead from a day. In case of a weekly window, users
who work full time would be disadvantaged against users who have more free
time during the week. This makes appearance in the leaderboard possible for
everyone who has at least one free day from work.
Additionally the web application provides proof-of-concept functionality of
tracking the current activity performed by the mobile module user in real
time.

Chapter Summary:
This chapter concerns itself with specific design issues.
First section (3.1) of the chapter explains the decision of going
through with clod-based approach to storing data in the solution.

30

Different providers are compared and decision is made to use
mongolab.com as cloud service provider.
After reviewing how accelerometer data was sampled in past works
in the area in the previous chapter (2.1, section Sampled Data
(3.2) explains how data will be sampled in this solution. Choices
are influenced by previous work as well as requirements of feature
extraction methods. Sample size is chosen to be of 256 readings,
sampled at 40Hz. The sampling frequency was chosen basing on
research from section 2.1.
Short section 3.3 specifies which activities the solution will aim to
recognise.
Section 2.2 introduces a complete list of features that will be ex-
tracted from signal, including new features unique to this solution
- the relative crossing count and FFT histogram.
In section 3.5 the goals of the workstation module are specified,
them being: acting as an interface between cloud database and
classifier model generation, allowing analysis of data with Weka
suite and performing evaluation procedures of implemented algo-
rithms.
The Multivariate and Naïve Classifiers are compared from a tech-
nical point of view in section 3.6. Concerns are raised about
Multivariate variant requiring much more training data than
Naïve one.
Two final sections 3.7 and 3.8 describe the design goals of the
Web and Mobile modules of the solution, mainly from the point
of view of usability, as technical concepts employed in them are
described in earlier sections of the chapter.

31

Chapter 4

Implementation

The solution consists of three modules, centred around the cloud database.

• Mobile Module
• Workstation Module
• Web Module

Implementation of which is described in detail in this section. Full-page
diagram 4.1 is extremely crucial to reaching understanding of the solution.

4.1 Data Flow

Three modules of the solution are interconnected by the Cloud Database.
The data flows in the solution in a following way:

1. Mobile Module records training samples and uploads them to the
Cloud Database

2. Workstation Module downloads training samples from the Cloud
Database

3. Workstation Module builds the classifier model using training sam-
ples and uploads it to the Cloud Database

4. Mobile Module downloads the classifier model from the Cloud
Database

5. Mobile Module performs activity recognition using the downloaded
classifier model and uploads the results to the Cloud Database

32

Figure 4.1: Data flow in the solution. Centre: cloud Mongo lab database

33

6. Web Module downloads classification results from the Cloud
Database to present the user with activity reports, leader boards, etc.

Data flow in the solution is presented on a full-page diagram 4.1.

4.2 Web Module

Web module of the solution has been developed in JavaScript, incorporating
angularjs - an open-source JavaScript framework, that assists with developing
single-page applications. Angularjs allows clear separation of view from
controller - i.e. helps to implement model–view–controller (MVC) design
pattern.

Figure 4.2: Web Module login screen

4.2.1 Database Connection

Communication with the cloud database is done through REST API. As the
database uses JSON based storage, there is no need for any kind of conversion
in order to use data in the module. It is worth noting that all of the data
that has to be loaded into the web application is lightweight, as the only
data that has to be downloaded is a numerical label representing the result
of classification and the time-stamp of the classification.

34

4.2.2 Daily Summary

When a date is selected from the calendar date-picker, function ‘update-
DateFunction’ is triggered in the controller which in turn triggers function
‘calculateDailyTypeDistribution’ and modifies variable representing currently
selected date.

Figure 4.3: Daily Summary screen

‘calculateDailyTypeDistribution’ changes the contents of ‘typeDistribution’
array. Directive watching the ‘typeDistribution’ gets triggered by this change
of contents and proceeds to plot a pie chart representing distribution of
activities during the day using graphael charting library. Additionally, because
of two-way binding capabilities of the angularjs framework, as soon as the
‘typeDistribution’ changes, the values representing time spent on each activity
presented in the table change as well.

4.2.3 Real Time display

Real time display mechanism relies on loading the newest classification result
for the logged in user, together with time-stamp. If the time-stamp is older
than chosen cut-off of 1 minute, it is assumed that there is currently no
broadcast and database is not queried again. However, if such result is found,
the database is queried for a new result every 3 seconds.
The implementation of the loadRealTimeResult function presented below
shows how REST API is employed in retrieving results from the cloud
database.

35

Figure 4.4: Real Time display

$scope.loadRealTimeResult = function(){
$scope.realTimeTickCounter=$scope.realTimeTickCounter+1;
var value = $scope.realTimeTickCounter;
$scope.dynamic = (value);
if(($scope.realTimeTickCounter % 100)===0){

var url= "https://api.mongolab.com/api/1/databases/activity_recognition/collections/classification_results?q={%22userid%22:%20"+$scope.userId+"}&s={%22_id%22:%20-1}&l=1&f={%22result%22:%201,%22date%22:%201}&apiKey="+$scope.apiKey;
$http.get(url).success(

function(data, status, headers, config) {
var newest = data[0];
var ageinms=Math.abs(new Date() - dates.convert(newest.date));

if(ageinms<60000){ //1 minute cutoff
$scope.realTimeResultAge=$scope.msToTime(ageinms);
$scope.realTimeResult=$scope.typeToString(newest.result);
$scope.realTimeTimestamp=newest.date;

}else{
$scope.realTimeResult="No broadcast detected";
$scope.realTimeResultAge="no broadcast";
$scope.toggleRealTime();

}
}
);

$scope.realTimeTickCounter=0;

36

}
mytimeout = $timeout($scope.loadRealTimeResult,30);

};

4.2.4 Leaderboard

The leader board shows first names and photos of users who have spent the
most time in the past day on a particular activity. The data is aggregated as
follows.

Figure 4.5: Leaderboard view

When user selects the “Leaderboard” tab of the web application, check is
performed if top users have already been identified, in case they are not, list
of all users’ ids is loaded. For each user REST request is made that returns a
single number representing count of activities of a particular type that were
performed by the user. This approach is extremely efficient in terms of data
transfer as there is no need to download whole list of classifications for the
user as all of the filtering is done through the properly formatted URI request.
This operation is done for every registered user. Data is aggregated into an
array, which is then in turn sorted in descending order, and the top user is
selected.

37

4.3 Mobile Module

The mobile module of the solution has been developed for Android OS, using
Java in Eclipse programming environment.

4.3.1 Design

4.3.2 Database connection

Mobile application employs two-way connection to the cloud database. The
connection is faciliated through REST API. Data between the mobile appli-
cation and cloud database is transferred in following cases:

• Training sample being sent to the database
• Classification result bein sent to the database
• Classifier model loaded from the database

In all cases data has to be converted to and from JSON representation. The
conversion is done through Google Gson library.

4.3.3 Accelerometer Monitoring

A simple Accelerometer Monitoring tab has been implemented for the
purpose of visually investigating workings of the accelerometer as well as
inspecting the signal for unexpected results. The Visual representation can
be toggled to free up computational resources of the smartphone.

4.3.4 Activity Recording

The application allows easy recording of training samples.Each of recorded
samples can be reviewed both visually through a graph plot and feature-wise
through display of feature extraction 2.2 results.
Once recording starts, a progressbar appears indicating progress in recording
of the current sample.
The sampling rate can be easily altered through variable samplingRate which
then is converted to sensorDelayMicroseconds - the format Android uses
for it’s accelerometer handler.

38

Figure 4.6: Accelerometer Monitoring Tab

39

private double samplingRate = 40; // Hz
int sensorDelayMicroseconds = (int) (Math

.round(((1 / this.samplingRate) * 1000000.0)));

Data Structure - AccData.java

Samples are stored in a form of custom AccData objects of following structure:

public class AccData implements Serializable {
private List<Double> xData;
private List<Double> yData;
private List<Double> zData;
private int type;

The three List objects hold the acceleration values, while the type field holds
the numerical label for the recording. Appropriate setter/getter methods are
implemented.

Recording modes

There are two ways of recording samples:

• Single sample recording (button Rec 1) gives the user 5 seconds to put
the phone into the pocket, signals that recording will start soon by a
vibration alert and then after further 0.5 seconds (so that vibration
does not affect recorded acceleration) recording starts. End of recording
is signaled by a vibration as well. This recording mode is designed with
training sample recording in mind.

• Constant recording (button Start Rec.) mode will constantly record
samples until it is disabled. This mode is used both in training sample
recording stage and recognition stage.

There are several options that can be enabled when recording:

1. Save to library when constantly recording - when this option
is enabled, each recorded sample will be added to the local library
automatically.

40

Figure 4.7: Activity Recording Tab

41

2. Inherit type when recording - once user sets type label from a
drop-down menu, each next recorded activity will inherit that label.
This option is especially useful when an opportunity presents itself to
record many samples of same activity in a row. Example could be
recording of samples by enabling the constant recording mode, together
with Add to library when constantly recoding and Inherit type
when recording after choosing Sitting [4] label from drop-down menu
and putting the phone into the pocket for the duration of the lecture.
Each recorded sample will be added to library automatically.

3. Identify when constantly recording - will aim classify current ac-
tivity every 3.2 seconds

4. Twice-the-size (512) samples - twice as long samples will be recorded.
This also changes the frequency of classification to every 6.4 seconds.

Local Storage

After recording a single sample it can be added to the local library using the
Add button. When Add to library when constantly recording option
is enabled samples will be added to the local library automatically. Pressing
Save button will serialize and save the library to phone local storage in form
of *.dat file, so that upon restart of the application data from the local library
will not perish. The library can be purged by pressing the Purge button
three times.

Global Storage

Each sample in the library can be sent to the cloud database with a press of
Send button. Mobile application will convert the currently selected AccData
object into JSON format using Google Gson library and after establishing
connection with the cloud database, the object will be sent.
Data is stored in JSON format of the following structure (only 3 out of 256
values for each axis shown for clarity)

{
"_id": {

"$oid": "51a75df0e4b07f1fa5cc0388"
},
"zData": [

42

-8.973467826843262,
-8.96389102935791,
-8.935160636901855
...

],
"xData": [

3.5625722408294678,
3.533841609954834,
3.5625722408294678,
...

],
"yData": [

1.455674648284912,
1.5610195398330688,
1.50355863571167
...

],
"type": 4

}

4.3.5 Activity Recognition

The Activity Recognition tab is used to display output of the classification
algorithm used in the solution.
When Id button is pressed in theActivity Recording tab, currently selected
sample from the local library is classified. If classifier model is not downloaded,
application will connect to the cloud database and download appropriate
classifier model data (mean and variance vectors for Naïve Gaussian Classifier,
additional covariance matrices for Multivariate Gaussian Classifier).
If (in Activity Recording tab) Constant Recording mode is enabled
with Identify when constantly recording option set to on, classification
will be performed through use of a sliding window with 50% overlap. The
window size depends on the chosen sample size. If option Twice-the-size
(512) samples is disabled, window will consider samples of size 256 (6.4
seconds @40Hz) with 50% overlap, otherwise window of size 512 will be
considered.
If the Send results to cloud option is enabled, each classification will be
sent to the cloud database immediately after classifying, otherwise Send
button needs to be pressed in order to send the result.

43

Figure 4.8: Activity Recognition Tab with classifier choice dialog open.

44

The Speak out results option has been developed for evaluation purposes -
when enabled, through use of text-to-speech library the result will be read
out to the user. This is particularly useful when evaluating the performance
of classification in real life situations and is explored in depth in Evaluation
section of the report.
The Cutoff seek bar is used to decide on the cutoff probability value under
which classification results will be considered “unknown”.
The Classifier drop-down menu allows choosing between different classifier
algorithms. The classifier that is currently chosen will be used every time clas-
sification will be attempted, be it via Identify when constantly recording
or by pressing the Id button in the Recording Tab.

Data Structure - ClassificationResult.java

Classification results are stored in a form of custom ClassificationResult
objects of following structure:

public class ClassificationResult {
List<Double> p;
Date date;
Integer result;

The ‘List p’ holds the probability distribution for the particular classification
result, ‘Date date’ holds the timestamp on which the classification took place
and finally ‘Integer result’ hold the numerical label representing result of the
classification.
The timestamp stored together with the classification result allows local
storage of the classification results and submission of them later, without risk
that later submission will mean that results get assigned to a different date.
This is particularly useful if the user is in low reception area and currently
cannot synchronise his results with the database.
The probability distribution is displayed via the means of the graph, allowing
intuitive insight into confidence of the classifier.

Local Storage

After classifying a single sample it can be added to the local classification
result library using the Add button. When Classify constantly recording

45

option is enabled classification results will be added to the local result library
automatically. Pressing Save button will serialize and save the result library
to the phone’s local storage in form of *.dat file, so that upon restart of the
application data from the local results library will not perish. The library
can be purged by pressing the Purge button three times.
The classification results can be reviewed and browsed using Prev and Next
buttons.

Global Storage

Each classification result can be sent to the could database with a press
of Send button. Otherwise, if Send results to cloud option is enabled,
each classification will be sent to the cloud immediately after classification
takes place. When sending, application will convert the currently selected
ClassificationResult object into JSON format using Google Gson [@gson]
library and after establishing connection with the cloud database, the object
will be sent.
Data is stored in JSON format of the following structure

{
"_id": {

"$oid": "51a8d522e4b082fc259fae55"
},
"date": "May 31, 2013 5:51:45 PM",
"p": [

-848.5727069759712,
-280.8045515994242,
-30.86754679639256,
-75.21763730225379,
0,
0

],
"result": 2,
"userid": 1337
}

46

4.4 Feature Extraction

Feature extraction utility class FeatureExtractors.java 4.4.1 and
AccFeat.java 4.4.1 object that stores values of features are used both in the
Mobile and Workstation modules of the solution.

4.4.1 AccFeat.java

Values of extracted features of a particular sample are are stored in a form of
custom AccFeat object. Each of the fields of AccFeat object corresponds to a
unique feature of the considered sample, described in Feature Set section
above. Structure of AccFeat is as follows:

public class AccFeat {
double[] mean = new double[3];
double[] sd = new double[3];
double[] avPeakDistance = new double[3];
double[] maxDisplacement = new double[3];
int[][] histogram = new int[3][10];
int[][] fftHistogram = new int[3][10];
double[][] AR = new double[3][4];
int[] crossingCount = new int[3];
double[] energy = new double[3];
double[] correlation = new double[3];
double resultantAcc;
double SMA;
int type;

Each of features is numerically indexed and it’s value can be retrieved via
that number, which allows picking of features in the classification algorithms
described in sections and .

FeatureExtractors.java

The AccFeat object is built through use of a custom FeatureExtractors class,
which consists of self coded methods of calculation of each of mentioned
features.
Calling buildFeatureObject(AccData) takes previously described (4.3.4)
AccData object containing recordings of acceleration values along x, y and z

47

axes as an argument and after performing Feature Extraction process returns
an appropriate AccFeat representation of the sample.
All of the Feature Extraction methods are sample-size independent, which
allows for the 256 and 512 sample size recording modes to coexist.

Figure 4.9: FeatureExtractors class outline

4.5 Workstation Module

Workstation application has been developed in order to facilitate creation of
classification model for accelerometer data.
Through careful coding, classes:

• AccData.java - used for storing raw accelerometer data (4.3.4)
• AccFeat.java - used for storing the feature signature of the signal
(4.4.1)

• FeatureExtractors.java - used to build AccFeat from AccData
through a collection of custom feature extraction methods (4.4.1)

48

can and are shared between Workstation and Mobile modules of the solution
without need for any changes in the code.
The workstation application loads the training samples from the cloud, con-
verting JSON representation into into AccData objects and inserting into
List<AccData> accDataLibrary object.
Batch feature extraction process is performed on the accDataLibrary, creat-
ing counterpart accFeatLibrary which then is passed into classifier objects.

4.5.1 Weka Interface

WekaFileGenerator class has been written. It’s goal is to provide interface
between workstation module of the solution and Weka suite. This is facilitated
through generateFile(List<AccFeat>) method, which accepts a list of
objects representing features extracted from raw accelerometer data samples
and returns the ‘.arff’ file, complete with all of the custom feature names,
ready to be analysed by Weka.

4.5.2 Classifier design

Both Multivariate and Naïve Gaussian Bayes Classifiers have similar structure,
which allowed designing a common interface which they both implement. The
UML diagram can be seen in figure 4.11.

4.5.3 Naïve Gaussian Bayes Classifier

Custom Naïve Gaussian Bayes Classifier 2.3.2 implementation was written in
a format allowing sharing of the code in unchanged form between mobile and
workstation modules of the solution.
The structure of the class allows easy incorporation of outcomes of Weka-
based analysis. The classifier will only consider features included in the attr
array, and will assign weights to features as outlined in the weights array.
4.12

Generating classification model - µ and σ vectors

If the class is instantiated with a set of µ vectors and σ vectors, as is the case
when the classifier is used on a mobile platform, there is no need to generate

49

Figure 4.10: Weka file generated by the WekaFileGenerator class from a list
of AccFeat objects (only 17 out of 96 numerical values shown for clarity)

Figure 4.11: Classifier algorithm implementations

50

Figure 4.12: Notice how results of attribute ranking can be copied directly to
the attr array

51

a classification model and this section is skipped.
If the class is instantiated with a library of AccFeat object as an argument,
the classifier will initialise eight µ vectors, which will be filled with mean
values of each considered feature for each activity type label. Vectors are
of ArrayList<Double> type and are put into List<ArrayList<Double>>
meanVectors object holding all eight vectors.
Initialisation of eight σ vectors which will hold variance for each of calculated
attributes follows afterwards. Vectors are of ArrayList<Double> type and
are put into List<ArrayList<Double>> varVectors object holding all eight
vectors.
The process of filling vectors with values then ensues, using the following
method:

public void generateMeanVarVectors() {
for (int i = 0; i < types.length; i++) {

for (int k = 0; k < attr.length; k++) {
double mean = getSampleMean(attr[k], types[i]);
meanVectors.get(types[i]).add(mean);
double var = getSampleVariance(attr[k], types[i], mean);
varVectors.get(types[i]).add(var);

}
}

}

double getSampleMean(int feature, int type) {
double sum = 0;
int count = 0;
for (AccFeat a : lib) {

if (a.getType() == type) {
sum += a.getFeature(feature);
count++;

}
}
return sum / count;

}

double getSampleVariance(int feature, int type, double mean) {
double sum = 0;
int count = 0;

52

for (AccFeat a : lib) {
if (a.getType() == type) {

sum += Math.pow((a.getFeature(feature) - mean), 2);
count++;

}
}
return sum / count;

}

This results in vectors being filled with appropriate mean and variance values
that can be then used in the classification process.

Classification

While aggregating of data and building classification model is intended to
be unique to the workstation module, classification is shared between both
workstation and mobile modules.
The classification method receives the AccFeat object as an argument, then
builds a vector qf of features to be considered in the classification.

Figure 4.13: Probability function used in Naïve Bayes Classifier

Implementation of the probability function 4.13:

private double p(double v, double m, double var) {
double p = ((1 / (Math.sqrt(2 * Math.PI * var))
* Math.exp(-(Math.pow(v

- m, 2))
/ (2 * var))));

return p;
}

The calculation of probabilities for each feature value follows from the descrip-
tion of Naïve Bayes Classifier in the Technical Research 2.3.2 section of
this chapter. Additionally individual feature weights are taken into account if
weights array is defined, turning the classifier into Weighted Naïve Bayes
Classifier

53

public void classify(AccFeat q) {
double[] results = new double[8];
List<Double> qf = new ArrayList<>(); //Query Feature vector
for (int k = 0; k < attr.length; k++) {

qf.add(q.getFeature(attr[k])); //Only considered features are added
}
double weight;
for (int i = 0; i < types.length; i++) {

result = 0;
for (int j = 0; j < meanVectors.get(types[i]).size(); j++){

if (weighted)
weight = weights[j];

else {
weight = 1;

}
result += Math.log(weight

* p(qf.get(j), meanVectors.get(types[i]).get(j),
varVectors.get(types[i]).get(j)));

}
results[i] = result;

}

Probability of sample being of particular type n is stored at index n of the
results array.

4.5.4 Multivariate Gaussian Bayes Classifier

Beside the Naïve Gaussian Bayes Classifier implementation 5.1, additionally
a Multivariate Gaussian Bayes Classifier was implemented, similarly in a
format allowing sharing of the code in unchanged form between mobile and
workstation modules of the solution.
The structure of the class allows easy incorporation of outcomes of Weka-
based analysis. The classifier will only consider features included in the attr
array. 4.12

Generating classification model - µ and σ vectors & Covariance
Matrix

If the class is instantiated with a set of µ vectors and σ vectors, as is the
case when the classifier is used on a mobile platform, this section is skipped.

54

Otherwise µ and σ vectors filling process is conducted, similarly as in Naïve
Gaussian Bayes Classification implementation 4.5.3
In addition to the µ and σ vectors, n covariance matrices are generated for n
types to classify.
Custom ‘CMatrix’ class was written, that is instantiated with type that it
refers to and fills itself with appropriate covariance values.

class CMatrix {
double[][] mat;
int d;
CMatrix(int type) {

this.d = attr.length;
mat = new double[d][d];
for (int i = 0; i < attr.length; i++) {

for (int j = 0; j < attr.length; j++) {
double covariance = getCovariance(attr[i], attr[j], type);
this.set(i, j, covariance);

}
}

}

double get(int i, int j) {
return mat[i][j];

}

int getD() {
return d;

}

void set(int i, int j, double x) {
mat[i][j] = x;

}

double[][] getMatrix() {
return mat;

}

}

The ‘getCovariance’ method makes use of µ and σ vectors in order to calculate

55

covariance between attribute values. The format of vectors follows from Naïve
Gaussian Bayes Classification implementation 4.5.3

double getCovariance(int featureX, int featureY, int type) {
double meanX = meanVectors.get(type).get(featureX);
double meanY = varVectors.get(type).get(featureY);
double sum = 0;
int count = 0;
for (AccFeat a : lib) {

if (a.getType() == type) {
sum += (a.getFeature(featureX) - meanX)
* (a.getFeature(featureY) - meanY);
count++;

}
}
double result = sum / (count - 1);
return result;

}
As soon as covariance matrices are generated, classification can take place.

Classification

Similarly to the the Naïve Bayes Classifier implementation, classification
method receives the AccFeat object as an argument and then builds a vector
qf of features to be considered in the classification.

Figure 4.14: Class-conditional probability for class i function

Implementation of the probability function 4.14:

private double p(List<Double> qf, int type) {
Matrix coeff = new Matrix(cMatrices.get(type).getMatrix());
Matrix coeff_inv = coeff.inverse();

double result = Math.pow((2 * Math.PI), -coeff.getRowDimension() / 2);
result *= Math.pow(coeff.det(), -0.5);

56

double[][] xminusmt = new double[1][attr.length];
double[][] xminusm = new double[attr.length][1];
double difference;
for (int i = 0; i < (attr.length); i++) {

difference = qf.get(i) - meanVectors.get(type).get(i);
xminusmt[0][i] = difference;
xminusm[i][0] = difference;

}
Matrix x_minus_m = new Matrix(xminusm);
Matrix x_minus_m_T = new Matrix(xminusmt);

Matrix half_times_x_minus_m_T = x_minus_m_T.times(-0.5);

Matrix x_minus_m_T_times_C_inv = half_times_x_minus_m_T
.times(coeff_inv);

double norml1 = x_minus_m_T_times_C_inv.times(x_minus_m).norm1();
double n = Math.exp(norml1);
result *= n;

return result;
}

The calculation of probabilities for each feature value follows from the de-
scription of Multivariate Bayes Classifier in the Technical Research 2.3.2
section of this chapter.

public void classify(AccFeat q) {
double[] results = new double[9];
List<Double> qf = new ArrayList<Double>();

for (int j = 0; j < attr.length; j++) {
qf.add(q.getFeature(attr[j]));

}

for (int i = 0; i < 9; i++) {
results[i] = p(qf, i);

}

Probability of sample being of particular type n is stored at index n of the
results array.

57

4.5.5 Uploading Classifier Models

Using methods ‘sendMeanVarVectors’ and ‘sendMvcMatrices’ the Workstation
module extracts µ and σ vectors as well as covariance matrices in case of
the Multivariate implementation from the classifiers, converts them to JSON
format and uploads to the cloud database.

Chapter Summary:
This chapter concerns talks in detail about Java and JavaScript
implementation of the solution. It opens with a very important
diagram (4.1) on how data is exchanged between different modules
of the solution. The data flow is additionally described in first
section of the chapter.
Web Module implementation is introduced in section 4.2. Details
of retrieving and aggregating activity classification data through
REST API and JSON data representation across the module are
presented, together with appropriate UI screenshots.
The section that follows () focuses on how the Mobile Module
implementation of the solution. First part of the section describes
how accelerometer data is recorded and its parameters are being
set. The user interface is introduced, describing different recording
modes. It is shown how the data is stored and finally how it is
being sent to the cloud database. The second part describes
implementation of Activity Recognition engine on the mobile
phone. When identification is attempted, application will check if
classifier model is downloaded, and if it is not, it will download
appropriate data from the classifier model - µ and σ vectors for
the Naïve Gaussian Bayes Classifier and additional covariance
matrices for Multivariate. Each of classification results can be sent
to the cloud database, with appropriate userID and timestamp.
Section 4.4 begins with a description of decoupled approach of
storing acceleration signal data and signal features separately.
Custom FeatureExtractors class implementing feature extraction
methods described in previous chapters is introduced together
with the outline 4.9
Final section describes the Workstation Module and how design
goals outlined in the previous chapter (3.5) have been achieved.

58

Implementation of Naïve and Multivariate Gaussian Bayes Clas-
sifiers is described in detail, following from technical research
in chapter . Generation and uploading of classifier models is
explained.

59

Chapter 5

Evaluation

The aim of the evaluation stage is to judge solution performance through a
series of experiments as well as influence final implementation decisions.

5.1 Experiment 1: Algorithm Evaluation

With both Naïve Gaussian Bayes Classifier 2.3.2 and Multivariate Gaussian
Bayes Classifier 2.3.2 implemented (4.5.4 &) it has to be decided which
algorithm will be employed in the solution.
One of the major concerns is the smallest viable training library size for each
of the classification models. Preferably the training library size requirement
should be kept to a minimum, to minimise the setup time required for to use
the solution by the end user - and this is the criteria that will be used in
deciding on which algorithm will be used in the solution.

5.1.1 Background

Algorithms

Through use of the Workstation Module 3.5 and its ability to work with
different classification algorithms the Naïve Gaussian Bayes Classifier will be
compared to the Multivariate variety. The Naïve Gaussian Bayes Classifier
will be tested in two forms - first one being the “vanilla” classifier, which
assumes equal weights to every feature that is extracted, while the other one
will be of Weighted variety, with weight values obtained through analysis

60

with Weka,3.5.1 made possible via Weka Interface 4.5.1 which is part of
the Workstation Module.

Sample Recording

50 samples of each activity will be recorded. Where it is possible to perform
activity continously for the duration of 50 samples i.e. 5 minutes and 20
seconds (50 samples of 6.4 seconds) the Constant Recording option will
be used 4.3.4. Activities in following 8 categories will be considered:

• Sitting
• Standing
• Cycling
• Jogging
• Walking
• Fast Walking
• Walking up the stairs
• Walking down the stairs

Phone will be kept in the left pocket of the trousers when recording each of
the test samples.

Classification

Test samples will be uploaded to the cloud database and classified using the
Workstation Module with appropriate Classification Algorithm implemen-
tations plugged in.
Each of classifier algorithms which will build their classification model using a
training library of 150 samples per activity class, loading the training samples
from the cloud database.

Naïve Bayes Classifier (2.3.2) This variety of the Naïve Bayes Classifier
will use full set of features and consider each feature to be independent of
each other and of equal importance.

61

Figure 5.1: Clustering of activity types visualised by feature in Weka.

Weighted Naïve Bayes Classifier (2.3.2) Through use of (3) Export
to .arff file function in the workstation module, all of training data is
exported to Weka-compatible arff format.
The “weighted” variety of Naïve Bayes Classifier will only consider features
which have positive information gain ratio. The ratio is obtained through
analysis with InfoGainAttributeEval method in Weka 3.5.1. Additionally,
the information gain ratio of each attribute will be used as its weight.

Multivariate Gaussian Classifier (2.3.2) The Multivariate Gaussian
Classifier will consider only a small subset of features. These features will be
as follows:

• Mean [3]
• Standard Deviation [3]

Only a small subset of features can be used as Multivariate Gaussian Classifier
usually requires large training libraries for accurate results.

62

Figure 5.2: Output of information gain evaluation per feature in Weka.

5.1.2 Methodology

The Workstation Module of the solution will be used to quantify data from
the experiment. All of the functionality needed to perform the experiment is
done through a custom implementation.
Experiment will be performed as follows:

1. Full training sample library will be loaded into the workstation module.

2. AccFeat (4.4.1) library - library of objects representing extracted
features will be created, however only 10 random samples from the
training set (per activity) will be used for this purpose.

3. Three classifiers will be built (Naïve/Weighted/Multivariate) using the
AccFeat library.

4. 50 test samples per activity will classified. Classification results will be
put into a confusion matrix.

5. Each stage will be repeated 50 times to mitigate impact of 10 randomly
chosen samples. Results for each stage will be summed up to produce a
confusion matrix. Three confusion matrices, one per algorithm will be
produced per stage.

63

6. Random sample count will be increased by 10 and next stage will begin,
by repeating the procedure from step 2.

5.1.3 Methodology Code

The code of the implementation used for the analysis can be seen below.

public static void confusionMatrix(Classifier c, int repeats) {
int[][] matrix = new int[8][8];
int count = 0;
int right = 0;
for (int i = 0; i < repeats; i++) {

buildAccFeatLibrary(true, libLimit);
c.reloadLibrary(accFeatLibrary);
for (AccFeat a : accTestFeatLibrary) {

Pair<ArrayList<Double>, String> p = c.classify(a);
ClassificationResult r = new ClassificationResult(p.getFirst(),

null);
if (a.getType() == r.getResult()) right++;
count++;
matrix[a.getType()][r.getResult()]++;

}
}
System.out.println("Correct classifications: " + right + "/" + count);
print(matrix);

}

5.1.4 Results

The correlation between library size and number of correct classifications can
be seen in figures 5.3 and 5.4.
Full set of confusion matrices that were produced in the experiment can be
found in the Appendix.

5.1.5 Conclusions from the experiment

It is apparent that Multivariate classifier only becomes effective after large
amount of training samples is provided for the classifier model generation

64

Figure 5.3: Impact of training library size on classification accuracy.

Figure 5.4: Correct classifications for training library sizes 10-150.

65

process. As we can see, it takes 150 training samples per activity for it to
reach same precision as Naïve Gaussian Bayes Classifier does using only 90
samples. Overall, the Weighted Naïve Gaussian Bayes Classifier performs
slightly better than the Naïve classifier in most of the cases and additionally
it reaches the 100% level using 10 less training samples. Additional advantage
of the Weighted variant of the classifier is that less data has to be stored in
the cloud database, as smaller set of features is considered. I have therefore
decided that the Weighted Naïve Gaussian Bayes Classifier will be the one
recommended to use in the solution, however Multivariate Gaussian Bayes
Classifier is fully implemented together with full cloud database compatibility.
In practical terms, we can see that 30 samples per activity are enough to
achieve at least 99% accuracy in activity recognition. This means that user is
required to spend only a total of 192 seconds to record all needed training
samples for a particular activity (one sample is 6.4 seconds long).

5.2 Experiment 2: Solution Performance
Evaluation

The performance of the solution will be evaluated in real life scenario.

5.2.1 Methodology

A path through the Huxley Building will be set out, which will consist of
majority of activities included in the Activity Set
(3.3).
The Mobile module will be deployed, using following recording settings:

• Constant Recording set to on

• Constant Identifying set to on

• Speak out results set to on

The classifier in the mobile module will be built using same training data as
in 5.1.

66

5.2.2 Quantification

While performing the activities, the subject will be wearing headphones. As
each result of the classification is spoken out, the subject will use an appropri-
ate Tally counter to count correct (green counter) and incorrect/unknown
classifications (red counter). The data will be recorded after each completed
path, and aggregated to find out the precision of classification.

Figure 5.5: Tally counters used to count correct and incorrect classifications
through the duration of the experiment

5.2.3 Results

The classification takes place every 3.2 seconds, with 1.6 second overlap.
Through the experiment I have found out that solution has close to 100%
precision when detecting currently performed activity. However, when
changing from one activity to the other, for example standing up after sitting,
there are usually 2-3 unknown activity classifications before new activity is
classified. The amount of unknown activity classifications when going from
one activity to the other, depends on how fast the transition is done. We can
see the reason why unknown classifications will appear in the diagram 5.6.
When user switches from sitting position to standing position, sudden accel-
eration changes are registered and a classification is attempted. Because a

67

Figure 5.6: Why switching current activity causes unknown classification.

sliding window is used, these sudden acceleration changes “contaminate” two
classification attempts. Of course example presented in the diagram assumes
that user does his switch in less than 1.2 seconds, and he does it exactly
after last successful “sitting” classification. If user does the activity switch a
little bit later, or he performs it for longer than 1.2 seconds, three or more
classification attempts may be contaminated.
In the experiment, it was found out that on average between 20% and 25%
of classifications are of “unknown” variety. This result however is heavily
influenced by how the path was laid out, with user often changing the
performed activity.
In even more “real life” scenario, example being walking from student halls
to the campus ratio of correct to unknown results exceeded 9:1, as “walking”
activity was performed for extended period of time, with brief pauses caused
by traffic lights.

5.2.4 Conclusion from the experiment

The solution has proven to be extremely reliable, correctly identifying every
of the performed activities. The main drawback of the solution is that it is
sensitive to frequent change of performed activity. Ratio of correctly classified
activities to unknown activities can be increased by further decreasing the
classification window size. Despite this sensitivity, even when changing
activities very often, we can expect around 80% of the classifications to
be reflecting activities performed in that period of time, as proven in the
experiment.

68

5.3 Treatment of “unknown” classification re-
sult

The solution sends each classification result to the cloud database, tagged
with the timestamp of classification and userid of the user sending the result.
Results can be browsed through the Web Module.
As has been discovered via Experiment 2 (5.2), changing activity from one
to the other causes between 2-4 misclassifications - marked as “unknown”
classification. The solution therefore will therefore allow up to 4 consecutive
misclassifications, sending last identified result instead. For example in
the situation shown in the diagram 5.6, instead of sending two “unknown”
classifications at times t=12.8 and t=16, two “sitting” classifications will
be sent. However, if more than 4 consecutive “unknown” classifications are
received, application will not send any more results to the database, until
known classification result is received.

5.4 Compatibility with other Android
Phones

The mobile module has been deployed and tested on the following phones:

• LG Nexus 4
• HTC One
• HTC One X

5.4.1 Methodology
1. Application was installed on the phone
2. Classifier models were downloaded from the cloud database
3. Experiment 2 5.2 has been performed using the new phone

5.4.2 Results

There have been no differences in classifier performance when compared to
running on Samsung Galaxy S3. The interface of the application was rendered
in the exactly same way on every phone except for HTC One. HTC One,

69

equipped with 1080p screen, as opposed to 720p used in other phones allows
more data to be displayed at once - most noticeable difference has been
noted in Activity Recording tab, where more lines of feature values were
displayed.

5.5 Use of Gyroscope

At early stages of development, I have been experimenting with use of gy-
roscope recordings together with accelerometer recordings for classification
purposes, essentially creating a Sensor Fusion solution.

5.5.1 Methodology
1. Two sets of test samples were loaded into the Workstation Module: one

set of samples consisting solely of accelerometer data, while the other
consisting of both accelerometer and gyroscope data.

2. Following features were extracted from gyroscope data:

• Mean [3]
• SD [3]

2. Naïve Gaussian Classifier was used to classify all of the samples

5.5.2 Results

The samples with accelerometer data were often misclassified, which has
shown that (as predicted in 2.1.1) gyroscope readings are not relevant in
classification of daily activities.

5.6 256 vs. 512 sample size

Originally the solution was intended to be using 512 sample size. This is
reflected for example in the Activity Recording tab of the Mobile Module,
where option Twice-the-size (512) samples can be seen. The switch to
256 samples has been made after noticing that smaller sample size, and
therefore shorter timeslice that is classified (6.4 vs 12.8 seconds) reduces

70

impact of going from one activity to the other. This is because a smaller
window, and therefore smaller overlap means that fewer classifications would
be contaminated by the movement executed to go from one activity to the
other.
All of the training samples recorded in the 512 mode are still used in the
training process - when the Workstation Module detects a 512 samples it
splits it into two samples and creates two AccFeat objects from them which
are later used for Machine Learning Process.

5.7 Battery Life Impact

An investigation was made into how the solution impacts battery life of the
phone.

5.7.1 Methodology
1. Phone was charged to 100% level.
2. Mobile module was deployed on the phone with Monitor Tab enabled,

therefore forcing constant sampling of accelerometer data.
3. Phone was left with application running overnight, for 9 hours. Any

kind of data connection like WiFi or 3G has been disabled to prevent
automatic updates from affecting the battery drain.

4. Level of battery was noted in the morning.
5. To have a comparison, on the next day phone was charged to 100%

level and left for 9 hours again, but without the Mobile module.
6. Level of battery was noted and compared.

5.7.2 Results and Conclusions

The battery drain by the enabled accelerometer has been proven to be
surprisingly small, to the point of being negligible. Battery level after 9
hours of idle usage has been only 2% higher than that of 9 hours of sampling.
Although no figures are available on the accelerometer power usage in the
Samsung Galaxy S3, similar high-end handset - iPhone 4 is equipped with
accelerometer that consumes 0.75mW of power at 100Hz sampling rate. This
figure explains the low battery impact of the solution, which is sampling at
much lower rate of 40Hz.

71

Chapter Summary:
This chapter presents experiments used to evaluate the solution.
First Experiment 5.1 evaluates impact of training library size
on the precision of three classifier algorithm implementations.
It has been shown that for small library size, Naïve Gaussian
Bayes Classifier performs significantly better than Multivariate
Gaussian Bayes Classifier. This influenced the decision of choosing
the Naïve Gaussian Bayes Classifier as the default classification
algorithm in the solution, however it was also shown that the
Multivariate Gaussian Bayes Classifier eventually reaches the
comparable precision level, therefore both implementations are
available to chose from. As number of training samples increases, a
switch can be made to the Multivariate Classifier. The experiment
is performed through self-implemented analysis methods using
the Workstation Module.
Experiment 2 5.2 looks at the performance of the solution in real
life example. Subject is asked to repeatedly perform activities
while wearing headphones, which enables him to hear the results
of classification. As result is heard, he uses one of two counters
depending on whether the result is corret or incorrect/unknown.
It was found that solution is very precise, however sensetive to
frequent changing of currently performed activity.
The other sections of the chapter describe less complex issues such
as treatment of “unknown” result in terms of quantifying daily
activity, compatibility with other handsets, battery drain, sample
size impact and use of gyroscope.

72

Chapter 6

Conclusion

This project was an attempt at creating a long-term activity recognition
solution through use of smartphone accelerometer. The goal of the project
was to successfully identify and quantify activities performed by the user
during the day, motivating the user to do more of physical exercise every day
- one example being choosing stairs over the lift.

6.1 New Features

Following the trend of improving classification precision noticed when re-
searching past works in the area, an attempt was made at discovering new
signal features. Past works have not made an attempt at using histograms of
FFT data as a feature of acceleration sample. This solution has employed this
technique, and as was shown by analysis of features with Weka, FFT his-
tograms (described in 3.4.1) have proven to be a feature of high information
gain, with some bins of the histogram scoring higher than tried-and-tested
features like correlation between axes or even mean value of acceleration
values.
Another unique feature which was used in the solution was the Relative
Crossing Count (described in 3.4.1). This feature has proven to be very
effective - analysis via Weka has shown that relative crossing count on y axis
is one of TOP8 features in terms of information gain, with relative crossing
count of the z axis being TOP16. Full output from Weka can be found in the
appendix.

73

6.2 Scalability

Never before the possibilities that came with cloud technology have been
exploited like in this implementation.

6.2.1 Data Gathering

While other works in the field have used Bluetooth (Nishkam Ravi 2005) or
offline data gathering (Jennifer R. Kwapisz 2010), this solution does not even
require the researcher to see the subjects. Through use of cloud database for
storage of training and test samples, subjects can be based anywhere around
the world, and no direct access to them is needed like in the past works in the
field. The number of subjects can be scaled to any amount, and as number of
subjects increases the cloud database will scale automatically.

6.2.2 Classifier Model Generation

By generating the classifier model on a workstation, and distributing it to
users via cloud database, solution is not limited by the processing power of
the phone or the amount of by data-transfer limits. In work of (Jennifer R.
Kwapisz 2010), where multiple subject approach was chosen, 4526 training
samples were recorded by multiple subjects - assuming same sample size
as in this solution, this equates to over 76MB of data. With such large
training library size building classifier model on a mobile phone would require
downloading 76MB of samples every time a new classifier model was to be
built. If we compare it to this solution, which builds the classifier model on a
workstation, only 0.0033MB of data has to be downloaded by the phone. The
size of classifier model data is completely independent of training library size.
Additionally, all of data processing required to build the model is mitigated
to a workstation.

6.3 Single Subject vs. Multiple Subjects

This solution was focusing on single-subject activity recognition, instead of
the approach undertaken by previous works in the field, where samples were
recorded using many human subjects.

74

The choice of focusing on single subject has one major drawback which made
itself apparent through testing - efficiency of the solution decreases when
somebody else than person who trained it wants to use it.
However, when we compare results of this solution to the results of past works
in the area the difference this decision has made becomes more apparent.
Below we can see confusion matrices from work of (Jennifer R. Kwapisz 2010)

Figure 6.1: Kwapisz et al. - Confusion matrix

The training library size in (Jennifer R. Kwapisz 2010) research was of between
223 to 1683 samples per activity, with a mean of 754 samples per activity,
collected from multiple human subjects. Each of samples was 10 seconds long,
which means that over 2 hours of samples were recorded per activity.
Compare this with confusion matrix from this solution, where only 30 samples
per activity are used:

Figure 6.2: Confusion matrix - library of 30 samples per activity

If we remember that samples in this solution are only 6.4 seconds long, it is
easy to calculate that only 192 seconds of samples per activity have to be
recorded to achieve over 99% recognition precision.

75

It is therefore worth asking the question - is it better to ask users to train
their applications themselves as opposed to having a global training database?
In my opinion, answer lies in the middle. There are some drawbacks of
following the single-subject approach:

• Solution is not effective when used by somebody else

• Solution is sensitive to external factors - example: if user has done all
of the training in same pair of trousers, it might work worse with a
different pair

• If solution was to be marketed, users would have to be trusted to record
proper data for each activity, and not for example walking data for
climbing stairs

This is why despite deciding to focus on single-subject activity recognition,
through use of cloud database for storage of classifier models and training
samples, it is possible to employ hundreds of human subjects to record and
submit training data without even a slight change in the code of the solution.

6.4 Future Work

The major limiting factor on the solution described in the report was time. If
one was to improve on the solution, suggested improvements are as follows:

• Multiple subject training data - employ multiple human subjects
for gathering of training data. Semi-supervised approach to gathering of
training data should be explored, where new training data is compared
to existing data to prevent contaminating training set with erroneous
data. Because of cloud based architecture, thousands of subjects can be
used, allowing us to build a more general human activity recognition
model.

• Use of Hidden Markov Models - Hidden Markov Models would be
useful in improving classification precision. For example, it is unlikely
that next activity after sitting is walking up the stairs. Looking at
performed activities as a sequence, rather than a single activity can be
a major improvement in terms of precision, and might be needed if a
more general, and therefore harder to classify model was to be built.

76

• Improvements to the Web Module - Current proof-of-concept web
module is lacking authentication mechanisms, which should be imple-
mented if solution was to be marketed. Adding social features and
potential Facebook integration can be explored as well, increasing the
motivational factor of the solution.

77

Chapter 7

Bibliography

A. M. Khan, Y.-K. Lee, S. Y. Lee. 2010. “Human Activity Recognition via
An Accelerometer-Enabled-Smartphone Using Kernel Discriminant Analysis.”
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05482729.
D. Minnen, T. Starner, J. A. Ward, P. Lukowicz, G. Troster. 2005. “Rec-
ognizing and discovering human actions from on-body sensor data.” http:
//cecs.uci.edu/~papers/icme05/defevent/papers/cr1851.pdf.
Digithoughts. 2012. “Android and Apple smartphone sales, 2007-2012
Android and Apple sales 2012” (April). http://digithoughts.com/post/
21428797724/android-and-apple-smartphone-sales-2007-2012-by.
Dominic Maguire, Richard Frisby. 2009. “Comparison of Feature Classifica-
tion Algorithm for Activity Recognition Based on Accelerometer and Heart
Rate Data.” http://arrow.dit.ie/cgi/viewcontent.cgi?article=1002&context=
ittpapnin.
Harris, Jamie. 2013. “Apple iPhone 5 remains Britain’s most popular smart-
phone.” http://www.digitalspy.co.uk/5K43ztEXvFfzQjiqSbpeye4c6DDFkmpP8knp3bZgrpCxcD5cs9t/
tech/news/a486807/apple-iphone-5-remains-britains-most-popular-smartphone.
html.
Jennifer R. Kwapisz, Gary M. Weiss, Samuel A. Moore. 2010. “Activity
Recognition using Cell Phone Accelerometers.” http://www.cis.fordham.edu/
wisdm/public_files/sensorKDD-2010.pdf.
Johnson, Luke. “Samsung Galaxy S3 remains UK’s most popular
handset as iPhone 5 slumps.” http://www.trustedreviews.com/news/
samsung-galaxy-s3-remains-uk-s-most-popular-handset-as-iphone-5-slumps.
Kozmann G, Lux RL, Scott M. 1991. “Sample size and dimensionality in

78

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05482729
http://cecs.uci.edu/~papers/icme05/defevent/papers/cr1851.pdf
http://cecs.uci.edu/~papers/icme05/defevent/papers/cr1851.pdf
http://digithoughts.com/post/21428797724/android-and-apple-smartphone-sales-2007-2012-by
http://digithoughts.com/post/21428797724/android-and-apple-smartphone-sales-2007-2012-by
http://arrow.dit.ie/cgi/viewcontent.cgi?article=1002&context=ittpapnin
http://arrow.dit.ie/cgi/viewcontent.cgi?article=1002&context=ittpapnin
http://www.digitalspy.co.uk/5K43ztEXvFfzQjiqSbpeye4c6DDFkmpP8knp3bZgrpCxcD5cs9t/tech/news/a486807/apple-iphone-5-remains-britains-most-popular-smartphone.html
http://www.digitalspy.co.uk/5K43ztEXvFfzQjiqSbpeye4c6DDFkmpP8knp3bZgrpCxcD5cs9t/tech/news/a486807/apple-iphone-5-remains-britains-most-popular-smartphone.html
http://www.digitalspy.co.uk/5K43ztEXvFfzQjiqSbpeye4c6DDFkmpP8knp3bZgrpCxcD5cs9t/tech/news/a486807/apple-iphone-5-remains-britains-most-popular-smartphone.html
http://www.cis.fordham.edu/wisdm/public_files/sensorKDD-2010.pdf
http://www.cis.fordham.edu/wisdm/public_files/sensorKDD-2010.pdf
http://www.trustedreviews.com/news/samsung-galaxy-s3-remains-uk-s-most-popular-handset-as-iphone-5-slumps
http://www.trustedreviews.com/news/samsung-galaxy-s3-remains-uk-s-most-popular-handset-as-iphone-5-slumps

multivariate classification: implications for body surface potential mapping.”
http://www.ncbi.nlm.nih.gov/pubmed/2036782.
L. Sun, D. Zhang, N. Li. 2011. “Physical Activity Monitoring with
Mobile Phones:” 104–111. http://link.springer.com/chapter/10.1007%
2F978-3-642-21535-3_14.
Lau, S. L., and K. David. 2010. “Movement Recognition using the Accelerom-
eter in Smartphones.” Communication: 1–9. http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=5722356.
M. Ermes, J. Parkka, J. Mantyjarvi„ and I. Korhonen. 2008. “Detection of
daily activities and sports with wearable sensors in controlled and uncontrolled
conditions.” http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
4358887&userType=inst.
Mohd Fikri Azli bin Abdullah, Ali Fahmi Perwira Negara, Md. Shohel Sayeed,
Deok-Jai Choi, Kalaiarasi Sonai Muthu. 2012. “Classification Algorithms
in Human Activity Recognition using Smartphones.” International Journal
of Computer and Information Engineering 6 2012 6/1012: 77–84. http:
//www.waset.org/journals/ijcie/v6/v6-15.pdf.
MongoLab.com. “MongoLab.com.” www.mongolab.com.
Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, Michael L. Littman.
2005. “Activity Recognition from Accelerometer Data.” http://www.aaai.org/
Papers/IAAI/2005/IAAI05-013.pdf.
Poovandran, R. 2008. “Human activity recognition for video surveillance.”
IEEE International Symposium on Circuits and Systems: 2737–2740. http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4542023.
S.-I. Yang, S.-B. Cho. 2008. “Recognizing human activities from accelerom-
eter and physiological sensors.” 2008 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems: 100–105. http:
//ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4648116.
T. S. Saponas, J. Lester, J. Froehlich, J. Fogarty„ and J. Landay. “iLearn
on the iPhone: Real-Time Human Activity Classification on Commodity
Mobile Phones.’.” http://research.microsoft.com/en-us/um/people/ssaponas/
publications/UW-CSE-08-04-02.pdf.
Tasse, Dan. 2012. “Android accelerometer sampling rates.” http://ilessendata.
blogspot.co.uk/2012/11/android-accelerometer-sampling-rates.html.
Thomas Holleczek, Jona Schoch, Bert Arnrich, Gerhard Troster. 2010.
“Recognizing Turns and Other Snowboarding Activities with a Gyroscope.”
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5665871.

79

http://www.ncbi.nlm.nih.gov/pubmed/2036782
http://link.springer.com/chapter/10.1007%2F978-3-642-21535-3_14
http://link.springer.com/chapter/10.1007%2F978-3-642-21535-3_14
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5722356
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5722356
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4358887&userType=inst
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4358887&userType=inst
http://www.waset.org/journals/ijcie/v6/v6-15.pdf
http://www.waset.org/journals/ijcie/v6/v6-15.pdf
www.mongolab.com
http://www.aaai.org/Papers/IAAI/2005/IAAI05-013.pdf
http://www.aaai.org/Papers/IAAI/2005/IAAI05-013.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4542023
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4542023
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4648116
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4648116
http://research.microsoft.com/en-us/um/people/ssaponas/publications/UW-CSE-08-04-02.pdf
http://research.microsoft.com/en-us/um/people/ssaponas/publications/UW-CSE-08-04-02.pdf
http://ilessendata.blogspot.co.uk/2012/11/android-accelerometer-sampling-rates.html
http://ilessendata.blogspot.co.uk/2012/11/android-accelerometer-sampling-rates.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5665871

U. Maurer, A. Smailagic, D. Siewiorek„ and M. Deisher. 2006. “Activity
recognition and monitoring using multiple sensors on different body positions.”
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1612909&tag=1.
Wikipedia. “Wikipedia.” https://en.wikipedia.org/wiki/Naive_Bayes_
classifier.
Wilcox, Joe. “Android wins the smartphone wars.” http://betanews.com/
2012/09/13/android-wins-the-smartphone-wars/.
Yang, J. 2009. “Toward Physical Activity Diary: Motion Recognition Using
Simple Acceleration Features with Mobile Phones.” Data Processing: 1–
9. http://cvrr.ucsd.edu/ece285/papers/Yang_towardsPhysicalActivityDiary.
pdf.
irisCouch.com. “irisCouch.com.” http://www.iriscouch.com/.

80

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1612909&tag=1
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
http://betanews.com/2012/09/13/android-wins-the-smartphone-wars/
http://betanews.com/2012/09/13/android-wins-the-smartphone-wars/
http://cvrr.ucsd.edu/ece285/papers/Yang_towardsPhysicalActivityDiary.pdf
http://cvrr.ucsd.edu/ece285/papers/Yang_towardsPhysicalActivityDiary.pdf
http://www.iriscouch.com/

Appendix - confusion matrices

Naive Bayes Classifier (Library size: 10)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2465 0 2 0 0 33 0 0
F. Walk 0 2475 5 10 3 7 0 0
StairUp 0 0 2356 82 21 41 0 0
StairDwn 0 2 59 2263 28 148 0 0
Sit 17 0 0 0 2321 127 35 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 2 1 671 22 1804 0
Jog 0 0 0 0 112 103 0 2285

Weighted Naive Bayes Classifier (Library size: 10)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2401 0 1 1 0 97 0 0
F. Walk 0 2280 5 2 39 174 0 0
StairUp 0 0 2382 38 2 78 0 0
StairDwn 0 1 13 2332 3 151 0 0
Sit 3 0 0 0 2346 114 37 0
Stand 0 0 0 0 37 2463 0 0
Cycle 0 0 0 0 399 17 2084 0
Jog 0 0 0 0 35 269 0 2196

Multivariate Bayes Classifier (Library size: 10)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 1999 20 286 195 0 0 0 0
F. Walk 3 2469 13 15 0 0 0 0
StairUp 0 1 2254 245 0 0 0 0
StairDwn 0 3 600 1897 0 0 0 0
Sit 647 0 9 0 1277 0 567 0
Stand 500 100 624 919 0 357 0 0
Cycle 2 0 5 0 0 0 2493 0
Jog 0 3 1 0 0 0 0 2496

Classified as

Classified as

Classified as

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

Naive Bayes Classifier (Library size: 20)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2486 1 10 0 3 0 0
StairUp 0 0 2476 24 0 0 0 0
StairDwn 0 0 51 2443 3 3 0 0
Sit 2 0 0 0 2420 61 17 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 159 0 2341 0
Jog 0 0 0 0 0 23 0 2477

Weighted Naive Bayes Classifier (Library size: 20)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2498 0 0 0 0 2 0 0
F. Walk 0 2450 1 14 0 35 0 0
StairUp 0 0 2494 6 0 0 0 0
StairDwn 0 0 11 2484 0 5 0 0
Sit 2 0 0 0 2431 59 8 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 182 0 2318 0
Jog 0 0 0 0 0 13 0 2487

Multivariate Bayes Classifier (Library size: 20)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2437 0 45 18 0 0 0 0
F. Walk 0 2484 7 9 0 0 0 0
StairUp 0 0 2446 54 0 0 0 0
StairDwn 0 0 281 2219 0 0 0 0
Sit 76 0 0 0 2053 0 371 0
Stand 100 100 251 1402 0 647 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Classified as

Classified as

Classified as
A

ct
ua

l
cl

as
s

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

Naive Bayes Classifier (Library size: 30)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2492 2 4 1 1 0 0
StairUp 0 0 2494 5 1 0 0 0
StairDwn 0 0 2 2496 1 1 0 0
Sit 0 0 0 0 2440 58 2 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 1 128 0 2371 0
Jog 0 0 0 0 0 0 0 2500

Weighted Naive Bayes Classifier (Library size: 30)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2485 6 9 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 2 0 0 0 2465 30 3 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 22 0 2478 0
Jog 0 0 0 0 0 0 0 2500

Multivariate Bayes Classifier (Library size: 30)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2488 6 6 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 170 2330 0 0 0 0
Sit 0 0 0 0 2355 0 145 0
Stand 100 0 252 1499 0 649 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Classified as

Classified as

Classified as
A

ct
ua

l
cl

as
s

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

Naive Bayes Classifier (Library size: 40)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2493 1 6 0 0 0 0
StairUp 0 0 2499 1 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2432 67 1 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 75 0 2425 0
Jog 0 0 0 0 0 0 0 2500

Weighted Naive Bayes Classifier (Library size: 40)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2484 1 15 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 1 2499 0 0 0 0
Sit 0 0 0 0 2447 52 1 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 78 0 2422 0
Jog 0 0 0 0 0 0 0 2500

Multivariate Bayes Classifier (Library size: 40)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2497 0 0 3 0 0 0 0
F. Walk 0 2496 1 3 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 123 2377 0 0 0 0
Sit 0 0 0 0 2445 0 55 0
Stand 0 0 54 1248 0 1198 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Classified as

Classified as

Classified as

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

Naive Bayes Classifier (Library size: 50)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2492 1 7 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 1 2499 0 0 0 0
Sit 0 0 0 0 2412 87 1 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 14 0 2486 0
Jog 0 0 0 0 0 0 0 2500

Weighted Naive Bayes Classifier (Library size: 50)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2496 0 4 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2453 46 1 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 27 0 2473 0
Jog 0 0 0 0 0 0 0 2500

Multivariate Bayes Classifier (Library size: 50)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2497 0 3 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 107 2393 0 0 0 0
Sit 0 0 0 0 2432 0 68 0
Stand 0 0 0 1262 0 1238 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Classified as

Classified as

Classified as
A

ct
ua

l
cl

as
s

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

Naive Bayes Classifier (Library size: 60)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2494 0 6 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2407 93 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 1 0 2499 0
Jog 0 0 0 0 0 0 0 2500

Weighted Naive Bayes Classifier (Library size: 60)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2487 0 13 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2429 71 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 4 0 2496 0
Jog 0 0 0 0 0 0 0 2500

Multivariate Bayes Classifier (Library size: 60)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2496 3 1 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 84 2416 0 0 0 0
Sit 0 0 0 0 2489 0 11 0
Stand 0 0 2 1144 0 1354 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Classified as

Classified as

Classified as
A

ct
ua

l
cl

as
s

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

Naive Bayes Classifier (Library size: 70)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2494 0 6 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2419 81 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Weighted Naive Bayes Classifier (Library size: 70)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2485 0 15 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2378 122 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Multivariate Bayes Classifier (Library size: 70)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2498 1 1 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 81 2419 0 0 0 0
Sit 0 0 0 0 2490 0 10 0
Stand 0 0 0 1210 0 1290 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Classified as

Classified as

Classified as
A

ct
ua

l
cl

as
s

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

Naive Bayes Classifier (Library size: 80)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2497 0 3 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2427 72 1 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Weighted Naive Bayes Classifier (Library size: 80)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2485 0 15 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2410 90 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Multivariate Bayes Classifier (Library size: 80)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2499 0 1 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 87 2413 0 0 0 0
Sit 0 0 0 0 2495 0 5 0
Stand 0 0 0 803 0 1697 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Classified as

Classified as

Classified as

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

Naive Bayes Classifier (Library size: 90)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2497 0 3 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2460 40 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 2 0 2498 0
Jog 0 0 0 0 0 0 0 2500

Weighted Naive Bayes Classifier (Library size: 90)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2490 0 10 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2469 31 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Multivariate Bayes Classifier (Library size: 90)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2500 0 0 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 77 2423 0 0 0 0
Sit 0 0 0 0 2496 0 4 0
Stand 0 0 0 877 0 1623 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Classified as

Classified as

Classified as
A

ct
ua

l
cl

as
s

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

Naive Bayes Classifier (Library size: 100)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2499 0 1 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2486 14 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Weighted Naive Bayes Classifier (Library size: 100)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2493 0 7 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2498 2 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Multivariate Bayes Classifier (Library size: 100)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2500 0 0 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 74 2426 0 0 0 0
Sit 0 0 0 0 2499 0 1 0
Stand 0 0 0 794 0 1706 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Classified as

Classified as

Classified as
A

ct
ua

l
cl

as
s

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

Naive Bayes Classifier (Library size: 110)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2499 0 1 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2492 8 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Weighted Naive Bayes Classifier (Library size: 110)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2496 0 4 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2500 0 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Multivariate Bayes Classifier (Library size: 110)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2500 0 0 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 67 2433 0 0 0 0
Sit 0 0 0 0 2499 0 1 0
Stand 0 0 0 675 0 1825 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Classified as

Classified as

Classified as
A

ct
ua

l
cl

as
s

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

Naive Bayes Classifier (Library size: 120)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2500 0 0 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2492 8 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Weighted Naive Bayes Classifier (Library size: 120)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2498 0 2 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2500 0 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Multivariate Bayes Classifier (Library size: 120)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2500 0 0 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 55 2445 0 0 0 0
Sit 0 0 0 0 2500 0 0 0
Stand 0 0 0 368 0 2132 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Classified as

Classified as

Classified as

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

Naive Bayes Classifier (Library size: 130)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2500 0 0 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2494 6 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Weighted Naive Bayes Classifier (Library size: 130)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2500 0 0 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2500 0 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Multivariate Bayes Classifier (Library size: 130)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2500 0 0 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 60 2440 0 0 0 0
Sit 0 0 0 0 2500 0 0 0
Stand 0 0 0 481 0 2019 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Classified as

Classified as

Classified as
A

ct
ua

l
cl

as
s

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

Naive Bayes Classifier (Library size: 140)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2500 0 0 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2500 0 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Weighted Naive Bayes Classifier (Library size: 140)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2500 0 0 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2500 0 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Multivariate Bayes Classifier (Library size: 140)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2500 0 0 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 50 2450 0 0 0 0
Sit 0 0 0 0 2500 0 0 0
Stand 0 0 0 223 0 2277 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Classified as

Classified as

Classified as
A

ct
ua

l
cl

as
s

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

Naive Bayes Classifier (Library size: 150)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2500 0 0 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2500 0 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Weighted Naive Bayes Classifier (Library size: 150)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2500 0 0 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 0 2500 0 0 0 0
Sit 0 0 0 0 2500 0 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Multivariate Bayes Classifier (Library size: 150)

Walk F. Walk StairUp StairDwn Sit Stand Cycle Jog
Walk 2500 0 0 0 0 0 0 0
F. Walk 0 2500 0 0 0 0 0 0
StairUp 0 0 2500 0 0 0 0 0
StairDwn 0 0 50 2450 0 0 0 0
Sit 0 0 0 0 2500 0 0 0
Stand 0 0 0 0 0 2500 0 0
Cycle 0 0 0 0 0 0 2500 0
Jog 0 0 0 0 0 0 0 2500

Classified as

Classified as

Classified as
A

ct
ua

l
cl

as
s

A
ct

ua
l
cl

as
s

A
ct

ua
l
cl

as
s

 Appendix - Weka Attribute Analysis

=== Run information ===

Evaluator: weka.attributeSelection.InfoGainAttributeEval
Search:weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1
Relation: Object
Instances: 1200
Attributes: 97

type
mean[0]
mean[1]
mean[2]
sd[0]
sd[1]
sd[2]
avPeakDistance[0]
avPeakDistance[1]
avPeakDistance[2]
crossingCount[0]
crossingCount[1]
crossingCount[2]
resultantAcc
maxDisplacement[0]
maxDisplacement[1]
maxDisplacement[2]
0
energy[0]
energy[1]
energy[2]
correlation[0]
correlation[1]
correlation[2]
SMA
histogram[0][0]
histogram[0][1]
histogram[0][2]
histogram[0][3]
histogram[0][4]
histogram[0][5]

1

histogram[0][6]
histogram[0][7]
histogram[0][8]
histogram[0][9]
histogram[1][0]
histogram[1][1]
histogram[1][2]
histogram[1][3]
histogram[1][4]
histogram[1][5]
histogram[1][6]
histogram[1][7]
histogram[1][8]
histogram[1][9]
histogram[2][0]
histogram[2][1]
histogram[2][2]
histogram[2][3]
histogram[2][4]
histogram[2][5]
histogram[2][6]
histogram[2][7]
histogram[2][8]
histogram[2][9]
fftHistogram[0][0]
fftHistogram[0][1]
fftHistogram[0][2]
fftHistogram[0][3]
fftHistogram[0][4]
fftHistogram[0][5]
fftHistogram[0][6]
fftHistogram[0][7]
fftHistogram[0][8]
fftHistogram[0][9]
fftHistogram[1][0]
fftHistogram[1][1]
fftHistogram[1][2]
fftHistogram[1][3]
fftHistogram[1][4]
fftHistogram[1][5]
fftHistogram[1][6]

2

fftHistogram[1][7]
fftHistogram[1][8]
fftHistogram[1][9]
fftHistogram[2][0]
fftHistogram[2][1]
fftHistogram[2][2]
fftHistogram[2][3]
fftHistogram[2][4]
fftHistogram[2][5]
fftHistogram[2][6]
fftHistogram[2][7]
fftHistogram[2][8]
fftHistogram[2][9]
AR[0][0]
AR[0][1]
AR[0][2]
AR[0][3]
AR[1][0]
AR[1][1]
AR[1][2]
AR[1][3]
AR[2][0]
AR[2][1]
AR[2][2]
AR[2][3]

Evaluation mode:evaluate on all training data

=== Attribute Selection on all input data ===

Search Method:
Attribute ranking.

Attribute Evaluator (supervised, Class (nominal): 1 type):
Information Gain Ranking Filter

Ranked attributes:
2.445802 23 correlation[1]
2.392518 7 sd[2]
2.377522 21 energy[2]

3

2.372375 20 energy[1]
2.36901 6 sd[1]
2.324681 16 maxDisplacement[1]
2.156731 17 maxDisplacement[2]
2.149061 12 crossingCount[1]
2.13728 19 energy[0]
2.132724 40 histogram[1][4]
2.115992 5 sd[0]
2.012826 15 maxDisplacement[0]
2.000165 4 mean[2]
1.989395 3 mean[1]
1.842809 56 fftHistogram[0][0]
1.804546 13 crossingCount[2]
1.777991 51 histogram[2][5]
1.722827 66 fftHistogram[1][0]
1.720558 46 histogram[2][0]
1.720542 53 histogram[2][7]
1.709533 22 correlation[0]
1.702252 57 fftHistogram[0][1]
1.701058 77 fftHistogram[2][1]
1.687486 76 fftHistogram[2][0]
1.678168 39 histogram[1][3]
1.676683 24 correlation[2]
1.670715 67 fftHistogram[1][1]
1.667289 14 resultantAcc
1.646021 41 histogram[1][5]
1.638985 25 SMA
1.628569 50 histogram[2][4]
1.594474 78 fftHistogram[2][2]
1.572379 47 histogram[2][1]
1.558043 36 histogram[1][0]
1.539034 52 histogram[2][6]
1.524737 68 fftHistogram[1][2]
1.476224 38 histogram[1][2]
1.465283 31 histogram[0][5]
1.464312 49 histogram[2][3]
1.455779 9 avPeakDistance[1]
1.447798 54 histogram[2][8]
1.444024 11 crossingCount[0]
1.413786 30 histogram[0][4]
1.408629 58 fftHistogram[0][2]

4

1.404607 44 histogram[1][8]
1.380724 32 histogram[0][6]
1.364258 2 mean[0]
1.354444 37 histogram[1][1]
1.335999 45 histogram[1][9]
1.283928 43 histogram[1][7]
1.278898 79 fftHistogram[2][3]
1.251914 90 AR[1][0]
1.250086 55 histogram[2][9]
1.211083 29 histogram[0][3]
1.185737 60 fftHistogram[0][4]
1.175164 59 fftHistogram[0][3]
1.153681 81 fftHistogram[2][5]
1.153382 87 AR[0][1]
1.147942 69 fftHistogram[1][3]
1.143712 61 fftHistogram[0][5]
1.141305 94 AR[2][0]
1.117684 80 fftHistogram[2][4]
1.11019 91 AR[1][1]
1.088294 62 fftHistogram[0][6]
1.086949 82 fftHistogram[2][6]
1.073276 42 histogram[1][6]
1.067558 73 fftHistogram[1][7]
1.063439 72 fftHistogram[1][6]
1.037149 74 fftHistogram[1][8]
1.024419 34 histogram[0][8]
1.021513 86 AR[0][0]
1.014614 63 fftHistogram[0][7]
1.010464 83 fftHistogram[2][7]
1.008854 85 fftHistogram[2][9]
1.007201 75 fftHistogram[1][9]
1.006015 84 fftHistogram[2][8]
0.994498 71 fftHistogram[1][5]
0.988826 48 histogram[2][2]
0.987986 70 fftHistogram[1][4]
0.965907 33 histogram[0][7]
0.963876 64 fftHistogram[0][8]
0.959181 95 AR[2][1]
0.932519 65 fftHistogram[0][9]
0.902623 93 AR[1][3]
0.874647 35 histogram[0][9]

5

0.825033 28 histogram[0][2]
0.778244 8 avPeakDistance[0]
0.751999 92 AR[1][2]
0.663552 27 histogram[0][1]
0.62577 26 histogram[0][0]
0.443255 96 AR[2][2]
0.387968 10 avPeakDistance[2]
0.350318 89 AR[0][3]
0.339412 88 AR[0][2]
0 18 0
0 97 AR[2][3]

Selected attributes: 23,7,21,20,6,16,17,12,19,40,5,15,4,3,56,13,51,66,46,53,22,57,77,76,39,24,67,14,41,25,50,78,47,36,52,68,38,31,49,9,54,11,30,58,44,32,2,37,45,43,79,90,55,29,60,59,81,87,69,61,94,80,91,62,82,42,73,72,74,34,86,63,83,85,75,84,71,48,70,33,64,95,65,93,35,28,8,92,27,26,96,10,89,88,18,97 : 96

6

	Introduction
	Context
	Motivation
	Contribution

	Background
	Sampled Data
	Related Work
	Technical Research

	Feature Extraction
	Related Work
	Technical Research

	Machine Learning and Classification
	Related Work
	Technical Research

	Development Platform Overview

	Specification
	Data Storage
	Sampled Data
	Activity Set
	Signal Feature Extraction
	Feature Set

	Workstation module
	Weak
	Analysis

	Machine Learning and Classification
	Classification Algorithms

	Mobile Module
	Activity Recording
	Activity Recognition

	Web Module

	Implementation
	Data Flow
	Web Module
	Database Connection
	Daily Summary
	Real Time display
	Leaderboard

	Mobile Module
	Design
	Database connection
	Accelerometer Monitoring
	Activity Recording
	Activity Recognition

	Feature Extraction
	AccFeat.java

	Workstation Module
	Weka Interface
	Classifier design
	Naïve Gaussian Bayes Classifier
	Multivariate Gaussian Bayes Classifier
	Uploading Classifier Models

	Evaluation
	Experiment 1: Algorithm Evaluation
	Background
	Methodology
	Methodology Code
	Results
	Conclusions from the experiment

	Experiment 2: Solution Performance Evaluation
	Methodology
	Quantification
	Results
	Conclusion from the experiment

	Treatment of ``unknown'' classification result
	Compatibility with other Android Phones
	Methodology
	Results

	Use of Gyroscope
	Methodology
	Results

	256 vs. 512 sample size
	Battery Life Impact
	Methodology
	Results and Conclusions

	Conclusion
	New Features
	Scalability
	Data Gathering
	Classifier Model Generation

	Single Subject vs. Multiple Subjects
	Future Work

	Bibliography
	abstract.pdf
	Abstract

	appb.pdf
	Appendix - Weka Attribute Analysis

