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Abstract

Real-time dynamics simulation of large-scale power systems is a computational challenge because of
the need to solve a large set of stiff, nonlinear differential-algebraic equations. The main bottleneck
in these simulations is the solution of the linear system during each nonlinear iteration of Newtons
method.The need for faster, and accurate, power system dynamics simulation (or transient stability
analysis) has been a primary focus of the power system community in recent years.

FPGAs have become an attractive choice for scientifis computing. This project is about exploring
how the huge computational power and memory optimizations of FPGA based hardware accelera-
tors can be used in the dynamic simulation of power systems.

Issues are threefold.

The study begins with the available power system simulation model, which deals with relatively
simple structure and data size (a 4 machines, and 11 buses study system). Firstly,we present an
optimised version of the simulation in a compiled language (C language) and demonstrate perfor-
mance gains of approximately 500 times faster than the original run time using SIMULINK as the
simulation environment.

In this paper, we also propose two high performance design for LU decomposition, a key kernel
in the power system simulation applications. And a parallelism design for solving the nonlinear
differential-algebraic equations among a number of machines in the power system.

Although the experiments targeting Maxeler systems show that our FPGA-based design can not
improve the time efficiency from the C application of the study system. We builds the relationship
between the speedup of simulation and the data size of the power system which indicates that our
acceleration design can give a significant acceleration to larger-scale larger power systems.
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Chapter 1

Introduction

1.1 Problem Motivation

The need for power system dynamic analysis has grown significantly in recent years. This is due
largely to the desure to utilize transmission networks for more flexible interchange transactions.[29]

Power system analysis is intensive in computational terms [32]. In fact, the power industry and the
associated academic research are requiring complex developments in high performance computing
tools, such as parallel computers, efficient compilers, graphic interfaces and algorithms including
artificial intelligence [10]. Power system dynamic simulation is one of these problems needing a
special treatment to reduce time and memory requirements. The dynamic simulation is present
in design, planning, operation and control stages of power systems and have been largely used for
testing methods, eigenvalue analysis and optimal control.[23]

In the engineering applications, it is frequently desirable to make many response simulations to
calculate, for example, the effects of different fault locations and types, initial power system oper-
ating states and in design studies, different network, machine and control-system characteristics.
However, the volume of computation imposes very severe constrain to such studies. For a large
system, thousands of equations must be solved and each case can take an hour of CPU time on a
large modem computer. Hence, there is always considerable incentive to find superior calculation
methods.[32]

Recent years have seen significant improvements in the application of numerical and computational
methods to the problem. Also, hardware developments are continuing to reduce the cost of compu-
tation spectacularly. Unfortunately, while stability is increasingly a limiting factor in secure system
operation, the simulation of system dynamic response is grossly overburdening on present-day dig-
ital computing resources. It becomes necessary to solve larger systems, with increased detail of
modeling, over longer response times, more frequently.[32]

The need for faster, and accurate, power system dynamics simulation (or transient stability anal-
ysis) has been a primary focus of the power system community in recent years. [1] Therefore, the
next challenge is to accelerate the simulation of such large-scale power systems. To achieve this, the
use of Field-programmable gate array (FPGA) based hardware accelerators is highly commended
due to the nature of the algorithms involved in the simulation that allow parallel computations.
Also, in a practice power grid system, the huge amount of data that are processed can be trans-
ferred closer to the processing units, in the FPGAs huge and memories, reducing the latency of the
simulation even more. Previous work has shown that FPGA-based reconfigurable computing ma-
chines can achieve order of magnitude speedups compared to microprocessors for many important
computing applications [2], [6], [22]. Therefore, this project takes the attempt to discuss how and
how well FPGA based hardware accelerators can be used to speed up the simulation process of a
power system.

4



1.2. PROBLEM SPECFICATION 5

1.2 Problem Specfication

At the first stage of the project, we should first focus on a study system for analyzing the dynamic
behavior of different components in the power system provided by Dr Chaudhuri form his book
Robust Control in Power Systems [25]. This is a relatively simple power system simulation without
the use of electric springs but using the Multiple-model adaptive control (MMAC) approach for
robust control. This 4-machine, 2 -area study system model is considered as one of the benchmark
models for performing studies on inter-area oscillation because of its realistic structure and avail-
ability of system parameters [15], [17].

As a block diagram environment for multi-domain simulation and Model-based design, SIMULINK
has been used to analyze and design of power systems. The simulation of 4-machine, 2 -area
study system is initially in the form of a SIMULINK model based on some standard approaches to
modeling of several power system components in Dr Chaudhuri’s book, and an overview of these
models is given as the background knowlegde in Chapter 2. However, although the SIMULINK tool
provides a graphical user interface for building visualized model as block diagrams, It can’t avoid
the restrictions on its simulation performance. For example, large images and complex graphics
take a long time to load and render. As a result, masked blocks that contain images might make
your model less responsive. [20] In this project we will explore the benefits of accelerating from
using Field Programming Gate Arrays (FPGAs) to power system simulation. There are many vari-
ations of FPGA designs. We will use the hardware and the complier by Maxeler Technologies. The
implementation can be built using the programming paradigm known as data flow programming.
Maxeler’s dataflow system is a hybrid CUP-FPGA system. Therefore, the first step is optimise the
simulation process in a complied language (we use C language) application so that it can run an
CPU, and then further accelerate the slow operations by mapping the dataflow to the data flow
engines(DFEs) provided by Maxeler. Specially, we should follow the design flow shown in Fig.1.1.

So the task can be divided into steps of progresses:

• Step 1: Study the Maxcompiler system, and dataflow programming technology.

• Step 2: Understanding the SIMULINK model and analyzing the program.

• Step 3: Rewrite the SIMULINK code to C code. Measure how long it takes to run the
application on CPUs given a set of large datasets.

• Step 4: Identify areas of code for acceleration: a more detailed analysis provides the distri-
bution of runtime of various parts of the application using time counter and profiling tools
such as gprof, oprofile etc.

• Step 5: For the code to be accelerated, create dataflow graph, data layout and representation.

• Step 6: Optimize dataflow, data access and data representation options by the principle:
maximizing regularity of computation and minimizing communication between CPU and
dataflow engines.

• Step 7: use Maxcompiler to configure application for FPGA and analyze the performance.
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Figure 1.1: Diagram of Design Flow

1.3 Objectives & Achievements

The object of this project is to explore how the huge computational power and memory opti-
mizations of FPGA based hardware accelerators can be used in the dynamic simulation of power
systems. And the study begins with the available power system simulation model, which deals with
relatively simple structure and data size.

In details, we show that to meet the milestones and targets set above we were to follow various ob-
jectives. In the case of migrating the SIMULINK model to a compiled language, we needed to first
identify the performance gains we could make. Since the SIMULINK model was now serving as our
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only description of the algorithms, it was in our best interests to rewrite the graphical descriptions
as functions and refactor code which appeared slow or unnecessary. Once the power system simu-
lation in SIMULINK was optimised to a complied language, we should check for correctness. Once
we verified the program’s outputs, we could look at performance gains and consider acceleration.
For this, the Field Programmable Gate Array (FPGA) applied by the Maxeler Technologies was
used. We present an evaluation of various design of the Kernels to accelerate the power system,
and demonstrate our achievement of acceleration.

The following objectives were key in directing this project to its end and producing our contribu-
tions:

• Analyised the simulation model in SIMULINK (chapter 3). Proposed a method to trace
the sorted order of different subsystems and blocks in SIMULINK. This was paramount in
providing a base to begin migrating to a compiled language.

• An optimised version of the simulation in C language (chapter 4). We maximise the perfor-
mance gains available without hardware acceleration by 500 times’ faster than SIMULINK.
We re-implemented everything from scratch so that have concluded an efficient scheme of
converting SIMULINK diagrams to C(C++) language.

• An accelerated version of the LU decomposition solver used in the power system simulation.
(chapter 5) And implementation of different FPGA kernel designs for pipeline. During this
process, we successfully solved the problem of handling complex numbers in maxeler.

• Analysed the performance of the designed kernels(chapter 6). A relationship between the
speedup of simulation and the data size of the power system is built which indicated that our
acceleration design can give a significant acceleration to larger-scale larger power systems.

1.4 Report Structure

In this chapter we looked at an overview of the main motivations, objectives and steps for our
project. The rest of this report is divided into 7 chapters and organized as follows.

Chapter 2 introduces the background knowledge needed for understanding the project. The first
part of chapter 2 illustrates the idea of power system simulation and an dynamic simulation model
of the power system is introduced which support the primary mathematical principle underlaying
our SIMULINK power system model. The second part of chapter 2 gives an introduction to the
SIMULINK tool while the third part presents the principles of FPGAs and Hardware acceleration
technology and also the FPGA programming platform we used in the project: a programming
model based on data-flow programming provided by Maxeler Technologies call MaxCompiler.

Chapter 3 is about how I analysed the given Simulink Model in order to extract the algorithms for
a complied language, I will show this from four aspects. 1. An overview of the simulink model, the
structure. 2. What are the inputs and desired outputs of the model and where are they from. 3.
How does the operarions linked together: the execution order of the blocks,their dependency. 4.
What are the specific operations involved, and how to understand them, the mathematical mean-
ing.

Chapter 4 gives a detailed illustration of an optimised application in C language that does the same
thing with the simulation system. Depending on the analysis in chapter 2, we describe the ideas
we used to re-implement each aspect of the simulation scheme that corresponding to each section
of chapter 2.

Chapter 5 starts from showing the profiling result of the C application introduced in chapter 4
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which determined the area of code to be accelerated by FPGA. And then, the design and imple-
mentation details using the Maxeler Compiler are represented.

Chapter 6 gives the noteworthy experimental results for both the C application, and the accelerated
design of FPGA computing blocks. And by comparing them, we analysis the practicability of our
hardware design.

Chapter 7 is the conclusion of the report and lists some further work the author would like to try
later.



Chapter 2

Background

2.1 Power System Simulation

An electric power system is a network of electrical components used to supply, transmit and use
electric power. An example of an electric power system is the network that supplies a region’s
homes and industry with power , this power system is known as the power grid and can be broadly
divided into the generators that supply the power, the transmission system that carries the
power from the generating centres to the load centres and the distribution system that feeds the
power to nearby homes and industries. Smaller power systems are also found in industry, hospitals,
commercial buildings and homes.

Simulation is historically one the principal tools used in the design of power system controls.The
conventional power-system stability study computes the system response to a sequence of large
disturbances, usually a network short circuit, followed by protective branch-switching operations.
The process is a direct simulation in the time domain of duration varying between say 1 s and 20
min or m.ore. Different components of the power system have their greatest influences on stability
at different of the response, and the system modeling (simulation) reflects this fact.

In power systems, the primary sources of electrical energy are the synchronous generators. The
problem of power system stability is primarily to keep the interconnected synchronous machines in
synchronism [17]. The stability is also dependent on several other components such as the speed
governors, excitation systems of the generators, the loads, the FACTS devices etc. Therefore,
an understanding of their characteristics and modeling of their performance are of fundamental
importance for stability studies and control design. The general approach to modelling of several
power system components is quite standard, and a quick overview of these models is given in next
section.

2.2 Models of Different Components in Power System

Accurate modelling of the generators and their excitation systems is of fundamental importance
for studying the dynamic behavior of power systems. Besides generators and excitation systems,
other components such as the dynamic loads (e.g. induction motor type), controllable devices (e.g.
thyristor controlled series capacitor (TCSC), power system stabilizer (PSS)), prime-movers etc.
need to be modelled as well. The dynamic behavior of these devices is generally described through
a set of differential equations. The power flow in the network is represented by a set of algebraic
equations. This gives rise to a set of differential-algebraic equations (DAE) describing the power
system behavior. Different types of model have been reported in the literature for each of the power
system components depending upon their specific application [17], [29]. In this section, the relevant
equations governing the dynamic behavior of only the specific types of models used in this project
is described. The IEEE recommended practice regarding d-q axis orientation [5] of a synchronous
generator is used. This results in a negative d axis component of stator current for an overexcited

9



10 CHAPTER 2. BACKGROUND

generator delivering power to the system.

2.2.1 Generators

All the generators are represented by a sub-transient model [29], [17] with four equivalent coils on
the rotor. Besides the field coil, there is one equivalent damper coil in the direct axis and two in the
quadrature axis. The mechanical input power to the generator is assumed to be constant during
the disturbances such as a 3-phase fault, obviating the need for modelling the primemover. The
differential equations governing the sub-transient dynamic behavior of the ith generator is given by:

dδi
dt

= ωi − ωs (2.1)

dωi

dt
=
ωs

2H
[Tmi −D(ωi − ωs)−

(Xdi
′′ −Xlsi)

(Xdi
′ −Xlsi)

E
′
qiIqi −

(Xdi
′ −X ′′

di)

(Xdi
′ −Xlsi)

ψ1diIqi−

(Xqi
′′ −Xlsi)

(Xqi
′ −Xlsi)

+
(Xqi

′ −X ′′
qi)

(Xqi
′ −Xlsi)

ψ2qiIdi + (X
′′
qi −X

′′
di)IqiIdi]

(2.2)

dE
′
qi

dt
=

1

T
′
doi

[−E′
qi− (Xdi−X

′
di){−Idi−

(Xdi
′ −X ′′

di)

(Xdi
′ −Xlsi)2

(ψ1di− (X
′
di−Xlsi)Idi−E

′
qi)}+Efdi] (2.3)

dE
′
di

dt
=

1

T
′
qoi

[−E′
di − (Xqi −X

′
qi){Iqi −

(Xqi
′ −X ′′

qi)

(Xqi
′ −Xlsi)2

(ψ2qi + (X
′
qi −Xlsi)Iqi − E

′
di)}] (2.4)

dψ1di

dt
=

1

T
′′
doi

[−ψ1di + E
′
qi + (X

′
di −Xlsi)Idi] (2.5)

dψ2qi

dt
=

1

T
′′
qoi

[ψ2qi + E
′
di + (X

′
qi −Xlsi)Iqi] (2.6)

for i = 1, 2, ...,m,where,
m : total number of generators,
δi : generator rotor angle,
ωi : rotor angular speed,
Eqi

′
: transient emf due to field flux-linkage,

Edi
′

: transient emf due to flux-linkage in q-axis damper coil,
ψ1di : sub-transient emf due to flux-linkage in d-axis damper,
ψ1qi : sub-transient emf due to flux-linkage in q-axis damper,
Idi : d-axis component of stator current,
Iqi : q-axis component of stator current,

Xdi, Xdi
′
, Xdi

′′
: synchronous, transient and sub-transient reactances, respectively along d-axis,

Xqi, Xqi
′
, Xqi

′′
: synchronous, transient and sub-transient reactances, respectively along q-axis,

Tdo
′′
, Tdo

′′
: d-axis open-circuit transient and sub-transient time constants, respectively

Tqo
′′
, Tqo

′′
: q-axis open-circuit transient and sub-transient time constants, respectively

The stator transients are generally much faster compared to the swing dynamics. Hence, for stabil-
ity studies, the stator quantities are assumed to be related to the terminal bus quantities through
algebraic equations rather than state equations. The stator algebraic equations are given by:

Vicos(δi − θi)−
(Xdi

′′ −Xlsi)

(Xdi
′ −Xlsi)

E
′
qi −

(Xdi
′ −X ′′

di)

(Xdi
′ −Xlsi)

ψ1di +RsiIqi −X
′′
diIdi = 0 (2.7)

Visin(δi − θi) +
(Xqi

′′ −Xlsi)

(Xqi
′ −Xlsi)

E
′
di +

(Xqi
′ −X ′′

qi)

(Xqi
′ −Xlsi)

ψ2qi −RsiIdi −X
′′
qiIdi = 0 (2.8)

for i = 1, 2, ...,m, where,
Vi : generator terminal voltage magnitude,
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θi : generator terminal voltage angle,
Rsi : resistance of the armature,
Xlsi : armature leakage reactance.
The notation is standard as in [29]. The parameters used for the study system are given in Appendix
A.

2.2.2 Excitation systems

The generators are equipped with slow excitation systems (IEEE-DC1A) to ensure adequate damp-
ing for its local modes. The rest of the generators are under manual excitation control. The differ-
ential equations governing the behavior of an IEEE-DC1A type excitation system are given by:

dVtri
dt

=
1

Tri
[−Vtri + Vti] (2.9)

dEfdi

dt
= − 1

TEi
[KEiEfdi + EfdiAexe

BExEfdi − Vri] (2.10)

dVri
dt

=
1

TAi
[
KAiKFi

TFi
RFi +KAi(Vrefi − Vtri)−

KAiKFi

TFi
Efdi − Vri] (2.11)

dRFi

dt
=

1

TFi
[−RFi + Efdi] (2.12)

where,
Efdi : field voltage,
Vtri : measured voltage state variable after sensor lag block,
and the rest of the notation carries their standard meaning [29].

2.2.3 Network power flow model

The network power balance equation for the ith generator bus is given by:

Vicos(δi − θi)Iqi − Visin(δi − θi)Idi − Spi = 0 (2.13)

−Visin(δi − θi)Iqi − Vicos(δi − θi)Idi − Sqi = 0 (2.14)

where,

Spi =

k=n∑
k=1

ViVk[Gikcos(θi − θk) +Biksin(θi − θk)] (2.15)

Sqi =
k=n∑
k=1

ViVk[Giksin(θi − θk)−Bikcos(θi − θk)] (2.16)

for i = 1, 2, ...,m

Power balance equations for the ith non-generator bus is given by:

PLi(Vi) +

k=n∑
k=1

ViVk[Gikcos(θi − θk) +Biksin(θi − θk)] = 0 (2.17)

QLi(Vi) +

k=n∑
k=1

ViVk[Giksin(θi − θk)−Bikcos(θi − θk)] = 0 (2.18)

for i = m+ 1, ..., n
where, n is the total number of buses in the system and Yik = Gik + jBik is the element of the ith
row and kth column of the bus admittance matrix Y .
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2.2.4 Thyristor conrolled series capacitor (TCSC)

A TCSC is a capacitive reactance compensator which consists of a series capacitor bank shunted
by a thyristor controlled reactor (TCR) in order to provide a smooth variation in series capacitive
reactance [11], [31].

The dynamic characteristics of the TCSC is assumed to be modelled by a single time constant
(Ttcsc = 0.02 s) representing the response time of the TCSC control circuit as follows:

d

dt
∆kc =

1

Ttcsc
(−∆kc + ∆kc−ref + ∆kc−ss) (2.19)

The small-signal dynamic model is given in Fig. 2.1 where, ∆kc is the incremental change in
value of kc about the nominal value of 0.5 (50% compensation). The reference setting ∆k(c− ref)
is augmented by ∆kc−ss within a limit of ∆kc−max =0.3 and ∆kcmin = -0.4 in the presence of
supplementary damping control.

Figure 2.1: Small-signal dynamic model of TCSC

2.3 The Simulation Challenge

Engineers in the power industry face the problem that, while stability is increasingly a limiting fac-
tor in secure system operation, the simulation of system dynamic response is grossly overburdening
on present-day digital computing resources. Each individual response case involves the step-by-
step numerical solution in the time domain of perhaps thousands of nonlinear differential-algebraic
equations, at a cost of up to several thousand dollars A high premium is thus to be placed on the
use of the most efficient and reliable modern calculation techniques.

The need for faster, and accurate, power system dynamics simulation (or transient stability anal-
ysis) has been a primary focus of the power system community in recent years. This view was
reiterated in the recent DOE and EPRI work- shops [9]. Indeed, more than two decades ago,
real-time dynamics simulation was identified as a grand computing challenge [16]. As processor
speeds were increasing, real- time dynamics simulation appeared possible in the not-too-distant fu-
ture. Unfortunately, processor clock speeds saturated about a decade ago, and real-time dynamics
simulation re- mains a grand computing challenge.

Dynamics simulation of a large-scale power system is computationally challenging because of the
presence of a large set of stiff, nonlinear differential-algebraic equations (DAEs).The electrical power
system is expressed as a set of nonlinear DAEs.The solution of the dynamic model given only one
DAE needs the following:

• A numerical integration scheme to convert the differential equations in algebraic form.

• A nonlinear solution scheme to solve the resultant nonlinear algebraic equations.
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• A linear solver to solve the update step at each iteration of the nonlinear solution.

Fig. 2.2 shows the wall-clock execution time of a series of dynamics simulations on a single proces-
sor for a temporary three-phase fault applied for 0.1 seconds illustrated in [1].

Figure 2.2: Single processor dynamic simulation execution times for a 3 second simulation period
on different systems for 0.1 second three-phase balanced temporary fault.

The test cases with bus sizes greater than 1000 were obtained by duplicating the 118 bus test sys-
tem 10, 20, and 40 times respectively, and connecting each 118 bus area by five randomly chosen
tie lines. As system size increases, execution time grows dramatically. Thus real- time dynamics
analysis of a utility or a regional operator network is an enormous computing challenge.

For example, PJM, a regional transmission organization (RTO) covering 168,500 square miles of 12
different states, monitors approximately 13,500 buses [14]. Similarly, the Electric Reliability Coun-
cil of Texas (ERCOT) monitors approximately 18,000 buses [8]. High-level Eastern Interconnection
models contain more than 50,000 buses. To perform dynamics simulation in real time, the simulator
must compute the solution to a set of equations containing more than 150,000 variables in a few
milliseconds. Because of this high computational cost, dynamics analysis is usually performed on
relatively small interconnected power system models, and computation is mainly performed offline.
Researchers at Pacific Northwest National Laboratory have reported that a simulation of 30 sec-
onds of dynamic behavior of the Western Interconnection requires about 10 minutes of computation
time today on an optimized single processor [13].
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2.4 The SIMULINK Tool

2.4.1 What is SIMULINK

Simulink [30],[19] developed by The MathWorks, is a software package for modeling, simulating,
and analyzing dynamical systems. It supports linear and nonlinear systems, modeled in continuous
time, sampled time, or a hybrid of the two. Systems can also be multirate, such as signal processing,
control and communication applications. It can now also be used to analyze and design of power
systems.[24] During last four decades simulation of power systems have gained more importance.
Recently published IEEE paper discussing different approaches to modeling protective relays and
related power system events indicates a variety of possible software tools that may be used for this
purpose [36]. But rather than MATLAB/SIMILINK software it is difficult to add the modeling
and simulation features to teach specific protective relaying concepts that go beyond the level of
detail originally provided by the software.[33]

For modeling, Simulink provides a graphical user interface (GUI) for building models as block
diagrams, using click-and-drag mouse operations. With this interface, you can draw the models
just as you would with pencil and paper (or as most textbooks depict them). Simulink includes
a comprehensive block library of sinks, sources, linear and nonlinear components, and connectors.
You can also customize and create your own blocks. For information on creating your own blocks,
see the separate Writing S-Functions guide.

Models are hierarchical, so you can build models using both top-down and bottom-up approaches.
You can view the system at a high level, then double-click on blocks to go down through the
levels to see increasing levels of model detail. This approach provides insight into how a model is
organized and how its parts interact.

After you define a model, you can simulate it, using a choice of integration methods, either from
the Simulink menus or by entering commands in MATLABs command window. Using scopes and
other display blocks, you can see the simulation results while the simulation is running. In addition,
the simulation results can be put in the MATLAB workspace for post-processing and visualization.

2.4.2 Basic elements of Simulink

Models in Simulink can be thought of as executable specifications, Simulink’s graphical editor is
used for modeling dynamic systems with a block diagram, consisting two major classes of elements
in Simulink: blocks and connections. Blocks are used to generate, modify, combine, output, and
display signals. Narrows are used to transfer signals from one block to another.

Blocks

Each block represents a set of equations called block methods, which define a relationship between
the blocks input signals, output signals and the state variables. In the Simulink User Guide a block
is characterised by a combination of three functions.

1. A function which computes the output from the state and the input values.

2. A function which computes the next value of the discrete components of the state.

3. A function which yields the rate of change of the continuous components of the state. Blocks
are frequently parameterized with constants or arithmetical expressions over constants.

Examples of simulink blocks
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The block is an entity which defines a relation between its inputs and outputs. The block’s func-
tionality can vary, depending on the blocks parameters and inputs. It can also be influenced by
other blocks. The number of blocks inputs and outputs can vary also. Each input and output has
a dimensionality and it can be a scalar, vector or a matrix signal. We will give a representative
example for most of these cases.

The Gain block (Fig. 2.3) multiplies the input by a constant value which is specified by the Gain
parameter. The Gain can be a scalar or a vector.

Figure 2.3: A Gain block and sample values

The Sum block (Fig. 2.4) performs addition or subtraction on its inputs. This block can add
or subtract scalar or vector inputs. If the block has a single input signal, then it collapses its
elements into a scalar by summing or subtracting them. The operation of the block is specified
with the ”List of signs” parameter, which is a list of Plus (+) and minus (-) signs, and indicates
the operations to be performed on the inputs. If there are two or more inputs, then the number
of + and characters must equal the number of inputs. For example, ”+-+” requires three inputs
and configures the block to subtract the second (middle) input from the first input, and then add
the third input. All non-scalar inputs must have the same dimensions. Scalar inputs are expanded
to have the same dimensions as the other inputs.

Figure 2.4: An Add block and sample computations.

The Mux block (Fig. 2.5) combines its inputs into a single vector output. An input can be a
scalar or a vector signal. The Mux block’s ”Number of Inputs” parameter allows to specify input
signal names and sizes as well as the number of inputs.

The Subsystem block. (Fig. 2.6) A subsystem is a set of blocks that have been replaced by
a single block called a Subsystem block. As a model increases in size and complexity, it can be
simplified by grouping blocks into subsystems. Using subsystems helps to reduce the number of
blocks displayed in the model window, allows to keep functionally-related blocks together, and
enables to establish a hierarchical block diagram. The whole Simulink model, composed of blocks
and subsystems is placed in a single system block referred to as a root system.

The Outport block. The outport block in a subsystem represents its outputs. A signal arriving
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Figure 2.5: A Mux block. The number of inputs parameter is 2

Figure 2.6: An Enabled subsystem. The subsystems control input is associated with the Enable
block. This subsystem will output the value 7 when disabled and its states will be held at their
previous values.

to an Outport block in a subsystem flows out of the associated output port on that Subsystem
block. For example in Fig. 2.5), the Outport block SubOut1 on the right represents the output
port SubOut1 of the subsystem on the left.

Block Types

Simulink blocks can be categorized. This categorization was described in [7] and [8]. The genera-
tion of the verification condition in tvs is organized according to these categories. Simulink blocks
can be categorized into virtual and non-virtual. A virtual block is one that defines only the in-
terconnections of signals and has no memory element (For example Mux, Outport and Subsystem
blocks). Such a block has no explicit representation in the generated code. Non-virtual blocks
normally represent some mathematical operation on their input values (for example the Gain and
Sum blocks). A non-virtual block can be represented in the generated code by a variable or its
operation can be propagated.

Connections(Lines)

Lines transmit signals in the direction indicated by the arrow. Lines must always transmit signals
from the output terminal of one block to the input terminal of another block. One exception to
this is that a line can tap off of another line. This sends the original signal to each of two (or more)
destination blocks, as shown below:
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Lines can never inject a signal into another line; lines must be combined through the use of a block
such as a summing junction.

Signal

Signals are what kind of information is carried by the connections in a diagram. According to the
Using Simulink manual, a wide range of signal attributes can be specified, including signal name,
data type (e.g., 16-bit or 32-bit integer, double, single, uint8, uint16, uint32), numeric type (real
or complex), and dimensionality (e.g., one-dimensional or multidimensional array), and introduces
the type Boolean.

2.4.3 Textual Representation of the Model

There are two textual representations of the model:

• The model.mdl file, which is written in a Mathworks propriety markup language. The file
contains the graphical model description and assignments to parameters of template blocks.
Simulink allows not specifying blocks parameters that can be derived, i.e., propagated from
other blocks automatically (for example input signals types. Therefore, in the model file not
all parameters are contained explicitly for all blocks. Blocks parameters can be defined in
terms of Matlab workspace variables, but those values are also not included in the model.mdl
file. Thus, the model.mdl file is tightly coupled with the MATLAB environment.

• The model.rtw file, which is derived from model.mdl during code generation. It is an in-
termediate representation created by removing graphical information from model.mdl, and
evaluating parameters of blocks. Although it contains more information, its format is not
described in Mathworks’ documentation and is difficult to understand by reverse engineering.

2.5 Hardware Acceleration & FPGAs

2.5.1 Hardware Accelerators

In computing, hardware acceleration is the use of computer hardware to perform some function
faster than is possible in software running on the general-purpose CPU. Examples of hardware
acceleration include blitting acceleration functionality in graphics processing units (GPUs) and
instructions for complex operations in CPUs. Many hardware accelerators are built on top of field-
programmable gate array chips. Also, machines such as the gaming machine Sony-PlayStation can
be used as hardware accelerators.

Normally, processors are sequential, and instructions are executed one by one. Conventional pro-
cessors are hitting the limits of attainable clock frequencies and thus, future significant increases in
performance must come from exploiting parallelism. [26] Various techniques are used to improve
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performance; hardware acceleration is one of them. The main difference between hardware and
software is concurrency, allowing hardware to be much faster than software. The hardware that
performs the acceleration, when in a separate unit from the CPU, is referred to as a hardware
accelerator. [35]

As shown in [18] The overarching goal of hardware acceleration is to increase the speed at which
data can be processed by using custom hardware specifically designed to implement a specific rou-
tine. By doing so, the software can be sped up in two ways. The first advantage is that the CPU is
able to process other data, while the computation necessary for the accelerated routine is offloaded
to the coprocessor. This makes the computation appear to be essentially free to the processor.
The only time the processor must spend on the computation is the time that it takes to set up
the coprocessor to begin its calculation and the time it takes to receive the results. As long as
the overhead necessary to communicate with coprocessor is less costly than performing the actual
computation, a speedup is realized.

The second potential gain is realized when the hardware accelerator is structured in such a way
that it is able to calculate the result a faster than the software. In this case, the communications
overhead, and the runtime of the hardware accelerator must be less than the time the software
implementation of the same algorithm would take. If this condition is met the algorithm will be
accelerated whether or not the processor is processing data in parallel with the coprocessor.

2.5.2 Field-programmable gate array (FPGA)

FPGAs are reconfigurable hardware chips that can be reprogrammed to implement varied combina-
tional and sequential logic.For the purpose of this project we will focus on FPGA based acceleration
as the significant improvements in FPGA size, speed, and storage capacity have made them ex-
cellently potential as hardware accelerators for a wide class of applications. Significant speedups
achieved using FPGAs to accelerate cryptography, sparse matrix-vector multiplication, Viterbi de-
coding, and financial computing systems have been reported in recent literature [21],[34],[3]. As
an example, the study described in [34] demonstrated a 2 times speedup for floating-point sparse
matrix-vector multiplication (a computational kernel at the heart of many scientific computing
applications) implemented on a Virtex II FPGA compared to the fastest single processor system
at the time and even greater speedups for multi- FPGA systems (compared to multi-processor
systems)[12]. And an FPGA accelerated system can be 31-37 times faster than an equivalently
sized conventional machine, and consume 1/39 of the power. [7]

An FPGA is made up of an array of programmable logic blocks (programming cells). These logic
blocks are connected by reconfigurable sets of wires as shown in Fig. 2.7, which allow for signals
to be routed according to the definition of the circuit. [18] Modern FPGAs allow the user to re-
configure these circuits many times each second, making FPGAs fully programmable and general
purpose. The price of reconfigurability is a 10x slower dynamic clock frequency compared to todays
state-of-the-art Pentium and Opteron processors. This slower clock frequency is compensated for
by support for massive fine-grained parallelism. [26]

2.5.3 Maxeler Platform

In our project we will use a programming model based on data-flow provided by Maxeler Tech-
nologies which is entirely driven by Java. The user specifies kernels, which are statically scheduled,
pipelined data-paths, and a manager that controls the routing of streaming data between multiple
kernels and off-chip connections. Kernels use arbitrary precision floating/fixed point types and our
compiler takes care of type conversions. [7]]
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Figure 2.7: Simplified view inside an FPGA

Figure 2.8: Maxelers dataflow system architecture

Maxelers dataflow system architecture as shown in Fig. 2.8 is a hybrid CPU-FPGA system.
The system comprises CPU, dataflow engines (DFE) as well as from communication and mem-
ory systems. DFE can implement multiple kernels, which perform computation as data flows
between the CPU, DFE and its associated memories. The DFE has two types of memory: FMem
(Fast Memory) which can store several megabytes of data on-chip with terabytes/second of access
bandwidth and LMem (Large Memory) which can store many gigabytes of data off-chip. In a
Maxeler dataflow supercomputing system, multiple dataflow engines are connected together via
high-bandwidth MaxRing interconnect. The MaxRing interconnect allows applications to scale
linearly with multiple DFEs in the system while supporting full overlap of communication and
computation.

Form the tutorials provide by Maxeler Techologies and some papers [27] I have got an overview
of Maxelers dataflow programming technology: In the Maxeler platform, we develop the kernel
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code by the hardware compiler called MaxCompiler. The Maxeler platform utilizes Java as a
meta-programing language for implementation. The MaxCompiler IDE isa modified version of the
Eclipse IDE, with a modified version of Java serving as the descriptive code for the dataflow. Using
a meta-program that describes the structure of dataflow as an input, MaxCompiler generates the
.max file which contains the FPGA bitstream. Also, data exchange between a host CPU and a
dataflow engine is performed using a run-time library API called MaxCompilerRT.

Figure 2.9: Maxeler MaxCompiler Development Flow

In the Maxeler system, data streaming and execution are performed as follows. The dataflow
engine is initialized and the .max file generated by MaxCompiler is loaded from the CPU to the
engine, configuring the FPGA. After input data are streamed from CPU memory onto the FPGA
chip, these are processed by forwarding intermediate results from one functional unit to another
where the results are needed, without ever being written to the off-chip memory until the chain of
processing is complete. After all processing on the dataflow engine is completed, the final output
data are transferred to CPU memory.



Chapter 3

Analysing the Power System
Simulation

The original power system simulation system (a 4-machine, 2 -area study system) is initially built
as a SIMULINK model. In order to apply the FPGA accelerators to this simulation problem, we
therefore take first steps in converting the Simulink diagram to a software application. Before we
can present our conversions, we must first understand how the power simulation is modeled in the
Simulinks grammar and extract the underlying updating algorithms from the diagram representa-
tion.

In this chapter we present how we analysed the Power System simulation model to extract the
dynamic behavior of the power system from a software optimisations point of view that allow per-
formance gains in SIMULINK and a departure from the SIMULINKs graphical user interface to a
compiled language.

In detail, we will firstly introduce the power system that the simulation built on, then from the
Simulation program we analysed the properties of the program: the requirements of the program,
the data flow and the control flow of the program.Section 3.1 describes the power system being
simulated. Section 3.2 covers an detailed analysis of the power system simulation in the form of a
SIMULINK model. And section 3.3 gives a brief illustration of the performance of the SIMULINK
model from the efficiency prospect.

3.1 The Study System

A simple 4-machine, 2-area study system, shown in Fig. 3.1, is considered first. This system is
one of the benchmark models for performing studies on inter-area oscillation because of its realistic
structure and the availability of system parameters [2, 8] in the public domain. All four generators
are represented using the sub-transient model with DC (IEEE-DC1A type) excitation system, as
described in Chapter 2. Power flow and dynamic data for the system can be found in [8].

Figure 3.1: 4-machine, 2-area study system with a TCSC

21
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The system consists of two areas connected by a weak transmission corridor. To enhance the
transfer capability of the corridor, a TCSC is installed in one of the lines connecting buses #8 and
#9. From the transfer capacity enhancement point of view, the percentage compensation Kc of
the TCSC is set to 10%. A maximum and minimum limit of 50% and 1%, respectively, is imposed
on the dynamic variation of kc. Under normal operating conditions, the power flow from Area #1
to Area # 2 is 400 MW.

3.2 Analysing the SIMULINK Model

As mentioned before, Simulink is a block diagram environment for multi-domain simulation and
Model-based design. It supports system-level design, simulation, and continuous test and verifica-
tion of embedded systems. It can now also be used to analyze and design of power systems. The
original simulation system is just initially written as a SIMULINK model. The sium4mac.mdl file,
containing the graphical model description and assignments to parameters of template blocks, is
the main entry point of our analysis. Form the Model, we can know:

• What is simulation process, the time.

• What are the inputs and desired outputs of the model and where are they from (How are
they initialized and updated).

• How do the operations linked together: the execution order of the blocks, their dependency.

• What are the specific operations involved, and how to understand them: their mathematical
meaning (control flow)

3.2.1 An overview of the simulation process

From the sium4mac.mdl, we get a power system shown in Figure:

Figure 3.2: An Overview of the Model in SIMULINK

As we can see from the Fig.3.2, the root system gets one input data called control input which is
now defined as a constant 0 and produce outputs of the simulation as the phase differences between
generator 1 and generator 3 (G1-G3) and G2-G4 respectively. These phase difference can be used
to measure whether the difference between the voltage and the current in an AC circuit are in
phase. In addition, only when the voltage between the hots is zero, namely, in phase, can two
generators connected together. As we can see, scope blocks are used to display signals generated
during simulation. An example result of 20 seconds’ simulation of the phase difference between
generator 2 and generator 4 is shown in Fig. 3.3, the signal fluctuated regularly and gradually
leveled off.
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Figure 3.3: The Result of 20s’ simulation of G2-G4

As a simulation system in SIMULINK, the input data streaming through the model, doing oper-
ations behind it (more detailed in the subsystems) once each step size and update their states,
which will be used in next step. So the total number of iterations is:

Updatetimes =
Simulationtime

Stepsize
(3.1)

Where step size is set to 1e-3 by default, and Simulation Time is the total length of time the
simulation runs (the period between start time and end time), these values can be set from the
solver pane of the graphical user interface: Simulation →Configure Parameters→Solver.
The solver plan specifies not only the simulation start and stop time but also the solver configuration
for the simulation. As we mentioned before, a solver computes a dynamic system’s states at
successive time steps over a specified time span, using information provided by the model, which
is the fundamental mechanism of the simulation process.

The Simulink product provides an extensive library of solvers (e.g., the Dormand-Prince method,
the Runge-Kutta method, the Bogacki-shampine method, the Heuns method and the Euler method)
each of which determines the time of the next simulation step and applies a numerical method to
solve the set of ordinary differential equations (ODEs) that represent the model. In the process
of solving this initial value problem, the solver also satisfies the accuracy requirements that we
specify. The default setting is the ode3 solver (Bogacki-shampine).

3.2.2 Subsystems

To see how is the power system structured and how is the data updated, we can just trace down
hierarchical block diagram level by level.

As shown in Fig. 3.4, the power system is configured by 5 main subsystem blocks, and each of
these subsystems also contains its own subsystems, totally 19 subsystems:

• TSCS system

• The ’machine network interface’ system

• The excitation system

1. DC Exciter R f

2. DC Exciter V r
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Figure 3.4: block diagram of the power system model

3. DC Exciter E df

4. DC Exciter V tr

• The machines (generators)

1. Machine state equations: Machine omega, Machine delta, Machine psid, Machine psiq,
Machine eq dash, Machine ed dash.

2. Machine T elec

3. Machine currents

• The Modified Ybus due to change in k c block: Some intermediate processing blocks used for
data (Matrix) transformation.

1. Switching logic

2. Multiport switch

3. Modified TCSC line admittance

4. Modified Ybus entries due to change in kc

5. Ybus modification

Amount these subsystems, some of them are for flow control, namely, the ’Switching logic’ and
’Multiport switch’ subsystems. They together determine what Y bus data to be used in each iter-
ation. And the ’Ybus modification’ system performs an intermediate operation on the Y bus data
which gets the new bus data used for each iterations calculations by changing some entries in the
Y bus data matrix. The remaining subsystems are all for updating the desire parameters: Delta,
Eq dash, Ed dash, Psid, Psiq, Omega, I mach, T q, T d, Vm cmplx, Efd, Rf, Vr, Vtr,T elec,
Kc. In other words, each of these subsystems encapsulates the dynamic updating rule for one of
these 16 parameters (the ’Machine currents’ updates 3 of these parameters together: I mach, I q
and I d).

The dynamic behavior of these devices (subsystems) is generally described through a set of differ-
ential equations. The power flow in the network is represented by a set of algebraic equations. This
gives rise to a set of differential-algebraic equations (DAEs) describing the power system behavior.
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(a) Inside the excitation system (b) Inside the Exciter R f block

Figure 3.5: The Excitation Subsystem

The relevant equations governing the dynamic behavior of only the specific types of models used
in this study system are given in Chapter 2.

By tracing down the subsystems, we can extract the operation blocks and their mathematical repre-
sentations to form the algorithms used to simulate the power flow and finally they can be matched
with the differential-algebraic equations given. For example, the Excitation system and can be
further extended and finally matched the governing equations for the IEEE-DC1A type excitation
system given by:

dVtri
dt

=
1

Tri
[−Vtri + Vti] (3.2)

dEfdi

dt
= − 1

TEi
[KEiEfdi + EfdiAexe

BExEfdi − Vri] (3.3)

dVri
dt

=
1

TAi
[
KAiKFi

TFi
RFi +KAi(Vrefi − Vtri)−

KAiKFi

TFi
Efdi − Vri] (3.4)

dRFi

dt
=

1

TFi
[−RFi + Efdi] (3.5)

As we can see form Fig. 3.5 below, block DC Exciter R f, DC Exciter V r, DC Exciter E df and DC
Exciter V tr corresponding to the R Fi,V ri,E fdi,V tri respectively in the formulas. And Figure is
extended form the Exciter R f block, it correspongs to the equation (3.2.12) which calculates the
RFi by an integration operation.

3.2.3 Data Initialisation

Obviously, the input data of this power system is never only the ’control input ’. However it is only
one that can be specified by users (it is now set to 0). For each block, the input data stream in and
give rise to outputs after calculations. The input of some blocks depends on the output of some
blocks. For each time step, the current states of the input data are used to update the dynamic
system’s states, which will be used in next step. In this way, the variables in the system keeping
changing their states like a state machine. For example, the DC Exciter V r block of the excitation
system takes RF ,Vref ,Efd and Vtr as inputs and output the value of Vr which is the input of the
DC Exciter E df block. At the same time RF is also the output of Exciter R f block, etc.

Therefore, before the simulation begins, all these parameters in the system should already have
their initial states. The question is where are from? The answer can be found in the callback
setting of the model properties. (Fig. 3.6)
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Figure 3.6: The Model Properity Pane

Callbacks are a series of user-defined commands that execute in response to a specific modeling
action, such as opening a model or stopping a simulation. one can also use callbacks to execute
MATLAB code. You can use model, block, or port callbacks to perform common tasks. In our
system, only the initial function is specified: Run simu. This function is called each time the model
is initialized and is therefore, before the simulation starts. The Run simu.m is a MATLAB script
that calls other MATLAB scripts and functions to calculate the initial states of the input value of
the Model. We can find all the variables appear in the model in these .m files and their descriptions
as comments.

To be more detailed, the initialization process involves 11 MATLAB files. The Run simu.m file
does totally 3 things:

• Call the init cond.m script: Creating the parameters in the workspace form the data files.

1. Call the data kundur mod.m scrip which is the 4-machine 11-bus system from Kundur’s
book[].

Provides the 11*10 Bus Data, 10*7 Line data, 4*17 Exciter Data, 1*7 CSC data, and
4*21 machine data. And call the mac sat kundur.m script where some operations are
performed on the above data to get more new data.

2. Converting the machine parameters to the system base.

3. Define the parameters used for the machine, TCSC system and the exciter system. E.g.,
T do p, T qo p, X d, X q, k c, T tcsc, tcsc from bus, tcsc to bus.

4. Give condition initialization and zero initialization of all the states.

5. Use the bus data, line data and etc., to get the load flow solution by calling the MAT-
LAB function loadflow mod.

This function solve the load-flow equations of power systems modified to eliminate do
loops and improve the use sparse matrices and may produce a Load-Flow Study Report
at the end. The algorithm is the Newton-Raphson method using the polar form of the
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equations for P (real power) and Q (reactive power). So it calls other MATLAB func-
tions: calc, form jac, chq lim, ybus mod.

6. Use the load flow solution to get the initial values of the inputs in the model. E.g.,
Theta, Ign, Temp, Delta, Omega, Igm, I q, eq dash, ed dash, psid, psiq, E dc, Efd, K E,
Rf, Vtr, Vr, T elec, T mech, I curr.

• Call the init sim.m script: Declarifing the simulation parameters used in the model, such as
the sampling time, pre-fault time, fault duration and the post-fault time.

• Load the bus admittance matrix Y: Ybus data89.mat/ Ybus data79.mat.

As we know that, the data initialization is before the simulation process starts, after we get the
initial states of the data, how to update the states is what we should focus on in order to analysis
the simulation process. We analysis the simulation process from two software aspects: the control
flow and dataflow. The control flow is about how executions of the blocks are sorted according
to the data dependency. From the data flow perspective we illustrate the specific operations that
done on the data.

3.3 Control Flow (Execution Order of the Blocks, Data Depen-
dency)

From a macroscopical view, we can imagine that the model works like a state machine, data stream
in and out with all the blocks are executed in parallel. However, as a software implementation,
there must be some kind of sort in the execution of SIMULINK.

During the updating phase of simulation, Simulink determines the order in which to invoke the
block methods during simulation. This block invocation ordering is the sorted order. In order to
translate the simulation process to a C code, we must find out this order. Fortunately, we can
view the sorted order in the model window by selecting Display →Blocks →Sorted Execution
Order. Simulink displays a notation in the top-right corner of each nonvirtual block and each
nonvirtual subsystem. These numbers indicate the order in which the blocks execute. The first
block to execute has a sorted order of 0. Here is an example in our system:

However, our system is actually complicated and the data dependency is intricate. If we want
to understand the execution order only from those numbers we must understand how Simulink
determines the sorted order. To ensure that the sorted order reflects data dependencies among
blocks, Simulink categorizes block input ports according to the dependency of the block outputs
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on the block input ports. An input port whose current value determines the current value of one
of the block outputs is a direct-feedthrough port. Examples of blocks that have direct-feedthrough
ports include: Gain, Product, Sum. Examples of blocks that have non-direct-feedthrough inputs:
Integrator, constant, memory[20].

By studying the tutorial[20], the rules for sorting blocks can be concluded as:

If a block drives the direct-feedthrough port of another block, the block must appear in the sorted
order ahead of the block that it drives. This rule ensures that the direct-feedthrough inputs to
blocks are valid when Simulink invokes block methods that require current inputs. Blocks that
do not have direct-feedthrough inputs can appear anywhere in the sorted order as long as they
precede any direct-feedthrough blocks that they drive. Placing all blocks that do not have direct-
feedthrough ports at the beginning of the sorted order satisfies this rule. This arrangement allows
Simulink to ignore these blocks during the sorting process. Applying these rules results in the
sorted order. Blocks without direct-feedthrough ports appear at the beginning of the list in no
particular order. These blocks are followed by blocks with direct-feedthrough ports arranged such
that they can supply valid inputs to the blocks which they drive.

Figure 3.7

As an example in our system, The TCSC subsystem is virtual it does not have a sorted order (Fig.
3.7) and does not execute as an atomic unit. However, the blocks within the subsystem execute at
the root level, so the Integrator block in the TCSC subsystem executes first. As we can see from
Fig. 3.8 The Integrator block sends its output Kc to the connecting block in the upper-level model,
which executes next.

Figure 3.8: The TCSC subsystem with Block Sorted Order

By tracing the sorted order notation, we found that the Integrator block inside the Machine Delta
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subsystem has a sorted order of 0:0, indicating that this Integrator block is the first block executed
in the context of the entire model. And then is the TCSC subsystem that update the value of
Kc with the Integrator block inside the TCSC subsystem has a sorted order of 0:8. In next step,
the Machine Eq dash subsystem is invoked etc., the author noticed that it is a good approach to
find the execution order by compare the sorted order notations of the Integrator blocks in each
subsystems. This is because Integrator block always executes the first in one subsystem.

Finally, the execution order of the subsystems can conclude as:

Machine delta →TSCS system →Modified Y bus due to change in Kc →Machine psid →Machine
ed dash →Machine psiq →Machine eq dash →Machine currents (I mach) →machine network inter-
face →DC Exciter E df →DC Exciter R f →DC Exciter V r →DC Exciter V tr →Machine omega
→Machine currents (I q, I d)→Machine T elec

3.4 Dataflow (Block Operations)

Other then other software applications, Simulink provides the graphical user interface that represent
all the knowledge in a form of a diagram. To convert the model to C code, we should also understand
the operation blocks and extract their mathematical representations form the diagram presentation
to see what calculations are performed. As we know, non-virtual blocks normally represent some
mathematical operation on their input values. A set of non-virtual blocks connected together may
give rise to an algorithm. Under each of the 19 subsystems, we can find the detailed operations.

In this section, some very important and not common operation blocks used in the simulation
process are introduced with their underlying mathematical principles discussed.

3.4.1 Arithmetic operations

In Simulink, different operators are represented as different blocks. The most simple and common
ones should be the arithmetic operators (addition, subtraction, multiplication and division). As a
example, see Fig. 3.9 the Machine T elec subsystem which updates the value of the time constant
T elec contains only the arithmetic operators.

Figure 3.9: the Machine T elec subsystem

Form the diagram we can see two forms of operators that can represents the production operation,
Product and Gain. We can extract the update formula form the diagram as:
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Telec = (eq dash ∗ I q ∗ X d dp−X ls
X d p−X ls ) + (ed dash ∗ I d ∗ X q dp−X ls

X q p−X ls ) + (psid ∗ I q ∗ X d p−X d dp
X d p−X ls ) −

(psiq ∗ I d ∗ X q p−X q dp
X q p−X ls )− (I q ∗ I d ∗ (X q dp−X d dp)

3.4.2 Integration

As we mentioned before, the dynamic behavior of the power system is described by a set of non-
linear differential-algebraic equations (DAE). After analyzing the SIMULINK model, it is not hard
to see that most of out update rules are dependent on the Integrator block, which outputs the value
of the integral of its input signal with respect to time. For example, the dynamic characteristics of
the TCSC system (Fig. 3.10)is assumed to be modeled by a single time constant T tcsc represent-
ing the response time of the TCSC control circuit as follows:

d
dt∆kc = 1

Ttcsc
(−∆kc + ∆kc−ref + ∆kc−ss)

In Simulink, it is represented as:

Figure 3.10: The TCSC System in SIMULINK

While this equation defines an exact relationship in continuous time, Simulink uses numerical
approximation methods to evaluate them with finite precision. Simulink can use a number of
different numerical integration methods, called ODE solver, to compute the Integrator block’s
output, each with advantages in particular applications. With the ode3 (Bogacki-shampine) solver
is the default one, we can also use the Solver pane of the Configuration Parameters dialog box to
select the technique we want to use.

Mathematical Principle of ODEs:

The following is the general definition of ODE [35]: Let F be a given function of x,y, and derivatives
of y. Then an equation of the form:

F (x, y, y
′
, ..., y(n−1)) = yn

is called an explicit ordinary differential equation of order n. More generally, an implicit ordinary
differential equation of order n takes the form:

F (x, y, y
′
, y

′′
, ..., y(n)) = 0

There are plenty of numerical methods has been proposed for solving ODE. In our program, for
simplicity, we chose the ODE Solver called the Euler Method.

Mathematical Principle of Euler Method:

In mathematics and computational science, the Euler method is a first-order numerical procedure
for solving ordinary differential equations (ODEs) with a given initial value. And the following is
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Figure 3.11: Graphical Illustration of Euler Method

the idea of the Euler Method:

Consider the problem of calculating the shape of an unknown curve which starts at a given point
and satisfies a given differential equation. Here, a differential equation can be thought of as a
formula by which the slope of the tangent line to the curve can be computed at any point on
the curve, once the position of that point has been calculated. The idea is that while the curve
is initially unknown, its starting point, which we denote by A0 is known (see Fig. 3.11). Then,
from the differential equation, the slope to the curve at A0 can be computed, and so, the tangent
line. Take a small step along that tangent line up to a point A1 Along this small step, the slope
does not change too much, so A0 will be close to the curve. If we pretend that A1 is still on the
curve, the same reasoning as for the point A0 above can be used. After several steps, a polygonal
curve A0, A1, A2, A3.is computed. In general, this curve does not diverge too far from the original
unknown curve, and the error between the two curves can be made small if the step size is small
enough and the interval of computation is finite. And the function looks like:

Suppose that we want to approximate the solution of the initial value problem

y
′
(t) = f(t, y(t)), y(t0) = y0

Choose a value h for the size of every step and set tn = t0 +nh. Now, one step of the Euler method
from tn totn+1 = tn + h is

yn+1 = yn + h ∗ y′
(t)

The value of yn is an approximation of the solution to the ODE at time : tn : yn ≈ y(tn).

In our system, h is the step-size, y
′
(t) is the derivative of y at time t. From the formula we can see

that if we have y0, step-size and the formula of how to calculate the derivative then we can calculate
the value of the variable at any time.In our case, the step-size is already known, the default value
y0 is calculated using several .m files and can be known directly as well. What’s more the formula
of how to calculate the derivative of each variable can be derived from the SIMULINK model as
shown in Chapter 4.

3.4.3 Multiport Switch

The Multiport Switch block chooses between a number of inputs passing through the input signals
corresponding to the truncated value of the first input. The inputs are numbered top to bottom
(or left to right) with the first input port is the control port and the other input ports are data
ports.
In our system, the Multiport Switch block is used in the ’Modified Ybus due to change in kc’
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Figure 3.12: The Multiport Switch Block

subsystem as shown in Fig. 3.12. Like the usage of switch statement in a programing language,
based on the value of Ybus switching timing (1,2 or 3), the system choose different Y bus data from
Ybus prf, Ybus psf or Ybus drf to pass to the next operation and if no value matching, the system
will pass the Ybus drf.

3.4.4 Pulse Generator

From the above section, we know that which Y bus data to use is depending on the value passed to
the ’Switching logic’ block (Fig. 3.13). This block uses two Discrete Pulse Generators each of
which generates the value of 1 intermittently. So that, adding up with a constant of 1, it can finally
output a value of 1,2 or 3 changing with the simulation time. (This scheme is to simulation an
occur of short-circuit as I observed that after 1.0s the value of Ybus switching timing ’ will always
be 2)

Figure 3.13: The Switching Logic Block

The working principle of a Discrete Pulse Generator block is that it generates a series of pulses at
regular intervals. We specify the Amplitude as the amplitude of the pulse; the Pulse width as
the number of sample periods the pulse is high; the Period is the number of sample periods the
pulse is high and low and the Phase delay is the number of sample periods before the pulse starts.
The Sample time is the length of the one sample period, here is the step size: 0.001 seconds. For
example, our Pulse Generator 2 as the parameters shown in Fig. 3.14:
With prd = prft+psft

Tsmp = 26000, phdelay = prft
Tsmp = 1000; pulswdth2 = fdtn

Tsmp = 80 predefined in the
init sim.m file. Where Tsmp is sample time = 0.001s. This means that the generator will begin
to output value 1 every 26 seconds after 1 seconds simulation and each time lasts for 0.08 seconds.
For the remaining time, outputs 0.
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Figure 3.14: Parameters for an Pulse Generator

3.4.5 LU Solver

As a nonlinear solution scheme to solve the resultant nonlinear algebraic equations, the LU Solver
block solves the linear system AX = B by applying LU decomposition to the M-by-M matrix (must
be square) at the A port. The input to the B port is the right side M-by-N matrix, B. The M-by-N
matrix output X is the unique solution of the equations. The block treats length-M unoriented
vector input to the input port B as an M-by-1 matrix. In our system, a LU Solver is used in the
’Machine Network interface’ subsystem which takes the 11*11 Y bus data and 11*1 i bus mod to
get the Vm cmplx values of the 11 bus.

Figure 3.15: LU Solver Block in SIMULINK

Algorithm

The LU algorithm factors a row-permuted variant (Ap) of the square input matrix A as AP = LU
where L is a lower triangular square matrix with unity diagonal elements, and U is an upper
triangular square matrix. The matrix factors are substituted for Ap in ApX = Bp where Bp is the
row-permuted variant of B, and the resulting equation LUX = Bp is solved for X by making the
substitution Y = UX, and solving two triangular systems: LY = Bp, UX = Y .

LU Decomposition

From the algorithm we can see that the first step for a LU Solver is to factor a matrix as the
product of a lower (L) triangular matrix and an upper (U) triangular matrix. This process is the
so-called LU decomposition (or LU Factorization).
The LU decomposition is basically a modified form of Gaussian elimination. We transform the
matrix A into an upper triangular matrix U by eliminating the entries below the main diagonal.
[35] The idea is shown in Fig. 3.16. There are many methods proposed to solve LU decomposition,
for example, the most common one, the Doolittle algorithm, does the elimination column-by-column
starting from the left, by multiplying A to the left with atomic lower triangular matrices. It results
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Figure 3.16: An LU decomposition of a 3x3 matrix

in a unit lower triangular matrix and an upper triangular matrix. And the Crout algorithm is
slightly different and constructs a lower triangular matrix and a unit upper triangular matrix. In
our C code implementation, we adapt the Doolittle algorithm for LU decomposition, please see
more detail in next Chapter.

3.4.6 Real-imag to Complex and Complex to Real-imag

Complex numbers are very common in electrical engineering. In our system, we have to deal with
complex numbers, for examples, the Y bus data are complex numbers, the machine currents, injected
current in machine bus (I mach) is in complex number and the same as the Vm cmplx values. So,
in some circumstance, we have to do the job of convert real numbers to complex numbers and
sometimes inversely. In the Machine currents subsystem, we can experience the use of this kind of
blocks: the Real-imag to Complex block and Complex to Real-imag block.

Figure 3.17

In Simulink, the Real-imag to Complex block (red block in Fig. 3.17) converts real and/or imaginary
inputs to a complex-valued output signal. The inputs must be real-valued signals of type double.
The data type of the complex output signal is double. The Complex to Real-imag block is just the
opposite.

From Wikipedia, a complex number is a number that can be expressed in the form a+ bi, where
a and b are real numbers and i is the imaginary unit, where i2 = 1.[1] In this expression, a is the
real part and b is the imaginary part of the complex number.

In Simulink, the inputs may be both vectors of equal size, or one input may be a vector and the
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other a scalar. If the block has a vector input, the output is a vector of complex signals. The
elements of a real input vector are mapped to real parts of the corresponding complex output
elements. An imaginary input vector is similarly mapped to the imaginary parts of the complex
output signals. If one input is a scalar, it is mapped to the corresponding component (real or
imaginary) of all the complex output signals. For example the Real-imag to Complex block in the
diagram does the operation as:

Output = (eq dash ∗ C4/C3 + psid ∗ C2/C3 + (ed dash ∗D4/D3− psiq ∗D2/D3 ∗ I)

3.4.7 Exponential form of complex number

As we can see from the Fig. 3.17 (pink part), It gives an exponential form of complex number as
the output is: ei∗delta, where i ∗ delta is a complex number that equals 0 + i ∗ delta.

Mathematical Principle

We have, so far, considered two ways of representing a complex number: Cartesian form z = a+ ib
or polar form z = r(cos + isin) . And since ei = cos + isin, we therefore obtain another way in
which to denote a complex number: z = a+ ib = r(cos+ isin) = rei

So we get ei∗delta = cos(delta) + I ∗ sin(delta);

3.4.8 Others

(a) Assignment (b) Selector (c) Complex to Mag

Figure 3.18: Other Noteworthing Blocks

Assignment Block (Fig. 3.18(a)): Assign values to specified elements of a multidimensional out-
put signal. The index to each element is identified from an input port or this dialog.

Assignment blocks are used after the modified Ybus entries Y (9, 9)Y (8, 8), Y (8, 9) due to the change
in the percentage compensation of the TCSC (Kc) are calculated and we have to exchange the old
values to the new values.

Selector (Fig. 3.18(b)): Select or reorder specified elements of a multidimensional input signal.
The index to each element is identified from an input port or this dialog. In our system, the selector
block is used when passing the Vm cmplx values, as the Vm cmplx is a 11*1 array, only the first
4 units are meaningful values for each of the four machines. So the selector block selectors the 4
elements.

Complex to Magnitude-Angle (Fig. 3.18(c)): Compute magnitude and/or radian phase angle
of the input.

Consider the complex number z = abi. The complex conjugate of the number z, denoted z∗, is
obtained by simply taking every i that you see in the expression for z and replacing it by i. The
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magnitude of a complex number z, denoted |z|, is defined to be the positive square-root of the
complex number times its complex conjugate. That is, |z| =

√
zz∗

In general, for the generic complex number z = a+ bi, the magnitude of z is given by:

|z| =
√
zz∗ =

√
(a+ bi)(a− bi) =

√
a2 − abi+ abi− b2i2

And, since i2 = 1,

|z| =
√
a2 + b2

In our system, we compute the magnitudes of the 4 complex numbers from the Vm cmplx array to
get the measured terminal voltages (Vt) for the 4 machines to be used in the Excitation system.

3.5 Performance Gain

Figure 3.19: SIMULINK Profiling Report

The second analysis of the existing model is about the running time, by looking at a Simulink
Profile Report as shown in Fig. 3.19, we can get the total recorded time of each simulation as well
as the detailed records such as, the times per call and self time. By running multiple simulations
on different time periods (here we show 5s, 10s, 20s, 40s), we get results like this:

Simulation Time 5s 10s 20s 40s
Recorded Time 22.64s 42.87s 83.02s 163.35s

Table 3.1: f

As shown in the figures, although the recorded times are increasing linearly, it is much (4 times)
bigger than the real simulation times. This means that the simulation is far from optimal and has
a large space for acceleration.

3.6 Summary

In this chapter, we describes the process of how we get to understand the SIMULINK model as a
new player. In detail, we firstly introduced the power system that the simulation built on, then
from the Simulation program we analysed the properties of the program: the requirements of the
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program, the data flow and the control flow of the program.Section 3.1 described the power system
being simulated. Section 3.2 covered an detailed analysis of the power system simulation in the
form of a SIMULINK model. And section 3.3 gave a brief illustration of the performance of the
SIMULINK model from the efficiency prospect.



Chapter 4

Optimised the Power System
Simulation

4.1 Simulink Coder & Initial Design

The Simulink Coder (formally Real-Time Workshop code generator)[20], is an extension of capa-
bilities of Simulink and MATLAB that automatically generates, packages and compiles C or C++
source code from Simulink diagrams to create real-time software applications on a variety of sys-
tems.

Firstly, we tried to use the Simulink Coder to automatically generate the C code form our Simulink
system. The Coder generated a folder called simu4mac1 grt rtw which contains 28 files including
header files, data files, etc. And only the main C file has almost 2500 lines of code with very elu-
sive structure. It seems that because of the automaticity, the generated code is not very efficient.
Therefore, if we want to use the generated code we have to experience large amount of refactoring
and reimplementation work. And it may be time consuming to understand the generated code
first. According to the above reasons, we decided to write the C code from a scratch.

Drawing lessons from the Simulink Coder [28], we know that in the first phase the Simulink coder
converts the model to an executable form following these steps:

• It evaluates the parameters (given as expressions over constants and Matlab’s workspace
constants) of the model’s blocks;

• It determines signal attributes, e.g., name, data type, numeric type, dimensionality and
sample rate (these are not explicitly specified in the model file) and performs type-checking,
i.e., it checks that each block can accept the signals connected to its inputs;

• It flattens the model hierarchy by replacing virtual subsystems with the blocks that they
contain;

• It sorts the blocks according to the execution order.

After this phase, the blocks are executed in a single loop corresponding to a single step of the
model.

As long as we know the sort of execution for each block we are now able to realize exactly what
simulink does in a time step as follows:

In a specific time i*step time:

For each machine{

38
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double delta value[machine]=delta[i][machine]; //The Integrator block in sub-system Machine
delta which has a sorted order of 0.

double delta in radian= delta value[machine]* 180/PI; //The gain block in sub-system System
which has a sorted order of 1(However, this value is not important here due to we focus on how the
value of all the states change in one time step here. This gain block only matters the output and
won’t have effect on any of the states.)

double k c value=k c[i]; //The Integrator block in sub-system TCSC which has a sorted order of
8.(Here we move from 1 directly to 8 for the same reason

details please refer to the full sorted list in the appendix.)
.
.
double omega value=omega[i][machine]; //The Integrator block in sub-system Machine omega who
has a sorted order of 69.
.
.
double delta[i][machine]=omega value[machine]-omega synch
}

However, if we are doing as above, then we can find that we are assigning the updated value to the
variable in the same round, and when the time becomes (i + 1) ∗ stepsize, delta[i + 1][machine]
and all other variables will become undefined. And the problem is according to the principle of
integration. As we use Euler’s method, the update rule follows f(x+1) = f(x)+h∗f ′(x), here the
updated value should be assigned to the variable in the next round. Therefore, we need to identify
which blocks are assigning value to current variables and which blocks are assigning value to next
time step’s variables. Which can be very time consuming and fallible and it will be very difficult
to locate such bugs when debugging.

Therefore, instead of exactly re-implement all the operation steps in sequence, we may take the
computation in a subsystem as a whole, which means we re-implement in the order of subsystems.

We can do so because for the sub-systems who contain Integrator blocks, they are essentially im-
plementing Euler’s method: f(x+ 1) = f(x) +h∗f ′(x), which means in the current round they are
using the value in previous round so that in the current round there are no dependencies between
any pair of variables and the order is not important as long as they updated the value and assigned
the value to variables in the next round. For the sub-systems who don’t contain Integrator blocks,
we can also treat a sub-system as a whole is because the sorted order is data-driven. For instance,
in sub-system ’Ybus modification’, block Assignment needs the value of Y 8 9, therefore the sum
block in modified Ybus entries due to change in kc will be executed first so that it has a sorted
order of 31 and the Assignment block has a sorted order of 32, which means if the whole sub-system
modified Y bus due to change in kc is executed before the sub-system Y bus modification, then we
will still get the same expected result. In fact, virtual sub-systems have no sorted order, however
we may determine the order of the sub-systems according to their Integrator blocks’ sorted order
and the order of data flow. And as a result, the derived order is just as mentioned in section

RTW also affirms this idea that Simulink diagrams represent synchronous systems, and can there-
fore be translated naturally into an initialization function and a step function. [28]The block
diagram in the left of Fig. 4.1, for example, represents a counter; the corresponding initialization
and step functions that were generated RTW appear to the right of the same figure. The generated
code has the form of two functions corresponding to the initial state and the step.
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Figure 4.1

Based on this guidance, we got to our initial train of thought: we firstly converted each subsystem
to a single C function. That is we encapsulated the update operations of each subsystem in a
step function as a black box hiding the dataflow. And then have to focus on two aspects: the
initialization of the parameters and updating the parameters by calling the step functions abiding
to the right order.

4.2 Reimplementation

4.2.1 Data Initialisation

As we have discussed in previous chapter, before the simulation begins, all these parameters in
the system should already have their initial states. In our system, the initial function: Run simu
calls other MATLAB scripts and functions to calculate the initial states of the input value of the
Model. Some of the .m files are only for data supplying and some of them perform some operations
on the loaded data. We can find all the variables appear in the model in these .m files and their
descriptions as comments.

Therefore, the re-implementation of the data initialization functions is actually the work of con-
verting the MATLAB scripts and functions to C code. However, after analyzing the Matlab code
we found that converting all the .m files which initialize the model is a time-consuming work, espe-
cially the function loadflow mod.m who solves the load-flow equations of power systems using the
Newton-Raphson algorithm. And this function also needs to call 4 other functions that make the
code more complex.

Fortunately, the initialistion process is before the simulation starts and it has little influence to the
performance of the simulation. So we realized the initialization of all the input by directly utilizing
the data generated from the .m files instead of actually converting them into C code. Specially,
we hard coded the data that is needed for the model, i.e., the data in data kundur mod.m. And
we also re-wrote the function mac sat kundur.m code to initialize the variables and states that are
used in the model. But for the later processing: load-flow solution. We only hard coded the results
from the MATLAB workspace.
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4.2.2 Timing and Update Sequence

As we know, in Simulink, the simulation process is time based. A solver computes a dynamic
system’s states at successive time steps over a specified time span, using information provided
by the model. So we should specify the Simulation Time which is the total length of time the
simulation runs (the period between start time and end time) and the Step size which determines
the update frequency. As for the Euler solver: F (t) = F (t − 1) + h ∗ F ′(t − 1), stepsize = h. We
can imagine that, the system updates its states every step size. So the total number of iterations
is:

Iterations = Simulationtime
stepsize

For example, if the Step size is set to the default value 1e-3, and Simulation Time is the 20s, the
total number of iterations is: 20000. We can simulate this timing scheme in C code as a single for
loop in the main function: for(i = 0; i ∗ stepSize <= simulationtime; i+ +)

In each iteration, we update all the states by calling the step functions of the subsystems in the
order:

Machine delta →TSCS system →Modified Y bus due to change in Kc →Machine psid →Machine
ed dash →Machine psiq →Machine eq dash →Machine currents (I mach) →machine network inter-
face →DC Exciter E df →DC Exciter R f →DC Exciter V r →DC Exciter V tr →Machine omega
→Machine currents (I q, I d)→Machine T elec

However, during the implementation phase, we noticed that, keep calling functions outside the
main function needs declaration of a large amount of variables which in some extent embarrassed
the algorithm.

As we know, Amount these subsystems, the ’Switching logic’ and ’Multiport switch’ subsystems are
for flow control, and the ’Ybus modification’ system performs an intermediate matrix operations on
the Y bus data which gets the new bus data used for each iterations calculations by changing some
entries in the Y bus data matrix. And each of the remaining subsystems encapsulates the dynamic
updating rule for one of these 16 parameters: Delta, Eq dash, Ed dash, Psid, Psiq, Omega, I mach,
T q, T d, Vm cmplx, Efd, Rf, Vr, Vtr,T elec, Kc

The dynamic behavior of the some of these subsystems is generally described through a set of
differential equations while some them (the power flow in the network) are represented by a set of
algebraic equations. Therefore, for each of the parameters, we can simplify the step function as
a single equation (formula). For example, by the Euler method, the integrator just updates the
states following the formula: F (t) = F (t− 1) +h ∗F ′(t− 1) and F (0) = x0, where F (t) is the value
of a variable at time t, h is the step size, F ′(t) is the derivative at time t. The default value x0 is
calculated using several .m files and can be known directly as well. What’s more the formula of how
to calculate the derivative of each variable can be derived from the SIMULINK model. Therefore,
we can calculate the value of the variable at any time. And for the algebraic subsystems, we can
extract algebraic equations straightforward from the model diagram.

In details, instead of using only one variable to store the current value of state, I created two-
dimensional arrays for every variable respectively to store the value of each variable in every round,
specifically, the first dimension is the time (iteration) and the second dimension is the machine
number (totally 4 machines). And we do not need to call any step functions, we just use the
formulas to update the parameters in each iteration by the sorted order:

Delta →k c →Psid →Ed dash →Psiq →I mach →Vm cmplx →Efd →Rf →Vr →Vtr →Omega →I q
→I d →T elec.
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However, a noteworthy thing to mention is that, as the subsystems contain Integrator blocks, they
are essentially implementing Euler’s method: F(t)=F(t-1)+H*F’(t-1) and F(0)=x0, which means
in the current round they are using the value in previous round except the first round. So for
update of these kind of parameters, we should add a control scheme: if (i >0) before using the
update formula F(t)=F(t-1)+H*F’(t-1). For the sub-systems who don’t contain Integrator blocks,
they use the current values to update in current round. Therefore, based on all the principles we
discussed above, we get the most compact and efficient version of our main function:

i n t main ( i n t argc , char ∗∗ argv ) {
f o r ( i = 0 ; i ∗ s t e p S i z e <= 20 ; i++) {

i n i t i a l i z e ( ) ;
m o d i f i e d Y b u s e n t r i e s d u e t o c h a n g e i n k c ( ) ;

Ybus modi f i cat ion ( ) ;
i n t i t ;
f o r ( i t = 0 ; i t <= 3 ; i t ++) {

i f ( i > 0) {
// Delta
d e l t a [ 1 ] [ i t ] = d e l t a [ 0 ] [ i t ] + ( omega [ 0 ] [ i t ] −

Omega synch )∗ s t e p S i z e ;
. . .
}

// I mach
I mach [ 1 ] [ i t ] = ( eq dash [ 1 ] [ i t ] ∗ C4 [ i t ] / C3 [ i t ] + ps id [ 1 ] [ i t ]

∗ C2 [ i t ] / C3 [ i t ] + ( ed dash [ 1 ] [ i t ] ∗ D4 [ i t ]
/ D3 [ i t ] − ps iq [ 1 ] [ i t ] ∗ D2 [ i t ] / D3 [ i t ] ) ∗ I )

/ ( R s [ i t ]+ X d dp [ i t ] ∗ I ) ∗ ( cos ( d e l t a [ 1 ] [ i t ] )
+ I ∗ s i n ( d e l t a [ 1 ] [ i t ] ) ) ;

. . .
}

LUSolver1(&Ybus [ 0 ] [ 0 ] , &b [ 0 ] , 11 , i ) ;

f o r ( i t = 0 ; i t <= 3 ; i t ++) {
i f ( i > 0) {

//Efd
e fd [ 1 ] [ i t ] = ( . . . )

. . .
}

// I q
I q [ 1 ] [ i t ] = ( . . . )

. . .
}

}

4.2.3 Reimplementation of the Multiprt Switch Scheme

We implement the updating of the power system parameters in the way we discussed above. Beside
these subsystems that describe the dynamic behavior of devices in power system, in the simulation
model, we also have some subsystem for intermediate data handling. Namely, the wholeModified
Ybus due to change in Kc’ system finally outputs the modified bus admittance matrix Y used in
each iteration due to the power injection of the TCSC system represented by the value of percent-
age compensation (Kc). However, before the modification, we actually use different original Y bus
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data.

The ’Switching logic’ and ’Multiport switch’ subsystems together provide the control scheme for
choosing from 3 different kinds of Y busdata (Ybus prf, Ybus psf, Ybus drf ). As we have detailedly
introduced these two subsystems in section 3.4.3 and 3.4.4, ’Multiport switch’ chose from the 3
options based on the value of ’Ybus switching timing ’ (1,2 or 3) generated by ’Switing logic. This
scheme can be implemented as a switch statement in C code.

The ’Switing logic’ system determines the value of switching time with the help of two Pulse Gen-
erators. The working principle of a Pulse Generator block is that it generates a series of pulses
at regular intervals. We specify the Amplitude as the amplitude of the pulse; the Pulse width as
the number of sample periods the pulse is high; the Period is the number of sample periods the
pulse is high and low and the Phase delay is the number of sample periods before the pulse starts.
The Sample time is the length of the one sample period, here is the setp size: 0.001 seconds. For
example, our Pulse Generator 2 as the parameters: With prd = (prft + psft)/Tsmp = 26000,
phdelay = prft/Tsmp = 1000; pulswdth2 = fdtn/Tsmp = 80 predefined in the init sim.m file.
Where Tsmp is sample time = 0.001s. This means that the generator will begin to output value 1
every 26 seconds after 1 seconds simulation and each time lasts for 0.08 seconds. For the remaining
time, outputs 0.

To implement this scheme in our main, we defined 2 variables Pulse1 and Pulse 2. In each iteration
i, we should determine whether each of Pulse values is 1 or 0. Lets consider a simple case first,
we calculate the value i modulo prd, and if the value is less than pulswdth1 then the amplitude of
the pulse at time i is 1, otherwise 0. Here in our case, the delay needs to be taken into account,
therefore if (i − phdelay) modulo prd is less than pulswdth1, then at time i the amplitude of the
pulse is 1. In addition, due to in our case, time should always larger than 0, the first amplitude of
1 should appear when (i− phdelay) >= 0. In code, it looks like:

i f ( ( i−( i n t ) phdelay )%( i n t ) prd < pulswdth1 && ( i−( i n t ) phdelay>= 0)) {
pul se1 = 1 ;

} e l s e {
pul se1 = 0 ;

}

And then, the get Switching time(pulse1, pulse2) function just returns the addition of pulse1,
pulse2 and a constant 1 which is 1, 2 or 3. And then, by use a switch statement to implement the
Multiple Switch Scheme:
switch (getSwitching time(pulse1, pulse2)
This statement has 3 cases corresponding to the three kinds of Y bus data and the default case is
to use the Y bus drf .

4.2.4 Reimplementation of the Modification of Y bus Data

In the ’Modified Ybus due to change in Kc’ system, we have two subsystems: ’modified Ybus entries
due to change in kc’ and ’Ybus modification’ who modify the bus admittance matrix Y used in
each iteration due to the change in kc. In our C code implementation, we wrote two functions one
for each of these two subsystems.
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//BLOCK: modi f i ed Ybus e n t r i e s due to change in kc
// return the new va lue s f o r changing the o r i g i n a l ones

Bus changes m o d i f i e d Y b u s e n t r i e s d u e t o c h a n g e i n k c
( complex∗ Ybus , complex m o d i f i e d t c s c l i n e y ) {

Bus changes changes = { 0 , 0 , 0 } ;
changes . Y 9 9 = ∗(Ybus + 8 ∗ 11 + 9 − 1) − y t c s c l i n e w i t h k c

+ m o d i f i e d t c s c l i n e y ;
changes . Y 8 8 = ∗(Ybus + 7 ∗ 11 + 8 − 1) − y t c s c l i n e w i t h k c

+ m o d i f i e d t c s c l i n e y ;
changes . Y 8 9 = ∗(Ybus + 7 ∗ 11 + 9 − 1) + y t c s c l i n e w i t h k c

− m o d i f i e d t c s c l i n e y ;
r e turn changes ;

}

//BLOCK: Ybus mod i f i c a t i on
// Replace the cor re spond ing e n t r i e s in Ybus matrix with the new va lues
//and return the new Ybus matrix

double complex ∗ Ybus modi f i cat ion ( complex∗ Ybus , complex Y 8 9 ,
complex Y 8 8 , complex Y 9 9 ) {

∗(Ybus + 7 ∗ 11 + 9 − 1) = Y 8 9 ;
∗(Ybus + 8 ∗ 11 + 8 − 1) = Y 8 9 ;
∗(Ybus + 7 ∗ 11 + 8 − 1) = Y 8 8 ;
∗(Ybus + 8 ∗ 11 + 9 − 1) = Y 9 9 ;
re turn Ybus ;

}

4.2.5 Reimplementation of LU Solver

In our system, a LU Solver is used in the ’Machine Network interface’ subsystem which takes the
11*11 Y bus data and 11*1 i bus mod to get the Vm cmplx values of the 11 bus. The LU Solver
block solves the linear system AX = B by

1. Applying LU decomposition to the square matrix A to get LUX = B and then substitute
Y = UX.

2. And solving two triangular systems. LY = B, UX = Y

We should re-implement this process in C code as a function void LUSolver1(double complex*a,
double complex*b, int n). And in each iteration update Vm cmplx by calling this function.

LU Decomposition Implementation

For the LU decomposition process, we adapt the Doolittle algorithm:

An LU decomposition of A may be obtained by applying the definition of matrix multiplication to
the equation A = LU . If L is unit lower triangular and U is upper triangular, then

aij =

min(i,j)∑
p=1

lipupj (4.1)
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where 1 <= i and j <= n. Rearranging the terms of Equation 4.1 yields

lij =

aij −
j−1∑
p=1

lipupj

ujj
(4.2)

where i > j, and

uij = aij −
i−1∑
p=1

lipupj (4.3)

where i < j Jointly Equation 4.2 and Equation 4.3 are referred to as Doolittles method of comput-
ing the LU decomposition of A. We implemented the same algorithm as:

\\ LU Decomposition

f o r ( k = 0 ; k < n ; k++) {
u [ k ] [ k ] = 1 ;

\\ Find L part us ing Equation 4 .2
f o r ( i = k ; i < n ; i++) {

sum = 0 ;
f o r (p = 0 ; p <= k − 1 ; p++) {

sum += l [ i ] [ p ] ∗ u [ p ] [ k ] ;
}
l [ i ] [ k ] = ∗( a + i ∗ n + k ) − sum ;

}
\\ Find U part us ing Equation 4 .3

f o r ( j = k + 1 ; j < n ; j++) {
sum = 0 ;
f o r (p = 0 ; p <= k − 1 ; p++) {

sum += l [ k ] [ p ] ∗ u [ p ] [ j ] ;
}
u [ k ] [ j ] = (∗ ( a + k ∗ n + j ) − sum) / l [ k ] [ k ] ;

}
}

4.3 Performance Gains

4.3.1 Correctness

The program can generate exactly same results as SIMULINK does up to 10 digits after deci-
mal point after 20000 times calculations (20s’ simulation). And can give the exact same fluctuate
patterns of the signals as in the SIMULINK model. Take the desired phase differences between
generator 1 and generator 3 (G1-G3) of 20’s simulation as an example, the upper diagram (Fig.
4.2)is generated by SIMULINK, and the lower one (Fig. 4.3) is generated from the results of our
C code:
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Figure 4.2: G1-G3 in SIMULINK of 20s’ simulation

Figure 4.3: G1-G3 from C code of 20000 times’ Calculation

4.3.2 Speed

We can get the total recorded time of each simulation in SIMULINK from the Simulink Profile
Reports while recording the running time of the C program using the function gettimeofday().By
running multiple simulations on different time periods (here we show 5s, 10s, 20s, 40s), we get
results like this:

Simulation Time 5s 10s 20s 40s
Recorded Time 22.64s 42.87s 83.02s 163.35s

Table 4.1: Recorded Time using SIMULINK
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Simulation Time 5s 10s 20s 40s
Run Time 0.037s 0.098s 0.158s 0.223s

Table 4.2: Running Time of the C Program

By comparing the results we see that although the recorded times are increasing linearly, it is much
(4 times) bigger than the real simulation times and our C program optimises the simulaiton system
by a approximately 500 times’ speed up.

4.4 Summary

In conclusion, this chapter gave a detailed illustration of an optimised application in C language
that does the same thing with the simulation system. Depending on the analysis in chapter 2, we
described the ideas we used to re-implement each aspect of the simulation scheme that correspond-
ing to each section of chapter 2. Namely, Data initialisation, control flow, and data flow of the
program.



Chapter 5

Accelerating the Power System
Simulation

In this chapter we present our acceleration solutions to running the Power System simulation
and inform the reader of the choices made along the process. Since we identified the most time
consuming part of the simulation fundamentally as a matrix inversion problem disguised as an LU
matrix decomposition, and since we have optimised the C simulation to what we believe was the
maximum possible extent in the timeframe of this project, we look to acceleration by the FPGA
techniques to further speed up our simulation process.

5.1 Profiling

It is important to note that developers using Maxeler technology typically aim to accelerate the
slowest portion of the software. To Identify areas of code for acceleration, we did a more detailed
analysis on the distribution of runtime of various parts of the application using both time counter
and profiling tool: gprof.

Figure 5.1: Profing Result using Gprof

From the result provided by Gprof (Fig. 5.1) we can see, that is the LUSolver1 function that

48
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dominated the most of the running time (75%). It is reasonable as it has nested loops. And it
is clear to see, the other part in the main function only occupy 25% of the total running time.
However, Gprof tells us that the calling of the function modified Ybus entries due to change in kc,
Ybus modification, initialization, getSwitching time do not matter to much to the running speed.
that is the something called intel ssse3 rep memcpy in the system that takes this 25% of the time.
As we can guess that, that is those parameter update operations which are not defined in functions.

By focusing on the LUSolver1 function, we then use time counters in the program to test the running
time of different blocks of operations. As in LUSolver1, there are 3 for loops, the first one for
LU Decomposition, and the other two for forwarding substitution and finding the X(V m cmplx),
respectively. For a 20’s simulation, the first loop takes 122000ms while the other two loops together
take 46000ms. Therefore, we can get the conclusion that the LU Decomposition process is the most
complicated and inefficient part of the code. We should consider if we can accelerate it in Maxeler.

For the second time consuming component, the updating operations, we can also accelerate in
Maxeler as these operations are done on 4 machines. As they do the same operations, we can
pipeline the 4 machine. Therefore, we get to the initial design of a CUP-FPGA simulation shown
in Fig. 5.2.

Figure 5.2: FPGA-based Algorithm Design
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5.2 Pipeline of LU Decomposition

The difficulties I’ve met: 1. multiplexer does not support complex numbers which are the data
types involved in our matrices. 2. For each element of matrix A, the iteration time is different,
namely, the behavior is not regular. we show how we solved them in next two sections.

5.2.1 Analysis

As part of the LU Solver function, the LU decomposition process solves the problem of calculating
a lower triangular matrix L and an upper triangular matrix U given matrix A, such that LU = A.
The C code implementation can be found in .

Due to every calculation must use the up to date value of elements in L and U , we firslty initialize
matrix L and U with all the entries on diagonals are one and the others zero. And the Inputs are
L, U and A, outputs are new L, new U .

Memory Accessing

DFEs provide two basic kinds of memory: FMem and LMem. FMem (Fast Memory) is on-chip
Static RAM (SRAM) which can hold several MBs of data. Off-chip LMem (Large Memory) is
implemented using DRAM technology and can hold many GBs of data. As we know, the key to
efficient dataflow implementations is to choreograph the data movements to maximize the reuse of
data while it is in the chip and minimize movement of data in and out of the chip.

In our system, A, L, U are 11*11 matrixes and the matrix B is an array of length 11. They are
all not of big datasize, so we decided to use the on-chip FMems in Kernels for storing values and
computation.

For example: L[x ∗ 11 + i] ∗ U [y + i ∗ 11] can be written as: L.read(address)*U.read(address)
L[X][Y ] = result can be written as: L.write(address,result,constant.var(true));(Here we may
use a multiplexer to decide the value of the result to decide whether L or U to be changed)

Complex Numbers in Maxeler

In our system, the LU Solver is used to calculate the Vm cmplx value from the Y bus data and
the ,as we know, they are of the type of complex number. However, multiplexer does not support
complex numbers. Therefore in order to use Multiplexer, we need to fisrtly divide the complexer
number into real part and imaginary part which are both DFE variables that Multiplexer supports,
and then combine the returned results by Multiplexer into a complexer number again to achieve
this. Here is an illustration:

DFEVar d i v i s i o n R e a l=x>=y ? 1 . 0 : stream . o f f s e t ( l . read ( x ∗ 11 + x ) , −128)
. getReal ( ) . c a s t ( d f eF loa t (11 , 5 3 ) ) ;

DFEVar d iv i s i onImag=x>=y ? 0 . 0 : stream . o f f s e t ( l . read ( x ∗ 11 + x ) , −128)
. getImaginary ( ) . c a s t ( d f eF loa t (11 , 5 3 ) ) ;

DFEComplex d i v i s i o n = new DFEComplexType( d f eF loa t (11 , 53) )
. newInstance ( t h i s ) ;
d i v i s i o n . s e tRea l ( d i v i s i o n R e a l ) ;
d i v i s i o n . set Imaginary ( d iv i s i onImag ) ;

Data Dependency

The above figure shows in what order the decomposition was executed, and the execution order
was derived according to data dependency. For example, in the first row all the elements start from
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the second column need the decomposed result of the first column’s element. This emphasizes that
the decomposition must be executed in some order to get the correct result. However, if we keep
the algorithm unchanged and then try to rewritten it into Maxeler, then a lot of preparation work
are needed. For example:

After that Maxeler can read input and perform the computation in the correct order. However, if
we do what as what the above illustration shows, then the corresponding computation will change,
see below:

f o r ( i = k ; i < n ; i++) {
sum = 0 ;
f o r (p = 0 ; p <= k − 1 ; p++) {

sum += l [ i ] [ p ] ∗ u [ p ] [ k ] ;
}
l [ i ] [ k ] = ∗( a + i ∗ n + k ) − sum ;

}

Here i,p,k needs to be changed correspondingly, otherwise the computation will no longer be
correct. And I find that to change them correspondingly is not an easy thing so that I proposed a
new algorithm:

f o r each element in A ( read row by row )
I t e ra t i on T imes= 11 ( in s t ead o f min ( row number o f the element ,

column number o f the element ) )
f o r ( i n t i =0; i<I t e ra t i on T imes ; i ++){

i f ( i < min ( row number o f the element ,
column number o f the element ) ){
sum+=L [ x∗11+ i ]∗U[ y+i ∗ 1 1 ] ;

}
e l s e {

sum+=0;
}

}
i f ( row number >= column number ){

r e s u l t =(A[ row number ] [ column number]−sum)/L [X ] [ X ] ;
}
e l s e {

r e s u l t =(A[ row number ] [ column number]−sum ) / 1 ;
}
i f ( row number o f the element>=column number o f the element ){

L [X ] [ Y]= r e s u l t ;
}
e l s e {

U[X ] [ Y]= r e s u l t ;
}

This algorithm doesn’t break the data dependency as shown in the original algorithm, and make
the behavior regular.

5.2.2 Multi-tick Implementation

After refactoring the code, now the code looks like:
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Listing 5.1: Application code

f o r ( i n t a=0; a<121; a+=1){
i n t x=a /11 ; // x i s the row number
i n t y=a%11; // y i i s the column number
i n t z ; // z equa l s min (x , y )
i f (x>=y ){

z=y ;
}
e l s e {

z=x ;
}
sum [ a ]=0;
f o r ( i n t i =0; i <11; i +=1){

i f ( i<z ){
sum [ a]=sum [ a]+ l [ x ] [ i ]∗ u [ i ] [ y ] ;

}
}
i f (x>=y ){

l [ x ] [ y]=sum [ a ] ;
}
e l s e {

u [ x ] [ y]=sum [ a ] / l [ x ] [ x ] ;
}

}

For now we’ve re-implemented the dynamic control flow to make it regular so that it is now able
to be moved into a dataflow Kernel. After refering to the maxcompiler-loops-tutorial which is
a tutorial explaining how loop structure can be implemented in a Kernel, we’ve found an example
which transforms the following code into dataflow Kernel:

Listing 5.2: Tutorial code

i n t count = 0 ;
f o r ( i n t y=0; ; y += 1) {

sum [ y ] = 0 . 0 ;
f o r ( i n t x=0; x<X; x += 1) {

sum [ y ] = sum [ y ] + input [ count ]
count += 1 ;

}
output [ y ] = sum [ y ] ;

}

We may find that both of them are in the same structure:

f o r ( i n t i =0; ; i +=1){
I n i t i a l i z a t i o n ;
f o r ( i n t j =0; j<J ; j +=1){

Accumulated sum= Accumulated sum + Accumulation ;
}
Output ;

}

The only difference between Application code and Tutorial code is that the Accumulation in
Tutorial code is a stream of input, however the Accumulation in Application code is a prodcut
of two previously derived results. Although we may use stream.offset to get the two results, it
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will be too difficult to hard code all the offset values due to the function stream.offset only
receives int or OffsetExpr, which is set by the CPU Code, and neither of them is compatible with
dataflow variable types, which means using dataflow variable types to make an offset expression is
infeasible and the other alternative is to use general multiplexer in the following format:

c o n t r o l .mux( o f f s e t , // Here the c o n t r o l stream
” o f f s e t ” i s in a data f low v a r i a b l e type

stream . o f f s e t (x , 0 ) ,
stream . o f f s e t (x , 1 ) ,
stream . o f f s e t (x , 2 ) ,
stream . o f f s e t (x , 3 ) ) ;

Even though using general multiplexer may be possible, in our case there are 120 previously calcu-
ated result, hard code all of them is too tedious. As a result, we turned to FMem which is on-chip
static memory who can hold several megabytes of data as a solution, by using which we can store
and retrieve generated results easily.
As a result, the following is how our Kernel design looks like what shown in Figure 1.
And the following are the implementation details:

Table 5.1: Data Dictionary

Variable Name Data Type Usage

loopLength OffsetExpr An offset expression by which Maxeler can infer
the minimum positive value for scheduling if there exists one

loopLengthVal dfeUInt(8) The value of the offset expression loopLength

DATA SIZE int The size of the matrix to be decomposed

addressCounter dfeUInt(7) This counter indicates the address where the calculated result
will be write, which increments by 1
when the counter loopCounter wrapped

loopCounter dfeUInt(4) This counter indicates the current loop number, which
increments by 1 when the counter
loopLengthCounter wrapped

loopLengthCounter dfeUInt(8) This counter wraps when it counts to
the value of loopLengthVal-1

x dfeUInt(7) The row number of the element in the input matrix A

y dfeUInt(7) The column number of the element in the input matrix A

z dfeUInt7 The minimum between x and y, which determines
the valid total loop number

l Memory The FMem for storing calculated lower triangular element

u Memory The FMem for storing calculated upper triangular element

AIn DFEComplex The current input element of A

carriedSum DFEComplex The accumulated sum calculated from previous loop

newSum DFEComplex The newly generated accumulated sum in current loop

division DFEComplex The dividend that will be divided by newSum

lcontent DFEComplex The value to be output and to be written to the FMem l

ucontent DFEComplex The value to be output and to be written to the FMem u

The implementation idea is that when the counters loopCounter and loopLengthCounter both
count to 0,which means a new 11 loops begins, an element of A will be read into the kernel and
stored in the variable AIn. As a supplement, the input stream of Matrix A will be read in as the
following illustration:
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At the same time, the variable carriedSum is initialized with the 0, and when the loopCounter
is smaller then z, the carriedSum is added by l[x][loopCounter] ∗ u[loopCounter][y] , and
this is achieved by reading value from FMem l and u with address x*11+loopCounter and
y+loopCounter*11 respectively, otherwise 0, here is the illustration:
When the loopCounter equals 10 and loopLengthCounter equals loopLengthVal-1, which

Figure 5.3: x=1,y=1,loopCounter=0

(a) Element to be read (b) Corresponding address

means the totally 11 loops have finished, then we need to decide the result should belong to l or
u, and whether the result should be divided by l[x][x], and this can be achieved by comparing
x and y, if x>=y, then the result belongs to lower triangle, otherwise the result belongs to up-
per triangle and should be firstly divided by l[x][x]. For now, a whole 11 loops is finished, and
then the addressCounter will increments by 1 and a new element in matrix A should be read
in and processed. After all the 121 elements have been processed then the decomposition is finished.

As a result, we achieved a total ticks of 121*11*128 for implementing a LU decomposition us-
ing a dataflow kernel. Where 121 is the size of the matrix A to be decomposed, 11 is the 11 loops
for processing each element in A, and 128 is the loopLength, namely, the ticks required for executing
one loop.

5.2.3 Pipeline Implementation (LU Pipeline 1)

Although the multi-tick implementation works correctly, it still can be improved a lot. Specifically,
it did not make use of the strength of Maxeler which is in a dataflow engine processing pipeline every
dataflow core(arithmetic unit)computes simultaneously on neighboring data items in a stream. It
is because for the previous implementation, the computations look like follows:
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Figure 5.4: Kernel Design
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No computations are performed simultaneously. In addition, due to 11 is the minimum loop times
for all the elements to be processed correctly, for most of the elements the required loop times
are less than 11, which means there are a lot of loops are unnecessary and doing meaning-less
computations.
In order to make the non-pipelined computations pipelined, a new implementation design was pro-
posed, which is to read in and start processing an element of matrix A every 1∗ loopLength instead
of the previously 11∗ loopLength, which means a new element was read in every loop but not every
11 loops. The feasibility of this design can be shown from the follows:

Figure 5.5: Feasibility Analysis

(a) Required Loop Number

(b) Dependency Analysis

From Figure 3(a) we can know that the required loop number for processing an element is increas-
ing(not strictly increasing) in a row, we always have loop no[x][y] <= loop no[x][y + 1]. Refer to
Figure 3(b), this is a diagram showing the dependency during the computation of each element.
We use gray squares to denote that the element has been processed, in other words, the element
has been decomposed, and we use red square to denote that there are dependencies exist during
the computation for this element. In addition, the horizontal axis is the total loop numbers and
the vertical axis is the index of the element. Take some elements’ computations as examples to
show what are the dependencies, for the 2nd element, a dependency exists during the first loop
is due to u[x][y]=sum[a]/l[x][x], where l[x][x] in this case is l[0][0]. Therefore, due to the
non-pipelined algorithm, l[0][0] should have already been generated, which means we can only
perform this computation when the computation for l[0][0] has been finished. And dependency
also occurs for another reason, and take the the 13th element as an example, due to its x = 1

and y = 1, its z also equals 1, which means sum accumulation is involved in decomposing the
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13th element, see sum[a]=sum[a]+l[x][i]*u[i][y]. In this case x = 1, y = 1, i = 0 so that
only when l[1][0] and u[0][1] have already been calculated by decomposing the original matrix,
performing this calculation can get the correct result.
After checking Figure 3(b), all the calculations on which the later computations depends finish
before the later computations, which means if the computations are in performed in the above way
then still correct results can be generated but in a pipelined way.
To realise this in Maxeler, we can make modifications on the previous multi-ticks implementation.
And in details, we need to change the input behavior from reading in an element from matrix A
every 11 loops to reading in an element from matrix from A every 1 loop. Using the same data dic-
tionary Table 1, this can be achieved by changing the input condition from loopCounter.eq(0)&

loopLengthCounter.eq(loopLengthVal - 1) into loopCounter.eq(loopLengthCounter). We
can find this works from the following illustration:

Another necessary modification is that, due to this is a pipelined implementation, the results should
be written and output once they’ve finished their required computations, and this can be achieved
by adding one more variable:

Table 5.2: Data Dictionary

Variable Name Data Type Usage

i dfeUInt(7) This variable is used for determining
whether the required computations are finished

Once z equals i, the result should be written into the corresponding FMem so that the later
computation won’t be int.
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5.2.4 Another Pipeline Implementation (LU Pipeline 2)

For now we’ve had a pipelined implementation. However, after consideration, the implementation
can be further pipelined.For example, we may group this way, here elements in a same group will
be processed in parallel, see the following illustration:

The procedure is as follows: For each group, start a new loop and all the members will be read in
during the loop every tick. Therefore, for the above case, 0 will be read in and processed in loop

1, 1,2,3, ..., 11 will be read in loop 2 and so on.
The above procedure works if the first column of the matrix is given. We may conduct the following
analysis to show this. For group{0}, there is no dependency, for group{1, 2, 3, ..., 10}, as long
as element 0’s computation has finished, they can be processed in parallel. For goup{11, 12},
element 12 have to wait until element 11’s computation is finished. However, as long as the first
column of the matrix is given so that the decomposed element 11 is known due to there is no
computation needed for the first column of matrix to be decomposed, then the group{11,12} can
be computed in parallel. Here element 12 may also need element 1’s computation to be finished,
and this is true due to grounp{1,2,3, .., 10} start their computation at loop 2, due to they need 0
loop to finish the decomposition, when the time comes to loop 3, the group{1, 2, 3, ..., 10} have
already finished decomposition and thus group{11,12} can perform their decompositon without
waiting. And if we check exhaustively, we can find this applies to all the other groups.
Therefore, in order to achieve this implementation, we need the first column of the matrix and
group the elements in the above way. The elements should be read in in at the following times:
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To achieve this, we need to add few more variables:

Table 5.3: Data Dictionary

Variable Name Data Type Usage

Ceven dfeUInt(1) If the value of the loop counter is even then this variable is true

Codd dfeUInt(1) If the value of the loop counter is odd then this variable is true

leftStart dfeUInt(8) Please refer to Figure 4

leftEnd dfeUInt(8) Please refer to Figure 4

rowCounter dfeUInt(8) This counter’s value denotes the current row.

Figure 5.6: Illustration about start point and end point

After some trials, I found that the the value for the start point and end point for the left half can
be calculated using the following formulae:

When loop counter is even
left start point=loop counter/2*11

left end point=loop counter/2*12+1

And the start and end points for the right half follows:

When loop counter is odd
right start point=(loop counter-1)/2*12

right end point=(loop counter+1)/2*11

Therefore, when the loop counter and loop length counter satisfies that,

Ceven&leftStart <= loop counter&loop counter < leftEnd)|(Codd&rightStart <
loop counter&loop counter < rightEnd)

then an element of matrix A should be read in.
In order to make the first column of the matrix be known, we can directly pass them into the kernel
by using these two variables, see Table 4:

As a result, there are totally 30 loops(3*(n-1), and here n =11), therefore we achieved a total
latency of 30*126+121.
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Table 5.4: Data Dictionary

Variable Name Data Type Usage

firstColumnR Memory The real value of the first column of the matrix
is mapped directly to the kernel

firstColumnI Memory The imaginary value of the first column of the matrix
is mapped directly to the kernel

5.2.5 Machine Parallelism

There is one more part in our program that needs acceleration. And the code has following struc-
ture:

f o r ( i n t i t =0; i t <=3; i t +=1){
// Delta
d e l t a [ 1 ] [ i t ] = d e l t a [ 0 ] [ i t ]+(omega [ 0 ] [ i t ] − Omega synch )
∗ s t e p S i z e ;

// Eq dash

eq dash [ 1 ] [ i t ] = eq dash [ 0 ] [ i t ]+(
(−1) ∗ eq dash [ 0 ] [ i t ] − ( X d [ i t ] − X d p [ i t ] ) ∗ (
(−1) ∗ I d [ 0 ] [ i t ] − ( X d p [ i t ] − X d dp [ i t ] ) /
( X d p [ i t ] − X ls [ i t ] ) /

( X d p [ i t ] − X ls [ i t ] ) ∗ (
ps id [ 0 ] [ i t ] − ( X d p [ i t ] − X ls [ i t ] ) ∗ I d [ 0 ] [ i t ]
− eq dash [ 0 ] [ i t ]
)

) + e fd [ 0 ] [ i t ]
) / T do p [ i t ] ∗ s t e p S i z e ;

// Psid

ps id [ 1 ] [ i t ] = ps id [ 0 ] [ i t ]+((−1) ∗ ps id [ 0 ] [ i t ] + eq dash [ 0 ] [ i t ]
+ ( X d p [ i t ] − X ls [ i t ] )
∗ I d [ 0 ] [ i t ] ) / T do dp [ i t ] ∗ s t e p S i z e ; // checked

// Ed dash

ed dash [ 1 ] [ i t ] = ed dash [ 0 ] [ i t ]+( ed dash [ 0 ] [ i t ] +
( X q [ i t ] − X q p [ i t ] ) ∗
(
I q [ 0 ] [ i t ] − ( X q p [ i t ] − X q dp [ i t ] ) / ( X q p [ i t ] − X ls [ i t ] ) /

( X q p [ i t ] − X ls [ i t ] ) ∗ (
(−1) ∗ ps iq [ 0 ] [ i t ] + I q [ 0 ] [ i t ] ∗ ( X q p [ i t ] − X ls [ i t ] )
− ed dash [ 0 ] [ i t ]
)
)

) / (−1) / T qo p [ i t ] ∗ s t e p S i z e ;
}

After referring to the maxcompiler-loops tutorial, we found that this part of code has the same
structure as the following code:
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f o r ( i n t count =0; ; count += 1) {
B[ count ] = A[ count ] + 1 ;
}

The only difference is that the computations are different. Therefore, we may implement this part
in the same way. However, there is a restriction that the input stream cannot over 8 streams,
but we have totally 28 inputs to be streamed. In order to solve the problem, DFEArrayType was
utilized. And as a reuslt, we just need one string with length of 28. In addition, the code looks
like:

DFEComplexType t=new DFEComplexType( d f eF loa t ( 1 1 , 5 3 ) ) ;
DFEArrayType<DFEComplex> at=new

DFEArrayType<DFEComplex>(t , 2 8 ) ;
DFEArray<DFEComplex> input=i o . input (” input ” , at ) ;
DFEComplex deltaOut=input [ 1 1 ] . getReal ()>0?
input [0 ]+( input [1 ] −377)∗0 .001 :
input [ 0 ] ;
DFEComplex eq dashOut=input [ 1 1 ] . getReal ()>0? input [2 ]+(

(−1) ∗ input [ 2 ] − ( input [ 3 ] − input [ 4 ] ) ∗ (
(−1) ∗ input [ 5 ] − ( input [ 4 ] − input [ 6 ] ) /

( input [ 4 ] − input [ 7 ] ) / ( input [ 4 ] − input [ 7 ] ) ∗ (
input [ 8 ] − ( input [ 4 ] − input [ 7 ] ) ∗ input [ 5 ]

− input [ 2 ] )
) + input [ 9 ]
) / input [ 1 0 ] ∗ 0 . 0 0 1 : input [ 2 ] ;

5.3 Summary

In Summary, this chapter firstly show the profiling result which determined the area of code to
be accelerated by FPGA (LU Decomposition and Machine update operations). Next, in order to
design the DFE kernel for LU decomposition, we solved some problems such that, determine Input
and output streams and memory pattern. Most importantly, we solved the problem of representing
complex numbers in Maxeler. After these, we gave 3 design of LU decomposition and one design
for machines pipeline so that the number of machines can do update operations synchronously.



Chapter 6

Evaluation

6.1 Expected Performance

The first component in estimating performance in dataflow computation is the bandwidth in and
out of the dataflow graph. For data in DFE memory, we simply look up the bandwidth of the
particular device and memory storing the data. The second component is the speed at which the
dataflow pipeline is moving the data forward. A unit of time in a DFE is called a tick or (a cycle),
and the speed of movement through a dataflow pipeline is given in [ticks/second].

Bandwidth can be thought of as the numbers per second that can be read into or written out
from the DFE chip. The bandwidth of DFEs can be between 200-1000 million numbers per second
depending on the size of the numbers and the speed of the interconnect (LMEM, PCIe, Infiniband,
or MaxRing).The clock frequency is how many ticks per second the kernels can run at. The
frequency is between 100-300 million ticks per second as determined and displayed during the DFE
compilation process,

In our implementation, We did not use any LMem or MaxRing. We used FMem for storing values
and computation which provides up to 21TB/s of memory bandwidth within in chip. We should
also consider the speed of the interconnection PCIe for transferring data from CPU to FPGA. We
denote the time of transferring data between the CPU and FPGAs as TPCIE , and the time for
reading/writing to FMem as TFMEM . However, this term is usually negligible as accessing to the
on-chip FMem is very fast compared to other memory patterns. For the computation time on
DFEs TCOMPUTE , we have:

TCOMPUTE =
Ticks

Clockfrequncy
(6.1)

If TACCEL is the total time used of the accelerated program,

TACCEL = TINIT + TSTREAM (6.2)

where TSTREAM = MAX(TCOMPUTE , TPCIE), and TINIT includes SW time, and also time to set
scalar inputs, ROMs, prepare streams etc. Assume the data size of transfer (between CPU and
FPGAs) is depend on the number of the buses N .

TPCIE =
BY TES INPCIE +BY TES OUTPCIE

BWPCIE
(6.3)

Where PCIe bandwidth depends on transfer size that can sustain >2GB/s.

62
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6.1.1 LU Pipeline 1

In our first version of pipelining,the Input Data to Kernel is the N*N Matrix A of complex numbers
(16 bytes) and a N*N matrix in of double numbers(8 bytes). And the outputs are two N*N matrixes
L and U contain complex numbers. So:

TPCIE =
(16 + 8)N2 + 2 ∗ 16 ∗N2

BWPCIE

=
56N2

BWPCIE

(6.4)

And

Ticks = [(N2 − 1) + (N − 1)] ∗ looplength+N (6.5)

Where looplength is the number of ticks for one loop’s calculation in our kernel.

6.1.2 LU Pipeline 2

In our second version of pipelining,the Input Data to Kernel is not only the N*N Matrix A of
complex numbers (16 bytes) and a N*N matrix in of double numbers(8 bytes) but also the first
column of matrix A which is of size N. And the outputs are the same. So:

TPCIE =
(16 + 8)N2 + 16 ∗N + 2 ∗ 16 ∗N2

BWPCIE

=
56N2 + 16N

BWPCIE

(6.6)

And
Ticks = 3(N − 1) ∗ 128 +N2 (6.7)

6.1.3 Machine Parallelism

As we know that, the very important factor of speed is the operation volume within the kernel and
the data transfer time. In the machine parallelism, the input and output streams are dependent on
how many parameters to be updated. Let say, the number of parameters to be imported into the
kernel and Din and DOUT for output. And number of the update operations all together is Op. As
we assume the data type of the parameters are all complex numbers. So,

TPCIE =
16 ∗ (Din +Dout)

BWPCIE
(6.8)

And
Ticks = OP (6.9)
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6.2 Experimental Evaluation

6.2.1 General Settings

We use the MPC-C500 reconfigurable accelerator system from Maxeler Technologies for our eval-
uation. The system has 4 MAX3434A cards, each of which has a Virtex-6 XC6VSX475T FPGA.
The cards are connected to 2 Intel Xeon X5650 CPUs and each card communicates with the CPUs
via a PCI Express gen2 x8 link. The CPUs have 12 physical cores and are clocked at 2.66 GHz. We
develop the FPGA kernels using the MaxCompiler which adopts a streaming programming model
and its supports customisable floatingpoint data formats. And the clock frequency is set to 100.

6.2.2 Test the LU Decomposition Kernel

The data we use is from the .m files provided by Dr Chaudhuri, e.g., The matrix size is corresponds
to the number of the buses. The name of the matrix is Ybus. For lxample, if we have 11 buses the
matrix is 11*11. so N=11.

We firstly tested the running time of the pure C code using on Maxeler Super Computer maxnode2.
And of course, we only cut out the time running on LU decomposition process. For 20 seconds’
simulation, it only took 0.134s on average to run.

Figure 6.1: Runing time for LU decomposition in C (listed by each iteration)

As we can see from Fig. 6.1, which lists the running time of LU Decomposition in each iteration.
So that we can approximate the running time of doing LU Decomposition once in C code (Tc) by
taking an average value:

Tc = 7 microseconds (ms)

As we know, the original LU decomposition algorithm has a time complexity O(N3). To estimate
the speed up. We should know exactly how is the computation time of our C code depends on the
size of N . However, as we do not have data other than the used Y bus data provided, we can not do
more experiment. Fortunately we can estimate this relation by derive the relation of the number
of operation steps and the size of N .
As shown in the figure above. The LU decomposition algorithm processes the matrix in a sub-
matrix by sub-matrix way. That is it will first do calculates on the elements on left-most layer, say,
loop 1 in the figure. we denotes the number of operations of the matrix of size N Op(N), we have,

Op(N)−Op(N − 1) = (N − 1) + (N − 1)2 + (N − 1)2

Op(N − 1)−Op(N − 2) = (N − 2) + (N − 2)2 + (N − 2)2

...



6.2. EXPERIMENTAL EVALUATION 65

Op(2)−Op(1) = 3

Where (N − 1) + (N − 1)2 is number of multiplications and (N − 1)2 is for subtraction. So when
we add them together, we can get Op(N). By the principle of arithmetic progression, and we know
12 + 22 + 32...+ n2 = n(n+ 1)(2n+ 1)/6, we can get,

Op(N) = (N−1)2
2 + (N−1)(N)(2N−1)

3

And then, assuming the one subtraction and one multiplication use the same time in CPU, we can
estimation the time of doing each operation, we call it Tunit, by using the experimental result of
our power system. As we has 11 buses, So Op=820. And as the total computation time is 7 ms.
We can average it and get Tunit = 0.085ms. Therefore, the computing time for the C program, TC
can be estimated as:

TC = Tunit ∗Op = 0.0085 ∗ (N−1)2
2 + (N−1)(N)(2N−1)

3

LU Pipeline 1

By only recorded the time speeding on LU decomposition. Our pipelined version of code using the
kernel we firstly designed takes average 50s to simulation 20s’ calculation. Compared to the 0.13s
used by the pure C code, it is really a very bad result. As it slows down the program by about 500
times. However, actually this result is not in-apprehensible and it makes senses:

Firstly,we know the design of my kernel takes [(N2−1)+(N−1)]∗looplength+n ticks, where N=11,
looplength=128, so it is TCOMPUTE = 130*128+121/100MHz=16761/100MHz = 0.00016 seconds
= 160ms. And for a simulation of 20 seconds which means 20000 times’ calls to the LUSolver
function, The theoretical computing time on the LU Solver kernel should be: 0.000016*20000=
3.2s.

And TPCIE = 56N2

BWPCIE
= 3231ms, by taking BWPCIE=2GB/s as the worst case. This value is

much bigger than the TCOMPUTE = 160ms which means that is the Data transfer time dominates
the computation time. So TSTREAM = TPCIE . Let us take a look at the running time for each
iteration in Fig. 6.2:

It is surprised to see that the first iteration takes much longer time than the remaining itera-
tions and is also much(about 10 times) bigger than TSTREAM=3231ms. This is because that for
the fist call of the Kernel, the maxeler system should do some initialization work. And we know
TACCEL=TINIT+TSTREAM , we can only assume TSTREAM dominates for large data volumes. How-
ever, the data we use now has too small data size so that the initialisation dominates. And another
problem is that, the calculation volume is too small (only 16761 ticks), either. As we can see if the
TCOMPUTE = 160ms, the data transfer time TPCIE ≈ 850ms is much bigger.
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Figure 6.2: Runing time for LU decomposition in Kernel (listed by each iteration

As we know that in order to use Maxeler kernels to perform calculations, we need to transfer data
from CPU to kernels and this will cause a big overhead, which means if the scale of the computa-
tion on the transferred data is not large enough then the data transfer overhead will become very
obvious and even makes the program slower. Unfortunately, our program is just the case where the
scale of computation is not large enough.While FPGAs would speed up the matrix decomposition,
they would need to wait for the inputs to be refreshed, and the additional latency over PCIe would
become apparent over a million iterations’ run.

LU Pipeline 2

The second implementation takes average 50s to simulation 20s’ calculation.This design still can
not give any acceleration is because

Firstly,we know the design of my kernel takes 3(N − 1) ∗ looplength + n2 ticks, where N=11,
looplength=128, so it is TCOMPUTE = 130*128+121/100MHz=3961/100MHz = 0.00004 seconds
= 40ms. The computation volume shrinks as we further pipeline the kernel.

And TPCIE = 56N2+16N
BWPCIE

= 3692ms, by taking BWPCIE=2GB/s as the worst case. This value is
much bigger than the one in the previous implementation since we input an extra column of matrix
A to FPGA every time call the LU Solver. That is to say, with the computation volume shrink but
even more Data to transfer. This won’t give any acceleration.

6.2.3 Machine Parallelism

The results for only running the Machine Parallelism kernel is shown below, and the total time on
the kernel for 20 seconds’ simulation is about 22s.

For our system, because the update process is interdicted by the calling of LU Solver function.

we have to pipe line the upper and lower parts of operations separately. For the first part kernel
design, the input Data to Kernel is an Array Type of Complex numbers with a length of 28. an
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Array Type of Complex numbers with a length of 6 is the output stream. So:

TPCIE =
(28 + 6) ∗ 16

BWPCIE

=
544

BWPCIE

(6.10)

if we take BWPCIE= 2GB/s, TPCIE=544/1024/1024/2*1000000=519ms.
And as tested from the maxeler system, we know

Ticks = 25 (6.11)

TCOMPUTE = 25/100MHz=0.00000025 seconds = 0.25ms.

It is also clear to see, the time is mostly occupied by the data transfer time.

6.3 Analysis

In conclusion, Maxeler is good at large scale and regular behavior computing, however, in our model
we only have small scale computations. It seems that the model I have got now is not worth being
put into Maxeler. Fortunately, our objective of this project is not for accelerating this particular
power system simulation, but to explore how FPGAs can be used to accelerate power systems. In
reality, the power system simulation should deal with larger scale of computation (e. g. the Smart
Grid with Electric Springs). In this section we will illustrate how can we extent our design to larger
systems.

The key to achieving the best performance in FPGA acceleration, while maintaining correctness,
is optimization of arithmetic units and data types to suit the range/precision at each point in the
computation and minimise the data transferred at each compute step as well as perform as many
computations on the data as possible before moving them back to memory and minimize the num-
ber of memory accesses.

Here in our problem, the amount of computations on the data is represented by the value of Ticks,
and the amount of data transfer depends on the value of N . We want the former as much as
possible and the latter as less as possible. However, both of them depend on the value of N .
When N increases, both of the computation volume and the data transfer volume will increase.
We should balance these two volumes, only so the program will be accelerated. and the balancing
point is when computation volume exceeds the data transfer volume. And we shall estimate the
speedup = T[C]/T[STEAM ] with data size N for the both cases: ignore transfer time or not.

LU Pipeline 1

As we want the Computation time dominates the data transfer time (TCOMPUTE > TPCIE), That
is:

{[(N2 − 1) + (N − 1)] ∗ looplength+N}/100 > 56N2/1024/1024/BW ∗ 1000, 000

In Fig. 6.3 (a) compares the TCOMPUTE and TPCIE when bandwidth is 2GB/s, and Fig. 6.4 (b)
compares the two when bandwidth is 10GB/s. As we know bandwidth has very hauge influence on
the time of data transfer. We can see that, when the bandwidth is the standard 2GB/s (which we
consider), there is no possible for the computation time to exceed data transfer time. We can have
a chance to ignore the overhead only if the bandwidth can reach some higher value. For example,
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(a) Compare of Tcompute and Ttransfer at
BW=2GB/s

(b) Compare of Tcompute and Ttransfer at
BW=10GB/s

Figure 6.3: Compare of Tcompute and Ttransfer at Differet BW

when BD=10GB/s, the Kernel design will be efficient when the number of bus is larger then about
450.

Let us ignore the data transfer and only consider the design of the pipeline algorithm. By comparing
the TC and TCOMPUTE in Fig. 6.5. we can see that when N , the data size is, as large as 225, The
FPGA design should theoretically begin to show its superiority.

Figure 6.4: Compare of C code and Tcompute

We also show the Speedup, (TC/TSREAM ), in two circumstances:1. Ignore transfer time, so that
TSREAM = TCOMPUTE . 2. Consider the data transfer time, so that TSREAM = TPCIE .

As we can see from Fig. 6.6, When data transfer time is ignored, the LU decomposition process
can get almost 10 times speed up when the system has more than 20000 buses. And if data transfer
time is considered. The performance of the FPGA design will get worse and can only be useful
when data size is greater than 400, and can only obtain 5 times’ speed up when data size gets to
20000.
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(a) Speed Up When Transfer Time is Ig-
nored

(b) Speed Up When Transfer Time is Con-
sidered

Figure 6.5: Speed Up with N

LU Pipeline 2

The same with the first design, if we want the Computation time dominates the data transfer time
(TCOMPUTE > TPCIE), That is:

{3(N − 1) ∗ looplength+N2}/100 > (56N2 + 16N)/1024/1024/BW ∗ 1000, 000

However, we can not achieve this for our second design. Although it has less computation ticks
within the Kernel, It needs more data to be transferred from CPU to FPGA. And from Fig. 6.7
we can see, the TPCIE rapidly increases with the N increases only by 1 and it is alway above
the TCOMPUTE . Therefore, the data transformation overhead will always slow down our program.
Therefore, as a conclusion, our second kernel design for LU Decomposition is not applicative to
power system simulation.

Figure 6.6: Compare of Tcompute and Ttransfer at BW=2GB/s

In a similar way, let us first ignore the data transfer and only the design of the pipeline algorithm.
The speed up shown in Fig 6.8 (a) show a significant jump of acceleration with the increase of N .
And it can get to 950 times speed up when data size is 20000. However, if we consider data transfer
time, It can only get a slight shrink in computation time when the band width is 6GB/s and it is
not adaptive to small systems. (Fig. 6.7(b))
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(a) Speed Up When Transfer Time is Ig-
nored

(b) Speed Up When Transfer Time is Con-
sidered

Figure 6.7: Speed Up with N

6.3.1 Machine Parallelism

For the Machine Parallelism design, as we can not get the relationship between the number of
operations OP and the computation volume Ticks, it is hard to estimate the speedup. However,
this design is very promising if the operations scale gets larger.

6.4 Summary

According to the above illustration, we can get to the conclusion that although the experiments
targeting Maxeler systems show that our FPGA-based design can not improve the time efficiency
from the C application of the study system. We builds the relationship between the speedup of
simulation and the data size of the power system which indicates that our acceleration design can
give a significant acceleration to larger-scale larger power systems.



Chapter 7

Conclusion and Future Work

The object of this project is to explore how the huge computational power and memory opti-
mizations of FPGA based hardware accelerators can be used in the dynamic simulation of power
systems. And the study begins with the available power system simulation model, which deals with
relatively simple structure and data size.

In detail, we firstly focused on a 4-machine, 2 -area study system for analyzing the dynamic behav-
ior of different components in the power system provided by Dr Chaudhuri form his book Robust
Control in Power Systems [25]. This is a relatively simple power system simulation without the
use of electric springs but using the Multiple-model adaptive control (MMAC) approach for robust
control.

With a SIMULINK system as the original version of the power system simulation, we did the
follolwing things:

• Analyised the simulation model in SIMULINK. Proposed a method to trace the sorted order
of different subsystems and blocks in SIMULINK. This was paramount in providing a base
to begin migrating to a compiled language.

• An optimised version of the simulation in C language (chapter. We maximise the performance
gains available without hardware acceleration by 500 times’ faster than SIMULINK. We re-
implemented everything from scratch so that have concluded an efficient scheme of converting
SIMULINK diagrams to C(C++) language.

• An accelerated version of the LU decomposition solver used in the power system simulation.
For this algorithm, we proposed 2 pipeline schemes with the Field Programmable Gate Array
(FPGA) applied by the Maxeler Technologies. And we also tried to pipeline the calculations
of the machines in the system (the 4 generators) . During this process, we successfully solved
the problem of handling complex numbers in maxeler.

• Analysed the performance of the designed kernels. Although the DFE designs we proposed
did not work very well on the simulation system given. We derived a relationship between
the speedup of simulation and the data size of the power system which indicated that our
acceleration design can give a significant acceleration to larger-scale larger power systems.

In conclusion, this project gave me a lot of challenges but I enjoyed it very much. I still have
more idea of a extension of this project, but due to the limit of time. I can only list them here,
and I may work then out later.
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7.1 Future Trial

7.1.1 A New Design of LU Decomposition

So far, our algorithms are all code driven, specifically, we analyzed the parallelism based on the
code. However, the code, which in our case is written in C, is generated based on the sequentialism
of normal processor. Therefore implementing algorithms based on parallelism may generate more
possible speed-ups. After performing some research, in Choi’s thesis [4], an algorithm was proposed:

Step 1 : The column vecto r ax , 1 where 2 <= x <= b i s m u l t i p l i e d by the
r e c i p r o c a l o f a1 , 1 . The r e s u l t i n g column vecto r i s denoted lx , 1 .

Step 2 : lx , 1 i s m u l t i p l i e d by the row vecto r a1 , y(= u1 , y ) where
2 <= y <=b . The product lx , 1∗ u1 , y i s computed and subtracted
from the submatrix ax , y where 2 <= x , y <= b .

Step 3 : Step 1 and 2 are r e c u r s i v e l y app l i ed to the new submatrix
formed in Step 2 . An i t e r a t i o n denotes an execut ion o f Step 1 and 2 .
During the k−th i t e r a t i o n , the column vecto r lx , k and the row vecto r uk ,
y where k + 1 <= x , y <= b are generated . The product lx , k ∗ uk ,
y i s subtracted from the submatrix ax , y where k <= x , y <= b
obtained during the (k−1)th i t e r a t i o n .

The above can be illustrated as:

If the matrix is N*N, then(N-1)+ (N-1)*(N-1) multiplications are performed as shown in the above
diagram, and then (N-1)*(N-1) subtractions are operated. However, all these can be computed in
parallel, and then apply the same algorithm to the sub-matrix, which is the blue matrix in the
above diagram. Thus the decomposition process will looks like this:
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The implementation is feasible using Maxeler, and possibly further reduce the execution time re-
quired. However, due to the time constraints, we regard this as a future trial.

7.1.2 System Extension

• Assuming we need to carry out multiple times of this computation, could we include multiple
copies of your design on chip so that they can support multiple independent computation in
parallel? What is the maximum Can the current external memory support this? If not, just
assume that the memory is fast enough and see how fast your design would run. As to now,
we did not have time to think about it, I do want to explore this later.

• Extension to a more complex power system, e.g., the smart grid with electronic springs.
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