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Abstract

Nonnegative Matrix Factorization (NMF) is a very famous technique that
can be used for clustering or dimensionality reduction. In this thesis, we used
NMF as clustering technique. In addition, we also dealt with two variations
of NMF. These are the Semi-NMF and Convex-NMF. These techniques ex-
tend the applicability of NMF in that they can deal with negative values.
Moreover, a generalization of the NMF has been developed which takes into
account the intrinsic geometry of the data. This generalization is called
Generalized Nonnegative Matrix Factorization (GNMF).

In this project, we propose two new methods. These methods are the
Graph Semi-NMF and Graph Convex-NMF, which are generalizations of the
Semi-NMF and Convex-NMF, respectively. Like GNMF, these methods take
into account the geometry of the data. Moreover, we use Convex-NMF and
Graph Convex-NMF with two time series algorithms in order to enhance
their performance. Finally, we present a comparison of all the algorithms
and we conclude that our algorithms outperform the existing algorithms, in
most datasets.
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Chapter 1

Introduction

In this chapter, we introduce some basic knowledge on clustering. First, we
define the notion of clustering and its categories. Then, we present some
popular similarity measures that are used in clustering. In addition, well
known algorithms for clustering are discussed. Moreover, we present how
non-negative matrix factorization can be used for clustering. Finally, we
show how clustering can be applied in time series.

1.1 Clustering

Clustering is an unsupervised learning technique, which tries to find hidden
structure in unlabelled data. The goal of clustering is to group (cluster) the
data points in such a way that the data points that are in the same group
are similar and the data points that are in different groups are dissimilar.

1.2 Categories of Clustering

According to Han and Kamber[1] there are five major categories in clustering:

1. Partitioning methods

2. Hierarchical methods

3. Density-based methods

4. Grid-based methods

5. Model-based methods
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1.2.1 Partitioning methods

Partition methods divide the datasets into k clusters (k is predefined) such
that each data point is in only one cluster. More formally,

Definition 1. Given a dataset X ∈ <d×n and a number k ≤ n (usually
k << n), a partition method clusters each data point in X into one of the k
clusters.

Examples of algorithms that belong in this category is k-means[2], where
the cluster is represented by the mean value of the data points belonging
to the cluster, k-medoids[3], where the clusters are represented by the most
centrally located objects in the cluster.

The assignment of each data point, for the predefined algorithms, is hard.
That is, they belong to only one clsuter. There are also the algorithms
fuzzy c-means[4] and fuzzy c-medoid[5]. These algorithms belong to fuzzy
partitions, in which the assignment of data points to clusters in not hard.
That is, each data point belongs to a cluster with a probability. For example,
suppose that we have a data point x and 2 clusters. Then x may belong to
cluster 1 with probability 40% and to cluster 2 with probability 60%.

1.2.2 Hierarchical methods

Hierarchical methods construct a hierarchy of clusters by recursively parti-
tioning the instances. This can be done in either top-down or bottom-up.
There are two main types of hierarchical clustering:

1. Agglomerative approaches, in which initially all objects belong to one
cluster (its own) and then the clusters are successively merged into
larger and larger clusters until all objects are in one single cluster or
until certain termination conditions, such as the desired number of
clusters, are satisfied.

2. Divisive methods do the opposite. In the beginning all objects belong
to one (same) cluster and then the cluster is divided into smaller sub-
clusters and these into even smaller sub-clusters until the desired cluster
structure is obtained.

The merging or division of clusters is performed according to a similarity
measure.

2



1.2.3 Grid-based methods

The Grid-Based methods ”gridify” the data space. That is, a specified num-
ber of cells are created that form a grid structure. Then, clustering is per-
formed on that space. This method is computationally efficient with low
operation time. Well known algorithms of this method are the STING[8]
and CLIQUE[9].

1.2.4 Density-based methods

Density-based methods assume that there is a probability distribution in
which the points of each cluster are drawn from. The distribution of each
cluster can be different from other clusters in the data.

The key idea behind these methods is to continue growing a cluster until
the density in a neighbourhood exceeds some threshold. Popular algorithms
are the DBSCAN[6] and OPTICS[7].

1.2.5 Model-based methods

These methods try to find mathematical models to fit the data. The idea
is to find some object characteristics within the cluster. Decision trees and
neural networks are some very well known model-based methods.

1.3 Similarity measures

In clustering it is very important to define similarities measures. These sim-
ilarities, measure how alike are two data points. Here we describe the most
well known similarities measures.

1.3.1 Euclidean distance, Root Mean Square distance
and Mikowski distance

Euclidean distance is a very popular similarity measure and it is defined as
follows. Given two vectors x, y the Euclidean distance is given by

dE(x, y) =
√
‖x− y‖2

The Root Mean Square (RMS or average geometric distance) is given by

dRMS(x, y) = dE(x, y)/N
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where N is the length of the vectors. Finally, the Mikowski distance, which
is a generalization of the Euclidean distance, is given by

dM(x, y) = q
√
‖x− y‖q

1.3.2 Pearson’s correlation

Another popular similarity measure is the Pearsons correlation factor. Pear-
son’s correlation measures the linear dependence of two variables and can
take values [−1, 1], with -1 to denote negative correlation, +1 positive corre-
lation and 0 uncorrelated. This measure is defined as follows

cc =
E[(x− µx)(y − µy)]

SxSy

where µx and Sx is the mean of the vector and the scatter matrix, respectively.
The scatter matrix is calculated as follows

Sx =
√
x− µx

1.3.3 Short time series distance

Moller-Levet et al. [11] proposed the Short Time Series (STS) distance be-
tween two time series x and y as follows

dSTS =

√√√√ p∑
k=1

(
xj(k+1) − xjk
t(k+1) − tk

−
yj(k+1) − yjk
t(k+1) − tk

)2

where tk is the time point for the data point x and y.

1.3.4 Dynamic Time Warping(DTW) distance

Dynamic Time Warping (DTW) distance is used to align two or more time-
dependent sequences. It can be used to align discrete sequences with se-
quences of continuous values. These sequences can have different length.

Consider two time series X = x1, . . . , xn and Y = y1, . . . , ym. DTW aligns
these sequences so that their difference is minimized. For this purpose a (n×
m) distance matrix is created where the (i, j) element contains the distance
d(xi, yj) (normally the Euclidean distance is used) between two points xi
and yj. After having found the distance matrix the warping path W =
w1, w2, . . . , wK is found where max(n,m) ≤ K ≤ m+n− 1. This path must
satisfy the three following conditions:
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1. Boundary condition: The first and the last point of the warping path
must be the first and the last points of the aligned sequence, w1 = (1, 1)
and wK = (N,M).

2. Monotonicity condition: Preserves the time-ordering of points.

3. Continuity condition: Two successive points in the warping path must
be in neighbour cells.

It is computationally inefficient to find the warping path by testing every
possible warping path between X and Y. That is why dynamic programming
is used.

1.3.5 Kullback Leibler distance

The Kullback-Leibler distance is defined over two probabilities distributions
P and Q on a finite set S as follows

KL(P‖Q) =
S∑
i=1

P log
P

Q

1.4 Well known Clustering Algorithms

In this subsection we describe some basic algorithms that have extensively
been used. Some of the algorithms that we describe in later chapters are
extensions of these algorithms.

1.4.1 K-means, Kernel k-means and fuzzy c-means

K-means[2] is one of the simplest clustering algorithms which tries to divide
the data into k (known a priori) clusters. Each observation belongs to only
one cluster. This is the cluster with the nearest mean (hard assignment).
The algorithm tries to minimize the following objective function

JK−Means =
N∑
j=1

K∑
i=1

gij‖xi − ci‖2

where N is the number of data, K is the number of clusters, xi is a data
point, ci is a cluster center and gij is defined as follows

gij =

{
1, if xj is assigned to cluster i

0, otherwise

5



To minimize the objective function the algorithm alternates between two
steps

• Assignment step: Assign each data point to the closest cluster ck.

• Refitting step: Each cluster centre is moved to the centre of gravity of
the data assigned to it. That is

cj =
1

Nk

Nk∑
i=1

xi

where Nk is the number of points that belong to cluster i.

The convergence of K-means is guaranteed because whenever an assign-
ment is changed or whenever a cluster centre is moved the sum of squared
distances of the data points from their currently assigned cluster centres is
reduced.

A variation of k-means is fuzzy c-means[4] where each data point belongs
to a cluster centre with a probability (soft assignment). Thus, a point be-
tween two clusters may belong to one cluster with more probability than the
other cluster. The objective function of this algorithm is the following:

JFuzzyC−Means =
N∑
j=1

K∑
i=1

gmij ‖xi − cj‖2

where m is a real number greater than 1 and

cj =

∑N
i=1 g

m
ij xi∑N

i=1 g
m
ij

gij =
1∑K

k=1(
‖xi−cj‖
‖xi−ck‖

)
2

m−1

The optimization procedure to solve the fuzzy c-means is the following:

1. Choose c cluster centres, select m and ε (very small number). ε is used
in termination condition. Compute the membership matrix G(0), where
the element (i, j) of the matrix has the value gij.

2. Calculate the cluster centres ci.

3. Compute an updated membership matrix G(k+1) by using the equation
of gij.
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4. Compare G(k+1) to G(k). If G(k+1) − G(k) < ε, then stop. Otherwise,
set G(k) = G(k+1) and go to step 2.

One disadvantage of k-means and fuzzy c-means is that they cannot sep-
arate clusters that are non-linearly separable in input space. To overcome
this problem Kernel K-Means[12] was introduced. This algorithm uses a
non-linear mapping from the input space to a higher dimensional space and
performs the conventional k-means in that space. The objective function of
the Kernel K-Means is the following:

JKernelK−Means =
N∑
i=1

K∑
j=1

gij‖φ(xi)− cj‖2

where

ci =

∑N
j=1 gijφ(xj)∑N

j=1 gij

The distance between the cluster and the data point would be

‖φ(xi)− ck‖2 = φ(xi)φ(xi)− 2

∑N
j=1 φ(xi)φ(xj)∑N

j=1 gkj
+

∑N
j,z φ(xj)φ(xz)∑N
j=1

∑N
z=1 gkjgkz

= K(xi, xi)− 2

∑N
j=1K(xi, xj)∑N

j=1 gkj
+

∑N
j,zK(xj, xz)∑N

j=1

∑N
z=1 gkjgkz

where K(·) denotes the kernel matrix.

1.4.2 Agglomerative hierarchical clustering

As described earlier there are two types of hierarchical clustering: agglomer-
ative and divisive. Here we describe the agglomerative approach as it is the
most famous one.

In this type of hierarchical clustering at the beginning of the algorithm,
each object is considered to belong to one cluster (its own). The next step
is to measure the similarity of each cluster with every other cluster and then
merge the most similar together. This procedure takes place until one cluster
is created or when a termination criterion is satisfied. Depending on the
measure of similarity between clusters three main types can be considered:

Single-link Clustering
In these methods the distance between any two clusters is considered to
be the shortest distance between these clusters. That is, the shortest
distance of a data point that belongs to the first cluster and a data
point that belongs to the second cluster.
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Complete-link Clustering
Unlike the Single-Link methods in Complete-link methods the distance
between two clusters is the maximum distance between these clusters.
That is, the maximum distance between a data point that belongs to
one cluster and a data point that belongs to a second cluster.

Average-link Clustering
In these methods the distance between two clusters is considered to
be the average distance between these clusters. That is, the average
distance between all the points of both clusters.

1.4.3 Self-Organizing Map

Self-Organizing Map (SOM) was developed by Kohonen [13] and it is a special
case of neural network. This method converts high-dimensional input to low-
dimensional and it is trained by an iterative self-organizing procedure.

The learning process of the algorithm consists of the following steps:

1. Initialize each node with small random values of weights.

2. Choose a random vector from the input space and present it to the
network.

3. Find the Best Matching Unit (BMU) in the network by calculating the
distance between the weight vector of each node and the input vector.

4. Determine the BMU neighbourhood. The neighbourhood at each iter-
ation shrinks.

5. Alter the weights for the nodes in the neighbourhood. The closest to
the BMU the more change in the weights of a node.

6. Repeat from step 2 until convergence.

1.5 Nonnegative Matrix Factorization for Clus-

tering

Nonnegative Matrix Factorization (NMF) can approximately decompose a
non-negative matrix X into two non-negative lower-rank matrices F and G.
This technique can be used for clustering in which the matrix X is the data
matrix, the matrix F is the centroid matrix, which represents where the
cluster centre are in the space, and the matrix G is the cluster indicator
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matrix, which indicates in which cluster each data point belongs. Depending
on the cost function that is used for the approximation, different algorithms
can be created. Variations of NMF have been proposed. In this thesis we
deal with two variations. These are the Semi-NMF and Convex-NMF, which
extends the range of application of NMF, in that they can be used with
mixed signed data. These techniques are described in the next chapter more
thoroughly.

1.6 Time Series Clustering

In this project we also deal with time series datasets. So it is necessary to
explain how clustering can be made in such datasets. As in conventional
clustering, in time series datasets we try to group unlabelled data objects.
The type of algorithm that can be used depends on the data, which can be
multivariate or univariate, discrete-value or real-value etc. and the appli-
cation. According to [10] time series can be distinguished into three types
(Figure 1.6.1):

Raw-data-based
In this approach clustering can be applied directly to raw time series
data (thus called raw-data-based). The similarity measure used in this
case is one appropriate for time series.

Feature-based
In this approach the raw time series data are first converted into a
feature vector of lower dimension and then conventional clustering is
applied.

Modeled-based
This approach first converts the raw time series data into a number
of model parameters and then either the model parameters can be
used directly without applying a conventional clustering algorithm or
a clustering algorithm can be used.

9



Figure 1.6.1: Types of Time Series Clustering
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Chapter 2

Graph regularized Semi- and
Convex- Nonnegative matrix
Factorization

This chapter is divided in two parts. In the first part, we describe the Nonneg-
ative Matrix Factorization(NMF) and its variation Semi- and Convex-NMF.
In the second part of, we describe the Graph regularized algorithms. That is,
the Graph regularized Nonnegative Matrix Factorization (GNMF) and the
variations that we propose the Graph regularized Semi- and Convex-NMF.

2.1 Nonnegative Matrix Factorization (NMF)

This section describes the Nonnegative Matrix Factorization (NMF) tech-
nique and presents some algorithms that has been used in this technique.
Later, we mention two extension of the NMF. These are the Semi- and
Convex-NMF. Again we present algorithms that are used for these tech-
niques. Moreover, we describe two variations of Convex-NMF, the Kernel-
and Cluster-NMF. Finally, an example is given for Semi- and Convex-NMF.

2.1.1 Introduction

Non-negative Matrix Factorization (NMF) was first introduced by P. Paatero
and U. Tapper [14], and finds its origin in numerical linear algebra. NMF tries
to factorize a matrix into two non-negative matrices. The idea behind the
non-negativity of the matrices lies on the fact that in many datasets negative
numbers have no physical meaning. Applications of NMF can be found
in text mining[15][16], bioinformatics[17][18] and sound recognition[19][20].

11



NMF can be used either as a clustering or dimensionality reduction technique.
For this project NMF has been used as a clustering technique. Formally, the
NMF problem can be defined as followed:

Definition 2. Given a non-negative data matrix X ∈ <d×n+ find two non-
negative lower rank data matrices F ∈ <d×m+ and G ∈ <m×n+ with m < (d, n)
such that

X ≈ FG (2.1)

The NMF decomposition can be solved in repeated iterations where first
the matrix F is considered to be constant and G is updated and then G is
considered fixed and F is updated. There are different cost functions that
can be used in order to take the approximation in 2.1. In [21] they found
two algorithms. They first considered the following cost functions:

1. The Euclidean distance between A and B:

‖A−B‖2 =
∑
ij

(Aij −Bij)
2

2. The ”divergence” as they refer it

D(A‖B) =
∑
ij

(Aijlog
Aij
Bij

− Aij +Bij)

For these cost functions they proved that the multiplicative update rules
are the following

1. For the square of the Euclidean distance:

Gαµ ← Gαµ
(F TX)αµ

(F TFG)αµ
, Fια ← Fια

(XGT )ια
(FGGT )ια

2. For the ”divergence”

Gαµ ← Gαµ

∑
i FιαXιµ/(FG)ιµ∑

k Fκα
, Fια ← Fια

∑
µGαµXιµ/(FG)ιµ∑

v Gαv

,

Many other algorithms have been created. The algorithm used, depends
on the problem that is being solved. For example, in [22] they found an
algorithm that is able to learn parts of faces and semantic features of text.
The update rules that they found are the following:

12



Gαµ ← Gια

∑
µ

Xiµ

(WH)iµ
Fαµ, Fαµ ← Fαµ

∑
i

Wiα
Xiµ

(WH)iµ
,

As mentioned earlier, NMF can be used as a clustering technique where
the matrix F contains the clusters position and G contains the cluster where
each data point belongs. For example, K-means objective function can be
written in a form using NMF. That is,

Jk−means =
n∑
i=1

K∑
k=1

gik‖xi − fk‖2 = ‖X+ − F+G+‖2F

where gik = 1 if data point i belongs to k cluster;gik = 0 otherwise. fk is the
cendroid of the cluster k.

2.1.2 Semi - NMF

An extension of NMF was introduced in [23]. This is the Semi-NMF which
can also be used in clustering. The decomposition is of the following form:

X ≈ FGT

whereX ∈ <d×n+ is the data matrix, F ∈ <d×m± contains the cluster centroids
and G ∈ <n×m+ is the cluster indicator matrix. In their paper they suggested
to relax G so that its values would range between (0,∞) and F could also
take negative values. The main difference between the Semi-NMF and NMF
is that the matrix centroid F can take positive and negative values.

The algorithm they suggested is the following:

Initialization
Initialization of G can be performed in two ways:

1. K-means initialization: Run K-means clustering algorithm to find
the cluster indicator matrix G and then add a small value (they
suggest 0.2) to all elements of G.

2. Random initialization: Randomly initialize G matrix with values
ranging between (0,∞).

Iterative rules
Iterate between the following update rules until convergence

13



• Update the centroid matrix F while keeping G fixed.

F = XG(GTG)−1

The computational complexity is of order p(dnm + nm2), where
p is the number of iterations.

• Update the cluster indicator matrix G while keeping F fixed.

Gik ← Gik

√
(XTF )+ik + [G(F TF ]−]ik
(XTF )−ik + [G(F TF ]+]ik

where
A+
ik = (|Aik|+ Aik)/2

A−ik = (|Aik| − Aik)/2

The computational complexity is of order p(ndm + md2 + n2m),
where p is the number of iterations.

2.1.3 Convex - NMF

In [23] they proposed one more variation of NMF in which the centroid matrix
F is constrained to be a convex combination of the column of X. That is F
lies in the columns space of X:

fl = w1lx1 + · · ·+ wnlxn = Xwl, or F = XW

where W ∈ <n×m+ . So the Convex-NMF form will be the following:

X± ≈ X±W+G
T
+

The algorithm that they proposed is the following:

Initialization
Initialization of W and G can be performed in two ways:

1. K-means initialization: Run K-means clustering algorithm to find
the cluster indicator matrix G and then add a small value (they
suggest 0.2) to all elements of G. For example, if the result of
k-means is the cluster indicator matrix H = (h1, . . . , hk) then
G(0) = H + 0.2 · 1k.
Then, the cluster centroid can be computed as fk = Xhk/nk or
F = XHD−1n , where Dn = diag(n1, . . . , nk). So W = HD−1n

14



2. Have NMF or Semi-NMF solution: If there is a solution of NMF
or Semi-NMF then G can be computed as G(0) = G + 0.2 · 1k
and W = G(GTG)−1. Because W should be nonnegative, then
W (0) = W+ + 0.2 · 1k〈W+〉 where 〈A〉 =

∑
ij |Aij|/‖A‖0.

Iterative rules
The algorithm iterates between the following update rules until con-
vergence

• Update the cluster indicator matrix G while keeping W fixed.

Gik ← Gik

√
[(XTX)+W ]ik + [GW T (XTX)−W ]ik
[(XTX)−W ]ik + [GW T (XTX)+W ]ik

The computational complexity is of order n2d + p(2n2m + nm2),
where p is the number of iterations.

• Update the W matrix while keeping G fixed.

Wik ← Wik

√
[(XTX)+G]ik + [(XTX)−WGTG]ik
[(XTX)−G]ik + [(XTX)+WGTG]ik

The computational complexity is of order p(2n2m+ 2nm2), where
p is the number of iterations.

Kernel NMF

The Convex-NMF algorithm can be used with kernels, which it is not possible
if NMF or Semi-NMF is used. Suppose a mapping function such that X →
φ(X) = (φ(x1), . . . , φ(xn)). Then, using the Convex-NMF approximation for
X with that mapping function we will have the following:

φ(X) ≈ φ(X)WGT

So the objective function will be:

‖φ(X)− φ(X)WGT‖2 = Tr[φ(X)Tφ(X)]− 2Tr[GTφT (X)φ(X)W ]

+Tr[W TφT (X)φ(X)WGTG]
(2.2)

If we consider a kernel matrix K = φT (X)φ(X) then (2.2) can be written
in the following form

‖φ(X)− φ(X)WGT‖2 = Tr[K]− 2Tr[GTKW ] + Tr[W TKWGTG]
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The update rules of the Kernel-NMF is similar to Convex-NMF with the
difference that the term (XTX) is replaced with φT (X)φ(X) = K. So the
update rules will be the following

Gik ← Gik

√
[(K)+W ]ik + [GW T (K)−W ]ik
[(K)−W ]ik + [GW T (K)+W ]ik

Wik ← Wik

√
[(K)+G]ik + [(K)−WGTG]ik
[(K)−G]ik + [(K)+WGTG]ik

Cluster NMF

If we consider the elements of G to be posterior probabilities then it is proven
that the cluster centroid matrix would be F = XG. So the approximation
of X will be:

X ≈ XG+G
T
+

Thus the objective function will have the following form

J = ‖X −XGGT‖2

= Tr(XTX)− 2Tr(GGTXTX) + Tr(GGTXTXGGT )

From the above equation we can conclude that the degrees of freedom
depend only on G. That is why this NMF variation is called Cluster-NMF.
The update rule for this algorithm will be

G update rule
G can take only positive values. So now the derivative for G would be.

dJ

dG
= −2XTXG+ 4XTXGGTG = 0 =⇒

−[(XTX)+ − (XTX)−]G+ 2[(XTX)+ − (XTX)−]GGTG = 0 =⇒

[(XTX)−G+2(XTX)+GGTG]−[(XTX)+G+2(XTX)−GGTG] = 0 =⇒

Gij ← Gij

√
[(XTX)+G]ij + 2[(XTX)−GGTG]ij
[(XTX)−G]ij + 2[(XTX)+GGTG]]ij
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Cluster-NMF with kernel

In the previous section, we described the Cluster-NMF where we find an
update rule for the cluster indicator matrix G. It is easy to see that we can
use kernel with Cluster-NMF. Consider a mapping X → φ(X). Now the
objective function of the Cluster-NMF will have the following form.

J = ‖φ(X)− φ(X)GGT‖2

= Tr(φT (X)φ(X))− 2Tr(GGTφT (X)φ(X)) + Tr(GGTφT (X)φ(X)GGT )

= Tr(K)− 2Tr(GGTK) + Tr(GGTKGGT )

where we substitute φT (X)φ(X) = K.
Doing the same calculation as in Cluster-NMF we will have the following

update rule for the cluster indicator matrix G.

Gij ← Gij

√
[(φT (X)φ(X))+G]ij + 2[(φT (X)φ(X))−GGTG]ij
[(φT (X)φ(X))−G]ij + 2[(φT (X)φ(X))+GGTG]]ij

and if we substitute φT (X)φ(X) = K we will have

Gij ← Gij

√
[(K)+G]ij + 2[(K)−GGTG]ij
[(K)−G]ij + 2[(K)+GGTG]]ij

2.1.4 Example

In this section we illustrate an example of Semi-NMF and Convex-NMF so
as to make it more clear. Suppose we have the following data matrix

X =



1.5877 −1.1480 −1.9330 0.3035 −0.8396 −0.1977
−0.8045 0.1049 −0.4390 −0.6003 1.3546 −1.2078
0.6966 0.7223 −1.7947 0.4900 −1.0722 2.9080
0.8351 2.5855 0.8404 0.7394 0.9610 0.8252
−0.2437 −0.6669 −0.8880 1.7119 0.1240 1.3790
0.2157 0.1873 0.1001 −0.1941 1.4367 −1.0582
−1.1658 −0.0825 −0.5445 −2.1384 −1.9609 −0.4686


where the data points are the columns and the attributes are the rows of X.

Then the cluster indicator matrix G would be

Gsemi =

(
0.2546 1.0684 0.9440 0.7627 1.3635 0.0877
0.6591 0.8550 0.0201 1.1696 0.5157 1.2692

)
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Gconvex =

(
0.0147 0.1776 0.2167 0.1083 0.2510 0.0000
0.1242 0.1223 0.0000 0.2029 0.0103 0.2942

)
where for each data point the cluster indicator matrix indicates in which
cluster the point belongs to. For exaple, for the first column in the Gsemi

matrix the point belongs to second cluster.
And the cluster centroid matrix F would be

Fsemi =



−1.2265 0.7117
0.7390 −0.9206
−1.6672 2.1382
0.8751 0.6189
−0.7135 1.1495
0.8701 −0.6727
−0.7574 −0.6418



Fconvex =


0.0030 1.2293
0.5208 0.0025
1.8652 0.0015
0.0001 0.4346
2.1185 0.0043
0.0013 2.6474


where each column indicates the position of the centroid cluster.

2.2 Graph Regularized Non-negative Matrix

Factorization (GNMF)

In this section, we describe an extension of the Non-negative factorization
technique in which the structure of the data is taken into account. We
provide the update rules of this algorithm. Furthermore, we describe two
new techniques we created. These are the Graph Semi-NMF and Graph
Convex-NMF. For these techniques we formulate the minimization problem
and we prove the update rules. Finally, we show how kernels can be used
with the Graph Convex-NMF.

2.2.1 Introduction

One disadvantage of NMF is that it does not take into account the geometric
structure in the data. In [24] they proposed a method that overcomes this
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problem. By taking into consideration the manifold assumption[25], they
considered the function fk(xi) = uik which maps the data point xi on the
axis uk. In order to measure the smoothness of the function they used the
following

‖fk‖2M =

∫
‖∇Mfk‖2dPX(x)

where M ⊂ <m is a compact submanifold.
This manifold is not known in real datasets, but it can be approximated.

They showed that a discrete approximation of that manifold is

Rk = gTk Lgk

where L = D −W and W is the edge weight matrix which is defined as
followed:

Wij =

{
1, if xi ∈ Np(xj) or xj ∈ Np(xi)

0, otherwise

where Np(xj) is the number p nearest neighbours of xj and D is a diagonal
matrix where Dii =

∑
jWij. So the objective function of the GNMF has the

following form:
J = ‖X − FGT‖2F + λTr(GTLG)

The update rules that they found are the following:

Fij = Fij
[XG]ij

[FGTG] ij
, Gij = Gij

[XTF + λWG]ij
[GF TF + λDG]ij

It is worth noting, that if we take λ = 0 then the GNMF algorithm becomes
the NMF algorithm.

2.2.2 Graph Semi-NMF

Considering the previous chapter and the current chapter where we described
the Semi-NMF and a graph regularization of the NMF we develop a graph
based approach for the Semi-NMF. In this approach we considered the same
discrete approximation of ‖fk‖2M . So the objective function of Semi - NMF
would be the following:

J = ‖X − FGT‖2F + λTr(GTLG)

= Tr(XXT )− 2Tr(XTFGT ) + Tr(GF TFGT ) + λTr(GTLG)
(2.3)

which is the same as in the GNMF. For this case, though, the matrix F
can take positive and negative values. So the update rules would be also
different. The update rules are:
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F update rule
Taking the derivative of (2.3) we have

dJ

dF
= −2XG+ 2FGTG = 0 =⇒

F = XG(GTG)−1

G update rule
G can take only positive values. So now the derivative for G would be.

dJ

dF
= −2XTF + 2GF TF + 2λLG = 0 =⇒

−[(XTF )+−(XTF )−]+G[(F TF )+−(F TF )−]+λ[L+−L−]G = 0 =⇒
[(XTF )−+G(F TF )++λL+G]−[(XTF )++G(F TF )−+λL−G] = 0 =⇒

Gij ← Gij

√
[(XTF )+ +G(F TF )− + λL−G]

[(XTF )− +G(F TF )+ + λL+G]

2.2.3 Graph Convex-NMF

As in Semi-NMF we can take into account the intrinsic geometry of the data
using the Convex-NMF. Recall that in Convex-NMF the centroid cluster
matrix F is of the form F = XW . So the objective function would be:

J = ‖X − FGT‖2 + λTr(GTLG)

= ‖X −XWGT‖2 + λTr(GTLG) =⇒
J = Tr(XTX)− 2Tr(GTXTXW ) + Tr(W TXTXWGTG) + λTr(GTLG)

(2.4)

The update rules for this algorithm will be the following:

W update rule
W can take only positive values. Taking the derivative of (2.4) with
respect to W we have

dJ

dW
= −2XTXGT + 2XTXWGTG = 0 =⇒

−[(XTX)+ − (XTX)−]GT + [(XTX)+ − (XTX)−]WGTG = 0 =⇒
[(XTX)−GT+(XTX)+WGTG+λL+G]−[(XTX)+GT+(XTX)−WGTG] =⇒

Wij = Wij

√
[(XTX)+GT ]ij + [(XTX)−WGTG]ij
[(XTX)−GT ]ij + [(XTX)+WGTG]ij
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G update rule
G can take only positive values. So taking the derivative of (2.4) with
respect to G we have

dJ

dG
= −2XTXW + 2W TXTXWG+ 2λLG = 0 =⇒

−[(XTX)+−(XTX)−]W+W T [(XTX)+−(XTX)−]WG+λ[L+−L−]G = 0 =⇒
[(XTX)−W +W T (XTX)+WG+ λL+G]−

[(XTX)+W +W T (XTX)−WG+ λL−G] = 0 =⇒

Gij ← Gij

√
[(XTX)+W ]ij + [W T (XTX)−WG]ij + [λL−G]ij
[(XTX)−W ]ij + [W T (XTX)+WG]ij + [λL+G]ij

Graph Kernel NMF

As in Convex-NMF algorithm, the Graph Convex-NMF algorithm can be
used with kernels. Suppose a mapping function such that X → φ(X) =
(φ(x1), . . . , φ(xn)). Then using Graph Convex-NMF approximation of X with
that mapping function we will have the following:

φ(X) ≈ φ(X)WGT

So the objective function will be:

‖φ(X)− φ(X)WGT‖2 + λTr(GTLG) =

Tr[φ(X)Tφ(X)]− 2Tr[GTφT (X)φ(X)W ] + Tr[W TφT (X)φ(X)WGTG] + λTr(GTLG)

(2.5)

If we consider a kernel matrix K = φT (X)φ(X) then (2.5) can be written
in the following form

‖φ(X)− φ(X)WGT‖2 + λTr(GTLG) =

Tr[K]− 2Tr[GTKW ] + Tr[W TKWGTG] + λTr(GTLG)

The update rules of the Kernel-NMF is similar to Convex-NMF with the
difference that the term (XTX) is replaced with φT (X)φ(X) = K. So the
update rules will be the following

Wij = Wij

√
[(K)+GT ]ij + [(K)−WGTG]ij
[(K)−GT ]ij + [(K)+WGTG]ij

Gij ← Gij

√
[(K)+W ]ij + [W T (K)−WG]ij + [λL−G]ij
[(K)−W ]ij + [W T (K)+WG]ij + [λL+G]ij
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Graph Cluster NMF

Considering the same form as in the previous chapter we introduce the Graph
Cluster-NMF where the centroid cluster matrix is F = XG. So the approx-
imation of X will be:

X ≈ XG+G
T
+

Thus the objective function will have the following form

J = ‖X −XGGT‖2 + λTr(GTLG)

= Tr(XTX)− 2Tr(GGTXTX) + Tr(GGTXTXGGT ) + λTr(GTLG)

The update rule for this algorithm will be

G update rule
G can take only positive values. So now the derivative for G would be.

dJ

dG
= −2XTXG+ 4XTXGGTG+ λTr(GTLG) = 0 =⇒

−[(XTX)+−(XTX)−]G+2[(XTX)+−(XTX)−]GGTG+λ[L+−L−]G = 0 =⇒

[(XTX)−G+ 2XTX)+GGTG+ λL+G]−
[(XTX)+G+ 2XTX)−GGTG+ λL−G] = 0

=⇒

Gij ← Gij

√
[(XTX)+G]ij + 2[(XTX)−GGTG]ij + λ[L+G]ij
[(XTX)−G]ij + 2[(XTX)+GGTG]]ij + λ[L−G]ij

Graph Cluster-NMF with kernel

It is possible to use kernel in the Graph Cluster-NMF algorithm. If we
take again the mapping X → φ(X) = (φ(x1), . . . , φ(xn)) then the objective
function will have the following form

J = ‖φ(X)− φ(X)GGT‖2 + λTr(GTLG)

= Tr(φT (X)φ(X))− 2Tr(GGTφT (X)φ(X)) + Tr(GGTφT (X)φ(X)GGT ) + λTr(GTLG)

The update rule will be the same as in the Cluster-NMF with the difference
that X will be substitute with the mapping function φ(X). So it will be

Gij ← Gij

√
[(φT (X)φ(X))+G]ij + 2[(φT (X)φ(X))−GGTG]ij + λ[L+G]ij
[(φT (X)φ(X))−G]ij + 2[(φT (X)φ(X))+GGTG]]ij + λ[L−G]ij
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where we can take φT (X)φ(X) = K and so the update rule will take the
following form.

Gij ← Gij

√
[(K)+G]ij + 2[(K)−GGTG]ij + λ[L+G]ij
[(K)−G]ij + 2[(K)+GGTG]]ij + λ[L−G]ij
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Chapter 3

Time Series Clustering

In this chapter, we discuss about two unsupervised learning algorithms that
are being used to segment time series. These algorithms were used to cluster
human motion datasets. Firstly, in this chapter a short introduction of how
time series are clustered is discussed. Then, we mention the aligned cluster
analysis algorithm and we explain how this algorithm works by providing the
minimization function along with the algorithm that solves it. Later in the
chapter, we describe an extension of the aligned cluster analysis algorithm
which is the hierarchical aligned cluster analysis. Finally, we try to improve
these two algorithms by incorporating the cluster nmf and the graph cluster
nmf which were described in previous chapters.

3.1 Introduction

ACA[26] and its extension HACA[27] are described which segment a human
motion into actions. These are unsupervised learning algorithms and are an
extension of Kernel K-Means, which was described in chapter 1. These algo-
rithms were used to cluster human motion movements. That is, they try to
decompose these movements into actions. For example, we have the motion
in Figure 3.1.1 where the human walks,rotates, jumps, walks and runs. The
algorithm clusters the motion into four clusters walk,rotate,jump,run.

3.2 Aligned Cluster Analysis (ACA)

ACA is a generalization of the kernel k-means and it was used to decom-
pose the human motion into actions. More formally, given a human motion
sequence X ∈ <d×n with n frames, ACA decomposes X into m segments.
Each segment Yi = X[si,si+1) belongs to one of k clusters, where si is the
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Figure 3.1.1: Human motion decomposed into actions. Source:[26]

position where the frames begin. The frames end in si+1 − 1. Moreover,
ACA constrains the maximum length of the segment to be nmax. That is,
si+1 − si ≤ nmax.

3.2.1 Dynamic Time Alignment Kernel (DTAK)

As mentioned earlier ACA is a generalization of kernel k-means. The kernel
that it uses is the dynamic time alignment kernel (DTAK), which measures
the distance between segments. DTAK was proposed by [28] and it is an
extension of the dynamic time warping (DTW) [29]. DTAK overcomes the
disadvantage of DTW which was to satisfy the triangle inequality.

Given two sequences X = [x1, . . . , xnx ] ∈ <d×nx and Y = [y1, . . . , yny ] ∈
<d×ny DTAK first computes a frame kernel matrix K = φT (X)φ(Y ) ∈
<nx×ny . The elements of this matrix are calculated using a kernel function
which basically defines the similarity between the frames. Examples of ker-

nels are the Gaussian κij = exp (−‖xi−yj‖
2

2σ2 ), the Laplacian κij = exp (−‖xi−yj‖
2σ

)
and the linear κij = xTi xj. After finding the frame kernel matrix DTAK finds
the cumulative kernel matrix U ∈ <nx×ny which its elements are computed
as follows

uij = max


ui−1,j + κij

ui−1,j−1 + 2κij

ui,j−1 + κij

(3.1)

The initialization of the U matrix at the upper left is u11 = 2κ11.

Now the similarity between the two sequences X, Y can be defined as
follows

τ(X, Y ) =
unxny
nx + ny

(3.2)
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DTAK can be also calculated using a matrix notation. First two frame
indexes vectors are introduced. These vectors are p ∈ {1 : nx}l and q ∈ {1 :
ny}l, where l is the optimal length of the monotonic trajectory that can be
found when aligning two sequences X,Y. The matrix W can be introduced
and calculated as follows

W = [wij] ∈ <nx×ny (3.3)

where

wij =

{
1

nx+ny
(pc − pc−1 + qc + qc−1) , if pc = i and qc = j for some c

0 , otherwise

Using this matrix we can write DTAK in the form

τ(X, Y ) = tr(KTW ) = ψ(X)Tψ(Y ) (3.4)

where ψ(·) declares the kernel function.
It is worth mentioning that DTAK is not always a strictly positive definite

kernel [30][31] and by Mercer theorem [32] a mapping will not exist. This
problem was solved and it is described later in the chapter.

3.2.2 Energy function

Considering all the above the energy function of ACA is the following

Jaca(G, s) =
k∑
c=1

m∑
i=1

gci ‖ψ(X[si,si+1) − zc)‖2︸ ︷︷ ︸
dist2ψ(Yi,zc)

= ‖[ψ(Y1) . . . ψ(Ym)]− ZG)‖2F
s.t. GT1k = 1m and si+1 − si ∈ [1, nmax]

(3.5)

where G ∈ {0, 1}k×m is a class indicator matrix and s ∈ <m+1 is a vector
that contains the start and the end frame of each segment. dist2ψ(Yi, zc) is the
squared distance between the segment Yi and the centre c and it is expanded
as follows

dist2ψ(Yi, zc) = τii −
2

mc

m∑
j=1

gcjτij +
1

m2
c

m∑
j1,j2=1

gcj1gcj2τj1j2 (3.6)

where mc =
∑m

j=1 gcj is the number of data points (in our case segments)
that belong to centre c.
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It is worth mentioning that in the special case where each segment is
a frame ACA is equivalent to kernel k-means.. ACA seems very similar to
kernel k-means but it has four significant differences:

1. ACA clusters can have a different number of features.

2. Constraint for the segment is introduced.

3. ACA uses DTAK kernel.

4. ACA uses Dynamic Programming to solve the minimization problem.

As in DTAK, ACA can be formulated using matrix notation. Firstly, the
matrix T can be expressed as follows:

T = [tr(KT
ijWij]m×m = H(K ◦W )HT

where W is the global correspondence matrix, K is the global kernel frame
matrix and H is the segment indicator matrix where hij = 1 if the jth sample
belongs to the ith segment.

As mentioned earlier DTAK is not always strictly positive definite kernel.
In order to overcome this problem we add a scaled identity matrix to K so
that K ← K + σIn where σ is absolute value of the smallest eigenvalue of T
if it has negative eigenvalues.

So after substituting the optimal value of Z = [ψ(Y1), . . . , ψ(Ym)]GT (GGT )−1
in (3.5) we have the following form

Jaca(G,H) = tr((Im −GT (GGT )−1G)T )

= tr((Im −GT (GGT )−1G)H(K ◦W )HT )
(3.7)

3.2.3 Dynamic Programming

ACA can be efficiently solved with the use of coordinate descent optimization
where s is computed with the use of dynamic programming and G by using
winner-take-all strategy [33].

In every iteration the following subproblem is being solved:

G, s = arg min Jaca(G, s) = arg min
k∑
c=1

m∑
i=1

gcidist
2
ψ(Yi, zc) (3.8)

To solve this problem dynamic programming is used. With the use of
Bellman equation we can write the energy function as follows
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J(u) = min
u−nmax<i≤u

(J(i− 1) +min
g

k∑
c=1

gcdist
2
ψ(X[i,u], Yj)) (3.9)

where

dist2ψ(X[i,u], zc) = τ(X[i,u], X[i,u])−
2

mc

∑
j

= 1mgcjτ(X[i,u], Yj)

+
1

mc

m∑
j1,j2=1

gcj1gcj2τ(Yj1 , Yj2)

(3.10)

In order to solve the optimization problem ACA performs performs the
following steps:

1. Initialization The first step is the initialization step which can be
performed either by using a random initialization, which randomly
splits the sequence into segments, or by using propagative segmen-
tation, which initializes the segmentation based on non-tempo-warping
clustering.

2. Iterate After the initialization step an iterative procedure starts which
alternates between a forward and backword step. These steps are de-
scribed below.

• Fordward step In this step the algorithm starts from the begin-
ning of the sequence until the end and for every position i−nmax <
i < u−1 in the sequence it computes the DTAK between the new
segment X[i,u] and all the segments in the previous iteration. In
the end, the head position of the segment and the label that have
the lowest error J(u) are saved. The algorithm of this step is
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shown below

for u := 1 to n do
J(u)←∞
for nu = 1 to nmax do

Current segment X[i,u] headed by
i = u− nu + 1;
for j = 1 to mdo do

for s = sj to sj+1 − 1 do
Compute τ(X[i,u], Yj) by updating U(nu, u, s)

end
c∗ ← arg mincdisψ(X[i,u], zc);
J ← J(i− 1)disψ(X[i,u], zc∗);
if J < J(u) then

J(u)← J, g∗u ← eu∗ , i
∗
u ← i;

end

end

end

end
Algorithm 1: Forward Step

• Backword step In this step the algorithm starts from the end
of the sequence and creates the new segments as found in the
forward step by changing the head and the label of the segment.
This procedure is repeated in backwards. The algorithm for this
step is shown below.

while u > 0 do
Create a segment Y = X[i∗u,u] with labels g∗u
u← i∗u − 1;

end
Algorithm 2: Backword Step

The time cost for these steps is shown [26] to be O(n2nmaxt), where n
is the number of frames, nmax is the maximum number of frames that
a segment consist of and t is the number of iterations.

3.3 Hierarchical Aligned Cluster Analysis (HACA)

Hierarchical Aligned Cluster Analysis (HACA) [27] is an extension of Aligned
Cluster Analysis (ACA) that was described in the previous section. This algo-
rithm belongs to the agglomerative methods of hierarchical clustering, where
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in these approaches, as described in chapter 1, starts from small clusters and
then these are merged together to form larger clusters.

In the first level, HACA first executes ACA with small n
(1)
max and the

DTAK kernel. In later levels another kernel than DTAK is used. This kernel
is called Generalized Dynamic Time Alignment Kernel (GDTAK). Given
two sequence X ∈ <d×nx and Y ∈ <d×ny the GDTAK first computes the
cumulative kernel matrix as follows

uij = max


ui−1,j + nxi τij

ui−1,j−1 + (nxi + nyj )τij

ui,j−1 + nyj τij

(3.11)

where nxi is the length of segment Yi = X[sxi ,s
x
i+1]

and τij is the DTAK from
the previous level. As in DTAK the cumulative kernel matrix is initialized as
u11 = (nx1 + ny1)τ11. After finding the cumulative kernel matrix the GDTAK
is computed as follows

v(X, Y ) =
umx,my
nx + ny

(3.12)

To sum up, there are two differences between ACA and HACA:

1. The first difference is that ACA uses DTAK kernel while HACA uses
also GDTAK kernel.

2. The second difference is that HACA works in levels while ACA works
only in one level. This has an impact in the variable nmax where if
for example HACA has two levels then it will have n

(1)
max in the first

level and n
(2)
max for the second level. The equivalent in ACA will be

nmax = n
(1)
max ∗ n(2)

max. So HACA in the first level starts with smaller
temporal scales than ACA and this makes it more efficient than ACA.
The computational complexity of HACA is O(n2nmax)

3.4 ACA - (Graph) Cluster-NMF

In Aligned Cluster Analysis we can use the (Graph) Cluster-NMF with kernel
described in previous sections. The kernel that can be used is the DTAK
kernel that ACA uses, and the cluster indicator matrix G is ACA’s with the
addition of a small constant number (preferably 0.2). So the constraint of
ACA GT1k = 1m no longer holds. Thus, we can run the Cluster-NMF and
the Graph Cluster-NMF and obtain the cluster indicator matrix G. Then,
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this matrix can be used to in ACA’s objective function. So the minimization
problem will have the following form:

Jaca = ‖[ψ(Y1), . . . , ψ(Ym)]− ZG‖2F
s.t. si+1 − si ∈ [1, nmax]

(3.13)

In order to make this change possible the dynamic programming search
algorithm has to change. More particularly, in every iteration when running
the forward step the Cluster-NMF algorithm has to run in order to obtain
the cluster indicator matrix G.
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Chapter 4

Experiments

In order to test our algorithms thoroughly we run them in a variety of
datasets. The Graph Semi- and Convex-NMF algorithms were tested in face
and text datasets. The ACA/HACA algorithms were tested in time series
datasets. First, we show the results of the Graph NMF algorithms in text
and face datasets. Later, we show the results of ACA/HACA algorithms in
the time series datasets taken from Imperial College database.

The Graph regularized algorithms can take two parameters: the regular-
ization parameter λ and the number of nearest neighbour p as described in
chapter 2. For our experiments we set the number of nearest neighbours to
be 5 as in [24] and we experimented with the regularization parameter λ.

4.1 Datasets

The datasets that we run the Graph Semi- and Convex-NMF algorithms
are famous text datasets and face datasets.The text datasets are the TDT2,
Reuters21578 and RCV1. The face datasets consist of the Yale, ORL and
PIE. Finally, the time series datasets are from the Laughter database from
the Imperial College London.

The TDT2 dataset consists of 11,201 documents which were collected in
1998 from six different sources. The sub-dataset that we run our algorithms
consist of 9,394 and 30 clusters. The Reuters21578 dataset contains 21,578
documents and 135 clusters. This dataset is very popular because it is very
difficult for clustering. The subset that we run our algorithms consists of
8,067 documents in total and 65 classes. Finally, the RCV1 dataset consists
of 9,625 and 4 clusters. Table 4.1.1 summaries the text dataset.

As for the face datasets, first we run our algorithms in the Yale database
which consists of 165 images of size 32 × 32 and the number of cluster is
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TDT2 Reuters21578 RCV1
no. Documents 9,394 8,067 9,625

no. clusters 30 65 4

Table 4.1.1: Information on the Text Datasets

15. The ORL dataset contains 10 different images which are grouped into
40 clusters. The PIE dataset includes 41,368 images of size 32× 32 and the
number of clusters are 68. Table 4.1.2 summaries the face datasets.

Yale ORL PIE
no. Images 165 400 41,368
no. clusters 15 40 68

Table 4.1.2: Information on the Face Datasets

ACA/HACA algorithms were run in time series datasets. These datasets
comes from the Laughter database of the Imperial College London. We used
8 datasets to run the algorithms from 7 different subjects. These datasets
contains two classes: laugh or no laugh.

4.2 Evaluating clustering algorithms

In order to evaluate our clustering algorithms we used one metric. This was
the accuracy. This metric is defined as follows:

Given a dataset D ∈ <n×d and data point xi in the dataset the accuracy
is defined as follows:

Accuracy =

∑n
i=1 δ(map(li), gi)

n

where n is the total number of data points in the dataset, li is the label of
our cluster algorithms, gi is the ground truth labels and map(li) is the best
map between the li and the gi. Tha δ function is defined as follows:

δ(x, y) =

{
1 if x = y

0 otherwise
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4.3 Comparisons

Before illustrating our results, we should mention the comparisons that we
make between the Graph regularized algorithms. The first comparison is
between the GNMF and the Graph Semi- and Convex- NMF algorithm, that
is with the regularization parameter. The second comparison is between
the Semi-NMF and the Graph Semi-NMF algorithms as well as between
the Convex-NMF and the Graph Convex-NMF algorithms. The Semi- and
Convex-NMF algorithms is basically when the regularization parameter is
set to zero.

As for the dynamic data, the comparison of the algorithms are between
the ACA/HACA algorithms and the variations with the Cluster-NMF and
the Graph Cluster-NMF algorithms.

4.4 Results

In this section we are going to show the results of the algorithms in different
datasets. In the first part, we show the results of the Graph regularized
algorithms in numerous dataset. In the second part, we run the ACA/HACA
algorithms with the Laughter data and we present the results.

4.4.1 Static Data

The demonstration of the results is with the help of tables and figures, and
the highest value is highlighted. For the regularization parameters of the
Graph NMF algorithms we used the values 0, 5 ,10 ,50 ,100 and 130 in most
cases. There was one case where we used more values because the results
were not clear. The nearest neighbour parameter p was set to 5. Because
the results of the algorithms are stochastic, we run the algorithms ten times
for each value of λ and we took the mean accuracy.

The first dataset we run the algorithm was the TDT2. Table 4.4.1 and
Figure 4.4.1 show the results.

From the results we can conclude that the Graph Semi-NMF algorithm
performs better results than the other two algorithms (Graph NMF and
Graph Convex-NMF) with its highest value to be 83.33%. Moreover, the
Graph Convex-NMF very poor results with its highest value to be 45% when
the regularization parameter λ is 10. For the Graph-NMF algorithm the
highest value is when λ is 100, while for the Graph Semi-NMF when λ is
10. Furthermore, when λ = 0, that is when the algorithms NMF, Semi-
NMF and Convex-NMF run, each algorithm performs its worst. With the
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λ Graph NMF Graph Semi-NMF Graph Convex-NMF
0 45,83 47.08 39.77
10 78,12 83.33 45.81
50 81,15 80.12 45.89
100 79,27 80.17 43.60
130 79,89 79.99 43.72

Table 4.4.1: Accuracy(%) results on TDT2 Text Dataset

regularization parameter not set to zero, all the algorithms perform better
with the Graph-NMF and Graph Semi-NMF to increase significally with
35.32 and 36.25, respectively.
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Figure 4.4.1: TDT2 Results

The second text dataset we run the algorithms was the Reuters21578.
Table 4.4.2 and Figure 4.4.2 show the results. From the results we obtained
we can see that Graph NMF and Graph Semi-NMF perform better than NMF
and Semi-NMF with approximately 10% and 13%, respectively. Moreover,
the Graph Convex-NMF is performing a little better than the Convex-NMF
with 1.09%. Furthermore, the Graph Semi-NMF algorithm performs better
than the Graph NMF and the Convex-NMF algorithm.

The last text dataset we run was the RCV1. Table 4.4.3 and Figure 4.4.3
show the results. From the results we can deduce that the regularization
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λ Graph NMF Graph Semi-NMF Graph Convex-NMF
0 17.27 17.92 13.37
10 25.82 30.51 11.73
50 27.99 30.85 14.05
100 26.55 29.67 14.46
130 26.79 30.86 11.97

Table 4.4.2: Accuracy(%) results on Reuters21578 Text Dataset
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Figure 4.4.2: Reuters21578 Results
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parameter does not improve the Graph NMF and Graph Semi NMF algo-
rithms, rather the accuracy has a high drop. We can see that the accuracy
drops by approximately 30% for both algorithms. So the NMF, Semi-NMF
algorithms (when λ = 0) have better results. On the other hand, for the
Graph Convex NMF algorithm the accuracy seems to remain unchanged.
It increases about 0.83%, when λ = 50, and it is the highest from all the
algorithms. So the Graph Convex-NMF is performs better results than the
Convex-NMF algorithm (when λ = 0).

λ Graph NMF Graph Semi-NMF Graph Convex-NMF
0 63.19 59.22 70.06
10 32.67 32.93 68.58
50 31.95 31.72 70.89
100 31.67 32.77 69.53
130 31.35 33.02 71.16

Table 4.4.3: Accuracy(%) results on RCV1 Text Dataset
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Figure 4.4.3: RCV1 Results

RCV1 was the last text dataset that we run our algorithms. Now we are
going to present the results of our algorithms for the face datasets. The first
dataset we experiment with was the Yale dataset from the Yale database.
Table 4.4.4 and Figure 4.4.4 show the results.
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λ Graph NMF Graph Semi-NMF Graph Convex-NMF
0 40.97 37.64 25.46
10 26.55 34.73 32.00
50 27.27 33.64 34.42
100 27.63 32.73 34.06
130 28.06 32.30 33.88

Table 4.4.4: Accuracy(%) results on Yale Face Dataset
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Figure 4.4.4: Yale Results
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From the results we can conclude that NMF performs better results than
the Graph NMF, with approximately 15% better accuracy. The Semi-NMF
algorithm also performs better results than the Graph Semi-NMF algorithm,
with approximately 3% better accuracy. On the other haand, the Graph
Convex-NMF performs better results than the Convex-NMF, with approxi-
mately 9% better accuracy. Moreover, the Graph Semi-NMF and the Graph
Convex-NMF perform better results than the Graph NMF, with the Graph
Convex-NMF to have the best results. All in all, for this dataset the NMF
algorithm performs the best.

The second face dataset, we run our algorithm was the ORL dataset.
For this dataset we could not conclude which algorithm performs best for
the values of the regularization parameter that we run our algorithm. That
is why we run our algorithms for more values of regularization parameter.
Table 4.4.5 show the results.

λ Graph NMF Graph Semi-NMF Graph Convex-NMF
0 48.93 35.70 15.88
10 48.35 56.45 18.45
50 50.10 53.83 38.80
100 47.90 50.20 47.43
130 48.08 53.43 50.18
150 48.85 52.90 50.95
200 48.70 51.58 52.80
250 49.60 52.20 54.08
300 48.28 52.23 56.25
350 48.18 52.03 55.93
400 49.78 53.18 58.10
450 49.35 51.28 57.50

Table 4.4.5: Accuracy(%) results on ORL Face Dataset

From Table 4.4.5 we can conclude that the Graph NMF algorithm per-
forms better than the NMF algorithm with approximately 2%. Moreover,
the Graph Semi NMF algorithm performs a lot better than the Semi NMF
algorithm with approximately 21%. The Graph Convex NMF algorithm also
overwhelms the Convex-NMF algorithm with approximately 42%. Overall,
the Graph Convex-NMF performs the best among the algorithms. It gives
better results than the Graph Semi-NMF by 1, 65% and 8% better than
Graph NMF. The best value for the regularization parameter for the Graph
NMF was 50, for the Graph Semi-NMF was 10 and for the Graph Covnex-
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NMF was 400. We can see that the Graph Convex-NMF needed a lot bigger
value of the regularization parameter than the other algorithms.

Figure 4.4.5 also shows the results, where we can see that the Graph NMF
is more or less keeping the same accuracy around 50%, the Graph Semi-NMF
is increasing its accuracy and then its being unchanged for accuracy a little
above 55%. Finally, the Graph Convex-NMF seems to exponentially increase
its accuracy until is is stable around 55% .
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Figure 4.4.5: ORL Results

The last face dataset we run the algorithms was the PIE dataset. Table
4.4.6 show the results. For this dataset the Convex-NMF algorithm run only
once for each regularization parameter because of the large computational
time it takes.

λ Graph NMF Graph Semi-NMF Graph Convex-NMF
0 12.54 11.75 3.94
10 17.74 18.31 3.96
50 18.06 18.48 3.83
100 18.18 18.45 3.92
130 17.62 18.09 3.82

Table 4.4.6: Accuracy(%) results on PIE Face Dataset

From Table 4.4.6 we can deduce that the Graph NMF and Graph Semi-
NMF algorithm improves the NMF and the Semi-NMF algorithms, respec-
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tively, by approximately 6%. The Graph Convex-NMF seems to have more
or less the same poor results as the Convex-NMF. Moreover, the Graph
Semi-NMF has slightly better results than the Graph NMF algorithm with
0.3% better results. It is worth mentioning that among all the regulariza-
tion parameters the Graph Semi-NMF algorithm has better results than the
Graph NMF, while the Semi-NMF algorithm has worse results than the NMF
algorithm. The results of the table are also shown in Figure 4.4.6, as a curve.
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Figure 4.4.6: PIE Results

In order to make more clear about the performance of the algorithms, we
will compare the Semi-NMF with the best performance of Graph Semi-NMF
and the Convex-NMF and Graph Convex-NMF algorithm.

Figure 4.4.7 show the comparison of Semi-NMF with Graph Semi-NMF
along of the datasets. From the figure we can see that Graph Semi-NMF has
better results in 4 out of 6 datasets than Semi-NMF. For the TDT2, ORL
and PIE datasets the accuracy is more than 10%. For the RCV1 and Yale
dataset the Semi-NMF algorithm performs better than the Graph Semi-NMF
algorithm with the RCV1 dataset to have a lot higher accuracy.

Figure 4.4.8 shows the comparison of Convex-NMF with Graph Convex-
NMF along of the datasets. From the results we can conclude that Graph
Convex-NMF performs better than the Convex-NMF algorithm in all the
datasets. The datasets where it did a lot better were the TDT2, Yale and
the ORL with the difference to range from 6.12% to 42.22%.
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Figure 4.4.7: Semi-NMF vs Graph Semi-NMF
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Figure 4.4.8: Convex-NMF vs Graph Convex-NMF
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Figure 4.4.9: Comparison of all algorithms

In the last Figure we present the best performance of each algorithm
in the six datasets we run (Figure 4.4.9). We can see that only in the Yale
dataset the Graph NMF algorithm performs better than the Graph Semi- and
Graph Covex-NMF algorithms. Moreover, the Graph Semi-NMF algorithm
performs better in 3 out of 6 datasets. Finally, the Graph Convex-NMF
performs better in 2 out of 6 datasets.

4.4.2 Dynamic Data

Now we are going to present the ACA/HACA results on the Laughter data
of Imperial College database. We show how the original ACA/HACA algo-
rithms perform and how they perform using the Cluster-NMF and the Graph
Cluster-NMF algorithms.

Table 4.4.7 and Figure 4.4.10 show the results in the different dataset. In
the Figure the ACAC means the ACA algorithm with the Cluster-NMF and
the ACAGC means the ACA algorithm with the Graph Cluster-NMF.

From the results we can see that in two datasets ACA performs better
than the two variations. More particularly, the ACA with Cluster-NMF algo-
rithm performs better or equal in 6 out of 8 datasets than the ACA algorithm.
Moreover, the ACA with the Graph Cluster-NMF algorithm performs better
or equal in also 6 out of 8 datasets than the ACA algorithm.
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Dataset ACA ACA - CNMF ACA - GCNMF
S001-003 73 67 66
S002-001 52 79 78
S002-008 91 93 91
S003-005 52 90 65
S005-005 56 93 92
S006-004 68 68 68
S008-001 90 90 90
S011-001 56 52 53

Table 4.4.7: Accuracy(%) results for ACA algorithm
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Figure 4.4.10: ACA Results
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Now we present the HACA results in Table 4.4.8 and Figure 4.4.11. From
the results, we can conclude that the Cluster-NMF with the HACA algorithm
performs better or equal in 5 out of 8 datasets than the plain HACA algo-
rithm. Moreover, the Graph Cluster-NMF with HACA algorithm performs
better or equal in 7 out of 8 datasets than the HACA algorithm.

Dataset HACA HACA - CNMF HACA - GCNMF
S001-003 73 67 66
S002-001 52 77 78
S002-008 91 89 91
S003-005 51 88 59
S005-005 91 92 92
S006-004 68 89 68
S008-001 90 89 90
S011-001 66 90 89

Table 4.4.8: Accuracy(%) results for HACA algorithm
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Figure 4.4.11: HACA Results
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Chapter 5

Conclusions and Future work

In this chapter, we present our conclusions for the algorithms we imple-
mented. Moreover, we discuss how further investigation on the evaluation
and the performance of the algorithms can be done as a future work.

5.1 Conclusions

This project presented two new methods for clustering that extended the
Semi- and Convex-NMF. In particular, we propose the Graph Semi- and
Graph Convex-NMF. These methods are a further improvement for the Semi-
and Convex-NMF, in that they take into account the intrinsic geometry of
the data by calculating the Laplacian matrix.

As shown in the previous chapter, these methods perform, in most datasets,
better than the Semi- and Convex-NMF techniques. More particularly, the
Graph Semi-NMF performs better in 4 out of 6 dataset and the Graph
Convex-NMF performs better in all the dataset than the Convex-NMF. In
addition, our algorithms perform better than the GNMF algorithm in 5 out
of 6 datasets.

From the results we can see that the restriction of NMF, for the nonnega-
tivity of the matrix centroid F, limits its performance in most dataset. That
is why Graph Semi-NMF algorithm, which does not have this constraint, per-
forms better. Moreover, Graph Convex-NMF assumptions (that the centroid
matrix is a convex combination of the data) seem to hold in RCV1 and ORL
datasets. That is why the results are better than the other two algorithms.
However, this is not the case for the other four datasets.

The next tests we tried, we combined the Cluster- and Graph Cluster-
NMF with the ACA/HACA algorithms and run them in time series datasets.
The variations of ACA performed better in most datasets than ACA itself.
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Same results were concluded with HACA algorithm where the variations of
HACA performed better in most datasets. In addition, we can conclude that
the Cluster-NMF and Graph Cluster-NMF improved ACA more than the
HACA algorithm.

From these results, we can conclude that softening the assignment of the
clustering in ACA/HACA algorithms the performance is improved. First,
ACA/HACA algorithms used the K-means algorithm for the initialization of
the cluster indicator matrix G. Now the initialization is achieved by running
the Cluster-NMF and Graph Cluster-NMF algorithm. The improvement
in the performance of the algorithms was expected as the Semi-NMF and
Convex-NMF techniques tend to perform better than K-means algorithm.

5.2 Future Work

Further research can be made in our work. More particularly, Graph NMF
algorithms have two kinds of parameters. The first one is the number of
nearest neighbours that will be included to create the weight matrix and the
second is the regularization parameter. In this project the nearest neighbour
parameter was fixed and the regularization parameter was set to different
values in order to see which value performs the best. A more appropriate
technique to investigate these two parameters and see which two perform best
is to use hill climbing technique. Using this technique the two parameters
can be investigated fast and find the optimum numbers. The disadvantage
of this technique is that this optimum may not be the global optimum rather
a local optimum. Another technique that can be used is the cross validation
for model selection. In this technique one parameter at a time can be used
and evaluate while keeping the other fixed. This technique is very slow.

Evaluation of the algorithms can be made using cross validation. It would
be interesting to do a 10-fold cross validation to the algorithms and record
their performance. Not only that, after the cross validation a hypothesis
testing can be used to compare the algorithms. One such test can be the
paired t-Test. To run this test the folds in each algorithm run should be the
same.

Besides the evaluation of the algorithms, a further investigation can be
made in the initialization of the algorithms. For this thesis the initialization
was random. Other initializations that can be used are a K-means or with
agglomerative algorithm. It would be interested to see how the initialization
affects the performance of the algorithms.
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Chapter 6

User Guide

In this chapter, we describe how our code can be used. First of all, we should
mention that the ACA/HACA and Graph NMF code is not implemented by
us. ACA/HACA code was provided by F. De la Torres web page [34] and the
Graph NMF code was provided by D. Cai web page [35]. The Semi-NMF,
Convex-NMF, Cluster-NMF and Kernel-NMF algorithms were implemented
by us. All the folders, contain a Readme.txt file where short instructions are
given on how to run the algorithms.

6.1 ACA/HACA Code

ACA/HACA code is provided in the ”aca” folder. The code that is provided
contains the ACA/HACA algorithm along with the GMM algorithm. In the
folder of the code there are the following folders:

• data: This folder contains some data that were provided with the code.

• lib: This folder contains the library of the functions that are used.

• oldTracker: Contains the data from the Laughter database that we run
our algorithm

• src: Contains the source files of the algorithms

Besides these folders there are some files that are can run the algorithms.
Before running the algorithm the make.m and addPath.m files should be
run.The main file we used is the demoMocap, which was modified by us in
order to be able to run our data files. In that file you can change the files
that are to be run.
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Another useful file is the acaFordSlow.m which we also modified in order
to be able to run the Cluster-NMF and the Graph Cluster-NMF algorithms.
This file is located in ./aca/src/seg/aca folder. There you can comment
the code we inserted if you want to run just the ACA/HACA algorithms.
If you want to run ACA/HACA with the Cluster-NMF algorithm then the
code should be uncomment and the option.alpha variable should be set to
zero. If you want to run the Graph Cluster-NMF algorithm then you should
initialize the regularization parameter alpha not to be zero. We run the
Graph Cluster-NMF with alpha equal to ten.

6.2 Graph NMF Code

In this folder we provide the face and text datasets that we run our algorithms
in the ”Datasets” folder. The main file to run is the example.m. In this file
the desirable options to run the algorithm can be set. The most important
attributes of the options struct variable that can be set are the following:

• alg: Specifies the algorithm to run. Choices: ”nmf”,”seminmf”,”convexnmf”
and ”clusternmf”

• WeightMode: Specifies how to construct the weight matrix. Choices:
”Binary”,”HeatKernel” and ”Cosine”

• error: The error between two successive iterations.

• maxIter: The maximum number of iterations the algorithm can run.

• minIter: The minimum number of iterations the algorithm can run.

• nRepeat: The number of repeats of the algorithm. The value must be
between the value of maxIter and minIter.

• meanFitRatio: The parameter specifies the step of the algorithm.

• alpha: The regularization parameter.

We also modified the GNMF Multi.m file where we included the Graph
Semi-NMF, the Graph Convex-NMF and the Graph Cluster-NMF.
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6.3 NMF Code

The files in the NMF folder were implemented by us. Important files in the
folder are the following:

• semiNMF: Contains the Semi-NMF algorithm.

• convexNMF: Contains the Convex-NMF algorithm.

• GeneralFile: This file is a general file where the algorithms can be run.

In the GeneralFile.m file the options parameter can take the following
values:

• random: Takes two values ”true” and ”false”. If the value is set to
”true” then the initialization of the cluster indicator matrix G is ran-
dom, otherwise the initialization is done with K-Means.

• maxIterations: The maximum number of the iterations the algorithm
will run.

• error: The value ‖X − FGT‖2

• betweenErros: The difference between the errors of two succesive iter-
ations.
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Appendix A

Mathematical Preliminaries

In this section we are going to discuss some mathematical preliminaries that
are necessary to understand the algorithms that we present in depth.

A.1 Laplacian eigenmaps

Laplacian eigenmaps [36] are used for dimensionality reduction. The defini-
tion of the dimensionality reduction problem is the following:

Definition 3. Given the data points x1, x2, . . . , xn ∈ <l we want to find a
mapping such that the points y1, y2, . . . , yn ∈ <m that belong to a subspace
m << l, represent the data points best.

Laplacian eigenmaps take into consideration the intrinsic geometry of
the data. That is, if the data points xi, xj are ”close” to each other in the
original space then they are also ”close” to the subspace. This is achieved
by constructing a graph where the nodes are the data points such that the
geometry is taken into account. More particularly, the steps of the algorithm
are described below.

1. Constructing the Graph

The first step is to construct a graph for the data points. The data
points represent the nodes of the graph and they can be connected to
each other with the following two methods.

Threshold neighbourhood
For this method, a threshold ε is used and a node (data point) xi
is connected to a point xj if ‖xi − xj‖2 < ε.
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K nearest neighbour
For this method we choose to connect a node xi with each K
nearest neighbours.

2. Choosing weights for the edges

The second step is to choose appropriate weights for the edges of the
graph. This can be done with the following two methods.

Using Heat kernel
Given that the nodes xi and xj are connected the Heat kernel
weight is computed as follows

Wij = exp−
‖xi−xj‖

2

t

where t is a parameter specified by the user.

Binary
If xi is connected to xj then the weight is set to 1. If two nodes
are not connected then the value is set to 0. This weight is similar
as taking the heat kernel matrix with t→∞.

3. Eigenmaps

Now that the graph of the data has been created, the last step is to find
the appropriate mapping for our data. In order to do that we define

L = D −W

where W is the weight matrix for the edges as computed in Step 2
and D is a diagonal matrix and it is defined to be Dii =

∑
jWji. L is

known as the Laplacian matrix and it is symmetric. Now that we have
defined the Laplacian matrix the subspace can be found by solving the
following eigenvector problem.

Lf = λDf

where λ are the eigenvalues and f are the eigenvectors. For this
problem the solution for λ = 0 is not taken into account. Suppose
the eigenvector corresponding to this eigenvalue is f0, then we take
the next m eigenvectors f1, f2, . . . , fm to construct the Euclidean sub-
space, where the corresponding eigenvalues for these eigenvectors are
λ1 ≤ λ2 ≤ · · · ≤ λm.
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A.2 Multiplicative Update Rules

In this section, we describe the multiplicative update rules and how they can
derived. Suppose we want to minimize the following optimization problem
V ∗ = arg minV≥0 f(V ) using the natural gradient ascent algorithm. Given
the function f that we want to minimize the form of the gradient algorithm
is the following

V t+1 = V t − η∇V f

To preserve the non-negativity of the function, we use the strategy described
in [37],[38] and [39]. In these papers, the natural gradient is decomposed into
two non-negative parts. That is,

[∇V f ]i,j = [∇V f ]+i,j − [∇V f ]−i,j

where

(∇V f)+i,j =

{
(∇V f)i,j if (∇V f)i,j > 0

0 otherwise

(∇V f)−i,j =

{
−(∇V f)i,j if (∇V f)i,j < 0

0 otherwise

According to [37] the step size η can be data-dependent. That is,

η = (
V t

∇V f+
)i,j

Then, the multiplicative rule for the parameter V is the following

V t+1 = V t − [
V t

∇V f+
]i,j([∇V f ]+i,j − [∇V f ]−i,j)

= V t ∇V f
−

∇V f+ + ε

This is the procedure we use when we derive the rules for the NMF
algorithms with the non-negativity constraint.
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