
Imperial College London
Department of Computing

Sampling in a Large Network

by

Xenofon Foukas

Submitted in partial fulfilment of the requirements for the degree of
Master of Science in Advanced Computing of Imperial College London

September 2013

Abstract

Decentralized networks are a very popular architectural design, since they are usually character-
ized by reliability and resiliency to failures, while offering high performance with a relatively small
infrastructure cost. However, one of the disadvantages of such networks is the difficulty of comput-
ing some global properties, which are required, even as approximations, in numerous tasks, such as
searching and maintenance. Computing these properties using either centralized or decentralized
algorithms is generally a feasible task. However, the real challenge is finding a solution that can be
efficient both in terms of time and communication cost.

In this project we propose a fully decentralized protocol implementing the Impulse response
algorithm by Carzaniga et al. [4]. This algorithm uses impulse measurements from neighboring
nodes for the estimation of the network’s spectrum, which can be used for deriving useful network
properties like the mixing time. We propose an extension of the original approach to make our
protocol robust in the presence of churn (unstable networks) by executing multiple partially over-
lapping instances of the impulse algorithm. We follow a layered approach which offers our protocol
portability allowing its deployment into various networks with little effort from the developer. Fi-
nally, we present a realistic scenario of usage for this protocol in the form of a simple application
for estimating the average number of files stored in any network node.

Acknowledgments

I would like to thank my supervisor, Professor Alexander Wolf, for believing in me and giving
me the opportunity to work on this project, as it turned out to be a very exciting and rewarding
experience. His comments and suggestions were very helpful and shaped a large part of my work.

I would also like to thank Professor Antonio Carzaniga from the University of Lugano for giving
me some very useful advice regarding some technical issues, which greatly improved my final results.

A special thanks goes to my family, not only for their financial support throughout this year,
but mostly for always being there for me, supporting me even from a distance.

Finally, I would like to thank all my friends for being so supportive and cheering me up whenever
I was in a bad mood or felt disappointed.

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Contributions . 12
1.3 Report Structure . 12

2 Background 13
2.1 Important Networking Concepts and Technologies . 13

2.1.1 Decentralized Networks . 13
2.1.2 Network Overlays . 14
2.1.3 Chord and Pastry . 15

2.2 Related Work . 18
2.2.1 Aggregation Algorithms . 18
2.2.2 Sampling Algorithms . 20
2.2.3 Spectral Computation Algorithms . 21

2.3 A Decentralized Algorithm for Estimation of Global Properties 22
2.3.1 Dynamic Systems . 22
2.3.2 Algorithm Overview . 24
2.3.3 Evaluation results and Limitations . 26

3 Protocol Design 27
3.1 Model Assumptions . 27
3.2 Design Requirements . 30

3.2.1 Additional Considerations . 31
3.3 In-depth Protocol Analysis . 31

3.3.1 Definitions . 32
3.3.2 Protocol Description . 32

4 Software Architecture 41
4.1 General overview . 41
4.2 Components . 44

5 Implementation 47
5.1 Protocol Components . 47

5.1.1 Basic Domain Classes and Data Structures 47
5.1.2 Integration Layer . 52
5.1.3 Communications . 55
5.1.4 Algorithms and Analysis . 60
5.1.5 Protocol Core . 61
5.1.6 Storage . 68

5.2 Protocol Evaluator . 68
5.3 Deployment and Documentation . 70
5.4 Summary . 70

5

6 Evaluation 71
6.1 Experimental Setup . 71
6.2 Evaluation of Requirements . 73

6.2.1 Correctness . 73
6.2.2 Robustness . 76
6.2.3 Complexity and Termination . 80
6.2.4 Extensibility and Efficiency . 81

6.3 Sampling Application . 82
6.4 Limitations . 84

7 Conclusion 85
7.1 Future Work . 86

Appendices 91

A Node interface and connector classes for Pastry and Chord 92
A.1 Node interface . 92
A.2 Pastry . 93
A.3 Chord . 95

B Detailed design of the impulse response protocol 96
B.1 List of packages and classes . 96
B.2 Dependency graph . 98

6

List of Figures

1.1 Centralized vs Decentralized networks . 11

2.1 In 2.1a, node 1 requests a list of neighbors from each network node. All the nodes
send their adjacency list to node 1, but while the lists are being transfered, node 4
fails as shown in 2.1b. As a result the adjacency matrix computed by node 1 is the
one displayed in 2.1c, while the real adjacency matrix by the end of the sampling is
shown in 2.1d . 14
(a) node 1 makes a request to create adjacency matrix 14
(b) node 4 sends its out-neighbors and fails . 14
(c) adjacency matrix as computed by Node 1 . 14
(d) real adjacency matrix . 14

2.2 The thin black lines are links of the physical network, while the yellow lines are the
virtual links of an overlay network. 15

2.3 The topology of a chord network overlay . 16
2.4 Pastry overlay topology . 17

(a) Routing table of a pastry node with id 75fax, where b = 4 and x represents an
arbitrary suffix . 17

(b) Routing of a message with key d46a1c from node with id 75fa12 17
2.5 A network partitioned by a non-uniform gossip algorithm 19
2.6 In 2.6a, the red querying node requests a sum aggregate function and the spanning

tree is constructed (thick gray lines). In 2.6b each node propagates to the higher
level the aggregated values it collected. In 2.6c the node with the red X fails before
sending the values it gathered, resulting in the computed value at the querying node
being 6 instead of 21. 20

2.7 An input-output dynamic system at time t, where u is the input, y is the output and
F and g are functions changing the state of the system and computing the output
respectively . 23

2.8 Simple model network and adjacency-related matrices 25
(a) The modeled network . 25
(b) Adjacency matrix of the network . 25
(c) Matrix A. Each column sums to 1 . 25

3.1 In and out-neighbors of a node . 28
(a) The gray nodes are the in-neighbors of v . 28
(b) The blue nodes are the out-neighbors of v . 28

3.2 Both networks execute the decentralized algorithm. In the beginning node u is in
round k = 5 and node v in round k = 3 . 29
(a) Network with blocking communication operations 29
(b) Network with non-blocking communication operations 29

3.3 Creation of a new Session . 33
(a) New Session creation activity . 33
(b) Contents of a Session right after initialization 33

3.4 Part of a network with a node failing before sending messages for the next round to
all its out-neighbors . 35

7

3.5 Diagram presenting all the rounds and impulse responses of a Session. 40

4.1 Example of neighboring nodes in physical and overlay networks. The nodes in pink
are neighbors of the node in blue. The physical network is in both cases the same. . 42
(a) Physical Network . 42
(b) Overlay Network . 42

4.2 Id abstraction generic mechanism . 42
4.3 Impulse response protocol layered architecture . 43
4.4 Interactions in the integration layer . 45
4.5 Interactions in the control layer . 46

5.1 Neighbor hierarchy . 49
5.2 NeighborTable hierarchy . 50
5.3 The format of a UUID in hex digits is 8-4-4-4-12 for a total of 36 characters 52
5.4 Synchronization among, sender, receiver and protocol core classes 59
5.5 Connection of the Analyzer class to the protocol core 61
5.6 Coordination of protocol tasks by the ProtocolController class 64
5.7 User interaction with the sampling protocol . 66
5.8 Collection of structural information by evaluator node 69

6.1 Example pastry topology of 20 nodes . 72
6.2 Spectral gap error for the 10th, 50th and 90th percentile of the estimated values

versus the number of gathered impulse responses . 74
(a) spectral gap error in 20 nodes . 74
(b) spectral gap error in 50 nodes . 74
(c) spectral gap error in 100 nodes . 74

6.3 Mixing time error for the 10th, 50th and 90th percentile of the estimated values
versus the number of gathered impulse responses . 75
(a) mixing time error in 20 nodes . 75
(b) mixing time error in 50 nodes . 75
(c) mixing time error in 100 nodes . 75

6.4 Introduction of a single failure in a network of 50 nodes, using a single Execution . . 76
(a) spectral gap median error . 76
(b) mixing time median error . 76

6.5 Spectral gap median error, when introducing one failure at round 3k/4 using multiple
Executions . 77

6.6 Introduction of single addition in a network of 50 nodes, using a single Execution . . 78
(a) spectral gap median error . 78
(b) mixing time median error . 78

6.7 Spectral gap median error, when introducing one addition at round 3k/4 using mul-
tiple Executions . 78

6.8 Average spectral gap median error estimates for various failure rates 80
6.9 Message types sent by the protocol . 81
6.10 Average error in average number of files per node estimation for networks of 20, 50

and 100 nodes . 83
(a) average error in file number estimation for 20 nodes 83
(b) average error in file number estimation for 50 nodes 83
(c) average error in file number estimation for 100 nodes 83

8

List of Tables

3.1 Information stored in an Execution. On the right column are the expected results . . 32
3.2 Information stored in a Session . 32
3.3 Contents of the INIT message . 34
3.4 Contents of the NEXT message . 36
3.5 Contents of the INIT message . 38

5.1 Representation of Pastry ids in their original form (hex) and through the Id wrapper 48
5.2 Eigenvalue proposals of different sizes made by 3 nodes and their median. Only the

three largest eigenvalues will be computed, since the second proposal does not have
a fourth eigenvalue . 51

5.3 Table of pending a received values for Execution x 63

6.1 Number of out-neighbors per node for networks of different sizes 72
6.2 Parameters related to the failure rate and a Session’s total execution time 79

(a) Total number of rounds and total time of execution for Sessions with multiple
Executions . 79

(b) Number of introduced failures for various failure rates 79

9

Chapter 1

Introduction

1.1 Motivation

It is very often beneficial to architect networks and overlays as fully decentralized systems rather
than choosing a centralized architectural design. Such an approach usually leads to networks that
are more reliable and resilient to failures, while offering high performance with a relatively small
infrastructure cost. Moreover, since only local information are being used for making decisions, no
component has a complete view or control over the whole network, resulting in a more flexible and
secure model. For instance, common network activities such as packet routing no longer rely in a
single node for control and coordination, which could turn out to be a bottleneck or a single point
of failure. A very popular example of a decentralized architecture are peer-to-peer (P2P) networks,
in which individual nodes communicate with each other sharing their resources (e.g. processing
power, memory etc) both as suppliers and as consumers. A wide range of services are based on
protocols that run on peer-to-peer networks, which are often comprised of thousands or millions of
nodes (e.g. BitTorrent).

(a) A centralized network (b) A decentralized network

Figure 1.1: Centralized vs Decentralized networks

Regardless of the benefits that a decentralized architecture offers, it is very often necessary to
compute global properties of the network which are required, even as approximations, in numerous
tasks, such as searching and maintenance. Some typical examples of common global properties are
the size of the network and its mixing time, i.e. the number of hops after which a random walk
approaches the network’s stationary distribution and becomes independent of the starting point.
Computing these properties using either centralized or decentralized algorithms is generally a fea-
sible task. However, the real challenge is finding a solution that can be efficient both in terms of
time and communication cost.

There exist many proposals for efficient computation of global parameters in decentralized sys-
tems, each following different approaches, from sampling and projecting local properties to com-

11

puting aggregates of data distributed over the network. Some algorithms are based on deriving
useful properties from the spectrum of the network by computing the most significant eigenvalues
of some descriptive matrix. There has been a proposal of a particularly interesting fully decentral-
ized algorithm by Carzaniga et. al[4] that can compute efficiently some global properties like the
mixing time, by using the eigenvalues of a matrix closely related to the adjacency matrix of the
network. While this algorithm appears to have good results in a simulation environment it has not
been tested using some concrete implementation. Additionally, the estimates it provides are lacking
accuracy in networks with high churn rates. Thus, it would be interesting to better investigate the
algorithm’s potential and to try and improve its weaknesses.

1.2 Contributions

In this project we try to design and implement a protocol based on the decentralized estimation
algorithm proposed by Carzaniga et al. [4]. Such a protocol should be able to efficiently perform
the tasks required by the algorithm, while it should be designed in a way that allows its deployment
into common network and overlay topologies, e.g. a Chord or Pastry topology. In addition, the
project should attempt to enhance the proposed algorithm’s robustness for better estimations in
networks with high churn rates. This enhancement is important, since it will allow the algorithm
to be applied in more realistic networks. For instance most common peer-to-peer networks are by
nature unstable, since nodes continuously join and depart from the network, altering its topology
and consequently its properties.

This project presents both theoretical and practical issues that need to be addressed in an
elegant and efficient way. The nature of the project presents us with two main challenges. The
first challenge is to design a protocol that is robust and efficient while remaining simple and to
implement it with extensibility in mind, both in functionality and in compliance with a variety of
underlying network communication protocols. The second challenge is that such a protocol should
be evaluated in an environment that closely resembles a real large-scale network. This will allow us
to better determine its applicability and usefulness in real-life scenarios.

1.3 Report Structure

We begin by making a short introduction on decentralized networks, presenting techniques and
related work in computing global properties of networks and overlays in Chapter 2. We also make a
short introduction into dynamic systems and realization algorithms, which will allow us to present
and explain in greater depth the decentralized algorithm that will form the basis of our proposed
protocol, discussing both its evaluation results and limitations.

In Chapter 3 we present the design requirements that our proposed protocol should fulfill,
discussing both advantages and disadvantages that certain design decisions might incur to the ap-
plicability and efficiency of our proposal. Moreover, the general design overview of the proposed
protocol is discussed and its constituent components are presented. The actual implementation of
the protocol is presented in chapter 5, where technical details are analyzed and justified in depth,
also presenting optimizations performed and possible alternative solutions that were considered.

Chapter 6 evaluates the success of this project and limitations and presents a realistic scenario
of usage for this protocol in the form of a simple application for estimating the average number of
files stored in any network node. Finally, Chapter 7 presents a summary of the project and discusses
possible future work.

12

Chapter 2

Background

This chapter makes a short introduction on networking concepts and technologies that are consid-
ered important for either the design or the evaluation part of this project and thus it would be
beneficial to be briefly discussed. Additionally, techniques and related work in computing global
properties of networks and overlays are presented, as it is important to create a solid context that
better explains the motivation of our work. Furthermore, this chapter makes a short introduc-
tion into dynamic systems and realization algorithms before making a detailed presentation of the
decentralized algorithm by Carzaniga et al. [4] that forms the basis of our proposed protocol.

2.1 Important Networking Concepts and Technologies

2.1.1 Decentralized Networks

A decentralized network is generally considered any network in which at least some of the pro-
cessing is done at individual nodes and information is shared by and often stored locally at each
node [27]. In such a network participants are able to join or leave at any time, while generalized
network failures are prevented through maintenance and adaptation routines ran individually by
each participating node. One of the best and most popular examples of a decentralized network
is a peer-to-peer network. Such a system is essentially a network of applications partitioning re-
sources like processing power and disk storage and balancing work loads amongst peers. The whole
partitioning process is performed directly by the network participants without the intervention of
servers providing some sort of central coordination. Typically each peer maintains only a local view
of the network that is limited to information regarding its neighboring nodes. A major advantage of
peer-to-peer networks and generally of any decentralized network is their resiliency to failures due to
the removal of a central point of coordination and control. Even if some network node fails, only its
local information is lost and thus the overall network’s operation is not interrupted. Additionally,
in such networks there are usually no minimum requirements regarding the resources that each par-
ticipating node must offer, i.e. a participant could offer disk storage of only a few megabytes or very
limited processing power. Thus, while each individual node could be considered computationally
weak and memory-limited, a whole network composed of thousands or even millions of such low-end
nodes could create a system with a very high performance/price ratio.

However, due to the limited view that each node has for the global network state, discovering
properties like the size and the diameter of the network is considered a more challenging task that
usually requires the cooperation of all participating nodes through the exchange of their local infor-
mation. If such a task is not performed in a smart and controlled manner, it could cause a number
of issues, from increased network traffic to a complete failure of the service offered by the network.
For instance, consider a naive size discovery mechanism, in which each node floods the network with
its id and consequently infers the network’s size through the individual ids gathered. While such a
method is certainly correct, it would be unacceptable in a network of a million nodes, due to the
extremely high number of messages required.

13

Moreover, many decentralized systems including peer-to-peer networks are affected by churn,
that is, nodes continuously leaving and joining the network resulting in frequent topological changes.
Such changes not only make sophisticated maintenance mechanisms a requirement for most protocols
operating in decentralized networks, but also make it very hard to sample the network for global
properties, since the data gathered during sampling might become obsolete before the sampling
process is over, e.g. some nodes might fail during the sampling period, changing network features
such as its size or its adjacency matrix as Figure 2.1 illustrates.

(a) node 1 makes a request to
create adjacency matrix

(b) node 4 sends its out-
neighbors and fails

1 2 3 4
1 0 1 1 0
2 1 0 0 1
3 1 0 0 1
4 0 1 1 0

(c) adjacency matrix as
computed by Node 1

1 2 3 4
1 0 1 1 -
2 1 0 0 -
3 1 0 0 -
4 - - - -

(d) real adjacency ma-
trix

Figure 2.1: In 2.1a, node 1 requests a list of neighbors from each network node. All the nodes send
their adjacency list to node 1, but while the lists are being transfered, node 4 fails as shown in 2.1b.
As a result the adjacency matrix computed by node 1 is the one displayed in 2.1c, while the real
adjacency matrix by the end of the sampling is shown in 2.1d

There is a large number of decentralized networks used in practice. A typical example are
systems that use a distributed hash table (DHT) to provide a lookup service of key-value pairs
that is similar to a simple hash table, only spreading the pairs over nodes in the network based
on some properties of both the nodes and the keys. Chord [37] and Pastry [33] are two commonly
used protocols that implement such DHT systems. Gnutella is also a very popular decentralized
peer-to-peer network used by over 3 million users for file-sharing [31] through clients like LimeWire
and Shareaza.

2.1.2 Network Overlays

The protocol that we propose in this project should be network-agnostic, in the sense that it should
offer the capability to be applied in a wide range of networks, both physical and overlays, seamlessly.
For this reason, it would be useful to briefly explain what a network overlay is and what are its
differences and similarities to physical networks.

As an overlay network we generally define any virtual network topology that runs independently
on top of some physical network, utilizing its infrastructure. From a logical point of view, an overlay
network is very similar to physical networks, since it can be represented as a graph composed by
a number of nodes that are connected to one another through either directed or undirected links
or edges. The main difference of overlays from regular networks is that the nodes of the overlay
can be thought as being connected by virtual links as Figure 2.2 illustrates. The black lines of the
figure represent the links in a physical network, that actually connect nodes through some form of
hardware, e.g. they could be Ethernet cables, optic fibers, coaxial cables etc. On the other hand,
the yellow lines represent the logical links that are constructed by some overlay network, which in re-
ality correspond to a path that could be composed by many physical links of the underlying network.

There is a wide range of overlays that are currently in existence, most of which run on top
of the Internet. Some popular examples of overlay networks that are widely used in practice are
peer-to-peer (P2P) networks, virtual private networks (VPN) and routing overlays like Skype for
VoIP communications.

14

Overlays are desirable in multiple occasions, since they allow network engineers and developers
to design their own protocols and applications, which operate on top of an existing infrastructure,
modifying its behavior to fit their needs. Since such a network is designed with specific goals in
mind, it can be optimized to be more scalable and robust than a network of general purpose. For
example, consider a file-sharing application operating over the Internet that uses an index to locate
the files offered by users. If each participating node kept an index of its own shared files locally, then
this would lead to an unbalanced network that would not be scalable for performing fast searches.
If on the other hand an overlay was created that operated on top of the Internet and distributed
the index keys uniformly amongst the participating nodes, the application would be more scalable,
since any search would now require almost the same time.

On the other hand, overlays create several challenges that physical networks do not face due
to their structure. First of all, since overlays are virtual networks, they have no control over the
underlying physical network while at the same time they might even lack critical network informa-
tion. For instance, a node in a physical network always knows which are its in and out-neighbors,
through the physical network interfaces it controls, while a node of an overlay might lack some
of these information, e.g. it might not know which nodes are considered its in-neighbors. Addi-
tionally, overlays do not always take into consideration the underlying network topology, resulting
in inefficient utilization of network resources. For instance, nodes that are adjacent in an overlay,
frequently exchanging messages, might actually be located multiple hops away from one another,
generating traffic that is now spread throughout a large part of the network. Finally, since in most
overlay networks all kind of users can join there are security concerns that need to be addressed,
such as nodes generating malicious messages or refusing to comply with the protocol.

Figure 2.2: The thin black lines are links of the physical network, while the yellow lines are the
virtual links of an overlay network.

2.1.3 Chord and Pastry

This project aims at providing a protocol for computing the spectral properties of a wide variety of
networks, both physical and overlays. It would thus be useful to briefly present two very popular
peer-to-peer protocols, Chord and Pastry, that create network overlays in which our proposed
protocol could potentially be deployed. Doing so, would allow us to locate the similarities that

15

these networks share as well as their differences. This would provide us with a better understanding
of our protocol’s requirements as well as the restrictions posed to us. Additionally, these overlays
could be used as a testbed for evaluating our results, and thus understanding how they operate
would be important.

Chord

Chord [37] is a protocol for a peer-to-peer distributed hash table (DHT). Each Chord node stores
key-value pairs for all the keys for which it is responsible. Every Chord node has as a unique ID
its IP address. An important feature of the protocol is that all keys and IDs are assigned an m-bit
identifier by hashing them using the SHA-1 algorithm [9], which is then used to perform all of the
protocol’s operations. There are two reasons for using the hash value as an identifier instead of
the real values of keys and IDs. The first is that by hashing them, all the values belong to the
same identifier space and can thus be referenced in the same manner. The second is that a hash
function like SHA-1 uniformly distributes the keys and IDs to the network, greatly improving its
performance and making it more robust.

Figure 2.3: The topology of a chord network overlay

Using their hashed identifiers the nodes are arranged in a circle of size at most 2m as illustrated
in Figure 2.3. The reason for this limitation in the number of participating nodes is that any ID
or key can only be assigned a value from 0 to 2m − 1. The hashed identifiers are placed in a
clockwise incrementing manner in the ring and each node is assigned a successor and a predecessor,
with which it can directly communicate. The successor of a node is the next node of the ring in a
clockwise-direction and the predecessor is the previous one. Any key k is assigned to the node whose
identifier is equal or follows the identifier of k. Due to the way that the identifiers are produced any
node of the network will have at any time about K

N keys, where K is the total number of keys and
N is the number of nodes in the network. Apart from the successor and predecessor, every node
keeps a finger table which contains up to m entries, with the ith entry of node n being the IP of
the node which is responsible for identifier (n+ 2i−1)mod2m (this means that the first entry in the
finger table is its successor node).

16

When a node wishes to locate a value paired to a particular key k, it performs a search by using
the nodes listed in its finger table, from the one that lies further away to the one that is closer.
Using this method, the whole search process requires only O(logN) steps. The predecessor nodes
are used only for maintenance purposes, i.e. for stabilizing the ring once a node joins/departs from
the network.

Pastry

Pastry [33] is also an overlay network for the implementation of a DHT similar to Chord. As in
chord, every pastry node has a unique node id that is an 128-bit unsigned integer, produced by
hashing the node’s IP address or its public key. The nodes form a circular topology similar to chord
based on the value of their ids. It is important to notice that since the ids are generated with the use
of a hash function, the position that a node will have in the ring is irrelevant to its position in the
physical network. For instance, two nodes that are adjacent in the physical network might be located
in completely different locations within the Pastry ring. The keys stored in the overlay are also
hashed by the same function to produce 128-bit values. For the purpose of routing, all node ids and
keys are divided into digits, with each digit being b bits long, yielding a numbering system of base 2b.

Every Pastry node maintains three data structures; a leaf set, a neighborhood set and a routing
table, which are used by the routing algorithm to locate the node that stores a particular key-value
pair. The leaf set contains the IP addresses of the nodes with the l/2 numerically closest larger
node ids and the l/2 numerically closest smallest node ids, where l is a protocol parameter that is
typically set to 16. The neighborhood set contains the M closest peers in terms of some routing
metric, which is defined by the user (e.g. the result of ping or traceroute). Finally, the routing table
is organized into dlogbNe rows with 2b−1 entries each, as illustrated in Figure 2.4a. Each one of the
entries in row n of the routing table refers to a node that has the same n first digits as the present
node, but is different in the n + 1th digit. Since there are a number of nodes that might have a
particular prefix, the node that is closest to the present node, according to the routing metric, is
chosen from the neighborhood set.

(a) Routing table of a pastry node with id 75fax,
where b = 4 and x represents an arbitrary suffix

(b) Routing of a message with key d46a1c from node
with id 75fa12

Figure 2.4: Pastry overlay topology

When a node receives a request for a particular key K, it first checks its leaf set and forwards
the request to the correct node if one is found. In the case that no such remote node exists, a check
is performed by the local node to its routing table, trying to locate a node which shares a longer
prefix with the requested key, than itself. In the case that no entry of the routing table satisfies this

17

requirement, the node will forward the request to a peer from any of its tables (leaf set, neighborhood
set or routing table) that has a prefix of the same length as itself but whose full id is numerically
closer to the destination. This means that all the nodes which could be contacted by any node
for routing purposes in a Pastry ring are contained in the three aforementioned tables. Finally, a
simplified version of Pastry was later proposed [5], that completely removed the neighborhood set.

2.2 Related Work

In large scale decentralized networks there is often a need to know global state properties in order
to deal with issues like maintenance, routing and quality of service. Since the aim of this project
is to implement a system that samples for global network properties it would be useful to briefly
present some related work. There has been a lot of research on computing global properties that
can be broadly divided into three major categories; aggregation, sampling and spectral computation
algorithms.

2.2.1 Aggregation Algorithms

Aggregation acts as a summarizing mechanism of the overall state within the network. Each par-
ticipating node shares some local information in the form of numerical values, that when combined
can be used to infer global system information, which can in turn provide indicators that allow
the evaluation of global network properties. Such indicators are very often desirable, since they
can provide useful hints when attempting to ensure some level of performance, QoS etc [23]. As
an example consider a file-sharing network, where each node holds statistics like the size of all the
locally stored files. An aggregation algorithm would provide an estimation of the whole network’s
average size of files, that could be a useful hint for calibrating the parameters that are relevant to
the protocol used for transferring the files; e.g. a large average could mean that less file transfers
should be made in parallel to avoid network congestion for a long time. Aggregation techniques
can vary, from using simple aggregate functions (sum, max, average etc.) to more advanced like
histograms [12] and linear projections [29]. Aggregation protocols can be further divided into two
subcategories; gossip-based and tree-based aggregation schemes [23].

Gossip algorithms

Gossip algorithms operate in rounds in an analogy to how gossip news spread in a social network.
At each round nodes form pairs and exchange the values that they hold (e.g. the number of files
stored on the disk of the node or the CPU-load). After a number of rounds, the values will have
spread across the whole network like a virus, providing a good estimate of the global aggregate
value. Due to the nature of gossip-based algorithms, they usually are simple, scalable and failure-
resistant. However, every node needs to exchange and aggregate a large amount of data, resulting
in high computation and communication costs.

Depending on the probability distribution used by a node to choose its pair, we can divide gossip
algorithms in uniform [15] and non-uniform [16] [30]. Uniform algorithms are those in which nodes
choose their pair uniformly and at random from the network or send a message that performs a
random walk and terminates at some random node.

A fundamental uniform gossip-based algorithm proposed by Kempe et al. is Push-Sum [16].
The algorithm begins at round i = 0, with each node v maintaining a sum sv,i and a weight wv,i.
From that point on, every node executes Algorithm 1 for t rounds, sending at each round its current
estimation to one of its out-neighbors.

This algorithm can also be used to compute sums instead of averages, simply by setting the
weight wv,0 to 1 only in one node and 0 to the rest. An interesting property of the algorithm is
that, assuming that no failures occur, it will converge if executed for a sufficiently large number of

18

Algorithm 1 Push-sum algorithm at node v
1: sv,0 ← xv {Node v holds an initial value xv}
2: wv,0 ← 1
3: Send the pair {sv,0, wv,0} to yourself
4: for i = 1 . . . t do
5: sv,i =

∑
r ŝu,i−1 {ŝu,i−1 are the values sent by any node u to v in the previous round}

6: wv,i =
∑

r ŵu,i−1 {ŵu,i−1 are the weights sent by any node u to v in the previous round}
7: ŝv,i ← 1

2sv,i
8: ŵv,i ← 1

2wv,i
9: Choose target ft(i) uniformly at random by out-neighbors

10: Send the pair (ŝv,i, ŵv,i) to v (yourself) and ft(i)
11: The estimate of the average in step i is sv,i

wv,i

12: end for

steps. The convergence speed is related to a number of parameters including the size and topology
of the network and the communication mechanism used for exchanging the messages.

On the other hand, nodes in non-uniform gossip algorithms choose their pairs in a biased manner,
showing preference to those that have some desirable properties. For instance Spatial gossip [16] [30]
is a non-uniform algorithm, in which the selection of nodes is done according to their distance, with
nearby nodes being chosen more often than those that are far away, reducing the network delays
and improving the speed of execution. A pitfall of non-uniform algorithms is that if not designed
properly, they can lead to bad estimates due to network partitioning. For example, consider the
network of Figure 2.5. The numbers in the nodes represent the values that each node initially
has and the dotted line represents a link of great distance between two nodes. If a non-uniform
algorithm is used that completely ignores nodes that are very far away, the network ends up with
two partitions (yellow and gray) that are disjoint and make completely different estimations of
the aggregate value, since they are not taking into account any of the values present in the other
partition. However, if non-uniform algorithms are carefully designed, they can be faster and more
efficient than those that are purely random.

Figure 2.5: A network partitioned by a non-uniform gossip algorithm

19

Tree-based algorithms

Tree-based algorithms compute aggregates by using trees in a bottom-up fashion. Typically a node
that initiates the protocol makes a request to build a spanning tree on the network (e.g. by using
BFS) and then aggregate values are computed and propagated to the higher levels of the tree,
achieving lower communication costs compared to gossip-based algorithms.

The simplest tree-based algorithm is SingleTree [3], that works in two phases as illustrated in
Figure 2.6. During the first phase, the node that needs to perform a query broadcasts an initiation
message to the network and a spanning tree is built, in which each node v sets as its parent the node
u that first transmitted the initiation message to v. In the second phase, the query is computed
by aggregating the nodes’ values through the spanning tree. A node will send the values it has
collected to its parent only once it has received an answer containing a value from all of its children.
While this algorithm is very simple it has the disadvantage of being very sensitive to failures. If
a node u crashes after it has communicated with its children and before it manages to send the
values it collected to its parent, all the information provided by the nodes of the subtree that has
as a root u will be lost (Figure 2.6c) and the tree needs to be reconstructed for a proper value to
be computed.

(a) (b) (c)

Figure 2.6: In 2.6a, the red querying node requests a sum aggregate function and the spanning tree
is constructed (thick gray lines). In 2.6b each node propagates to the higher level the aggregated
values it collected. In 2.6c the node with the red X fails before sending the values it gathered,
resulting in the computed value at the querying node being 6 instead of 21.

As an enhancement that tackles the aforementioned problem, Bawa et al.[3] propose Multiple-
Trees, where instead of just one, k minimum spanning trees are constructed using BFS, all rooted
at the node that performed the query. Again, the querying node sends an initiation message to
all the nodes. Every node u has a variable l(u) that is associated with the level which u will have
on the spanning trees. A node v that received the initiation message directly from the querying
node will have l(v) = 1, while any other node w will have l(w) = l(r) + 1, where l(r) is the value
of the first node r from which w received a message. Additionally each node u will hold a set S
containing all the nodes v it has seen, for which l(v) < l(u). When the initiation phase terminates,
all nodes will choose k nodes from S as their parents for the k spanning trees. In the second phase,
each node propagates its collected values to its parents. This algorithm is more robust compared
to SingleTree, since even if a node fails, there are additional spanning trees, where the failed node
might be in a lower level (e.g. a leaf) and thus the results might be more precise.

2.2.2 Sampling Algorithms

In this category we find algorithms that try to infer global network properties by performing projec-
tions in local properties acquired by sampling a subset of the network nodes. If the selected nodes

20

are chosen consistently, then a good estimation of the actual values could be computed.

A well-known sampling technique, used for estimating some statistics of an undirected network
is Random Tour [24]. The idea is that any node i that wishes to make an estimation of some global
value, initializes a counter X to the value φ(i)/d(i), where d(i) is the degree of i and φ(i) is any
function that produces the wanted value at i, e.g. if every node j sets φ(j) = 1, then the algorithm
will make an estimation of the size of the network. The initiator node sends a message containing
X to perform a random tour of the network, that is, to visit neighboring nodes, chosen uniformly
at random, until it reaches the initiator node for a second time. Every node j that receives this
message, increments X by a value φ(j)/d(j) and in the end, the initiator node i makes an estimation
of the wanted property by computing the value Xd(i). An advantage of this algorithm is that it is
guaranteed to produce unbiased estimations, however it scales linearly with network size, meaning
that it can only be applied efficiently in small to moderate networks.

Another sampling technique, used for network size estimation is called BdayParadox [3]. This
technique is based on the birthday paradox, i.e. if a population of size n is sampled repeatedly with
replacement and uniformly at random, then the number of trials required before a value is sampled
twice will have an expected value of

√
n. [26]. Using this property, the algorithm randomly samples

network nodes and keeps track of the number of samples acquired before a collision is recorded.
Then, if Xr is the number of nodes sampled, the size of the network can be estimated as n̄ = X2

r
2 .

The samples for this method are taken by performing discrete time random walks of length r, i.e.
the querying node initiates a random walk that lasts for r hops and the value of the node that is
the last in the walk is taken as a sample.

A problem that the aforementioned method presents is that discrete time random walks can
suffer from bias whenever peers have unequal degrees. An algorithm that deals with this problem is
Sample and Collide [24]. This algorithm relies in continuous time random walks to take the samples.
The querying node initializes a timer T in a sampling message and sends it off in a random walk.
Any node i which receives the sampling message picks a random number R uniformly distributed in
[0,1] and decrements T by log(R)/d(i), where d(i) is the degree of i. The node in which the timer
will have a value T ≤ 0 will be the one to send a sample to the initiator. Both BdayParadox and
Sample and Collide are sub-linear methods, which allows them to be used into large-scale networks.

2.2.3 Spectral Computation Algorithms

While the algorithms presented in the previous sections can be very useful for producing simple
network statistics and in most cases can be easily implemented, the information they provide us are
network independent and they do not map properties related to the structure and the connectivity
of the network [4]. For instance in a file-sharing network, Push-sum could give us an estimation of
the size of the network, however there is nothing it could tell us about the network’s topology (e.g.
whether the network has a particular structure or if it is random).

The spectral computation algorithms achieve exactly this by analyzing the spectrum of the net-
work graph. The general idea behind all spectral algorithms is that they attempt to compute all or
the most significant eigenvectors and eigenvalues of a matrix describing or being somehow closely
related to the structural properties of the network, which is distributed among the network’s nodes.
Common examples of matrices used are the adjacency matrix that marks neighboring nodes and
the transition probability matrix that holds the probabilities of going from any node i to some other
node j. The eigenvectors and the eigenvalues of such matrices can provide important structural in-
formation. For instance using the second largest eigenvalue of some network’s transition probability
matrix, we can compute its mixing time [36] [8], that is, the necessary length of a random walk
required to compute the steady state probabilities of the network. While such a network property
might not appear to be useful by itself, it can be used as a parameter to compute the cost and
precision of other methods like aggregation algorithms. [15] [34].

21

There is a large number of algorithms which obtain information from the network’s spectral
properties. Kempe and McSherry [17] propose a decentralized, distributed algorithm for computing
the top-k eigenvectors of a symmetric matrix and singular vectors of arbitrary matrices that are
distributed across the network, by using a decentralized version of Orthogonal Iteration(OI). In
the original method, k random vectors are chosen for the initialization round before the algorithm
performs a number of iterations. The first step of every iteration is to multiply the vectors by
A, where A is the weighted adjacency matrix under consideration. The resulting vectors are then
orthonormalized and are used as an input for the next iteration. This algorithm terminates once the
vectors converge. The difference of the distributed version lies in the way the orthonormalization is
performed. In the original OI the orthonormalization is usually performed by computing the QR
factorization of the vectors. In the distributed version, Push-sum is used to estimate a matrix K
which is factored by each node to compute the orthonormalization matrix. While this algorithm
can be very useful for analyzing the structural properties of large networks by providing the most
significant eigenvectors and eigenvalues, the amount of data that are exchanged during the iteration
steps could lead to high traffic and eventually network congestion.

EigenSpeed [36] and EigenTrust [14] are also algorithms that are based in computing spectral
properties of the network. EigenSpeed uses the principal eigenvector of a matrix of bandwidth
observations of the network to estimate the bandwidth capacity of nodes. EigenTrust is a reputation
management algorithm for peer-to-peer networks, which computes the principal eigenvector of a
matrix C containing trust values of the network’s nodes using a distributed power method. The
elements of the computed eigenvector represent the global trust values of the nodes and could be
useful as a directive of whether the nodes should trust the content that a remote node has to
offer or not. Additionally, both methods also take into account malicious nodes that could present
wrong values to tamper with the results of the computation. It should also be mentioned, that the
decentralized algorithm used as the basis of the protocol proposed in this project also belongs in the
category of spectral computation algorithms and will be analyzed in greater depth in the following
section.

2.3 A Decentralized Algorithm for Estimation of Global Properties

In this section we make a detailed presentation of the decentralized spectral computation algorithm
by Carzaniga et al. [4] which forms the basis of our proposed protocol. This algorithm uses
classic methods from system identification and realization to compute a matrix closely related to
the network’s adjacency matrix, which can provide us with some very useful network properties,
like its mixing time and spectral gap. Therefore it would be useful, before discussing the details
of the algorithm, to make a short introduction to dynamic systems and realization algorithms, to
better understand how the proposed method works. Finally, we make a brief presentation of the
algorithm’s evaluation results as well as its limitations.

2.3.1 Dynamic Systems

A dynamic system is any physical or artificial system that evolves over time and whose behavior is
described by taking time as a parameter [22]. In order to define a dynamic system we need a time
index, a description of the states of the system and a set of rules, called dynamics, by which the
state of the system evolves in time. In a mathematical language, the dynamics would be a function
that maps a state into another. As a simple example, consider our own solar system. A state of
this system would be the positions and velocities of all the planets and the sun at a given time and
the dynamics for state evolution would be the laws of gravity. Using these laws, we could predict
the positions and velocities of the planets at any given time in the future.

A dynamic system can have zero, one or more inputs and outputs. An input, also called an
impulse, originates outside the system and does not depend on what happens in it, but affects its

22

state evolution, i.e. the new state now depends on both the previous state and the given input. On
the other hand, outputs, or impulse responses are generated by the system through some function
that depends on the previous state and possibly the given input.

Figure 2.7: An input-output dynamic system at time t, where u is the input, y is the output and
F and g are functions changing the state of the system and computing the output respectively

Depending on their characteristics, we can use various classifications for dynamic systems:

Linear versus Nonlinear
Linear dynamic systems are systems with linear evaluation functions, that obey the principles
of superposition and homogeneity. In this type of systems, given a state and some input, we can
always find an exact solution for the new state and the output. On the other hand, nonlinear
dynamic systems do not hold that property and their behavior can be completely unpredictable.

Time-variant versus Time-invariant
A system is considered time-invariant if its parameters do not change with time. Formally, if an
input u(t) of a time-invariant system produces some output y(t) at some time t, then the same
input u at some future time t+δ, for δ ≥ 0 will give the time shifted output y(t+δ). A common
example of a time-invariant system is an electronic amplifier, since the same input signal will
always produce the same output signal regardless of time. On the contrary, the parameters of
a time-variant dynamic system change with time. As an example, consider a dynamic system
describing the mass of a car, which changes with time, as fuel burns.

Continuous-time versus Discrete-time
The evolution of the system can occur smoothly over time or in discrete time steps. In the former
case, we call this a continuous-time dynamic system, while in the latter we call it discrete-time.
If t is the time variable, we could consider the discrete-time as taking snapshots of the system
state at fixed intervals, with t = 0, 1, 2, 3, . . . , while the continuous-time would be like taking
snapshots of the system state at any moment t ≥ 0. Both continuous and discrete-time systems
can be linear or nonlinear and time-variant or invariant.

In the context of this project we are interested in a discrete-time, linear, time-invariant, single-
input-single-output model, that is defined by the following equations:

x(t+ 1) = Ax(t) +Bu(t) (2.1)
y(t) = Cx(t) (2.2)

where x(t) ∈ Rn represents the state of the system at time t, u(t) ∈ R is the input at time t and
y(t) ∈ R is the output. A ∈ Rn×n is the state-transformation matrix, B ∈ Rn is a vector used for
mapping the input to the state of the system and C ∈ Rn is a vector used for mapping the state
to the output. The size n of x is also called the order of the system. The impulse response of the
system at time t = 0 will be h(0) = 0 and h(t) = CAt−1B for t = 1, 2, 3

Kung’s Realization Algorithm

A realization algorithm is a system identification technique which can generate a system realization
by using impulse response data. Given the impulse responses of a dynamic system we can iden-
tify their modal parameters. For instance, feeding the impulse responses of the dynamic system

23

described in the previous section in a realization algorithm, we could identify matrix A and vectors
B and C of equations 2.1 and 2.2.

Kung proposes an approximate realization algorithm, which identifies the parameters of a system of
order n using 2n−1 impulse responses [20] [28]. The algorithm determines a reduced model of order
p ≤ n and fits the triple [A,B,C] to the impulse responses provided. The steps of the algorithm
are the following:

Given 2n− 1 impulse responses h(1), h(2), . . . h(n− 1), construct an n× n Hankel matrix:

H =

h(1) h(2) h(3) · · · h(n)
h(2) h(3) h(4) · · · h(n+ 1)
...

...
...

. . .
...

h(n) h(n+ 1) h(n+ 2) · · · h(2n− 1)

and perform singular value decomposition (SVD) [10], i.e.,

H = USV T (2.3)

where U and V are n × n orthogonal matrices and S is an n × n diagonal matrix containing
in its diagonal the singular values s1, s2, . . . , sn of H in decreasing magnitude. The singular value
decomposition of H can also be expressed as

H =
[
U1 U2

] [S1 0
0 S2

] [
V T
1

V T
2

]

where U1 contains the first p columns of U , U2 the last n− p, V1 contains the first p columns of
V and V2 the last n− p. Finally, S1 is a p× p sub-matrix of S, composed of the p largest singular
values of H in its diagonal and S2 an (n− p)× (n− p) sub-matrix of S, containing in its diagonal
the n− p smallest singular values of H.Then, A can be computed as

A = G−11 G2 (2.4)

where G1 and G2 are obtained from U1S
1
2
1 as the first and the last 2n− 2 rows, respectively.

The order p of the approximation can be any integer 0 ≤ p ≤ n and a usual approach into
choosing p is to set a threshold to the singular values of H. p will then be the number of the
singular values that are above this threshold. For instance, the threshold could be cs1, where s1 is
the dominant singular value of H and c ∈ R some small constant, e.g. 0.01.

2.3.2 Algorithm Overview

The decentralized algorithm proposed by Carzaniga et al. [4] can be applied in computer networks
that fulfill certain requirements. A network of size n can be represented as a graph G of n vertices,
where each vertex represents a node and each edge a unidirectional network link (a bidirectional
connection requires two edges). Then, G should be strongly connected and aperiodic and the net-
work should be of a low diameter ∆ << n and low maximum degree d. These requirements are
reasonable for many types of networks as for instance peer-to-peer networks usually have a diameter
of ∆ = O(log n) [40][33][37] [13] [35] .

The idea behind the algorithm is that we can model a network fulfilling the aforementioned
requirements as a dynamic system like the one described by Equations 2.1 and 2.2. Matrix A could
be any matrix closely related to the adjacency matrix of graph G, as long as its elements can be
produced by information held locally by the network nodes, so that each node can compute and

24

store a part of A. Any matrix A is considered related to the adjacency matrix of G if auv 6= 0 only
if u = v or there is an edge from node v to node u. An important notice is that an edge (v, u)
is stored at position (u, v) of the matrix, as Figure 2.8b illustrates, for consistency with Equations
2.1 and 2.2, resulting at each node v storing the vth column of A, instead of storing a row, as most
relevant models do. As an example consider the small network illustrated in Figure 2.8a. For the
model of this network, A is the transition probability matrix with auv being equal to the probability
of going from node v to node u when performing a random walk in the network. It is easy to see
that this matrix will have zero elements only to those positions that the adjacency matrix will be 0.
The probability distribution of any node can be different (uniform or non-uniform) and it depends
on the type of the modeled network.

(a) The modeled network

1 2 3 4 5
1 0 1 0 1 0
2 1 0 1 0 0
3 1 1 0 0 1
4 1 0 1 0 1
5 0 0 0 1 0

(b) Adjacency matrix of the
network

1 2 3 4 5
1 0 0.7 0 0.2 0
2 0.33 0 0.5 0 0
3 0.33 0.3 0 0 0.5
4 0.33 0 0.5 0 0.5
5 0 0 0 0.8 0

(c) Matrix A. Each column sums to 1

Figure 2.8: Simple model network and adjacency-related matrices

The purpose of the algorithm is for each network node to produce an estimate of the dominant
eigenvalues of matrix A by gathering impulse responses in a number of rounds. The computed
eigenvalues could then be used to determine a number of spectral network properties. The proper-
ties that can be computed, depend on how we define matrix A. For instance, the second eigenvalue
of the transition probability matrix can be used to compute the mixing time of the network.

The steps required can be seen in Algorithm 2. Each node v holds one column av of matrix A,
containing the local information related to the adjacency matrix.

Algorithm 2 estimation algorithm at node v
1: xv ← Choose a value uniformly from {0, 1}
2: hv(1)← xv
3: for t← 2 . . . k do
4: for u ∈ out-neighbours(v) do
5: send value xvauv to u
6: collect all values w sent by in-neighbors
7: xv ←

∑
w

8: hv(t)← xv
9: end for

10: end for
11: Âv = Kung’s realization with hv(1), . . . , hv(k)
12: compute the dominant eigenvalues of Âv
13: exchange the eigenvalues with neighbors
14: collect estimates from neighbors
15: adjust estimates to the median of the collected estimates

In the beginning, each node must randomly select a value from 0 and 1 as the initial impulse. At
each of the following rounds, every node computes locally xvauv and sends it to all its out-neighbors.
Then, node v updates its value xv by adding all the values received by its in-neighbors. This value
is also stored as hv(t), i.e. the impulse response of node v in round t.

25

As already stated, every node holds only partial information of matrix A (one column each).
However, to analyze it’s spectrum, the whole matrix is required. Using the impulse responses gath-
ered in the previous phase, A or an approximation of A of lower order can be computed by using
Kung’s approximate realization algorithm. As mentioned in Section 2.3.1, Kung’s algorithm requires
2n − 1 impulse responses in order to realize a system of order n, which means that for an exact
estimation of a network of size n, the number of rounds required by Algorithm 2, would normally
be k = 2n−1. However, Carzaniga et. al argue, that for a network fulfilling the requirements set in
the beginning of the section (strongly connected, aperiodic, with low diameter and of low degree),
shorter impulse responses in the order of the diameter of the network rather than its size, should
be enough to provide a valid approximation. Using the approximation Av of matrix A computed in
this step, we can then proceed and find its dominant eigenvalues.

A problem that arises at this point is that nodes across the network can observe different systems
(gather different impulse responses) and as a result compute different realizations and spectral
estimations with different levels of accuracy. To make the results of the algorithm more accurate
and uniform, an additional round is performed, where each node sends its estimated eigenvalues
to all of its out-neighbors and then the final estimation of each node is computed by finding the
median of all the available values. This round reminds the way gossip algorithms behave, so it could
be called the gossip round.

2.3.3 Evaluation results and Limitations

This algorithm was evaluated in a simulated synchronous environment for various types of networks
and overlays (e.g. Chord) using a uniform transition probability matrix as matrix A, i.e. all the
edges coming out of a node v have the same probability 1/degree(v). The evaluated network prop-
erties were the network’s spectral gap and its mixing time. The spectral gap is defined as |λ1 − λ2|,
where λ1 and λ2 are the two eigenvalues of the approximate matrix Av with largest moduli. Since
the transition probability matrix is stochastic (all columns sum to 1), the first eigenvalue is always
1. Thus the spectral gap can be computed by 1 − |λ2|. The mixing time can be approximated by
tmix = log|λ2| ε, where ε is the desired error [8] [36].

In general, the algorithm performs well producing accurate estimates of the mixing time and
spectral gap with a short number of impulse responses for very large networks (10000 nodes), when
no failures occur. However, in unstable networks, where even one failure occurred, the results of
the evaluation revealed large estimation errors that could go as high as 200%. Additionally, the
estimation incurred a small fixed error that seems to be independent of the number of impulse
responses used. Finally, it should be noted that this algorithm does not take into account malicious
nodes, i.e. the algorithm would not work properly if a node refused to cooperate and send the values
it computed to its out-neighbors or if the values it sent were intentionally malformed.

26

Chapter 3

Protocol Design

In this chapter we present the design requirements that our proposed protocol should fulfill, dis-
cussing advantages and disadvantages that certain design decisions might incur to the applicability
and efficiency of our proposal. Moreover, we present an in-depth analysis of the proposed proto-
col. Finally, this section discusses the design and architecture of our implementation, presenting
its constituent components at a high level. The goal is to allow the reader to understand how our
implementation attempts to satisfy the requirements set in a simple manner, before discussing its
details in Chapter 5.

3.1 Model Assumptions

The first step before proceeding in presenting our proposed protocol and an overview of the imple-
mentation, is defining a model for the network, which will provide us with an abstract representation
of important properties and relationships and will give us an insight about its applicability in dif-
ferent types of real-life networks.

We model the network as a directed graph G = (V,E), where V is a set of vertices and E is
a set of edges. A vertex can be interpreted as a node (e.g. a workstation in the network) and an
edge as a link or a channel between two nodes. In addition the graph is dynamic in the sense that
vertices and edges can be added or removed, as nodes join in and depart from the network.

Since the network is represented by a directed graph, communications are by default unidi-
rectional. Thus a bidirectional communication is represented as two independent unidirectional
channels with the use of two edges. The use of unidirectional communications is very important
for our model, since it allows us to define and distinguish the type of neighbors that each node can
have to in-neighbors and out-neighbors. We say that a node u is an in-neighbor of v, if there exists
an edge (u, v) ∈ E and that a node u is an out-neighbor of v if there exists an edge (v, u) ∈ E,
as illustrated in Figure 3.1. A requirement that Algorithm 2 presented in Section 2.3, is for the
analyzed graph to be strongly connected. This means that every node of the network needs to have
at least one in-neighbor and one out-neighbor.

This model can be used to represent any network topology that our protocol should support.
However, in order to make the model more realistic, we need to discuss in greater depth our as-
sumptions about the communication medium used, the kinds of failures that might occur both in
nodes and in links and the synchrony model that should be adopted.

Synchrony Considerations

One of the most important parameters that should be defined is whether the protocol will be de-
ployed in a synchronous or an asynchronous environment. In a synchronous environment, there
is a known upper bound in computations and communication steps, with nodes having perfectly

27

(a) The gray nodes are the in-neighbors of v (b) The blue nodes are the out-neighbors of v

Figure 3.1: In and out-neighbors of a node

or approximately synchronized physical clocks. Such a model would allow our protocol to operate
in timed rounds and would greatly simplify all of its required actions. For instance, every node
would know exactly which messages to expect by its neighbors in each time-slot and would not have
to worry about received messages being out of order and probably being ignored in previous rounds.

On the other hand, an asynchronous environment gives no time guarantees, with processes not
having even approximately synchronized clocks. In an asynchronous environment, every node could
be in a different round than the rest. When all the messages required for some round have been
received or the node has identified its neighbors as failed, it proceeds to the next round computing
a new impulse response and sending messages to its out-neighbors. This means that any node could
receive messages for future rounds, which should somehow be managed in order to be used when
required. Obviously, the second approach is a lot more challenging than assuming that the network
is synchronous. However, for any general network, the asynchronous model seems a more rea-
sonable choice, as having synchronized clocks in large networks is not usually easily achievable and
in fact you would never expect highly diverse networks, like peer-to-peer, to exhibit such a property.

Communication Medium

Communications in the network are achieved by message passing through the predefined channels.
For the requirements of our protocol it is absolutely necessary that the unicast operations of send()
and receive() are supported by the network, for sending and receiving the values xvavu as described
in Algorithm 2. Additional support for a broadcast() operation could be useful for the protocol
initialization (i.e. let all the participating nodes know that a new sampling has been requested),
however, our proposal does not make use of it, making the existence of a broadcast operation un-
necessary.

Sending and receiving of messages should be non-blocking operations. The reason for this choice,
is that since this is an asynchronous model, every node might be in a different round than the rest
and a blocking operation could make the whole protocol inefficient. For instance, consider a network
using the decentralized algorithm by Carzaniga et. al, where a node u is in round k = 5 and its
out-neighbors are still in round k = 3, waiting for some values as illustrated in Figure 3.2. Once
round 5 is over for u, it computes the new impulse response h(5) and begins sending values xuavu
to all of its out-neighbors v for round 6. If the send() operation was blocking, then u would have to
wait until all nodes v reached round 6, in order to receive the messages sent by it. Moreover, any
node waiting to send to or receive messages by u in any round greater or equal to 6, would now also
have to block waiting for u to finish with the nodes of lesser rounds. The end result would be that
the algorithm would terminate in all the nodes at approximately the same time, even though some

28

nodes could have finished much faster.

Using non-blocking operations solves this problem. Every node proceeds to the next round
as soon as all the messages for the previous round have arrived and an impulse response can be
computed, without having to block waiting for the out-neighvbors to call receive(). In a sense, this
approach will also lead to a blocking mode of operation, but in the context of whole rounds rather
than simple communication operations, i.e. a node waits to receive all messages of its current round
before proceeding to the next, but that doesn’t mean that the node would refuse to accept messages
sent by its in-neighbors related to future rounds. More details regarding this will be discussed in
the in-depth analysis of the protocol.

(a) Network with blocking communication operations (b) Network with non-blocking communication
operations

Figure 3.2: Both networks execute the decentralized algorithm. In the beginning node u is in round
k = 5 and node v in round k = 3

Types of failures

The final assumption we need to make is about the types of failures that can appear in both channels
and nodes. Defining the kinds of failures we have to expect will better explain the choices in the
parts of the protocol that deal with interaction with other nodes.

In our model nodes can fail at any time and without a warning. Even though many networks
provide liveness detection mechanisms for proactively notifying participants about possible failures,
this is not a function that is always available. For this, and to make the proposed protocol truly
portable, we need to assume that such a mechanism is not available by the network and if required,
should be provided as part of the protocol. Additionally, we assume that a failing node can at some
point in the future recover, without making any further assumptions about its state (it could be
in the same state as before the failure or in a new one). As an example, consider a peer-to-peer
network, where a node u is briefly disconnected from the Internet while our protocol is running. The
other nodes might quickly detect u’s failure and proceed to the execution of the protocol’s future
rounds, while u right after re-connecting might attempt to continue the execution of the protocol,
sending outdated messages.

Finally, we assume that links can also fail by dropping messages, either due to physical failures
or due to congestion. However, we also make the assumption that messages cannot be transformed
while transferred in a channel, i.e. the message sent will always be the message received. This
final assumption is somehow debatable, in the sense that in real networks messages can arrive at
their destination malformed. For instance, there are many security concerns regarding peer-to-peer
networks due to the fact that often anonymous users are allowed to join, tampering with transfered
messages [7]. While this argument is valid, the time constraints of this project do not allow us to
take into account such concerns. However, by designing the protocol in an extensible manner, we

29

allow such matters to be addressed in future work.

3.2 Design Requirements

Before designing a protocol for computing spectral network properties in a decentralized manner,
it is important to analyze the requirements that such a protocol should satisfy. This will help us to
better confine our problem and mark some goals that our solution will need to achieve. There has
been a wide analysis of requirements for protocols and decentralized systems [32] [18]. Those that
are the most important in our case, both functional and non-functional, are presented below:

Correctness

The protocol should yield correct results. That is, the exchange of control messages and matrix
components should lead to the computation of accurate estimations, which once analyzed should
reveal properties of the network that closely resemble its actual properties. There are various ways
of verifying the protocol’s correctness, from manually checking the intermediate steps performed
in multiple protocol runs to comparing the final results that these runs return with the results
presented in the algorithm’s original evaluation [4].

Robustness

Robustness is a very important requirement of the proposed protocol, since most real-life networks
and overlays present topological changes either due to node failures or due to churn. The protocol
should be resilient and easily adaptable to such changes. This is translated into a requirement of
retaining the algorithm’s precision as much as possible regardless of the deployment environment.

Complexity

With the term complexity we generally refer to a number of parameters which can affect the per-
formance of a system. Those that are important for our protocol are:

Time Complexity The protocol should terminate in as few steps as possible. Since the algo-
rithm by Carzaniga et. al requires exactly k steps to complete, one for each impulse response, we
would like our protocol to terminate in at most O(k) steps, even after the extensions we propose.

Space Complexity The algorithm is expected to be used in large networks composed of hun-
dreds or thousands of nodes, where normally the number of neighbors of each node will be
relatively small. As a result, the adjacency matrix and all matrices related to it will be rel-
atively sparse. If these data are not properly stored and managed, the space requirements of
the protocol could be really high. The same thing holds for all the information that each node
participating in the protocol should store, like lists of neighbors, information about protocol
runs, impulse responses etc.

Number and Size of Messages The protocol should send as few messages as possible, in a
compact manner such that the size of the messages is minimal. This requirement is particularly
important for control messages. As control messages, we refer to all those messages that are
required by the protocol to ensure its proper functionality, but which are not related to the
algorithm, e.g a message that checks whether a remote node is alive. We would like to minimize
the use of such messages and if possible to completely integrate them to messages that have a
payload useful for the algorithmic operations.

30

Termination

While the termination requirement might seem obvious, it is a very important property that the
protocol must hold. It is easy to show that the original algorithm proposed by Carzaniga et al. does
terminate in a finite number of rounds, defined by a constant k. However when trying to design
a concrete implementation of the algorithm, a number of parameters that were previously of no
concern could affect the outcome of the protocol’s execution. These parameters are mostly related
to implementation details and the way certain exceptional situations should be handled. Handling
such an exceptional situation in the wrong way could make the protocol block and never terminate.
For instance, consider a scenario in which a node u is in round r of the algorithm and waits to
collect all the values from its in-neighbors, but one of those neighbors fails. The simple algorithm
of Section 2.3 would assume that u would somehow detect the failure of its neighbor and would not
expect to receive a value. However, if such a situation was not handled properly in the concrete
implementation (e.g. u never tried to detect failed neighbors), the protocol would never terminate,
with u waiting to receive a message which will never arrive.

Extensibility

Even if the proposed protocol achieves its goals, it is possible that unforeseen problems might arise
in the future that will need to be solved. Thus, it is important to provide mechanisms that will
simplify the addition of functionality or the customization of the protocol’s behavior.

Efficiency

A well-designed protocol should be efficient. This means that the choices made for the protocol’s
mechanisms (etc. how messages will be encoded) should result in a fast and reliable protocol more
than anything. However, sometimes efficiency might have to be compromised in order for other
properties, like the aforementioned extensibility to be satisfied.

3.2.1 Additional Considerations

Apart from the aforementioned requirements, it is essential to discuss some additional considera-
tions that we will need to have in mind before attempting to sketch a more detailed protocol design.
The first is that computing some global properties in the network should mainly be considered as
a maintenance routine and not as the main activity of a node. This means that every node in
the network might need to use the estimations of the global properties provided by our proposed
protocol to perform some actions, but the task of computing those properties will in most cases not
be the main activity of the nodes. Thus performing those computations should be an operation
executed concurrently, without blocking the node’s main activity.

One final consideration is relevant to the fact that decentralized networks allow nodes to actively
join and depart, while failures of nodes are also a possibility. Depending on the underlying network,
detecting those topological changes might be a functionality provided by the network itself, although
there could also be cases in which they should be detected by the intermediate level of the protocol.
In such cases other mechanisms, like failure detectors [6] might be required to solve the problem.

3.3 In-depth Protocol Analysis

In this section we give a detailed description of our proposed protocol, which can be applied in
any network satisfying the assumptions described in Section 3.1. Additionally, we explain how
this protocol can be easily applied in unstable networks affected by failures and/or churn just by
properly configuring its execution parameters.

31

Execution
Execution number e Matrix A
Number of rounds Dominant eigenvalues of A
Current round k Median of exchanged eigenvalues
List of in-neighbors
List of out-neighbors
Impulse responses h(t)
Current and future incoming values

Table 3.1: Information stored in an Execution. On the right column are the expected results

Session
SessionId
List of Executions
Number of completed Executions
Initiator node flag

Table 3.2: Information stored in a Session

3.3.1 Definitions

We begin by giving the definitions of the basic structures our protocol is based on:

Execution
An Execution is a part of a protocol run, responsible for completing the tasks described in the
original algorithm by Carzaniga et al. in Section 2.3. An Execution can be divided into three
phases; Initiation, Data Exchange and Gossip Round. Each Execution holds all the information
that are required for the algorithm to run and for the computation of the estimated eigenvalues
to be performed. A detailed list of the information maintained by an Execution is presented
in Table 3.1. A completed Execution, i.e. with all three aforementioned phases complete, is
expected a) to have used the impulse responses gathered to compute a system realization as
explained in Section 2.3; b) to have computed the dominant eigenvalues of matrix A; and c) to
have computed the median of the dominant eigenvalues exchanged with the node’s neighbors.
An Execution also holds an integer value e ≥ 1, which is used as part of the Execution’s full
identifier, as explained later.

Session
A Session is a full protocol run, containing at least one but possibly multiple overlapping
Executions. When a user or an application makes a request to the protocol for a sample, a new
Session is generated by the querying node also known as the Initiator, which is spread to all
participating nodes. This means that it is possible to have multiple protocol Sessions running
in the same network simultaneously, generated by queries made in different nodes. Each Session
has a unique identifier or SessionId, distinguishing it from other executions, present and past.
The SessionId, along with the execution number e is used to provide complete identification
of an Execution (Executions in different Sessions can have the same number e). A Session
is considered completed only once all of its Executions have terminated. Finally, the Sessions
stored at each node have an initiator flag, dictating whether the local node initiated the present
Session or not. The reason for this is that the initiator node is always responsible for initiating
new Executions in the context of a Session, as it will be explained later. A summary of the
information held in a Session can be seen it Table 3.2

3.3.2 Protocol Description

To better present our proposal, this protocol is analyzed for realizing a system in which matrix A is
the uniform transition probability matrix of the network, i.e. position auv of the matrix is equal to

32

1/degree(v) (remember that information for this protocol are stored column-wise). However, every
detail presented in this section applies to any matrix A related to the adjacency matrix, as long as
each node can compute its required information locally.

The protocol starts running once a sampling request is made by a user or an application to one
of the network’s nodes. The sampling request contains all the information required for a Session to
be generated, i.e. the number m of Executions and the number k of rounds in each Execution. The
node that received the sampling request is called the initiator and the rest of the nodes are called
participants.

As illustrated in Figure 3.3a, upon receiving the new request, the initiator creates a new Session
with the parameters provided and sets the Session’s initiator flag to true. An initial Execution is
also created, with its execution number set to e = 1. Both the initial and all consecutive Executions
of the Session go through three phases; Initiation, Data Exchange and Gossip Round.

(a) New Session creation activity

(b) Contents of a Session right after initialization

Figure 3.3: Creation of a new Session

Initiation

The behavior of each node in this phase diverges depending on its role (initiator or participant).
There are certain actions performed only by the initiator, while the rest are performed by all nodes.

Initiator
The actions of the initiator node i are presented in Task 1:

Task 1 Initiation procedure at node i
1: xi,1 ← Choose a value uniformly from {0, 1}
2: Set hi(1) = xi,1
3: out_list← Get list of out-neighbors
4: weight← 1/sizeof(out_list)
5: val← xi,1weight
6: Create an INIT message and add val to it
7: for all u in out_list do
8: Send INIT message to u
9: end for

10: Set init_timer to initial value

The node initially chooses some value xi,1 uniformly from the set {0, 1}. This value is also set
as the impulse response hi(1) of round 1. It then gets the list of all its out-neighbors from the
underlying network. The way this is achieved technically will be explained when presenting the

33

INIT
SessionId
Total number of Executions
Number of new Execution e
Total number of rounds k
Value xv,2

Table 3.3: Contents of the INIT message

architecture in Section 4 and in even more detail in Chapter 5. This list, will be immutable
for the Execution, until its termination, retaining even failed nodes. This means that once an
Execution is initiated, a "snapshot" of the network’s topology is taken by the node, which does
not change through its life-cycle. Even if a new node joins the network in a later round, it will
be completely ignored in the context of the particular Execution, since it will not be part of its
out-neighbors list.

Since we want to estimate the uniform transition probability matrix, instead of computing one
value aui for each node u, we can simply compute a common weight as shown in line 3, since
the probabilities for all nodes u will be the same. If the wanted matrix was different, then the
corresponding values should be computed accordingly.

The next step is to compute the product of xi,1 and the weight as defined in the original
algorithm and to send this value to all the nodes in the out-neighbors list as part of an INIT
message. Apart from the value, this message contains all the information required for a node
receiving it to create the Session and the Execution, i.e. the SessionId, the execution number e
etc. A detailed description of the contents of an INIT message is given at Table 3.3. Finally
an init_timer is set to some globally defined value shared by all the nodes in the network. The
value of this timer corresponds to the time left in the Initiation phase and is also the time that
the node has left to discover its in-neighbors.

All nodes
The actions described in Task 2 are performed by all the nodes in the network, both initiator
and participants:

Task 2 Initiation procedure at any node u
1: Upon receipt of an INIT message from node u
2: if SessionId s does not exist then
3: Create a new Session with id s
4: end if
5: if Execution e does not exist then
6: Create a new Execution setting its number to e
7: Perform the actions described in Task 1
8: end if
9: if init_timer of Execution e has not expired yet then

10: xu,2 ← xu,2 + val
11: Add u to the in-list of e
12: end if

When a node receives an INIT message, it checks whether the Session mentioned in the message
exists and if not it creates it. The same thing goes for the Execution. If the Execution did not
previously exist, then it should be created as described in Task 1. This means that new INIT
messages have to be sent to all the out-neighbors, an init_timer has to be set etc. Finally, in
all the cases that the init_timer of the Execution is still running, the value contained in the
INIT message will be added to the values xu,2 kept by the Execution for round 2 and the node
that sent that message will be added to the list of in-neighbors of this Execution.

34

The actions of the Initiation phase achieve three things:

First They allow all nodes in the network to be informed that a new protocol Execution is
running. Each node that receives an INIT message, will have a Session and an Execution with
the same id when Task 2 terminates. Since each node will send the INIT message to all of its
out-neighbors and since we have assumed that the graph of the network is strongly connected,
we are certain that at some point, all nodes will know about the newly created Execution. Also,
each node will send an INIT message to its out-neighbors for a particular Execution only once,
that is, when the first INIT message for that Execution is received. Thus, the initiation of a
new Execution is spread to the network nodes using a controlled flooding mechanism.

Second The nodes of the network discover their in-neighbors in the context of the specific
Execution. One thing that must be noted here is that the proposed method does not guarantee
that all in-neighbors will be discovered, since a delay might force an INIT message to arrive
after the timer expires. However, a reasonable init_timer value will allow most of the time
the construction of an accurate depiction of the network’s actual topology. Additionally, the
chances of discovering the actual network topology in a Session with more than one Executions
are increased. Even if the init_timer of one Execution expires before all the in-neighbors are
located, it is highly likely that the rest of the Executions will have better results. Having good
results in the majority of Executions is enough to get accurate final results, as we shall discuss
later in this Section.

Third The impulse response of round 2 can be computed right after the Initiation phase ter-
minates. The reason is that every node that sends an INIT message, appends to it its impulse
signal for round 2. Thus, the value xu,2 used in Task 2, will be the sum of the impulses of all
the in-neighbors of u in round 2, i.e. it will be the impulse response of round 2. This is an
optimization which reduces the total number of rounds required in the Data Exchange phase of
the Execution by 1.

Data Exchange

Once the init_timer of an Execution terminates, the Data Exchange phase begins. This phase
consists of a number of rounds r = 3 . . . k. In each round r each node sends an impulse, and waits
to receive the impulses of the nodes stored in its in-neighbors list in order to compute the impulse
response h(r).

A challenge of this phase is locating in-neighbors which have failed. In the original algorithm
a node needs to wait at each round of an execution to receive all incoming messages belonging
to this round before proceeding. However, in the case that a node fails before sending all of its
messages, its out-neighbors might face a deadlock situation, waiting forever to receive a message
that will never arrive. For example, consider the partial network of Figure 3.4. All three yel-
low nodes have an in-neighborhood composed of the 2 gray nodes, so they expect to receive two

Figure 3.4: Part of a network with a node failing before sending messages for the next round to all
its out-neighbors

35

NEXT
SessionId
Number of Execution
Number of round
Value xv,round

Table 3.4: Contents of the NEXT message

impulse signals. The gray nodes both send messages containing impulses to the yellow nodes, how-
ever the node with the red X fails before sending the message to the third yellow node. Yellow
nodes 1 and 2 will proceed without any problem, since they will receive both messages, but node
3 will be permanently blocked waiting the message of the failed node. Such a scenario is avoided
in our protocol, as it will be explained in this section, by using a simple failure detection mechanism.

Each round of this phase consists of three tasks. The first actions that a node u performs once
a new round is initiated are presented in Task 3:

Task 3 Initiation of round r of the Data Exchange phase in node u
1: val← hu(r − 1)weight
2: Create a NEXT message and add val to it
3: for all v in out_list do
4: Send NEXT message to v
5: end for
6: for all i in in_list do
7: timer(i)← MAX_TIME
8: end for

Initially, the node computes the impulse, which should be sent to its out-neighbors. The impulse
of round r is nothing more than the impulse response of u in round r − 1 multiplied by avu, which
as in the Initiation phase will be 1/sizeof(out_list). Then, u creates a NEXT message containing
the computed impulse val. This message also contains all the information required by the receiving
node in order to add the impulse to the proper Session, Execution and round. The detailed de-
scription of the contents of a NEXT message is given at Table 3.4. This NEXT message is then
sent to all the out-neighbors of u, using the list constructed by the Execution during the Initiation
phase. Finally, in each record of the in-neighbors list, a field with an expiry_time is set to a value
of MAX_TIME. This field will be used later to notify the failure detection mechanism that a node
should be probed for liveness.

At this point, the node performs concurrently Tasks 4 and 5. Task 4 is executed every time a
NEXT message is received:

Task 4 Node u receives a NEXT message from node v
1: r ← round_of(NEXT)
2: val← value_of(NEXT)
3: if Execution with SessionId s and execution number e exists then
4: xu,r ← xu,r + val
5: if r is current round then
6: timer(v)← INF
7: else
8: Add v to senders_list(round)
9: end if

10: end if

36

The node checks whether the Session and the Execution referenced by the message exist. If they
exist, the node adds the value val contained in the message to the values xu,r of round r. If they
do not exist, the message is completely ignored. Additionally, if the message was intended for the
current round, the timer of the sender is set to INF, a special value indicating that an in-neighbor
has made contact in the current round. If the message was for a future round, then the id of the
sender is stored in a list with all the in-neighbors that have sent a message for that round.

Task 5 is a periodic task which runs for each Execution and which is responsible for both detecting
failures and advancing the protocol to the next round.

Task 5 Node u runs the periodic task of the Data Exchange phase in round r
1: for all v in in_list do
2: if timer(v) = 0 then
3: Probe node v for liveness
4: if v is still alive then
5: timer(v)← MAX_TIME
6: else
7: Remove v from in_list
8: end if
9: end if

10: end for
11: if all nodes in in_list have their timer set to INF then
12: hu(r)← xu,r
13: r ← r + 1
14: for all v in senders_list(r) do
15: timer(v)← MAX_TIME
16: end for
17: Execute the actions of Task 3
18: //Only in the initial Execution of a Session
19: ratio = num_of_rounds/num_of_executions
20: if u is initiator and (r mod ratio = 0) and Session has more Executions then
21: Execute the actions of Task 1
22: end if
23: end if

In this task the node first checks all of the nodes in the in-neighbors list of the Execution to
see if their timers have expired. If the timer of a node v has expired, then that node is probed for
liveness. If the node is still alive and replies to the probe, then its timer is renewed, otherwise the
node is removed from the list.

The node then checks whether all the in-neighbors of the Execution have their timers set to INF,
in order to proceed to the next round. Since all failed nodes will eventually be removed, at some
point all available NEXT messages will be received and the timers of all the live nodes will be set
to INF. Thus, the protocol will never block waiting for messages from failed nodes. If the Exeution
was in round r, then the impulse response of this round becomes hu(r) = xu,r, since xu,r is the sum
of all the values sent by the in-neighbors. The Execution then goes to round r+ 1 performing again
from the beginning the task described in Task 3, that is, send NEXT messages to out-neighbors
and renew the timers of the in-neighbors. It also checks whether any messages were received for the
new round during some past round and sets the timer of the sending nodes to INF (lines 14-16).

The final step in lines 16-20 is executed only when the initial Execution is being checked and
if the present node is the initiator of the Session. This step checks whether a new Execution
should be initiated in the context of the current Session. The ratio computed in line 16, defines
the distance, in rounds, of one Execution from the next. For example, if we had a Session with 3

37

GOSSIP
SessionId
Number of Execution
Computed eigenvalues

Table 3.5: Contents of the INIT message

Executions of 30 rounds each, the ratio would be 30/3=10, meaning that Execution number 2 would
be created once the first Exection reached round 10 and the third once the first reached round 20.
The reason this step is performed only in the initial Execution is to avoid creating the same Exe-
cution multiple times. Otherwise, all the running Executions would create new ones in round 10 etc.

Once all k rounds of an Execution in node u have completed the impulse responses hu(1) . . . hu(k)
are given as input to Kung’s realization algorithm in order to identify matrix A of the dynamic
system as explained in Section 2.3.1. As the final step of the Data Exchange phase, the eigenvalues
of this matrix are computed and are stored in the Execution.

Gossip Round

The last phase of the protocol is the Gossip Round. This round is very similar to a regular round
of the Data Exchange phase with the only differences being that instead of impulses, the dominant
eigenvalues computed in the end of the previous phase are sent to the out-neighbors and that there
are no checks for initiation of new Executions.
The initiation of the Gossip Round can be seen in Task 6:

Task 6 Initiation of Gossip Round in node u
1: Create a GOSSIP message and add the computed eigenvalues to it
2: for all v in out_list do
3: Send GOSSIP message to v
4: end for
5: for all i in in_list do
6: timer(i)← MAX_TIME
7: end for

This time the node creates a message of type GOSSIP in which the computed eigenvalues are
appended. The number of eigenvalues added is not strictly defined by the protocol and setting
this parameter should depend on the information we are expecting to receive from the spectral
analysis. For example, if we want to compute the mixing time of the network, we only need the
eigenvalue with the second largest modulus, thus attaching more eigenvalues in the GOSSIP mes-
sage might be a redundancy. Apart from the eigenvalues, the GOSSIP message used in this phase
requires only the SessionId and the execution number e as shown in Table 3.5. Since this phase has
only one round, these information are enough for the receiving node to properly handle the message.

The node sends the GOSSIP message to all of its out-neighbors and sets the timers of all
the in-neighbors to a MAX_TIME value, exactly as in the Data Exchange phase. It then runs
concurrently Tasks 7 and 8. Task 7 simply adds the eigenvalues received by any incoming GOSSIP
message to a list of proposed values and sets the timer of the sender to INF.

Task 7 Node u receives a GOSSIP message from node v
1: if Execution with SessionId s and execution number e exists then
2: Add received eigenvalues to gossip values
3: timer(v)← INF
4: end if

38

Finally, Task 8 runs periodically checking whether the nodes in the in-neighbors list have sent
the expected gossip values or not.

Task 8 Node u runs the periodic task of the GOSSIP phase
1: for all v in in_list do
2: if timer(v) = 0 then
3: Probe node v for liveness
4: if v is still alive then
5: timer(v)← MAX_TIME
6: else
7: Remove v from in_list
8: end if
9: end if

10: end for
11: if all nodes in in_list have their timer set to INF then
12: Compute median of proposed eigenvalues
13: Add Execution to list of terminated executions
14: end if

If the timer of an in-neighbor goes to zero, the node is probed for liveness and if it does not
respond, it is removed from the list of in-neighbors. Once all the in-neighbors of the list have their
timers set to INF, the gossip phase is over. The final values of the Execution are the median of
the eigenvalues proposed by the in-neighbors and by the ones computed in the local node. The
Execution is then appended to a list of terminated executions, stored in the Session in which the
Execution belongs. A Session terminates only once the number of Executions in this list is equal
to the total number of Executions m, i.e. once all the Executions have terminated.

Session Termination

A Session terminates only once the number of terminated Executions in the context of the Session
is equal to its total number m of Executions. At this point, an estimation of the eigenvalues for the
whole Session needs to be made.

Our initial approach in computing the final eigenvalues of the Session was to use a simple ma-
jority voting scheme, in which the final estimation contains the largest eigenvalues proposed by the
majority of Executions. However, as we discovered once we ran tests using this approach, such
a scheme does not seem to work well and sometimes bad final estimations can be made, even if
the majority of the Executions propose good estimations. The reason for this is that it is possible
for two Executions that have made very good estimations to have computed eigenvalues which are
slightly different. These differences probably come from the fact that when the protocol is initiated
each node chooses as the first impulse either 0 or 1 uniformly at random. Thus, for a network of
size n, there are 2n initial configurations that the protocol could have, leading into really small
differences in the final computed estimations. While these differences are so small that do not affect
our results (mixing time etc) they could pose a problem when trying to compute the majority, as
two values that we might consider to be equal will actually not be exactly equal.

In order to overcome this problem we initially introduced a tolerance value ε, so that we could
consider two eigenvalues equal even if they had a difference of at most ε. In stable networks without
the presence of churn, this approach seems to work well, since the differences in accurate estimations
are really small. However, when even a single failure is introduced, each Execution will propose
eigenvalues which are much different than the rest and usually no majority can be found.

As our final approach, we decided to use the median of all the estimations proposed by all the
completed Executions. If all the intermediate estimations are accurate, then using this approach

39

we will also give us an accurate final estimation. Even if not all of the estimations are accurate,
we still require only the majority, since the median will be part of this majority and thus it will be
an accurate estimation. Finally, if all of the estimations are inaccurate, we will at least not end up
with an "extreme" estimation, which has a high probability of being very inaccurate.

Fault tolerance and Churn

As explained in the evaluation of the original algorithm by Carzaniga et al. in Section 2.3, one
problem of the original algorithm is that it’s results in the presence of churn or even a single node
failure can be very bad. More specifically, the algorithm seems to have a very high percent error
when a failure or any topological change occurs in any round r ≥ k/2. If the number of rounds
used is relatively large (e.g. k = 60) and the failure occurs early on, then the algorithm converges
and ultimately returns good results.

Figure 3.5: Diagram presenting all the rounds and impulse responses of a Session.

One very important feature that the proposed protocol offers is its higher tolerance in churn and
node failures, compared to the original algorithm, with the use of multiple Executions for each sam-
pling request. As explained in the Data Exchange phase, the Executions of a Session are uniformly
spaced in time. i.e any Execution e will have the same distance d in number of rounds from Execution
e− 1. Since failures have negative effects to the estimated results only if they occur in later rounds
of an Execution, having multiple overlapping Executions could lead to a more accurate estimation.
For instance, consider a Session with 3 Executions as illustrated in Figure 3.5. The total number
of rounds for each Execution is 60, thus the total number of rounds in the Session because of the
pipelining will be 100. If a failure occurs in round r = 40, Execution 1 will already have passed half
its rounds and thus it will give a bad estimation. Execution 2 will be affected by the failure, however,
since this will happen during its 20th round it will have plenty of time to recover. Finally, Execu-
tion 3 will be completely unaffected, since it will be initiated right when the failure occurs. Since
2 out of 3 Executions are unaffected, using the median computation scheme previously described
will result in the Session having accurate results, obliterating the bad estimations due to the failure.

Obviously, the effectiveness of this mechanism, greatly depends on the parameters we set for the
number of rounds and Executions. However, it also depends on the characteristics of the underlying
network. For instance, if the network has a high churn rate or a lot of failures occurring frequently,
then no Execution would be unaffected by the network changes and thus, all estimations would be
inaccurate. The magnitude of the error will be defined by the rounds in which the failures will
occur.

40

Chapter 4

Software Architecture

This chapter discusses the architecture of our implemented software and presents its constituent
components. A lot of the decisions presented in this chapter were made by taking into account the
concepts and frequently used technologies presented in Chapter 2 as well as the requirements that
we defined in Chapter 3. This is a high overview of the software, so some inaccuracies and incon-
sistencies exist in order to keep things simple and to provide a better introduction for the reader.
For instance, some parts of the system, like important data structures and detailed descriptions of
the components’ classes will not be presented here. The actual implementation details of all the
software’s components will be discussed in depth in Chapter 5.

4.1 General overview

One of the most fundamental challenges that our implementation should address is the protocol’s
portability into a wide range of different network types with as few modifications as possible. In
other words, we desire our implementation to be network-agnostic, making the protocol in a high
degree independent from the structure of the underlying network while still retaining all its func-
tionality.

Before presenting our proposed approach for providing a network-agnostic service it would be
beneficial to briefly discuss the information our protocol requires from the underlying network in
order to properly operate and whose acquisition might prove to be challenging due to the distinctive
features different types of networks possess.

The first requirement for the protocol to properly function is communication with the in and
out-neighbors of all the participating nodes. One problem that arises, is that neighbors can be
defined differently depending on the network as we have already seen in Chapter 2. For instance, as
illustrated in Figure 4.1, in a physical network a neighbor of a node u is considered any other node
which directly communicates with u. On the other hand, in an overlay network a neighbor of u
might be a node physically located several hops away, which has a virtual link to u set according to
the rules of the overlay. Additionally, even overlay networks can have completely different definitions
for neighboring nodes. For instance, when we analyzed how Chord and Pastry nodes are organized
and how routing of messages works in both overlays, we saw that a Chord node would have an
immediate communication with the nodes in its finger table and its successor, while a Pastry node
with those in its leaf set and the routing table.

The second requirement of the protocol related to the underlying network, which at first glance
might not even appear to be a source of trouble, is a way to reference nodes in a unique manner. Ev-
ery network uses some kind of mechanism for uniquely identifying participating nodes. For instance,
in a physical network each node is assigned a unique MAC address distinguishing it from the rest; in
a Chord network every node is assigned an m-bit identifier after hashing some information with the
SHA− 1 algorithm and in Pastry each node is identified by an 128-bit unsigned integer. It would

41

(a) Physical Network (b) Overlay Network

Figure 4.1: Example of neighboring nodes in physical and overlay networks. The nodes in pink are
neighbors of the node in blue. The physical network is in both cases the same.

be ideal for our protocol not to make specific use of any of the aforementioned identification mech-
anisms for referencing nodes while performing its internal operations, as such an approach would
severely restrict the protocol’s portability. Instead a more generic referencing mechanism should be
used, with its generated references being translated into specific network related ids at a lower level,
as Figure 4.2 illustrates. By using such an approach, the network could operate in the same manner
for all supporting networks without having to worry about technical details and semantic differences.

Figure 4.2: Id abstraction generic mechanism

Both the aforementioned requirements demonstrate clearly the need for introducing some kind
of abstraction mechanism, which will separate the operations performed as part of the core protocol
(i.e. computation of impulse responses, estimation of eigenvalues etc.) from those requiring interac-
tion with the underlying network (i.e. find out-neighbors, find the id of a node etc.). The solution
for such a problem is well known and widely applied in networks, through the use of abstraction
layers. Perhaps the most well-known example of a layered network architecture is the OSI model
[41] used in communication networks to separate the communication operations performed in a node
into logical layers, where each layer is responsible for a particular set of operations, independently
of how operations in lower layers are implemented. Then for example, operations related to the
transport of packets to remote nodes are always performed in the same way, regardless of how nodes
are interconnected in the physical level.

Using a similar approach our protocol is designed to perform its operations in distinct layers.
In Figure 4.3 we can see the communication stack of a network in which our protocol could be de-

42

ployed. The base of the stack is the physical network, which we assume to be a network using the IP
protocol. While such an assumption is not always valid, the IP protocol is used for communication
in the overwhelming majority of real-life networks, both physical and overlays, and thus the choice
of developing our protocol on top of IP was made in order to offer better optimizations regarding
the mechanisms related to communications (sending messages etc).

Figure 4.3: Impulse response protocol layered architecture

The second layer in this stack is the overlay network. In this layer we could have any overlay
network that could be used on top of IP, e.g. Pastry. The sole assumption that we make for this
layer is that in order for an overlay to be supported, it must offer some kind of unique identifica-
tion for the participating nodes. This is a requirement, which to our knowledge is satisfied by any
existing overlay network. The double-sided arrow connecting this layer to the IP layer means that
information between the two layers flow unidirectional and it is unrelated to the dependencies of
each layer. More specifically, the arrow designates that the overlay uses the IP protocol to both
send and receive messages.

The impulse response protocol implementation is composed of the components in the gray area.
We can distinguish two layers; the protocol control layer and the integration layer.

Control Layer
This is the top layer, in which lies the core functionality of our protocol. This layer is respon-
sible for computing impulse responses, managing the protocol’s messages (INIT , NEXT and
GOSSIP), estimating matrix A of the surrogate system, computing its eigenvalues etc. It also
provides its own generic identification mechanism for referencing remote nodes.

Integration Layer
This is the bottom layer of the protocol, which acts as an intermediate between the protocol’s
control layer and the underlying network. It is responsible for providing the top layer with all
the information, which require interaction with the underlying network in order to be obtained.
More specifically, this layer provides a mechanism for converting specific network ids to a generic
form and a mechanism for obtaining the out-neighbors of the node. The figure shows that this

43

integration layer is connected to the overlay network using a single-sided arrow. This means that
this layer does not exchange information with the overlay network, rather pulls any information
required once requested by the control layer.

As we can see the protocol control layer communicates with both the integration layer and the IP
network, completely overriding the overlay network. As previously mentioned communication with
the integration layer is required in order to receive important information regarding the underlying
network. On the other hand, the communication of this layer directly to the IP network is required
for exchanging information, i.e. sending and receiving protocol-related messages. Communicating
with the overlay network, would mean that the impulse response protocol shares traffic with the
overlay protocol (i.e. its messages "piggyback" messages of that protocol). While such a design
choice might actually allow better performance since no new messages are sent by our protocol,
it would also greatly reduce the protocol’s portability. "Piggybacking" is also a network-specific
operation, different in every overlay, which unfortunately cannot be supported by the integration
layer, since not all overlay networks could support it. However, since such a service might improve
the protocol’s performance it would be interesting to investigate it in some future work.

The final layer of the stack is the application layer, in which the application utilizing the overlay
network operates. As we can see from Figure 4.3, this layer communicates with both the impulse
response protocol and the overlay network, which means that from the point of view of the appli-
cation, the protocol runs in parallel to the operations of the overlay network or as we could say,
the overlay network provides the impulse response protocol as an integrated service. While from an
architectural point of view this is not accurate, one of the basic ideas of this project is exactly this;
anyone who is developing software implementing an overlay network protocol and wishes to gather
sampling data, can do so by integrating such a functionality through our proposed software by
simply extending it to add support for that specific overlay. More details on how such functionality
could be provided in a simple manner will be discussed later in this and the following chapter.

4.2 Components

In this section we give an overview of the components composing each one of the layers presented
in the previous section and briefly discuss their interaction. These components do not correspond
to software packages or classes in a precise manner, rather they are a logical abstraction created
for better explaining things. In reality, some of these components are composed by more than one
packages with multiple classes each, while others correspond directly to the actual implementation.
These details will be further analyzed in the following chapter, where the implementation of specific
classes and their interaction will be presented.

Integration Layer

As discussed earlier, the integration layer exists to provide the impulse response protocol with
portability, allowing it to be deployed over any network which fulfills the minimal requirements of
providing unique node identification and a list of the node’s out-neighbors, regardless of how these
neighbors are defined by the overlay. In order to achieve portability, the protocol is designed in a
way which allows it to be pluggable.

The idea is to further divide the integration layer into two major components or "sub-layers"
as illustrated in Figure 4.4. The top sub-layer is composed by a single component which provides
the generic interface with which the control layer interacts. Any network-related information is
addressed by the control layer in an abstract manner, i.e. there is an abstract way of storing and
handling ids and neighbors. Whenever the protocol requires network information it only needs to
make a request to the top sub-layer and receive them in the abstract representation it recognizes,
without worrying about specific network details.

44

Figure 4.4: Interactions in the integration layer

On the other hand, the bottom sub-layer is composed by multiple components, which provide
the actual implementation details required for a specific network type. This means that this sub-
layer will contain as many components as the number of network types supported by the protocol.
These components are responsible for gathering and transforming the data required by the protocol
from their concrete representation to their abstract form and to feed them to the top sub-layer,
which will in turn make them available to the protocol services.

Using the proposed approach greatly increases the protocol’s portability as it allows the support
of new networks with minimal effort. The only thing that one has to do is to implement methods
in the bottom sub-layer of the integration layer, which conform with the abstract interface defined.
As it will be shown in Chapter 5, implementing such a component usually requires writing less than
100 lines of code, as long as the API provided by the underlying network allows easy access to the
required information (list of neighbors and id of node).

Control Layer

The top layer of the impulse response protocol is the one that provides the actual protocol service
and is composed from the following components, illustrated in Figure 4.5:

Protocol Core
This is the main software component and is responsible for properly executing the protocol. It
also is the most complex component of all, due to the number of actions it performs. First of
all, it is responsible for creating and coordinating the various Sessions and Executions of the
protocol, making decisions about the phase they are in, when to advance to the next round,
whether they should terminate etc. Additionally, it handles the incoming messages, deciding
which value should be added to which Execution and whether a new message containing a
recently computed value should be sent to the node’s out-neighbors. Moreover it is responsible
for the protocol’s maintenance tasks, like discovering the node’s in-neighbors, maintaining the
neighbors lists and deciding whether a neighboring node should be probed for liveness. Finally,
it provides a simple API, which allows users and applications to make new sampling requests
with ease.

45

Figure 4.5: Interactions in the control layer

Communications
The responsibilities of this component are related to the interaction of the protocol with the IP
network for sending and receiving messages. As discussed in the previous section, the protocol
does not share traffic with the overlay network for portability reasons, which essentially means
that any protocol-related messages need to be sent to the remote nodes by direct communication
through the IP network. The messages manipulated by this component can be distinguished
into two general types, those carrying values and those sent for maintenance tasks. In the first
category belong all the messages which carry some value useful for one of the protocol’s rounds,
i.e. an impulse response-related value for Initiation and Data Exchange phases or a list of pro-
posed eigenvalues for the Gossip phase. In the second category belong the control messages,
sent by the protocol, when probing a node for liveness.

Storage
This component is responsible for storing and retrieving all completed Sessions and Executions.
There are two main reasons for integrating this component to the rest of the software. The
first is that we would like to be able to analyze previous network samples which could give
us useful information regarding the state of the network. For instance, observing the changes
in the network’s spectral properties could provide us information about the dynamic evolution
of the network [19]. The second reason is that the protocol could use the stored information
for providing optimizations related to the frequency of taking samples. The basic idea is that
if we check the values of previous samples and they are unchanged for a long time, then it is
highly likely that we have a stable network, which would require sampling less often. On the
other hand, frequent changes in the stored information could be translated in a network with
continuous topological changes, requiring samples to be taken in shorter periods of time. This
optimization will be presented and explained in depth in the following chapter.

Algorithms and Analysis
This component is responsible for performing all the algorithmic operations required by the
protocol. More specifically, it provides the implementation of Kung’s realization algorithm and
algorithms for computing and sorting the eigenvalues of matrix A (of the surrogate dynamic
system) by the magnitude of their moduli. Additionally, it provides methods for analyzing the
estimated eigenvalues after a sampling is complete, e.g. computing mixing time, spectral gap
etc. Any new algorithm implemented for the purpose of analyzing the sampling results should
also be part of this component.

46

Chapter 5

Implementation

In this chapter we discuss the implementation of each of the impulse response protocol components.
Additionally, we present an evaluator component which was created in order to evaluate the results
and performance of our software.

5.1 Protocol Components

In this section we discuss the implementation details of the components presented in Chapter 4.
Most of the aforementioned components were implemented using the Java programming language,
apart from certain mechanisms related to the generation of protocol messages. The points where
Java was not used will be highlighted and further explanations of our approach will be provided.

5.1.1 Basic Domain Classes and Data Structures

Before discussing the implementation of each individual component, we need to present the basic
domain classes and data structures used by the protocol. The domain classes used cover three very
important issues of the protocol:

1. How nodes are identified in the protocol

2. How the neighbors of a node are internally represented

3. How the protocol related information (Executions, impulse responses, rounds etc) are managed
internally.

The data structures used are responsible for managing a node’s neighbors in an efficient and
extensible manner.

Identification Mechanism

As discussed in the previous chapter, one of the challenges for making the protocol portable is to
provide a mechanism for unique identification of the participating nodes. A challenging aspect we
faced at this point was that while all types of networks provide some sort of unique node identifi-
cation, the representation used can vary, i.e. in a physical network the ids are MAC addresses, in a
Pastry overlay they are 128-bit unsigned integers, in Chord the ids are produced using the SHA-1
hash function etc.

Using the identification mechanism provided by one of these networks would seriously restrict
the protocol’s applicability to other network types. For instance, let us say that we decided to use
IP addresses to reference nodes, since even overlays run on top of the IP network and it is a more
generic reference mechanism. In a simple IP network this approach would work well, however, in a
network like Pastry, where more than one virtual nodes might run in the same physical machine,
the referencing would no longer be unique (both would have the same IP). If on the other hand,

47

we chose to use the identification mechanism of one of the overlays, e.g. Pastry, then our protocol
would not be easily portable to other networks like Chord, since we would also need a translation
mechanism to map the protocol ids to the Chord ids. Such a mechanism would incur some overhead
both in space (to store the translation map) and in time (to look at the map every time we need to
contact some node).

To tackle this problem, we decided to follow a more generic approach. Any type of data is in
reality a collection of bytes, decoded and/or translated in various ways. For instance, in Java, each
character of a String is represented using two bytes, an integer using 4 bytes etc. This means,
that any type of id used by the underlying network can always be represented as an array of bytes.
This also means that as long as the ids used by the underlying network are unique, their byte
representation will also be unique. For our protocol, we created a simple wrapper class, called Id,
which encapsulates the id representation used by any type of underlying network, by simply taking
that id and converting it to a byte array. Responsible for converting an id to a byte array is the In-
tegration Layer and some examples of conversions will be presented when analyzing that component.

The ids of our protocol will have varying size, depending on the size of the ids used by the under-
lying network. For instance when the protocol is deployed on top of Pastry, the ids will be 128-bits
long, while in Chord they will be m-bits long. The ids can also be easily compared byte-by-byte as
shown in Listing 5.1. The big advantage of this approach is that the ids are always provided by the
underlying network, while at the same time the control layer of the protocol can reference them in
a unique manner through the Id class.

Listing 5.1: Comparison of ids

public boolean equals(Id anotherId) {
// We only need to compare the byte representations of the ids
return Arrays.equals(this.id.getByteRepresentation(),

anotherId.getByteRepresentation());
}

The final problem of this approach is that even though the byte arrays are practical for internal
comparisons while the protocol runs, they are completely impractical when we require a string
representation of the ids for verbose execution of the protocol, i.e. for logs etc. Since the binary
data of the id are not actual characters, we cannot do a direct conversion to a string. Moreover,
presenting the byte array as a hex string could work in cases that the ids are not too long, however
since the protocol might be used by various networks with ids of unknown size, we wish to decrease
the length of the produced string as much as possible. The way to overcome this problem is by using
Base64 encoding. Base64 is a binary-to-text encoding scheme, which allows us to represent binary
data in an ASCII string format by translating it into a base-64 representation [11]. This encoding
creates strings of smaller length than a hex string, since 4 characters are required for every three
bytes, while in hex strings two characters are required for each byte. The results of this conversion
is that we get a readable String of relatively small length. The different representations of ids
using this method can be seen in Table 5.1.

Nodes representation and management

One of the most fundamental elements of the protocol’s domain model are the neighbors of each
participating node. As a brief reminder, we distinguish the neighbors of a node into in-neighbors

Pastry Node Id
Original representation 49940BB1CD20217AA93C5116CCC5A0C9DC94B90B
Id wrapper - Base64 C7mU3MmgxcwWUTypeiEgzbELlEk=

Table 5.1: Representation of Pastry ids in their original form (hex) and through the Id wrapper

48

Figure 5.1: Neighbor hierarchy

and out-neighbors. In each round r of an Execution a node v sends to all of its out-neighbors u
the value of the impulse response of the previous round hv(r − 1) multiplied by the element auv of
matrix A and then waits to receive the corresponding values from all of its in-neighbors.

In our implementation, we represent the neighbors of a node by defining a Neighbor class.
Every Neighbor has a unique id of the type Id previously described. Additionally, it stores an
InetAddress, which is used for contacting the node when exchange of information is required by
the protocol, i.e. sending messages for some protocol phase or probing a node for liveness. The
Neighbor class does not store any additional overlay-related information about the remote node,
since as explained in Chapter 4, the protocol does not share traffic with the underlying network(i.e.
"piggybacking"), rather than uses directly the IP network for its message exchanges.

Even though all neighbors share the common features previously described (Id and InetAddress),
they also have certain properties distinguishing them. Each one of the out-neighbors is related to
an element of matrix A, i.e. element auv for out-neighbor u of node v, where the set of all these
elements, constitute the column Av of matrix A, stored locally in node v. On the other hand, every
in-neighbor needs to have a timer, which is required for ensuring that it is alive in the case the local
node has not received an expected value from it for a very long time.

To handle these differences, the Neighbor class was extended by two sub-classes, PlainNeighbor
and TimedNeighbor, as Figure 5.1 illustrates. A PlainNeighbor represents out-neighbors by hav-
ing an additionalmatrixElement field for storing the proper value of matrixA, while a TimedNeighbor
represents in-neighbors by having a remainingTime field. This field will be initialized to a maximum
value once the neighbor is created and every time the maintenance task of the protocol executes,
the elapsed time since the last check will be subtracted. Once the value of this field gets to 0, the
remote node will be pinged to ensure it is alive. Each time a round is complete, the remaining time
will be set back to the maximum value.

At this point it must be noted, that the remainingTime field is not an accurate timer and more
precise mechanisms are provided by Java (e.g. Timer class). However, there are two main reasons
for following this approach. The first is that in most large networks a node is expected to have
several in-neighbors. If a timer running in a separate thread was used for each one of them, then
the overhead of maintaining and handling this amount of timers would be much higher than just
reducing a value whenever a scheduled task ran. The second reason is that we are not that inter-
ested in accurately storing the remaining time for each in-neighbor. The only reason that this timer
exists in the first place is to avoid deadlocks due to node failures. Our method ensures that a node
that is not alive will eventually be probed, even if this happens with a delay of a few milliseconds.

A final requirement regarding the in and out-neighbors of nodes is that they need to be stored
and managed efficiently, so that they do not become a reason for slow protocol responses, due to

49

Figure 5.2: NeighborTable hierarchy

inefficient neighbor lookups. The approach followed was similar to that of the neighbors them-
selves as illustrated in Figure 5.2. A NeighborsTable interface was created, which defines the
basic methods that any table maintaining neighbors should implement, i.e. addition and removal of
neighbors. This interface was then extended by two additional interfaces, PlainNeighborsTable
and TimedNeighborsTable, one for each of the aforementioned types of neighbors adding addi-
tional definitions for management of matrix elements and timers respectively.

The reason that PlainNeighborsTable and TimedNeighborsTable were defined as interfaces
and not as concrete classes was to comply with the requirement of extensibility. Using this ap-
proach, any developer using the protocol library can easily implement these interfaces using data
structures that better suit the needs of a particular network. For instance, networks in which nodes
have a large number of in and out-neighbors might require a different data structure from a network
where each node has only 2 or 3 neighbors, which can probably be managed effectively using a much
simpler and faster data structure.

For this project, the implementations provided are PlainNeighborsTableSet for the out-
neighbors and TimedNeighborsTableSet for the in-neighbors . Both of these classes use the
HashSet<> class of the java.util package. All the operations in these tables have been made thread-
safe by using the synchronizedSet() method of the java.util.Collections class to the underlying
hash sets as displayed in Listing 5.2. A final notice is that while any actions performed directly
over the PlainNeighborsTableSet and TimedNeighborsTableSet tables are thread-safe, syn-
chronization should be done manually when iterating over them.

Listing 5.2: Thread-safe PlainNeighborsTableSet with the use of synchronizedSet().

private Set<PlainNeighbor> neighborsList;

//The constructor creates a thread-safe set to store the neighbors
public PlainNeighborsTableSet() {

neighborsList = Collections.synchronizedSet(new HashSet<PlainNeighbor>());
}

Representation of protocol related information

The final part of the protocol’s domain model is related to the information concerning the core of
the protocol’s operation, i.e. management of impulse responses, progress in rounds of execution
etc. As discussed in Chapter 3, the protocol uses two basic structures for these operations, namely
a Session and an Execution. An Execution is a part of a protocol run, responsible for completing
the tasks described in the original algorithm by Carzaniga et al., while a Session is a full protocol
run, containing at least one but possibly multiple overlapping Executions. These structures were
directly ported into concrete classes using the same names.

50

Execution

The Execution class stores all the information required for one simple execution of the impulse
response algorithm (impulse responses, number of current round etc), as well as its computed
results, i.e. the realization of matrix A and the computed eigenvalues. An enum of type Phase
(Listing 5.3), defines the phase in which an execution is at any point. Setting this phase, is
not managed directly by the Execution class, rather from a periodically executing maintenance
task. This means that the Execution does not actively change the phase it is currently in, but
this has to be done externally when certain events occur, e.g. the timer of the Initialization
phase expires etc. This matter will be discussed in further details in Section 5.1.5, once the
protocol’s tasks have been presented.

Listing 5.3: Values of the Phase enum

public enum Phase {
INIT,
DATA_EXCHANGE,
GOSSIP,
TERMINATED

}

Additionally, an Execution encapsulates a data structure called GossipData, in which all the
eigenvalues proposed by the in-neighbors of a node are stored during the Gossip Round and
the median of their moduli is computed. A detail that should be noted at this point, is that
there are some cases, where the vectors of the eigenvalues proposed by different neighbors have
different sizes, due to the nodes realizing systems of a different order. The reason of why such
a thing could happen will be better explained in Section 5.1.4 (Algorithms and Analysis). In
such cases, only the median of the k largest eigenvalues is computed, where k is the size of the
shortest proposed vector of eigenvalues, as in the example shown in Table 5.2.

1st eigenvalue 2nd eigenvalue 3rd eigenvalue 4th eigenvalue
1st Proposal 0.9856 0.7456 0.4567 0.2178
2nd Proposal 0.9882 0.7362 0.4567
3rd Proposal 0.9856 0.7456 0.4278 0.2178

Median 0.9856 0.7456 0.4567

Table 5.2: Eigenvalue proposals of different sizes made by 3 nodes and their median. Only the three
largest eigenvalues will be computed, since the second proposal does not have a fourth eigenvalue

A final thing of importance regarding the Execution class is that it has been made thread-
safe. The reason for this is that, as we shall see in the protocol core section, there are multiple
threads (protocol tasks) which might require concurrent access to an Execution in order to
modify the values received by in-neighbors. Thus, by making the class thread-safe we avoid
possible exceptions of type ConcurrentModificationException.

Session

The Session class holds all the Execution objects related to a specific sampling request. It
is also responsible for computing the final eigenvalues of the protocol run, by using the median
scheme presented in Chapter 3. As in the eigenvalue proposals gathered by the Execution
objects, a Session can contain Executions proposing eigenvalue vectors of various sizes. The
approach followed here is exactly the same, i.e. only the median of the k largest eigenvalues is
computed, where k is the size of the shortest eigenvalues vector proposed by any execution.

51

A final challenge related to this class is that we want each Session to have its own unique id.
The problem is that this id has to be unique both in time and space. Unique in time means
that we do not wish a newly created Session to have an id which has been used in the past
by another Session. Since Sessions are permanently stored for analysis purposes, having two
protocol runs with the same id would only cause confusion. Unique in space means that it
should not be possible for two sampling requests made at the same time in different nodes of the
network to be assigned the same id. If such a thing could happen, then it would be impossible
for the protocol to distinguish the recipient of received messages, since the target of any protocol
message is located through the SessionId and the execution number e contained in it.

The solution to this problem comes through the use of universally unique identifiers (UUIDs)
[21]. A UUID is an identifier standard, widely used in distributed systems to identify information
without requiring central coordination. UUID numbers are 128-bits long and are represented by
32 hex digits grouped into five groups separated by hyphens for a total of 36 characters. The
format of UUIDs is always the same and an example can be seen in Figure 5.3.

Figure 5.3: The format of a UUID in hex digits is 8-4-4-4-12 for a total of 36 characters

Since the length of a UUID is 128-bits, the number of unique ids that can be generated are 2128.
Even though in theory it is possible for a collision between two generated ids to exist, by using
strong generation mechanisms, the actual probability of such a collision happening is almost
0. The UUID specification defines five versions which utilize different generation schemes for
producing ids, from concatenating the host’s MAC address and some time-stamp information
to feeding host related information in hash functions like MD5 and SHA-1. The generation
of UUIDs in this project is achieved by using the version 4 scheme, which relies on random
numbers. Java provides an implementation of version 4 unique identifiers through the method
randomUUID() of class java.util.UUID.

The Session class has also been made thread-safe. In the current implementation there is no
way of an exception of type ConcurrentModificationException occurring since this class is
always modified by a single thread. However, it is possible that future versions of the proto-
col implementation will allow concurrent modification of Session objects in order to increase
performance and thus, it is useful to have implemented the class from the beginning with these
requirements in mind.

5.1.2 Integration Layer

As discussed in Chapter 4, the Integration Layer is the component of the protocol, which is re-
sponsible for converting all the technical details related to the overlay network into an abstract
representation required by the Control Layer. We also divided this layer into two "sub-layers",
namely the Abstract Interface and the Implementation details, which conceptually allow us to bet-
ter explain the connection of our software to the overlay network. In this section we analyze the
details of our implementation and we provide two examples of very popular supported overlay net-
works as a proof of concept, demonstrating the simplicity of porting our software into new network
types.

Abstract Interface

The top sub-layer of the Integration Layer is the Abstract Interface. As already discussed, this
sub-layer is composed by a single component which provides the generic interface with which the

52

control layer interacts in order to receive network related information in an abstract representation.

This abstract representation of the underlying network is achieved in Java with the use of the
Node interface of Listing 5.4. This interface defines 3 very simple methods, which can provide to
the Control Layer with all the required information. These methods are:

• getLocalId(): This method provides the upper layer with the id of the underlying node in
an abstract Id representation.

• getOutNeighbors(): This method provides to the Control Layer a set containing the out-
neighbors of the present node. The Control Layer is then responsible for inserting these
neighbors into a PlainNeighborsTable and for computing the proper values auv of matrix
A for each.

• removeOutNeighborNode(String id): This method is intended as an optimization and
even though it is defined in the interface it can be safely ignored by implementing it to always
return a value of false. Since our library is using its own failure detection mechanism for
discovering failed neighbors, it is possible to discover that some neighboring node has failed
before the overlay network does (the overlay could be running its own scheduled maintenance
task). Thus, this method is used as a hint of the protocol to the underlying network that the
node with the specified id is no longer alive and should be removed from any routing table in
which it is currently used. The way that this hint is handled after that, is left to the developer
of the overlay.

Listing 5.4: Node interface for abstract node representation

public interface Node {

public Id getLocalId();

public Set<Neighbor> getOutNeighbors();

public boolean removeOutNeighborNode(String id);
}

When a developer needs to port the protocol into a different type of network, she can do so by
simply implementing this interface and providing the required information (id, list of neighbors etc)
as these are defined for that particular network.

Implementation details

The Implementation details sub-layer is composed by nothing more than classes implementing the
Node interface for particular network types. For a better understanding of how this mechanism
works, we present in this section two examples of such implementations provided by our software
for two very popular overlays, Pastry and Chord.

Pastry Implementation

As discussed in the Background chapter, pastry performs all of its routing operations by using
three structures: a) a leaf set, b) a routing table and c) a neighbors set . From these, only the leaf
set and the routing table are used for actually forwarding messages within the network, while in
later versions of Pastry, the neighbors set is completely omitted.

53

Our software provides support for one of the most popular implementations of Pastry; FreePas-
try from Rice University [38]. Using the API provided by FreePastry, it was very easy to create
a class called PastryOverlayNode, which implemented the Node interface and provided all the
required information in only a few lines of code.

Every Pastry node is represented in FreePastry by an object of type PastryNode. All the
network related information of a node (e.g. node id, IP address etc.) are stored in an object of
type NodeHandle assigned to the corresponding PastryNode. A subclass of NodeHandle used
particularly when the underlying physical network is the IP, is TransportLayerNodeHandle.
Since for our project we require the existence of an IP physical network, we cast the NodeHandle
into an object of the aforementioned type (line 3). Then, providing the id of the node to the
Control Layer of the protocol can be achieved in a very simple manner as shown in Listing 5.5.
The id returned by the node’s NodeHandle is converted to a byte array which is then used to
create an object of type Id (line 4).

Listing 5.5: getLocalId() implementation for FreePastry

1 Id localId = null;
2 NodeHandle handle = localNode.getLocalNodeHandle();
3 // Cast the NodeHandle to the subclass providing the IP address of the node
4 TransportLayerNodeHandle<MultiInetSocketAddress> nh =

(TransportLayerNodeHandle<MultiInetSocketAddress>) handle;
5 localId = new Id(nh.getId().toByteArray());
6 return localId;

Discovering the out-neighbors of a node can also be achieved in a simple manner through the
provided API. The local node (of type PastryNode) provides methods for accessing both its leaf
set and its routing table. These data structures are in reality collections of NodeHandle objects
of remote nodes, which can be used in the same manner as previously explained to get the
node’s IP addresses and ids. These information can in turn be used in order to create Neighbor
objects as in lines 4-5 of the example presented in Listing 5.6.

Listing 5.6: Adding nodes from the leaf set to the out-neighbors list in FreePastry

1 for (rice.pastry.NodeHandle remoteNode : leafSetNodes) {
2 // Cast the NodeHandle to the subclass providing the IP address of the node
3 TransportLayerNodeHandle<MultiInetSocketAddress> nh =

(TransportLayerNodeHandle<MultiInetSocketAddress>) remoteNoexternalde;
4 byte[] nodeId = nh.getId().toByteArray();
5 Neighbor n = new Neighbor(nodeId, nh.getAddress());
6 outNeighbors.add(n);
7 }
8 return outNeighbors;

All the aforementioned information could be gathered directly through the API provided by
FreePastry without any modifications in its original source code, requiring in total less than
100 lines of code. Finally, it should be mentioned that the optional optimization method
removeOutNeighborNode(String id) was also implemented for Pastry easily, since both the
leaf set and the routing table provide methods for removing remote nodes with a specified id.

Chord Implementation

In the Background chapter we also explained the operation of the Chord overlay, where all the
communications among nodes occur by using a data structure called finger table, where a list of
successors of node n are stored. If n wishes to forward a message, it will do so by using one of
the nodes in this table, with the first record of the table being its immediate successor. Thus,
the out-neighbors of the node are all the nodes contained in this data structure.

54

In our software, support is provided for an open source implementation of Chord called Chord-
less [2]. The main reason for choosing Chordless over other popular implementations (like Open
Chord) was due to the simple API it provides for handling network information, which fit per-
fectly the needs of this project.

In Chordless every local network node is represented by a Chord object assigned a unique
identifier. As in FreePastry, a class named ChordOverlayNode implementing the interface
Node was created. Transforming the local id to an object of type Id was very easy, as shown in
Listing 5.7. The identifier of the Chord node is converted to a byte array, which is then passed
as a parameter to the constructor of Id.

Listing 5.7: getLocalId() implementation for Chordless

1 Id localId = new Id(localNode.getIdentifier().toByteArray());
2 return localId;

The out-neighbors discovery is again very simple. The local chord node provides its finger
table through the method getFingerArray() as shown in line 1 of Listing 5.8. This table is
composed of records containing network information for the successors of the local node in the
form of ServerInfo objects. Once more, the ids of remote nodes are generated exactly as for
the local node (line 3). Finally, since the underlying physical network is the IP, we get the
InetAddress of a ServerInfo object by casting the SocketAddress it provides to an object
of type InetSocketAddress (line 5).

Listing 5.8: Adding nodes from the finger table to the out-neighbors list in Chordless

1 ServerInfo [] si = localNode.getFingerArray();
2 for (ServerInfo server : si) {
3 Id nodeId = new Id(server.getIdentifier().toByteArray());
4 // Cast the SocketAddress provided by the finger table to also provide IP
5 InetSocketAddress isa = (InetSocketAddress) server.getAddress();
6 Neighbor n = new Neighbor(nodeId , isa.getAddress());
7 outNeighbors.add(n);
8 }
9 return outNeighbors;

The optional optimization method removeOutNeighborNode(String id) was not implemented
for Chordless, since its API did not provide some public method for manipulating the finger ta-
ble. However, as previously explained, a dummy implementation always returning a value of
false can be used instead, without interfering with the operation of our protocol.

5.1.3 Communications

The Communications component is part of the protocol’s Control Layer and is responsible for the
construction and exchange of all protocol related messages through the IP network. This section
explains how these messages are implemented in an efficient manner, providing an infrastructure
for porting the protocol easier into different languages. Additionally, the mechanism for sending
and receiving messages through the network is presented and its interaction with the protocol core
is described.

Protocol Messages

The messages of the protocol were implemented using the Protocol Buffers (protobuf) library and
protoc compiler by Google [39]. Protocol buffers is a flexible, efficient and automated solution for
serializing and retrieving structured data. They allow the definition of simple data structures in a
special definition language and their compilation to produce classes which represent those structures
in wide range of programming languages. The compiled classes provide a heavily-optimized code

55

which allows parsing and serialization of messages in a compact format.

As already discussed in Chapters 3 and 4, we can distinguish the protocol messages into two
major classes, those carrying a value for one of the Execution phases and the control messages,
which are used to check whether a node is alive. Each one of these message types contains a num-
ber of fields carrying all the required related information (e.g. a value, the SessionId etc). Since the
protocol messages will be fully structured and can be perfectly handled by Protocol Buffers, it makes
more sense to use this popular and well-tested method, than defining our own message encoding,
which would require further testing to prove its efficiency. Additionally, by using this approach,
anyone who wishes to port the protocol in a different language can do so easily and by retaining
compatibility with the Java-based implementation, since Protocol Buffers provides support for a
large number of popular languages, like C++ and Python.

The messages involved in the protocol are defined in a ".proto" definition file and the accom-
panying protoc compiler is used to generate the Java code from the definitions in that file. The
message types defined can be seen in Listing 5.9. There are 6 types of messages defined. Those
in lines 3-5 are the ones used by the protocol for either carrying values in some protocol round or
for transferring the computed eigenvalues during the Gossip Round (GOSSIP type) as explained in
Chapter 3.3.2. The type NEW is used only from the initiator node, when a new sampling request is
made, in order to pass to the protocol the parameters of the sampling, i.e. the number m of Execu-
tions and the number k of rounds. The way this mechanism works will be further explained in the
Protocol Core section. The type LIVENESS_CHECK is used in control messages, to probe a node for
liveness. Finally, the REQUEST_VAL type is also used in a control message in order to request from
a remote node a value that might not have been received due to network related problem, i.e. the
message with the value was sent by the remote node, but it never reached its destination.

Listing 5.9: Message types as defined in the ".proto" file

1 enum MessageType {
2 NEW = 0;
3 INIT = 1;
4 NEXT = 2;
5 GOSSIP = 3;
6 LIVENESS_CHECK = 4;
7 REQUEST_VAL = 5;
8 }

Apart from the message types, the fields contained in the messages are also defined in the
".proto" file and can be seen in Listing 5.10. Every field has a keyword (required, optional, repeated),
which is used to denote whether and how that field should appear on a message. The required
keyword denotes a mandatory field, the optional keyword an optional field and the repeated keyword
an optional field that might be repeated multiple times, i.e. an optional list of fields of the same
type. All the fields of the messages defined in our protocol are optional, apart from the type field.
The reason for this is that not all messages contain all the fields defined in the proto file. By using
the required keyword, these fields would be appended to any constructed message, resulting in a
message bloated with uninitialized fields.

Listing 5.10: Fields of messages as defined in the ".proto" file

1 required MessageType type = 1;
2 optional string nodeId = 2;
3 optional string session = 3;
4 optional int32 execution = 4;
5 optional int32 totalNumberOfExecutions = 5;
6 optional int32 round = 6;
7 optional double val = 7;
8 repeated double eigenvals = 8 [packed=true];

56

Once the protoc compiler is used in the ".proto" file, a ProtocolMessage class is generated,
containing all the methods required for building a message of any of the aforementioned types. This
class provides "get" and "set" methods for all the defined fields. The user simply sets the required
values to any field that should be part of the message and then calls a build() method, to get a
message of type Message.

A problem at this point is that the generated ProtocolMessage class allows the construction
of messages, which can contain any of the defined fields even if they should not be contained in a
message of a particular type. For instance, a LIVENESS_CHECK message could be created, containing
an eigenvals field, without causing an error, even though it would be semantically wrong. To
avoid this situation, a wrapper class MessageBuilder was constructed, which provides methods for
constructing any type of message, by using only the parameters required by that particular message
type. For example Listing 5.11, shows the method used for generating a message of type NEW. This
message only requires the number of rounds and executions and using the MessageBuilder class
ensures that the message will be properly constructed.

Listing 5.11: Fields of messages as defined in the ".proto" file

public static Message buildNewMessage(int numOfExecutions, int numOfRounds) {
Message m =

Message.newBuilder()
.setType(MessageType.NEW)
.setTotalNumberOfExecutions(numOfExecutions)
.setRound(numOfRounds)
.build();

return m;
}

Message Exchange Mechanism

The last part of the Communications component is the mechanism for exchanging the messages.
We can distinguish this mechanism into two parts, the way messages are sent and the way messages
are received. While the protocol is executing, performing samplings, all sorts of messages can be
traveling in the network. Obviously, in order to increase the protocol’s performance, sending and
receiving these messages should be concurrent events, i.e. different threads should be executing for
each task independently.

Sending Messages

The class responsible for sending messages is MessageSender. This class implements the
Runnable interface and thus, it can be executed in a separate thread. In order to send any mes-
sage, MessageSender requires an object of type Message constructed using the MessageBuilder
and the InetAdrress of the target node. These information are provided by the protocol
core, wrapped up in an object of type TransferableMessage. This object has additionally a
sendReliably boolean flag, which defines whether the message should be sent reliably using a
TCP connection or if a UDP transmission is acceptable. The initial approach was to send all
the messages reliably through TCP without classification. However, since the protocol can send
a large amount of messages in a very small period of time, this approach would consume a lot
of resources fast. Thus, instead of sending all the messages reliably, only the INIT messages are
sent that way, because it is important to ensure that they are received, since they will allow
a node to discover its in-neighbors. Then, the rest of the messages can be sent through UDP
without worrying about them getting lost, since a node can always make a request for a retrans-
mission of an expected message (message of type REQUEST_VAL) if it has not been received after
some period of time, as long as its in-neighbors are known. Using this approach and depending
on the desirable level of reliability a TCP socket or a datagram is constructed and the message is

57

sent. The protocol defines a constant PROTOCOL_PORT for the port of the remote node in which
the message should be sent. The default port currently defined is 11990.

A challenge we faced at this point is that when a remote node needs to be probed for liveness,
the operation should be blocking, in contrast to sending a message of any other type. The
reason for this is that when the protocol core requests to know whether a node is alive or not
it needs to get an answer before proceeding, as this will determine whether the remote node’s
timer should be renewed or the node should be removed from the in-neighbors list. To achieve
this, a makeLivenessCheck() method is implemented separately and can be executed from the
thread of the protocol core, i.e. it is not a part of the MessageSender’s run() method. As
Listing 5.12 shows, this method creates a UDP datagram for a LIVENESS_CHECK message and
sends this message to the target node. It then sets a timer and waits to receive a reply from
the remote node. If a reply is received, a true value is returned to the caller (the protocol
core). If no reply is received within the defined period, the message is resent. After a number
of failed attempts (3 by default), a false value is returned to the caller and the remote node is
considered dead. It must be noted, that this method does not guarantee that a node reported
dead has actually failed. It might be the case that the network was simply congested and all
the messages were dropped. However, by properly adjusting the number of failed attempts to
the network’s characteristics, this method can be effective. For instance, a large network with
high traffic and slow connections might require a greater number of failed attempts in contrast
to a smaller and faster network.

Listing 5.12: Simplified snippet of the makeLivenessCheck() method.

do{
// Send a LIVENESS_CHECK message to remote node
socket.send(datagramPacket);
try {

// Wait for 3 seconds for a reply
socket.setSoTimeout(3000);
socket.receive(datagramPacketReply);
// Received a reply. Node is alive
return true;

} catch(SocketTimeoutException ste) {
// Timer expired. Increase number of failed attempts
numOfTries++;

}
} while(numOfTries<=3);
// 3 failed attempts. Node is probably not alive
return false;

Receiving Messages

As previously discussed, messages of the protocol can be sent either using UDP or TCP depend-
ing on the defined reliability level. This means, that we need to separate threads for receiving
messages, one listening for TCP connections and one expecting UDP datagrams. For TCP con-
nections, a MessageReceiver class was created, which opens a ServerSocket and awaits for
incoming connections in port PROTOCOL_PORT. Any received message is then forwarded to the
protocol core.

In the same manner, a LightMessageReceiver class was created for managing UDP data-
grams. A DatagramSocket expects datagrams from port PROTOCOL_PORT and forwards them
to the protocol core. If the message is of type LIVENESS_CHECK, then instead of forwarding it,
an empty datagram is sent as a reply to the sender in order to prove that the node is still alive.

58

Both classes implement the Runnable interface, so that they can be executed in different threads.
An additional comment regarding the receiving mechanism is that in the current implementation,
the port listening for incoming messages is the same for all the nodes (i.e. PROTOCOL_PORT).
This means that virtual nodes are currently not supported by the protocol, since such a feature
would require assigning different ports to each virtual node running on the same machine and
thus a discovery mechanism for locating each node’s listening port would be required.

Another challenge that we faced when designing the communications mechanism is that we do
not expect the participating components to have the same workload all the time. For instance, there
might be cases in which a node receives a large number of messages in a short period of time, while
there might be periods of time with little or no traffic at all. In the same manner, the protocol core
is expected to send messages in bursts, e.g. when a new protocol round begins messages should be
sent to all the out-neighbors of a node and until the new round ends, little or no other messages need
to be transmitted. This means that a synchronization mechanism should be introduced amongst
the participating threads to organize and coordinate their execution.

Figure 5.4: Synchronization among, sender, receiver and protocol core classes

To solve this problem the mechanism illustrated in Figure 5.4 was introduced. When the pro-
tocol library is initiated, one of the threads running in the protocol core creates two queues of type
BlockingQueue, one intended for the incoming messages and one for the outgoing. It then creates 3
new threads; one for each message receiving class, MessageReceiver and LightMessageReceiver,
and one for the sending class MessageSender. Then, the protocol core thread blocks on the in-
coming queue waiting to receive a message. Once a message arrives to any of the receiver classes
it is pushed in the incoming queue and it is handled by the protocol core. On the other hand, the
message sender is blocked on the outgoing queue waiting to receive an outgoing message. Once the
protocol core tasks have some message for one of the node’s out-neighbors, the message is placed in
the outgoing queue and the sender unblocks and sends the message.

Finally, an optimization was made to the way messages are sent, to further improve the proto-
col’s performance. When a message needs to be sent reliably through TCP, a timer is set in the
Socket used to communicate with the remote node. If the timer expires and a connection has not
been established yet, the message is placed in the back of the outgoing queue in order to be resent

59

later. The idea is that if the remote node is very slow or has received two many messages in a short
period of time, it might take too long for a connection to be properly established and in the mean
time a lot of messages might have been gathered in the local node’s sending queue. Then, some
remote nodes might be delayed from proceeding to their next round only because they have to wait
for a connection with a slower node to be established first by their in-neighbor, before their own
message can be sent. However, using a timer would allow the MessageSender to send messages
faster to responding nodes and then deal with the ones that are slower, which might in turn allow
some nodes to terminate faster in the long run.

One final remark at this point is that the value of this timer has to be set carefully. If the
value is too short, then it could degrade the protocol’s performance instead of improving it by not
sending messages even to responsive nodes. If on the other hand the value is to big, it could force
the MessageSender to wait for a very long time, effectively worsening the previously described
problem. In our implementation this value has been set to 6000 milliseconds, even though smaller
values might also be acceptable (2-3 seconds).

5.1.4 Algorithms and Analysis

This component is very simple compared to the others, since it only provides implementations for
the linear algebra related algorithms required by the protocol. It is composed of only two classes,
namely Algorithms and Analyzer. The Algorithms class provides an implementation of Kung’s
realization algorithm and methods for computing eigenvalues of matrices, while the Analyzer class
contains all the methods related to the analysis of the estimated eigenvalues to infer useful network
properties.

Algorithms

All the computations performed by the Algorithms class involve operations on matrices. For in-
stance Kung’s realization algorithm, which was presented in Chapter 2.3.1, requires the creation of a
Hankel matrix from the impulse responses, its analysis using SVD and then some matrix inversions
and multiplications. In order to perform all the required computations efficiently the jblas library
was used [25]. jblas is a linear algebra library for Java, based on the industry-standard libraries
for matrix computations, BLAS and LAPACK. It essentially acts as a wrapper around the routines
provided by those libraries to make them Java compatible and performs computations faster than
other related projects (e.g. JAMA).

A point of interest regarding Kung’s realization algorithm is the way the order of the surrogate
system realization is computed. As explained in Chapter 2.3.1 once the Hankel matrix of the
impulse responses is constructed and singular value decomposition is performed, we end up with
three matrices, U , S and V , such that

H = USV T

These matrices are then partitioned into sub-matrices for which the number of rows and columns
is defined by the order p of the surrogate system. The value of p depends on the number of singular
values of H that are above some threshold thres. In out implementation, our initial approach was
to set a constant value to this threshold, thres = 1e − 7. However, since the singular values are
different depending on the size of the network, making this threshold change dynamically based
on the singular values seems to yield better results. For example, consider a case where the first
singular value is much larger than the last few. A constant threshold like the aforementioned would
probably work well, since the smaller singular values do not carry a lot of information regarding
the structure of the system and could be omitted. On the other hand, when all the singular values
including the first one are small, then omitting some values using a constant threshold, might result
in the loss of useful information. If instead the threshold is relative to the first singular value, the

60

last singular values are omitted only in case they are significantly smaller. In our final approach
the threshold was set to 1e− 5 ∗ s1, where s1 is the largest singular value of H.

A result of the way the order p is computed is that there might be nodes that for the same
Execution realize systems of a different order. This is because different nodes can gather different
impulse responses, which in turn create different Hankel matrices having different singular values.
This is also the reason for the approach taken when computing median values in the Gossip Round
and once a Session terminates, where only the k largest eigenvalues of each proposal are taken into
account, where k is the size of the shortest proposed vector of eigenvalues (Section 5.1.1).

The rest of the methods in the Algorithms class are simple wrappers, which perform any matrix
related operation (e.g. computing eigenvalues) by using the jblas library and returning the matrices
in a double array format. The reason that these wrapper methods are provided and jblas is not
used directly by the protocol core is to be in line with the extensibility requirement. Using such
wrapper functions will allow the easy substitution of jblas with another, potentially faster, linear
algebra library in the future.

Analyzer

The Analyzer class currently supports the estimation of two metrics, the spectral gap and the mix-
ing time. As explained in Chapter 2.3, the spectral gap is the difference |λ1 − λ2| between the two
eigenvalues with the largest moduli and since the transition probability matrix we use in our model
is stochastic, we have that λ1 = 1 and thus the spectral gap becomes 1-|λ2|. Also, the mixing time
can be approximated by tmix = log|λ2| ε, where ε is the desired error of our estimation.

The methods provided by this class are not used directly by the protocol core classes. The
protocol core receives sampling requests and returns the estimated eigenvalues, which can then be
provided as parameters to any of the methods in the Analyzer class to compute some network
property. The reason for this approach is to allow the easy extension of the protocol with new
analysis capabilities, without tampering with the code of the protocol’s core. If all of the analysis
computations were performed in the protocol core, then every user who wanted to add some new
eigenvalues-based analysis would have to alter the protocol core’s functionality, which could poten-
tially break the software. Instead, using this approach, any user can add her analysis method in
the Analyzer class and then provide the estimated eigenvalues by the protocol core as an input to
compute the desired property. The result is much cleaner code and separation of the analysis part
from the basic eigenvalues estimation, as illustrated in Figure 5.5.

Figure 5.5: Connection of the Analyzer class to the protocol core

5.1.5 Protocol Core

This component contains all the classes responsible for the coordination and execution of the pro-
tocol’s operations. It acts as a "control center", utilizing all the components presented so far, in

61

order to perform the requested network samplings and provide eigenvalue estimations to the user.
The classes of this component can be divided into three categories: a) those performing the main
protocol tasks; b) those responsible for the coordination of these tasks; and c) the ones responsible
for the interaction with the user.

Protocol tasks

The protocol tasks are all the algorithm-related operations of the protocol, presented formally in the
protocol design (Chapter 3). All these operations are performed by two classes, MessageHandlerTask
and MaintenanceTask.

MessageHandlerTask

This class is responsible for handling all the messages received by the out-neighbors of the
node apart from the LIVENESS_CHECK messages, which as previously discussed, are directly
handled by the Communications component. It implements the Runnable interface, so that it
can be executed in a separate thread and requires three parameters to operate. The first is
an object of type Message, which is any protocol-related message that needs handling. The
second parameter is a list of active Session objects, i.e. all the currently running Sessions of
the protocol. This list is used to locate the Session and the Execution for which the message
is intended, or to add a new Session if the received message is of type NEW or INIT. Finally, the
third parameter is the queue of outgoing messages, which is connected to the MessageSender
and is required in order to send any protocol-related messages to the out-neighbors of the local
node, e.g. to send INIT messages in the case a new Session has been initiated after the node
received a message of type NEW.

Every time a message is received by some in-neighbor, an object of type MessageHandlerTask
is created and runs in a separate thread. This task performs a check to the type of the message
and executes a different handling method accordingly, as shown in Listing 5.13. The methods
presented in the Listing, are nothing more that the implementations of the message handling
tasks described in the protocol design (Chapter 3).

Listing 5.13: Properly handling a message in the MessageHandlerTask

switch (incomingMessage.getType()) {
case NEW:

this.createNewSession();
break;

case INIT:
this.handleInitMessage();
break;

case NEXT:
this.handleNextMessage();
break;

case GOSSIP:
this.handleGossipMessage();
break;

case REQUEST_VAL:
this.resendVal();
break;

default:
logger.warning("The message was malformed. Dropping...");
break;

}

The only method that needs some further explanation is resendVal(), which is executed when
a message of type REQUEST_VAL is received. As already discussed, all the messages apart from

62

those of type INIT are sent unreliably through UDP, which means that it is possible for a mes-
sage of a particular round to get lost. When a remote node realizes that one of its in-neighbors
has not sent a value even though it is still alive, it assumes that the message has been lost
and it sends a REQEUEST_VAL to ask for a retransmission. The MessageHandlerTasks is then
responsible for resending the requested message.

A pitfall at this point is that a node might have made a retransmission request, believing that
a message was lost, while the message could have just been delayed. The result of this would
be to end up with the same message twice, which could lead to computing a wrong impulse
response and in turn to make wrong estimations. However, the message handling task has been
implemented in such a manner, that duplicate messages can be recognized and ignored, by
maintaining a minimal archive of all the received messages for a particular Execution, as Table
5.3 illustrates. When a message of a particular round of an Execution is received, the sender is
marked as seen. If a message from the same in-neighbor and round of an Execution is received a
second time, it can be safely ignored. For example using the values of Table 5.3, if a message is
received by node1 for round 2, it will be ignored, while a message for the same round by node2
will be accepted. This action is performed atomically, which means that there is no way for a
duplicate message to be accepted twice.

Execution x

In-Neighbor Id Round Status
node1 1 seen
node2 1 seen
node1 2 seen
node2 2 pending

Table 5.3: Table of pending a received values for Execution x

MaintenanceTask

This class is responsible for performing the maintenance tasks of the protocol. Similar to
MessageHandlerTask, it implements the Runnable interface, so that it can be executed in
a separate thread, and also accepts as parameters a list of the active Session objects and the
queue of out-going messages connected to the MessageSender.

When a MaintenanceTask runs, it iterates over the list of active Sessions and checks its Execu-
tions. For each Execution, the maintenance tasks described in protocol design (Chapter 3) are
performed. These tasks include the updating of the in-neighbors’ timers, the discovery of failed
in-neighbors by probing nodes for liveness and the advancement of Executions in later rounds if
all required messages have been received.

Listing 5.14: Probing for liveness and requesting retransmission of a value

// Check whether the node is alive
if (inNeighbor.getTimeToProbe() <= 0) {

if (isAlive(inNeighbor)) {
/* The node is alive. Renew its timer and

request a retransmission for the current round */
inNeighborsTable.renewTimer(inNeighbor);
requestPreviousVal(sessionId, executionNumber, executionRound, address);

}
}

Additionally, this class is responsible for sending REQUEST_VAL messages to its in-neighbors as
shown in Listing 5.14. When the timer of a node expires, it means that the node should be

63

probed for liveness. If a node replies to the probing, it verifies it is still alive, which means that
the reason for not having its timer set to INF could be that the value it has sent for the current
round was lost due to the unreliable transmission. Thus, a request for a retransmission of the
message for that particular round is made. As previously explained, even if the message was
simply delayed and not lost, this action could not cause any harm to the proper computation of
the impulse responses; the only disadvantage is that it incurs some additional overhead due to
the extra messages sent.

Tasks Coordination

The coordination of the aforementioned protocol tasks and the Communication component is per-
formed by the ProtocolController class. When the protocol is initiated, an object of this class is
created, running on a separate thread. This thread spawns three additional threads, one running the
MessageSender and the other two running the MessageReceiver and LightMessageReceiver
services. At the same time, it creates two BlockingQueues, one for the incoming messages and one
for the outgoing and passes them as parameters into the communication threads. Then it schedules
an additional thread to run with a fixed delay of one second between consecutive executions, per-
forming the operations of the MaintenanceTask. It then goes on an infinite loop, performing the
actions illustrated in Figure 5.6.

Figure 5.6: Coordination of protocol tasks by the ProtocolController class

The ProtocolController blocks on the incoming queue, waiting to receive a new message.
When a message arrives to either of the receiving threads, it is pushed in the queue and the controller
is unblocked. The incoming message is then assigned by the controller to a MessageHandlerTask,
which performs the operations described previously. Since a lot of messages can arrive in a small
period of time and in order to improve the protocol’s performance, instead of using only one thread
running a MessageHandlerTask, the controller has a pool with a fixed number of threads, which al-
lows it to execute multiple MessageHandlerTasks concurrently. In the current implementation the

64

thread pool is set to provide up to 5 threads simultaneously. It should be noted at this point, that
since the Execution class has been made thread-safe, there is no problem following this approach,
since MessageHandlerTask objects can now access the same Execution concurrently without wor-
rying for concurrent modification exceptions.

User interaction

The interaction of the user with the protocol is achieved through the ProtocolEngine class. This
class is responsible for initializing the protocol and providing an API for the user to make sampling
requests. The only parameter required for the creation of the protocol engine is an object of type
Node, i.e. an object of one of the classes provided by the Integration Layer. This abstract node will
be used to bind the protocol to the network over which it is expected to run. For example, Listing
5.15 shows an example of a ProtocolEngine initialization for an application running on top of a
Pastry overlay using FreePastry. Initially a pastry node is created as it would in any application
using FreePastry (lines 2-3). This pastry node is then passed as a parameter to an object of type
PastryOverlayNode. As explained in Section 5.1.2, the class PastryOverlayNode implements the
interface Node and integrates the protocol to a FreePastry application. This object is then used by
the ProtocolEngine as previously mentioned, so that the protocol can be initialized (line 7). Fi-
nally, the normal operation of the application is resumed and the pastry node joins the overlay (line
9). This example, demonstrates the simplicity with which the library can be integrated into any
application (with only two lines of code), as long as the proper integration layer class is implemented.

Listing 5.15: Initialization of ProtocolEngine over FreePastry

1 // construct a pastry node
2 PastryNodeFactory factory = new SocketPastryNodeFactory(nidFactory, bindport, env);
3 PastryNode node = factory.newNode();
4 // construct a connector to be used by the protocol library
5 PastryOverlayNode pon = new PastryOverlayNode(node);
6 //create the protocol engine
7 ProtocolEngine pe = new ProtocolEngine(pon);
8 //boot the pastry node
9 node.boot(bootaddress);

The ProtocolEngine performs two operations while initiating:

First It opens (or initializes if not already existing) the database where previous Session data
of the application are stored. This database will be used to store the results of future samplings
and to make a decision whether a new sampling should be performed or not using an algorithm
that will be presented later in this section.

Second It creates an object of type ProtocolController. The ProtocolController runs as
a daemon service, and as already explained is responsible for synchronizing the communication
threads with the classes performing the Session-related tasks of the protocol.

Finally the ProtocolEngine provides a simple API which can be used for making sampling
requests. The methods provided by this API accept as parameters the number of Executions the
requested Session should contain and the number of rounds in each one of them. The sequence of
actions performed when a user makes a request can be seen in Figure 5.7. When the user makes
the request, the ProtocolEngine creates an object of type ProtocolRun, which runs in a separate
thread. This object is responsible for creating a message of type NEW with the parameters of the
new sampling request. This message is forwarded to the ProtocolController through the queue
of incoming messages and the ProtocolRun object blocks, waiting to receive a reply. Once the
sampling is over, the ProtocolController stores the computed Session in the database and the

65

Figure 5.7: User interaction with the sampling protocol

ProtocolRun is notified that the sampling is over. Finally, the computed Session is passed to the
ProtocolEngine, so that it can be returned to the user.

The notification mechanism used for informing a ProtocolRun that a sampling request is over
is based on Event Listeners. More specifically, the SessionListener interface presented in Listing
5.16 was created. This interface defines three methods related to the different events that might
occur in the life-cycle of a Session and acts as an Event Handler. When a Session is initiated
or terminates, a SessionEvent is created, containing basic information of the Session, i.e. Ses-
sionId, number of Executions, ids of out-neighbors etc. This event and the methods that handle
it are related to the evaluation mechanism, which will be presented later in this Chapter and have
no relation to the ProtocolRun. The event that is of interest to us is the RecordedSession. A
RecordedSession is an event created by the storage component once a terminated Session is
successfully stored and provides the Session object having the estimation and a timestamp of the
event’s occurrence. The ProtocolRun fully implements only the sessionStored() event handler of
the SessionListener interface. The other two methods are left void, since they are of no interest
at this point.

Listing 5.16: SessionListener interface

1 public interface SessionListener {
2

3 // This is called when the Session is initiated
4 public void sessionInitiated(SessionEvent e);
5 // This is called weh the Session terminates
6 public void sessionCompleted(SessionEvent e);
7 // This is called once the Session is stored in the storage component
8 public void sessionStored(RecordedSession rs);
9

10 }

As already mentioned, the ProtocolRunmakes a sampling request to the ProtocolController
and then blocks on a lock waiting for the Session to terminate. Once the sampling is over and the
storage component has it stored, it calls the sessionStored() handler, passing it the RecordedSession
as a parameter. As it can be seen in Listing 5.17, the only actions performed by this method are to
provide the terminated Session to the listening ProtocolRun and to notify it that the sampling
is over by signaling the aforementioned lock. When the ProtocolRun thread awakens, it simply
returns the Session to the ProtocolEngine and terminates.

66

Listing 5.17: Implementation of the sessionStored() method by ProtocolRun

1 public void sessionStored(RecordedSession rs) {
2 synchronized (lock) {
3 // The RecordedSession is passed to the ProtocolRun
4 s = rs.getRecordedSession();
5 // The ProtocolRun thread is notified to wake
6 lock.notify();
7 }
8 }

Sampling Optimization

At this point, an optimization was introduced in order to reduce the network traffic caused by the
protocol samplings. The idea is that if a network is relatively stable, then consecutive samples with
a small time interval would probably provide the same estimations, since the network structure will
have remained unchanged. Thus, instead of allowing a new sampling process to be initiated every
time a sampling request is made, we could dynamically adjust the sampling intervals depending
on the current behavior of the network. In order to achieve this, we define a current_threshold,
which dictates what the time interval between two sampling processes should be. As Algorithm 3
demonstrates, when a new sampling request is made, we check how much time has passed since the
last sample was taken and we compare this with the current_threshold. If the elapsed time is less
than the current_threshold, then the previous estimation is returned, otherwise a new sampling
process is initiated.

Algorithm 3 Sampling initiation algorithm
1: t← time of the previous sampling
2: if current time −t > current_threshold then
3: Initiate a new sampling process
4: else
5: Return the previous sampling estimation
6: end if

The current_threshold is adjusted dynamically, using a very simple mechanism. Initially, it is set to
a minimum value of minimum_threshold. When a sampling terminates, its estimated eigenvalues
are compared to the estimations of the previous sample. If they are the same, this means that there
was no change in the network structure and thus the current_threshold can be increased. The
increase is computed as

increase = current_increase_rate× current_threshold (5.1)

where the current_increase_rate is also initially set to some minimum value minimum_rate.
Then, the current_threshold and the current_increase_rate become

current_threshold = increase+ current_threshold (5.2)
current_increase_rate = current_increase_rate+ rate_step (5.3)

where rate_step is a small value, e.g. 0.05. As we can see, in a stable network the sampling intervals
become longer with an ever increasing rate, which means that as time progresses the samplings will
be continuously reduced.

However, even in stable networks samples have to be taken from time to time in order to make
sure that no changes have occurred. Thus, in order to prevent the current_threshold from becom-
ing really large (no sample will be ever taken), we set an upper bound value max_threshold, where
the sampling intervals will once more stabilize.

67

When the compared estimations of the samplings are different, some kind of topological change
must have occurred to the network, either due to node failures or from nodes joining in and departing
from the network. In this case the current_threshold and the current_increase_rate are reset
back to their minimum values. This will make the sampling intervals short again, allowing us to
take more samples of the network in order to evaluate its new behavior.

5.1.6 Storage

The final component of the protocol is related to Storage. As already mentioned, storing the pre-
vious protocol estimations is essential both for regulating the frequency of new sampling requests
and for using them for analysis purposes.

Storage, as all the protocol’s components, can play an important role in the performance of the
whole system, especially in cases where a very large amount of estimations is already stored and
needs to be retrieved. Depending on the system over which the protocol is deployed, the storage
requirements might differ. For instance, there might be systems where simple storage of the estima-
tions in a CSV file might be adequate, while in other cases more complex solutions like relational
or temporal databases might be required.

In order to offer more extensibility regarding the provided storage capabilities, the Database
interface presented in Listing 5.18 was introduced. Any supported storage component should im-
plement this interface, which defines all the required actions that are essential for the protocol to
properly function.

Listing 5.18: The Database interface

1 public interface Database {
2

3 // Add a Session to the database
4 public void addSession(RecordedSession rs);
5 // Retrieve the last stored Session
6 public RecordedSession getLastRecordedSession();
7 // Add a SessionListener for monitoring database events
8 void addSessionListener(SessionListener listener);
9 // Remove the SessionListener

10 boolean removeSessionListener(SessionListener listener);
11 // Close the database when the protocol terminates
12 public void closeDatabase();
13

14 }

Storage capabilities are currently provided by our implementation through the use of class
KeyValueDatabase. This class acts as a wrapper for jdbm2 library [1]. jdbm2 is a key-value
database, which provides HashMap and TreeMap data-structures for storing the Session objects,
which are backed up by disk storage. The reason this library was used, is that it is a very easy
and fast way to persist your data. However, in large deployments where frequent sampling requests
might be made, a more complex storage mechanism than jdbm2 would probably be required.

5.2 Protocol Evaluator

Since the protocol we propose will be deployed in a decentralized network, it is important to create
a mechanism for the evaluation of our results. For a proper evaluation to be performed, our esti-
mated values should be compared with the actual values. In order to compute the actual values a
network node needs to know the structure of the whole network, i.e. it needs to know the number
of participating nodes and how these nodes are connected (their links). If the network structure
is known, then a node can easily construct the adjacency matrix of the network and it could use

68

Figure 5.8: Collection of structural information by evaluator node

this or any other closely related matrix in order to compute the network’s actual spectral proper-
ties. Unfortunately, since the network is decentralized, each node holds by definition only partial
information, which is also the reason we need the proposed decentralized protocol in the first place.
More specifically, every node knows only its id and the ids of its out-neighbors, which means that
directly constructing the adjacency matrix is impossible.

To solve this problem we introduced an evaluation mechanism, which allows a node to learn the
structure of the network in order to compute its actual spectral properties. To achieve this we define
one node as the evaluator and the rest of the nodes as the evaluation participants. The evaluator is
the node controlled by the user, where the experiments will be conducted and the results should be
returned. The role of each node is defined by the user beforehand, by providing them the IP of the
evaluator. Each node simply needs to compare its own IP to the provided one to find out whether
it should assume the role of the evaluator or the participant.

Once every node’s role has been defined, the user makes queries to the evaluator and expects
the results. Then, the evaluation mechanism performs two actions. The first is to make a sampling
request using the implemented protocol and to store the estimated values. The second is to compute
the actual values from the network, by gathering topological information by all the participants,
as Figure 5.8 illustrates. Once the sampling process terminates, all participants send a message to
the evaluator, containing all their local topological information, i.e. their id and the list of their
out-neighbors. For example node 5, sends a message to the evaluator containing values 4 and 6,
since its out-neighbors are the nodes with ids 4 and 6. Using these information, the evaluator can
construct the adjacency matrix and any matrix related to it. The computation of the actual network
values is then trivial.

It should be noted at this point that the aforementioned method works only in case that the
network is not very large, e.g. a network of only a few hundred nodes. For networks composed
of thousands of nodes, such an approach would probably overload the evaluator node, since too

69

many connections would have to be performed at once. However, for the experiments performed
in this project this method turned out to be effective and the actual network properties could be
computed, as it will be discussed in Chapter 6.

5.3 Deployment and Documentation

The management of the project’s implementation was performed by using Maven, a build automa-
tion tool mainly used for Java projects. The main advantage of Maven, compared to other similar
tools, is that it can locate all the project’s dependencies through one or more repositories and
download them automatically in the local cache, without requiring any intervention by the user.
The only dependencies of this project that weren’t available in any public repository were the .jar
files for FreePastry and Chordless. For this reason, these files are provided as part of the codebase,
located in the resources directory of the source code. The protocol can be compiled by issuing in
the project home directory (where the pom.xml file exists) the following commands:

mvn clean
mvn compile

To create a .jar file containing all the class files of the project the following command has to be
issued:

mvn install

The resulting .jar will not include any dependencies, e.g. jblas. To create a .jar file containing all
the project’s dependencies you have to issue the following command:

mvn assebly:single

Documentation of the code is provided along the codebase through Javadoc which is integrated
to the build process. The full documentation can be generated by simply running:

mvn javadoc:javadoc

Additional documentation is provided through the unit tests that are also part of the codebase,
located in the test directory. These tests could be used as examples of how the individual components
of the protocol are used in reality, however they provide no additional information regarding the
component’s synchronization and concurrent execution. These tests can be performed by simply
running:

mvn test

5.4 Summary

In summary, we presented the implementation details of the protocol’s constituent components,
explaining in-depth their interaction and synchronization mechanisms. Finally, we presented the
evaluation mechanism which will be used for the experiments discussed in the next chapter and
gave some brief information regarding the protocol’s build method and documentation.

70

Chapter 6

Evaluation

In this section we attempt to evaluate the success of this project. An easy way to achieve this is by
checking whether the requirements we defined in the protocol design (Chapter 3) have been met. In
addition, we present a realistic scenario, in which our proposed protocol could have practical use,
not just as a scientific tool, but for presenting to users useful and interesting statistics. Finally, for
completeness, we discuss the limitations that our proposed solution has.

6.1 Experimental Setup

Before attempting to evaluate our results, we need to present our experimental setup. The eval-
uation methodology and parameters presented here were used throughout all of the conducted
experiments of the following sections, unless stated otherwise.

As already discussed in the implementation details (Chapter 5), the protocol was implemented
with initial support provided for two types of P2P networks, Pastry and Chord, through their open
source implementations of FreePastry and Chordless correspondingly. However, the evaluation of
the project was performed only over the Pastry overlay, mainly due to the topological similarities
the two overlays share and also because of the time constraints of the project, which did not allow
us to thoroughly test our Chord implementation.

In order to properly evaluate our results, we required a testbed which could simulate a real
network as much as possible. The reason for this is that a real network can present a much different
and unpredictable behavior than a simulated environment, which would be useful for strengthening
our results. All of our experiments were conducted in PlanetLab. PlanetLab is a research network,
used for development and testing of new network services and is composed of approximately 1000
nodes at about 500 sites spanning across the world. Its power lies in that it runs over the Internet,
rendering it far more realistic than a simple simulator.

Every PlanetLab user is assigned a "slice", i.e. access to virtual machines in a subset of the
offered nodes. The user can manage her slice (add or remove nodes) through a simple web interface.
Even though managing a slice by using a browser is very simple, it can also be very slow in cases
that the user needs to manage a slice composed of a large number of nodes (a hundred or more).
As an alternative, an API is provided, which can be used by scripts to quickly filter the nodes of a
slice based on their properties, e.g. the user can define a threshold for the bandwidth or the CPU
load the nodes of the slice should have.

For the evaluation of our protocol, we used a slice composed of 100 nodes selected at random.
This means that these nodes offered various levels of service, e.g. some nodes were very fast with
high bandwidth, while others were slower and with very limited bandwidth and memory. Even
though selecting only highly performing nodes was an option, the variance in the specifications of
participating nodes was required to create a more realistic P2P overlay, since in real networks all

71

Figure 6.1: Example pastry topology of 20 nodes

kinds of nodes are usually allowed to join.

In order to run the implemented protocol, Java Runtime Environment 7u25 was uploaded and
installed in all the participating nodes, along with a .jar file containing the protocol implementation
and all of its dependencies. Finally, as described in the implementation of the evaluation mechanism
in Chapter 5.2, one node was selected at random and was defined as the evaluator. This node was
used for making sampling requests by passing the desired parameters and it was also the point,
where all the evaluation data were gathered and analyzed.

Since all of the experiments presented in this chapter were performed in a Pastry overlay network,
it would be useful to have a visual perception of how the topologies constructed in such a network
look like. Figure 6.1 illustrates a graph constructed using the data gathered by the evaluator while
performing experiments in a network composed of 20 nodes. As we can see, this topology has a great
symmetry, with each node having about the same number of out-neighbors spread over the network
ring. Graphs for networks of 50 and 100 nodes were also generated, but they are not presented here,
since they produced unclear images due to the large number of edges they contained. However,
their results also indicate symmetrical topologies, with all nodes having about the same number of
out-neighbors spread over the network ring as presented in Table 6.1.

Number of Nodes Number of out-neighbors
20 19
50 22
100 25

Table 6.1: Number of out-neighbors per node for networks of different sizes

72

6.2 Evaluation of Requirements

In this section we revisit the requirements set in the design chapter and we evaluate our protocol’s
performance. This is critical in order to better understand the proposed protocol’s strengths and
weaknesses.

6.2.1 Correctness

In order to evaluate the correctness of our impulse response protocol implementation, we performed
experiments into three networks composed of 20, 50 and 100 nodes respectively. The nodes joined
the network one at a time and an idle period was introduced between the construction of the network
and the execution of the experiments. This was to ensure that all the nodes have properly joined
the network and that their routing tables and leaf sets have stabilized, before making any sampling
request. Additionally, all the tested networks were without churn, i.e. no new nodes joined the
network and no failures or departures occurred.

For all the aforementioned networks, we examined two properties computed by using the eigen-
values of the transition probability matrix; their spectral gap and their mixing time. As a reminder,
the spectral gap is the difference |λ1−λ2| between the two eigenvalues with the largest moduli (1−|λ2|
since the matrix is stochastic) and the mixing time can be approximated by tmix = log|λ2| ε, where ε
is the desired error of our estimation. Both of these properties are considered very important, since
they can be used as parameters for algorithms estimating other properties, as we shall later see in
section 6.3.

For all the experiments, each sampling request was for a Session with a single Execution (e = 1).
Since the networks were without churn, making sampling requests for multiple Executions would not
increase the accuracy. The experiments were conducted for various values of parameter k (number
of rounds). More specifically, for networks of size 20 and 50, the experiments were performed for
k = 1 . . . 40 and for networks of size 100 for k = 1 . . . 50.

Figure 6.2 illustrates the spectral gap error for the 10th, 50th and 90th percentile of the esti-
mated values versus the number of gathered impulse responses, i.e. the number of rounds. The
blue lines represent the median (50th percentile) and the error bars represent the extremes. As we
can see for the 20-nodes network, 5 rounds are enough for the error to drop under 1e − 13 for all
the examined percentiles. However, the close-up diagram for rounds k = 5 . . . 40 clearly shows that
the error never drops exactly to 0 and that it also does not completely stabilize. This instability
is probably related to the way the protocol is initialized, since the initial impulse response of each
node is selected uniformly at random, leading to different initial network configurations in each
execution. The same observations apply to networks of sizes 50 and 100. The only difference is that
the 50-nodes network requires about 10-15 rounds to minimize the error and the 100-nodes network
requires about 20-30 rounds. A final remark is that as we can see in the close-ups of Figures 6.2b
and 6.2c the minimum error for the larger networks is higher (magnitude of 1e10− 5) compared to
the error of the smallest one. However all errors are small enough to prove the correctness of our
implementation.

Similarly, Figure 6.3 illustrates the mixing time error for all networks. Like for the spectral gap,
the best mixing time estimations are computed in at most 30 rounds regardless of the network size.
As expected, the number of rounds required increases with the size of the network. A difference we
can observe in these diagrams is that the error is in general always higher than that of the spectral
gap. The reason is that the mixing time is closely related to the spectral gap and thus a small error
of the spectral gap could lead to higher mixing time errors. Nonetheless, these results are also noted
by Carzaniga et al. [4], verifying the correctness of out results.

73

(a) spectral gap error in 20 nodes

(b) spectral gap error in 50 nodes

(c) spectral gap error in 100 nodes

Figure 6.2: Spectral gap error for the 10th, 50th and 90th percentile of the estimated values versus
the number of gathered impulse responses

74

(a) mixing time error in 20 nodes

(b) mixing time error in 50 nodes

(c) mixing time error in 100 nodes

Figure 6.3: Mixing time error for the 10th, 50th and 90th percentile of the estimated values versus
the number of gathered impulse responses

75

6.2.2 Robustness

In this section we discuss the robustness of the protocol in the presence of failures or churn. In
order to do this properly, we need to analyze different scenarios, in which topological changes could
occur for various reasons. Unless stated otherwise, for all the experiments presented in this section,
a network of 50 nodes was used.

Single Failure Resistance

We begin our evaluation by examining the case in which a single failure or departure occurs in the
network while the protocol is executing. Before evaluating our proposed fault-tolerant mechanism,
we need to analyze the behavior of the protocol in the simple case that each Session contains only
one Execution. To do this, we performed multiple sampling requests, each time using various values
for the number of rounds k, from 1 up to 40. For every k we used, we ran the experiment multiple
times, introducing the failure in a different round each time. For instance, for k = 10, we ran the
experiment 10 times, with the failure occurring at round 1 the first time, at round 2 the second etc.

Using the estimated eigenvalues, we computed the network’s median spectral gap and mixing
time error as before. The results can be seen in the "heat maps" of Figure 6.4. Each square of the
diagram represents a Session, where the values of the x-axis show the number of rounds k and the
values of the y-axis show the round in which the failure was introduced. All the elements above the
diagonal present Sessions for which the failure was introduced after the execution terminated, i.e.
the elements above the diagonal are failure-free Sessions. The darker the color is in an area, the
lower is the error for that particular Session.

As we can see, Sessions near the diagonal have a much higher error than those near the bottom
of the diagram. This means that if an error is introduced early in the execution, the protocol
has time to recover and provide good estimates. On the other hand, if the failure occurs after
k/2 rounds, the error can get really high, meaning that stability in the last few collected impulse
responses is important for accurate estimations. Finally, we can observe a vertical stripe of high
errors in the beginning of each diagram, demonstrating Sessions in which the error is very high
regardless of the round it was introduced. This is natural, since as we have already seen, the first
few rounds (5-10) produce very inaccurate results even in stable networks. All the aforementioned
results are as expected and are in league with those presented by Carzaniga et al. [4].

(a) spectral gap median error (b) mixing time median error

Figure 6.4: Introduction of a single failure in a network of 50 nodes, using a single Execution

The next thing that we wanted to test was the behavior of the protocol for a single failure in
the case that each Session contains multiple Executions. For this experiment the failure was always
introduced at round b3k4 c, since our previous results indicated that the error would be higher for a
failure at some point after round k/2. Also the experiment was performed for Sessions containing

76

Figure 6.5: Spectral gap median error, when introducing one failure at round 3k/4 using multiple
Executions

up to 5 Executions and for 10, 15 and 20 rounds. Using these configurations, the average spectral
gap percent error was computed.

The results of the experiment can be seen in Figure 6.5. As we can see, just by introducing
one additional Execution, the error becomes significantly smaller. For 3 or more Executions in the
Session, the error seems to stay at about the same level. Even though the error is always higher
than the one computed in a stable network, for more than three Executions it is always under 10%,
which means that the estimation provided is relatively accurate and could be used.

Single Addition Resistance

In a similar manner to the introduction of a failure, we tested the behavior of the protocol when a
node joined the network while a Session was running. As previously, we first tested the case of a
Session with a single Execution and for k = 1 . . . 40 and computed the median error of the spectral
gap and mixing time.

The results of this experiment can be seen in Figure 6.6 and are very different than the ones
in the case of a single failure. As we can see in all the cases after round 10, the average error is
relatively low, at about 10%, regardless of when the new node joined the network. This result is
closely related to the way the protocol operates. As explained in the protocol design chapter, when
a new Execution is initiated, it stores a "snapshot" of the network as it was at that time. The
information stored include the ids and the IP addresses of all the node’s out-neighbors. These data
are used throughout the whole life of the Execution to send messages to out-neighbors, regardless
of any topological changes that might have occurred. Thus, if a node joins the network after an
Execution is initiated, it will be completely ignored and the Execution will make an estimation based
on the previous network topology. Because of the way nodes are connected in Pastry, an introduc-
tion of a single node will only slightly change the spectral gap and mixing time properties of the
network and thus the estimation provided based on the previous topology will still be quite accurate.

77

(a) spectral gap median error (b) mixing time median error

Figure 6.6: Introduction of single addition in a network of 50 nodes, using a single Execution

We then performed the experiment in Sessions containing multiple Executions as in the case of
a single failure, by introducing a new node at round k = 3k

4 and we computed the median spectral
gap percent error. The results are illustrated in Figure 6.7 and show that as in the case of a single
Execution, multiple Executions within a Session do not really affect the final results.

Figure 6.7: Spectral gap median error, when introducing one addition at round 3k/4 using multiple
Executions

Multiple Failures

The final thing we tested related to the protocol’s robustness is its behavior when multiple failures
occur. For this experiment we used a network of 100 nodes instead of 50, since we wanted to have
a significantly large network even after introducing several failures. For this experiment we ignored
catastrophic failures which can wipe out a portion of the network and we assumed that all failures
are independent from one another. The reason is that dependent failures usually occur in nodes
which are physically close and thus they would be very difficult to simulate in our PlanetLab de-
ployment, since we do not have the required location information. Additionally, our testbed was

78

r ttot (sec)
e = 2 30 45
e = 3 33 49.5
e = 4 35 52.5
e = 5 36 54
e = 6 37 55.5

(a) Total number of rounds and
total time of execution for Ses-
sions with multiple Executions

Failure Rate
0.125% 0.25% 0.5% 1%

e = 2 5 11 22 45
e = 3 6 12 24 49
e = 4 5 13 26 52
e = 5 6 13 27 54
e = 6 7 14 28 55

(b) Number of introduced failures for various fail-
ure rates

Table 6.2: Parameters related to the failure rate and a Session’s total execution time

not significantly large to allow the introduction of such large-scale failures.

An important factor of this experiment was to calculate how many failures are considered realis-
tic and should be introduced in order to give some meaningful results. Simply removing a number of
nodes from the network without relating their failures to a time frame would not give us a realistic
evaluation. For instance, removing 10 nodes in one minute would probably have as a result a very
bad estimation, while on the other hand, removing 10 nodes in 5 hours would affect the estimations
of our protocol very little if not at all. It is thus significant to better define the way the failures
were introduced.

Let travg be the time required for a round of an Execution to complete. Then, the time ttot
required for the whole Session to terminate will be

ttot = travgr (6.1)

where r is the total number of rounds of the Session, i.e. the number of rounds required until
the final Execution of the Session terminates. If k is the number of rounds in an Execution and e
is the number of Executions in a Session, then the first Execution will be initiated at round 0, the
second at round k/e, the third at round 2k/e and the final at round (e − 1)k/e. This means that
the whole Session will finish k rounds after the final Execution is initiated, which means that the
total number of rounds will be

r =
(e− 1)k

e
+ k = 2k − k

e
(6.2)

It must be noted that for this type of analysis, we do not take into account the Gossip Round,
since all the participating nodes will have made their estimations before that round. By knowing
the total run time ttot and the failure rate of the network fr, we can compute the number of failures
nf we have to introduce as

nf = ttotfr (6.3)

After performing multiple sampling requests, we computed that the average time of a round
was travg = 1.5s. Then, by setting the number of rounds in an Execution to k = 20 and by using
equations 6.1 and 6.2, we computed the total time of a Session for various number of Executions e,
as shown in Table 6.2a. For these values, we computed the number of failures we should introduce
to our network of a 100 nodes for failure rates of 0.125%, 0.250%, 0.5% and 1% by using equation
6.3 as presented in Table 6.2b. We then performed our experiments by spreading these failures
uniformly in the total execution time.

Figure 6.8 illustrates the median error of the spectral gap for the aforementioned failure rates.
As we can see, for a low to intermediate failure rate, the error is around 20 to 40 percent, meaning
that the estimations provided by the protocol are relatively close to the real values and could be

79

Figure 6.8: Average spectral gap median error estimates for various failure rates

used as approximations. However for higher failure rates the error increases rapidly, rendering the
estimations completely inaccurate.

6.2.3 Complexity and Termination

The time complexity of the protocol is directly translated to the number of rounds required for a
Session to terminate. This number was computed by equation 6.2, which did not take into account
the extra round required for the Gossip Round phase. Thus, the time complexity of the protocol is
exactly

2k − k

e
+ 1

An interesting property of the protocol is that the number of rounds required is bound by 2k+1
regardless of the number e of Executions we introduce. Moreover, the maximum number of Execu-
tions that actually would make sense to use would be e = k, since for a parameter e larger than
that no new Execution will be introduced (we can only create one new Execution in each round
of the initial Execution). Thus, we can also express the time complexity of the protocol simply in
terms of k as O(k). This is the same as for the original algorithm by Carzaniga et al., which means
that our protocol did not incur any additional complexity.

The total number of messages exchanged by the protocol can be found by computing the number
of both regular and control messages sent over a Session. Let n be the size of the network, e the
number of Executions in one Session and k the number of rounds in each Execution. Then each
node would have in the worst case n− 1 out-neighbors.

We consider the case of an ideal network, i.e. with no failures or churn and with no lost mes-
sages. During the Initiation phase a node would have to send n− 1 INIT messages, one for each of
its out-neighbors. For each of the k Data Exchange rounds, n− 1 NEXT messages should be sent
for a total of k(n − 1) messages. Finally n − 1 gossip messages should be sent during the Gossip
Round. Thus, in every Execution, the minimum number of messages sent by a node, even in ideal
networks, will be in the worst case (k+2)(n−1) and the total number of messages sent in a Session

80

will be e(k + 2)(n − 1). This means that the total number of messages exchanged over the whole
network by n nodes will be ne(k + 2)(n − 1). Thus, for networks in which n >> k, e the total
number of messages will be O(n2), which is exactly the same as the number of messages exchanged
in the original algorithm by Carzaniga et al. [4].

Finally, when our proposed protocol is deployed over a network satisfying the assumptions we
made in Chapter 3, it will always terminate. As a quick reminder, we have made the assumption
that nodes do not refuse to cooperate while participating in a protocol execution and that messages
are not transformed while they are transmitted over the communication channel. Since the protocol
operates in a predefined number of rounds, the only reason for not terminating is that a node u
never receives a message expected by some in-neighbor v. The cause of this could be either that v
has failed or that the message v sent to u was lost. In the former case once the timer of v expires,
u will perform a liveness check. Since v has failed, it will never reply to the check and thus u will
assume that v has failed and it will proceed to the next round. In the latter case, as long as v
is alive and has not sent the required value, u will keep sending REQUEST_VAL messages until it
receives a reply message or until it discovers that the node failed. Thus, eventually u will proceed
to the next round and the protocol will terminate.

6.2.4 Extensibility and Efficiency

The protocol has been implemented so that it can be efficient, reducing the control messages sent
as much as possible. To better measure the efficiency of our implementation, we gathered the logs
of one node, after performing 100 sampling requests to a network composed of 100 nodes. Using
the information provided by these logs, we classified all the messages the node had sent to all of its
out-neighbors depending on their type and we computed the proportion of each message type over
the total number of messages sent. As we can see in Figure 6.9, the vast majority of the messages
contain an impulse or estimations of eigenvalues, i.e. INIT, NEXT and GOSSIP messages. Only 11%
of messages are control messages sent to probe a remote node for liveness or to make a request for
a retransmission of a value. In other words, 9 out of 10 messages sent are actually important for
executing the algorithm and not intended for maintenance routines.

Figure 6.9: Message types sent by the protocol

As we have already seen in the Implementation chapter (Chapter 5), almost all of the protocol’s
components have been implemented with extensibility and portability in mind. A developer wishing
to provide support for the protocol in a new type of network can easily do so by implementing the

81

Node interface with a new connector class suitable for the needs of that network. Additionally, all
the data structures provided for storing and managing in and out-neighbors are used through proper
interfaces which can be implemented in different ways in order to achieve different levels of speed
or performance. Moreover, we have shown that the database used for storing completed Sessions
can be replaced by a more complicated relational database solution by simply implementing the
provided Database interface differently. Finally, new analysis methods for the estimated eigenval-
ues can be easily added to the currently existing, without making any changes to the source code,
since they are completely separated from the main protocol and exist in their own Analysis class,
which is used after the protocol has provided its estimations.

The extensibility of our implementation is further enhanced by the use of Protocol Buffers for
exchanging messages. A developer wishing to add new messages to the protocol that extend its func-
tionality can do so by simply extending the provided ".proto" file, adding her own new messages
and by compiling it to generate the proper Java Message class. This class will not only provide
the new functionality, but it will also be backwards compatible so that the protocol can be used to
communicate even with nodes running previous versions.

6.3 Sampling Application

In order for this project to be a success it is essential for our implemented protocol to provide
estimations not only accurate, but also useful for some user group. While the spectral gap and the
mixing time we used as metrics during the evaluation are important spectral properties of a network,
they provide little information to a user of the network and because of that they do not appear
to be very interesting. In this section we present a simple sampling application we implemented,
which operates on top of Pastry and utilizes the estimations provided by our protocol in order to
compute the average number of files stored in the participating nodes. Such an application could
have many uses. For instance, it could be added as a plugin to a peer-to-peer client providing to
users statistical information related to the network.

The algorithm we used for making the estimations of the average is Push-sum and has already
been presented in the Related Work section of Chapter 2. As a quick reminder, Push-sum is a
Gossip algorithm, used for computing aggregate information regarding some value in the network.
Each node begins the execution of the algorithm with the value it has stored locally and then
for a number of rounds it a) sends this value to one of its out-neighbors; b) receives values from
its in-neighbors and c) it adjusts its estimations of the average based on the values it has seen so far.

One disadvantage of this algorithm is that the number of rounds required for it to provide an
accurate estimation is not predefined and the algorithm should be executed until the estimation
converges to some value. Since this algorithm is distributed and in order for the estimation to be
accurate in all nodes, the convergence check should be performed in a distributed fashion and not
just locally. For instance, it is possible that one node of the network requires only 5 rounds to
produce a good estimation, while another node might need 20. This means that the total number
of rounds required by the algorithm should be 20, so that all nodes produce accurate estimations.
Unfortunately, a distributed convergence check incurs some additional overhead, since it is more
difficult for all the nodes to coordinate and agree on when they should terminate.

Using the estimations of the mixing time provided by our protocol we propose an alternative
solution, which does not require distributed convergence checks and it allows the requesting node
to predetermine the number of rounds required in order for a good estimation to be computed by
all. Our idea is based on the proof of Sauerwald [34] that the upper bound of all push algorithms
is O(logN + τmix), where N is the size of the network and τmix is the mixing time. Since this is an
upper bound, we hope that by setting the number of rounds required to logN + τmix, we will get a

82

good estimation from all the participating network nodes. Obviously, an estimation of the mixing
time parameter will be provided by our impulse response protocol. One final problem lies into the
fact that we do not know the size of the network N . However, an interesting property of Pastry is
that the size of the routing table held by each node is O(logN). Thus, we can provide the size of
this table as an approximation of the second parameter. In summary, the number of rounds r that
will be used when running the Push-sum algorithm will be

r = sizeOfRoutingTable+ τmix (6.4)

To test our idea we implemented a very simple application which uses the Push-sum algorithm
as previously described and we performed tests in three networks composed of 20, 50 and 100 nodes
respectively. The number of files stored in each node was known to us beforehand, so we could easily
compute the actual average value. We then gathered the estimations of every node for each round of
the Push-sum algorithm and we computed the average percent error in all nodes as well as the min-
imum and maximum errors in any node. The results of our computations can be seen in Figure 6.10.

(a) average error in file number estimation for 20
nodes

(b) average error in file number estimation for 50
nodes

(c) average error in file number estimation for 100
nodes

Figure 6.10: Average error in average number of files per node estimation for networks of 20, 50 and
100 nodes

The blue line represents the average error of the nodes, while the error bars are used for the
minimum and maximum errors for any node. In these diagrams we are interested in two things. The
first is that we want the average error to be low, as this means that our estimations were accurate.
The second is that we want the upper error bar (i.e. the maximum error) to be as close to the
average error as possible. A small deviation between the average and the maximum error means
that all nodes computed almost the same estimation which in turn means that the Push-sum algo-
rithm converged globally. As we can see by our results, while the average error is usually minimized

83

quickly, the maximum error requires more rounds to drop, which means that there are some nodes
converging later. However, in the round the blue line ends (i.e. the number of rounds computed by
Equation 6.4) the average and the maximum error have a difference of less than 0.5%, which means
that their estimations do not differ by more than one or two files.

At this point, it should be noted that since our approach relies on the upper bound for computing
the number of rounds for convergence, it is possible that the actual number of rounds required are
less. However, our evaluation shows that even if we used the distributed convergence criterion,
the required number of rounds for our tests would be almost the same. Additionally, Kempe et
al.[15] have shown that the mixing time is closely related to the diffusion speed of a network, i.e.
the speed with which values originating from multiple sources diffuse evenly through the network,
which means that using the mixing time as a parameter for the number of rounds is also intuitively
correct.

6.4 Limitations

The solution we proposed for providing a concrete implementation of the original algorithm solves
a lot of the problems that we could come across in real life networks, however it is not a remedy for
every problem and has its own limitations:

• Our proposed protocol operates under the assumption that all nodes participating in the
network are cooperating and never refuse to send protocol related messages to other nodes.
However, this is not the case since it is possible, especially in P2P networks, for malicious
nodes to join and cause trouble by selectively refusing to send protocol messages to other
nodes or to send them malformed. Even in networks with no malicious nodes, these issues
might still be present. In our evaluation on the PlanetLab deployment we came across certain
nodes that refused to send our protocol messages for a long time (e.g. for 1 minute) but at
the same time replied to the liveness checks of other nodes. This had as a result the protocol
blocking for a long time, waiting for a simple message to arrive. Solving this problem by
simply ignoring problematic nodes would introduce a trade-off of accuracy versus speed and
since our initial goal was to have correct estimations, we chose not to ignore such nodes.

• Another limitation of our proposed solution is that the information it uses rely on the imple-
mentation of the underlying network. If the information the network provides are not accurate,
then the estimations computed by the protocol will also be inaccurate. For instance, if the
FreePastry implementation we used for supporting the Pastry overlay did not regularly main-
tain its routing table and leaf set stored nodes which have already failed, then these data
would be passed on to the protocol, which would in turn perform wrong computations of the
adjacency matrix etc.

84

Chapter 7

Conclusion

A fully decentralized impulse response protocol for estimating the spectral properties in low-diameter
networks was proposed and implemented using the Java programming language. This protocol of-
fers an extended version of the Impulse response algorithm by Carzaniga et al. [4], which allows its
deployment in asynchronous environments.

A problem of the original algorithm was that it was not robust, since it could produce very
high errors even in the presence of a single failure or churn. Our idea was to sample the network
by running multiple parallel partially overlapping executions of the algorithm and to combine their
estimations by using the median of the proposed values to produce the final result. We achieved
this by separating the operation of the protocol to Sessions and Executions, where Sessions contain
multiple Executions and are responsible for combining their results to provide the estimation of a
single sampling request.

Additionally, we defined as important requirements of our implementation portability and ex-
tensibility. We achieved portability by separating our protocol into two layers, where the upper
layer is responsible for the high level functionality and the bottom layer takes care of all the net-
work specific details. Additionally, we provided support for the Pastry and Chord overlays as a
proof of concept of our claims and demonstrated the simplicity with which the protocol could be
ported into new networks. Extensibility was achieved by providing interfaces for all the protocol’s
components apart from the core, so that a user wishing to implement a behavior differently or to
customize the protocol to fit certain needs could do so simply by extending those interfaces accord-
ingly. Furthermore, by using the Protocol Buffers technology for all the protocol-related messages,
we provide support for possible future protocol extensions, which might require the introduction
of new messages. This approach also allows interoperability of our implementation with potential
future implementations in different languages, like C++ and Python.

Our evaluation over a Pastry network demonstrated the correctness of our implementation, as
well as the success of our proposed method in the presence of a single node failure, departure or
addition. Moreover, we studied the robustness of our protocol in networks with various failure
rates and concluded that the estimations it provides in networks having low to moderate failure
rates could provide useful indications of the network’s actual properties. Additionally, we evaluated
the complexity of our proposal, which is not higher than the one of the original algorithm and its
efficiency in communications by presenting the network traffic produced by control messages over
the total number of protocol messages exchanged.

Finally, in order to demonstrate the usefulness of such a protocol, we created a simple application
which estimates the average number of files stored in each node of the network, by using as one of
the parameters for the computation, the mixing time provided by our impulse response protocol.
Our evaluation regarding the application demonstrates that the approximation of the mixing time
can indeed be useful for providing accurate estimations of aggregate network properties.

85

7.1 Future Work

Although we achieved most of the requirements we set when starting this project, there are still
many open problems that could be studied further and provide interesting topics for future work:

• As already mentioned in the limitations of our current proposal, our protocol does not take into
account any security issues that might arise by nodes refusing to participate to the protocol
or by sending wrong or malformed messages. By using the simple approach of ignoring those
nodes, our results would be very inaccurate. It would be thus interesting to explore ways of
making the protocol adaptive to such issues while still retaining its robustness.

• Our approach assumes that any node of the network can make a request for a sampling
initiation. However it is not clear whether this behavior is something we actually want or if
there should be a coordination mechanism that would somehow designate which node would
be responsible for making requests at any point in time. Choosing the protocol initiator could
be based in a number of parameters, like its position in the network (central nodes might be
preferred), its uptime (nodes that are present for a long time could probably be used longer)
etc.

• The experiments performed for this project were limited to 100 nodes. However, to fully test
our implementation we need a larger network with preferably thousands of nodes. Such a
testbed cannot be found easily outside of simulation environments unless our protocol is used
as an experimental plugin by real users. Providing a service similar to the one of our simple
sampling application for the client of a real overlay network e.g. a plugin for Frostwire would
be really interesting.

• While the current implementation has been tested and proven to work in networks of up to 100
nodes, it is certain that it still has a large number of bugs, mostly due to the high concurrency
of the executing tasks. Locating and fixing these bugs is difficult and would also probably
require a larger testbed.

• Our implementation does not currently support virtual nodes, i.e. nodes running in the same
host. Doing so would require a somehow different mechanism for communication, since each
virtual node would have to listen to its own port for protocol messages. A mechanism for
discovering the port in which a node offers its service is not a trivial matter and should be
further investigated.

• In our implementation we assume that the probabilities of a node sending a message to any
of its out-neighbors are the same. However, such an assumption does not always hold, since
these probabilities depend on the type of network we have. Just by changing the transition
probability matrix, we would get a completely different estimation of the same properties. For
this reason, it should be further investigated what are these probabilities for various popular
overlays.

86

Bibliography

[1] jdbm2: Embedded Key Value Java database. March 2012.

[2] Chordless, August 2013. http://sourceforge.net/projects/chordless/.

[3] Mayank Bawa, Hector Garcia-molina, Aristides Gionis, and Rajeev Motwani. Estimating ag-
gregates on a peer-to-peer network. Technical report, 2003.

[4] A. Carzaniga, C. Hall, and M. Papalini. Fully decentralized estimation of some global properties
of a network. In INFOCOM, 2012 Proceedings IEEE, pages 630–638, 2012.

[5] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony Rowstron. Future directions in
distributed computing. chapter Topology-aware routing in structured peer-to-peer overlay
networks, pages 103–107. Springer-Verlag, Berlin, Heidelberg, 2003.

[6] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, March 1996.

[7] Eric Chien. Malicious threats of peer-to-peer networking.

[8] Souptik Datta and Hillol Kargupta. Uniform data sampling from a peer-to-peer network. In
Proceedings of the 27th International Conference on Distributed Computing Systems, ICDCS
’07, pages 50–, Washington, DC, USA, 2007. IEEE Computer Society.

[9] D. Eastlake, 3rd and P. Jones. Us secure hash algorithm 1 (sha1), 2001.

[10] G. Golub and W. Kahan. Calculating the Singular Values and Pseudo-Inverse of a Matrix.
Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis,
2(2):205–224, 1965.

[11] Simon Josefsson. The base16, base32, and base64 data encodings. Internet RFC 4648, October
2006.

[12] Dan Jurca and Rolf Stadler. Computing histograms of local variables for real-time monitoring
using aggregation trees. In Proceedings of the 11th IFIP/IEEE international conference on
Symposium on Integrated Network Management, IM’09, pages 367–374, Piscataway, NJ, USA,
2009. IEEE Press.

[13] M. Kaashoek and D. Karger. Koorde: A simple degree-optimal distributed hash table, 2003.

[14] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The eigentrust algorithm
for reputation management in p2p networks. In Proceedings of the 12th international conference
on World Wide Web, WWW ’03, pages 640–651, New York, NY, USA, 2003. ACM.

[15] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate
information. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’03, pages 482–, Washington, DC, USA, 2003. IEEE Computer Society.

[16] David Kempe, Jon Kleinberg, and Alan Demers. Spatial gossip and resource location protocols.
J. ACM, 51(6):943–967, November 2004.

87

[17] David Kempe and Frank McSherry. A decentralized algorithm for spectral analysis. In Pro-
ceedings of the thirty-sixth annual ACM symposium on Theory of computing, STOC ’04, pages
561–568, New York, NY, USA, 2004. ACM.

[18] Samuel C. Kendall, Jim Waldo, Ann Wollrath, and Geoff Wyant. A note on distributed
computing. Technical report, Mountain View, CA, USA, 1994.

[19] Jérôme Kunegis et al. On the spectral evolution of large networks. 2007.

[20] S. Y. Kung. A New Identification and Model Reduction Algorithm via Singular Value Decom-
position. 1978.

[21] P. Leach, M. Mealling, and R. Salz. Rfc 4122: A universally unique identifier (uuid) urn
namespace, 2005.

[22] D.G. Luenberger. Introduction to Dynamic Systems. 1979.

[23] Rafik Makhloufi, Grégory Bonnet, Guillaume Doyen, and Dominique Gaïti. Decentralized
aggregation protocols in peer-to-peer networks: A survey. In Proceedings of the 4th IEEE
International Workshop on Modelling Autonomic Communications Environments, MACE ’09,
pages 111–116, Berlin, Heidelberg, 2009. Springer-Verlag.

[24] Laurent Massoulié, Erwan Le Merrer, Anne-Marie Kermarrec, and Ayalvadi Ganesh. Peer
counting and sampling in overlay networks: random walk methods. In Proceedings of the
twenty-fifth annual ACM symposium on Principles of distributed computing, PODC ’06, pages
123–132, New York, NY, USA, 2006. ACM.

[25] mikio braun, johannes schaback, jan saputra mueller, and matthias jugel. jblas, 2010. http:
//mloss.org/software/view/180/.

[26] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge University
Press, New York, NY, USA, 1995.

[27] S.P. Parker. McGraw-Hill dictionary of scientific and technical terms. MCGRAW HILL DIC-
TIONARY OF SCIENTIFIC AND TECHNICAL TERMS. McGraw-Hill, 2003.

[28] G. Pitstick, J. Cruz, and Robert J. Mulholland. Approximate realization algorithms for trun-
cated impulse response data. Acoustics, Speech and Signal Processing, IEEE Transactions on,
34(6):1583–1588, 1986.

[29] M. Rabbat, J. Haupt, A. Singh, and R. Nowak. Decentralized compression and predistribution
via randomized gossiping. In Information Processing in Sensor Networks, 2006. IPSN 2006.
The Fifth International Conference on, pages 51–59, 2006.

[30] Michael G. Rabbat. On spatial gossip algorithms for average consensus. In Proceedings of
the 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, SSP ’07, pages 705–709,
Washington, DC, USA, 2007. IEEE Computer Society.

[31] A.H. Rasti, D. Stutzbach, and R. Rejaie. On the long-term evolution of the two-tier gnutella
overlay. In INFOCOM 2006. 25th IEEE International Conference on Computer Communica-
tions. Proceedings, pages 1–6, 2006.

[32] M. T. Rose. On the design of application protocols. RFC, 2001.

[33] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms Heidelberg, Middleware ’01, pages 329–350, Lon-
don, UK, UK, 2001. Springer-Verlag.

88

[34] Thomas Sauerwald. On mixing and edge expansion properties in randomized broadcasting. In
Proceedings of the 18th international conference on Algorithms and computation, ISAAC’07,
pages 196–207, Berlin, Heidelberg, 2007. Springer-Verlag.

[35] Mario Schlosser, Michael Sintek, Stefan Decker, and Wolfgang Nejdl. Hypercup: hypercubes,
ontologies, and efficient search on peer-to-peer networks. In Proceedings of the 1st interna-
tional conference on Agents and peer-to-peer computing, AP2PC’02, pages 112–124, Berlin,
Heidelberg, 2003. Springer-Verlag.

[36] Robin Snader and Nikita Borisov. Eigenspeed: secure peer-to-peer bandwidth evaluation. In
Proceedings of the 8th international conference on Peer-to-peer systems, IPTPS’09, pages 9–9,
Berkeley, CA, USA, 2009. USENIX Association.

[37] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput. Commun.
Rev., 31(4):149–160, August 2001.

[38] Rice University. Freepastry, August 2013. http://http://www.freepastry.org/.

[39] Kenton Varda. Protocol buffers: Google’s data interchange format. Techni-
cal report, Google, 6 2008. http://google-opensource.blogspot.com/2008/07/
protocol-buffers-googles-data.html.

[40] B.Y. Zhao, Ling Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Kubiatowicz. Tapestry:
a resilient global-scale overlay for service deployment. Selected Areas in Communications, IEEE
Journal on, 22(1):41–53, 2004.

[41] Hubert Zimmermann. OSI Reference Model–The ISO Model of Architecture for Open Systems
Interconnection. Communications, IEEE Transactions on, 28(4):425–432, April 1980.

89

Appendices

91

Appendix A

Node interface and connector classes for
Pastry and Chord

A.1 Node interface

This is the interface provided by the integration layer of the protocol to act as the connector between
the higher layer and the underlying network:

1 package network;
2

3 import java.util.Set;
4

5 import util.Id;
6 import util.Neighbor;
7

8 public interface Node {
9

10 /**
11 * This method is responsible for providing the higher protocol
12 * layer with a set containing the local node’s
13 * out-neighbors
14 * @return A set containing the local node’s out-neighbors
15 */
16 public Set<Neighbor> getOutNeighbors();
17

18

19 /**
20 * This method returns the Id of the local node
21 * @return
22 */
23 public Id getLocalId();
24

25

26 /**
27 * Optional method that provides a hint to the underlying
28 * network for a failed node which should be removed.
29 * The network can choose to accept or ignore this hint
30 * @param id The id of the failed node in a String format
31 * @return true if the network actually removes the node, otherwise false
32 */
33 public boolean removeOutNeighborNode(String id);
34 }

93

A.2 Pastry

This is the full connector class, called PastryOverlayNode, provided for the open source imple-
mentation of Pastry, i.e. FreePastry from Rice University:

1 package network;
2

3 import java.util.HashSet;
4 import java.util.List;
5 import java.util.Set;
6 import org.mpisws.p2p.transport.multiaddress.MultiInetSocketAddress;
7 import rice.pastry.PastryNode;
8 import rice.pastry.leafset.LeafSet;
9 import rice.pastry.routing.RoutingTable;

10 import rice.pastry.socket.TransportLayerNodeHandle;
11 import util.Id;
12 import util.Neighbor;
13

14 public class PastryOverlayNode implements Node {
15

16 private PastryNode localNode;
17

18 /**
19 * Class constructor
20 * @param localNode The PastryNode object provided by the FreePastry overlay
21 */
22 public PastryOverlayNode(PastryNode localNode) {
23 this.localNode = localNode;
24 }
25

26 @Override
27 public Set<Neighbor> getOutNeighbors() {
28 HashSet<Neighbor> outNeighbors = new HashSet<Neighbor>();
29

30 //Get the routing table of the local node
31 RoutingTable rt = localNode.getRoutingTable();
32 List<rice.pastry.NodeHandle> routingTableNodes = rt.asList();
33

34 // Convert each record of the routing table in a Neighbor object
35 // and add it to the set of neighbors
36 for (rice.pastry.NodeHandle remoteNode : routingTableNodes) {
37 // The remote node must be using the IP protocol for communication
38 // Unsafe if the underlying network is not IP
39 TransportLayerNodeHandle<MultiInetSocketAddress> nh =
40 (TransportLayerNodeHandle<MultiInetSocketAddress>) remoteNode;
41 Neighbor n = new Neighbor(nh.getId().toByteArray(),
42 nh.getAddress().getInnermostAddress().getAddress());
43 outNeighbors.add(n);
44 }
45 //Get the leaf set of the local node
46 LeafSet ls = localNode.getLeafSet();
47 List<rice.pastry.NodeHandle> leafSetNodes = ls.asList();
48

49 // Convert each record of the leaf set in a Neighbor object
50 // and add it to the set of neighbors
51 for (rice.pastry.NodeHandle remoteNode : leafSetNodes) {
52 // Like in the routing table, the remote node
53 // must be using the IP protocol for communication
54 TransportLayerNodeHandle<MultiInetSocketAddress> nh =
55 (TransportLayerNodeHandle<MultiInetSocketAddress>) remoteNode;
56 byte[] nodeId = nh.getId().toByteArray();

94

57 Neighbor n = new Neighbor(nodeId,
58 nh.getAddress().getInnermostAddress().getAddress());
59 outNeighbors.add(n);
60

61 }
62 return outNeighbors;
63 }
64

65 @Override
66 public Id getLocalId() {
67 Id localId = null;
68 // Convert the handle of the local node to a handle operating over IP
69 // Unsafe operation if the network is not IP
70 TransportLayerNodeHandle<MultiInetSocketAddress> nh =
71 (TransportLayerNodeHandle<MultiInetSocketAddress>)

localNode.getLocalNodeHandle();
72 localId = new Id(nh.getId().toByteArray());
73 return localId;
74 }
75

76 @Override
77 public boolean removeOutNeighborNode(String Id) {
78 boolean removed = false;
79

80 //Get the routing table of the local node
81 RoutingTable rt = localNode.getRoutingTable();
82 List<rice.pastry.NodeHandle> routingTableNodes = rt.asList();
83

84 // Check every node in the routing table to see whether
85 // the node of interest with id Id is available
86 for (rice.pastry.NodeHandle remoteNode : routingTableNodes) {
87 TransportLayerNodeHandle<MultiInetSocketAddress> nh =
88 (TransportLayerNodeHandle<MultiInetSocketAddress>) remoteNode;
89 Id i = new Id(nh.getId().toByteArray());
90 // If it is remove it
91 if(i.toString().equals(Id)) {
92 rt.remove(nh);
93 removed = true;
94 }
95 }
96 }
97 // Do the same for the leaf set
98 LeafSet ls = localNode.getLeafSet();
99 List<rice.pastry.NodeHandle> leafSetNodes = ls.asList();

100

101 for (rice.pastry.NodeHandle remoteNode : leafSetNodes) {
102 TransportLayerNodeHandle<MultiInetSocketAddress> nh =
103 (TransportLayerNodeHandle<MultiInetSocketAddress>) remoteNode;
104 Id i = new Id(nh.getId().toByteArray());
105 if(i.toString().equals(Id)) {
106 ls.remove(nh);
107 removed = true;
108 }
109 }
110 return removed;
111 }
112 }

95

A.3 Chord

This is the full connector class, called ChordOverlayNode, provided for the open source implemen-
tation of Pastry, i.e. FreePastry from Rice University:

1 package network;
2

3 import java.net.InetSocketAddress;
4 import java.util.HashSet;
5 import java.util.Set;
6 import cx.ath.troja.chordless.Chord;
7 import cx.ath.troja.chordless.ServerInfo;
8 import util.Id;
9 import util.Neighbor;

10

11 public class ChordOverlayNode implements Node {
12

13 private Chord localNode;
14

15 /**
16 * Class constructor
17 * @param localNode The Chord object provided by the Chordless overlay
18 */
19 public ChordOverlayNode(Chord localNode) {
20 this.localNode = localNode;
21 }
22

23 @Override
24 public Set<Neighbor> getOutNeighbors() {
25 HashSet<Neighbor> outNeighbors = new HashSet<Neighbor>();
26 // Get an array of all the successors contained in the Finger Table
27 ServerInfo [] si = localNode.getFingerArray();
28 //Create a Neighbor object for each successor
29 for (ServerInfo server : si) {
30 Id nodeId = new Id(server.getIdentifier().toByteArray());
31 // Unsafe if the protocol is not IP
32 InetSocketAddress isa = (InetSocketAddress) server.getAddress();
33 Neighbor n = new Neighbor(nodeId , isa.getAddress());
34 // Add the Neighbor to the set of out-neighbors for the node
35 outNeighbors.add(n);
36 }
37 return outNeighbors;
38 }
39

40 @Override
41 public Id getLocalId() {
42 // Convert the id of the local node to an object of type Id
43 Id localId = new Id(localNode.getIdentifier().toByteArray());
44 return localId;
45 }
46

47 @Override
48 public boolean removeOutNeighborNode(String Id) {
49 /* This optional method is not implemented for Chord
50 * Just ignore the hint of the protocol for removal of
51 * the node with id Id
52 */
53 return false;
54 }
55 }

96

Appendix B

Detailed design of the impulse response
protocol

B.1 List of packages and classes

97

98

B.2 Dependency graph

99

