
Imperial College London

Department of Computing

Individual Project: Final Report

Java Algorithms for
Computer Performance Analysis

Student:
Benjamin Homer
(bmh10@ic.ac.uk)

Supervisor:
Giuliano Casale
Second Marker:

Peter Harrison

June 16, 2014

Abstract

Performance analysis techniques which are capable of accurately modelling and predicting sys-
tem performance measures are widely used for capacity planning, system tuning and workload
analysis. For this purpose, networks are typically modelled mathematically as closed queueing
networks from which metrics such as throughput, resource utilisation and response time can
be derived. As computer systems continue to increase in both scale and complexity, the ap-
plication of well-established performance analysis methods which provide exact results, such as
Convolution and Mean Value Analysis (MVA), become inefficient and, in many cases, infeasible.

In the past, non-iterative bounding techniques such as Asymptotic Bounds (ABs) and Bal-
anced Job Bound (BJBs) were established as an efficient, approximate alternative; capable of
finding upper and lower limits on performance measures at a fraction of the computational cost.
More recently, Geometric Bounds (GBs) were put forward as an new technique capable of ob-
taining much tighter bounds. In the first part of this report we document the development and
integration of all three of these bounding techniques within JMVA, an open-source queueing
network analysis tool. We then evaluate their performance by comparing the speed and accu-
racy of these methods over several network models. The results show that GBs significantly
reduce the maximum bounding error in comparison with the other methods.

An alternative approach is to try and optimise the exact methods themselves. With this in
mind, Tree Convolution (TC) and Tree MVA (TMVA) were suggested as practical extensions
of their sequential counterparts. These algorithms are theoretically much more efficient when
analysing sparse networks, which are common in commercial computer systems. Significant
space and time savings are possible by arranging queueing networks as tree data structures in a
way which allows the exploitation of network routing information. These algorithms also lend
themselves to a parallel implementation, further increasing their potential for fast and accurate
analysis. The main part of this report presents the development of a library implementing these
techniques, and their subsequent integration into JMVA. We then evaluate the effectiveness
of these algorithms by running several experiments and discuss their applicability for practi-
cal analysis purposes. For sparse networks, our evaluation shows that both tree algorithms
significantly outperform existing sequential techniques, both in terms of runtime and memory
usage.

Acknowledgements

I would like to thank my supervisor Giuliano Casale for his support, encouragement and tech-
nical guidance throughout the year. In addition, I would like to thank my friends and family
for their inspiration and understanding.

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Contributions . 6

2 Background 7
2.1 General Performance Analysis Techniques . 7
2.2 Queueing Network Models . 8

2.2.1 Model Description . 8
2.2.1.1 Customer Description . 9
2.2.1.2 Station Description . 10
2.2.1.3 Service Demands . 11

2.2.2 Fundamental Laws . 11
2.2.2.1 Common Measures . 11
2.2.2.2 Little’s Law . 12
2.2.2.3 Forced Flow Law . 12
2.2.2.4 Flow Balance Assumption . 12

2.2.3 Model Outputs . 13
2.2.3.1 Throughput . 13
2.2.3.2 Utilisation . 13
2.2.3.3 Residence and Response Time 13
2.2.3.4 Queue Length . 13

2.2.4 Limitations of Queueing Models . 14
2.3 Introduction to JMT . 15
2.4 Introduction to JCoMoM package . 16

3 Queueing Network Analysis Techniques 18
3.1 Performance Bounding Techniques . 18

3.1.1 Asymptotic Bounds . 19
3.1.2 Balanced Job Bounds . 21
3.1.3 Geometric Bounds . 22

3.2 Iterative Solution Techniques . 24
3.2.1 Solution of Open Models . 24
3.2.2 Solution of Closed Models . 25
3.2.3 Convolution . 26
3.2.4 Multi-class sequential Convolution . 27
3.2.5 Mean Value Analysis (MVA) . 29
3.2.6 Approximate MVA (AMVA) . 33
3.2.7 Related Work . 34

2

4 Tree Algorithms for Sparse Networks 35
4.1 Tree Convolution (TC) . 35

4.1.1 Theoretical Concepts and Notation . 35
4.1.2 Algorithm Overview . 36
4.1.3 Normalization Constant Calculation . 37
4.1.4 Feedback Filtering . 38
4.1.5 Performance Measure Computation . 39

4.1.5.1 Throughputs . 39
4.1.5.2 Mean Queue Lengths . 39

4.1.6 Space-Time Trade-offs . 41
4.1.7 Complexity Analysis . 41
4.1.8 Algorithm Pseudocode . 41

4.2 Tree MVA (TMVA) . 42
4.2.1 Algorithm Overview . 42
4.2.2 Potential Optimisations . 44
4.2.3 Complexity Analysis . 45
4.2.4 Algorithm Pseudocode . 45

4.3 Tree Planting . 46

5 Design & Implementation 48
5.1 Existing JMT Architecture . 48
5.2 Bounding Solvers Implementation . 50

5.2.1 Single-class Bounding Solvers Architecture 50
5.2.2 AB Solver . 51
5.2.3 BJB Solver . 51
5.2.4 GB Solver . 52
5.2.5 Multi-class Bounding Solvers Architecture 53
5.2.6 Integration with JMVA . 53
5.2.7 Testing and Validation . 55

5.3 Tree Algorithms Implementation . 56
5.3.1 Solution Architecture . 56

5.3.1.1 Existing JCoMoM Architecture 56
5.3.1.2 Overview of new TreeAlgorithms package 56

5.3.2 Algorithm Configuration . 58
5.3.3 Preprocessor Stage . 58

5.3.3.1 TreePlanter . 58
5.3.3.2 ComplexityEvaluator . 60

5.3.4 Tree Traversal . 60
5.3.4.1 Single-threaded Traversal . 60
5.3.4.2 Multi-threaded Traversal . 61

5.3.5 Tree Convolution Implementation . 61
5.3.5.1 ConvolutionLayer . 62
5.3.5.2 ConvolutionCore . 62
5.3.5.3 Memory Management . 63
5.3.5.4 Optimisation Log . 63

5.3.6 Tree MVA Implementation . 64
5.3.6.1 TMVACore . 64
5.3.6.2 Ported sequential MVA solver 67
5.3.6.3 Optimisation Log . 67

5.3.7 Integration with JMVA . 67

3

5.3.8 Measuring Sparsity . 69
5.3.9 Generating Random Networks . 69
5.3.10 Commandline Tool . 70
5.3.11 Testing and Validation . 70

6 Evaluation 71
6.1 Geometric Bounds Evaluation . 71
6.2 Tree Algorithms Evaluation . 74

6.2.1 Runtime comparison . 74
6.2.2 Memory usage comparison . 75
6.2.3 Stress Testing . 75
6.2.4 Non-sparse networks . 77
6.2.5 Single vs multi threading . 78
6.2.6 Tree Convolution Breakdown . 79
6.2.7 Key Observations . 79
6.2.8 Real World Example . 80
6.2.9 Comparison with MoM, CoMoM and RECAL 81

6.3 Qualitative Aspects . 81
6.4 Strengths and Weaknesses . 82

7 Conclusion 83
7.1 Future Work . 84

A Real-world Example Service Demands 88

4

Chapter 1

Introduction

1.1 Motivation

In the current era of computing, distributed systems have continued to become more preva-
lent and complex, with many companies now choosing to run their applications across globally
dispersed data centres. As the software world continues to adapt to these new scales of op-
eration there has become an increased focus on analysing these systems in order to optimise
performance. Often techniques such as benchmarking, profiling and metrics collection can be
employed to get an overall idea of how a system is performing over a period of time. Of course
the downside to these approaches is that the system has to be built first. In order to circum-
vent this need, queueing network models can be used, allowing engineers to analyse a system’s
expected performance during the design phase.

Queueing network models are a widely researched performance analysis tool which can be
used to describe a variety of networks. Each model describes a system as a network of stations
(also known as queues), with each station representing a system resource. Various classes
of customers, representing jobs in the system, travel around this network being serviced by
stations. This kind of model is useful for analysing expected system performance over varying
workloads, assessing how system architecture changes will affect performance, and identifying
network bottlenecks [23].

In this project we focus on a particular subset of queueing networks called closed product-
form queueing networks [1] since they are amenable to a variety of solution techniques [2]. There
are several techniques which can be used to evaluate these models in order to obtain various
per server and whole system performance measures, such as mean throughput, utilisation and
response time. Two of the most well-known algorithms for this purpose are Mean Value Analysis
(MVA) [28] and Convolution [27]. The problem with these algorithms is that, while they provide
exact solutions, they quickly become computationally infeasible as the system scales to larger
numbers of customer classes or service stations, thus making the evaluation of complex modern
systems impossible.

This problem led to the development of several approximate MVA algorithms which were
the focus of an earlier project [13]. These methods make various assumptions in order to dra-
matically reduce the cost of computation and hence allow fairly accurate solutions to be found
for large models. In this project we begin by investigating another type of approximate anal-
ysis which focusses on obtaining upper and lower bounds on performance. These methods are
typically of a non-iterative nature, making them extremely fast and useful during the initial
stages of analysis [23]. Some modern applications such as self-optimising systems require that
thousands of possible configurations be evaluated in real-time, meaning that the underlying
evaluation mechanism must be extremely efficient and accurate [6]. For such systems, iterative
techniques are too expensive and so accurate bounding methods are preferred. In particular

6

we focus on the implementation of Geometric Bounds (GBs) [6], a recently established tech-
nique, since GBs are more accurate than other methods such as Asymptotic Bounds (ABs)
[24], Balanced Job Bounds (BJBs) [20, 37] and Proportional Bounds (PBs) [22] and require a
similar computational cost. In order to justify this claim ABs and BJBs are also implemented
for comparison.

After experimenting with bounding techniques, we then move onto the main part of this
project where we develop more advanced versions of both the MVA and Convolution algorithms
which make use of a tree structure in order to reduce the cost of computation. The Tree
Convolution [21] and Tree MVA [34, 17] algorithms exploit network routing information and
make use of tree traversal techniques in order to significantly reduce the computational cost of
computing an exact solution. This allows models with large numbers of stations and customer
classes to be evaluated in a reasonable amount of time, provided that each customer class
only visits a small fraction of the stations in the network. This condition, referred to as the
sparseness property, is exhibited in many commercial computer systems. Both of these tree
algorithms provide exact, rather than approximate, solutions.

There are various software packages that use queueing network models to evaluate systems,
however the software we will be working with closely is Java Modelling Tools (JMT) [18]. JMT
is a suite of several tools for system performance analysis and planning which receives thousands
of downloads every year. In this project we are interested specifically in a tool called JMVA
which can currently be used to analyse product-form queueing models using various exact and
approximate algorithms. We will be attempting to extend this software by implementing the
aforementioned techniques in order to increase the range of networks the tool is able to solve.

1.2 Contributions

Below are listed the main contributions which this project makes, along with the references to
the related sections in this report:

• A Java implementation of Asymptotic Bounds, Balanced Job Bounds and Geometric
Bounds (as proposed in [6]), providing bounds on throughput, mean queue length, resi-
dence times, utilisation and system power (section 5.2).

• An efficient implementation of the Tree Convolution algorithm as proposed in [21] and
the Tree MVA algorithm as proposed in [34, 17] (section 5.3).

• Extension of the tree algorithms to a multi-core approach in which subnetworks within
the tree can be evaluated in parallel (section 5.3.4.2).

• Implementation of tree planting and complexity evaluation methods, allowing the tree
planting algorithms to run efficiently (sections 5.3.3.1 and 5.3.3.2). These implementa-
tions include new methods which were introduced to determine whether a given queueing
network is suitable for solution by one of the tree algorithms (section 5.3.8).

• Integration of the above algorithms into JMVA, allowing them to be used intuitively
alongside the existing algorithms. This required an extension of the JMVA user interface,
including graphical visualization of the results for each algorithm and a new configuration
options menu for the tree algorithms (sections 5.2.6 and 5.3.7).

• Evaluation and analysis of each implemented technique and comparison of the results with
the claims made in relevant papers (chapter 6). In particular, for the tree algorithms there
was a focus on experimenting with different implementations and tree planting procedures
in order to draw some conclusions about how best to optimise the algorithms for practical
network evaluation.

7

Chapter 2

Background

2.1 General Performance Analysis Techniques

The performance of any system can be defined empirically by looking at the amount of useful
work done in proportion to the time taken and the resources used to complete the work. Per-
formance analysis is a discipline which uses such measurements in an attempt to evaluate why
systems perform in a certain manner and, often more importantly, provide insights into how a
system’s performance can be improved. While this project focuses mainly on the performance
analysis of computer systems, a lot of the ideas discussed, particularly in relation to queueing
networks, can be extrapolated to the analysis of more general systems, such as in the spheres
of business or manufacturing.

Of course in the modern landscape of software engineering, performance analysis is often a
necessity, allowing software and hardware configurations to be optimised for the specific goals
of a company. This is sometimes referred to as performance tuning [32]. Performance analysis
techniques can also be used for estimating the impact of modification to a system, and are
particularly useful for studying system bottlenecks. The results allow systems to be compared
against each other successfully and to be described in absolute terms, which is often necessary
in order to prove that Service Level Agreements and quality-of-service targets are being met.

One method of approaching analysis is by focusing on the collection of quantifiable metrics.
For example, robust computer system performance may be characterised by attributes such as
high throughput, high availability of resources, high bandwidth, low response time, low resource
utilisation and low packet drop rate. The metrics used in practice will be highly dependent on
the specific circumstances under which the system is running and what the purpose of the
analysis is.

Another common way of analysing performance is through the use of benchmarks [25]. The
purpose of benchmarking is to assess relative performance of hardware or software by running
a number of trials. As with metrics collection, the type of benchmark employed is likely to
be highly application specific. Notable industry standard benchmarks include SPECint and
SPECfp, though there are also many open-source benchmarking tools available. Problems with
this approach include its complexity (often the tests must be run multiple times to gain useful
conclusions) and the notoriously difficult task of interpreting the results (which marketers often
abuse to sell their products). The design of benchmarking suites is also hard to get right, for
example many benchmarks focus purely on computational performance whilst neglecting other
important aspects such as scalability, reliability and security.

In terms of software, profiling is another technique which can be employed to perform
dynamic program analysis, typically with the goal of optimisation. Profiling tools usually
measure features such as space and time complexity of a program, and metrics related to
instruction use or function calls. This is achieved by instrumenting the binary executable or

8

source code using a profiler tool.
Over recent years, performance analysis has also played a part in the introduction of systems

which are capable of self-optimising [36]. The systems which make use of such technologies are
typically highly complex, with multi-layered architectures and unpredictable traffic flow [6].
Such systems can adapt to changes in real-time in order to meet requirements. This can be
achieved by the evaluation of all possible configurations using nonlinear programming techniques
[15]. In situations like this, where thousands of configurations may need to be searched, efficient
and accurate analysis techniques are mandatory. We discuss and develop such techniques as
part of this project.

Although all of the techniques outlined above are valid ways of approaching performance
analysis, we will be focussing our attention on the use of queueing network models which we
now discuss in more detail.

2.2 Queueing Network Models

Before we can begin to carry out performance analysis on a system we must first understand
how the system can be represented effectively as a model and what the fundamental laws of
this model are. In particular we focus on a subset of queueing network models known as
product-form (or separable) queueing networks [1] which allow a balance to be struck between
accuracy of representation and computational efficiency. Product-form queueing networks are
stochastic models which have been widely studied in the arena of performance analysis due to
the existence of several simple and relatively efficient solution techniques [2], for example the
Convolution algorithm [27] and the Mean Value Analysis (MVA) algorithm [28]. Conveniently
the parameters which describe product-form models have a direct correspondence with high-
level descriptions of computer systems [23]. In addition they have the useful property that each
resource within the model can be evaluated in isolation, with the solution for the whole system
being a combination of the individual resource solutions. This is in fact why they are sometimes
referred to as separable queueing networks [23]. Other types of model are possible, however a
lack of exact solution methods makes these representations less desirable in practice. In the
following subsections we define the components of product-form queueing models and discuss
some of the underlying laws.

2.2.1 Model Description

Queueing network models consist of stations, which represent system resources, and customers,
which represent users or jobs in the system. These models can be defined as single-class, in
which there is only one type of customer, or multi-class, in which their are several types of
customer. While single-class models are sufficient in some circumstances, multi-class models
allow the representation of different types of customer or request in a system and so can offer
a more fine-grained description of a real-world system. However, there are also some downsides
to multi-class models. From a user’s perspective, the use of multi-class models means that
there are more input parameters to fill in before the model can be evaluated. Additionally,
the outputs from multi-class models are often less accurate than single-class models, due to the
currently available measurement tools. There is also the concern of evaluation complexity, as
the techniques available for the solution of multi-class models are significantly more involved
than the methods used to solve single-class models and hence tend to use more system resources.
[13]

As a concrete example of the kind of system we wish to model, consider a typical bank in
which customers must queue in order to interact with a bank teller. The bank tellers represent
stations in the system as they ‘process’ customers from the queue, while the customers are

9

essentially jobs in the system which must be processed. If the customers were to be classified
by their intentions, for example ‘bill-paying customers’, ‘cash withdrawal customers’ etc., then
the system would be multi-class. When considering this model it is clear that there are certain
characteristics of the system which will impact how it changes over time, for example whether
queue length is constant or there is a fixed arrival rate of new customers into the queue. Multi-
class systems are inherently more complex to analyse as each type of customer may require a
different amount of time to be serviced by the bank tellers. In addition, the tellers themselves
may be more adept at handling a certain class of customer and hence the differences between
the tellers must also be incorporated into the model. Careful analysis of such a system would
enable it to be optimised to meet desired criteria, for example maximized throughput. We now
consider each of the system components in turn.

2.2.1.1 Customer Description

There are three different ways the workload intensity for a specific type of customer can be
described. These different descriptions, outlined below, allow various types of system workloads
to be successfully modelled: [23]

• Transaction workloads describe the workload intensity by specifying an arrival rate λ at
which customers arrive into the system. As a result of this the number of customers in the
system varies over time. Once customers have been serviced they leave the model. Note
that if the arrival rate is high and the throughput of the system is relatively low there
will be a threshold at which point the number of customers in the system will continue to
increase infinitely. This phenomenon is known as system saturation.

• Batch workloads describe the workload intensity by specifying the average number of
active customers in the system, N. Since N is constant the average number of customers
in the system is also constant. Customers that have been serviced leave the model and
are instantly replaced from a backlog of waiting customers.

• Terminal workloads describe the workload intensity by specifying N, the number of active
customers, and Z, the think time describing the average length of time between a customer
finishing an interaction with a station and starting a new interaction. If Z is set to zero
then this is the same as a batch workload.

Models consisting of only batch and terminal workloads are often described as closed models
since the customers within these systems recirculate and there is no influx of new customers into
the system. On the other hand, models containing only transaction workloads are referred to a
open models since there is an infinite stream of customers both entering and exiting the system.
With multi-class models there is also the possibility there may be a mixture of batch, terminal
and transaction workloads, in which case the model is described as mixed. The techniques that
can be employed to evaluate a model vary depending on the categorisation of the model as
open, closed or mixed. [23]

It should be noted that in multi-class models the workload intensity is defined on a per class
basis which can be represented in a vector. So, for example, in an open model we represent the
workload intensity as λ = (λ1, . . . , λc) where λi is the arrival rate for customer class i and c
is the total number of customer classes. Similarly for a closed model the workload intensity is
represented by N = (N1, . . . , Nc) where Ni is the average number of active customers of class i
(a Zc parameter must be added for terminal classes). Finally a mixed workload is represented
as I = (N1orλ1, . . . , Ncorλc). [23]

10

Figure 2.1: An closed model example.

Figure 2.2: An open model example.

2.2.1.2 Station Description

Stations, also referred to as service centres or queues, represent system resources such as CPUs,
I/O devices or types of server, which can process customers/jobs. Stations can be categorised
as either queueing or delay stations. A queueing station comprises of a processing component,
for example a CPU, and a queue of waiting customers. As such, these queueing stations can be
used to represent resources for which users must compete. The total time spent by a customer
at a queueing station is therefore the sum of the queue waiting time and the time spent receiving
service. It is assumed that one customer is in service whenever there are customers at a station.
In single-class models there is no need to specify a scheduling plan seen as all the customers
at any given station will be identical. In multi-class models the assumption is made that the
scheduling plan is class independent. Coupled with the earlier assumption this means that the
performance measures obtained will not be dependent on the scheduling plan used and hence
we do not need to specify a scheduling plan for multi-class models either. Queueing stations
can further be categorized as load dependent or load independent. If a queueing station is load
dependent then the service time at the station depends on the number of customers in the
station’s queue. [23]

11

Delay stations can be used to model resources for which there is no competition, as each
customer at a delay station is logically allocated their own server. Since there is no queueing
involved, the residence time of a customer at a delay centre is equal to the customer’s service
demand there. Delay stations are useful for modelling thinking times or delays which occur in
a system, for example the average time it takes a user to interact with a system or the time
taken for some data to be transferred over a network. [23]

Figure 2.3: Station types.

2.2.1.3 Service Demands

Once the customers and stations have been defined, the final required inputs for the model are
the service demands, denoted Dk for the service demand at station k in a single-class model.
Intuitively Dk is the total amount of time a customer requires to be serviced by a station which
can be calculated as Bk/C, where Bk is the busy time of station k and C is the number of
system completions, or equivalently by UkT/C, where Uk is the utilisation of resource k and T
is the observation time. Alternatively the service demand Dk can be characterised as Vk × Sk,
where Vk is the number of customer visits to station k and Sk is the service time required per
visit. So a model can be defined either by specifying Dk directly or by specifying Vk and Sk
for each station k, although the solution depends only on Dk. This if fortunate seen as Dk is
much more easily obtained from measurements than Vk or Sk. The total service demand of a
customer is defined as D =

∑K
k=1Dk. [23]

For multi-class models the service demands must be defined on a per class basis and are
denoted Dc,k, which represents the service demand of a customer in class c at station k. The

total service demand of a customer of class c can then be defined, Dc =
∑k

k=1Dc,k. [23]

2.2.2 Fundamental Laws

We now take a look at some of common measures used to determine system performance and
discuss the fundamental laws of product-form queueing systems which link these measures
together.

2.2.2.1 Common Measures

Considering an abstract system where T is the length of time we observe the system, A is the
number of arrivals into the system, and C is the number of completions (customers leaving the
system) we can define the commonly used measures: [23]

• Arrival rate, λ = A/T

• Throughput, X = C/T (simply the rate of request completions)

In a system with a single resource we can measure B, the time the resource was observed to
be busy. We can then define two additional measures: [23]

12

• Utilisation, U = B/T (this is normally given as a percentage, e.g. 30% server utilisation)

• Service requirement per request, S = B/C

From these measures we can derive the Utilisation Law as U = XS [23].

2.2.2.2 Little’s Law

One of the most useful fundamental laws is Little’s Law which states that N, the average number
of customers in a system, is equal to the product of X, the throughput of the system, and R,
the average time a customer stays in the system. Formally this gives: [23]

N = XR (1)

Although this may appear obvious it is actually quite an exceptional result seen as the rela-
tionship between the quantities is “not influenced by the arrival process distribution, the service
distribution, the service order, or practically anything else” [33]. Little’s Law is important be-
cause it can be applied in many scenarios. In particular it is common to face situations in which
two of the three quantities which the law relates are known and we wish to calculate the third.
Little’s Law can also be applied to any subsystem within a model, from a single resource up
to the whole system, as long as the law is used consistently. Note that the previously defined
Utilisation Law is a special case of Little’s Law. [23]

For terminal workloads in which a think time Z is used, the law can be rewritten as N =
X(R + Z). The application of this formula is so pervasive that is is often referred to as the
Response Time Law when rearranged so that R is expressed in terms of the other quantities:
[23]

R = N/X − Z (2)

2.2.2.3 Forced Flow Law

Another fundamental law of queueing systems is the Forced Flow Law which, informally, states
that the throughputs in all parts of the system must be proportional to one another. Formally
the Forced Flow Law is given by: [23]

Xk = VkX (3)

where Xk is the throughput at station k, Vk is the visit count of resource k defined by
Vk = Ck/C (where Ck is the number of completions at station k and C is the total number of
system completions), and X is the throughput of the whole system.

Combining both Little’s Law and the Forced Flow Law allows for a wide range of scenarios
to be analysed and solved for a particular desired quantity.

2.2.2.4 Flow Balance Assumption

Often it is convenient to assume that a model satisfies the flow balance property which states
that the number of customers arriving into a system is equal to the number of customers leaving
the system over a period of time. Formally this can be stated as A = C which also means that
λ = X i.e. the arrival rate is equal to the throughput of the system. If we assume the flow
balance property holds and make use of Little’s Law and the Forced Flow Law then we can
calculate per station device utilisation for all transaction workloads. All product-form queueing
network models follow the flow balance assumption. [23]

13

2.2.3 Model Outputs

Having looked at how queueing models are described and also some of the fundamental laws
which govern the characteristics of these models, we now discuss the outputs which we wish to
obtain in order for useful performance analysis to be performed. The output values depend on
all of the model input values and as such represent averages over the system. Sometimes we
will specify that an output value corresponds to a specific workload intensity, for example X(λ)
is the throughput for a transaction workload with arrival rate λ. [23]

For each performance measure we first give its definition in a single-class model and then
extend the definition to multi-class models. For the latter, performance measures can be ob-
tained either on a per-class basis or on an aggregate basis [23]. Note that additional outputs can
be calculated however they will usually incur some extra computational cost over the measures
presented below.

2.2.3.1 Throughput

As already mentioned the throughput is the rate of request completions. If the model is pa-
rameterised in terms of service demands, Dk, then we can calculate the system throughput, X.
However, in order to calculate individual station throughputs the model must instead be pa-
rameterised in terms of Vk and Sk, since then the Forced Flow Law can be applied to calculate
Xk = VkX. [23]

For multi-class models the throughput at a station k is given by the sum of the per-class
throughputs as k, Xk =

∑C
c=1Xc,k. The throughput of the whole system could then be calcu-

lated by rearranging the Forced Flow Law as X = Xk/Vk and calculating for some station k.
Note that Xk and Xc,k are only meaningful if the model is defined in terms of Vk and Sk, since
the Forced Flow Law must be used to derive further information. [23]

2.2.3.2 Utilisation

Utilisation, denoted Uk, can be defined as the percentage of time station k is busy. Or for
delay stations, the average number of customers being serviced there. The previously defined
Utilisation Law, given by Uk = XkSk, can be used to calculate the utilisation. Note that this
output is only defined on a per station basis. For multi-class models the per class measure Uc,k
can be obtained and the aggregate measure Uk is given by the sum of the per-class utilisations,
Uk =

∑C
c=1 Uc,k. [23]

2.2.3.3 Residence and Response Time

The residence time at a station k, denoted Rk, is the total time a customer spends at station k,
including both queue waiting and servicing time. If the model is defined in terms of Vk and Sk
then we can say that Sk, the time a customer spends at station k in a single visit, is equal to
Rk/Vk (i.e. the total time spent at station k divided by the total number of visits to station k).
The average response time of a system, i.e. the average time between the arrival and departure of
a customer, is equal to the sum of the residence times at each station, R =

∑K
k=1Rk. For multi-

class models the average residence time at station k can be computed by Rk = (
∑C

c=1Rc,kXc)/X

and the average response time can be calculated as R = (
∑C

c=1RcXc)/X. Note that the per-
class measures have been normalised by the relative throughput. [23]

2.2.3.4 Queue Length

The average queue length at a station k, denoted Qk, includes all customers either waiting
for or receiving service from the station. The number of waiting customers can be calculated

14

by Qk − Uk, as Uk essentially represents the average number of customers receiving service at
station k. The average number of customers in a system, Q, can be calculated depending on
the workload type: [23]

• Batch workload: Q = N

• Transaction workload: Q = XR (via Little’s Law)

• Terminal workload: Q = N −XZ (via Little’s Law and Response Time Law)

The average number of customers in any subsystem can be calculated as the product of
the throughput and residence time of the subsystem, or alternatively by summing the queue
lengths at the stations within the subsystem. For multi-class models, Qk can be calculated as
the sum of the per-class queue lengths, Qk =

∑C
c=1Qc,k. A system-wide value for Q can then

be calculated as Q =
∑K

k=1Qk. [23]

2.2.4 Limitations of Queueing Models

As with most attempts to model real-world systems, there are complexities and special circum-
stances inherent in computer systems which cannot be captured by queueing network models.
That is to say, the inputs and outputs we have defined are not always sufficient to describe a
system. Below we summarise some of the characteristics of computer systems which cannot be
represented: [23]

• Concurrent or parallel behaviours - various scenarios, such as if a customer needs to
be serviced by multiple resources simultaneously, cannot be expressed directly within
queueing network models. Similarly, synchronisation points at which two customers must
be processed in parallel cannot be modelled.

• Non-deterministic behaviours - in systems such as store-and-forward networks, in which
data is sent to an intermediate node which may hold on to the data before forwarding
it at a later time, the state of one station will affect how customers are processed at
another station. This cannot be represented directly in our model. Another behaviour
which cannot be expressed is so-called ‘adaptive behaviour’, for example when a dynamic
routing protocol is employed so that customer routing decisions are made at run-time.
Similarly priority scheduling which takes into account class dependent information cannot
be modelled directly.

• Memory constraints - for each workload type we make implicit assumptions about the
number of customers that can be held in memory. For example, in transaction workloads
there is an implied assumption that any number of customers can be stored in memory,
no matter how large. In batch workloads we assume there is a constant level of concur-
rency. In reality the number of concurrent jobs varies over time and is limited by memory
constraints determined by the hardware. In particular, if there is an acute variability in
the number of concurrent jobs then the system’s performance may be degraded, but this
cannot be represented in the queueing model.

• Response time distributions - the distribution of response times of a system cannot be
calculated directly from the system queueing model at a reasonable cost.

• Process forking - due to the fact that in closed classes the number of customers must
remain constant and in open classes the number of customers must be unbounded, it is
not possible to explicitly model forking whereby a process spawns a sub-process, as is
common within a Unix context.

15

Despite these inadequacies, product-form queueing network models are still often successful
at representing the behaviour of complex computer systems since a lot of the relevant complex-
ity is captured implicitly in the measurement data used as input for the model. In many cases
queueing network models are also adequate for projecting the impact of architecture changes on
a system, provided that the modification is representable by adjusting model inputs and that
certain secondary characteristics of the modification can be ignored. However, in situations
where detailed analysis is required to study how a modification will affect the implicit charac-
teristics of a system, the standard queueing network model is not adequate. In these scenarios
the product-form queueing network model can be augmented to include procedures that can
compute revised estimates for the underlying characteristics we are interested in, allowing the
desired accuracy to be achieved. So regardless of the apparent disparities which can arise be-
tween a system and its model representation, a sound and useful analysis can often still occur.
[23]

2.3 Introduction to JMT

Everything we have described so far has been theoretical in nature, however the software suite
Java Modelling Tools (JMT) is a free open-source toolset which implements some of the ideas
we have discussed. The tools are intended to be used for system tuning, capacity planning,
performance evaluation and workload characterization of distributed computer systems or any
system that can be represented by a queueing model [18]. In this project the main tool we will
be focussing on is called JMVA, in which network models can be described and evaluated using
a variety of techniques. Queueing network models can be input via a wizard, which involves
defining the stations, customer classes and service demands manually, or can be imported from
another tool called JSIMengine, which allows models to be created graphically. Models can also
be loaded and saved from XML files.

Once the model is specified it can be solved using a range of existing algorithms, including
exact and approximate MVA methods, RECAL (Recursion by Chain), MoM (Method of Mo-
ments) and CoMoM (Class-Oriented Method of Moments). Once the model has been solved the
results can be output both graphically and numerically. A useful feature of JMVA is the ability
to perform ‘what-if analysis’ in which a control parameter, for example the network population,
is swept over a specified range and the model solved for each value. This allows graphs to be
drawn showing how the control parameter affects certain performance characteristics such as
throughput, response time and utilisation. It also allows the model to be solved with several
algorithms so that their accuracy can be compared. This feature was particularly useful for
comparing the accuracy of the newly implemented bounding techniques.

In this project we will be contributing to JMT by integrating all solutions directly into the
JMVA tool. Should this be successful, the primary developers of JMT will incorporate these
updates into the next publicly available release.

16

Figure 2.4: JMT tool selection screen.

Figure 2.5: JMVA model input wizard.

2.4 Introduction to JCoMoM package

Some of the previous work completed by Imperial students, aimed at implementing more ad-
vanced, research-based algorithms, were placed in a separate project known as the JCoMoM
package. For example, Bradshaw implemented a version of the CoMoM algorithm as discussed
in [3]. The JCoMoM package was created in order to protect the rights to the code, and also
separate these more experimental algorithms from the main JMT codebase. This package cur-
rently contains implementations for MoM, CoMoM, RECAL and basic Convolution methods.
While separate from the JMT codebase, some of the algorithms in the JCoMoM package are still
accessible directly from the JMVA interface, though the source code is not publicly available

17

(only a JAR file for the JCoMoM package is downloadable). The JCoMoM package also has
its own commandline interface, so the algorithms within the package can be used in isolation
from the rest of JMT. In this project we will be adding the Tree Convolution and Tree MVA
algorithms to this package while also allowing these algorithms to be accessed from the JMVA
interface.

18

Chapter 3

Queueing Network Analysis
Techniques

Now that we have fully defined the queueing models we will be working with and studied their
limitations, we take a look at some of the analysis algorithms which can be used to evaluate
these models.

3.1 Performance Bounding Techniques

A simple but often useful technique for evaluating queueing networks is bounding analysis [23, 6].
Bounding techniques aim to calculate the limiting bounds of system performance measures, such
as throughput and response time, as a function of workload intensity. The main advantage of
these techniques is that they are highly computationally efficient and are therefore ideal for
preliminary analysis of a system, before more complex and expensive approaches are used.
For certain applications, for example systems using real-time self-optimisation techniques, it
must be possible to analyse many thousands of configuration options quickly and accurately.
For this purpose exact methods are much too slow. Local iterative approximations [11] are
substantially more efficient than exact methods but still cannot match the speed of single-step
bounding techniques [12, 5]. Having said this, the accuracy of such bounding techniques may be
significantly worse [6]. One of the goals of this project is to tackle this problem by implementing
a bounding technique which is both fast and accurate, namely Geometric Bounds as described
in [6].

Another useful application of bounding techniques is for studying the influence of bottleneck
stations. Secondary bottlenecks can be identified and used to analyse how the system may be
modified in order to reduce the load placed on the primary bottleneck. Bounding methods
can also be used for studying the effects of possible system modifications. Often a number
of possible modifications can be grouped together and a single bounding analysis pass done to
provide feedback about the possibilities, providing a very low cost analysis. An additional benefit
of these methods is that the actual development and implementation of bounding techniques
often provides useful insights about the core elements of a system which influence performance.
[23]

In the following subsections we discuss various single-step bounding techniques, with a
focus on defining bounds for system throughput and response time. For batch and terminal
workloads the bounds reflect the maximum and minimum possible throughputs and response
times in terms of N, the number of customers in the system. For transaction workloads the
maximum system throughput specifies the maximum customer arrival rate that the system is
able to deal with, while the bounds on response time indicate the range of possible response
times in terms of λ, the customer arrival rate. Optimistic bounds are often used to refer to

19

the bounds providing the best case performance of a system, for example maximal throughput
(upper bound) and minimal response time (lower bound). Pessimistic bounds are the inverse,
indicating the worst case performance. Closely related to the concept of optimistic bounds is
the notion of system power [19] which is defined as X/R i.e. the ratio between throughput and
response time, either as a system-wide measure or per customer class. Simply put the optimal
performance of a system occurs when throughput is maximized and response time is minimised,
which corresponds to when the system power is maximal [9].

Bounds for other measures can be derived by using the aforementioned system laws. Per
station bounds on utilisation and throughput can also be calculated by applying the methods
described in the following sections and then applying either the Utilisation Law or the Forced
Flow Law respectively. It is also worth noting that the application of bounding methods is
usually confined to single-class models. Multi-class variations exist but are not widely used
since these methods often encroach on the main advantage of bounding analysis, which is its
simplicity. Having said this, we implement multi-class ABAs and BJBs as part of this project
for completeness. The theory for multi-class GBs has not yet been developed.

3.1.1 Asymptotic Bounds

For single-class queueing networks, asymptotic bounding analysis [24] outputs both optimistic
and pessimistic bounds on system throughput and response time. The bounds are obtained by
examining the asymptotic extremes when the system is under light and heavy loads. In order
for these bounds to be viable it must be assumed that stations are load independent, that is
the service demand for a customer at each station does not depend on the number of customers
in the system, and also that the service demand for a particular customer does not depend on
the locations of other customers. [23]

Transaction Workloads
As briefly suggested earlier, in transaction workloads there is a possibility of system saturation
whereby the arrival rate of new customers is too great for the system to be able to process
incoming customers in a timely fashion, leading to an ever increasing backlog of waiting jobs.
The upper throughput bound represents the minimum arrival rate, λsat, at which the system
becomes saturated. In order to acquire this bound we note that as long as none of the individual
stations in the system are saturated, then an increased arrival rate can be accommodated. A
station is said to be saturated if it has a utilisation of 100%. However, as soon as a single
station becomes saturated, the entire system cannot accommodate an increase in arrival rate
and is therefore also saturated. The station which becomes saturated at the lowest λ value is
the system’s bottleneck i.e. the station with highest service demand. If we let max be the index
of the bottleneck station then mathematically we can derive: [23]

λsat =
1

Dmax
(3.1)

Proof.
Uk = XkSk (Utilisation Law, for each station k)
Since Xk = λ ∗ Vk and Dk = VkSk we can derive:
Uk = λDk (Dk is service demand at station k)
So, Umax(λ) = λDmax ≤ 1 (since U is always less than or equal to 1, i.e. 100% utilisation)
In this case we know that U = 1 since the station is a bottleneck, therefore: λsat = 1/Dmax

So if λ is greater than or equal to 1/Dmax the system is saturated.

20

The response time bounds for transaction workloads can be computed by considering the
two possible extremes. Since the system becomes unstable if λ ≥ λsat, we consider only the
instances where the arrival rate is less than λsat. In the best case no customer ever has to
wait for a system resource to become free and so the response time per customer is the sum
of its service demands. In the worst case n customers arrive simultaneously every n/λ time
units (so the arrival rate = n/(n/λ) = λ). For any upper bound on response times we chose,
we can always pick an n such that the bound will be exceeded. Therefore, there is no upper
(pessimistic) bound on response times for transaction workloads. [23]

Batch and Terminal Workloads
For batch and terminal workloads the results are more promising. Considering first the heavy
load case for terminal workloads, we note that as N increases, the station utilisations increase
but never exceed 1. Therefore we can say Uk = X(N)Dk ≤ 1 (by the Utilisation Law) and
using the same line of reasoning as for transaction workloads we obtain: [23]

X(N) ≤ 1

Dmax
(where max is the first station to become saturated) (3.2)

For the light load case, we consider first the case of one customer in the system (N=1). Since
the time of each interaction with the system is equal the sum of the average length of service
(D =

∑K
k=1Dk) and the average think time Z, the system throughput is given by 1/(D + Z).

As N increases we see there are two bounding cases. Firstly, when each added customer is not
delayed at all by other customers the individual customer throughput is given by 1/(D + Z),
since D time units are spent in service and Z time units are spent thinking, giving an overall
system throughput of N/(D + Z). Secondly, when each added customer has to queue behind
all other customers in the system, the throughput of a single customer is given by 1/(ND+Z),
since (N−1)D time units are spent queueing, D time units are spent in service and Z time units
are spent thinking, giving a system throughput of N/(ND + Z). To summarise, for terminal
workloads we have throughput asymptotic bounds: [23]

N

ND + Z
≤ X(N) ≤ min(

1

Dmax
,

N

D + Z
) (3.3)

It can be observed that the optimistic bound consists of two elements. The first, 1/Dmax,
holds when the system is under heavy load, while the second, N/(D + Z), holds under light
load. There is a crossover point given by (D+Z)/Dmax at which these formulas give the same
value. Below this point the light load bound holds and above it the heavy load bound holds.
[23]

The bounds on response time for terminal workloads can be obtained by applying Little’s
law to get: [23]

max(D,NDmax − Z) ≤ R(N) ≤ ND (3.4)

Proof.
N

ND+Z ≤ X(N) ≤ min(1
Dmax

, N
(D+Z)) (throughput bounds)

From Little’s Law/Response Time Law we get X(N) = N
R(N)+Z , so

N
ND+Z ≤

N
R(N)+Z ≤ min(1

Dmax
, N
D+Z)

max(Dmax,
D+Z
N) ≤ R(N)+Z

N ≤ ND+Z
N (by inverting)

max(D,NDmax − Z) ≤ R(N) ≤ ND (by rearranging, note D =
∑K

k=1Dk)

21

Note that the asymptotic bounds for batch workloads are obtained simply by setting Z = 0.
In summary, asymptotic bounds are derived by considering the extreme (best and worst)

cases under which a system might operate. Their main advantage is their simplicity and low
computational cost due to the fact that the calculations are independent of both the number of
stations in the system and customer class information. The linearity of the bounding equations
(except for the the lower throughput bound for terminal workloads) means that only a small
number of arithmetic operations are needed to compute most of the bounds once D and Dmax

are known. [23]

3.1.2 Balanced Job Bounds

Though incurring slightly higher computational costs than their asymptotic counterparts, Bal-
anced Job Bounds (BJBs) [20, 37] provide more precise outputs. The bounds provided by BJB
analysis are based upon the study of systems in which the service demands are balanced, i.e.
the demands at every station are identical. This is because balanced systems exhibit various
properties which can be utilized in order to tighten the asymptotic bounds previously outlined.
[23]

Considering a balanced batch workload, if we take Dmin, Dmax and Davg to represent the
minimum, maximum, and average service demands in the system, and K as the number of
stations in the network, we can bound the throughput of the system as follows: [23]

N

N +K − 1
× 1

Dmax
≤ X(N) ≤ N

N +K − 1
× 1

Dmin
(3.5)

Proof.
Uk(N) = N

N+K−1 (utilisation at every station k for batch workloads)

X(N) = Uk
Dk

= N
N+K−1 ×

1
Dk

(by Utilisation Law)
Equation (3.5) follows from this since:
- LHS is the throughput of the balanced system where every service demand is set to Dmax, so
the throughput will be the lowest possible.
- RHS is the throughput of the balanced system where every service demand is set to Dmin, so
the throughput will be the highest possible.

In order to tighten the bounds we can restrict both Dmax and total demand, D =
∑K

k=1Dk.
D can be restricted since out of every possible system with total service demand D, the one in
which all service demands are equal is the one with highest throughput. Therefore we can set
all station service demands to Dave and derive the throughput optimistic bound as: [23]

X(N) ≤ N

N +K − 1
× 1

Dave
=

N

D + (N − 1)Dave
(3.6)

Now we consider the lower bound. For all systems with a total service demand D and
maximum service demand Dmax, the system which has D/Dmax stations each with service
demand Dmax and the rest of the stations having service demand 0, is the system with the
lowest throughput. Therefore the throughput pessimistic bound is given by: [23]

N

N + D
Dmax

− 1
× 1

Dmax
=

N

D + (N − 1)Dmax
≤ X(N) (3.7)

Taking into account that the upper balanced job bound on throughput intersects the upper
asymptotic bound for heavily loaded systems, the throughput bounds can be summarised as:
[23]

N

D + (N − 1)Dmax
≤ X(N) ≤ min(

1

Dmax
,

N

D + (N − 1)Dave
) (3.8)

22

As before, Little’s Law can be applied to derive the response time bounds: [23]

max(NDmax, D + (N − 1)Dave) ≤ R(N) ≤ D + (N − 1)Dmax (3.9)

A approach similar to that used for ABs can be used to derive BJB bounds for terminal and
transaction workloads.

3.1.3 Geometric Bounds

Geometric bounds (GBs) [6] are a much more recently developed method than any of the other
bounds considered. Compared to BJBs, geometric bounds attain higher levels of accuracy but
maintain similar computational cost. The worst case bounding error for BJBs is usually within
the range 15-35%, however GBs lower this to 5-13%. Additionally, solutions are typically
closer to the global optimum than other bounding techniques. In fact the accuracy of GB
techniques approaches that of many iterative MVA-based estimation methods, but at a much
lower computational cost. In particular GBs have been shown to give highly accurate results
in unbalanced networks with bottlenecks, which is an important consideration when analysing
real systems. For these reasons the implementation of GBs will form a part of this project. [6]

Geometric bounds are obtained by representing station queue lengths as a geometric se-
quence of terms related to station utilisations. In order to derive this sequence we start from
one of the MVA equations: [6]

Qi(N) = X(N)Ri(N) = Ui(N)(1 +Qi(N − 1)), 1 ≤ i ≤ K (3.10)

where Qi is the average queue length at station i, X(N) is the mean system throughput, Ri(N)
is the mean response time of station i, and Ui is the utilisation at station i.

This equation can be recursively expanded to give: [6]

Qi(N) = {Ui(N)}
+ {Ui(N)Ui(N − 1)}
+ {Ui(N)Ui(N − 1)Ui(N − 2)}
+ . . .+ {Ui(N)Ui(N − 1)Ui(N − 2) . . . Ui(2)Ui(1)}

We notice that this has the same structure as a geometric sum which can be calculated
non-iteratively as: [6]

y + y2 + . . .+ yN =
y

1− y
− yN+1

1− y
(3.11)

This is a key step in removing the iterative nature of MVA, allowing us to compute bounds
on queue length at a reasonable cost.

Queue Length Bounds
Using this idea bounds on queue length can be derived as: [6]

Q−i,GB(N) =


yi(N)

1− yi(N)
− yi(N)N+1

1− yi(N)
ifDi < Dmax

1

mmax
(N − ZX+ −

∑
k=Dk<Dmax

Q+
k,GB(N)) ifDi = Dmax

(3.12)

23

Q+
i,GB(N) =


Y i(N)

1− Yi(N)
− Yi(N)N+1

1− Yi(N)
ifLi < Lmax

1

mmax
(N − ZX− −

Dmax∑
k=Dk

Q−k,GB(N)) ifLi = Lmax

(3.13)

where Q−i,GB(N) and Q+
i,GB(N) define the the lower and upper queue length bounds re-

spectively. These equations hold for any for any X+ and X− s.t. X(N) ≤ X+ ≤ Xmax and
0 ≤ X− ≤ X(N). mmax is the number of queues with service demand Dmax. yi(N) and Yi(N)
give the ratio of the geometric sum where yi(N) = DiN/(Z+D+DmaxN) and Yi(N) = DiX

+.
Additionally it should be noted that D =

∑K
i=1Di. The full derivations for these bounds can

be found in [6].

Throughput Bounds
In order to use the bounds on queue length to derive throughput bounds an exact formula for
X(N) must be obtained. This time we consider a different MVA equation given by: [6]

X(N) = N/(Z +R(N)) (3.14)

To obtain an accurate approximation for X(N) we also take into account the population
constraint, which states the the first moments of queue lengths are conserved in closed models:
[6, 20]

K∑
i=1

Qi(N − 1) = N − 1− ZX(N − 1) (3.15)

By considering only the queues with service demand Di = Dmax and using the previous two
equations, an exact formula for X(N) can be derived: [6]

X(N) = N/[Z +D +Dmax(N − 1− ZX(N − 1))−D(N)] (3.16)

where D(N) =
∑M

i=1(Dmax − Di)Qi(N − 1). In fact by comparing this formula to the lower
BJB bound on throughput, and setting X(N − 1) and D(N) to their minimum values, we can
see that we have derived a more general method for obtaining throughput bounds [6].

By replacing X(N−1) and D(N) by appropriate bounds, we obtain the bounds on through-
put X(N) as: [6]

X−i,GB(N) = N/[Z +D +Dmax(N − 1− ZX−)−
K∑
i=1

(Dmax −Di)Q
−
i,GB(N − 1)] (3.17)

X+
i,GB(N) = N/[Z +D +Dmax(N − 1− ZX+)−

K∑
i=1

(Dmax −Di)Q
+
i,GB(N − 1)] (3.18)

for any X+ and X− s.t. X(N − 1) ≤ X+ ≤ Xmax and 0 ≤ X− ≤ X(N − 1).
Both bounds on throughput and queue length using the GB approach have computational

costs which grow as O(K) in both time and space, so their calculation is independent of the
number of customers in the system. The GB method can be generalised in order to obtain
accurate results for closed fork-join networks [35] which are used frequently in practice, for
example in the optimisation of parallel systems. Closed fork-join networks are amenable to

24

approximate evaluation and hence the usefulness of GBs goes beyond the analysis of product-
form queueing networks. [6]

One of the first focuses of this project is to implement Geometric Bounds and assess their
performance over a range of problem instances. We also aim to show that GBs provide higher
accuracy outputs than ABs and BJBs, particularly over unbalanced systems.

3.2 Iterative Solution Techniques

In this section we move away from looking at single-step performance bounding techniques and
instead focus on iterative techniques which can be used to obtain accurate system performance
measures given an input model. The specific methods used depend on whether a model is open
or closed.

3.2.1 Solution of Open Models

For open single-class models the customer arrival rate is given as an input, λ. Similarly for open
multi-class models each customer class has an arrival rate λc, so we represent all the arrival
rates in a vector λ = (λ1, . . . , λc). For both types of open model we are essentially given the
throughput as an input (seen as the customer arrival rate λ is equivalent to system throughput
by the Forced Flow Law). This makes the solution methods for open models fairly simple. The
table below shows the various performance measures which can be computed:

Measure Single-class Formula Multi-class Formula

Processing Capacity λsat = 1
max
k

(Dk)
= 1

Dmax
max
k

(
C∑
c=1

λcDc,k) < 1

Device Throughput Xk(λ) = λVk Xc,k(λ) = λcVc,k

Device Utilisation Uk(λ) = Xk(λ)Sk = λDk Uc,k(λ) = Xc,k(λ)Sc,k = λcDc,k

Residence Time Rk(λ) =

{
VkSk = Dk (Delay)

Dk
1−Uk(λ)

(Queueing)
Rc,k(λ) =


Dc,k (Delay)

Dc,k

1−
C∑

j=1
Uj,k(λ)

(Queueing)

Queue Length

Qk(λ) = λRk(λ) (Little’s Law).
Therefore,

Qk(λ) =

{
Uk(λ) (Delay)
Uk(λ)

1−Uk(λ)
(Queueing)

Qk((λ) = λcRc,k((λ) (Little’s Law).
Therefore,

Qk(λ) =


Uc,k(λ) (Delay)

Uk(λ)

1−
C∑

j=1
Uj,k(λ)

(Queueing)

System response time R(λ) =
K∑
k=1

Rk(λ) Rc(λ) =
K∑
k=1

Rc,k(λ)

Average number of
customers in system

Q(λ) = λR(λ) =
K∑
k=1

Qk(λ) Qc(λ) = λcRc(λ) =
K∑
k=1

Qc,k(λ)

Table 3.1: Exact solutions for single and multi-class open models [23].

25

Note that any formula in the table can be expanded out by substituting in formulas higher
in the table. The processing capacity is the maximum arrival rate the system can cope with
before it becomes saturated, λsat. All other formulae in the table assume that λ < λsat. In the
multi-class case we check that no station is saturated as a result of the combined load placed
upon the system by all customer classes. The formulas are derived using the laws we have
already discussed, for detailed derivations [23, Chapter 6-7] can be consulted.

Since these equations are all fairly easy to compute and no real improvement can be achieved
through optimisation, the exact solution of open models is not the primary focus of this project,
however we mention it for completeness.

3.2.2 Solution of Closed Models

The more interesting case is the solution of closed models since the throughput is not known
in advance, making the calculation of performance metrics considerably more challenging. In
the single-class case, if a product-form queueing network has K stations and a population of N
customers then the network can be described as n = (n1, n2, . . . , nK) where ni is the number of
customers at station i (i.e. summing the terms inside the vector gives N) [4]. If we additionally
assume that the service time at all stations is given by a distributed random variable 1/ui, then:
[16]

P (n1, . . . , nK) =

∏K
i=1(Xi)

ni

G(N)
(3.19)

where the set of Xi are the solutions to the equations ujXj =
∑M

i=1 uiXipi,j , 1 ≤ j ≤ M
given that pi,j is the probability that a customer completing service at station i will proceed to
station j [4]. G(N) is a normalisation constant which ensures all of the P (n1, . . . , nK) sum to
1. This notation can be extended for the multi-class case which we discuss in section 3.2.4.

Various approaches have been tried in order to calculate the solution to this product-form
equation. One approach is to compute G(N) by adding together the product terms over the
entire state space. The first practical method for achieving this, known as the Convolution
algorithm [4], was first published in 1973 by Buzen. Later developments saw this approach
extended to work for multi-class models [10, 26]. At the time one of the problems with the
Convolution algorithm was that it did not guard against numerical instability [34], however
due to the rapid advancement of computing hardware these problems are no longer of great
concern. A few years later a technique called Mean Value Analysis (MVA), which avoids the
need to compute G(N), was developed and refined by Reiser and Lavenberg [28, 29]. It was also
shown that MVA is as general as Buzen’s Convolution algorithm [30].

The main problem with these two techniques is that they become computationally infeasible
when large numbers of customer classes are introduced, which is often required for the analysis
of real-world systems. In order to avoid this problem, several approximate versions of the
MVA algorithm were proposed, each using various heuristics to reduce the complexity of the
calculations. The implementation of these techniques was the focus of an earlier project [13].
However, after the development of the Convolution and MVA algorithms, various advanced
versions were also proposed. These more advanced versions of the original algorithms still
provide exact solutions, however they also allow the efficient solution of sparse networks which
involve a large number of customer classes. The two we focus on in this project are the Tree
Convolution [21] and Tree MVA [34] algorithms.

26

3.2.3 Convolution

The Convolution algorithm [4] computes the normalisation constant G(N) in order to obtain
useful performance measures from a system. We first discuss Convolution for single-class models
as it was first outlined by Buzen, before moving onto more complex multi-class Convolution
techniques. Single-class sequential Convolution takes an iterative approach in order to compute
the set of values G(1), G(2), . . . , G(N) using NK multiplications and NK additions, where N
is the model population and K is the number of stations [4].

The algorithm is based on an auxiliary function: [4]

g(n, k) =
∑

n∈S(n,k)

k∏
i=1

(Xi)
ni (3.20)

where S(N,K) = (n1, n2, . . . , nK) s.t.
K∑
i=1

ni = N and ∀ini ≥ 0 (3.21)

Since G(N) is defined so that all the P (n1, . . . , nK) sum to 1 (see equation (3.19)), we have that
G(N) ≡ g(N,K). In fact generally we can say, g(n,K) ≡ G(n) for all n = 0, 1, . . . , N . [4]

In order to make g(n, k) usable within an algorithm, some initial conditions and an iterative
relationship can be derived from (3.20): [4]

Initial conditions

g(n, 1) = (X1)
n for n = 0, 1, . . . , N

g(0, k) = 1 for k = 1, 2, . . . ,K

Iterative Relationship

g(n, k) =
∑

n∈S(n,k)
&nk=0

k∏
i=1

(Xi)
ni +

∑
n∈S(n,k)
&nk>0

k∏
i=1

(Xi)
ni

= g(n, k − 1) +Xkg(n− 1, k)

Using these relationships a simple iterative algorithm can be defined in order to compute
G(1), G(2), . . . , G(N), assuming that the Xk values are calculated in advance and passed in as
an array. The pseudocode for this algorithm is shown in Algorithm 1 below.

Algorithm 1 Pseudocode showing simple iterative Convolution algorithm [4].

1 /** Computes the normalisation constants for the last column in the table.

2 * @param X Per station throughputs.

3 * @return Array containing normalisation constants g(1)...g(N).

4 */

5 function ComputeNormalisationConstants(X) {

6 C[0] = 1;

7 C[n] = 0 forall 1 <= n <= N;

8

9 for (k=1:K) {

10 for (n=1:N) {

11 C[n] = X[k] * C[n-1];

12 }

13 }

14

15 return C;

16 }

27

The algorithm can also be visualised in a tabular format:

Figure 3.1: Visualisation of Convolution algorithm. [4]

This diagram attempts to show that any g(n, k) can be computed by summing the value
to the left (g(n, k − 1)) with the value immediately above multiplied by the column variable
(g(n−1, k)×Xk). The algorithm therefore proceeds in a column-wise fashion, computing all the
values in the X1 column first, before computing values for the other columns in sequence. Note
that when computing the first column it is assumed that there is a column of zeros immediately
to the left (i.e. for the first column g(n, k − 1) = g(n, 0) = 0 for all 0 ≤ n ≤ N). The final
goal of the algorithm is to compute g(N,K) in the bottom-right corner since, as we already
established, this is equal to G(N).

The variables C1 . . . CN correspond to the values in the storage array presented in the al-
gorithm code. Once the algorithm has completed the values in C will be equal to the final
computed values for the right-most column in the table, which correspond to G(1), G(2), . . . ,
G(N). Since the computation of each value in the table requires one addition and one multi-
plication and the table is of size NK, we can conclude that 2NK arithmetic operations are
required for the computation of G(1), G(2), . . . , G(N). In terms of space complexity we only
need to store N values at any time, so long as the algorithm progresses in a column-wise fashion
as described. [4]

3.2.4 Multi-class sequential Convolution

The Convolution algorithm presented so far is limited to single-class queueing systems. In this
section we introduce a mutli-class approach which is required before we can discuss the Tree
Convolution algorithm. In order to do this we must redefine the product-form equation (3.19)
in order to take into account different customer classes.

If we consider a product-form queueing network with K stations and C customer classes, we
can define a population vector N = (N1, N2, . . . , NC) where Nc is the number of customers of
class c. The normalisation constant can then be redefined as G(N). If we let nkc be the number

28

of class c customers at station k, we can also define the network state as a vector: [21]

n = (n1,n2, . . . ,nk)

where nk = (nk1, nk2, . . . , nkC), for all 1 ≤ k ≤ K

The product-form equation can now be redefined as: [21]

P (n) =

∏K
k=1 pk(nk)

G(N)
(3.22)

where

pk(nk) =

(
nk∏
i=1

1

uk(i)

)
nk!

C∏
c=1

Dnkc
kc

nkc!
(3.23)

where
- nk is the summation of all terms in the vector nk (i.e. nk =

∑C
c=1 nkc),

- Dkc = SkcVkc is the service demand at station k for class c as before, where Skc is the mean
service time of a class c customer at station k and Vkc is the arrival rate of class c customers to
station k,
- uk(i) is the service rate of station k when there are i customers in its queue. If the station is
load-independent then ∀iuk(i) = 1.

pk can be thought of as a function for k = 1, 2, . . . ,K, where the input is a C-dimensional
array indexed between 0 and N, where 0 is a vector of size C with each element set to 0. The
convolution of two of these functions, for example p1 and p2, is defined as: [21]

g2(i) =

i1∑
j1=0

. . .

iC∑
jC=0

p1(j)p2(i− j) for 0 ≤ i ≤ N

= p1 ∗ p2 ≡ p2 ∗ p1 (shorthand notation)

(3.24)

Using this notation we can define: [21]

g1 = p1

gk = gk−1 ∗ pk for 2 ≤ k ≤ K
(3.25)

The values stored in the array gk are the normalisation constants for all population vectors
between 0 and N, therefore gK(N) = G(N). In fact the equations (3.24) and (3.25) define the
Convolution algorithm for multi-class models as was first derived in [10, 26] in 1975.

For a model consisting of load independent stations the equations can be combined to get:
[21]

gk(i) = gk−1(i) +
C∑
c=1

Dkcgk(i− 1c) for 0 ≤ i ≤ N (3.26)

where 1c is a vector of size c, with all values set to 0 apart from the cth value which is set to 1.

29

The complexity of the multi-class sequential Convolution algorithm is outlined in the fol-
lowing table:

General case Load independent case

Time O((K − 1)
∏C
c=1(Nc + 1)(Nc + 2)/2) O(KC

∏C
c=1(Nc + 1))

Space O(2
∏C
c=1(Nc + 1)) O(

∏C
c=1(Nc + 1))

Table 3.2: Time and space complexity of the multi-class sequential Convolution algorithm for
the general and load independent case. In reality, each unit of space is one array location and
each unit in time is about the execution time of one addition and one multiplication [21].

Practical Implementation
In practice the multi-class sequential algorithm can use the following expression to compute the
normalization constants: [26, 7]

G(1k,N) = G(N) +

C∑
c=1

DkcG(1k,N− 1c) (3.27)

where 1 ≤ k ≤ K, 1i is a vector containing all zeros apart from a one in the ith position,
and G(1k,N−1c) is the normalisation constant for the model with a class c customer removed
and a replica of station k added. G(N) is given by G(0,N).

3.2.5 Mean Value Analysis (MVA)

Mean Value Analysis [28, 29] is a recursive technique for calculating exact outputs from product-
form queueing models which describe the long-term behaviour of the system. In terms of
mathematical queueing theory it relies upon the arrival theorem which states that when a new
customer arrives into the system, that customer observes the system as being in an equilibrium
state (for the system without the new customer). For example, in a closed system with N
customers, the new customer observes the system to be in a steady state for N − 1 customers.

The MVA algorithm can be generalised to work for both single and multi-class models,
though the latter is significantly more computationally expensive as we shall see. For multi-
class systems we recall that the model contains C customer classes and the workload intensity
can be defined by the vector N = (N1, . . . , NC) where Nc is the number of customers of class c.
In the following sections we present MVA for both types of models in parallel so that the two
approaches can be compared directly.

The MVA algorithm for both single and multi-class models is based on three equations which
can be derived from the laws we have already defined: [23]

1. Station residence time equations:

Single-class: Rk(N) =

{
Dk (delay stations)

Dk(1 +Ak(N)) (queueing stations)
(3.28)

Multi-class: Rc,k(N) =

{
Dc,k (delay stations)

Dc,k(1 +Ac,k(N)) (queueing stations)
(3.29)

30

(when a new customer arrives Ak(N) is the average number of customers seen at station
k and, similarly, Ac,k(N) is the average queue length at station k seen by an arriving
customer of class c).

2. Throughput equations - obtained via Little’s Law applied to the whole queueing network:

Single-class: X(N) = N/(Z +

K∑
k=1

Rk(N)) (3.30)

Multi-class: Xc(N) = Nc/(Zc +

K∑
k=1

Rc,k(N)) (3.31)

(When there are N customers in the network, X(N) is system throughput and Rk(N) is
residence time at station k. Similar definitions apply for the multi-class case).

3. Per station queue length equations - via Little’s Law applied to individual service stations:

Single-class: Qk(N) = X(N)Rk(N) (3.32)

Multi-class: Qc,k(N) = Xc(N)Rc,k(N) (3.33)

(Note that (2) and (3) can be applied directly if Rk(N) or Rc,k(N) is known from inputs,
without having to use (1).)

In order to use these algorithms in practice, we must first obtain Ak(N) for all k in single-
class models and Ac,k(N) for all c and k in multi-class models. Considering the single-class case
for simplicity, once we have this set of values we can apply (1) (using input values for Dk) to
find the set of Rk values. We can then substitute the Rk values into (2) to get X(N). Finally
we substitute the X(N) and Rk values into (3) to compute the Qk values.

For open models we can make the assumption that Ak(N), the arrival instant queue lengths,
are equal to Qk(N), the time average queue lengths (in fact this is how the open model residence
time formula we presented in Figure 3.1 is derived) [23]. For closed models this assumption does
not hold since the computation of Ak takes into account that a newly arriving customer is not in
the queue at station k, while Qk is computed over random snapshots in time, meaning that all
customers could be in the queue [23]. So for closed models we must compute Ak(N) ourselves.

The solution method works by calculating the values of Ak (single-class) or Ac,k (multi-
class) exactly and then applying the three MVA equations. In fact one of the reasons closed
product-form queueing networks are so widely used in performance analysis is precisely because
Ak(N) or Ac,k(N) can be calculated simply by looking at time averaged queue lengths, Qk.
Ak(N), the length of a queue seen when a new customer arrives at station k when there are N
customers in the system, is equal to the time averaged queue length at the same station with
one less customer in the system. Mathematically this is: [23]

Ak(N) = Qk(N − 1) (3.34)

or Ac,k(N) = Qk(N− 1c) (3.35)

The second equation is for multi-class models, where N− 1c is the system with N customers
with one class c customer removed. Note that for multi-class models: Qk(N) =

∑C
c=1Qc,k(N).

Intuitively, for a system with N customers, when a new customer arrives at a station, the
new customer cannot already be in the queue which suggests that only the other N−1 customers

31

could have an impact on the new customer. Out of these N − 1 customers the average number
of them which are actually in the queue is given by the average queue length at the specified
station for N − 1 customers, denoted Qk(N − 1). [23]

So equation (3.34) can be used in conjunction with the previous three equations to calculate
exact values for the system throughput, station queue lengths and station residence times for
a system with N customers. For single-class models an iterative approach is required since in
order to solve the model with N customers, the model must first be solved for N −1 customers.
For example, if we wanted to solve a model with 50 customers, we must first calculate the Ak(50)
values using (3.34). However this requires that we know the Qk(49) values which can only be
obtained by first solving the model for 49 customers. Thus in order to obtain exact solutions for
any N we must start by solving the equations for N = 0 and then apply them iteratively until
we reach the desired N value. For the base case (N = 0) we can trivially see that all station
queue lengths must be 0 since there are no customers in the system. Consecutive application
of the equations yields solutions for customer populations 1, 2, . . . , N − 1, N . [23]

For multi-class models the situation is more complex as the evaluation of a model for a spe-
cific N value requires C (the number of customer classes) inputs, one for each possible model
with population (N− 1c) i.e. we must consider every possible model in which the population
is N − 1 but the customer removed is of each class type. So if we have two customer classes
X and Y , we start with the base case (0X, 0Y). From this we can then compute solutions
for models containing one customer, (1X, 0Y) and (0X, 1Y). These two results can then be
used to calculate solutions for models with a two customer population and so on. Looking at
it another way, in order to compute a solution for (MX,NY) we must first have computed
results for ((M − 1)X,NY) and (MX, (N − 1)Y). These dependencies can be visualised as a
2D mesh, as shown in the diagram below. Note that in general, for a class with C customers,
the dependencies can be visualised as a C-dimensional mesh.

Figure 3.2: Mutli-class MVA intermediate solutions.

32

Below we present pseudocode for the MVA algorithm in both single and multi-class form:

Algorithm 2 Pseudocode for single-class MVA algorithm [23].

1 /** Computes residence times, throughput and mean queue lengths for single-class

2 * model using MVA. */

3 function SingleClassMVA() {

4 // Initialise station queue lengths to 0.

5 for (k=1:K) Q_k = 0;

6

7 for (n=1:N) {

8 // Compute residence times.

9 sumR_k = 0;

10 for (k=1:K) {

11 if (delayStation(k)) R_k = D_k;

12 else if (queueingStation(k)) R_k = D_k(1+Q_k);

13 sumR_k += R_k;

14 }

15

16 // Compute system throughput.

17 X = n/(Z+sumR_k);

18

19 // Compute mean queue lengths.

20 for (k=1:K) Q_k = X*R_k;

21 }

22 }

Algorithm 3 Pseudocode for multi-class MVA algorithm [23].

1 /** Computes residence times, throughput and mean queue lengths for multi-class

2 * model using MVA. */

3 function MultiClassMVA() {

4 // Initialise station queue lengths to 0.

5 for (k=1:K) Q_k(0) = 0;

6 for (n=1:sumOver(c, N_c)) {

7 for (each population in (n1...nC) with n total customers) {

8 // Compute residence times.

9 for (c=1:C) {

10 for (k=1:K) {

11 if (delayStation(k)) R_ck = D_k;

12 else if (queueingStation(k)) R_ck = D_ck(1+Q_k(n-1_c));

13 }

14 }

15

16 // Compute per class throughputs.

17 for (c=1:C) X_c = n_c/(Z_c + sumOver(k, R_ck))

18

19 // Compute mean queue lengths.

20 for (k=1:K) Q_k(n) = sumOver(c, X_c*R_ck)

21 }

22 }

23 }

Where sumOver(k, R ck) gives
K∑
k=1

Rck = Rc

33

Once the single-class algorithm has run we have X, the system throughput, Rk, station k
residence time, and Qk, the average queue length at station k. The multi-class algorithm gives
corresponding results for Xc, Rck and Qk. We can then apply Little’s Law to derive the other
performance measures outlined in section 2.2.3.

The time complexity of the single-class algorithm grows linearly with N ×K, since to solve
for population N the algorithm must loop N times, and for each loop all K stations in the system
must be considered. The space complexity isK, since only the results from the directly preceding
iteration need to be stored. For the multi-class algorithm the space and time requirements are
both significantly greater than for the single-class algorithm due to the composite nature of the
solution dependencies. The time complexity is proportional to CK

∏C
c=1(Nc + 1) and the space

complexity is given by K
∏C
c=1,c 6=cmax

(Nc + 1) where cmax is the index of the class with the
greatest population. [23]

For single-class networks MVA is therefore fairly efficient however, for multi-class networks
the number of arithmetic operations required grows exponentially with the number of customer
classes. In practice the algorithm often starts to become infeasible with only 3-4 customer
classes [8], making it unsuitable for exact evaluation of many real-world system models. For
this reason various approximate versions of MVA have been developed.

3.2.6 Approximate MVA (AMVA)

The iterative nature of the exact method is completely derived from equation (3.34), which
requires that we compute Qk for the model with population N − 1 before we can obtain Ak
for the model with population N . For approximate techniques, known as Approximate MVA
(AMVA), we attempt to amend this characteristic in order to significantly reduce the complexity
of the algorithm. To do this we replace equation (3.34) by: [23]

Ak(N) ≈ h(Qk(N)) (4.1)

where h is a heuristic function. By doing this we can directly solve a model of population
N without having to solve the model for all populations less than N . However, the accuracy of
the result strongly depends on the accuracy of the heuristic h used. [23]

The major advantage of this approximate approach is the increase in computational efficiency
over exact MVA, particularly for multi-class models. The space complexity of AMVA for multi-
class models is proportional to C×K which is a significant saving over MVA, since we now only
have to store the model solution for one population, N. The time complexity is impossible to
define exactly since the number of iterations required will depend on the user defined termination
criteria and also on the specific model being solved, though in practical cases the time savings
over MVA are significant. The number of arithmetic operations per iteration is proportional to
C×K and so the number of customers in each class are not a concern. In terms of accuracy the
results are typically within a few percent of the exact solution for utilisations and throughputs,
and within 10% for residence times and queue lengths. For very large multi-class models AMVA
is often the only feasible approach of reaching a solution. [23]

A previous project looked at studying, implementing and evaluating some of these ap-
proximate algorithms. In particular the approximate algorithms studied were Chow, Bard-
Schweitzer, Linearizer, De Souza-Muntz Linearizer and Aggregate Queue Length (AQL). Since
approximate techniques are not the focus of this project we do not discuss these algorithms in
detail, though further information can be found in [13]. It should be noted that a downside to
the approximate method is that there are no restrictions on the accuracy of the result [23]. So
while in most cases the result may be contained within a small error margin, there may be cases
in which the result is much further away from the exact solution. This is one of the motivations
for developing an exact technique which is more computationally efficient than MVA.

34

3.2.7 Related Work

In addition to the algorithms we have discussed there are several other approaches for obtaining
performance measures from closed queueing networks. Below we give a brief overview of these
techniques for completeness:

• RECAL - The Recursion by Chain Algorithm (RECAL) [14] can be used to calculate
mean performance measures in multi-class networks. Like the Convolution algorithm it
is based on the calculation of normalisation constants in a recursive fashion. It relies
on an expression which relates the normalization constant of a network with c classes
to the normalization constants for a set of networks with c − 1 classes. This strategy
works by decomposing each class into subclasses which only contain one customer. The
time and space requirements of RECAL are polynomial in the number of customer classes
meaning that RECAL is more efficient than both sequential MVA and Convolution when
the network contains many classes. However, RECAL still does not scale particularly well
for models with many stations, as was noted in [3].

• MoM - The Method of Moments (MoM) algorithm [8] manages to avoid the combinato-
rial growth of recursions which the Convolution and RECAL algorithms suffer from, by
recursively evaluating a set of linear systems that relate bases of normalising constants
[8]. The basis is essentially a set of higher-order moments which is defined so as to allow
bases for larger populations to be computed.

• CoMoM - Class-Oriented Method of Moments (CoMoM) [7] is a variation on MoM which
is suited to the exact evaluation of networks containing large numbers of customer classes.
The difference is in how the bases of normalising constants are defined. For CoMoM the
basis is formed from a wider set of different populations but never adds more than one
copy of a queue [7]. This method allows CoMoM to scale more efficiently as the number
of customer classes increases.

RECAL, MoM and CoMoM were all implemented within JMVA as part of earlier projects
so it will be interesting to compare their performance with the tree algorithms which form the
backbone of this project.

35

Chapter 4

Tree Algorithms for Sparse
Networks

4.1 Tree Convolution (TC)

In 1983, Lam and Lien proposed a modified version of the Convolution algorithm which employs
a tree data structure and allows the solution of certain models which would have been intractable
using the sequential Convolution algorithm [21]. Specifically the algorithm is highly efficient
in models which contain many stations and customer classes, and which exhibit the sparseness
property, which says that on average a certain class of customer is serviced by only a small
fraction of the stations in the model. If the customer classes are also clustered into specific
subregions of the network (locality property) then the complexity of the algorithm can be further
reduced. [21]

One of the primary goals of this project is to implement a version of the Tree Convolution
algorithm which will allow the exact solution of large sparse multi-class models.

4.1.1 Theoretical Concepts and Notation

Before we can discuss the algorithm it is necessary to understand the following concepts and
notation: [21]

1. Class Coverage - If we consider the set of stations which are visited by a certain class
of customers c and call this set STATIONS(c), then the class of customers c is said to be
fully covered with respect to a subnetwork A of stations if we have STATIONS(c) ⊆ A.
Conversely if STATIONS(c) ∩ A = ∅, class c is noncovered with respect to A. If neither
of these is true (i.e. only some of the stations in STATIONS(c) are in A) then class c is
partially covered with respect to A.

2. Partially covered arrays for reducing space requirements of Convolution - If we
again consider a subnetwork A which consists of stations (k1, k2, . . . , kx) ⊆ (1, 2, . . . ,K)
then by equation (3.25) from the sequential Convolution algorithm, we define gA = pk1 ∗
pk2 ∗ . . . ∗ pkx , which is an intermediate step towards calculating gK(N) ≡ G(N). The
principle realisation for reducing space requirements is that some classes of customer will
be fully covered or noncovered with respect to A, which means that only some of the
values within array gA are required in order to compute G(N). In particular, if the set
of all customer classes is split into three sets such that σpc contains all classes which
are partially covered by A, σnc contains classes which are noncovered by A, and σfc
contains all fully covered classes with respect to A, then it is possible to store gA as a
|σpc|-dimensional array and still be able to successfully calculate G(N). Such an array is

36

called a partially covered array or g-array in [21]. By using partially covered arrays the
space required for the Convolution algorithm can be reduced to

∏
c∈σpc(Nc + 1) memory

locations, since we no longer need to use C-dimensional arrays. In queueing network
models which exhibit sparseness and locality properties the space savings from using this
approach can be considerable. (Note that since the size of the partially covered arrays
varies from model to model, a dynamic allocation scheme is desirable).

3. Reducing time requirements of Convolution - Once again we consider a subnetwork
A, however we now partition the set into two subsets, A1 and A2, giving:

gA = gA1 ∗ gA2 (4.1)

Now in addition to the class coverage properties we have already discussed, we say that a
customer class c is overlapped if it is partially covered by both A1 and A2. Thus we can
classify each customer class c based on two properties; (1) whether or not c is partially
covered with respect to A and (2) whether or not c is overlapped with respect to A1 and
A2. Based on this categorisation we can split the set of customer classes into four sets,
σno,np (not overlapped, not partially covered), σno,p (not overlapped, partially covered),
σo,np (overlapped, not partially covered), and σo,p (overlapped, partially covered). If
partially covered arrays are used for the computation of gA = gA1 ∗ gA2 then the time
requirement can be reduced to the order of:∏

c∈σo,np∪σno,p

(Nc + 1)
∏
c∈σo,p

(Nc + 2)(Nc + 1)/2 (4.2)

Therefore by using partially covered arrays we can reduce both the time and space com-
plexity of the Convolution operation considerably, particularly if there are only a few
partially covered classes in A, A1 and A2, which is likely to be the case in sparse net-
works.

4. Exploiting routing information - The techniques described so far can be applied to
the sequential algorithm in order to reduce computational costs. However, significantly
more time and space savings can be made by taking the network’s routing information
into account. Looking back at equation (3.25) we can see that the Convolution algorithm
essentially starts with one station (smallest possible subnet) and then proceeds to merge
this station with other stations, in a sequential fashion, until all stations have been merged.
The key point is that since the Convolution operation is commutative we can modify the
order in which the merging occurs so as to reduce the number of partially covered classes
at intermediate subnetworks. By taking into account the network routing information,
which specifies which customer classes are serviced by which stations, we can therefore
obtain an optimal merging sequence to maximise time and space savings.

4.1.2 Algorithm Overview

The ideas discussed above form the basis for the Tree Convolution algorithm outlined in [21]
which makes use of a binary tree data structure. In practice the algorithm consists of three
main stages:

1. Preprocessor stage - this is the initial setup stage which can be further separated into two
phases:

• Tree planting phase - which involves converting the network into a tree which can be
solved efficiently.

37

• Complexity evaluation phase - where the complexity of the Tree Convolution algo-
rithm, given the planted tree, is calculated.

2. Normalisation constant calculation - in which the convolution operation is applied to the
nodes in the tree as it is traversed, in order to calculate the normalisation constant at the
root.

3. Performance measure calculation - which involves further partial traversals (often of sub-
trees) in order to calculate additional normalisation constants required to compute per-
formance measures.

During the tree planting stage, stations are placed at the bottom-most level of the tree as
leaves, and all non-leaf nodes represent subnetworks containing all the stations from both child
nodes. So the tree’s root node represents the whole network and for a network with K stations
there will be K − 1 non-leaf nodes representing subnetworks. This setup is shown below for
K = 9:

Figure 4.1: Binary tree setup for Tree Convolution algorithm.

In practice this binary tree will be set up in such as way as to optimise the algorithm’s
performance by exploiting routing information (see section 4.3).

4.1.3 Normalization Constant Calculation

Once the tree has been planted the normalisation constant is calculated by traversing the tree
in a postorder fashion, with the root node being visited last. Any non-leaf node can only be
visited if both of its children have already been visited. The calculation performed at each node
is as follows: [21]

• Station/leaf node - At a leaf node, representing a single station, the g-array can be
obtained from a modified version of equation (3.23) given by:

g{k}(ipc) =

 nk∏
j=1

1

uk(j)

nk!
∏
c∈σpc

Dic
kc

ic!

∏
c∈σfc

DNc
kc

Nc!

for ipc, where 0 ≤ ic ≤ Nc, c ∈ σpc

(4.3)

38

where {k} is a subnetwork consisting of only the station k represented by the leaf node,
σpc is the set of partially covered classes at the leaf node and σfc is the set of fully covered
classes. Additionally, nk =

∑
c∈σpc ic +

∑
c∈σfc Nc. In terms of time complexity, equation

(4.3) requires the following number of multiplications:

4×
∏

c∈σpc∪σfc

(Nc + 1) (4.4)

• Subnetwork/non-leaf node - At a non-leaf node, representing a subnetwork, the g-array
is computed from the node’s two children using equation (4.1) and the approach outlined
in item (3) from section 4.1.1 above. If one of the children is a leaf node representing a
load independent station then equation (3.26) can be used.

• Root node - The same technique is applied as for all other non-leaf nodes, however the
output is the normalisation constant G(N) for the whole network.

It is worth noting that the sequential Convolution algorithm we defined previously is a
special case of the Tree Convolution algorithm. For both the sequential and tree versions of
the algorithm the total number of convolution operations required is K − 1. However, Tree
Convolution allows the order of the operations to be modified so as to minimize the size of the
partially covered arrays stored at each node, which can lead to significant savings in time and
space. [21]

4.1.4 Feedback Filtering

An alternative approach known as feedback filtering can be used instead of the standard con-
volution equation in some cases. The equation (3.26) used for the sequential version of the
algorithm can be modified so that it can be applied to two leaf nodes, so long as at least one of
the leaf nodes is a fixed-rate station.

Given two leaf nodes representing stations x and y, where x is a fixed-rate station. We
define: [21]

ixy = {ic, c ∈ σx ∪ σy} (4.5)

where σx is the set of classes partially or fully covered by station x and σy is the set of
classes partially covered by y. Using this notation, equation (3.26) can be rewritten as: [21]

g{x,y}(ixy) = g{y}(ic, c ∈ σy)δ(ixy) +
∑
c∈σx

Dxcg{x,y}(ixy − 1c) (4.6)

for ixy where ic = 0, 1, . . . , Nc for c ∈ σx ∪ σy, 1c is a vector with the cth element set to 1
and the remaining elements set to 0, and the delta function is defined as: [21]

δ(ixy) =

{
0 if ic > 0 for any c ∈ (σx − σy)
1 otherwise

(4.7)

Once equation (4.6) has been applied at a node, the following equation is used to obtain the
partially covered array for the parent node which covers the subnetwork {x, y}: [21]

g{x,y}(ipc) = g{x,y}(ic for c ∈ σpc;Nc for c ∈ σfc) (4.8)

Using this feedback filtering approach when appropriate can reduce the time required to
compute the partially covered g-array at a node when compared to the standard convolution
equation. However, this is only true under the condition that the population of the overlapped
classes between the two child nodes are large.

39

4.1.5 Performance Measure Computation

Once the preprocessor and core algorithm stages have run we are left with a value for G(N) at
the root node. From this point we aim to calculate meaningful performance measures for the
system, however, as we shall see, this often requires the computation of additional normalization
constants.

4.1.5.1 Throughputs

For both load independent and load dependent stations, the throughput of class c customers at
station k is given by: [21]

Xkc(N) = λkc
G(N− 1c)

G(N)

for 1 ≤ c ≤ C, 1 ≤ k ≤ K,N ≥ 1c

(4.9)

where λkc is the arrival rate of class c customers at station k and G(N− 1c) is the normalisation
constant of the network with one class c customer removed.

Since we already have G(N) from the previous stage of the algorithm, G(N− 1c) is the
only constant left to calculate. In order to calculate G(N− 1c) for all possible classes c, two
methods are suggested in [21]:

1. Considering a customer class c that is partially covered by a station k, we find the node
higher up the tree at which class c becomes fully covered. Convolution is then performed
at this node to compute the g-array for population Nc − 1. Additional convolutions are
then performed sequentially along the path from the node to the root in order to calculate
G(N− 1c). If class c becomes fully covered immediately at a leaf node, then the g-array
of station k can be obtained from the previously stored g-array at this leaf node using the
following relation:

g{k}(ipc)←
u(nk)Nc

nkDkc
g{k}(ipc)

for ipc, where 0 ≤ ic ≤ Nc, c ∈ σpc
(4.10)

2. The second method suggested is to compute the normalisation constants G(N− 1c) for c
in the range [1, C] during the same tree traversal that we compute G(N). In practice this
means that at each node in the tree we compute a g-array for population N and several
g-arrays for population N− 1c, one for each class c in the set of fully covered classes at
the node. At the root node we will then be able to obtain G(N) and G(N− 1c) for c in
the range [1, C].

4.1.5.2 Mean Queue Lengths

The average number of class c customers at station k can be computed as: [21]

Qkc(N) =


0 if c is noncovered by k

Nk if c is fully covered by k

Dkc
Gk+(N− 1c)

G(N)
if c is partially covered by load independent station k

(4.11)
for any station k in the range [1, K], any class c in the range [1, C] and N ≥ 1c. Where
Gk+(N− 1c) is the normalisation constant of the network with one class c customer removed,
computed from a tree in which station k occurs twice at two leaf nodes (i.e. a clone of station
k is made).

40

For load dependent stations the average station population for a particular class of customer
can be computed from the marginal distribution of queue lengths at a station k, which can be
obtained from: [21]

pk(nk) =
pk(nk)Gk−(N− nk)

G(N)
(4.12)

for any station k in the range [1, K] and 0 ≤ nm ≤ N. Where Gk−(N− nk) is the normalisation
constant obtained from the original tree with station k removed.

Below we outline strategies which can be used to compute Gk+(N− 1c) and Gk−(N− nk),
assuming for now that the g-arrays obtained during the computation of G(N) are stored in
memory: [21]

Figure 4.2: Summary of how the normalization constants Gk+(N− 1c) and array Gk−(N− nk)
can be computed. The dashed arrows indicate the route taken and the label ‘g’ indicates which
nodes we need g-arrays for. Note that for Gk+ we require (log24)+1 ≡ 3 convolution operations
and for Gk− we require (log28)− 1 ≡ 2 convolution operations.

1. Gk+(N− 1c) - is the normalization constant for a modified version of the initial tree in
which station k is cloned and one customer of class c is removed from the population. It is
required in order to compute the mean queue lengths for load independent stations. After
station k is cloned, a customer class which was originally fully covered by k will now only
be partially covered by k, but fully covered by k and k’s clone together. Gk+(N− 1c)
can be calculated by reevaluating the convolutions along the path in the tree from station
k to the root node, which will require (log2K) + 1 convolution operations in a balanced
tree. In fact Gk+(N− 1c) must be calculated for every class c which is partially covered
by k. One way of achieving this, if we have some extra space, is to compute Gk+(N− 1c)
for all required classes c at the same time by calculating and storing multiple g-arrays at
each node.

2. Gk−(N− nk) - is the normalization constant which can be computed from the initial
tree with station k deleted and is required to compute the marginal distribution of queue
lengths in load dependent stations. The side effect of removing k from the tree is that
all customer classes which were covered by station k now remain partially covered at the
root node and so Gk− can be considered to be an array indexed by ic = 0, 1, . . . , Nc for all
customer classes c that were partially covered by station k. Gk− is found by recalculating

41

the convolutions along the path between station k and the root node, which for a balanced
tree requires (log2K)− 1 convolution operations.

4.1.6 Space-Time Trade-offs

When describing the methods we can use to calculate the normalisation constants above, we
assumed that the g-arrays from the computation of G(N) were stored in memory. However,
the calculation of each extra normalisation constant for each customer class and station can be
computed using about the same amount of space as the initial calculation of G(N). Therefore
if memory is limited, we could reuse the same space for each computation, allowing the time
requirement to to increase to (K + 1)C times the time requirement of computing G(N). On
the other hand, if extra space is available then we can make a space-time trade-off by using
the additional space to partially or fully store the g-arrays from the computation of G(N)
and also compute multiple normalisation constants at the same time as suggested above. This
would enable the constants to be calculated without having to fully traverse the tree each time,
leading to savings in time. In particular [21] notes that in practical cases they found that modest
investments in space often led to significant time savings. If only a subset of the g-arrays can
be stored in memory then their storage should be prioritized at nodes closer to the top of the
tree, since these are the most frequently accessed. [21]

4.1.7 Complexity Analysis

During the preprocessor stage the space and time requirements for the planted tree can be
approximated as follows: [21]

• Time complexity - The total time required to compute G(N) can be found by summing
the time requirements to compute the g-arrays for the K leaf station nodes (given by
equation (4.4)) and the K− 1 non-leaf subnetwork nodes (for which the time requirement
is given by (4.2)). The total time required to compute specific performance measures after
calculating G(N) may be significantly higher than the time required to compute G(N),
depending on the space-time trade-offs used. So this must also be taken in account.

• Space complexity - The total amount of space required to compute G(N) is the maxi-
mum amount of space required to store the intermediate g-arrays at the same time. The
number of g-arrays which need to be stored in parallel depends on the tree traversal order.
However, the number of arrays itself is not enough to provide an accurate space estimate
since the partially covered arrays at each node are of different sizes. So both of these fac-
tors should be taken into account to get an accurate estimate for the space requirements.
The total amount of space required to compute specific performance measures after cal-
culating G(N) will be approximately the same as the space required for computing G(N),
so the space can be reused if memory is limited.

4.1.8 Algorithm Pseudocode

Below is the high-level pseudocode for the complete Tree Convolution algorithm we have de-
scribed. For all customer classes c in range [1, C] and stations k in range [1, K], the ‘inputs’
include STATIONS(c) (the set of stations at which a class c is serviced), Nc (the population of
class c), Dkc (the service demands matrix), and uk (the service rate of station k).

42

Algorithm 4 High-level pseudocode for Tree Convolution algorithm [21].

1 /** Runs the Tree Convolution algorithm. */

2 function runTreeConvolution(inputs) {

3

4 // 1: Preprocessor stage

5 suitableTreeFound = false;

6 int round = 0;

7 while(!suitableTreeFound) {

8 binaryTree = plantTree();

9 suitableTreeFound = treeHasAcceptableComplexity(binaryTree);

10 if (!suitableTreeFound && round > MAX_ROUND) terminate algorithm early;

11 round++;

12 }

13

14 // 2: Normalisation constant calculation stage

15 Define/decide time-space trade-offs;

16 Postorder tree traversal on binaryTree to compute G(N);

17

18 // 3: Performance measure calculation stage

19 Compute additional normalisation constants;

20 Compute performance measures using normalisation constants;

21

22 return performance measures;

23 }

4.2 Tree MVA (TMVA)

Inspired by Lam and Lien’s approach to developing the Tree Convolution algorithm a technique
called Tree MVA (TMVA) was developed independently by Tucci in 1985 [34] and Hoyme et al.
in 1986 [17]. The TMVA algorithm makes use of Lam and Lien’s ideas summarised previously
in section 4.1.1, but it is also influenced by the hierarchical MVA approach outlined by Sauer
in [30]. TMVA, like Tree Convolution, exploits a network’s routing information to substantially
decrease the computational complexity (both in space and time) of computing performance
measures in sparse multi-class networks, when compared to the sequential MVA algorithm [34].

4.2.1 Algorithm Overview

The algorithm has a similar structure to the Tree Convolution algorithm in that it can be
separated into two stages; the preprocessor phase and the merging phase. The preprocessor
phase is essentially the same as before except that after planting a tree the estimated time and
space complexities will be calculated differently due to the fact that the main merging phase is
different. However, the goal of the tree planting phase is still to find a binary tree which will
maximise the efficiency of running the core TMVA algorithm.

The merging phase for TMVA is conceptually simpler than for Tree Convolution since it
only requires one traversal of the tree in order to compute all performance measures (rather
than having to compute the normalization constant and performance measures independently).
It should also be noted that the approaches presented by Hoyme in [17] and Tucci in [34]
are slightly different in that Hoyme starts by initializing the leaf nodes and then applying the
TMVA equations for all subnetwork nodes, whereas Tucci first applies sequential MVA to the
bottom-most node pairs before applying the TMVA equations to all higher levels of the tree.
While implementing the algorithm, both variations were attempted and Tucci’s approach was

43

found to be the fastest for most practical cases. In view of this we present Tucci’s version of
the algorithm here, though some of the notation is borrowed from Hoyme due to its terseness.

Whilst the sequential MVA approach cannot exploit routing information due to the fact
that the entire network is analysed in one pass within the inner level of the algorithm, TMVA
introduces a commutative merge operation (in a similar fashion to the commutative convolution
operator), which allows this exploitation to occur. At the heart of this operation is a function
known as a station service function which is simply defined as the reciprocal of the throughput
at a subnetwork node: [17]

SA,c(n) =
1

XA,c(n)
(4.13)

where A represents a subnetwork, c is the class and n is the population vector. By using
this function in conjunction with the Forced Flow Law for two subnetworks, A and B, the
flow-equivalent throughput can be computed without having to evaluate intermediate through-
puts for individual stations. Note that the flow-equivalent throughput at a subnetwork is the
throughput when the service demands for all stations outside of the subnetwork are set to zero
[21]. Thus TMVA is able to use this approach to efficiently compute performance measures, a
subnetwork at a time, until performance measures are acquired for the whole system. The merg-
ing of subnetworks in this fashion can be explained through the analogy of Norton’s Theorem
for DC circuits, which states that two terminals can be substituted for an equivalent current
source. Chandy proves that this idea also holds for queueing network models in [10]. [34]

A detailed description of the merging phase is given below: [34, 17]

1. Initial step - The leaf nodes of the tree, representing individual stations, are considered
in pairs. For each pair a merge step is done by applying the sequential MVA algorithm
directly, using the equations outlined in section 3.2.5. The results of merging a single pair
are stored at the pair’s parent node, which represents an aggregate/composite station. So
if initially the tree has K (= 2p) stations as leaves, after the initial step there will be 2p−1

composite stations at the level above.

2. Merging of aggregate stations - Once the initial step is complete, the throughput and
mean queue length results stored in the aggregate station nodes are used to perform a
further merge step. Once again the aggregate stations are taken in pairs. For the sake
of simplicity we consider a single pair of aggregate station nodes, A and B. Their parent
node, which will eventually store the aggregate results after merging A and B, is referred
to as AB.

The residence time for class c at subnetwork A is given by:

RA,c(n) =
n∑

k=1c

kcSA,c(k)pA(k− 1c,n− 1c) (4.14)

where kc is the the number of class c jobs in vector k, SA,c is the service function defined
by equation (4.13) and the marginal probability function pA(k,n) gives the probability
that k jobs reside in subnetwork A when there are n jobs in the whole system.

The function pA(k,n) is defined as:

pA(k,n) = xAB,c(n)SA,c(k)pA(k− 1c,n− 1c) (4.15)

where xAB,c(n) is the throughput at the parent node AB for population n and c is chosen
such that kc > 0. In order to avoid numerical instability problems when k is a zero-vector
is is also defined that:

pA(0,n) = xAB,c(n)SB,c(n)pA(0,n− 1c) (4.16)

44

and additionally, pA(0,0) = 1. The above equations can also be applied to subnetwork
B by simply switching A for B. Once the residence times at both A and B have been
computed the per class throughput at the parent node AB can be obtained via Little’s
Law:

XAB,c(n) =
nc

RA,c(n) +RB,c(n) (4.17)

Equation (4.13) can then be applied on AB to get the service function for the parent
node.

The calculation of per station mean queue lengths for AB is simpler and involves adjusting
the mean queue lengths computed at A and B to take into account the presence of the
other subnetwork using the marginal probability function we have already defined. The
equation is:

Qm,AB,c(n) =

n∑
k=0

Qm,A,c(k)× pA(k,n) (4.18)

where Qm,AB,c(n) is the mean queue length at subnetwork AB for station m ∈ A, class
c, and population vector n. Again this can also be applied similarly for subnetwork B.

This process is repeated so that we obtain networks with 2p, 2p−1, . . . , 20 composite sta-
tions. The results at the root node can then be used to calculate performance metrics for
the original network.

One important point to notice is that although the equations above appear to show sum-
mations over the entire state space of a network, in the actual implementation we only iterate
over the partially covered classes which are common to both child subnetworks A and B. The
fully covered classes are not iterated over since we know that all jobs in a fully covered class
are restricted to the subnetwork represented by the node under consideration and hence can be
set to the maximum population for that class. Thus for sparse networks, in which the number
of partially covered classes at any given node will be small, the TMVA merge algorithm will be
highly efficient.

4.2.2 Potential Optimisations

There are a few potential optimisations for the algorithm we have presented so far which are
alluded to by both Tucci and Hoyme. First of all we can avoid having to compute the function
p(k,n) for both subnetworks A and B by taking into account the relation: [17]

pA(k,n) = pB(n− k,n) (4.19)

Hence we only need to compute pB(k,n) as this relation can be substituted into the main
algorithm equations presented above so that all equations are in terms of pB(k,n). Furthermore
we can store the results of pB(k,n) temporarily so that they can be reused, for example in
equations (4.14), (4.15) and (4.18).

Another optimisation is possible when an aggregate station is to be merged with a single
load-independent station. In this case the residence time for the leaf node station L can be
simplified to: [34, 17]

RL,c(n) = Dm,c(1 +Qm,L(n− 1c)) (4.20)

where Qm,L(n) =
∑C

c=1Qm,L,c(n) and Dm,c is the service demand for station m and class c.

45

4.2.3 Complexity Analysis

Considering a network with K stations and C customer classes, we have to apply the merging
process outlined above K − 1 times. For each of these applications, the pair of stations being
combined must be solved X times where X is the number of combinations of populations in the
set of common partially covered classes from the two child nodes. If we let the partially and fully
covered classes at a node be represented by σpc and σfc as before, then for each pair of stations
and each population combination, the time complexity is of the order 2(|σfc|)

∏
c∈σfc(Nc + 1).

If there are no fully covered classes at the node then we assume that this equation evaluates to
1. If the pair of stations is visited by partially covered classes contained in σpc then the pair
has to be solved

∏
c∈σpc(Nc + 1) times in order to calculate all combinations. Therefore, if the

TMVA equations are applied at p− 1 levels in the tree and there are 2l−1 station pairs at each
level l, then the total time requirement is given by: [34]

p∑
i=1

2p−i∑
j=1

 ∏
c∈σp−i

pc,j

(Nc + 1)


2(|σp−ifc,j |)

∏
c∈σp−i

fc,j

(Nc + 1)

 (4.21)

where σppc,j and σpfc,j represent the partially and fully covered classes respectively at station
j, from level p in the tree.

A similar expression also gives the space complexity. In fact one advantage of using a tree
data structure is that it makes various space-time trade-offs possible for different models, as
we discussed for Tree Convolution, and allows the integration of storage management for very
large models [21]. It should be noted that although TMVA has the potential to significantly
increase the number and size of models that can be solved exactly, it cannot solve all models
and so the study of approximate approaches (AMVA), as outlined in section 3.2.6, is still worth
pursuing. This leads us to another benefit of TMVA which is that it allows the results provided
by approximate techniques to be validated over a larger set of models than was possible with
sequential algorithms, without having to resort to simulation techniques [21].

4.2.4 Algorithm Pseudocode

Below is the high-level pseudocode for the Tree MVA merge operation we described between
two subnetworks A and B, assuming that any values for p(k,n) are reused where appropriate:

Algorithm 5 High-level pseudocode for TMVA merge operation [17].

1 function TMVAMerge(A, B) {

2 for (each population vector between 1 and N) {

3 compute residence times at A and B using equation (4.14);

4 compute throughput of merged AB using equation (4.17);

5 use throughput to compute service function at AB using equation (4.13);

6 for (each station in AB) {

7 Adjust mean queue length in AB using equation (4.18)

8 }

9 }

10 }

46

4.3 Tree Planting

A primary consideration when looking at both the TMVA and TC algorithms outlined so far is
that the algorithms’ time and space complexity depends very much on the model we are trying
to solve and on how this model is laid out within a binary tree. For this reason we saw that the
initial phase of the algorithm, referred to as the preprocessor stage, is concerned with finding
a tree configuration which will minimize the computational cost of running the main phase of
the algorithms. The ‘tree configuration’ refers to the overall tree structure, the positioning of
stations at leaf nodes in the tree and the order in which the tree should be traversed for optimal
results. The preprocessor uses information about the queueing network model we want to solve,
such as service demands, the population vector N, and routing data, in order to optimise this
configuration. Unfortunately no efficient algorithm has been found to solve this optimisation
problem exactly, however many effective heuristics exist. [21]

Regardless of the heuristics used, the tree planting procedures suggested by Lam and Lien
always follow the same basic pattern. First of all, we start with our K stations which are set
as the leaf nodes in the tree we are trying to build. For each station we calculate the set of
partially covered customer classes. If we find two sets of partially covered classes such that one
set is a subset of the other (this is referred to as a superset relationship in [21]) then the two
stations corresponding to these sets are merged i.e. a new node is formed at the level above. If
no more superset relationships can be found then the nodes are merged depending on a costing
procedure, with the precise implementation depending on the heuristic we choose to use. This
process is then repeated at each level of the tree until we reach a single root node. [21]

When there are no longer any superset relationships we must use a heuristic to select two
candidate nodes for merging. The first candidate can be selected by finding the subnetwork
with the greatest weight. Consider a subnetwork A and a set σpc which contains the customer
classes partially covered by A, then the weight of A can be defined: [21]

weight(A) =
∑
c∈σpc

|STATIONS(c)−A| (4.22)

Once the first candidate has been selected by weight, we then select a second candidate to
minimise a costing function. If we let A be the selected first candidate and B be a potential
second candidate then we can define a costing function as:

Algorithm 6 Example costing heuristic for tree planting [21].

1 /** Computes cost of merging two nodes A and B.

2 * @param A The first candidate node.

3 * @param B The potential second candidate node.

4 * @return The cost of merging the nodes.

5 */

6 function cost(A, B) {

7 cost = 0;

8 for (each c in Bs set of partially covered classes) {

9 if (c is not covered by A) cost=cost+1;

10 else if (c is partially covered by A && not fully covered by AUB) cost=cost-1;

11 else if (c is partially covered by A && fully covered by AUB) cost=cost-2;

12 }

13

14 return cost;

15 }

Below we give the pseudocode for a tree planting algorithm suggested by Lam and Lien which
can be used to plant a balanced binary tree. (This algorithm assumes that K, the number of

47

stations, is a power of 2 for simplicity however the actual implementation works for any number
of stations):

Algorithm 7 High-level pseudocode for tree planting [21].

1 function plantTree() {

2 initialise tree with K stations as leaves;

3 for (each level of the tree from leaves to root) {

4 perform superset merges;

5 sort unmerged subnetworks by weight in descending order;

6 mark all unmerged subsets;

7 while (there are marked subsets) {

8 first merge candidate A

9 = heaviest marked subset as defined by equation (4.22);

10 second merge candidate B

11 = marked subset B such that cost(A, B) is minimised;

12 merge the two candidates into single unmarked subset at level above;

13 }

14 }

15 }

If there is more than one marked second candidate node which minimises cost(A, B) then
the tie is broken first by weight and then by random choice. The space and time requirements
of the preprocessor stage itself (i.e. the tree planting and complexity evaluation phases) are
negligible compared to the main stages of both TMVA and TC algorithms.

48

Chapter 5

Design & Implementation

In this chapter we describe the main contributions of this project and discuss in detail the
implementation and architectural decisions that were made. Since this project was integrated
into an existing software solution, we also cover some of the software engineering aspects of the
design. In particular, we focus on how the solution was designed to be extensible, maintainable
and testable.

5.1 Existing JMT Architecture

In order to aid in understanding, we first give an overview of the existing software architectures
in place. Since JMT is a large and ongoing project, we only focus on parts of the codebase
which were modified during this project. JMT has been designed so that the core analytical
and simulation engines are separated from the GUI by an XML abstraction layer. This makes
the system very flexible and simple to test, since the underlying solvers can be called directly
from the commandline by passing in an XML file representing the model to be solved. This
modular design also allows for reusability, since the analytical and simulation engines are not
strongly bound to the JMT front-end.

Figure 5.1: JMT basic architecture.

The main packages and classes within JMT that concern this project are described below:

• gui.exact package - This package contains all the code for the JMVA GUI interface.
The key classes are:

– ExactWizard - This class is the entry point to JMVA’s GUI and essentially defines
the actions that are run for each of the buttons within the JMVA model input wizard.

49

– ExactModel - This class represents the queueing network model that is to be solved.
In addition to the model inputs (such as station, class and service demand informa-
tion) it can also store the results for a particular model for several algorithms over
many iterations (if ‘what-if’ mode is used). Importantly the class has the functions
createDocument() and loadDocument() which are capable of exporting or import-
ing respectively to an XML representation of the model. By using this functionality
models can be passed back and forth across the XML layer as required.

– SolverClient - Once the user has input their model and clicked on ‘solve’, a SolverClient
object, implemented within the gui.exact.link package, is invoked. An ExactModel

object, representing the current model, is passed to the SolverClient which then
calls createDocument() to create an XML representation of the model. This XML
file is then saved as a temporary file, ready to be passed to a SolverDispatcher

which is contained within the analytical engine itself (see below). On completion,
the solver within the analytical engine updates the temporary XML file to contain
the results. The SolverClient therefore waits for the solver to finish and then re-
turns the temporary XML file to the ExactModel instance which can then show the
results to the user in a solution window. Thus the SolverClient is essentially the
link between the JMVA GUI and the underlying analytical engine.

• analytical package - This package contains all of the solver instances which can be used
to solve queueing network models and also a dispatcher which is responsible for invoking
the correct solver. The most important classes are:

– SolverDispatcher - This class is called by the SolverClient when the user requests
that a model within JMVA be solved. On receiving this call, the SolverDispatcher

populates a new ExactModel instance using the temporary XML file containing the
model information. Depending on the model type (open, closed, what-if, single or
multi-class) and also on the algorithm selected by the user, the SolverDispatcher

creates an appropriate solver instance and forwards the request to this solver. Once
the solver has completed its calculation of performance measures, the SolverDispatcher
populates the ExactModel instance with the results, ready to be converted back into
XML format and sent across to the SolverClient.

– Solver Classes - Each solver has its own class within the analytical package, with
most of the solvers being further separated into multi and single class versions, corre-
sponding respectively to the MultiSolver and Solver abstract classes in the package.
For example, the MVA algorithm is implemented in a class called SolverSingleClosedMVA,
which extends Solver and is capable of solving closed single-class models. There is
also a SolverMultiClosedMVA class, which extends MultiSolver and is capable of
solving closed multi-class models. Other solvers include implementations of AMVA
methods such as AQL, Bard-Schweitzer, Chow and Linearizer as implemented in [13]
by Chugh. Also included are classes which link to the MoM, CoMoM and RECAL im-
plementations contained in the JCoMoM package, some of which were implemented
in [3] by Bradshaw.

50

Figure 5.2: JMVA high-level lifecycle.

5.2 Bounding Solvers Implementation

In this project all of the bounding techniques discussed in section 3.1, namely Asymptotic
Bounds (ABs), Balanced Job Bounds (BJBs) and Geometric Bounds (GBs), were implemented
for closed, single-class models and integrated into JMVA. In addition ABs and BJBs were also
implemented for multi-class models (GBs are currently only theoretically possible for the single-
class case). In the following subsections we discuss the changes that were made to achieve this
and highlight some of the implementation challenges.

5.2.1 Single-class Bounding Solvers Architecture

The single-class AB, BJB and GB solvers themselves each extend a new abstract class called
BoundsSolver and were added to the analytical package with the other solvers. The class
structure of the new bounds solvers is shown in Figure 5.3.

Figure 5.3: Structure of single-class bounds solver classes.

51

The BoundsSolver parent class holds all model input data, for example the number of
stations and their service demands, and also holds the outputs, including the various bounds on
performance. As shown in the diagram, the bounds are represented by a simple Bound object
which stores the lower and upper bounds.

For each bounds solver the solve() method first calls initialSetup(), which in each case
carries out some preliminary calculation which is necessary for obtaining the bounds. solve()
then calculates the throughput bounds (and for GBs also the queue length bounds) before
calling calculateAdditionalBounds(), which applies simple laws (such as Little’s Law and
the Forced Flow Law) in order to obtain bounds on the other performance measures, such as
residence times, queue lengths and utilisations.

5.2.2 AB Solver

In the AB solver initialSetup() calculates Z, the total delay of all delay stations, Dsum,
the sum of the service demands, and Dmax, the maximum service demand. The subsequent
calculation of throughput bounds is then a trivial implementation of equation (3.3). Once the
system throughput bounds have been obtained, the remaining bounds on performance indices
are obtained as follows:

• Utilisation bounds at each station k are obtained by multiplying the service demand
at k, Dk, by the corresponding throughput bound, since Uk = XDk (obtained from
Utilisation Law and Forced Flow Law).

• Throughput bounds at each station k are obtained by multiplying the visits at k by
the corresponding throughput bound, since Xk = VkX (Forced Flow Law).

• Residence time bounds at each station k are obtained by applying the MVA formula
Rk(N) = Dk(1 + Qk(N − 1)) for the bounding queue lengths. For ABs the limiting
queue lengths are considered to be 0 (lower bound) and N (upper bound). Therefore, the
lower bound for Rk(N) is given by Dk(1 + 0) = Dk, and the upper bound is given by
Dk(1 +N − 1) = Dk ×N .

• Queue length bounds at each station k are obtained by multiplying the bounds on
system throughput by the residence time bounds for station k, following the equation
Qk = XRk.

• System queue length bounds and response time bounds are obtained simply by
summing the per station queue length bounds and residence time bounds respectively.

5.2.3 BJB Solver

The BJB solver has two modes of operation, since there are two possible ways of obtaining
single-class BJB bounds. If the local boolean useAverageDemand is set to true, then the BJBs
are calculated based on the average service demand using equation (3.8) (but extended to take
into account the total delay Z). On the other hand if useAverageDemand is false, then the BJBs
are calculated based on the minimum and maximum service demands using an extension of
equation (3.5). In general, the BJBs based on average demands will provide tighter bounds
for single-class models and are therefore used as the default for this project. However, for
multi-class models the minimum/maximum service demand approach must be used (see section
5.2.5).

In view of these two modes of operation, the BJB solver calculates Dmin, the minimum
service demand, and Davg, the average service demand, during the initial setup, in addition to
the standard values outlined for the AB solver. The bounds on other performance measures

52

are calculated in a similar fashion to the AB solver, however BJBs cannot be obtained for per
station queue lengths and residence times.

5.2.4 GB Solver

The GB solver, which was a main focus for the first part of this project, is slightly more complex
than the other solvers due to the nature of the bounding equations. Unlike the other two solvers,
both the system throughput and per station queue length bounds are calculated directly. The
algorithm for calculating per station queue lengths is shown in algorithm 8 and is based on the
equations (3.12) and (3.13).

Algorithm 8 Calculating of per station queue length GBs in Java

1 /** Calculates per station queue length GBs.

2 * @param N The population.

3 * PRE: D is an array containing the service demands,

4 * Z is the total delay,

5 * Dsum is the sum of the demands,

6 * Dmax is the maximum demand,

7 * Xmin/Xmax are the minimum/maximum possible throughputs (from BJB solver),

8 * mmax is the number of stations with the maximum demand Dmax. */

9 private Bound[] calculatePerStationQueueLengthGBs(int N) {

10 Bound[] Qtmp = new Bound[stations];

11 double Qu_sum = 0.0;

12 double Ql_sum = 0.0;

13 ArrayList<Integer> maxStationIdxs = new ArrayList<Integer>();

14

15 // Calculate queue length bounds for stations with submaximal service demands.

16 for (int k = 0; k < stations; k++) {

17 if (D[k] < Dmax) {

18 double ykn = D[k]*N/(Z + Dsum + Dmax*N);

19 double Ykn = D[k]*Xmax;

20 Qtmp[k] = new Bound();

21 Qtmp[k].LB = (ykn/(1-ykn)) - (Math.pow(ykn, N+1)/(1-ykn)); // Lower bound

22 Qtmp[k].UB = (Ykn/(1-Ykn)) - (Math.pow(Ykn, N+1)/(1-Ykn)); // Upper bound

23 Ql_sum += Qtmp[k].LB;

24 Qu_sum += Qtmp[k].UB;

25 }

26 else {

27 // Prestore indices for stations with max service demand.

28 maxStationIdxs.add(k);

29 }

30 }

31

32 // Calculate queue length bounds for stations with max service demand.

33 if (!maxStationIdxs.isEmpty()) {

34 double maxLB = (N - Z*xmax - Qu_sum)/mmax;

35 double maxUB = (N - Z*xmin - Ql_sum)/mmax;

36 if (maxLB < 0) maxLB = 0;

37 for (int k : maxStationIdxs) {

38 Qtmp[k] = new Bound(maxLB, maxUB);

39 }

40 }

41

42 return Qtmp;

43 }

53

Note that some parts of the actual implementation, such as the calculation for delay stations,
have been omitted from the above algorithm for clarity. The calculation of throughput bounds
follows a similar format to implement equations (3.17) and (3.18).

In order to obtain tighter GBs, it should be noted that Xmin and Xmax are obtained from the
BJB solver’s throughput bounds. However, to reduce the cost of calculating Xmin and Xmax, a
flag is set within the BJB solver so that it only calculates the throughput bounds but does not
compute bounds for other performance measures, since they are not required in this case.

The calculation of additional GBs on the other performance measures are obtained using
the principles outlined for the AB solver. However, when applying the MVA equation to cal-
culate residence times, the per station mean queue length bounds, calculated using the above
algorithm, can be substituted in rather than assuming the limiting queue lengths are 0 and N
as we did for the ABs. This gives much tighter bounds on per station residence times and hence
also on aggregate response time.

5.2.5 Multi-class Bounding Solvers Architecture

Versions of the AB and BJB solvers were also implemented to handle multi-class models. The
class structure of these bounds solvers is shown in Figure 5.4.

Figure 5.4: Structure of multi-class bounds solver classes.

The overall structure of these solvers is the same as for the single-class case. The only
difference is that the bounding equations are expanded to give bounds on a per station per
class basis. Aggregate results can then be obtained for per class, per station or whole system
measures. We do not discuss the individual implementations further as they are very similar to
the single-class bounding solvers already discussed.

5.2.6 Integration with JMVA

The most challenging part of implementing the bounds solvers was integrating them into the
existing JMVA architecture. This was due to the fact that all of the preexisting data structures
were designed to support algorithms which produce one result per performance measure, whereas
bounding algorithms produce two results; the upper and lower bounds. In view of this, suitable
data structures had to be introduced to facilitate the introduction of the new bounding class of
algorithms. In addition, there were some non-trivial GUI modifications that had to be made,
including the creation of new results panels capable of displaying bounding results and also the
graphical representation of bounds in JMVA’s ‘what-if’ mode.

54

In particular the following modifications were made:

analytical package

• The SolverAlgorithm enum class, which defines all of the algorithms used in JMVA, was
modified to include the new bounding algorithms. This involved creating a completely
new ‘bounding’ class of algorithms, which will also allow the addition of more bounding
algorithms in the future.

• The SolverDispatcher was also modified to ensure that the new bounding solvers could
be accessed from JMVA. If the SolverDispatcher receives a request to solve a model
and the associated ExactModel object specifies that it should be solved using a bounding
algorithm, then the correct solver is instantiated within the SolverDispatcher, initialised
with the model values, and invoked.

gui.exact package

• The ExactModel class was modified so that it could store bounding results. This was done
by adding a series of Java Maps, each mapping an algorithm type to the set of bounding
results for a particular performance measure. This echoes the current data structures used
for non-bounding results, and ensures that a single ExactModel object can store results
for multiple algorithms.

• The XML schema, which specifies the structure of model XML files that are passed across
the XML abstraction layer, had to be modified to allow the inclusion of bounding results.

• Several new GUI panel implementations were added to the panels subpackage. Since
the bounding results could not be formatted to fit into any existing results panels, a new
solution panel was added for each performance measure. These new panels are capable of
displaying both the upper and lower bounds.

• The most complex GUI modification was carried out on the GraphPanel, which is re-
sponsible for displaying a results graph after ‘what-if’ analysis has completed in order to
show the results of running an algorithm several times over a range of parameters. Again,
due to the duality of bounding results, the graph was modified so that it is capable of
displaying both upper and lower bounds for a single performance measure.

• Finally the logic which manages the creation of solution windows in the ExactWizard

class was modified to ensure that the new bounds-specific panels are displayed when a
model has been solved using bounding algorithms.

55

Figure 5.5: Graphical bounds comparison.

Figure 5.6: Textual bounds results in what-if mode.

5.2.7 Testing and Validation

A series of jUnit tests were added to JMT’s test.analytical package. The tests were sepa-
rated into two classes, TestBoundingSolvers, for testing the single-class bounds solvers, and
TestBoundingSolversMulti, for testing the multi-class solvers. Each class contains tests over
a variety of different networks with varying service demands and populations. Both testing
classes can be configured to run the tests over all bounding solvers, or just a specified subset.
For each test, the network is first solved using JMVA’s existing MVA algorithm and then by
the bounds solver under test. We then check that the results from the bounding solver bound
the exact results obtained from the MVA algorithm.

56

5.3 Tree Algorithms Implementation

One of the main goals of this project was to implement both the Tree Convolution (TC) and
Tree MVA (TMVA) algorithms. For an overview of the theoretical concepts underpinning these
algorithms see section 4. In this section we focus on the design and implementation of the
solutions. We also take an in-depth look at of some of the alternatives and optimisations that
were tried in order to improve the performance of the algorithms.

5.3.1 Solution Architecture

Before we proceed it should be noted that the core implementations of both the TC and TMVA
algorithms were implemented within the JCoMoM package, not directly within JMT, for the
reasons mentioned in section 2.4. However, a JAR file containing the binaries for the JCoMoM
library is included within the JMT open source distribution, so the solvers implemented within
the JCoMoM library are still accessible from JMT, though the source code is not visible.

5.3.1.1 Existing JCoMoM Architecture

We first summarise the roles of the JCoMoM subpackages we are interested in for this project
and describe the high-level changes that were made in each case:

• Control - This subpackage contains the main entry point class for the commandline
interface. This was modified so that the TC and TMVA algorithms can also be accessed
from the commandline. A few new options were added to the tool and these are discussed
in more detail in section 5.3.10.

• DataStructures - This subpackage contains the various data structures used to implement
the existing algorithms. This includes a BigRational class which uses two BigIntegers

(Java built-in type) to represent any rational number. There are also several data struc-
tures for representing various types of vectors, such as population vectors. The most
important class in this subpackage is QNModel, which is used to store all the information
about a model (such as service demands, number of classes etc.) and also the results after
a model has been solved, in particular the throughputs and per station queue lengths
(since all other performance measures can be derived from these).

• QueuingNet - This subpackage contains all of the previously implemented algorithms, in-
cluding solvers for standard Convolution, MoM, CoMoM and RECAL. The Tree Convolu-
tion and Tree MVA algorithms were implemented in a new TreeAlgorithms subpackage
within QueuingNet.

• Utilities - This subpackage contains various useful utility classes, for example methods
for computing factorials, printing matrices and copying arrays. A useful Timer class
allows algorithms to be easily timed, providing a simple way of testing and comparing
performance. In this project a new class for generating random networks was added to
the Utilities package, see section 5.3.9 for more details.

5.3.1.2 Overview of new TreeAlgorithms package

As mentioned, the actual implementation of the TC and TMVA algorithms reside within a
new TreeConvolution subpackage. While studying the two algorithms it became clear that
certain aspects were similar and so an effort was made to design the code in such a way that the
common elements were easily reusable in both algorithms. In terms of package organisation, all

57

classes which are common to both algorithms reside at the top level, while algorithm-specific
classes are placed within two further subpackages called TMVA and TreeConvolution.

Figure 5.7 below shows the overall structure of the TreeAlgorithms package. As can be
seen, both algorithm implementations are split up into several smaller modules in order to
increase the testability and extensibility of the solution, so each module can easily be swapped
for another implementation or mocked for testing purposes. Additionally a consistent, almost
symmetrical, structure is used for both algorithms to keep the design simple, maintainable and
accessible to anyone who works on the codebase in the future.

Figure 5.7: Structure of new TreeAlgorithm package (pink items are common to both algo-
rithms, grey items are from the existing codebase).

Each subpackage follows a similar hierarchical pattern in which the classes gradually get
more specific and fine grained as the dependency chain is followed. At the top of this chain are
the TreeConvolutionSolver and TreeMVASolver classes which are the main entry points for
the TC and TMVA solutions respectively. Both of these classes were deliberately kept simple
and are mainly responsible for instantiating the required components, mainly the TreePlanter

and relevant single or multi class solver (depending on a ‘number of threads’ parameter passed
into the constructor). The main solver class then simply delegates to these classes as required
in order to solve the model that is passed in.

At the lower levels of the dependency chains are the ConvolutionLayer, ConvolutionCore,
and TMVACore classes. These are highly algorithm specific and implement the core elements
of each algorithm. In the following sections we look at the responsibilities of each class and
demonstrate how the solution fits together as a whole. We start with the aspects common to
both TMVA and TC algorithms, including the preprocessor stage and tree traversal, before
moving onto the technical details specific to each algorithm.

58

5.3.2 Algorithm Configuration

In order to centralise all of the user-definable options for the TC and TMVA algorithms a
Config class was created which contains various static variables for defining how the algorithms
should run. It contains boolean flags for general settings, such as for turning on/off console
and file logging, in addition to algorithm specific settings, such as which tree planting mode to
use and whether to use iterative or recursive tree traversal. Optional parts of the algorithms,
such as feedback filtering for Tree Convolution, can be switched on or off easily. The intention
behind this class is to allow different variants of the algorithms to be compared easily; simply
by changing the required flags, rather than having to modify any of the algorithms’ core logic.

5.3.3 Preprocessor Stage

As outlined in section 4 the preprocessor stage is the initial setup phase for both the TMVA and
TC algorithms and has a relatively low complexity compared to the main performance measure
calculation stages. The preprocessor stage can be further divided into the tree planting stage,
implemented by the TreePlanter class, and the complexity evaluation phase, implemented by
the abstract ComplexityEvaluator class and its algorithm-specific subclasses. As can be seen
from figure 5.7 above, the classes concerned with preprocessing are shared by both algorithms,
which is why we discuss them first.

5.3.3.1 TreePlanter

The TreePlanter class implements the initial tree planting phase for both TC and TMVA
algorithms. The theoretical background for heuristic tree planting was discussed in section 4.3,
so we focus here on the implementation details. The main method within the TreePlanter is
runTreePlantingPhase() which is shown in Algorithm 9 below. It can be seen that the tree
planting phase consists of two main stages; firstly a tree is planted using one of the implemented
methods (lines 17-33), and secondly the tree planter delegates to the ComplexityEvaluator to
check whether the tree has an acceptable complexity (line 37). If a suitable tree is found the
method returns true and the main stage of the algorithm can proceed. If a suitable tree is not
found after a certain number of planting attempts, defined by the MAX TREE PLANT ATTEMPTS in
the Config class, then the algorithm returns false and the parent solver throws a suitable error.

As the code suggests two modes of operation have been implemented which are determined
by the flag COMPARE ALL HEURISTICS. If this flag is true then we plant a tree using all imple-
mented methods and then let the ComplexityEvaluator determine which tree has the lowest
complexity. If the flag is false then only one of the planting methods is run, again determined
by a constant in the Config file. Interestingly it was found that the heuristic algorithm, as sug-
gested by Lam and Lien, does not always produce a better tree than simpler planting methods,
which is why the option to compare all planting methods was implemented.

Currently three planting approaches have been implemented:

1. Heuristic - This is an implementation of Lam and Lien’s heuristic approach for which
the pseudocode was outlined in section 4.3. Though a few modifications were required in
order to adapt their approach for unbalanced trees.

2. Simple - This is a very naive planting approach which simply places the stations in order
at the leaf nodes. Although this method was initially implemented for testing purposes, it
surprisingly sometimes outperforms the more complex heuristic approach. Of course this
is heavily dependent on the network being tested.

3. Sequential - This is another simple approach which plants the tree such that the Tree
Convolution algorithm runs the exact same order of convolution operations as the sequen-

59

tial Convolution algorithm. This was mainly implemented for interest’s sake and very
rarely outperforms the heuristic approach.

Algorithm 9 High-Level Tree Planting and Complexity Evaluation Phase Algorithm

1 /**

2 * Runs the main tree planting phase. Consists of two steps:

3 * 1. Plant the tree.

4 * 2. Check this tree has acceptable complexity characteristics.

5 * N.B. ‘ce’ is the local ComplexityEvaluator object,

6 * N is the model’s population vector.

7 * @return A boolean indicating whether an adequate tree was found.

8 */

9 public boolean runTreePlantingPhase() {

10 boolean suitableTreeFound = false;

11 int round = 0;

12 while(!suitableTreeFound) {

13 if (round >= Config.MAX_TREE_PLANT_ATTEMPTS) {

14 return false;

15 }

16

17 if (Config.COMPARE_ALL_HEURISTICS) {

18 Node[] trees = new Node[3];

19 trees[0] = plantTreeHeuristicApproach();

20 trees[1] = plantSimpleTree();

21 trees[2] = plantSequentialTree();

22 treeRoot = ce.getTreeWithBestComplexity(trees, N);

23 } else {

24 switch (Config.TREE_PLANT_MODE) {

25 case HEURISTIC:

26 treeRoot = plantTreeHeuristicApproach();

27 break;

28 case SIMPLE:

29 treeRoot = plantSimpleTree();

30 break;

31 case SEQUENTIAL:

32 treeRoot = plantSequentialTree();

33 break;

34 }

35 }

36

37 suitableTreeFound = ce.treeHasAcceptableComplexity(treeRoot, N);

38 round++;

39 }

40

41 return true;

42 }

Each node in a planted tree is represented by a Node object which contains links to its
parent and child nodes, a set of stations (giving the subnetwork represented by the node), and
algorithm-specific information which is calculated and stored as the algorithm progresses. Each
node also stores the set of partially and fully covered classes at that node in order to keep
recomputation to a minimum. The Node class also contains various useful functions such as for
recalculating the partially covered classes and merging a node with another node.

As Figure 5.7 showed, the TreePlanter also links to a TreePrinter object which provides

60

a simple algorithm that traverses the planted tree and prints each node to the console for
debugging purposes. It also links to a ClassCoverageUtils class which contains various utility
methods for calculating the coverage status of a certain class of jobs with respect to a subnetwork
of nodes in the tree (see section 4.1.1 for an explanation of class coverage).

5.3.3.2 ComplexityEvaluator

The ComplexityEvaluator, which is used during the preprocessor stage to evaluate a planted
tree’s complexity, is an abstract class which provides a core implementation shared by both
TC and TMVA algorithms. In order to compute the complexity of a planted tree, the tree is
traversed and the complexities associated with each merging stage, either in the TMVA or TC
algorithms, are added up. To make this simpler an internal ComplexityBundle class is used to
store both time and space complexities simultaneously. A function getTreeComplexity() in
ComplexityEvaluator implements this traversal, however the complexity evaluation for each
node is left for the child classes, TCComplexityEvaluator and TMVAComplexityEvaluator,
which are capable of calculating the algorithm-specific complexities. The actual equations used
to compute the complexities for TC and TMVA are given in sections 4.1.7 and 4.2.3 respectively.

Additionally, as we saw in the last code snippet, the ComplexityEvaluator has a function
getTreeWithBestComplexity() which takes in several trees and compares them. The way
in which the trees are compared depends on a user-definable parameter in the Config class.
Currently trees can be compared by estimated time complexity, space complexity or simply by
counting the number of partially covered classes in the tree (since trees with lower numbers of
partially covered classes are generally quicker to evaluate).

As well as computing the complexities for TC and TMVA, the algorithm-specific child
classes, TCComplexityEvaluator and TMVAComplexityEvaluator, are also capable of calculat-
ing estimated complexities for the standard Convolution and MVA algorithms. If a special flag
called TERMINATE IF HIGH COMPLEXITY is set in the Config file then the algorithm will termi-
nate during the preprocessor stage if the ComplexityEvaluator decides that the tree version
of the algorithm actually has a higher complexity than the sequential version. A simpler way of
measuring the applicability of the tree algorithms was also developed which focuses on measur-
ing the sparsity of the model, rather than the algorithm complexity. This approach is discussed
in section 5.3.8.

5.3.4 Tree Traversal

The traversal of the tree planted during the preprocessor stage is, of course, integral to both
Tree Convolution and Tree MVA. In view of this it was decided to create two generic traversal
classes which can be used by either algorithm. The first class, TreeTraverser, implements
single-threaded traversal and is extended by the TC and TMVA single-threaded solvers, while
the second, TreeTraverserMulti, implements multi-threaded traversal and is extended by the
multi-threaded solvers, as can be seen in Figure 5.7.

5.3.4.1 Single-threaded Traversal

The TreeTraverser class implements both recursive and iterative single-threaded, postorder
tree traversal. Postorder traversal was adopted since it is the preferred traversal order used in
Lam and Lien’s paper [21]. Algorithm 10 below shows the recursive version (since it is visually
much cleaner than the iterative version). It can be seen that the actual computation performed
at nodes during the traversal is delegated to abstract methods which are then overwritten
in the single-threaded solvers that extend TreeTraverser, so as to provide algorithm-specific
implementations. This allows the tree traversal code to be reused by both algorithms. Whether

61

iterative or recursive traversal is used depends on a user-definable constant in the Config class.
Though it is recommended that the iterative version is used for large networks to avoid stack
overflow errors due to high recursion depth.

Algorithm 10 Code snippet from TreeTraverser for recursive traversal.

1 /** Traverses a tree from specified root node,

2 * in single-threaded, postorder fashion.

3 * @param node The current node.

4 * @param pv The population vector to be used during the computation.

5 */

6 public void recursiveTraverse(Node node, PopulationVector pv) {

7 if (node.leftChild() != null) {

8 recursiveTraverse(node.leftChild(), pv);

9 }

10 if (node.rightChild() != null) {

11 recursiveTraverse(node.rightChild(), pv);

12 }

13

14 if (node.isLeaf()) {

15 initLeafNode(node, pv);

16 } else {

17 computeSubnetNode(node, pv);

18 }

19 }

20

21 public abstract void initLeafNode(Node node, PopulationVector pv);

22 public abstract void computeSubnetNode(Node node, PopulationVector pv);

5.3.4.2 Multi-threaded Traversal

The TreeTraverserMulti class implements multi-threaded recursive tree traversal, which is
used by the multi-threaded TC and TMVA solvers. Before traversal can begin a fixed thread
pool is defined, with the maximum size of the pool being dependent on the number of cores
available to the JVM. The recursive traversal approach is similar to the single-threaded algo-
rithm shown above, however the multi-threaded version is more interesting since it involves
thread synchronisation. In particular, the following rule must hold; each non-leaf node in the
tree can only be evaluated if all of its child nodes have been evaluated. In practice the algorithm
is modified to return a Java Future object which represents the result of an asynchronous com-
putation. In the modified algorithm the results from lines 8 and 11 (in Algorithm 10 above) are
stored in a Future object array, which represents the current node’s child thread computations.
At line 13 a small amount of code is added which waits for the child threads to complete before
the current node is processed (lines 14-18). Fortunately Java’s ExecutorService manages the
thread pool for us, making the implementation fairly clean and understandable.

5.3.5 Tree Convolution Implementation

Now that the generic classes used by both TC and TMVA have been explained we are in a
position to look at the finer technical details for each algorithm. We start with Tree Convolution
since this was implemented first. For a theoretical background on Tree Convolution see section
4.1.

The entry point for the Tree Convolution implementation is the TreeConvolutionSolver

class which extends the QNSolver class from earlier projects and defines several methods every

62

queueing network solver must implement. In particular, the TreeConvolutionSolver overrides
the functions computeNormalisingConstant() and computePerformanceMeasures(). The
constructor of TreeConvolutionSolver takes in a representation of the model we are trying to
solve and also the number of threads to use. It then uses dependency injection to instantiate
all of the required components, and importantly it spawns either a single-threaded or multi-
threaded solver instance depending on the number of available threads. In order to compute
the normalising constant and performance measures it delegates to these components and, on
completion, sets the results. A primary goal during the design phase was to keep this class
as simple as possible which was achieved by encapsulating the important phases of the algo-
rithm in separate classes. This had the added bonus of allowing specific parts of the algorithm
to be implemented in several different ways and then compared, which was invaluable when
optimising the algorithm’s performance.

The SingleThreadTCSolver and MultiThreadTCSolver essentially carry out the same op-
erations except the multi-threaded version extends the TreeTraverserMulti class, allowing
the phases of the computation to be done in parallel across multiple cores, as discussed in the
previous section. We focus on the single-threaded solver to facilitate a simpler explanation of
the lower level algorithm implementation.

The single-threaded solver contains the high-level structure for computing the normalization
constant, per class throughputs and per class per station mean queue lengths. As we saw in
section 4.1.5 there are several methods by which the performance measures can be computed
for Tree Convolution. After some experimentation with storing multiple g-arrays at a single
node in order to reduce the number of tree traversals required, as suggested by Lam and Lien
in [21], it was found that this did not make a significant difference to the overall computa-
tion time. This was mainly because tree traversal is not a significant factor in determining
the algorithm’s run time. Rather it is the overall number of computations carried out at each
node, which depends primarily on the number of partially covered classes at a given node.
Nonetheless both a single and multi g-array storage method was implemented for the compu-
tation of mean queue lengths. The method that is used can be changed simply by changing a
flag called Q COMPUTE SEQUENTIALLY in the Config class. For computing throughputs, only the
first method given in section 4.1.5 was implemented, since it saves some space compared to the
second suggested method. The computation of throughputs is generally much faster than the
queue length computation, which tended to be a bottleneck in the algorithm. For this reason
more effort was put into optimising the queue length calculation by trying out various possible
implementations.

5.3.5.1 ConvolutionLayer

Since a few different approaches were implemented for the computation of performance mea-
sures (see section 4.1.5), it was decided to split the core convolution code into two classes;
ConvolutionLayer, which contains methods for running the different approaches, and ConvolutionCore,
which implements the low level convolution equations used by all approaches. The ConvolutionLayer
therefore acts as an intermediate layer between the solvers and the ConvolutionCore imple-
mentation. This allowed different strategies to be implemented simultaneously and compared
for optimisation purposes. The approaches that are used depend on user-definable flags in the
Config class.

5.3.5.2 ConvolutionCore

The ConvolutionCore contains implementations for the most low-level convolution operations,
for example computing the g-arrays at leaf nodes and subnetwork nodes using the standard
convolution equations (implementations of equations (4.3) and (3.24) respectively). In addition

63

it also contains an implementation of the feedback filtering approach (see section 4.1.4), which
can be applied at a node if one of its children is a leaf node representing a load independent
station. Feedback filtering was found to dramatically improve the performance of the algorithm
for certain networks. In particular, the computation of mean queue lengths, which involves
cloning leaf nodes and performing convolutions from these new leaf nodes to the root, was
significantly faster once feedback filtering had been implemented.

5.3.5.3 Memory Management

An important aspect of the Tree Convolution algorithm is how to store the intermediate results
at nodes in order to make space savings. In this implementation the g-arrays are stored as a
HashMap<PopulationVector, BigRational> within each Node object, storing a value for each
possible population vector given the partially covered classes at that node. For example, if
classes 1 and 2 are partially covered at a node and both have a maximum population of 1,
then values are calculated for the following population vectors: (0,0), (0,1), (1,0), (1,1), where
the first number is the population of class 1 and the second of class 2. These values are then
stored in the HashMap. At the root node there will be no partially covered classes and the
g-array will contain a single value corresponding to the normalisation constant, which can be
retrieved using a getG() function on the root Node object. The important point to note is
that we only store results for partially covered classes, which is how Tree Convolution saves
space compared to sequential Convolution. In practice it was found that some networks which
previously caused OutOfMemoryExceptions when evaluated with sequential solvers, can now be
solved successfully, indicating that Tree Convolution is more memory efficient than standard
Convolution for sparse networks, as expected. This claim is justified in chapter 6.

5.3.5.4 Optimisation Log

In order to give an impression of how the Tree Convolution algorithm improved as the implemen-
tation progressed a diary of changes and algorithm runtimes was kept during the implementation
phase. Note that these times were obtained using a small example network given in the Lam
and Lien paper [21].

Time Notes

1 345ms Time before any optimisation applied, lots of unnecessary computation.

2 329ms Improved throughput computation, implemented method 1 outlined in section 4.1.5.

3 209ms Better mean queue length computation.

4 176ms After refactoring code into modules and making small loop optimisations.

5 140ms After refining mean queue length computation, only recalculate leaf nodes when required.

6 125ms After refining mean queue length computation further. Only calculate the leaf values once
for full population, when it is required, then reuse the values in subsequent computations.

7 93ms Only recalculate for partially covered classes when calculating mean queue lengths.

8 62ms After fully implementing feedback filtering (see section 4.1.4).

9 41ms After creating multi-threaded version.

64

The fact that the network under consideration was so small (only four stations), means that
the time required for evaluation even before optimisations were applied was well under a second.
However, the above table shows how by implementing various optimisations, the runtime was
drastically reduced. Of course if these tests were performed on a larger network then these
improvements would have a much greater influence overall. Note that for larger models the
multi-threaded approach will have a much more significant impact, since, in this case, the small
model under consideration provides little opportunity for parallel computation.

5.3.6 Tree MVA Implementation

The Tree MVA algorithm was more difficult to implement than Tree Convolution, mainly due
to the fact that the relevant papers by Tucci [34] and Hoyme [17] were less clear about some
of the algorithm details. For example Hoyme’s paper, although it provides a clear and concise
outline of the algorithm, hardly mentions how partially covered classes should be integrated
into the algorithm. Tucci, on the other hand, gives a detailed mathematical presentation of the
algorithm, but how it all fits together is more difficult to follow. The final implementation was
only possible by studying both papers carefully and drawing important aspects from each. For
a theoretical overview of TMVA see section 4.2.

In a similar fashion to Tree Convolution, TMVA’s main entry point, the TreeMVASolver,
extends the QNSolver interface and is responsible for instantiating either a single-threaded or
multi-threaded solver and other components, such as the TreePlanter, depending on the inputs
to the constructor. Since MVA does not involve the computation of a normalization constant,
only the method computePerformaceMeasures() from QNSolver is overridden. This method
runs the tree planting stage and then delegates to the instantiated solver.

The SingleThreadTMVASolver and MultiThreadTMVASolver classes are somewhat simpler
than their Tree Convolution counterparts, due to the fact that for TMVA all performance
measures are computed in one tree traversal. This is unlike Tree Convolution which requires
that various partial traversals are performed to compute performance measures after the initial
traversal, as we have seen. Therefore, the TMVA single and multi-threaded solvers simply
extend the generic tree traversal classes, TreeTraverser and TreeTraverserMulti respectively,
and define the computations which are performed at the leaf and subnetwork nodes. This is
done by delegating to a class called TMVACore, which implements all of the TMVA equations.

5.3.6.1 TMVACore

The vast majority of development time for TMVA was spent on the TMVACore class, imple-
menting the fundamental equations. This was partly due to the fact that much of the general
infrastructure for Tree Convolution could be reused for TMVA, but also indicative of the amount
of careful reading and testing which was required to implement the TMVA equations accurately.

As was mentioned briefly in the background section for TMVA, there are differences between
Tucci and Hoyme’s versions of the algorithm. In Tucci’s version, sequential MVA is applied to
all leaf node pairs and then the TMVA equations are applied for each subnetwork node higher
up the tree. In Hoyme’s version, the leaf nodes themselves are initialised and then the TMVA
equations are applied at every subnetwork node, including the leaf parents. Both versions were
implemented and compared. In practice it was found that Tucci’s version performed slightly
better, though for networks containing only one station and for certain special cases involving
unbalanced trees, Hoyme’s initialization ideas were kept as part of the core implementation.

To begin with the main focus was on implementing the residence time equation (4.14), the
marginal probability equations (4.15, 4.16) and the equation to adjust mean queue lengths
(4.18). However, the greatest challenge was combining these equations into a single subnetwork
TMVA merge function, and ensuring that the loops were all carried out only over the relevant

65

partially covered classes. In Algorithm 11 on the next page, a shortened version of the main
TMVA merge function is presented. This shows how a single merge step is done at a subnetwork
node. The node that is passed into the function, ab, is the parent node we are trying to obtain
throughput and queue lengths results for. The rest of the code can be summarised as follows:

• Line 4 - we follow Tucci’s approach and use sequential MVA if the current node is the
parent of two leaf nodes.

• Lines 9-14 - we get the covered classes for the parent node and its two children (covered
classes include both partially and fully covered classes at a node) and then find the common
partially covered classes between the children by computing the union.

• Line 16 - a HashMap is initialized ready to store marginal probabilities so they can be
easily reused. This is one of the optimisations that was described in section 4.2.2. We
only store the probabilities for the right hand child since the main equations can all be
rearranged to only use these probabilities, saving further calculation time.

• Line 21 - we see a convenient use of the ClassCoverageUtils class (which is referred to
in the code by ‘ccu’). ClassCoverageUtils implements several useful methods for dealing
with sets of classes. At line 21 we see an example of the contract() function which is
used to reduce one population vector down to a certain size. Here the population vector
for all classes is reduced down to a vector the size of the common partially covered classes.

• Line 24 - the main loop starts. It loops over the population vectors for all partially
covered classes, starting from the zero vector and ending with the maximum population
for each class.

• Line 26 - a new MVAResults object is created, which is just a convenient wrapper object
for storing throughputs, queue lengths and response times.

• Lines 32 and 35 - the residence times for the left and right child are computed by calling
a function which implements equation (4.14). Note that pStore, the cache of previously
calculated marginal probabilities, is passed in so that they can be reused, saving time.

• Line 39 - the throughput at the parent node is computed by calling a function which
implements equation (4.17).

• Line 43 - the results so far (i.e. the throughputs) are stored at the parent node.

• Line 46 - this is where the code for adjusting the throughputs and mean queue lengths
is in the real implementation. This is done using equation (4.18), which can be applied
to both queue lengths (as shown) and also to throughputs.

• Line 49 - a handy function which returns the next population vector permutation in
sequence, given the current vector and the maximum vector we are trying to reach, is
called in the ClassCoverageUtils class.

• Lines 53-54 - the results in the child nodes are cleared out to save memory since they
are no longer required (note that this is not as simple for the Tree Convolution algorithm
since the computation of performance measures requires more than one tree traversal).
Also the pStore mapping holding the results of marginal probabilities goes out of scope at
the end of this function, meaning they will also be removed from memory by the garbage
collector. This is desirable since the marginal probabilities for a given node will not be
used again.

66

Algorithm 11 Code snippet from TMVACore showing part of TMVA merge algorithm.

1 public void computeSubnetNode(Node ab) {

2 Node a = ab.leftChild(); Node b = ab.rightChild();

3 // Use sequential MVA at parent of two leaf nodes as Tucci suggests.

4 if (ab.childrenAreLeaves()) {

5 sequentialMVASolver.solve(ab, qnm.N); return;

6 }

7

8 // Get covered classes and find common partially covered classes at child nodes.

9 TreeSet<Integer> ab_cs, a_cs, b_cs, commonPcs;

10 ab_cs = ab.getAllCoveredClasses();

11 a_cs = a.getAllCoveredClasses();

12 b_cs = b.getAllCoveredClasses();

13 commonPcs = new TreeSet<Integer>(a.pcs);

14 commonPcs.addAll(b.pcs);

15

16 HashMap<PTuple, Double> pStore = new HashMap<PTuple, Double>();

17 int ri, rx;

18 double wa, wb;

19 PopulationVector n_ab, npc, npcmax;

20 npc = new PopulationVector(0, commonPcs.size());

21 npcmax = ccu.contract(qnm.N, ccu.all, commonPcs);

22

23 // Main loop over common partially covered class populations.

24 while (npc != null) {

25 n_ab = ccu.expand(npc, commonPcs, qnm.N, ab_cs);

26 MVAResults resAB = new MVAResults(ab.stations.size(), ab_cs.size());

27

28 ri = 0;

29 for (int r : commonPcs) {

30 wa = wb = 0;

31 if (a_cs.contains(r)) {

32 wa = calcResidenceTimeGeneric(a, true, r, npc, pStore);

33 }

34 if (b_cs.contains(r)) {

35 wb = calcResidenceTimeGeneric(b, false, r, npc, pStore);

36 }

37

38 rx = ccu.convertIndex(ri, commonPcs, ab_cs);

39 resAB.X[rx] = calcSubnetThroughput(rx, n_ab, wa, wb);

40 ri++;

41 }

42

43 ab.mvaRes.put(n_ab, resAB);

44

45 for (int r : ab_cs) {

46 // Code for adjusting throughput and mean queue lengths goes here.

47 }

48

49 npc = ccu.nextPermutationUpwards(npc, npcmax);

50 }

51

52 // Clear out child node results, not required anymore.

53 a.mvaRes.clear();

54 b.mvaRes.clear();

55 }

67

5.3.6.2 Ported sequential MVA solver

It should be noted that in order to implement Tucci’s version of the TMVA algorithm, an
adaptation of the sequential MVA algorithm implemented within JMVA was created within a
class called StandardMVASolver. This class contains a ported version of the sequential MVA
algorithm, updated to use some of the data structures which are used throughout the JCoMoM
package. At line 5 in the above code, this sequential MVA algorithm is used as Tucci suggests.
However, having a local implementation of the sequential MVA algorithm was also useful for
testing (see section 5.3.11).

5.3.6.3 Optimisation Log

As for Tree Convolution, a log of changes and runtimes was kept during the implementation of
TMVA to give an impression of the algorithm’s progression towards its final state. For the sake
of comparison, these times were once again obtained using the small example network given in
the Lam and Lien paper [21].

Time Notes

1 495ms Time before any optimisation applied, lots of unnecessary computation.

2 281ms Store marginal probabilities in Map once calculated, then reuse to save time.
Also rearrange equations to only depend on probabilities at a single child node
(see section 4.2.2).

3 182ms Remove unnecessary code and implement better leaf node computation (again
see section 4.2.2).

4 29ms Apply loop optimizations, only loop over common partially covered classes
(this was the the most difficult part of the algorithm to figure out but was
definitely worth the effort, allowing a substantial saving in time).

5 16ms After creating multi-threaded version.

As we noted before, the small size of the network under consideration makes these improve-
ments look relatively insignificant (since the algorithm ran in under a half a second to begin
with). However, when scaled to a larger network, the savings in time are substantial. Addi-
tionally, the multi-threaded solver will have much more effect on larger networks where there is
more chance to exploit multi-core, parallel computation.

5.3.7 Integration with JMVA

Integrating both Tree Convolution and Tree MVA into JMVA was not as difficult as inte-
grating the bounding analysis solvers, since most of the back-end infrastructure was already
in place. As both algorithms were implemented in the external JCoMoM package, two new
classes were added to the JMVA analytical package, SolverMultiClosedTreeConvolution
and SolverMultiClosedTreeMVA, to act as intermediaries, allowing the new solvers to be easily
linked in with the existing JMVA infrastructure. These classes simply take in an input model
and then delegate to the relevant solver in the JCoMoM package. When the solver has com-
pleted its evaluation, the results are extracted from the model so that they can be used and
displayed within JMVA.

68

In terms of changes to the GUI, the two new algorithms were added to JMVA’s main
algorithm drop-down menu and also to the what-if panel, as can be seen Figure 5.8. Additionally,
a simple options panel was added, as shown in Figure 5.9. This allows various tree algorithm
configuration settings to be modified within JMVA itself, since users will not have access to the
Config class as it is part of the private JCoMoM package.

Figure 5.8: JMVA screenshots, showing integration of TMVA and TC solvers (ticked items were
introduced in this project).

69

Figure 5.9: JMVA screenshot, showing new tree algorithm configuration panel.

5.3.8 Measuring Sparsity

In order to measure the applicability of the tree algorithms for a given network, a way of mea-
suring the network’s sparsity was developed. The ‘mean sparsity’ of the network is calculated
as follows. For each station in the network we count the number of classes that visit that sta-
tion and then divide this by the total number of classes in the network. This gives a per class
sparsity measure between 0 and 1. We then take the average of these values to get the network
mean sparsity. As can be seen in Figure 5.9, this measure was integrated into the new options
panel so that users can use it to decide which algorithm is the best for the network they are
trying to solve. In general, the higher the mean sparsity of a network, the less likely it is that
the tree algorithms will provide a more efficient solution than a sequential algorithm such as
MVA or Convolution.

5.3.9 Generating Random Networks

Since Tree Convolution and Tree MVA are primarily algorithms for sparse networks, a way of
generating such networks in a randomised fashion was desirable for testing purposes. Therefore,
a new class RandomNetworkGenerator was added to the JCoMoM Utilities package which is
capable of generating networks with random stations, classes, populations and service demands
within specified ranges. In addition, a sparsity percentage can be specified which, for example,
if set to 50% will ensure that the generator creates a network in which about half of the service
demands are set to zero. The current implementation of this generator is fairly rudimentary in
that it does not fully guarantee that the generated network will exhibit the sparseness property
even if the sparsity percentage is set high; it only guarantees that the service demands matrix
will have a certain sparsity. The two ideas are not the same, though there is a correlation. For
the purposes of testing, however, this provided an adequate approximation.

70

5.3.10 Commandline Tool

An existing commandline tool, in JCoMoM’s Control package, provides a simple way of running
the algorithms within the package. Its usage can be summarised as:

java -jar MoM.jar <Algorithm> <Output Indices> <Input File> [<No. of Threads>]

where <Algorithm> specifies the algorithm to be used, <Output Indices> specifies whether
the performance measures should be calculated and printed out, <Input File> points to a file
containing the definition of the model to be solved, and <No. of Threads> is an optional
parameter specifying the number of threads to run the algorithm with (which defaults to the
number of processors available to the JVM).

The commandline tool was extended to include the two new tree algorithms. It was also
modified to allow easy access to the random network generation tool which was outlined in the
previous section. If the <Input File> parameter is set to the word “random”, the random
network generator is invoked so that the specified algorithm is run on a random model. The
number of stations and classes, and also the sparsity percentage of the random model, can be
specified as extra parameters to the commandline tool, making it very easy to generate random
models of varying sizes.

5.3.11 Testing and Validation

Both the Tree MVA and Tree Convolution algorithms were extensively unit tested. The tests for
both algorithms can be found in a Tests subpackage within the QueuingNet.TreeAlgorithms

package. A class called GeneralTests contains various tests on the networks used as examples
in Lam and Lien [21] and Tucci [34] and also incremental tests, starting from single station/class
networks and working up to multiple station/class networks with varying service demands and
populations. Unbalanced trees and randomly generated networks are also used in some of the
tests to ensure a more complete coverage.

The class TestUtils contains useful functionality for testing, including methods which can
test the consistency of the results when the same network is evaluated by two different solvers.
In fact this idea forms the backbone of the testing framework. The class AllTests runs tests
for each permutation of solver pairs. For example, we can test sequential Convolution against
Tree Convolution, Tree Convolution against Tree MVA, and so on. Tests are run using all
permutations of the sequential Convolution, sequential MVA, Tree Convolution and Tree MVA
solvers to ensure that each solver gives the same results for a particular model. Since Tree
Convolution and Tree MVA also have multi-threaded implementations these were also included
in the testing permutations. For each solver pair, all of the tests in GeneralTests are run. This
approach helped to build up a sense of consistency across all solvers related to this project.

In terms of the GUI, user acceptance testing was performed to check that the updated parts
of the JMVA interface function correctly. If this project gets incorporated into the publicly
available release of JMT, then further user testing will take place to iron out any minor bugs.

71

Chapter 6

Evaluation

Now that both the bounding solvers and tree algorithms have been integrated into JMVA,
we can move onto evaluating the performance and usefulness of these methods for practical
purposes by carrying out an objective analysis. We also attempt to prove the claims made in
the related research papers and compare the new algorithms to existing solutions by carrying
out an experimental campaign to test the algorithms under a variety of conditions. It should be
noted that all of the experiments were carried out on a machine with 6GB RAM and an Intel
Core i7 2.2GHz processor capable of running 8 threads in parallel (for the multi-threaded tree
algorithms).

6.1 Geometric Bounds Evaluation

Of the three bounding methods implemented as part of this project, Geometric Bounding is the
method we are most interested in analysing, since both Asymptotic Bounds and Balanced Jobs
Bounds are much more well established methods. Nonetheless we use the implemented AB and
BJB solvers as benchmark by which we can assess the improvements made by GBs. Figure 6.1
below shows some initial results for a single-class network with 5 stations using random service
demands. The graphs show a comparison for 4 different whole system measures over a range of
populations, between GBs, BJBs and MVA (which is included to show the exact results). As
can be seen the Geometrics Bounds (cyan) are significantly closer to the exact results obtained
via MVA (red) than BJBs (dark blue). Note that ABs are not included as they are less accurate
than BJBs and graph scaling would make it harder to compare BJBs and GBs.

In order to quantify the improvements made by GBs, tests were run for multiple networks
and the mean maximum error was measured for different population sizes. The results of this
experiment are shown in Figure 6.2. Note that all the networks used to obtain the results
contained a single class, since GBs can only operate on single class networks. As can be seen,
GBs have a consistently lower maximum error and, as the left hand graph shows, GBs also
converge faster as the population increases. GBs also have another practical advantage over
BJBs, since they are capable of evaluating per station mean queue lengths and response times
which is not possible with BJBs. Hence GBs offer a more accurate and robust alternative to
BJBs for practical purposes.

72

Figure 6.1: Comparisons between exact MVA (red), BJBs (dark blue), and GBs (cyan)

Figure 6.2: Maximum bounding error comparison between BJBs and GBs obtained from mean
results of several networks with 5 stations. Left: shows throughput max bounding error, varying
population. Right: shows max mean queue length error, varying demands for a single station.

73

In terms of runtime, Figure 6.3 shows a comparison between the three bounds solvers for a
varying number of stations. All three of the bounding methods run in well under 1 millisecond
and hence mean values had to be taken over a number of trials to increase the accuracy of
the results. Note also that the times shown are for computing bounds for all performance
measures used in JMVA, which requires a further iteration through all stations at the end of the
calculation. As the graph shows, GBs have a consistently greater runtime than ABs and BJBs,
as was expected. Additionally, the runtime of GBs increases more significantly with each added
station. ABs and BJBs, however, only have to loop through the stations during their initial
calculation phase in which they calculate various measures based on the station demands. On
the other hand, GBs have to iterate through the stations for the actual calculation of throughput
and queue length bounds, which helps to explain the shape of the graph. Our implementation
of GBs also uses the BJB solver to get initial limits on throughput, which gives tighter GBs,
but further adds to the runtime. For most practical circumstances the times involved are so
small, that the extra microseconds required to compute GBs will be worth it, given that the
resulting bounds will be significantly tighter.

Figure 6.3: Runtimes comparison between bounding solvers.

74

6.2 Tree Algorithms Evaluation

6.2.1 Runtime comparison

We now move onto an experimental evaluation of both Tree MVA and Tree Convolution. A
good place to start is with comparing the runtimes of the new algorithms against MVA, which
is the fastest exact algorithm currently implemented in JMVA. Figure 6.4 shows the results
over a range of populations for the example sparse network given in Tucci’s paper [34]. The
network contains 7 classes, 8 stations and service demands which ensure the network has the
sparseness property. It should be noted that the x-axis is the population per class and not
the total population of the whole network. As can be seen, for this sparse network, the results
are very promising. The runtime for sequential MVA increases rapidly as the population rises,
whereas Tree MVA and Tree Convolution show a much steadier increase. In fact when the
population per class reached about 15, the network was no longer solvable by sequential MVA
as the JVM ran out of memory. Sequential Convolution struggled to evaluate the model when
the population per class was only 4, so we do do include it in the graph. We also see that Tree
Convolution outperforms Tree MVA as the population gets larger. This was predicted by Tucci
in [34].

Figure 6.4: Runtimes comparison between exact solvers.

75

6.2.2 Memory usage comparison

VisualVM, a JVM monitoring tool, was used to determine the memory usage for the new
algorithms over the same sparse network. Before each test, JMVA was restarted and the garbage
collector was run to ensure that the used heap space was reset to base levels. The results were
obtained by collecting heap dumps over a range of populations. Figure 6.5 shows the results of
this experiment.

Figure 6.5: JVM heap usage comparison.

Following a similar pattern to the runtime graph, sequential MVA’s heap usage increases
rapidly as the population rises. As we noted before, this causes MVA to fail when the population
reaches around 15. Tree Convolution and Tree MVA show a very steady increase in memory
usage in comparison. We can see at N = 14 that both tree algorithms only use a fraction of the
memory used by MVA. As the population increases further we begin to see that Tree MVA’s
memory usage increases faster than Tree Convolution. Nonetheless both algorithms manage to
solve models with a population more than double the size solvable by sequential MVA.

6.2.3 Stress Testing

From the above analysis it is clear that both Tree Convolution and Tree MVA outperform
their sequential counterparts in terms of runtime and memory usage. In order to get a better
picture of the performance of the tree algorithms we now perform some stress tests by varying
the population, stations and classes in the Tucci model over extreme ranges. Figure 6.6 below
shows the runtimes for TMVA and TC as the total population in the network was increased.
Figure 6.7 shows the runtimes as the number of stations increases (note the logarithmic scale).
Figure 6.8 shows the runtimes as the number of classes were increased (an effort was made to
keep the sparseness of the model constant). For each experiment the base model had 8 stations,
7 classes and a per class population of 2.

76

Population TMVA TC

70 1.36s 0.5s

140 1.78s 1.54s

210 6.36s 2.99s

280 22.12s 8.02s

350 88.15s 20.73s

420 Fail 53.6s

490 N/A 102.05s

560 N/A Fail

Figure 6.6: Increasing the population to failure.

Figure 6.7: Increasing stations (runtime not including tree planting time).

Figure 6.8: Increasing classes.

77

From Figure 6.6 we can see the Tree Convolution is capable of solving models with larger
populations than Tree MVA. This can be explained by the heap usage statistics shown in Figure
6.5, since with higher populations TMVA starts to consume more memory. This may partially
be due to the fact that more time was spent optimizing Tree Convolution than Tree MVA (as
TMVA was not in the original plan for this project).

From Figure 6.7 we can observe that both algorithms perform well with large numbers of
stations in the network, when the sparsity of the network is maintained. Again we see that Tree
Convolution performs slightly better overall. In order to increase the stations while maintaining
a similar sparsity, the station demands were simply copied from the original network each time
new stations were created. Note that the tree planting time was ignored since with large numbers
of stations tree planting took a lot longer.

From Figure 6.8 we can see that increasing the number of classes even by a relatively small
amount affects the runtime significantly. Note that this graph is more prone to inaccuracy than
the others, since increasing the number of classes while maintaining the same network sparsity
is difficult. Therefore, this graph serves only as an indicator of the general trends seen and
should not be taken as a definitive result. If this experiment was run with a different network,
the increase in runtime may be much smaller.

Overall, we can see that the Tree Convolution implementation outperforms Tree MVA for
this particular network. Both algorithms however allow the exact solution of much larger models
than sequential MVA.

6.2.4 Non-sparse networks

So far we have only considered the performance of Tree Convolution and Tree MVA over sparse
networks, since that is their intended usage. However, we also consider their use over non-
sparse networks. For this experiment a random non-sparse network (all service demands above
0, meaning that all classes visit all stations) was used with 2 classes and 4 stations. As Figure
6.9 below shows, sequential MVA performs much better as the population increases. It is
unfortunate that the vast time and memory savings we have shown for the tree algorithms do
not extend to non-sparse networks. However, this was the expected result since in non-sparse
networks there are no partially covered classes to take advantage of. Additionally, the cost of
merging stations using the tree algorithm equations, when all classes visit all stations, is greater
than the cost of applying sequential MVA.

Figure 6.9: Runtime for non-sparse network as population increases.

78

6.2.5 Single vs multi threading

All of the above tests were performed using the multi-threaded version of Tree MVA and Tree
Convolution. We now run some experiments to quantify the difference that multi-threading
makes to the runtime of the algorithms. These tests were run on a quad-core machine capable
of running 8 threads in parallel. Figure 6.10 below shows the results of running both the
single and multi-threaded implementation of Tree Convolution and Tree MVA over varying
populations and number of stations. From the graphs we see that the influence of multi-
threading only becomes significant when the network becomes larger. In particular, the effect
is more pronounced as the number of stations increases, as the multi-threaded implementation
is able to utilize multiple cores to do subnetwork calculations in parallel. Of course the results
will vary depending on the machine on which the algorithms are run.

Another interesting point is that single-threaded TMVA outperforms single-threaded TC
as the number of stations increases. However, multi-threaded TC performs the best of all.
This is due to the fact that there is more opportunity to exploit parallelism in TC during the
computation of performance measures.

Figure 6.10: Comparisons of single and multi threaded implementation runtimes over varying
populations and number of stations.

79

6.2.6 Tree Convolution Breakdown

One significant point to highlight is that for Tree Convolution, the computation of mean queue
lengths often becomes the bottleneck in the algorithm as the population gets large. Figure
6.11 shows this trend. As the population increases, the time to compute performance measures
increases much faster than the time to compute the normalisation constant. This is mainly due
to the fact that mean queue lengths have to be computed for each station and class, requiring
lots of additional traversals and convolution operations. This becomes much more costly as the
population increases.

Figure 6.11: Runtime breakdowns for Tree Convolution as population increases. Blue repre-
sents time to compute normalisation constant, orange represents time to compute performance
measures.

6.2.7 Key Observations

The following observations were made while performing experiments on the tree algorithms:

• Both tree algorithms perform much better than existing sequential methods for sparse
networks, both in terms of runtime and memory usage.

• Tree Convolution outperforms Tree MVA in most cases, however this may be due to better
utilisation of parallel processing in the Tree Convolution implementation.

• The tree algorithms perform worse than sequential techniques for non-sparse networks, as
expected.

• The runtime and memory usage depend on the tree planting procedure used (in order to
achieve the graphs above both the heuristic and simple planting approaches described in
section 5.3.3.1 had to be used).

• The performance of the tree algorithms is highly dependent on the settings configured in
the Config class. In fact for various configurations it has been seen that the tree planting
procedure used can mean the difference between the algorithm taking milliseconds to run
and it taking minutes to run. So while the tree algorithms show great promise, there is
also a large variability in their performance and they must be used with an understanding
of the underlying principles in order to yield good performance. For this reason some
suggestions on how to make these algorithms more ‘user friendly’ are outlined in section
7.1 and could form part of a future project.

80

6.2.8 Real World Example

In order to show the potential use of the tree algorithms in a real world scenario, we show
how they can be used to analyse the network shown in Figure 6.12. The model contains 4
classes representing HTTP, authentication, transaction and database requests. The request
router forwards requests to the relevant server depending on the request type. As the diagram
shows, HTTP requests are forwarded to the HTTP content manager, authentication and trans-
action requests are forwarded to the security manager, and database queries are forwarded to
the database manager. The HTTP content manager and DB manager decide how to handle a
request and then offload the work to one of their child servers. The security manager performs
some initial security checks before further splitting the requests into user authentication and
transaction requests and forwarding them the the relevant servers. For the purposes of evalua-
tion we assume that this network runs on a fast local area network (LAN) and that there are
therefore no communication delays. The child HTTP, Auth, Transaction and DB servers can
work in parallel and their parent nodes distribute the work evenly between them. In order to
keep the network sparse we also make the reasonable assumption that the request router takes
a negligible amount of time to forward requests and therefore we do not include it in the model.

Figure 6.12: Real-world hierarchical network (N.B. network is closed, but arrows back to start
are not shown for simplicity). Red nodes handle HTTP requests, orange nodes handle au-
thentication requests, blue nodes handle transaction requests, and green nodes handle database
queries.

The specific service demands used for this example are given in Appendix A. In general we
assume that security related requests take slightly longer than HTTP and database queries. We
also assume that for each array of child servers there is one server which performs slightly worse

81

than the others to introduce some non-uniformity to the system.
This network was solved using MVA, Tree MVA and Tree Convolution. The ratio of the

requests was assumed to be 4:2:1:1 with HTTP requests making up the majority of the traffic,
database queries taking up half as much, and authentication and transactions taking up half
as much again. Figure 6.13 below shows the performance of the algorithms over various loads.
It can clearly be seen that Tree MVA and Tree Convolution significantly outperform MVA.
With the largest load tested, MVA would have taken well over half an hour to run (if there was
sufficient memory), whereas Tree MVA and Tree Convolution were able to solve the network
exactly in under 10 seconds.

Load MVA TMVA TC

(100, 50, 25, 25) 2.65s 0.08s 0.05s

(200, 100, 50, 50) 34.56s 0.25s 0.15s

(300, 150, 75, 75) 3mins 1s 0.45s 0.3s

(400, 200, 100, 100) 10mins 53s 0.8s 0.45s

(800, 400, 200, 200) N/A 8.73s 3.54s

Figure 6.13: Real-world example, runtimes for various loads.

Since the sparse network presented here is a typical example of the networks used in many
industry settings; making use of layers, hierarchical structures and subdivision of labour. It is
reasonable to suggest that the newly implemented tree algorithms may have useful applications
in industry, particularly when the results of an evaluation need to be highly accurate.

6.2.9 Comparison with MoM, CoMoM and RECAL

It was found during the later stages of this project that the MoM, CoMoM and RECAL algo-
rithms implemented in previous projects do not give accurate results for sparse networks. Since
these three algorithms are all rather complex, there was not enough time to look into what was
causing this. Unfortunately this meant that it was not possible to carry out a fair comparison
with the new tree algorithms. However, it is expected that Tree Convolution and Tree MVA
will outperform these algorithms for sparse networks, though for non-sparse networks the pre-
viously implemented algorithms will be more efficient. Of course the other algorithms will need
to be fixed before this claim can be justified. For the time being JMVA was patched so that
the algorithms which give inaccurate results for sparse networks now show an error message if
the users attempts to solve a sparse network using them. Tree Convolution and Tree MVA are
therefore the best methods currently available within JMVA for solving sparse networks.

6.3 Qualitative Aspects

So far we have analysed the performance of the newly implemented algorithms. We now briefly
discuss how easy these algorithms are to use and how effectively they were integrated into the
existing software. In order to ensure these aspects of the project were of a high standard,
extensive user acceptance testing was performed by myself and others. The main changes made
to the GUI were through the introduction of bounding algorithms, since this required a new
way to represent results both in tabular and graphical format. In view of this, most of the user
testing was focused on these areas in order to ensure GUI changes were consistent with the rest
of the interface. A particular focus for the bounding algorithms was on their ease of use and clear

82

presentation of results. The tree algorithms were more simple to integrate and test since they
reused most of the GUI components from existing algorithms. While implementing each part of
the project, manual testing was used extensively, in addition to automated testing, to provide
feedback on the robustness and usability of the solution. The new algorithms were also tested
with invalid inputs to ensure their correct behaviour in different scenarios. During the later
stages of the project a meeting was held with Giuseppe Serazzi, the JMT project coordinator
from Politecnico di Milano in Italy. This meeting provided some interesting insights into other
areas of JMT which are currently being developed and also provided some useful feedback
concerning the consistency of the user interface.

6.4 Strengths and Weaknesses

The strengths of the work completed for this project include:

• The implementation of Geometric Bounding techniques for single-class networks offers
significantly tighter bounds than the current best-established techniques, such as Balanced
Job Bounds.

• For the evaluation of sparse networks, both Tree MVA and Tree Convolution drastically
outperform existing exact methods, both in terms of runtime and memory used.

• Tree MVA and Tree Convolution were extended to use multiple cores, allowing for even
faster analysis of sparse networks.

• Suitable tree planting techniques and complexity evaluation tools were implemented for
use with the tree algorithms.

• Integration of bounding and tree algorithms into existing software, including the ability
to graphically view bounding results in JMVA. Additionally, the tree algorithms were
integrated into the existing commandline tool in the JCoMoM package.

• The software for both bounding solvers and tree solvers was designed so at to be under-
standable, maintainable and easily extensible. In particular, the tree algorithms package
was refactored so that the main components, such as tree traversal techniques and tree
planting, can be easily reused in the future.

• Hopefully the positive results presented in this report will encourage further research into
these areas, particularly the application of tree algorithms to a wider class of networks
and possibly also as the basis of new approximate evaluation techniques.

Some of the limitations associated with this project are:

• Tree MVA is currently less memory efficient than Tree Convolution. With more time to
optimize this could have been improved.

• The most significant limitation of the tree algorithms is that they only work well for sparse
networks. However, this was expected to be the case and is due to the theory behind the
algorithms, not the implementation.

• The tree algorithms, though showing very promising performance for sparse networks, re-
quire a fair amount of configuration and must be used with intelligence and care. Future
work could include methods for making these algorithms more user-friendly, for example
by self-configuring based on the network under evaluation. The beginnings of this have
already been started with the complexity evaluation and tree planting stage (which con-
siders multiple alternatives), however a more comprehensive solution would be desirable.

83

Chapter 7

Conclusion

In this report we have presented the design, implementation and evaluation of several new
queueing network analysis algorithms. In the first part of the project we implemented some
existing bounding methods, including Asymptotic Bounds and Balanced Job Bounds, and then
went on to implement a relatively modern approach, Geometric Bounds. As the evaluation
showed, the Geometric Bounds implementation was able to provide significantly tighter bounds
than the other methods, though incurring a slightly higher computational cost. The integration
of these techniques within JMVA will enable very fast analysis to occur during the initial stages
of network analysis when exact results are not required. Hopefully they will be particularly
useful for the fast identification of network bottlenecks.

We then moved on to look at Tree Convolution and Tree MVA for the efficient solution of
sparse networks. Both of these algorithms took a significant investment in time to understand
and implement correctly due to their complexity. However, as we have demonstrated both the
Tree Convolution and Tree MVA implementations dramatically outperform existing sequential
techniques, when run on sparse networks. The integration of these techniques into JMVA has
greatly increased the number of networks for which exact results can be obtained in a reasonable
amount of time. This will also provide a way of measuring the accuracy of the approximate
MVA methods, implemented in a previous project, over larger networks without having to resort
to simulation techniques.

While the results of this project have been mostly positive, the implementation of the
tree algorithms is by no means perfect. A large percentage of the development time for both
algorithms was spent getting the algorithms into a working state, since there were many low-
level details which were not apparent from the relevant research papers. As such, relatively
little time was spent on optimizing the algorithms. Though the results are still impressive
in comparison to existing sequential methods, both algorithms have the potential to run even
faster given more work on optimization and possibly a re-implementation in a language with
more control over memory allocation such as C/C++.

As well as being the first publicly available implementation of these algorithms, the main
original contribution of this project is in the development of tools capable of analysing the
complexity of a network tree during the tree planting stage. These methods allow several
planted trees to be compared using different methods, including calculations of expected time
and space complexity, comparison of network sparsity, and analysis of the partially covered
classes in network trees. These techniques provide good approximations in most cases, however
there is potential for further work on the preprocessor stage of both tree algorithms, since this
stage directly effects how fast they are capable of running.

84

7.1 Future Work

On the whole, the work done as part of this project has provided positive results, however there
are still areas which have potential for further work:

• The most immediate area which could benefit from more work is the preprocessor stage
of the tree algorithms. Since the tree planting heuristics used in the initial stages of the
algorithms have a large impact on performance, a more sophisticated preprocessor tool
would be desirable. Such a tool would be able to perform an in-depth analysis of a network
taking into account factors such as expected complexity, machine capabilities, JVM heap
usage, network structure and scale, class routing information, and potential for parallel
computation. After analysis the tool would then be able to choose an appropriate planting
heuristic and perhaps plant the tree in a dynamic fashion, taking into account some of the
information acquired during analysis. Some work has already been done with these ideas
in mind, however the concepts need to be unified into a coherent, user-adjustable tool.

• In terms of the bounding solvers, a future extension could be the implementation of Pro-
portional Bounds (PBs) as discussed in [6] and [22]. PBs are theoretically more accurate
than ABs and BJBs but require a small increase in computational cost. They were not
included in the original plan for this project but it would be interesting to compare the
accuracy and efficiency of PBs with Geometric Bounds.

• While the overall architecture of JMT is based on solid design principles, over time the
code base has, in places, become messy, inconsistent and often hard to understand. This
is probably due to the open nature of the JMT project and the lack of coding standards.
Unfortunately, there was not much time to address these issues during this project. In
fact an entire project could probably be based on applying software engineering practices
to the JMT code base. This will become increasingly important in the future, since with
the constant addition of new algorithms, the current code base will eventually become
unmaintainable unless an effort is made to apply coding standards and sound design
principles.

• Although the theory has not yet been developed, a future project could look at applying
the general tree algorithm approach to approximate methods, such as the AMVA algo-
rithms implemented in [13]. Potentially this could further increase the scope of models
that JMVA is capable of evaluating. Additionally, since these algorithms would be based
on many of the same principles as Tree Convolution and Tree MVA, many of the com-
ponents implemented in this project, such as tree planting, tree representation and tree
traversal, could be easily reused.

85

Bibliography

[1] F. Baskett, K.M. Chandy, R.R. Muntz, and F.G. Palacios. Open, Closed, and Mixed
Networks of Queues with Different Classes of Customers, J. ACM, 22(2):248-260, 1975.

[2] M. Bennani and D.A. Menasc. Resource Allocation for Autonomic Data Centers Using
Analytic Performance Models, Proc. Second IEEE Intl Conf. Autonomic Computing, 2005.

[3] J.W. Bradshaw. An Efficient Implementation of the Class-Oriented Method of Moments for
Computer Performance Analysis. MSc thesis, Imperial College London, September 2012.

[4] J. Buzen, Computational algorithms for closed queueing networks with exponential servers,
CACM, vol. 16, no. 9, pp. 527-531, September 1973.

[5] P.J. Denning and J.P. Buzen. The Operational Analysis of Queueing Network Models,
ACM Computing Surveys, 10(3):225-261, 1978.

[6] G. Casale, R.R. Muntz, G. Serazzi. Geometric Bounds: A Noniterative Analysis Technique
for Closed Queueing Networks, IEEE Transactions on Computers, 57(6):780-794, June
2008.

[7] G. Casale. CoMoM: Efficient class-oriented evaluation of multiclass performance models,
IEEE Transactions on Software Engineering, 35(2):162-177, 2009.

[8] G. Casale. Exact analysis of performance models by the Method of Moments. Performance
Evaluation 68 (2011), pp. 487-506, 2009. doi:10.1016/j.peva.2010.12.009.

[9] G. Serazzi, M. Bertoli, G. Casale. Java Modelling Tools: User Manual, October 2013.

[10] K.M. Chandy, U. Herzog and L.S. Woo. Parametric analysis of queueing networks, IBM J.
of Research and Development, 19(1):36-42, January 1975.

[11] K.M. Chandy and D. Neuse. Linearizer: A Heuristic Algorithm for Queueing Network
Models of Computing Systems, Comm. ACM, 25(2):126-134, 1982.

[12] W.C. Cheng, R.R. Muntz. Bounding Errors Introduced by Clustering of Customers in
Closed Product-Form Queueing Networks, J. ACM, 43(4):641-669, 1996.

[13] A. Chugh. Algorithms for System Performance Analysis. MEng thesis, Imperial College
London, June 2012.

[14] A.E. Conway, N.D. Georganas, RECAL - a new efficient algorithm for exact analysis of
multiple-chain closed queueing networks, Journal of the ACM, 33(4):768-791, October 1986.

[15] C.A. Floudas. Nonlinear and Mixed Integer Optimization. Journal of Global Optimization,
12(1):108-110, 1995.

86

[16] W.J. Gordon, G.F. Newell. Closed queuing systems with exponential servers. Operations
Research, 15(2):254-265, April 1967.

[17] K.P. Hoyme et al. A Tree-Structured Mean Value Analysis Algorithm, ACM Transactions
on Computer Systems, 4(2):176-185, May 1986.

[18] Java Modelling Tools, http://jmt.sourceforge.net/

[19] L. Kleinrock. Power and deterministic rules of thumb for probabilistic problems in computer
communications. Proc. International Conference on Communication, pp. 43.1.1-43.1.10,
June 1979.

[20] J. Kriz. Throughput Bounds for Closed Queueing Networks, Performance Evaluation,
4(1):1-10, 1984.

[21] S.S. Lam, Y.L. Lien. A tree convolution algorithm for the solution of queueing networks,
CACM, 26(3):203-215, March 1983.

[22] C.H. Hsieh and S. Lam. Two Classes of Performance Bounds for Closed Queueing Networks,
Performance Evaluation, 7(1):3-30, 1987.

[23] E.D. Lazowska, J. Zahorjan, G.S. Graham, K.C. Sevcik. Quantitative System Performance:
Computer System Analysis Using Queueing Network Models, Prentice-Hall, Inc. Upper
Saddle River, NJ, USA, 1984, chapters 1-7.

[24] R.R. Muntz and J.W. Wong. Asymptotic Properties of Closed Queueing Network Models,
Proc. Eighth Ann. Princeton Conf. Information Sciences and Systems, pp. 348-352, 1974.

[25] A. Phansalkar et al. Measuring Program Similarity: Experiments with SPEC CPU Bench-
mark Suites, Proceedings of the 2005 IEEE International Symposium on Performance Anal-
ysis of Systems and Software (ISPASS05), 2005.

[26] M. Reiser and H. Kobayashi. Queueing networks with multiple closed chains: Theory and
computational algorithms, IBM J. of Research and Development, 19(3):283-294, May 1975.

[27] M. Reiser and H. Kobayashi. On the convolution algorithm for separable queueing networks,
Proc. International Symposium of Computer Performance, pp. 109-117, 1976.

[28] M. Reiser and S.S. Lavenberg. Mean value analysis of closed multichain queueing networks,
Journal of the ACM, 27(2):313-322, April 1980.

[29] M. Reiser. Mean-value analysis and convolution method for queue-dependent servers in
closed queueing networks, Performance Evaluation 1, pp. 7-18, 1981.

[30] C.H. Sauer. Computational algorithms for state-dependent queueing networks, ACM
TOCS, 1(1):67-92, February 1983.

[31] P.J. Schweitzer. Approximate analysis of multi-class closed networks of queues. Proceedings
of International Conference on Stochastic Control and Optimization, pp. 25-29, 1979.

[32] TMurget Technologies. Perceived Performance: Tuning a system for what really matters,
White paper, TMurget Technologies, September 2003.

[33] D. Simchi-Levi, M.A. Trick. Introduction to “Little’s Law as Viewed on Its 50th Anniver-
sary”. Operations Research, 59(3):536-549, May 2011, doi:10.1287/opre.1110.0941.

87

[34] S. Tucci. The Tree MVA Algorithm, Journal of Performance Evaluation, 5(3):187-196,
August 1985.

[35] E. Varki and L.W. Dowdy. Analysis of Fork-Join Queueing Networks, Proc. ACM SIG-
METRICS 96, pp. 232-241, 1996.

[36] K. Whisnant, Z. Kalbarczyk, and R.K. Iyer. A System Model for Dynamically Reconfig-
urable Software, IBM Systems J., 42(1):45-59, January 2003.

[37] J. Zahorjan, K.C. Sevcik, D.L. Eager, and B. Galler. Balanced Job Bound Analysis of
Queueing Networks, Comm. ACM, 25(2):134-141, February 1982.

88

Appendix A

Real-world Example Service
Demands

The service demands that were used to obtain the results for the real-world example network
presented in section 6.2.8 are as follows:

* AuthRequest HttpRequest DBQuery TransactionRequest

AuthServer 1 0 0 0

HTTPManager 0 0.5 0 0

DBManager 0 0 0.5 0

TransactionManager 0 0 0 1

DBServer1 0 0 0.5 0

DBServer2 0 0 0.5 0

DBServer3 0 0 0.5 0

DBServer4 0 0 1 0

AuthServer1 2 0 0 0

AuthServer2 2 0 0 0

AuthServer3 3 0 0 0

HTTPServer1 0 1 0 0

HTTPServer2 0 1 0 0

HTTPServer3 0 1 0 0

HTTPServer4 0 2 0 0

TransactionServer1 0 0 0 1

TransactionServer2 0 0 0 1

TransactionServer3 0 0 0 2

Figure A.1: Real-world example service demands.

89

	Introduction
	Motivation
	Contributions

	Background
	General Performance Analysis Techniques
	Queueing Network Models
	Model Description
	Customer Description
	Station Description
	Service Demands

	Fundamental Laws
	Common Measures
	Little's Law
	Forced Flow Law
	Flow Balance Assumption

	Model Outputs
	Throughput
	Utilisation
	Residence and Response Time
	Queue Length

	Limitations of Queueing Models

	Introduction to JMT
	Introduction to JCoMoM package

	Queueing Network Analysis Techniques
	Performance Bounding Techniques
	Asymptotic Bounds
	Balanced Job Bounds
	Geometric Bounds

	Iterative Solution Techniques
	Solution of Open Models
	Solution of Closed Models
	Convolution
	Multi-class sequential Convolution
	Mean Value Analysis (MVA)
	Approximate MVA (AMVA)
	Related Work

	Tree Algorithms for Sparse Networks
	Tree Convolution (TC)
	Theoretical Concepts and Notation
	Algorithm Overview
	Normalization Constant Calculation
	Feedback Filtering
	Performance Measure Computation
	Throughputs
	Mean Queue Lengths

	Space-Time Trade-offs
	Complexity Analysis
	Algorithm Pseudocode

	Tree MVA (TMVA)
	Algorithm Overview
	Potential Optimisations
	Complexity Analysis
	Algorithm Pseudocode

	Tree Planting

	Design & Implementation
	Existing JMT Architecture
	Bounding Solvers Implementation
	Single-class Bounding Solvers Architecture
	AB Solver
	BJB Solver
	GB Solver
	Multi-class Bounding Solvers Architecture
	Integration with JMVA
	Testing and Validation

	Tree Algorithms Implementation
	Solution Architecture
	Existing JCoMoM Architecture
	Overview of new TreeAlgorithms package

	Algorithm Configuration
	Preprocessor Stage
	TreePlanter
	ComplexityEvaluator

	Tree Traversal
	Single-threaded Traversal
	Multi-threaded Traversal

	Tree Convolution Implementation
	ConvolutionLayer
	ConvolutionCore
	Memory Management
	Optimisation Log

	Tree MVA Implementation
	TMVACore
	Ported sequential MVA solver
	Optimisation Log

	Integration with JMVA
	Measuring Sparsity
	Generating Random Networks
	Commandline Tool
	Testing and Validation

	Evaluation
	Geometric Bounds Evaluation
	Tree Algorithms Evaluation
	Runtime comparison
	Memory usage comparison
	Stress Testing
	Non-sparse networks
	Single vs multi threading
	Tree Convolution Breakdown
	Key Observations
	Real World Example
	Comparison with MoM, CoMoM and RECAL

	Qualitative Aspects
	Strengths and Weaknesses

	Conclusion
	Future Work

	Real-world Example Service Demands

