
Department of Computing, Imperial College London

MEng Individual Project

DeADA

Self-adaptive anomaly detection

dataflow architecture

June 2013

Author

Andrei Bara

Supervisors

Prof. Wayne Luk

Submitted in part fulfillment of the requirements for the
degree of Master of Engineering in Computing of Imperial

College London

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Challenges . 1
1.3 Contributions . 2

2 Background 4
2.1 Anomaly detection . 4

2.1.1 Support Vector Machines (SVM) 5
2.1.2 One-Class Support Vector Machines 7
2.1.3 OCSVM according to Schölkopf 7
2.1.4 OCSVM according to Tax and Duin 9
2.1.5 Other techniques . 10

2.2 Accelerating anomaly detection 10
2.3 Handling concept drift . 11
2.4 Dataflow Programming . 14
2.5 FPGA Acceleration . 14

2.5.1 Resources . 15
2.6 Maxeler Tools . 15
2.7 LibSVM . 16
2.8 Summary . 16

3 Self-adaptive ensemble 18
3.1 Concept Drift in Novelty Detection 19
3.2 Unsupervised self-adaptive ensemble(USAE) 22

3.2.1 Local distance (LD) . 25
3.2.2 Training . 26

3.3 Generating the synthetic benchmarks 26
3.4 Summary . 27

4 DeADA - a dataflow engine architecture 29
4.1 Bottlenecks . 29

4.1.1 Mitigating the lack of speed 30
4.1.2 Support Vectors and throughput 31

4.2 The Architecture . 32
4.2.1 Parallelism at the pre-processing layer 34
4.2.2 Parallelism at OCSVM layer 35
4.2.3 FPGA mapping of OCSVM 36

4.3 Maxeler implementation . 37
4.3.1 Fixed point arithmetic . 39

1

4.4 Summary . 39

5 The Ripple Framework 41
5.1 Prototyping dataflow graphs . 41

5.1.1 Kahn Process Networks 42
5.1.2 Implementation requirements 42

5.2 Implementation . 42
5.2.1 Processing nodes . 42
5.2.2 Communication Channels 44
5.2.3 Lockstep Execution . 45
5.2.4 Input pre-processing . 46

5.3 Spring integration . 47
5.4 Shore . 49
5.5 Summary . 50

6 Evaluation 51
6.1 The setup . 51

6.1.1 Ripple Implementation . 52
6.2 Heartbleed case-study . 54

6.2.1 Description of the bug . 54
6.2.2 Methodology . 55
6.2.3 Results . 55

6.3 USAE evaluation . 57
6.3.1 Methodology . 58
6.3.2 Results . 59

6.4 Maxeler implementation . 64
6.4.1 Double vs Single Precision 64
6.4.2 MAX3 resource usage . 65
6.4.3 Results . 66
6.4.4 Further analysis . 68

6.5 DeADA and Heartbleed . 69
6.5.1 Methodology . 69
6.5.2 Results . 69

6.6 Beyond the memory limit . 70
6.7 Summary . 71

7 Conclusion 72
7.1 Summary of achievements . 72
7.2 Future work . 73

Appendices 79

A MAX3 resource usage 80

B Maxeler code 82

C Experimental data 84

2

LIST OF FIGURES 3

List of Figures

2.1 N1 and N2 are sets containing normal data, whereas O1 and O2

are outliers. Source: Chandola [4] 5
2.2 The hyperplane is the middle line, whereas H1 and H2 are the

decision boundaries. Source: IDAPI course 6
2.3 Hyperplane separation for the target class 8
2.4 Learned frontier for One-class SVM 8
2.5 An example of data description without outliers(left) and with

one outlier(right). Source: Tax and Duin [33] 9
2.6 Rotating hyperplane for a binary problem 12
2.7 A moving average function implemented using MaxJ 15
2.8 Intialization code for the moving average function 16

3.1 Workflow for arriving at a solution through iterative investiga-
tions and testing. 19

3.2 Different types of concept drift relative to the initial data D1 . . 20
3.3 One-Class SVM applied to Tsymbal’s et al. synthetic benchmark,

T=1 (which is equivalent to T=10 in our synthetic benchmarks),
K=8 . 21

3.4 Hyperplane mapped into 2D space. The dashed line represents
the boundary of the decision function 22

3.5 The Unsupervised self-adaptive ensemble(USAE) solution. D1, D2, .., Dk

represent data batches which are analyzed by USAE and used for
online training. It is important to mention, that data are NOT
consumed in batches, but one instance at time. 23

3.6 Local distance metric . 25

4.1 Packet processing times for a receiver and for the classifier 30
4.2 DeADA architecture. Each blue box represents a computation

node, at the various level. The OCSVM layer and Decision layer
are the implementation of USAE from Figure 3.5. Note the Model
Training node is stripped as this phase can be done via the ar-
chitecture, or as an offline and separate process. 33

4.3 Multiple outputs . 34
4.4 Multiple pre-process nodes with different functions 35
4.5 Multiple OCSVM nodes with their own models 36
4.6 OCSVM node architecture . 37
4.7 Maxeler implementation for the FPGA architecture 38
4.8 Sample code for connecting the blocks. sms is a list of manager

state machines and kernelBlocks is the list of DeADA kernels . . 39

5.1 A Ripple Box node . 43
5.2 Two Ripple message passing channels, as seen when connecting

two Box nodes, with the first node having two outputs, whilst
the second node having to inputs. The source of the channel is
on the left, whereas the sink is at the right end 45

5.3 Relation between the different pre-processing components and
how they play together to achieve lazy evaluation 46

6.1 Ripple implementation of DeADA for CPU. Note that the OCSVM
layer has been reduced in size so the diagram fits on the page,
but it’s still parallel as indicated by the multiple outputs and the
results buffer. 53

6.2 Packet processing time for a Receiving node and for the OCSVM
node . 56

6.3 Set-up architecture used for testing the self-adaptive ensemble
theory . 57

6.4 Accuracy measurements for the Simple base classifier, the Su-
pervised ensemble, and our USAE method. 59

6.5 Brier scores for different values of K and T 60
6.6 Highly oscillating concept-drift 61
6.7 Continuously self-adaptive Forward classifier and USAE. The

simple classifier is updated with a new model, once enough posi-
tive data (as labeled by the current classifier) has been gathered.
We observe high accuracy for our USAE method, as well as very
low (0.2) BSmodified score. 61

6.8 Impact of varying λ, T = 100, K = 7 on applying USAE and
compared to Simple. λ = 0.5 and λ = 0.4 perform the best in
terms of both Accuracy and BSmodified. 63

6.9 Difference in accuracy of Double Precision and Singe Precision
implementations on CPU side . 65

6.10 Time taken to compute data of different size on an architecture
with varying replication levels. 67

6.11 Detecting Heartbleed in environments with concept-drift. The
figure shows the impact of the Drop Rate when aiming to detect
Heartbleed. The Simple and DeADA(1367.55) have the same
DropRate = 1367.55 (see). We can see the lower the DropRate
is, the higher the accuracy of the system becomes. The drift is
set by T = 100,K = 1. 70

B.1 DeADAKernel code. 83

4

LIST OF TABLES 5

List of Tables

2.1 Analysis of different benchmarks proposed in the literature when
handling concept drift. We are interested in whether the data
sets have measurable concept drift and are suitable for drift in
anomaly detection. 13

4.1 Impact of ν and γ parameters on the number of support vectors 31

6.1 Table containing the lowest and highest accuracies of the three
main methods. As we can see USAE has a very narrow oscilla-
tion for T = 100,K = 1 since λ = 0.3 was selected to handle this
type of drift. The results are consistent with the figures, meaning
USAE performs far better than Simple and is approximately as
good as the optimal Supervised method. 64

6.2 Resource usage for a build with replication=1 65
6.3 Resource usage for a build with replication=48 on MAX3 66
6.4 Resource usage for a build with replication=96 on MAIA 66
6.5 Drop rates on CPU and MAX3 68

A.1 Resource usage for a build with replication=4 80
A.2 Resource usage for a build with replication=8 on MAX3 80
A.3 Resource usage for a build with replication=16 on MAX3 80
A.4 Resource usage for a build with replication=24 on MAX3 81
A.5 Resource usage for a build with replication=32 on MAX3 81

C.1 Processing rates on CPU . 84
C.2 Analysis speed in µs on a Max3 card 85
C.3 Experimental results for the Simple classifier, containing the num-

ber of true positives(Tp), true negatives(tn), false positives(fp)
and false negatives(fn). 86

C.4 Experimental results for the Simple classifier, containing the num-
ber of true positives(Tp), true negatives(tn), false positives(fp)
and false negatives(fn) with the forward feeding case and the os-
cillating case . 87

C.5 Experimental results for the USAE algorithm for a setting of
λ = 0.3 . 88

C.6 Experimental results for the USAE algorithm for varying λ . . . 89
C.7 Experimental data for USAE for strong drift (K=7,T=100) and

for oscillating drift (i.e. the drift changes direction every 2000
elements) . 90

LIST OF TABLES 6

C.8 Experimental data for the Supervised approach, for varying pa-
rameters of T and K. 91

Listings

5.1 Setting up the pre-processor and input pins/values in a Box . . . 43
5.2 Performing a computation during execStep, with lazy evaluation

of the input values. Notice that there are no objects returned by
this call, meaning the Box has no output pins 43

5.3 Configuration example for a Box using BoxConfig. The function
iprange is applied on the pin named ip which is of type PPType-
Bytes and results in a PPTypeInt 47

5.4 Example of a newly created function IPRANGE to be used as an
expression/function application 47

5.5 Example of a newly created type PPTypeGeneric. Note that the
name of the class is used to identify the new type inside the switch
statement . 48

5.6 Specifying the output pin names for retrieving wireshark packet
fields . 49

7

Abstract

Machine learning based network intrusion detection is increasingly becoming
more difficult in the era of big-data, as not only does the amount of data increase,
but the concept of data changes as new applications and systems are being
integrated in a network. We propose an unsupervised self-adaptive anomaly
detection algorithm based on One-Class Support Vector Machines which would
be able to address the drift in data in an automated fashion, making it suitable
for self-sustained network intrusion detection systems. We then integrate our
algorithm in a highly parallel dataflow architecture designed as an end-to-end
system for anomaly detection and analysis. Finally, we map the architecture to
FPGA to assess its performance in comparison with an implementation on a 4
core CPU, obtaining a 4x improvement, with further theoretical improvements
of up to 16x. We evaluate our proposed algorithm on synthetic benchmarks
obtaining impressive results when compared against a one-off classifier model,
and performance comparable to that of a supervised method.

Acknowledgements

I would like to thank:

• Professor Wayne Luk for providing guidance and for his continued interest
in the project.

• Xinyu Niu for his help in understanding the Maxeler toolkit and his time
spent helping me.

• Paul Grigoras for answering my questions related to Maxeler and for his
introductory training day.

• Rory Allford for his initial contributions to the 3rd year project which
formed the basis of the Ripple Framework and for writing the Shore-Probe
packet capturing tool.

• Maxeler Technologies and Diego Ortega for the coaching provided at the
Maxeler office.

• My friends and family for their continuous support and for not calling me
on Skype everyday.

Chapter 1

Introduction

1.1 Motivation

The recent Heartbleed attack highlights a limitation of currently existing net-
work intrusion detection (NID) techniques, which are unable to cope with un-
known patterns, being very good in detecting attacks based on previously seen
patterns, but can rarely detect novel threats. In addition, computing power
is getting cheaper every year thus resulting in an increase in the volume of
data transferred between systems. This impacts the ability of machine learning
(ML) based NIDs to accurately distinguish between threats and ordinary traf-
fic/information, as data are being exposed to concept drift. Furthermore, data
are generated at high rates, being almost impossible for traditional machine
learning based solutions to cope with real-time analysis, quite often resulting
in offline analysis of data or network events. Companies such as BAE Systems
Detica use large computer clusters to analyze data in a timely fashion using var-
ious algorithms like Naive Bayes or Neural Networks to recognize known attack
patterns.

1.2 Challenges

1. Handling diversity of attacks is an active research area in the field
of network security. Current security information and event man-
agement systems typically use either machine learning algorithms or rule
based detection (e.g. Snort). However, the traditional problem with these
approaches is that system administrators need to have prior knowledge of
what defines an attack, hence reducing the space of detectable attacks to
that of known attacks. Heartbleed is such a case, where the error was
due to the lack of a bounds check in the OpenSSL code. Such exploits are
hard to prevent as they most likely target a specific application higher in
the OSI stack, and are determined by a combination of attributes. Sce-
narios that would cover every possible exploit are very hard to produce,
but are needed in training new models which can discriminate between
normal and abnormal data.

2. Managing concept drift to prevent classifier degradation is an

1

CHAPTER 1. INTRODUCTION 2

increasing problem in systems where new applications are introduced and
is one of the generic problems of anomaly detection[4]. Nowadays systems
usually produce data which no longer fits the model initially trained by a
machine learning algorithm, resulting in decreased accuracy of the NID.
Maintaining accuracy implies constantly generating new models, which
in big-data environments implies manual analysis and labeling of data.
Furthermore, data in NID systems is generally highly dimensional [4],
which is not just a limiting factor when using machine learning algorithms
but it also creates a diversity of ways in which concept drift can arise.

3. Real-time analysis of data is the main advantage rule-based systems
have over machine learning algorithms. The relatively high computational
complexity of the various MLs, restricts such techniques to offline use, with
large data clusters analyzing packets captured over long period of time.
Although the offline technique is effective in preventing future similar at-
tacks, in many of the cases it might be too late, as attacks have already
passed.

1.3 Contributions

The idea behind the project is to investigate and propose new ways in which
these challenges could be addressed. For clarity purposes, this project will
focus on packet analysis, however the techniques described in the report could
be applied to network event analysis[8] as well. As such we define the following
contributions:

1. Unsupervised self-adaptive ensemble (USAE) algorithm is based
on One-Class Support Vector (OCSVM) machines, a variation of the clas-
sical Support Vector Machines (SVMs), but targeted for anomaly detec-
tion. We have chosen anomaly detection as the candidate for preventing
new and unknown attacks. The idea behind is that only normal data
are used in training the classifiers, whilst anything that differs from the
normal pattern will be labeled as an anomaly. OCSVMs have been used
successfully in the literature in detecting anomalies (also known as nov-
elty detection), however there are few investigation, to the best of our
knowledge, involving OCSVM and the concept-drift problem. We there-
fore propose an approach which not only tackles data drift by adapting
to it, but also does it in an unsupervised manner, meaning there is no
need for human interaction in order to adjust the models. The algorithm
is presented in chapter 3.

2. DeADA dataflow architecture addresses the long computation time
required by the Machine Learning programs, with a focus on OCSVM.
Being based on SVMs, OCSVMs allow for greater parallelization of the
computation and as such, a scalable architecture can be created. The
solution integrates the USAE algorithm to improve the accuracy of the
classifiers under concept drift and reduce the analysis time of data, thus
making the prospect of real-time analysis more feasible when dealing with
machine learning algorithms. Our proposed architecture can be found in
chapter 4.

CHAPTER 1. INTRODUCTION 3

3. The Ripple Framework is a JAVA based library for rapid prototyping
of dataflow architectures. We created the library based on Kahn Process
Network principles, a type of flow-based computing part of the more gen-
eral dataflow computing paradigms. The framework has proven useful in
assessing the feasibility of DeADA as well as in measuring its performance
on the CPU. The framework is described in chapter 5.

Chapters 3 and 4 form the basis for a research paper to be submitted for the
2014 International Conference on Field Programmable Technology, in Shanghai.

Chapter 2

Background

2.1 Anomaly detection

Anomaly detection is an active research area within machine learning which can
be applied to a diversity of domains varying from finance to military. The aim of
anomaly detection is to address the problem of discriminating between normal
and abnormal behavior/data. These anomalies are often referred to as outliers
or exceptions [4] and are quite often associated with binary classification prob-
lems (Figure 2.1). A subclass of anomaly detection is novelty detection, which
addresses the issue of detecting previously unobserved patterns in the data, by
recognizing positive instances of a concept rather than differentiating between
them [12]. As Chandola et al. [4] adds, a key distinction to standard anomaly
detection is that novel patterns are usually incorporated into the normal model
once detected. Similar to novelty detection is outlier detection, however, the
main difference resides in the fact that for novelty detection all training data
are regarded as normal, whereas outlier detection is generally used when the
data set representing the population is not clean [30].

Of importance to anomaly detection as stated in [4] are the data types.
Chandola et al. identifies 3 main types of data:

• sequence data. Sequential data has ordered instances, generally as a
function time, however different orderings may exist (e.g. lexicographic,
etc.)

• spatial data. Spatial data, has instances which are related to its neigh-
boring data (e.g. in sensor network, the sensors closer together will pro-
duce spatial data)

• graph data. Instances are represented as nodes in a graph, inter-connected
by edges.

Building on these three types of data, Chandola groups anomalies into the
following categories [4]:

Point Anomalies are instances of the data which are anomalous with respect
to the rest of the data. As it can be seen from Figure 2.1 o1 and o2 are
point anomalies as they lie outside the N1 and N2 sets.

4

CHAPTER 2. BACKGROUND 5

Figure 2.1: N1 and N2 are sets containing normal data, whereas O1 and O2 are
outliers. Source: Chandola [4]

Contextual Anomalies are data instances which are anomalous only in cer-
tain contexts and normal otherwise. Data instances are defined by two
types of attributes:

1. Contextual attributes, used to describe the neighborhood of that in-
stance (e.g. geographical coordinates).

2. Behavioral attributes, used to describe the non-contextual character-
istics of an instance (e.g. amount of rain in a certain geographical
location).

Collective Anomalies are partitions of data which are anomalous with re-
spect to the whole data set. As a consequence, anomalies can only be
identified by analyzing them as a group. This is sometimes the case with
anomalies in NIDs where multiple packets are re-assembled and analyzed
together.

2.1.1 Support Vector Machines (SVM)

Support Vector Machines are a relatively new addition to the field of Machine
Learning compared with other ML algorithms. The concept was introduced by
Vapnik et al. [3] in 1992 and was based on the idea of identifying the optimal
separation hyperplane for linearly separable data.

The Support Vectors (SV) are data points that lie closest to the decision
boundary. Support vectors are computationally expensive to identify as it boils
down to solving an optimization problem: increasing the margin around the
hyperplane.

Suppose that we have the following training data {(x1, y1), (x2, y2)...(xn, yn)},
where xi is the input and yi is the class (represented as {−1, 1}). We can clearly
see this is a binary classification problem.

CHAPTER 2. BACKGROUND 6

Figure 2.2: The hyperplane is the middle line, whereas H1 and H2 are the
decision boundaries. Source: IDAPI course

We assume the 2 classes can be separated by a hyperplane H:

Hyperplane : w ∗ x+ b = 0 (2.1)

We can now define the planes H1 and H2 as:

H1: w ∗ xi + b ≥ 1 if yi = +1
H1: w ∗ xi + b ≤ 1 if yi = −1

(2.2)

The distances from the origin to the two planes are
|1− b|
|w| and

| − 1− b|
|w| .

As such the distance between H1 and H2 becomes
2

|w| and the distance between

the hyperplane and the two planes forming the margin becomes
1

|w| . Since we

want to maximize the margin, we need to minimize |w|. Thus, this become an
optimization problem for |w|:

Minimizef(w) :
1

2
||w||2 s.t. g(w, b) : yi(w ∗ xi + b)− 1 ≥ 0 (2.3)

From this, we can express the Lagrangian, where n is the number of training
instances:

L(w, b, λ) =
1

2
||w||2 −

n∑
i

λi ∗ [yi(w ∗ xi + b)− 1] (2.4)

We can now differentiate the Lagrangian to find the constraints:

∂L

∂w
= w −∑n

i λi ∗ yi ∗ xi and

∂L

∂b
= −∑n

i λi ∗ yi
(2.5)

CHAPTER 2. BACKGROUND 7

Setting the derivatives to 0 we have: w =
∑n
i λiyixi and

∑n
i λiyi = 0. From

this we can derive the dual formulation of the problem as:

L(w∗, b∗, λ) =
∑n
i λi − b

∑n
i λi ∗ yi −

∑n
i

∑n
j λiλjyiyjx

T
i xj =⇒

L(w∗, b∗, λ) =
∑n
i λi −

∑n
i

∑n
j λiλjyiyjx

T
i xj

(2.6)

We now have to find the λ = maxλ L. Once we find the values for λi many
of them will be 0. Those which are non-zero, will form the support vectors.

To prevent the SVM from overfitting on noisy data, a penalty constant C
and a slack variable ξ can be introduced. Thus, we would have to add C

∑n
i ξi

to the function to be minimized and modify the constraints so that ξi ≥ 0 and
g(w, b) ≥ 1− ξi

However, the inner product of the vectors is problematic when dealing with
non-linear inputs. The solution to this is known as the Kernel trick and involves
a kernel function K(xi, xj) = φ(xi)φ(xj) (where φ(x) : Rn 7→ Rm), which maps
the data points to higher dimensions where they become linearly separable.
There are several options for choosing this kernel, most common being the
Sigmoidal, Gaussian radial basis, and Polynomial.

2.1.2 One-Class Support Vector Machines

One-Class SVMs (OCSVM) are a recent addition to the field of machine learning
algorithms which build on top of the classical SVMs, and deal with identifying
whether new data are of the same class as the training data, thus becoming
an attractive candidate for anomaly detection techniques. There are two main
models used for describing the OCSVMs: one developed by Schölkopf et al.[29],
the other one by Tax and Duin[33].

2.1.3 OCSVM according to Schölkopf

The idea behind the algorithm is to create a function f which maps most of
data in some small region +1 and the rest to −1. During the offline phase
the OCSVM considers the origin point to be the only negative example in the
data set and tries to find a separating hyperplane while maximizing the margin
between the data points and the origin (Figure 2.3) [36] [29].

The optimization problem is described the following way:

min
w,ξ,ρ

1

2
||w||2 +

1

νn

∑n
i −ρ s.t.

(w ∗ φ(xi)) ≥ ρ− ξi and

ξi ≥ 0,∀i ≤ n

(2.7)

The decision function f thus becomes:

f(x) = sgn

(
n∑
i

λiK(xi, x)− ρ)

)
, x = target data (2.8)

CHAPTER 2. BACKGROUND 8

X1

X2

0

φ(x)
w

Target Class

ρ

||w|| ξ

||w||

Figure 2.3: Hyperplane separation for the target class

Similar to the case of SVM, the optimization problem for finding λ (the support
vectors) can be resolved using a QP solver for the following function:

min
λ

1

2

n∑
i

λiλjK(xi, xj) s.t. 0 ≤ λi ≤
1

νn
and

n∑
i

λi = 1 (2.9)

0

0

-2 2

2

-2

-4
-4

4

4

resulting
regions

Target class

Figure 2.4: Learned frontier for One-class SVM

In Figure 2.4 we can see the learned frontiers of a set of two dimensional
data points. These two regions are the result of mapping a higher dimension
hyperplane generated using an RBF kernel back to a two dimensional represen-
tation. Although all of the points are part of the same class (i.e. normal) only
the ones inside the frontier will be classified as normal, the rest being abnormal
(these would be classified as training errors and are dependent on the selection
of the ν parameter).

CHAPTER 2. BACKGROUND 9

Importance of the ν parameter

m is the total number of training examples.

|Outliers|
m

≤ ν ≤ |supportvectors|
m

(2.10)

According to Schölkopf et al. [28],[29] ν represents:

1. an upper bound on the total number of training examples which can be
considered as outliers.

2. a lower bound on the number of resulting support vectors

2.1.4 OCSVM according to Tax and Duin

The formulation of Tax and Duin [33] differs from that of Schölkopf at el. in
the sense that it takes a spherical rather than planar approach. This type of
SVM is described by the authors as Support Vector Data Description(SVDD).
The aim of the algorithms is to minimize the hypersphere so that only a few
outliers are incorporated into the model [36]. The two points on the hyperplane
will be the support vectors.

The hypersphere with the optimal volume R2 has a radius R > 0 from the
center a to any of the support vectors on the boundary. The center a is a linear
combination of the support vectors. Similar to the previous formulation a slack
variable ξ and a penalty constant C are being introduced (we can consider the
1

νn
from Schölkopf as one possible solution for C). Using the Lagrangian and

Figure 2.5: An example of data description without outliers(left) and with one
outlier(right). Source: Tax and Duin [33]

the dual formulation, an optimization problem can be written as described in
[33]. Thus, the decision function (where z is the input to be tested) can be
written as:

||z − x||2 = zT z − 2

n∑
i

λiK(z, xi)

n∑
i,j

λiλiλjK(xi, xj) ≤ R2 (2.11)

CHAPTER 2. BACKGROUND 10

2.1.5 Other techniques

A lot of investigations have been done in the field of anomaly detection and
machine learning. However, to the best of our knowledge, few are trying to
tackle the issues of the large amount of data in network system and attempt to
perform anomaly detection in a timely fashion. Although many might not apply
to our use case (Network Intrusion Detection) they are useful in discovering what
could work and what could not.

One interesting area to look into is that of adapting existing machine learn-
ing algorithms which were not designed for anomaly detection but on which
attempts have been made to achieve that. Japkowicz [12] presents a novelty
detection algorithm based on Neural Networks, using an autoencoder. Classi-
fication/identification is possible because data instances which are normal can
be reconstructed accurately, whereas the anomalies will not. However, neural
networks have the downside of scaling poorly with the number of attributes.
In order to deal with a broader spectrum of data (with an increased number
of attributes), more perceptrons are required, and they are computationally
expensive. Of course, techniques such as attribute selection [20] or Principal
Component Analysis exist, but they abstract away some of the information
that comes with those attributes which in areas like network security where
minor changes can occur, might turn out to be undesirable.

2.2 Accelerating anomaly detection

Another interesting solution to anomaly detection has been proposed by Das et
al. [5] based on Principal Component Analysis on top of FPGA. This is closely
related to the goals of this project and provides a very useful insight into how
one could turn PCA to anomaly detection. Traditionally PCA is considered to
be a preprocessing or postprocessing step in machine learning, including SVMs.

The role of PCA is to find the underlying correlations in the data in order
to reduce the dimension of the data (i.e. the number of attributes/features).
Besides providing an FPGA cascaded implementation to classification (which
could be turned into a data flow program), the authors make use of the Ma-
halanbois distance as a measure for the anomaly. This distance is a very good
candidate for replacing the kernel in the OCSVM implementation, as it is con-
sists of a series of matrix vector multiplication, which fit very well with data
flow computing. However, a key point that comes out of the paper is that their
focus is mainly on the online phase and not so much in the offline phase in
terms of FPGA acceleration. The problem of accelerating the training phase is
in fact a problem of accelerating the QP solving step for calculating the optimal
values (i.e. the principal components in this case, and the support vectors in
the SVM case).

There are quite a few solutions for the training problem, some creating an
implementation for QP solvers [31] [13], while others using a geometrical ap-
proach to finding the support vectors [23]. The geometrical approach proposed
by Markos et al. seems to be a viable options for the offline phase of the OCSVM,
by providing a cascading FPGA architecture, which could be migrated to data
flow programs (like MaxJ). However, the solution of having an FPGA based QP
solver could prove to be more efficient when it comes to using the Mahalanbois

CHAPTER 2. BACKGROUND 11

distance as a kernel.
In fact, as Wei et al. [39] show in their paper using the Mahalanbois not

only represents a good choice for the kernel, but it will also make the algorithm
more robust as it will incorporate knowledge about the correlations in the data.
Furthermore, they present a version which uses singular value decomposition
to speed up the matrix multiplications. However, this solution still requires
a QP solver and decomposing the problem in this manner might add extra
computational steps that would need to be implemented in the FPGA, and is
not clear (at the moment) whether it will result in a speedup or a slowdown of
the offline training phase.

2.3 Handling concept drift

Tsymbal et al. [35] present three approaches to handling concept drift:

1. instance selection

2. instance weighting

3. ensemble learning

Instance selection is usually performed based on a windowed model mov-
ing over newly arrived instances in order to select those which are more relevant
to the current concept. Then these instances are used to train classifiers for pre-
dictions on new data. Common techniques that fall under this category include
case-based reasoning and case-editing strategies.

Instance weighting takes advantage of the properties of some Machine
Learning algorithms which can deal with weighted inputs. SVM is one such
algorithm and Krawczyk [16] propose an incremental learning and forgetting
technique built on top of SVDD using weighted One-Class SVM [2]. Weights
of the training data are changed as a function of time. One of the drawbacks
of this technique is that all the training examples have to be stored in order
to improve the accuracy of the model, and naturally as more data arrives the
space requirements increase. Secondly, the training time also increases which
might not be appropriate for applications regarding network intrusion detection.
Thirdly, it has been shown by Klinkenberg[14] that example weighting may not
be an appropriate model for handling concept drift.

Ensemble learning is the third option. It works by maintaining a set of
models which are used in predicting the class of the incoming instance. Usually
this technique involves a voting system and incremental learning with a heuristic
for dynamically updating the ensemble members. The heuristic usually mea-
sures the quality of the base models with respect to the new data.

Windowed approaches can also be categorized as ensemble learning [25] with
the ensemble being formed of different models trained at times t, t+1...t+(N−1),
where N is the width of the window. Klinkenberg et al. [15] present a solution
for adaptive size windows, based on the ξα (leave-one-out) estimator. The
justification for dynamically adjusting the size of the ensemble is that concept
might drift at different rates, and as such small size windows are better at
learning fast changing concepts whereas larger windows are better at handling
slow drifts (in terms of accuracy of the classifiers). However, with an adaptive
window, estimating the time required to train and adjust the ensemble becomes

CHAPTER 2. BACKGROUND 12

more difficult and a variable training time might not be desirable depending on
the application domain.

Parveen et al. [25] present an approach which uses a time shifted windowing
method with One-Class SVM to detect concept drift for Insider Threat Detec-
tion. They propose a supervised solution, where the decision of which members
of the ensemble to update is based upon the predictive accuracy of each indi-
vidual model with respect to whole ensemble. For predicting the class of a new
data point they use an accuracy weighted majority voting algorithm. The ap-
proach has proved to be quite efficient in detecting anomalies, but because they
use the MIT Lincoln Data sets, we believe it is hard to quantify and describe
the nature of the concept drift (i.e. it might just be the case that some of the
data are ”better” for training and thus increasing the accuracy of the updating
model). However, in our analysis in section 6.3 we use the supervised algorithm
described in [25] as reference for our unsupervised solution, but with a synthetic
benchmark.

Tsymbal et al. [35] describe concept drift as being local or global. Local
drift is determined with respect to the larger data set, and occurs between
two consecutive time points. One important aspect of their paper is the rela-
tion between rotating hyperplane(Figure 2.6) [11] problem and the generation of
synthetic benchmarks. The rotating hyperplane is a commonly used technique
for simulating gradual concept drift of binary data (i.e. data with two classes).
The formula for generating the hyperplane in d dimensions(i.e. features) is de-

scribed by
∑d
i=1 wixi = w0. The hyperplane is then rotated by changing the

weights wi,∀i < K (K is the magnitude of change in terms of number of drifting
features), with a certain rate = si∗ TN (change every T examples out of N total).
The direction of the drift can be altered by switching the sign of si. The authors
then proceed to tackling concept drift by using a Naive Bayes algorithm. We
shall use an approach similar to the rotating hyperplane when generating our
benchmarks for the One-class SVM, with the details of the differences described
in section 3.1.

T2

separating plane

Class 2

Class 1

T3T1

timeline

Figure 2.6: Rotating hyperplane for a binary problem

CHAPTER 2. BACKGROUND 13

Type Measures Drift For anomaly detection

MIT Lincoln Dataset[25] 7 X

ECUE Dataset[16] 7 7

Rotating Hyperplane[35] X 7

Our benchmark X X

Table 2.1: Analysis of different benchmarks proposed in the literature when han-
dling concept drift. We are interested in whether the data sets have measurable
concept drift and are suitable for drift in anomaly detection.

The methods described above are based on supervised learning. In general,
supervised learning yields better results than the unsupervised version. How-
ever, in systems like computer networks with high volume of data, engaging
humans to constantly monitor and sort the data (i.e. split it in normal/abnor-
mal, evaluate the accuracy of the models, etc.) is a very tedious process, often
leading to a good, but impractical solution. Lecomte et al. [17] propose an
unsupervised approach for detecting anomalies in continuous streams of audio
surveillance data. Their solution introduces a threshold λ, which translates the
hyperplane of the model. This allows them to control the rate of false negatives
and false positives by applying the function described Equation 2.12. We use a
similar approach in our unsupervised algorithm as described in section 3.2.

if f(x) ≥ λ then x is normal
if f(x) < λ then x is abnormal

(2.12)

Parveen et al. have also conducted studies into unsupervised learning for
Insider Threat detection using a technique called Graph Mining [24]. However,
they later show in [25] that a supervised window method outperforms the un-
supervised solution.

A formal definition of concept drift as well as a possible way to measure it
can be found in [38]. Wang et al. define the concept drift problem using three
basic properties intensions, extensions and labeling which form the meaning of
a concept. In order to be able to talk about drift with respect to a concept, the
authors state that every concept must have some rigid properties (i.e. which
don’t change over time). The intension of a concept is formed by intr(C) ∪
intnr(C). Two concepts are considered equal (i.e. C1 = C2) if and only if their
rigid intensions are equal (intr(C1) = intr(C2)).

The notion of rigidity is relevant to our work when creating our synthetic
benchmarks, as we want to ensure the generated data does not undergo concept
shift. Wang et al. describe concept shift as the change in a concept which makes
it look more like a different concept. On the other hand, non-shifting concepts
are subjected to instability as their meaning changes.

Table 2.1 gives a brief comparison of the different benchmarks presented
in the literature. The MIT Lincoln Dataset (a.k.a. DARPA data set) is used
to test the accuracy of a supervised ensemble of One-Class SVMs to detect
anomalies under concept drift, however the authors do not give any measures
of the drift, nor does the data set itself, to the best of our knowledge, have any
information about the drift. The ECUE data set is used in [16], however the set
contains already extracted features of spam and non-spam e-mail and has no

CHAPTER 2. BACKGROUND 14

measure of drift. In addition, it is our understanding that the method used to
extract the features[7] creates a hidden structure in the data which might not
be seen by the One-Class SVM [32]1 during the learning stage. The rotating
hyperplane benchmark is a good benchmark for analyzing concept drift and has
been previously tested with standard SVMs. However, due to the formulation
of the problem in [35] it is not suitable for novelty detection (see section 3.3).

2.4 Dataflow Programming

Traditional sequential programming paradigms work in line with the von Neu-
mann principles where data are considered at rest. Quite often this leads to
inefficient accesses to memory, thus requiring the CPU cores to allocate a sig-
nificant number of resources to caching data, performing branch predictions and
other operations needed to run an arbitrary program, thus reducing the area
of the chip available for computations. Multi-core processors can increase the
computational power by having programmers parallelize the applications, how-
ever this can lead to complicated code as state information needs to be shared
across the multiple cores or the parallel processing machines if in a distributed
system.

On the other hand in dataflow paradigms, data are moving through the
system. A dataflow program is constructed as a graph, where nodes perform
the computations and edges representing inputs and outputs. The graph can
be regarded as a large computational pipeline, where at each stage data are
streamed in and out and values can be produces at every cycle. Instructions are
embedded in the structure of the graph rather than being stored in memory. As a
consequence a design running at 100Mhz could outperform it’s CPU counterpart
(as an algorithm) while consuming less energy[26].

2.5 FPGA Acceleration

Dataflow programming is a general paradigm which can be applied on differ-
ent architectures CPUs, GPUs, ASICs2 or FPGAs(Field Programmable Gate
Arrays). We have chosen FPGAs as our architecture of choice due to their
properties [5]:

• FPGAs are formed of re-configurable interconnected logic blocks, which
can be wired to perform complex functions. A configuration is generally
specified using a hardware description language (HDL).

• As opposed to ASICs (which are generally non-reconfigurable) FPGAs
provide increased flexibility and a higher cost efficiency with low produc-
tion volumes. On the other hand, the size of the FPGA chip constrains
the design that can be uploaded onto it.

• FPGAs have a higher power efficiency when compared to multi-core CPUs
and GPUs

1The authors state that One-Class SVMs do not consider dependence structure in the data
2Application Specific Integrated Circuits

CHAPTER 2. BACKGROUND 15

• because there is no operating system and no synchronization requirement,
scheduling is static and thus performance models are easier to create.

On the other hand FPGAs have the disadvantage of a longer development
time as HDL specifications are cumbersome, and quite often hard to debug.
Higher-level tools like MaxCompiler can simplify the design and development
process, but compiling an FPGA design can take a very long time even when
done on multi-core machines.

2.5.1 Resources

The FPGA resources are classified into the following categories:

1. Look-up Tables (LUT): combinatorial elements used to implement log-
ical functions.

2. Flip-Flops (FFs): units intended for storage which can be used as reg-
isters

3. Digital Signal Processors (DSP): special arithmetic units

4. block RAM (BRAM): on-chip storage elements with quick access (also
known as Fast Memory).

2.6 Maxeler Tools

Maxeler Technolgies provides custom hardware acceleration solutions, based
on the concepts of data-flow programming. Designs are compiled using Max-
Compiler, a proprietary compiler which maps dataflow designs to a hardware
platform built around FPGAs.

There are several versions of the Maxeler hardware platform, however the
current project will be using MAX3424A (MAX3) and Maia(MAX4) cards, with
Xilinx Virtex 6 chips and Xilinx Virtex 7 respectively.

1 class MovingAverageSimpleKernel extends Kernel {

2
3 MovingAverageSimpleKernel(KernelParameters parameters) {

4 super(parameters);

5
6 DFEVar x = io.input("x", dfeFloat(8, 24));

7
8 DFEVar prev = stream.offset(x, -1);

9 DFEVar next = stream.offset(x, 1);

10 DFEVar sum = prev + x + next;

11 DFEVar result = sum / 3;

12
13 io.output("y", result, dfeFloat(8, 24));

14 }

15 }

Figure 2.7: A moving average function implemented using MaxJ

CHAPTER 2. BACKGROUND 16

The MaxCompiler [19] provides a hybrid solution to dataflow programming
by separating the code into two parts:

1. CPU code: which handles set-up and starting procedures of the dataflow
engine (DFE) through a C API library, interaction with other applications,
and manages the output from the DFE. The code (also known as host code)
interacts with the Engine Code via PCIe.

2. Engine code: which forms the dataflow engine. A typical Maxeler ap-
plication is formed of one or more Kernels3 which are the graph nodes
where computations are performed. The other important component is
the Manager which specifies how information flows through the graph by
linking various Maxeler components (e.g. State Machines, Kernels, Mem-
ory Pipelines, Inputs, Outputs, etc.) and thus forming a dataflow design.
MaxCompiler provides a Java API for constructing the designs through
the MaxJ meta-programming language.

1 max_file_t *maxfile = MovingAverage_init();

2 max_engine_t *engine = max_load(maxfile,"*");

3 max_actions_t *actions = max_actions_init(maxfile,"default");

4 max_queue_input(actions,"input",inputBuffer,inputSize);

5 max_queue_output(actions,"output",outputBuffer,bufferSize);

6 max_run(engine,actions);

Figure 2.8: Intialization code for the moving average function

A simple Maxeler kernel implementation of the moving average function is
shown in Figure 2.7. Once the kernel has been built and the manager has linked
all the components, the final part is to initialize the design from the host code.
This can be done either through static Simple Live CPU Interface (SLiC), or
through a dynamic one (Advanced Dynamic SliC). Figure 2.8 shows a snippet of
how to initialize and run the MovingAverageSimple example via dynamic SLiC.

2.7 LibSVM

In order to train our models using One Class SVM we have chosen to use the
LibSVM library. We preferred it to other libraries as it is lightweight and easy to
integrate with our Ripple framework (see chapter 5). The OCSVM implemen-
tation provided by LibSVM is based on Schölkopf’s hyperplane version. The
optimization part of the training is done using Sequential Minimal Optimization
(SMO) described in [27] a fast QP solving algorithm specifically designed for
use with Support Vector Machines.

2.8 Summary

In this chapter we:

3The term Kernel here is different from that of the Kernel described in the context of the
SVM

CHAPTER 2. BACKGROUND 17

• introduced the concept of anomaly detection in the context of network
security.

• presented the basic principles behind Support Vector Machines, and the
One-Class Support Vector Machines which are crucial in understanding
how anomaly detection and our proposed solutions are implemented. Two
types of OCSVM approaches were presented, with the chosen one being
that described by Schölkopf.

• looked at different machine learning algorithms applied in anomaly detec-
tion and analyzed their feasibility in the context of network security. The
next step involved looking at various ways machine learning algorithms
can be accelerated.

• presented the meaning of concept drift and provided a description of it,
as well as existing work related to it. We also looked at different pieces of
literature presenting ways of handling concept drift, and try to understand
how it applies to anomaly/novelty detection.

• looked at the dataflow computing paradigms. We introduced the Maxeler
tools to be used in section 6.4 as well as details about FPGAs, our target
platform for the DeADA architecture presented in chapter 4.

Chapter 3

Self-adaptive ensemble

This chapter addresses the issues posed by concept drift in the context of
anomaly detection performed with One-Class Support Vectors, and proposes
a new algorithm for handling it. We hereby highlight the main contributions of
this chapter:

• Concept drift in anomaly detection. We start off by stating the
problem of drift with respect to the separating hyperplane of the OCSVM
and explain the difference to the rotating hyperplane problem used in the
literature. Hence, we introduce a definition of drift in terms of the range
shift and range expansion of data (see section 3.1).

• Unsupervised self-adaptive ensemble. We introduce USAE our gen-
eral use online and fully automated anomaly detection algorithm which
handles concept drift. USAE exposes a parameter λ for fine tuning the
ensemble, with respect to the strength of the drift. This forms the main
contribution of this chapter and can be seen in section 3.2.

• Synthetic benchmarks. We propose a new method for generating syn-
thetic benchmarks aimed for the specific use-case of anomaly detection,
which unlike existing benchmarks [35],[7],[25] allows us to estimate the
performance of the basic OCSVM and USAE with various measurable
drift rates and magnitudes(see section 3.3).

18

CHAPTER 3. SELF-ADAPTIVE ENSEMBLE 19

FPGA

Test

Incremental
mapping

Solution Finding Workflow

concept drift
solution

testing framework
built on Ripple

Refine idea

DeADA

architecture

Test

Figure 3.1: Workflow for arriving at a solution through iterative investigations
and testing.

Figure 3.1 contains an overview of the work flow used in order to arrive to a
solution to the problem of performing anomaly detection in computer networks
with a high volume of data. We begin by defining a potential concept drift
solution, then test and refine the ideas using the KPN Ripple Framework (see
chapter 5). At the same time we construct and test DeADA which is described
in chapter 4.

3.1 Concept Drift in Novelty Detection

Real-world systems have the tendency to change in time and so does the data
they produce. The changes in data lead to modifications of the statistical prop-
erties of the target data-point we are trying to classify. Take, for example, the
case of a company providing web-services. In order to access these web-services
users need to specify different ports. The company is trying to prevent potential
attacks its services by performing anomaly detection based on the port value
and some other attributes.

Now suppose the company wants to add a new web-service, and as such they
will use a different port number (e.g. maximum of the allocated ports + 5).
The anomaly detection algorithm will now classify a legitimate request on this
port as an anomaly, since the value is outside the normal range, and thus the
data points ends outside the region described by the decision function f(x) .

CHAPTER 3. SELF-ADAPTIVE ENSEMBLE 20

normal data

timeline

D2D1 D3

initial boundary

current boundary
abnormal data
misclassified data

Figure 3.2: Different types of concept drift relative to the initial data D1

In Figure 3.2 we have the D1 data set on which we trained an initial clas-
sifier with the separating hyperplane shown as a solid line, whereas D2 and D3

describe two cases of the concept drift:

1. The decision boundary of the second data set moves below that of the first
data set. By using the classifier trained on D1 two of the normal instances
will be misclassified as abnormal, thus leading to an increase in the rate
of false positives, despite being normal.

2. The decision boundary of the third data set moves above the initial bound-
ary. In this scenario five of the anomalies would wrongly be considered
normal, thus leading to an increase in the number of false negatives.

The change of the hyperplane in Figure 3.2 is very similar to that of the
rotating hyperplane in Figure 2.6. However, the latter is applied to standard
SVMs whereas the former is for One-Class SVM. The first difference is that
anomalies seen in Figure 3.2 can only be mapped during the online phase, as
the offline phase of the OCSVM contains only normal instances1. As seen in
Figure 2.3 the maximum margin is calculated with respect to the origin (with no
anomalies present below the hyperplane), whereas in Figure 2.2 the hyperplane
is created in such way that it separates the two classes. Secondly, the rotating
hyperplane is defined for a binary classifier (e.g. with labels −1 and 1), which
means that both classes drift in such way that some of the instances previously
labeled as −1 become 1 and vice versa, with the SVM being able to incorporate
this knowledge into its learning phase. However, the OCSVM has no prior
knowledge about the anomaly class (which we shall represent as −1).

Experimenting with one of the synthetic benchmarks (hyperplane9.arff) gen-
erated by Tsymbal et al. in [35], has revealed no deterioration of the accu-

1This is an important note. Despite the presence of the ν parameter which sets an upper
bound on the training error, the training error refers to the number of normal data that can
be left out and treated as anomalies, and does not directly deal with noise.

CHAPTER 3. SELF-ADAPTIVE ENSEMBLE 21

racy of the One-Class SVMs model even when applied to the strongest concept
drift(K=8,T=1)2, as can be seen in Figure 3.3.

0 5 10 15

0

0.2

0.4

0.6

0.8

1

Data batch no.

A
cc
u
ra

cy
Simple OCSVM

Figure 3.3: One-Class SVM applied to Tsymbal’s et al. synthetic benchmark,
T=1 (which is equivalent to T=10 in our synthetic benchmarks), K=8

We believe this to be due to the proportion of normal(1) and abnormal(−1)
data being kept constant throughout the whole data set, and the overlap of the
attribute ranges of the two classes during the rotation. Thus, we will need a dif-
ferent approach when generating concept drift for novelty detection as explained
in section 3.3. Furthermore if we map the value of T to its corresponding value
in our synthetic benchmark (described in section 3.1) we would get a drift rate
of 0.0001 which is very small and is consistent with the results produced by
the OCSVM when dealing with slow drift (see section 6.3, for T=50 and K=1).
Therefore, we believe this exemplifies well the difference between concept drift
in anomaly detection versus other machine learning techniques.

2The authors of the paper use the value of T as a proportion of 1000 elements in spite of
the mathematical formulation presented in section 2.3

CHAPTER 3. SELF-ADAPTIVE ENSEMBLE 22

−2 0 2 4 6 8
−2

−1

0

1

2

3

(a) Range expand

−2 −1 0 1 2 3
−2

−1

0

1

2

3

(b) Range shift

Figure 3.4: Hyperplane mapped into 2D space. The dashed line represents the
boundary of the decision function

Figure 3.4 shows the regions delimited by the support vectors when applied
to concept drift for OCSVMs with a Radial Basis kernel, by mapping the higher-
dimension hyperplane back to a 2D representation. The data represented in
the figure has two attributes corresponding to the horizontal axis and vertical
axis. The green points represent the support vectors of the model trained on
the D1 batch, whereas the blue dots represent the support vectors of a model
trained with drifted data D2. Figure 3.4a deals with the case where one of the
attributes drifts by increasing the range of values it can take. We can therefore
notice how the boundary (represented by a dashed red line) expands with the
drift. This correspond to the aforementioned Case 1 of the concept drift, where
the initial classifier would lead to an increase in the number of false positives.
Figure 3.4b on the other hand shows the case where the range of values shifts.
This scenario incorporates both Case 1 and Case 2 from above, thus leading
to both an increase in false positives as well as false negatives, when using the
OCSVM model trained with D1 on D2 data. It is important to mention that
the range shift used to create the concept drift is different from that of concept
shift described in section 2.3 by Wang et al. In fact, shifting the range of
the attributes has the desired result of creating instability in the concept drift,
without changing the meaning of the concept.

3.2 Unsupervised self-adaptive ensemble(USAE)

Our main goal is to create a self-adaptive and unsupervised solution to handling
concept drift in anomaly detection when using One-Class Support Vector Ma-
chines. The high-level view of our idea is presented in Figure 3.5. We decided
to group data in batches D1, D2, .., Dk not for training purposes, but rather to
reflect snapshots of the concept drift. Hence, instances are analyzed one at a
time making our solution truly online.

CHAPTER 3. SELF-ADAPTIVE ENSEMBLE 23

generator
Model

. . .

Detected

Anomaly

aggregate

vote

results buffer

normal

update window

layer

Decision

normal

Current window of models

apply Hflip
heuristic

timeline

abnormal

layer

OCSVM
OCSVM

Model kModel 1 Model 2 Model 3

D2D1
DnD3

Temp

Storage

Figure 3.5: The Unsupervised self-adaptive ensemble(USAE) solution.
D1, D2, .., Dk represent data batches which are analyzed by USAE and used
for online training. It is important to mention, that data are NOT consumed
in batches, but one instance at time.

The window contains up to k models, where k represents the latest time
instance. A new model is trained and added to the window once the temporary
store has reached the training batch size(BS). The models are updated chrono-
logically, that is, once the number of models exceeds the size of the window, the
oldest (Model 1) is being removed and the newest is added at the end of the
list, thus becoming the new Model k. As mentioned in [25],[35],[14] using a win-
dow is a common approach in addressing concept drift: older classifiers ensure
that local concept drift does not corrupt the ensemble of models, whereas newer
models help reduce the number of false positives by incorporating the most re-
cent information about data. Unlike in [25] our approach does not weight the
models according to their accuracy.

In practical applications like network intrusion detection, the size of the
window can be determined through experimentation and might be subjected
to operational constraints (i.e. amount of memory available or amount of time
taken to compare a new instance against all the support vectors of all k models).
As opposed to Klinkenberg’s et al. [15] dynamic size window, we prefer a fixed
size approach in the context of NID with high-volume data, as this allows us to
better estimate the performance of our DeADA architecture.

CHAPTER 3. SELF-ADAPTIVE ENSEMBLE 24

Algorithm 1 predict class of new instance

function Predict(z)
predictions← ∅
for model ∈ models do

if Decision(z,model) > 0 then
predictions = predictions ∪ {1}

else
predictions = predictions ∪ {−1}

end if
end for
vote = majorityV ote(predictions)
return vote

end function

function Decision(z,model)
x = model.supportV ectors
res =

∑N
i=0 λiK(xi, z)− ρ

return res
end function

Algorithm 1 shows how a new instance is being classified upon arrival. The
instance is compared against each model using the Decision(z,model) function,
and the result is stored in a list which is then used for majority voting3. If the
instance is classified as normal, then it’s being saved in the temporary store
for use during the training phase of a new model. Note that the result of
Decision(z,model) is compared to 0, as opposed to having one of the standard
values {−1, 1}. In fact, Decision(z,model) is a version of the decision function
described in Equation 2.8 with the sgn part removed. We will be re-using the
absolute distance values when applying our local distance metric of the Hflip

heuristic function described in subsection 3.2.1, prior to saving the instance to
the local store. The kernel K(x, z) of choice for our adaptive One-Class SVM
is the Radial Basis Kernel.

3we use skeptical voting, that is an example is classified as normal if and only if 50% + 1
of the models have decided so

CHAPTER 3. SELF-ADAPTIVE ENSEMBLE 25

3.2.1 Local distance (LD)

H3

H2

H4

H1

support vectors

new instance

dmin

dmax

Figure 3.6: Local distance metric

The main issue with concept drift is that when normal data starts changing
its properties and the quality of the already trained classifiers degrades. This
leads to an increased rate of false positives which in the case of applications like
intrusion detection can severely impact the performance of the overall system,
be it a fully automated one (e.g. where data packets are being prevented from
reaching the destination) or semi-automated (e.g. where a human analyst mon-
itors potential alerts). We therefore propose a solution which tries to reduce
the impact of concept drift on the automation of a network intrusion detec-
tion system, but which can be extended to more general uses cases of anomaly
detection.

One simple approach to tackling concept drift in an unsupervised fashion
would be to have a single or a window of continuously re-trained models. How-
ever, the problem arises when deciding which of the newly received instances
are to be stored temporarily in preparation for training a new model. This is
because we want to be able to distinguish between true positives and false pos-
itives (i.e between data which is truly anomalous and data which is considered
anomalous because the concept drifted).

To address this issue we introduce a heuristic function based on a new vari-
able λ which allows us to control the rate of true positives and false positives,
with respect to magnitude and rate of the concept drift. This new heuristic
function Hflip is applied after a prediction occurs if the majority vote decided
the instance is anomalous, and prior to the data being fed into the temporary
store. Hflip has the last word in this scenario, thus deciding whether to consider

CHAPTER 3. SELF-ADAPTIVE ENSEMBLE 26

an abnormal instance normal or leave it as the majority has decided.

Hflip(x) =


if

dmin
dmax

< λ then x.label = 1

else x.label = x.label

(3.1)

Figure 3.6 illustrates the relation of the dmin

dmax
ratio with respect to hyper-

planes H1, ...,H4 of a windowed model of size four, and we will define this
relation as a local distance metric4. Distances dmin and dmax are in fact the
outcome of the Decision(z,model) function from Algorithm 1. The new in-
stance has been classified as abnormal by three of the OCSVM models, and
normal by one model. We can see from the figure that dmin < dmax meaning
the new instance is relatively close to H3 however it’s quite far from H1 which
in turn indicates a potentially high concept drift rate. Thus, the value λ speci-
fies an upper bound on our local distance and can be correlated with the drift
rate. If an abnormal instance is very close to the hyperplane of a model it is
most likely normal(depending on its accuracy) especially in the case where the
majority vote is not unanimous, and thus the λ cap would not play any major
role. However, the cap is important when we have an unanimous vote, as it
stops false negatives from polluting the training data for future models. As such
λ can also be seen as an upper bound on the number of anomalies allowed as
noise.

3.2.2 Training

Once the class of an incoming instance has been predicted and mediated by
Hflip it will be stored temporarily until there is enough data (i.e. the batch size
has the desired number of elements) for a new model to be trained. The training
phase could be performed offline and in an independent manner, therefore there
is no immediate need for accelerating this phase. Once the new model has been
generated the window list is updated by inserting it at the end of the list and
then removing the first one(if there are more than k).

3.3 Generating the synthetic benchmarks

As mentioned at the beginning of section 2.3 the rotating hyperplane approach
shown in [35][11] does not impact the accuracy of the classifiers and does not
lead to their degradation, since it is intended for simulating concept drift in
binary classification problems (SVM or otherwise) and not for novelty detec-
tion. However, we construct an equivalent synthetic benchmark using a similar
approach.

Changing the orientation of the One-Class SVM hyperplane can be done
by altering the range of values for individual attributes of a data instance(see
Figure 3.4). We therefore decide to use the method of shifting the ranges as
this will generate data, some of which will be classified as either false positive or
false negatives, rather than just false positive as for the range expansion case.

4The term local comes from the metric only being valid for the current instance under the
current windows, both subsets of a greater set of values

CHAPTER 3. SELF-ADAPTIVE ENSEMBLE 27

It is important to understand the difference between having data which are
wrongly classified as abnormal and actual anomalies. In the context of many
applications including network security, anomalies can never become normal.
Should that be the case, it is most likely because it was a false positive and the
OCSVM model did not have sufficient training examples to incorporate that in-
formation in its generalization. As such we reserve the range [0, 20] to represent
anomalous values of the attributes. This way we avoid generating abnormal data
which at some future time might be considered normal and wrongly represent
the concept drift, thus ”helping” the anomaly detection algorithm to perform
better.

For every attribute ai, i < d where d is the number of attributes of the
data, we define the amount of shift as shifti. We define a parameter K to
handle the magnitude of the drift. The magnitude of the drift is given by the
number of attributes which are subjected to range shift. Thus, ∀i, 1 ≤ i ≤
K,K ≤ d we update shifti of ai with the quantity described in Equation 3.2,
where direction ∈ {−1, 1}, T represents the number of instances after which
the concept drifts, N is the total amount of data to be generated and T

N is the
drift rate. While creating a normal example, direction has a 0.1 probability of
becoming -1, but is reset after every example.

shifti = shifti + direction ∗ T
N

(3.2)

When creating a normal data point we first choose a discrete random value
between [0, 50] added to shifti+20, to avoid overlap with the anomalous range.
Initially shifti = 0 and thus all the attributes have the same range. After
ever generated example shifti gets updated for ∀i, i < K. Abnormal data
are created with a 0.3 probability by randomly setting one of the attributes ai
to a discrete random value in the [0, 20] interval. The rest of attributes are
set in the same way as for a normal data point. In both cases we divide the
random value by 70 to avoid the scenario in which numbers could grow past the
representational range of the CPU. We deliberately avoid normalizing the data
in the [0, 1] interval to better simulate a real scenario in which, because of the
potential drift, true ranges are not known, as it would require future possible
values to be known at the current time. However, because SVMs are not scale
invariant all the attributes of the normal data can only choose random values
from the [0, 50] interval, so each attribute has the same weight in the decision.
We create several data sets of 10000 examples with varying values for the K
and T parameters, to be used in section 6.3.

3.4 Summary

We began this chapter by describing the concept drift problem in anomaly detec-
tion, what it means with respect to the separation hyperplane of OCSVM, and
assessed its impact on classification. We then explained the difference between
the rotating hyperplane problem [35] and concept drift.

In the subsequent sections we presented our own solution to addressing con-
cept drift, by creating a novel algorithm based on an unsupervised self-adaptive
ensemble(USAE). We then described the local distance metric defined in terms

CHAPTER 3. SELF-ADAPTIVE ENSEMBLE 28

of λ and the distances between a new point and the hyperplanes of the models
in the ensemble.

Finally, we gave a solution for creating a synthetic benchmark that would
allow us to measure and test USAE. The validity of our benchmark can be seen
in section 6.3 where a Simple classifier degrades in time (as we would expect), as
opposed to the rotating hyperplane problem, shown not to be a good benchmark
for concept drift in anomaly detection.

Chapter 4

DeADA - a dataflow engine
architecture

In this chapter we present DeADA a dataflow architecture designed as end-to-
end system capable of performing live network analysis using the USAE
algorithm for detecting anomalies under concept drift. The main points dis-
cussed are as follows:

• We first demonstrate that a synchronous set-up is ineffective in a live
environment and highlight the need of a scalable solution. We propose
two different techniques for addressing the issue and define a Drop Rate
metric, for measuring the amount of data that needs to be skipped so the
system would not get overloaded. The approach is also described in the
evaluation section (see section 4.1 and section 6.2).

• We then describe the DeADA architecture, and focus on the scalability of
the design by looking at different levels of parallelism, with a focus on the
OCSVM layer as that is the bottleneck. Being a dataflow architecture
DeADA can be implemented on different architecture, such as CPU,
FPGA, GPU, etc. However, for the current project we will focus on CPU
and FPGA (see section 4.2).

• We finish the chapter by describing an implementation targeted for FPGA
using Maxeler’s MaxJ and MaxCompiler tools (see section 4.3). The im-
plementation is evaluated and compared against a CPU targeted imple-
mentation in section 6.4.

4.1 Bottlenecks

Since we are trying to achieve real-time anomaly detection in computer net-
works, the first step is to identify the bottlenecks when dealing with a serial,
but pipelined system. Thus, we create a simple setup where one Receiver thread
receives a series of packets and enqueues them for processing by the OCSVM
thread. The queue between those two threads is capped at 6000 elements as to
simulate memory constraints. The total number of Support Vectors used in the

29

CHAPTER 4. DEADA - A DATAFLOW ENGINE ARCHITECTURE 30

OCSVM computation is 20000 with 20 attributes each, equivalent to having an
ensemble of 4 models with ≈ 5000 support vectors/model.

0 5 10 15

0

2,000

4,000

6,000

time(s)

qu
eu

ed
p
a
ck
et
s

OCSVM
Receiver

cutoff
point

Figure 4.1: Packet processing times for a receiver and for the classifier

For producing the results we used a data set with 483945 packets(totaling
72MB) captured over a period of one day of normal browsing. However, the data
set contains a large number of TCP segments resulting in 80855 re-assembled
packets. Features extracted from the packets are then received over a period of
≈ 31.44s, being the equivalent of an ≈ 18Mbps throughput (see Equation 4.1)
The arrival rate is ≈ 2571.95 packets/s, whereas the classification rate is ≈
461.36 packets/s. Figure 4.1 illustrates how after a few seconds the receiving
queue gets filled (no more packets will be received), while the OCSVM node is
still computing.

Throughput =
TotalF ileSize ∗ 8

Time
(Mbps) (4.1)

4.1.1 Mitigating the lack of speed

At this point, there are several options one could undertake in order to avoid
the scenario where the application crashes because it runs out of memory, and
thus leading to no classification at all.

First option would be to skip the analysis of four out of five packets. This
might be appropriate for situations when a pessimistic approach is employed to
increase our chances of detecting an attack even when not all the information
is available (i.e. the attack might happen over multiple packets, but we only
analyze a fifth of them).

Second option would be to skip packets until the queue has been emptied.
The performance of this solution depends on the memory capacity and on the
intended application. We believe this might be appropriate for networks were
attacks/anomalies occur in a repeated (either regular, or irregular) manner.
However, the main issue is that attacks might not be spotted in time (e.g. a

CHAPTER 4. DEADA - A DATAFLOW ENGINE ARCHITECTURE 31

malicious application sends some data every two days; it might be that when
the intrusion is detected, the attack has already finished).

We prefer the first option as it provides continuous analysis of data, which
is to be desired in most scenarios. Therefore in Equation 4.2 we define a way
of measuring the performance of the system in terms of the drop-rate of packet
analysis. The drop-rate directly affects the accuracy of the USAE method as it
misses packets, and thus the lower the drop-rate is, the better the performance
of USAE will be when implemented in network systems with high volumes of
data.

Drop Rate =
arrival rate

processing rate
(4.2)

To simplify the relation between the data size, the number of support vectors
and the number of vector attributes we define DataSize as in Equation 4.3.
This will enable us to measure the DropRate with respect to the amount of
data stored in the models.

Data Size = |attributes| ∗
M∑
i=1

S∑
j=1

1 (4.3)

4.1.2 Support Vectors and throughput

The previous example had 20000 support vectors used for classification. We
therefore briefly analyze the impact of data size on the number of support
vectors in a model. Table 4.1 shows the correlation between the two main One-
Class SVM parameters ν and γ and the total number of support vectors, by
using our Heartbleed experiment as a reference.

ν γ support vectors

0.008 0.0003 28

0.0001 0.0003 10

0.01 0.0003 26

0.1 0.16 261

0.001 0.16 78

0.0001 0.16 79

0.5 0.16 1143

0.8 0.16 1811

0.8 30 1807

Table 4.1: Impact of ν and γ parameters on the number of support vectors

We can see that ν has a major impact. This is due to Equation 2.10 and the
interpretation that ν is a lower bound on the number of support vectors and an
upper bound on the number of outliers. For example, when training a classifier
for detecting the Heartbleed bug, we used ν = 0.008, γ = 0.0003 resulting
in 28 support vectors. This is to be expected as d0.008 ∗ 2232e = 18 (2232
is the total number of training examples), which means there will be at least

CHAPTER 4. DEADA - A DATAFLOW ENGINE ARCHITECTURE 32

18 them. However, the asymptotic behavior of the number of vectors depends
on the combination of the two parameters as described in [28].Techniques for
capping their numbers have been proposed in the literature [6], but they impact
the performance of the classifiers.

Thus, we can give an estimate of how many support vectors to expect based
on the above throughput(18Mbps) and arrival rate(≈ 2571.95 packets/s), for
a 100Mbps network switch, if the OCSVM wasn’t a bottleneck. The new esti-
mated arrival rate is therefore 14283 packets/s. Suppose that 90% of the data
are normal and can be used as training examples for a new classifier. If we were
to train a new model every 10 minutes1, the amount of data points would be
14283 ∗ 60 ∗ 10 = 8569800. For ν = 0.008 we will have at least 68559 support
vectors.

With an adaptive ensemble of size 4 there will be 274236 vectors, a lot more
than in the bottleneck example presented earlier. Furthermore, SVMs are well
known for being able to handle data with a large number of attributes without
impacting the accuracy of the models [22], thus adding another factor to the
computation time.

An ensemble of size 4 with a new model being trained every 10 minutes is
most likely an optimistic version as it would cover very little historical informa-
tion about the normality of a system, a typical application having either larger
sized windows (days or weeks) or several ensemble models. On top of that,
modern computer networks operate at speeds of 1/10Gbps with a new 100Gbps
protocol created in 2011 thus generating more data to be stored and analyzed.

With this in mind, we believe it is safe to assume that a real-world system
will have quite a large amount of information to process from, even when dealing
with medium (100Mbps) speed networks (i.e. with models incorporating more
historical information).

4.2 The Architecture

As previously seen performance is an issue when attempting live anomaly detec-
tion on network traffic even with throughput as low as 18Mbps, thus justifying
the need for a scalable and parallelizable solution. In order to achieve this, one
can either use distributed computing (but then network latency becomes an is-
sue) or high-performance computing techniques based on hardware acceleration
(either GPU or FPGA). Thus, we have created DeADA, a dataflow architec-
ture (Figure 4.2), designed as an end-to-end system, containing all the steps
from data capturing and pre-processing, enabling us to exploit the benefits of
anomaly detection in network intrusion detection.

1This might be a bit too often for real-world systems thus leading to an underestimate

CHAPTER 4. DEADA - A DATAFLOW ENGINE ARCHITECTURE 33

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������Model

training

......

......

Detected

Anomaly

heuristic
apply

results buffer

Capture data

packets

PreProcess PreProcess

aggregate

vote

anomaly

normal

normal

PreProcess
layer

layer
Decision

OCSVM
layer

update window

partial
OCSVM

partial
OCSVM

Temp

Storage

Storage

Model

Figure 4.2: DeADA architecture. Each blue box represents a computation node,
at the various level. The OCSVM layer and Decision layer are the implementa-
tion of USAE from Figure 3.5. Note the Model Training node is stripped as this
phase can be done via the architecture, or as an offline and separate process.

The aim of DeADA is to sit as a standalone node in the network, possibly
behind edge routers or switches and analyze incoming data, decide whether it is
anomalous or not, and based on this perform certain actions (e.g. notify admin-
istrators, shut down the network, etc.). Our dataflow engine architecture was
designed to take advantage of the re-configurable and heterogeneous properties
of FPGAs. We will demonstrate this by mapping the OCSVM prediction layer
to an FPGA implementation using Maxeler tools (see section 6.4). We also im-
plement the DeADA architecture on top of our RIPPLE framework to allow us
to test the concept-drift solution (see section 3.1) as well as overall functionality
and feasibility, before migrating different components of DeADA to FPGA.

From Figure 4.2 we can see our design allows for parallel computations at
the PreProcess and OCSVM layers. Since we based our design on dataflow pro-
gramming concepts, the overall architecture forms a graph where nodes perform
different tasks and in which computations are pipelined. Packets are captured
from the network using tools like Wireshark or TcpDump, the required packet
fields(e.g. headers, content, flags, etc.) extracted and sent to the PreProcess

layer.

CHAPTER 4. DEADA - A DATAFLOW ENGINE ARCHITECTURE 34

4.2.1 Parallelism at the pre-processing layer

The purpose of this layer is to transform the received features into a numerical
representation which can then be fed into the One-Class classifiers.

PreProcess

Input1 Input2 Input3 Input4

transform 1 transform 2 transform 3

Figure 4.3: Multiple outputs

We decided to separate the PreProcess layer from that of the OCSVM for
the following reasons:

• We want to minimize the time spent on data conversion and feature ex-
traction at the OCSVM layer as this is the bottleneck of the NID (as
seen in Figure 4.1).The functions applied at this step could be complex
and might involve interactions with external applications (e.g. getting the
geographic coordinates of an IP address). Thus, we prefer to apply the
transformation once, and then replicate it across the outputs of a node as
seen in Figure 4.3.

• Each of the pre-processing nodes might apply different transformation
functions for the same data, but we might decide that we want to speed
up the pre-processing by splitting them across different PreProcess nodes
(Figure 4.4). Despite of the outputs being generated at different rates
before being fed into the OCSM layer, dataflow computations are executed
in lock step, and as long as the order of the generated data us maintained,
the sink node will only perform a computation once data are available on
all inputs.

CHAPTER 4. DEADA - A DATAFLOW ENGINE ARCHITECTURE 35

PreProcess PreProcess

transform 1 transform 2

Input1 Input1 Input2Input2

Figure 4.4: Multiple pre-process nodes with different functions

In practice a PreProcess node will most likely be a combination of the two
scenarios presented above, however in our experiments and the Heartbleed demo
we use the first case.

4.2.2 Parallelism at OCSVM layer

In our architecture the anomaly detection phase is performed in the OCSVM
layer. For the CPU based version we use LibSVM for training the models,
however when classifying new instances we use our ensemble based solution to
concept drift described in section 3.1. From Figure 4.1 we have seen that the
bottleneck for anomaly detection is at the OCSVM prediction phase. This is
due to the potentially large number of support vectors resulted from training
classifiers on network data.

It is therefore imperative that we parallelize this step to make our approach
feasible for practical applications.

Data are fed into an OCSVMpartial node from the PreProcess layer in
numerical format. Figure 4.5 shows how to parallelize the computation so that
every node handles the support vectors from a particular model of the ensemble.
The results are then put in the results buffer and aggregated so the decision
function from Equation 4.4 can be applied for each of the models. The resulting
predictions are then used for majority voting and in applying the Hflip heuristic.

decision(z) =

N∑
i=0

λiK(xi, z)− ρ (4.4)

In Figure 4.5, 1 to M1 represents the range of Support Vectors(SV) which
will be processed by the first OCSVMpartial node, where M1 is the total number
of SVs stored in Model 1. Support vectors from Model 2 are split into two parts:
the first part 1 to k is fed into the second OCSVMpartial node whereas the second
part k to M2 goes into the last node.

CHAPTER 4. DEADA - A DATAFLOW ENGINE ARCHITECTURE 36

R
es

u
lt

s
b

u
ff

er

Model 2

Memory

Input from PreProcess

Model 1

A
g

g
re

g
at

e

OCSVM

OCSVM

OCSVM

partial

partial

partial

1 to M1

1 to k

k to M2

Figure 4.5: Multiple OCSVM nodes with their own models

Once the temporary storage has been filled or the required number of training
examples reached, the classifier ensemble will be updated with a newly trained
model. In our experiments we use LibSVM’s default svm_train function and
svm_model to store the classifier.

4.2.3 FPGA mapping of OCSVM

Before mapping the OCSVM layer to FPGA it is important to understand the
structure of the data and the structure of the inputs. Support Vector Machines
have the advantage of being able to cope with a large number of attributes (tech-
nically no upper bound), when compared to other machine learning techniques
like Neural Networks, or Radial Basis functions[22].

However, some of these attributes may or may not exist for some instances,
thus many implementations store the support vectors in sparse matrix format as
[index, value] pairs, along with their corresponding λ coefficients. Similarly the
incoming instance is formed of [index, value] pairs, where index is the ordinal
of the attribute (i.e. even if some of them might be missing, the number of
possible attributes is always fixed). Also, for both the instance and the SVs the
pairs are stored in increasing order of their indices. In our implementation we
have chosen the Gaussian Radial Basis for the SVM kernel trick as shown in
Equation 4.5.

K(x, x′) = exp

(
−||x− x

′||22
2σ

)
(4.5)

The kernel computation is a time consuming step in a OCSVMpartial node,
as it has to be applied for every support vector assigned to it. Storing the data
in sparse matrix format does help up speeding up the process, however, it is not
enough as seen from Figure 4.1.

CHAPTER 4. DEADA - A DATAFLOW ENGINE ARCHITECTURE 37

off−chip memory

OCSVM unit

network I/O

CPU or
stream aligner

PCI

parallel matrix input

FPGA

shared vector input

vector−matrix pairs

Figure 4.6: OCSVM node architecture

Figure 4.6 represents the equivalent FPGA implementation of Figure 4.5.
The shared vector input is the instance vector for of [index, value] pairs, and is
received from the PreProcess layer by the CPU side of the accelarated imple-
mentation. Data are then fed into the stream aligner via PCI, while support
vectors are loaded from the off-chip memory (with large storage capabilities) via
the memory bus. The purpose of the stream aligner is to ensure the indices of
the SV and of the instance match when calculating ||x−x′|| from Equation 4.5,
since we are using the sparse matrix format. The results are then put on an
output buffer and sent back to the CPU. At the CPU side results are aggregated
and decisions made using Equation 4.4. The sum from Equation 4.4 is not done
of the FPGA to reduce the logic required to keep track of which support vectors,
from which model, are being used during the computation, but instead increase
the on-chip space to accommodate more OCSVM units.

4.3 Maxeler implementation

In order to evaluate the performance of our proposed architecture we implement
the design from the previous section using Maxeler tools.

Figure 4.7 illustrates how the equivalent OCSVM design from Figure 4.6
looks when implemented on the Maxeler platform. We will call the grouping of
a stream aligner and a DeADA kernel a DeADA unit. The dataflow diagram
has a replication factor of 4(i.e. there are four DeADA units). Information is
passed in and out of the Maxeler kernels via PCIe or memory bus. Figure 4.8
contains the code from the manager showing how various components are linked
together for a variable replication factor.

The ROM kernel block has the purpose of replicating the [index, value]
pairs of the Incoming Instance and store them in the on-chip memory (ROM).
The kernel will continuously produce the stored pairs, resetting every time a
K(xi, z) computation has finished (xi represents the support vector, z is the
analyzed instance).

The RAM kernel block reads bursts of data from the off-chip memory
(RAM). In Maxeler terms the RAM is known as Large Memory (LMem) and

CHAPTER 4. DEADA - A DATAFLOW ENGINE ARCHITECTURE 38

DeADA
kernel

DeADA
kernel

DeADA
kernel

DeADA
kernel

DeADA Manager

ROM
kernel kernel

StreamStream
align

Stream
alignalign

Stream

PCIe

Incoming Instance

align

Off−chip

RAM

memory

RAM

PCIe

Collect
kernel

Output Buffer

Figure 4.7: Maxeler implementation for the FPGA architecture

has storage capacities that can reach hundreds of GBs. The chunk is then split
and distributed to the DeADA units.

The Stream align block is a manager state machine which synchronized
the data received from the ROM and RAM kernels, based on the value of their
indices.

The DeADA kernel block then performs the computation described in
Equation 4.5, after which the results are sent to the output buffer via PCIe.

Collect kernel aggregates all the outputs from the DeADA kernels in order
to serialize them via a single output stream. This is necessary due to limitations
of the Maxeler platform with respect to the number of input/output streams.

In general, input data (both PCI or memory) has to be padded because
transfers occur in bursts. On a MAX3 card, data read from the memory is
read in chunks of 384 bytes, while PCIe output and input streams need to be
multiples of 16 bytes, and aligned to a 16 byte boundary.

CHAPTER 4. DEADA - A DATAFLOW ENGINE ARCHITECTURE 39

1 for(int i=0;i<replication;i++){

2 sms.get(i).getInput("instIndex") <==

kmROM.getOutput("instIndex"+i);

3 sms.get(i).getInput("instData") <==

kmROM.getOutput("instData"+i);

4 sms.get(i).getInput("svmIndex") <==

kmRAM.getOutput("svmIndex"+i);

5 sms.get(i).getInput("svmData") <== kmRAM.getOutput("svmData"+i);

6 kernelBlocks.get(i).getInput("inv") <==

sms.get(i).getOutput("instOut");

7 kernelBlocks.get(i).getInput("svv") <==

sms.get(i).getOutput("svmOut");

8 addStreamToCPU("output"+i) <==

kerneBlocks.get(i).getOutput("res");

9 }

Figure 4.8: Sample code for connecting the blocks. sms is a list of manager
state machines and kernelBlocks is the list of DeADA kernels

4.3.1 Fixed point arithmetic

The CPU version of the architecture uses single or double precision for the
computations. However, when mapped to FPGA floating point operations have
a latency greater than one cycle. This means the FPGA would have to run for
more cycles than necessary, leading to suboptimal performance.

In order to address the issue we have implemented the computations using
fixed point arithmetic with the results then being casted to the required pre-
cision. Operations involving fixed points can be done in one cycle (however
when building for hardware the pipelining factor has to be adjusted by calling
optimization.pusPipeliningFactor(0)).

Empirical results based on our synthetic benchmark have shown that for
single precision, a fixed point with 8 bits for the integer part and 24 for the
fractional part was sufficient. However, these numbers are application dependent
and should not be taken for granted. It is important to understand the type
of data we are dealing with (i.e. range of values or precision of the fractional
part). For example, data normalized in the [0, 1] interval will need only one bit
for the integer part and the rest for the fractional one.

4.4 Summary

In this chapter we first show the bottlenecks of a very simple system performing
anomaly detection on live network traffic whilst using a total of 20000 One-Class
Support Vectors. As expected, the anomaly detection rate is significantly slower
than the arrival rate, hence we propose two different approaches that could be
used in overcoming the issue, and settle on using the first one.

The next section describes the relation between the amount of data and the
number of support vectors resulted from training models on it, with respect to
the ν and γ parameters.

CHAPTER 4. DEADA - A DATAFLOW ENGINE ARCHITECTURE 40

We then move on and propose DeADA, a dataflow architecture with dif-
ferent levels of parallelism for improving the anomaly detection rate. We also
incorporate the USAE algorithm into the architecture. The following steps de-
scribe a more generic approach to parallelization the OCSVM layer on FPGA,
finalizing with the description of a Maxeler implementation which we will use
for analyzing performance of DeADA when targeted for FPGA.

Chapter 5

The Ripple Framework

We introduce Ripple, a Java framework for easy modeling of dataflow programs
and incremental mapping to FPGAs. Although Ripple is not one of the goals
of this project, the initial framework we built in order to test DeADA proved
so useful that we decided to improve the base code and expose it as a library
which could be used in a diversity of applications.

The chapter contains the following key points:

• A description of Kahn Process Networks and their relation to dataflow
programming and dataflow applications.

• Ripple Framework and its core components which are used to form
Kahn Process Networks, for fast prototyping and simulation of dataflow
designs. The core components are the lightweight Box threads which form
the node is the KPN graph, and BoxPins which when linked form the
edges.

• Communication channels as implemented in Ripple. Communication
is done via message passing using communication queues.

• Pre processing as one of the strengths of Ripple. We believe this to be a
very powerful feature as it allows data to be casted on the fly, at pin level,
before being used in the computation and various functions to be applied
automatically. Ripple supports dynamic creation of new data types and
pre-processing functions.

• Shore is an application created using Ripple and used as a library for
DeADA’s packet capturing component.

5.1 Prototyping dataflow graphs

FPGA and dataflow designs are known to have a long development cycle caused
by different factors as highlighted in section 2.5. Therefore we needed a solution
which would allow us to test and simulate our dataflow designs before imple-
menting them on a specific architecture. Dataflow programming languages such
as [9], Pythonect, LabView or even VHDL exist, however, what we wanted was
a programmable plug-and-play solution which would not have the overhead of

41

CHAPTER 5. THE RIPPLE FRAMEWORK 42

learning a new language, and creating designs which target specific architec-
tures.

5.1.1 Kahn Process Networks

As it turns out, Kahn Process Networks (KPNs) are what we were looking
for. KPNs are groups of deterministic sequential processes with unbound FIFO
channels forming a distributed computing model. Data are read and written
in an atomic fashion, the behavior of the networked processes being agnostic
to communication and computation delays. Reads from a channel are blocking
(i.e. a process will stall if there is no input on the channels) whereas writes are
non blocking (i.e. it always succeeds)1. Dataflow networks have been show to
be a special case of KPNs[18] and are quite often used to implement streaming
applications, thus making it a good candidate for creating applications using the
dataflow programming paradigm. Furthermore Kahn Process Networks have
been used to model FPGA implementations [21] and have also been proposed
as alternatives to the traditional MapReduce design pattern [37].

5.1.2 Implementation requirements

As such, we identified the following requirements for Ripple:

• the building blocks of the framework should allow us to construct a graph
with nodes and edges.

• each node should act as an independent actor.

• the communication channels(the edges) should have unbound FIFO
queues and use message passing.

• lock-step execution. A node will stall if there are no data on the inputs.

5.2 Implementation

Ripple is built on top of KPN principles and Flow-based programming, where
processes act as black boxes which can be interconnected in various ways to form
complex designs and will be available as open source under an MIT license2.
The existing source code for Ripple is based an monolithic application created
during the 3rd year software engineering project together with Rory Allford
(rda10@imperial.ac.uk) and has been re-factored to form a standalone library.

The framework has two mains building blocks: Processing Nodes and Com-
munication Channels as described in the following sections.

5.2.1 Processing nodes

A Box represents a KPN processing node and is the fundamental building block
of Ripple. Figure 5.1 illustrates the high-level architecture of the Box which is
a lightweight thread operating in three steps:

1In practice, this is limited by the amount of memory allocated to the queues
2Some more code refactoring as well as integration with Akka actors is required before it

will be made publicly available

CHAPTER 5. THE RIPPLE FRAMEWORK 43

pin

pin

pin

pin

pin

input1

input2

input3

output1

output2

Box

Output
P
re
−
p
ro
ce
ss

D
IG

E
S
T

Figure 5.1: A Ripple Box node

1. Receive data on input pins: incoming data are received on the input pins.
However, the pins themselves do not contain the actual data, only informa-
tion about the type of data to be received so that it can be pre-processed,
evaluated and converted to a data type to be used in the next step. Data
are stored on the communication channel. Listing 5.1 shows how inputs
are initialized during the creation of a Box

2. Digest the inputs: values are extracted from the incoming channels through
lazy evaluation. This step is where computations should be placed, by im-
plementing the execStep method of the abstract Box. Listing 5.2 shows
how the input is digested and casted to an Integer (from an array of
bytes not shown in here) during the execution of the execStep func-
tion. Notice that in order to lazily evaluate an input we need to call
getValue(sequenceNumber). The sequence number represents the ordi-
nal value of the message on that channel.

3. Produce outputs: finally once the computation has been completed, execStep
must return an array of objects (as many as the output pins) which are ei-
ther null or non-null. The results of the computations will then be passed
to the next nodes in the dataflow graph. Listing 5.2, however, does not
produce any output (i.e. the Box node might have been a terminal node
in the graph).

Listing 5.1: Setting up the pre-processor and input pins/values in a Box

1 PPVariableTable varTable = new PPVariableTable();

2 for(BoxPin pin : listInputPins()){

3 varTable.create(pin.getPinName(),pin.getPinType());

4 }

5 /* Expressions */

6 PPType[] expressionTypes = utils.

7 parseTypeList(config.getConfigMulti("expressionTypes"));

8 PPBase[] inputValues =

utils.parseTuples(config.getConfig("expression"),

9 expressionTypes,varTable);

CHAPTER 5. THE RIPPLE FRAMEWORK 44

Listing 5.2: Performing a computation during execStep, with lazy evaluation of
the input values. Notice that there are no objects returned by this call, meaning
the Box has no output pins

1 @Override

2 protected Object[] execStep(Object[] objects, Object o) throws

BoxError, InterruptedException {

3 for(int i=0;i<inputValues.length;i++){

4 if(inputValues[i].getValue(sequenceNumber)!=null){

5 System.out.println((Integer)inputValues[i].getValue(sequenceNumber));

6 }

7 }

8 return new Object[]{};

9 }

Operating modes

The Box implementation provides a hook for dynamically changing the state of
a node. The abstraction has two operating modes which are specific to any
implementation of the Box: BoxMode.Connected and BoxMode.Disconnected.
When the processing node is started, it will automatically check whether the
input nodes (if any) have been connected and switch to BoxMode.Connected.
When the mode is BoxMode.Connected a SubMode can be used to diversify the
behavior of the processing node. Unlike BoxMode the generic SubMode is specified
during the implementation (it could be an enum too, however that is required
if the class is comparable).

The hook can be created by implementing the startupOrSwitch method.
Four parameters are provided by the method which can be used in changing the
behavior of the Box:

• BoxMode newMode: which can be either disconnected or connected. If the
mode hasn’t changed than it will be the same. This would only change if
the internal state of the Box, most likely in critical scenarios.

• BoxMode prevMode: the previous mode, before the mode was changed.

• <SubMode> nextMode: is the next mode as selected via Box.setMode(SetMode mode)

• <SubMode> prevMode: similarly the parameter has the value of the mode
before the change.

5.2.2 Communication Channels

Key in understanding the way a dataflow graph can be constructed using Ripple
are the communication channels and how they work. Figure 5.2 illustrates
the principles behind the Ripple message passing channel. On the left, we
have the output pin types together with the payload queues forming a structure
we call PinSource. On the right end we have the input pin types which we
define as the PinSink. Messages are enqueued at the source level using an
unbounded LinkedBlockingQueue. This means the channel is always able to
receive messages, however, should the source queues be empty, the receiving end
will block.

CHAPTER 5. THE RIPPLE FRAMEWORK 45

pinpin

pin

types
Output

types
Input

pin

with payloads

Queues

output2

output1

Message passing

Pin source Pin sink

Figure 5.2: Two Ripple message passing channels, as seen when connecting
two Box nodes, with the first node having two outputs, whilst the second node
having to inputs. The source of the channel is on the left, whereas the sink is
at the right end

Pins

There are 2 kinds of pins, both implementing the BoxPin abstract class : input
pins and output pins.

1. Output pins are the source of new data, and are connected to the input
pins of another computational node. The BoxPin contains information
about the PPType (more details in the next section) of a pin. The com-
bination of a BoxPin and the blocking queues forms the PinSource of
the communication channel. A PinSource implements the PPBase class
which allows for data to be casted automatically when PinSink connects
to it. Figure 5.3 illustrates the relation between these different components
which are further explained in subsection 5.2.4.

2. Input pins act as the sink of the Box. Similar to the output pins, PinSink
also contains a BoxPin field alongside with type information, but rather
than implementing PPBase it contains a reference to a PinSource. Thus,
by linking these two components we obtain a queue based message passing
channel between the nodes.

The output from a pin can only be connected to a single input pin, and
similarly, an input pin can be connected to only one output pin, the channel
being uni-directional.

5.2.3 Lockstep Execution

In our framework the KPN processing nodes execute in lock step. We implement
this behavior in two stages:

1. Input synchronization: the execStep() function will only be called if all
the input channels/streams have data, otherwise the executing thread will
block until the empty streams are non-empty. Therefore, if all data are

CHAPTER 5. THE RIPPLE FRAMEWORK 46

to be processed than every input must have received an equal amount of
information. This approach is similar to that used by the Maxeler kernels.

2. Output synchronization: all new outputs are produced during the same
cycle.

Our implementation allows for non-monotonic sequences of data: if for some
reason an inputs do not have the same sequence than the inputs will be skipped
so that all of them reach the highest existing sequence number. In addition, the
Box nodes can be configured to skip null data, by skipping the execution step and
filling all the outputs with null values. Should that be the case, the remaining
non-null input values will be lost and will not be used in any computation.

Event ordering

Inside a channel values are in total order, however at node level, each channel
will most likely receive the data at different rates. Therefore, the amount of
time a node is idling is dependent on the receiving rate.

5.2.4 Input pre-processing

We believe the pre-processing components which are part of the Ripple frame-
work are a differentiating factor when compared to similar tools. Figure 5.3
illustrates the high level interaction between them during the KPN initializa-
tion and runtime phases. Pre-processing is used in two ways:

1. Casting: for mapping different types to each other, so when data are
transmitted on the channel there is no need for explicit transformations
at the receiving end.

2. Function composition/application: various functions can be specified in
the Spring configuration files, which take as parameters either pins (iden-
tified by name) or constant expressions.

Function
applications

PPBase

PPBase

PinSource extends PPBase connect

replace

cast PPTypeBytes

to

PPTypeInt
new PPBase

PinSink

..
.

PinSink

PPBase.getValue()

Variable Table

PPTypeIntPPTypeBytes

Channel creation Expression parsing

Figure 5.3: Relation between the different pre-processing components and how
they play together to achieve lazy evaluation

CHAPTER 5. THE RIPPLE FRAMEWORK 47

• PPBase is basic abstract block used for pre-processing. From Listing 5.1 we
can see the inputValues used during execStep are initialized as PPBase.
Besides containing the Payload as retrived from the channel queues, it
also stores a corresponding PPType. The type is used when connecting
PinSink to PinSource for automatic casting during channel creation.

• PPType is the abstract class representing a pre-processed type, such as
PPTypeBytes, PPTypeInt, etc. Each implementation of a PPType must
override the cast(PPType newType, PPBase value) method. cast() is
called every time type casting is required, and returns a new PPBase value
with the new type. Besides the previous scenario, casting is also used
when the Variable Table is created and expressions are parsed.

• PPAppBase are an extension of PPBase and are used for the function ap-
plication stage inside the Variable Table. The function parameters are all
PPBase and can be either identifiers, constants or the result of another
function, since the result of applying a function will be PPBase itself.

5.3 Spring integration

Spring is a very popular dependency injection library, found in many enterprise
level applications. As we believe that Ripple has the potential of being used
as a tool for modeling distributed/dataflow computing, we have decided to use
Spring for DI and configuration. Listing 5.3 shows how the pin configuration
can be specified using BoxConfig and Spring beans for injection in a Box bean.

Listing 5.3: Configuration example for a Box using BoxConfig. The function
iprange is applied on the pin named ip which is of type PPTypeBytes and results
in a PPTypeInt

1 <bean id="modelConfig" class="com.septacore.ripple.node.BoxConfig">

2 <property name="properties">

3 <map>

4 <entry key="inputPinNames" value="ip;"/>

5 <entry key="inputPinTypes" value="PPTypeBytes;"/>

6 <entry key="expression" value="iprange(ip);"/>

7 <entry key="expressionTypes" value="PPTypeInt;"/>

8 </map>

9 </property>

10 </bean>

Besides specifying configuration, Spring also allows us to extend the range
of types included in Ripple, as well as the set of function applications. Listing
Listing 5.4 is an example of a newly created PPAppFunction. The name of the
function (which is used in the Spring configuration) is case insensitive and is
declared using Spring’s @Component(value=name) annotation.

Listing 5.4: Example of a newly created function IPRANGE to be used as an
expression/function application

1 @Component(value = "IPRANGE")

2 public class IpRange implements PPAppFunction {

CHAPTER 5. THE RIPPLE FRAMEWORK 48

3
4 private class IpRangeApp extends PPAppBase{

5
6 private boolean checkNotNull(Object[] objects){

7 for(Object o: objects){

8 if(o==null) return false;

9 }

10 return true;

11 }

12
13 private IpRangeApp(){

14 super(new PPTypeInt(), new PPType[]{new PPTypeBytes()});

15 }

16
17 @Override

18 public Object applyPreprocessor(Object[] objects) {

19 if(!checkNotNull(objects)) return null;

20 /*

21 Get the first byte and return it as an int.

22 */

23 ByteBuffer buff = ByteBuffer.allocate(4);

24 int buffL=4;

25 buff.put(--buffL,((byte[])objects[0])[0]);

26 buff.order(ByteOrder.BIG_ENDIAN);

27 return buff.getInt();

28 }

29 }

30
31 @Override

32 public PPAppBase create() {

33 return new IpRangeApp();

34 }

35 }

The annotation is required for Spring to be able to pick-up the new class
and register in the PPAppRegistry (which is used in the internal calls of the
Variable Table when parsing the expressions from the configuration file).

Listing 5.5 is an example of how a new type can be added to Ripple’s type
database by extending PPType and overriding the cast() method.

Listing 5.5: Example of a newly created type PPTypeGeneric. Note that the
name of the class is used to identify the new type inside the switch statement

1 @Component

2 @Scope(BeanDefinition.SCOPE_PROTOTYPE)

3 public class PPTypeGeneric extends PPType{

4 @Override

5 public PPBase cast(PPType newType, PPBase value) throws

PPError.PPSemanticError {

6 switch (newType.getClass().getSimpleName()){

7 case "PPTypeGeneric":

8 return value;

9 default:

10 throw new PPError.PPTypeError(this, newType);

CHAPTER 5. THE RIPPLE FRAMEWORK 49

11 }

12 }

13
14 @Override

15 public Object defaultValue() {

16 return new Object();

17 }

18 }

The final step, is to create an application by inter-connecting different Boxes.
A Box implementation should be instantiated using ApplicationContext.getBean.
The pins should be connected using Box.setInputPin(PinSource source).
The PinSource can be obtained by calling Box.getOutputPin(BoxPin pin).
Once the nodes and links have been created, we add them to RippleManager, a
wrapper around Spring’s ThreadPoolTaskExecutor. The dataflow application
can then be switched off via RippleManager.terminateNetwork().

5.4 Shore

Shore is a small library we created using Ripple. We will use this library
when creating our Heartbleed experimental set-up, in conjunction with Shore-
Probe. Shore-Probe is a C++ program which uses the Wireshark library to
capture packets, extract the packet fields we are interested in and then for-
ward them to Shore via an Ethernet connection. Shore will then receive the
information a Box node, named DispatchReceiver, which will form the entry
point(data source) of our dataflow graph.

The DispatchReceiver can be configured in the same way as a standard
Box node. We use the names of the output pins to specify which of the packet
fields we are interested in. Listing 5.6 is an example configuration with which
we extract two SSL packet fields.

Listing 5.6: Specifying the output pin names for retrieving wireshark packet
fields

1 <entry key="outputPinNames"

value="ssl.ssl.record.ssl.record.content_type;

2 ssl.ssl.record.ssl.record.length;

3 ssl.ssl.record.ssl.handshake.ssl.handshake.extensions_length;"/>

The DispatchReceiver has three operating modes:

• Online mode, will tell Shore-Probe to analyze live packets on the adapter
specified when starting the probe.

• Replay mode, will replay packets recorded in a libpcap file. The file is
specified in the capturefile configuration field.

• Recording mode will instruct the probe to capture the packets and save
them to the capturefile when the system is shut-down.

In addition to the three operating modes, DispatchReceiver can also use
Wireshark display filters, to filter the packets from which fields are being ex-
tracted, by setting filter in the BoxConfig bean.

CHAPTER 5. THE RIPPLE FRAMEWORK 50

The source code for Shore-Probe can be found https://bitbucket.org/

bandrei/shore-probewith the corresponding wiki pages at https://bitbucket.
org/bandrei/shore-probe/wiki/Home. Shore Java library can be found at
https://bitbucket.org/bandrei/shore, and similarly the Ripple library at
https://bitbucket.org/bandrei/ripple.

5.5 Summary

This chapter introduced the Ripple Framework a Kahn Process Network based
library, which resulted from our need to quickly prototype dataflow designs to
test various theories before moving on and implementing them on FGPAs, or
using tools such as those in the Maxeler suite.

We presented the various components of the Ripple Framework, with a de-
tailed description of the Box nodes implemented as single standalone threads and
of the communication channels between the nodes. As part of Ripple we include
extensible pre-processing capabilities for input pins. Pre-processing the data re-
duces the amount of boilerplate code associated with casting various types of
data coming through the pins while executing a computation in lock-step.

We showcased the working of the framework and the benefits of having
Spring integrated with it by presenting code snippets from real applications.
We finally describe Shore, an application we have built using Ripple for the
purposes of capturing packets from the network.

Overall we believe that Ripple:

• can be used as an option for fast prototyping of dataflow designs, based
on Kahn Process Network Principles.

• can take advantage of multi-core processors through its implementation
of the processing nodes as threads.

• is easy to use, similar to a plug-and-play system where input and output
pins are connected between nodes to form a dataflow graph.

• supports extensible functionality, such as new configurable data types, or
addition of new pre-processing function via Spring Dependency Injection.

https://bitbucket.org/bandrei/shore-probe
https://bitbucket.org/bandrei/shore-probe
https://bitbucket.org/bandrei/shore-probe/wiki/Home
https://bitbucket.org/bandrei/shore-probe/wiki/Home
https://bitbucket.org/bandrei/shore
https://bitbucket.org/bandrei/ripple

Chapter 6

Evaluation

This chapter contains the evaluation of our contributions from the previous
chapters. As such, notable results are:

• correctness validation of the Synthetic Benchmarks from section 3.3
by using the Simple method with a pure One-Class SVM model, whose
accuracy degrades, as expected, when exposed to concept drift. As such
our Synthetic Benchmark solution can be used as an alternative to the
one described by Tsymbal et al. [35]. See section 6.3.

• excellent performance of our USAE algorithm at the general level (not
just for network intrusion detection) while testing on the Synthetic Bench-
marks. Under concept drift, and with the right selection of λ, USAE is
able to constantly maintain a high level of accuracy of ≈ 80% (com-
pared to the 37% of the simple OCSVM), and at its best is between ≈ 5
and ≈ 7 percentage points below the optimal Supervised approach [25].
However, we believe this to be acceptable given that USAE is a fully
automated online learning solution, whereas the supervised approach in-
volves manual labeling of data. See section 3.1 for details of the algorithm
and section 6.3 for results.

• improved anomaly detection in systems with high volume of data.
When targeting FPGA, our DeADA architecture has a drop rate of 130.66,
which is ≈ 4x lower than the best CPU implementation. As a consequence
DeADA is able to maintain an average classification accuracy of 78% even
when packets are dropped and data are under concept-drift, compared to
the 20% low when not using DeADA. See section 6.4 and section 6.5.

6.1 The setup

For conducting our experiments we used a machine with a 4 Core Intel i73630QM
processor and 8GB or RAM, the Maxeler MAX342A card with a Virtex 6 chips,
and a MAIA card with Virtex 7. The machine is used for assessing the per-
formance of the host code in the DeADA architecture, testing the self-adaptive
ensemble (USAE) method and showcasing the Heartbleed bug.

51

CHAPTER 6. EVALUATION 52

The throughput rates in chapter 4 are obtained when running an installation
of Ubuntu 12.04 Server inside a VMWare virtual environment. Capturing is
done with Wireshark and our Shore-Probe.

6.1.1 Ripple Implementation

One of the exciting, but unexpected results of this project is the Ripple Frame-
work. Because we want to compare the performance of the DeADA architecture
on FPGA versus CPU, Ripple has proved very useful in implementing DeADA
on the CPU. The threaded nature of the Box nodes allows us to take advantage
of the multi-core architecture of the i7 processors.

CHAPTER 6. EVALUATION 53

ethernet/captures

Shore(Probe)

capture

send
packets

generator
Modelheuristic

apply

Detected

Anomaly

PreProcess

aggregate

vote

results buffer

anomaly

normal

update window

PreProcess

OCSVM

layer

layer

layer

Decision

normal

Data
Receiver

SHORE

partial
OCSVM

Storage

Model

Temp

Storage

Figure 6.1: Ripple implementation of DeADA for CPU. Note that the OCSVM
layer has been reduced in size so the diagram fits on the page, but it’s still
parallel as indicated by the multiple outputs and the results buffer.

Figure 6.1 represents our implementation of DeADA using Ripple and Shore.
We can see that it is consistent with Figure 4.2 from chapter 4, with the only
addition of the Shore component (see section 5.4) as the entry point in the
dataflow graph.

We use the Ripple implementation for the following purposes:

CHAPTER 6. EVALUATION 54

• Test the USAE algorithm. Note that Shore is removed in this case as seen
in Figure 6.3.

• Simulation (see section 6.5), as not all of DeADA components have been
mapped to FPGA.

6.2 Heartbleed case-study

The strength of the anomaly detection lies in its ability to detect unseen patterns
and distinguish them from the known ones. In the context of network intrusion
detection, this means anomaly detection is able to see unknown attacks (i.e. at-
tacks which have not been reported, and about which little is known). However,
the techniques has its disadvantages as well. Because it is very good at recog-
nizing if something is different, it fails at identifying the type of different [4].
Fortunately, the task of labeling the attacks can be delegated to different tools;
if they fail, it means that either we had a false positive or more likely we have
caught a novel type of attack and thus prevented a potential disaster such as
Heartbleed.

We therefore create a hypothetical scenario as if we were trying to prevent
attacks prior to the reporting of Heartbleed, in order to demonstrate the poten-
tial of anomaly detection and highlight some of the challenges which arise from
using it for network intrusion detection.

6.2.1 Description of the bug

Heartbleed is a new security breach reported by Google’s security team on April
1 2014. It affects versions of OpenSSL 1.0.1 starting from March 14, 20121 when
a new feature of the SSL protocol was enabled by default. The new feature was
an SSL request meant to check the status of the connection and keep it alive
(thus the Hearbeat name). The Heartbeat can be identified in the SSL packet
by looking for value 24 in the Content Type field.

The bug exploits a bounds check in the code, by naively trusting the values
sent by the client. The relevant parts of a Heartbeat message are as follows:

• The message length: size of the message in bytes.

• The message content: formed of a message type, a payload length and
the actual payload which is expected as a response from the server if the
request is successful.

Suppose we have the following scenario: Message length=3, Type=1 and
Payload length=16384. We therefore have the type as the first byte, and the
payload size as the remaining two bytes, however there is no payload. Since
the server sees the length of the payload is 16384, but does not check whether
that is the case, it will allocate 16384 bytes of memory to fill the response.
Because the payload is 0 bytes long, the response will contain 16384 bytes
of the server’s memory, thus revealing sensitive information such as cookies,
usernames, passwords, etc.

1git commit hash 4817504

CHAPTER 6. EVALUATION 55

6.2.2 Methodology

We proceed to using a Simple One-Class Support Vector machine classifier
as a solution to preventing Heartbleed. We create a scenario in which we are
trying to secure our OpenSSL server against potential threats, but without
having any prior knowledge about the structure of the attacks or the bugs
they might exploit. We are interested in analyzing the requests coming from
the clients on the allocated SSL port (443).

Since we lack an actual server which would receive data from different clients,
we record the packets as seen from the client’s perspective while accessing mul-
tiple SSL servers, and filter it out based on the port number. This is equivalent
to the sever recording the incoming client packets.

As we only care about the security of the SSL protocol, we shall capture
and analyze only SSL related packets. There are four types of SSL requests:
Cypher Exchange, Heartbeat, Application Data, Handshake, and Alert. We do
not want to analyze Application Data requests as they contain the actual infor-
mation transmitted using the SSL channel. We chose to inspect the following
protocol fields (specified in Wireshark format) as we believe an attack would be
an unexpected combination of these:

• ssl.record.content_type

• ssl.record.length

• ssl.record.version

• ssl.handshake.type

• ssl.handshake.length

• ssl.handshake.version

• ssl.handshake.extensions_length

We train an initial classifier on 2232 examples with ν = 0.008 and γ = 0.0003
resulting in a total of 28 support vectors.

We then setup an OpenSSL server with version 1.0.1f (which contains the
Heartbleed bug) in Ubuntu Server 12.04. We then use a python script which
tests the server for the vulnerability by performing an attack on it, thus gener-
ating network data as for a real situation.

Important notes:

• The packets have no concept drift

• The architecture has no replication and hence no parallelism.

6.2.3 Results

We obtain the following results:

• The Simple classifier is able to detect 100% of the anomalies with an overall
Accuracy of 98% for the classified data. As investigations pointed out, the
existence of the Heartbeat itself is an anomaly, with the recorded data set
containing no such messages, since most SSL protocol implementations
don’t even use it.

CHAPTER 6. EVALUATION 56

• As explained in chapter 4 the arrival rate is ≈ 2271packets/s correspond-
ing to an 18Mbps network speed. However, due to the difference in the
arrival rate and processing rate we notice that after ≈ 4 seconds the
Receiver cannot accommodate any more data, as memory allocated to
the 6000 elements buffer has been filled. Despite the high classification
Accuracy, we were able to analyze only a fraction of the whole data, more
specifically ≈ 8200 packets out of the 483945 recorded packets, before the
system shutdown/restart (i.e. until the cutoff point in Figure 6.2). This
is clearly unacceptable in a real-world scenario, as a system which does
not work or analyze the data automatically implies Accuracy = 0%.

• One of the ways to allow the system to continuously analyze data is to
drop packets (see chapter 4), but the drop-rate impacts the accuracy of
the classification. section 6.5 takes this experiment further, and evaluates
the impact of dropping packets when using this simple setup, versus the
DeADA setup, highlighting the need to have lower drop-rates(which can
be obtained through DeADA).

0 5 10 15

0

2,000

4,000

6,000

time(s)

qu
eu

ed
p
a
ck
et
s

OCSVM
Receiver

cutoff
point

Figure 6.2: Packet processing time for a Receiving node and for the OCSVM
node

Based on aforementioned results we can define the following challenges,
which will be addressed in the next sections, with an overall evaluation in sec-
tion 6.5:

• solving the issue resulting from the difference of the arrival rate and pro-
cessing rate, and creating a system which would be able to continuously
analyze data (i.e. DeADA).

• test the accuracy of the One-Class SVM model in detecting Heartbleed
attacks under concept drift, which has not been covered under this sce-
nario.

CHAPTER 6. EVALUATION 57

6.3 USAE evaluation

One of the main contributions of the project is our solution to addressing concept
drift in the context of novelty detection. In order to validate our theory, we first
set-up a dataflow architecture based on the DeADA architecture in Figure 4.2,
but with a replication factor of 1 at both the Pre-processing layer and OCSVM
layer.

We decided that replication is not necessary in testing our theory as the
USAE algorithm described in section 3.2 has no such requirement. Further-
more the heuristic functions are applied after results are aggregated, a step
which cannot be parallelized. ModelGenerator will perform aggregation, vot-
ing, application of the Hflip heuristic and will act as the temporary store for
the training examples.

generator
Modelheuristic

apply

Detected

Anomaly

PreProcess

aggregate

vote

results buffer

anomaly

File data

normal

update window

PreProcess

OCSVM

layer

layer

layer

Decision

normal

partial
OCSVM

Storage

Model

Temp

Storage

Figure 6.3: Set-up architecture used for testing the self-adaptive ensemble theory

Figure 6.3 illustrates what our set-up looks like. Note the Capture node
is removed as we will be experimenting with our synthetic benchmarks from

CHAPTER 6. EVALUATION 58

section 3.3, which are stored in files.

6.3.1 Methodology

Techniques used for comparison

We are interested in evaluating the performance of our approach when compared
to the following techniques:

• a Simple classifier trained only once, and used for analyzing the rest of the
data set. We train an initial classifier on the first 100 positive examples out
of a total of 10000 available in the data sets. This is the simple, unaltered
version of One-Class Support Vectors, as described by Schölkopf et al.

• a Supervised window ensemble as described by Parveen et al. [25], where
models are removed based on their accuracy on previous data. Since in
their approach data are labeled, a supervised algorithm should produce
better results than an unsupervised one, as the former has knowledge not
available to the latter. We shall consider this as the optimal solution
when using ensembles of models. We will set the size of the ensemble to
4 (same as for USAE).

• a Forward feeding classifier, with periodic model update. This is an
unsupervised approach which is neither ensemble based, nor does it use our
self-adaptive algorithm, but where the model used for anomaly detection is
always trained on data labeled by previous models, hence the term forward
feeding.

• USAE, our own contribution as described in section 3.1

There are a total of six data sets generated using our synthetic benchmark
algorithm with various values for the T and K parameters. Each example in
the data set has a total of 10 attributes.

Measuring performance

For each of the four methods analyzed in this section we measure their accuracy
based on Equation 6.1, as well as on a modified Brier score as described in
Equation 6.2. Note when using BSmodified a lower value is better, just as it
would be with the standard Brier Score.

We do not use the classical formulation of the Brier Score since it is usually
intended for measuring the quality of classifiers which give predictions as a
probability, whereas a One-Class SVM returns a discrete value from {−1, 1}.

Accuracy =
TrueNeg + TruePos

TrueNeg + TruePos+ FalseNeg + FalsePos
(6.1)

BSmodified =
1

n

|data|∑
i=1

f(prediction, label), f(x) =


1 if prediction 6= label

0 otherwise

(6.2)

CHAPTER 6. EVALUATION 59

Benchmarks

section 3.3 describes a method for generating Synthetic Benchmarks specifically
for use in anomaly detection. As such we generated several benchmarks with
varying degrees of concept drift by setting the T and K parameters.

For each of the synthetic benchmarks we reserve the first 400 positive exam-
ples for training the base classifiers and the ensembles (100 examples for each
model in the ensemble). We then measure the performance of the algorithms
on the remaining examples (both negative and positive). Once 100 positive ex-
amples have been collected by the ModelGenerator queue, we generate a new
model and update the ensemble. Each benchmark has a total of 10000 mixed ex-
amples. We measure BSmodified and Accuracy in batches of size 500, resulting
in ≈ 18 data points.

6.3.2 Results

Figure 6.4 compares the accuracy results of the USAE method against that of
the Simple base classifier and the Supervised OCSVM ensemble, for varying
parameters of T and K. Figure 6.5 shows the BSmodfied scores for the same
methods. In Figure 6.4a and Figure 6.5a we can see the concept drift is not
very strong.

0 5 10 15

0.65

0.7

0.75

0.8

0.85

Data batch no.

A
cc
u
ra

cy

Simple
USAE

Supervised

(a) T=50, K=1

0 5 10 15

0.4

0.5

0.6

0.7

0.8

0.9

Data batch no.

A
cc
u
ra

cy

Simple
USAE

Supervised

(b) T=100, K=1

0 5 10 15
0.2

0.4

0.6

0.8

Data batch no.

A
cc
u
ra

cy

Simple
USAE

Supervised

(c) T=500, K=1

0 5 10 15

0.4

0.6

0.8

Data batch no.

A
cc
u
ra

cy

Simple
USAE

Supervised

(d) T=100, K=7

Figure 6.4: Accuracy measurements for the Simple base classifier, the Super-
vised ensemble, and our USAE method.

CHAPTER 6. EVALUATION 60

The highs and lows in the graph are a consequence of the drift changing
direction with a probability of 0.1 for some random attribute ai, 1 ≤ i ≤ 10
(see section 3.3). We can see that in some cases the USAE method has an
≈ 10 to 15 percentage points difference in the accuracy when compared to Su-
pervised, which is also confirmed by BSmodified. This is due to a poor selection
of the λ parameter in USAE, as we set it to 0.3 which is the optimal value for
the T = 100,K = 1 scenario.

Indeed, we can see in Figure 6.4b and Figure 6.5b that USAE is performing
a lot better, having an accuracy almost on par with the Supervised method.
Figure 6.4c shows the case where the rate of the drift is higher (i.e. T = 500),
whereas Figure 6.4d shows the case where the magnitude of the drift is increased
(i.e. the K attributes affected by drift).

0 5 10 15

0.15

0.2

0.25

0.3

0.35

Data batch no.

B
S
m

o
d
if

ie
d

Simple
USAE

Supervised

(a) T=50, K=1

0 5 10 15
0.1

0.2

0.3

0.4

0.5

0.6

Data batch no.

B
S
m

o
d
if

ie
d

Simple
USAE

Supervised

(b) T=100, K=1

0 5 10 15

0.2

0.4

0.6

0.8

Data batch no.

B
S
m

o
d
if

ie
d

Simple
USAE

Supervised

(c) T=500, K=1

0 5 10 15

0.2

0.4

0.6

Data batch no.

B
S
m

o
d
if

ie
d

Simple
USAE

Supervised

(d) T=100, K=7

Figure 6.5: Brier scores for different values of K and T

In all of the cases presented here, the USAE method performs significantly
better than the Simple classifier, and is almost as good as the Supervised
method, when the λ parameter is selected accordingly, being able to maintain
an almost constant precision.

CHAPTER 6. EVALUATION 61

0 5 10 15

0.6

0.65

0.7

0.75

0.8

Data batch no.

A
cc
u
ra

cy

Simple
USAE

(a) Accuracy

0 5 10 15

0.2

0.25

0.3

0.35

0.4

Data batch no.

B
S
m

o
d
if

ie
d

Simple
USAE

(b) BSmodified

Figure 6.6: Highly oscillating concept-drift

Figure 6.6a and Figure 6.6b consider the case with a high drift rate, and
a frequent change of direction (i.e. every 2000 examples, the direction of drift
is reversed for all K attributes). We can see USAE is in anti-phase with the
Simple method. As expected, the Simple classifier starts performing better as
data re-enters its original range and drops as it moves away from it. However,
because USAE is an ensemble based method it incorporates historical infor-
mation about the data, and thus adapts more slowly to change. In fact, for
this particular example, the accuracy of USAE increases just as that of Simple
starts to decrease, thus the smaller amplitude of the Accuracy and BSmodified
measures. This means USAE might not be such a good option for systems
where the drift has a high magnitude and the direction of the drift changes very
often.

0 5 10 15

0.4

0.6

0.8

Data batch no.

A
cc
u
ra

cy

Simple
USAE

(a) Accuracy

0 5 10 15

0.2

0.4

0.6

Data batch no.

B
S
m

o
d
if

ie
d

Simple
USAE

(b) BSmodified

Figure 6.7: Continuously self-adaptive Forward classifier and USAE. The sim-
ple classifier is updated with a new model, once enough positive data (as labeled
by the current classifier) has been gathered. We observe high accuracy for our
USAE method, as well as very low (0.2) BSmodified score.

Figure 6.7 compares the Forward feeding approach described earlier, to our
proposed USAE method. We can see that a simple, but continuously updated
classifier does not perform very well, its performance being similar to that of a
Simple classifier used for the whole life-time of the system.

CHAPTER 6. EVALUATION 62

Impact of λ

We have previously seen that a general value for λ does not work well in all
scenarios and is correlated with the characteristics of the concept drift. Fig-
ure 6.8a and Figure 6.8b analyze the impact of choosing the right λ. We can
see that λ = 0.5 and λ = 0.4 perform best when handling concept drift with a
magnitude of K = 7.

This is caused by data distancing itself from the separating hyperplane of the
models. The further away a point is from any of the hyperplanes, the smaller
the relative difference is (i.e. dmax − dmin compared to dmin and dmax) and
thus, the ratio dmin

dmax
gets closer to 1. Choosing the right value for λ can be

done either through experimentation, analyzing historical data or by creating
mathematical models for the concept drift.

CHAPTER 6. EVALUATION 63

0 5 10 15

0.4

0.6

0.8

Data batch no.

A
cc
u
ra
cy

Simple

USAE(λ = 0.3)

USAE(λ = 0.1)

USAE(λ = 0.4)

USAE(λ = 0.5)

(a) Accuracy

0 5 10 15

0.2

0.4

0.6

Data batch no.

B
S
m

o
d
if

ie
d

Simple

USAE(λ = 0.3)

USAE(λ = 0.1)

USAE(λ = 0.4)

USAE(λ = 0.5)

(b) BSmodified score

Figure 6.8: Impact of varying λ, T = 100, K = 7 on applying USAE and
compared to Simple. λ = 0.5 and λ = 0.4 perform the best in terms of both
Accuracy and BSmodified.

CHAPTER 6. EVALUATION 64

Simple USAE(λ = 0.3) Supervised

T=50

K=1

Low 0.64 0.76 0.75

High 0.82 0.82 0.83

T=100

K=1

Low 0.37 0.70 0.77

High 0.81 0.80 0.85

T=500

K=1

Low 0.24 0.63 0.73

High 0.70 0.77 0.80

T=100

K=7

Low 0.27 0.59 0.88

High 0.76 0.8 0.81

Table 6.1: Table containing the lowest and highest accuracies of the three main
methods. As we can see USAE has a very narrow oscillation for T = 100,K =
1 since λ = 0.3 was selected to handle this type of drift. The results are
consistent with the figures, meaning USAE performs far better than Simple
and is approximately as good as the optimal Supervised method.

To sum up the section:

• we have shown that our Unsupervised Self-Adaptive Ensemble online
algorithm is far superior to that of a Simple One-Class SVM model/clas-
sifier or a self-adaptive Forward feeding version of it.

• USAE is highly resilient when facing concept drift, being able to contin-
uously maintain the accuracy as high as 80% (see Figure 6.4b) when a
good value for λ is selected.

• despite being an unsupervised online algorithm USAE is almost as good
as the Supervised method (percentage point difference in accuracy can
get as low as 1), whilst being fully automated.

• the λ parameter allows for fine-tuning of the the USAE algorithm, and
is related to the strength of the concept drift.

6.4 Maxeler implementation

We have chosen to map the OCSVM layer to FPGA by using Maxeler tools. The
designs were compiled using Maxcompiler 2013.2.2 for MAX3 and Maia cards
with a Xilinx Virtex 6 chip and Virtex 7 chip respectively. The performance met-
rics of MAX3 were gathered by running the design on maxstation2.doc.ic.ac.uk

under normal load. All the designs were built for a running frequency of 100Mhz,
unless stated otherwise.

We define replication as being the number of DeADA units we can fit on
a chip (see section 4.3 for details).

6.4.1 Double vs Single Precision

One of the advantages of FPGAs is the ability to control the word size resulting
in a more efficient usage of the chip’s resources with respect to the data. One
such simple, but common, optimization is the use of single precision instead of

CHAPTER 6. EVALUATION 65

0 5 10 15

0.7

0.75

0.8

0.85

Data batch no.

A
cc
u
ra

cy

USAE(float)

USAE(double)

Figure 6.9: Difference in accuracy of Double Precision and Singe Precision im-
plementations on CPU side

double precision as long as it does not impact the accuracy of the information.
Figure 6.9 shows almost no difference when using floating point values in our
USAE approach on the synthetic benchmark. We therefore decided to use a
32bit design for our architecture with fixed point arithmetic(as described in
chapter 4) for the internal calculations and floating point values as inputs and
outputs.

6.4.2 MAX3 resource usage

We compile the design from section 4.3 and obtain the resources usages de-
scribed in Table 6.2, Table 6.3 and Table 6.4, for three main replication factors:
replication ∈ {1, 48, 96}. Additional resources usage tables can be found in
Appendix A.

LUTs FFs BRAMs DSPs component

11.03% 8.30% 8.88% 0.20% total

0.82% 0.58% 0.94% 0.20% kernels

10.05% 7.69% 7.94% 0.00% manager

0.13% 0.04% 0.00% 0.00% stray resources

Table 6.2: Resource usage for a build with replication=1

CHAPTER 6. EVALUATION 66

LUTs FFs BRAMs DSPs component

43.25% 30.89% 30.31% 9.52% total

21.97% 16.79% 0.94% 9.52% kernels

20.36% 13.97% 29.37% 0.00% manager

0.88% 0.12% 0.00% 0.00% stray resources

Table 6.3: Resource usage for a build with replication=48 on MAX3

LUTs FFs BRAMs DSPs component

42.86% 28.66% 49.01% 9.78% total

24.80% 17.33% 1.40% 9.78% kernels

17.86% 11.14% 47.18% 0.00% manager

35.29% 24.82% 40.49% 9.78% stray resources

Table 6.4: Resource usage for a build with replication=96 on MAIA

6.4.3 Results

In order to create a unified measure of how much information is to be processed
by the FPGAs we define the DataSize as in Equation 4.3. Multiple data sets
were generated using the synthetic benchmark algorithm and include a variable
number of support vectors: 2i ∗ 10000, 1 ≤ i ≤ 9, with 20 attributes each.

CHAPTER 6. EVALUATION 67

1 4 8 16 24 32 48

1

2

3

4

·104

Replication

T
im
e(
µ

)

0.4mil
0.8mil
1.6mil

(a) Small data size

1 4 8 16 24 32 48

0

1

2

3
·105

Replication

T
im
e(
µ

)

3.2mil
6.4mil
12.8mil

(b) Average data size

1 4 8 16 24 32 48

0

0.5

1

1.5

2

·106

Replication

T
im
e(
µ

)

25.6mil
51.2mil
102.4mil

(c) Large data size

Figure 6.10: Time taken to compute data of different size on an architecture
with varying replication levels.

Figure 6.10 shows the performance of our design as a function of the data
size and the replication factor. As expected replication = 48 is able to maintain
the lower bound imposed by the initialization time, whereas for large data it is
asymptotically close.For replication = 48 we measured the average initialization
time (i.e. by providing data for only one computation cycle) to be ≈ 8325µs,
while for replication ∈ {1, 24} ≈ 8125µs

We measure the performance of both MAX3 and CPU implementations with
respect to the Drop Rate described in chapter 4 and Equation 4.2.

Unfortunately in the current setup there is no connection between the data
capturing nodes, and the FPGA accelerated implementation, meaning there is
no continuous stream of newly arrived packets on which to perform analysis
and obtain the processing rate. Data presented in Figure 6.10a is measured by
analyzing a single instance against varying data sizes, resulting in the processing
time per instance. However, we can use the arrival rate and the inverse of the
processing rate from the CPU side, to obtain the drop rate. Equation 4.2 and
Equation 6.3 are therefore equivalent.

This substitution allows us to obtain the drop rates for the FPGA imple-
mentation using an arrival rate of ≈ 2571 packets/s as discussed in chapter 4.It
is also important to note there is a one-time initialization cost of the FPGA
which varies for different setups (i.e. different replication factors) and is present
in each of measurements, Hence, the initialization time will be subtracted when

CHAPTER 6. EVALUATION 68

calculating the DropRate.

Drop Rate = (analysis time) ∗ (arrival rate)

analysis time =
1

processing rate

(6.3)

Drop Rates

Data Size(M)
CPU MAX3

1 core 4 cores r=1 r=24 r=48 r=72

0.4 4.16 1.46 22.68 1.96 1.35 0.8

0.8 8.24 3.14 44.90 1.06 1.07 0.77

1.6 16.30 6.15 89.10 4.54 3.15 1.02

3.2 33.17 11.52 176.93 7.34 4.38 3.81

6.4 65.05 22.96 354.71 15.57 8.65 6.22

12.8 129.13 45.56 707.99 31.48 17.78 13.45

25.6 313.15 106.99 1415.89 62.69 33.83 38.31

51.2 560.13 219.18 2838.63 123.59 67.16 58.40

102.4 1367.55 469.16 5667.95 245.91 130.66 118.61

Table 6.5: Drop rates on CPU and MAX3

We can see that for small data (0.4 and 0.8 million) the drop rates for
FPGA are quite low and are comparable to that of a 4 core CPU. We refrain
from assessing whether it is better or worse, as measurements with this little
data are very sensitive to the accuracy of our initialization time estimates. On
the other hand, we can see the MAX3 implementation is able to maintain the
DropRate at a lower bound of ≈ 1 as data increases from 0.4 million to 0.8
million, whereas the DropRate doubles on a 4 core CPU.

6.4.4 Further analysis

Despite the fact that our design consumes only ≈ 40% of the FPGA chip for
replication = 48, increasing the number of DeADA units would not result an
increase in performance (as we can see from replication = 72). The memory bus
width of the MAX3 card is a limiting factor as it is only 3072 bits wide, which
means in the optimal use case we have at most 48 units capable of consuming
data at the same time, as resulted from Equation 6.4.

Replicationmax =
Memory Bus Width

64
(6.4)

However, we can give performance estimates for implementations on the
Maia card which has double the memory bus width(6144 bits) of MAX3. Based
on Table 6.5 we can estimate the DropRate for replication = 96 to be 69.5,
≈8x better than the best CPU implementation.

Further work can be done in exploiting the remaining on-chip resources (pos-
sibly by incorporating the PreProcess layer on the same chip) and connecting

CHAPTER 6. EVALUATION 69

the accelerated OCSVM layer to the data receiving/pre-processing layer in or-
der to measure performance on continuous streams of incoming packets.

Finally we summarize the results:

• we have successfully obtained a 4x decrease in the DropRate for the FPGA
implementation when compared to the best(4 core) CPU implementation,
with a further possible improvement of up to 8x.

• we successfully fit our FPGA design of the OCSVM layer on chip, and
increased the parallelism until stopped by the DRAM memory bus width.

• we highlighted the trade-off between lower DropRates and DataSize

6.5 DeADA and Heartbleed

We have previously seen in section 6.2 a case study of Heartbleed and the
potential of anomaly detection in defending against such threats. Despite the
100% accuracy of the OCSVM model, the intrusion detection system stopped
analyzing any new packets as the memory got filled, thus making it unfeasible
for practical applications. Furthermore, the data used to test and train the
machine learning model had no concept drift in it.

Hence, we addressed two main issues in the remaining sections of the evalu-
ation:

• we evaluated the USAE algorithm on a Synthetic benchmark to demon-
strate its utility for the more general use case where data (not just network
packets) are subjected to concept drift.

• we evaluated the impact of parallelising the One-Class SVM computations
from the OCSVM layer of DeADA on the DropRate.

6.5.1 Methodology

In this section, we revisit the Heartbleed bug, however under a more aggres-
sive scenario, using DeADA in a set-up where packets are analyzed continuously,
without the system crashing. In addition, we transform the 483945 packets such
that data are exposed to drift (based on the range of values in the data set),
in a similar way to the synthetic benchmark generation mechanism. Figure 6.1
shows the setup for this experiment.

Because the FPGA acceleration section is not fully integrated with the rest
of the DeADA architecture, we simulate the behavior using our Ripple based
implementation, and remove the memory limitation, but keep the drop rate.

6.5.2 Results

Since packets are now dropped at different rates, the DropRate becomes signif-
icant in analyzing the accuracy of the system as a whole. From Figure 6.11 we
can see how the DropRate impacts the accuracy of the overall system:

CHAPTER 6. EVALUATION 70

• for the Simple classifier with a DropRate = 1367.55 accuracy decreases
greatly as data drifts. If data had no concept drift the accuracy would
have been constant, but we would still be able to analyze only a limited
number of packets.

• for DeADA we have two versions. The one with the higher DropRate cor-
responds to replication = 1, whereas the lowerDropRate is for replication =
48. Hence, for DropRate = 1367.55 even with USAE the accuracy of the
system is very bad (as low as 20%). The potential of DeADA as end-to-
end architecture is thus emphasized when DropRate = 130.66, with the
system maintaining an accuracy as high as 80%.

1 2 3 4 5 6 7

0.4

0.6

0.8

Data batch no.

A
cc
u
ra

cy

Simple

DeADA(1367.55)

DeADA(130.66)

Figure 6.11: Detecting Heartbleed in environments with concept-drift. The
figure shows the impact of the Drop Rate when aiming to detect Heartbleed.
The Simple and DeADA(1367.55) have the same DropRate = 1367.55 (see).
We can see the lower the DropRate is, the higher the accuracy of the system
becomes. The drift is set by T = 100,K = 1.

Overall, not only does DropRate impact the system’s ability to analyze all
the data (and thus miss potential attacks), but it also affects the accuracy of
the classification when data are subjected to drift. From our evaluation, we
believe there is a lot of potential for a system like DeADA to become a reality
and one day perform live intrusion detection with very low drop rates, even
in Gigabit network setups.

6.6 Beyond the memory limit

As seen in section 6.4 our design is consuming ≈40% of the chip resources,
however it is limited by the bus width of the memory. Given Equation 6.4 we
can hypothesize on the impact of DeADA should these constraints be removed,
or reduced:

CHAPTER 6. EVALUATION 71

• We estimated the potential of the implementation on the Maia card to be
8x better than on Max3, due to its wider memory bus width. However,
even for Maia the resource usage allows for twice as more replication, with
an estimated ≈16x improvement in the DropRate.

• Thus, we can get an estimated DropRate of ≈30, which drastically im-
proves the detection capabilities of DeADA in terms of the number of
analyzed packets. Furthermore, from section 6.5 we have seen the positive
impact of an improved DropRate on the accuracy of the whole system.

By overcoming these constraints, we believe DeADA could become the net-
work intrusion detection system of choice, given the inherit ability of anomaly
detection to handle unknown attacks, the self-adaptive and unsupervised na-
ture of our USAE algorithm, and the low DropRates resulted from higher
parallelism. Future work could see DeADA optimized for handling speeds of
100Mbps up to 1Gbps and beyond.

6.7 Summary

The chapter evaluates the potential of our USAE algorithm as well as the perfor-
mance of the DeADA architecture. We investigate the improvement of the drop
rate when targeting DeADA for FPGAs over CPU. The designs are synthesized
using MaxCompiler 2013.2.2.

We start by showcasing the potential of anomaly detection and USAE in
identifying previously unseen attacks. Heartbleed is a recent bug discovered
in OpenSSL and as such we believe it a very good candidate for our experiment.
We train a classifier using OCSV on a range of TCP fields extracted using
Wireshark. The fields are chosen with no particular preference, but have been
chosen such that they contain useful information about the incoming data. The
classifier was successful in identifying all the simulated attacks.

The next section of the chapter evaluates our proposed unsupervised self-
adaptive ensemble method on a range of synthetically generated benchmarks.
We analyze the impact of the λ parameter from the Hflip heuristic on the overall
quality of USAE. We obtain very good results, comparable to the reference
solution (i.e. a supervised ensemble as described in [25]).

Finally, we evaluate the performance of DeADA when mapped to a MAX3
card. We obtain an improvement of ≈4x in the Drop Rates when compared to
4 cores CPU, with further possible improvements when using a Maia card.

Chapter 7

Conclusion

In this project we have addressed the issues posed by using anomaly detection on
live data subjected to concept drift in the context of network security. We have
shown the potential of our proposed unsupervised machine learning solution
compared to supervised anomaly detection. We then constructed a scalable
dataflow architecture around it, with improved performance over CPU when
analyzing live traffic.

7.1 Summary of achievements

We propose the Unsupervised Self-Adaptive Ensemble(USAE) as an alternative
to handling concept drift in anomaly detection, a branch of machine learning.
By combining different techniques we created a solution which is comparable to
existing supervised techniques, when using One-Class Support Vector Machines.
Thus, we automated the process of data classification and example gathering for
the purposes of training new classifiers capable of handling concept-drift, and
as a consequence enable the use of anomaly detection in handling high-volume
data without any external interventions, addressing Challenges 1 and 2 from
section 1.2.

To address Challenge 3, consisting of the high processing times required
by machine learning algorithms for classifying network traffic as good or bad,
we created DeADA, a scalable architecture which incorporates the power of
OCSVM in anomaly detection with our USAE algorithm, exploiting the benefits
of dataflow computing to speed-up computations and achieve live analysis. Our
solution resulted in increased computing speeds when implemented on FPGA,
meaning fewer packets were skipped in the process compared to the CPU im-
plementation, improving the overall accuracy of the system in detecting novel
threats (see section 6.5).

Besides addressing the main challenges of the project we have also created
Ripple, a Java library for fast prototyping of dataflow desings. Ripple is based
on Kahn Process Network principles, allowing us to construct dataflow archi-
tectures and test their functionality prior to transitioning them to FPGAs. The
library was very useful for testing and simulating DeADA, and we believe it
could be of help to the community, hence it will be available as open source
under an MIT license.

72

CHAPTER 7. CONCLUSION 73

To evaluate our contributions we started off with a case study of Heartbleed,
a recent bug in the OpenSSL implementation of the SSL protocol, highlighting
the benefits of using anomaly detection as an option for network intrusion detec-
tion, when defending against novel/unknown threats. We evaluated the USAE
concept drift solution on a synthetically generated benchmark, obtaining very
good results. Building on the information collected from the case study we
evaluated the performance of our proposed architecture with respect to packet
Drop Rate when targeted for FPGA resulting in 4x improvement compared its
CPU counterpart, with possible 16x improvements when memory constraints
are overcome. Finally we tested DeADA on a data set containing Heartbleed
attacks, while normal data was drifting. The results highlighted the importance
of a reduced Drop Rate in increasing the accuracy and reliability of a network
intrusion detection system based on anomaly detection.

7.2 Future work

We believe that we have managed to achieve good results and fulfill on the
objectives set in section 1.2, with our proposed solutions showing a lot of po-
tential. However there are several future improvements and experiments that
could improve the quality of our work.

• Gathering of network data with measurable concept drift is critical to
putting a verdict on the relevance of our USAE method. In fact we believe
such a data set would also benefit the community by providing an adequate
benchmark for assessing various solutions to the concept drift problem,
particularly in the case of anomaly detection.

• Assessing the performance of the replication = 96 implementation of
DeADA, is one of the areas which we have not managed to fully cover.

• Mapping the whole DeADA. Future work should focus on mapping all of
the layers of DeADA to FPGA, in order to achieve higher data through-
put, remove the bottlenecks and create an easy to manage system which
could then be installed in a computer network. Furthermore, linking the
pre-processing straight to the FPGA will result in better performance
measurements.

• Akka with Ripple. Since Ripple shows a lot of potential for quickly proto-
typing dataflow designs, we believe it also has the potential of becoming
an alternative to dataflow based distributed computing. As such, chang-
ing the existing thread implementations with ones built on top of Akka
actors, not only will improve the quality of the library, but will also open
it to new use cases such as constructing a dataflow application where the
nodes in the graph are spread across different machines.

• Intrusion detection response mechanism. Current work focuses on simply
detecting whether an anomaly occurred in the network, however it does
not cover the counter-measures aspect of network intrusion detection. We
believe there is a lot of potential in this area, particularly when using
anomaly detection and trying to label the attacks with more information
than just normal of abnormal. Such an example would be the use of

CHAPTER 7. CONCLUSION 74

a hybrid setup where anomaly detection is used to capture all attacks
(including unknown ones), whereas a subsequent layer of machine learning
algorithm such as Naive Bayes or Neural Networks would then distinguish
between known attack scenarios.

• Network event analysis. Our investigation have been based around anomaly
detection on network packets, however we believe that our solutions can
easily be extended to analyzing network events. Network events can pro-
vide more information about attacks than simple packets analysis as gen-
erally they incorporate more complex behaviors of the network.

• Since USAE is a generic algorithm for performing anomaly detection under
concept drift, we believe it could be extended to a variety of application,
such as aerospace engineering[10],[34], environmental monitoring[1], and
audio surveillance[17].

Bibliography

[1] J.C. Bezdek, S. Rajasegarar, M. Moshtaghi, C. Leckie, M. Palaniswami,
and T.C. Havens. Anomaly detection in environmental monitoring net-
works [application notes]. Computational Intelligence Magazine, IEEE,
6(2):52–58, May 2011.

[2] Manuele Bicego and Mario A. T. Figueiredo. Soft clustering using weighted
one-class support vector machines. Pattern Recogn., 42(1):27–32, January
2009.

[3] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training
algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual
Workshop on Computational Learning Theory, COLT ’92, pages 144–152,
New York, NY, USA, 1992. ACM.

[4] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detec-
tion: A survey. ACM Comput. Surv., 41(3):15:1–15:58, July 2009.

[5] Abhishek Das, Sanchit Misra, Sumeet Joshi, Joseph Zambreno, Gokhan
Memik, and Alok Choudhary. An efficient fpga implementation of prin-
ciple component analysis based network intrusion detection system. In
Proceedings of the Conference on Design, Automation and Test in Europe,
DATE ’08, pages 1160–1165, New York, NY, USA, 2008. ACM.

[6] Ofer Dekel and Yoram Singer. Support vector machines on a budget. In
In NIPS, 2006.

[7] Sarah Jane Delany, Pádraig Cunningham, Alexey Tsymbal, and Lorcan
Coyle. A case-based technique for tracking concept drift in spam filtering.
Know.-Based Syst., 18(4-5):187–195, August 2005.

[8] Big Data Working Group. Big data analytics for security intelligence. Tech-
nical report, CLOUD SECURITY ALLIANCE, 2013.

[9] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language lustre. In Proceedings of the IEEE, pages
1305–1320, 1991.

[10] Paul Hayton, Bernhard Schölkopf, Lionel Tarassenko, and Paul Anuzis.
Support vector novelty detection applied to jet engine vibration spectra.
In ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
13, pages 946–952. MIT Press, 2000.

75

BIBLIOGRAPHY 76

[11] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing
data streams. In Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’01, pages
97–106, New York, NY, USA, 2001. ACM.

[12] Nathalie Japkowicz, Catherine Myers, and Mark A. Gluck. A novelty de-
tection approach to classification. In IJCAI, pages 518–523, 1995.

[13] Juan Luis Jerez, George Anthony Constantinides, and Eric C. Kerrigan.
An fpga implementation of a sparse quadratic programming solver for con-
strained predictive control. In Proceedings of the 19th ACM/SIGDA In-
ternational Symposium on Field Programmable Gate Arrays, FPGA ’11,
pages 209–218, New York, NY, USA, 2011. ACM.

[14] Ralf Klinkenberg. Learning drifting concepts: Example selection vs. exam-
ple weighting. Intell. Data Anal., 8(3):281–300, August 2004.

[15] Ralf Klinkenberg and Thorsten Joachims. Detecting concept drift with
support vector machines. In In Proceedings of the Seventeenth Interna-
tional Conference on Machine Learning (ICML, pages 487–494. Morgan
Kaufmann, 2000.

[16] Bartosz Krawczyk and Micha l Woźniak. Incremental learning and forget-
ting in one-class classifiers for data streams. In Robert Burduk, Konrad
Jackowski, Marek Kurzynski, Micha l Wozniak, and Andrzej Zolnierek, edi-
tors, Proceedings of the 8th International Conference on Computer Recogni-
tion Systems CORES 2013, volume 226 of Advances in Intelligent Systems
and Computing, pages 319–328. Springer International Publishing, 2013.

[17] S. Lecomte, R. Lengelle, C. Richard, F. Capman, and B. Ravera. Abnormal
events detection using unsupervised one-class svm - application to audio
surveillance and evaluation -. In Advanced Video and Signal-Based Surveil-
lance (AVSS), 2011 8th IEEE International Conference on, pages 124–129,
Aug 2011.

[18] Edward A. Lee and Thomas M. Parks. Readings in hardware/software co-
design. chapter Dataflow Process Networks, pages 59–85. Kluwer Academic
Publishers, Norwell, MA, USA, 2002.

[19] Maxeler. Maxcompiler white paper, 2011. http://www.maxeler.com/

media/documents/MaxelerWhitePaperMaxCompiler.pdf, Accessed June
2014.

[20] Linda Milne. Feature selection using neural networks with contribution
measures, 1995.

[21] Hristo Nikolov, Todor Stefanov, and Ed Deprettere. Modeling and fpga
implementation of applications using parameterized process networks with
non-static parameters. In Proceedings of the 13th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines, FCCM ’05, pages
255–263, Washington, DC, USA, 2005. IEEE Computer Society.

http://www.maxeler.com/media/documents/MaxelerWhitePaperMaxCompiler.pdf
http://www.maxeler.com/media/documents/MaxelerWhitePaperMaxCompiler.pdf

BIBLIOGRAPHY 77

[22] Oracle. Support vector machines, 2014. http://docs.oracle.com/cd/

B28359_01/datamine.111/b28129/algo_svm.htm#CHDDJFDJ, Accessed
June 2014.

[23] M. Papadonikolakis and C. Bouganis. A scalable fpga architecture for non-
linear svm training. In ICECE Technology, 2008. FPT 2008. International
Conference on, pages 337–340, Dec 2008.

[24] P. Parveen, J. Evans, Bhavani Thuraisingham, K.W. Hamlen, and L. Khan.
Insider threat detection using stream mining and graph mining. In Privacy,
security, risk and trust (passat), 2011 ieee third international conference
on and 2011 ieee third international conference on social computing (so-
cialcom), pages 1102–1110, Oct 2011.

[25] Pallabi Parveen, Zackary R. Weger, Bhavani Thuraisingham, Kevin
Hamlen, and Latifur Khan. Supervised learning for insider threat detection
using stream mining. In Proceedings of the 2011 IEEE 23rd International
Conference on Tools with Artificial Intelligence, ICTAI ’11, pages 1032–
1039, Washington, DC, USA, 2011. IEEE Computer Society.

[26] Oliver Pell and Oskar Mencer. Surviving the end of frequency scaling
with reconfigurable dataflow computing. SIGARCH Comput. Archit. News,
39(4):60–65, December 2011.

[27] John C. Platt. Advances in kernel methods. chapter Fast Training of
Support Vector Machines Using Sequential Minimal Optimization, pages
185–208. MIT Press, Cambridge, MA, USA, 1999.

[28] Bernhard Schölkopf. Learning with kernels, 2006. http://dip.sun.ac.

za/~hanno/tw796/lesings/mlss06au_scholkopf_lk.pdf, Accessed June
2014.

[29] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-
Taylor, and John C Platt. Support vector method for novelty detection.
NIPS, 12:582–588, 1999.

[30] Sci-kit.org. Novelty and outlier detection, June 2010. http:

//scikit-learn.org/stable/modules/outlier_detection.html,
accessed June 2014.

[31] Y. Shimai, J. Tani, H. Noguchi, H. Kawaguchi, and M. Yoshimoto. Fpga
implementation of mixed integer quadratic programming solver for mobile
robot control. In Field-Programmable Technology, 2009. FPT 2009. Inter-
national Conference on, pages 447–450, Dec 2009.

[32] Yale Song, Zhen Wen, Ching-Yung Lin, and Randall Davis. One-class con-
ditional random fields for sequential anomaly detection. In Proceedings of
the Twenty-Third International Joint Conference on Artificial Intelligence,
IJCAI’13, pages 1685–1691. AAAI Press, 2013.

[33] David MJ Tax and Robert PW Duin. Support vector data description.
Machine learning, 54(1):45–66, 2004.

http://docs.oracle.com/cd/B28359_01/datamine.111/b28129/algo_svm.htm#CHDDJFDJ
http://docs.oracle.com/cd/B28359_01/datamine.111/b28129/algo_svm.htm#CHDDJFDJ
http://dip.sun.ac.za/~hanno/tw796/lesings/mlss06au_scholkopf_lk.pdf
http://dip.sun.ac.za/~hanno/tw796/lesings/mlss06au_scholkopf_lk.pdf
http://scikit-learn.org/stable/modules/outlier_detection.html
http://scikit-learn.org/stable/modules/outlier_detection.html

BIBLIOGRAPHY 78

[34] D. Tolani, M. Yasar, Shin Chin, and A. Ray. Anomaly detection for health
management of aircraft gas turbine engines. In American Control Confer-
ence, 2005. Proceedings of the 2005, pages 459–464 vol. 1, June 2005.

[35] Alexey Tsymbal, Mykola Pechenizkiy, Pádraig Cunningham, and Seppo
Puuronen. Dynamic integration of classifiers for handling concept drift.
Inf. Fusion, 9(1):56–68, January 2008.

[36] Roemer Vlasveld. Introduction to ocsvm, 2013.
http://rvlasveld.github.io/blog/2013/07/12/

introduction-to-one-class-support-vector-machines/, Accessed
April 2014.

[37] Z. Vrba, P. Halvorsen, C. Griwodz, and P. Beskow. Kahn process networks
are a flexible alternative to mapreduce. In High Performance Computing
and Communications, 2009. HPCC ’09. 11th IEEE International Confer-
ence on, pages 154–162, June 2009.

[38] Shenghui Wang, Stefan Schlobach, and Michel Klein. What is concept drift
and how to measure it? In Philipp Cimiano and H.Sofia Pinto, editors,
Knowledge Engineering and Management by the Masses, volume 6317 of
Lecture Notes in Computer Science, pages 241–256. Springer Berlin Hei-
delberg, 2010.

[39] Xunkai Wei, Yinghong Li, Dong Liu, and Liguang Zhan. Mahalanbois
support vector machines made fast and robust.

http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/

Appendices

79

Appendix A

MAX3 resource usage

This section contains the resource usage results obtained for various replication
factors when built for MAX3, with a frequency of 100Mhz.

LUTs FFs BRAMs DSPs component

13.63% 10.10% 10.71% 0.79% total

2.16% 1.55% 0.94% 0.79% kernels

11.22% 8.50% 9.77% 0.00% manager

0.21% 0.04% 0.00% 0.00% stray resources

Table A.1: Resource usage for a build with replication=4

LUTs FFs BRAMs DSPs component

16.43% 12.42% 13.31% 1.59% total

3.94% 2.86% 0.94% 1.59% kernels

12.24% 9.51% 12.17% 0.00% manager

0.23% 0.05% 0.00% 0.00% stray resources

Table A.2: Resource usage for a build with replication=8 on MAX3

LUTs FFs BRAMs DSPs component

21.64% 15.89% 19.83% 3.17% total

7.74% 5.83% 0.94% 3.17% kernels

13.44% 10.00% 18.89% 0.00% manager

0.42% 0.06% 0.00% 0.00% stray resources

Table A.3: Resource usage for a build with replication=16 on MAX3

80

APPENDIX A. MAX3 RESOURCE USAGE 81

LUTs FFs BRAMs DSPs component

26.09% 19.18% 17.39% 4.76% total

11.16% 8.57% 0.94% 4.76% kernels

14.55% 10.54% 16.45% 0.00% manager

0.36% 0.08% 0.00% 0.00% stray resources

Table A.4: Resource usage for a build with replication=24 on MAX3

LUTs FFs BRAMs DSPs component

32.82% 24.24% 31.06% 6.35% total

14.73% 11.31% 0.94% 6.35% kernels

17.49% 12.84% 30.12% 0.00% manager

0.57% 0.09% 0.00% 0.00% stray resources

Table A.5: Resource usage for a build with replication=32 on MAX3

Appendix B

Maxeler code

The code for the state machine which implements the stream aligned can be
found at https://bitbucket.org/niushin/network_security/, together with
the rest of the code under the various DeADA folders.

82

https://bitbucket.org/niushin/network_security/

APPENDIX B. MAXELER CODE 83

1 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;

2 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;

3 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.KernelMath;

4 import

com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.CounterChain;

5 import

com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEFix.SignMode;

6 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;

7 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEType;

8
9 class DeADAKernel extends Kernel {

10
11 protected DeADAKernel(KernelParameters parameters) {

12 super(parameters);

13
14
15 DFEType fixType = dfeFixOffset(32,-8, SignMode.TWOSCOMPLEMENT);

16 DFEVar carry = fixType.newInstance(this);

17
18 /* incoming scalar vector */

19 DFEVar supportValue = io.input("svv",

dfeFloat(8,24)).cast(fixType);

20 /* incoming instance */

21 DFEVar instValue = io.input("inv", dfeFloat(8,24)).cast(fixType);

22 DFEVar gamma =

io.scalarInput("gamma",dfeFloat(8,24)).cast(fixType);

23 DFEVar isPoison = supportValue === -1;

24
25 DFEVar count =

control.count.makeCounter(control.count.makeParams(32).

26 withReset(stream.offset(isPoison,-1))).getCount();

27
28 DFEVar isCountZero = count === 0;

29 DFEVar preRes = isCountZero ? 0.0 : carry;

30 DFEVar mult = isPoison ? 0.0 : (instValue - supportValue) *

(instValue - supportValue);

31 optimization.pushPipeliningFactor(0);

32 DFEVar result = mult + preRes;

33 optimization.popPipeliningFactor();

34 DFEVar exp = result * gamma * -1;

35 DFEVar res2 = KernelMath.exp(exp);

36 //debug.simPrintf(isPoison,"Count:%d Result: %f %f Poison %d

\n",count,result.cast(dfeFloat(8,24)),supportValue.cast(dfeFloat(8,24)),isPoison);

37 carry.connect(stream.offset(result,-1));

38 io.output("res", res2.cast(dfeFloat(8,24)), dfeFloat(8,24),

isPoison);

39 }

40
41 }

Figure B.1: DeADAKernel code.

Appendix C

Experimental data

Processing Rate (packets/s)

Data Size(M)
CPU

1 core 4 cores

0.4 617.27 1752.33

0.8 312.94 818.31

1.6 157.72 417.99

3.2 77.49 223.10

6.4 39.52 111.95

12.8 19.91 56.42

25.6 8.21 24.03

51.2 4.59 11.73

102.4 1.88 5.48

Table C.1: Processing rates on CPU

84

APPENDIX C. EXPERIMENTAL DATA 85

Processing time per instance (µs)

Data Size(M)
MAX3

r=1 r=4 r=8 r=16 r=24 r=32 r=48

0.4 16947 10356 9454 8775 8891 7893 8853

0.8 25590 12451 10994 9252 8539 9124 8734

1.6 42782 16724 12605 10159 9893 9387 9693

3.2 76943 25114 17035 12806 10982 10824 10029

6.4 146094 42680 25890 16854 14183 13441 11690

12.8 283501 77150 42829 25700 20373 18564 15243

25.6 558843 145942 77702 43472 32510 27089 21487

51.2 1112222 284221 147106 79193 56199 45316 34449

102.4 2212698 561655 287593 150993 103776 81961 59148

Table C.2: Analysis speed in µs on a Max3 card

APPENDIX C. EXPERIMENTAL DATA 86

D
at

a
b

at
ch

T
,K

T
n

T
p

F
n

F
p

B
S
m

T
,K

T
n

T
p

F
n

F
p

B
S
m

T
,K

T
n

T
p

F
n

F
p

B
S
m

1

T
=

10
0

K
=

1

29
1

11
4

28
67

0
.1

9

T
=

5
0

K
=

1

2
9
7

1
1
4

4
4

4
5

0
.1

7
8

T
=

5
0
0

K
=

1

2
5
8

9
5

4
0

1
0
7

0
.2

9
4

2
29

7
10

7
33

63
0
.1

9
2

3
0
0

1
0
0

4
4

5
6

0
.2

1
4
6

1
1
9

2
7

2
0
8

0
.4

7
3

29
5

10
9

34
62

0
.1

9
2

2
8
6

1
1
0

4
2

6
2

0
.2

0
8

6
8

1
4
1

1
3

2
7
8

0
.5

8
2

4
30

2
10

6
22

70
0
.1

8
4

2
9
7

8
9

4
1

7
3

0
.2

2
8

8
1
4
1

9
3
4
2

0
.7

0
2

5
26

1
11

9
32

88
0
.2

4
3
0
2

1
1
0

3
7

5
1

0
.1

7
6

0
1
6
0

2
3
3
8

0
.6

8
6

26
3

11
6

27
94

0
.2

4
2

2
7
0

1
0
6

4
6

7
8

0
.2

4
8

0
1
4
1

7
3
5
2

0
.7

1
8

7
22

3
13

1
23

12
3

0
.2

9
2

2
8
6

1
0
2

4
5

6
7

0
.2

2
4

0
1
4
6

8
3
4
6

0
.7

0
8

8
20

4
12

7
31

13
8

0
.3

3
8

2
7
9

1
1
3

4
6

6
2

0
.2

1
6

0
1
3
6

6
3
5
8

0
.7

2
8

9
19

5
10

9
23

17
3

0
.3

9
2

2
4
6

1
1
5

5
6

8
3

0
.2

7
8

0
1
3
1

5
3
6
4

0
.7

3
8

10
17

4
11

1
25

19
0

0
.4

3
2
5
3

1
1
8

3
7

9
2

0
.2

5
8

0
1
3
2

9
3
5
9

0
.7

3
6

11
16

2
10

7
18

21
3

0
.4

6
2

2
4
7

1
0
4

4
5

1
0
4

0
.2

9
8

0
1
4
4

4
3
5
2

0
.7

1
2

12
14

5
12

2
14

21
9

0
.4

6
6

2
4
0

1
2
6

3
6

9
8

0
.2

6
8

0
1
5
0

9
3
4
1

0
.7

13
11

2
14

4
8

23
6

0
.4

8
8

2
2
8

1
1
3

5
2

1
0
7

0
.3

1
8

0
1
3
4

6
3
6
0

0
.7

3
2

14
10

8
15

4
7

23
1

0
.4

7
6

2
4
4

1
1
0

3
8

1
0
8

0
.2

9
2

0
1
4
4

9
3
4
7

0
.7

1
2

15
92

12
6

8
27

4
0
.5

6
4

2
1
9

1
3
5

2
3

1
2
3

0
.2

9
2

0
1
4
4

9
3
4
7

0
.7

1
2

17
56

13
6

9
29

9
0
.6

1
6

2
1
7

1
2
8

2
9

1
2
6

0
.3

1
0

1
3
5

4
3
6
1

0
.7

3
17

47
13

8
8

30
7

0
.6

3
2
0
2

1
2
1

3
3

1
4
4

0
.3

5
4

0
1
3
7

1
1

3
5
2

0
.7

2
6

18
39

15
4

5
30

2
0
.6

1
4

2
1
0

1
1
4

2
2

1
5
4

0
.3

5
2

0
1
2
3

5
3
7
2

0
.7

5
4

T
ab

le
C

.3
:

E
x
p

er
im

en
ta

l
re

su
lt

s
fo

r
th

e
S

im
p
le

cl
a
ss

ifi
er

,
co

n
ta

in
in

g
th

e
n
u

m
b

er
o
f
tr

u
e

p
o
si

ti
ve

s(
T

p
),

tr
u

e
n

eg
a
ti

ve
s(

tn
),

fa
ls

e
p

o
si

ti
ve

s(
fp

)
an

d
fa

ls
e

n
eg

at
iv

es
(f

n
).

APPENDIX C. EXPERIMENTAL DATA 87

D
at

a
b

at
ch

T
,K

T
n

T
p

F
n

F
p

B
S
m

T
,K

T
n

T
p

F
n

F
p

B
S
m

1

T
=

10
0

K
=

1
fo

rw
ar

d
fe

ed

27
5

12
3

19
8
3

0
.2

0
4

T
=

1
0
0

K
=

7
o
sc

il
la

ti
n

g

2
5
6

1
2
6

4
0

7
8

0
.2

3
6

2
20

4
12

9
11

1
5
6

0
.3

3
4

2
3
2

1
1
7

3
0

1
2
1

0
.3

0
2

3
15

2
13

6
7

2
0
5

0
.4

2
4

1
7
9

1
3
5

2
6

1
6
0

0
.3

7
2

4
11

1
12

6
2

2
6
1

0
.5

2
6

1
8
3

1
2
1

4
2

1
5
4

0
.3

9
2

5
84

14
7

4
2
6
5

0
.5

3
8

2
4
9

1
0
4

4
6

1
0
1

0
.2

9
4

6
77

14
2

1
2
8
0

0
.5

6
2

2
7
2

1
1
3

4
7

6
8

0
.2

3
7

59
15

4
0

2
8
7

0
.5

7
4

2
9
9

1
0
7

4
8

4
6

0
.1

8
8

8
53

15
8

0
2
8
9

0
.5

7
8

2
8
7

1
0
2

5
1

6
0

0
.2

2
2

9
42

13
1

1
3
2
6

0
.6

5
4

2
6
6

1
0
3

4
6

8
5

0
.2

6
2

10
33

13
6

0
3
3
1

0
.6

6
2

2
2
6

1
2
8

4
5

1
0
1

0
.2

9
2

11
34

12
4

1
3
4
1

0
.6

8
4

1
8
6

1
3
1

3
6

1
4
7

0
.3

6
6

12
33

13
6

0
3
3
1

0
.6

6
2

1
9
9

1
1
7

3
1

1
5
3

0
.3

6
8

13
25

15
2

0
3
2
3

0
.6

4
6

2
3
7

1
0
6

5
0

1
0
7

0
.3

1
4

14
12

16
0

1
3
2
7

0
.6

5
6

2
9
5

9
6

4
8

6
1

0
.2

1
8

15
15

13
4

0
3
5
1

0
.7

0
2

2
9
7

1
0
6

4
8

4
9

0
.1

9
4

17
8

14
5

0
3
4
7

0
.6

9
4

3
0
7

9
4

4
3

5
6

0
.1

9
8

17
5

14
6

0
3
4
9

0
.6

9
8

2
6
2

1
0
9

5
4

7
5

0
.2

5
8

18
6

15
9

0
3
3
5

0
.6

7
2
3
7

1
0
8

4
0

1
1
5

0
.3

1

T
ab

le
C

.4
:

E
x
p

er
im

en
ta

l
re

su
lt

s
fo

r
th

e
S

im
p
le

cl
a
ss

ifi
er

,
co

n
ta

in
in

g
th

e
n
u

m
b

er
o
f
tr

u
e

p
o
si

ti
ve

s(
T

p
),

tr
u

e
n

eg
a
ti

ve
s(

tn
),

fa
ls

e
p

o
si

ti
ve

s(
fp

)
an

d
fa

ls
e

n
eg

at
iv

es
(f

n
)

w
it

h
th

e
fo

rw
a
rd

fe
ed

in
g

ca
se

a
n

d
th

e
o
sc

il
la

ti
n

g
ca

se

APPENDIX C. EXPERIMENTAL DATA 88

D
at

a
b

at
ch

T
,K

T
n

T
p

F
n

F
p

B
S
m

T
,K

T
n

T
p

F
n

F
p

B
S
m

T
,K

T
n

T
p

F
n

F
p

B
S
m

1

T
=

50
K

=
1

29
9

11
5

43
43

0
.1

7
2

T
=

1
0
0

K
=

1

2
8
2

1
1
3

2
9

7
6

0
.2

1
2
7
8

1
0
5

3
0

8
7

0
.2

3
4

2
30

1
10

1
43

55
0
.1

9
6

2
9
5

1
0
9

3
1

6
5

0
.1

9
2

2
4
0

1
1
3

3
3

1
1
4

0
.2

9
4

3
28

7
10

7
45

61
0
.2

1
2

2
9
5

1
0
2

4
1

6
2

0
.2

0
6

1
9
4

1
3
0

2
4

1
5
2

0
.3

5
2

4
29

0
90

40
80

0
.2

4
3
1
0

1
0
4

2
4

6
2

0
.1

7
2

1
7
7

1
2
6

2
4

1
7
3

0
.3

9
4

5
28

6
11

1
36

67
0
.2

0
6

2
6
7

1
1
9

3
2

8
2

0
.2

2
8

2
1
1

1
3
6

2
6

1
2
7

0
.3

0
6

6
25

4
11

6
36

94
0
.2

6
2
6
8

1
1
9

2
4

8
9

0
.2

2
6

2
5
3

1
1
4

3
4

9
9

0
.2

6
6

7
28

1
11

1
36

72
0
.2

1
6

2
6
5

1
2
6

2
8

8
1

0
.2

1
8

2
0
0

1
3
0

2
4

1
4
6

0
.3

4
8

27
9

13
0

29
62

0
.1

8
2

2
4
7

1
2
0

3
8

9
5

0
.2

6
6

1
8
9

1
2
6

1
6

1
6
9

0
.3

7
9

26
3

11
5

56
66

0
.2

4
4

2
6
9

9
5

3
7

9
9

0
.2

7
2

1
8
6

1
2
0

1
6

1
7
8

0
.3

8
8

10
27

7
12

1
34

68
0
.2

0
4

2
5
4

9
9

3
7

1
1
0

0
.2

9
4

2
1
5

1
1
6

2
5

1
4
4

0
.3

3
8

11
28

3
10

3
46

68
0
.2

2
8

2
6
2

1
0
4

2
1

1
1
3

0
.2

6
8

2
0
0

1
2
0

2
8

1
5
2

0
.3

6
12

27
5

11
4

48
63

0
.2

2
2

2
6
0

1
1
3

2
3

1
0
4

0
.2

5
4

1
8
7

1
3
4

2
5

1
5
4

0
.3

5
8

13
26

5
12

0
45

70
0
.2

3
2
6
3

1
2
0

3
2

8
5

0
.2

3
4

2
1
1

1
0
8

3
2

1
4
9

0
.3

6
2

14
27

2
11

5
33

80
0
.2

2
6

2
4
9

1
3
1

3
0

9
0

0
.2

4
2
1
6

1
2
5

2
8

1
3
1

0
.3

1
8

15
26

9
12

2
36

73
0
.2

1
8

2
7
0

1
1
4

2
0

9
6

0
.2

3
2

2
2
5

1
3
0

2
3

1
2
2

0
.2

9
17

25
2

13
1

26
91

0
.2

3
4

2
6
9

1
1
2

3
3

8
6

0
.2

3
8

1
9
1

1
2
6

1
3

1
7
0

0
.3

6
6

17
27

3
11

1
43

73
0
.2

3
2

2
5
7

1
2
5

2
1

9
7

0
.2

3
6

1
8
8

1
3
0

1
8

1
6
4

0
.3

6
4

18
27

8
10

6
30

86
0
.2

3
2

2
5
4

1
2
9

3
0

8
7

0
.2

3
4

2
8
4

1
0
5

2
3

8
8

0
.2

2
2

T
ab

le
C

.5
:

E
x
p

er
im

en
ta

l
re

su
lt

s
fo

r
th

e
U

S
A

E
a
lg

o
ri

th
m

fo
r

a
se

tt
in

g
o
f
λ

=
0.

3

APPENDIX C. EXPERIMENTAL DATA 89

D
at

a
b

at
ch

T
,K

T
n

T
p

F
n

F
p

B
S
m

T
,K

T
n

T
p

F
n

F
p

B
S
m

T
,K

T
n

T
p

F
n

F
p

B
S
m

1

T
=

10
0

K
=

1,
λ

=
0.

1

28
5

11
7

43
55

0
.1

9
6

T
=

1
0
0

K
=

1
λ

=
0.

4

3
0
4

1
0
6

5
4

3
6

0
.1

8

T
=

1
0
0

K
=

1
λ

=
0.

5

3
0
5

1
0
1

5
9

3
5

0
.1

8
8

2
24

7
12

9
15

10
9

0
.2

4
8

3
0
1

1
0
3

4
1

5
5

0
.1

9
2

3
2
1

9
2

5
2

35
0
.1

7
4

3
18

3
13

8
9

17
0

0
.3

5
8

2
8
8

1
1
0

3
7

6
5

0
.2

0
4

3
2
6

9
0

5
7

27
0
.1

6
8

4
14

9
14

0
7

20
4

0
.4

2
2

2
9
7

1
2
6

2
1

5
6

0
.1

5
4

3
1
0

9
8

4
9

43
0
.1

8
4

5
13

1
14

2
3

22
4

0
.4

5
4

3
0
7

1
2
0

2
5

4
8

0
.1

4
6

3
3
4

9
2

5
3

21
0
.1

4
8

6
90

14
9

3
25

8
0
.5

2
2

3
0
3

1
2
6

2
6

4
5

0
.1

4
2

3
3
4

9
9

5
3

1
4

0
.1

3
4

7
80

13
9

1
28

0
0
.5

6
2

3
2
4

1
1
4

2
6

3
6

0
.1

2
4

3
4
0

9
3

4
7

2
0

0
.1

3
4

8
44

15
1

1
30

4
0
.6

1
2
9
6

1
2
9

2
3

5
2

0
.1

5
3
2
7

1
0
5

4
7

21
0
.1

3
6

9
26

16
3

0
31

1
0
.6

2
2

2
8
6

1
2
8

3
5

5
1

0
.1

7
2

3
2
1

1
0
3

6
0

16
0
.1

5
2

10
17

14
1

0
34

2
0
.6

8
4

3
2
9

1
1
7

2
4

3
0

0
.1

0
8

3
4
7

8
5

5
6

1
2

0
.1

3
6

11
10

15
1

0
33

9
0
.6

7
8

3
0
8

1
2
8

2
3

4
1

0
.1

2
8

3
4
2

9
4

5
7

7
0
.1

2
8

12
0

14
9

0
35

1
0
.7

0
2

3
2
4

1
1
3

3
6

2
7

0
.1

2
6

3
4
4

9
9

5
0

7
0
.1

1
4

13
0

13
7

0
36

3
0
.7

2
6

3
2
6

1
2
3

1
4

3
7

0
.1

0
2

3
4
5

9
1

4
6

1
8

0
.1

2
8

14
0

16
3

0
33

7
0
.6

7
4

3
1
1

1
3
2

3
1

2
6

0
.1

1
4

3
3
5

9
1

7
2

2
0
.1

4
8

15
0

14
6

0
35

4
0
.7

0
8

3
3
5

1
1
4

3
2

1
9

0
.1

0
2

3
5
3

9
0

5
6

1
0
.1

1
4

17
0

16
8

0
33

2
0
.6

6
4

3
1
2

1
2
0

4
8

2
0

0
.1

3
6

3
3
1

8
1

8
7

1
0
.1

7
6

17
0

14
1

0
35

9
0
.7

1
8

3
2
2

1
0
1

4
0

3
7

0
.1

5
4

3
5
4

9
0

5
1

5
0
.1

1
2

18
0

13
8

0
36

2
0
.7

2
4

3
0
6

1
1
0

2
8

5
6

0
.1

6
8

3
5
6

9
2

4
6

6
0
.1

0
4

T
ab

le
C

.6
:

E
x
p

er
im

en
ta

l
re

su
lt

s
fo

r
th

e
U

S
A

E
a
lg

o
ri

th
m

fo
r

va
ry

in
g
λ

APPENDIX C. EXPERIMENTAL DATA 90

D
at

a
b

at
ch

T
,K

T
n

T
p

F
n

F
p

B
S
m

T
,K

T
n

T
p

F
n

F
p

B
S
m

1

T
=

10
0

K
=

7

st
ro

n
g

d
ri

ft

29
3

10
7

53
47

0
.2

T
=

1
0
0

K
=

7
o
sc

il
la

ti
n

g
d

ri
ft

2
7
7

1
1
5

5
1

5
7

0
.2

1
6

2
28

8
11

4
30

68
0
.1

9
6

2
8
8

8
9

5
8

6
5

0
.2

4
6

3
25

8
12

6
21

95
0
.2

3
2

2
6
8

1
0
7

5
4

7
1

0
.2

5
4

23
0

13
3

14
12

3
0
.2

7
4

2
5
6

1
0
1

6
2

8
1

0
.2

8
6

5
20

9
14

0
5

14
6

0
.3

0
2

2
6
0

9
3

5
7

9
0

0
.2

9
4

6
22

3
14

6
6

12
5

0
.2

6
2

2
4
4

1
0
6

5
4

9
6

0
.3

7
25

0
13

0
10

11
0

0
.2

4
2
2
7

1
0
9

4
6

1
1
8

0
.3

2
8

8
18

4
14

2
10

16
4

0
.3

4
8

2
3
4

1
0
9

4
4

1
1
3

0
.3

1
4

9
19

3
15

9
4

14
4

0
.2

9
6

2
7
7

1
0
5

4
4

7
4

0
.2

3
6

10
21

2
13

4
7

14
7

0
.3

0
8

2
5
6

1
1
0

6
3

7
1

0
.2

6
8

11
20

3
15

0
1

14
6

0
.2

9
4

2
6
5

1
0
2

6
5

6
8

0
.2

6
6

12
17

1
14

6
3

18
0

0
.3

6
6

2
8
2

8
6

6
2

7
0

0
.2

6
4

13
16

9
12

9
8

19
4

0
.4

0
4

2
5
6

9
7

5
9

8
8

0
.2

9
4

14
18

9
15

8
5

14
8

0
.3

0
6

2
5
5

8
9

5
5

1
0
1

0
.3

1
2

15
21

5
14

2
4

13
9

0
.2

8
6

2
4
0

1
0
8

4
6

1
0
6

0
.3

0
4

17
21

6
15

8
10

11
6

0
.2

5
2

2
8
4

9
9

3
8

7
9

0
.2

3
4

17
23

6
13

2
9

12
3

0
.2

6
4

2
7
1

1
0
8

5
5

6
6

0
.2

4
2

18
21

1
13

4
4

15
1

0
.3

1
2
5
3

1
0
2

4
6

9
9

0
.2

9

T
ab

le
C

.7
:

E
x
p

er
im

en
ta

l
d
at

a
fo

r
U

S
A

E
fo

r
st

ro
n

g
d

ri
ft

(K
=

7
,T

=
1
0
0
)

a
n

d
fo

r
o
sc

il
la

ti
n

g
d

ri
ft

(i
.e

.
th

e
d

ri
ft

ch
a
n

g
es

d
ir

ec
ti

o
n

ev
er

y
2
0
0
0

el
em

en
ts

)

APPENDIX C. EXPERIMENTAL DATA 91

D
at

a
b

at
ch

T
,K

T
n

T
p

F
n

F
p

B
S
m

T
,K

T
n

T
p

F
n

F
p

B
S
m

T
,K

T
n

T
p

F
n

F
p

B
S
m

1

T
=

10
0

K
=

50

29
5

12
0

38
47

0
.1

7

T
=

1
0
0

K
=

1

2
8
6

1
1
8

2
4

7
2

0
.1

9
2

2
8
2

1
1
1

2
4

8
3

0
.2

1
4

2
30

1
10

5
39

55
0
.1

8
8

2
9
5

1
1
1

2
9

6
5

0
.1

8
8

2
6
8

1
1
1

3
5

8
6

0
.2

4
2

3
30

1
10

5
47

47
0
.1

8
8

3
0
5

1
0
6

3
7

5
2

0
.1

7
8

2
6
9

1
1
6

3
8

7
7

0
.2

3
4

31
3

91
39

57
0
.1

9
2

3
1
3

1
1
1

1
7

5
9

0
.1

5
2

2
7
5

1
1
2

3
8

7
5

0
.2

2
6

5
30

4
11

2
35

49
0
.1

6
8

2
7
4

1
2
1

3
0

7
5

0
.2

1
2
7
4

1
2
0

4
2

6
4

0
.2

1
2

6
27

8
11

6
36

70
0
.2

1
2

3
1
7

1
1
0

3
3

4
0

0
.1

4
6

2
7
5

1
0
9

3
9

7
7

0
.2

3
2

7
29

5
10

4
43

58
0
.2

0
2

2
9
9

1
2
2

3
2

4
7

0
.1

5
8

2
7
0

1
1
8

3
6

7
6

0
.2

2
4

8
29

6
12

4
35

45
0
.1

6
2
7
5

1
2
1

3
7

6
7

0
.2

0
8

2
7
3

1
1
3

2
9

8
5

0
.2

2
8

9
25

9
11

8
53

70
0
.2

4
6

3
1
4

8
7

4
5

5
4

0
.1

9
8

2
9
1

1
1
0

2
6

7
3

0
.1

9
8

10
29

2
11

7
38

53
0
.1

8
2

3
0
7

8
9

4
7

5
7

0
.2

0
8

2
6
5

1
1
4

2
7

9
4

0
.2

4
2

11
30

4
10

8
41

47
0
.1

7
6

3
2
1

9
4

3
1

5
4

0
.1

7
2
6
9

1
1
5

3
3

8
3

0
.2

3
2

12
28

7
12

4
38

51
0
.1

7
8

2
9
1

1
0
6

3
0

7
3

0
.2

0
6

2
5
8

1
2
1

3
8

8
3

0
.2

4
2

13
28

7
12

3
42

48
0
.1

8
2
9
2

1
1
2

4
0

5
6

0
.1

9
2

2
7
9

1
0
5

3
5

8
1

0
.2

3
2

14
28

2
11

8
30

70
0
.2

2
7
7

1
2
4

3
7

6
2

0
.1

9
8

2
5
2

1
1
4

3
9

9
5

0
.2

6
8

15
28

9
12

5
33

53
0
.1

7
2

2
9
8

1
0
6

2
8

6
8

0
.1

9
2

2
8
0

1
2
0

3
3

6
7

0
.2

17
29

2
12

2
35

51
0
.1

7
2

3
0
1

9
8

4
7

5
4

0
.2

0
2

2
4
9

1
1
3

2
6

1
1
2

0
.2

7
6

17
30

6
10

9
45

40
0
.1

7
2
9
9

1
0
4

4
2

5
5

0
.1

9
4

2
7
7

1
2
0

2
8

7
5

0
.2

0
6

18
30

7
10

1
35

57
0
.1

8
4

2
7
6

1
1
0

4
9

6
5

0
.2

2
8

2
9
1

1
0
8

2
0

8
1

0
.2

0
2

T
ab

le
C

.8
:

E
x
p

er
im

en
ta

l
d

a
ta

fo
r

th
e

S
u

pe
rv

is
ed

a
p

p
ro

a
ch

,
fo

r
va

ry
in

g
p

a
ra

m
et

er
s

o
f

T
a
n

d
K

.

	Introduction
	Motivation
	Challenges
	Contributions

	Background
	Anomaly detection
	Support Vector Machines (SVM)
	One-Class Support Vector Machines
	OCSVM according to Schölkopf
	OCSVM according to Tax and Duin
	Other techniques

	Accelerating anomaly detection
	Handling concept drift
	Dataflow Programming
	FPGA Acceleration
	Resources

	Maxeler Tools
	LibSVM
	Summary

	Self-adaptive ensemble
	Concept Drift in Novelty Detection
	Unsupervised self-adaptive ensemble(USAE)
	Local distance (LD)
	Training

	Generating the synthetic benchmarks
	Summary

	DeADA - a dataflow engine architecture
	Bottlenecks
	Mitigating the lack of speed
	Support Vectors and throughput

	The Architecture
	Parallelism at the pre-processing layer
	Parallelism at OCSVM layer
	FPGA mapping of OCSVM

	Maxeler implementation
	Fixed point arithmetic

	Summary

	The Ripple Framework
	Prototyping dataflow graphs
	Kahn Process Networks
	Implementation requirements

	Implementation
	Processing nodes
	Communication Channels
	Lockstep Execution
	Input pre-processing

	Spring integration
	Shore
	Summary

	Evaluation
	The setup
	Ripple Implementation

	Heartbleed case-study
	Description of the bug
	Methodology
	Results

	USAE evaluation
	Methodology
	Results

	Maxeler implementation
	Double vs Single Precision
	MAX3 resource usage
	Results
	Further analysis

	DeADA and Heartbleed
	Methodology
	Results

	Beyond the memory limit
	Summary

	Conclusion
	Summary of achievements
	Future work

	Appendices
	MAX3 resource usage
	Maxeler code
	Experimental data

