
Imperial College London

Department of Computing

Master Thesis

Smooth Optimisation and Computationally
Robust Numerical Solutions in Hydraulic

Modelling

Author:

Bogdan Cozmaciuc

Supervisor:

Dr. Panos Parpas

Second Supervisor:

Dr. Marc Deisenroth

June, 2014

Abstract

Water distribution networks represent a vital part of our infrastructure, providing the basis of
good wealth and well-being. In recent years, we have witnessed large technological enhancements
in the water sector and, as a result, there is now a great research interest in achieving more ad-
vanced solutions that will address issues such as real-time failure diagnosis and control of large
scale water distribution networks.

At a lower level, we are interested in providing robust numerical solutions to the hydraulic
equations, task that represents the control of water distribution networks. By exploiting the
sparse nature of the problem and conducting a performance analysis of linear solvers, we will
show that we obtain better computational results compared to the state-of-the-art hydraulic
solvers.

Also, we are interested in providing a rigorous mathematical optimisation framework that will
help us use optimisation algorithms such as Newton-Raphson in a correct manner and formally
prove that we can achieve better computational complexity than the standard methods in use.
The key idea is to transform the current optimisation problem into a smooth optimisation one
by �nding a µ-smooth approximation of the original formulation.

Finally, we will deliver a reliable framework that researchers can use in order to develop and
validate new theories and ideas in the �eld of hydraulics.

Acknowledgements

I would like to thank:

• My �rst supervisor, Dr. Panos Parpas, for his constant guidance and support throughout
the project. His advice has been of great value in the development of the project and his
enthusiasm was an important motivation for me.

• My second supervisor, Dr. Marc Deisenroth, for his useful suggestions on the project. His
prompt and detailed feedback has been of great help with writing this report.

• Dr. Ivan Stoianov, for kindly o�ering me the chance of working alongside his research
group during the development of my thesis. His continuous support and research ideas
have made a substantial impact in the outcome of this project.

• Dr. Edo Abraham, for the discussions and advice received on several aspects of my project
including linear solvers, implementation details and hydraulic modelling.

• Robert Wright, for his insight in hydraulic modelling.

Last, but not least, I would like to thank my family, especially my parents, Dragos and Con-
stantina, and my sister, Ana, for their unconditional support, trust and encouragement that they
have shown throughout my studies.

1

Contents

List of Figures 5

List of Tables 6

1 Introduction 7

1.1 Project Explanation . 7
1.2 Motivation . 8
1.3 Project aims . 8
1.4 Contributions . 8
1.5 Report structure . 9

2 Background 11

2.1 Mathematical Optimisation . 11
2.1.1 Optimisation algorithms . 11
2.1.2 Unconstrained Problems . 11
2.1.3 Constrained Optimisation . 12
2.1.4 Optimality Conditions For Equality Constraints 12
2.1.5 Optimality Conditions for Inequality Constraints 13
2.1.6 Descent algorithms . 15
2.1.7 Gradient Descent . 16
2.1.8 Newton-Raphson . 16

2.2 Hydraulic Principles . 17
2.3 Mathematical Models in Hydraulics . 18

2.3.1 Introduction . 18
2.3.2 The model . 19
2.3.3 Existence and uniqueness of solution . 20
2.3.4 Applying Newton-Raphson to solve the non-linear system 21

2.4 Smoothing and First Order Methods . 22
2.4.1 Introduction to smoothing . 22
2.4.2 Smoothable functions . 23
2.4.3 Problem formulation . 23
2.4.4 Fast Iterative Methods . 24
2.4.5 Link between µ and ε . 25

3 Numerical Analysis 26

3.1 Introduction . 26
3.2 Operation Analysis . 27

3.2.1 Addition and Subtraction . 27

2

3.2.2 Multiplication . 28
3.2.3 Transpose . 29
3.2.4 Cholesky . 30

3.3 Solving systems of linear equations . 31
3.3.1 Direct Methods . 31
3.3.2 Iterative Methods . 32

3.4 Libraries and capabilities . 35
3.5 Sensitivity to initial conditions . 36

3.5.1 Varying head loss H . 37
3.5.2 Varying water �owrate Q . 37
3.5.3 Systematically varying both H and Q . 38

3.6 Headloss function . 38
3.6.1 Hazen-Williams equation . 38
3.6.2 A11 in optimality conditions . 39

4 Smooth Framework 41

4.1 Introduction . 41
4.2 Smooth Approximation . 42

4.2.1 Proof of smoothable function . 43
4.2.2 Proof of smoothable function II . 46

4.3 Fast Optimisation Method . 47
4.3.1 Newton convergence analysis . 47
4.3.2 Determining the Lipschitz constant . 48

4.4 Finding µ and establishing the lower bound . 50
4.4.1 Quadratically Convergent Phase . 50
4.4.2 Newton Damped Phase . 52

4.5 The New Result . 52

5 Other Ideas 53

5.1 Demand Driven or Pressure Driven . 53
5.2 Valve modelling . 53
5.3 Robust Optimisation . 56

6 Implementation 59

6.1 The Problem . 59
6.1.1 Epanet Files . 60
6.1.2 Design overview . 63

6.2 The Parser . 63
6.3 The Hydraulic Network Model . 64
6.4 The Solver . 64
6.5 Summary . 64

7 Project Evaluation 66

7.1 Overview . 66
7.2 Numerical Analysis . 66

7.2.1 Computational Time . 66
7.2.2 Rate of Convergence . 68
7.2.3 Optimal Solution Accuracy . 71

7.3 Smooth Framework . 72

3

7.3.1 Computational Time . 73
7.3.2 Rate of Convergence . 75
7.3.3 Optimal Solution Accuracy . 76

7.4 Comparison with CWSNet and Epanet . 76

8 Conclusion 79

8.1 Summary of Achievements . 79
8.2 Future Work . 80

9 Bibliography 81

10 Appendix 83

10.1 Proof of Theorem 1 . 83
10.2 Validating Lg . 84

4

List of Figures

1.1 A simple Water Distribution Network . 7

3.1 A simple network that is representative of the sparse connectivity of the nodes in
the network. 27

3.2 Amount of time spent (%) from the total time of the simulation performing dif-
ferent tasks. Please note that this is in the naive implementation case and the
purpose of the �gure is to illustrate where improvements can be made. 30

4.1 A plot of the absolute value and the smooth approximations listed in section 4.2
for µ = 0.3. We see that Huber function best approximates the absolute values. . 43

5.1 Q (left) and H solutions for ε = .05 . 57
5.2 Q (left) and H solutions for ε = 1 . 57
5.3 Q (left) and H solutions for ε = 1.5 . 58
5.4 Q (left) and H solutions for ε = 1.9 . 58

6.1 Richmond Water Network. There are three types of nodes: junctions (simple dots
in the �gure), reservoirs (rightmost symbol) and tanks (leftmost symbol). There
are three types of links: pipes (plain line), valves and pumps with symbols like in
Figure 1.1. 59

6.2 Print screen running a simulation on a small network. 65

7.1 Convergence rate of direct methods for 3 di�erent networks that vary in size. . . 69
7.2 Convergence rate of iterative methods for 3 di�erent networks that vary in size. . 70
7.3 A comparison between direct and iterative methods for 3 di�erent networks. Up

left shows the small network. Up right is the medium network. Bottom centre is
the large network. 71

7.4 A comparison in terms of CPU time required for the hydraulic simulation between
di�erent networks of increasing size. Note that the computational time required
increases rapidly as we increase the tolerance level ε. 72

7.5 A comparison in terms of number of iterations required for the convergence of the
optimisation algorithm between di�erent networks of increasing size. Note that
the number of iterations required increases rapidly as we increase the tolerance
level ε. 73

7.6 In this Figure, we can see how optimal solution is di�erent as we vary the value of
µ. We note that, the error becomes larger as we increase µ. Also, at optimality (µ
as in equation (7.1)), the solution coincides with the original one, since the value
of µ is very small. 77

5

List of Tables

3.1 Number of iterations required for convergence for di�erent networks and di�erent
values of H with �xed Q. 37

3.2 Number of iterations required for convergence for di�erent networks and di�erent
values of Q with �xed H. 38

3.3 Average value for optimal Q for each of the networks. 38

7.1 A simulation time comparison of the �rst implementations of the hydraulic solver.
The times shown are in ms. The tolerance level is ε = 10−6. 67

7.2 A simulation time comparison of the latest implementations of the hydraulic solver.
The times shown are in ms. The tolerance level is ε = 10−6. 68

7.3 Number of iterations comparison required for convergence for di�erent implemen-
tations. The tolerance level is ε = 10−6. 69

7.4 Non-smooth and Smooth implementations comparison in terms of computational
time required to solve the hydraulic equations. The tolerance level is ε = 10−6. . 74

7.5 Non-smooth and Smooth implementations comparison in terms of optimal solution. 75
7.6 Number of iterations comparison required for convergence for non-smooth and

smooth cases. The tolerance level is ε = 10−6. 75
7.7 Number of iterations comparison required for convergence for non-smooth and

smooth cases. We observe that as we increase the value of µ, the number of
iterations decreases. This is because we achieve a more quadratic function which
is better suited for the Newton-Raphson algorithm. 76

7.8 Our solver's solution compared to CWSNet's and Epanet's solutions. We are
showing the relative error for the Non-smooth and Smooth version, respectively.
The tolerance level is ε = 10−6. 78

6

1 | Introduction

1.1 Project Explanation

The project we are working on concerns near real-time failure diagnosis and control of large scale
water distribution networks, tasks that are achieved through computationally e�cient algorithms
and optimisation models. A water distribution network can be perceived as a graph whose
topological structure consists of links, which are pipes, pumps and valves, and nodes, which are
tanks, reservoirs and other junctions of the aforementioned links. An example is given in Figure
1.1.

Figure 1.1: A simple Water Distribution Network

Thus, we are interested in the modelling and high performance �ow analysis of water networks
or, more precisely, determining both the optimal water �ow and pressure at the links and nodes
of the network, respectively. In order to �nd these values, we require the use of optimisation
algorithms and in the past 30 years, Newton-Raphson has been the main algorithm used [1].

We will explain why the current problem formulation cannot be correctly solved by Newton-
Raphson and prove that a new optimisation framework will adhere to the conditions of optimi-
sation algorithms and increase even further the overall performance of the hydraulic analysis.
The idea is that the current problem formulation uses non-di�erentiable functions as part of
the objective function and we will modify this, whilst keeping in mind the accuracy of the solu-
tion. Moreover, we will conduct a rigorous numerical analysis to establish a methodology that
optimally solves our problem.

7

1.2 Motivation

At a high level view, water supply networks represent a critical part of our infrastructure, pro-
viding the basis of good health and well-being. In recent years there has been a large expansion
in technology in the water sector and, as a result, there is now a strong interest in achieving a
more advanced form of pipe analysis and failure detection and control that will integrate with
the notion of `Smart Cities'.

An integral part of achieving a smart water system is the modelling and control of such a sys-
tem. Water utilities across the world are facing certain di�culties due to the ageing technology.
Among other issues, water loss is a major reason of concern that can be addressed through the
implementation of smart water systems, which can perform tasks as leak detection and pressure
monitoring, and obtain a more e�cient use of water supplies.

Moreover, it is a project which has a paramount social impact, especially in less developed
environments where water represents a crucial problem. The development of such a smart wa-
ter network will enhance the overall life quality and will make a momentous impact for a large
number of people.

1.3 Project aims

The aims of the project are to provide performance enhancements on the hydraulic analysis
problem, which can be achieved in two main areas.

Firstly, we investigate and establish a methodology which is optimally e�cient for solving the
�ow analysis problem. This is done by analysing and determining the various linear solvers,
matrix storage schemes and implementation mechanisms best suited for the problem.

Secondly, we propose a new optimisation framework that mathematically guarantees a better
complexity on �nding the optimal solution than the standard algorithm and also guarantees that
Newton-Raphson can be used as an optimisation algorithm.

We will conclude by delivering a robust and �exible C++ framework that can easily be used by
researchers in order to develop and validate new ideas and theories in the �eld.

1.4 Contributions

We propose a methodology to address the aims of the project and meet the objectives which
have been established based on the following contributions:

1. Proposing the use of a new optimisation framework and guaranteeing an improved complex-
ity of the number of iterations required for the convergence of the optimisation algorithm
through the use of smoothing functions.

2. O�ering a robust mathematical framework for hydraulic analysis which can safely be used
in conjunction with the Newton-Raphson algorithm or other optimisation algorithms. This

8

is a main contribution as the problem formulation which has been used is not suitable for
this use.

3. Allowing any possible extensions to the hydraulic model to be implemented. For instance,
we may impose restrictions on the water �ow or water pressure that would resemble better
the physical properties of the water network.

4. A rigorous numerical analysis of di�erent implementations which focus on the overall time
required to obtain optimal solutions. The analysis puts emphasis on the matrix operations
(multiplications, decompositions) that are performed and on the linear solver we choose.

5. A robust and reliable framework that suits perfectly the research study in the �eld. This
includes developing and validating theories regarding the �ow analysis problem.

6. A full C++ implementation of a hydraulic solver that solves for the optimal values of water
�ow and pressure in the network.

1.5 Report structure

The report will follow a simple structure and will detail on how we have achieved the main
contributions, starting from the objectives we have set. We will list and brie�y discuss the
chapters that follow:

1. Background
This chapter gives the required background on mathematical optimisation and hydraulic
principles and models so that we can tackle the aims we have set.

2. Numerical Analysis

In this chapter we talk about the process, which was undertaken, in order to achieve
high computational performance and optimal accuracy. We see the momentous impact
that matrix operations and linear solvers have on the overall cost of the simulation and
elaborate on the methodology that brought us to outperform the state-of-the-art hydraulic
solvers.

3. Smooth Framework

We introduce a novel way to solve the system of hydraulic equations, which can be cor-

rectly solved by the Newton-Raphson algorithm. We also prove that in the optimisation
framework we introduce, we achieve a better bound on the complexity of the number of
iterations required for convergence than the standard algorithms currently used.

4. Other Ideas
This chapter presents the main topics we have tackled: a robust formulation of our opti-
misation problem, as well as valve modelling and a complete implementation of a pressure-
driven model.

5. Implementation

In this chapter we cover the implementation details of the hydraulic solver and explain
why it is a good framework for researchers to easily develop and validate their ideas and
theories.

6. Conclusion
Lastly, we summarise the main achievements of the project and discuss possible extensions

9

to the project, as well as o�ering recommendations for future work.

10

2 | Background

2.1 Mathematical Optimisation

This section provides a brief overview of some optimisation techniques that will be considered
when solving the problems for the water network.

2.1.1 Optimisation algorithms

A generic optimisation problem involves solving a problem of the form:

min
x
f(x) (2.1)

s.t. : x ∈ Ω, (2.2)

where Ω represents the feasible set of the problem. To solve this problem for a convex function
(i.e. a function with only one local minimum), there are a few di�erent approaches that follow
the same basic idea of generating a sequence of numbers x1, x2, .. such that f(x1) > f(x2) >
f(x3) > .. so it intuitively yields:

lim
k→∞

xk = x∗,

where x∗ denotes the local minimum of the function.

We will now consider some types of optimisation problems that will arise including Linear Pro-
gramming, Unconstrained Problems and Constrained Problems, where the last two will consist
of the Nonlinear Programming paradigm. We will skip the former as it is not required by the
project and we refer to [16] for details.

2.1.2 Unconstrained Problems

With unconstrained problems, we face a simpler version of the problem described by equations
(2.1)�(2.2), where the objective function can be non-linear and we face no other optimality
constraints on x. We are therefore interested in solving problems of the type:

min
x∈Rn

f(x),

where x ∈ Rn, f : Rn → R.

11

Before discussing the optimality conditions of these problems, we will take a look at constrained
optimisation which is our next section.

2.1.3 Constrained Optimisation

The discussion so far has been restricted to unconstrained optimisation problems where we had
to minimize a certain objective function without putting any constraints on the optimisation
variables. This framework for solving optimisation problems is useful, but sometimes we need a
more general one in order to solve certain problems.

There are two generic types of problems that fall into the category of constrained optimisation.
First of all, we have equality constraints and the problems we encounter are of the type:

min
x∈Rn

f(x) (2.3)

s.t. : h(x) = 0, (2.4)

where x ∈ Rn, f : Rn → R, h : Rn → Rm and m ≤ n.

A second type of constrained optimisation problems that arises is when we have inequality
constraints as well. Simply put, the problem is formulated as:

min
x∈Rn

f(x) (2.5)

s.t. : h(x) = 0 (2.6)

g(x) ≤ 0, (2.7)

where f and h are de�ned as above and g : Rn → Rp and the feasible region could be de�ned as
Ω = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}.

2.1.4 Optimality Conditions For Equality Constraints

We will now establish necessary and su�cient conditions for a constrained optimisation problem
that only has equality constraints. These conditions are required to be satis�ed by a solution
point and thus, are important in developing algorithms to determine the points satisfying them.

Before we resume the discussion, we shall introduce the term of regular points, which will help
us de�ne the necessary and su�cient conditions. Thus, a point x∗ satisfying the constraints of
the optimisation problem (i.e. h(x∗) = 0) is called regular if the gradient vectors { ∇h1(x∗),
∇h2(x∗), ..., ∇hm(x∗) } are linearly independent.

Next, we will take a look at some �rst order and second order conditions, which need to be
satis�ed by any solution point:

• First Order Necessary Conditions (FONC)

• Second Order Necessary Conditions (SONC)

• Second Order Su�cient Conditions (SOSC)

12

where �rst order refers to the fact that only the gradient is required and second order includes
the hessian as well.

The FONC or Lagrange's theorem for this problem states:
Let x∗ be a local minimizer (maximizer) of f : Rn → R subject to h(x) = 0, h : Rn → Rm,
m ≤ n. Assume that x∗ is a regular point. Then there is a λ∗ ∈ Rm such that:

∇f(x∗) +∇h(x∗)λ∗ = 0. (2.8)

We will now introduce some useful terminology regarding the FONC, which we have written
above:

h(x∗) = 0

∇f(x∗) +∇h(x∗)λ∗ = 0,

represents the Lagrange condition. The vector λ∗ is the Lagrange multiplier vector. The La-
grangian function associated with the problem is:

L(x, λ) = f(x) + λTh(x).

We can now observe that Lagrange Condition above is nothing else but ∇L(x, λ) = 0.

The SONC for this problem is as follows:
Let Ω = {x | h(x) = 0} and f ∈ C2, x∗ ∈ Ω be a local minimizer of f : Rn → R over Ω and where
h : Rn → Rm with m ≤ n is also in C2. Suppose x∗ is regular. Then there exists a λ∗ such that:

1.∇xL(x∗, λ∗) = ∇xf(x∗) +∇xh(x∗)λ∗ = 0 (2.9)

2.dT∇2
xxL(x∗, λ∗)d ≥ 0, ∀d such that ∇h(x∗)T = 0, (2.10)

where ∇xL(x, λ) denotes the Lagrangian associated with the problem.

Up until we have seen only necessary conditions. However, a point may satisfy the necessary
conditions without actually being a solution. We will now look at SOSC:
Let Ω = {x | h(x) = 0} and f ∈ C2 where h : Rn → Rm with m ≤ n is also in C2. Suppose there
is some x∗ ∈ Rn and λ∗ ∈ Rm such that:

1.∇xL(x∗, λ∗) = ∇xf(x∗) +∇xh(x∗)λ∗ = 0 (2.11)

2.dT∇2
xxL(x∗, λ∗)d > 0, ∀d such that ∇h(x∗)Td = 0. (2.12)

Then x∗ is a strict local minimizer for f over Ω.

2.1.5 Optimality Conditions for Inequality Constraints

As we did with the equality constraints, in order to �nd a minimizer for the problem, we will
de�ne some necessary and su�cient conditions for a point to be a solution of the problem formed
by equations (2.8)�(2.10). Before we begin, we will introduce the notions of active constraint
and regular points, which will be needed by the optimality conditions.

• Active Constraint
An inequality constraint gj(x) ≤ 0 is said to be active at the point x∗ if gj(x

∗) = 0. It is
inactive if gj(x

∗) < 0.

13

• Regular Constraints
Let x∗ satisfy h(x∗) = 0 and g(x∗) ≤ 0 and let J(x∗) be the index set of active inequality
constraints:

J(x∗) = {j | gj(x∗) = 0}.

Then we say that x∗ is a regular point if the vectors ∇hi(x∗), ∇gj(x∗) with 1 ≤ i ≤ m and
j ∈ J(x∗) are linearly independent.

We can formulate the Karush-Kuhn-Tucker (KKT) Theorem, which established the FONC for
the optimisation problem with inequality constraints:
Suppose that f , g and h are C1. Let x∗ be a regular and local minimizer of problem found at
equations (2.8)�(2.10). Then there exists some λ∗ ∈ Rm and µ∗ ∈ Rp such that:

a. µ∗ ≥ 0

b. ∇xf(x∗) +∇xh(x∗)λ∗ +∇xg(x∗)µ∗ = 0

c. (µ∗)T g(x∗) = 0

d. h(x∗) = 0

e. g(x∗) ≤ 0,

Maximization problems, problems with greater than constraints can be solved in a similar man-
ner after some basic mathematical manipulation.

Next, we will present the SONC for this case:
Suppose that f , g and h are C2. Let x∗ be a regular and local minimizer of problem found at
equations (2.8)�(2.10) over { x ∈ R | h(x) = 0, g(x) ≤ 0 }. Then there exists some λ∗ ∈ Rm and
µ∗ ∈ Rp such that:

a. µ∗ ≥ 0

b. ∇xf(x∗) +∇xh(x∗)λ∗ +∇xg(x∗)µ∗ = 0

c. (µ∗)T g(x∗) = 0

d. h(x∗) = 0

e. g(x∗) ≤ 0

f. dTH(x∗, λ∗, µ∗)d ≥ 0, ∀d such that:

∇xh(x∗)d = 0

∇xgj(x∗)d = 0 with j ∈ J(x∗)

and where H(x, λ, µ) is the Hessian of the Lagrangian de�ned as:

H(x, λ, µ) = ∇2
xxf(x) +

m∑
i=1

λi∇2
xxhi(x) +

p∑
i=1

µi∇2
xxgi(x).

Finally, we can discuss su�cient conditions of optimality and we will present the SOSC for this
case:
Suppose that f , g and h are C2 and that there exists points x∗ ∈ Rn, λ∗ ∈ Rm and µ∗ ∈ Rp such
that:

14

a. µ∗ ≥ 0

b. ∇xf(x∗) +∇xh(x∗)λ∗ +∇xg(x∗)µ∗ = 0

c. (µ∗)T g(x∗) = 0

d. h(x∗) = 0

e. g(x∗) ≤ 0

f. dTH(x∗, λ∗, µ∗)d > 0, ∀d such that:

∇xh(x∗)d = 0

∇xgj(x∗)d = 0 with j ∈ J(x∗, µ∗),

where J(x∗, µ∗) = {i | gi(x∗) = 0, µ∗i > 0}.

Then x∗ is a local minimizer of f over {x ∈ Rn | h(x) = 0, g(x) ≤ 0}.

2.1.6 Descent algorithms

These algorithms are called descent algorithms as they decrease the value of the objective func-
tion with each iteration. The generic scheme for a descent algorithm adheres to the following
structure:

1. Given a point xk.

2. Derive a descent direction dk ∈ Rn, i.e. ∇f(xk)
Tdk < 0

where
∂f

∂d
(x) = ∇f(xk)

Tdk

is the directional derivative of f at point x along direction d.

3. Decide on a step-size αk.

4. Compute the next point xk+1 = xk + αkdk.

Since the directional derivative is negative, the function is decreasing along the direction of d.
Since it is only locally decreasing, then the step-size is required, but must be chosen carefully
since if it is too large we might not get to a decreasing point and if it is too small it will add
complexity to the algorithm on converging.

There are a few ways in which the aforementioned step-size can be chosen:

1. Exact Line Search
where αk is chosen as: αk ∈ argminαk f(xk + αkdk)

2. Inexact Line Search

• Percentage Test
Similar to exact line search, but stops within a �xed accuracy (e.g. |αk − α∗| < cα∗,
with 0 < c < 1, c = 0.1 a typical value).

• Curve �tting
Fit a function to f(xk + αkdk) and minimize that (e.g. Newton's method with a
quadratic �t)

15

• Armijo's Rule
A rule to ensure that α is not too large and not too small.

• Backtracking
A simple variation of Armijo's rule

2.1.7 Gradient Descent

A concrete example of descent algorithm is the gradient descent algorithm that always assumes
the decent direction to be −∇f(xk), thus transforming the scheme outlined above into:

1. Given a point xk.

2. Compute the gradient at xk and let dk be the descent direction:

dk = ∇f(xk)
T .

3. Decide on a step-size αk,

αk ∈ argmin
αk

f(xk + αkdk).

4. Transition to the next point xk+1 = xk + αkdk.

The Gradient Descent Algorithm is widely used as it o�ers a number of advantages such as ease
of implementation, the fact that it only requires �rst order information (gradient) and, more
importantly, it does converge to a minimum provided an appropriate step-size strategy.

2.1.8 Newton-Raphson

The Newton-Raphson method gives a more e�cient way of minimizing an objective function by
taking into account both the �rst and second order derivatives of the function we try to minimize.
It does so at the expense of added complexity and facing issues such as being sensitive to initial
conditions (it might not always converge), it might cycle or it might even fail to �nd a descent
direction. There are certain methods that overcome these shortcomings as we will discuss further.

To begin with, minimizing a general non-linear function f(x) is a di�cult problem to solve
and instead, the Newton method uses a quadratic approximation of the initial function obtained
from the Taylor series as such:

q(x) ≈ f(xk) +∇f(xk)
T (x− xk) +

1

2
(x− xk)∇2f(xk)(x− xk)

and the problem can now be translated into minimizing the approximation function, q(x). Carry-
ing on, we can apply the First Order Necessary Conditions (FONC) in order to �nd the potential
minimizers of the functions. These state that if x∗ is a local minimizer of f , continuously dif-
ferentiable function, over a subset Ω ∈ Rn, then for any feasible direction d at x∗, the following
statement holds:

dT∇f(x∗) ≥ 0,

16

where d satis�es: ∃α0 such that ∀α ∈ [0, α0]:

x∗ + αd ∈ Ω.

Applying the oultined FONC, we obtain the following equation by di�erentiation:

0 = ∇q(x) = ∇f(xk) +∇2f(xk)(x− xk).

By setting x = xk+1 the next point in �nding the minimum, rearranging and assuming the
hessian is positive de�nite, we get:

xk+1 = xk −∇2f(xk)
−1∇f(xk).

Note that we can make the assumption of the hessian being positive semide�nite as the Second
Order Necessary Conditions for x∗ to be a minimizer state exactly that. Adding a step-size
strategy, we obtain that Newton method is in fact a type of descent algorithm:

xk+1 = xk − αk∇2f(xk)
−1∇f(xk),

where, again, αk is chose as: αk = argminαk f(xk − αk∇2f(xk)
−1∇f(xk)). Further on, the

assumption of the hessian being positive de�nite makes the Newton direction a descent direction
since if we multiply by the gradient we obtain:

∇f(xk)
Tdk = −∇f(xk)∇2f(xk)

−1∇f(xk) < 0.

2.2 Hydraulic Principles

In �uid dynamics, Bernoulli's Principle [30] states that for an inviscid �ow (the �ow of an
ideal �uid that is assumed to have no viscosity) an increase in the speed of the �uid occurs
simultaneously with a decrease in pressure or a decrease in the �uid's potential energy. This
result follows directly from the principle of conservation of energy that states that the total
energy (kinetic and potential) in an isolated system cannot change.

Ekinetic =
1

2
mv2

Epotential = mgh,

where m is the mass of the object, v its velocity, g the standard gravity and h the height of the
object for which the potential energy is computed. Thus, an increase in speed of the �uid results
in increasing the kinetic energy as is stated by the formula that, in turn, determines a decrease
in potential energy.

Mathematically, the Bernoulli principle can be written through Bernoulli's equation and is for-
mulated as:

v2

2
+ gz +

p

ρ
= const,

where v is the velocity of the �uid, g is the standard gravity, z is the elevation or height of the
point considered above a reference plane, p is the pressure at a certain point and ρ the density
of the �uid. By multiplying by ρ we obtain the following equation:

ρv2

2
+ ρgz + p = const,

17

or arrange it in a convenient way that will become clear later:

q + ρgh = p0 + ρgz = const,

where q is the dynamic pressure, h is the piezometric head or hydraulic head and p0 is the sum
of static pressure and dynamic pressure and they are given by the following:

q =
1

2
ρv2

h = z +
p

ρg

p0 = p+ q.

Now, the constant terms we have expressed above can be normalized and the most common way
to achieve this is true the total head or energy head:

H = h+
v2

2g
,

which would represent one of the unknowns of our problem, the unknown head at the nodes of
the water network.

2.3 Mathematical Models in Hydraulics

Thus far, we have introduced some background that would be useful for a better understanding
of the problem we are going to solve, which is computing the total energy at the nodes of the
network (H), as well as the �owrates from the pipes of the network (Q). We will now take a
look at the mathematical model that we use in order to solve the hydraulic problem.

2.3.1 Introduction

A water distribution network comprises a number of distinct elements that add up to form the
topological structure of it. Thus, it contains links, which are denoted by the pipes we have in the
network, the pumps and the valves. Also, there are nodes, which are denoted by reservoirs, tanks
(components whose total head H0 we know) and junctions, places at which we are interested in
�nding the energy head H and the �owrate Q.

At a higher level of design, such a water grid has two di�erent stages:

• network �ow analysis

• network de�nition and optimisation

The �rst part of the process implies determining the sizes of the linking elements that minimize
a certain objective function, under the assumption of given physical properties and constraints,
as well as the nodal demands and the costs involved in each link. The physical properties and
constraints involved are the diameters of the pipes in use, the minimum head each node has to
have, maximum velocity that can be accommodated in each pipe. Nevertheless, this is rather an
`a priori' stage in our problem as we will focus our attention on the second issue, of network �ow

18

analysis as the input of our problem will consist of a given topological structure of the network.

The second stage, network �ow analysis, is the main problem we are focusing on as it gives
a measure of reliability and consistency of a particular water grid. Hence, we are trying to com-
pute the �ow rates and piezometric head at all the nodes of the network. This enables us to
do more in-depth analysis and decide, for instance, if service requirements are met throughout
the network. We have discussed a few methods for solving the network �ow analysis problem
including Local Gradient, Newton-Raphson, Linearization.

2.3.2 The model

The proposed method by Todini and Pilati [1] starts by proving the existence and uniqueness
of the partly linear, partly non-linear system, which is to be solved, and then, the Newton-
Raphson technique is applied to the problem of which we know the existence and uniqueness of
the solution. The problem is then transformed to the problem of �nding the recursive solution
of a linear system. In addition, the resulting matrix has some advantageous properties being
symmetrical, positive de�nite, which leaves space for implementing e�cient schemes to solve the
problem. We will now explain this text through the mathematical encoding of the water network
we are dealing with. The problem we need to solve can be formulated as:

A12H + F (Q) = −A10H0

A21Q = q,

where

• A12 = AT21 (np, nn) incidence matrix representing the unknown head nodes and is de�ned

as: A12(i, j) =

1, if �ow of pipe i enters node j

0, if pipe i and node j are not connected

−1, if �ow of pipe i leaves node j

• A10 = AT01 (np, no) Fixed head nodes incidence matrix

• Q (1, np) �owrates in each pipe

• H (1, nn) unknown nodal heads

• H0 (1, no) �xed nodal heads

• F (Q) (1, np) laws expressing head losses in pipes

with

• nn the number of nodes with unknown head

• no the number of nodes with �xed head

• np the number of pipes with unknown �ow

The head losses function describes the water pressure that is lost in the pipes due to the friction.
For our model, we will make use of the Hazen-Williams head losses function and write for each
pipe i:

Fi(Qi) = Ri|Qi|ni−1Qi,
with Ri, ni constants.

19

2.3.3 Existence and uniqueness of solution

We are now faced with a set of non-linear equations due to the way our head loss function is
de�ned. Before applying Newton-Raphson to solve the system, we need to establish the existence
and uniqueness of the solution. We will achieve this by considering a new model we know is convex
and, hence, has a unique solution. Further on, we will choose the model such that its optimality
conditions coincides with the system that we require to solve. Unsurprisingly, we will integrate
fi to obtain the Content Model:

min C(Q) =

∑np
i=1Ri|Qi|ni+1

ni + 1
+

no∑
j=1

H0j

np∑
i=1

A01(j, i)Qi

s.t.

np∑
i=1

A21(j, i)Qi − qj = 0 , j = 1, nn.

This is a constrained optimisation problem that can be translated into an unconstrained one by
the means of Lagrange multipliers. Applying the optimality conditions will yield the following
problem:

min L(Q,λ) =

∑np
i=1Ri|Qi|ni+1

ni + 1
+

no∑
j=1

H0j

np∑
i=1

A01(j, i)Qi +
nn∑
j=1

λj

np∑
i=1

A21(j, i)Qi − qj .

Now, the Ri and ni terms are conveniently chosen to be positive so as to have a convex function
L, which entails the solution of the Lagrangian exists and is unique and can be obtained by
imposing the conditions necessary for an extreme (i.e. taking partial derivatives with respect to
the variables we have):

∂L

∂Qi
= 0 with i = 1, np

∂L

∂λj
= 0 with j = 1, nn.

The initial problem we need to solve can thus be represented by the following matrix equation:(
A11 A12

A21 0

)(
Q
λ

)
=

(
−A10H0

q

)
,

where

A11 =

R1|Q1|n1−1

R2|Q2|n2−1

. . .

Rnp|Qnp|nnp−1

is a (np, np) matrix. We can see that this system is very similar to the initial one and we can now
deduce that the Lagrange multipliers λ we have are the unknown nodal heads of the junctions
of our water network H. A simple substitution will yield the following system of non-linear
equations:

20

(
A11 A12

A21 0

)(
Q
H

)
=

(
−A10H0

q

)
.

2.3.4 Applying Newton-Raphson to solve the non-linear system

In order to solve the system of non-linear equations we can apply the Newton-Raphson technique
outlined in section (2.4), assuming the A11 matrix does not become singular. Nevertheless, for
practical reasons, we can impose a lower bound for the elements on the diagonal matrix. The
iterative scheme can be obtained by di�erentiating the equations which we previously had with
respect to Q and H, respectively:(

NA11 A12

A21 0

)(
dQ
dH

)
=

(
dE
dq

)
,

where

N =

n1

n2
. . .

nnp

and where

dE = A11Q
k +A12H

k +A10H0 (2.13)

dq = A21Q
k − q (2.14)

representing the residuals to be iteratively reduced to 0 and Qk and Hk the unknown �ows and
heads at iteration k. We will now aim at writing the iterative scheme we will need to solve.
Consequently, we would like to get to a next state of Hk+1 and Qk+1 as a function of Hk and
Qk.

To start o�, we will denote:

NA11 = D−1. (2.15)

The inverse of the matrix system can be obtained analytically by a method called partitioning
[10]: (

D−1 A12

A21 0

)
=

(
B11 B12

B21 B22

)
,

with:
B11 = D −DA12(A21DA12)

−1A21D

B12 = DA12(A21DA12)−1

B21 = (A21DA12)
−1A21D

B22 = −(A21DA12)
−1.

The solution of the initial matrix system can be found bearing in mind that:

dQ = B11dE +B12dq

21

dH = B21dE +B22dq.

A substitution of the two sets of equations above, yields:

dH = (A21DA12)
−1A21D(A11Q

k +A12H
k +A10H0)− (A21DA12)

−1(A21Q
k − q)

dQ = (D−DA12(A21DA12)
−1A21D)(A11Q

k+A12H
k+A10H0)+DA12(A21DA12)

−1(A21Q
k−q),

which gives

dQ = D(A11Q
k +A10H0)−DA12(A21DA12)

−1(A21D(A11Q
k +A10H0) + (q −A21Q

k)).

Using the Newton-Raphson iterative scheme as:

dQ = Qk −Qk+1

dH = Hk −Hk+1,

one �nally obtains the recursion to be solved for optimal values of head loss and �owrate:

Hk+1 = −(A21N
−1A−111 A12)

−1(A21N
−1(Qk +A−111 A10H0) + (q −A21Q

k))

Qk+1 = (I −N−1)Qk −N−1A−111 (A12H
k +A10H0).

2.4 Smoothing and First Order Methods

In this section we will discuss a unifying framework that combines the smoothing approximation
of non-di�erentiable functions with fast �rst order algorithms (that use only �rst derivative
information) in order to solve non-smooth convex minimization problems. It can be proved that
regardless of the convex non-smooth function involved and the �rst order method used, one can
achieve an e�ciency rate of O(ε−1) by solving the modi�ed smooth problem, keeping a very good
accuracy of solutions.

2.4.1 Introduction to smoothing

The motivation behind this technique is that it does not rely on schemes involving the subgra-
dient as it rede�nes the problem in terms of continuously di�erentiable functions, which aim to
approximate the original problem as well as possible. Further on, an enhancement in converge
rate is achievable from O(1/ε2) to O(1/ε) where ε denotes the error in solution and is particular
to each problem although typical values may be around 10−6.

The problems we will consider here are general enough to form a basis for a wide range of
convex optimisation problems:

min
x
F (x) + h1(x) + h2(x),

where F is smooth and h1 and h2 are non-smooth. The reason why we pick two non-smooth
functions is to make the framework even more generic and explore the option of applying partial
smoothing where we test to see if smoothing just one part of the objective function is in fact
better that smoothing every function. Nonetheless, in our case there is only one non-smooth

22

function and so the decision is trivial so long as we can prove that smoothing is bene�cial.

The problem can then be reformulated using the smooth approximations H1 and H2 for h1
and h2, respectively, as:

min
x
F (x) +H1(x) +H2(x).

Or, for completeness purposes, only apply partial smoothing to obtain the following generic
problem:

min
x
F (x) + h(x),

where F denotes the di�erentiable function and h the non-smooth, non-di�erentiable part. This
problem can be solved by fast �rst order algorithms in O(1/k2).

We will now take a look at smoothable functions, de�ne what a fast �rst order optimisation
algorithm is and obtain a bound on the rate of convergence of O(1/ε).

2.4.2 Smoothable functions

In order to progress with the explanation of this method, we will need to formally de�ne the
notion of smoothable functions. We will now de�ne the concept of a smoothable function and
the corresponding smooth approximation of a given non-di�erentiable convex function.

De�nition 1: Let g : E → (−∞,∞] be a closed and proper convex function and let X ⊆ dom g
be a closed convex set. The function g is called (α, β,K)-smoothable over X if there exists β1,
β2 satisfying β1 + β2 = β > 0 such that for every µ > 0 there exists a continuously di�erentiable
convex function gµ : E → (−∞,∞) such that the following hold:

1. g(x)− β1µ ≤ gµ(x) ≤ g(x) + β2µ

2. The function gµ has a Lipschitz gradient over X with Lipschitz constant, which is less than
or equal to K + α/µ. That is, there exists K ≥ 0, α > 0, such that:

‖∇gµ(x)−∇gµ(y)‖ ≤
(
K +

α

µ

)
‖x− y‖.

The function gµ is called a µ-smooth approximation of g over X with parameters (α, β,K). If
a function is smoothable over the entire vector space E, then it will just be called (α, β,K)-
smoothable.

2.4.3 Problem formulation

We are interested in solving the convex problem given by:

H∗ = min{H(x) = g(x) + f(x) + h(x) : x ∈ E}, (2.16)

where we consider the following functions:

• h : E → (−∞,∞] is an extended valued closed proper convex function that is sub-
di�erentiable over its domain, which is denoted by X = dom h

23

• f : X → (−∞,∞) is a continuously di�erentiable function over X whose gradient is
Lipschitz with constant Lf

• g : X → (−∞,∞] is a (α, β,K)-smoothable function over X

The problem de�ned in 2.19 is general enough to cover a large class of optimisation problems,
however, for our purposes, the non-smooth function h will be 0 as we only have one function
that is non-smooth and the objective is to determine if smoothing it will be advantageous. We
will carry on with this formulation bearing in mind that h may be removed if we will.

Consequently, the smoothed problem will become:

H∗µ = min{Hµ(x) = gµ(x) + f(x) + h(x) : x ∈ E}, (2.17)

where gµ is indeed the µ-smooth approximation of function g.

Now, we should be able to use any algorithm for solving 2.20. For simplicity, we will rewrite the
problem in a di�erent form to represent the smooth and non-smooth parts:

D∗ = min{D(x) = F (x) + h(x) : x ∈ E}, (2.18)

where F is the smooth part and h the non-smooth.

This problem is called the input convex optimisation model and is characterized by the following
data:

• h is an extended valued closed convex function that is sub-di�erentiable over its domain
dom h

• F is a continuously di�erentiable convex function over dom h whose gradient is Lipschitz
with constant Lf .

The input convex optimisation model is therefore characterized by a triplet (F, h, Lf) satisfying
the above premises.

2.4.4 Fast Iterative Methods

We will now take a look at another notion that classi�es the �rst order optimisation algorithms
and will help us establish the results that improve the theoretical rate of convergence and also
help us make a link between the smoothing parameter of a function µ and the error we set for
convergence ε.

Thus, we will de�ne a fast iterative method as:

De�nition 2: Let (F, h, Lf) be a given input convex optimisation model with an optimal so-
lution x∗ and let x0 ∈ E be any given initial point. An iterative methodM for solving problem
2.21 is called a fast method with constant 0 < Λ < ∞, which possibly depends on (x0, x

∗) if it
generates a sequence {xk}k≥0 satisfying for all k ≥ 1:

D(xk)−D∗ ≤
LfΛ

k2
.

24

What is interesting from such a setting is that we don't care about the speci�c method M we
employ as we can show that independent of that, the problem in 2.21 with appropriately chosen
smoothing parameter µ, can achieve an ε optimal solution is no more than O(1/ε) iterations,
which clearly is an improvement over the usual sub-gradient methods that are bound by O(1/ε2).

2.4.5 Link between µ and ε

This next result will help us formally establish the number of steps required for ε convergence of
a smooth convex optimisation problem and also give us information on the values of µ.

We will now state the theorem that gives us the result:

Theorem 1: Let {xk} be the sequence generated by a fast iterative method M when applied
to problem 2.20, that is, to the input optimisation problem (f + gµ, h, Lf+gµ). Suppose that the
smoothing parameter is chosen as:

µ =

√
α

β

ε
√
αβ +

√
αβ + (Lf +K)ε

. (2.19)

Then for

k ≥ 2
√
αβΛ

1

ε
+
√

(Lf +K)Λ
1√
ε

(2.20)

it holds that

H(xk)−H∗ ≤ ε, (2.21)

where H∗ is, as usual, the optimal solution of 2.20 and H(xk) the value of the objective H at
the k-th iteration. Please see Appendix (10.1) for a complete proof of the theorem.

25

3 | Numerical Analysis

In this chapter we will discuss about the methodology used in order to solve the hydraulic
problem. Moreover, we are going to go into speci�c performance details that greatly enhanced
the execution time of the problem, as well as talking how well speci�c methods actually behave
for our case.

3.1 Introduction

As we commence the discussion of the problem, it is important to discuss about the matrix
operations we have and deduce how much time is spent of various matrix operations in order to
achieve better performance.

Among the computations we have to perform, we are concerned with pro�ling the following
matrix operations, which occur signi�cantly:

• Addition, Subtraction

• Multiplication

• Computing the Transpose

• Computing the Inverse

These are some of the most frequent operations we need to perform in order to solve the op-
timisation problem. In addition to these, there can be more speci�c operations and matrix
manipulation techniques that we need to apply, depending on the type of solver we use.

We will take a look at some optimal ways in which we can perform some of the following opera-
tions:

• Cholesky Factorization

• Incomplete Cholesky Factorization

• LU Decomposition

• LDLT Decomposition

Of course, there quite a few libraries and schemes that o�er these kind of operations and there
is no one library of which we can say is the absolute best. Rather, it is important to analyse a
variety of such techniques and determine which one is best for the type of problems you require
to solve.

26

3.2 Operation Analysis

We will now refer to the most common operations in turn and determine the CPU time required
to perform them.

Also, an important aspect to point out is that the vast majority of operations performed are
carried on on square matrices whose dimensions can range from 10 by 10 to 4000 by 4000. In
general, we will not handle the case where matrices are larger than 5000 by 5000 elements.

Figure 3.1: A simple network that is representative of the sparse connectivity of the nodes in the
network.

Another important aspect, which is illustrated in Figure 3.1, is that the problem that we formu-
late consists of sparse matrices since the connectivity of the water distribution network is usually
not very high. For instance, a node in the network will almost always be connected to some
relatively small number of neighbours (with respect to the distance between the nodes) and not
have links all across the network.

3.2.1 Addition and Subtraction

Addition and subtraction are the easiest operation we need to consider as the time spent doing
matrix additions or subtractions is negligible when compared to multiplication or decomposi-
tions. Thus, even for large matrices we need not worry too much about these operations as they
are executed quite fast, in O(n2).

Moreover, you can even overlook the sparsity nature of the matrices since even for a 2000 by

27

2000 matrix, the operations are done extremely fast. Nonetheless, we aim at reducing the overall
computational cost as much as possible so we will optimize these operations as well. We will
achieve this by improvements done to the matrix multiplication which is discussed next.

3.2.2 Multiplication

How we perform matrix multiplication if of paramount importance to our application as it is sig-
ni�cantly more time consuming than plain addition and subtraction. This comes as no surprise
as matrix addition and subtraction are implemented in O(n2), whereas multiplication is done in
O(n3). Although there are di�erent approaches to multiplication that reduce the overall time
complexity up to even O(n2.373) (due to Williams), the computational time for a matrix of size
5000 by 5000 elements is still large for our purposes.

Since even the best implementation of matrix multiplication won't give us a very good result,
we will take a closer look at the nature of the problem and determine that almost any matrix
multiplication involves sparse matrices, consequently making us solve additions and multiplica-
tions of 0.

The nature of the problem allows us to use a di�erent storage mechanism than the usual bi-
dimensional array used in standard libraries as it would be clearly ine�cient since we will end
up using a lot of memory storing values of 0. We will discuss some approaches of representing
matrices, which become more and more interesting as the number of non-zero elements decreases.

• Coordinate list

This format stores the non-zero elements of the matrix as tuples of the form (row, col-
umn, value) and is particularly fast when inserting, deleting or searching for an element
especially when implemented by a good data structure such as a hash table. Another
important factor is it supports fast conversions to other formats, which guarantees better
computational time for arithmetic operations.

• Yale format

The Yale Sparse Matrix Format stores an initial sparse matrix of dimension m by n, say,
in row form using three one-dimensional arrays. We will refer to NNZ as the number of
non-zero entries of the matrix.

� The �rst array, of length NNZ, holds all non-zero entries of the matrix in left-to-right,
top-to-bottom (row-major) order.

� The second array, of length m+ 1 (i.e. one entry per row, plus one). This array acts
as an index into the �rst array as it points to the index of the �rst occurrence of a
non-zero element from the �rst index.

Thus, the �rst m entries hold the indexes (as stored in the �rst array) of the �rst
occurrence of a non-zero element for each row in turn. So for any i, which is a valid
row index, the entry i in the second array will have the index from the �rst array,
which corresponds to the �rst non-zero element on row i.

Finally, the last index holds the total number of non-zero elements in the matrix.

28

� The third array, of length NNZ, contains the column index of each non-zero entry in
the matrix.

We will now look at an example to clarify the Yale format. Suppose we have the following
matrix:

0 0 1 2 0
0 0 0 0 0
0 3 0 0 0
0 0 0 0 4
5 6 0 0 0
0 0 7 8 9

 .

We note that NNZ = 9. The �rst array will therefore be:(
1 2 3 4 5 6 7 8 9

)
,

as it simply contains the non-zero entries. Moreover, the second array is as:(
0 2 2 3 4 6 9

)
,

as the �rst non-zero element in the �rst row is 1 with index 0 in the �rst array. The second
and the third rows have the same index since there is no non-zero element in the second
row and in the third row, we encounter 3, which has index 2 in the �rst array. The last
entry coincides with NNZ.

Lastly, the third array is: (
2 3 1 4 0 1 2 3 4

)
,

as the �rst non-zero entry, 1, is in column 2. The next entry, 2, is in column 3 and so on.

• Compressed Sparse Row

The compressed sparse row is an implementation of the Yale format described above with
the slight di�erence of storing the column information before the row information. Nev-
ertheless, in our case, the matrices comprise of information nicely distributed across the
rows and columns (i.e. its transpose would be just as dense on rows as it is on columns).

• Compressed Sparse Column

With compressed sparse column, we have a similar implementation to the Compressed
Sparse Row, with the only exception that the indexing is done by column instead of rows
and the array of columns is transformed in the array of rows.

3.2.3 Transpose

Transposing a matrix is still not an expensive operation, especially when compared with matrix
multiplication. A naive implementation would yield a good computational time, but for opti-
mality we refer again to the sparse storage of a matrix whereby it becomes easier to transpose
as we only iterate through the non-zero elements of the matrix (signi�cantly fewer than n2 - the
size of the matrix) swapping the �rst two elements of the triplet in the case where Coordinate
list storage is used.

29

3.2.4 Cholesky

Cholesky factorization is an important computational step in solving the nonlinear equations
of our problem. It appears when a direct method is used, thus reducing the system of linear
equations to solving:

LLTx = b,

with L a lower triangular matrix.

This decomposition of matrix A into LLT can only be done if matrix A is Hermitian (com-
plex generalization of symmetric) and positive-de�nite.

Moreover, it appears in iterative methods used such as the Conjugate Gradient Method as a
speed up as the factorization is used as a preconditioner. In this case, due to the sparse nature
of the problem, it will be more accurate to refer to it as the Incomplete Cholesky factorization
since a full, normal factorization will require more time since it assumes to be done on a dense
system.

Figure 3.2: Amount of time spent (%) from the total time of the simulation performing di�erent
tasks. Please note that this is in the naive implementation case and the purpose of the �gure is
to illustrate where improvements can be made.

1 2 3 4 5
0

5

10

15

20

25

30

35

40

45

Network

%
 o

f
to

ta
l
s
im

u
la

ti
o

n
 t

im
e

Cholesky

Multiplication

Linear Solve

Other

In Figure 3.1, you can see how much time each part of the simulation requires relative to the whole
time required. We see that matrix-matrix and matrix-vector multiplications require signi�cant
CPU time and so we need to address this issue by using a more e�cient storage scheme for
matrices.

30

3.3 Solving systems of linear equations

The recursive Newton-Raphson scheme involves solving an equation of type

Hk+1 = A−1b.

This is equivalent to solving a linear system of equations:

Ax = b.

There are many ways in which one can go about this and we will discuss some of the approaches
we have considered as part of our analysis and state the ones that are the most convenient to
use in our case. To start o�, we will divide the discussion into two separate techniques:

3.3.1 Direct Methods

We will start by taking a look at some direct methods of solving systems of linear equations and
see what each of them involve in terms of implementation.

a. Gaussian Elimination

In Gaussian Elimination, we �rst manipulate the system so as to reduce is to a triangular
form where the last equation typically contains one unknown, the penultimate contains two
and so on. If there there are n equations with n unknowns, then if the rank of the matrix is
equal to the rank of the extended matrix, we obtain a unique solution.

Using this triangular system, we proceed onto the substitution stage, whereby we substitute
the unknowns from equation p with the values we have found from the previous equations
(p+ 1, p+ 2, ..., n).

The latter step involves obtaining the echelon form, which is achieved through various row
operations:

• Swapping two rows

• Scaling a row

• Add to one row a scalar multiple of the other

b. LU Factorization

With LU Factorization, we decompose our matrix A in terms of upper and lower triangular
matrices so as to rewrite the initial problem as

LUx = b.

Thus, the method basically reduces to applying the second step of Gaussian Elimination twice.
Once to solve

Ly = b

and then to solve
Ux = y.

Given that both matrices are triangular, the process is very e�cient as the substitution stage
can be solved quickly.

31

c. LDU Factorization

A variation of the LU Factorization whereby matrix D is diagonal and L and U are lower
and upper triangular, respectively, with the addition of them having only elements of 1 on
the diagonal.

d. LLT Factorization

This is the Cholesky Factorization, which decomposes a Hermitian positive semide�nite matrix
as

A = LLT ,

with L a lower triangular matrix. When applicable, this method is considered to be more
e�cient than the LU Factorization.

e. LDLT Factorization

This is a variant of the Cholesky Factorization, which uses matrix D as a diagonal matrix
and allows only elements of 1 on the diagonal of matrix L. An advantage of this variation is
that we do not require any square root computations as we simply set to 1 the element on
the diagonal matrix.

f. Singular Value Decomposition
SVD is presented as a future consideration to the project. In this methods, we factorize a
matrix A as:

A = UΣV ∗,

where U is a unitary matrix, Σ is a rectangular diagonal matrix and V ∗ is the conjugate
transpose of V , another unitary matrix. The diagonal entries of Σ represent the singular
values of A, while the columns of U and V are the left-singular and right-singular vectors of
A, respectively.

3.3.2 Iterative Methods

As opposed to direct methods, iterative methods do not provide an exact solution to the system
we are solving. The upside is that we can choose to step whenever we want and being an iterative
method we know that we will always approach the solution, whereas with direct methods we do
not have the option of stopping at a particular point.

The question of when to stop is problem dependent and it relies on the accuracy level desired.
In general, there is an ε level after which we are satis�ed with the solution obtained.

These are some of the iterative methods for solving systems of linear equations that we con-
sidered as part of the analysis:

a. Jacobi
Jacobi is perhaps the most basic and simplest iterative method used in practice as it solves
Ax = b by taking an initial guess of what x might be and then applying the following iterative
procedure

x
(k+1)
i =

1

aii

bi − n∑
j 6=i

aijx
(k)
j

 .

And we do so until the residual di�erence is less than the pre-established tolerance.

32

b. Gauÿ-Seidel
Gauÿ-Seidel comes with a slight improvement over the Jacobi method as it gives a faster
convergence rate by using more up-to-date data. Thus, the iterative procedure used to update
the latest unknowns becomes

x
(k+1)
i =

1

aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 ,

which uses, in addition to the updates of the kth iteration, the already updated, previously
calculated unknowns of the (k + 1)th iteration.

A useful result is that convergence of both Gauÿ-Seidel and Jacobi is achieved if the ma-
trix A is strictly row diagonally dominant, which means that the following condition must
hold

|aii| >
∑
j 6=i
|aji|.

However, there might be situations in which the above does not hold and the methods still
converge.

c. Successive over-relaxation
Successive over-relaxation (SOR) tries to give a generalization of Gauÿ-Seidel and o�ers more
optimal convergence by using

x
(k+1)
i = (1− ω)x

(k)
i +

ω

aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 ,

where 0 < ω < 2 is a necessary condition for the convergence of SOR. If the matrix A is
positive de�nite as well, then the condition for convergence is also su�cient.

d. Conjugate Gradient Method

Looking back at what our initial problem was, we can observe some characteristics of our A
matrix:

Hk+1 = −(A21N
−1A−111 A12)

−1(A21N
−1(Qk +A−111 A10H0) + (q −A21Q

k)),

where
A = (A21N

−1A−111 A12),

x = Hk+1,

b = −(A21N
−1(Qk +A−111 A10H0) + (q −A21Q

k)).

In our case as the equation can be rearranged to

(A21N
−1A−111 A12)

−1Hk+1 = −(A21N
−1(Qk +A−111 A10H0) + (q −A21Q

k)).

We note that the resulting matrix A is symmetric, positive de�nite and Stieltjes type (non-
positive o�-diagonal entries). The solution of the system can be transformed to the solution
to the minimization of a quadratic convex function:

J(x) =
1

2
xTAx− bTx,

33

which can be solved using the following recursive conjugate scheme:

ro = Axo − b

po = ro,

for iteration k = 0. And

αk = −
rTk pk

pTkApk

xk+1 = xk + αkpk

rk+1 = rk + αkApk

βk+1 = −
rTk+1Apk

pTkApk

pk+1 = rk+1 + βk+1pk,

for k > 0.

The Conjugate Gradient Method is considered a fast iterative method [13]. However, it
may require a large number of iterations before it converges to the solution. In general, if the
size of matrix A is nn it may require up to 2nn or 2.5nn iterations to converge, which makes
it infeasible even for nn ≈ 1000.

e. Modi�ed Conjugate Gradient Method

In addition, if we use the aforementioned properties of A being symmetric, positive de�nite,
we might use the Cholesky factorization:

A = MMT .

Now we can slightly modify the recursive scheme to include M as a preconditioner to the
Conjugate Gradient Scheme:

ro = Axo − b

po = ro,

for iteration k = 0. And

αk = −
rTk pk

pTkApk

xk+1 = xk + αkpk

rk+1 = rk + αkApk

sk+1 = (MT)−1M−1rk+1

βk+1 = −
sTk+1Apk

pTkApk

pk+1 = sk + βk+1pk,

which usually reaches convergence in about 30�50 iterations, regardless of how large the
system we need to solve is (discussed in [9] and [14]). One further note is that performing the
full Cholesky factorization is ine�cient and instead we will choose to perform an incomplete
Cholesky factorization, which takes into account the sparsity of our problem.

34

3.4 Libraries and capabilities

According to the main points discussed in sections 3.2 and 3.3, we focused our attention on
optimizing the matrix multiplication and decomposition part, as well as the linear system solver.

We will talk about the numerical analysis we have performed, starting from a naive implemen-
tation which was sub-optimal, up to the current one which performs better than the industry
standard.

1. LAPACKPP
This library is C++ speci�c library and is based on LAPACK, the C version and BLAS.
It is a very old library and provides a very robust implementation for linear algebra op-
erations. It also has the capability of running e�ciently on shared-memory and parallel
processors as opposed to other packages that don't handle this problem very well as they
have a complicated memory hierarchy, which restricts them to do more memory manage-
ment operations, rather than �oating point operations.

At the beginning, we have mainly focused on the dense capabilities of the package and, as
expected, performance was sub-optimal. Dense matrix-matrix or even matrix-vector mul-
tiplications would take longer than what the state of the art solvers would take for solving
the entire optimisation problem. More concretely, for relatively large systems of 2000x2000
elements, we were solving the whole optimisation problem in O(minutes) as opposed to the
standard O(100ms).

When we explored the sparse nature of the problem, we found that the performance has im-
proved signi�cantly going down from O(minutes) to O(s). However, there still is room for
improvement and we shall see that we can bring this number even below the state-of-the-art
solvers' O(100ms).

2. Boost
As Boost was already an implementation dependency, we decided to implement the solver
using its support for fast linear algebra operations. However, since the implementation is
based on BLAS and LAPACK with only the bindings being changed to agree with the
new namespace, we obtained similar results to the ones described above.

Nonetheless, the API seemed nicer and easier to use and it also integrated better with
the existing codebase since we didn't require any other dependencies. This was a reason
for adopting it as a solution, but we were still trying to investigate other options.

3. SuiteSparse
This library is widely used in di�erent large projects including Google projects or Mat-
lab for implementing operations such as �nding the inverse or matrix decompositions. It
implements a variety of packages and it also relies partially on BLAS for sparse QR de-
composition, Cholesky and LU decomposition.

The problem with SuiteSparse is that it had a rather complicated API, which required
the developer to do more preparation than required and, in particular, decompositions
were not as fast as expected. The Cholesky factorization used as a preconditioner for the
Conjugate Gradient Method required more time than the whole algorithm.

35

4. Eigen
Finally, we consider a more recent linear algebra library, which is widely used too, by com-
panies such as Google and in robotics and computer graphics applications.

Eigen is a good choice not only because it has its own implementation and thus no extra
dependencies, but it also has the nicest and simplest API among all the tools with which
we have experimented.

Moreover, the results we obtain are improved when compared to the other libraries up
to even O(10ms) in some cases where O(100ms) is required by the standard in industry.
Consequently, our implementation is currently based on Eigen.

The reason why this outperforms even the state-of-the-art hydraulic solvers is because
there is no extra cost associated with carrying on the operations and the API is more com-
plete and �exible than in the other packages. Hence, we do not require explicit conversions
between matrix types, nor do we face the problem of not being able to matrices in their
decomposed form.

An important note is that we have not considered the use of GPU or FPGA computation due
to the fact that the boost in performance is only achieved for considerably larger linear systems
[5]. For our purposes (systems no larger than 5000 by 5000), CPU performance is optimal.

3.5 Sensitivity to initial conditions

An important trait of any optimisation algorithm or iterative algorithm is the convergence rate
at which the optimality constraints are met and thus, the optimal solution is found.

A direct impact to the convergence rate is given by the initial estimate of the solutions. While
the problem we solve is indeed convex and has a unique solution as it can be seen in section
2.3.3, convergence is guaranteed regardless of the initial solution we choose. Nonetheless, we will
investigate what impact choosing the initial estimate has on the number of iterations required
for convergence.

The iterative system we need to solve is:

Hk+1 = −(A21N
−1A−111 A12)

−1(A21N
−1(Qk +A−111 A10H0) + (q −A21Q

k))

Qk+1 = (I −N−1)Qk −N−1A−111 (A12H
k +A10H0),

which requires choosing good values for H and Q at time k = 0.

From a practical perspective, it was determined that even a naive initial setting yields fast
convergence for a large class of water distribution networks. The reason for this comes from the
fact that regardless of the topological structure of the network, customer demand at junctions
will virtually always correspond to a certain value. In other words, demand does not vary sig-
ni�cantly enough for us to see signi�cant change in pressure or water �owrate, too.

36

Table 3.1: Number of iterations required for convergence for di�erent networks and di�erent
values of H with �xed Q.

H Network 1 Network 2 Network 3 Network 4 Network 5
(7 x 9) (91 x 113) (865 x 950) (2303 x 2369) (4577 x 4648)

130 7 8 27 25 43

1300 7 8 27 25 43

13000 7 8 27 25 43

130000 7 8 27 25 43

13 7 8 27 25 43

0.13 7 8 27 25 43

0.0013 7 8 27 25 43

Moreover, it was noted that values for piezometric head H and water �owrate Q at optimal-
ity are relatively close in several cases to H = 130 and Q = 0.03. Therefore, the initialization
done is as:

Hi = 130 ∀i

Qi = 0.03 ∀i.

We will take three approaches to this analysis by �rst varying just H, then varying just Q and
�nally, systematically varying both H and Q.

3.5.1 Varying head loss H

We have let H vary as shown in Table 3.1 and found that convergence is not a�ected in any way
even for large variations of H while keeping the water �owrate Q constant.

The reason why we see a di�erence in the number of iterations required for convergence comes
from the network size, but also from the solutions we obtain. In other words, the closer the initial
estimate is to the optimal solution, the fewer number of iterations required for convergence. This
is because Newton-Raphson has a higher rate of convergence when we are close to the solution
[17].

3.5.2 Varying water �owrate Q

Next, we will investigate what happens with the convergence rate of the iterative algorithm when
we varyQ and keepH at a �xed value. Table 3.2 displays the results of the simulations carried on.

It is interesting to note that Q does indeed a�ect the number of iterations required for con-
vergence by the Newton-Raphson iterative scheme, however, we are also guaranteed to obtain
the optimal solution after still a relatively small number of iterations. Despite changes in it-
erations are relatively large (e.g. 10 to 36 for Network 4), the number in itself is still feasible
computationally and it does not add too much overhead as the time required is still under one
second.

One other interesting fact is the minimum iterations required is network-dependent and is clearly
achieved for the value that is closest to the solution. Hence, each network presents with certain

37

Table 3.2: Number of iterations required for convergence for di�erent networks and di�erent
values of Q with �xed H.

Q Network 1 Network 2 Network 3 Network 4 Network 5
(7 x 9) (91 x 113) (865 x 950) (2303 x 2369) (4577 x 4648)

0.03 7 8 27 25 43

0.003 6 9 22 11 32

0.0003 9 9 20 10 27

0.00003 11 9 21 15 24

0.000003 14 9 14 22 26

0.3 10 11 29 25 36

3 13 14 33 28 49

300 18 21 42 34 56

300000 24 27 44 36 63

Table 3.3: Average value for optimal Q for each of the networks.
Network 1 Network 2 Network 3 Network 4 Network 5
(7 x 9) (91 x 113) (865 x 950) (2303 x 2369) (4577 x 4648)

0.00432971 0.0261513 2.24896e-05 7.70001e-05 2.18882e-05

optimal values for Q and being as close as possible to the solution from the beginning improves
the complexity of the algorithm. In Table 3.3 you may view the average value for Q for each of
the network that corresponds to the closest value of initial Q found in table 3.2 for which the
number of iterations is also minimal.

3.5.3 Systematically varying both H and Q

As it may be hinted from the previous two results, systematically varying both variables of the
system will produce no di�erent alteration than the one which was present when varying Q. As
a consequence, the results that were displayed in Table 3.2 are similar to the ones obtained in
this case. For any value of Q, regardless of the value of H (choose any value from Table 3.1), we
obtain the same converge performance as if we would have kept H �xed.

3.6 Headloss function

In this section we will discuss the importance and impact of the head loss functions we use
in our computation. This may represent the only non-linear term in our equations and, even
more, it may be a non-di�erentiable function, both of which may create problems when applying
Newton-Raphson or proving or �nding an optimal solution.

3.6.1 Hazen-Williams equation

The Hazen-Williams equation is an empirical relationship that relates the water �owrate through
a pipe and the physical properties of them, which give a measure of the friction in the pipe that

38

then translates into the loss in water pressure or piezometric head.

The equation is given by the relation

f(Qi) = Ri|Qi|ni−1Qi, (3.1)

where Ri is a constant that gives information about the material properties and friction coe�-
cient. Qi represents the water �owrate through a pipe i.

3.6.2 A11 in optimality conditions

In our problem, A11 denotes a diagonal matrix whose entries represent the head loss function
laws expressed at each pipe of the network. However, they are not precisely the laws for each
pipe, but rather the laws after integration. This is necessary because we were trying to obtain
a convex optimisation problem whose KKT conditions were similar to the ones of the original
problem, so that we would be able to prove existence and uniqueness of the problem. We refer
to section 2.3.3 for more details.

Consequently, the matrix takes the form

A11 =

R1|Q1|n1−1

R2|Q2|n2−1 0

0
. . .

Rnp|Qnp|nnp−1

,

which represents the nonlinear component of our system of equations. Moreover, it is important
to guarantee that this matrix does not become singular at any point of the computation as oth-
erwise we will no longer satisfy the condition of the system having a unique solution.

In practice, water �ow through a pipe may get very close to 0 when the pressure of the two
nodes, which are connected through the pipe, is equivalent and the elevation of the two nodes is
the same as well. In this case, Q will be reduced signi�cantly and it may produce bad e�ects from
a computational point of view. Therefore, our model proposes a lower bound on the diagonal
entries of the A11 matrix that is set to 10−5.

The problem with this restriction is that it does not accurately re�ect the water distribution
network from a physical point of view and that our optimal solution might be in�uenced and
not be the one desired. The optimality conditions for this problem, the ones, which are checked
after each iteration, are:

A11Q+A12H = A10H, (3.2)

where, as before, A12 and A10 are matrices that provide the connection of nodes in the network
and Q and H are the �owrate and head, respectively and are the variables for which we solve.

Since we cannot modify the A11 matrix in the Newton-Raphson iteration as we require it not to

39

be singular, we have kept it as is in the iteration, but checked the optimality condition given at
equation (3.2) using the actual values in A11, which may possibly be 0. Nonetheless, the results
showed no di�erence in terms of rate of convergence for the two scenarios. Thus, they are similar
to the ones presented in Table 3.1.

40

4 | Smooth Framework

The aim of this chapter is to prove that a new optimisation framework is better for solving the
hydraulic equations. Currently, in the formulation of the hydraulic equations we have a non-
di�erentiable function, which does not satisfy the conditions in which Newton-Raphson can be
applied. In order to address the problem, we are going to write a smooth formulation of the
problem, one that uses a continuously di�erentiable function as an objective function.

Furthermore, we will establish that the number of iterations required for convergence is bet-
ter than the usual subgradient methods [2] and we will discuss the situations where our smooth
formulation best approximates the original problem.

4.1 Introduction

The main di�culty we have when solving the hydraulic problem comes from the fact that the head
loss function used is a non-di�erentiable function and we are currently using Newton-Raphson
to solve the nonlinear set of equations. This is a big problem since Newton-Raphson assumes
that our objective function is twice continuously di�erentiable.

The Newton-Raphson method uses the Taylor expansion to minimize a general nonlinear func-
tion, which is assumed to be di�cult to minimize. Hence, we transform

min
x∈Rn

f(x), (4.1)

into minimizing the function f(x) obtained from the Taylor expansion:

f(x) = f(xk) +∇f(x)T (x− xk) +
1

2
(x− xk)T∇2f(x)(x− xk). (4.2)

We will now apply FONC (see section 2.1.6) to obtain:

∇f(xk) +∇2f(xk)(x− xk) = 0 (4.3)

as our necessary condition for a minimum. By assuming that the Hessian is positive de�nite (so
the function is strictly locally convex), we obtain the following iterative scheme:

xk+1 = xk −∇2f(xk)
−1∇f(xk), (4.4)

where x from equation (4.3) was replaced by xk+1 in equation (4.4) just to make clear which
point we will use at the next iteration.

41

A key point to notice is that only when f is continuously di�erentiable and ∇f(x∗) = 0, we
can say that x∗ is an optimal solution. Furthermore, the rate of convergence is quadratic when
we choose the starting point x0 su�ciently close to the solution.

However, under the assumption of directed water �ow, our problem uses the new variant of
Hazen-Williams that contains a non-di�erentiable function

F (Q) = K|Q|n, (4.5)

which would make the use of Newton-Raphson impossible. Nevertheless, the method has been
used for some time in practice.

In [2], we see that subgradient methods are the correct choice for solving non-smooth optimisation
problems. However, we will not consider those as there is a better method we can use through
smoothing, which improves the theoretical complexity whilst maintaining the accuracy in results.

At a high overview, the plan can be listed as such:

1. Find a µ-smooth approximation of the non-di�erentiable function by proving that it is
(α, β,K)-smoothable. We refer to section 2.4.2 for a formal de�nition.

2. Prove that the method used to solve the optimisation problem is fast enough. We will
consider the Newton-Raphson and the two stages that occur. When the current iterate is
far away from the solution and the current iterate is close enough to the solution. We refer
to section 2.4.4 to see an example.

3. Finally, prove that there is an optimal µ parameter for our smoothing function such that
after O(log2(log2(1/ε))) iterations, the current solution lies within ε from the optimal
solution. The theorem in section 2.4.5 gives an insight on how we might achieve this.

4.2 Smooth Approximation

We will start this section by considering a number of candidates for the smoothing function.
There are three common ways in we can achieve this.

1. The square root function de�ned as:

fµ(x) =
√
x2 + µ2 − µ. (4.6)

2. The logarithm-exponential function de�ned as:

fµ(x) = µ log

(
e
x
µ + e

−x
µ

2

)
. (4.7)

3. The Huber function de�ned as:

fµ(x) =

{
x2

2µ , if |x| ≤ µ
|x| − µ

2 , else
. (4.8)

42

Figure 4.1: A plot of the absolute value and the smooth approximations listed in section 4.2 for
µ = 0.3. We see that Huber function best approximates the absolute values.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(
x
)

Absolute Value

Sqrt

SumLogExp

Huber

As proved in [2] and as it can be seen in Figure 4.1, the Huber function seems to be the best
approximation of the absolute value so from now on, we will refer to it when conducting the
proofs.

Moreover, as we decrease the value of µ, the smooth approximations will be closer to the absolute
value function and if we let µ→ 0, we will get precisely the absolute value.

4.2.1 Proof of smoothable function

We will now prove that the absolute value is a (α, β,K)-smoothable function. As per the de�-
nition in section 2.4.2, suppose fµ(x) is the Huber function that is a continuously di�erentiable
convex function. We will start by showing part i. of the de�nition of smoothable functions given
in section 2.4.2:

Suppose x ≥ 0.
Now suppose that |x| ≤ µ. Then, we will show:

x− β1µ ≤
x2

2µ
≤ x+ β2µ. (4.9)

43

Taking the �rst inequality, we get:

x− β1µ ≤
x2

2µ
(4.10)

2µx− 2β1µ
2 ≤ x2 , as µ > 0. (4.11)

Let β1 = 1 to get:

2µx− 2µ2 ≤ x2, (4.12)

which can be written, by going backwards to:

x− µ ≤ x2

2µ
, (4.13)

which is clearly true since the following inequalities are true:

x− µ ≤ 0 ≤ x2

2µ
. (4.14)

Taking the second inequality, we get:

x2

2µ
≤ x+ β2µ (4.15)

x2 ≤ 2µx+ 2β2µ
2 (4.16)

µx ≤ 2µ2 + 2β2µ
2 (4.17)

x ≤ 2µ+ 2β2µ (4.18)

x ≤ 2µ(1 + β2). (4.19)

Let β2 = −1
2 and we are done with this case.

Suppose now that |x| > µ. Then, we will show:

x− β1µ ≤ |x| −
µ

2
≤ x+ β2µ. (4.20)

Taking, again, the �rst inequality, we have:

x− µ ≤ x− µ

2
, since x ≥ 0 and β1 = 1, (4.21)

which clearly holds. Taking the second inequality yields:

x− µ

2
≤ x− µ

2
, since β2 = −1

2
, (4.22)

which holds trivially.

44

Now suppose x < 0. As both the absolute value and Huber functions are even, we conclude
the same results.

We are done with part i. of the (2.4.2) de�nition and now we will look at part ii. Suppose
we have the Huber function de�ned as:

fµ(x) =

x2

2µ , if |x| ≤ µ
x− µ

2 , if x > µ

−x− µ
2 , else

. (4.23)

We will need to show that there are some K ≥ 0 and α > 0 such that the following holds:

|f ′µ(x)− f ′µ(y)| ≤
(
K +

α

µ

)
|x− y| (4.24)

and where

f
′
µ(x) =

x
µ , if |x| ≤ µ
1− µ

2 , if x > µ

−1− µ
2 , else

. (4.25)

Suppose |x| ≤ µ. Then equation (4.24) becomes:∣∣∣∣xµ − y

µ

∣∣∣∣ ≤ (K +
α

µ

)
|x− y| (4.26)

1

µ
≤
(
K +

α

µ

)
, (4.27)

which is satis�ed if we take, say, K = 0 and α = 1.

Now suppose x > µ. We get: ∣∣∣∣1− 1

µ
− 1 +

1

µ

∣∣∣∣ ≤ (K +
α

µ

)
|x− y| (4.28)

0 ≤
(
K +

α

µ

)
, (4.29)

which holds for K = 0, α = 1 as µ > 0.

In the last case we have that x < −µ.∣∣∣∣−1− 1

µ
+ 1 +

1

µ

∣∣∣∣ ≤ (K +
α

µ

)
|x− y|, (4.30)

which again reduces to the second case.

The proof is now complete and we can say that the absolute value is a (1, 0.5, 0)-smoothable
function with the Huber function as the µ-smooth approximation.

45

4.2.2 Proof of smoothable function II

Another important proof that we need to perform is that on:

f(x) = c2
|x|n+1

n+ 1
(4.31)

for which we consider the following smooth function:

fµ(x) =

c2
(
x2

2µ

)n+1

n+1 , if |x| ≤ µ

c2
(|x|−µ2)

n+1

n+1 , else

. (4.32)

Suppose |x| ≤ µ. We require to �nd β1 + β2 = β > 0 in:

f(x)− β1µ ≤ fµ(x) ≤ f(x) + β2µ. (4.33)

Starting with the right hand side inequality, we have:

c2

(
x2

2µ

)n+1

n+ 1
≤ c2

|x|n+1

n+ 1
+ β2µ. (4.34)

Suppose β2 = 0. We get: (
x2

2µ

)n+1

≤ |x|n+1, (4.35)

which holds for x = 0. Suppose x 6= 0 and since both sides will evaluate to a positive value, we
can get rid of the absolute value and simply the expression to:

xn+1 ≤ (2µ)n+1, (4.36)

which holds as x ≤ µ.

For the second inequality we have:

c2
|x|n+1

n+ 1
− β1µ ≤ c2

(
x2

2µ

)n+1

n+ 1
(4.37)

|x|n+1 − (n+ 1)β1µ

c2
≤
(
x2

2µ

)n+1

. (4.38)

When x = 0, the inequality is trivially satis�ed. Suppose x 6= 0. Each of the terms is positive,
so we can write the following:

1− (n+ 1)β1µ

c2xn+1
≤
(
x

2µ

)n+1

. (4.39)

46

It will now su�ce to choose a β1 such that the left hand side of the inequality will be at most 0.
Thus:

(n+ 1)β1µ ≥ c2xn+1 (4.40)

β1 ≥
c2x

n+1

(n+ 1)µ
. (4.41)

At this stage, we may rely on the fact that even though µ > 0, the values that µ can take are
very close to 0. Since x < µ < 1, we may take an upper bound for β1 as:

β1 =
c2

n+ 1
. (4.42)

Thus we have found our β = c2
n+1 , which is a useful result for later in the proof. Finding α and

K will be part of determining the Lipschitz constant, which is done next.

4.3 Fast Optimisation Method

We will now investigate the convergence properties of Newton-Raphson and deduce a bound of
the type

D(xk)−D∗ ≤ λ,

where D is the objective function of our optimisation problem and λ is a real number that might
depend on the number of iterations k.

We proceed by looking at the convergence analysis and see the two cases that arise when using
Newton-Raphson.

4.3.1 Newton convergence analysis

Next, we would like to establish that the optimisation method we use in order to solve the hy-
draulic equations is fast as de�ned in section 2.4.4. However, it is not always the case that this
is true and so we would de�ne a fast notion of our own so that we can establish a bound on the
error in solution that we get after a certain number of iterations.

The following statement can be shown about the Newton-Raphson algorithm and a proof of
this is given in [17], pages 488�491. What we �nd by looking at the convergence analysis is that

there are numbers η and γ with 0 < η ≤ m2

L and γ > 0 such that:

1. If |f ′(xk)| ≥ η, then

f(xk+1)− f(xk) ≤ −γ. (4.43)

2. If |f ′(xk)| < η, then

L

2m2
|f(xk+1)| ≤

(
L

2m2
|f(xk)|

)2

, (4.44)

47

where m comes from our strong convex assumption that f is strong convex with constant m.
That is to say ∇2f(x) � mI. Also, L is the Lipschitz constant of the Hessian of f , which we
assume to be Lipschitz continuous:

|f ′′(x)− f ′′(y)| ≤ L|x− y|. (4.45)

We will �rst analyse the implications of equation (4.32). Suppose that the premise is through.
Thus,

|f ′(xk)| < η (4.46)

and as η ≤ m2

L , we obtain the following from equation (4.32):

|f(xk+1)| ≤
L

2m2
|f(xk)|2 (4.47)

|f(xk+1)| <
L

2m2

(
m2

L

)2

(4.48)

|f(xk+1)| <
m2

2L
. (4.49)

So indeed, there is a number η with 0 < η ≤ m2

L such that:

|f ′(xk+1)| < η (4.50)

holds. And so this result holds for any l ≥ k. Consequently, we can write ∀l ≥ k:

L

2m2
|f(xl+1)| ≤

(
L

2m2
|f(xl)|

)2

. (4.51)

Applying this recursively, we obtain:

L

2m2
|f(xl)| ≤

(
L

2m2
|f(xk)|

)2l−k

≤
(

1

2

)2l−k

(4.52)

and hence

f(xl)− f(x∗) ≤ 1

2m
|f(xl)|2 ≤

2m3

L2

(
1

2

)2l−k+1

, (4.53)

with f(x∗) the optimal solution.

4.3.2 Determining the Lipschitz constant

The objective function we are looking at is of type:

Fµ(x) = f(x) + gµ(x), (4.54)

48

where

f(x) = c1x (4.55)

gµ(x) =

c2
(
x2

2µ

)n+1

n+1 , if |x| ≤ µ

c2
(|x|−µ2)

n+1

n+1 , else

, (4.56)

with c1 and c2 constants particular to the network. For simplicity, we will compute the result in
terms of them, but, from a hydraulic perspective, they can be thought as:

c1 = Ki (4.57)

c2 = A10iH0 +A13iη, (4.58)

where Ki is the constant from Hazen-Williams and the rest of the terms are network speci�c as
described in section 2.3.2 and section 5.2.

From De�nition 1 in section 2.4.2, we will �nd the Lipschitz constants of the Hessian of the
two functions de�ned by equations (4.55) and (4.56). First, we compute their second order
derivatives:

f
′′
(x) = 0 (4.59)

g
′′
µ(x) =

c2(2n+ 1) x2n

2nµn+1 , if |x| ≤ µ
c2n

(
x− µ

2

)n−1
, if x > µ

c2n
(
−x− µ

2

)n−1
, else

. (4.60)

We �rst consider f and obtain:

|f ′′(x)− f ′′(y)| ≤ Lf |x− y| (4.61)

0 ≤ Lf |x− y|. (4.62)

So we can set Lf = 0. Moving on to gµ, suppose |x|≤ µ and we �nd:

|g′′µ(x)− g′′µ(y)| ≤ Lg|x− y| (4.63)

c2(2n+ 1)

2nµn+1

∣∣x2n − y2n∣∣ ≤ Lg|x− y|. (4.64)

Now, we can say that we can bound the function we have so long as the domain of gµ is a
compact set. This is a reasonable assumption since the variable denotes the water �owrate
through a pipe, which cannot possibly exceed certain limits. We will thus denote by Ψ the upper
bound. Therefore,

|x| ≤ Ψ , ∀x in the domain. (4.65)

49

Hence, we can use the following fact:

|xk − yk| ≤ |x− y|kΨk−1. (4.66)

Combining (4.64) with (4.56) we establish:

c2(2n+ 1)

2n2nΨ2n−1µn+1
≤ Lg (4.67)

and so it will su�ce to set:

Lg =
c2
µn+1

(4.68)

and obtain the desired Lipschitz constant that will help us �nd the optimal smoothing parameter
µ for which we achieve a lower bound for the rate of convergence of the algorithm. We conclude
that:

L = Lf + Lg =
c2
µn+1

. (4.69)

We refer to Appendix 10.2 for validation in the other cases when |x| > µ.

4.4 Finding µ and establishing the lower bound

4.4.1 Quadratically Convergent Phase

When we perform this analysis we will refer to the de�nitions given by equations (4.54), (4.55)
and (4.56). Thus, using equation (4.53) and the result in equation (4.69), we may write:

Fµ(xk)− Fµ(x∗) ≤ 2m3(
c2

µn+1

)2 (1

2

)2k−p+1

, (4.70)

which holds for any k ≥ p, with p the constant that denotes the iteration after which we are
close enough to the solution according to Newton-Raphson and we fall into the quadratically
convergent phase.

Now, since we know gµ is a µ-smooth approximation of g, there are some β1 + β2 = β > 0
such that:

F (x)− β1µ ≤ Fµ(x) ≤ F (x) + β2µ, (4.71)

where F (x) = f(x) + g(x), with g the non-smooth function. Since this holds for any x, it will
hold in particular for:

F (x∗) ≥ Fµ(x∗)− β2µ (4.72)

F (xk) ≤ Fµ(xk) + β1µ (4.73)

50

and combining with (4.71), we will get:

F (xk)− F (x∗) ≤ Fµ(xk)− Fµ(x∗) + (β1 + β2)µ ≤
2m3(
c2

µn+1

)2 (1

2

)2k−p+1

+ βµ (4.74)

F (xk)− F (x∗) ≤ 2m3µ2n+2

c22

(
1

2

)2k−p+1

+ βµ. (4.75)

Minimization of the right-hand side with respect to µ > 0 will be achieved as µ → 0. For
convenience, we will choose the value of µ as:

µ =
1√
β

(
2m
√
m

c2

(
1

2

)2k−p
) 1

2n+2

. (4.76)

We do not need to decrease µ further, as this value is enough to establish a theoretical bound
on the rate of convergence.

Plugging the value of µ obtained in equation (4.76) into equation (4.75), we get:

F (xk)− F (x∗) ≤ 4m
√
mβ

c2

(
1

2

)2k−p

. (4.77)

Thus, given ε > 0, to obtain an ε-optimal solution satisfying

F (xk)− F (x∗) ≤ ε,

we need to �nd the values of k for which the following is satis�ed:

4m
√
mβ

c2

(
1

2

)2k−p

≤ ε. (4.78)

Carrying on the computation, we see(
1

2

)2k−p

≤ εc2

4m
√
mβ

(4.79)

2k−p ≥ log2

(
4m
√
mβ

εc2

)
(4.80)

k ≥ log2

(
log2

(
4m
√
mβ

εc2

))
+ p. (4.81)

Plugging the lower bound value of k in equation (4.76), we obtain the following value of µ which
established the link between µ and ε:

µ =
1√
β

(ε
2

) 1
2n+2

. (4.82)

51

4.4.2 Newton Damped Phase

We now refer to equation (4.43) where we �nd ourselves further away from the solution and
require to �nd a bound on the number of iterations required. Simply, since f decreases by at
least γ each iteration, the total number of iterations cannot exceed

f(x0)− f(x∗)

γ
. (4.83)

We refer to [17] (pp 488�491) for a complete proof.

4.5 The New Result

Let {xk} be the sequence generated by the Newton-Raphson iterative algorithm when applied
to a problem of the type:

minFµ(x) = f(x) + gµ(x). (4.84)

Suppose that the smoothing parameter is chosen as:

µ =
1√
β

(ε
2

) 1
2n+2

. (4.85)

Then for

k ≥ log2

(
log2

(
4m
√
mβ

εc2

))
+ p. (4.86)

it holds that F (xk)− F (x∗) ≤ ε.

This result follows from sections 4.2 � 4.4. We have thus established a lower bound on the
number of iterations required for convergence of O(log2(log2(1/ε))) in the quadratically conver-
gent phase, which outperforms both the usual subgradient methods' O(1/ε2) and the results in
[2] of O(1/ε).

52

5 | Other Ideas

The aim of this chapter is to brie�y present some of the other main directions that have been
considered for the progress of the project.

5.1 Demand Driven or Pressure Driven

The Todini and Pilati mathematical model we are solving for our hydraulic analysis contains a
set of nonlinear equations in which the customer demand q enters as a �xed term and we require
to solve for optimal values of piezometric head H and water �owrate Q. Equations are presented
as:

A12H + F (Q) = −A10H0 (5.1)

A21Q = q. (5.2)

An issue with this model is that it makes certain assumptions on how q will look, which, albeit
roughly correct, do not always adhere to the real values. Typical values of q will peak around
morning time and evening time, be lower during the day and at the lowest during the night.
Moreover, this assumption is the same for any day of the week, regardless of the week.

An alternative view of this problem may be seen as removing the assumptions made for the
customer demand and focus on the amount of pressure that must be met at each node of the
junction for a certain time frame.

It seems more natural for one to estimate the physical attribute of pressure, rather the un-

certain customer demand as we can have control over pressure, but not as much on the customer
demand. Nonetheless, this proposal does not necessarily simplify or improve the task, as esti-
mating pressure might prove to be an even more di�cult problem since it does not always have
a similar, monotonic behaviour as the customer demand.

5.2 Valve modelling

Valves represent an important part of a hydraulic network. Fundamentally, they are similar in
structure to the usual pipes and together with them form the links of the network. However,
due to ongoing enhancements in water control, models that have been released decades ago fall
short in coping with all the new improvements added to a water network distribution.

53

We will illustrate some of the newest technologies used in the design and construction of a
hydraulic network:

• Loggers

These devices are installed at speci�c points of the network and their purpose is to de-
termine the pressure, temperature, �ow and similar useful characteristics. Thus, they
provide important monitoring of the network and are useful for leakage detection, pressure
control and, ultimately, for our optimisation purposes.

Newest loggers are very robust and reliable and have many interesting features that makes
them very popular in practice. They o�er remote communication, relatively high memory
storage, e�cient battery consumption.

• Pump control

Pumps are elements that occur in the hydraulic network and are similar to pipes or links
in the network, but add more functionality as they are able to make control decisions such
as to in�uence the water �owrate or head loss in order to reduce water leakage and waste.

• Pressure Reducing Valves (PRVs)

As per their name, this class of valves improve upon normal network elements by hav-
ing an extra choice of reducing the pressure when pressure is in excess, thus reducing waste
as well as leakage or bursts through the network. Another important advantage is the
remote control of pressure management, which requires fewer site visits to manage the
pressure at certain points in the network.

We will now carry on discussing the implications of modelling such new elements and
we will focus particularly on PRVs as the Loggers are somewhat independent of the hy-
draulic analysis and pumps are slightly older than PRVs and perhaps don't present as much
interest.

We can easily incorporate PRVs in our model if we treat this special type of valves as pipes.
Simply extend the connectivity matrix A12 presented in equations (5.1) and (5.2), as well as
�owrate vector Q and obtain results for optimal �owarates at the valves as well.

This method would clearly not be very good since we would like to capture the bene�cial contri-
bution of the PRVs as well. This is where the problem arises and for this reason we would like
to extend the model described by Todini and Pilati by equations (5.1) and (5.2) as there is no
such model currently.

In order to address this issue, a new problem formulation has been devised as:

F (H) = min
nn∑
j=1

Hj , (5.3)

where the objective function should be read as a minimization of pressure through the network
consisting of nn nodes.

54

The equality constraints are de�ned as:

A12H + F (Q) +A13η +A10H0 = 0 (5.4)

A21Q− q = 0, (5.5)

where the only di�erence between the original formulation is the addition of the A13η term. The
A13 matrix denotes the connectivity of the valves in the network and η is the unknown vector
representing the valve settings and is similar to Q in that it will solve for optimal �owrate and
will in�uence the piezometric head H as well. Also, they denote the equations of conservation
of energy and mass in the water network. The rest of the elements are as described in section 2.3.2.

Carrying on, we also have the following inequality constraints:

−Q ≤ 0 (5.6)

−η ≤ 0 (5.7)

Hmin −Hj ≤ 0 , ∀j ∈ nn, (5.8)

where these constraints assure that the water �ow, as well as the valve settings are always posi-
tive or that they preserve a certain direction. The last constraint is there to set a lower bound
on the pressure at any given point within the network.

In order to solve the problem described by equations (5.3)�(5.8), a few methods were used
including a gradient method and two direct methods. However, they were proven to be subop-
timal mainly because they were sensitive to initial conditions, which means they were slow, not
reliable and in some cases could not found an optimal solution.

Bearing in mind that the di�culty of the hydraulic equations lies in the fact that the num-
ber of nonlinear equations is high, sequential convex programming has been used in order to
split the optimisation problem into two smaller ones. We proceed as such:

Subproblem A will take �xed η and solve the problem that consists of only equations (5.3)�
(5.5). Initially, we set η = 0, which makes the problem identical to the initial Todini problem
as described in section 2.3.2. We then have solutions, as before, for piezometric head and water
�owrate. Suppose they are Hs and Qs.

Subproblem B will be a linear program that solves the whole problem by linearising equation
(5.4) using the already computed values of Hs and Qs. We will then obtain optimal valve settings
η as required. The process will continue until convergence is reached, which is checked either
through the satis�ability of the KKT conditions or, simpler, checking that the values of H and
Q obtained by the two subproblems are within some ε.

Linearisation of equation (5.4) is done as:

F (Q) = AQ+ b, (5.9)

55

with the following boundary conditions:

F (0) = 0 (5.10)

F (Q) = KQ1.85, (5.11)

which cleary yields the following values for our linear function:

A = KQ0.85 (5.12)

b = 0. (5.13)

Now, one may think that this is not an improvement since Q is still nonlinear, but actually the
value for A in (5.12) is obtained by the already computed Qs from subproblem A, which makes
it a simple constant when solving the linear program described by part B.

5.3 Robust Optimisation

The aim of robust optimisation is to formulate an optimisation problem in such a way as to
take into account the uncertainty in your model parameters and output a solution that is robust
enough in order to be optimal for the whole range of optimisation problems that take into ac-
count the uncertainty.

As mentioned in section 5.1, customer demand does not change from one day to another too
much and only small variations can be observed through time. The question to be asked in this
scenario is whether we can formulate a robust version of the problem described by equations
(5.1) and (5.2) such that these variations in customer demand can be dealt with.

Thus, we will achieve a solution that is general enough for any day in a given time interval.
At the moment, we are solving the hydraulic equations at discrete time intervals throughout
the day. Instead, the new methodology would solve the problem for di�erent times of the day
only once and apply this result whenever customer demand q is within some ε from the original q.

Nonetheless, before we consider applying such an approach, we need to check what kind of
variations in optimal solutions, a small change in customer demand q will produce. For this, we
slightly change the model as:

A12H + F (Q) = −A10H0 (5.14)

A21Q = (1 + ξ)q, (5.15)

where ξ can be a uniform, normal, lognormal random variable with mean 0 and standard devia-
tion ε. For our purposes, however, we may let ξ be as:

ξ ∼ N (0, ε), (5.16)

where ε is the standard deviation that we choose. Please note that an uncertainty of x means
an uncertainty of x% in the input.

56

Running di�erent simulations showed that the results at di�erent uncertainty levels tend to
be quite similar, but there is a point after which they diverge signi�cantly.

Figures 5.1 to 5.4 portray the results of the comparison performed. We have considered a small
network and the results in blue are the ones of the original problem. The red lines denote solu-
tions for the problem with the added ε error. Further on, the left hand side shows the results for
the piezometric head H, while on the right hand side you may see the results for water �owrate
Q.

Figure 5.1: Q (left) and H solutions for ε = .05

1 2 3 4 5 6 7 8 9
−0.01

−0.005

0

0.005

0.01

0.015

0.02

Pipe

F
lo

w
ra

te
 (

Q
)

Actual data

0.5 standard deviation

1 2 3 4 5 6 7
80

90

100

110

120

130

140

Junction

H
e
a
d

 (
H

)

Actual data

0.5 standard deviation

At the �rst stage, we have chosen an error of ε = .05 and you can see that results follow roughly
the same pattern, despite having some rather large discrepancy especially at junction 5 of Figure
5.1 of the piezometric head.

Figure 5.2: Q (left) and H solutions for ε = 1

1 2 3 4 5 6 7 8 9
−0.01

−0.005

0

0.005

0.01

0.015

0.02

Pipe

F
lo

w
ra

te
 (

Q
)

Actual data

1 standard deviation

1 2 3 4 5 6 7
80

90

100

110

120

130

140

Junction

H
e
a
d

 (
H

)

Actual data

1 standard deviation

Carrying on with the analysis, we see a similar trend of results even at ε = 1 uncertainty. Again,
results are similar, but there are larger di�erences around, for instance, junction 5 of Figure 5.2.

57

Figure 5.3: Q (left) and H solutions for ε = 1.5

1 2 3 4 5 6 7 8 9
−0.01

−0.005

0

0.005

0.01

0.015

0.02

Pipe

F
lo

w
ra

te
 (

Q
)

Actual data

1.5 standard deviation

1 2 3 4 5 6 7
80

90

100

110

120

130

140

Junction

H
e

a
d

 (
H

)

Actual data

1.5 standard deviation

We again increase the error at ε = 1.5, but we see very little di�erence from the previous two
steps. Nonetheless, it is important to have a systematic approach in order to be sure of any
change in results that may occur.

Figure 5.4: Q (left) and H solutions for ε = 1.9

1 2 3 4 5 6 7 8 9
−0.01

−0.005

0

0.005

0.01

0.015

0.02

Pipe

F
lo

w
ra

te
 (

Q
)

Actual data

1.9 standard deviation

1 2 3 4 5 6 7
−60

−40

−20

0

20

40

60

80

100

120

140

Junction

H
e
a
d

 (
H

)

Actual data

1.9 standard deviation

An interesting observation is to be made when looking at Figure 5.4 as we see that the solution
becomes infeasible from a physical point of view when H drops very low, in the negative area.
The model we use does not account for this case as there is no constraint of the type H > 0
and thus, when a junction simply cannot handle the amount of pressure that goes that way, it
outputs a wrong result.

58

6 | Implementation

At the beginning of the project we had two main objectives in mind when developing the hy-
draulic solver. While performance is a key factor in any application, we wanted to build a
software package that can be used by researchers in order to easily implement and validate any
new ideas and theories in the �eld of hydraulic analysis.

Hence, we would �rst like to make the hydraulic software as fast as possible by looking both into
the details of the implementation (see Chapter 3), but also considering a higher-level view by
investigating and adopting new frameworks that increase optimality (see Chapter 4).

Furthermore, we want to keep in mind the principles of good software design and o�er researchers
a robust and reliable framework, which o�ers high modularity, loose coupling between di�erent
parts of the application and an ease of extension.

6.1 The Problem

Figure 6.1: Richmond Water Network. There are three types of nodes: junctions (simple dots
in the �gure), reservoirs (rightmost symbol) and tanks (leftmost symbol). There are three types
of links: pipes (plain line), valves and pumps with symbols like in Figure 1.1.

We will focus our attention on the di�erent elements which appear in a water distribution net-
work. Figure 6.1 shows the Richmond water network with various nodes and links, which will
be described next.

59

6.1.1 Epanet Files

The standard input to the problem comes in the form of Epanet input �les that typically have a
.inp extension. It consists of simple rules to describe all the characteristics of a water network,
which also makes parsing its contents relatively easy. We will now study and discuss the meaning
of the elements that appear in the Epanet input �les. We will start looking at the most relevant
of them, which have a direct implication in our problem:

• Junctions
The junctions of a water network are the nodes of the network servicing the clients as per
their demand. The information that we get for each junction is

i. ID in order to uniquely identify a junction.

ii. Elevation, which denotes the height of a particular junction above a certain, �xed
reference point. From a strictly mathematical viewpoint, this quantity is important
if we want to calculate the pressure at a speci�c node from the piezometric head or
vice-versa.

iii. Demand, which denotes the customer demand for water at the current node of the
network. This is an important value as we would need to supply a certain pressure
and water �ow as to meet the given demand under the minimization of water loss
that �ows through the pipes.

iv. Pattern is, in fact, a pattern ID which helps us identify a sequence of 96 numbers
that would form the multipliers of the given demand. The reasoning is as follows: in
order to get an accurate description of the demand throughout the day, a normal day
is split into 96 parts (15 minutes) so that we would be able to read the demand at 15
minute intervals. We could then run the hydraulic analysis for any point of the day.

• Reservoirs
The reservoirs of a water network are essentially the starting nodes of the network that
feed the water to the pipes and junctions. In our model, they will represent the nodes for
which the hydraulic head is known. They contain the following information:

i. ID in order to uniquely identify a reservoir.

ii. Head, which speci�es the liquid pressure above a geodetic datum - a �xed point of
reference - that would form our known head information.

iii. Pattern is, as it was the case with junctions, a pattern ID which helps us identify a
sequence of 96 numbers that would form the multipliers of the given demand. The
reasoning is as follows: in order to get an accurate description of the pressure through-
out the day, a normal day is split into 96 parts (15 minutes) so that we would be able
to read the pressure at 15 minute intervals. We could then run the hydraulic analysis
for any point of the day.

• Tanks

i. ID in order to uniquely identify a tank

ii. Elevation, which denotes the height of a particular tank above a reference geoid. This
quantity is important when you want to retrieve the pressure from the piezometric
head or vice-versa.

60

iii. Initial level this gives information about the initial pressure we have in the tank.
Note that tanks behave similar to reservoirs, only that the pressure might vary in
time. In the case of reservoirs, the Head remains �xed throughout the simulation.

iv. Minimum level denotes the minimum amount of pressure that the tank can have
at any given point in time. This information is to be expected since the pressure of
the tanks vary in time and so we would not want to exceed certain boundaries as
otherwise it might prove di�cult to achieve certain demand objectives.

v. Maximum level denotes the maximum amount of pressure that the tank can have
at any given point in time. Similar to minimum, it is important to know when we
exceed a certain boundary.

vi. Diameter denotes the diameter of the tank. Our model does not include this infor-
mation.

vii. MinimumV olume our model does not include this information.

viii. V olume our model does not include this information.

We can observe that modelling the tanks is not complete. This is acceptable since the
test cases we have and, in fact, the vast majority of cases we encounter do not include the
information we didn't model.

• Pipes
Pipes represent one of the three types of links that we have in the network. In the water
network, they make the link between the node-type elements that are the ones we have
already seen: Junctions, Reservoirs and Tanks. In the input �le, they are followed by a
number of di�erent characteristics:

i. ID in order to uniquely identify a pipe.

ii. Node 1, which denotes one of the two nodes of this certain link. Each link has two
nodes and in this case, the Epanet input �le denotes the node where �ow enters the
pipe by 1.

iii. Node 2, which denotes one of the two nodes of this certain link. This node corresponds
to the node of the link through which water �ow exits.

iv. Length denotes the length of the pipe in the water network.

v. Diameter denotes the diameter of the pipe in the water network.

vi. Roughness denotes the roughness of the pipe in the water network. In this case, by
roughness we refer to the hydraulic roughness, which is the measure of the amount of
frictional resistance that is faced by the water whilst passing through the pipe. This
represents an important quantity as it helps us determine the amount of head loss in
each pipe, which is of paramount importance when computing the optimal values for
water pressure and �ow.

vii. Minor Loss - the minor loss coe�cient represent the losses in water velocity and,
hence, pressure caused by �ttings, bends, valves found in the network. They are
named minor, as they are considered negligible in comparison to the friction losses,
which are considered major. The head losses are computed from the velocity of the
water and a certain constantK that is correlated to the material of the pipe. Moreover

61

the velocity v of the water is computed as

v =
Q

A
,

where Q is the water �ow rate through the pipe and A is the area of the pipe. The
minor loss can then be computed as:

h = K
v2

2g
,

where, as above, K is a material-dependent constant, v the velocity and g the accel-
eration of gravity. Nonetheless, the minor loss for the pipes

viii. Status denotes the status of the current pipe. It will usually be Open in which case
water �ows normally through the pipe, but it might be Closed in which case we should
ignore it.

• V alves
The second type of links we see in the water network are valves. Contrary to the pipes,
valves have the ability to regulate, direct, control the �ow of the water, which makes their
modelling slightly more complex.

For now, we will take a look at the characteristics of the valves as they occur in the
input �le:

i. ID uniquely identi�es the valve in the water network.

ii. Node 1 denotes, as it is the case with the pipes, one of the two nodes of this certain
link. Each link has two nodes and in this case, the Epanet input �le denotes the node
where �ow enters the valve by 1.

iii. Node 2, which denotes one of the two nodes of this certain link. This node corresponds
to the node of the link through which water �ow exits.

iv. Diameter denotes the diameter of the valve in the water network.

v. Type - unlike pipes, valves come in di�erent types.

vi. Setting this information regulates the amount of pressure that is to be saved starting
from this point and going in the direction of water �ow that comes at this point. This
information in not modelled.

vii. Minor Loss this parameter is not modelled although it never occurs in our test cases.

Perhaps an important factor we do not model is the full functionality of valves. This is still
acceptable since we can run any simulation even without the additional features. Please
see section 5.2 for additional details on this matter.

The above mentioned elements are the most important ones and they represent the network
model together with its characteristics. Another key element is the Patterns section, which is a
list of key - value pairs that represent the demand multipliers for particular nodes of the network.
The way it works is that for each node of the network, you may have a key that points to a list
of 96 multipliers that give you the demand at every 15 minutes of a day. Thus, you are able to
solve the optimisation problem at various time intervals throughout the day.

62

6.1.2 Design overview

We will now take a brief look at the design of the hydraulic solver we have implemented. At a
high-level view, one can view the application as composed of three big components. These are:

1. The Parser

2. The Hydraulic Network Model

3. The Solver

This partition is key to the design as it o�ers low coupling between the components as their
communication is managed by a main process through a very easy to use API.

In particular, it o�ers the user a robust framework that can easily be extended to make use
of a new algorithm or technique for solving the non-linear equations.

So lve r ∗ s o l v e r = SolverFactory : : c r e a t e In s t an c e (args , so lverType) ;

where solverType, the second argument, denotes the type of Solver to be used. Of course, an
implementation will be required, but that is very easy to accomplish since we can inherit from
the Solver interface and only implement the solve method.

c l a s s MyNewSolver : pub l i c So lve r
{

pub l i c :
void s o l v e ()
{

// add implementation here
} ;

} ;

Additionally, one may want to alter the pipes or valves or any other elements' con�guration
during the simulation. Of course, this can be achieved through the various access methods of
the solver. Of particular interest might be the head loss function that is used.

s o l ve r−>headLossFunction (new HazenWilliamsHeadLossFunction ()) ;

where the argument of the method takes an object of a type that extends HeadLossFunction.
Similar to the solver, an implementation of any head loss function can easily be provided if one
does not already exist.

We will now start talking in a bit more detail about the di�erent main components that have
been mentioned.

6.2 The Parser

The parser is the �rst main component of the application as it reads the input �le and is able
to prepare the application for building the network model. It is also the simplest part since the

63

format of the Epanet input �les, which is used is very clear and easy to work with.

The structure of the input �les is very well described by section 6.1.1 whereby each of the
elements presented is preceded by a header of type [JUNCTIONS], [RESERV OIRS], etc,
which is then followed by a table with all the relevant numbers.

We are using Boost's Tokenizer in order to parse the data and maintain a map of the infor-
mation of the input �le. The precondition of the parser is that the format is kept as is, while
extending the input �le will not a�ect the program whatsoever.

Finally, the information from the reader will be fed to some Creator objects, which will construct
the model, fact that will be detailed next.

6.3 The Hydraulic Network Model

At this stage, we have the information network information stored in a map and through the
Creator objects, we are able to create the data structures that will form the hydraulic net-
work model. The way this works is that each of the Creator objects (e.g. JunctionCreator,
PipeCreator) will be passed the relevant part of parsed �le and will create the network compo-
nents (i.e. Junction, Pipe) in the form of useful data structures.

Once this model is created we can then go on and create the matrices we require for solving
the nonlinear system. Depending on the case, we will build matrices A12, A21, A10, H0, q, as
well as making sure to do any precomputational step if any is required.

Once these procedures have terminated, we will pass control to the main loop again, which
will start running the simulation and solve the hydraulic equations.

6.4 The Solver

As mentioned in chapter 3, there are a number of solvers that can be used to solve this particular
problem. These solvers have the ability to �nd optimal solutions for H and Q for di�erent time
intervals and for di�erent networks and run several simulations in parallel if desired.

At the end of the simulation, we are able to retrieve useful metrics such as the number of
iterations required for the algorithm to converge or the time required by the algorithm to solve
the system. Also, we are able to plot the piezometric head at each node and the water �owrate
for each link in the network.

6.5 Summary

The entire codebase was developed by the author of the project and it is hosted on a private
repository, but will also be made publicly available via github.

64

At the moment, we have written approximately 5000 lines of code for which we required close
to 300 commits. All the dependencies required for the use of the software can be easily found
online and installed. They are Boost, LAPACKPP, Eigen and optionally GnuPlot, together with
a C++ compiler (preferably gcc version 4.8.2 or above and make).

Figure 6.2: Print screen running a simulation on a small network.

65

7 | Project Evaluation

We will evaluate our project in terms of both the numerical analysis performed and the theoretical
work done on adopting the smooth framework and see just how well they behave and how they
improve upon the existing state of the art software.

7.1 Overview

Our benchmark is composed of standard input �les, which contain the topological structure of a
water distribution network. We will use networks of di�erent sizes ranging from very small (10
nodes and 10 links) to some of the largest that we can have (5000 nodes and 5000 links).

We have run the simulations on a personal laptop with the following speci�cations:

• Intel(R) Core(TM) i7-4700MQ CPU @ 2.40GHz x 8

• 15.6 GiB Memory

• OS: Linux Ubuntu 14.04 LTS, 64-bit

We will systematically go over the results of the simulations for the numerical analysis case and
the smooth framework case by looking at the most relevant characteristics of the optimisation
algorithm used.

Finally, we will discuss about the current standard in industry in Epanet and CWSNet and
how our implementation compares against them.

7.2 Numerical Analysis

We will now turn our attention to the numerical analysis we have done and view the results in
terms of CPU time required or computational time, the rate of convergence of the algorithm
used or the number of iterations required, as well as taking a look at the accuracy that we have
and how that a�ects the performance of our solver.

7.2.1 Computational Time

We will start looking at the results obtained using the very �rst implementation, which did not
explore the sparsity nature of the problem, nor di�erent implementations. As it can be seen in

66

Table 7.1: A simulation time comparison of the �rst implementations of the hydraulic solver.
The times shown are in ms. The tolerance level is ε = 10−6.

Solver Network 1 Network 3 Network 4 Network 5
(Size) (7 x 9) (865 x 950) (2303 x 2369) (4577 x 4648)

LLT Factorization 1.2 > 30 seconds > 3 minutes > 6 minutes

LDLT Factorization 1.22 > 30 seconds > 3 minutes > 6 minutes

LU Factorization 1.23 > 30 seconds > 3 minutes > 6 minutes

Conjugate Gradient 5.7 > 1 minute > 5 minutes > 10 minutes

Modi�ed Conj. Grad. 5.9 > 1 minute > 5 minutes > 10 minutes

Jacobi 6.5 > 1 minute > 5 minutes > 10 minutes

Gauÿ-Seidel 6.6 > 1 minute > 5 minutes > 10 minutes

GMRES 5.8 > 1 minute > 5 minutes > 10 minutes

CWSNet 0.128 23.104 147.363 248.437

Table 7.1, the CPU time for small size problems is good, but still an order of magnitude worse
as we move from our implementation that requires O(ms) compared to the industry standard
CWSNet that solves in O(0.1ms).

This di�erence increases even further when we increase the number of nodes and links in the
network. Thus, even for networks of size 1000 by 1000, we only get the optimal solution in
over half a minute, whereas the standard CWSNet still performs in O(10ms). The last two net-
works portray an even bigger discrepancy, our solver requiring several minutes, whereas CWSNet
spends only O(100ms).

This signi�cant di�erence comes from ignoring the nature of the problem, which, as can be seen
in Table 7.2, is of paramount importance to optimally solving the hydraulic equations.

In the latter table, one can view that the results are not just comparable to the standard in
industry, but they are even better with special emphasis put on the larger di�erence where our
direct solvers are able to �nd an optimal solution in O(10ms) as opposed to CWSNet's O(100ms).

This important result comes from exploring the very sparse nature of the problem and from
eliminating all the unnecessary operations that were initially performed. The reason why we see
such a steep decrease from the initial implementation is that the water distribution network is
sparse as a node will only link to nodes from its neighbourhood.

If you take a look at the size of the networks we can observe that for n nodes, we have approx-
imately n links, which means that our adjacency matrix will have n(n − 2) 0 elements (i.e. for
each link, there are 2 non-zero elements). Consequently, if we take a look at Network 4, instead
of performing matrix operations and storing 2369× 2369 = 5612161 elements, we only consider
2369× 2 = 4738. This means that more than 99.9% of the computations carried on in the naive
implementation were additions and multiplications of 0.

Another important aspect is that the solvers that perform the best for us (in terms of CPU
time for now) are the direct solvers and, in particular, the LLT solver. We will now take a look

67

Table 7.2: A simulation time comparison of the latest implementations of the hydraulic solver.
The times shown are in ms. The tolerance level is ε = 10−6.

Solver Network 1 Network 2 Network 3 Network 4 Network 5
(Size) (7 x 9) (91 x 113) (865 x 950) (2303 x 2369) (4577 x 4648)

LLT Factorization 0.089 4.902 10.456 22.417 41.356

LDLT Factorization 0.095 5.121 10.662 23.592 43.711

LU Factorization 0.096 5.088 10.701 24.032 44.882

Conjugate Gradient 1.43 27.639 74.122 149.064 420.01

Modi�ed Conj. Grad. 1.54 30.43 78.058 157.332 423.947

Jacobi 1.67 35.912 79.51 161.232 425.553

Gauÿ-Seidel 1.68 35.983 79.984 162.735 425.342

GMRES 1.5 32.529 77.061 153.964 422.71

CWSNet 0.128 6.371 23.104 147.363 248.437

at the convergence rate of each of the solvers and see the number of iterations required by them.

7.2.2 Rate of Convergence

We will now turn on to see how convergence is achieved for the di�erent implementations we
use. In particular, we will look at the number of iterations coupled with the rate at which the
error decreases.

Note that in this case, we will not consider the di�erence between the naive and the latest
implementations as the methods do not change, only the underlying implementation and data
structures are di�erent, which should not a�ect the result we obtain after a certain iteration.

We will split the methods into two di�erent categories:

• Direct Methods

• Iterative Methods

The motivation for this comes from the fact that each of the direct solvers and iterative solvers
have very similar convergence properties, respectively. This can be seen in Table 7.3 where the
number of iterations required for the direct methods is at about 50% of the iterative methods.
This is part of the reason why direct methods provide better performance results in terms of
overall simulation time.

For the �gures in this section, the legend should be read as:

• Small Network - 91 x 113

• Medium Network - 2303 x 2369

• Large Network - 4577 x 4648

In Figure 7.1, we can see how the error decrease with each iteration for the direct methods. We
can observe that convergence is achieved rapidly and within just six iterations the error becomes

68

Table 7.3: Number of iterations comparison required for convergence for di�erent implementa-
tions. The tolerance level is ε = 10−6.

Solver Network 1 Network 2 Network 3
(Size) (91 x 113) (2303 x 2369) (4577 x 4648)

LLT Factorization 7 15 32

LDLT Factorization 8 15 34

LU Factorization 8 16 34

Conjugate Gradient 15 27 54

Modi�ed Conj. Grad. 15 28 56

Jacobi 15 29 58

Gauÿ-Seidel 15 29 58

GMRES 15 29 58

Figure 7.1: Convergence rate of direct methods for 3 di�erent networks that vary in size.

1 1.5 2 2.5 3 3.5 4
0

1000

2000

3000

4000

5000

6000

Iteration

E
rr

o
r

(w
rt

 t
h

e
 o

p
ti

m
a
l
s
o

lu
ti

o
n

)

Small Network

Medium Network

Large Network

very small even for the large network case.

This result agrees with the theoretical rate of convergence of Newton-Raphson for when the
initial estimate of the solution comes close to the optimal solution. Another advantage comes
from the fact that the objective function we are minimizing is very similar to a quadratic function,
which makes Newton-Raphson an even better choice. For more details, please refer to section
4.3.1 on convergence analysis.

69

Figure 7.2: Convergence rate of iterative methods for 3 di�erent networks that vary in size.

1 1.5 2 2.5 3 3.5 4
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Iteration

E
rr

o
r

(w
rt

 t
h

e
 o

p
ti

m
a

l
s

o
lu

ti
o

n
)

Small Network

Medium Network

Large Network

In Figure 7.2, we can see the same analysis done for the iterative methods. In this case, we
achieve convergence slower than before, although the trend is similar. Figure 7.2 resembled
Figure 7.1, only this time the error are larger and it is only after 12 iterations that we can say
that the error becomes very small.

In Figure 7.3, we can see how the direct and iterative solvers compare on three di�erent networks
of various sizes. In all of them, the iterative solver arrives at the optimal solution in a larger
number of steps than the direct method. In fact, the number of steps required is just under
double of the number required for direct methods.

We have established practical results of convergence and now we will take a look at how the
error accuracy a�ects the performance of our solver.

70

Figure 7.3: A comparison between direct and iterative methods for 3 di�erent networks. Up left
shows the small network. Up right is the medium network. Bottom centre is the large network.

1 2 3 4 5 6
0

100

200

300

400

500

600

Iteration

E
rr

o
r

(w
rt

 t
h

e
 o

p
ti

m
a
l

s
o

lu
ti

o
n

)

Direct Solver

Iterative Solver

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Iteration

E
rr

o
r

(w
rt

 t
h

e
 o

p
ti

m
a
l

s
o

lu
ti

o
n

)

Direct Solver

Iterative Solver

1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Iteration

E
rr

o
r

(w
rt

 t
h

e
 o

p
ti

m
a
l

s
o

lu
ti

o
n

)

Direct Solver

Iterative Solver

7.2.3 Optimal Solution Accuracy

Before commencing the analysis of the ε-level accuracy, it is worth mentioning that from an
engineering view point, a standard error in accuracy of ε = 10−6 is very good as the current
existing implementations use this for their optimality check.

We will take a look at how the computational time and convergence rate are a�ected when
varying the error of accuracy of our solution. For this, we will take �ve networks of di�erent
sizes and refer to the LLT implementation.

In Figure 7.4, you can see how the solution accuracy a�ects the CPU time spent on the simula-
tion. Up until a level of ε = 10−6, we obtain the solution within 50ms, but after that point, we
really start to see that for large networks it becomes increasingly di�cult to converge.

We can see a similar result in Figure 7.5, when the number of iteration increases rapidly as
we require a better solution.

71

Figure 7.4: A comparison in terms of CPU time required for the hydraulic simulation between
di�erent networks of increasing size. Note that the computational time required increases rapidly
as we increase the tolerance level ε.

0.01 0.001 0.0001 1e−05 1e−06 1e−07 1e−08 1e−09
0

50

100

150

200

250

300

Epsilon

T
im

e
 (

m
s
)

Network 1

Network 2

Network 3

Network 4

7.3 Smooth Framework

We will now focus our attention on the evaluation of the new theoretical framework that we have
adopted in order to solve the hydraulic equations. Our main interest for this part is to assure
that this method is at least as fast as the normal one or comparable.

The reason why we are not looking necessarily at speeding up the solver signi�cantly is because
adopting the smoothing approach already gives us a big bene�t otherwise in that it provides a
rigorous mathematical framework, which can be safely used by an optimisation algorithm such
as Newton-Raphson. Moreover, it allows us to easily extend the model without having the fear
that it will produce faulty results. If we think back at what has been discussed in Chapter 4, we
�nd that the non-smooth version is not suitable to be used with Newton-Raphson as it does not
satisfy the algorithm's conditions.

Nonetheless, we will go over the same analysis as in the previous section. We note that the
values of µ used in our evaluation are chosen according to the results in Chapter 4, unless
otherwise stated. Thus, we have:

µ =
1√
β

(ε
2

) 1
2n+2

(7.1)

72

Figure 7.5: A comparison in terms of number of iterations required for the convergence of the
optimisation algorithm between di�erent networks of increasing size. Note that the number of
iterations required increases rapidly as we increase the tolerance level ε.

0.01 0.001 0.0001 1e−05 1e−06 1e−07 1e−08 1e−09
0

50

100

150

200

250

Epsilon

It
e
ra
ti
o
n
s

Network 1

Network 2

Network 3

Network 4

7.3.1 Computational Time

CPU time will be considered for the fastest solver we have, which is the direct LLT factorization
implementation. We will compare the results of this solver using the non-smooth function and
the smooth function approximated by the Huber function.

The tests are conducted for various networks and we look at the computational time averaged
over 1000 simulations that is required to solve all of the 96 optimisation problems for the 96
time intervals in a day. We simply choose all of the time intervals as it o�ers a more accurate
description of the results.

where the Huber function is as described by equation (4.8) and the LogSumExp approximation
function is:

fµ(x) = µ log

(
e
x
µ + e

−x
µ

2

)
(7.2)

and the Sqrt approximation is as:

fµ(x) =
√
x2 + µ2 − µ. (7.3)

Both of them are smooth approximations for the absolute value, however the Huber function
best approximates the absolute value and it is the reason why we use it the most since we also

73

Table 7.4: Non-smooth and Smooth implementations comparison in terms of computational
time required to solve the hydraulic equations. The tolerance level is ε = 10−6.

Solver Network 1 Network 2 Network 3
(Size) (91 x 113) (2303 x 2369) (4577 x 4648)

Non-smooth 24.43 9187 17198

Smooth (Huber) 22.59 8412 16550

Smooth (LogSumExp) 22.71 8452 16559

Smooth (Sqrt) 22.78 8455 16680

obtain the most accurate results.

As we can see in Table 7.4, the computational time does not change signi�cantly, although we
might see a slight improvement with our new method. Thus, for the three networks above, we
get the following improvement when comparing the Non-smooth implementation to the Smooth
(Huber) implementation:

22.59

24.43
× 100% ≈ 92.4%,

for Network 1. Next, for Network 2, we have:

8412

9187
× 100% ≈ 91.5%

and, lastly, for Network 3, we obtain:

16550

17198
× 100% ≈ 96.23%,

which is not a substantial improvement in terms of performance, but it is a very good result
for our purposes since not only can we safely use a mathematically rigorous framework and not
worry about the algorithm producing wrong results, but we can also bene�t from slightly better
computational performance.

Another important fact to mention is that the di�erence between the solutions obtained through
the two methods is marginal as it can be observed from Table 7.5. There you can see the optimal
solutions for H and Q for a small newtork. At the very worst, the di�erence appears in among
the last signi�cant digits (�fth or after) and we can assume that the quantity lost is negligible.

74

Table 7.5: Non-smooth and Smooth implementations comparison in terms of optimal solution.
Link/Node Non-smooth Smooth (Huber) Relative error (Smooth)

Q1 0.0116387 0.011639 2.5 ×10−5

Q2 0.0116387 0.011639 2.5 ×10−5

Q3 0.00513486 0.00513486 0

Q4 0.006 0.006 0

Q5 0.00350389 0.00350411 6.5 ×10−5

Q6 -0.00386514 -0.00386514 0

Q7 -0.00336125 -0.00336103 6.5 ×10−5

Q8 -0.00336125 -0.00336103 6.5 ×10−5

Q9 0.0116387 0.011639 2.5 ×10−5

H1 139.701 139.701 0

H2 101.266 101.266 0

H3 101.048 101.048 0

H4 96.4666 96.467 4.1 ×10−6

H5 86.738 86.7391 1.2 ×10−5

H6 99.8351 99.8351 0

H7 99.9782 99.9782 0

Table 7.6: Number of iterations comparison required for convergence for non-smooth and
smooth cases. The tolerance level is ε = 10−6.

Solver Network 1 Network 2 Network 3
(Size) (91 x 113) (2303 x 2369) (4577 x 4648)

Non-smooth 7 15 32

Smooth (Huber) 6 13 27

Smooth (LogSumExp) 6 13 28

Smooth (Sqrt) 6 13 29

7.3.2 Rate of Convergence

Much like in the case of computational time required, we see a slight decrease in the number
of iterations required for convergence. This comes as no surprise since in both cases we are
performing the same computations, but in the smooth case, the gradient is de�ned on the whole
domain. Thus, we are not risking to take a faulty step that may occur in the non-smooth case.

Table 7.6 prints some results observed on the number of iterations in the non-smooth case and
the smooth cases analysed.

A �nal important point in this case is that as we increase the value of µ, we obtain a bet-
ter rate of convergence at the expense of moving away from the original optimal solution. We
refer to Table 7.7 to validate this result.

75

Table 7.7: Number of iterations comparison required for convergence for non-smooth and smooth
cases. We observe that as we increase the value of µ, the number of iterations decreases. This
is because we achieve a more quadratic function which is better suited for the Newton-Raphson
algorithm.

Solver Network 1 Network 2 Network 3
(Size) (4577 x 4648) (2303 x 2369) (91 x 113)

Non-smooth 25 24 17

Smooth (optimal µ) 24 24 17

Smooth (µ = 0.01) 17 19 17

Smooth (µ = 0.1) 16 17 13

Smooth (µ = 1) 15 16 11

7.3.3 Optimal Solution Accuracy

This section gives rise to a more interesting analysis since depending on the value of µ which we
choose, we see a di�erence between the optimal solution of the non-smooth problem and the one
of the smooth problem.

The reason why this happens is because we are changing the problem to use a µ-smooth approx-
imation of the problem and so we are changing the objective function. Moreover, the more we
increase µ, the better chance we have at rapid convergence since the problem becomes smoother
and we can take larger steps towards the optimal solution. On the other hand, increasing µ
decreases the similarity factor between the smooth approximation and the non-smooth function,
resulting in us solving a more di�erent problem.

Figure 7.6 best illustrates how increasing the value of µ increases the di�erence between the
optimal solution of the non-smooth problem and the smooth problem. However, there is no
exact threshold for the value of µ and the error we obtain is network-dependent. Running the
same simulation on a di�erent network yielded the same results as we varied µ from 10−6 to 10.

7.4 Comparison with CWSNet and Epanet

CWSNet and Epanet represent the standard tools used in industry for tackling the hydraulic
simulation problem. Epanet was �rst to appear and is under development for more than two
decades and it is the most complete software in the �eld. CWSNet is more recent, but still ten
years old and it appeared as a motivation to improve performance of Epanet.

A large number of developers have contributed and still contribute to the Epanet project, while
CWSNet was build in a small academic team over the course of ten years.

However, CWSNet has a large number of Epanet dependecies, especially in the critical part
of the system. The linear solvers and internal data structures used for representing the hydraulic
network is entirely taken from Epanet. As a consequence, they o�er similar performance.

To conclude, despite having signi�cantly less resources than the other two projects (in terms

76

Figure 7.6: In this Figure, we can see how optimal solution is di�erent as we vary the value of µ.
We note that, the error becomes larger as we increase µ. Also, at optimality (µ as in equation
(7.1)), the solution coincides with the original one, since the value of µ is very small.

1 2 3 4 5 6 7
85

90

95

100

105

110

115

120

125

130

135

140

Junction

H
e
a
d

 (
H

)

Non−smooth

Smooth (optimal µ)

Smooth (µ = 0.01)

Smooth (µ = 10)

of number of developers, time allocated, initial knowledge and background), we have managed
to produce important results, which improve upon the computational performance of the solver.
Moreover, the accuracy of the solution is very high as it can be seen in Table 7.8.

77

Table 7.8: Our solver's solution compared to CWSNet's and Epanet's solutions. We are showing
the relative error for the Non-smooth and Smooth version, respectively. The tolerance level is
ε = 10−6.

Link/Node Relative Error (Non-smooth) Relative Error (Smooth) CWSNet Epanet

Q1 6.5 ×10−6 5.8 ×10−6 0.0117 0.0116

Q2 2.3 ×10−6 6.1 ×10−6 0.0117 0.0116

Q3 9.4 ×10−6 1.9 ×10−6 0.00515 0.00514

Q4 0 0 0.006 0.006

Q5 2.1 ×10−6 4.4 ×10−6 0.00358 0.00358

Q6 7.7 ×10−6 2.9 ×10−6 -0.00385 -0.00385

Q7 0 0 -0.00327 -0.00327

Q8 0 0 -0.00327 -0.00327

Q9 1.6 ×10−6 5 ×10−6 0.00117 0.00116

H1 0 0 139.7 139.7

H2 0 0 101.3 101.3

H3 8.3 ×10−7 6.2 ×10−7 101.09 101.07

H4 0 0 96.56 96.5

H5 9.2 ×10−7 8.1 ×10−7 86.98 86.88

H6 0 0 99.85 99.84

H7 0 0 99.98 99.97

78

8 | Conclusion

We have tackled the challenge of improving the standard solver for hydraulic simulations in two
rather di�erent perspectives. We have �rst performed a rigorous numerical analysis by looking at
various techniques and methods to increase computational speed of matrix operations and linear
solvers. On the other perspective, we have integrated and mathematically proved that a new
optimisation framework is well suited to solve the hydraulic equations whilst improving upon
the bound of complexity for the rate of convergence of the Newton-Raphson algorithm used.

8.1 Summary of Achievements

We have addressed, in turn, each of the objectives we have established at the beginning of the
project.

First of all, we have introduced a novel methodology to solve the nonlinear system of hydraulic
equations that o�ers many advantages over the original one, whilst maintaining the accuracy of
optimal solutions. The idea is that the new optimisation framework replaces the non-smooth
component by a µ-smooth approximation function and solves the smooth problem instead. We
will mention a the advantages of this approach:

• We have achieved a new lower bound on the rate of convergence of the algorithm improving
from the usual subgradient methods that perform in O(1/ε2) to O(log2(log2(1/ε))). This
result is proved in Chapter 4.

• We have placed the optimisation problem in a framework that is suited to be solved by stan-
dard �rst order and second order algorithms including Newton-Raphson algorithm. This
achievement is of paramount importance because until now, we were solving the problem
using Newton-Raphson, which assumes our objective function to be twice continuously
di�erentiable and our objective function was not since it contained the absolute value func-
tion, which is not di�erentiable in 0. Our method solves this problem by making use of a
smooth, di�erentiable approximation of the non-smooth objective function.

• Achieving this mathematical rigour, allows us to extend the model in multiple directions
without worrying that the optimal solutions we obtain are not correct, because we are
wrongly using an algorithm. For instance, we can impose constraints to our model which
describe better the physical nature of the problem such as making the pressure at each
node take a non-negative value H ≥ 0.

Moving on, we have studied the optimisation problem in detail and we have rigorously analysed
di�erent methods through which one can solve the hydraulic equations, keeping in mind perfor-

79

mance is a key aspect. Thus, we were able to exploit the nature of the problem and �nd a good
match in terms of linear solver and implementation, which proved to perform better than the
industry standard by improving on the overall computational time required. The idea is that we
exploited the sparse nature of the problem and used clever matrix storage schemes, which facil-
itate the fast execution of matrix multiplications and decompositions. Also, we ran simulations
on various di�erent linear solvers to determine the one that performs the best for our problem.
The details of the analysis are given in Chapter 3.

We provide a robust and reliable implementation of the hydraulic solver, which can be ap-
plied to any general purpose water distribution network. This already gives researchers a strong
framework where they can implement and validate any new theories and ideas they may have.

8.2 Future Work

As per the ideas outlined in Chapter 5, there are a few possible extensions and research work
that can be done in relation to our project. These vary from extending the theoretical work
that has been done, to improving the computational performance of the solver, or working on
the implementation to extend the model in order to capture all the elements that may be present.

We will now view some of the possible next steps:

• An interesting extension is to study the uncertainty in the parameters of the optimisation
model and in particular the customer demand q. The reason for this is because our model
makes certain assumptions regarding the customer demand, which, albeit valid, may not
always describe reality extremely accurately. It is for this reason that a robust formulation
of the optimisation problem will be helpful as we will be able to �nd an optimal solution
for the hydraulic equations subject to some ξ level of uncertainty in customer demand.

• Another interesting extension would be advancing the numerical analysis that was done
to provide further improvements on the time complexity of the hydraulic solver. This
can be done by implementing a concurrent linear solver that might achieve better speed
to reaching the optimal solution. However, the complexity we currently achieve without
carrying any parallel computations is of O(10ms) even for large size problems, a result that
is very good for practical applications.

• Complete the model we implemented by adding more elements and establishing their par-
ticularities. Elements in the water network tend to have the same behaviour and this
holds especially for valves, which only di�er slightly among them. This extension is purely
implementation-based and did not �t the aim of our project very well.

• Another implementation based extension is the modelling of a pressure-driven model as
opposed to the demand -driven one that we have implemented. For the same reasons as
above, this extension did not �t the aim of our project as there was little research work to
be done and more development work.

80

9 | Bibliography

[1] E. Todini and S. Pilati, A Gradient Algorithm for the Analysis of Pipe Networks, Computer
applications in water supply: vol 1 � systems analysis and simulation, 1988.

[2] Amir Beck and Marc Teboulle, Smoothing and First Order Methods: A Uni�ed Framework,

Society for Industrial and Applied Mathematics, Journal on Optimisation, 2012.

[3] Robert Wright, Ivan Stoianov, Panos Parpas, Kevin Henderson, John King, Adaptive Water

Distribution Networks with Dynamically Recon�gurable Topology, Journal of Hydroinformat-
ics, http://www.iwaponline.com/jh/up/jh2014086.htm, 2014.

[4] Aharon Ben-Tal and Arkadi Nemirovski, Robust solutions of Linear Programming problems

contaminated with uncertain data, Mathematical Programming, Volume 88, Issue 3, pp
411-424, 2000.

[5] Paul Grigoras, Gary Chow, Pavel Burovskiy, Wayne Luk, An E�cient Sparse Conjugate

Gradient Solver Using a Benes Permutation Network, to appear in Proc. FPL, 2014.

[6] Y. Nesterov, Universal gradient methods for convex optimisation problems, Centre for Op-
erations Research and Econometrics, 2013.

[7] Y. Nesterov, Smooth minimization of non-smooth functions, Mathematical Programming,
Volume 103, pp. 273-299, 2005.

[8] Bradley J. Eck, M. ASCE and Martin Mevissen, Fast non-linear optimisation for design

problems on water networks,World Environmental and Water Resources Congress 2013: pp.
696-705.

[9] Keshaw D. The incomplete Choleski-Conjugate gradient method for the iterative solution of

systems of linear equations, Journal of Computational Physics, 26, pp. 43-65, 1978.

[10] Ayres F. Theory and problems of matrixes, Mc. Graw-Hill Co., New York, 1962.

[11] Ezio Todini and Lewis A. Rossman, M. ASCE, Uni�ed Framework for Deriving Simultane-

ous Equation Algorithms for Water Distribution Networks, Journal of Hydraulic Engineer-
ing, 139(5), 511�526, 2013.

[12] Peter N. Brown and Youcef Saad, Convergence Theory of Nonlinear Newton-Krylov Algo-

rithms, Society for Industrial and Applied Mathematics, Journal on Optimisation, 1994.

[13] Noreen Jamil, A comparison of Direct and Indirect Solvers for Linear Systems of Equations,

Available online at http://www.ijes.info/2/2/42542211.pdf, 2012.

[14] Ajiz M, and Jennings A., A robust incomplete Choleski conjugate gradient algorithm, In-
ternational Journal for numerical methods in engineering, Vol. 20, pp. 949-966, 1984.

81

[15] L. Vandenberghe (UCLA), Smoothing EE236C, Available online at http://www.seas.

ucla.edu/~vandenbe/236C/lectures/smoothing.pdf, 2013-2014.

[16] David G. Luenberger (Stanford University) and Yinyu Ye (Stanford University), Linear

and Nonlinear Programming Third Edition, International Series in Operations Research &
Management Science, Vol 116, 2008.

[17] Stephen Boyd (Stanford University) and Lieven Vandenberghe (UCLA), Convex Optimi-

sation, Cambridge University Press, 2009.

[18] R. T. Rockafellar, Convex Analysis, Princeton University Press, Vol. 28, 2009.

[19] Gilbert Strang, Linear Algebra and its Applications, Thomson Brooks/Cole, Available online
at http://www.hua.edu.vn/khoa/fita/wp-content/uploads/2013/10/Linear_algebra_
and_its_applications_Fourth_Edition.pdf, 2013.

[20] Kenneth Kutler, Linear Algebra, Theory and Applications, Available online at http://

textbookequity.org/linear-algebra-theory-and-applications, 2013.

[21] Panos Parpas, Computing For Optimal Decisions Course and Course Material, Imperial
College London, 2013.

[22] Abbas Edalat and Peter G. Harrison, Computational Techniques Course and Course Ma-

terial, Imperial College London, 2013.

[23] Daniel Kuhn, Operations Research Course and Course Material, Imperial College London,
2012.

[24] Epanet, http://www.epa.gov/

[25] i2O, http://www.i2owater.com/home/

[26] CWSNet, http://emps.exeter.ac.uk/engineering/research/cws/resources/cwsnet/

[27] LAPACKPP, http://lapackpp.sourceforge.net/, http://www.netlib.org/lapack/

[28] Eigen, http://eigen.tuxfamily.org/index.php?title=Main_Page

[29] SuiteSparse, http://www.cise.ufl.edu/research/sparse/SuiteSparse/

[30] Books LLC, Fluid Dynamics: Rheology, Mach Number, Bernoulli's Principle, Cavitation,

Pump, Super�uid, Acoustic Theory, Grashof Number, Lift, 2010.

[31] Paul Grigoras, Corina Ciobanu, Karol Pysniak, Radu Baltean-Lugojan, Prize Winning

and Distinguished Reports, , Available online at http://www3.imperial.ac.uk/computing/
teaching/ug/ug-distinguished-projects, 2013.

82

10 | Appendix

10.1 Proof of Theorem 1

Let µ > 0 and denote F = f + gµ. By De�nition 1, one has LF = Lf + K + α
µ . Therefore, the

sequence generated by the methodM when applied to (2.20) satis�es for all k ≥ 1:

Hµ(xk)−H∗µ ≤
(
Lf +K +

α

µ

)
Λ

k2
(10.1)

Since gµ is a µ-smooth approximation of g with parameters (α, β,K), by De�nition 1, there
exists β1, β2 satisfying β1 + β2 = β > 0 for which:

H(x)− β1µ ≤ Hµ(x) ≤ H(x) + β2µ (10.2)

Thus, in particular, the following inequalities hold:

H∗ ≥ H∗µ − β2µ (10.3)

H(xk) ≤ Hµ(xk) + β1µ (10.4)

and hence, using (9.1), we obtain:

H(xk)−H∗ ≤ Hµ(xk)−H∗µ + (β1 + β2)µ ≤ (Lf +K)
Λ

k2
+
αΛ

k2
1

µ
+ βµ (10.5)

Minimizing the right-hand side of (9.5) with respect to µ > 0 we obtain:

µ =

√
αΛ

β

1

k
(10.6)

Plugging the above expression for µ in (9.5) we obtain:

H(xk)−H∗ ≤ (Lf +K)
Λ

k2
+ 2
√
αβΛ

1

k
(10.7)

Thus, given ε > 0, to obtain an ε-optimal solution satisfying H(xk)−H∗ ≤ ε, it remains to �nd
values k for which:

(Lf +K)Λ
1

k2
+ 2
√
αβΛ

1

k
≤ ε (10.8)

83

Denoting t =
√

Λ 1
k , (9.8) translates to:

(Lf +K)t2 + 2
√
αβt− ε ≤ 0 (10.9)

which is equivalent to:

√
Λ

1

k
= t ≤

−
√
αβ +

√
αβ + (Lf +K)ε

Lf +K
=

ε
√
αβ +

√
αβ + (Lf +K)ε

Using the value of the upper bound just established for Λ 1
k in (9.6), we obtain the desired

expression for µ stated in equation (2.1). We have thus shown that by choosing µ as in equation
(2.1) and k satisfying:

k ≥
√
αβΛ +

√
αβΛ + (Lf +K)εΛ

ε
(10.10)

we have H(xk)−H∗ ≤ ε.

To complete the proof and obtain the desired lower bound for k as given in equation (2.2),
note that for any A, B ≥ 0, the following inequality holds:

√
A+
√
A+B ≤ 2

√
A+
√
B (10.11)

By invoking (9.11) with

A =
αβΛ

ε2

B =
(Lf +K)Λ

ε
together with (9.10), the desired result in equation (2.2) follows.

10.2 Validating Lg

Suppose now that x > µ. We obtain:

c2n

∣∣∣∣(x− µ

2

)n−1
−
(
y − µ

2

)n−1∣∣∣∣ ≤ Lg|x− y| (10.12)

Let x̃ = x− µ
2 and ỹ = y − µ

2 . Using the fact that x̃− ỹ = x− y, we obtain:

c2n|x̃n − ỹn| ≤ Lg|x− y| (10.13)

and now we can use equation (4.54) to obtain:

c2n

nΨn−1 ≤ Lg (10.14)

and since
c2

Ψn−1 ≤
c2
µn+1

(10.15)

we have validated the Lipschitz constant found.

The last case is similar to the above. Just let x̃ = −x − µ
2 and ỹ = −y − µ

2 . We will ob-
tain all the results including (10.15), which will help us establish the Lipschitz constant as:

Lg =
c2
µn+1

(10.16)

84

