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Abstract

We present a general approach for solving ‘bundle adjustment‘,

a problem which is central to scene understanding algorithms in

comupter vision, and compare performance characteristics with

existing approaches.

In the context of computer vision in autonomous robotic systems, bundle

adjustment is the search for a large set of parameter blocks (bundles) which

optimally fit incoming sensor data. In a typical scenario, data is presented

as a series of camera image frames. A feature extraction algorithm pro-

duces a set of ‘landmarks‘ from each frame, which may overlap with other

frames. Since both robot motion and measurement equipment inevitably in-

ject uncertainty into the measurement of those landmarks, an optimization

algorithm is used to reconcile data discrepancies.

The formulation of this optimization algorithm is framed as the minimiza-

tion of squared-errors and can be solved by a variety of methods. Commonly,

this is a non-linear least-squares (NLS) problem amenable to gradient de-

scent or Gauss-Newton minimization techniques.

In this paper, we take a similar approach, and consider opportunities

for performance improvement via an existing code generation framework,

PyOP2. We looked at a variety of data sizes to analyze the degree of

performance gains obtained versus three existing popular approaches.
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1. Introduction

We analyze the general setting of the bundle adjustment problem from the

computer vision context and investigate techniques for speeding up the steps

involved in the calculation, using automatic differentiation as well as hetero-

geneous compilation tools. We use the Sympy Python package [24] for sym-

bolic representation and automatic differentiation of positional parameters,

vectors, motion functions, and error vectors and PyOP2 [20] for executing

kernels used. We show that many of the steps can be executed in parallel,

and we outline a domain specific language which enhances programmability

of these problems. Lastly we compare popular bundle adjustment solvers

such as ceres-solver from Google [1], the g2o package [13], and the iSAM

package [12].

1.1. Motivation

Robot scene recognition researches have historically relied on filtering tech-

niques, such as the Extended Kalman Filter [19], Particle Filters [26], and

Rao-Blackwellised Filters [11], to solve the many steps of a larger process

known as Simultaneous Localization and Mapping (SLAM). In the SLAM

setting, a robot is placed in an unknown environment with sensors measur-

ing locations of surrounding landmarks as it navigates this new environment.

Prior to each time step, the robot stores a prior probability distribution for

each landmark as well as its own current and past locations. As it obtains

new measurements of the surrounding environment, it produces a poste-

rior distribution for each landmark. In the Kalman Filtering framework,

properties of Bayesian probability laws are are used to make each update

with an implied Gaussian distribution for errors. Particle Filtering methods

also implement Bayes’ Law but, instead choose Monte Carlo Simulation to

generate an estimate of the probability distribution.

In contrast to these methods, bundle adjustment emerged from pho-

8



togrammetry research in the 60s and 70s, mainly with military and geo-

graphical applications. Computations on collected image data were done

offline and were typically very time consuming. In the past 10 years, ad-

vances in computing hardware and novel architectures (e.g. multicore, si-

multaneous multithreading, vectorized instructions, general purpose GPU

computing, etc.), have narrowed the gap between filtering and bundle ad-

justment techniques allowing researchers to seriously consider bundle ad-

justment frameworks as an alternative to Kalman Filtering in online robot

vision problems. For example, Salas-Moreno et. al. [21] use this approach

to optimize and reconstruct object scenes. Furthermore, algorithms to solve

sparse linear systems have also evolved, with tools such as METIS, PetSc,

and Eigen able to take advantage of sparsity considerations to efficiently par-

allelize computations and make the computations easier to program. These

developments, when properly utilized, can help robotic systems solve very

large scene recognition problems in real-time. As of this writing, the only

notable attempt we have found at applying techniques from the high per-

formance computing toolbox towards speeding up bundle adjustment is the

paper on multicore bundle adjustment by Wu et. al. [27]. We believe there

is more work to be done to more easily expose the necessary functionality

in a bundle adjustment solver without burying the user with unnecessary

abstractions or hardware-specific implementation details.

For this purpose, we leverage PyOP2, a framework for performing finite el-

ement computations over unstructured meshes. The architecture of PyOP2

modularizes domains of expertise without sacrificing performance. We show

that it can be used to efficiently perform bundle adjustment computations.

We use Python as a staging language for our analysis.

1.2. Objectives

We aim to explore the computational challenges of performing bundle ad-

justment in scene recognition problems and propose a set of routines to

speed up these computations using available frameworks. Benchmarking on

available datasets, varying from 900 poses and 1900 landmarks to 500,000

poses and 2,100,000 landmarks, shows the efficiency of using our approach

in comparison to available packages. These benchmarks should also help

guide research into software optimization tools with a view towards accel-
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erating vision applications.

1.3. Outline

The following report is organized in the following way:

• Chapter 2 covers the mathematical and theoretical background of bun-

dle adjustment, which lays the groundwork for understanding the com-

putational steps taken during the implementation. It also provides a

simple example of bundle adjustment to give the reader a flavor of the

various quantities involved.

• Chapter 3 summarizes previous work in this field. Since interest in

novel techniques to solve bundle adjustment has intensified in the last

10 years, we outline the approaches taken by g2o, ceres-solver, and

iSAM. Although there are other libraries, these are chosen for their

performance and clean code base.

• Chapters 4 and 5 cover the PyOP2 kernels used, as well as the use

of Theano for automatic differentiation when constructing the error

function and the Jacobian and Hessian matrices. Here, we also outline

the computational complexity in the problem and explain how our

approach overcomes these obstacles. We present results compared to

other bundle adjustment implementations.

• Chapter 6 produces the conclusion of our work, summarizing what we

covered in this thesis. It also provides a guide to further research that

can (and should) be conducted in this field.
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2. Background

In this chapter, we outline the structure of the bundle adjustment problem

in the context of an autonomous vehicle which uses sensors to navigate in

a potentially unknown environment. The etymology of the term refers to

the ‘bundles‘ of light rays which originate at each feature and terminate

at the camera’s lens. The goal is to optimally determine the coordinates

of measured landmarks as well as its own current and past positions. In

the process of moving around the environment and collecting data, error

inevitably creeps into the estimation as both motion and measurement can-

not be calculated precisely. First, we produce an expectation of landmark

and pose positions using update rules governed by physics. Next, we evalu-

ate new measurements of these positions, which produces an array of errors.

Since our goal is to minimize these simultaneously, we construct a functional

from these errors (which themselves are a function of the parameters we are

trying to find optimal values for), and look for ways to minimize it. It is

very important to note that our functional has a non-linear relationship to

the parameters we are trying to estimate. Thus, we must rely on iterative

methods to approach the solution.

We also cover the PyOP2 framework, which is instrumental to our im-

plementation. This framework is an extension of work started by Giles et.

al. at Oxford University [18] to allow domain specialists in fluid dynamics

to write C++ applications and run them on heterogeneous architectures.

PyOP2, in contrast, uses a Python front-end, which allows the user to more

easily set up and run finite element schemes. It also uses and builds upon

automated kernel generation tools available through the FENICS framework

[14].
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2.1. Bundle Adjustment

We aim to outline the mathematical underpinnings of bundle adjustment

methods in this section and to lay the groundwork for the choices for our

implementation. We will begin with the geometry of camera (more gen-

erally: sensor) measurements and a background on how incoming image

data is used to obtain information about specific landmarks in the scene.

After that, we will discuss the dynamics of robot motion and its relation-

ship to the expectation of landmark positions from different poses. We use

the output of this calculation to calculate the ‘error‘, given specific camera

measurements. Next, we review the theory of non-linear least squares, espe-

cially sparse matrix techniques, which underly the search for optimal bundle

parameters. This iterative approach is elucidated in the final subsection.

2.1.1. Preprocessing

We begin by considering the two-dimensional image which represents a

three-dimensional scene. To determine specific landmarks present in the

scene, the system first employs a feature recognition algorithm, for ex-

ample, a blob detector. Typically, an image is represented by a mapping

f : R×R→ R. In the case of the ‘Laplacian of Gaussian‘ feature detector,

a convolution between the image and a Gaussian kernel is performed:

L(x, y; t) = g(x, y; t) ? f(x, y)

where g(x, y; t) = 1
2πt exp{−(x2 + y2)/(2t)} is the Gaussian. Next, the

Laplace operator ∇2 = ∂2

∂x2
+ ∂

∂y2
is applied to L(x, y; t) exposing extrema

for dark and light ‘blobs‘ present in the image. The variance parameter t

also acts as a scale factor, with smaller values picking up smaller features in

an image, while larger values of t only output larger features. Alternatively,

an edge detection algorithm, such as the Canny Edge Detector [7], uses a

multistep approach:

• Blur the image by convolving with a Gaussian filter

• Compute edge strength by applying Sobel operators on the smoothed
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image:

Gx =

 −1 0 1

−2 0 2

−1 0 1

 Gy =

 1 2 1

0 0 0

−1 −2 −1


The edge strength at each pixel is then

√
G2
x +G2

y and the edge di-

rection is θ = tan−1
(
Gy
Gx

)
.

• A pixel is determined to be an edge if it has a maximum gradient com-

pared to its neighbors and that gradient meets a minimum threshold

• A final ‘hysteresis‘ step is used to identify edges which might not meet

threshold gradients, but do lie next to pixels which do

These techniques typically parallelize well on GPUs, since there are minimal

read or write conflicts in the data. More advanced techniques, using scale

and rotation invariance [16] allow for matching under more general camera

and robot transformations. These involve robust algorithms to hash and

store feature descriptors for quick comparison and retrieval. As a practical

example, the OpenCV package [4] provides a function to calculate Canny

edges:

Listing 2.1: Using OpenCV for Canny edge detection

1 using namespace cv;

2 // first apply a 3x3 blur to de-noise the image

3 blur( src_grayscale , edges_only_dst , Size (3,3) );

4 // Canny (...) uses a low and high thresholds and Sobel size

5 Canny(edgesMat , edges_only_dst , low , low*ratio , sobel_size );

6 dst = Scalar ::all (0);

7 src.copyTo( dst , edges_only_dst);

This code snippet does the work to produce results in figure [?]. Once

the system has identified landmarks using one of the previously mentioned

techniques, determining which common landmarks are shared by multiple

images is known as the correspondence problem in computer vision. Re-

searchers in this field apply a variety of tools such as normalized cross cor-
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Figure 2.1.: Canny Edge Detection in Action

relation between a template t(x, y) and a sub-image f(x, y):

1

n

∑
x,y

(f(x, y)− f̄)(t(x, y)− t̄)
σfσt

to determine the probability of that sub-image matching the template. Gen-

erally, this is a difficult problem in computer vision with an active research

community.

2.1.2. Modelling the Camera

We now take a look at the way the camera measures landmarks. Specifically,

the camera’s orientation and position, with respect to a global coordinate

frame, determine our expectation of where in that global frame the land-

mark is located. Since we are interested in minimizing the error between

our estimated landmark position and the measurement, it is important to

convert the pixel locations (which is our input from the camera) to global

coordinate locations. The camera can be considered to have a position x,

which is a combination of a rotation R and a translation t (using the nota-

tion used by Strasdat et. al [23]). The rotation matrix R can be represented

in many ways. In, two dimensions,

R2D =

[
cos θ sin θ

− sin θ cos θ

]
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uniquely describes the counterclockwise rotation of any vector x ∈ R2 by θ

radians about the origin. However, in three dimensions, multiple represen-

tations are possible. For example, the Rodrigues rotation formula describes

3D rotations by θ degrees about a unit-length axis vector u ∈ R3:

R3D = I cos θ + sin θ[u]× + (1− cos θ)u⊗ u

Alternatively, one can think of applying rotations γ, β, α (yaw, pitch, and

roll) about the x−, y−, and z− axes respectively:

R3D = Rx(γ)Ry(β)Rz(α)

=

 1 0 0

0 cos γ − sin γ

0 sin γ cos γ


 cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ


 cosα − sinα 0

sinα cosα 0

0 0 1


This is known as a the Euler angles method.

Thus, a point, y seen in the local coordinates of the camera image has a

global coordinate location

Ry + t

With this background, the camera can be modeled in a variety of different

ways. One of the most common and also simplest models is the pinhole

model A 3D world coordinates point P = (X,Y, Z) has a camera coordinate

point p = (x, y), thus, after adjusting for focal length f and horizontal and

vertical scale parameters k and l, we have:

x = kf
X

Z
and y = lf

Y

Z

Further parameters can be added to correct for lens distortion (fisheye vs

barrel). Wu et. al. [27] model these parameters as a scalar factor of the

pixel coordinates p:

r(p) = 1 + k1|p|2 + k2|p|4

2.1.3. Modelling Motion

As discussed in the previous section, it is possible to describe the position

and pose of a camera in global coordinates via a 3-dimensional position
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Figure 2.2.: Pinhole Camera Setup

vector (x, y, z) and a 3-dimensional orientation vector (corresponding to

pitch, roll, and yaw) (γ, α, β). A 2D motion operator describing a rigid

object moving from pose a = (x1, y1, θ1) to pose b = (x2, y2, θ2) is first a

translation, then a rotation, thus the naive Python class representing this

is (note: SE2 is the Special Euclidean group for 2D rigid motion):

Listing 2.2: Python code for a 2D motion operator [?]

1 class SE2(object):

2 def __init__(self , x, y, theta):

3 self.t = np.array ([x, y]).reshape (2,1)

4 self.theta = theta

5 self.r = self.R(theta)

6

7 @classmethod

8 def R(cls , theta):

9 return np.array ([[ cos(theta), sin(theta)], [-sin(theta)

, cos(theta)]])

10

11 @classmethod

12 def normalize(cls , theta):

13 return (( theta + np.pi) % (2*np.pi) - np.pi)

14

15 def __rmul__(self , otherSE2):

16 return otherSE2.__mul__(self)

17

18 def __mul__(self , otherSE2):

16



19 new_t = self.t + self.r.dot(otherSE2.t)

20 new_theta = normalize2(self.theta + otherSE2.theta)

21 new_R = self.R(new_theta)

22 return SE2(new_t [0], new_t [1], new_theta)

23

24 def __repr__(self):

25 return "<x=%f y=%f theta =%f>" % (self.t[0], self.t[1],

self.theta)

Thus, when given an input which represents motion between two poses, we

can estimate the new position by applying this motion operator to the old

position. Then, when we obtain a measurement of the new position, we can

begin to build the error function which will be important in solving bundle

adjustment. The error function can be defined in a variety of ways, but the

most common is:

e = ẑ− z

where ẑ is our estimate from applying Ta→ba and z = b in this case. Note,

that similar calculations are carried out for landmark locations, since a

landmark l = (xl, yl) observed in one pose, would be expected to appear at

position Ta→bl when viewed in pose b. Next, to estimate the global error of

our estimate for every position and of every landmark, we take the sum of

squares (SSE):

SSE =
∑
i

eTi ei

This model can be further adapted by taking into consideration the known

measurement variance for each error term, Ω−1
i . Now the total error be-

comes:

SSE =
∑
i

eTi Ωiei

The quadratic form is not chosen by accident. It can be shown that this form

is the best unbiased estimator available if we assume a Gaussian distribution

of measurement errors. Furthermore, it is the solution to the maximum log-

likelihood function. Our goal in the next section will be to consider methods

of solving this problem.

To recap, we have defined a model which allows us to produce param-

eter estimates (either landmark positions, or robot poses, or otherwise).

This framework can be generalized by more generally defining an estima-
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tion function (similar to __rmul__ in listing [?]) and forming the SSE as

before.

2.1.4. Non-linear Least Squares

We have created the quadratic form comprised of error terms, the SSE

function, and we are trying to ‘adjust‘ the input bundles of parameters to

minimize this function. To do this, we first note that this function has

a non-linear dependence on the bundle parameters, which means that an

iterative method is necessary. Such a method starts with an initial guess,

x0 and linearizes the parameter space locally using first-order terms from

the Taylor series expansion:

SSE(x0 + ∆x) =
∑
i

ei((x0)i + ∆xi)
TΩiei((x0)i + ∆xi)

=
∑
i

(ei + Ji)
TΩi(ei + Ji)

=
∑
i

eTi Ωiei + 2eiΩiJi∆xi + ∆xTi ΩiJi∆xi

Since ei : R3 → R3, we have denoted Ji to be the Jacobian matrix com-

prising of terms
∂(ei(x,y,θ))j

∂xk
. With this linearized form, we are looking for a

direction ∆x which leans towards the smallest SSE value. Assuming that

H = JTΩJ, the value of ∆x which attains this will occur when the following

is solved:

(∆x∗)TH∆x∗ = −2eΩJ∆x∗ =⇒ H∆x∗ = −JTΩe

This way, we obtain the next estimate from the previous one as x1 = x0 +

∆x∗ This second-order method is commonly known as Gauss-Newton and

converges quickly when our initial guess, x0 is already close to the optimal

value. Note that we could have also applied a different technique, known as

gradient descent, which involves computing the Jacobian immediately and

following the update rule.

x1 = x0 − λ∇e(∆x)
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This first-order update rule has quick convergence when the initial guess is

bad, but takes many steps to converge at the end. Thus, the well-known

Levenberg-Marquardt algorithm merges these two approaches by modifying

the Gauss-Newton formulation as follows:

(H + λW)∆x∗ = −JTΩe

where λ ∈ R is a step-size parameter we get to adjust at each iteration,

and W is a diagonal matrix having the diagonal components of H but can

also be chosen to be the identity matrix. We will delve deeper into this by

analyzing the structure of the matrices we are trying to work with, namely

J and H. Specifically, with a toy example such as that listed in figure [?], we

see a set of edges (feature measurements) connecting vertices (images), and

camera calibrations (which are linked to landmark measurements, only from

specific poses). Notice that camera calibrations are connected to poses (K1

Figure 2.3.: Toy Bundle Adjustment Graph

is connected to 2, and the landmarks observed from 2, while K2 is connected

to 1 and 3), and thus also to (some of) the landmarks seen (measured) from

those poses. In general poses can be connected to other poses (via odometry

measurements), and landmarks to other landmarks. The corresponding

Jacobian matrix will be sparse, as it will only contain entries for which

there are edges in the graph. We have provided a view of the sparsity

structure of the Jacobian J and the Hamiltonian H = JTJ in figure 2.4.

Although this is a slightly unrealistic setup, it shows the general structure

of the Hessian matrix we are trying to solve. Various methods exist for

solving these sparse systems, and they are listed here:
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Figure 2.4.: Sparsity of Bundle Adjustment Matrices (non-zero values dis-
played): Jacobian (left), and Hamiltonian (right)

• Schur complement - produces a reduced camera system by solving first

for poses, then for landmarks

• Cholesky decomposition - solves H = LTL, where L is lower-diagonal;

performance depends heavily on sparsity of system

• Conjugate Gradient - an iterative solver for large sparse positive def-

inite linear systems

• GMRES - generalized minimal residual method

The majority of bundle adjustment literature has relied on either Schur

complement or Cholesky decomposition with good results. We used Golub

et. al. [10] as reference for these methods.

The Schur complement ‘trick‘ uses the sparsity structure of the resulting

Hessian matrix. Essentially, we can reduce the previously stated linearized

system in block-form:

H =

[
U W

W T V

]
and ∆x =

[
∆a

∆b

]
and − JΩe =

[
εa

εb

]

Then, by premultiplying the equation:

H∆x = JΩe

20



by [
I −WV ∗−1

0 I

]
we obtain a reduced system, whereby we can first solve the equation for a

and then back-substituted to solve for b.

In Cholesky decomposition, the goal is to decompose the matrix into the

form H = LLT . Specifically, one frames the following equation:

A =

[
a11 AT

21

A21 A22

]
=

[
l11 0

L21 L22

]
∗

[
l11 LT21

0 L22

]

and then note that for this to hold, l11 =
√
a11, L21 = 1

l11
A21, leaving for

us to solve

A22 − L21L
T
21 = L22L

T
22

which is once again a Cholesky factorization problem with matrix of size

n − 1. This is a recursive process which step-wise creates L by moving

along the diagonal of the Hessian [10]. An intelligent re-ordering of the

columns and rows in a sparse matrix can greatly reduce the amount of

extra computations, known as fill-in. Since the re-ordering is in general an

NP-hard problem, these methods can have variable success.

2.1.5. Putting It All Together

We have shown how the pieces of the bundle adjustment puzzle fit together,

starting from the measurements/observations of the robot via a camera,

and finishing with a large sparse linearlized system, whose solution gives

us an optimal parameter update towards the final solution. This solution

provides the robot with the highest likelihood coordinates for environment

landmarks (a.k.a. a map) as well as its own current and past positions.

In an on-line setting, a robot exploring its environment would continuously

solve this system with new landmarks and poses being added at each step.

Since the computation time is bounded by solving the Hessian, compute-

time will grow at least O(n) with the number of bundles, and potentially

as poorly as O(n3/3) for poorly structured matrices. For example, Spiel-

man and Teng [22] found certain sparse systems solvable in O(n1.31). Thus

researchers usually apply a rolling window to incoming data to limit com-
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plexity growth. In an off-line setting, which where we our focus lies, we read

in an entire graph structure from an existing database, and perform the rel-

evant computations. Problems of this sort would arise when learning very

large environments and computational techniques which take advantage of

distributed computing platforms play a leading role.

2.2. PyOP2

We aim to give a background for the PyOP2 framework and the types

of problems it specializes in solving. We will cover the use of Python as

a language for problem specification. A judicious use of operator over-

loading allows researchers to specify the problem domain concisely without

destroying the mathematical structure, which an optimizing compiler can

use to reduce computational load. Most typically PyOP2 is very efficient

at handling unstructured mesh applications, typical in fluid dynamics and

mechanical engineering applications. However, we will to use it to set up

and solve bundle adjustment computations, since both problems deal with

solving sparse systems generated by graph structures.

2.2.1. Python as a Domain Specific Language

With the strong uptake of the Python programming language in the scien-

tific community, many libraries have been developed which wrap up existing

high performance computing packages and provide an easy-to-program in-

terface. The language itself is unsuitable for CPU intensive computations

due to the slow nature of dynamic dispatch, it’s loose (read non-existent)

type system, and the global interpreter lock (GIL) which prevents the use

of multithreading. However, it is an ideal staging language, allowing for

easy set-up of objects, which can then be sent to more performant compute

routines. Figure 2.5 illustrates a small selection of the selection of Python

libraries and tools available to the scientific community.

2.2.2. Finite Element Methods and How they Relate to

Bundle Adjustment

PyOP2 was built for accelerating unstructured mesh computations in finite

element problems. These problems typically start as a differential equation
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Figure 2.5.: Scientific Python Ecosystem

with a boundary condition, e.g.:

∇2u = f for x ∈ Ω

u = g(x) for x ∈ ∂Ω

The solution can then be thought of as a linear combination of mutually

orthogonal basis functions vi(x) and the goal is to find coefficients αi such

that we best approximate u(x) =
∑

i αivi(x). The corresponding linear

algebra problem is obtained by first considering the weak form:∫
Ω
∇ · u∇vds =

∫
Ω
fvds ≡ φ(u, v)

Constructing a matrix Lij =
∫

Ω vivjds and Mij =
∫

Ω∇vi∇vjds leads to the

equivalent formulation of the PDE:

Lu = Mb

where u = (u1, . . . , un)T and b = (
∫

Ω fv1ds, . . .
∫

Ω fvnds).

At this stage, the similarities between the bundle adjustment matrix for-

mulation and finite element method problems still seem somewhat murky,
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although they are both formulated as a sparse matrix problem. Unfortu-

nately, after further investigation into these similarities, we were not able

to extend the link. Specifically, the weak form is obtained under strong

assumptions about differentiability of the solution, something that is not

present in the bundle adjustment problem. However, finite elements are

also a form of a graph problem. To see this, note that the basis functions

vj(x) in 2D are continuous surfaces in some small sub-domain and 0 else-

where. Thus, they represent edges in the graph, while the graph vertices

can be thought of as the boundaries between adjacent surfaces. In finite ele-

ment parlance, the surfaces are called ‘elements‘ or ‘facets‘. A visualization

of the surfaces is shown in figure 2.6. Although finite element solvers are not

Figure 2.6.: 2D Elements of a Finite-Element Mesh

directly applicable for bundle adjustment, tools which efficiently schedule

computational work where data is loosely coupled via a graph structure,

can be used. Since nearby landmarks are typically observed from the same

robot pose, the induced computational work can be scheduled in a similar

way to those on a finite element mesh.

2.2.3. Code Generation

PyOP2 (with tools from FEniCS) provides a powerful framework for model-

ing differential equations, and solving the resultant finite element problem.

The framework uses UFL (Unified Form Language) to automatically gener-

ate ‘kernels’ (main code block for the OP2 solver to iterate over). PyOP2

can be configured to run on a variety of back-end parallel architectures,

including GPUs (OpenCL and CUDA), CPU clusters communicating via

MPI, and others. The user is not responsible for knowing architecture-

specific routines and can concentrate of working in the problem domain.

The following listing is taken from example code for the advection problem

24



and illustrates the techniques.

Listing 2.3: Code Generation Example

1 from pyop2.ffc_interface import compile_form

2 from ufl import *

3 p = TrialFunction(T)

4 q = TestFunction(T)

5 M = p * q * dx

6 adv , = compile_form(M, "adv")

At this point, the adv variable is of type op2.Kernel and contains code

representing discretized calculation for:∫
p(x)q(x)dx

The kernel adv contains autogenerated C-code which is next passed to the

op2.par_loop() function (along with variables representing input values)

which distributes work while exploiting the sparsity structure. In our work,

we aim to produce a similar structure for bundle adjustment problems

We have hopefully presented the prior knowledge necessary for the reader

to proceed with the rest of this report. We have presented the context in

which bundle adjustment is relevant for computer vision and have shown a

graph-theoretic formulation of the problem, and the resulting sparse non-

linear linear algebra problem. We have also outlined some sparse solving

techniques, which may be interesting when considering which solver to use

in a given setting. Next, we side-stepped to consider finite element methods,

another variational problem, which has been well studied, and shows math-

ematical similarities to bundle adjustment. We have hopefully presented

our intuition behind choosing PyOP2 as an execution platform for bundle

adjustment. In the remaining chapters, we will show what work has already

been done in this field, and which software is available.
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3. Related Work

After being developed by Gauss, least-squares has seen a variety of appli-

cations, most popularly, in solving for parameters in statistical models (e.g.

regression). Bundle adjustment was originally attempted by D.C. Brown et.

al. in the late 1950s [5]. Through the 60s and 70s, techniques focused on

reduction techniques for sparse matrices to make the problem solvable. In

recent years interest in this field of computer vision has grown as computing

power has allowed for this approach to become competitive with Kalman

Filtering and other probabilistic techniques.

3.1. Early Bundle Adjustment

D.C Brown et al [5] approached the problem by representing the pose pa-

rameters in terms of landmark parameters, thus eliminating the need to

solve for them. Brown solved the resulting system of pose parameters with

classical Gaussian elimination on the then-state-of-the-art computers. This

approach relies on having a dense system, one in which landmarks are vis-

ible from most poses. However, realistic situations usually have individual

poses capturing a small percentage of all landmarks as a camera (or robot)

moves around in a large environment. This prompted researches to look for

ways to reduce this inherently sparse minimization problem into a smaller

dense form throughout the 60s and 70s. For example, recursive partitioning,

as summarized by Brown in his overview of the state-of-the art techniques

available in 1976 [6], is a technique which explicitly considers the zero blocks

of the matrix to reduce the size of the linear algebra problem. After some re-

configuration, one is left with a system that can once again undergo further

simplification and what is left is a significantly smaller system which can

be readily solved by Gaussian elimination. As Brown notes, this solution

neglects a measurement error model as well as assumes a very rigid block

arrowhead sparsity structure which does not take loop closures into account
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(the possibility that the robotic system re-visits a scene previously seen).

3.2. Modern Methods

In 1999, Triggs et. al. conducted a thorough review of the mathemati-

cal literature available on bundle adjustment. Since then, several notable

software package have come out which solve this problem or some variant

thereof:

• SBA - A generic sparse solver for Bundle Adjustment problems writ-

ten in C with MATLAB and command-line extensions; This library

was first released in 2004 by Lourakis et. al. [15], and focused on

providing a basic implementation using LAPAK libraries as a Linear

Algebra back-end when applying the Schur complement trick during

the solution of the sparse linearized system.

• Multicore BA - Wu et. al. [27] created this library to exploit paral-

lelism in some of the computations being done during bundle adjust-

ment; This is the only library which explicitly attempts to make per-

formance improvements on a different computer architecture; They re-

port speedup gains of approximately 10-13 times versus single-threaded

code and 2-3 times versus multi-threaded code.

• Ceres-Solver - A joint collaboration between Google and Washing-

ton University created by Agrawal et. al. [2]; Similar to g2o, the

also follow an extensible architecture, allowing the user to fully spec-

ify a general minimization problem; The library also uses vectorized

instruction sets to speed up computations as well as automatic differ-

entiation of user-specified functions to derive optimizations based on

a reduced number of computations.

• SAM and iSAM - A C++ library developed by Kaess et. al. [12]; They

use QR factorization of the sparse Jacobian matrix to minimize the

quantity ||Jx−b||2; Their incremental approach uses Givens rotations

to prevent re-solving of the QR problem in future instances when new

data points arrive; This approach works well in an on-line setting but

still relies on back-solving a lower diagonal matrix at each iteration.
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• g2o - A C++ project to solve general hypergraph optimization prob-

lems developed by Kummerle et. al. [13]; The library follows an

extensible architecture, which allows the freedom to select different

solvers and specify different measurement and error functions for the

SLAM problem; The authors look for performance gains by perform-

ing vectorized instructions in the called matrix libraries.

These software packages, all released within the past 10 years, underline

the increased interest seen in this field and its application to robot vision.

They all use differing data formats depending on what is most convenient

for the approach. Thus, testing and benchmarking comparisons between

different packages has been difficult to come by, as each researcher would

have to replicate a large chunk of an existing library (especially when the

data reading operations are rooted deeply within the object hierarchy, as in

g2o). We will look at two simulated 2D datasets, Intel campus, and Man-

hattan city grid, to evaluate performance and resource utilization. When

comparing iSAM (in bulk mode) and g2o on the Manhattan dataset (3500

vertices and 5598 edges), g2o performed approximately 1.5 times faster than

iSAM (0.25 seconds versus 0.4 seconds).
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4. Program Design

We cover our approach at architecting a bundle adjustment solver and de-

scribe the efficiencies we seek to achieve by employing smart code gener-

ation and automatic differentiation tools like PyOP2 and Theano. There

are many classes of bundle adjustment problems, ranging from a simple 2D

pose-only dataset, with constraints constituting odometry readings between

successive poses to complex scenarios with 3D landmarks coupled with dif-

ferent camera calibrations used across scenes. In all cases, we begin by

either loading the data into memory or streaming it from an input pipe.

A streaming architecture forces one to consider memory issues such as a

growing the relevant data structures with new data. Techniques that allow

for memory-mapped data to be brought in quickly and only when required

have been efficiently implemented with the HDF5 data model [25] as well

as with numpy memory-mapped arrays (numpy.memmap).

After providing the program with access to data, we will show the follow-

ing steps in our implementation:

• Build error function e = ẑ − z: this step involves bringing in both

the estimate for the measurement, and the measurement itself and

performing a differencing operation, which is simple in Euclidean space

but can become more involved with rotation groups; Furthermore,

different types of vertices (landmarks, poses, etc.) can have different

measurement, and therefore error, functions.

• Compute the Jacobian J: This step has to be carefully constructed

to only perform computations for those vertices where they are linked

by an edge; We will borrow techniques from finite element methods to

perform this efficiently; here, automatic differentiation is applicable.

• Compute the Hessian H = JTΩJ or the Levenberg-Marquardt equiva-

lent H+λW (assembling Ω is a straightforward step since it is block-

diagonal with data directly provided from input).
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• Compute the product JTΩe: this constitutes the right-hand-side of

the non-linear equation we are trying to solve.

• Pass the left-hand-side sparse matrix and the right-hand-side matrix

to the solver.

• Compare the new error measure with the old error, adjust λ accord-

ingly, and check any stopping conditions to terminate the non-linear

least squares search.

4.1. Data

Bundle adjustment literature has done a thorough job of describing the

methodology used to solve for pose coordinates, landmark coordinates, and

even camera coordinates. There has, however, been less emphasis on a sys-

tematic standardization of data formats as each available package provides

data in non-compatible layouts. We have found the g2o data format to be

the most general formulation, allowing the user to specify a wide range of

graph types.

Generally, data arrives as plain text with rows for vertices and edges.

The vertex label (e.g. SE2, QUART, etc) determines the type and the data

items in that row. Specifically, an SE2 vertex will contain:

VERTEX_SE2 15 3.15454 3.89159 1.53144

representing the vertex index along with estimated parameters for that po-

sition x, y, θ. A row containing an edge (measurement) also comes with

a label, allowing the program to correctly associate the appropriate error

function calculation at each edge. The other items in the row of edge data

provide indices of the vertices that edge connects as well as the measurement

calculations and other fixed parameters (e.g. the measurement variance ma-

trix for that edge Ω).

We used the pandas package [17], which uses numpy arrays for contiguous,

efficient, and fast data storage. The advantage that pandas brings is quick

named column and row selection (see listing A.3). Furthermore, it supports

streaming data from regular or HDF files via iterators and visualization

with output in 4.1:
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Listing 4.1: Visualizing The Intel Dataset

1 from ba_data import INTEL_G2O

2 import matplotlib.pyplot as plt

3 vertices , edges = quickload(INTEL_G2O)

4 plt.plot(vertices[’dim1’], vertices[’dim2’])

Figure 4.1.: Plot X and Y coordinates of Intel data from g2o

Similarly, the Manhattan dataset is show in figure 4.2.

Figure 4.2.: Plot X and Y coordinates of Manhattan data from g2o

4.2. Building the Error Function

We present our approach to creating the error function in bundle adjustment

problems. This function is a mapping from parameters (edges ei, each
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having a few degrees of freedom, di) to errors:

e : R
∑
i di → R

∑
i di

As an example of the dimensionality involved, a 2D dataset has 3 dimen-

sions per edge for measurements between poses and 2 for those between

landmarks. A relatively small dataset with 10000 pose-to-pose only vertices

would imply an error vector in R20000. Since each edge contains measure-

ment information between vertices, we can accelerate these calculations by

employing PyOP2 in its construction. For that, it is necessary to instan-

tiate the data structures PyOP2 interacts with. The framework mimics

mathematical concepts of sets and map, which are used to create indirec-

tion between the data and the computation. We present a small example

in listing 4.2.

Listing 4.2: Example PyOP2 Code for Building Bundle Adjustment Graph

1 import numpy as np

2 from pyop2 import op2

3

4 def identity(num , dim):

5 return np.asarray ([i/2 for i in range(dim*num)], dtype=

np.uint32)

6

7 NUM_POSES = 3

8 NUM_POSE_CONSTRAINTS = 2

9

10 poses = op2.Set(NUM_POSES , ’poses’)

11 pose_constraints = op2.Set(NUM_POSE_CONSTRAINTS , ’

pose_constraints ’)

12

13 # constraint 1: pose 0 --> pose1; constraint 2: pose1 --> pose2

14 constraint_pose_data = np.asarray ([0, 1, 1, 2], dtype=np.uint32

)

15 # all constraints map to themselves

16 constraint_constraint_data = identity(NUM_POSE_CONSTRAINTS , 2)

17

18 constraints_to_poses = op2.Map(pose_constraints ,

19 poses ,

20 2,

21 constraint_pose_data ,

22 ’poses_constraints ’)
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23

24 constraint_to_constraint = op2.Map(pose_constraints ,

25 pose_constraints ,

26 2,

27 constraint_constraint_data ,

28 ’constraint_to_constraint ’)

In mathematical terms, we have created maps which tell PyOP2 how to cre-

ate a correspondence to data when iterating over the set of pose constraints.

When the PyOP2 runtime is given a kernel to execute, it relies on these

maps to partition the iteration space into disjoint subspaces so as to mini-

mize data contention. Note that we build the constraint_to_constraint

mapping with dimensionality 2 because each constraint actually maps to 2

dimensions: x, y (in the case of Euclidean parameters). In the case of finite

elements, PyOP2 uses coloring on the elements, but other techniques have

been studied since at least 1970. In our production code, we can encapsulate

these procedures in a data structure and populate the data appropriately.

These structures are next passed to a PyOP2 C-style execution kernel, which

represents a computation to be done at each iteration. Since PyOP2 per-

forms the iteration space tiling to maximize parallelism on a pre-specified

backend, this approach provides portable performance without needing to

modify for various execution platforms.

Although the above example is simplistic, it illustrates the approach we

take in building the graph in PyOP2 for efficient execution. At each step,

we iterate over the measurements (or ‘constraints‘ or ‘edges‘ in graph the-

ory parlance) and produce calculations over poses or landmarks (‘vertices‘).

The op2.Map construct allows for this level of indirection since it maps a

specific measurement to a specific number of poses which that edge acts

upon. Because this is quite general, it is equally possible to define compu-

tations over hyper-edges and hyper-vertices (where edges connect more than

two vertices), although bundle adjustment problems do not usually warrant

the use of these structures.

The error function, as described earlier, is a high-dimensional vector,

which is better represented as chunks, e = (e1, e2, . . . , en)T , with each

chunk ei ∈ Rdi where di is the dimensionality of the ith measurement.

If ei measures distances on the SE2 manifold, di = 3. Our implementation

iterates over these edges, but requires data from the corresponding poses
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(or landmarks). To do so, we first encapsulate the available measurement

data into an op2.Dat with a specified ‘constraint-to-pose‘ Map built-in. We

then follow a two-stage approach:

• First, compute the estimate by iterating over the measurements, re-

trieving the two corresponding poses via the Map, and write the result

to an estimate variable

• Next, iterate once more over the measurements, this time performing

a trivial IdentityMap over them and applying the user-specified error

function at both estimates and the available observation data

This parallelizes the construction of the error function, which is further

used in two places. First, we evaluate the success of the bundle adjustment

algorithm but continuously monitoring the cost function:

SSE =
∑
i

eTi Ωiei

or more generally:

SSEδ =
∑
i

ρδ(e
T
i Ωiei) where ρδ(x) =

{
x2 for |x| < δ

2δ|x| − δ2 otherwise

)

This robustified total error gives less weight to extreme outliers (those lying

further than δ away from the measurement) while maintaining the nice

properties of convexity, and thus, not decreasing the chance of converging

to the global minimum. Since Ωi are inputs, we can provide a reference to

them via PyOP2 Dat objects, defined over measurements (since each one

corresponds solely to the inverse-variance of measurement data and has no

direct connection to pose or landmark data). The point of data contention

is the writing of the SSE variable by different processes are they traverse

the measurement iteration space. PyOP2 provides a type of data carrier,

op2.Global, which is shared among all the processes. Thus, our kernel will

be specified as in listing 4.3:

Listing 4.3: Computing the Total Sum of Squares Error

1 F = op2.Global(dim=1, data =0.0, dtype=np.float64)

2 total_error_code = """
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3 void total_error(double e[2], double omega_block [4],

double * sse)

4 {

5 *sse += (e[0]* omega_block [0] + e[1]* omega_block [2])

* e[0] +

6 (e[0]* omega_block [1] + e[1]*

omega_block [3]) * e[1];

7 }

8 """

9

10 total_error = op2.Kernel(total_error_code , ’total_error

’)

11 op2.par_loop( total_error , pose_constraints ,

12 e(op2.IdentityMap , op2.READ),

13 F(op2.INC))

4.3. Building the Jacobian Blocks

So far, we have an error vector and a measure of the total error of input

data, but to create a favorable update to the position parameters we are

estimating, we also construct the Jacobian matrix. In the simple case of 2D

coordinates and plain Euclidean estimates, a typical measurement error e

between poses p and q will look as follows:(
ex

ey

)
= ẑ− z =

(
ẑx

ẑy

)
−

(
qx − px
qy − py

)

The ẑ are constant data, so the Jacobian block for this measurement will

have the following structure:

Je =

(
∂ex
∂px

∂ex
∂py

∂ex
∂qx

∂ex
∂qy

∂ey
∂px

∂ey
∂py

∂ey
∂qx

∂ey
∂qy

)
=

(
1 0 −1 0

0 1 0 −1

)

Of course, for non-Euclidean parameter spaces, the cross-terms also come

into play, and we automatic differentiation to to more quickly obtain these

Jacobian blocks. We make a generic approach in generating these blocks

by the use of automatic differentiation. There are a number of packages

across various programming languages, which can be used for this purpose.

For example, Theano [3] allows the user to construct a symbolic representa-
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tion of their problem, and then performs optimizing graph transformations

on the resultant execution graph, following by fast generated C code (for

the CPU) or CUDA/OpenGL code (for GPUs). Some of the functionality

overlaps with PyOP2, though provides less support for more complicated

parallelization techniques such as graph partitioning. Since we are only

concerned with differentiation among a small set of variables, as well as

with smooth functions, we selected to use the Sympy module for this task.

The overriding reason for this is the in-program generation of C code the

Sympy provides, which we can directly use to populate the PyOP2 kernel we

use to construct the Jacobian blocks. For example, in SE2, the estimation

functions is:

q− p =

 (qx − px) cos pθ + (qy − py) sin pθ

−(qx − px) sin pθ + (qy − py) cos pθ

((pθ − qθ + π) mod 2π)− π


between poses and the usual Euclidean one between a pose and a landmark.

Thus, the Jacobian block for a measurement between poses p and q will

look as follows:

Je =


∂ex
∂px

∂ex
∂py

∂ex
∂pθ

∂ex
∂qx

∂ex
∂qy

∂ex
∂qθ

∂ey
∂px

∂ey
∂py

∂ey
∂pθ

∂ey
∂qx

∂ey
∂qy

∂ey
∂qθ

∂eθ
∂px

∂eθ
∂py

∂eθ
∂pθ

∂eθ
∂qx

∂eθ
∂qy

∂eθ
∂qθ


=

 coswθ sinwθ (qx − px) sinwθ − (qy − py) coswθ − coswθ − sinwθ 0

− sinwθ coswθ −(qx − px) coswθ + (qy − py) sinwθ sinwθ − coswθ 0

0 0 1 0 0 −1


We generate a similar structure programmatically with Sympy as in listing

A.4. Furthermore, this allows the user to specify a custom-made measure-

ment function, without dropping to a low-level language to do so.

4.4. Building the Hessian

Since we aim to ultimately solve the non-linear least-squares problem:

(H + λW)∆x = JTΩe where H ≡ JTΩJ
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for ∆x, the next step is to build the left-hand-side of that equation. At this

stage, we have computed the Jacobian blocks and the inverse-covariance

blocks, Ωi (encapsulated in a reference via the PyOP2 Dat type), in the

previous step. Although the Hamiltonian matrix has dimensions solely de-

pendent on pose and landmark data, we chose the constraints Set as our

iteration space, allowing us to bring in pose data related to those consraints

via the contraint_to_pose Map defined earlier, and populate the matrix

that way. Specifically, the Hamiltonian construction kernel is displayed in

listing 4.4

Listing 4.4: The Hamiltonian Matrix Kernel

1 hamil_sparsity = op2.Sparsity ((poses ** 2, poses ** 2), (

constraints_to_poses , constraints_to_poses), ’

hamil_sparsity ’)

2 hamil_mat = op2.Mat(hamil_sparsity , np.float64 , ’hamil_mat ’

)

3

4 poses_hamiltonian_code = """

5 void poses_mat_hamiltonian( double H[2][2] , double J[8],

int i, int j)

6 {

7 int block1 = 4*i;

8 int block2 = 4*j;

9 H[0][0] += J[block1 + 0]*J[block2 + 0] + J[block1 + 2]*

J[block2 + 2];

10 H[0][1] += J[block1 + 0]*J[block2 + 1] + J[block1 + 2]*

J[block2 + 3];

11 H[1][0] += H[0][1]; // symmetry

12 H[1][1] += J[block1 + 1]*J[block2 + 1] + J[block1 + 3]*

J[block2 + 3];

13

14 if ( i == 0 && j == 0 ) {

15 H[0][0] *= 2.;

16 H[0][1] *= 2.;

17 H[1][0] *= 2.;

18 H[1][1] *= 2.;

19 }

20 }

21 """

22

23 poses_mat_hamiltonian = op2.Kernel(poses_hamiltonian_code ,

’poses_mat_hamiltonian ’)
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24

25 op2.par_loop( poses_mat_hamiltonian , pose_constraints (2,2),

26 hamil_mat (( constraints_to_poses[op2.i[0]],

constraints_to_poses[op2.i[1]]) , op2.INC),

27 jacobian_blocks(op2.IdentityMap , op2.READ) )

A small, but important consideration has to be made for the initial con-

straint, one that dictates the initial pose. Thus, we added extra code to

update the upper left block of the Hamiltonian appropriately. Without this

extra condition, the Hamiltonian would prove to be ill conditioned. Simi-

larly, we also update the calculation for the right-hand-side of the non-linear

least squares problem. However, if we assume the initial measurement error

is zero (after all, a famous physicist once said that everything is relative),

we can safely neglect extra code there.

4.5. Solvers

As we mentioned in the background review, a variety of sparse linear solvers

exist to tackle our linearized bundle adjustment problem. In PyOP2, we

invoke the built-in solvers with the following code:

Listing 4.5: Invoking a Sparse Solver in PyOP2

1 solver = op2.Solver(linear_solver = ’gmres ’)

2 solver.solve(hamil_mat , x, rhs_vec)

Most modern bundle adjustment packages exploit the sparsity of the lin-

earized system at the expense of compromising code flexibility. PyOP2

gives one the freedom to experiment with different solvers, so long as the

back-end is implemented. Thus, the introduction of new solving techniques

doesn’t mean having to rearchitect the library. However, PyOP2, as of

this writing, does not support solving via the Schur complement, a trick

described in chapter ?? and successfully used to reduce dimensionality of

bundle adjustment problems by first solving for poses and afterwards for

landmarks. Thus, we expect our implementation to suffer when there is a

roughly equal balance between the two types of vertices. However, this is

generally not the case. In closed environments, pose data tends to accu-

mulate as the autonomous vehicle measures many of the same landmarks

repeatedly, while in open environments, each new pose will likely corre-
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spond to a (potentially large) handful of new landmarks. Current research

focuses on considering more and more landmarks from each pose, thus heav-

ily weighing the balance towards landmarks. Thus, we believe we are not

at a great disadvantage for not being able to use Schur.

4.6. Putting It All Together

Finally, we discuss our approach to solving the full bundle adjutment prob-

lem. We have shown how we set up the problem, using symbolic differenti-

ation and code generation techniques to populate the kernel strings which

feed PyOP2. Our full solution of a single step, as in listing 4.5, produces

a value for ∆x, which is an update to our initial parameter estimates. To

progress towards the optimal parameters, we first update the parameters

with the calculation:

xt+1 ← xt + ∆x

This is another calculation in which we can employ PyOP2 kernels for

speedup. Since x is defined over vertices (either poses or landmarks or

both), our kernel does not need to employ extra indirection to make this

update. In fact, this step is trivially parallelized without the need for graph

partitioning techniques. As a result, we leave out the code from this report.

More sophisticated Levenberg-Marquardt techniques call for a dynamic up-

dating of the λ parameter, which would involve keeping two sets of x data.

Next, we once again re-evaluate our total_error kernel to described

earlier to measure the impact of the calculated update. Typical conditions

which are used to terminate the looping include asserting a maximum loop

count, a minimum error reduction, as well as an overall error target. Note

that it is important to consider the total error in the context of the total

number of vertices.

In summary, the steps taken are as follows:

1. Load data from file or other source and set up preliminary Sets Maps

and Dats including the Ω blocks.

2. Evaluate the total error, SSE, and if it is sufficiently small, exit and

report the optimal parameter values, else proceed to [3].

3. Pre-process the Jacobian blocks.
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4. Calculate the righ-hand-side kernel including the estimate and error

vectors.

5. Re-evaluate the Hamiltonian kernel.

6. Solve the linearized system resulting from steps [4] and [5].

7. Loop back to step [2].
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5. Evaluation

To assess the viability of the methods discussed in the previous chapter,

we will discuss how our approach fares in solving the bundle adjustment

problem and how it scales. We will discuss the resource usage of our imple-

mentation in comparison to modern bundle adjustment packages. Specifi-

cally, we track our performance against g2o and iSAM packages. We use

two datasets to show the scaling properties of these packages as well as ours.

We note that these packages were written in C++, and g2o also uses AVX

to accelerate performance.

5.1. Analyzing Our Implementation

Our implementation follows a modular layout which allows for easy per-

formance testing and tuning. The steps outlined in chapter 4 were taken,

specifically the incremental building up of the components related to a large

sparse non-linear minimization problem solved by linearizing the compo-

nents and solving iteratively. There are two steps to set up the problem,

reading the data from file into memory, and two substages, one to set up

PyOP2 Set and Map objects, and another to set up PyOP2 Dat and Mat

objects. These steps are inefficient, but need only to be run once to set up

PyOP2 kernels for repeated use in later stages. They involve passing pose

and constraint data into PyOP2 Dats and formatting strings. Furthermore,

Sympy-generated C-code is used in this stage to produce the kernel for both

the error and the Jacobian of the error. This stage is the slowest part of our

program due to the time spent executing Python code, which is typically

10-100 times slower than C or C++. Future implementations can consider

the pypy interpreter, which has been shown to perform 6-10 times faster

than Python. We first present the sparsity patterns of the Hamiltonian ma-

trix obtained from the two 2D datasets we considered. They are shown in

figures 5.1 and 5.2.
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Figure 5.1.: Intel Dataset Hamiltonian Sparsity (non-zero elements dis-
played)

Figure 5.2.: Manhattan Dataset Hamiltonian Sparsity (non-zero elements
displayed)

Next, we present some of the running times measured on an Intel 2GHz

IvyBridge i7 MacBook Air with 8GB of 1600MHz DDR3 RAM. The com-

piler is an LLVM clang compiler with -O3 optimization flats set. We used

the sequential (MPI) backend for PyOP2, which allows for a more direct

comparison to other bundle adjustment packages. Below, we show the result

for running our bundle adjustment code over the Intel dataset, by printing

the dict of timing, in seconds, we recorded.

{’error’: 0.0017781257629394531,
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’estimate’: 0.0017139911651611328,

’jacobian’: 0.0019482135772705077,

’lhs’: 0.0081790447235107425,

’per_iter_setup’: 0.00072622299194335938,

’rhs’: 0.0018266201019287109,

’solve’: 0.0023548126220703123,

’sse’: 0.0017397403717041016}

preprocess: 0.002824

generate kernels: 0.227442

setup data: 0.011783

total time per iteration: 0.020267

total time: 0.101334

We have included the individual steps taken (effectively the time to run

each op2.par_loop(...)), as a guide. The labels are defined as follows:

• error: calculating the vector of measurement errors

• estimate: calculating the vector of estimate distances between each

pair of constrained poses

• jacobian: applying the derivative calculation at each constraint

• lhs: this is the left-hand-side of the least squares equation, which in-

volves repeatedly updating the Hamiltonian matrix with JTΩJ values

• per iter setup: this is the zero-ing out of some arrays at each iteration

• rhs: this is the right-hand-side of the least squares equation, involving

the updating of JTΩe values

• solve: this step dispatches the lhs and rhs to be solved by the PetSc

solver

• sse: sum-of-squares calculation to measure the error

• preprocessing and kernel generation are also shown

In this case, generating the kernels is relatively expensive, taking more than

2X the time the rest of the program uses. As we shall see with the next

dataset, this cost is constant. The biggest computational cost which seems
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to arise is, as we expected, the calculation of the left-hand-side, the Hamil-

tonian. These are expensive because of the relatively large number of op-

erations the kernel performs. Multiplying 3 3x3 matrices takes 54 multipli-

cation and 54 addition operations, and since we iterate over the constraints

in both rows and columns, we are updating the Hamiltonian over 4 such

blocks each time.

We also show the results from running on a larger dataset, the Manhattan

dataset with 3500 poses and 5598 constraints:

{’error’: 0.0020958423614501954,

’estimate’: 0.0022215366363525389,

’jacobian’: 0.0029551506042480467,

’lhs’: 0.019606590270996094,

’per_iter_setup’: 0.0005340576171875,

’rhs’: 0.0020139694213867189,

’solve’: 0.0038761615753173826,

’sse’: 0.0018854141235351562}

preprocess: 0.006884

generate kernels: 0.232810

setup data: 0.031318

total time per iteration: 0.035189

total time: 0.175944

Lastly, we present the table of timings using cProfile for the Manhattan

dataset:
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RunningTime Percentage Symbol Name

0.129 38.51% {select.select}
0.072 21.49% { instant module .wrap lhs }
0.039 11.64% {imp.load module}
0.028 8.36% {pyop2.op lib core.build sparsity}
0.021 6.27% {posix.read}
0.008 2.39% {posix.fork}
0.007 2.09% pyop2/petsc base.py:195(solve)

0.006 1.79% { instant module wrap jacobian block }
0.005 1.49% sympy/core/cache.py:78(wrapper)

0.005 1.49% {isinstance}
0.004 1.19% {built-in new of type object}
0.004 1.19% {numpy.core.multiarray.array}
0.003 0.90% sympy/core/basic.py:1772( preorder traversal)

0.002 0.60% balib.py:102(identity map)

0.002 0.60% subprocess.py:650( init )

The predominant expenditure of time comes from the select.select

Python system call, which interfaces with the Unix select call to commu-

nicate data via MPI. Unfortunately, this masks a large part of the profiling

as each op2.par_loop is in essence making MPI calls. Instant and PyOP2

calls comprise a majority of the rest of the execution costs, which is reas-

suring to know that slower Python calls are being avoided. The real power

behind PyOP2 is the ability to run over a variety of architectures and to

generate efficient code for those architectures at compile time. The examples

we have illustrated use a sequential backend, and spend some time in the

MPI communication phase. On larger datasets, and with other backends,

this cost can be partially offset.

5.2. Comparisons With Existing Software

We will look at g2o and iSAM packages as representative samples of ex-

isting bundle adjustment solutions. We obtained the timings by running

them on the same hardware (2GHz Intel i7) as we used in the previous sec-

tion. We found that these packages do not make full use of the resources

available. Specifically, g2o was found to use only 1-core of the 2-core ma-

chine (4 logical cores via hyperthreading). However, after examining the
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codebase, the authors did indirectly make use of vectorized calculations by

bit-aligning the data structures where necessary. Similarly iSAM is also lim-

ited to running on a single core. However, both packages rely on either Eigen

(a templated C++ matrix library) or Suite-Sparse (another popular C++

matrix library), which both, in turn, call highly tuned BLAS functions. The

package runs on the Manhattan dataset in approximately 415ms (according

to the console output). We show a representative breakdown of where the

package spent execution time (using the Instruments profiler in Mac OS X):

RunningTime Percentage Symbol Name

219.0ms 45.4% non-virtual thunk to isam::Slam::jacobian()

130.0ms 26.9% isam::CholeskyImpl::factorize()

70.0ms 14.5% cholmod factorize

48.0ms 9.9% cholmod analyze p2

5.0ms 1.0% cholmod solve

57.0ms 11.8% isam::SparseSystem::operator=()

32.0ms 6.6% isam::SparseMatrix:: SparseMatrix()

25.0ms 5.1% non-virtual thunk to isam::Slam::weighted errors()

The system spends about 50% of the time computing Jacobian blocks, and

another 27% on Cholesky factorization and solving the system. Our im-

plementation has ameliorated some of the cost of calculating the numerical

Jacobian, by obtaining the analytical derivative using Sympy.

Next, we profile g2o. This package has been seen to run comparably fast

compared to iSAM on the Intel dataset and 50% faster on the Manhattan

dataset. The Instruments profiler recorded the following timing costs for

this package:
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RunningTime Percentage Symbol Name

65.0ms 26.2% EdgeSE2::read(std::istream&)

17.0ms 6.8% VertexSE2::read(std::istream&)

11.0ms 4.4% readLine()

11.0ms 4.4% ParameterContainer::read()

8.0ms 3.2% OptimizableGraph::addEdge()

4.0ms 1.6% istream::operator>>()

53.0ms 21.3% BlockSolver<>::solve()

11.0ms 4.4% BlockSolver<>::buildSystem()

3.0ms 1.2% SparseOptimizer::computeActiveErrors()

3.0ms 1.2% BlockSolver<>::buildStructure()

4.0ms 1.6% EdgeSE2::computeError()

15.0ms 6.0% loadStandardSolver()

11.0ms 4.4% loadStandardTypes()

8.0ms 3.2% OptimizableGraph:: OptimizableGraph()

5.0ms 2.0% SparseOptimizer:: SparseOptimizer()

4.0ms 1.6% SparseOptimizer::initializeOptimization(int)

Of the total 250ms spent in running the g2o package on the Manhattan

dataset, it is interesting to note that almost 50% of the time is spent on

data IO operations. This is a symptom of the design choice made by the au-

thors to strongly couple the data loading and processing operations. Thus,

the user is forced to write a load() function for a new vertex or edge type

and implement the calculations needed to update measurement error func-

tion, Jacobian, and Hamiltonian calculation. We speculate that this design

choice maybe have been made to garner a speed improvement, however.

5.3. Remarks

We have shown that PyOP2 can allow the structuring and solving of bun-

dle adjustment problems without the sacrifice in performance that usually

comes with Python. Our code uses Python as a staging language, Sympy for

representing the mathematical formulation of measurement and error func-

tions, and PyOP2 for elegant graph representation and fast execution. It is

important to note that our implementation solves 2D bundle adjustment,

while the packages we have compared to also perform 3D solutions, and iter-

ative solvers. In practice, these features would not be difficult to implement
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with our design, but care would have to be taken to create the appropri-

ate indirection between poses and landmarks, especially when building the

Hamiltonian, since constraints connecting different vertex types may have

different dimensions. In practice, this could mean a larger memory overhead

to accommodate the larger pose type.

Our implementation was faster than iSAM and marginally faster than g2o.

We consider this a mixed result. First, we note that transitioning to a larger

dataset showed a relative speed improvement compared to other packages,

suggesting that even larger problems will have even greater benefit. Second,

we did not test the ceres-solver package due to data and time limitations.

In the next section, we state closing remarks and suggest potential avenues

for further research.
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6. Conclusion

In this thesis, our goal was to investigate application of the PyOP2 frame-

work in other contexts, specifically, in robot vision. The field of robot vision

is broad and requires a wide variety of disciplines to work together. We fo-

cused on the subset of problems in robot vision which deal with optimizing

measurements obtained from autonomous exploration of an environment.

We presented a viable solution. Our implementation is far from complete.

Realistic SLAM problems require considerations for camera calibrations. In

the rest of this chapter, we state concluding remarks along with an outline

for future work.

6.1. Results

We have presented our findings on an intuitive approach to building and

solving bundle adjustment problems of arbitrary size. We borrowed tech-

niques for addressing large parallel finite element calculations, as both prob-

lems, although disparate, can be represented by (hyper)graphs and use

sparse linear algebra algorithms at their core. We showed that the PyOP2

framework developed by the Software Optimization group at Imperial Col-

lege has broader applicability, reaching into scene recognition. The larger

result here is the performance portability of bundle adjustment in being

able to seamlessly generate highly performant code across current and fu-

ture computer architectures without a re-write and without sacrificing per-

formance. As we discuss in the next section, interesting graph problems are

also being tackled by computational neuroscientists as well as data scien-

tists analyzing neuronal and social graphs, respectively, where highly sparse

systems with a large degree of local connectivity, also know as small world

networks, also persist.

There are also downsides to this approach. For one, the implementation

phase can be protracted due to limited debugging visibility. First, symbolic
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problem definition does not allow the user to inspect data values incremen-

tally as they are evaluated lazily. Second, code generation implies that the

implementer’s code is only a representation of the code being run and not

the code itself. As with all parallel programming tools, PyOP2 does not

allow for easy introspection of program execution, and allows for limited

modularity. Both of these points make unit tests difficult to construct.

Lastly, PyOP2 was made with finite elements in mind and some operations,

such as reading from sparse matrix structures to update other Dat variables

is not supported. Further support for more fine grained data manipulation

support would also be helpful in easing ease-of-use for other applications.

6.2. Future Work

We have touched on some computational bottlenecks in bundle adjustment

problems and provided some methods of solving them. Using PyOP2 pro-

vides a framework in which kernels can be executed and matrix equations

can be solved across various architectural backends. Next steps in this re-

search should first expand our current implementation to more complicated

scenarios such as 3D poses and landmarks, as well as camera calibrations.

It would also be interesting to cover more general kernel generation tools,

similar to what UFL already does for finite element problems. We believe it

is important to continue to explore the sparsity structure of resulting Hes-

sian matrices in bundle adjustment problems. Also, due to time constraints,

we neglected to test the performance of one of the potentially more inter-

esting bundle adjustment solvers, the Multicore Bundle Adjustment solver

by Wu et. al. [27]. They cited significant speedup from running GPU-

enabled code and a comparison to PyOP2 would give further insight into

either the efficiency of the PyOP2 framework (if it’s faster) or potential for

future improvements (if it’s slower). Most recently, engineers at Facebook

have shown how to perform scalable computations on a trillion-edge graph

[8]. A great future project would be to create a back-end implementation

for Giraph in PyOP2. This could open the door for solving very large scale

sparse system problems including bundle adjustment.

Lastly, other minimization techniques have been largely overlooked in this

field, justifiably so due to the efficiency of modern matrix solvers. However,

Duckett [9] provides an example of using genetic algorithms to search the

50



high dimensional solution space for optimal parameters and solve SLAM,

although benchmark comparisons with bundle adjustment were not done.

It may also be worth exploring whether genetic algorithms are efficient to

finding bundle adjustment solutions. Other techniques from machine learn-

ing, such as support vector machines and graphical models, should also be

used instead of solely relying on direct linear algebra methods.
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A. Some Code

In this section, I provide some of the code used in the examples in this

thesis. Some pieces of code rely on other software libraries. They should be

obvious from the first few lines of each listing.

Listing A.1 is an example of setting up a simple bundle adjustment prob-

lem with 2 camera calibrations k1, k2, 3 poses 1, 2, 3, and 8 landmarks

a, b, c, d, e, f, g, h. We build the matrix structure naively only to demonstrate

the sparsity nature of the resulting Jacobian and Hamiltonian matrices.

Listing A.1: Building Toy Bundle Adjustment Matrices

1 import numpy as np

2 import scipy

3 import scipy.sparse as sp

4 import scipy.sparse.linalg as la

5 from collections import OrderedDict

6 from operator import itemgetter

7

8 data = OrderedDict ()

9

10 data[’a’] = [1]

11 data[’b’] = [1, 2]

12 data[’c’] = [1, 3]

13 data[’d’] = [1, 3]

14 data[’e’] = [1, 2]

15 data[’f’] = [2, 3]

16 data[’g’] = [2, 3]

17 data[’h’] = [2]

18

19 cameras = OrderedDict ()

20

21 cameras[’k2’] = {’features ’: [’a’, ’b’, ’c’, ’d’], ’images ’:

[1, 3]}

22 cameras[’k1’] = {’features ’: [’e’, ’f’, ’g’, ’h’], ’images ’:

[2]}
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23

24 def unique_params(d):

25 u = set(item for sublist in d.itervalues () for item in

sublist)

26 return sorted(u)

27

28 def offsets(d):

29 off = {}

30 key_iter = d.iterkeys ()

31 start_key = key_iter.next()

32 off = {start_key: 0}

33 cumulative = len(d[start_key ])

34 for k in key_iter:

35 off[k] = cumulative

36 cumulative += len(d[k])

37 return off , cumulative

38

39 def showJacobian ():

40 N = unique_params(data)

41 M = len(data.keys())

42 off , C = offsets(data)

43 key_idx = {k: v for (k, v) in zip(data.keys(), range(M))}

44 val_idx = range(M, M + len(N), 1)

45

46 Poses = scipy.sparse.dok_matrix ((C, M), dtype=float)

47 Params = scipy.sparse.dok_matrix ((C, len(N)), dtype=float)

48 for k, v in data.iteritems ():

49 row_mask = range(off[k], off[k] + len(v))

50 col_idx = data.keys().index(k)

51 Poses[row_mask , col_idx] = np.random.normal ()+5

52 for i in range(len(v)):

53 Params[off[k]+i, N.index(v[i])] = np.random.normal

()+5

54

55 Cams = scipy.sparse.dok_matrix ((C, len(cameras)), dtype=

float)

56 for k, v in data.iteritems ():

57 for i, cam in enumerate(cameras.values ()):

58 indexes = list(set(cam[’images ’]) & set(v))

59 print [v.index(x) + off[k] for x in indexes],

indexes

60 Cams[[v.index(x) + off[k] for x in indexes], i] =

np.random.normal ()+5

61
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62 J = sp.hstack ([sp.hstack ([Poses , Params ]), Cams])

63

64 fig = figure ()

65 ax1 = fig.add_subplot (111)

66 ax1.spy(J.todense (), markersize =5)

67 plt.show()

68

69 def showHamiltonian ()

70 Hcsr = Jcsr.transpose () * Jcsr

71 fig = figure ()

72 ax1 = fig.add_subplot (111)

73 ax1.spy(Hcsr.todense (), markersize =5)

74 plt.show()

Listing A.1 shows an example of how we load data from delimited files

(as is typical of input data) and process the information for a 2D poses-only

bundle adjustment problem. Using the pandas.DataFrame data structure

to store edges and vertices separately provides an efficient way of handling

the information we process: for vertices, the parameters x, y, θ and for edges,

the parameters dx, dy, dθ as well as the structure of the inverse measurement

covariance matrix Ω, which has 6 degrees of freedom: Ω00 Ω01 Ω02

Ω01 Ω11 Ω12

Ω02 Ω12 Ω22



Listing A.2: Loading g2o Data Into pandas.DataFrame

1 import numpy as np

2 import pandas as pd

3 import csv

4

5 EDGE_COLS = [’index’, ’x_coord ’, ’y_coord ’, ’theta_coord ’, ’

omega_0_0 ’, ’omega_0_1 ’, ’omega_0_2 ’, ’omega_1_1 ’, ’

omega_1_2 ’, ’omega_2_2 ’]

6 VERTEX_COLS = [’index ’, ’x’, ’y’, ’theta ’]

7

8 def drop_empty(row):

9 return [item for item in row if item != ’’]

10

11 def loadFromFile(filepath):
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12 vertices = []

13 edges = []

14 with open(filepath , ’r’) as fd:

15 reader = csv.reader(fd, delimiter=’ ’)

16 for row in reader:

17 if ’VERTEX ’ in row [0]. upper ():

18 vertices.append(np.float64(

drop_empty(row [1:]) ))

19 elif ’EDGE’ in row [0]. upper ():

20 edges.append(np.float64(

drop_empty(row [1:]) ))

21

22 edges_dataframe = pd.DataFrame( edges , columns =

EDGE_COLS )

23 vertices_dataframe = pd.DataFrame( vertices , columns =

VERTEX_COLS)

24

25 return edges_dataframe , vertices_dataframe

Listing A.3: Retrieving g2o Data

1 import pandas as pd

2 def quickLoad(filepath , delim=’ ’):

3 max_num_cols = 30

4 df = pd.read_csv(filepath ,

5 delimiter=delim ,

6 names =[str(x) for x in range(max_num_cols)

]

7 ).dropna(axis=1, how=’all’)

8

9 edges_mask = (~pd.isnull(df)).all(axis =1)

10 edges = df.ix[edges_mask]

11 vertices = df.ix[~ edges_mask ]. dropna(axis =1)

12

13 vertices.rename(columns ={’0’: ’label ’, ’1’: ’index ’},

inplace=True)

14 vertices.rename(columns ={ str(i) : ’dim%d’%(i-1) for

15 i in range(2, len(vertices.

columns)) }, inplace=True)

16

17 edges.rename(columns ={’0’ : ’label’, ’1’: ’from_v ’, ’2’: ’

to_v’ }, inplace=True)

18 edges.rename(columns ={ str(i) : ’meas%d’%(i-1) for

58



19 i in range(3, len(edges.columns)) },

inplace=True)

20

21 return vertices , edges

Here, we present a code listing which demonstrates the power of Sympy to

symbolically differentiate mathematical expressions. The resultant objects

are then used in listing A.5 to produce kernel code passed to PyOP2 for

parallel execution.

Listing A.4: Automatic Differentiation with Sympy

1 from sympy import *

2

3 def e_x(p_x , p_y , q_x , q_y , p_theta , q_theta):

4 """ symbolic x-component of error in SE2 """

5 return (q_x - p_x)*cos(p_theta) + (q_y - p_y) * sin(

p_theta)

6

7 def e_y(p_x , p_y , q_x , q_y , p_theta , q_theta):

8 """ symbolic y-component of error in SE2 """

9 return -(q_x - p_x)*sin(p_theta) + (q_y - p_y) * cos(

p_theta)

10

11 def e_theta(p_x , p_y , q_x , q_y , p_theta , q_theta):

12 """ symbolic theta -component of error in SE2 note that

13 this should only be used for differentiation as Sympy

14 cannot differentiate the Mod() function

15 """

16 return p_theta - q_theta

Listing A.5: C Code Generation Using Sympy

1 from sympy.utilities.codegen import codegen

2

3 jacobian_code = {}

4 for err_dim in [’e_x’, ’e_y’, ’e_theta ’]:

5 for dim in [’p_x’, ’p_y’, ’p_theta ’, ’q_x’, ’q_y’, ’q_theta

’]:

6 deriv = ’d\%s_d\%s’\%( err_dim , dim)

7 error_func = eval(err_dim)

8 generated_code = codegen ((deriv , diff(error_func(p_x ,

p_y , p_theta , q_x , q_y , q_theta), eval(dim))), ’C’,

deriv)[0][1]
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9 start = jacobian_code(’return ’)+7

10 end = jacobian_code(’;’)

11 jacobian_code[deriv] = generated_code[start:end]

For generating the right-hand-side and left-hand-side of the sparse least

squares problem we provide listings A.6 and A.7.

Listing A.6: C Code Generation Using Sympy

1 def generateRHSCode(name):

2 """ pass in a name and get back a PyOP2 kernel which

computes the vector:

3 J-transpose * Omega * e

4 This is general enough to allow situations where we

have hypergraphs ,

5 i.e. the number of ’vertices ’ is not equal 2 per ’edge’

6 """

7

8 # code for omega * e; do this first because it is

independend of poses

9 omega_ij = [(i, j) for i in xrange(CONSTRAINT_DIM) for j in

xrange(CONSTRAINT_DIM) if j >= i]

10 omega_err = []

11 for i in xrange(CONSTRAINT_DIM):

12 row = []

13 for j in xrange(CONSTRAINT_DIM):

14 idx = omega_ij.index((j,i)) if i > j else omega_ij.

index ((i,j))

15 row.append( ’omega [\%d] * err [\%d]’ \% (idx , j) )

16 omega_err.append(’omega_times_err [\%d] = \%s;’ \% (i, ’

 + ’.join(row)))

17

18 code = []

19 for i in xrange(CONSTRAINT_DIM):

20 row = []

21 for j in xrange(POSES_DIM):

22 row.append( ’J[\%d*i + \%d] * omega_times_err [\%d]’

\% (CONSTRAINT_DIM*POSES_DIM , j*CONSTRAINT_DIM

+ i, j))

23 code.append( ’rhs_vector[i][\%d] -= \%s;’ \% (i, ’ + ’.

join(row)) )

24 rhs_code = """

25 void \%( name)s(double err [\%( c_dim)d], double J[\%( j_dim)d

], double omega [\%( o_dim)d], double * rhs_vector [\%(

p_dim)d])
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26 {

27 double omega_times_err [\%( c_dim)d];

28 \%( omega_err)s

29 int i = 0;

30 for ( ; i < \%( poses_per_constraint)d; ++i ) {

31 \%( code)s

32 }

33 }

34 """ \% { ’name’ : name , ’poses_per_constraint ’ :

POSES_PER_CONSTRAINT , ’j_dim ’ : CONSTRAINT_DIM *

POSES_DIM * POSES_PER_CONSTRAINT , ’j_subblock_dim ’ :

CONSTRAINT_DIM * POSES_DIM , ’o_dim ’ : OMEGA_DOF , ’p_dim

’ : POSES_DIM , ’c_dim ’ : CONSTRAINT_DIM , ’omega_err ’ :

’\n’.join( omega_err ), ’code’ : ’\n’.join(code) }

35

36 if _PRINT_CODE:

37 print rhs_code

38 return op2.Kernel( rhs_code , name)

Listing A.7: Generating the Hamiltonian Kernel

1 def generateHamiltonianCode(name , lm_param):

2 """ pass in a name string and a float representing the

Levenberg -Marquardt parameter

3 for H + lm_param * D

4 the Hamiltonian is a NUM_POSES*POSES_DIM by NUM_POSES*

POSES_DIM square matrix but

5 is calculated by iterating over constraints , since that

is how the jacobian blocks

6 are obtained;

7 """

8 JBLOCK_SIZE = POSES_DIM * CONSTRAINT_DIM

9

10 posdef_partial = partial( normal_to_posdef , dim=

CONSTRAINT_DIM )

11

12 block_code = [’j_t_omega [\%d] = \%s;’ \% (i*CONSTRAINT_DIM

+ j, dotproduct(’J’, i, 1, ’omega’, j, CONSTRAINT_DIM ,

CONSTRAINT_DIM , idxFunc2=posdef_partial , prefix1=’\%d*j

+’\%( JBLOCK_SIZE))) for i in xrange(POSES_DIM) for j in

xrange(POSES_DIM)]

13

14 update = [’H[\%d][\%d] += \%s;’ \% (i, j, dotproduct(’

j_t_omega ’, i*CONSTRAINT_DIM , 1, ’J’, j, CONSTRAINT_DIM
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, CONSTRAINT_DIM , prefix2=’\%d*i+’\%( JBLOCK_SIZE))) for

i in xrange(POSES_DIM) for j in xrange(POSES_DIM)]

15

16 hamiltonian_code = """

17 void \%( name)s(double J[\%( j_dim)d], double omega [\%( o_dim)

d], double H[\%( p_dim)d][\%( p_dim)d], int i, int j)

18 {

19 double j_t_omega [\%( j_t_omega_dim)d];

20 \%( jacT_times_omega)s

21 \%( update)s

22 }

23 """ \% { ’name’ : name ,’j_t_omega_dim ’ : CONSTRAINT_DIM *

POSES_DIM , ’p_dim’ : POSES_DIM , ’c_dim ’ :

CONSTRAINT_DIM , ’o_dim’ : OMEGA_DOF , ’

poses_per_constraint ’ : POSES_PER_CONSTRAINT , ’

jacT_times_omega ’ : ’\n’.join( block_code ), ’update ’ :

’\n’.join( update ), ’j_dim ’ : JBLOCK_SIZE *

POSES_PER_CONSTRAINT }

24

25 lm_kernel = generateHamiltonianDiagonalCode(name + ’_lm’,

lm_param)

26 if _PRINT_CODE:

27 print hamiltonian_code

28 return op2.Kernel(hamiltonian_code , name), lm_kernel
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