Department of Computing, Imperial College London

MEng Individual Project

Aspect Oriented Design for
Dataflow Engines

June 2013

Author Supervisors

Paul Grigoras Prof. Wayne Luk
Dr. Stephen Weston

Submitted in part fulfilment of the requirements for the degree of
Master of Engineering in Computing of Imperial College London

Abstract

Dataflow designs implemented on custom streaming architectures can be orders of mag-
nitudes more efficient than traditional software, but they are developed with reduced
productivity. We propose a novel design flow for generating dataflow designs based on
Aspect-oriented programming and explain how the proposed approach can be used to
decouple design optimisation from design specification by encapsulating optimisations
in separate aspect descriptions, which leads to improved productivity and efficiency. To
support this approach we introduce a novel dataflow language that facilitates integra-
tion with existing aspect weaving tools and simplifies design development by supporting
embedded hardware/software co-design, flexible number representation and run-time
reconfiguration. We introduce novel aspect descriptions that specify system-level and
implementation level optimisations strategies as well as strategies for improving devel-
oper productivity. We evaluate our approach on a number of applications, including
advanced high-performance applications, such as the Reverse Time Migration technique
for seismic imaging, and show that efficient dataflow designs up to 100 times faster than
equivalent software only implementations can be derived with improved productivity.

Acknowledgements

I would like to thank:

Professor Wayne Luk, for providing the inspiration for this project and guidance
throughout

Dr. Jose Gabriel Coutinho, for invaluable feedback and suggestions and including
this work in the HARNESS project and providing the original source code for the
Add Predictor kernel

Xinyu Niu, for providing the original source code and background on the Reverse
Time Migration and Black Scholes applications

Dr. Timothy Todman and Dr. Stephen Weston, for providing constructive sug-
gestions regarding the evaluation process

Maxeler Technologies, especially Jacob Bower and Oliver Pell for their constructive
suggestions on improving our paper and approach

the anonymous reviewers of our paper for some interesting suggestions regarding
future work

my family and friends for their continuous support

Contents

1 Introduction

1.1 Motivation e e e e e
1.2 Challenges e
1.3 Contributions
1.4 Published Work
2 Background
2.1 Dataflow Computing
2.2 TFPGA Acceleration e
2.2.1 Architecture
2.2.2 Run-time Reconfiguration
2.2.3 Maxeler Platform
2.3 Stencil Computation L L
2.3.1 Numerical Differentiation
2.3.2 Black Scholes Equation
2.3.3 Reverse Time Migration
2.4 Aspect Oriented Programming
2.4.1 LARA e
2.5 Related Work e
2.5.1 High Level Synthesis
2.5.2 Dataflow Languages
2.5.3 Aspect-driven Compilation of FPGA Designs
2.6 SUMMATY e e e
3 Design Flow
3.1 Design Goals e
3.1.1 Performance and Energy Efficiency
3.1.2 Productivity
3.2 Components e e e e e
3.3 Comparison with Existing Approaches
3.4 EXtensions e e e

3.4.1 Design Modelling o

11
12
13

14
14
15
16
16
18
22
22
23
24
24
25
27
27
27
28
28

Contents iii
3.4.2 Run-time Reconfiguration Support 37

3.5 Summary e e 39

4 The FAST Language 41
4.1 Design Goals 41
4.2 Features e 42
4.2.1 Kernels and Streamso L oo o oL 44

4.2.2 Control and Computation 49

423 Pragmas. e 49

4.3 Extensions. e e 50
4.3.1 Inferring Stream Typeo oL 50

4.3.2 Multiple Kernel Supporto 51

4.4 Revised FAST Example, 52
4.5 The fastc Compiler 52
4.6 SUMMATY v v vt e e e e e 55

5 Aspect Descriptions 57
5.1 System Aspect Descriptions L 58
5.1.1 Hardware/Software Partitioning 59

5.1.2 Monitorisation Lo L oo 60

5.1.3 Modelling e 62

5.1.4 Run-time Reconfiguration 63

5.2 Implementation Aspect Descriptions 64
5.2.1 Operator Optimisation 65

5.3 Exploration Aspect Descriptions 66
5.3.1 Iterative Design Space Exploration 67

5.4 Development Aspect Descriptions 68
5.4.1 Debugging Aspect 68

5.5 Summary 69

6 Evaluation 70
6.1 Numerical Differentiation 72
6.2 Black Scholes 74
6.3 Reverse Time Migration 75
6.4 Bitonic Sort 79
6.5 Add Prediction e 81
6.6 Summary e e 82

7 Conclusion 84
7.1 Summary of Achievements L. 84
7.2 Future Work 85

A User Guide 94

Contents iv

B Original RTM Kernel 95
C Original Memory Read Kernel 99
D FAST Dataflow Kernels 100
D.1 Numerical Differentiation 100
D.2 Add Prediction e 101

E Experimental Data 103

List of Figures

2.1

2.2

2.3

3.1
3.2

3.3
3.4

4.1

5.1
5.2
5.3
5.4
5.5

5.6

6.1

6.2

Comparison between general purpose CPU architecture and a streaming
Data Flow Engine. In the case of the latter instructions are not stored in
memory but encoded in the dataflow graph.
Structure of an FPGA block: Configurable Logic Blocks (CLB), Inter-
connect, Input/Output Blocks (IOB) and Embedded Memory (BRAM).
Source: http://www.origin.xilinx.com/fpga/.
The Maxeler acceleration solution: the DFE is connected to the host
machine via PCle. The board comprises 48GB of DRAM and a Virtex 6
FPGA chip. o

Proposed approach for aspect-driven compilation of dataflow designs. . . .
High-level aspects controlling generation of design resource, performance

and timing modelling.
Revised design flow to support run-time reconfiguration
Run-time architecture required to support run-time reconfiguration

Section of a dataflow graph generated using fastc.

Aspect weaving overview. e e
Reconfiguration aspect.
The FAST balancing pragma provides fine grained control over the map-
ping of computation to either DSPs or LUT/FF pairs.
Aspect for exploring mapping of computation to DSP blocks.
Exploration aspect that generates multiple FAST designs by varying a de-
sign attribute (e.g. number of kernels or mantissa) until a LUT threshold
isreached.
Aspect for automatically instrumenting the code to watch any change in
the value of a program variable.

Bandwidth / computation ratio exploration using the iterative exploration
aspect description.
Exploration of accuracy vs resource usage trade-offs using the aspect
shown in Figure 5.5 with variable mantissa.

66

http://www.origin.xilinx.com/fpga/

List of Figures vi

6.3 Exploration of DSP and LUT/FF balancing for functional units imple-

menting a single arithmetic operation using the aspect shown in Fig. 5.4. 78
6.4 Scalability of the RTM dataflow design explored using the aspect shown

in Fig. 5.5, L 78
6.5 Speedup vs CPU of the bitonic sorting network designs for large batches

of small inputs. 80

List of Tables

4.1
4.2
4.3

4.4

4.5

5.1
5.2

6.1

6.2
6.3
6.4
6.5

6.6
6.7

E1
E.2

Summary of the main features of the FAST language. 44
Mapping of parameters from CPU function calls to FAST dataflow kernel. 46
FAST custom data type for variable bit width integer, fixed and floating-

point values.o 48
Syntax, paradigm and support comparison of the FAST/LARA approach
and existing dataflow implementations.o 55
Implementation, parametrisation and optimisations comparison of the
FAST/LARA approach and existing dataflow implementations. 56
Types of Aspects used in FAST 59
An example of a hardware partition, represented as a hash table, used
with the reconfiguration aspect (Fig. 5.2) 65
Pipeline scalability of the numerical differentiation algorithm for a 7 point
stencil.o 73
Resource usage per stencil width, per kernel, per compute pipe. 74
Code measures for the RTM kernels comparing FAST and MaxCompiler. 76
Resource usage vs accuracy trade-off exploration data. 7
Results of exploring different network sizes and data types for the bitonic
sorting networko oL 81
Design exploration space for the Add Prediction kernel. 82
Lines of code, API calls performance and resource usage ratio of original
manual MaxCompiler design and FAST design. 83
Design space exploration results for the RTM benchmark application. . . 104

Speedup results for the FPGA sorting network compared to the CPU
only version. Points after which it becomes convenient to use FPGA
acceleration are highlighted. 105

Listings

2.1
2.2

2.3
2.4

2.5

4.1
4.2
4.3
4.4
4.5
5.1
5.2

5.3
5.4
5.5
6.1

Original three point moving average computationin C.
Kernel design for the three point moving average computation showing
features such as stream offsets, arithmetic and control which will have to
be supported by our MaxC language
Manager design for the three point moving average computation
Host example for queueing the input and output streams and running the
three point moving average design.
Example LARA description for fully unrolling innermost loops with an
iteration count smaller than or equal to 16.
FAST dataflow kernel for Black Scholes Options pricing
Simple FAST dataflow kernel.
FAST kernel using offsets.,
Compute and control example in FAST
FAST dataflow kernel for European Options pricing
Mapping of C function calls to dataflow kernels using FAST pragmas.
Aspect that instruments the application to monitor loop activity. The
information generated can be used to identify hotspots.
Aspect for modelling resource usage of arithmetic operations.
Aspect for modelling pipeline depth of arithmetic kernels.
Higher-level aspect for modelling design resource usage.
FAST Memory Controller Kernel

21

Chapter 1

Introduction

Existing work shows that dataflow machines emulated on FPGAs achieve significant
performance gains compared to multi-core processors when implementing high through-
put, highly parallel applications that operate on large, uniform data sets [1, 2]. For
example, an implementation of Reverse Time Migration, an advanced seismic imaging
application, has been shown to be 103 times faster and 145 times more energy efficient
than an optimised implementation running on a multi-core microprocessor [3]. However,
the dataflow paradigm is not widely adopted and imperative languages are significantly
more popular [4]. The fact that a large number of high-performance applications are
written in C/C++ indicates the attraction and potential of translating programs in
these languages to dataflow designs to improve performance and energy efficiency. Once
the dataflow design for a particular application has been generated, it is optimised for
the target architecture to maximise performance subject to constraints such as latency,
power consumption or cost. Even when performed manually, this approach can result in
significant performance improvements. Therefore, enhancing productivity of developers
using this approach would have a significant impact and is exactly what this project
would address.

1.1 Motivation

The translation and optimisation process is laborious and involves many manual, slow
and error-prone steps, that can include even a complete redesigning of the original algo-
rithm. Additionally, high-performance applications rely heavily on complex architecture
specific optimisations. Transformations that enable hardware/software partitioning [5],
low level optimisations (e.g. operator bit width [6]) or high level optimisations (such
as loop unrolling [7], blocking and tilling [8]) obscure the application’s original purpose,
reducing maintainability. Furthermore, since some optimisations depend on platform
specific properties (e.g. bit width of Digital Signal Processors), mixing them with the

1.1. Motivation 10

application code affects portability, complicating the process of targeting different plat-
forms without repeating the optimisation process. Finally, due to the large number
of design choices, an incomplete manual exploration can lead to sub-optimal results.
Considering these issues in the context of cloud computing solutions that are expected
to provide heterogeneous acceleration for a plethora of customer applications, the need
for fully automated and portable code generation for high-performance designs becomes
apparent. In addition, the ability to automatically explore various trade-offs between
price, performance and energy efficiency would provide cloud owners with flexibility in
implementing their business offering.

Hence it is important to decouple these transformations from the application logic, al-
lowing them to be reused on multiple platforms and facilitating design space exploration.
Using Aspect Oriented Programming [9], this can be achieved by separating cross-cutting
concerns, such as optimisations and structural transformations, from the main algorithm
and encapsulating them in separate aspect descriptions. Additionally, aspect descrip-
tions can be used to capture non-functional requirements which may include constraints
on power consumption, data rate, latency, execution time etc. For example in a cloud
computing environment which manages many applications simultaneously, automated
optimisation techniques based on aspect descriptions can be used to adapt implemen-
tations to fit long or short term power and performance goals. These strategies could
exploit the run-time reconfiguration potential of FPGA chips to vary between existing
implementations based on input characteristics, or map the applications to different
accelerators.

Hence, the importance of the project lies in the potential to:

1. improve performance of existing imperative applications by orders of
magnitude, by automating the translation to FPGA dataflow designs and pro-
viding an automated aspect-driven framework for exploring the design space of
optimisation techniques applicable to fully customisable acceleration devices;

2. address portability issues of massively parallel applications, by using a
novel aspect-driven synthesis flow which allows specification of platform indepen-
dent optimisation strategies, possibly addressing global challenges in Exascale com-
puting by allowing a portable expression of parallelism and data locality [10, pp.
46 — 50];

3. greatly increase developer productivity, by automating the translation and
optimisation process thus removing the potential for human error and facilitating
the reuse of portable designs and optimisation strategies which could significantly
reduce development time, given the lengthy compilation process on high-end FPGA
devices [11, pp. 23 — 28|.

Consequently, the project could significantly improve performance of state of the art
dataflow designs and simplify the development and maintenance of applications in key
areas where high-performance dataflow computing is used such as finance [12, 13], geo-

1.2. Challenges 11

science [14], weather forecasting [15] and cloud computing [16].

1.2 Challenges

Combining the dataflow paradigm with an aspect driven synthesis flow could be expected
to result in improved performance, portability and developer productivity. We believe
that the following challenges need to be addressed to facilitate the adoption of dataflow
designs:

1. Specifying dataflow designs, in an intuitive, well understood language that is
concise, facilitates the translation of existing designs, and is sufficiently expressive
to support the requirements of modern high-performance applications. Compared
to the solution used in [17], this requires significant structural transformations to be
captured and applied via aspect descriptions to transform the original imperative
source into a dataflow implementation. However, results show that significant
speedups can be achieved by targeting streaming architectures [18].

2. Specifying optimisation strategies, decoupled from the application code in
a manner that makes the specification easy to reuse and to customise, and is
comprehensive enough to allow capturing of optimisations at various levels: al-
gorithmic transformations of the original application that expose parallelism or
improve communication between CPU and accelerator, design-level transforma-
tions that enable exploration of platform specific optimisations and productivity
related transformations that improve developer productivity. Existing implemen-
tations for streaming architectures often require intricate specialisation steps to
adapt and optimise the original application. These can be encapsulated in aspect
descriptions and reused for multiple applications, simplifying the design process.
For example, [3] shows that using run-time reconfiguration to swap an application’s
idle sections with useful functions at run-time can lead to a 45% performance im-
provement. Aspect-driven synthesis could be used to automate this optimisation,
enabling its application for a broader class of programs.

3. Systematic design space exploration of dataflow designs driven by these pa-
rameterizable optimisation strategies, that increase developer productivity and
allow exploration of design level trade-offs.

4. Applying these design techniques to create and optimise high-performance
applications.

In this project we investigate how these challenges can be addressed by using an aspect-
driven synthesis and optimisation process to improve both design performance and de-
signer productivity. This is achieved by allowing the specification of reusable optimi-
sation strategies, and decoupling them and platform specific transformations from the
original application making it easier to maintain and more portable. We study how tech-

1.3. Contributions 12

niques of Aspect Oriented Programming can be applied to the compilation and optimisa-
tion of designs targeting streaming Data Flow Engines (special computing devices built
around Field Programmable Gate Array chips that implement the dataflow paradigm of
computation). This includes identifying efficient compiled patterns for streaming DFEs
and how such patterns can be obtained from high level descriptions using AOP design
techniques.

We identify the following objectives:

1. Introduce a design flow that can be applied to integrate dataflow tools for FPGAs
with flexible aspect weaving and design space exploration tools

2. Identify novel aspect descriptions that enable design space exploration of dataflow
designs from high level descriptions.

3. Capture dataflow and platform specific optimisations using aspect descriptions and
apply them to the generated designs.

4. Fvaluate the approach by implementing advanced high-performance applications.

In the next section we identify how these objectives can be met.

1.3 Contributions

We propose a methodology for addressing the challenges and meeting our objectives
based on the following contributions:

1. We propose a novel, automated method for design space exploration of dataflow
designs, driven by optimisation and transformation strategies captured with aspect
descriptions. This design flow is introduced in chapter 3.

2. We introduce FAST, a novel dataflow language based on C99 syntax that can be
used to create high-performance designs. The language is used as part of the pro-
posed design flow to implement dataflow kernels. Chapter 4 provides an overview
of the FAST language.

3. We present novel aspects for specifying optimisation strategies at the system level,
the implementation level, the exploration level and development level. We im-
plement these aspects using LARA, an aspect oriented language for embedded
reconfigurable systems. We present the aspect descriptions in chapter 5.

4. We implement a compiler that translates designs in FAST to MaxCompiler designs
which are then compiled and executed on a Maxeler MaxWorkstation containing
a MAX3 DFE with a Virtex 6 FPGA chip and 24GB of DRAM.. We present an

overview of our implementation in Chapter 4.5.

1.4. Published Work 13

5. We evaluate our approach by implementing a high-performance design for an ap-
plication based on the Reverse Time Migration technique for seismic imaging [3].
We discuss the results in Chapter 6.

1.4 Published Work

As part of the project a full paper has been accepted for publication at the 24th IEEE
International Conference on Application-specific Systems, Architectures and Processors,
ASAP 2013'. The paper “Aspect Driven Compilation for Dataflow Designs” [19] is based
on material from Chapters 3, 4 and 5 of this report and introduces the proposed design
flow, the FAST language and a number of aspect descriptions for improving productivity
and analysing resource trade-offs.

A second full paper is being drafted for submission at the 2013 International Conference
on Field-Programmable Technology, ICFPT 20132. This is based on material from
Chapter 5 and introduces aspect descriptions for run-time reconfiguration.

Finally, the approach and software implementation described in this report were included
into the FP7® funded HARNESS Project. HARNESS* aims to integrate heterogeneous
computing resources into cloud platforms in order to reduce energy consumption and
increase performance and cost effectiveness of key cloud application in areas such as
finance and geoscience. The FAST language and fastc compiler will be used in the
process of generating efficient dataflow implementations for key algorithms based on
cloud owner requirements.

http://asap-conference.org/
*http://wuw.fpt2013.org/

3European Union Seventh Framework Programme
“http://www.harness-project.eu/?page_id=21

http://asap-conference.org/
http://www.fpt2013.org/
http://www.harness-project.eu/?page_id=21

Chapter 2

Background

In this chapter we compare streaming data flow architectures with traditional, general
purpose architectures and we describe the Maxeler hardware acceleration solution and
the MaxCompiler toolchain and APT which represent the target of the MaxC compilation
process. We also look at the LARA language which will be used as part of the design flow
to specify and apply optimization strategies both to the original source code and to the
resulting dataflow design. We present related work in the areas of high level synthesis
tools, dataflow languages and aspect-driven compilation for FPGA designs and explain
how our approach differs from existing work in these fields.

2.1 Dataflow Computing

Although general purpose computing devices offer a convenient programming paradigm,
the traditional fetch - decode - execute cycle is inherently sequential and relies on in-
efficient access to external memory. To compensate for this a large area of a modern
CPU core is dedicated to caches, branch prediction units and out-of-order scheduling
and retirement units. This reduces the area of the chip available for performing useful
computation. Furthermore, although multicore programing is an answer for the proces-
sor power wall (which prevents increases in operating frequency beyond a certain point,
limiting the processing speed of a single core device), there are classes of algorithms
whose performance does not scale linearly with the number of cores. This is especially
true when operating on large volumes of data with poor spatial locality that do not fit
into a CPU’s on-chip cache such as algorithms involving sparse matrix computations or
convolution [20]. Although this model offers good flexibility when dealing with arbitrary
access patterns, it is not efficient for large volumes of highly regular data.

The dataflow computing paradigm operates differently form the general purpose com-
puting paradigm (as shown in Figure 2.1), being designed to be efficient at processing

2.2. FPGA Acceleration 15

large volumes of data. It works by creating a streaming dataflow graph of computational
nodes, which operates as a large computational pipeline: input data is streamed in se-
quentially through each pipeline stage and output data is streamed out. This results in
a highly pipelined design that can be statically scheduled achieving throughput rates of
one value per cycle by completely avoiding pipeline hazards. This means that a design
running at a few hundred megahertz can outperform a CPU implementation running at
a few gigahertz while being more energy efficient [18].

CPU DFE
Functional Memory -
Unit Controller
[2]
c
k]
| o g
£ 8 8
3
®
a
Memory Memory

Figure 2.1: Comparison between general purpose CPU architecture and a streaming
Data Flow Engine. In the case of the latter instructions are not stored in memory but
encoded in the dataflow graph.

2.2 FPGA Acceleration

Dataflow computing is a general computing paradigm that could be applied to various
architectures such as multi-core, GPUs, Cell processor arrays or ASICs. In this project
we chose to focus on FPGAs for the following reasons:

e FPGAs provide greater flexibility and lower time-to-market than ASICs;

e FPGAs present exciting low-level optimisation opportunities such as word-
length optimisations or exploiting run-time reconfiguration potential to improve
performance at run-time;

e FPGAs are considerably more power efficient than multi-core CPUs and GPUs;

e FPGAs offer a predictable performance model, due to static scheduling and

2.2. FPGA Acceleration 16

lack of thread barriers or other traditional synchronisation mechanisms;

One major limitation of FPGAs compared to CPUs and GPUs is the long development

time.

This is caused by:

large compilation time — compilation time of a single FPGA design can vary
from 20 minutes to several days even on multi-core clusters with large amount of
memory can range from);

lack of high-level tools — although high-level tools such as MaxCompiler (Sec-
tion 2.2.3 exist that can automate the build process and simplify considerably
the design of dataflow pipelines, these are not high level enough to permit ex-
pressing algorithms in an intuitive, well-understood approach; additionally they
do not abstract the underlying hardware architecture, the programmer having to
constantly deal with adjusting the latency of various design components, perform
optimisations that allow the design to build at higher frequencies etc.;

large design space — this leads to the need to explore a large design space which
is a time consuming process, especially given long compilation times;

2.2.1 Architecture

FPGAs are logic chips that can be reconfigured in seconds to implement custom appli-
cations. Hence they offer a much shorter time to market than traditional ASIC! based
solutions, while still being able to implement custom logic circuits, making them sig-
nificantly faster than general purpose hardware. However, the size of the FPGA chip
constrains the design that can be uploaded onto the chip. FPGAs have a limited number
of each of the following resource types:

look-up tables (LUTSs) - implement the logical functions performed by the circuit;
flip-flops (FF's) - small storage elements;
digital signal processors (DSP) - small special purpose arithmetic units;

block RAM (BRAM) - larger, on-chip storage elements.

2.2.2 Run-time Reconfiguration

Run-time reconfiguration refers to the capability of uploading a new design onto the
FPGA at run-time. This capability can be used to maximise usage of the FPGA accel-
erator for two purposes:

1.

enabling — to enable the execution of functions that would normally not fit on

! Application Specific Integrated Circuit

2.2. FPGA Acceleration 17

g 8 g 8 oc
| | |]
. []
108 — —- T 108
CLB CLB BRAM CLB
108 — —" T 10B
108 —_— —- B 108
CLB CLB BRAM CLB
108 —_ " T 10B
[| || [
_— [I
g & g 8 g 8

Figure 2.2: Structure of an FPGA block: Configurable Logic Blocks (CLB), Interconnect,
Input/Output Blocks (IOB) and Embedded Memory (BRAM). Source: http://www.
origin.xilinx.com/fpga/.

the accelerator; this can be achieved for example via time-sharing, where a design
is partition into smaller tasks that run sequentially on the accelerator[21]

2. optimisation — to improve performance of FPGA designs, by removing idle func-
tions; this can be achieved by removing, at run-time, idle portions of a design which
allows one to replicate the useful functions in order to increase overall performance

For the second type of application we consider the example of a an FPGA sorting
architecture presented in [22]. A parallel sorting tree is used for small problem sizes that
fit the FPGA on-chip memory (a few hundred inputs). While this network achieves a
very high throughput, it does not scale with the number of inputs, and for larger input
sizes it exceeds the available FPGA resources. Hence, a solution is to combine this
network with a FIFO-based merge sorter[23] which allows the merging of sorted buckets
of numbers. This leads to a two step sorting algorithm, using run-time reconfiguration,
in which during the first stage a small number of inputs are merged in parallel and in the
second stage, resulting buckets of inputs are merged to obtain the final sorted sequence.

An example of the first type of application is shown in [3] run-time reconfiguration is
used to maximise performance by removing idle design components. This works well
in multi-step algorithms such as the Reverse Time Migration application which has 2
major steps: a forward and a backward propagation of a simulated wave through the
earth surface. Thus the functions that would only be used in the second stage need not
be uploaded on the accelerator from the very beginning. This enables the an increase
in resources used for the first part which can be used to increase parallelism and thus
reduce computation time.

http://www.origin.xilinx.com/fpga/
http://www.origin.xilinx.com/fpga/

2.2. FPGA Acceleration 18

Based on the reconfiguration technique, we distinguish between

e total reconfiguration, where the entire FPGA is reconfigured with a new design;
this exhibits a high reconfiguration time often in the are of seconds and requires
that data be saved from on-board DRAM to host memory during the reconfigura-
tion process, which adds significant overhead;

e partial reconfiguration, where a smaller region of the FPGA is reconfigured,
reducing reconfiguration overhead, eliminating the need for buffering data and
minimising computation stall

The Maxeler Platform used in this projects was not specifically designed for run-time
reconfiguration. As such it relies on a large FPGA chip for which the reconfiguration
overhead is approximately 0.7 - 1 second, depending on the size of the design. In addi-
tion, the slow data transfer rate and large transfer latency over PCI-Express from the
accelerator card to the memory of the host system introduces complicates the process
of improving performance via run-time reconfiguration.

The Maxeler Platform does not currently support partial run-time reconfiguration, so
the possibility of using partial run-time reconfiguration to improve design performance
is left as future work. However, given that partial reconfiguration overhead is smaller
than that of total reconfiguration, our approach will operated similarly or even better
in the case where partial reconfiguration capabilities are available.

2.2.3 Maxeler Platform

Maxeler Technologies provides a software and hardware acceleration solution based on
the dataflow computing model. The dataflow design is created using MaxCompiler
[24] and implemented on a specialized hardware platform, built around high-end Field
Programmable Gate Array (FPGA) chips.

The specific data flow engine used for this project is a MAX3424A card based on a
Virtex 6 FPGA chip [25]. The MAX3 provides 24GB of on-board DRAM and about
4MB of fast on-chip BRAM are available on the FPGA chip.

The system is connected to the dataflow engine via PCle as shown in Figure 2.3.

Since the target of our compilation process is a MaxJ/MaxCompiler design, we provide
a brief summary of the most important features in the rest of this section.

We demonstrate the use of MaxCompiler in accelerating a simple moving average com-
putation, starting from an original design in C shown in Listing 2.1. This performs a
three point moving average computation on an input array x, using 2 point averages at
boundaries.

2.2. FPGA Acceleration 19

Virtex 6 FPGA MaxelerOS
PCle MaxCompilerRT

ﬁ

@
S CPU
W
[T
£ ¢
DRAM DRAM

Figure 2.3: The Maxeler acceleration solution: the DFE is connected to the host machine
via PCle. The board comprises 48GB of DRAM and a Virtex 6 FPGA chip.

1 for (int i =0; i <n; i++) {
2 sum = x[i], divisor = 1;
3 if (i>0)
4 sum += x[i — 1], divisor++;
5 if (i<n-—1)
6 sum += x[i + 1], divisor++;
7 y[i] = sum / divisor;
81 }
Listing 2.1: Original three point moving average computation in C.
MaxJ

MaxJ is a high-level language for specifying dataflow architectures. It is largely based on
Java and adopts a meta-programming approach for specifying dataflow graphs. Listing
2.2 shows the dataflow kernel for computing a three point moving average over an input
stream, which highlights some of the important features of the MaxJ language:

e kernel inputs and outputs provide an I/O interface that allow the kernel to com-
municate with the rest of the design (Lines 4 and 12);

e stream offset expressions allow accessing past and future elements of a stream
(Lines 7 and 8). The offset window is stored into on chip BRAM so is limited to
a few tens of thousands elements;

2.2. FPGA Acceleration 20

e frequently used components such as counters are provided by the API. They are
useful in keeping track of iteration count when mapping loops to streaming designs
(Line 5);

e operator overloading is used to perform arithmetic on input streams;

e multiplexers (in this instance represented by the overloaded conditional operator)
are used to select between streams (Lines 11 and 12).

1 public class MovingAverageKernel extends Kernel{

2 public MovingAverageKernel (...) {

3 super (...);

4 HWVar x = io.input(”x”, hwFloat (8, 24));

5 HWVar cnt = control.count.simpleCounter (32, N);

6

7 HWVar prev = cnt > 0 ? stream.offset(x, —1) : 0;
8 HWVar next = cnt < (N — 1) ? stream.offset(x, +1) : 0;
9 HWVar divisor = cnt > 0 & cnt < (N—- 1) ? 3.0 : 2.0;
10

11 HWVar y = (prev + x + next) / divisor;

12 io.output(”"y” , y, hwFloat(8, 24));

13 }

4] 1

Listing 2.2: Kernel design for the three point moving average computation showing
features such as stream offsets, arithmetic and control which will have to be supported
by our MaxC language

MaxCompiler

MaxCompiler [26] is a high level compiler targeting the acceleration platform developed
by Maxeler Technologies. It provides a Java based API for specifying hardware designs
that are compiled and uploaded onto the DFE and a C runtime interface (MaxCompil-
erRT and MaxelerOS shown in Figure 2.3) for the part of the application running on
the CPU of the host system.

In addition to the dataflow kernels, a MaxCompiler design also contains a manager
design which is sude manage kernel I/O, connecting multiple kernels together (in multi
kernel designs) and kernels to DRAM and the CPU interface (via PCle).

A number of dataflow kernels are connected via a manager to create a dataflow design
which is then compiled to the a Xilinx bitstream that can be uploaded to the FPGA.
Additionally a number of run-time functions are generated that can be called by the
MaxCompiler run-time to load the design and initiate the streaming of data to and from
the dataflow design.

2.2. FPGA Acceleration 21

An example manager design is shown Listing 2.3 and is used to instantiate a single
moving average kernel and connect its inputs and outputs to the host interface.

public class MAManager extends CustomManager {
public MovingAverageManager (...) {
super (...);
KernelBlock k = addKernel(new MovingAverageKernel (...));
k.getlnput(”"x") <== addStreamFromHost("x");
addStreamToHost("y") <== k.getOutput("y");

}

O~ O T W

}

Listing 2.3: Manager design for the three point moving average computation

Run-time

Finally we must write a host application which is required to queue the input streams
and run the accelerator. This is achieved by calls to the MaxCompilerRT (runtime) API
that interfaces with MaxelerOS.

1 max_run (

2 device ,

3 max_input(”x", x, x_size),
4 max_output("y”, y, y._size),
5 max_runfor (" MAKernel”, n),
6 max_end ()) ;

Listing 2.4: Host example for queueing the input and output streams and running the
three point moving average design.

Analysis

Although the MaxCompiler toolchain greatly simplifies the process of accelerating ap-
plications and particularly the designing of dataflow kernels, the acceleration process
is still very involved and requires a large amount of experience with FPGA technology
and domain specific knowledge. Most importantly the whole process is manually driven
including the exploration of optimizations. This step is a critical and time consuming
part of the design process which is vital in achieving maximum performance (in terms
of operating frequency, number of parallel pipelines etc.) subject to physical limitations
such as chip size or timing constraints.

By specifying the design in FAST and optimization strategies in LARA we aim to create

2.3. Stencil Computation 22

the basis of a design space exploration flow that can automate this process.

2.3 Stencil Computation

Stencil computation is a class of computational problems consisting of iterative kernels
that update array elements based on the values of their neighbours. The pattern of
operation is called a stencil.

Stencil computation has important applications in solving Partial Differential Equations
and computer simulations (such as heat diffusion).

They can operate on multiple dimensions. But increasing the dimension heavily impacts
memory reference locality, so higher order stencils are hard to compute on CPU and
have been the focus of many optimisations.

We present some background on a number of applications that can be reduced to 1, 2 or
3D stencil computation that are used as part of our benchmark suite (Chapter 6). We
illustrate the importance of the applications and traditional approaches to accelerating
them.

2.3.1 Numerical Differentiation

For an example of a 1D stencil we consider the problem of numerical differentiation
[27], which provides a method for estimating the derivative of a function based on its
values at discrete points. By replacing the derivative with finite difference expressions
the following 5 point linear stencil can be derived to approximate the value of f/(z):

—f(x+2h) +8f(x+h) —8f(x—h)+ f(z —2h)
12h

fl(z) = (2.1)
Such an approximation is useful for computing the derivative of a function based on a
discrete set of observed values (e.g. to compute speed/acceleration of an object based
on a discrete sample of displacements/speeds). It provides better accuracy at the cost

of double computational cost when compared to Newton’s difference quotient f'(z) =

f(z+h)—f(z) _ fth)—fa=h)

£ or the slope of secant method f’(x) ST

Hence the following stencil algorithm could be used to compute the numerical approxi-
mation of the derivative of f for a large number of points in the function’s domain:

2.3. Stencil Computation 23

Algorithm 1 Stencil approximation of first order derivative
function NUMERICALDIFFERENTIATION(f, Order)
h<+ ¢

for x € Order,nPoints — Order do
—f(x+2h)+8f(x+h)—8f(x—h z—2h
F(z) « f(z+2h)+8(+1)2h f(@—h)+f()

end for
return f’
end function

2.3.2 Black Scholes Equation

Stencil computation can also be used for solving Partial Differential Equations using
finite difference methods. This has many applications in scientific computing for finance
and physics for example, where PDEs are used to model the dynamic behaviour of a
system. For example, the solution to the widely-used Black Scholes equation can be
approximated using a 2D stencil computation.

AV 1, .0V AV B
a0 t7 e tr8eg — V=0 22)

where:

S - stock price,

e V(t, S) - price of derivative as a function of stock price and time
e 1 - risk-free interest rate

e o - volatility of the stock’s returns

A finite difference approximation using the explicit method leads to a recursive formula
[28] for v(i,j), the approximated value of V' at the ith point in the time dimension and
the jth point in the stock price dimension:

v(i,j) = axv(i,j— 1)+ Bxv(i,j) +v*v(i,j+1) (2.3)

This leads to a 2D stencil algorithm that performs a forward propagation on the time
parameter by iteratively computing the values of v(i + 1, j) for all j, given the values of
v(i, j) for all j as show in Algorithm 2.

Although the shape of the stencil remains one dimensional, by contrast to the numerical
differentiation example, the computation is also propagated forward in time, adding
another (time) dimension. Thus this can be viewed as a 2D computation.

Edge detection algorithms can be used to detect points at which sudden changes in image

2.4. Aspect Oriented Programming 24

Algorithm 2 Stencil kernel for finite difference approx. of Black Scholes PDE
function BLACKSCHOLES(payoff, timesteps)
for i € 0, timesteps do
for j € 1, size(payoff) - 1 do
payoff next[j|] < ax payoff[j—1] +3x* payoff[j] +v* payoff[j+1]
end for
payoff < payoff_next
end for
return payoff
end function

brightness occur. These images

2.3.3 Reverse Time Migration

Stencil computation is also used for advanced simulation and imaging algorithms. For
example the Reverse Time Migration technique is used to detect geological structures
beneath the Earth’s surface [29] and is widely used in the Oil and Gas sector. The
algorithm uses a forward propagation step which models the propagation of injected
acoustic waves with the isotropic acoustic wave equation [30]:

2 T
TICD 4 e 9 (1) = 1(r.1) (24)

where:
e ¢(r) - sound speed model
e p(r, t) - seismic wave value at point r, time t
e f(r, t) - input wave value at point r, time t

An approximation using finite difference is given in [31] and leads to the 3D stencil kernel
[3] shown in Algorithm 3.

2.4 Aspect Oriented Programming

Aspect-Oriented Programming [32] is a programming paradigm which is used to capture
aspects that cut through levels of abstractions. A commonly used example is that of
program logging [33], which represents a concern that is expressed at, for example, every
method entry and exit point. The functions that perform logging are spread throughout
the code and, for example, ensuring consistency when changing the logging format can be
difficult. Encapsulating crosscutting concerns in aspects can improve cohesion, making

2.4. Aspect Oriented Programming 25

Algorithm 3 Stencil Kernel for Reverse Time Migration.

for t = 0 < nt-1 do
for z = 0 < nx-1 do
for y = 0 < ny-1 do
for z = 0 < nz-1 do
p(t.x,y,2) = ¢ *(
c0 * p(t,x,y,2) +
cl1* (p(t,x-1,y,2z) + p(t,x+1,y,2)) + ... + c15%(p(t,x-5,y,2) + p(t,x+5,y,2)) +
c21* (p(t,x,y-1,2) + p(t,x,y+1,2)) + ... + c25%(p(t,x,y-5,2) + p(t,x,y+5,2)) +
c31* (p(t,x,y,2-1) + p(t,x,y,24+1)) + ... + c35%(p(t,x,y,2z-5) + p(t,x,y,z+5)) +
d0 * p(t,x,y,2) + d1 * p(t-1,x,y,2-1) + £(t,x,y,2);
end for
end for
end for
end for

the code easier to understand and change which leads to improved maintainability and
increased developer productivity. The model which governs the application of aspects
to code is named join-point model and describes where in the application (the pointcut)
should the functionality implemented in the aspect (the advice) be applied.

This idea can also be applied to the compilation of dataflow designs, by regarding the
optimisations and transformations that are applied to the original design as cross-cutting
concerns. These optimisations can often hide the original purpose of the application,
making it harder to maintain and by encapsulating them in aspects we not only im-
prove the maintainability of the application but also simplify the process of optimisation
and take important steps towards fully automating the optimisation and transformation
process.

However, most commonly used implementations of Aspect-Oriented Programming, such
as AspectJ [34, 35] and AspectC++[36] share a limitation which makes them impossible
to use for capturing design optimisations and transformations, without substantial ex-
tensions: aspects cannot be applied to multiple statement blocks, loops or conditionals.

Hence, for the purpose of this project we use LARA, an Aspect-Oriented Programming
language that was introduced in the scope of the REFLECT[37] project, also to support
the process of optimising FPGA designs.

2.4.1 LARA

Lara is an Aspect-Oriented Programming language for specifying compiler strategies for
FPGA-based systems [17]. LARA facilitates decoupling of optimisations from apllication
code and enables the capturing of strategies for:

e instrumentation, monitoring and hardware/software partitioning, used in the initial
stages of our design flow to identify optimisation candidates for mapping onto the

2.4. Aspect Oriented Programming 26

dataflow engine

e code specialisation and optimisation, used both for the original host application
and dataflow designs which are the input of our design flow

Furthermore LARA descriptions can be parametrised to simplify integration with our
proposed design space exploration step described in Chapter 3.

Listing 2.5 shows an example description used for fully unrolling all innermost loops
with an iteration count smaller than or equal to 16. The ‘select’ statement on line 2
captures the join points on which the aspect acts, the ‘apply* statement specifies actions
to be applied to the results of a query while ‘condition® is used to filter relevant queries.

1 aspectdef loopunroll

2 select function.loop{type="for"} end

3 apply optimize(”"loopunroll”, "fully”); end

4 condition $loop.is_innermost && $loop.num_iter <=16; end
5 end

Listing 2.5: Example LARA description for fully unrolling innermost loops with an
iteration count smaller than or equal to 16.

[38] also introduces a design flow based on LARA for mapping applications into het-
erogeneous multi-core platforms. This involves specifying optimisations and mapping
strategies in the LARA programming language, separate from the application source
code.

The strategies are compiled and applied to the original source code in a sequential
order to obtain the final design which is synthesised using Catapult-C [39]. Examples of
strategies which are expressed using LARA include loop unrolling, coalescing, loop fission
and mapping compute intensive functions to hardware (hardware/software partitioning).

Advantages of the aspect based approach compared with the popular pragma based ap-
proach used in frameworks like OpenMP [40] include the possibility of defining dynamic
join points through which strategies can be applied to the intermediate results of the
weaving (source translation) process. Additionally, optimisation strategies are grouped
into cohesive aspects, rather than being spread through the code which makes them
easier to understand, maintain and modify, for example to target a different platform.

2.5. Related Work 27

2.5 Related Work

2.5.1 High Level Synthesis

Substantial work has been carried out in synthesising high level languages to hardware
designs and many tools exist for this purpose [41, 42, 43]. However these approaches do
not target a streaming dataflow architecture but either soft processor designs - processor
cores implemented on the FPGA chip with configurable custom computing units (e.g.
floating point units). These usually offer limited speedups when compared to high-end
hardcore CPUs but can turn out to be more energy efficient.

[44] proposes a method for synthesising hardware pipelines from OpenCL programs
which exploits some important concepts related to parallelism exposed by the OpenCL
specification [45] such as threads and domain decomposition into threads sharing local
memory. Although we are dealing with simple C kernels for this project, some of the
proposed compilation strategies can be applied for loops.

2.5.2 Dataflow Languages

A number of dataflow languages have been developed targeting FPGAs but also multi-
core platforms.

Lucid [46] (implemented in [47]), SISAL [48, 49], and Lustre [50], are examples of func-
tional dataflow languages. The latter is based on a synchronous programming model,
facilitating safety verification for critical software [51] rather than performance. The
functional programming style complicates the translation of existing imperative applica-
tions and none have existing implementations for FPGAs, so a performance comparison
is not possible. Control flow extensions to dataflow languages have also been investi-
gated in [52] and [53]. This shows that in most real life applications, it is necessary to
specify a control path as well as a data path.

Streams-C [54] and ImpulseC [43] adopt imperative ANSI C syntax and an execution
model based on Communicating Sequential Processes and introduce non-standard syntax
and constructs for specifying designs such as special comment blocks which are used to
annotate the C application code. The specialised syntax makes the languages harder to
integrate with existing source-to-source translation or aspect weaving frameworks.

Hybrid approaches such as MaxCompiler [26] separate the CPU run-time component
from the accelerated one, providing a C run-time environment and a Java API for build-
ing dataflow designs via meta-programming. The separation complicates the devel-
opment process, hindering sharing of design parameters and, consequently, the design
space exploration process. The use of meta-programming simplifies design parametri-
sation, but can make resulting programs harder to understand. In contrast, the pro-

2.6. Summary 28

posed approach allows the computation description, which includes CPU and dataflow
components, to be specified using a single language and to be decoupled from design
parametrisation and other optimisation strategies which are captured as LARA aspects.
This separation of concerns results in more intuitive and maintainable descriptions.

2.5.3 Aspect-driven Compilation of FPGA Designs

One attempt at capturing optimisation strategies for FPGA designs using aspect de-
scriptions is LARA [55, 38], an Aspect Oriented language for embedded systems. Aspect
descriptions are written in the LARA language and automatically applied to the original
application source to generate optimised versions through various transformations that
enable and optimise hardware/software partitioning [5]. Aspect descriptions can be used
to specify compilation strategies that result in overall speedups of 2 to 6.8 times over
software versions [17], generally with high aspect bloat 2 [55].

The use of LARA aspects in guiding the compilation process of C applications is de-
scribed in [17] and [56] but the backend compilation targets a von Neumann architecture
(with a GPP and custom accelerator) unlike the dataflow architecture proposed in this
project. The approach described in [17] and [56] relies more on high-level source transfor-
mation whereas our approach is based on a systematic design space exploration process,
which enables the analysis of more low-level optimisations. Finally, [17] and [56] do not
consider development aspects which can be used to improve developer productivity.

The use of aspect-oriented programming for specifying strategies for run-time adaptation
of FPGA designs discussed in [57] differs from the static process considered in this
paper in which the application is partitioned and scheduled at compile time, to achieve
optimised performance as described in [3]. An advantage of our approach is that an
optimised allocation is generated prior to application execution. However, we lack the
flexibility of adapting the design to varying input conditions.

2.6 Summary

We have provided a brief introduction into the area of dataflow computing and explained
why dataflow acceleration can improve performance and energy efficiency over traditional
software only solutions. We have shown the main benefits and drawbacks of FPGA
acceleration and explained why we have chosen to target custom streaming architectures
with our design flow. We have introduced the Maxeler platform which will be used as
the backend of the compilation process presented in Chapter 3 and presented some of the
more important features of the MaxCompiler approach including some limitations that
we attempt to address with the proposed flow in order improve developer productivity

size of transformed code

2 —
aspect bloat = size of original code

, so a higher aspect bloat is better

2.6. Summary 29

and possibly reveal new opportunities for design transformation and optimisations. As
an example of parallel computation where FPGAs can be used to obtain substantial
speedups we have presented stencil computation. Finally, we briefly introduced related
work in the areas of dataflow languages and aspect-driven compilation for FPGA designs
and shown that our approach differs from existing work by:

e introducing a novel approach for generating and optimising dataflow designs based
on an aspect-oriented compilation flow

e focusing on separating optimisations from functional application code with the
view of improving both maintainability and performance

e focusing on a streaming, high-throughput architecture based on FPGA Dataflow
Engines

e introducing explicit support for specifying run-time reconfiguration strategies to
improve performance and energy efficiency

Chapter 3

Design Flow

In this chapter we introduce a novel design flow for creating high-performance dataflow
designs starting from C/C++ applications. We explain the motivation and requirements
for the proposed approach and provide an overview of its three main components:

e the FAST language, used to express dataflow kernels

e the aspect description repository and weaver, which group and apply the optimi-
sation and transformation strategies encapsulate through aspects

e the compilation backend, used to generate FPGA bitstreams from dataflow designs
and link the host code run-time application

We show how these three components can be integrated to produce an automated design
technique. We analyse the steps required to produce an optimised design using the
proposed approach and compare this with alternative approaches using other start-of-
the-art technologies. Finally, we present an extension to our original design-flow to
support run-time reconfiguration.

3.1 Design Goals

Our design flow aims to improve both efficiency (in terms of performance and energy
consumption) and productivity. The former is crucial to High Performance Computing,
the latter helps reduce development cost and time and is a well-known issue with exist-
ing FPGA based acceleration solutions [58]. To achieve this we focus on maintaining or
improving the performance and energy efficiency of existing applications while using a
more systematic approach for design optimisation that results in more portable applica-
tion code, improves integration with existing applications and automate time consuming
and error-prone tasks that need to be performed manually using traditional tools.

3.1. Design Goals 31

3.1.1 Performance and Energy Efficiency

When targeting HPC applications it is crucial that our design flow results in high-
performance, highly efficient designs. By analysing existing implementations for ad-
vanced high-performance applications such as Reverse Time Migration (Appendix B),
we identify key requirements of these designs:

e Computation is the most significant part of high-performance applications.
For stencil computations this is usually a fairly large stencil operation over a large
number of adjacent data-points (multiple points in each dimension). For exam-
ple, the RTM kernel uses two stencil operations of 31 floating point additions, 18
floating point multiplications and 1 subtraction (Appendix B, Lines 87 and 128).
Additionally, these are replicated Par times (with Par as large as 12) which leads to
a total of ((31+18+1)*2x12) = 1200 floating point operations to be executed on
each kernel cycle (in reality floating point operations are pipelined across 13 kernel
cycles, but this is, generally, transparent to the user). Hence, our approach must
provide a clear and concise manner to express computation (preferably standard
operators).

e Another crucial aspect in achieving high-performance is replicating the design
across the chip to maximise speedup subject to maximum available bandwidth.
This makes use of FPGA cache (around 4MB of fast-local memory) to reuse data
across time steps. This pipeline replication is achieved through design parametri-
sation and loops whose bounds are known at compile-time. The parameters that
indicate the replication factor are shared across the compute and memory kernels
but also across the CPU code.

e High-performance designs maximise usage of on-board DRAM. Especially for
stencil type computations where a number of time step iterations are performed
over the original data, it is crucial to have the data available in the large, high band-
width on-board DRAM rather than on the CPU side. Bandwidth of the on-board
DRAM is 40GB/s compared to 2GB/s over PCI-Express to CPU. However, sup-
porting DRAM introduces the additional complexity of managing multiple kernels
(since memory read and write commands are, preferably, generated from kernels
separated from the original dataflow kernel — see Appendix C) and. Additionally,
special API calls for generating the read/write commands have to be supported
(Appendix C, Line 19).

e Expose optimisation opportunities for backend tools. For example, our
MaxCompiler backend supports some degree of trade-offs when mapping computa-
tion to DSPs. Additionally various trade-offs can be achieved by disabling pipeline
depth etc. These optimisations present interesting opportunities for trade-offs that
enable developers to increase the number of parallel pipelines on the chip by bal-
ancing resource usage, or possibly reducing clock frequency.

3.1. Design Goals 32

e Additionally, recent work shows the interesting possibility of improving design
performance and energy efficiency for RTM by using run-time reconfiguration to
remove idle functions has been recently showed that run-time reconfiguration can
be used to improve the performance and energy-efficiency of FPGA designs. It is
therefore important to facilitate the specification of strategies and designs that sup-
port run-time reconfiguration to maximise performance, both in the static flavour
presented in [3] where partitions are generated and scheduled optimally at compile-
time but also in a dynamic, self-adaptive fashion [57] in which the application can
dynamically adapt itself by run-time reconfiguration based on input values.

3.1.2 Productivity
Portability

In the context of our design flow portability refers to two different aspects:

e portability of transformations and optimisations — it should be possible to reuse op-
timisation strategies in the context of different applications with as less user input
as possible; in the context of RTM this is no longer possible: the transformation
steps from the original naive implementation have been lost, and are now part of
the existing code base. Of course these could be recovered, from version control
for example, but a version control patch could obviously not be applied to other
applications to generate highly pipelined designs. In other words if the developer
was faced with the task of accelerating a similar computational kernel (which is
likely since stencil computations follow a clear pattern) he would have to re-do all
steps, resulting in a large decrease of productivity.

e portability of designs over various FPGA devices — generally resource available to
FPGA chips vary greatly based on the chip manufacturer. Even in the simple case
of chips produced by the same manufacturer, the reduction of a specific resource
could prevent a design from working on a different FPGA chip. Hence designs
cannot be considered portable, since a finely tuned design could not build on a
different chip. By automating the design exploration process and identifying trade-
offs automatically the optimisation process can be repeated for various devices
without user input.

However, the issue of portability should not be restricted to the FPGA design but also
viewed in the context of the entire system architecture. For example, as explained in
Section 2.2.2, performance of run-time reconfiguration designs also depends on charac-
teristics such as data transfer time and latency or whether partial reconfiguration is
possible.

3.2. Components 33

Integration

It is important to facilitate the integration of application code resulting from our ap-
proach with existing application code. For this it should be possible to switch seamlessly
between existing software only code and dataflow based solutions. This can be achieved
for example by using pragmas or providing compiler extensions that when enabled, in-
dicate that a solution should be mapped to a dataflow accelerator and indicate how to
link hardware and software.

Integration is also required between the dataflow design running on the accelerator and
run-time API running on the host system. For example, in the case of parallel replication
of dataflow kernels, the number of parallel processing pipelines needs to be known by
both components. This concern applies to other design parameters such as word length,
or run-time inputs. This suggests that there is a need to synchronise these parameters to
ensure correct operation. For example the Par variable in the RTM kernel (Appendix B,
Line 2) contains the number of parallel pipelines that are to be implemented in the
design. Increasing the parallelism reduces the number of cycles for which the kernel
needs to executed. Parameters sharing can be implemented via parameter files, but is
simplest when both components are written in the same language.

For example using C99 syntax, FAST would be able to share configuration parameters
with the CPU code (e.g. via constants or macro definitions), simplifying management
and integration of the CPU and dataflow kernel.

Automation

Automating the design space exploration process results in productivity improvements.
However we provide input points in our design flow which can be used gradually to tweak
and guide the compilation process.

3.2 Components

To meet these requirements we propose the following approach:

e Firstly, we introduce FAST (described in Section 4), a novel language for specifying
dataflow designs. We specify the accelerated portion of the original applications
using FAST dataflow kernels. By maintaining compatibility with C99 syntax we
improve developer productivity by providing a familiar language and introduce the
possibility of combining hardware and software specifications. FAST uses simple
C99 style syntax to capture the computation data path and control-path and acts
as a layer on top of the MaxJ/MaxCompiler designs in our approach.

e Secondly, by using an aspect driven compilation flow we decouple optimisation from

3.3.

Comparison with Existing Approaches 34

design development, improving design portability, and we automate the generation
of code and design space exploration improving productivity. We use LARA and
the Harmonic aspect weaver to implement the aspect descriptions that drive the
compilation process. This introduces the challenge of integrating the aspect weaver,
the FAST language and our backend fastc compiler.

Thirdly, systematic design space exploration is used to identify maximum perfor-
mance configurations, subject to platform specific constraints. Aspect descriptions
can be used to more conveniently control and guide the exploration process based
on user requirements.

Finally, fully functional MaxCompiler designs are generated from the configura-
tions using the fastc compiler. This step involves automatic generation of:

— compute kernels

memory access kernels
— managers

— run-time API calls to be inserted in the original application code

The proposed design flow is illustrated in Figure 3.1 and follows the steps:

1.

a C application containing an embedded high-level dataflow design is developed
from the original source application. The design is implemented using FAST as
described in Chapter 4;

the dataflow design is transformed by the aspects in the repository to generate new
designs (e.g. with multiple word-length configurations). The classes of aspects used
with our approach are introduced in Chapter 5;

. the generated configurations are compiled using a backend compilation toolchain

(currently MaxCompiler) to dataflow designs implemented on FPGAs;

the feedback from the compilation process is used to drive the design space explo-
ration, repeating the weaving and compilation process until user specified require-
ments are met.

3.3 Comparison with Existing Approaches

Compared to existing work described in [17] and [56] our approach emphasises and
provides more freedom in the exploration of design level optimisation (such as word
length optimisations and mapping of arithmetic blocks to DSPs) by using a combination
of implementation aspects (shown in Figure 3.1) and FAST optimisation options.

Additionally, our approach targets a dataflow architecture as opposed to the von Neu-

3.3. Comparison with Existing Approaches 35

C with Embedded High-level Dataflow Design

(FAST) User Input
Aspect Repository l l
Implementation Design Exploration

Word-Length II Parallelism II

Development

Compilation ll

System Aspects

Reconfiguration II

apIiNg @ [0AU0D

Weaving :

e R <

Valid JJ . JJ
Partitions Float (8, 22) Fast Build

Compilation Backend ||
(MaxCompiler)

Figure 3.1: Proposed approach for aspect-driven compilation of dataflow designs.

mann architecture proposed in related work, which typically includes a General-Purpose
Processor (GPP) and a custom accelerator. We consider additional optimisations to
achieve performance improvements as a result of a systematic design space exploration
process.

Compared to the MaxCompiler approach described in Section 2.2.3, the proposed de-
sign flow has a number of benefits, the most exciting being the capability of capturing
dataflow designs using vanilla C and aspects. This is in direct contrast with the meta-
programming[59] approach used in MaxCompiler which can be confusing to new users
as suggested by many queries on very basic matters from novice users on the Maxeler
Developer Forums[60]. In addition, the MaxCompiler design approach does not enable
automating the design space exploration process effectively. Because the dataflow design
and run-time component are written in different languages, integration with tools for

3.4. Extensions 36

aspect weaving requires double the effort. The idea behind the FAST approach is to
facilitate better integration with other tools by providing a single language implemen-
tation. The reason behind using meta-programming in MaxCompiler is to provide good
support for design parametrisation. In the FAST approach this is achieved by specifying
optimisation strategies in the aspect descriptions, simultaneously achieving the goals of
decoupling optimisations form application code and simplifying the programming model
for dataflow designs. This leads to improved productivity without affecting the efficiency
of the generated designs.

On top of MaxCompiler, Maxeler offers a domain-specific compiler for finite difference
applications, MaxGenFDI[61]. This simplifies the creation of finite difference kernels
(such as those required for the stencil applications described in Section 2.3). Although
this abstracts effectively the creation and optimisation of stencils, the process is not
transparent to the users and cannot be exposed to external design space exploration
tools. Like MaxCompiler, MaxGenFD provides no specific support for designs with
run-time reconfiguration.

3.4 Extensions

To support run-time reconfiguration effectively, the design flow of Figure 3.1 should be
extended to support modelling and recording of design resource usage, execution time,
latency and power metrics. These data are required when writing strategies for run-time
reconfiguration.

3.4.1 Design Modelling

A design model for resource usage, pipeline depth and timing information can be cre-
ated using limited user input. This is to be used in the run-time reconfiguration to
determine optimal partition scheduling. Alternatively this information can be extracted
from portable platform description files such as those used in HARNESS which contain
a detailed specification of platform characteristics.

Based on this model we can estimate design performance, latency, energy efficiency and
compilation time, and provide useful feedback earlier in the development process than
is possible with existing tools.

Of course our model relies on user inputs for resource usage map relies on estimates for
resource usage and will not be expected to provide very accurate results, especially in
the presence of optimisation of backend tools and various trade-offs that can be made
when mapping arithmetic to FF/LUT pairs vs DSPs.

3.4. Extensions 37

User Input

Platform Specific Parameter Tuning

High-level Modelling Aspect
- operatorResUsageMap

- operatorPipelineDepthMap
- operatorTiminglmpactMap

ModelResourceUsage ModelLatency ModelTiming

MODEL 1
[RES] modell.resource.{LUT, FF, DSP, BRAM}
[PER] modell.performance.{pipeDepth,maxF}
[POW] modell.power.{?}

MODEL 1 - block 1

[RES] modell.blockl.(...)
[PER] modell.blockl.(...)
[POW] modell.blockl.(...)

R

Figure 3.2: High-level aspects controlling generation of design resource, performance and
timing modelling.

3.4.2 Run-time Reconfiguration Support

In the proposed design flow we distinguish between:

e static run-time reconfiguration — where partitions can be statically scheduled
at compilation time after the design space exploration process has completed

e adaptive run-time reconfiguration — where partitioning depends on user input
and an optimal schedule cannot be generated at compile time

Supporting both types of reconfiguration requires the introduction of an additional mod-
elling step which is performed prior to the application of transformations for run-time
reconfiguration. Additionally a performance test suite is used to measure and validate

3.4. Extensions 38

the results of partitioning.

Figure 3.3 presents an overview of the revised design flow supporting run-time reconfig-
uration.

An additional requirement for adaptive run-time reconfiguration is a configuration database
where generated configurations and their specification are stored for extraction, based
on run-time conditions.

—I Aspect Repository
Test Suite I C+FAST
@ 1. Source Transf.

Config1 Config2 | ConfigN
])... [)

1. System / Implementation
Aspects

MODEL 1) :
[RES] modell.resource.{LUT, FF, DSP, BRAM} 2. Modelling e— 2. Modelling Aspects
[PER] modelil.performance.{pipeDepth,maxF} | ~— «rovevvreeennnnn
[POW] nodell.power.{?}I [

MODEL 1 - block 1
[RES] modell.blockl.(...)
[PER] modell.blockl.(...)

@ 3. ReCOnflg. Tra.nSf. e 3. Reconﬁg Aspects

| Config1 J | Config2 J | ConfigN J

@ 4. Backend Compilétion
0 || FPGA Designs :

Compilation
Feedback

A\
ED: [Application Executables |

4. Feedback Aspects

- | Design DB
Execution

Feedback

Figure 3.3: Revised design flow to support run-time reconfiguration

1. From an initial C + FAST design we create a number of configurations by applying
implementation and system aspects as described in ASAP.

2. For each configuration we derive a model of the resource usage, performance and
power usage using modelling aspects (described in section 3)

3. Based on predicted models (from step 2) and possibly on existing empirical infor-
mation from the Design DB we partition the application and schedule the partitions
to achieve user requirements and optimisation goals.

4. Finally a number of executables and designs are created, corresponding to the

3.5. Summary 39

generated configurations from step 3. Based on compilation and execution (of
automated performance tests) we refine our predictions for design resource usage,
performance and power.

Additionally the run-time environment has to be extended to support this approach.
An overview of the assumed runtime architecture for the proposed approach is shown in
Figure 3.4.

Predicted Model

Empirical Model

Design DB

“-... 5. empirical data
1. select P

2. upload

A 4

3. monitor
CPU f--=-=-====-- > FPGA

A
Y

4. state transfer

Figure 3.4: Run-time architecture required to support run-time reconfiguration

1. The CPU drives the FPGA. It initiates the computation and monitors the FPGA
for factors such as temperature and power.

2. The CPU can request the FPGA to abort execution of the current design. Current
results are saved (i.e. streamed back to CPU) before reconfiguration is triggered.

3. The CPU can select a new design to be uploaded

4. Empirical results are recorded in the Design Database, to improve future estimates
of performance, power and thermal values.

3.5 Summary

We have introduced the proposed Aspected-oriented design flow for dataflow engines
and introduced the components required to support it. Optimisations are encapsulated
in aspect descriptions, separated from functional application code which leads to a more
maintainable and easier to understand programming model, with minimal impact on

3.5. Summary 40

performance. We show what extensions are required to the original model in order to
support the specification of strategies using run-time reconfiguration to increase effi-
ciency.

Chapter 4

The FAST Language

FAST (Facile Aspect-driven Source Transformation) is a novel language for specifying
dataflow designs that are used as a starting point for the design flow proposed in Section
3. In particular, we use C syntax to capture dataflow computations, and, instead of heav-
ily relying on API libraries to specify the design (as in MaxCompiler [26] or Streams-C
[54]), we use aspects to implement the transformations required for the actual imple-
mentation. In this section we outline the design goals of the language, introduce an
early prototype and examine its advantages and limitations and propose an enhanced
version. We highlight the main features of FAST and explain how these translate to
components of dataflow designs. We analyse the major challenges we met in creating
the FAST language and highlight the strategies we adopted for overcoming them.

4.1 Design Goals

FAST provides the following features that are required by the proposed flow:

e Imperative specification of dataflow designs. C99 syntax is enforced by the FAST
compiler which is based on the ROSE Framework [62]. We have chosen C99 syntax
for the following reasons:

— the standard is widely adopted and should be instantly familiar to developers

— it simplifies integration with many existing high-performance applications
(which tend to be written in C/C++)

— it includes a limited number of basic features (arithmetic, pointers, functions)
but also some convenient escape hatches (such as macros, type definitions or
pragmas) that can be used to complement these features in a standard manner

— the Harmonic Aspect Weaver, used in the HARNESS project only supports

4.2. Features 42

C99 syntax so this provides a mean to integrate our dataflow designs with
the wider HARNESS project

— considerable infrastructure is readily available (compilers, source-to-source
translation and optimisation tools exist for C/C++)

e Good integration with existing source level translation and weaving tools. Simple
syntax allows the language to interact well with existing compilers or source to
source translation frameworks, allowing source level optimisations to be applied
through different tools.

e Combined hardware/software design. Specifications of dataflow kernels and CPU
run-time software can be mixed. The example shown in Listing 4.1 can be com-
piled with the GCC toolchain, but when using the FAST compiler, the pragma
indicates the link between the software and hardware, which results in an acceler-
ated hardware/software solution.

e Support for data path and control path generation. FAST allows specifying both
data and control operations that are automatically mapped to stream multiplexers.

FAST is used to express the simplest form of a dataflow design while optimisations and
other transformations are encapsulated in aspects which are developed separately and
applied through aspect weaving. This results in a flexible approach for generating and
exploring the space of efficient dataflow designs.

Designs in FAST are compiled to MaxCompiler designs composed of inter-connected
functional kernels. Communication between kernels is asynchronous, so they can operate
independently, and compute only when all active inputs have available data.

4.2 Features

We originally developed a simple prototype of the FAST language sufficient to support
our application benchmark (Chapter 6). We then extended this prototype with more
advanced features (as described in Section 4.3) which were required to meet our design
goals.

In this section we use a very simple implementation of a dataflow kernel which is part
of our Black Scholes benchmark to highlight some of the main features of the FAST
language. This kernel simply computes the result of the finite difference approximation
solution to the Black Scholes Equations, iterating both in space (the fast dimension —
stock prices) and in time (the slow dimension). In Section 4.4 we analyse the same
example in light of our extensions described in Section 4.3 and argue that these simplify
the language.

4.2. Features 43

X~ O T Wi

WD DNDNDDNDDNDNDNDNDNLD = = e
= O O NDUUhR WN = OO0 Uk WO ©

void Price_.FPGA(s_float8_24 stockPrices,
float8_24 c1, float8_24 c2, float8_.24 c3,
int32 nStocks, int32 stencilOrder, int timesteps)

// read input stream
in(stockPrices);

// counters for timestep and stockstep iteration
int32 timestep = count(timesteps, 1);
int32 stockstep = countChain(nStocks, 1, i4);

#pragma FAST DSPBalance: full

s_float8_24 result = stockPrices|[0] % cl
+ stockPrices[1] % c2
+ stockPrices[—1] % c3;

// boundary conditions for the stencil computation
int32 up = (stockstep >= stencilOrder)
&& (stock < stockstep — stencilorder);

// write output stream
out(up ? result : stockPrices);

}

// Regular C style CPU implementation
void Price_.CPU(...) {...}

int main() {
#pragma FAST hw:Price_.FPGA
Price_.CPU (...);

}
Listing 4.1: FAST dataflow kernel for Black Scholes Options pricing

Listing 4.1 highlights some of the most important features of a FAST dataflow kernel:

dataflow kernels are declared as regular C functions with inputs defined as argu-
ments in the function signature;

streams are represented through s_<type> types, which are type definitions for
<type *>; these are interpreted as special types by the fastc compiler;

to provide easy access to previous, current and future stream values array notation
is used with positive offsets accessing future values and negative offsets accessing
previous stream values

supported offset values are linear combinations of compile-time constants or vari-
ables (either loop induction variables, or normal variables but for which a compile
time range of values is specified, as a requirement for generating efficient hardware)

constructs such as loops are supported as long as their bounds are known at com-

4.2. Features 44

pilation time and are used to parametrise dataflow designs.

e C function calls are mapped to dataflow kernels via pragmas (Line 17) which
provides the flexibility of selecting a particular dataflow configuration based on
run-time conditions

Additionally and APT is provided for higher-level constructs such as I/O functions (in(),
out ()), counters (Listing 4.1, Lines 4-5) and functions to multiplex streams (mux()).

Table 4.1 summarises the features of FAST and shows that many features are imple-
mented the using C99 style syntax. Mathematical functions are specified using their
standard C library results in a more intuitive, easier to learn programming model but
complicates the mapping of FAST designs to FPGA dataflow designs. Another impor-
tant consequence of maintaining compatibility with C99 syntax is the ability to directly
translate C applications to dataflow designs.

Feature Description Method (see Listing 4.1)
Declared in function header | C99 (line 1)
Input/Output
in(),out () FAST API (lines 2,11)
Ternary op., if statement C99 (line 11)
Control
Stream mux (mux()) FAST API
. + 5 /- C99 (line 8)
Computation
log, exp, sqrt, sin etc. #include <math.h>
Declared as pointers C99 (line 1)
Streams
Accessed with array index C99 (line 8)
Optimisation C pragmas C99 (line 7)
Parameterization Constants, variables C99
Hardware Mapping | C pragmas C99 (line 17)

Table 4.1: Summary of the main features of the FAST language.

In the remainder of this section we provide an in-depth analysis of these features and
design challenges associated with capturing them in a simple imperative language.

4.2.1 Kernels and Streams

Kernels represent a unit of computation that is mapped to the FPGA. They are C
functions that can be linked via pragmas placed before a corresponding CPU (non-

4.2. Features 45

accelerated) function call in the C application. It is not convenient, or correct for that
matter, to allow the direct calling of dataflow kernels. First of all, from the execution
model point of view this would not make sense and would confuse the user since a “call”
to the dataflow kernel more precisely maps to a sequence of calls where the data are
streamed, one value per cycle, into the kernel and the stream counters are incremented
at each kernel iteration (as shown in Algorithm 4). Secondly, this can also lead to spu-
rious warnings and even unexpected errors when compiling and running with a different
compiler than fastc.

Algorithm 4 Kernel Execution Loop
function RUNKERNEL(kernel, cyclesToRun)
kInParams <— kernel.InputStreamPointers
kOutParams < kernel.OutputStreamPointers
kConstantParams < kernel.ConstantParams
MAX_CYCLE < cyclesToRun
for cycle € 1 ... cyclesToRun do
CURRENT_CYCLE < cycle
call kernel(kInParams, kConstantParams)
for streamPointer € kStreamParams do
streamPointer < streamPointer + 1
end for
end for
for streamOutPointer € kOutParams do
streamOutPointer +— streamOutPointer - cyclesToRun
end for
return kOutParams
end function

However, although disallowing direct calls to FAST dataflow kernels enforces a more
robust separation between the dataflow and CPU components, it introduces the com-
plication of passing parameters to the kernel. We use the convention over configuration
approach [63] to simplify parameter passing, assuming the following implicit mapping:

1. the first parameter of the CPU function call maps to the number of kernel cycles;
this is mapped to a special variable named MAX_CYCLES which is accessible within
the dataflow kernel; it does not need to listed as a separate parameter in the kernel
definition

2. stream and constant parameters map to the identically named dataflow kernel
parameters

3. output streams are listed in identical order in the kernel function call as in the
dataflow kernel design

4. for situations where these conventions are not ideal, we provide the means of speci-

4.2. Features 46

fying parameter mappings using pragma parameters of the form map:stream CPU,
stream _Kernel.

5. the special variable CURRENT _CYCLE is updated with the current cycle count at each
cycle as per Algorithm 4

These conventions are illustrated in Listing 4.2 and the resulting parameter mapping is
explained in Table 4.2.

CPU Parameter Dataflow Parameter Explanation
n MAX_CYCLES Rule 1
X a Rule 4
y y Rule 2
y S Rule 2
prod resultl Rule 3
sum result2 Rule 3
- CURRENT_CYCLE Rule 5

Table 4.2: Mapping of parameters from CPU function calls to FAST dataflow kernel.

Additionally we assume that all input and output streams and constant values are cor-
rectly allocated according to the C99 standard before the function call to the dataflow
kernel is occurs.

O~ O T W

= e e
Tk W N = O ©

// standard C main function
int main() {
// allocate and pre—set x, y, prod and sum

#pragma fast kernel:MovingAverage map:x, a
MovingAverage(n, x, y, s, prod, sum);

// do something useful with prod and sum

}

void MovingAverage(int32 xa, int32 xy, int32 s) {
int32 resultl = a[0] * y[0] x CURRENT_CYCLE;
int32 result2 = a[0] + y[0] + s;
out(resultl); out(result2);

¥
Listing 4.2: Simple FAST dataflow kernel.

The kernel inputs can be streams or run-time constants. The kernel produces as output

4.2. Features 47

one or more streams of data. We distinguish between:

e output/write stream — allows access to previous and current values; write
streams are created via calls to the out function as shown in Listing 4.2;

e input/read stream — allows access to previous, current and future values; these
are the streams defined in kernel declaration (e.g. a and y in Listing 4.2);

e mixed output/input streams — allows access to previous, current and future
values; mixed streams are streams that are defined within the kernel body.

Stream Type

A key to obtaining high-performance FPGA designs is the use of custom data types,
where the FPGA offers a higher degree of flexibility than the C implementation. We
can for example create fixed point precision data types of arbitrary bit width for in-
teger and fractional part or non-standard floating point formats. A key design space
exploration step is that of identifying required data types based on application specific
accuracy requirements. For example in the case of Reverse Time Migration decreasing
operator width can result in dramatic improvements in performance (2 times faster) with
unnoticeable effects on image quality [64].

Hence, variable bit width integer, fixed and floating point data types should be sup-
ported. However, the C standard does not provide means to specify arbitrary width
types [65, pp. 33]. Although arbitrary bit width fields can be specified this can only be
done inside structs and requires padding to a multiple of 8 bits, which severely limits
and complicates the use of values defined in this manner.

An alternative to the standard defined types is the introduction of custom type defini-
tions. These can bear specific meaning to the fastc compiler while remaining completely
transparent to standard compilers such as GCC. This initial approach is illustrated in
Listings 4.2 and 4.1. A complete list of the type definitions and their corresponding C99
types is shown in Table 4.3.

Stream Offsets

Stream offset expressions are used to access previous or future stream values using the
array index notation (as shown in Listing 4.3). These expressions should be linear
combinations of compile time constants or constant inputs to the kernel. More efficient
hardware can be constructed if bounds for the offset are specified. This can be done
via the pragma var:var name type:offset min:min value max:max _value shown on
Line 1 of Listing 4.3.

The array index notation offers a simple means of accessing stream values but introduces,

4.2. Features 48

FAST Type C Type Example Explanation

float(exp)_(mant) float float8_22 Single precision floating point value
with 8 exponent bits and 22 man-
tissa bits

double(exp)_(mant) | double | doublel1_50 | Double precision floating point value
with 11 exponent bits and 50 man-

tissa bits
fixed(exp)_(mant) float fixed3_12 | Fixed precision value with 3 integer
bits and 12 fractional bits
int (width) int int15 Integer value with 15 bits
uint(width) int uint15 Unsigned integer value 15 bits
s_(type) type* s_float8 24 | Stream of single precision floating

point values

s-array_(type) type™* | s_array_int32 | Stream array of integer values

Table 4.3: FAST custom data type for variable bit width integer, fixed and floating-point
values.

for maintaining compatibility with the C standard to annotate all stream variables. For
example this leads to the superfluous x[0] on Line 3 of Listing 4.3. In the context of
large dataflow kernels it can be tedious and error-prone to annotate stream values so we
introduce the possibility of declaring stream values as regular scalar (non-pointer/array)
types. For example, on line 4 of Listing 4.3, the value of r can be used without need
for annotation. This, however introduces the limitation that future or past values of the

stream “r” cannot be accessed in the kernel anymore, as shown on Line 4.

1 #pragma fast var:off type:offset min:—128 max:128
2 void (int32 xx, int32 off) {

3 int32 r = x[—off] + x[off] + x[1] + x[—1] + x[0];
4 int32 o =2 x r + 5;

5 // int32 o =2 % r[-1] + 5, — Illegal!

6 out(o);

7

Listing 4.3: FAST kernel using offsets.

4.2. Features 49

4.2.2 Control and Computation
Regular control statements can be used. When conditionals are based on stream values,
the control statements are mapped by fastc to hardware multiplexers.

It is only possible to use loops statements (while, for) if their bounds and induction
variables are known at compile time. In Listing 4.4 the loop is used to generate parallel
arithmetic pipelines for every pair of inputs followed by an adder tree that reduces the
result.

Computation is captured using a mix of C operators and standard functions:

e C arithmetic operators can be used as usual on stream values (not streams them-
selves);

e C math.h function calls are automatically mapped to efficient hardware blocks;

e Arithmetic on streams (equivalent of pointer arithmetic) is illegal. Instead stream
values must be extract by use of the current values operators (* or [0]).

1 // constants can be used for design parametrisation
2 const int nPairs = 2;

3

4 void PairwiseSquareRootSum(s_array_float8.24 x) {
5 float8_24 prod, sum;

6

7 // loop is used for design parametrisation

8 for (int i = 0; i < nPairs; i++) {

9 prod = x[2 * i][0] + x[2 % i 4+ 1][0];

10

11 // C99 arithmetic functions can be mapped to hardware blocks
12 sum = sum + sqrt(abs(prod));

13 }

14 out(sum);

15 }

Listing 4.4: Compute and control example in FAST

4.2.3 Pragmas

Pragmas are used to indicate information that pertains to the optimisation process rather
than the functionality of an application. In particular they indicate:

e optimisation options exposed by the backend tools

e additional type information required to generate variable width representations of
operands

4.3. Extensions 50

One exception is the hardware software linkage pragma which maps a software call to
its corresponding dataflow engine version.

The use of pragmas enables users to switch seamlessly between compilers and, eventually
backend compilers, contributing towards the Integration requirement of our design flow.

However, unlike in other approaches pragmas are not meant to be inserted manually —
although this is possible — but rather they are to be controlled by the corresponding
aspect descriptions (for hardware / software partitioning, optimisation etc.). The use
of pragmas enables aspect descriptions to operate correctly (or rather to not operate
incorrectly) accross various platforms (since, by definition, compiler directives are sim-
ply ignored if they are not understood by the compiler) and contributes towards our
Portability requirement.

Pragams in FAST follow the syntax:
#pragma fast (param name:param value)* (func:func_name)?

The function name parameter simplifies loading of pragma information into a global
data structure.

4.3 Extensions

In this section we present the extensions we implemented on top of our FAST and fastc
prototype in order to improve ease of use and simplify the language as much as possible.
This simplifies adoption by users and also integration with the Harmonic Aspect weaver.

4.3.1 Inferring Stream Type

Our original approach to specifying variable stream types is problematic since it fails
to decouple effectively the variable bit width optimisation from the application code.
This in turn can lead to complications when writing aspect descriptions for exploring
the design space of bit width optimisations since a more intensive analysis of the entire
application is required in order to recognise optimisation pointcuts and generate correct
designs when attempting to vary the representation of certain operands.

To handle this situation we observe that, in general to classes of types are interesting to
vary:

e 1/0 type — this is the representation of a stream that when interfacing with the
CPU; this has to be a standard C type to avoid data corruption

e kernel/compute type — this the representation of a stream used inside the dataflow
kernel, and hence, on the FPGA dataflow engine. This can be varied freely to

4.3. Extensions 51

non-standard types subject to accuracy requirements

Hence we introduce the following pragma for IO pragma fast var:stream name ioType:typeToUseForIO:
computeType:typeToUseInsideKernel. Such pragmas can be automatically inserted by

the aspect weaver based on various optimisation strategies and can be easily compiled

by fastc into corresponding MaxCompiler designs.

Additionally, the fastc compiler can be extended to automatically infer input and out-
put streams (without requiring superfluous calls to the in() and out) method calls based
on the following rules:

e [f a stream is assigned to at least once then it is a write stream
e [f a stream is assigned to more than once, then this is an error

e If a stream is declared in the kernel header and not written to, then it is a read
stream

e If a stream is declared within the body of the dataflow kernel, it is a read/write
stream

4.3.2 Multiple Kernel Support

Some designs may require more than one dataflow kernel. Indeed all the applications in
our benchmark contain at least three kernels: one computational kernel, and two kernels
for generating read and write commands for the on-board DRAM. This is a typical use
case where one kernel is to perform operations asynchronously from the other: merging
the command generator kernels with the computation kernel can lead to a congested
design and very easily to a kernel freeze (the equivalent of a deadlock in software).
Hence, a recurrent pattern is where a separate kernel is used to generate the memory
command stream, which contains the addresses that are to be read from DRAM.

To support this scenario, MaxCompiler uses the concept of a manager which specifies
how kernels are instantiated and connected together to form a design (as described in
Section 2.2.3).

To support this scenario in FAST we extend our original pragma notations to enable the
specification of:

e correlation between input and output

e kernel instances

4.4. Revised FAST Example 52

4.4 Revised FAST Example

Listing 4.5 shows the revised Black Scholes implementation with the revised FAST lan-
guage. No API calls are required for the counters or state saving. Inputs and outputs are
clearly declared in the kernel header and the compiler can automatically infer whether
a parameter stream is input or output. The type width information is decoupled from
the application code and can be added automatically via aspect generated pragma state-
ments.

Additionally, we can use FPGA DRAM (bandwidth of 40GB/s) as the source for data,
not just PCI-Express (2GB/s) which is a major improvement in terms of I/O bandwidth.
This is achieved through our DRAM extensions and the support for multiple kernel that
allows us to fully specify a three kernel design that implements the required pricing
computation.

1 // 1. both input and output streams are declared in kernel header
2 // 2. no need for additional type definitions

3 void Price_.FPGA(float stockPrices, float xr,

4 /+* same as before x/)

50 A

6

7 // 3. CURRENT CYCLE value used instead of counter API

8 int stockstep = (CURRENT.CYCLE / nl) \% timesteps;

9

10 #pragma fast DSPBalance: full

11 int result =; /% same as before x/;

12

13 // 4. boolean types used for conditions

14 bool up = ...; /* same as before x/);

15

16 // 5. assigning to output stream automatically outputs value
17 r[0] = up ? result : stockPrices;

18 }

Listing 4.5: FAST dataflow kernel for European Options pricing

4.5 The fastc Compiler

The fastc compiler is an experimental compiler for the FAST language. It takes C
applications with embedded FAST dataflow designs and produces a functionally correct
and complete MaxCompiler design.

fastc extends the ROSE[66, 62] compiler framework to provide support for generat-
ing dataflow designs. ROSE uses EDG as its fronted to produce an Abstract Syntax

4.5. The fastc Compiler 53

Tree(AST) from C sources. The resulting AST is directly manipulated by fastc in a
series of compiler passes. Finally, MaxJ code is generated for the dataflow kernels and
the original C is left unmodified. In addition, fastc produces a Make file and deploy-
ment script based on user configuration to completely automate the development of the
dataflow design.

The following sequence of compiler passes is run on the input FAST 4+ C code:

1. Extract dataflow kernels — separates FAST dataflow kernels from the rest of
the source C application and initialises the Design object which is passed through
to each subsequent pass. The Design object contains references to the extracted
kernels, and is subsequently enriched with information about the structure and
properties of the dataflow design which is required for the final code generation
pass. Identification of kernels is performed via querying the ROSE AST for:

e all function names beginning with kernel_

e all pragma definitions of the form #pragma fast dataflow which are located
exactly before a function definition (or after a number of other pragma dec-
larations)

2. Constant Extraction — extracts design constants from the source files. These
are global constants used to parameterise the FAST dataflow designs and can be
shared with the CPU code. This type of parameterisation is useful for example
when defining the width of an input stream (in terms of number of elements per
cycle). Note that design parameters that are not constant are consider illegal since
they would lead to ambiguities in the execution model (for example users might
expect them to be synchronised between the CPU and dataflow components at
run-time). The set of design constants is given by the kernel read only values
(obtained through a read/write analysis step) minus the set of kernel par meters;

3. Pragma Extraction — the pragma extraction pass analyses pragmas that specify
types of streams, ranges of offset streams etc. These are a pre-requisite for subse-
quent passes for type inference and checking and code generation. The extracted
information is used to update the Design object;

4. Infer input and output streams — as explained in Section 4.3.1, fastc can
infer the direction of streams by following the steps:

extract kernel parameter set, P

(a
(

b) extract pointer parameters which corresponds to the stream set, S C P

(
d

)
)
c¢) perform a written analysis and record the kernel modifies set, M
) compute the set of output streams, O = M NS

)

(e) compute the set of inputs streams, I = P — O

4.5.

The fastc Compiler 54

t

J

10

source[id: 0]

Figure 4.1: Section of a dataflow graph generated using fastc.

(f) detach assignments to output streams from the original AST to prevent traver-
sal on future passes and add corresponding output (and input) nodes in the
dataflow design

. Inline auxiliary functions — perform inlining of all function calls that appear
inside a FAST dataflow kernel body (except those defined as part of the language
API).

. Static Single Assignment Renaming — rename variables to the Static Single
assignment form; this step is required after inlininig to ensure that duplicate local
variable name clashes do not occur;

. Type Checking and Inference — based on the type of input and output streams
and values of constants infer and check type consistency; this task is simplified by
the fact that the MaxCompiler backend supports some degree of type inference. A
complication arises when using Boolean variables inside the

. Dataflow Graph Generation — traverse the AST of every dataflow kernel to
create a corresponding dataflow graph. An example generated dataflow graph is
show in Figure 4.1. It illustrates Input, Offset and Arithmetic nodes. The in
edge of input nodes is connected to a special node name Sink. Additional examples
of fastc DFG nodes include Counter and Output. The out edge of output nodes
is also connected to a special Source node;

. Remove FAST - removes the function nodes corresponding to the dataflow ker-
nels from the AST and verifies AST integrity (namely that there were no direct
calls to these kernels)

. MaxJ Code Generation — traverse the constructed dataflow graph and the
original AST generate corresponding MaxJ Design for extracted dataflow kernels

4.6. Summary 55

4.6 Summary

We have introduced the FAST language one of the components required as part of the
proposed Aspect-oriented design flow. We have shown the most important features of
the FAST language and how they map to hardware components on the FPGA based
dataflow engine. We have highlighted the challenges of capturing these constructs with
a simple imperative language such as C and some possible solutions which we investigate
in Section 4.5.

Table 4.4 contrasts the FAST approach proposed in this project with existing approaches
in terms of syntax and programming paradigm. An imperative, as opposed to functional
paradigm simplifies the language, making it more accessible to novice users and in-
tegrates well with existing application source code. The dataflow style of the FAST
specifications allows for an efficient specification of designs that map well onto hardware
accelerators such as FPGA-based dataflow engines. The language supports integrated
hardware /software co-design with existing C applications, simplifying the design explo-
ration process by improving sharing of parameters and by exposing a unified syntax

to external design space exploration tools (such as the LARA design space exploration
flow).

Finally, Table 4.5 highlights the support for design parametrisation and optimisation ex-
ploration strategies via the automated aspect-oriented design flow as opposed to manual
transformations or meta-programming used by existing state-of-the art compilers.

Language Syntax Paradigm Support
Lucid Lucid Functional
SISAL SISAL Functional Software
Lustre Lustre Synchronous
MaxCompiler C99(SW) Imperative(SW)

Java(HW) / Dataflow(HW) | Combined
Streams-C ImpulseC C99 Imperative(SW)

/ CSP(HW)

FAST/LARA C99(SW/HW) | Imperative(SW)

LARA (Aspects) / Dataflow(HW)

Table 4.4: Syntax, paradigm and support comparison of the FAST/LARA approach and
existing dataflow implementations.

4.6. Summary 56
Language Implementation Design Parametrisa- | Optimisation
tion Strategies
Lucid
. Manual Source
Multiprocessor .
SISAL Transformation Magu'al Code
Revision

Lustre
MaxCompiler Meta-programming

Streams-C ;
. lseC Compiler

mpulse CPU + FPGA Directives
FAST/LARA

Compiler Directives +

Automated Aspect-Directed Source

Transformation

Table 4.5: Implementation, parametrisation and optimisations comparison of the
FAST/LARA approach and existing dataflow implementations.

Chapter 5

Aspect Descriptions

Aspects descriptions are modules that capture functional cross-cutting concerns that
are decoupled from the primary function of a program. In traditional Aspect-oriented
approaches, program execution points (e.g. method calls) are intercepted at run-time to
allow new code to be executed before, after or in place of these execution points. The
process through which this is achieved is called weaving. The main motivation behind
AOP is to solve the modularisation problem when dealing with multiple cross-cutting
functional concerns.

The LARA aspect-oriented design-flow [55], depicted in Figure 5.1, performs the weaving
process at compile-time to meet non-functional optimisation goals, such as improving
application performance on particular hardware platforms. The weaving process ma-
nipulates and transforms the application sources generating new sources (woven code)
that incorporate both functional elements of the original sources, and non-functional
concerns captured by LARA aspects.

In this project we combine the LARA aspect design-flow with FAST dataflow designs.
As explained in Chapter 4, FAST uses standard C99 syntax to capture dataflow compu-
tations while aspects specify decoupled optimisation and transformation strategies that
operate on FAST descriptions. This approach makes the functionality of the application
easier to understand, more maintainable and portable since it is no longer obscured by
various structural or algorithmic transformations, or platform specific optimisations. In
addition, strategies coded in LARA can be re-applied automatically in different appli-
cations, thus improving developer productivity.

We introduce novel aspect descriptions to use with FAST dataflow designs, which we
group in four main classes as shown in Table 5.1:

e System Aspect Descriptions are applied at the whole system level (FAST + C
application) to capture the mapping between application modules and accelerator

5.1. System Aspect Descriptions 58

void Price_FPGA(..) { aspectdef DspBalancing
- select function.stmt end
for(int 1 = 0; ..) apply
for(int j = 1; .) var pragma = "#pragma fast DSPBalance:full”
double v= s[j] * a1l $stmt.insertbefore “[[pragma]]”
+s[j+1] * a2 end
} +s[j-1] * a3; condition $stmt.num_construct(MultiplyOp) >= 3
Aspect Weaving

|

void Price_FPGA(..){

for(int 1 = 0; ..)
for(int j = 1; ..)
#pragma fast DSPBalance:FULL
double v = s[j] * a1l + s[j+1] * a2 + s[j-1] * a3;

Figure 5.1: Aspect weaving overview.

e Implementation Aspect Descriptions are applied at the level of the dataflow
design, to apply platform specific optimisations

¢ Exploration Aspect Descriptions are used to explore the design space of op-
timisation trade-offs

e Development Aspect Description are used to support the development process

5.1 System Aspect Descriptions

System aspect descriptions capture transformation or optimisation strategies that
affect the whole application such as those concerning hardware/software partitioning,
monitorisation and run-time reconfiguration capabilities. The goal of hardware/ soft-
ware partitioning is to improve the overall execution time by identifying parts of the
code to be offloaded to hardware (Section 5.1.1). Monitorisation aspects instrument the
application code to extract run-time behaviour, and uncover opportunities for optimisa-

5.1. System Aspect Descriptions 59

Table 5.1: Types of Aspects used in FAST

Aspect Type ‘ Aspect Name ‘ Description
« hw/sw partitioning capture mapping between
system « monitorisation application modules and
« reconfiguration GPP/FPGA accelerators

. . « operator optimisation | capture low-level hardware
implementation o
« word-length spec optimisations

terati generate multiple implemen-
« iterative
exploration taheuristi tations based on design
» metaheuristic
space exploration strategies

« simulation .
] improve developer
development « debugging ..
o productivity
« compilation

tion (Section 5.1.2). Run-time reconfiguration can be used to remove idle functions from
the accelerator at specific points in time, so that additional resources can be dedicated
to functions that are active [3].

5.1.1 Hardware/Software Partitioning

FAST functions describing dataflow computations can be embedded within the C ap-
plication but, as explained in Section 4.2.1, cannot be invoked directly by software C
functions. Instead, a FAST pragma must be used to indicate the link between the soft-
ware function call and the alternate hardware implementation as shown in Listing 5.1.
This indicates that the software implementation of £ () can be mapped to the dataflow
implementation described in fast_f(). This way, our design-flow can automatically
switch from a pure software application to a software/hardware design.

1 |void fast_f() {/« dataflow implementation x/}
2 |void f() {/+x software implementation x/}
3 |int main() {

4 #pragma fast hw: fast_f

5 f();

6|}

Listing 5.1: Mapping of C function calls to dataflow kernels using FAST pragmas.

Hence, a hardware/software partitioning strategy can be performed in five steps:

5.1. System Aspect Descriptions 60

1. detecting hotspots in the program:;

2. detecting code patterns from hotspots that are suited for dataflow computation
and acceleration;

3. performing the outlining transformation so that each candidate for acceleration is
enclosed in a function f;

4. deriving a dataflow version fast_f from state-based f;

5. placing a FAST pragma on top of each function call to £ and associate it to the
corresponding fast_f function.

Each of these steps can be described as a separate LARA aspect and combined to form
a hardware/software partitioning strategy.

5.1.2 Monitorisation

To find potential hotspots in the application, we can use the aspect in Listing 5.2.
With this aspect, the weaver can automatically instrument any C application to self-
monitor its innermost loops at run-time, as they are natural candidates for dataflow-
based acceleration. In particular, this monitorization aspect can compute the following
information for every innermost loop:

1. the average number of times it has been executed,
2. the average number of iterations,

3. the loop average execution time,

4. the loop iteration average execution time.

For this purpose, we use a simple monitoring API, to record the frequency of execution
and the loop iteration and execution time:.

e monitor_instancel and monitor_instanceE — mark the beginning and end of the
loop respectively;

e monitor_iterI and monitor_iterE — mark the beginning and end of an iteration
respectively.

aspectdef LoopMonitor
select function.loop{is_innermost} end
apply
$loop.insert before
%{monitor_instancel (" [[$loop.key]]"):}%;
$loop.insert after
%{monitor_instanceE (" [[$loop.key]]");}%;

N O Ut W N

5.1. System Aspect Descriptions 61

8 |end
9
10 | select function.loop{is_innermost}.entry end
11 |apply $begin.insert after

12 %{monitor_iterl (" [[$loop.key]]"):}%;
13 |end

14 | select function.loop{is_innermost}.exit end
15 |apply $begin.insert before

16 %{monitor_iterE (" [[$loop.key]]");}%;
17 |end
18 |end

Listing 5.2: Aspect that instruments the application to monitor loop activity. The
information generated can be used to identify hotspots.

The aspect code is shown in Listing 5.2. Lines 2-8 select all innermost loop instances
and place an instance monitor call before and after each selected loop. Lines 10-13
select all entry points inside the loop and insert a monitoring call to mark the beginning
of each iteration. Lines 14-17 place an instance monitor call to mark the end of each
iteration. The following table shows an example of applying the aspect from Listing 5.2
on a C-style function containing a loop:

original code woven code

void f() { void £() {
‘monitor_instanceI ("f:1");
while (1 < N) { while (i < N) {
monitor_iterI ("f:1");
i++; i++;
monitor_iterE("f:1");

} }

‘monitor_instanceE ("f:1");

} }

Each monitoring call in the woven code receives as a parameter a unique loop key which
identifies the loop within the application. The loop key is generated by concatenating the
function name with the hierarchical position of the loop within the abstract syntax tree.
For instance, f:2:1 corresponds to the 1st loop inside the 2nd outermost loop of function
f. The hotspots can be identified by an aspect (not shown) that takes the profiling
information generated by the monitorization API calls, and that uses an heuristic to
compute the most profitable computations to be offloaded to hardware.

5.1. System Aspect Descriptions 62

5.1.3 Modelling

A prerequisite of developing more advanced aspects is the ability to effectively model
resource usage. In practice, an approximate resource usage and performance model is
developed by application engineers, prior to the design optimisation process. Presently,
this is done manually, or can be automated but not at a high enough level abstraction
(e.g. C programming level). An automatically derived resource model improve developer
productivity by providing design information earlier in the development process, albeit
just an estimates.

Modelling aspect descriptions can be used to generate design models for FAST dataflow
designs. For example, the aspect description of Listing 5.3 can be used to estimate
resource usage of arithmetic operations. It relies on the existence of an operation resource
usage map (opUsageMap) that contains an estimate of the per operation resource usage.
This estimate can be refined via analysis of backend tool reports, using the feedback
capabilities of the LARA design space exploration flow. Based on this estimate the
aspect updates the current designModel with estimates of total resource usage for each
loop loop statement

1 | aspectdef usagelLUT

2 |input

3 opUsageMap, designModel

4 |end

5 var totalUsagelLUT = 0;

6 | select function.statement

7 |apply

8 for(var op in {+, — %, /})

9 nOpps = statement.num_construct[op]

10 usageLUT = opUsageMap[op].LUT x nadds x loop max iteration
11 switch (loop.balanceDSP) {

12 FULL: usageLUT =0

13 BALANCED: usageLUT x= 0.5

14 NONE: usageLUT *= 1

15 }

16 desginModel . block [loop]. resource .LUT = usageLUT
17 totalUsageLUT += usagelLUT

18 designModel . resource .LUT= totalUsagelLUT

19 end

20 |end

Listing 5.3: Aspect for modelling resource usage of arithmetic operations.

To model design performance we can, for example, use the aspect of Listing 5.4 to
estimate the pipeline depth, based on which design latency can be estimated as depth *
design clock frequency. This operates similarly to the previous aspect, by expecting
as input an operator pipeline depth and then estimating the pipeline depth of loop

5.1. System Aspect Descriptions 63

constructs.

1 | aspectdef pipelineDepth

2 |input

3 opPipelineMap, designModel

4 |end

5 |var designDepth = 0;

6 | select function.loop{is_innermost}

7 |apply

8 loopDepth = tree_depth(loop_body, opPipelineMap) * loop.pipelineFactor

9 designDepth += loopDepth

10 designModel . block [loop]. performance. pipeDepth = loopDepth
11 designModel . performance. pipeDepth = designDepth

12 designModel . performance. pipeDepth = designDepth

13 |end

Listing 5.4: Aspect for modelling pipeline depth of arithmetic kernels.

These aspects are called by a higher level aspect that is intended as the primary means
for users to interact and parametrize the lower level aspects. This hierarchical approach
ensures a gradual abstraction of details, which simplifies the development process. The
aspect of Listing 5.5 provides a single entry point for the modelling flow, where the oper-
ator can maintain a list of platform level properties. Such portable descriptions already
exist for more widely used FPGA based systems, requiring just a simple translation step
to fully automate the modelling process.

aspectdef designModel
input
opPipelineMap
opUsageMap
end
for (var design in DesignDatabse)
call usageLUT (opUsageMap, design)
call pipelineDepth (opPipelineMap, design)
end

© 0 ~J O T Wi

Listing 5.5: Higher-level aspect for modelling design resource usage.

5.1.4 Run-time Reconfiguration

Run-time reconfiguration aspects are used to partition and generate hardware/software
links required for reconfiguration based on user specified requirements and optimisation
goals.

To support run-time reconfiguration, we specify the configuration associated with the

5.2. Implementation Aspect Descriptions 64

function call in the FAST pragma. For instance:

#pragma FAST hw:fast_fO cfg:cO

x = £(0);
#pragma FAST hw:fast_fl cfg:cl
y = £(x);

#pragma FAST hw:fast_g cfg:cl
z = g(x);

With the above code annotations, our design-flow can generate multiple configurations,
each containing a set of FAST implementations that can be executed in parallel. If
the configuration name is not specified using the FAST pragma, then we assume a
default configuration. Having a single configuration can lead to situations where at
any point in time and due to data dependencies, part of the functions are idle. With
run-time reconfiguration, we can exploit unused resources to support active functions.
In particular, during the execution of an application, we select various configurations
at different points in time to maximise the utilisation of FPGA resources. Within this
context, we use a hardware partition, which contains a set of configurations that are
used to support reconfiguration during the life cycle of an application. In the above
example, configuration cO contains a single implementation of £ (fast_f0), and thus
can potentially use more resources and be faster than the fast_f1 version which must
share the same configuration (c1) with fast_g.

The work in [3] proposes an approach for extracting valid and efficient hardware parti-
tions. To realize run-time reconfiguration without modifying the original code we use
the aspect shown in Fig. 5.2. The input to the aspect is a hardware partition (lines 2-4).
The partition is implemented as a hash table that maps a function call (key) to a hard-
ware implementation, represented as a tuple containing the hardware implementation
name (hw) and the associated configuration (cfg).

Table 5.2 shows an example of a hash table representing a hardware partition. The key
(e.g. main:f:1) identifies a function call in the application, and is formed by concatenating
the name of the caller function (main), the name of the invoked function (e.g. f) and
a unique number (1). Line 5 in the aspect shown in Fig. 5.2 selects all function calls,
and for each call found in the input partition (line 7), we set the appropriate pragma
on top of the call statement (lines 10-12). We can now realize and experiment different
reconfiguration designs by invoking this aspect with different hardware partitions.

5.2 Implementation Aspect Descriptions

Implementation aspects focus on low level design optimisations that can be applied to de-
signs in FAST to improve timing or resource usage. For instance, operator optimisation

5.2. Implementation Aspect Descriptions 65

1 |aspectdef AspReconfig

2 |input

3 partition

4 | end

5 | select function.call end

6 |apply

7 if ($call.key in partition) {

8 var cfg = partition[$call.key].cfg;
9 var hw = partition[$call.key].hw;
10 $call.insert before %{

11 #pragma FAST hw:[[hw]] cfg:[[cfg]]
12 1%;

13 }

14 | end

15 | end

Figure 5.2: Reconfiguration aspect.

Table 5.2: An example of a hardware partition, represented as a hash table, used with
the reconfiguration aspect (Fig. 5.2)

partition

$call.key | hw | cfg

main:f:1 | fast_f0 | cO
main:f:2 | fast_fl | cl

main:g:3 | fast.g | cl

aspects (Section 5.2.1) can be used to map operators in the program to dedicated hard-
ware resources. Word-length aspects specify the numerical representation of variables
and expressions in the design.

5.2.1 Operator Optimisation

To provide architectural details to FAST designs, such as mapping operators to DSP
blocks, we can use the FAST pragma shown in Fig. 5.3 at the top of a statement
(including code blocks). The balancing parameter corresponds to the degree of utilisation
of DSP blocks in a statement.

The aspect shown in Fig. 5.4 is the strategy for balancing DSP blocks in every statement
of an application. Instead of adding the above pragma manually, we provide a set of
rules (lines 3-4) that define where to place the balanceDSP pragma. In this example,

5.3. Exploration Aspect Descriptions 66

#pragma FAST balanceDSP:balanced

Figure 5.3: The FAST balancing pragma provides fine grained control over the mapping
of computation to either DSPs or LUT/FF pairs.

we established the rule that full DSP block utilisation is applied to any statement that
has 5 or more multipliers and adders, balanced if 3 or more multipliers, and no DSP
utilisation otherwise.

O~ O T W

NN = = b e e e e e
= O © 00O Utk W - O ©

aspectdef DspBalancing

var op_granularity =
[{DspBalance: 'full ', MultiplyOp: 5,AddOp: 5 },
{DspBalance: "balanced ', MultiplyOp:3}];

select function.statement end

apply
for (var i in op_granularity) {
var gprofile = op_granularity[i];
var match = true;
for (var k in gprofile) {
if (k != 'DspBalance’) {
match &= ($statement.num_construct (k)
>= gprofile[k]);}}
if (match) {
var pragma = '#pragma_FAST_balanceDSP:"’
+ gprofile.DspFactor;
$statement.insert before " [[pragmal]”;
break;}}
end
end

Figure 5.4: Aspect for exploring mapping of computation to DSP blocks.

5.3 Exploration Aspect Descriptions

Exploration aspects deal with strategies that generate multiple designs to find an op-
timal implementation based on user requirements. Exploration aspects can act on any

5.3. Exploration Aspect Descriptions 67

level of the design flow (C code, C and FAST, or FAST functions). They enable system-
atic exploration of trade-offs and optimisation opportunities. Examples of exploration
aspects include iterative aspects (Section 5.3.1) which generate a sequence of solutions
until a termination criterion is satisfied, and metaheuristic-based aspects to find optimal
solutions in a very large design space.

5.3.1 Iterative Design Space Exploration

Using LARA we can implement and combine these aspects to enable systematic design
space exploration of all the optimisation options exposed by the FAST backend result-
ing in the generation of a large number of designs. The feedback-directed compilation
process of LARA can be used to capture and extract feedback from the backend re-
ports pertaining to resource usage or timing information and automatically adjust the
compilation process.

An example of a LARA aspect for design space exploration is shown in Fig. 5.5. It
highlights the feedback capabilities of the design flow: the aspect will generate and build
the FAST designs until the resource usage passes a specified LUT threshold, and at
each step increasing a particular design attribute, such as exponent, mantissa or the
parallelism of the design (by replicating the computational pipeline).

1 aspectdef DesignExploration

2 input

3 attribute ,

4 start, step,

5 lut_threshold ,

6 config

7 end

8 config[attribute] = start;

9 var i = 0;

10 do {

11 var designName = genName(config);
12 call genFAST (designName, config);
13 buildFAST (designName) ;

14 config[attribute] += step; i++;
15 } while (@hw|[designName].lut < lut_threshold
16 && i < LIMIT);

17 end

Figure 5.5: Exploration aspect that generates multiple FAST designs by varying a design
attribute (e.g. number of kernels or mantissa) until a LUT threshold is reached.

5.4. Development Aspect Descriptions 68

5.4 Development Aspect Descriptions

Development aspects capture transformations that have an impact on the development
process such as debugging (Section 5.4.1), and, potentially, simulating kernels or im-
proving compilation speed. Separating these concerns makes the original code easier
to maintain and enables the automatic application of these transformations to a wide
range of designs, improving developer productivity. Simulation aspects could be applied
to dataflow designs to generate equivalent state-based C code thus enabling pure soft-
ware simulation. Compilation aspects, on the other hand, could be applied during the
development process to create versions of the dataflow design that compile faster by
reducing the operating frequency, removing debug blocks or applying design-level opti-
misations that can resolve timing constraints. Naturally, reducing the compilation time
would increase developer productivity.

5.4.1 Debugging Aspect

Because the current execution model does not provide run-time debugging of hardware
designs, the easiest solution to debug designs is to log the values of various streams
during execution. The insertion of debug statements can be encapsulated in aspects. It
is particularly important to separate debug aspects from the original application code
since debug blocks can influence the compilation time and timing constraints as well as
the behaviour of the design. As an example, the aspect in Fig. 5.6 instruments the
code to log every change in the value of a variable.

1 |aspectdef WatchVar

2 | select function.vref end

3 |apply

4 $vref.parent_stmt.insert before

5 %{ log (" [[$vref.name]]”, [[$vref.name]]); }%
6 $vref.parent_stmt.insert after

7 %{ log (" [[$vref.name]]”, [[$vref.name]]); }%
8 | end

9 | condition $vref.is_out end

10 |end

Figure 5.6: Aspect for automatically instrumenting the code to watch any change in the
value of a program variable.

5.5. Summary 69

5.5 Summary

We have introduced the four main classes of novel aspect descriptions used with our the
proposed design flow. System aspect descriptions operate at the whole system level (C
+ FAST specification) to generate hardware/software partitioning, run-time reconfigu-
ration designs, monitorisation and modelling of resource usage and performance data.
Implementation aspect descriptions operate at the design level and perform low level
optimisations such as mapping of computation to DSPs or adjusting word length. Ex-
ploration aspect descriptions are used to drive the design space exploration process, for
example, iteratively increase a certain design property (such as parallelism or clock fre-
quency) until a certain requirement is met (e.g. resource usage threshold is exceeded
or execution time requirement is met). Finally, development aspect descriptions can be
used to capture strategies that are related to the development process, such as the need
for monitoring values or reducing compilation time.

Chapter 6

Evaluation

We evaluate our approach by implementing a number of dataflow kernels for applications
including advanced high-performance applications. We measure productivity, in terms of
lines of code, number of function calls and cyclomatic complexity. We measure efficiency
in terms of performance and energy consumption and compare the software only version,
the version accelerated using MaxCompiler (manually written dataflow kernels) and
the proposed approach (MaxCompiler dataflow kernels automatically generated using
fastc).

Our benchmark includes a variety of interesting real-life applications, which are discussed
in more detail in the remainder of this chapter:

e Numerical Differentiation is a 1D stencil computation which is highly sensitive
to floating point accuracy and tests the variable bit width optimisation capabilities
of the proposed design flow. Numerical differentiation is used in situations where
the analytical form of a functions is not available, for example on large sets of
experimental data;

e Black Scholes Option Pricing is a one dimensional stencil computation, with
multiple time step iterations which requires the use of on-board DRAM to max-
imise efficiency; the Black Scholes model is one of the most commonly used models
in finance for pricing derivatives of European options;

e Reverse Time Migration is an advanced high-performance application for seis-
mic imaging. It is the most widely used application in the Oil and Gas industry
for identifying geological structures that resemble patches of oil. This application
is also part of the HARNESS validation studies;

e Bitonic Sorting Network is a high-throughput sorting network for limited input
size. It can be used as the first stage of a multi-gigabyte FPGA sorting algorithm,
to separate the inputs into sorted buckets of up to 256 elements, after which a

71

merging stage is applied. The sorting network is a recursively defined design,
that heavily relies on compile-time loops, auxiliary function calls and input groups
to generate a readable and parameterised description. Additionally by adapting
operator bit-width to run-time inputs the network input width can be increased
substantially,leading to improved throughput;

e Add Prediction is an application for click-through rate prediction used in Mi-
crosoft’s Bing search engine for Sponsored Search. This is an arithmetic intensive
kernel, and requires the ability to effectively tune operator bit width and design
parameters to reach reach timing closure. This is also part of the HARNESS
validation studies.

All dataflow designs are run on Maxeler MaxWorkstation [67] which comprises:
e Vectis Dataflow Engine, 24 GB DRAM, Xilinx Virtex 6 FPGA Chip
e Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz, cache size 8192 KB
e 16 GB DRAM connected to the CPU
e DFEs connect to CPU via PCI Express gen2 x8

Theoretical memory bandwidth of the on-board DFE DRAM is 38 GB/s and PCI-
Express bandwidth (used for transferring data from the DRAM connected to the CPU
to the on-board DFE DRAM) is 2GB/s.

The process of placing and routing a dataflow design can take anywhere from 20 minutes
to several days. Since this is a stochastic process, usually mutliple builds are started in
parallel and when one terminates successfully the whole build process is stop and that
design is used. Hence the build process requires substantial amount of DRAM and CPU
cores, particulary during the design space exploration step where multiple instances of
the same design are compiled to identify maximum performance configuration. Hence
the builds were ran on the Custom Computing cluster machines:

e cccad3 — 2 8 core, hyperthreaded (16 threads) Intel Xeon E5-2650 CPUs at
2.00GHz, 20MB cache, 189 GB DRAM

e cccad2 — 2 6 core, hyperthreaded (12 threads) Intel Xeon X5650 CPUs at 2.67GHz,
12 MB cache, 94 GB DRAM

e cccadl —2 6 core, hyperthreaded (12 threads) Intel Xeon X5650 CPUs at 2.67GHz,
12 MB cache, 118 GB DRAM

All CPU applications are compiled using GCC 4.4 with all optimisations enabled (-O3
flag) and FPGA Designs are compiled with MaxCompiler 2012.1.

6.1. Numerical Differentiation 72

6.1 Numerical Differentiation

Numerical differentiation is an important application in engineering and can be used
to estimate derivative values when an analytical form of the function is not available.
Consider for example the case of measuring a sample of displacements form which we
want to derive the instantaneous speed. As explained in Section 2.3.1 a 5 point linear
stencil can be used to approximate the value of the derivative.

However, in practice, experimental data often contains noise (unwanted random addi-
tion to a signal) which impacts the accuracy of the estimation. To filter the noise,
a smoothing step is applied to the experimental data with the goal of improving the
signal-to-noise ratio. One of the most commonly used examples is the Savitzky-Golay
Filter [68] which applies a polynomial regression to a set of a m data points, also a linear
stencil computation. Using higher order stencils (up to a few hundreds even) results in
an smoother, less noisy regression.

Hence our implementation of the differentiation algorithm consists of two steps: 1)
applying the smoothing filter to the input data, 2) estimating the derivative using a
linear stencil. The algorithm for an arbitrary stencil order is shown in Algorithm 5.

Algorithm 5 Savitzky-Golay Numerical Differentiation
function NUMERICALDIFFERENTIATION (values, Order, sCoefs,dCoefs, sn,dn, Step)
smoothValues < CONVOLVE(values, sCoefs, Order, sn)
diffValues <~ CONVOLVE(values, dCoefs, Order,dn x step)
return dif fValues
end function
function CONVOLVE(values, coef fs, Order, Normalizer)
result[] < 0
for x = Order — (nCoefs — Order) do
for c=1— nCoefs do
result[x] < result[x] + value[x - Order + c] * coeffs[c]
end for
result[x] < result[x] / Normalizer
end for
return result
end function

Our FAST dataflow designs consist of two kernels one for smoothing and one for differ-
entiation. We explore the possibility of generating an efficient run-time reconfigurable
design either for improving design performance, or for supporting larger dimension sten-
cils, via time-sharing. We measure resource usage and performance for stencil size of
5, 7 and 9 points and estimate the resource usage for larger stencils to identify sizes
at which run-time reconfiguration becomes convenient. To maximise performance we
write a parametrised design which can be parallelised up to the point where it becomes

6.1. Numerical Differentiation 73

memory bound.

Since the design uses PCI-E the maximum parallelism that can be achieved before it
becomes I/O bound is given by:

PCI-E bits per cycle 128 4

kernel input bits 32
Hence, when using PCI-E a kernel replication factor of 4 is ideal for maximising through-
put.

If data were available straight from FPGA DRAM the design parallelism could be in-

creased to:)
memory bits per cycle 1536

48
kernel input bits 32

However, for this algorithm transferring data to on-board DRAM will not improve overall
throughput since data are only used once, hence we investigate the PCI-E design.

The measured resource usage scales linearly with the parallelism level as shown in Ta-
ble 6.1 and shows that for a 7 point stencil, approximately 10 pipelines can mapped onto
the FPGA. However, beyond 80% resource usage level, the design usually becomes fairly
congested and fails to route or takes an extremely large time to achieve timing closure.

Pipes LUT Usage FF Usage DSP Usage BRAM Usage
1 10.01 6.65 8.45 0.75
2 18.91 13.21 17.51 1.50
4 37.13 25.32 33.12 3.75
6 56.17 39.28 50.31 4.50
8 79.63 51.22 49.55 7.75

Table 6.1: Pipeline scalability of the numerical differentiation algorithm for a 7 point
stencil.

Table 6.2 shows that the maximum achievable stencil width with the static design (which
uses both kernels onto the FPGA chip) is 29 whereas using run-time reconfiguration to
swap the individual kernels increases the maximum stencil width to around 59 points
(computed an assumed 4 parallel pipelines as shown on lines 4, 8 and 9 of Table 6.2).

The FAST dataflow kernel that implements the differentiation operation is shown in
Section D.1. It uses no API (non-user defined) function calls and a total of 20 lines of
code, compared to the original MaxCompiler design which requires 14 API calls and 37
lines of code.

6.2. Black Scholes 74
Kernel Stencil LUT Usage | FF Usage DSP Usage | BRAM Us-
Width age
5 2.03 1.55 0.99 0
7 2.79 2.08 2.92
GSDiff
9 3.33 2.48 3.76 0
Max = 100/3.76 « 9/4 = 239/4 = 59
5 2.34 1.44 2.23 0
7 2.91 1.81 2.97 0
GSSmooth
9 3.47 2.21 3.91 0
Max = 100/3.91 % 9/4 = 239/4 = 57
Both Max = 100/(3.91 + 3.76) « 9/4 = 29

Table 6.2: Resource usage per stencil width, per kernel, per compute pipe.

6.2 Black Scholes

The finite difference implementation for the Black Scholes application is interesting since
it introduces an element characteristic to stencil computations and also to designs that
perform well on the Maxeler platform: multiple time step iteration. This enables and
requires local data reuse via on-board DRAM to achieve maximum performance. This
is because the PCI-E bus can only provide a maximum bandwidth of 2GB/s whereas
DRAM achieves a maximum of 38GB/s.

The FAST kernel for the Black Scholes finite difference kernel was introduced in Sec-
tion 4.4. The DRAM command read generator is shown in Listing 6.1. This requires a
more complicated chain counter structure (where one counter is only enabled when its
child in the chain is just about to wrap to zero) in order to control the memory access
pattern. Additionally, a call to DRAMOutput is required to send the memory commands
to the appropriate stream controller. For this reason, this kernel is an example where
our approach is not very effective at reducing code size or number of API calls. Still,
the equivalent MaxCompiler design shown in Appendix C requires 23 APT calls and 19
lines of code, compared to 3 API calls and 13 lines of code required in FAST.

1 |#include "fastc/fast.h”

2

3 | void kernel_Cmdread(unsigned int iniBursts, unsigned int totalBursts,
4 unsigned int wordsPerBurst, bool Enable)

5 14

6 int wordCount = count_p (32, wordsPerBurst, 1, Enable);

6.3. Reverse Time Migration 75

10
11
12
13
14
15

intx wrap;
swrap = (wordCount = wordsPerBurst — 1) & Enable;

int burstCount = count_p (32, totalBursts, Burst_inc, wrap);
int xControl;
*Control = (wordCount = 0) & Enable;
DRAMOutput(”dram_read” , Control,
burstCount + iniBursts ,
Burst_inc, 1, 0, 0);

Listing 6.1: FAST Memory Controller Kernel

Design space exploration using the iterative design exploration aspect shows that the
design can easily fit up to 60 parallel processing pipelines. However the Figure 6.1 shows
that the maximum measured parallelism is 48, since after this point the kernel becomes
I/O bound even with DRAM.

Normalised Performance

50

40

30

20

10

—— PCI-Express Only
--- On Board DRAM

| | |
24 8 16 32 48 54 60

Parallel Compute Pipelines

Figure 6.1: Bandwidth / computation ratio exploration using the iterative exploration

aspect description.

6.3 Reverse Time Migration

The Reverse Time Migration method for seismic imaging which is used to detect geolog-
ical structures, based on the Earth’s response to injected acoustic waves. Background

6.3. Reverse Time Migration 76

on istropoic acoustic modelling and the RTM algorithm is introduced in Section 2.3.3.
For the purpose of our implementation we approximate the differential equation using
stencil computation to perform a fifth-order Taylor expansion in space and first-order
expansion in time.

We use FAST to implement the dataflow kernels for both read and write memory
controllers (kernel CmdRead, kernel CmdWrite) and the application compute kernel
(kernel RTM). To illustrate the benefits of our approach we analyse the results of using
the debugging aspect of Section 5.4.1. Table 6.3 compares the number of lines of code
required for the FAST with aspect design with the equivalent MaxCompiler implemen-
tation showing a reduction in code size of up to 42% for the run-time reconfigurable
design and a reduction in the number of API calls (including debug calls) of up to 67%
which translate to increased productivity.

Aspect FAST MaxCompiler
Kernel
LOC LOC # API calls | LOC #API Calls
CmdRead 12 26 6 59 39
CmdWrite 12 28 39 79 o6
RTM Static 12 246 43 403 175
RTM RTR 12 377 91 669 275

Table 6.3: Code measures for the RTM kernels comparing FAST and MaxCompiler.

Results of the design space exploration using the aspect in Figure 5.5 with variable
mantissa illustrate the trade-offs between accuracy and resource usage (Figure 6.2). We
observe irregular, large variations when decreasing the mantissa from 18 to 16 and 24 to
22 which is the effect of the backend tools mapping arithmetic to a combination of both
DSPs and LUT/FF elements. The mantissa boundaries at which this optimisation occurs
are platform specific, depending on the architecture of the DSPs. Hence, automating
this optimisation via aspects and decoupling it from the original source code makes the
application more portable and facilitates discovery of interesting trade-off opportunities
using design space exploration.

Computation precision using floating point types can be estimated by:

1

precision = 2mantissa bits

The DSP balancing aspect shown in Fig. 5.4 allows to explore the resource trade-offs
of implementing arithmetic operations in either DSPs or LUTs and FFs (Fig. 6.3) and
helps to avoid over mapping on DSPs for arithmetic intensive applications.

Design space exploration using the aspect in Fig. 5.5 with increasing parallelism level

6.3. Reverse Time Migration 77

DSP Usage - FF Usage--- LUT Usage-+- BRAM Usage

50 |
115
40
: _
D -1 10 :
5 C)
- o
5
% 20 :g
2 15 E
3
o' 10|
4,
10
| | | | |

16 18 20 22 24
Mantissa Bits

Figure 6.2: Exploration of accuracy vs resource usage trade-offs using the aspect shown
in Figure 5.5 with variable mantissa.

Exp. | Mant. | FF BRAM LUT DSP Precision
(1E —6)
8 24 24.09 27.73 34.13 34.82 0.0596
8 22 31.17 27.73 45.02 15.18 0.2384
8 20 29.96 27.16 43.54 15.18 0.9536
8 18 28.68 26.88 40.81 15.18 3.8146
8 16 26.44 26.60 39.62 10.12 15.2585

Table 6.4: Resource usage vs accuracy trade-off exploration data.

can be used to investigate design scalability. For example, for the described RTM imple-
mentation, Fig. 6.4 shows that performance scales linearly with the number of parallel
pipelines and that significant speedups can be obtained by the FAST dataflow design
compared to the CPU only implementation. Depending on the problem size, our ap-
proach can be used to achieve a significant speedup over software only versions which is
comparable with the best published FPGA results for static designs [3], [30].

6.3. Reverse Time Migration 78

—o— DSP (Add)
— DSP (Multiply)

6 ~ FF x 100 (Add)
FF x 100 (Multiply)
NS ~o- LUT x 100 (Add)
T 4] o --- LUT x 100 (Multiply)
D :
.*é
)
2 [
0 [

|
0 0.5 1
Arithmetic transformation ratio

Figure 6.3: Exploration of DSP and LUT/FF balancing for functional units implement-
ing a single arithmetic operation using the aspect shown in Fig. 5.4.

T T T T T T
— Static (S) —o— RTR (S) R
100 - Static (M) RTR (M) g
--- Static (L) -~- RTR (L) e
80| |
S 60| :
=
g
(o)
040+ i
20 | |
O [|
| | | | | | |
0 2 4 6 8 10 12

Pipes

Figure 6.4: Scalability of the RTM dataflow design explored using the aspect shown in
Fig. 5.5.

6.4. Bitonic Sort 79

Fig. 6.4 also shows a model of the performance benefits of using a run-time reconfig-
urable implementation generated using the proposed aspect-oriented approach. Two
configurations were created for the RTM FAST kernel. Since, in our model, during
the first half of the execution time, the backward propagation and imaging functions
are idle, the first configuration requires only half the resources. Hence, the number of
parallel pipelines can be doubled, halving the execution time of the first configuration.
The speedup obtained is comparable to [3], but the partitioning and optimisation ex-
ploration process is automated via aspects, which increases developer productivity. The
automated process improves portability of the design, allowing optimisations based on
design space exploration to be carried out on various platforms (hence subject to varying
resource constraints) without manual intervention.

6.4 Bitonic Sort

Sorting networks [69] are an interesting benchmark application for our approach since
it is both an important application but also fairly challenging to fit into the proposed
programming model:

e Sorting networks constitute the basic blocks for high-performance multi-gigabyte
sorting which in the context of the HARNESS project, is an important case study
for key cloud applications;

e Sorting networks are not easily mapped to FPGA since resource constraints lim-
ited considerably the input size of the network; for example, our sorting network
implementation fails to achieve timing closure

e Comparison based sorting requires very little arithmetic, which is a major disad-
vantage on the Maxeler Platform, since DSPs cannot be utilised

e Sorting in general is an application that does not map well onto the streaming
model of computation, since due to the aforementioned resource constraints, merg-
ing of buckets of values is required which leads to a feed-back loop in the design;

We implement a bitonic sorting network for inputs of n arrays of size k = (4, 8, 32, 64, 128, 256)
elements. We compare the performance of the design with the ANSI C implementation

of gsort() ! which is a hybrid of insertion-sort and quicksort. For a fixed network
size, we vary the input size to compare the software and hardware implementations and
report the average results of 50 runs.

The implemented sorting network has the following properties:

e complexity = network depth = n*loéq () — O(log*(n))

e comparators = n * log(n) * (log(n) + 1)/4 = O(n * log*(n))

"http://www.umes.maine.edu/ chaw/200801/capstone/n/qsort.c

6.4. Bitonic Sort 80

Execution results are depicted in Figure 6.5 (experimental data is shown in Appendix E)
and show that the hardware version outperforms the software version for values of n
larger than 2'4 with speedups increasing from 1.25X to 24X, in proportion with the
value of n and also depending on the network input width. Thus higher speedups
can be obtained for large network sizes, providing the incentive for adaptive run-time
reconfiguration, based on the observed range of input values, at run-time. Although the
compute only speedup is significant even for smaller values of n the execution time is
dominated by the overhead of data transfer over PCI-Express from main memory to the
FPGA accelerator.

20 | 8
—— 128 Inputs —o— 64 Inputs
32 Inputs -+ 16 Inputs
15 8
-
[
O
wn
- 10| |
o
=
°
o
oS
wn 51 |
O [|

| | | | | | | | | |
14 15 16 17 18 19 20 21 22 23
log(n)

Figure 6.5: Speedup vs CPU of the bitonic sorting network designs for large batches of
small inputs.

Given that execution time is dominated by the transfer time, reconfiguring the design to
increase parallelism will bring a small performance benefit. The situation changes when
the network is used as part of a general purpose sorting algorithm. The complexity
(O(N/k = logn * log(n/k)) decreases linearly with the increase in the network width.
This would provide the motivation to adapt the network to input patterns, switching to
larger networks for small observed values. One factor to consider is that, reducing to
smaller network sizes can also decrease the communication overhead. Since all network
inputs must be present, additional padding is required for arrays that are not of a length
which is a power of two.

Hence it is only necessary to reconfigure when a change in the input pattern is detected
that requires smaller computational ranges of values. Results of exploring maximum
word length using the iterative design space exploration aspect description show that

6.5. Add Prediction 81

decreasing word width and varying the type (floating or fixed point, based on the input
characteristics) allow us to build larger network sizes, which are capable of substantially
higher throughput. Since throughput increases linearly with the networks size, recon-
figuring the FPGA to adapt to smaller data representations can more than double the
performance of networks for small input values. The maximum network size is deter-
mined by iteratively increasing network width until the design overmaps or fails to meet
timing at the next iteration (columns 6 and 7 of Table 6.5).

Type Width Max. LUT % | FF % Overmaps | Meets
Size Timing
int 32 128 42.87 43.75 yes no
int 16 128 42.87 43.75 no no
int 8 256 32.06 31.62 no no
float (8, 24) 64 34.19 18.12 yes no
fixed (8, 24) 128 42.79 43.75 yes no
fixed (24, 8) 128 42.79 43.75 yes 1no

Table 6.5: Results of exploring different network sizes and data types for the bitonic
sorting network

6.5 Add Prediction

The Add prediction kernel implemented for this benchmark application was proposed
for predicting click-through rate for sponsored search on the Bing search engine [70].
Given as input the prior probability for a number of features, Bayesian inference is
used to determine the posterior probability. The values of features are arbitrarily large
(so fixed point optimisations cannot be used) and prediction accuracy increases with
number of features considered by the algorithm. Increasing the number of features
results in replicating most of the computational pipeline and additional levels being
added to the adder tree that reduces the results. It is an interesting application because
it makes use of expensive arithmetic operations such as exponentiation and square root.
The original MaxCompiler implementation was developed as part of the HARNESS
validation studies. Additionally, helper functions require function in lining. The results
of the design space exploration show that this is a particularly challenging application
to map onto the FPGA and requires ability to tune floating point mantissa. This makes
use of our pragma for specifying stream I/O and compute type.

The FAST dataflow implementation is shown in Section D.2. The total number of lines
of code for the Add Prediction kernel is 67 and the kernel requires 3 API calls. The

6.6. Summary 82

Features DSP Factor ‘ Representation ‘ Meets Timing
10 Full float(8, 24) No
10 Balanced float(8, 24) No
10 Zero float(8, 24) No
10 None float(8, 16) No
10 None float(8, 10) No
10 Full float(8, 10) Yes
8 None float(8, 24) No
8 Full float(8, 24) No
8 Balanced float(8, 24) No
4 Full float(8, 24) Yes
4 Balanced float(8, 24) Yes
4 Full float(8, 16) Yes
4 Full float(8, 10) Yes
2 None float(8, 24) Yes
2 Balanced float(8, 24) Yes
2 Full float(8, 24) Yes

Table 6.6: Design exploration space for the Add Prediction kernel.

original MaxCompiler design has 90 lines of code and 49 APT calls.

The iterative exploration aspect description and the operator optimisation aspect can
be used for design space exploration to vary the number of features of the algorithm and
the DSP mapping factor to achieve timing closure.

Table 6.6 shows the parameters used for design space exploration to achieve timing
closure. The ability to map operations from LUT/FFs to DSP enables the design space
exploration process to achieve timing closure.

6.6 Summary

We have analysed our implementation on a number of real-life applications. Tableconc:summary
summarises our experimental results and shows that for the considered applications we

can achieve close to identical performance to hand crafted MaxCompiler designs, while
requiring significantly less line of code and API calls even without taking into account
savings that can be achieved from using aspect descriptions.

Our extensions for multiple kernel support and supporting designs with DRAM has

6.6. Summary 83

Kernel LOC Ratio API Calls | Performance*| Resource*
Ratio

CmdRead 1.76 4.33

CmdWrite 1.45 4.13

RTM 1.17 10

SGSmooth 1.85 14 Identical Identical

SGDiftf 1.75 14

Black-Scholes | 2.5 5.5

Add Predic- | 67 16

tion

Table 6.7: Lines of code, API calls performance and resource usage ratio of original
manual MaxCompiler design and FAST design.

helped match the performance of MaxCompiler designs that benefit from higher memory
bandwidth (such as Black Scholes or RTM). In the meantime the ability to infer types
has helped simplify the language reducing the number of API calls substantially. The
aspect oriented design flow can be used to effectively explore the design space of available
optimisation for operand bit width, or varying specific design constants in order to
achieve timing closure or maximise performance. Although these results are promising,
it must be noted that these metrics alone are not a definitive indication of increased
productivity and that future large scale studies should be performed.

One limitation of our current implementation is that we cannot control design param-
eters that are not directly accessible to the dataflow kernel. For example stream clock
frequency and DRAM frequency are controlled from within the MaxCompiler manager.
To work around this limitation for evaluation purposes we have reproduced the same
manager design in both the original MaxCompiler design and the FAST design when
measuring performance.

Chapter 7

Conclusion

We have tackled the challenge of improving developer productivity with minimal impact
on efficiency for custom dataflow designs implemented on FPGAs. We have shown that
this can be achieved by adopting the Aspect-oriented design philosophy of encapsulating
cross-cutting concerns (such as optimisations) in highly cohesive aspect descriptions.

7.1 Summary of Achievements

We introduced a novel development approach for dataflow designs, required to integrate,
for the first time the Aspect-oriented approach with dataflow design development for
FPGAs. By decoupling optimisations from design specification the proposed design flow
both simplifies the development and maintenance of dataflow applications and highlights
opportunities for platform specific optimisations.

To support the proposed design flow we introduced FAST a novel language for speci-
fying dataflow designs which facilitates integration with existing aspect weaving tools
by adopting a standard C99 syntax. Other important features of FAST include sup-
port for hardware/software co-design, which allows embedding of dataflow kernels in
regular C style applications and support for variable bit width operand representation
via a pragma based mechanism. We implemented a compiler for the FAST language
that translates FAST dataflow designs to MaxCompiler 2012.1 designs based on the
MaxCompilerRT interface. To complement the FAST dataflow designs we introduced a
number of novel aspect descriptions that enable effective design space exploration with
minimal user input.

We evaluated our approach on a number of applications and showed that significant
improvements can be achieved in terms of productivity at minimal cost to performance.
We have shown FAST dataflow designs require significantly less API calls and lines of
code, while matching the performance of manually created MaxCompiler designs and

7.2. Future Work 85

improving flexibility which simplifies the design space exploration process. Th proposed
flow can be used to support design space exploration that highlights interesting trade-off
opportunities for increasing design parallelism or overall throughput subject to required
accuracy.

A full paper based on this project was accepted for publication at the 24th IEEE Interna-
tional Conference on Application-specific Systems, Architectures and Processors, ASAP
2013. Finally, the project has been included in the FP7' funded HARNESS Project
where it is to be used for generating efficient dataflow implementations for key cloud
applications based on user requirements.

7.2 Future Work

Although we have met our original objectives set out in Section 1.2, we would like to
highlight that substantial work remains to be done both to improve the quality of existing
work (by improving for example error handling, documentation and extensibility of our
compiler prototype) and to investigate the applicability of our approach to exciting
classes of problems. Current and future work possibilities include:

e Extending the approach to cover other classes of parallel computation. Based on
the positive evaluation results, we believe that the approach can be extended to
support the generation of efficient dataflow designs for additional classes of parallel
computation such as Sparse or Dense Linear Algebra, MapReduce or N-Body Sim-
ulation which are quintessential examples of parallel kernels [71]. This could also
provide valuable feedback which can be used to refine and validate the proposed
approach.

o FExtension to cover heterogeneous systems. With the increasing demand in cloud
computing solutions, it is believed that heterogeneous computing platforms can
provide a better mix of performance, energy and cost efficiency than traditional
CPU only based platforms. From the onset of this project we have kept the ap-
proach as platform agnostic as possible, to enable the support for reconfiguration
our approach is intentionally platform agnostic to allow extension to other plat-
forms for dataflow computing (such as CPU and GPGPUs).

e Support a standardised set of pragams. In the context of heterogeneous computing
platforms, to facilitate the adoption of the FAST language a standardised set of
pragmas such as OpenACC could be supported. We have not started with this
idea in order to maximise the flexibility of our approach, but we believe that a
standardised set of pragmas can help to improve portability and interoperability
of C + FAST applications.

!European Union Seventh Framework Programme

7.2.

Future Work 86

Support MaxCompiler 2013.1. MaxCompiler 2013.1 introduces a new interface
and interesting opportunities for optimisations, which are highly relevant to the
cloud model of shared compute resources. For example, it introduces the possi-
bility to control groups of dataflow engines and it provides improved support for
remote operation via Remote DMA over high speed Ininiband connection. These
features make it interesting, if not mandatory, to support the more recent version
of MaxCompiler.

The proposed design flow can be extended to support additional languages. This
does require a better separation in the fastc between the dataflow specific compo-
nents, which would serve as common backend representation for interfacing with
MaxCompiler and the language specific front-end passes.

Extension to cover other applications domains. Based on the previous extension,
domain specific languages for application domains ranging from Monte-Carlo sim-
ulations in finance [72] to genetic sequence matching [73] could be supported.

Current support for run-time facilities is limited and more work is required to
implement the run-time inter-facing between the CPU application and the dataflow
designs. One of the reasons for postponing the implementation of run-time support
was the imminent move to the MaxCompiler 2013.1 interface, which as mentioned
previously introduces a heavily revised CPU — DFE interface.

An interesting side-effect of our approach is that maintaining strict compatibility
with the C99 syntax simplifies translation from regular C / C++ applications
to FAST dataflow designs. Hence FAST itself could be used as an intermediate
language, a target for the translation process.

Although based on theoretical improvements and results observed from our evalu-
ation suite, we have all the reasons to believe that our approach can improve de-
veloper productivity and portability of dataflow designs a thorough study should
must be carried out to wvalidate our claim of improved productivity and portability.
This was beyond the scope of this project since it required a level of effort which
could not have been achieved within the limited time span;

Aspect descriptions can be used to support verification of designs, thus simplifying
what is often a more elaborate process than design development itself. For example,
the proposed approach is compatible with verification by symbolic simulation and
equivalence checking as explained in [74];

Finally, the implementation presented in this report is a prototype and, although
functional, it requires further engineering work before being available for release to
the public. In particular, error handling is not very robust and the extensibility of
the compiler could be improved, to allow open programmatic access to the dataflow
graph representation generated by the fastc compiler.

Bibliography

1]
2]

[3]

[10]

[11]

M. Flynn, O. Pell, and O. Mencer, “Dataflow Supercomputing,” in FPL, 2012.

0. Mencer, “Maximum Performance Computing for Exascale Applications,” in

SAMOS, 2012.

X. Niu, Q. Jin, W. Luk, Q. Liu, and O. Pell, “Exploiting Run-Time Reconfiguration
in Stencil Computation,” in FPL, 2012.

Tiobe Software, “Tiobe Programming Index,” http://www.tiobe.com/index.php/
content /paperinfo/tpci/index.html, 2012.

Y. Lam, J. Coutinho, and W. Luk, “Integrated Hardware/Software Codesign for
Heterogeneous Computing Systems,” in SPL, 2008.

J. Cardoso, P. Diniz, and M. Weinhardt, “Compiling for Reconfigurable Computing:
A Survey,” ACM Computing Surveys (CSUR), vol. 42, no. 4, p. 13, 2010.

A. V. Aho, J. D. Ullman, and S. Biswas, Principles of Compiler Design. Addison-
Wesley, 1977.

M. Wolfe, C. Shanklin, and L. Ortega, High Performance Compilers for Parallel
Computing. Addison-Wesley Longman, 1995.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and
J. Irwin, “Aspect-Oriented Programming,” ECOOP, 1997.

S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally, E. Elnohazy,
M. Hall, R. Harrison, W. Harrod, K. Hill et al., “Exascale Software Study: Software
Challenges in Extreme Scale Systems,” DARPA IPTO, Air Force Research Labs,
Tech. Rep, 2009.

D. Chen, J. Cong, and P. Pan, FPGA Design Automation: A Survey. ”Foundations
and Trends in Electronic Design Automation”, 2006.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Bibliography 88

[12]

[13]

[14]

[19]

[20]

[21]

[22]

[23]

[24]

Q. Jin, T. Becker, W. Luk, and D. Thomas, “Optimising Explicit Finite Difference
Option Pricing for Dynamic Constant Reconfiguration,” in FPL, 2012.

S. Weston, J.-T. Marin, J. Spooner, O. Pell, and O. Mencer, “Accelerating the
Computation of Portfolios of Tranched Credit Derivatives,” in WHPCF, 2010.

O. Pell, J. Bower, R. Dimond, O. Mencer, and M. Flynn, “Finite Difference Wave
Propagation Modeling on Special Purpose Dataflow Machines,” IEEE Transactions
on Parallel and Distributed Systems, 2012.

D. Oriato, S. Tilbury, M. Marrocu, and G. Pusceddu, “Acceleration of a Meteoro-
logical Limited Area Model with Dataflow Engines,” in SAAHPC, 2012.

J. Dongarra, G. Fagg, A. Geist, J. Kohl, P. Papadopoulos, S. Scott, V. Sun-
deram, and M. Magliardi, “HARNESS: Heterogeneous Adaptable Reconfigurable
NEtworked SystemS,” in HPDC, 1998.

J. Cardoso, J. Teixeira, J. Alves, R. Nobre, P. Diniz, J. Coutinho, and W. Luk,
“Specifying Compiler Strategies for FPGA-based Systems,” in FCCM, 2012.

O. Pell and O. Mencer, “Surviving the end of Frequency Scaling with Reconfigurable
Dataflow Computing,” SIGARCH Comput. Archit. News, pp. 60-65, 2011.

P. Grigoras, X. Niu, J. G. Coutinho, and W. Luk, “Aspect Driven Compilation for
Dataflow Designs,” in ASAP (to appear), 2013.

O. Lindtjrn, R. G. Clapp, O. Pell, O. Mencer, and M. J. Flynn, “Surviving the End
of Scaling of Traditional Micro Processors in HPC.” ITEEE HOT CHIPS 22, 2010.

S. Trimberger, “Scheduling designs into a time-multiplexed fpga,” in Proceedings of
the 1998 ACM/SIGDA sixth international symposium on Field programmable gate
arrays. ACM, 1998, pp. 153-160.

D. Koch and J. Torresen, “Fpgasort: a high performance sorting architecture ex-
ploiting run-time reconfiguration on fpgas for large problem sorting,” in Proceedings
of the 19th ACM/SIGDA international symposium on Field programmable gate ar-
rays. ACM, 2011, pp. 45-54.

R. Marcelino, H. C. Neto, and J. M. Cardoso, “Unbalanced fifo sorting for fpga-
based systems,” in FElectronics, Circuits, and Systems, 2009. ICECS 2009. 16th
IEEE International Conference on. IEEE, 2009, pp. 431-434.

Maxeler, “MaxCompiler white paper.” [Online]. Available: http://www.maxeler.
com/media/documents/Maxeler WhitePaperMaxCompiler.pdf

http://www.maxeler.com/media/documents/MaxelerWhitePaperMaxCompiler.pdf
http://www.maxeler.com/media/documents/MaxelerWhitePaperMaxCompiler.pdf

Bibliography 89

[25]

[26]

Xilinx, “Virtex 6 family overview.” [Online]. Available: http://www.xilinx.com/
support/documentation/data_sheets/ds150.pdf

O. Lindtjorn, R. G. Clapp, O. Pell, O. Mencer, M. J. Flynn, and H. Fu, “Beyond
Traditional Microprocessors for Geoscience High-Performance Computing Applica-
tions,” Micro, IEEFE, vol. 31, no. 2, pp. 41-49, 2011.

J. N. Lyness and C. B. Moler, “Numerical differentiation of analytic functions,”
SIAM Journal on Numerical Analysis, vol. 4, no. 2, pp. 202210, 1967.

planetmath.org, “Solving the Black-Scholes PDE by finite differences.” [Online].
Available: http://planetmath.org/solvingtheblackscholespdebyfinitedifferences

E. Baysal, D. D. Kosloff, and J. W. Sherwood, “Reverse Time Migration,” Geo-
physics, vol. 48, no. 11, pp. 1514-1524, 1983.

M. Araya-Polo et al, “Assessing Accelerator-based HPC Reverse Time Migration,”
IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 1, pp. 147-162,
2011.

W. L. Xinyu Niu, Qiwei Jin and S. Weston, “A Self-Aware Tuning and Evaluation
Method for Finite-Difference Applications in Reconfigurable Systems,” 2013.

G. Kiczales, “Aspect-oriented Programming,” in ICSE, 2005.

I. Jacobson and P.-W. Ng, Aspect-Oriented Software Development with Use Cases
(Addison-Wesley Object Technology Series). Addison-Wesley Professional, 2004.

J. Gradecki and N. Lesiecki, Mastering AspectJ: Aspect-Oriented Programming in
Java. Wiley, 2003.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold, “An
overview of Aspect],” ECOOP 20010bject-Oriented Programming, pp. 327-354,
2001.

O. Spinczyk, A. Gal, and W. Schroder-Preikschat, “AspectC++: an Aspect-
Oriented Extension to the C4++ Programming Language,” in TOOLS Pacific, 2002.

J. Cardoso, K. Bertels, G. Kuzmanov, R. Nane, and V. Sima, “REFLECT: Ren-
dering FPGAs to Multi-Core Embedded Computing,” Reconfigurable Computing:
From FPGAs to Hardware/Software Codesign, pp. 261-289, 2011.

J. M. P. Cardoso, T. Carvalho, J. Teixeira, P. C. Diniz, F. Goncalves, and Z. Petrov,
“Hardware/Software Specialization Through Aspects: The LARA Approach,” in

http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://planetmath.org/solvingtheblackscholespdebyfinitedifferences

Bibliography 90

[45]

[46]

[47]

[51]

SAMOS, 2012.
M. G. Corp, “Catapult C synthesis C to hardware concepts,” October 2009.

R. Ferrer, J. Planas, P. Bellens, A. Duran, M. Gonzalez, X. Martorell, R. Badia,
E. Ayguade, and J. Labarta, “Optimizing the exploitation of multicore processors
and GPUs with OpenMP and OpenCL,” in Languages and Compilers for Parallel
Computing, ser. Lecture Notes in Computer Science, K. Cooper, J. Mellor-
Crummey, and V. Sarkar, Eds. Springer Berlin Heidelberg, 2011, vol. 6548, pp.
215-229. [Online|. Available: http://dx.doi.org/10.1007/978-3-642-19595-2_15

“Online C to verilog translator.” [Online]. Available: http://www.c-to-verilog.
com/online.html

Xilinx, “Vivado design suite.” [Online]. Available: http://www.xilinx.com/
products/design-tools/vivado/index.htm

“Impulse C.” [Online|. Available: http://www.impulseaccelerated.com/products_
universal.htm

S. Czerniawski, “Building Deep, Hazard-free Hardware Pipelines from OpenCL Pro-
grams,” Master’s thesis, Imperial College London, 2011.

Khronos, “OpenCL specification.” [Online]. Available: http://www.khronos.org/
opencl/

E. A. Ashcroft and W. W. Wadge, “Lucid, a Nonprocedural Language with Itera-
tion,” Communications of the ACM, vol. 20, no. 7, pp. 519-526, 1977.

B. W. Tony Faustini, “pLucid.” [Online]. Available: http://www.gnu.org/software/
automake /manual /html_node/Autotools-Introduction.html

J. Gurd and W. Bohm, “Implicit Parallel Processing: SISAL on the Manchester
Dataflow Computer,” Proceedings of the IBM-Furope Institute on Parallel Profess-
ing, 1987.

J. McGraw et al., “SISAL: Streams and Iteration in a Single-assignment Language,”
Lawrence Livermore National Lab, Tech. Rep., 1983.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The Synchronous Data Flow
Programming Language LUSTRE,” Proceedings of the IEEFE, vol. 79, no. 9, pp.
1305-1320, 1991.

N. Halbwachs, F. Lagnier, and C. Ratel, “Programming and Verifying Real-time

http://dx.doi.org/10.1007/978-3-642-19595-2_15
http://www.c-to-verilog.com/online.html
http://www.c-to-verilog.com/online.html
http://www.xilinx.com/products/design-tools/vivado/index.htm
http://www.xilinx.com/products/design-tools/vivado/index.htm
http://www.impulseaccelerated.com/products_universal.htm
http://www.impulseaccelerated.com/products_universal.htm
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
http://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html

Bibliography 91

[63]

Systems by Means of the Synchronous Data-flow Language LUSTRE,” IEEE Trans-
actions on Software Engineering, vol. 18, no. 9, pp. 785-793, 1992.

V. Vijayaraghavan, K. Kavi, and B. Shirazi, “Control flow extensions to the dataflow
language sisal,” in Applied Computing, 1991., [Proceedings of the 1991] Symposium
on, apr 1991, pp. 130 —138.

K. Kavi, V. Vijayaraghavan, B. Shirazi, and A. Hurson, “Barriers and break-points
in dataflow: extensions to sisal language,” in System Sciences, 1992. Proceedings of
the Twenty-Fifth Hawaii International Conference on, vol. i, jan 1992, pp. 526 —534
vol.1.

M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski, “Stream-oriented FPGA Com-
puting in the Streams-C High Level Language,” in FCCM, 2000.

J. M. Cardoso, T. Carvalho, J. G. Coutinho, W. Luk, R. Nobre, P. Diniz, and
Z. Petrov, “LARA: an Aspect-Oriented Programming Language for Embedded Sys-
tems,” in AOSD, 2012.

J. M. Cardoso, R. Nane, P. C. Diniz, Z. Petrov, K. Kratky, K. Bertels, M. Hiibner,
F. Gongalves, J. G. d. F. Coutinho, G. Constantinides et al., “A New Approach to
Control and Guide the Mapping of Computations to FPGAs,” in ERSA, 2011.

J. Cardoso, “Programming Strategies for Runtime Adaptability,” in ReCoSoC|
2012.

D. H. Jones, A. Powell, C.-S. Bouganis, and P. Y. Cheung, “Gpu versus fpga for high
productivity computing,” in Field Programmable Logic and Applications (FPL),
2010 International Conference on. IEEE, 2010, pp. 119-124.

T. Sheard, Accomplishments and Research Challenges in Meta-programming, ser.
Lecture Notes in Computer Science, W. Taha, Ed. Springer Berlin Heidelberg,
2001, vol. 2196.

Maxeler, “Maxeler developer exchange.” [Online|. Available: https://groups.
google.com/a/maxeler.com/forum/?fromgroups#!forum/mdx

MaxelerFD, “MaxGenFD white paper.” [Online]. Available: http://www.maxeler.
com/media/documents/Maxeler WhitePaperMaxGenFD.pdf

D. Quinlan, “ROSE: Compiler Support For Object-Oriented Frameworks,” Parallel
Processing Letters, vol. 10, pp. 215-226, 2000.

N. Chen, “Convention over configuration,” 2006. [Online]. Available: http:

https://groups.google.com/a/maxeler.com/forum/?fromgroups#!forum/mdx
https://groups.google.com/a/maxeler.com/forum/?fromgroups#!forum/mdx
http://www.maxeler.com/media/documents/MaxelerWhitePaperMaxGenFD.pdf
http://www.maxeler.com/media/documents/MaxelerWhitePaperMaxGenFD.pdf
http://softwareengineering.vazexqi.com/files/pattern.html
http://softwareengineering.vazexqi.com/files/pattern.html

Bibliography 92

[64]

[65]

[66]

[69]

[70]

[76]

/ /softwareengineering.vazexqi.com/files/pattern.html
H. Fu, “Accelerating scientific computing through gpus and fpgas.”

“C99 language standard.” [Online|. Available: http://www.open-std.org/jtcl/
sc22/wgld/www/docs/n1256.pdf

L. L. N. Laboratory, “ROSE compiler infrastructure.” [Online]. Available:
http://www.rosecompiler.org

Maxeler, “Maxeler maxworkstation specification.” [Online]. Available: http:
//www.maxeler.com/products/desktop/

A. Savitzky and M. J. Golay, “Smoothing and differentiation of data by simplified
least squares procedures.” Analytical chemistry, vol. 36, no. 8, pp. 1627-1639, 1964.

9

K. E. Batcher, “Sorting networks and their applications,” in Proceedings of the April
30-May 2, 1968, spring joint computer conference. ACM, 1968, pp. 307-314.

T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich, “Web-scale bayesian click-
through rate prediction for sponsored search advertising in microsofts bing search

engine,” in Proceedings of the 27th international conference on machine learning,
2010, pp. 13-20.

K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, “The Land-
scape of Parallel Computing Research: A View from Berkeley,” EECS Department,
University of California, Berkeley, Tech. Rep., 2006.

Q. Jin, D. Dong, A. Tse, G. Chow, D. Thomas, W. Luk, and S. Weston, “Multi-level
Customisation Framework for Curve Based Monte Carlo Financial Simulations,” in
ARC; 2012.

J. Arram, K. Tsoi, W. Luk, and P. Jiang, “Hardware Acceleration of Genetic Se-
quence Alignment,” in ARC, 2013.

T. Todman and W. Luk, “Verification of streaming designs by combining symbolic
simulation and equivalence checking,” in Field Programmable Logic and Applications
(FPL), 2012 22nd International Conference on. 1EEE, 2012, pp. 203-208.

GNU, “Autotools introduction.” [Online]. Available: http://www.gnu.org/
software/automake /manual /html node/Autotools-Introduction.html

Boost, “Boost C++ Library.” [Online]. Available: http://www.boost.org/users/

http://softwareengineering.vazexqi.com/files/pattern.html
http://softwareengineering.vazexqi.com/files/pattern.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.rosecompiler.org
http://www.maxeler.com/products/desktop/
http://www.maxeler.com/products/desktop/
http://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
http://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
http://www.boost.org/users/history/version_1_47_0.html
http://www.boost.org/users/history/version_1_47_0.html

Bibliography

93

history /version_1_47_0.html

http://www.boost.org/users/history/version_1_47_0.html
http://www.boost.org/users/history/version_1_47_0.html

Appendix A

User Guide

fastc is an experimental compiler for the FAST language and is available at https:
//github.com/paul-g/maxcc.

Installation

The project requires : 1) GNU AutoTools [75], 2) Boost 1.47[76] and 3) ROSE 0.9.5
[66]. To extract and compile the project please run the following commands:

1 | tar xvzf fastc—${version}.tar.gz && cd fastc—${version}
2 | configure —with—boost=/path/to/boost —with—rose=/path/to/rose
3 | make && make install

Testing

To test your installation run make test.

Where To Start

Please visit the FAST wiki at https://github.com/paul-g/maxcc/wiki to get started.

!Please check the documentation of these tools for other dependencies.

https://github.com/paul-g/maxcc
https://github.com/paul-g/maxcc

Appendix B

Original RTM Kernel

The following listing shows the original compute kernel for the Reverse Time Migration
application implemented with MaxJ using MaxCompiler 2012.1. Some typical Java
constructs such as package definitions and imports are omitted.

1 | public class RTM extends Kernel {

2 int Par=1, Mul=1, Sub=0;

3

4 public KArrayType<HWVar> burst_in=

5 new KArrayType<HWVar>(hwFloat(8, 24), Par);

6

7 public KArrayType<HWVar> burst_out=

8 new KArrayType<HWVar>(hwFloat(8, 24), Par);

9

10 public RTM(KernelParameters parameters) {

11 super(parameters);

12 HWFloat real = hwFloat(8,24);

13 HWFix fix_-4_24= hwFix (4,24 ,HWFix. SignMode . TWOSCOMPLEMENT) ;

14

15 OffsetExpr nx = stream.makeOffsetParam("nx", 24/Par, 48/Par);
16 OffsetExpr nxy = stream.makeOffsetParam (" nxy" ,32% nx, 32 % nx);
17

18 // Application Specific constants omitted

19 (...)

20 HWVar bc = constant.var(—0.0005);

21

22 HWVar nl = io.scalarlnput(”n 1” hwUInt(32));

23 HWVar n2 = io.scalarlnput("n2 hwUInt(32));

24 HWVar n3 = io.scalarlnput(”n3” hwUInt(32));

25 HWVar ORDER = io.scalarlnput ("ORDER" , hwUInt(32));

26 HWVar SPONGE= io.scalarlnput ("SPONGE" ,hwUInt(32));

27

28 CounterChain chain = control.count.makeCounterChain();

29 HWVar i4 = chain.addCounter(1000,1).cast(hwUInt(32));//iteration
30 HWVar i3 = chain.addCounter(n3, 1).cast(hwUInt(32));//outest loop

96

31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82

HWVar i2 = chain.addCounter(n2, 1).cast(hwUInt(32));
HWVar il = chain.addCounter(nl, Par).cast(hwUInt(32));//innest loop

HWVar up[] = new HWVar[Par];

for (int i=0; i <Par; i++)

up[i] = i3>=ORDER & i3<n3-ORDER & i2>=0ORDER & i2<n2—ORDER & il>=
ORDER-i & i1<n1-ORDER-i ;

HWVar output_ring = n3 > i3 & i3 >= n3 — ORDER;

HWVar input_ring = ORDER > i3;

HWVar output_enable = (n3 — ORDER > i3 & i3 >= ORDER);

// input

KArray<HWVar> burst_p =io.input(” burst_p", burst_in);
KArray<HWVar> burst_pp =io.input (" burst_pp", burst_in);
KArray<HWVar> burst_dvv =io.input (" burst_dvv”, burst_in);
KArray<HWVar> burst_source=io.input(” burst_source”, burst_in);
HWVar p[] =new HWVar[Par];

HWVar pp_i[] =new HWVar[Par];

HWVar dvv [] =new HWVar[Par];

HWVar source[] =new HWVar[Par];
HWVar image [][] =new HWVar[Par][Mul];

for (int i=0; i <Par; i++)

{
pli]= burst_p[i].cast(real);
pp-i[i]= burst_pp[i].cast(real);
dvv[i]= burst_dvv[i].cast(real);
source[i]= burst_source[i].cast(real);
}

HWVar cur [][]1[]11] new HWVar[Mul][114+Par+1][11][11];
HWVar inter []]] = new HWVar[Par][Mul];
HWVar result []]] = new HWVar[Par][Mul];

optimization .pushDSPFactor(1);
//Cache
for (int i=0; i <Par; i++)
{
int k = —6/Par;
for (int x=-6; x<=6; x+=Par)

for (int y=-5; y<=5; y++)
for (int z=-5; z<=5; z++)
cur[0][x+6+i][y+5][z+5] = stream.offset(p[i], zxnxy+ysxnx+k);
k4+;
}

97

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

120
121
122
123
124
125
126
127
128
129

130
131
132
133

//Computation
for (int i=0; i <Par; i++)
{

//data—path (0,1i)
result [i][0]=(
cur[0][6+i][5]
cur[0][6+i][5]

+(cur[0][5+i][5]
+(cur[0][4+i][5]
+(cur[0][3+i][5]
+(cur[0][2+i][5]
+(cur[0][1+i][5]
+(cur[0][6+i][4]
+(cur[0][64+i][3]
+(cur[0][6+i][2]
+(cur[0][6+i][1]
+(cur[0][6+i][0]
+(cur[0][6+i][5]
+(cur[0][6+i][5]
+(cur[0][6+i][5]
+(cur[0][6+i][5]
+(cur[0][6+i][5]

+ source[i];

=(up[i])? result[i][O0]

e o S S S S S

inter[i][0]

//Multiple Time—Dimension
for (int j=1; j <Mul; j++)
{
//Cache
for (int i=0; i <Par; i++)
{
int k = —6/Par;
for (int x=-6; x<=6; x+=Par)

for (int y=-5; y<=5; y++)
for (int z=-5; z<=5; z++)
cur[j][x+6+i][y+5][z+5] =

nxy+y*nx+k) ;
K+
}
}
//Computation
for (int i=0; i <Par; i++)
{

//data—path(j, i)

result [i][j]=(
cur[j][6+i][5][5]

[i]x(

cur[j][6+i][5
+(cur[j][5+i][5
+(cur[j][4+i][5
5

115]
J15]
1[5]
+(cur[j1[3+i][5][5]

2.0 — pp-i[i] +dvv[i]=x(
c.0

cur[0][7+i][5
cur[0][8+i][5
cur[0][9+i][5
cur[0][10+i]]
cur[0][11+i][5

cur[0][6+i][6]
cur[0][6+i][7]
cur [0][6+i][8]
cur[0][6+i][9]

cur[0][64+i][10

cur [0][6+i][5]
cur[0][6+i][5]
cur[0][6+i][5]
cur [0][6+i][5]
cur[0][6+i][5]

copp-ili]

]
]
]
5

~— —

*OKk K X X X K X K KX X X X ¥ X

[5])
[5])
[5])
115]
][5]
[5])
[5])
[5])
[51)
1[5])
[6])
[71)
[8])
[91)
[10]

)

0O 0O 0 000000000000
|
W WWWWwWMNhDDPNNMNMNNNNNRE R FHERFE-

AP OONHFROPPWNFHFOPMWDNEREO

stream . offset (inter[i][]j—1], zx

2.0 — cur[j—=1][64+i][5][5] +dvv

c.0

cur [j][7+i]]
cur[j][8+i]]
cur [j][9+i]]

5][5]
5][5]
5][5]

~— — —

98

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

+(cur[j][2+i][5][5] + cur[j][10+i][5][5]) * c
+(cur[j][1+i][5]1[5] + cur[j][114+i][5][5])* c-
+(cur[j][6+i]1[4]1[5] + cur[j][6+i][6][5]) * c-
+(cur[j][6+i][3][5] + cur[j][6+i][7][5]) =* c-
+(cur[j][6+i][2][5] + cur[j][64+i][8][5]) * c-
+(cur[j][6+i]1[1]1[5] + cur[j][6+i][9][5B]) * c-
+(cur[j][6+i][0][5] + cur[j][6+i][10][5])* c_
+(cur[j][6+i][5][4] + cur[j][64+i][5][6]) * c-
+(cur[j][6+i]1[5]1[3] + cur[j][6+i][5][7]) * c-
+(cur[j][64+i]1[5][2] + cur[j][64+i][5][8]) * c-
+(cur[JI[6+i][5][1] + cur[j][64+i][5][9]) * c-
+(Cur[j][[6ﬂii][5][0] + cur[j][6+i][5][10])x* c-
+ source |1 |;
inter[i][]] =(up[i])? result[i][]j] : cur[j—1][64i][5][5];

}

//setup configuration

optimization.popDSPFactor () ;

// control counter

KArray<HWVar> output_p = burst_out.newlnstance(this);

KArray<HWVar> output_pp = burst_out.newlnstance(this);

for (int i=0; i <Par; i++)

{

output_p[i] <= inter[i][Mul—1].cast(hwFloat(8,24));

output_pp[i] <= cur[Mul—-1][6+i][5][5]. cast(hwFloat(8,24));
}

io.output(” ker_p”, output_p, burst_out);
io.output(”output_pp”, output_pp, burst_out);

[uy
w

W WWWWNNDNNDN -
P OODNRFRPROPWNDHFHEOD

~
~

Appendix C

Original Memory Read Kernel

The following listing shows the original memory read kernel for the Reverse Time Mi-
gration application implemented with MaxJ using MaxCompiler 2012.1. This kernel
generates the memory commands required to fetch data from DRAM. Some typical Java
constructs such as package definitions and imports are omitted.

O~ O T Wi

— ==
Ttk W N~ O O

16
17
18
19
20
21
22
23
24
25
26
27

public

class Cmdread extends Kernel {

public Cmdread (..) {

i3

int Burst_inc =1;

HWVar iniBursts =io.scalarlnput (" iniBursts” ,hwUInt(32));

HWVar totalBursts =io.scalarlnput (" totalBursts” ,hwUInt(32));

HWVar wordsPerBurst =io.scalarlnput (" wordsPerBurst” ,hwUInt(32));

HWVar Enable =io.scalarlnput (" Enable” ,hwUInt(1));

//the address counters

Count.Params param0 = control.count.makeParams(32)
.withEnable(Enable).withMax(wordsPerBurst).withlnc(1);

Counter counter0 = control.count.makeCounter(param0);

HWVar wordCount = counter0.getCount();

Count.Params paraml = control.count.makeParams(32)

.withEnable(counter0.getWrap()).withMax(totalBursts).withlnc(
Burst_inc);

Counter counterl = control.count.makeCounter(paraml);

HWVar burstCount = counterl.getCount();

HWVar Control = wordCount.eq(0) & Enable;

DRAMCommandStream . makeKernelOutput (" dram_read” ,
Control , // control
burstCount+iniBursts , // address
constant.var(hwUInt(8),Burst_inc),// size
constant.var(hwUInt(6), 1), // inc
constant.var(hwUInt(4), 0), // stream
constant.var(false));

Appendix D

FAST Dataflow Kernels

D.1 Numerical Differentiation

The FAST dataflow kernel that implements the differentiation operation is shown in the
Listing below. It uses no API (non-user defined) function calls and a total of 20 lines of
code.

1 |#include ‘‘fastc/fast.h’’

2

3 | const int Par;

4

5 |int stream_diff(float *xvalue[Par], int offset, int pipe) {

6 int cycle_offset = (pipe + offset) / Par;

7 int pipe_offset = (pipe + offset) % Par;

8 int cycle_offset_.neg = (Par — 1 — pipe + offset) / Par;

9 int pipe_offset_.neg = Par — 1 — (Par — 1 — pipe + offset) % Par;

10 return value[pipe_offset][cycle_offset] —

11 value[pipe_offset_neg][cycle_offset_neg];

12 |}

13

14 |int diff(float xvalue[Par], float h, int pipe) {

15 return (=2 % stream_diff(value, 2, pipe)

16 —1 % stream_diff(value, 1, pipe)) / (10 % h);

17 |}

18

19 | void kernel SGDiff(floatx value[Par], int width, int size, double step)
{

20 int cycle = Par x CYCLE.COUNT + pipe;

21 bool compute = (cycle >= width) & (cycle < size — width);

22

23 for (int pipe = 0; pipe < Par; pipe++) {

24 result [pipe] = compute ? diff(value, h, pipe) : value[pipe]

25

D.2. Add Prediction 101

26 |}

D.2 Add Prediction

1 |#include " ../../../include/maxcc.h”

2

3 | float PDF(float z) {

4 float root2pi = 2.50662827463100050242;
5 return exp(—z *x z / 2) / root2pi;

6 |}

7

8 | float CDF(float z) {

9

10 | // constants p0..p6 and q0..q6 are omitted
11 (...)

12

13 float cutoff = 7.071;

14

15 float root2pi = 2.50662827463100050242;
16

17 float zabs = sqrt(z);

18 float expntl = exp(—0.5 * zabs x zabs);
19 float pdf = expntl / root2pi;

20

21 bool c1 =2z > 37.0;

22 bool c2 = z < —37.0;

23 bool c3 = zabs < cutoff;

24

25 float pA = expntl x*

26 ((((((p6 * zabs 4+ p5) * zabs + p4) *x zabs + p3)x zabs + p2) x zabs +

pl) % zabs + p0) /
27 (((((((q7 * zabs + q6) * zabs 4+ g5)*zabs + q4) * zabs + g3) % zabs +
gq2)*zabs + ql % zabs) + q0 x zabs);

28

29 float pB = pdf / (zabs + 1.0/(zabs + 2.0/(zabs + 3.0/(zabs + 4.0/(zabs
+0.65)))));

30

31 float pX = c3 = 0 7 pB : pA;

32 float p = (z < 0.0) ? pX : 1 — pX;

33 return c1 = 0? (¢c2 =107 p : 0.0) : 1.0;

34 |}

35

36 | float V(float t) {

37 float cdf = CDF(t);

38 return (cdf = 0) ? 0 : PDF(t) / cdf;

39 |}

40

41 | float W(float t) {

D.2. Add Prediction 102

42 float v = V(t);

43 return v x (v + t);
44 |}
45
46 | const int N = 10;

47 |#pragma fast var:y ioType:float(8, 24) computeType:float(8,12) func:

kernel_Adp
48 |void kernel_Adp(
49 float y, float beta,
50 floatx prior_m[10],
51 floatx prior_v[10],
52 floatx post.m[10],
53 floatx post_s[10])
54 |4
55 float m, s;
56 m = 0;
57 s = 0;
58 for (int i =0; i <N ; i+4+) {
59 m=m + prior_m[i][0];
60 s = s + prior_v[i][0];
61 }
62

63 float S sqrt(beta x beta + s);
64 float t = (y * m) / S;

65

66 for (int i = 0; i < N; i++) {

67 float prom = priorm[i][0];

68 float pr_v = prior_v[i][0];

69 float pscm = prom + y * (prov / S) * V(t);
70 float a = abs(pr-v x 1 — ((pr-v / (S * S)) x W(t)));
71 float sq = sqrt(a);

72 float ps_.s = pr_v + sq;

73 post_m[i][0] = ps.m;

74 post_s[i][0] = ps-s;

75 }

76

77 |}

Appendix E

Experimental Data

This chapter contains experimental data for the application benchmarks that were omit-
ted from the main report body for the sake of brevity.

Design space exploration results for the Reverse Time Migration application are shown
in Table E.1

Experimental speedup results for our implementation of the bitonic sorting network
design are listed in Table E.2.

104

‘uorjeoridde srewyouaq Y 92 10] synsor uorjeio[dxo 9oeds uSso(] :1°H O[qRL

GEUT | TF'LT | L6'€C | ST'LT | €F°SC Ge | ¢l | $96°C | ¥9T | ¥T8 ¢
02YZ | 1911 | ¥F'¥C | 86'F1 | 2€'1C Ge | ger | €ere | Lve | TR | 00F 4
LIU¥ | 28FE | €L°LC | 60°F7C | €1'7E Ge | ol | €alLT 8 | ¥T°8
0SUZ | ¢T°0T | 9°9C | ¥7'9¢C | ¢9°6¢ Ge | el | €80°¢ | ¥ee | 918
wiste[eIRJoto[dxy
CTUE | ST'ST | 88°9Z | 89'ST | 18°0F Ge | ¢el | 9.0°¢ | ¥eo | ST'S YLouonboig
0EYUE | ST'ST | 9T°LT | 9662 | ¥S'€F Ge | TCl | 900°¢ | ¥gg | 0Z°8 -oztundQ
WIPIAMPIOM IO
CIUE | RT°GT | €272 | LT'1E | 2O'SY G| Tcl | 86'C| V&g | Tt 8| €0% 9| Img
TVUE | T8VE | €L°LC | TT'TC | €9°GE Ge | el | 910 | ¥ae mAg
05Uy 0 | G6'8C | 8S°0F | TT°G9 8¢ | QoI | 9eT'¢ | €ce QUON
LIYE | I%°21 | 21°02 | ¢S°0€ | 19°¢S 8¢ | GgI | S2I'€ | 9¢¢ 9| ‘Teg
STUZ | TF'LT | L6'€C | €L1 | 90°SC 8¢ | ¢gr |gere | 9ce mg
0gYg 0[90%¢ | 19°GC | 91°6E e | 1¢1 | ¥21'S | ¥ee OUON
02Uz | 90°S | 90°%C | ¢€'1¢ | 9S° 1€ ¥e | 121 1906°¢ | Gzt ¢l Tedg
SUZ | 91T | ¥¥¥¢ GT | ST'1C ve | 11 | €ST'S | 9¥¢ mAg
qUg 0| €S¥c | €502 | S6°0€ ¥e | TeT | 900°¢ | L¥C OUON
0gYe | 2e¢ | es¥e | ¥76T | IS ¥e | T1el | L16°C | L¥C ¢ | Ted
cuc 8°G | 1€°€C | 64°CT | 89°LT 0¢ | LIT | €0T°S | T6F mAg
67¢C 0| T€'€C | 99°GT | 29°CC 0 | LIT | €S¥°€ | T6F UON wst[o[[eIe Jo10[dxy
‘o8esn ds@ozrundQ
6VUT | 69T | 1€°€2 | ST'F1 | 6861 0¢ | 21T 1298¢ | T6F | ¥¢ 81 €0¢ 11 Teg
(rem)(3rem) | (s) | (sTO) ooue
ourty, | (%) | (%) (%) Jomod Jomod |oury, jowuLy, boag -Teq
pIng | dSANVHLI(%)Ad | LNT | 'UAQ (12105 [[BI0LVOHIAYIPIM [WRIN | Ted | dSA sjpoadsy

105

Network | log(n) CPU FPGA Compute | FPGA FPGA
Size Time Time Speedup Total Total
Time Speedup
14 0.156162 | 0.006564 | 23.79 1.006564 | 0.1551
15 0.312428 | 0.013028 | 23.98 1.013028 | 0.3084
16 0.624328 | 0.026263 | 23.77 1.026263 | 0.6084
17 1.24981 0.051905 | 24.08 1.051905 | 1.1881
198 18 2.49068 0.102083 | 24.4 1.102083 | 2.26
19 4.98994 0.199928 | 24.96 1.199928 | 4.1585
20 9.97521 0.400709 | 24.89 1.400709 | 7.1215
21 19.9636 0.807231 | 24.73 1.807231 | 11.0465
22 39.9202 1.614437 24.73 2.614437 15.2691
23 79.8726 3.203924 | 24.93 4.203924 | 18.9995
16 0.271163 | 0.012983 | 20.89 1.012983 | 0.2677
17 0.541016 0.025841 20.94 1.025841 0.5274
18 1.08533 0.052019 | 20.86 1.052019 | 1.0317
64 19 2.16697 0.10265 21.11 1.10265 1.9652
20 4.33626 0.203208 | 21.34 1.203208 | 3.6039
21 8.66081 0.406241 | 21.32 1.406241 | 6.1588
22 17.3281 0.806145 | 21.5 1.806145 | 9.594
23 34.6705 1.617021 | 21.44 2.617021 | 13.2481
18 0.458403 | 0.026085 | 17.57 1.026085 | 0.4467
19 0.917055 | 0.051485 | 17.81 1.051485 | 0.8722
29 20 1.83439 0.100844 | 18.19 1.100844 | 1.6663
21 3.67453 0.203696 | 18.04 1.203696 | 3.0527
22 7.35396 0.404244 18.19 1.404244 5.237
23 14.6802 0.810293 | 18.12 1.810293 | 8.1093
19 0.375978 | 0.026123 | 14.39 1.026123 | 0.3664
20 0.759506 | 0.051846 | 14.65 1.051846 | 0.7221
16 21 1.49907 0.102618 14.61 1.102618 1.3596
22 3.00802 0.201457 | 14.93 1.201457 | 2.5036
23 5.99392 0.406334 | 14.75 1.406334 | 4.2621

Table E.2: Speedup results for the FPGA sorting network compared to the CPU only
version. Points after which it becomes convenient to use FPGA acceleration are high-

lighted.

	Introduction
	Motivation
	Challenges
	Contributions
	Published Work

	Background
	Dataflow Computing
	FPGA Acceleration
	Architecture
	Run-time Reconfiguration
	Maxeler Platform

	Stencil Computation
	Numerical Differentiation
	Black Scholes Equation
	Reverse Time Migration

	Aspect Oriented Programming
	LARA

	Related Work
	High Level Synthesis
	Dataflow Languages
	Aspect-driven Compilation of FPGA Designs

	Summary

	Design Flow
	Design Goals
	Performance and Energy Efficiency
	Productivity

	Components
	Comparison with Existing Approaches
	Extensions
	Design Modelling
	Run-time Reconfiguration Support

	Summary

	The FAST Language
	Design Goals
	Features
	Kernels and Streams
	Control and Computation
	Pragmas

	Extensions
	Inferring Stream Type
	Multiple Kernel Support

	Revised FAST Example
	The fastc Compiler
	Summary

	Aspect Descriptions
	System Aspect Descriptions
	Hardware/Software Partitioning
	Monitorisation
	Modelling
	Run-time Reconfiguration

	Implementation Aspect Descriptions
	Operator Optimisation

	Exploration Aspect Descriptions
	Iterative Design Space Exploration

	Development Aspect Descriptions
	Debugging Aspect

	Summary

	Evaluation
	Numerical Differentiation
	Black Scholes
	Reverse Time Migration
	Bitonic Sort
	Add Prediction
	Summary

	Conclusion
	Summary of Achievements
	Future Work

	User Guide
	Original RTM Kernel
	Original Memory Read Kernel
	FAST Dataflow Kernels
	Numerical Differentiation
	Add Prediction

	Experimental Data

