
Imperial College London

Department of Computing

A Toolkit for Exploring
Argumentation Logic

Author:
Giorgos Flourentzos

Supervisors:
Dr. Krysia Broda
Dr. Francesca Toni

Second Marker:
Claudia Schulz

June 16, 2014





Abstract

Argumentation Logic is a new concept that tries to bridge the gap between Natural Deduc-
tion in Propositional Logic and Argumentation Theory by establishing a correspondence
between the two. Ultimately, it aims to provide grounds for reasoning in paraconsistent
environments.
In order to help explore this concept, a collection of procedures and a graphical user in-
terface have been implemented that allow the creation of natural deduction proofs and
their visualization as arguments and vice-versa. This is accomplished through the use of
a mapping that has been devised that describes the connection between natural deduction
proofs and arguments.





Acknowledgments

First and foremost I would like to wholeheartedly thank my supervisors Dr. Krysia Broda
and Dr. Francesca Toni for their continuous and invaluable advice, feedback and support
throughout the course of this project, as well as for all the intriguing conversations during
our meetings.

Many thanks go to Claudia Schulz, my second marker, whose feedback and advise greatly
improved the quality of my report.

I would personally like to thank Professor Antonis C. Kakas for his valuable feedback and
discussions regarding Argumentation Logic, without which I would not have been able to
accomplish as much as I did.

Special thanks go to Lauren Bennett, who greatly helped me achieve and maintain a healthy
balance between my personal and work life and to keep up the fight no matter what,
teaching me many important life lessons in the process.

Finally I would like to thank my family and friends for their undying love and support, as
well as MeatLiquor and Patty & Bun for the great nights out with friends!

3





Contents

Contents 5

1 Introduction 9
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Structure of Remainder of Report . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Background 15
2.1 Argumentation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 What is Argumentation Theory . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Attacking Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Types of Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 Argumentation Example . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.6 Abstract Argumentation Framework . . . . . . . . . . . . . . . . . . 17
2.1.7 Visualization of Abstract Argumentation Framework . . . . . . . . . 17

2.2 Natural Deduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Rules for Propositional Logic . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Example of Natural Deduction Proof . . . . . . . . . . . . . . . . . . 18
2.2.3 Automated Theorem Proving and Proof Search . . . . . . . . . . . . 18
2.2.4 Example of a Proof Search Implementation . . . . . . . . . . . . . . 19

2.3 Argumentation Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Argumentation Logic Framework . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Acceptability Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.4 Reductio ad Absurdum, Genuine Absurdity Property and Accept-

ability Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.5 Disjunction and Implication Connectives . . . . . . . . . . . . . . . . 28
2.3.6 Paraconsistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Existing Visual Argumentation Tools . . . . . . . . . . . . . . . . . . . . . . 29

3 Solution Overview 31
3.1 Exploring Argumentation Logic . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Step 1: Basic Natural Deduction Proof System . . . . . . . . . . . . 31
3.1.2 Step 2: Improving the Proof System . . . . . . . . . . . . . . . . . . 31
3.1.3 Step 3: Genuine Absurdity Property . . . . . . . . . . . . . . . . . . 31
3.1.4 Step 4: Argumentation Logic Visualization . . . . . . . . . . . . . . 32
3.1.5 Step 5: Converting Natural Deduction Proofs to Argumentation Logic

Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.6 Step 6: Re-Introduction of Disjunction and Implication Connectives 32
3.1.7 Step 7: Paraconsistency . . . . . . . . . . . . . . . . . . . . . . . . . 32

5



3.1.8 Step 1+: Proof Builder . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.9 Step 3+: Extending the Genuine Absurdity Property . . . . . . . . . 33

3.1.10 Step 4+: Extracting proofs from arguments . . . . . . . . . . . . . . 33

3.1.11 Step 4++: Argument Builder . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Solution Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Justification of Solution Architecture . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Advantages of Chosen Architecture . . . . . . . . . . . . . . . . . . . 35

3.3.2 Disadvantages of Chosen Architecture . . . . . . . . . . . . . . . . . 35

3.4 Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Theorem Proving System 38

4.1 Ruleset Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Propositional Logic Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 High-Level Description of Implementation . . . . . . . . . . . . . . . . . . . 40

4.4 Output Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Checking for Genuine Absurdity Property 44

5.1 Short Description of Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Details of Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 Checking for RAND Proof . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.2 Checking for Restricted Formulas . . . . . . . . . . . . . . . . . . . . 46

5.2.3 Ensuring the Lack of Substitution . . . . . . . . . . . . . . . . . . . 46

5.2.4 Checking for Genuine Absurdity Property . . . . . . . . . . . . . . . 47

5.3 Example Walkthrough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Remarks and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Extending the Genuine Absurdity Property 53

6.1 Arriving at the Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Definition of Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Correctness of Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3.1 Case 1: Not Referencing Sibling Derivations . . . . . . . . . . . . . . 57

6.3.2 Case 2: Referencing Sibling Derivations . . . . . . . . . . . . . . . . 57

6.3.3 Effects of More Specific Context of Implicitly Copied Siblings . . . . 57

6.3.4 Assumption of Proof Sketch . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Details of Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Visualization of Genuine Absurdity Property Proofs 60

7.1 Assumptions Made by Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2 Description of Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.3 Observations and Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.4 Details of Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.5 Example Walkthough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.6 Visualization Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



8 Extracting Proofs from Arguments 71

8.1 Assumptions Made by Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2 Description of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.3 Observations, Remarks and Future Work . . . . . . . . . . . . . . . . . . . . 73

8.4 Details of Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.5 Example Walkthrough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9 Server Module 80

9.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9.2 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.3 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

10 Client Module 85

10.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

10.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

10.2.1 Clipboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

10.2.2 Workbench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10.2.3 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10.2.4 Logic Syntax and Natural Deduction in Client Module . . . . . . . . 93

10.3 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

11 Proof Builder 96

11.1 Motivation for Client Side Implementation . . . . . . . . . . . . . . . . . . . 96

11.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

11.3 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

12 Argument Builder 100

12.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

12.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

12.3 Generating Arguments Automatically . . . . . . . . . . . . . . . . . . . . . 104

13 Evaluation 105

13.1 Theorem Prover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

13.1.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

13.1.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

13.1.3 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

13.1.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

13.1.5 Change of Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

13.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

13.2 Other Algorithms and Procedures . . . . . . . . . . . . . . . . . . . . . . . 114

13.3 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

13.4 Client and User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

13.5 Overall Software Engineering Evaluation . . . . . . . . . . . . . . . . . . . . 116

13.6 Project Aims, Objectives and Contributions . . . . . . . . . . . . . . . . . . 116

14 Conclusions and Future Work 118

List of Figures 120

Listings 123



Bibliography 124



Chapter 1

Introduction

Formal logic is a standard method of giving validity to arguments. However, formal logic
trivializes in the presence of inconsistencies, thus becoming inflexible when reasoning about
inconsistent theories. Additionally, the Reductio ad Absurdum rule is used freely; under
this rule the derived inconsistency can be reached without necessarily using the hypothesis
assumed at the beginning of the rule’s application. In argumentation, this translates to
reaching a conclusion with an argument that has nothing to do with the topic of the
conversation.

Argumentation Logic is a new argumentation framework proposed by Professor An-
tonis Kakas (University of Cyprus, Cyprus), Professor Paolo Mancarella (Universitá di
Pisa, Italy) and Dr Francesca Toni (Imperial College London, United Kingdom). It is a
framework based on propositional logic that allows reasoning closer to the way humans do.
Argumentation Logic does not trivialize in the presence of inconsistencies.

Argumentation Logic is largely based on the already established natural deduction
system. The major difference however lies in the fact that it restricts the use of the Reductio
ad Absurdum (known as ”not introduction”) rule in a way that the assumed hypothesis
must be critical to the application of that rule. Argumentation Logic can be seen from an
argumentative point of view, as a debate between a proponent who puts forth arguments
and defends them against an opponent, who in turn tried to attack those arguments. The
arguments are sets of propositional sentences. The argument of the proponent is successful
and a conclusion is therefore drawn if it can be successfully defended against the attacks
made by the opponent. Argumentation Logic is a recent addition to the field of logic and
remains partly unexplored.

The idea is to implement a simple and flexible GUI that allows for the construction
of valid propositional Argumentation Logic natural deduction proofs. In addition, the
implemented software should be able to visualize the proofs as exchanges of arguments
between proponent and opponent. This is an attempt to enable further research and
study of Argumentation Logic as an established method for reasoning about potentially
inconsistent environments in a human-like way, with potential applications in artificial
intelligence.

The project was originally split into seven steps which build on top of each other.

• Step 1: Basic Natural Deduction Proof System (chapter 4)

The first step requires a natural deduction proof system that can find the steps
required to reach a goal, given the theory and the goal that must be met. The
aim of this step is to provide the basis on which to build the Argumentation Logic
framework.

9



Chapter 1. Introduction

Consider this example: Given theory T = {¬(a∧¬b∧¬c),¬(a∧b),¬(a∧c∧¬d),¬(d∧
¬b)} and goal ¬a, the theorem prover could give the proof shown in Figure 1.1.

Figure 1.1: One of the generated proofs of the theorem prover with theory T = {¬(a ∧
¬b ∧ ¬c),¬(a ∧ b),¬(a ∧ c ∧ ¬d),¬(d ∧ ¬b)} and goal ¬a. ”!” represents negation and ”&”
represents conjunction

• Step 2: Improving the Proof System

The aim of this stage is to customize the natural deduction proof system in order to
facilitate its usage in the context of Argumentation Logic and its exploration.

• Step 3: Genuine Absurdity Property (chapter 5)

The third step involves the processing of produced natural deduction proofs in order
to check the presence of the Genuine Absurdity Property. This property is closely
tied to the identification of natural deduction proofs that are compatible with (that
is, supported by) Argumentation Logic. Compatible proofs can be visualized as
arguments between two debaters as in the following step.

For example, the proof given in the example for step 1 does indeed follow this property
for reasons that will be explained in chapter 5 and the GUI will award the proof a
ribbon to indicate success after the check as shown in Figure 1.2.

• Step 4: Argumentation Logic Visualization (chapter 7)

The fourth step requires the construction of a GUI (and a collection of background
procedures) that allows the visualization of Argumentation Logic proofs as sets of
arguments.

Given the example in step 3, the proof can now be visualized as a futile attempt of
the proponent to propose and defend the opposite of the outermost conclusion ¬a, a,
successfully attacked by the opponent as shown in Figure 1.3.

A mapping between natural deduction proofs and argumentation theory is discussed
in chapter 7.

• Step 5: Converting Natural Deduction Proofs to Argumentation Logic Proofs

10



Chapter 1. Introduction

Figure 1.2: The proof in Figure 1.1, now awarded the Genuine Absurdity Property ribbon to
indicate that it follows the property. ”!” represents negation and ”&” represents conjunction

Figure 1.3: The proof in Figure 1.2, now now vizualised as an argument. Green nodes
represent defenses by the proponent, and red nodes represent attacks by the opponent.

11



Chapter 1. Introduction

The fifth step revolves around the conversion of natural deduction proofs that are
unsupported by Argumentation Logic (proofs that do not follow the Genuine Absur-
dity Property) to compatible ones. The aim of this step is to allow the possibility of
virtually any natural deduction proof to be visualized from an argumentative view.

• Step 6: Re-Introduction of Disjunction and Implication Connectives

The sixth step involves the introduction of the disjunction and implication connec-
tives. The use of disjunction and implication remain partly subject for future work.
The aim of this step is to explore further this area.

• Step 7: Paraconsistency

The seventh and final step ventures into how Argumentation Logic can allow for
reasoning within an inconsistent environment. The aim of this step is to probe the
notion of para-consistency of Argumentation Logic.

The final three steps were unfortunately not explored. In addition to the original steps,
several others were planned and implemented during the project. The reason was to provide
a better and more integrated environment with a back-and-forth flow between propositional
logic and argumentation.

• Step 1+: Proof Builder (chapter 11)

The creation of a natural deduction proof builder was deemed necessary as users can
directly input natural deduction proofs that they may have in mind into the system.

A sneak peak of the proof builder is shown in Figure 1.4.

Figure 1.4: The proof builder initialized to build a proof with theory T = {¬(a ∧ b),¬(a ∧
c),¬(a ∧ ¬b ∧ ¬c)} and goal ¬a.

12



Chapter 1. Introduction

• Step 3+: Extending the Genuine Absurdity Property (chapter 6)

This step enables the Genuine Absurdity Property to be extended so that it covers
natural deduction proofs that make use of the substitution shortcut.

For example note the use of the shortcut on line 11 of the proof in Figure 1.2. This
uses the substitution shortcut of natural deduction to use the sibling conclusion ¬b
of line 8 of the proof, which is the conclusion of the sub-derivation on lines 5 to 7.
Normally, this proof is not taken into account even though it seems natural. The
extension addresses this specifically.

• Step 4+: Extracting proofs from arguments (chapter 8)

This step allows a more circular data flow by enabling the transition from arguments
back to natural deduction, that complements the original step 4.

For example, given the argument in Figure 1.3, this algorithm can be used to extract
the proof in Figure 1.2.

• Step 4++: Argument Builder (chapter 12)

Allows for the construction of arguments that follow the semantics of Argumentation
Logic directly. This enables a different data entry point as the original steps only
allowed proofs to be made and arguments only to be created by converting proofs.

A sneak peak of the argument builder is shown in Figure 1.5.

Figure 1.5: The argument builder initialized with a complete argument about a, using
theory ¬(a ∧ b ∧ c),¬(a ∧ ¬b),¬(a ∧ ¬c).

All of the steps are explained in greater detail in section 3.1.
In conclusion, this project explores the premise of Argumentation Logic, a recent frame-

work based on natural deduction of propositional logic that allows proofs to be visualized
as an exchange of arguments. To aid the understanding of Argumentation Logic, a software
was created that enables the construction and visualization of proofs that adhere to this
logic. At the time of writing, there is no published work in this area, and the nature of this
project is investigative.

13



1.1. Contributions Chapter 1. Introduction

1.1 Contributions

The project contributes in several ways:

• A theorem prover was built to facilitate the exploration of Argumentation Logic. It
can prove a goal given a theory, or fail when it cannot be proven (steps 1 and 2)

• A proof builder was created that facilitates the generation and input of proofs inside
the system (step 1+)

• A check was implemented that reflects the exact definition of the Genuine Absurdity
Property that can be used to evaluate proofs (step 3)

• A drawback of the Genuine Absurdity Property was identified and remedied by ex-
tending the definition to cover more proofs of natural deduction (step 3+)

• An algorithm for drawing proofs that follow the (extended) Genuine Absurdity Prop-
erty was devised and implemented (step 4)

• An algorithm corresponding to the one above was devised and implemented, with the
ability to take an argument and its surrounding theory and extract a proof that will
yield the same argument if run through the algorithm in step 4 (step 4+)

• An argument builder feature was created in order to allow for the direct creation of
arguments, according to the semantics of Argumentation Logic (step 4++)

• All of the above are wrapped in a user-friendly and intuitive GUI that provides
basic usability features such as persistent storage of generated assets, exporting and
importing of those assets and visual feedback to the user during constructions or
general use.

1.2 Structure of Remainder of Report

The background chapter, chapter 2 covers argumentation theory briefly, as well as natural
deduction. It introduces the rules used in natural deduction throughout the paper, as well
as its format and style. Argumentation Logic is then introduced, along with explanations
of the relevant concepts used in this project.

The project is split into a different modules, as explained by chapter 3, namely, the
core module that includes all of the procedures that generate or manipulate proofs and
arguments, the server module that imports the core module and serves requests issued by
the client module and finally the client module that acts as a wrap-around for the core
module, providing a comfortable and useful working environment for the user.

The core implementation as well as the findings of this project are discussed from
chapter 4 to chapter 8. An overview of the different processes and features implemented
in the solution can be found in section 3.4, along with the data flow between them. The
server implementation is discussed in more detail in chapter 9. The client is discussed
in chapter 10. The evaluation of this project can be found in chapter 13, and finally, a
conclusion is drawn based on the evaluation in chapter 14.

14



Chapter 2

Background

2.1 Argumentation Theory

Recommended Reading: (Simari and Rahwan, 2009)

2.1.1 What is Argumentation Theory

Exactly what defines an argument varies between different sources in argumentation theory.
Douglas Walton defines an argument as being made of three parts: a conclusion, the
premises based on which the conclusion is derived and an inference, which links the premises
to the conclusion. Arguments are sets of propositions of some format and they tend to
attack or defend other arguments in a conversation. They can be used in order to choose a
course of action, decide for or against a decision, or find common ground between two (or
more) parties. There are several packages that draw arguments as chains of attacks and
defenses which will be discussed briefly in section 2.4.

Argumentation differs from the traditional approaches of inference based on deductive
logic. The difference lies in that traditional approaches (such as propositional calculus)
prove that the conclusion sought after does indeed derive from the given premises. The
conclusion and theory are both known in advance, and a single inference is made to link
the two. This is called a monological approach. On the contrary, argumentation involves
a process that looks more like a dialogue (hence it is a dialogical approach) which tries to
look at the pros and cons of an argument. The process involves analyzing the arguments
set forth for and against the initial argument, and finding strengths and weaknesses. The
final outcome is then based on the strongest argument.

2.1.2 Attacking Arguments

There are different ways to attack an argument. Asking a critical question that raises doubt
about a previous argument leads to that argument being refuted unless the other party can
respond with a satisfactory answer. Questioning an argument’s premises or inference is
another way of attack. Putting forward a counter-argument (an argument that reaches
the opposite conclusion of the first argument) or arguing that the premises are irrelevant
to the conclusion (this problem, introduced by the Reductio ad Absurdum rule concerns
Argumentation Logic) are also valid attacks. Different views exist about what constitutes
an attack and what not; for example, Krabbe suggests his own seven ways to react to an
argument (Krabbe, 2007).

15



2.1. Argumentation Theory Chapter 2. Background

2.1.3 Types of Arguments

Generally, arguments belong to three different categories, based on how the inference that
links the conclusion to the evidence was made: deductive, inductive and defeasible. Defea-
sible arguments are different from inductive in that they cannot be anticipated statistically.
For example, ”Adults can drive. I am an adult. Therefore, I can drive.” is an example of
deductive reasoning, but in a defeasible environment it could be the case that I still cannot
drive because of a broken leg. Argumentation Logic, as it is based on natural deduction,
involves arguments of the deductive kind.

2.1.4 Argumentation Example

An example of an argument between two parties is given below:

1. Student: Higher grades mean higher employability. Decreasing the volume of the
curriculum will increase student performance and allow them to get higher marks.
Therefore, we should decrease the volume of taught material.

2. Director of Studies: How do you know that decreasing the volume of the material
taught will improve students’ marks?

3. Student: Students will have more time to digest the curriculum and revise for the
exams. In that way, they will achieve higher marks in the exams and overall grades.

4. Director of Studies: Weakening the curriculum will make your degree less desirable
at the same time, thus reducing your employability.

5. Student: How do you know that our degree will become less important?

6. Director of Studies: Reports we have gathered from the industry indicate that stu-
dents from this university are of high demand because of their vast knowledge of
material not covered in most other universities.

The student sets the premise by stating that higher grades imply higher employability
and smaller curriculum implies higher grades. His conclusion is that the taught material
should be decreased. The director of studies attacks the student’s argument by challenging
the second premise. The student tries to defend himself by providing a concrete argument
as to how a smaller curriculum can lead to better grades. The director of studies cannot
attack that argument, and thus poses a different (yet relevant) argument: reducing the
material offered will make the degree less attractive. The student then attacks this argu-
ment by questioning it (the same way the director of studies questioned the student’s initial
argument). In the end, the director supplies facts that support his argument, leading to
a counter-example that suggests that cutting down the curriculum will actually result in
lower employability. The debate ends, as the student can no longer support his argument.

2.1.5 Relevance

As briefly mentioned before, irrelevance is one type of fallacy concerning argumentation
theory. Under this fallacy, a debater can put forth an argument with premises that are
of no relevance to the conversation at hand, perhaps stray away into a different matter
and reach a conclusion that otherwise could not be met. Alternatively, this issue could
cause the conversation to lead to nowhere. This will be discussed further when explaining
how Argumentation Logic restricts the use of the Reductio ad Absurdum rule in order to
establish a form of relevance (as seen in section 2.3.4).

16



Chapter 2. Background 2.2. Natural Deduction

2.1.6 Abstract Argumentation Framework

An argumentation framework is a framework that is established in order to allow for formal
study of argumentation theory. Perhaps the most basic argumentation framework is the
widely known abstract argumentation framework (Dung, 1995). This is a very simple
framework that is defined by a set containing the arguments set forth by a party and the
attack relation, a binary relation that defines which argument in the set attacks which.

In formal notation, an abstract argumentation framework is usually given by the tuple

〈Args,Att〉

where:

• Args is the set of all possible arguments that are relevant to the subject modeled by
the argumentation framework

• Att is the binary relation Args × Args where a (a, b) ∈ Att means that argument a
attacks argument b.

For example consider the small abstract argumentation framework that models the
possibility of going hiking if it is raining. Assume for this example that going hiking is not
possible if it is raining, unless a raincoat is at hand. Additionally, not going hiking on a
beautiful sunny day is out of the question, unless of course it happens to be very muddy
(from the rain the night before).

Our arguments can be c for having a raincoat, r to indicate that it is raining, h for
deciding to go on a hike, h′ for deciding against hiking, s for being sunny and finally m for
being muddy. Thus Args = {c, r, h, h′, s,m}.

In this framework, argument r attacks argument h (rain does not allow hiking), and ar-
gument c attacks argument r (having a raincoat guards against the rain). Also, s attacks h′

(as it would be a shame to not go hiking on a sunny day) and m attacks s (since a lot of mud
will incur a lot of hand-washing later on). Arguably, h attacks h′ and vice-versa, as the two
arguments are mutually exclusive. Thus Att = {(r, h), (c, r), (s, h′), (m, s), (h, h′), (h′, h)}.

The abstract argumentation framework resulting from this example will then be of the
form 〈Args,Att〉.

There are very many extensions to Dung’s abstract argumentation framework for dif-
ferent reasons, such as aiming to cover limitations of this framework or tailoring it to better
fit particular domains. Examples of extensions of this framework are the abstract bipolar
argumentation framework (Modril and Caminada, 2008), assumption-based argumenta-
tion (Toni, 2013), logic-based argumentation frameworks (Besnard and Hunter, 2001) and
value-based argumentation frameworks (Bench-Capon, 2002).

It will be seen later on in section 2.3.2 that Argumentation Logic establishes its own
framework by building directly on top of an abstract argumentation framework.

2.1.7 Visualization of Abstract Argumentation Framework

An abstract argumentation framework can be seen from a graphical point of view. The argu-
ments Args form nodes in a graph, and the attack relation Att forms the edges. The above
example, with 〈Args,Att〉 (whereArgs = {c, r, h, h′, s,m} andAtt = {(r, h), (c, r), (s, h′), (m, s), (h, h′), (h′, h)}),
can be visualized in Figure 2.1.

2.2 Natural Deduction

Recommended Reading: (Barker-Plummer, Barwise, and Etchemendy, 2011, pp. 17-225)

17



2.2. Natural Deduction Chapter 2. Background

r

c

h’

s

m

h

Figure 2.1: Visualization of abstract argumentation example in subsection 2.1.6

2.2.1 Rules for Propositional Logic

The rules for propositional logic used throughout this paper are as follows:

∧I : φ,ψ
φ∧ψ ∧E : φ∧ψψ ∧E : φ∧ψφ ∨I : ψ

φ∧ψ ∨I : φ
φ∧ψ ∨E : φ∨ψ,[φ...χ],[ψ...χ]χ

→ I : [φ...ψ]
φ→ψ → E : φ,φ→ψ

ψ ¬I : [φ...⊥]
¬φ ¬E : ¬¬φ

φ ⊥I : φ,¬φ⊥ ⊥E : ⊥
φ

Note: the notation [φ...ψ] means a derivation of ψ with hypothesis φ.

2.2.2 Example of Natural Deduction Proof

An example of a natural deduction proof can be shown below. The format of natural
deduction proofs will follow the format of this example:

Assume theory T = {α→ β → ¬γ,¬γ ∧ β} and prove ¬α.

1 α→ β → γ given
2 ¬γ ∧ β given

3 α hypothesis
4 β → ¬γ → E(1, 3)
5 β ∧E(2)
6 γ → E(1, 5)
7 ¬γ ∧E(2)
8 ⊥ ⊥I(6, 7)

9 ¬α ¬I(3, 8)

A box is used to contain the hypotheses, derivations inside which cannot be used outside.
Each derivation is numbered on the left, and reasons (i.e. rules used) for each derivation are
given on the right, following the rules defined in the previous section. Theory is indicated
as ”given”, and assumptions (hypotheses) are indicated as ”hypothesis” at the beginning
of a sub-derivation (inner box). Sub-derivations can also be indicated as [φ...⊥] in the text,
where φ is the hypothesis.

2.2.3 Automated Theorem Proving and Proof Search

Despite what the name implies, proof theory in general does not work with natural de-
duction calculi as the expressiveness of natural deduction comes at a price in terms of its
unrestricted search space (Sieg and Scheines, 1992, pp. 140-141). Hilbert systems and
natural deduction are said to be inappropriate for automated theorem proving since they
both exhibit the modus ponens rule (Fitting, 1995, p. 95). Natural deduction calculi that
are indeed used in theorem proving or proof search have special properties and restrictions

18



Chapter 2. Background 2.2. Natural Deduction

in their search space in order to provide a good strategic method of achieving their goals
(Sieg and Scheines, 1992, pp. 140-141).

2.2.4 Example of a Proof Search Implementation

The Carnegie Mellon Proof Tutor1 is an example of an automated proof search program that
can formulate proofs in natural deduction by employing a wide range of natural deduction
proofs. A summary of its ruleset (with a slight adjustment to the notation) is given below:

Using the notation in Sieg and Scheine’s article (Sieg and Scheines, 1992), α;β?G is a
triplet describing the following:

• available assumptions as the set of formulas α

• set of formulas obtained by using the ∧E and→ E rules on the available assumptions
β

• current goal G

The following conventions are used in the article: the concatenation of sequences α
and β is indicated by their juxtaposition; if φ is a formula and α is a sequence, then the
extension of α by φ is given by α, φ; lastly, a formula φ that is a member of the sequence
α can be denoted by φ ∈ α.

The rules used by this proof search program are split into three categories, namely the
elimination rules (↓-rules), the introduction rules (↑-rules) and the negation rules.

The elimination rules are listed here:

• r ↓ ∧i : α, β?G,φ1 ∧ φ2 ∈ αβ, φi /∈ αβ ⇒ α;β, φi?G, i = 1 or 2

(if there is a conjunction in the set αβ, add its components if not already present)

• r ↓ ∨ : α, β?G,φ1 ∨ φ2 ∈ αβ, φ1 /∈ αβ, φ2 /∈ αβ ⇒ α, φ1?GANDα, φ2?G

(if there is a disjunction in the set αβ, and neither of the components have been
proven, do a case by case analysis on the goal)

• r ↓→ α, β?G,φ1 → φ2 ∈ αβ, φ1 ∈ αβ, φ2 /∈ αβ ⇒ α;β, φ2?G

(if there is an implication in the set αβ and the first component has been proven, add
the second component to the set β if not already present)

Note that the restricted versions of the elimination rules are to be used in the proof
search implementation (hence the ”r” in front of the rules’ names) so that redundancy
is avoided. The restricted rules only add elements if they are absent from the set αβ.
Otherwise, the system could hang by adding infinite copies of the same formulas by repeat-
edly applying the unrestricted rules. The restrictions in the above rules are the φi /∈ αβ
conditions not present in the unrestricted versions.

Consider for example the query α, β?G where α = {γ ∧ δ}, β = {γ} and G = δ. If the
restriction γ /∈ {γ ∧ δ} was not present, then the first elimination rule would be applicable
all the time, and the program could keep adding γ to the set β forever, making no real
progress.

The introduction rules are listed here:

• ↑ ∧ : α;β?φ1 ∧ φ2 ⇒ α;β?φ1ANDα;β?φ2

(if the goal is a conjunction, prove its constituent parts)

1http://www.cs.cmu.edu/ cogito/cptproject.html

19

http://www.cs.cmu.edu/~cogito/cptproject.html


2.3. Argumentation Logic Chapter 2. Background

• ↑ ∨ : α;β?φ1 ∨ φ2 ⇒ α;β?φ1ORα;β?φ2

(if the goal is a disjunction, prove either of its constituent parts)

• ↑→: α;β?φ1 → φ2 ⇒ α, φ1; ?φ2

(if the goal is an implication, assume the first part and prove the second)

The negation rules are listed here:

• ⊥c : α;β?φ, φ 6= ⊥ ⇒ α,¬φ; ?⊥

(proof by contradiction: if the goal is a positive formula other than contradiction,
prove that its negation leads to a contradiction)

• ⊥i : α;β?¬φ⇒ α, φ; ?⊥

(if the goal is a negated formula, prove that the positive subformula leads to a con-
tradiction)

• ⊥F : α;β?⊥, φ ∈ F ⇒ α;β?φANDα;β?¬φ

(if the goal is a contradiction, prove it by taking any subformula in the set αβ and
prove both that subformula and its negation)

The last rule mentions F ; this is the finite class of formulas that consist of all subformu-
las of elements in the subsequence αβ. The theorem prover built for this project (chapter 4)
will base some of its rules on the Carnegie Mellon Proof Tutor.

2.3 Argumentation Logic

Recommended Reading: (Kakas, Toni, and Mancarella, 2012)

2.3.1 Introduction

This section gives a brief introduction of the concepts behind Argumentation Logic, as
found in the technical report. Section Exploring Argumentation Logic (section 3.1) shows
how these concepts are used to build the visualization tool.

Argumentation Logic builds a bridge between argumentation theory and propositional
logic. This duality is formed by combining notions from both argumentation theory and
natural deduction. For consistent theories, Argumentation Logic is equivalent to proposi-
tional logic, but it also extends into a para-consistent logic for inconsistent theories. From
the argumentation point of view, Argumentation Logic can be seen as arguments that are
sets of propositional formulas that attack and defend against other arguments. From the
propositional logic point of view, Argumentation Logic can be seen as a natural deduction
system that restricts the use of the Reductio ad Absurdum rule in order to allow for relevant
arguments to be used only. The rest of this section is devoted to explaining the concepts
behind this new logic.

2.3.2 Argumentation Logic Framework

In order to establish the Argumentation Logic framework, the notions of ”direct derivation”
and ”direct consistency” must first be defined:

20



Chapter 2. Background 2.3. Argumentation Logic

Direct Derivation

A direct derivation for a sentence from a theory is a natural deduction derivation of that
sentence from the given theory that does not contain any application of the Reductio ad
Absurdum rule. If such a derivation exists, then we say that this sentence is directly derived
(derived modulo RA) from the theory. For a sentence φ directly derived from theory T , we
denote T `MRA φ. For example, assume theory T = {α→ β, β → δ}, and derive α→ δ:

1 α→ β given
2 β → δ given

3 α hypothesis
4 β → E(1, 3)
5 δ → E(2, 4)

9 α→ δ ¬I(3, 5)

This is a direct derivation as the Reductio ad Absurdum rule was not used.

As another example, assume theory T = {α→ ⊥} and derive ¬α:

1 α→ ⊥ given

3 α hypothesis
4 ⊥ → E(1, 2)

9 ¬α ¬I(2, 3)

This is not a direct derivation as the Reductio ad Absurdum rule had to be used.

Classical and Direct Consistency/Inconsistency

The word ”classical” is used to denote the original natural deduction entailment. The word
”direct” uses the notion above. A theory is classically inconsistent if a contradiction can be
derived from it in the ”classical” sense. A theory is directly inconsistent if a contradiction
can be derived through a direct derivation. A theory is classically or directly consistent if
it is not classically or directly inconsistent, respectively.

In notation, a theory T is

• classically inconsistent if T ` ⊥

• directly inconsistent if T `MRA ⊥

• classically consistent if T 0 ⊥

• directly consistent if T 0MRA ⊥

In a sense, direct derivation capabilities form a subset of those of the classical derivation.
Hence, if a theory is classically consistent then it is directly consistent too. A directly
consistent theory can be classically inconsistent however, since classical derivation has one
more rule for proving contradiction (namely, the Reductio ad Absurdum rule) that direct
derivation does not have.

As an example, consider theory T = {α→ β,¬α→ γ,¬β∧¬γ} and prove contradiction:

21



2.3. Argumentation Logic Chapter 2. Background

1 α→ β given
2 ¬α→ γ given
3 ¬β ∧ ¬γ given

4 α hypothesis
5 β → E(1, 4)
6 ¬β ∧E(3)
7 ⊥ ⊥I(5, 6)

8 ¬α ¬I(4, 7)
9 γ → E(2, 8)
10 ¬γ ∧E(3)
11 ⊥ ⊥I(9, 10)

This proof requires the use of the Reductio ad Absurdum rule, without which a con-
tradiction cannot be derived. Thus, this theory is classically inconsistent, but directly
consistent.

Argumentation Logic Framework Definition

The Argumentation Logic framework relies on Dung’s abstract argumentation framework
as defined in subsection 2.1.6. It involves a set of arguments (where each argument is a
set of propositional sentences) and the attack relation between the arguments. Thus for a
given theory T , the Argumentation Logic framework becomes

〈ArgsT , AttT 〉

where:

• ArgsT = {T ∪ Σ} where Σ is a set of propositional formulas. Hence all arguments
include the starting theory T and potentially more propositional formulas Σ

• AttT = {(b, a)|a, b ∈ ArgsT , a = T ∪ ∆,∆ 6= {}, b = T ∪ Γ, T ∪ ∆ ∪ Γ `MRA ⊥},
that is, a set of pairs of arguments, the union of which provides ground for the direct
derivation of a contradiction. In other words, AttT contains all pairs of arguments
that don’t agree with each other!

Since the theory is fixed for the argumentation framework, any argument a = T ∪ Σ
will be referred to only by Σ. The argument T ∪ {} will thus be referred to as the empty
argument. Note that in the attack relation, the attacked argument cannot be empty and
apart from this exception, all attacks are reflexive. As an example, consider T = {α →
β, α→ γ}. Here, {a} attacks (and is attacked by) {¬β} or {¬γ}. For a directly inconsistent
theory, all arguments are hostile to each other since a contradiction can be derived from
any possible pair of arguments (the empty argument can still not be attacked).

Defense Against an Attack

Using the Argumentation Logic framework described above, and taking any argument
a = T ∪∆, an argument d can be described as a defense against a if any of the following
is true:

• d = T ∪ {¬φ} or d = T ∪ {φ} for some sentence φ ∈ ∆ or ¬φ ∈ ∆ respectively

• d = T ∪ {} and a `MRA ⊥

22



Chapter 2. Background 2.3. Argumentation Logic

What this means is that argument d can take an opposing view on one of the sentences
in argument a (this can be interpreted as questioning one of the premises or the conclusion
of an argument in argumentation theory) or if argument a is self-contradicting, then saying
nothing (empty argument) still counts as a defense against that argument.

2.3.3 Acceptability Semantics

This section defines what it means for an argument to be acceptable in Argumentation
Logic, as discussed in the technical report.

Acceptability of Arguments

Given an argumentation framework 〈ArgsT , AttT 〉 as discussed in the previous section fixed
for a consistent theory T , with a, b ∈ ArgsT , then a is acceptable with respect to b, denoted
by ACCT (a, b), if and only if either of the following conditions is met:

• a ⊆ b

• for all c ∈ ArgsT such that (c, a) ∈ AttT both of the following are true:

– c * a ∪ b

– there is an argument d ∈ ArgsT which defends against c and ACCT (d, a ∪ b)

Intuitively, an argument is acceptable with respect to one other one if it is a subset of
it (they share the same ideas), or all of its attacking arguments are not based on the same
ideas (are not subsets of the two arguments whose acceptability is under examination) and
they can be successfully blocked by other acceptable arguments.

Non-Acceptability of Arguments

Similarly to the acceptability of arguments, for argumentation framework 〈ArgsT , AttT 〉
fixed for a consistent theory T , with a, b ∈ ArgsT , then a is not acceptable with respect to
b, denoted by NACCT (a, b), if and only if both of the following conditions are met:

• a * b

• there is an argument c ∈ ArgsT such that (c, a) ∈ AttT and either of the following is
true:

– c ⊆ a ∪ b

– for all arguments d ∈ ArgsT which defend against c it is true that NACCT (d, a∪
b)

Intuitively, an argument is unacceptable with respect to another if they are different
and there is an attacking argument that comes from the same ideas as the arguments under
examination and it cannot be defended against (by an acceptable argument). Note that
non-acceptability is the exact opposite of acceptability, and so it holds that NACCT (a, b) =
¬ACCT (a, b).

23



2.3. Argumentation Logic Chapter 2. Background

Example of Non-Acceptability

Consider theory T = {α ∧ β → ⊥,¬β ∧ γ → ⊥,¬γ ∧ δ → ⊥}. NACCT ({a}, {}) holds,
because:

• {a} * {}, {β} attacks {α} and {¬β} is the only defense against {β}, and so it suffices
to show that NACCT ({¬β}, {α})

• {¬β} * {α}, {γ} attacks {¬β} and {¬γ} is the only defense against {γ}, and so it
suffices to show that NACCT ({¬γ}, {α¬β})

• {¬γ} * {α,¬β}, {δ} attacks {¬γ} and there is unfortunately no defense against it,
thus NACCT ({¬γ}, {α,¬β}), NACCT ({¬β}, {α}) and in turn NACCT ({α}, {}) all
hold

2.3.4 Reductio ad Absurdum, Genuine Absurdity Property and Accept-
ability Semantics

This section introduces the Genuine Absurdity Property, and relates it to the use of the
Reductio ad Absurdum rule and the acceptability semantics.

RAND Derivations

Reductio ad Absurdum derivations (RAND for short) are natural deduction derivations
that are enclosed by a Reductio ad Absurdum rule application.

Thus a RAND derivation of a propositional formula ¬φ is a natural deduction deriva-
tion of ¬φ which starts with a hypothesis φ and reaches a contradiction, allowing for the
Reductio ad Absurdum rule to be applied in order to deduce ¬φ.

A sub-derivation (of a certain derivation) is a RAND sub-derivation (of that derivation)
if the sub-derivation itself is a RAND derivation. Hence a tree can be formed with the
RAND derivation as the root, its RAND sub-derivations as its immediate children, the
RAND sub-sub-derivations as the next node level, and so on.

Consider as an example, theory T = {α→ ⊥, β → ⊥,¬α∧¬β ∧ γ → ⊥} and prove ¬γ.

1 α→ ⊥ given
2 β → ⊥ given
3 ¬α ∧ ¬β ∧ γ → ⊥ given

4 γ hypothesis

5 α hypothesis
6 ⊥ → E(1, 5)

7 ¬α ¬I(5, 6)

8 β hypothesis
9 ⊥ → E(2, 8)

10 ¬β ¬I(8, 9)
11 ¬α ∧ ¬β ∧I(7, 10)
12 ¬α ∧ ¬β ∧ γ ∧I(4, 11)
13 ⊥ ⊥I(4, 12)

14 ¬γ ¬I(4, 13)

This proof can be visualized as a tree with the root being the outer derivation of ¬γ
and with children the (sub-)derivations of ¬α and ¬β, as shown in Figure 2.2. The exact
algorithm for visualizing a proof will be given in chapter 7.

For a directly consistent theory, if NACCT ({φ}, {}) holds for some φ, then there is a
RAND derivation of ¬φ from that theory (Kakas, Toni, and Mancarella, 2012, p. 18).

24



Chapter 2. Background 2.3. Argumentation Logic

{¬α,¬β}

α

{}

β

{}

{γ}

Figure 2.2: Visualization of the proof of example in section 2.3.4

Genuine Absurdity Property

For the rest of this section, theories are assumed to be expressed using conjunction and
negation only. This gives rise to the following property: all sub-derivations of any derivation
of a theory are RAND sub-derivations. The following notation (adapted from the technical
report) can be used to represent RAND derivations:

[φ : c(φ1), ..., c(φk);¬ψ1, ...,¬ψl : ⊥]

where k, l ≥ 0 and

• φ is the hypothesis of this derivation

• φi are the hypothesis of parent derivations that this derivation has access to and can
make use of

• ψi are the hypotheses of the children derivations, the negations of which can be used
by this derivation

A very important thing to note is that such derivation contains copies of ancestor
hypotheses that were explicitly copied into the sub-derivation. It does not necessarily hold
all of its ancestor hypotheses. This is indicated by c(φi) instead of just φi in the notation
above. In the Argumentation Logic paper, there is an explicit copy rule that copies a
hypothesis from an ancestor in order to be used inside the sub-derivation. Copying in the
natural deduction style used in this paper will be explained later.

This notation can also nest derivations inside one another. From the last example with
theory T = {α → ⊥, β → ⊥,¬α ∧ ¬β ∧ γ → ⊥} and proof of ¬γ, the RAND derivations
that took place can be described as follows, using this notation:

[γ : −; [α : c(γ);− : ⊥], [β : c(γ);− : ⊥] : ⊥]

Note that the outer derivation has no inherited ancestral hypotheses, and the inner
derivations (which correspond to the leaves in the tree) have no child hypotheses; therefore
”-” is used to represent empty sequences in the notation. Note the copies of the hypothesis
γ of the ancestor derivation [γ...⊥] in the sub-derivations [α...⊥] and [β...⊥].

As a consequence of a RAND derivation, T ∪{φ}∪{φ1, ..., φk}∪{¬ψ1, ...,¬ψl} `MRA ⊥.
That is to say, the theory along with the hypothesis of that derivation and the assistance
of parent and child hypotheses can be used to derive a contradiction (which gives ground
for the deduction of ¬φ using the Reductio ad Absurdum rule).

25



2.3. Argumentation Logic Chapter 2. Background

The Genuine Absurdity Property then states that a RAND derivation satisfies this prop-
erty if the hypothesis of the derivation must be used in order to derive a contradiction. In
other words, the hypothesis must be relevant and without it a contradiction cannot be estab-
lished in any way. In formal notation this means that T ∪{φ1, ..., φk}∪{¬ψ1, ...,¬ψl} 0MRA

⊥ (note the absence of φ). In addition, all RAND sub-derivations must also follow this
property, making it a recursive property. Note that the set {φ1, ..., φk} contains only the
ancestor hypotheses copied into the sub-derivation, not necessarily all of them.

In terms of argumentation, the violation of the genuine absurdity property can be
thought of an argument with premises irrelevant to the conversation at hand (as was dis-
cussed in subsection 2.1.5). RAND derivations satisfying the genuine absurdity property are
not guaranteed to exist, except for classically consistent theories (Kakas, Toni, and Mancar-
ella, 2012, p. 9). It can be shown that for a directly consistent theory, if there is a RAND
derivation of ¬φ that fully satisfies the genuine absurdity property then NACCT ({φ}, {})
holds (Kakas, Toni, and Mancarella, 2012, p. 19).

Genuine Absurdity Property and Substitution Shortcut

A very important thing to note is that the Genuine Absurdity Property is defined only
in natural deduction that does not make use of the substitution shortcut (which can be
thought of as similar to a cut in sequent calculus). This shortcut is useful in avoiding to
re-prove parts of the derivation by proving them once in a more general context and then
using them repeatedly in (possibly) more specific contexts. To illustrate the use of the
shortcut, consider the two proofs shown in Figure 2.3.

1 ¬(α ∧ β) given
2 ¬(α ∧ γ ∧ ¬β) given
3 ¬(α ∧ ¬γ ∧ ¬β) given

4 α hypothesis

5 β hypothesis
6 α ∧ β ∧I(4, 5)
7 ⊥ ⊥I(1, 6)

8 ¬β ¬I(5, 7)

9 γ hypothesis
10 α ∧ γ ∧I(4, 9)
11 α ∧ γ ∧ ¬β ∧I(10, 8)
12 ⊥ ⊥I(2, 11)

13 ¬γ ¬I(9, 12)
14 α ∧ ¬γ ∧I(4, 13)
15 α ∧ ¬γ ∧ ¬β ∧I(14, 8)
16 ⊥ ⊥I(3, 15)

17 ¬α ¬I(4, 16)

1 ¬(α ∧ β) given
2 ¬(α ∧ γ ∧ ¬β) given
3 ¬(α ∧ ¬γ ∧ ¬β) given

4 α hypothesis

5 β hypothesis
6 α ∧ β ∧I(4, 5)
7 ⊥ ⊥I(1, 6)

8 ¬β ¬I(5, 7)

9 γ hypothesis
10 α ∧ γ ∧I(4, 9)

11 β hypothesis
12 α ∧ β ∧I(4, 11)
13 ⊥ ⊥I(1, 12)

14 ¬β ¬I(11, 13)
15 α ∧ γ ∧ ¬β ∧I(10, 14)
16 ⊥ ⊥I(2, 15)

17 ¬γ ¬I(9, 16)
18 α ∧ ¬γ ∧I(4, 17)
19 α ∧ ¬γ ∧ ¬β ∧I(18, 8)
20 ⊥ ⊥I(3, 19)

21 ¬α ¬I(4, 20)

Figure 2.3: Proofs showing the use of a shortcut in natural deduction. The proof on the
right derives ¬β again whereas the proof on the left simply reuses the previous derivation
of ¬β

26



Chapter 2. Background 2.3. Argumentation Logic

These two proofs are the same in a sense. The difference lies in that the first proof does
not derive ¬β again by re-using the derivation made on lines 5-8. The second proof is more
explicit, by re-proving ¬β inside the derivation of ¬γ. To see how this affects the definition
of the Genuine Absurdity Property, take the child hypotheses for the derivation of ¬γ for
each proof. In the former proof, there is none, whereas in the latter, there is β. The
definition of the Genuine Absurdity Property depends on the set of children hypotheses of
each (sub)derivation, and allowing the use of the shortcut affects that set. This is because
in the first proof the check for the property will be T ∪ {α} ∪ {} 0MRA ⊥, whereas in the
second it will be T ∪ {α} ∪ {¬β} 0MRA ⊥. The fact that ¬β is excluded from the check
could affect whether the proof is correctly attributed as following the Genuine Absurdity
Property or not. This is addressed in chapter 6 where an extension is given to this definition
so that proofs that use the shortcut can still follow this property.

Copying of Ancestor Hypotheses

In the Argumentation Logic paper, sub-derivations have access to ancestor hypotheses by
copying them explicitly in the derivation, indicated by a line c(φi) where φi is the ancestor
derivation being copied. This paper does not have an explicit ”copy” rule, therefore the
copying of ancestor hypotheses will happen implicitly. If a sub-derivation features a step
that has a line reference in its reason (justification) pointing to a hypothesis, then that
hypothesis can be considered as having been implicitly copied into the sub-derivation. An
example is shown in Figure 2.4.

1 ¬(α ∧ β) given
2 ¬(α ∧ ¬β) given
3 ¬β given

4 α hypothesis

5 β hypothesis
6 α ∧ β ∧I(4, 5)
7 ⊥ ⊥I(1, 6)

8 ¬β ¬I(5, 7)
9 α ∧ ¬β ∧I(4, 8)
10 ⊥ ⊥I(2, 9)

11 ¬α ¬I(4, 10)

1 ¬(α ∧ β) given
2 ¬(α ∧ ¬β) given
3 ¬β given

4 α hypothesis

5 β hypothesis
6 ⊥ ⊥I(3, 5)

7 ¬β ¬I(5, 6)
8 α ∧ ¬β ∧I(4, 7)
9 ⊥ ⊥I(2, 8)

10 ¬α ¬I(4, 9)

1 ¬(α ∧ β) given
2 ¬(α ∧ ¬β) given
3 ¬β given

4 α hypothesis

5 β hypothesis
6 α ∧ β ∧I(4, 5)
7 ⊥ ⊥I(3, 5)

8 ¬β ¬I(5, 7)
9 α ∧ ¬β ∧I(4, 8)
10 ⊥ ⊥I(2, 9)

11 ¬α ¬I(4, 10)

Figure 2.4: Proofs showing the implicit use of copying of ancestor hypotheses: the proof in
the middle makes no reference to the ancestor hypothesis α whereas the other two implicitly
copy it

Figure 2.4 shows the proof on the left implicitly copying the ancestor hypothesis α
because line 6 of the [β...⊥] sub-derivation refers to line 4 in its justification (∧I(4, 5)).
The proof on the right implicitly copies the ancestor hypothesis too, albeit not using it
(note that line 7 refers to lines 3 and 5 of the proof, not line 6). The middle proof makes
no mention of the ancestor hypothesis α whatsoever and so it does not implicitly copy it.

Acceptability Semantics With Respect to Propositional Logic

The technical report presents a series of theorems and proofs that closely relate Argumen-
tation Logic’s acceptability semantics to propositional logic (Kakas, Toni, and Mancarella,

27



2.3. Argumentation Logic Chapter 2. Background

2012, pp. 10-11). Below is a summary of properties of the notions of acceptability that
demonstrate their connection to notions in propositional logic:

• For a classically consistent theory, and a RAND derivation of a negated formula,
there exists another RAND derivation of that negated formula that fully satisfies the
genuine absurdity property.

• For a classically consistent theory T , if T ` φ then bothACCT ({φ}, {}) andNACCT ({¬φ}, {})
hold.

• For a classically inconsistent theory T such that NACCT ({¬φ}, {}) holds, T ` φ.

The definition of NACCT -entailment is the following: For a classically consistent theory
T , φ is NACCT -entailed (written as T |=NACCT φ) by T if and only if NACCT ({¬φ}, {}).
Hence the last connection between the acceptability semantics of Argumentation Logic and
propositional logic is the following: For a classically consistent theory T , T |= φ if and only
if T |=NACCT φ. This result is a direct consequence of the properties mentioned above,
and in the case of inconsistent theories a natural generalization can be obtained with the
addition of an extra condition defined later.

2.3.5 Disjunction and Implication Connectives

Argumentation Logic establishes an equivalence, for classically consistent theories, between
itself and propositional logic, under the notion of NACCT -entailment and standard entail-
ment respectively. This equivalence however works with the conjunction and negation
connectives. The relations between conjunction and negation and disjunction and implica-
tion are given by α ∨ β ≡ ¬(¬α ∧ ¬β) and α → β ≡ ¬(α ∧ ¬β). In order to include the
disjunction and implication connectives it must be shown that NACCT -entailment can be
established both ways for both relations. In other words, for disjunction, it must be shown
that {α∨ β} |=NACCT ¬(¬α∧¬β) and {¬(¬α∧¬β)} |=NACCT α∨ β, and for implication,
it must be shown that {α→ β} |=NACCT ¬(α ∧ ¬β) and {¬(α ∧ ¬β)} |=NACCT α→ β.

Fortunately, for the disjunction, both entailments can be shown (Kakas, Toni, and Man-
carella, 2012, pp. 11-12). However, in the case of the implication, only {α→ β} |=NACCT

¬(α ∧ ¬β) can be shown. In order for {¬(α ∧ ¬β)} |=NACCT α → β to be possible, the
attacking semantics should be changed to account for this case explicitly (Kakas, Toni, and
Mancarella, 2012, pp. 12-13). This topic remains a topic for future work.

2.3.6 Paraconsistency

Argumentation Logic is equivalent to propositional logic for consistent theories, under the
notion of NACCT -entailment and standard entailment respectively. In the case of classi-
cally inconsistent theories, Argumentation Logic define two new notions, each generalizing
from the previous (Kakas, Toni, and Mancarella, 2012, pp. 13-15):

Directly Consistent Theories

For a directly consistent theory T , φ is AL-entailed by T (written as T |=AL φ if and
only if ACCT ({φ}, {}) and NACCT ({¬φ}, {}). This is a generalization of the NACCT -
entailment for classically consistent theories, based on the argumentation perspective of an
acceptable argument being successfully defended and not successfully objected against.

AL-entailment leads to a form of para-consistency, since it does not trivialize in the
case of the application of the Reductio ad Absurdum rule (as is the case with standard

28



Chapter 2. Background 2.4. Existing Visual Argumentation Tools

entailment) due to the notion of non-acceptability. However, even with this addition, AL-
entailment is still not applicable to directly inconsistent theories.

Directly Inconsistent Theories

The notion of AL-entailment above does not work for directly inconsistent theories, as from
Argumentation Logic’s point of view, the theory is in layman’s terms as wrong (inconsistent)
as it can get. In terms of Argumentation Logic, if the theory is directly inconsistent (in
addition to being classically inconsistent as well), then no matter what argument is put
forth, it can always be attacked by the empty argument since T `MRA ⊥ to begin with.
For this reason, the entire theory cannot be considered as a whole, and hence a new notion
of entailment is established, one that makes use of maximally consistent closure sets. For
theory T , and Cn(T ) = {φ|T `MRA φ} being the set of all direct consequences of T , φ is
AL+-entailed by T (written as T `AL+ φ) if and only if T ′ `AL φ for all maximally directly
consistent sets T ′ ⊆ Cn(T ). For directly consistent theories AL+-entailment is equivalent
to AL-entailment.

2.4 Existing Visual Argumentation Tools

There is a plethora of existing argumentation tools, many of which provide visualization
of arguments. These tools range in purpose from academic and research or educational
to commercial tools used in analyzing legal arguments for analyzing the rationality of
arguments presented in a courtroom.

No universal agreement exists on the type of argument maps that should be supported
by each tool. Some tools support the Toulmin Model of Argument, which is a model
proposed by Stephen Toulmin for analysing arguments in legal matters, later realized to
have a wider application than just law (Toulmin, 2003). Another popular representation
format is the Wigmore chart, targeting analysis of legal evidence in trials, which is the work
of John Henry Wigmore (Anderson, Schum, and Twining, 2005, pp. 123-144). According
to Kadane and Schum, a Wigmore chart represents an early version of a Bayesian network
(Kadane and Schum, 1996, pp. 66-76). However, since many of the available tools target
specific applications (sometimes in domains outside of law), they opt to visualize their
arguments in ways more fitting to the applications they are intended for.

A conscious effort is being made to consolidate the representation of arguments into
a single standard format that will allow the exchange of arguments between different ap-
plications. One of the proposed standards is the Argument Interchange Format, which
is currently under construction. A short-term problem with this format is that different
application-specific requirements, which result in different flavors of the format being imple-
mented, need to be tracked in order to improve compatibility; at the same time, a long-term
problem might be the time at which the standard will be cast in stone: if this happens too
early, then it will probably not account for all the requirements that might emerge from
different argumentation applications, however, if this happens too late, then the ramifi-
cations will be too deviant to be brought together into a standard (Simari and Rahwan,
2009, p. 401). Another format already in use is the Legal Knowledge Interchange Format
(LKIF), an XML schema that extends Web Ontology Language in order to represent legal
concepts.

A non-exhaustive list of existing argumentation (visualization) tools is given below:

• Araucaria

• Argkit & Dungine

29



2.4. Existing Visual Argumentation Tools Chapter 2. Background

• ArguGRID

• Arguing Agents Competition (AAC)

• ASPARTIX

• Carneades

• Cohere

• Compendium

• InterLoc

• quaestio-it

• Rationale

Since AIF remains volatile at the time of this writing, and LKIF is only concerned with
legal matters, neither of these formats will be used. The visualization tool produced as
part of this project will use its own format to store data, and adoption of AIF might be
revisited as a possible extension.

30



Chapter 3

Solution Overview

This chapter firstly re-introduces the steps from the introduction in more detail, and ex-
plains how each step was implemented. This chapter also aims to introduce the overall
structure of the solution and provide justification as to the decisions made that constitute
the solution.

3.1 Exploring Argumentation Logic

As briefly described in the introduction to this paper, the project tries to explore Argu-
mentation Logic in seven steps. The last three steps were not implemented, and instead
focus was redirected to providing a better overall experience for the first 4 steps.

3.1.1 Step 1: Basic Natural Deduction Proof System

The first stage requires a natural deduction proof system that can find the steps required
to reach a goal, given the theory and the goal that must be met. Natural deduction proofs
are generated using the proof system built in this step (chapter 4), in order to later on (in
step 3) check which proofs constitute valid Argumentation Logic proofs, and which can be
converted to valid Argumentation Logic proofs (step 5).

3.1.2 Step 2: Improving the Proof System

The theorem prover was built to be very flexible, with the ability to turn on and off different
rules, as required by step 3, checking for the Genuine Absurdity Property.

3.1.3 Step 3: Genuine Absurdity Property

The third step (chapter 5) involves the processing of produced natural deduction proofs
(from step 1 and step 1+) in order to check the presence of the Genuine Absurdity Property
as discussed in the Argumentation Logic section before. This property is closely tied to
the identification of natural deduction proofs that are compatible with (that is, supported
by) Argumentation Logic. Compatible proofs can be visualized as arguments between two
debaters as in the following step, which is the aim of the next stage. The property was
extended to work with natural deduction proofs using shortcuts, as explained later by step
3+.

31



3.1. Exploring Argumentation Logic Chapter 3. Solution Overview

3.1.4 Step 4: Argumentation Logic Visualization

The fourth step requires the construction of a GUI that allows the visualization of Ar-
gumentation Logic proofs as sets of arguments. The proofs can originate from natural
deduction proofs created automatically from stage 1 (with the help of stage 3), or con-
structed by the user using the GUI (step 1+). A lot of effort was put into making the
GUI more approachable, which dictated that more surrounding features were implemented
in order to provide a more well-rounded experience. This resulted in steps 4+ and 4++
explained later. The implementation of this step is described in chapter 7.

3.1.5 Step 5: Converting Natural Deduction Proofs to Argumentation
Logic Proofs

The fifth stage revolves around the conversion of natural deduction proofs that are unsup-
ported by Argumentation Logic (proofs that do not follow the Genuine Absurdity Property)
to compatible ones (generated from stages 1 and 3). It can be shown in the technical report
on Argumentation Logic that any proof not following the Genuine Absurdity Property can
be converted to one that does for a consistent theory. The aim of this step is to allow
the possibility of natural deduction proofs to be visualized from an argumentative view.
However there was not enough time to implement this step. It therefore remains part of
future work.

3.1.6 Step 6: Re-Introduction of Disjunction and Implication Connec-
tives

The sixth stage involves the introduction of the disjunction and implication connectives. It
is shown in the technical report on Argumentation Logic that for consistent theories using
only conjunction and negation, Propositional Logic is equivalent to Argumentation Logic.
The use of disjunction and implication remains partly subject for future work. The aim
of this step was to explore further this area, but unfortunately this step was scrapped in
favor of extra steps taken below in order to provide a more complete and well-rounded
experience for the basic steps.

3.1.7 Step 7: Paraconsistency

The seventh and final stage ventures into how Argumentation Logic can allow for reasoning
within an inconsistent environment. The aim of this step is to probe the notion of para-
consistency of Argumentation Logic. An implementation of the notions of AL-entailment
and AL+-entailment was to be attempted in order to provide visual mapping of arguments
coming from (directly or classically) inconsistent theories. This step was not implemented
again in favor of a better experience regarding the first 4 steps.

3.1.8 Step 1+: Proof Builder

After the theorem prover in step 1 was created, proofs could be generated from it by
providing the theory and desired goal. However, many times, looking through a large
amount of generated proofs in order to find the desired one was found to be tedious, which
called for the creation of a proof builder that would allow the user to input proofs directly.
This feature is discussed in chapter 11.

32



Chapter 3. Solution Overview 3.2. Solution Architecture

3.1.9 Step 3+: Extending the Genuine Absurdity Property

This step enables the Genuine Absurdity Property to be extended so that it covers natural
deduction proofs that make use of the substitution shortcut. This allows a wider range of
proofs that can be considered, which are usually preferred since they look more pleasant
to the human eye because of their conciseness. The process for extending the original
definition of the Genuine Absurdity Property is shown in chapter 6.

3.1.10 Step 4+: Extracting proofs from arguments

The idea behind this step is to write a procedure that can create a natural deduction proof
from a given theory and argument. The resulting proof, if visualized again should give
back the same argument, essentially forming an inverse of the visualization algorithm in
the original step 4. This step allows a more circular data flow by enabling the transition
from arguments back to natural deduction. This step is discussed in chapter 8.

3.1.11 Step 4++: Argument Builder

In the same way as a proof builder feature made sense for complementing the theorem
prover, an argument builder can not only aid the creation of arguments, but also allow
arguments to be a data entry point, rather than existing only as post-processing data.
This way, the natural deduction - argument cycle (made using steps 4 and 4+) can be
started from the argument side as well. The argument builder is discussed in detail in
chapter 12.

3.2 Solution Architecture

The entire project has been split into three parts, namely the core, the server and the client.
The core contains algorithms and code written in order to implement procedures that allow
for the exploration of Argumentation Logic. The server stands between the core and the
client, and serves client requests by parsing and converting the requests to Prolog, using the
core to run the requests and then replying with the results (after conversion again). The
overall architecture is shown in Figure 3.1. The three parts will now be discussed further.

Figure 3.1: The high-level system architecture for the chosen solution

3.2.1 Core

The first (and arguably most important) part is the actual algorithms and code written
to explore Argumentation Logic (henceforth referred to as ”core”). The core is written

33



3.3. Justification of Solution Architecture Chapter 3. Solution Overview

entirely in Prolog, a procedural declarative programming language frequently used in the
fields of artificial intelligence, logic and theorem proving.

Prolog was chosen as the implementation language because it often leads to clean and
concise code. Concise code arguably leads to fewer bugs, something very important to
this project, as soundness is mandatory. Prolog offers pattern matching, backtracking and
unification, making it ideal for creating a theorem proving system.

The Prolog language has many implementations, out of which SWI-Prolog1 was chosen
because it is very fast and reliable, open-source and has a large array of helpful libraries
and a large community.

3.2.2 Server

The second part of the project is the server. The server is used to load the core, and then
serve HTTP (JSON) requests from the client by querying the core and replying with the
results.

The server is written in Prolog as well. This has the obvious advantage of interoper-
ability between the core and itself. The core’s code (predicates) are loaded as part of the
server’s code and are used directly, and thus no middleware is required for the communi-
cation between the two parts.

The Prolog flavor used for the server is SWI-Prolog, which provides an HTTP package2

that can set up and run a server with just a few lines of code. This virtually eliminated
testing of this part of the project.

The server has exactly two responsibilities:

• to serve files needed for the client to run - this includes HTML, JavaScript and CSS
files

• to respond to requests by converting the JSON requests to Prolog, querying the core,
converting the results back to JSON and replying to the client

The server is discussed in further detail in chapter 9.

3.2.3 Client

The third and final part of the project is the client. The client serves as a front-end to the
core, providing a helpful GUI as an alternative to the Prolog (interpreter’s) command-line
interface. It aims to provide useful facilities such as storage, importing and exporting of
proofs and other data, syntax checking and so on.

The client consists of HTML, JavaScript and CSS files that are mainly served by the
Prolog server. HTML 5 and JavaScript have become a very powerful combination that
allow fast creation of elegant graphical interfaces, with many libraries available for free,
making them a natural choice for a GUI.

The client is discussed in further detail in chapter 10.

3.3 Justification of Solution Architecture

There are several advantages in splitting the project as mentioned in section 3.2. However,
as with any implementation, there are a few disadvantages as well. The pros and cons are
discussed in this section.

1http://www.swi-prolog.org/
2http://www.swi-prolog.org/pldoc/doc for?object=section(%27packages/http.html%27)

34

http://www.swi-prolog.org/
http://www.swi-prolog.org/pldoc/doc_for?object=section(%27packages/http.html%27)


Chapter 3. Solution Overview 3.3. Justification of Solution Architecture

3.3.1 Advantages of Chosen Architecture

The focus of the design is modularity and reusability.

By completely detaching the core as a separate, self-contained module, testing becomes
easier and more manageable. The responsibilities of this module become clearer. Since the
core is completely detached, it can be run as-is, on the Prolog interpreter command-line just
by itself, or it can be attached to a completely different program or GUI implementation
or used in a different context.

The server can be swapped with a different implementation if required. This particular
implementation is very small, largely due to the nature of the SWI-Prolog HTTP package
that allows for a quick set-up of a webserver. The server currently has two responsibilities:

• to serve files needed for the client to run - this includes HTML, JavaScript and CSS
files

• to respond to requests by converting the JSON requests to Prolog, querying the core,
converting the results back to JSON and replying to the client

An alternate setup can have this server respond only to requests and have a different,
finely-tuned server (such as Apache) handle the load-balancing and HTTP requests of the
clients. This webserver chaining is similar to how the SWI-Prolog website works at the
time of writing - there is an exposed Apache server that redirects requests to a SWI-Prolog
server hidden from the outside world.

Since the project consists of a server and an HTML client, it can readily be hosted
online and made available to the public. This way, a wider audience can be reached more
quickly, which can result to valuable feedback.

The client is written in HTML, JavaScript and CSS, making it a web application.
Advantages of web applications are fast, easy and transparent (to the user) updates, not
requiring the user to re-download or update any software and cross-platform compatibility
and hence larger availability. Web applications are ideal for incremental improvement, as
a consequence of the previous advantages, and since this is largely a research project, in
the future, it will be easier for features to be added as they are discovered. Finally, web
applications integrate very well with other server-side services such as database access and
account management, so the project can easily be extended in the future to support sharing
of data and content via user accounts on the server.

3.3.2 Disadvantages of Chosen Architecture

As with every design, there are some drawbacks as well. There is some unavoidable dupli-
cation in data structures as different languages are used for the core and the client (Prolog
vs JavaScript), and each language has to store and represent the data in some way. Some
extra work is needed in order to keep the three parts of the system as modular as possible.
Effort has to be made in synchronizing the different parts of the system when external
interfaces are changed. For example, if the server is altered to accept a different data
structure for the requests, then the client has to be update to provide requests that use
the new data structure required by the server. Fortunately, internal changes (for example
adding extra predicates or features to the core, adding extra UI elements to the client or
revamping the GUI, or optimizing any of the three parts of the system) do not affect each
module.

There are some disadvantages that come with web applications as well, but some of them
fortunately do not apply to this system. Compatibility and performance issues (compared

35



3.4. Functional Overview Chapter 3. Solution Overview

to native applications) are some of the common problems with web interfaces. Since the
server does the heavy lifting the client is left with the responsibility of running the a simple
GUI, ruling out any potential issues with performance. Every effort is made to make the
Client adhere to standards, reducing the chances of running into compatibility issues with
the browser. The main disadvantage however is the need for constant connection to the
server. Unless the server is run locally, the client cannot be used as all calculations take
place server-side.

3.4 Functional Overview

The core is made of different predicates or procedures that work together in order to provide
an ecosystem of functions that can be used to create and manipulate natural deduction
proofs and arguments. The client further provides varying functionality that can work in
conjunction with the core procedures. Figure 3.2 provides a functional map that illustrates
the different procedures as well as the data flow around them.

Figure 3.2: The high-level functional map for the core. White parallelograms represent
data, purple boxes represent core predicates and blue boxes represent client functionality

The main procedures involved, shown in purple boxes in the diagram are the following:

• Theorem Prover (chapter 4): the theorem proof system provides proofs for the given
theory and goal

This is step 1 and 2 of the initial plan

• GAP Checker (chapter 5 and chapter 6): the Genuine Absurdity Property checker
takes a proof and succeeds if the given proof indeed follows the property

This procedure comprises steps 3 and 3+

• Proof Visualizer (chapter 7): the proof visualization predicate takes a proof that
follows the Genuine Absurdity Property and returns an argument that can be used
to visualize the given proof

36



Chapter 3. Solution Overview 3.4. Functional Overview

This is step 4 of the original plan

• Proof Extractor (chapter 8): this predicate can take an argument (a visualization of
a proof) and extract a proof from it

This represents step 4+

In addition to the core module predicates, there are a few client features that can
still provide data that can be used by the core modules listed above. These features are
represented by the blue boxes in the diagram. These are:

• Proof Builder (chapter 11): provides a method of allowing the user to construct a
particular proof

This is step 1+ of the new steps

• Argument Builder (chapter 12): provides a method of allowing the user to construct
an argument

This is step 4++ of the originally unplanned steps

37



Chapter 4

Theorem Proving System

The first step in approaching this project is to build a theorem prover or a proof search
system capable of generating proofs given a set of theory and a goal. Most existing im-
plementations of such software use a different proof theory system (other than natural
deduction) in order to generate proofs. Natural deduction, as discussed in subsection 2.2.3,
is not the favorite choice for creating proofs. There are still however, a few implementations
of a natural deduction theorem prover, but they did not meet all the requirements of this
project and therefore were not suitable to use.

Different natural deduction provers use different sets of rules, some of which are derived.
There are different styles of natural deduction as well, for example the Gentzen style that
looks like sequent calculus where proofs following this format resemble trees, and the Fitch
style natural deduction which resembles the format used in this paper.

Apart from these variations, the ability to turn off a few rules, such as the Reductio ad
Absurdum rule (and the derived ”proof by contradiction” rule which combines a Reductio
ad Absurdum rule and a ¬E rule), in order to enable `MRA (or 0MRA) proving used by
the Genuine Absurdity Property (chapter 5).

The theorem prover should also be flexible enough so that it can be used to stitch
together sub-proofs in order to form a larger proof as required by the proof extraction
algorithm discussed in chapter 8.

The latter two concerns were the main subject of step 2. A more interactive and direct
way to generate proofs is provided by the implementation of step 1+ with the creation of
the proof builder, discussed in chapter 11.

4.1 Ruleset Used

The implementation tries to approach the proof both backwards (from the bottom up)
and forwards (from the top down). Several backwards and forwards rules have been im-
plemented. Backwards rules try to close the gap between the theory and the goal from
the bottom, and they are the ones that complete goals in order to finish the proof. The
forwards rules are there in order to break down complicated formulas that have already
been derived so that the backwards rules can complete their work. The forwards rules do
not progress the proof in the sense that they never deal with the goal. They just provide
simpler formulas that can be of use to the backwards rules.

The implementation was partly modeled after (or at the very least inspired by) the
Carnegie Mellon Proof Tutor (introduced in subsection 2.2.4, the full paper is (Sieg and
Scheines, 1992)). However, the implementation follows a Fitch-style natural deduction.
There are also explicit rules for contradiction. No distinction exists between the available

38



Chapter 4. Theorem Proving System 4.1. Ruleset Used

assumptions α and derivable (using elimination rules) context β. Thus the whole context
αβ will be referred to as κ. The notation is borrowed from the full paper.

Listed below are the forward rules:

• ∧E : κ?G,φ1 ∧ φ2 ∈ κ, φi /∈ κ⇒ κ, φi?G, i = 1 or 2 or both

(this rule is the same as the one used in the Carnegie Mellon Proof Tutor)

• ¬E : κ?G,¬¬φ ∈ κ, φ /∈ κ⇒ κφ?G

(if a double-negated formula is in the context, add the sub-formula without the double
negation)

• ⊥I : κ?G,φ ∈ κ,¬φ ∈ κ,⊥ /∈ κ⇒ κ,⊥?G

(if two opposite formulas are in the context, add a contradiction)

None of the forward rules touches the goal. They just simplify derived conjunctions,
double negations and add a contradiction if one can be established.

The backward rules are listed here:

• X : κ?G, γ ∈ κ⇒ X

(if the current goal is already derived, the proof is essentially complete)

• ∧I : κ?γ1 ∧ γ2, γ1 ∈ κ, γ2 ∈ κ⇒ X

∧I : κ?γ1 ∧ γ2, γi /∈ κ⇒ κ?γi, i = 1 or 2 or both

(if the goal is a conjunction, then prove whatever constituent parts are missing)

• ∨I : κ?γ1 ∨ γ2, γi ∈ κ⇒ X

∨I : κ?γ1 ∨ γ2, γi /∈ κ⇒ κ?γi, i = 1or 2

(this rule is the same as the one used in the Carnegie Mellon Proof Tutor)

• ∨E : κ?G,φ1 ∨ φ2 ∈ κ⇒ κ, φ1?G, κ, φ2?G

(use a disjunction to prove the goal using case by case analysis)

• ⊥E : κ?G,⊥ ∈ κ⇒ X

(anything can be derived if a contradiction has already been established)

• → I : κ?γ1 → γ2 ⇒ κ, γ1?γ2

(this rule is the same as the one used in the Carnegie Mellon Proof Tutor)

• ¬I : κ?¬γ ⇒ κ, γ?⊥
(this rule is the same as the one used in the Carnegie Mellon Proof Tutor)

• → E : κ?G,φ1 → φ2 ∈ κ⇒ κ?φ1, κ, φ2?G

(this rule lies in between the forward and backward rule category, since it does not
consume the goal, but it does however require that φ1 be proven; what it says is try to
prove the first part of the implication, and hence add the second part to the context
before moving on to prove the goal)

• PC : κ?γ, γ 6= ⊥ ⇒ κ,¬γ?⊥
(proof by contradiction, implemented as a combination of ¬I and ¬E rules - this rule
is the same as the one used in the Carnegie Mellon Proof Tutor)

39



4.2. Propositional Logic Format Chapter 4. Theorem Proving System

• ⊥IE : κ?γ,⊥ /∈ κ,¬φ ∈ κ⇒ κ?φ

(take any negated formula and try to prove its positive subformula, essentially proving
a contradiction; the goal is then vacuously true - composite rule implemented using
⊥I and ⊥E rules)

4.2 Propositional Logic Format

This implementation uses Prolog predicates in order to specify the different logic constructs.
Figure 4.1 summarizes these predicates.

Logic Construct Prolog Term Used By Implementation

Conjunction and(A, B)

Disjunction or(A, B)

Implication implies(A, B)

Negation n(A, B)

Contradiction falsity

Figure 4.1: The Prolog constructs accepted and used by the theorem prover

As an example, consider the formula a ∧ b → ¬c. This would be represented by the
following data structure: implies(and(a, b), n(c)).

4.3 High-Level Description of Implementation

The theorem prover was built to be quite modular and offers both high-level and low level
predicates. For the most part, high-level predicates are enough to cover the needs of the
different algorithms created to check for the Genuine Absurdity Property, or to aid the
building of an argument. It was necessary however at some point to use the low-level
plumbing of the theorem prover in order to stitch together specific proofs generated with
more complicated context for the proof extractor algorithm.

A summary of the high-level predicates is given below:

• prove(Givens, Goal, Proof): The user supplies the theory as a list of formulas and a
goal as a singleton list of one formula that needs to be proven. The predicate returns
with Proof bound to one possible proof. The prove/3 predicate offers choice-points,
with each choice-point offering one solution. All solutions for the given theory and
goal can be acquired by executing a findall/3 predicate like this: findall(Proof,

prove([and(a,b)], [and(b,a)], Proof), AllProofs) with AllProofs containing all
the proofs what prove the goal.

• proveMRA(Givens, Goal, Proof): This works in the same way as prove/3, but it makes
no use of the ¬I and (derived) proof by contradiction rules. This can be used to check
for the Genuine Absurdity Property or to help build arguments (chapter 12).

• provable(Givens, Goal, MRA, Verdict) This works similarly to the above predicates,
but instead of supplying a proof upon return, it only responds with a yes or no atom,
depending on whether the supplied goal can be proven using the given theory. The
MRA field takes a yes or no atom and defines whether ` or `MRA is used to prove the
goal (ie whether ¬I and proof by contradiction can be used). This predicate always
finishes without any choice-points.

40



Chapter 4. Theorem Proving System 4.4. Output Format

The above predicates handle the burden of converting the input into steps (see sec-
tion 4.4), and then calling the necessary low-level predicate to fire off the process. The
theorem prover however was built to work even if the user chooses to execute a low-level
predicate instead (assuming correct input was given). This enables the user to, for example,
start a proof with the application of a particular rule. The available low-level predicates
are summarized below:

• backwardProve(MRA, Steps, Context, Extras, Goal, Proof): This predicate starts
the backwards proving of the goal, by trying to use any of the available rules de-
pending on whether MRA is set to yes or no. The steps parameter contains the actual
steps of the current context, and the context parameter specifies additional context
(that was inherited by ancestors).

• check(MRA, Steps, Context, Extras, Goal, Proof)

• falsityI(MRA, Steps, Context, Extras, Goal, Proof)

• andI(MRA, Steps, Context, Extras, Goal, Proof)

• orI(MRA, Steps, Context, Extras, Goal, Proof)

• orE(MRA, Steps, Context, Extras, Goal, Proof)

• impliesI(MRA, Steps, Context, Extras, Goal, Proof)

• notI(MRA, Steps, Context, Extras, Goal, Proof)

• forward(MRA, Steps, Context, Extras, Goal, Proof)

• falsityIE(MRA, Steps, Context, Extras, Goal, Proof)

• impliesE(MRA, Steps, Context, Extras, Goal, Proof)

• proofByContradiction(MRA, Steps, Context, Extras, Goal, Proof)

All of the backward rules are available to be called immediately by the user, and they
will generate a proof with an initial application of that rule. If given the right input the
rules will take care of the rest of the proof as well and come back with a complete proof of
the goal. The ”forward rule” is a ”rule” that tries to apply all the forward rules and call
backwardProve/6 again.

4.4 Output Format

The output of the theorem prover is a Prolog list of steps or boxes. A step is defined as
step(Derivation, Reason, LineNumber) where Derivation is a formula using Prolog terms,
the reason is a list with at least one element inside, and a line number is just a non-negative
number that is used to uniquely identify the step (so that other steps’ reasons can reference
that step). A box contains sub-proofs (that begin with a hypothesis) that are essentially
lists of more steps and boxes (defined as box(SubProof)). There is also a dbox(SubProof1,

SubProof2)) that is used only by the ∨E rule which contains two boxes side by side for the
case by case analysis.

The reason is a list where the first element is the name of the justification for the
derivation in that step as a Prolog atom. Some reasons are required to reference other
steps in the proof in order to fully justify how the formula in the step was derived. For

41



4.5. Remarks Chapter 4. Theorem Proving System

example, for an application of the ∧I rule, both subformulas of the conjunction need to be
referenced by including the numbers of the steps containing those subformulas in the list.

Reasons include the natural deduction rules specified before. They also contain a few
more reasons such as hypothesis to indicate a hypothesis or given to indicate a part of the
theory. Figure 4.2 lists the reasons and the number of reference line numbers required by
each reason.

Reason Prolog Term Reference Line Numbers Description

check 1 Reiteration of an existing formula

andI 2 ∧I from subformulas on referenced lines

andE 1 ∧E from conjunction on referenced line

orI 1 ∨I from subformulas on referenced lines

orE 5 ∨E from disjunction, two subformulas of the
disjunction as hypotheses and two
same conclusions on referenced lines

impliesI 2 → I from subformulas on referenced lines

impliesE 2 → E from implication and its first part
indicated by referenced lines

notI 2 ¬I from hypothesis and contradiction on
referenced lines

notE 1 ¬E from double-negated formula on referenced
line

falsityI 2 ⊥I from opposite formulas on referenced lines

falsityE 1 ⊥E from contradiction indicated by referenced
line

hypothesis 0 a hypothesis put forth

given 0 part of the theory

Figure 4.2: The Prolog constructs accepted and used by the theorem prover

The list contains elements in the opposite order as one would read a proof on paper.
That is, the first element in the list will be the conclusion of the proof, and the last elements
of the list will be the givens (theory) that are always located at the beginning of the proof.
The reason as to why the proof is in the opposite order is that Prolog offers a concise way to
append elements to a list, and the backward rules tend to add steps to the end of the proof
instead of the beginning. Therefore the proof is build backwards in a sense. Predicates are
provided that can flip the proof as necessary and are indeed used when responding to the
client with generated proofs from the theorem prover.

As an example of the output generated by the theorem prover, consider the proof and
its corresponding data structure as generated by the theorem prover in Figure 4.3.

4.5 Remarks

As mentioned in the evaluation of the theorem prover in section 13.1, one of the improve-
ments that could be made is to increase the performance of the theorem prover. This could
involve either a more efficient implementation altogether, or the introduction of optimiza-
tions with regards to the search space or pruning of (paths that lead to) ”bad” proofs. The
latter would involve defining explicitly what ”bad” proofs are with respect to Argumenta-
tion Logic.

42



Chapter 4. Theorem Proving System 4.5. Remarks

1 ¬(α ∧ β) given
2 ¬(α ∧ ¬β) given
3 ¬β given

4 α hypothesis

5 β hypothesis
6 α ∧ β ∧I(4, 5)
7 ⊥ ⊥I(1, 6)

8 ¬β ¬I(5, 7)
9 α ∧ ¬β ∧I(4, 8)
10 ⊥ ⊥I(2, 9)

11 ¬α ¬I(4, 10)

1 [

2 step(n(a), [notI, 4, 10], 11),

3 box([

4 step(falsity, [falsityI, 2, 9], 10),

5 step(and(a, n(b)), [andI, 4, 8], 9),

6 step(n(b), [notI, 5, 7], 8),

7 box([

8 step(falsity, [falsityI, 1,

6], 7),

9 step(and(a, b), [andI, 4, 5],

6),

10 step(b, [hypothesis], 5)

11 ]),

12 step(a, [hypothesis], 4)

13 ]),

14 step(n(b), [given], 3),

15 step(n(and(a, n(b))), [given], 2),

16 step(n(and(a, b)), [given], 1)

17 ]

Figure 4.3: A natural deduction proof and the corresponding output from the theorem
prover

A change of scope may also be in order, if it turns out that the ”find all proofs”
functionality is no longer needed. This would allow the theorem prover to take on more
aggressive pruning and optimization that might reduce the search space of the prover, but
at the same time making it faster in responding appropriately when tasked with finding
out whether a given goal can be proven from a given theory (which is the main focus of
the Genuine Absurdity Property check described in chapter 5).

43



Chapter 5

Checking for Genuine Absurdity
Property

This chapter refers to the implementation of the Genuine Absurdity Property check and
comprises step 3 of the initial plan.

Recall from section 2.3.4 that for a RAND derivation, T∪{φ}∪{φ1, ..., φk}∪{¬ψ1, ...,¬ψl} `MRA

⊥, where k, l ≥ 0 and

• φ is the hypothesis of this derivation

• φi are the hypothesis of parent derivations that this derivation has access to and can
make use of

• ψi are the hypotheses of the children derivations, the negations of which can be used
by this derivation

Moreover, recall that the Genuine Absurdity Property forms a kind of relevance by
requiring that the hypothesis φ is necessary for the derivation of the contradiction. In
other words, without φ, a contradiction cannot be established. In formal notation, this
would be described as

T ∪ {φ1, ..., φk} ∪ {¬ψ1, ...,¬ψl} 0MRA ⊥

Recall, further, that the Genuine Absurdity Property is a recursive property in that any
sub-derivations of an application of the Reductio ad Absurdum rule must also follow this
property, and finally, that this property is defined only over proofs using conjunction and
negation only. Note once again, that the set {φ1, ..., φk} includes all ancestor hypotheses
copied from outside the sub-derivation.

5.1 Short Description of Algorithm

In a nutshell, the algorithm for checking for the Genuine Absurdity Property traverses the
proof and keeps track of ancestor hypotheses and child hypotheses as well as the theory
given initially. At the beginning the algorithm checks that the given proof is a RAND proof
and that it only contains conjunctions and negations of atoms. In addition, it checks that
the proof does not make use of any shortcuts. Those are dealt in the extended version of
the Genuine Absurdity Property discussed in chapter 6.

The ancestor hypotheses are tracked by crawling the proof backwards from each line
in the sub-derivation, using the justifications as (potentially forking) paths to guide the

44



Chapter 5. Checking for Genuine Absurdity Property 5.2. Details of Implementation

search. The child hypotheses are tracked by reading the hypothesis at the top of each
sub-derivation and negating it.

Before reaching the end of the current application of the ¬I rule, each sub-derivation is
also checked that it follows the Genuine Absurdity Property by calling the algorithm again
recursively.

At the end of each application of the Reductio ad Absurdum rule the Genuine Absurdity
Property is checked by asking the theorem prover in chapter 4 to try and prove a contra-
diction using the given theory, and the ancestor and (negations of the) child hypotheses.
That is, we ask the prover to prove that T ∪ {φ1, ..., φk} ∪ {¬ψ1, ...,¬ψl} `MRA ⊥. If that
succeeds, then we know that a contradiction could have been reached without the use of
the hypothesis in the current application of the Reductio ad Absurdum rule, thus making
the proof not follow the property under check.

5.2 Details of Implementation

The overall algorithm is split into four stages. The first stage involves checking whether
the given proof is a RAND proof. That is, apart from the theory, the proof should only
contain an application of the Reductio ad Absurdum rule on the top level. The second stage
involves checking whether the given proof has formulas consisting of only conjunction and
negation. The third stage checks that the proof does not make any use of the substitution
rule. The fourth and final stage is the actual check which verifies the Genuine Absurdity
Theory.

1 % Checks that the given proof follows the GAP property

2 % Gap checker assumes valid propositional logic proofs

3 checkGAP(Proof) :-

4 reverse(Proof, RevProof),

5 checkRAND(RevProof), !,

6 checkRestrictedRules(RevProof), !,

7 getTheoryAndRevBox(RevProof, Theory, RevBox), !,

8 checkRestrictedTheory(Theory), !,

9 checkPureND(Theory, RevBox), !,

10 checkGAP(Theory, _, [], [], RevBox), !.

Listing 5.1: Genuine Absurdity Property top level predicate

Listing 5.1 shows the top-level predicate where the four stages (checks) can be seen at
line 5 for RAND proof, lines 6 and 7 for the restricted use of propositional logic, line 9
for the lack of shortcuts and finally line 10 for the actual check for the definition of the
Genuine Absurdity Property. The format of the proof is the same as that output by the
theorem proving algorithm in chapter 4. The four stages are further discussed below.

5.2.1 Checking for RAND Proof

The format of a RAND proof is the following: first, there may or may not be a few steps
containing the theory. These are steps that are justified with ”given”. Following should be
a box, and finally, there should be either the goal (derived using the box), or the double
negation of the goal (derived using the box) and the goal (derived by ¬E).

1 % Checks to see if this proof is a RAND proof to start with

2 % A RAND proof is of the form: [givens]*, [box], ([step:notE,

step:notI]||[step:notI])

3 checkRAND(Proof) :- checkRAND(givens, Proof).

45



5.2. Details of Implementation Chapter 5. Checking for Genuine Absurdity Property

4 checkRAND(givens, [box(_)|Proof]) :- checkRAND(box, Proof).

5 checkRAND(givens, [step(_, [given], _)|Proof]) :- checkRAND(givens, Proof).

6 checkRAND(box, [step(_, [notI|_], _)]).

7 checkRAND(box, [step(_, [notI|_], _), step(_, [notE, _], _)]).

Listing 5.2: Checking whether a proof is a RAND proof

On line 3 of Listing 5.2 the checkRAND/1 predicate starts the check by calling checkRAND/2

and specifying that it is at the ”givens” stage (ie that it is now going through the theory).
Line 5 unwinds the proof by iterating through the theory until a box is found and picked
up by line 4, which marks the ”box” stage. Finally, lines 6 and 7 check that the last step
of the proof is the conclusion, which might be preceded by its double negation (which is
the product of the ¬I rule and the box before.

5.2.2 Checking for Restricted Formulas

It suffices to check in a proof that the theory is constructed using conjunction and negation,
and that the rules applied subsequently belong to the set of {∧I,∧E,¬I,¬E,⊥I,⊥E}.

1 % Checks to see if the proof consists of ruleset defined over argumentation logic

2 validRules([andI, andE, notI, notE, falsityI, falsityE, given, check,

hypothesis]).

3 checkRestrictedRules([]).

4 checkRestrictedRules([step(_, [Reason|_], _)|Proof]) :-

5 validRules(ValidRules),

6 m2(Reason, ValidRules),

7 checkRestrictedRules(Proof).

8 checkRestrictedRules([box(SubProof)|Proof]) :-

9 checkRestrictedRules(SubProof),

10 checkRestrictedRules(Proof).

11 checkRestrictedTheory([]).

12 checkRestrictedTheory([Given|Theory]) :-

13 checkRestrictedFormula(Given),

14 checkRestrictedTheory(Theory).

15 checkRestrictedFormula(X) :-

16 atom(X).

17 checkRestrictedFormula(and(X, Y)) :-

18 checkRestrictedFormula(X),

19 checkRestrictedFormula(Y).

20 checkRestrictedFormula(n(X)) :-

21 checkRestrictedFormula(X).

Listing 5.3: Checking whether a proof uses only conjunction and negation

The predicate checkRestrictedTheory/1 as shown in Listing 5.3 looks at the theory
contained in the proof and makes sure that it consists only of atoms, conjunctions and
negations. The predicate checkRestrictedRules/1 shown in Listing 5.3 again ensures that
rules that could potentially introduce a new construct (such as implication or disjunction)
are not used. This predicate probes nested boxes as well so that the entire proof is covered.
The predicate m2/2 on line 6 acts as an alias to the standard member/2 Prolog predicate.

5.2.3 Ensuring the Lack of Substitution

This stage looks at the line number references that the steps inside a derivation address,
and checks that all line numbers either refer to steps inside the current context, theory, or

46



Chapter 5. Checking for Genuine Absurdity Property 5.2. Details of Implementation

parent hypotheses. Any other references are considered extraneous.

1 % Checks to see if this proof does not make references to external derivations

2 checkPureND(Theory, Proof) :-

3 length(Theory, TheoryLength),

4 checkPureND(TheoryLength, _, Proof, Proof).

5 checkPureND(_, _, [], _) :- !.

6 checkPureND(L, _, [step(_, [hypothesis], LN)|Proof], WholeProof) :-

7 !, checkPureND(L, LN, Proof, WholeProof).

8 checkPureND(L, LN, [step(_, [_|ReasonLines], _)|Proof], WholeProof) :-

9 forall(m2(RL, ReasonLines), (RL >= LN; RL < L; getStep(RL, WholeProof,

step(_, [hypothesis], RL)))),

10 checkPureND(L, LN, Proof, WholeProof).

11 checkPureND(L, LN, [box(BoxProof)|Proof], WholeProof) :-

12 checkPureND(L, _, BoxProof, WholeProof),

13 checkPureND(L, LN, Proof, WholeProof).

Listing 5.4: Checking whether a proof uses any shortcuts

Listing 5.4 shows predicate checkPureND/2 which takes the theory and the proof under
examination. It measures the size of the theory, and passes this information along with
the proof to checkPureND/4. Line 7 makes a note of the line number of the hypothesis,
which is the first step of each sub-derivation. Line 9 checks that all referenced steps by the
line currently under consideration are either internal steps (bigger than the hypothesis line
number measured by line 7 of the code) or point to the theory (any line references smaller
than the length of the theory are considered acceptable as the theory always appears at
the top of the proof), or that they point to a hypothesis (of an ancestor). The last clause
of checkPureND makes sure that all sub-derivations are visited.

5.2.4 Checking for Genuine Absurdity Property

The final part of the algorithm deals with the definition of the Genuine Absurdity Property
directly.

1 % Checks for the actual GAP for each (sub)derivation in the proof

2 checkGAP(Theory, AncestorHypotheses, ChildHypotheses, SiblingHypotheses, [], _,

_) :-

3 a4(Theory, AncestorHypotheses, ChildHypotheses, SiblingHypotheses,

Context),

4 not(proveMRA(Context, [falsity], _)).

5 checkGAP(Theory, [], ChildHypotheses, SiblingHypotheses, [step(_, [hypothesis],

HL)|Proof], WholeProof, _) :-

6 !, checkGAP(Theory, [], ChildHypotheses, SiblingHypotheses, Proof,

WholeProof, HL).

7 checkGAP(Theory, AncestorHypotheses, ChildHypotheses, SiblingHypotheses, [step(_,

[_|Reason], _)|Proof], WholeProof, HL) :-

8 getUsedHypotheses(Theory, Reason, WholeProof, HL, NewAncHypotheses,

NewSibHypotheses),

9 a2(NewSibHypotheses, SiblingHypotheses, NewSiblingHypotheses),

10 a2(NewAncHypotheses, AncestorHypotheses, NewAncestorHypotheses),

11 checkGAP(Theory, NewAncestorHypotheses, ChildHypotheses,

NewSiblingHypotheses, Proof, WholeProof, HL).

12 checkGAP(Theory, AncestorHypotheses, ChildHypotheses, SiblingHypotheses,

[box(BoxProof)|Proof], WholeProof, HL) :-

13 checkGAP(Theory, [], [], [], BoxProof, WholeProof, _),

14 BoxProof = [step(ChildHypothesis, [hypothesis], _)|_],

47



5.2. Details of Implementation Chapter 5. Checking for Genuine Absurdity Property

15 (

16 ChildHypothesis = n(X),

17 NegatedChildHypothesis = X;

18

19 NegatedChildHypothesis = n(ChildHypothesis)

20 ),

21 checkGAP(Theory, AncestorHypotheses,

[NegatedChildHypothesis|ChildHypotheses], SiblingHypotheses, Proof,

WholeProof, HL).

Listing 5.5: Checking whether a proof follows the Genuine Absurdity Property

The format of the proof passed in this predicate is the opposite of that output by the
theorem prover in chapter 4 in that the steps are in increasing order as one would read
the proof on paper. This is due to the work of the getTheoryAndRevBox/3 predicate called
before the check as shown in Listing 5.1.

The clause on line 4 of Listing 5.5 makes a note of the location (line number) of the
hypothesis. It is the one and only clause that Prolog chooses upon entering a new box (ap-
plication of the Reductio ad Absurdum rule). All intermediate steps bear little significance
in what they actually do, but it is very important to check what steps of the proof they
refer to, and extract potential ancestor hypotheses. This is done by the clause on line 7,
using getUsedHypotheses/6, which returns the ancestor and sibling hypotheses used. The
latter set will of course be empty and will not affect the check for the original definition.
This is because it is known from the previous check for the lack of substitutions (shortcuts)
that there are no references to external conclusions (sibling derivations).

Child proofs however must be checked for the Genuine Absurdity Property as well as
this property is recursive. Line 7 takes that into account. It adds the hypothesis of the
current context into the ancestor hypotheses of a new call to the checkGAP/7 predicate (line
9). If the sub-derivation follows the property, the algorithm continues to add the negation
of the sub-derivation hypothesis to the child hypotheses.

At the end of the current context, when all the child hypotheses have been gathered
and checked that they follow the property, the algorithm checks that the property holds
for this context as well. This is done by the clause on line 2. The predicate a3/4 (”append
3 lists”) on line 3 merges the theory, ancestor hypotheses and child hypotheses gathered so
far into one bundle, and calls for the theorem prover to try and prove a contradiction while
purposely excluding the hypothesis of the current context from the bundle (line 4). That
is, the theorem prover is given the task of proving T ∪{φ1, ..., φk}∪{¬ψ1, ...,¬ψl} `MRA ⊥.
If it succeeds, then the Genuine Absurdity Theory does not hold. If it fails, then so far the
property holds.

Line 8 scans the line references of intermediate steps in the current derivation to find
references to sibling derivations. The scanning and gathering of referenced siblings is done
by getUsedSiblingHypotheses/6 which is shown in Listing 5.6.

1 % Uses the line references to find referenced sibling derivations

2 getUsedHypotheses(_, [], _, _, [], []) :- !.

3 getUsedHypotheses(Theory, Reason, WholeProof, HL, NewAncHypotheses,

NewSibHypotheses) :-

4 length(Theory, L),

5 findall(R, (m2(R, Reason), R < HL, R >= L), External),

6 findall([H1, E1], (m2(E1, External), getStep(E1, WholeProof, step(H1,

[notI|_], _))), HLN1),

7 unzip(Hs1, LNs1, HLN1),

8 subtract(External, LNs1, Rest1),

48



Chapter 5. Checking for Genuine Absurdity Property 5.3. Example Walkthrough

9 findall([H2, E2], (m2(E2, Rest1), getStep(E2, WholeProof, step(H2,

[hypothesis], _))), HLN2),

10 unzip(Hs2, LNs2, HLN2),

11 subtract(Rest1, LNs2, Rest2),

12 findall(Reason2, (m2(R2, Rest2), getStep(R2, WholeProof, step(_,

[_|Reason2], _))), Reasons),

13 append(Reasons, Reasons2),

14 getUsedHypotheses(Theory, Reasons2, WholeProof, HL, NewAncHypotheses2,

NewSibHypotheses2),

15 append(Hs1, NewSibHypotheses2, NewSibHypotheses),

16 append(Hs2, NewAncHypotheses2, NewAncHypotheses).

17

18 unzip([], [], []).

19 unzip([L|Ls], [R|Rs], [[L,R]|Ps]) :- unzip(Ls, Rs, Ps).

Listing 5.6: Gathering of referenced ancestor derivations for the original Genuine Absurdity
Property definition

The predicate getUsedSiblingHypotheses/6 works by measuring the size of the theory in
steps (line 4 of the code). Any line references smaller than this number indicate a reference
to the theory (since the theory appears first in the proof, its line numbers are always smaller
than the size of the theory in steps). When called, this predicate knows the line number of
the hypothesis of the current derivation. Any reference to a line greater than (or equal to)
the line number of the current hypothesis indicates an internal reference and can therefore
be ignored. This filtering is done by line 5, that only gathers extraneous references that do
not point to the theory.

Out of these, all steps that are conclusions are filtered and stored (line 6). These con-
stitute sibling conclusion references (indirectly, references to sibling hypotheses). Since the
check performed by the checkPureND/2 guarantees that there are no references to siblings,
this line has no effect. This piece of code plays an important role in the extended version
of the Genuine Absurdity Property discussed in chapter 6.

The remaining extraneous references are checked whether they point to an ancestor
hypothesis (line 9) and if that is the case, the hypothesis is stored. The remaining extra-
neous references are then recursively explored by lines 12-14 of the code until the recursion
bottoms out. The extracted ancestor conclusions from the recursion at deeper levels are
appended to the ones found in the current level of recursion and when the recursion bubbles
back up, all ancestor hypotheses referenced by the examined step are returned. The sibling
hypotheses returned when checking for the original definition of the property is just an
empty list.

5.3 Example Walkthrough

This example will focus on the checkGAP/7 predicate shown in Listing 5.5. Consider a proof
with theory {¬(β ∧ α),¬(α ∧ γ),¬(α ∧ ¬β ∧ ¬γ)} and goal ¬α. The proof is given below:

49



5.3. Example Walkthrough Chapter 5. Checking for Genuine Absurdity Property

1 ¬(β ∧ α) given
2 ¬(¬β ∧ γ) given
3 ¬(α ∧ ¬β ∧ ¬γ) given

4 α hypothesis

5 β hypothesis
6 β ∧ α ∧I(5, 4)
7 ⊥ ⊥I(1, 6)

8 ¬β ¬I(5, 7)

9 γ hypothesis
10 α ∧ γ ∧I(4, 9)
11 ⊥ ⊥I(2, 10)

12 ¬γ ¬I(9, 11)
13 α ∧ ¬β ∧I(4, 8)
14 α ∧ ¬β ∧ ¬γ ∧I(13, 12)
15 ⊥ ⊥I(3, 14)

16 ¬α ¬I(4, 15)

The checkGAP/5 predicate is called with theory [¬(β∧α),¬(α∧γ),¬(α∧¬β∧¬γ)], and
empty lists for the ancestor and child hypotheses. It is also given the outer box (lines 4 to
15 of the proof).

Line 5 of the code in Listing 5.5 picks up the location (line number ) of the hypothesis
α on line 4 of the proof while at the same time consuming this line of the proof and calling
itself again, passing in the hypothesis location just picked up. The current context looks
like this:

• hypothesis line number: 4

• ancestor hypotheses: ∅

• child hypotheses: ∅

Right away a box is encountered, and the clause on line 12 of the code is executed,
which calls itself again and re-initializing the ancestor and child hypotheses to an empty
list for the recursive call.

Inside the recursive call, in the new context, line 5 executes again, which picks up the
new hypothesis β location and consumes line 5 of the proof. The current context looks like
this:

• hypothesis line number : 5

• ancestor hypotheses: ∅

• child hypotheses: ∅

Next, the clause on line 7 executes which uses getSiblingHypotheses/6 to find the ref-
erence (the implicit copy) of ancestor hypothesis α. The aforementioned predicate explores
all line references smaller than the current hypothesis line number (5 in this case) to find
referenced ancestor hypotheses. The hypothesis is then added to the ancestor hypotheses
set. The current context, after consuming line 6 of the proof looks like this:

• hypothesis line number : 5

50



Chapter 5. Checking for Genuine Absurdity Property 5.3. Example Walkthrough

• ancestor hypotheses: {α}

• child hypotheses: ∅

Line 7 of the code executes again for line 7 of the proof but no change is made as this
line makes only internal references. The box is now empty.

Since the box is now empty, the first clause (line 2) is executed, which checks that a
contradiction cannot be proven just by using the theory and ancestor hypothesis α without
the need for the current hypothesis β. That is, it checks that T ∪ {α} 0MRA ⊥.

Having dealt with the child derivation, the algorithm bubbles back up to the execution
of line 13 of the code where it previously left off. The box containing lines 5-7 of the proof
has been consumed. The child hypothesis is extracted and the negation of it is added to
the child hypotheses before recursively calling itself once more. Note that in this context
α is the hypothesis and is not a member of the ancestor hypotheses. The current context
looks like this:

• hypothesis line number: 4

• ancestor hypotheses: ∅

• child hypotheses: {¬β}

Line 7 of the code steps over line 8 of the proof.
Here, another box is encountered and the clause on line 12 executes once more, re-

initializing the ancestor and child hypotheses for the recursive call.
Inside the recursive call, in the new context, line 5 executes again, which picks up the

new hypothesis γ line number and consumes line 9 of the proof. The current context looks
like this:

• hypothesis line number: 9

• ancestor hypotheses: ∅

• child hypotheses: ∅

Lines 10 and 11 of the proof are handled by the clause on line 7 of the code listing. In
the first line consumed the copied hypothesis α is found and the current context looks like
the following:

• hypothesis line number: 9

• ancestor hypotheses: {α}

• child hypotheses: ∅

Since this box is now empty, the first clause (line 2) is executed and checks that a
contradiction cannot be proven just by using the theory and ancestor hypothesis α without
the need for the current hypothesis γ. That is, it checks that T ∪ {α} 0MRA ⊥.

This child derivation is dealt with as well and the algorithm goes back to the execution
of line 13 of the code where it left off. The box containing lines 9-11 of the proof has
been consumed, and the negation of the child hypothesis ¬γ is added to the list of child
hypotheses. The current context looks like this:

• hypothesis line number: 4

• ancestor hypotheses: ∅

51



5.4. Remarks and Limitations Chapter 5. Checking for Genuine Absurdity Property

• child hypotheses: {¬β,¬γ}

Lines 12-15 of the proof are processed in vain by the clause on line 7 of the code listing,
which results in an empty box.

The empty box calls for the clause on line 2 of the code a final time, which checks that a
contradiction cannot be proven just by using the theory and children hypotheses ¬β and ¬γ
without the need for the current hypothesis α. That is, it checks that T∪{¬β,¬γ} 0MRA ⊥.
After this check, the algorithm ends as the top-level RAND derivation has been proven to
follow the Genuine Absurdity Property.

5.4 Remarks and Limitations

It is worth noting that for the algorithm to work, the theorem prover must return true
whenever T ∪{φ1, ..., φk}∪{¬ψ1, ...,¬ψl} `MRA ⊥ is the case. This means that the theorem
prover must be complete, in addition to being sound. If the use of an incomplete theorem
prover is employed, then a proof might be deemed to be following the Genuine Absurdity
Property because the theorem prover might fail to prove the contradiction of a ¬I rule
application (without the hypothesis), rather than because it really might be the case that
T ∪ {φ1, ..., φk} ∪ {¬ψ1, ...,¬ψl} 0MRA ⊥.

A limitation of the Genuine Absurdity Property as it is currently defined is that it is
not defined over proofs that make use of the substitution rule, that is, reusing previously
derived formulas in order to cut down on the proof length. An example of a proof that
goes the long way in proving its goal and a similar one that takes a shortcut can be seen
in Figure 2.3. This limitation is overcome by taking sibling derivations into account as
discussed in chapter 6.

52



Chapter 6

Extending the Genuine Absurdity
Property

As briefly mentioned in section 2.3.4, the standard definition for the Genuine Absurdity
Property comes with a shortcoming. It only considers proofs where the substitution rule
is not permitted, which is why only ancestor and child hypotheses are taken into account.
This chapter explains how the current definition of the Genuine Absurdity Property can
be extended to accommodate proofs of that kind, as many proof search software or even
humans tend to use shortcuts or derived rules in order to shorten proofs by decreasing
repetition and reduce the amount of effort needed to build a proof. This chapter covers
step 3+ of section 3.1.

6.1 Arriving at the Definition

This section starts from the classic definition of the Genuine Absurdity Property and arrives
at the final definition. This section can be skipped without any loss of context. The final
definition is given again in the next section.

As a first step, extend the definition of the Genuine Absurdity Property from T ∪
{φ1, ..., φk}∪{¬ψ1, ...,¬ψl} 0MRA ⊥ to T∪{φ1, ..., φk}∪{¬ψ1, ...,¬ψl}∪{¬χ1, ...,¬χm} 0MRA

⊥, where φi is an ancestor hypothesis, ψi is a child hypothesis and χi is a sibling hypothesis.

The above suggestion could be considered as being incorrect, because of the following:
assume ¬χi is a sibling conclusion that happens after the box under examination. Clearly
because it happens later in the proof it cannot be referenced by the current context, so
allowing it to influence the result is unfair.

The next obvious move could be to enforce some ordering and redefine the exten-
sion definition (henceforth known as ”GAPX”) to be T ∪ {φ1, ..., φk} ∪ {¬ψ1, ...,¬ψl} ∪
{¬χ1, ...,¬χm} 0MRA ⊥, where χm < φ (and χi < χj for i < j), where φ is the current
hypothesis. The relation < (x, y) means that x precedes y in the proof. In other words, all
sibling hypotheses that happened before are taken into account only.

This definition may be regarded as a bit naive, since by changing the ordering of sibling
derivations the outcome can change. As an abstract example, consider sibling derivations
A and B. Consider whether A follows GAPX or not. It could be the case that if B
happens before A, A is not GAPX-compliant. If B happens after A, then A might follow
the property. Consider a more practical example as shown in Figure 6.1.

Different results are produced just by swapping the order of the sibling derivations.
This is because in the [γ...⊥] box, in the first proof, ¬β is available and can be used in
conjunction with the last bit of theory ¬(α ∧ ¬β); in the second proof, it is not available

53



6.1. Arriving at the Definition Chapter 6. Extending the Genuine Absurdity Property

1 ¬(α ∧ β) given
2 ¬(α ∧ γ) given
3 ¬(α ∧ ¬β ∧ ¬γ) given
4 ¬(α ∧ ¬β) given

5 α hypothesis

6 β hypothesis
7 α ∧ β ∧I(5, 6)
8 ⊥ ⊥I(1, 7)

9 ¬β ¬I(6, 8)

10 γ hypothesis
11 α ∧ γ ∧I(4, 10)
12 ⊥ ⊥I(2, 11)

13 ¬γ ¬I(9, 12)
14 α ∧ ¬β ∧I(4, 8)
15 α ∧ ¬β ∧ ¬γ ∧I(14, 13)
16 ⊥ ⊥I(3, 15)

17 ¬α ¬I(4, 16)

1 ¬(α ∧ β) given
2 ¬(α ∧ γ) given
3 ¬(α ∧ ¬β ∧ ¬γ) given
4 ¬(α ∧ ¬β) given

5 α hypothesis

6 γ hypothesis
7 α ∧ γ ∧I(5, 6)
8 ⊥ ⊥I(2, 7)

9 ¬γ ¬I(6, 8)

10 β hypothesis
11 α ∧ β ∧I(4, 10)
12 ⊥ ⊥I(1, 11)

13 ¬β ¬I(9, 12)
14 α ∧ ¬β ∧I(4, 13)
15 α ∧ ¬β ∧ ¬γ ∧I(14, 8)
16 ⊥ ⊥I(3, 15)

17 ¬α ¬I(4, 16)
GAP: 3

GAPX: 7

GAP: 3

GAPX: 3

Figure 6.1: Proofs showing that imposing an ordering on the sibling derivations makes the
extension definition results dependent on that ordering

at the time.

The conclusion so far is that by involving sibling hypotheses and imposing an ordering,
the different derivations are made dependent on each other and their relative position. By
changing the ordering of sibling derivations, GAPX can give different answers. This may be
considered unintuitive, so another definition will be given later. For now, call this definition
”Human GAP” or ”GAPH”. As seen from the example above, GAPH ”remembers” past
conversations (argument branches/siblings) and can always bring them up if they have
been discussed already. This might be considered closer to human nature, as people tend
to refer back to examples they’ve talked about recently! If they have yet to talk about those
examples, then they simply cannot use them (hence the ordering) and the conversation may
take a different route.

The next definition of GAPX may seem fairer to siblings because it makes them in-
dependent unless they reference each other explicitly. The definition is T ∪ {φ1, ..., φk} ∪
{¬ψ1, ...,¬ψl} ∪ {¬χ1, ...,¬χm} 0MRA ⊥, where χi has explicitly been referenced by line
number in the current box/derivation, so obviously χi < φ although that is not very
important. So the difference is that siblings not referring to each other are completely
independent and do not influence the outcome. The intuition will be given later, but for
now the example given in Figure 6.1 will be revisited in Figure 6.2. In this figure, GAPH
is the previous definition of GAPX, GAPX is now the latest definition. GAP remains the
classic definition given in the technical report.

In the first proof, the classic GAP says that [γ...⊥] follows the property as it ignores
completely the sibling derivation and the presence of ¬β (as it follows the strict version
of natural deduction that forbids shortcuts). GAPX says that [β...⊥] had nothing to do
with [γ...⊥] so it should stay independent of it. In other words, the sibling derivation was
not referenced, so it should bear no effect on the result. The second proof probably needs
no explanation. For the third proof, the difference (between that and the first) is that

54



Chapter 6. Extending the Genuine Absurdity Property 6.1. Arriving at the Definition

1 ¬(α ∧ β) given
2 ¬(α ∧ γ) given
3 ¬(α ∧ ¬β ∧ ¬γ) given
4 ¬(α ∧ ¬β) given

5 α hypothesis

6 β hypothesis
7 α ∧ β ∧I(5, 6)
8 ⊥ ⊥I(1, 7)

9 ¬β ¬I(6, 8)

10 γ hypothesis
11 α ∧ γ ∧I(5, 10)
12 ⊥ ⊥I(2, 11)

13 ¬γ ¬I(9, 12)
14 α ∧ ¬β ∧I(4, 9)
15 α ∧ ¬β ∧ ¬γ ∧I(14, 13)
16 ⊥ ⊥I(3, 15)

17 ¬α ¬I(5, 16)

1 ¬(α ∧ β) given
2 ¬(α ∧ γ) given
3 ¬(α ∧ ¬β ∧ ¬γ) given
4 ¬(α ∧ ¬β) given

5 α hypothesis

6 γ hypothesis
7 α ∧ γ ∧I(5, 6)
8 ⊥ ⊥I(2, 7)

9 ¬γ ¬I(6, 8)

10 β hypothesis
11 α ∧ β ∧I(5, 10)
12 ⊥ ⊥I(1, 11)

13 ¬β ¬I(9, 12)
14 α ∧ ¬β ∧I(4, 13)
15 α ∧ ¬β ∧ ¬γ ∧I(14, 9)
16 ⊥ ⊥I(3, 15)

17 ¬α ¬I(5, 16)
GAP: 3

GAPH: 7

GAPX: 3

GAP: 3

GAPH: 3

GAPX: 3

1 ¬(α ∧ β) given
2 ¬(α ∧ γ) given
3 ¬(α ∧ ¬β ∧ ¬γ) given
4 ¬(α ∧ ¬β) given

5 α hypothesis

6 β hypothesis
7 α ∧ β ∧I(5, 6)
8 ⊥ ⊥I(1, 7)

9 ¬β ¬I(6, 8)

10 γ hypothesis
11 α ∧ ¬β ∧I(5, 8)
12 ⊥ ⊥I(4, 11)

13 ¬γ ¬I(9, 12)
14 α ∧ ¬β ∧I(4, 9)
15 α ∧ ¬β ∧ ¬γ ∧I(14, 13)
16 ⊥ ⊥I(3, 15)

17 ¬α ¬I(5, 16)
GAP: undefined
GAPH: 7

GAPX: 7

Figure 6.2: Comparisson of different candidate definitions for extending the Genuine Ab-
surdity Property

55



6.1. Arriving at the Definition Chapter 6. Extending the Genuine Absurdity Property

the [β...⊥] derivation does indeed get involved in the [γ...⊥] derivation, providing a way to
prove contradiction without using the hypothesis. Hence the check now for GAPX becomes
T ∪ {α} ∪ {} ∪ {¬β} 0MRA ⊥ which fails. For the first proof, the check for GAPX was
T ∪ {α} ∪ {} ∪ {} 0MRA ⊥ because there was no cross-referencing.

So what is the intuition here? The intuition is that classic GAP does not take siblings
into account because it works on a natural deduction that forbids the use of the substitution
rule. If a sibling were to be used, it had to be copied in the current derivation and act
as a child derivation. The natural deduction style used in this paper simulates copying
of sibling derivations by allowing their referencing. Thus referencing a sibling derivation
really makes it a child (under the pure natural deduction sense). Thus for GAPX, the
{¬χ1, ...,¬χm} set is an extended child set for the derivation/box under examination, that
includes all sibling derivations (nothing more, nothing less) that would otherwise be child
derivations (and in the {¬ψ1, ...,¬ψl} set) if the restricted natural deduction was employed.
In other words, GAPX is a convenient workaround that fakes copying sibling derivations as
child derivations, allowing the user to work in a more expressive and concise environment.
Sibling derivations that are not referenced are the derivations that would not have appeared
as children in the classic GAP.

Having said that, there is one slight adjustment that needs to be made. So far, only
direct sibling derivations were considered, that is, boxes next to the box under considera-
tion. How about referencing an ancestor’s sibling conclusion? The natural deduction style
used here allows this kind of referencing. Consider the figure shown in Figure 6.3:

1 ¬(α ∧ β) given
2 ¬(α ∧ γ ∧ ¬δ) given
3 ¬(α ∧ ¬β ∧ ¬γ) given
4 ¬(δ ∧ ¬β) given

5 α hypothesis

6 β hypothesis
7 α ∧ β ∧I(5, 6)
8 ⊥ ⊥I(1, 7)

9 ¬β ¬I(6, 8)

10 γ hypothesis

11 δ hypothesis
12 δ ∧ ¬β ∧I(11, 9)
13 ⊥ ⊥I(4, 12)

14 ¬δ ¬I(11, 13)
15 α ∧ γ ∧I(5, 10)
16 α ∧ γ ∧ ¬δ ∧I(15, 14)
17 ⊥ ⊥I(2, 16)

18 ¬γ ¬I(10, 17)
19 α ∧ ¬β ∧I(4, 9)
20 α ∧ ¬β ∧ ¬γ ∧I(19, 18)
21 ⊥ ⊥I(3, 21)

22 ¬α ¬I(5, 21)

Figure 6.3: Referencing of an ancestor’s sibling (uncle) derivation

It can be seen that [β...⊥] is not a sibling to [δ...⊥] but rather an ancestor’s sibling
(or uncle) derivation. In this case, current GAPX does not apply. It can therefore simply

56



Chapter 6. Extending the Genuine Absurdity Property 6.2. Definition of Extension

extend the {¬χ1...¬χm} set to contain any sibling derivation (that came before) of any
ancestor up the ”tree” that has been referenced, as once again, such derivation would be
copied as a child derivation if it were a strict natural deduction proof that forbids shortcuts.

6.2 Definition of Extension

The previous section showed the thinking behind the arrival at the final definition for the
Genuine Absurdity Property extension. This definition is given below:

A certain (sub)derivation [φ...⊥] follows the extended Genuine Absurdity Property if
T ∪{φ1, ..., φk}∪{¬ψ1, ...,¬ψl}∪{¬χ1, ...,¬χm} 0MRA ⊥, where χi is any sibling or any an-
cestor’s sibling derivation hypothesis whose conclusion is referenced by the (sub)derivation
currently examined. Child derivations must also follow this property.

6.3 Correctness of Extension

Take an arbitrary (sub)derivation in the proof under examination. It can be categorized
as either making no references to siblings, or indeed referring to sibling derivations.

6.3.1 Case 1: Not Referencing Sibling Derivations

If the derivation makes no references to siblings then, the classic Genuine Absurdity Prop-
erty is defined as T ∪ {φ1, ..., φk} ∪ {¬ψ1, ...,¬ψl} 0MRA ⊥. The extension is defined as
T ∪ {φ1, ..., φk} ∪ {¬ψ1, ...,¬ψl} ∪ {} 0MRA ⊥. This is because the χ-set is empty, since in
this case there are no references to siblings.

The two definitions/checks match and so are equivalent for this case.

6.3.2 Case 2: Referencing Sibling Derivations

If the derivation makes references to siblings, then the extension is defined as T∪{φ1, ..., φk}∪
{¬ψ1, ...,¬ψl} ∪ {¬χ1, ...¬χm} 0MRA ⊥. The classic definition is not defined as the box
makes use of a shortcut, but take the equivalent strict natural deduction proof where
siblings are re-proven inside this derivation as children ¬ψl+1, ...,¬ψl+1+m. The classic def-
inition is then defined as T ∪{φ1, ..., φk}∪{¬ψ1, ...,¬ψl+1+m} 0MRA ⊥ or T ∪{φ1, ..., φk}∪
{¬ψ1, ...,¬ψl} ∪ {¬ψl+1, ...¬ψm} 0MRA ⊥ if we break the child-set into two sets containing
the old children and the new. But {¬ψl+1, ...¬ψm} = {¬χ1, ...¬χm} since the former set
contains all the siblings that were now included as further children in the strict natural
deduction equivalent.

The two definitions/checks are ultimately the same for this case as well.

6.3.3 Effects of More Specific Context of Implicitly Copied Siblings

Copying a sibling derivation does not change the derivation itself, and does not affect its
Genuine Absurdity Property status either. That is to say, when a sub-derivation is copied
to a new (more specific) context, then it exhibits the Genuine Absurdity Property if it did
where it was located initially.

Despite the addition of new context, namely the new ancestor hypotheses that surround
the copy of the sub-derivation, the sub-derivation retains its property status because of the
definition of the Genuine Absurdity Property. The property definition says that the check
is T ∪ {φ1, ..., φk} ∪ {¬ψ1, ...,¬ψl} 0MRA ⊥ where {φ1, ..., φk} refers to only the ancestor

57



6.4. Details of Implementation Chapter 6. Extending the Genuine Absurdity Property

hypotheses references (implicitly) copied by the sub-derivation. Since the referenced sub-
derivation existed in a more general context, it can not make use of the new (more specific)
context it has been copied into, and therefore the same check will still be performed if the
Genuine Absurdity Property is checked again, resulting in the same status as the original
sub-derivation in its original context.

This perhaps is easier to show using an example. Consider again the proof in Figure 6.3.
The sub-derivation [δ...⊥] implicitly copies the sub-derivation [β...⊥] into its own context.
The context of the copied sub-derivation in its original location contains ancestor hypothesis
α only. The context in the imported location (inside sub-derivation [δ...⊥]) includes ancestor
hypotheses {α, γ, δ}. The new additions (ie the more specific context) {γ, δ} will not
affect whether the sub-derivation [β...⊥] follows the Genuine Absurdity Property in its new
environment because it is oblivious to that new context as it was imported from a more
general one. Thus its Genuine Absurdity Property check will still be T ∪{α}∪ {} 0MRA ⊥
in either context, yielding the same results. The same would apply to its children sub-
derivations if it had any.

6.3.4 Assumption of Proof Sketch

This proof assumes that an equivalent proof can always be generated that does not make
use of any substitutions. Removing a substitution from a (sub)derivation can always be
done by replacing the reference to the other derivation by one that points to a local copy
of that derivation. The generated proof is always a valid natural deduction proof; however,
a proof of this will not be given in this paper.

6.4 Details of Implementation

Compared to the classic implementation of the Genuine Absurdity Property, the extension
implementation remains largely the same. The differences lie in that the initial checks
do not include the use of substitution check (since shortcuts are allowed here) and that
intermediate steps may also reference external sibling hypotheses.

1 % Checks that the given proof follows the extended GAP property

2 checkGAPX(Proof) :-

3 reverse(Proof, RevProof),

4 checkRAND(RevProof), !,

5 checkRestrictedRules(RevProof), !,

6 getTheoryAndRevBox(RevProof, Theory, RevBox), !,

7 checkRestrictedTheory(Theory), !,

8 checkGAPX(Theory, _, [], [], [], RevBox, RevBox, _), !.

Listing 6.1: Checking whether a proof is follows the extended Genuine Absurdity Property

Listing 6.1 shows that the implementation is comparable to the implementation of
the original definition (compare with Listing 5.1 and Listing 5.5). As mentioned in the
previous chapter the code checking for the Genuine Absurdity Property (in Listing 5.5)
scans the line references of intermediate steps in the current derivation to find refer-
ences to sibling derivations. The scanning and gathering of referenced siblings is done
by getUsedSiblingHypotheses/6 which is shown again in Listing 6.2.

1 % Uses the line references to find referenced sibling derivations

2 getUsedSiblingHypotheses(_, [], _, _, []) :- !.

3 getUsedSiblingHypotheses(Theory, Reason, WholeProof, HL, NewHypotheses) :-

58



Chapter 6. Extending the Genuine Absurdity Property 6.5. Remarks

4 length(Theory, L),

5 findall(R, (m2(R, Reason), R < HL, R >= L), External),

6 findall([H, E], (m2(E, External), getStep(E, WholeProof, step(H,

[notI|_], _))), HLN),

7 unzip(Hs, LNs, HLN),

8 subtract(External, LNs, Rest),

9 findall(Reason2, (m2(R2, Rest), getStep(R2, WholeProof, step(_,

[_|Reason2], _))), Reasons),

10 append(Reasons, Reasons2),

11 getUsedSiblingHypotheses(Theory, Reasons2, WholeProof, HL,

NewHypotheses2),

12 append(Hs, NewHypotheses2, NewHypotheses).

13

14 unzip([], [], []).

15 unzip([L|Ls], [R|Rs], [[L,R]|Ps]) :- unzip(Ls, Rs, Ps).

Listing 6.2: Gathering of referenced sibling derivations for the extended Genuine Absurdity
Property definition

The predicate getUsedSiblingHypotheses/6 works much in the same way as it works for
the original definition of the Genuine Absurdity Property, with the only difference being
that line 6 of the code may actually yield results. Sibling hypotheses are more or less
treated the same way as ancestor hypotheses, in that they are dug up in this predicate,
given back to checkGAP/7, carried over until the sub-derivation under check is consumed
and then merged with the other (ancestor and child) hypotheses in order to perform the
provability check.

6.5 Remarks

The extension to the original Genuine Absurdity Property definition considers only con-
sistent theories and proofs that use conjunction and negation only. It may not necessarily
be the case that the extension works for more general proofs. Testing its correctness for
inconsistent proofs or when using more connectors (and subsequent amendments in case it
proves not to be correct) remains future work.

Consider again the proof in Figure 6.3. The reason the sub-derivation [β...⊥] can be
used in [δ...⊥] is because it came before (in a more general context) it. Thus in an iterative
implementation of the Genuine Absurdity Property checker, [β...⊥] will already be checked
if it followed the property before considering checking [δ...⊥]. As an optimization checking
for the Genuine Absurdity Property for sibling derivations can be avoided, as it remains
constant (see subsection 6.3.3) for all of their implicit copies. This optimization is performed
by the extended Genuine Absurdity Property checker.

59



Chapter 7

Visualization of Genuine
Absurdity Property Proofs

The Argumentation Logic paper does not provide a formal algorithm for visualizing proofs
but rather the idea that proofs having the Genuine Absurdity Property can be seen from an
argumentative point of view and any abstract argumentation framework can be visualized
as shown previously in subsection 2.1.7, where an example was given by Figure 2.1. This
chapter documents the attempt to provide an algorithm for the visualization of proofs that
both follow the original Genuine Absurdity Property or the extension given in chapter 6.

This chapter covers step 4 of the original planned steps. The reverse procedure, in step
4+, as well as the argument builder, in step 4++, are discussed in chapter 8 and chapter 12
respectively.

7.1 Assumptions Made by Algorithm

The algorithm provided here assumes that the proofs supplied all follow the Genuine Ab-
surdity Property. This property ensures that arguments made in the (corresponding argu-
mentation framework of the) proof are relevant. It might be possible to visualize proofs
that do not have this property. The algorithm can deal with proofs that follow the extended
version of the property as well.

A consequence of this assumption is that the formulas in the proofs consist of conjunc-
tions and negations only, as the Genuine Absurdity Property is defined only for proofs
consisting of those constructs.

7.2 Description of Algorithm

In a nutshell, the algorithm moves around the proof in a backwards, ¬I-rule’s-contradiction-
driven approach. It assumes that the hypothesis in the outer box forms the initial argument.
At the end of the box, where the contradiction is established, clues can be found as to what
the attacks were. Recall from subsection 2.2.1 that the ⊥I rule points to two formulas in
the proof of the form A and ¬A. Formula A will be either a conjunction of smaller formulas
or just one atom. The negated formulas or (negated) atoms form the attack. Naturally,
the defenses are the negations of each of those formulas or atoms which will be hypotheses
inside boxes which lead to more contradictions recursively. The algorithm repeats itself
recursively, until the attacks gathered from the contradictions only form part of the theory
or previous hypotheses (defenses higher up the chain).

60



Chapter 7. Visualization of Genuine Absurdity Property Proofs 7.2. Description of Algorithm

1 ¬(β ∧ α) given
2 ¬(¬β ∧ γ) given
3 ¬(α ∧ ¬β ∧ ¬γ) given

4 α hypothesis

5 β hypothesis
6 β ∧ α ∧I(5, 4)
7 ⊥ ⊥I(1, 6)

8 ¬β ¬I(5, 7)

9 γ hypothesis
10 ¬β ∧ γ ∧I(8, 9)
11 ⊥ ⊥I(2, 10)

12 ¬γ ¬I(9, 11)
13 α ∧ ¬β ∧I(4, 8)
14 α ∧ ¬β ∧ ¬γ ∧I(13, 12)
15 ⊥ ⊥I(3, 14)

16 ¬α ¬I(4, 15)

Figure 7.1: Example proof for the visualization algorithm

The algorithm’s function will now be demonstrated with the aid of an example. Consider
the following proof:

The initial argument will be found at the top of the outer-most box - the hypothesis α.
The attacks can be found from the contradiction at the bottom, from line 15. The reasons
from the contradiction are lines 3 and 14, which are of the form ¬A and A respectively,
where A = α ∧ ¬β¬γ. A is a conjunction of (negated) atoms, and so the attack against α
will be {¬β,¬γ}. Note that α in A was ignored because it is the argument being attacked
itself. The attacks were derived at lines 8 and 12. This is known because the conjunction
A is accompanied by the line numbers of its constituents. The defense against ¬β and ¬γ
can be found in the two respective sub-derivations where their negations are assumed.

β is the defense against ¬β, and at the bottom of the first inner box the attack(s) against
it can be found. The conjunction consists of itself and α, which is a previous defense. So,
after ignoring the hypothesis itself, α remains as the attack. Because this attack was used
previously as a defense, it makes no sense to try and defend against it. Thus this part of
the algorithm ends here.

γ is the defense against ¬γ, and at the bottom of the second inner box the attack(s)
against it can be found. The conjunction here consists of itself and ¬β. The defense against
it and the attack against that can be found in the first inner box and so this part of the
algorithm repeats as before. Note that the use of ¬β refers to the sibling derivation [β...⊥].
This is normally forbidden by the classic definition of the Genuine Absurdity Property
but allowed by the extension. The algorithm finds the defense against ¬β regardless of its
relative position as it is indicated by the line reference in the justification of the attack.

At the end, the following abstract argumentation framework is extracted, which is
drawn in Figure 7.2:

• arguments: {{α}, {¬β,¬γ}, {β}, {¬β}, {γ}}

• attacks: {({¬β,¬γ}, {α}), ({β}, {¬β,¬γ}), ({γ}, {¬β,¬γ}), ({¬β}, {γ}), ({β}, {¬β})}

61



7.3. Observations and Remarks Chapter 7. Visualization of Genuine Absurdity Property Proofs

{¬β,¬γ}

{β}

{α}

{γ}

{¬β}

{β}

{α}

{α}

Figure 7.2: Visualization of the proof of example in Figure 7.1

7.3 Observations and Remarks

It may be obvious by now that a certain mapping can be established between the hypotheses
and contradictions and defenses and attacks. A hypothesis in the proof always represents
a defense from the argumentation point of view, and the individual atoms, negated atoms
and negated subformulas whose conjunction (along with the negation of their conjunction)
forms the contradiction represent the attack from the argumentation point of view. Some
of these atoms, negated atoms and formulas can be traced back to conclusions of ¬I rules,
thus it can be said that conclusions of ¬I rules (ie the results of the boxes) form some part
of an attack.

When using this algorithm, there is always one attack per argument, but there can be
many defenses. Each defense is the negation of an atom of an attack (argument). Both the
attacks and defenses follow their respective definitions as described in the original paper
and in section 2.3.2 (Argumentation Logic Framework Definition and Defense Against an
Attack).

When considering the formulas of the conjunction that constitutes an attack, all for-
mulas that are part of the theory or the argument under attack are ignored. Absence of
any remaining formulas signifies an attack by the empty set. This is shown by the example
in Figure 7.5.

Although the argumentation framework shown in Figure 7.2 could have been drawn
so that argument {β} on the left side of the ramification attacks {¬β} on the right, the
algorithm repeats the whole branch in the drawing. This choice has a couple of implications.
Firstly the generated diagram is always a tree, as chains of arguments are ”expanded”
or ”ironed out” regardless of whether natural deduction proofs made use of sibling ¬I
applications. Take the example given in Figure 7.1. The second inner box makes use of the
conclusion ¬β that was derived from the first inner box in order to reduce redundancy. The
algorithm turns this proof into a framework where the first inner box is essentially cloned
(duplicated) into the second box. Because of this ”expansion”, the visualization algorithm
does not distinguish between the proof in Figure 7.1 and the redundant proof in Figure 7.3;
both proofs when visualized would give the result shown in Figure 7.2.

62



Chapter 7. Visualization of Genuine Absurdity Property Proofs 7.4. Details of Implementation

The algorithm behaves in accordance to the Argumentation Logic technical report.
Using a sibling derivation can be considered a shortcut in natural deduction which is used
to avoid repeating the same part of the proof twice. The Argumentation Logic paper uses
natural deduction in its ”pure” form, where this shortcut is not allowed, and proofs where
the conclusion of a sibling derivation is used in another derivation do not exist as such.
This is the reason why the definition of the Genuine Absurdity Property (section 2.3.4)
does not take into account sibling derivations. For flexibility purposes, the algorithm ”irons
out” proofs that do make use of sibling derivations instead of rejecting them, since they do
follow the extended Genuine Absurdity Property definition that allows the use of shortcuts.
Essentially, what the algorithm does, is to remove the shortcuts and produce an argument
that would correspond to the corresponding proof that does not make use of shortcuts.
Therefore regardless of whether shortcuts were used or not, the argument retains the same
logical form.

The algorithm could be made instead to draw an attack from {β} on the left branch to
{γ} on the right. This would remove the redundancy and produce different visualizations
for the different proofs in Figure 7.1 and Figure 7.3. The resulting visualizations however
would not necessarily be trees. An interesting topic is the detection of similar subtrees in
argument attack/defense chains and their pruning, resulting in less redundant and more
concise proofs when the arguments are converted back into proofs. In addition, attacks
and defenses could be moved to shallower levels in the tree if possible, in order for their
corresponding boxes in the proof to appear in a shallower box-nesting level, so that their
conclusions can be used in a wider context. Of course, this pruning and relocating of nodes
in the tree must be done carefully, so that the resulting proofs always follow the Genuine
Absurdity Property. This topic remains part of future work and is not discussed further in
the report.

7.4 Details of Implementation

The algorithm first starts by reversing the proof so that it is in ascending order (opposite of
the output by the theorem prover in chapter 4). Listing 7.1 shows that after reversing the
proof, the algorithm calls the getDefence/7 predicate, which is responsible for producing
the defense node as well as handling its subtree (which on the top level is the entire tree).

The getDefence/7 (line 7 of the code) predicate adds the hypothesis of the box in the
argumentation framework under construction and then calls getAttack/6 which returns the
attack and its subtree.

The getAttack/6 (line 10 of the code) looks at the bottom of the box and finds the
contradiction that will indicate what the attacks are (lines 11 to 16). If the contradiction
is due to a conjunction of formulas then the individual components are found (line 19).
If there is only one component (there is no conjunction) it is retrieved by line 22. If the
contradiction was reached just by using the hypothesis itself, then the attack has no special
components which makes it an empty set attack (line 25). A node is then made from
the components for the argumentation framework that is being built (line 27) and then
all components that were attempted to defend against are gathered. For each of those
components, their respective subtrees are gathered (line 31) and finally all the new nodes
and attacks between them are put together and returned (lines 32, 33). The predicate m2/2

on lines 18, 21, 24 and 29 acts as an alias to the standard member/2 Prolog predicate.

1 % Converts a GAP proof to its argumentation representation

2 convertGAPToArg(Proof, [Nodes, AttDefs]) :-

3 reverse(Proof, RevProof),

63



7.4. Details of Implementation Chapter 7. Visualization of Genuine Absurdity Property Proofs

1 ¬(β ∧ α) given
2 ¬(¬β ∧ γ) given
3 ¬(α ∧ ¬β ∧ ¬γ) given

4 α hypothesis

5 β hypothesis
6 β ∧ α ∧I(5, 4)
7 ⊥ ⊥I(1, 6)

8 ¬β ¬I(5, 7)

9 γ hypothesis

10 β hypothesis
11 β ∧ α ∧I(10, 4)
12 ⊥ ⊥I(1, 11)

13 ¬β ¬I(10, 12)
14 ¬β ∧ γ ∧I(13, 9)
15 ⊥ ⊥I(2, 14)

16 ¬γ ¬I(9, 15)
17 α ∧ ¬β ∧I(4, 8)
18 α ∧ ¬β ∧ ¬γ ∧I(17, 16)
19 ⊥ ⊥I(3, 18)

20 ¬α ¬I(4, 19)

Figure 7.3: Example another proof that results in a framework like in Figure 7.2. This
proof is redundant but correct under the rules of natural deduction nevertheless.

4 getTheoryAndRevBox(RevProof, Theory, Box),

5 getDefence(Box, Box, Theory, 1, 0, Nodes, [_|AttDefs]), !.

6 % Makes a node and defence relation against given attack (and handles its subtree

as well)

7 getDefence([step(Hypothesis, [hypothesis], _)|Proof], WholeProof, Theory, You,

Target, [[[Hypothesis], You]|Nodes], [[You, Target]|AttDefs]) :-

8 getAttack(Proof, WholeProof, [Hypothesis|Theory], You, Nodes, AttDefs).

9 % Makes a node and attack relation against given defence (and handles its subtree

as well)

10 getAttack(Proof, WholeProof, Ignore, N, Nodes, AttDefs) :-

11 reverse(Proof, RevProof),

12 (

13 RevProof = [step(falsity, [falsityI, _, LN], _)|_];

14

15 RevProof = [step(falsity, [check, _], _), step(falsity, [falsityI,

_, LN], _)|_]

16 ),

17 (

18 m2(step(_, [andI|_], LN), Proof),

19 findAttackComponents(Proof, WholeProof, Ignore, LN, Components), !;

20

21 m2(step(X, _, LN), Proof),

22 getAttackComponent(X, LN, Ignore, Proof, WholeProof, Components),

!;

23

24 not(m2(step(_, _, LN), Proof)),

25 Components = []

64



Chapter 7. Visualization of Genuine Absurdity Property Proofs 7.4. Details of Implementation

26 ),

27 makeAttackNode(Components, Attack),

28 Ignore = [_|Theory],

29 findall([AttComponent, DefAgainstAtt], m2([AttComponent, DefAgainstAtt],

Components), DefendedAgainstComponents),

30 ln(N, NextN), ln(NextN, NextNextN),

31 getDefences(WholeProof, Theory, NextNextN, NextN,

DefendedAgainstComponents, DNodes, DAttDefs),

32 Nodes = [[Attack, NextN]|DNodes],

33 AttDefs = [[NextN, N]|DAttDefs].

Listing 7.1: First part of the proof visualization algorithm

The predicate getDefences/7 as shown in Listing 7.2 is responsible for gathering all
defenses and their subtrees. For each defense, it calls getDefence/7 and it ensures that
the nodes returned have different labels from the other defenses. The nodes and attack
relations are then merged and returned. The predicate a2/3 on lines 7 and 8 acts as an
alias to the standard append/3 Prolog predicate.

1 % Gathers all defences against an attack (and their subtrees)

2 getDefences(WholeProof, Theory, You, Target, [[_, Box]|Components], Nodes,

AttDefs) :-

3 getDefence(Box, WholeProof, Theory, You, Target, DNodes, DAttDefs),

4 reverse(DNodes, [[_, LastId]|_]),

5 ln(LastId, NewYou),

6 getDefences(WholeProof, Theory, NewYou, Target, Components, DsNodes,

DsAttDefs),

7 a2(DNodes, DsNodes, Nodes),

8 a2(DAttDefs, DsAttDefs, AttDefs).

9 getDefences(_, _, _, _, [], [], []).

Listing 7.2: Second part of the proof visualization algorithm

The predicates findAttackComponents/5 and getAttackComponent/6 as shown in List-
ing 7.3 work closely together in order to breakdown the conjunction of attack components.
Conjunctions are gradually broken down into individual smaller parts (lines 9-15), until all
that remains is atoms, negated atoms and negated formulas. If the attack component is
part of the theory or the current hypothesis, it is ignored (line 17). If, on the other hand, it
is a previous hypothesis (in other words a previous defense used earlier), then it is added as
a terminal attack (an attack that cannot be defended against) (line 18). Alternatively, the
attack component forms an attack that was attempted to defend against, and is returned
along with the box containing the defense attempt (line 19). The individual components
are then placed in one list and are returned (line 13). The predicate m2/2 on lines 10 and
17 acts as an alias to the standard member/2 Prolog predicate. The predicate a2/3 on line
13 acts as an alias to the standard append/3 Prolog predicate.

1 % Breaks down an attack into individual components and the defence attempts

against them

2 % returns a list of a mixture of:

3 % [A] (for part of the attack used as defences up the tree - there’s no way to

attack them)

4 % [A, defAgainstA] (for part of the attack that was attempted to defend against,

plus the box of the proof that does so)

5 % example: given attack a&b&c&d returns [[a], [[b], [...]], [[c], [...]]],

6 % assuming a was used as a defence above (you cannot defend against your defence,

65



7.5. Example Walkthough Chapter 7. Visualization of Genuine Absurdity Property Proofs

so this is a terminal part of the attack),

7 % there was an attempt to defend against b and c (given by the parts of the proof

[...]),

8 % and d was part of the theory hence there’s no defence against that

9 findAttackComponents(Proof, WholeProof, Ignore, LN, Components) :-

10 m2(step(and(A, B), [andI, LN1, LN2], LN), Proof),

11 getAttackComponent(A, LN1, Ignore, Proof, WholeProof, Components1),

12 getAttackComponent(B, LN2, Ignore, Proof, WholeProof, Components2),

13 a2(Components1, Components2, Components).

14 getAttackComponent(and(_, _), LN, Ignore, Proof, WholeProof, Components) :-

15 !, findAttackComponents(Proof, WholeProof, Ignore, LN, Components).

16 getAttackComponent(A, LN, Ignore, _, WholeProof, Component) :-

17 m2(A, Ignore), Component = [], !;

18 getStep(LN, WholeProof, step(A, [hypothesis], LN)), Component = [[A]], !;

19 getBox(LN, WholeProof, _, Box), Component = [[A, Box]].

Listing 7.3: Third part of the proof visualization algorithm

7.5 Example Walkthough

The example will revolve around the example proof given in section 7.2. The algorithm
changes the format of the proof so that steps are in increasing order, in the same way as
the proof would be printed on paper. The outer box is selected and getDefence/7 is called
upon to return the entire tree (lines 3-5 of Listing 7.3).

The predicate getDefence/7 automatically creates and adds a node for the defense α,
the hypothesis of the outer box. It then assigns the duty of creating the rest of the tree to
getAttack/6 (line 8). Note that it adds the hypothesis to the ignore list.

This predicate looks at the bottom of the proof (line 15 of the proof, line 13 of the code)
and then picks up the conjunction of components α∧¬β ∧¬γ (line 14 of the proof, line 18
of the code). The predicate findAttackComponents/5 is called to find and return the attack
components.

findAttackComponents/5 splits the conjunction in two parts, namely α and ¬β∧¬γ (line
10 of Listing 7.3). getAttackComponent/6 is called on both parts.

For the first call, getAttackComponent/6 realizes that the component α is an atom, and
that it is included in the ignore list. Thus it returns empty-handed (line 17 of the code).

For the second call, getAttackComponent/6 realizes that the component is actually an-
other conjunction and calls findAttackComponents/5 to split the conjunction into individual
parts (line 15). The two parts are ¬β and ¬γ. getAttackComponent/6 is called on both parts.

getAttackComponent/6 realizes that ¬β is a negated atom and is not e member of the
ignore list nor it is a previous defense. This means that an attempt to defend against it
must have been done. Thus the component itself, along with its accompanying attempted
defense box (lines 5-7 in the proof, line 19 in the code) are returned.

Similarly for the case of ¬γ, the component itself along with its box (lines 9-11 in the
proof) are returned. The components find their way back to the first call of findAttackComponents/5
which returns them in a single list back to getAttack/6 (line 19 in Listing 7.1).

Continuing on line 27, the attack node {¬β,¬γ} is made, and from the components of
the attack, all that were attempted to be defended against are gathered (line 29). In this
case there were attempts at defending against both ¬β and ¬γ. getDefences/7 is called to
return the subtrees of the two attack components.

getDefences/7 is a recursive predicate that finds the defenses (and the rest of the sub-
tree) for each attack component. It also handles the labels for the subtrees so that they

66



Chapter 7. Visualization of Genuine Absurdity Property Proofs 7.6. Visualization Examples

don’t use the same identifiers. Note that the hypothesis α has been dropped from the
ignore list.

getDefence/7 is called in order to find the defense against ¬β. This is where the algo-
rithm repeats all the steps of the walkthrough so far again, though this time the hypothesis
is β. The major difference is that getAttackComponent/6 will ignore the β attack component
(line 6 of the proof) but it will accept α as an attack that was previously used as a defense,
making it a terminal component (ie there is no defending against that).

Similarly for ¬γ, the procedure is repeated and the results bubble back up to getDefences/7,
where those results are merged with the results of the defense attempt against ¬β (lines
7-8 of Listing 7.2). The results that this predicate returns are merged with the attack node
{¬β,¬γ} from line 27 of Listing 7.1 in order to produce the entire subtree of the attack
{¬β,¬γ} against α (lines 32-33). The results are then pushed upwards and the end result
is the tree shown in Figure 7.2.

7.6 Visualization Examples

This section illustrates the function of the algorithm with more examples. For each ex-
ample, the proof is given alongside its visual representation according to the visualization
algorithm.

1 ¬(β ∧ α) given
2 ¬(α ∧ γ) given
3 ¬(α ∧ ¬β ∧ ¬γ) given

4 α hypothesis

5 β hypothesis
6 β ∧ α ∧I(5, 4)
7 ⊥ ⊥I(1, 6)

8 ¬β ¬I(5, 7)

9 γ hypothesis
10 α ∧ γ ∧I(4, 9)
11 ⊥ ⊥I(2, 10)

12 ¬γ ¬I(9, 11)
13 α ∧ ¬β ∧I(4, 8)
14 α ∧ ¬β ∧ ¬γ ∧I(13, 12)
15 ⊥ ⊥I(3, 14)

16 ¬α ¬I(4, 15)

{¬β,¬γ}

{β}

{α}

{γ}

{α}

{α}

Figure 7.4: Visualization example of 2-level boxes

67



7.6. Visualization Examples Chapter 7. Visualization of Genuine Absurdity Property Proofs

1 ¬(α ∧ β) given
2 ¬¬β given

3 α hypothesis

4 ¬β hypothesis
5 ⊥ ⊥I(2, 4)

6 ¬¬β ¬I(4, 5)
7 β ¬E(6)
8 α ∧ β ∧I(3, 7)
9 ⊥ ⊥I(1, 8)

10 ¬α ¬I(3, 9)

{β}

{¬β}

{}

{α}

Figure 7.5: Visualization example of empty set attack

1 ¬(α ∧ β) given
2 ¬(α ∧ γ) given
3 ¬(α ∧ δ) given
4 ¬(α ∧ ¬β ∧ ¬γ) given

5 α hypothesis

6 β hypothesis
7 α ∧ β ∧I(5, 6)
8 ⊥ ⊥I(1, 7)

9 ¬β ¬I(6, 8)

10 δ hypothesis
11 α ∧ δ ∧I(5, 10)
12 ⊥ ⊥I(3, 11)

13 ¬δ ¬I(10, 12)

14 γ hypothesis
15 α ∧ γ ∧I(5, 14)
16 ⊥ ⊥I(2, 15)

17 ¬γ ¬I(14, 16)
18 α ∧ ¬β ∧I(5, 9)
19 α ∧ ¬β ∧ ¬γ ∧I(18, 17)
20 ⊥ ⊥I(4, 19)

21 ¬α ¬I(5, 20)

{¬β,¬γ}

{β}

{α}

{γ}

{α}

{α}

Figure 7.6: Visualization example of ignored successful defense

68



Chapter 7. Visualization of Genuine Absurdity Property Proofs 7.6. Visualization Examples

1 ¬(¬α ∧ δ) given
2 ¬(α ∧ ¬β) given
3 ¬(α ∧ γ) given
4 ¬(α ∧ β ∧ ¬γ) given

5 δ hypothesis

6 α hypothesis

7 ¬β hypothesis
8 α ∧ ¬β ∧I(6, 7)
9 ⊥ ⊥I(2, 8)

10 β ¬I(7, 9)

11 γ hypothesis
12 α ∧ γ ∧I(6, 11)
13 ⊥ ⊥I(3, 12)

14 ¬γ ¬I(11, 13)
15 α ∧ β ∧I(6, 10)
16 α ∧ β ∧ ¬γ ∧I(15, 14)
17 ⊥ ⊥I(4, 17)

18 ¬α ¬I(6, 17)
19 ¬α ∧ δ ∧I(18, 5)
20 ⊥ ¬I(1, 19)

21 ¬δ ¬I(5, 20)

{¬α}

{α}

{β,¬γ}

{¬β}

{α}

{γ}

{α}

{δ}

Figure 7.7: Visualization example of 3-level boxes

1 γ given
2 ¬(α ∧ β ∧ γ) given
3 ¬(α ∧ ¬β) given

4 α hypothesis

5 ¬β hypothesis
6 α ∧ ¬β ∧I(4, 5)
7 ⊥ ⊥I(3, 6)

8 ¬¬β ¬I(5, 7)
9 β ¬E(8)
10 α ∧ β ∧I(4, 9)
11 α ∧ β ∧ γ ∧I(10, 1)
12 ⊥ ⊥I(2, 11)

13 ¬α ¬I(4, 12)

{β}

{¬β}

{α}

{α}

Figure 7.8: Visualization example of theory attack

69



7.6. Visualization Examples Chapter 7. Visualization of Genuine Absurdity Property Proofs

1 ¬(¬α ∧ δ ∧ ε) given
2 ¬(α ∧ ¬β) given
3 ¬(α ∧ γ) given
4 ¬(α ∧ β ∧ ¬γ) given
5 ¬(¬δ ∧ ε) given
6 ¬(ζ ∧ η) given
7 ¬(ζ ∧ ¬η ∧ ¬ε) given

8 ζ hypothesis

9 ε hypothesis

10 α hypothesis

11 ¬β hypothesis
12 α ∧ ¬β ∧I(10, 11)
13 ⊥ ⊥I(2, 12)

14 β ¬I(11, 13)

15 γ hypothesis
16 α ∧ γ ∧I(10, 15)
17 ⊥ ⊥I(3, 16)

18 ¬γ ¬I(15, 17)
19 α ∧ β ∧I(10, 14)
20 α ∧ β ∧ ¬γ ∧I(19, 18)
21 ⊥ ⊥I(4, 20)

22 ¬α ¬I(10, 21)

23 ¬δ hypothesis
24 ¬δ ∧ ε ∧I(23, 9)
25 ⊥ ⊥I(5, 24)

26 δ ¬I(23, 25)
27 ¬α ∧ δ ∧I(22, 26)
28 ¬α ∧ δ ∧ ε ∧I(27, 9)
29 ⊥ ⊥I(1, 28)

30 ¬ε ¬I(9, 29)

31 η hypothesis
32 ζ ∧ η ∧I(8, 31)
33 ⊥ ⊥I(6, 32)

34 ¬η ¬I(31, 33)
35 ζ ∧ ¬η ∧I(8, 34)
36 ζ ∧ ¬η ∧ ¬ε ∧I(35, 30)
37 ⊥ ⊥I(7, 36)

38 ¬ζ ¬I(8, 37)

{¬ε,¬η}

{ε}

{¬α, δ}

{α}

{β,¬γ}

{¬β}

{α}

{γ}

{α}

{¬δ}

{ε}

{η}

{ζ}

{ζ}

Figure 7.9: Visualization example of 4-level boxes

70



Chapter 8

Extracting Proofs from Arguments

chapter 7 shows how proofs following the Genuine Absurdity Property can be seen from an
argumentative point of view (step 4). An algorithm can be devised to work the opposite
way. This chapter discusses how an argument can be used along with the theory it was
drawn from to produce a proof that corresponds to this argument. This proof, if visualized
again using the algorithm from chapter 7 will produce the same argument used to generate
the proof. This covers step 4+, as discussed in section 3.1.

8.1 Assumptions Made by Algorithm

Valid, complete arguments are the primary assumption of this algorithm. This means
that the argument has the form of a tree, in the same way the visualization algorithm
produces arguments. Odd layers of the tree represent defenses and even layers represent
attacks. The definitions used for attacks and defenses are those found in Argumentation
Logic Framework Definition and Defense Against an Attack (section 2.3.2). Furthermore,
the argument must be about the non-acceptability of the initial hypothesis (argument at
the root) as described in section 2.3.3. In other words, the argument should be a proof of
NACCT ({a}, {}), where a is the initial hypothesis posited. It might be possible to visualize
incomplete arguments, but this is not guaranteed by the algorithm.

The algorithm assumes that the theory accompanying the argument is expressed in
conjunction and negation only. The generated proof will have a conjunction (or a single
atom) at the end of each box in the generated proof which will be used alongside its negation
(that usually appears in the theory) in order to establish a contradiction. Implicitly, the
proofs will be expressed in conjunction and negation only.

8.2 Description of the Algorithm

In a nutshell, the algorithm works by stitching together small proofs that each contains
an application of the Reductio ad Absurdum rule. The process starts bottom-up, from
the leaves of the argument tree, and builds the proof starting from the inner-most boxes
building outwards (to the top-level box).

Consider the example in Figure 8.1. This will be used to describe the workings of the
algorithm.

The algorithm works with defense-attack pairs, and as mentioned before, bottom-up.
It will choose either the left branch or the right branch (it makes no difference in the final
result).

71



8.2. Description of the Algorithm Chapter 8. Extracting Proofs from Arguments

1 ¬(β ∧ α) given
2 ¬(α ∧ γ) given
3 ¬(α ∧ ¬β ∧ ¬γ) given

4 α hypothesis

5 β hypothesis
6 β ∧ α ∧I(5, 4)
7 ⊥ ⊥I(1, 6)

8 ¬β ¬I(5, 7)

9 γ hypothesis
10 α ∧ γ ∧I(4, 9)
11 ⊥ ⊥I(2, 10)

12 ¬γ ¬I(9, 11)
13 α ∧ ¬β ∧I(4, 8)
14 α ∧ ¬β ∧ ¬γ ∧I(13, 12)
15 ⊥ ⊥I(3, 14)

16 ¬α ¬I(4, 15)

{¬β,¬γ}

{β}

{α}

{γ}

{α}

{α}

Figure 8.1: Proof extraction example

Assume that the pair {β} - {α} is chosen from the left branch. A ¬I proof will be
generated with the ultimate goal being the negation of the defense, ¬β. Inside the box of
the ¬I application, the defense β will be the hypothesis. The generated proof will be such
that the contradiction is derived from the attack (in this case {α}) and the defense. This
ensures that if the final proof is visualized again, the attack node (argument) generated
will be {α}. Note that while generating this proof, all parent defenses (in this case {α}) are
temporarily added as givens so that they are available for use. Recall from the mapping
discussed in the visualization algorithm (chapter 7) that defenses translate to hypotheses,
thus parent defenses (up the argument tree) should be available (as givens) to child proofs.
By now, lines 5-8 of the final proof shown in Figure 8.1 have been built.

The same procedure is used to generate another proof for the {γ} - {α} pair on the right
branch. The result is a Reductio ad Absurdum proof shown on lines 9-12 in Figure 8.1.
During the generation of this proof, α is again accessible as a given.

The algorithm takes the final pair {α} - {¬β,¬γ}. Once more, it strives to create a
proof with the end-goal being the negation of the defense, ¬α, with a ¬I application with
hypothesis the defense α and the contradiction given by the attack {¬β,¬γ}. In this case,
there are no parent defenses so the only givens are the theory. There are however child
hypotheses available and this is the main reason as to why the algorithm is bottom-up.
When opening the box for the ¬I application, the two sub-proofs can be added at the
beginning of the box in addition to the hypothesis (defense) α. The conclusions of the
sub-proofs, ¬β and ¬γ respectively, can be used to fill in the gaps of the box and help find
a contradiction for the attack {¬β,¬γ}. This way, if the resulting proof is visualized again,
the same nodes will be generated again. By now, lines 4-16 in Figure 8.1 are generated.

There is also a small bit of housekeeping that takes place in the process as well. This
is mainly to ensure that the line numbers of the sub-proofs are updated when included
in higher-level proofs, and that references to givens that constituted parent defenses are
rewired to point to the actual parent hypotheses as they become available by including
sub-proofs in higher-level proofs. As a final step before returning the proof, the theory is
stitched to the beginning of the proof and the line numbers are updated again.

72



Chapter 8. Extracting Proofs from Arguments 8.3. Observations, Remarks and Future Work

8.3 Observations, Remarks and Future Work

It may be obvious by now that the proof extraction algorithm works as a counterpart of the
visualization algorithm discussed previously in chapter 7. The algorithm ensures that the
right boxes are created at the right parts of the proof so that the inverse of the mapping
discussed in the visualization algorithm is followed.

Recall from chapter 7 that some information is lost when converting a proof to an
argument regarding sibling proofs and child proofs. The visualization algorithm makes no
distinction between the two, so the generated arguments seem ”spread out”. Thus, when
converting back to a proof from the generated argument, only proofs that refer to child and
ancestor hypotheses are created since shortcuts are effectively eliminated. Extracted proofs
from arguments generated by visualizing proofs that were valid only under the extended
definition of the Genuine Absurdity Property will now also follow the original definition.

Another bit of information that is dropped when visualizing proofs is the exact part of
theory that may have been used along with the attack to reach a contradiction. This is
because each argument (node) in the tree shows only its own claims, and hides the part
of the theory with which, along with the defense under attack, lead to a contradiction.
The example in Figure 8.2 shows two proofs that visualize to the same argument using
the visualization algorithm, and either of those proofs can be extracted from the argument
using the proof extraction algorithm. Note that the difference only lies in the theory used
by the outermost box.

1 ¬(β ∧ α) given
2 ¬(α ∧ γ) given
3 ¬(α ∧ ¬β ∧ ¬γ ∧ δ) given
4 ¬(α ∧ ¬β ∧ ¬γ ∧ ε) given
5 ε ∧ δ given

6 α hypothesis

7 β hypothesis
8 β ∧ α ∧I(7, 6)
9 ⊥ ⊥I(1, 8)

10 ¬β ¬I(7, 9)

11 γ hypothesis
12 α ∧ γ ∧I(6, 11)
13 ⊥ ⊥I(2, 12)

14 ¬γ ¬I(11, 13)
15 α ∧ ¬β ∧I(6, 10)
16 α ∧ ¬β ∧ ¬γ ∧I(15, 14)
17 δ ∧E(5)
18 α ∧ ¬β ∧ ¬γ ∧ δ ∧I(16, 17)
19 ⊥ ⊥I(3, 18)

20 ¬α ¬I(6, 19)

{¬β,¬γ}

{β}

{α}

{γ}

{α}

{α}

1 ¬(β ∧ α) given
2 ¬(α ∧ γ) given
3 ¬(α ∧ ¬β ∧ ¬γ ∧ δ) given
4 ¬(α ∧ ¬β ∧ ¬γ ∧ ε) given
5 ε ∧ δ given

6 α hypothesis

7 β hypothesis
8 β ∧ α ∧I(7, 6)
9 ⊥ ⊥I(1, 8)

10 ¬β ¬I(7, 9)

11 γ hypothesis
12 α ∧ γ ∧I(6, 11)
13 ⊥ ⊥I(2, 12)

14 ¬γ ¬I(11, 13)
15 α ∧ ¬β ∧I(6, 10)
16 α ∧ ¬β ∧ ¬γ ∧I(15, 14)
17 ε ∧E(5)
18 α ∧ ¬β ∧ ¬γ ∧ ε ∧I(16, 17)
19 ⊥ ⊥I(4, 18)

20 ¬α ¬I(6, 19)

Figure 8.2: Proof extraction example of two proofs generated from the same argument

This means that when using the visualization algorithm to turn a proof into an argu-
ment, and then the extraction algorithm to turn the argument back into a proof, the final
proof may not be the same as the initial. If the final proof is visualized again, then the
first and final arguments will be the same however.

As discussed in chapter 7, the proof extraction algorithm could be upgraded with a

73



8.4. Details of Implementation Chapter 8. Extracting Proofs from Arguments

feature that enables it to identify repeated arguments and generate proofs that are more
concise than the current output. Proofs can then be visualized and processed by this
algorithm in order to receive more optimized versions than those input into the algorithm.

8.4 Details of Implementation

The algorithm first starts with the argument given in the same format as the output of the
visualization algorithm and the theory on which the argument is based. The format of the
argument is a list of two elements: a list of pairs of nodes (the actual arguments) and their
IDs, and a list of pairs of node IDs indicating the attacks and defenses. Listing 8.1 shows
that the proof is built from the ground up (line 2), and then the theory is stitched on it at
the end (lines 3-4).

The call to convertArgToGAP/4 is recursive, and although it starts from level 1 of the
argument tree (as called by convertArgToGAP/3) it recursively bottoms out before starting
to assemble the proof at each level. This can be seen on lines 6-8. First, all of the defenses
against the attack on the current defense are found. These will make up the lower level
boxes. Then, a sub-proof for each of those defenses is found by recursively calling itself.
Hence by the time this is finished, the procedure bottomed out and then sub-proofs bubbled
back up from the bottom with all the lower levels taken care of. Finally, convertArgToGAP/4
acts on the current level of the tree by generating a proof using the theory and sub-proofs.

The predicate makeSubProof/5 is responsible for the making of the sub-proof at each
level of the tree. It takes the argument as a first parameter, the theory and child sub-
proofs as the second and third parameters, and the node ID for the defense it is supposed to
generate a proof for. The predicate returns the generated (sub-)proof as the last parameter.
parentSet/3 provides all the higher-level hypotheses that should be available when building
the proof. childSet/2 returns the negated hypotheses of the children. Its use will be
discussed shortly. The lineFix/4 predicate updates the line numbers of the previously
generated child derivations so that they can fit nicely in the current-level proof. The
theory and the parent set (masqueraded as more theory) are mixed together on line 15.
Line 18 finds the actual defense that will be used as a hypothesis given that the defense
node’s ID is known and line 19 puts together the hypothesis and the lower-level derivations.

Now everything is set for the theorem prover to find a proof that brings the theory,
ancestor hypotheses, current hypothesis and child derivations together with the attack.
The proof is created on line 20 of Listing 8.1. In order to ensure that the theorem prover
made use of all the components of the attack, the predicate childGAPsUsed/4 performs a
check that fails if the ”wrong” proof is found. This is to keep the theorem prover in check
so that it does not deviate from the attack plan. If the generated proof were to have a
different cause for the contradiction, some of the child derivations could possibly not be
referenced. In that case, re-visualizing the final proof would result in a different argument.

After passing this check, the resulting proof is the box containing the hypothesis and
contradiction. The trailing conclusion is stuck at the end of the box (on the outside) by
lines 23-29. These lines of code decide whether a ¬E rule is used directly after the ¬I rule
and calculate the line numbers for those steps.

Before moving on, the parentSet/3 and childSet/2 predicates may deserve a quick
glance. The former predicate gathers all the parent hypotheses by crawling the tree upwards
from the indicated defense node. Line 35 finds the node ID of the attack that the defense
tries to defend against, and line 36 finds the ID of the defense which is attacked by the
aforementioned attack. Line 37 looks into the ”nodes directory” to find the actual defense
indicated by its ID. This is added to the parent set and then the predicate calls itself again

74



Chapter 8. Extracting Proofs from Arguments 8.4. Details of Implementation

but this time to act on the higher-level defense. The childSet/2 predicate acts slightly
differently. The makeSubProof/5 predicate returns proofs that have the conclusion drawn
on the last line of the proof. Thus the negated hypotheses (which are the conclusions of
each proof) can be gathered by reading the last step of each of the child derivations.

The predicate m2/2 on lines 6-7, 18 and 35-37 acts as an alias to the standard member/2

Prolog predicate. The predicate a2/3 on lines 4 and 15 acts as an alias to the standard
append/3 Prolog predicate.

1 convertArgToGAP(Argument, Theory, TheoryAndProof) :-

2 convertArgToGAP(Argument, Theory, 1, Proof),

3 toSteps(Theory, TheorySteps),

4 a2(Proof, TheorySteps, TheoryAndProof).

5 convertArgToGAP([Nodes, AttDefs], Theory, NodeID, Proof) :-

6 findall(Def, (m2([Att, NodeID], AttDefs), m2([Def, Att], AttDefs)), Defs),

7 findall(SubProof, (m2(X, Defs), convertArgToGAP([Nodes, AttDefs], Theory,

X, SubProof)), SubProofs),

8 makeSubProof([Nodes, AttDefs], Theory, SubProofs, NodeID, Proof).

9

10 makeSubProof([Nodes, AttDefs], Theory, ChildGAPs, NodeID, SubProof) :-

11 parentSet([Nodes, AttDefs], NodeID, ParentSet),

12 childSet(ChildGAPs, ChildSet),

13 lineFix(ParentSet, Theory, ChildGAPs, FixedChildGAPs),

14 append(FixedChildGAPs, MergedCGAPs),

15 a2(Theory, ParentSet, Context),

16 toSteps(Context, ContextSteps), !,

17 ln(ContextSteps, LineNumber1),

18 m2([[Node], NodeID], Nodes),

19 a2(MergedCGAPs, [step(Node, [hypothesis], LineNumber1)],

HypothesisChildren),

20 backwardProve(no, HypothesisChildren, ContextSteps, [[], []], [falsity],

BoxProof),

21 childGAPsUsed(BoxProof, Theory, [Node|ChildSet], ParentSet),

22 ln(BoxProof, NextLineNumber), is(LineNumber2, NextLineNumber - 1),

23 (

24 Node = n(A),

25 ln(NextLineNumber, NextNextLineNumber),

26 SubProof = [step(A, [notE, NextLineNumber], NextNextLineNumber),

step(n(Node), [notI, LineNumber1, LineNumber2],

NextLineNumber), box(BoxProof)], !;

27

28 SubProof = [step(n(Node), [notI, LineNumber1, LineNumber2],

NextLineNumber), box(BoxProof)], !

29 ),

30 !.

31

32 % Return the parent hypotheses of the given defense node

33 parentSet([_, _], 1, []).

34 parentSet([Nodes, AttDefs], NodeID, [Parent|ParentSet]) :-

35 m2([NodeID, AttackNodeID], AttDefs),

36 m2([AttackNodeID, ParentNodeID], AttDefs),

37 m2([[Parent], ParentNodeID], Nodes),

38 parentSet([Nodes, AttDefs], ParentNodeID, ParentSet).

39

40 % Returns a list of the negated child hypotheses for the given child proofs

41 childSet([], []).

42 childSet([[step(NegHyp, _, _)|_]|ChildGAPs], [NegHyp|ChildHypotheses]) :-

75



8.4. Details of Implementation Chapter 8. Extracting Proofs from Arguments

43 childSet(ChildGAPs, ChildHypotheses).

Listing 8.1: First part of the proof extraction algorithm

The childGAPsUsed/4 predicate is responsible for making sure that the generated proof
at each level makes use of the lower-level proofs. Lines 3-8 of Listing 8.2 retrieve the step
of the proof responsible for the contradiction (the attack), and then it is broken down into
individual components on line 9. Line 10 checks that the given child set is included in
the attack components. This ensures that all the lower-level subtrees of the argument tree
will be present should the resulting proof be visualized again. As a further precaution, the
child set is subtracted from the set of used components and the result is checked against
a set containing components from the theory and parent set. This is to ensure that the
generated proof does not contain any extra items that would add more branches to the
argument received by visualizing the extracted proof again. This is done by lines 11-15.

The predicate getConjunctionComponents/2 is fairly simple. It breaks down conjunctions
into individual components. The predicate m2/2 on lines 8 and 12 acts as an alias to the
standard member/2 Prolog predicate. The predicate a2/3 on lines 14 and 22 acts as an alias
to the standard append/3 Prolog predicate.

1 % Make sure that all the (negations of the) child hypotheses were used in the

attack

2 childGAPsUsed(Proof, Theory, ChildSet, ParentSet) :-

3 (

4 Proof = [step(falsity, [falsityI, _, LN], _)|_];

5

6 Proof = [step(falsity, [check, _], _), step(falsity, [falsityI, _,

LN], _)|_]

7 ),

8 m2(step(X, _, LN), Proof),

9 getConjunctionComponents(X, UsedComponents),

10 subset(ChildSet, UsedComponents),

11 subtract(UsedComponents, ChildSet, Rest),

12 findall(TheoryComponents, (m2(T, Theory), getConjunctionComponents(T,

TheoryComponents)), TheoryComponentsList),

13 append(TheoryComponentsList, AllowedTheoryComponents),

14 a2(AllowedTheoryComponents, ParentSet, AllowedComponents),

15 subset(Rest, AllowedComponents).

16

17 % Returns the components making up a conjunction

18 % Example: a&b&c&d -> [a,b,c,d ]

19 getConjunctionComponents(and(A, B), Components):-

20 getConjunctionComponents(A, Component1),

21 getConjunctionComponents(B, Component2),

22 a2(Component1, Component2, Components), !.

23 getConjunctionComponents(X, [X]).

Listing 8.2: Second part of the proof extraction algorithm

The predicate lineFix/4 (shown in Listing 8.3) is used to update the line numbers in
the proofs for lower-level nodes. Its usage is solely related to housekeeping. Each of the
child derivations considers the first few lines to be the theory and the parent hypotheses.
Thus all proofs start from a certain line number n = length(Theory)+ length(ParentSet).
Thus every line number proof has to be ”reset” by subtracting this n and adding an offset
which is calculated for each proof as they will appear one after another. The offset is the
last line number of each proof for intermediate proofs. Care must be taken to not shift all

76



Chapter 8. Extracting Proofs from Arguments 8.5. Example Walkthrough

line references as some references refer to the theory or parent hypotheses. Shifting those
numbers (numbers smaller than n) will result in wrong references.

1 % Changes the lines of the proofs of the child proofs so that no two steps

2 % have the same line number. References are updated as well

3 lineFix(ParentSet, Theory, ChildGAPs, FixedChildGAPs) :-

4 length(ParentSet, L),

5 length(Theory, T),

6 lineFix(L, ChildGAPs, T, T, RevFixedChildGAPs),

7 reverse(RevFixedChildGAPs, FixedChildGAPs).

8 lineFix(_, [], _, _, []).

9 lineFix(From, [ChildGAP|ChildGAPs], Offset, TheoryOffset,

[FixedChildGAP|FixedChildGAPs]) :-

10 shiftLines(From, Offset, TheoryOffset, ChildGAP, FixedChildGAP),

11 ln(ChildGAP, NewOffset),

12 lineFix(From, ChildGAPs, NewOffset -1, TheoryOffset, FixedChildGAPs).

13 shiftLines(_, _, _, [], []).

14 shiftLines(From, Offset, TheoryOffset, [step(A, [R|Reason], LineNumber)|Proof],

[step(A, [R|FixedReason], FixedLineNumber)|FixedProof]) :-

15 shiftNumbers(From, Offset, TheoryOffset, [LineNumber|Reason],

[FixedLineNumber|FixedReason]),

16 shiftLines(From, Offset, TheoryOffset, Proof, FixedProof).

17 shiftLines(From, Offset, TheoryOffset, [box(BoxProof)|Proof],

[box(FixedBoxProof)|FixedProof]) :-

18 shiftLines(From, Offset, TheoryOffset, BoxProof, FixedBoxProof),

19 shiftLines(From, Offset, TheoryOffset, Proof, FixedProof).

20 shiftNumbers(_, _, _, [], []).

21 shiftNumbers(From, Offset, TheoryOffset, [N|Numbers], [FN|FixedNumbers]) :-

22 (

23 N > From + TheoryOffset, is(FN, N + Offset - TheoryOffset - From);

24

25 FN = N

26 ),

27 shiftNumbers(From, Offset, TheoryOffset, Numbers, FixedNumbers).

Listing 8.3: Third part of the proof extraction algorithm

8.5 Example Walkthrough

The example will revolve around the example argument given in Figure 8.1. Assume that
the format of the input argument isArgs = [({α}, 1), ({¬β,¬γ}, 2), ({β}, 3), ({α}, 4), ({γ}, 5), ({α}, 6)]
for the nodes and their IDs, and Att = [(1, 0), (3, 2), (4, 3), (5, 2), (6, 5)] for the attacks/de-
fenses. In the Prolog implementation, lists, tuples and sets were all implemented as lists,
but for the sake of readability a richer format will be used.

Listing 8.1 shows convertArgToGAP/3 starting up convertArgToGAP/4 with node ID 1,
the root of the tree. Line 6 of the code finds all defenses that defend against this node’s
attack from Att and puts them in a list, which in this case is [3, 5]. Line 7 of the code calls
convertArgToGAP/4 for each of those defenses, passing in the appropriate ID.

For the call with node ID 3, line 6 of the code executes and finds no defenses against
attack node 4. Hence no sub-proofs are generated by line 7. Line 8 executes. The
makeSubProof/5 predicate runs and calculates the parent set {α} and child set {} (since
there are no child derivations). Predicate lineFix/4 has no effect for the same reason. Line
15 of the code puts together the theory and parent set. Line 18 looks up node ID 3 in Args

77



8.5. Example Walkthrough Chapter 8. Extracting Proofs from Arguments

in order to find the actual defense {β}. The theorem prover then is tasked with finding a
proof with hypothesis β, context theory plus parent set and goal a contradiction. Assume
that the following proof was returned:

5 β hypothesis
6 β ∧ α ∧I(5, 4)
7 ⊥ ⊥I(1, 6)

Line 21 calls childGAPsUsed/4. Listing 8.2 shows the definition of this predicate. Lines
3-8 of the code find the step responsible for the contradiction. This is line 6 in the proof. It
is split into individual components by line 9 of the code. The components are [β, α]. The
given child set is not the empty set not because there are child derivations but rather because
the defense itself was appended to it by makeSubProof/5. This is because the hypothesis can
be present in the conjunction resulting in the contradiction (in fact it has to if the proof is
to follow the Genuine Absurdity Property). The first test (line 10) passes. The theory and
parent are split into individual components giving [¬(β ∧ α),¬(α ∧ γ),¬(α ∧ ¬β ∧ ¬γ), α].
The theory did not have any conjunction so it was left intact. If, as an example, δ ∧ ε
was part of the theory then it would produce components δ and ε. Subtracting the child
set from the attack components leaves the list with only one element in it. [α] is part of
the allowed remaining components as tested by line 15 and the childGAPsUsed/4 predicate
returns successful.

Back in the makeSubProof/5 predicate on line 21 (Listing 8.1) the execution continues
and lines 22-29 decide that because the defense β is a positive atom, there should be only
one line with the conclusion ¬β trailing the box. Thus before returning, the predicate
assembles this proof:

5 β hypothesis
6 β ∧ α ∧I(5, 4)
7 ⊥ ⊥I(1, 6)

8 ¬β ¬I(5, 7)

In a similar way, a box for node 5 is created that looks like the following:

5 γ hypothesis
6 α ∧ γ ∧I(4, 5)
7 ⊥ ⊥I(2, 6)

8 ¬γ ¬I(5, 7)

Note that the two sub-proofs have the same line numbers because at creation time
they were unaware of each other’s existence. This issue will be fixed by the lineFix/4

predicate shortly. On the top tree level now, after line 7 returns in Listing 8.1 for node 1,
makeSubProof5 is run but this time with the two proofs for the child derivations.

On line 11, the parent set is an empty set as node 1 has no parent defenses up the tree
(since it’s the root). The child set however is non-empty; it is {¬β,¬γ}. The lineFix/4

predicate changes the line numbers of the sub-proofs. The first child proof is effectively left
intact, but the second proof now starts from where the first left off; line number 9. Hence
after the line fix the two proofs are:

5 β hypothesis
6 β ∧ α ∧I(5, 4)
7 ⊥ ⊥I(1, 6)

8 ¬β ¬I(5, 7)

9 γ hypothesis
10 α ∧ γ ∧I(4, 9)
11 ⊥ ⊥I(2, 10)

12 ¬γ ¬I(9, 11)

78



Chapter 8. Extracting Proofs from Arguments 8.5. Example Walkthrough

Line 19 merges the hypothesis (defense) α with the child proofs, and the theorem prover
is then tasked to find a proof that results in a contradiction on line 20. Assume that the
returned proof is the following:

4 α hypothesis

5 β hypothesis
6 β ∧ α ∧I(5, 4)
7 ⊥ ⊥I(1, 6)

8 ¬β ¬I(5, 7)

9 γ hypothesis
10 α ∧ γ ∧I(4, 9)
11 ⊥ ⊥I(2, 10)

12 ¬γ ¬I(9, 11)
13 α ∧ ¬β ∧I(4, 8)
14 α ∧ ¬β ∧ ¬γ ∧I(13, 12)
15 ⊥ ⊥I(3, 14)

Note that lines 4-12 were already there at the start of the proof search as they were
stitched together by the makeSubProof/5 predicate and handed in to the theorem prover for
the construction of a contradiction. The next line to execute is line 21 where childGAPsUsed/4
is called. Listing 8.2 shows this predicate. On lines 3-8 the step contributing to the con-
tradiction is located (line 14 of the proof) and then it is broken down into individual
components (line 9 of the code). The components are [α,¬β,¬γ]. The child set (which
includes the current defense α) is the same, which does make it a subset (not strictly
speaking). The subtraction leaves no remaining components to be checked. This step is
just a precaution however, as the generated proof could have an extra attack component
that could generate a slightly different tree if the result was to be visualized again. The
predicate returns successfully. Back in the predicate makeSubProof/5 shown in Listing 8.1
lines 23-29 decide that the hypothesis is a positive atom, and thus the conclusion is just it’s
negation (there is no need to apply the ¬E rule afterwards as the conclusion is not doubly-
negated). Thus one last line deriving ¬α from the box is appended and the resulting proof
looks like the following:

4 α hypothesis

5 β hypothesis
6 β ∧ α ∧I(5, 4)
7 ⊥ ⊥I(1, 6)

8 ¬β ¬I(5, 7)

9 γ hypothesis
10 α ∧ γ ∧I(4, 9)
11 ⊥ ⊥I(2, 10)

12 ¬γ ¬I(9, 11)
13 α ∧ ¬β ∧I(4, 8)
14 α ∧ ¬β ∧ ¬γ ∧I(13, 12)
15 ⊥ ⊥I(3, 14)

16 ¬α ¬I(4, 15)

The execution returns to convertArgToGAP/4 and then to convertArgToGAP/3 on line 2.
The theory is finally appended to the proof and the result is the proof shown in Figure 8.1.

79



Chapter 9

Server Module

The main purpose of the server is to act as a conduit between the core module and the
client, since they are written in different programming languages and runtime environ-
ments. As mentioned in the overview in chapter 3, the server is written in SWI-Prolog1,
using the provided HTTP package2 that offers a comprehensive server solution out of the
box. SWI-Prolog was used also because the core module was written in the same Prolog
implementation, and using the module was as simple as loading the files into the runtime
operating the server application.

The server covers two functions:

• it serves the files required by the client to run - these are HTML, CSS and JavaScript
files that are requested by the browser

• it serves queries issued by the client as the user operates the graphical frontend in
the browser - these are JSON HTTP requests

The exact nature of the server is explained in the next section and alternatives are
discussed afterwards.

9.1 Implementation Details

Thanks to the provided HTTP Package, most of the implementation of the server is hidden
away. The server code imports the package, configures the server, registers the handlers
and fires up the server. These steps will be explained in more detail in this section.

1 :- use_module(library(http/thread_httpd)).

2 :- use_module(library(http/http_dispatch)).

3 :- use_module(library(http/http_files)).

4

5 init :- conf(document_root, D), http_handler(root(.), http_reply_from_files(D,

[]), [prefix]), registerQueries.

6 fin :- http_delete_handler(root(.)), deregisterQueries.

7 startServer :- conf(port, P), http_server(http_dispatch, [port(P)]).

8 stopServer :- conf(port, P), http_stop_server(P, []).

9

10 boot :- init, startServer.

11 shutdown :- fin, stopServer.

Listing 9.1: The Prolog code that configures and runs the server

1http://www.swi-prolog.org/
2http://www.swi-prolog.org/pldoc/doc for?object=section(%27packages/http.html%27)

80

http://www.swi-prolog.org/
http://www.swi-prolog.org/pldoc/doc_for?object=section(%27packages/http.html%27)


Chapter 9. Server Module 9.1. Implementation Details

The first three lines of Listing 9.1 load the necessary packages, and line 5 takes the
document root from the configuration file, and adds a handler that allows the server to serve
any file requests under that document root. This handler is the one that serves the HTML,
CSS and JavaScript files of the client. It then proceeds to run the registerQueries/0

predicate (Listing 9.3) that registers the handlers responsible for serving the queries made
by the client. The predicate startServer/0 on line 7 of the code listing reads the port
number from the configuration file and starts an HTTP server that listens on the port
specified by the configuration file.

Line 10 is merely a shortcut that provides a predicate boot/0 that runs the code on lines
5 and 7. Lines 6, 8 and 11 undo what lines 5, 7 and 10 do respectively. They deregister the
server handlers and shutdown the HTTP server. This can also be accomplished by closing
the Prolog runtime as well.

1 conf(document_root, ’C:/users/george/thesis/client/web/’).

2 conf(port, 8000).

Listing 9.2: The server configuration file written in Prolog

The small configuration file that specifies the port and document root of the server is
shown in Listing 9.2. This configuration file can be customized according to the environment
in which the server is meant to run. In order to deploy the server in a different environment
only this file needs to be edited. The configuration file may be extended to house more
settings in future updates.

1 :- use_module(library(http/json)).

2 :- use_module(library(http/http_json)).

3 :- use_module(library(http/json_convert)).

4 :- use_module(library(http/http_error)).

5

6 registerQueries :-

7 http_handler(root(query), jsonEcho, []),

8 http_handler(root(query/generateproofs), serveGenerateProofs, []),

9 http_handler(root(query/checkgap), serveGAPCheck, []),

10 http_handler(root(query/visualizegap), serveGAPToArg, []),

11 http_handler(root(query/visualizearg), serveArgToGAP, []),

12 http_handler(root(query/provable), serveProvable, []).

13

14 deregisterQueries :-

15 http_delete_handler(root(query)),

16 http_delete_handler(root(query/generateproofs)),

17 http_delete_handler(root(query/checkgap)),

18 http_delete_handler(root(query/visualizegap)),

19 http_delete_handler(root(query/visualizearg)),

20 http_delete_handler(root(query/provable)).

21

22 :- json_object and(’1’, ’2’) + [type=and].

23 :- json_object or(’1’, ’2’) + [type=or].

24 :- json_object implies(’1’, ’2’) + [type=implies].

25 :- json_object n(’1’) + [type=n].

26 :- json_object step(derivation, reason, line) + [type=step].

27 :- json_object box(proof) + [type=box].

28 :- json_object proof_query(theory, goal) + [type=proof_query].

29 :- json_object gap_query(proof, check) + [type=gap_query].

30 :- json_object arg_view_query(proof) + [type=arg_view_query].

31 :- json_object arg(’1’, ’2’) + [type=arg].

81



9.1. Implementation Details Chapter 9. Server Module

32 :- json_object gap_view_query(arg, theory) + [type=gap_view_query].

33 :- json_object provable_query(theory, goal, mra) + [type=provable_query].

34

35 jsonEcho(R) :-

36 format(’Content-type: text/plain~n~n’),

37 http_read_json(R, J),

38 json_to_prolog(J, P),

39 write(P).

40

41 serveGenerateProofs(Request) :-

42 http_read_json(Request, JSONIn),

43 json_to_prolog(JSONIn, proof_query(Theory, Goal)),

44 findall(X, (prove(Theory, [Goal], Y), reverseRecursive(Y, X)), PrologOut),

45 prolog_to_json(PrologOut, JSONOut),

46 reply_json(JSONOut).

47

48 serveGAPCheck(Request) :-

49 http_read_json(Request, JSONIn),

50 json_to_prolog(JSONIn, gap_query(Proof, Check)),

51 reverseRecursive(Proof, RevProof),

52 (

53 (

54 Check = classic,

55 checkGAP(RevProof);

56

57 Check = extended,

58 checkGAPX(RevProof)

59 ),

60 prolog_to_json(’approved’, JSONOut);

61

62 prolog_to_json(’disproved’, JSONOut)

63 ),

64 reply_json(JSONOut).

65

66 serveGAPToArg(Request) :-

67 http_read_json(Request, JSONIn),

68 json_to_prolog(JSONIn, arg_view_query(Proof)),

69 reverseRecursive(Proof, RevProof),

70 convertGAPToArg(RevProof, PrologOut1, PrologOut2),

71 prolog_to_json(arg(PrologOut1, PrologOut2), JSONOut),

72 reply_json(JSONOut).

73

74 serveArgToGAP(Request) :-

75 http_read_json(Request, JSONIn),

76 json_to_prolog(JSONIn, gap_view_query(Argument, Theory)),

77 convertArgToGAP(Argument, Theory, Proof),

78 reverseRecursive(Proof, RevProof),

79 prolog_to_json(RevProof, JSONOut),

80 reply_json(JSONOut).

81

82 serveProvable(Request) :-

83 http_read_json(Request, JSONIn),

84 json_to_prolog(JSONIn, provable_query(Theory, Goal, MRA)),

85 provable(Theory, [Goal], MRA, Verdict),

86 prolog_to_json(Verdict, JSONOut),

87 reply_json(JSONOut).

82



Chapter 9. Server Module 9.2. Remarks

Listing 9.3: The server code file that registers handlers that server client queries

Listing 9.3 shows the server code that deals with the queries issued by the client as
the user operates the graphical interface. Lines 1-4 of the code import more SWI-Prolog
libraries, and lines 6-12 define the registerQueries/0 predicate that is called by the main
server file predicate init/0. This predicate registers the handlers for queries by the client
under the relative path query/. The handlers registered are predicates that take one
parameter, which is the actual request made by the client. From this request the JSON
string can be extracted and easily converted to Prolog by the JSON object declarations
on lines 22-33. The JSON strings include details about the specific request (such as the
theory and the goal for generating proofs, or the proof that needs to be checked whether it
follows the Genuine Absurdity Property or not). After extracting and converting to Prolog
terms, the handler predicate can run code from the core module, and then respond with
the results after converting them back to JSON format.

The JSON object declarations are used to automatically convert JSON objects to Prolog
terms and vice versa. The values of the keys in a JSON object will become the parameters
of the corresponding Prolog term, positioned by their keys as specified by the declara-
tion. The functor (predicate name) is extracted from the value of the special key type

in the JSON object. For example, line 28 defines the Prolog term proof_query(theory,

goal) as the equivalence of the JSON object {"type":"proof_query", "theory":"...",

"goal":"..."}. Line 22 defines conjunction in Prolog terms in a similar way. Thus, a
request with JSON object {"type":"proof_query", "theory":[{"type":"and", "1":"a",

"2":"b"}], "goal":"a"} translates to proof_query([and(a, b)], [a]). The predicate json_to_prolog/2
does this conversion from JSON to Prolog, as the name implies, and predicate prolog_to_json/2
does the opposite.

Going back to the handler predicates, a number of them are registered by registerQueries/0:

• on line 35, jsonEcho/1 is used to check that the server is set up properly for debugging
purposes and is not used by the client

• on line 41, serveGenerateProofs/1 is used to take a theory and a goal and respond
with all the proofs that prove the goal using the given theory (chapter 4)

• on line 48, serveGAPCheck/1 takes a proof and responds appropriately depending
on whether the proof follows the (extended) Genuine Absurdity Property or not
(chapter 5, chapter 6)

• on line 66, serveGAPToArg/1 takes a proof that follows the Genuine Absurdity Property
and returns a visualization (chapter 7)

• on line 74, serveArgToGAP/1 takes an argument (a visualization) and the theory it is
based on and extracts a proof that when visualized again, provides the same argument
(chapter 8)

• on line 82, serveProvable/1 takes a theory and a goal and checks whether the goal
can be proven; no proof is sent back to the client; used by the argument builder to
check for consistent attacks provided by the user (chapter 12)

9.2 Remarks

As seen from the previous section, the server is quite simple to use and due to the fact that
it is very minimalistic, it requires virtually no maintenance. Its requirements in terms of its

83



9.3. Alternatives Chapter 9. Server Module

host environment are very low. A full installation of SWI-Prolog and its libraries suffices to
run the server. No other software or libraries are necessary. Throughout the construction
of the application, the server has proven to be very reliable and resilient, and no bugs or
any type of problems were detected.

9.3 Alternatives

Different alternatives were considered before the construction of the server. This section
summarizes the alternate paths explored and justifies the final decision.

Since the core module is written in Prolog, communication with or support for running
such an environment was deemed necessary. There were different solutions that mainly fall
under two general categories:

• using a library that forms a bridge between Prolog and another programming lan-
guage (which provides libraries that offer server functionality) that makes use of
SWI-Prolog’s C/C++ interface

• using a Prolog engine implementation written in another programming language
(which provides libraries that offer server functionality)

Regardless of choice, the methodology boils down to the same procedure: use a third-
party software to either communicate with a running Prolog instance (through SWI-
Prolog’s C/C++ interface) or run the core module directly by using the third party’s
Prolog implementation. Several candidates were considered, including pyswip3, jpl4 and
C#Prolog5.

Most of the alternatives were dropped because of their lack of documentation and sup-
port, or because the projects were abandoned with bugs and issues still raised. C#Prolog
offers its own ISO Prolog implementation in C#, and C# offers great server solutions that
are highly popular and reliable, such as Microsoft’s IIS6. Unfortunately, the employment
of C#Prolog was rejected, as many of the SWI-Prolog-specific libraries that are used by
the core module would have to be re-implemented.

A completely different approach would be to implement the graphical user interface and
all other functionality of the client in pure Prolog. This would eliminate the necessity for
the server altogether. This approach and what is entailed is discussed in the client module
chapter in section 10.3.

3https://code.google.com/p/pyswip/
4http://www.swi-prolog.org/packages/jpl/java api/
5http://sourceforge.net/projects/cs-prolog/
6http://www.iis.net/

84

https://code.google.com/p/pyswip/
http://www.swi-prolog.org/packages/jpl/java_api/
http://sourceforge.net/projects/cs-prolog/
http://www.iis.net/


Chapter 10

Client Module

The purpose of the client module is to wrap around the core module in order to provide a
better and easier experience than running the different Prolog predicates of the core on a
Prolog command line interface.

The client is written in HTML, JavaScript and CSS, and is loaded upon a web browser
request from the server (chapter 9).

10.1 Features

The main features of the client are the following:

• easy-to-use interface that allows users to not worry about using the core predicates
properly, what their inputs should look like and how to make sense of the output
returned by Prolog, since modern UI elements and visualization of the output guide
the user

• syntax parser and various input checkers that prevent the user from inputting incor-
rect theory, goals, attacks, and other forms of input into the system

• modern user interface that allows for intuitive use of the application

• data management functionality such as saving generated results (proofs, visualiza-
tions, etc), deleting, importing or exporting them

• additional tools for building proofs and arguments

• a help section with useful information on how to use the client’s features

The next section shows how to use the client module and introduces the interface
equivalents of the core module predicates, while chapter 11 and chapter 12 are dedicated
to using the additional proof builder and argument builder tools respectively, that are
exclusive to the client module.

10.2 Usage

This section demonstrates the different components of the client and shows how it can be
used.

85



10.2. Usage Chapter 10. Client Module

Figure 10.1: The client GUI showing the workbench on the right, the clipboard on the left
and the options on the top right corner

86



Chapter 10. Client Module 10.2. Usage

10.2.1 Clipboard

The clipboard holds proofs and other items that need to be retained. It acts as storage but
also acts as a pool of available items to use on the Workbench.

The clipboard is always visible on the right hand side of client application as shown in
Figure 10.1.

Thumbnails

Each item is rendered in its own thumbnail, and can be dragged to its appropriate place-
holder on the ”workbench” (explained later) or on the ”Clear Clipboard” or ”Export Clip-
board” buttons described later. Figure 10.2 shows three different items, each rendered in a
thumbnail: a proof, another proof that follows the Genuine Absurdity Property, and finally,
an argument.

Figure 10.2: Three thumbnails, from left to right: a proof, a verified Genuine Absurdity
Property proof, and an argument

Persistent Storage

The application makes use of HTML 5’s web storage1 feature in order to provide persistent
storage for the items in the clipboard. The content of the clipboard remains intact even
if the webpage is closed or reloaded. However, this storage may be deleted if the browser
clears its data, so it should not be heavily relied upon. There is an export clipboard feature
that can export the items stored in the clipboard.

The web storage keeps the clipboard in sync with itself. Whenever an item is added
or deleted, or when the clipboard is cleared using the ”Clear Clipboard” button, the web
storage is updated accordingly. The data is automatically loaded back into the clipboard
when the page is refreshed.

Managing the Clipboard

The clipboard allows the deletion of its contents, either in its entirety or one by one.
Clicking the ”Clear Clipboard” button will delete all the contents of the Clipboard, but

1http://en.wikipedia.org/wiki/Web storage

87

http://en.wikipedia.org/wiki/Web_storage


10.2. Usage Chapter 10. Client Module

after a warning pop-up appears (as shown by Figure 10.3). Dropping an item from the
clipboard onto this button will delete the item from the clipboard. There is no warning
pop-up for dragging a single item onto this button and that item is deleted immediately.

Clicking on the ”Export Clipboard” button will export the entire clipboard. A thumb-
nail can also be dragged and dropped onto the ”Export Clipboard” button. This will open
a new window with the exported item inside. The import/export facility is discussed in
subsection 10.2.3.

Figure 10.3: A notification pops up when the user clicks on the ”Clear Clipboard” button
that asks for confirmation

10.2.2 Workbench

The Workbench is where the different actions happen. The different tasks that can be
performed have been split into tabs that all fall under the workbench. Some of these tasks
require the user to input pre-made proofs or arguments from the Clipboard, or to input
logic sentences or natural deduction steps. The syntax used for logic sentences and natural
deduction is explained in subsection 10.2.4. The workbench is always located on the left
hand side of the screen, and occupies most of the real estate of the client screen as shown
in Figure 10.1.

Generate Proof Tab

The purpose of this tab is to let the user enter a theory and a goal and use the theorem
prover from chapter 4 to return all the proofs that prove the goal set by the user.

The user enters a comma-separated list of formulas in the theory input box, and a
single formula in the goal input box, and clicks on the ”Generate Proofs” button in order
to send the data to the server. If the parsed input is incorrect, the input field with the
incorrect input will be highlighted so that the user can amend their input. This is shown
in Figure 10.4. As soon as all the proofs are generated and sent back, the space below the
text fields and button will display the proofs as shown in Figure 10.5. The user can then
drag the preferred proofs onto the clipboard to save them.

Build Proof Tab

This functionality is only available in the client module. The core module does not have
an equivalent function. It is described in its own separate chapter in chapter 11.

88



Chapter 10. Client Module 10.2. Usage

Figure 10.4: Incorrect input is highlighted so that the user can revise it

Figure 10.5: The theorem prover generates all the proofs that arrive to the given goal using
the supplied theory

89



10.2. Usage Chapter 10. Client Module

Check GAP Tab

This tab is used to validate proofs as following the Genuine Absurdity Property. The user
can drag a proof from the clipboard that has not already been verified onto the thumbnail
placeholder under that tab. The placeholder will then be filled in with the proof. The next
step is to select the version of the Genuine Absurdity Property (discussed in chapter 5 and
chapter 6) the user would like to use. This could be either the original definition or the
extended definition. This is shown by Figure 10.6.

Finally, the user can click on the ”Check GAP” button in order to check whether the
proof does indeed follow the Genuine Absurdity Property by querying the server. If the
proof follows the property then this is shown by a small ribbon at the bottom right edge of
the thumbnail containing the proof under examination as shown in Figure 10.7. The user
can then drag the Genuine Absurdity Property-verified proof onto the clipboard.

Figure 10.6: The user can drop an unverified proof onto the placeholder and select between
the original and extended definitions for the Genuine Absurdity Property

Visualize GAP Tab

This tab allows for Genuine Absurdity Property-compliant proofs to be visualized using
the algorithm devised in chapter 7. This tab holds two placeholders. The user can drag
a compliant proof from the clipboard onto the left placeholder and click on the ”Visualize
GAP Proof” button. The proof will then be visualized into an argument and placed onto
the right placeholder so that they can be viewed side-by-side. Finally the user can drag the
visualization onto the clipboard in order to save it. A proof and its corresponding argument
are shown side-by-side in Figure 10.8.

90



Chapter 10. Client Module 10.2. Usage

Figure 10.7: If the proof follows the Genuine Absurdity Property it is indicated using a
ribbon

Figure 10.8: The Visualize GAP tab with a given verified proof and its corresponding
argument

91



10.2. Usage Chapter 10. Client Module

Extract Proof Tab

This tab is used to transform an argument back to a proof using the extraction algorithm
in chapter 8. This tab works much in the same way as the previous tab but with the input
and output reversed. The user can drag a visualization (argument) onto the box on the
left from the clipboard, and click on the ”Extract GAP Proof” button. A proof will then
be extracted from the argument and placed onto the right placeholder so that they can
be viewed side-by-side. Finally the user can drag the extracted proof onto the clipboard
in order to save it. An argument and its corresponding proof can be seen together in
Figure 10.9.

Figure 10.9: The Extract GAP Proof tab with a given argument and its corresponding
verified proof

Build Argument Tab

This functionality is only available in the client module. The core module does not have
an equivalent function. It is described in its own separate chapter in chapter 12.

10.2.3 Options

Options can be accessed via the top-right dropdown menu above the clipboard as shown
in Figure 10.1. A summary of the options is given below:

Option Description

Import to Clipboard Used to import exported items back to the Clipboard

Export Clipboard Exports the current items in the Cliboard

Help Opens a help page in a new tab with the user manual

About Displays a pop-up with acknowledgments
The importing-exporting facility is described below.

92



Chapter 10. Client Module 10.2. Usage

Exporting from the Clipboard

The data stored in the clipboard can be exported as strings of JSON text and can be
saved/distributed/etc. Clicking on the ”Export Clipboard” drop-down menu (or button on
the clipboard) will export the entire contents of the clipboard. The data will be opened
in a new window. If only one of the items on the clipboard needs to be exported, simply
drag that item onto the clipboard’s ”Export Clipboard” button. Note that exporting items
from the clipboard does not delete them from it.

Importing to the Clipboard

The text exported by the ”Export Clipboard” drop-down menu or button can be imported
back into the clipboard by clicking on the ”Import to Clipboard” drop-down menu. A pop-
up appears with an input field that allows to paste the JSON text in (see Figure 10.10).
Clicking on the ”Import to Clipboard” button will validate the pasted text and if the
validation succeeds, the parsed data will be added back to the clipboard. If the validation
fails however, the input field will turn red, giving the user the chance to fix the errors and
try again.

Figure 10.10: A pop-up shows when the user clicks the ”Import to Clipboard” button on
the options dropdown menu

10.2.4 Logic Syntax and Natural Deduction in Client Module

This section introduces the syntax used for propositional logic by the client, and how a
natural deduction proof is represented.

Symbols for Propositional Logic

In order to make the application appear the same on different devices with different char-
acter encoding abilities ASCII characters were used to represent logical connectives. Fig-
ure 10.11 summarizes the different symbols used and what they represent.

The same symbols are used by the parser as well.

Entering Propositional Formulas

Single propositional formulas can be entered by typing in the formula using the symbols
shown above. This is usually required when entering a goal to be proven. A list of proposi-
tional formulas is a comma-separated list of formulas. Space characters are ignored. Lists

93



10.3. Alternatives Chapter 10. Client Module

Symbol Meaning

! Negation

& Conjunction

| Disjunction

− > Implication

Falsity (Contradiction)

() Precedence (Grouping)

Figure 10.11: The logical symbols used by the client application

of formulas are usually required when specifying the theory (which might consist of more
than just one formula).

Natural Deduction Format

With the exception of the symbols used to indicate logic constructs, natural deduction is
represented in the same way as it is represented in this paper. In section 2.2 a summary of
the rules used by the client as well as an example on how the natural deduction proofs look
like are provided. The boxes (sub-derivations) are represented with an indentation rather
than an actual drawn box. The greater the indentation, the deeper the sub-derivation is.

10.3 Alternatives

There is a wide variety of alternate implementations for the user interface. Among them
exist the following:

• Java Swing2

• Prolog XPCE3

• GTK+4, QT5, and other similar application frameworks or widget toolkits

Swing is a Java widget toolkit. It can be used to create platform-independent user
interfaces written in Java, much in the same way as HTML, CSS and JavaScript can be
used to make cross-platform applications. Java tends to be quite verbose however, leading
to more complicated code sometimes. The major difference lies in the fact that Swing is
used in Java applications, whereas JavaScript is used in web applications. Swing could have
been used to create an interface that is packaged together with the server, merging the two
roles in one application (ie there would be no physical separation between the client and
server), if a Prolog binding library were used (like JPL). This would make the use of a web
browser unnecessary.

Prolog XPCE is a SWI-Prolog library for creating graphical user interfaces. This would
be the most preferable option since the interface could have imported the core module
directly, rendering the server obsolete. Prolog code tends to be very concise, unlike graphical
user interface code in general. However, the look and feel of the interfaces produced by
XPCE is a bit dated, and more modern alternatives are out there that could offer a better
overall experience.

2http://en.wikipedia.org/wiki/Swing (Java)
3http://www.swi-prolog.org/packages/xpce/
4http://www.gtk.org/
5https://qt-project.org/

94

http://en.wikipedia.org/wiki/Swing_(Java)
http://www.swi-prolog.org/packages/xpce/
http://www.gtk.org/
https://qt-project.org/


Chapter 10. Client Module 10.3. Alternatives

GTK+, Qt and other similar widget toolkits have been proven by various well-known
applications for their wide variety of interface elements and overall flexibility. These li-
braries tend to be very fast, since they are written in C or C++. This however, makes it
difficult to produce bug-free interfaces because of their complexity and code size. There
have been efforts to create bindings to other high-level programming languages such as
Python (PyQt6 and PyGTK7) that drastically simplify the making of graphical user inter-
faces with the aforementioned libraries.

The major advantage of building a web application, and the major disadvantage of
desktop applications, is deployment. For web applications, updates do not need to be
pushed down to the client, and the client itself does not need to seek updates from a server.
That is because a web application is served by the server directly, and so application updates
can be hot-swapped whenever they become available. A simple page refresh is all that is
required. Thus the major advantage of choosing HTML, JavaScript and CSS is that it
allows for the option of hosting the project on a public webserver, and allowing the client
to be sent to the user’s web browser as a web application. This is not possible with the
aforementioned alternatives.

In addition, web development has become very fast, with different toolkits and libraries
available that speed up development and significantly increase productivity. Web applica-
tions can now run at very high speeds due to sophisticated JavaScript engines incorporated
by web browsers. In this respect, the current solution does not lack in terms of performance,
productivity or appearance, and has the distinct advantage of quick and easy distribution.

6http://www.riverbankcomputing.com/software/pyqt/intro
7http://www.pygtk.org/

95

http://www.riverbankcomputing.com/software/pyqt/intro
http://www.pygtk.org/


Chapter 11

Proof Builder

Experience from repeated usage of the theorem prover in order to generate proofs (step 1
and 2) has shown that sometimes the amount of proofs generated using the theorem prover
directly can be overwhelming. Most of the time, a particular proof was required for further
study, and going through the generated results was found tedious. Thus a need for a proof
builder arose (step 1+), so that when a particular proof is required, it can be input directly
with the help of the proof builder.

11.1 Motivation for Client Side Implementation

The proof builder is completely client side. There are several reasons for this decision.

Firstly, since this is an aided construction, visual feedback should be frequent and
immediate. Requesting validation from the server would be both wasteful in terms of
resources and possibly time-consuming as the builder would stall until the response comes
back from the server.

Hence by building this feature client side, unnecessary back-and-forth communication
is avoided.

Since the proof builder is completely contained in the client, it can be easily integrated
into the GUI for a seamless experience that can be used offline as well.

Since this feature involves a gradual construction of a proof with intermediate user
input, keeping the current state is essential. Since the proof builder is client side, it does
not communicate with the server and therefore the server does not need to hold any session
information and can indeed be completely stateless.

11.2 Features

The proof builder features a very simple, easy to use interface. The interface is made of
two input fields where the user can input the theory and goal of the proof, a button that
signifies the start of a new proof, a placeholder for rendering the current state of the proof,
and finally, one more input box for entering commands to guide the construction of the
proof.

The proof builder makes use of the client’s text input parser. The parser can report
incorrect input and validate the user’s commands to the proof builder. For example, if the
user enters the command a&b; &I(5) (which means that a new step is to be added where
the derivation is a ∧ b and the reason is ∧-introduction from line 5), the parser will detect
that a ∧-introduction rule requires two line references instead of the one provided (one for

96



Chapter 11. Proof Builder 11.3. Usage

each of the two subformulas of the conjunction) and will make the command input box
glow red to indicate an error.

Even if the input is syntactically correct, mistakes can still happen. Assuming correct
syntactically input that passed the parser stage, the natural deduction rule checker can be
used to verify the command. Line references will be checked, and the rule application will be
verified as well. For example if the user enters an erroneous command a&b; &I(5, 9000) and
the current step to be added has line number 5, then this is picked up by the rule checker.
The rule checker can work out if the derivation was made correctly. For example if the given
input is a&b; &I(5, 3), the rule checker will see that this is supposed to be an application
of the ∧-introduction rule. This means that the derivation should be a conjunction of two
sub-formulas. Those subformulas (a and b in the example) should have previously been
derived on the lines referenced by the command (lines 5 and 3 in the example). If any error
occurs, the command input box glows red to signal incorrect input. The effect of this is
that proofs generated by the proof builder are sound.

As mentioned above, feedback is given immediately after the user enters a command.
Even if the feedback is not very specific, it is adequate for the user to understand what went
wrong with just a brief inspection of their input. Since feedback is available immediately
after each command entered, and because no progress can be made if the command is not
valid, the user can easily identify the mistake.

11.3 Usage

The user starts by navigating to the ”Build Proof” tab of the Workbench. There, two input
boxes can be found. In the first one, a comma-separated list of formulas can be entered for
the theory. In the second input field, a single formula may be entered for the goal of the
proof. This is used by the proof builder to identify when the proof is complete. The user
clicks on the ”Build Proof” button and the proof construction begins if the theory and goal
parse correctly. If not, then whichever field contains erroneous input is highlighted. If the
parsing succeeds then the command input field is enabled and is ready for use. The theory
is already filled in with ”given” being the reasons of the steps of the proof. Figure 11.1
shows this state.

The user can type commands in the command input field below the rendered proof
under construction and enter them by pressing the Enter key. If the command is accepted,
it is executed. Otherwise, the command input field glows red to indicate an error. This is
shown in Figure 11.2. There are three supported commands:

• New step: adds a new line at the end of the proof under construction

• Delete last step: deletes the last line of the proof

• Delete last n steps: deletes the last n steps of the proof

The first command is of the format [formula]; [reason], where [formula] is any valid
formula and [reason] is any of the supported reasons listed in Figure 11.3. These can be
compared to subsection 2.2.1. If the step command is a new hypothesis, a box is automat-
ically opened. Boxes are shown by an indentation of the lines of the proof proportional
to the level of nesting. If the step command describes a ¬I step, then the current box is
closed and the command is appended one level up.

The second command is of the format −−. This deletes the last line of the proof. If
that line was a ¬I or → I rule then the preceding box is now re-opened and can be closed
by issuing another ¬I or → I step command.

97



11.3. Usage Chapter 11. Proof Builder

Figure 11.1: The proof builder already fills in the theory as steps for the proof that the
user is about to build

Figure 11.2: The proof builder indicates an error when the user input is incorrect

98



Chapter 11. Proof Builder 11.3. Usage

Rule Format Rule Name Description

&I(#,#) ∧I Conjunction of the formulas indicated by the two referenced
lines

&E(#) ∧E The left/right hand side of a conjunction indicated by the
referenced line

− > I(#,#) → I Implication of two formulas at the start or end of preceding
box indicated by the referenced lines

− > E(#,#) → E Right hand side of implication derived by an implication
and its left hand side indicated by the referenced lines

I(#,#) ⊥I Contradiction introduced by a formula and its negation as
indicated by the referenced lines

E(#) ⊥E Any formula derived from a contradiction indicated by the
referenced line

!I(#,#) ¬I The negation of a hypothesis and a subsequent contradiction
in a box as indicated by the referenced lines

!E(#) ¬E The derivation of a formula by removing a double-negation
from a formula indicated by the referenced line

hypothesis hypothesis A hypothesis placed at the beginning of a box
check(#) reiteration Restating a previously derived formula

Figure 11.3: Supported natural deduction rules for the proof builder. A # represents a line
number

The last command is of the format −[number], where [number] is any non-negative
number. The last n steps are deleted where n is the number specified. This command
works by repeating the second command n times so the effects are essentially the same.

The user can enter commands to fill in the proof. When the last step in at the top
level (not inside a box) and it matched the goal entered at the very start, then the proof
is complete and the command input box is disabled. The rendered proof now becomes
draggable and the user can subsequently drag the proof onto the clipboard to save it.
Underneath the user interface, the proof has the same exact representation as a proof
generated by the theorem prover, and can thus be used to check whether it follows the
Genuine Absurdity Property, be visualized (if it does indeed follow the property) and so
on.

99



Chapter 12

Argument Builder

In order to complement the proof builder (chapter 11) an argument builder was created
so that specific arguments can be drawn directly, without first having to create the corre-
sponding proof in step 1 (theorem prover) or 1+ (proof builder), then checking it in step 3
(Genuine Absurdity Property check) or 3+ (extended property check), and then visualizing
it in step 4 (visualization algorithm).

Much in the same way as the proof builder works, the argument builder provides im-
mediate feedback to the user during the construction of the argument. Unlike the proof
builder however, the argument builder is not completely client side. This is due to the fact
that the theorem prover needs to be used in order to justify attacks claimed by the user.

The data sent to the server is minimal however, since the only communication between
the client and the server when using this builder is a query about whether the supplied
theory and given attack claim causes a contradiction with the defense, and does not cause
a contradiction without it. The latter is used to check that the actual attack makes sense
in that it attacks the defense, and not the theory itself.

Even though the argument builder makes use of the server, all of the state (the theory
and the argument under construction) is held locally. This allows the server once more to be
stateless. This means that the server does not need to remember any sessions and connec-
tions from the clients, greatly simplifying the overall architecture and future maintenance
of the project.

The argument builder is step 4++, as discussed in the introduction and section 3.1.

12.1 Features

The argument builder makes use of a simple user interface, using elements from other parts
of the overall interface. It consists of two input fields for the theory and the first argument,
a thumbnail which shows the argument under construction and an attack input field, where
the user can specify their attacks.

The argument builder benefits from the same parser that the proof builder and the
rest of the client use, which can check that the theory, starting argument and subsequent
attacks are syntactically correct.

At the same time, the argument builder uses a NACC-semantics checker, which checks
the valid attacks made by the user and automatically ends the attack-defense chain when
the attacks form terminal nodes (leaves).

The argument builder features automatic generation of defenses, and termination of the
construction of the argument if all branches lead to terminal attacks.

100



Chapter 12. Argument Builder 12.2. Usage

12.2 Usage

The construction of an argument involves a mini-game where the user gives the argument
builder the theory and initial argument (the first ”defense”, or the first argument of the
”proponent”). Then it is the job of the user to attack the computer, specifying attack
claims. Claims that form good attacks, are accepted and added to the tree. The ”propo-
nent” (the computer) then automatically generates the defenses, since they are very well
predictable and specified (section 2.3.2, Defense Against an Attack). When all branches
have been closed off (blocked by a terminal attack), the mini-game ends and the user can
save the constructed argument.

The user starts off by entering the theory and argument that should be defended by
the computer. The user then clicks the Build Argument button in order to begin the
construction of the argument. If an error in the input is detected by the parser, the offending
input box is highlighted. Upon the beginning of the construction, the first argument of
the proponent is visualized. The attack claim input field is then enabled and the program
awaits the user’s attack. This state is shown in Figure 12.1. The user can make an attack
claim by first specifying what the attack is going to be. In order to do that, the user enters
the attack in the attack input box and presses the Enter key on the keyboard. If the attack
makes sense (does not contradict the theory itself), then it is accepted, otherwise the input
field glows red to indicate a bad attack. This is similar to entering an incorrect command
in the command input field of the proof builder.

Figure 12.1: The argument builder draws the initial argument and enables the attack input
field awaiting for the user’s command

Green nodes represent defenses, and these are generated by the computer. Red nodes
indicate attacks, and these are added by the user. If the attack is accepted, then a blue
node appears on the bottom left corner of the visualized argument under construction to
indicate an attack claim. This state is shown in Figure 12.2. The user can now drag

101



12.2. Usage Chapter 12. Argument Builder

the attack claim (blue node) onto eligible nodes in the argument tree. Eligible nodes are
leaf defenses. As soon as the user starts dragging the blue node, all eligible nodes will be
indicated by a faint red drop zone, where the user can drop the blue node. A bright red
temporary link will also link the attack claim and defense if the attack claim is hovering
over its drop zone. This is shown by Figure 12.3. The user can let go of the blue node to
issue the attack. The attack is checked that it reaches a contradiction when combined with
the defense it is attacking. If that is the case, the tree is redrawn and the attack claim is
”set in stone” as it is drawn underneath the defense as a red node.

Figure 12.2: The argument builder draws the initial argument and enables the attack input
field awaiting for the user’s command

When the user makes a successful attack, the computer checks if the attack is a subset
of the parent defenses, according to the NACC semantics of Argumentation Logic (sec-
tion 2.3.3). If it does, it is considered a terminal attack. This means that no defenses are
generated to defend against that attack and hence that branch of the tree is effectively
closed off (Figure 12.4). If the attack is not a terminal attack, then defenses are gener-
ated according to the NACC semantics once more. The defenses are predictable, since
the definition of a defense is to take the opposite stance of a component of the attack
(section 2.3.2).

The mini-game ends when all branches are closed off and no unattacked defenses remain.
The attack claim input field is then disabled and the constructed argument can be dragged
to the clipboard in order to be saved. The arguments generated by the argument builder
have the exact same format as those generated by the visualization algorithm (chapter 7)
and can be used in the same way.

102



Chapter 12. Argument Builder 12.2. Usage

Figure 12.3: The user is about to attack the computer’s argument; a red link shows the
node the attack will be against if the user drops the attack node

Figure 12.4: The user gives a terminal attack on the left branch, leaving only the right
branch open; after a terminal attack on the right branch, the argument is complete

103



12.3. Generating Arguments Automatically Chapter 12. Argument Builder

12.3 Generating Arguments Automatically

Originally, an argument generator that works in a similar way to the theorem prover (chap-
ter 4) was envisioned, which could be given a theory T and a starting argument a and gener-
ate all arguments proving NACCT ({a}, {}). The idea was dropped as a lot of computation
would be necessary to generate attacks.

In order for an attack to be generated, the argument generator would have to go through
the powerset of the language and try each subset in order to test if it forms a valid attack.
Defenses, given a valid attack, could be generated easily since they always take the opposite
(negation) of the attack components.

Consider a small example with theory T = {¬(α ∧ ¬γ),¬(α ∧ β ∧ γ),¬(¬β ∧ δ),¬(α ∧
¬β∧¬δ)}. The language for this theory is L = {α, β, γ, δ,¬α,¬β,¬γ,¬δ} and therefore the
powerset of the language P contains 256 subsets. Almost all of these subsets will need to be
processed to check whether they constitute a good attack. Some of these subsets will not
constitute good attacks, for example S1 = {δ,¬δ} (it contradicts itself) or S2 = {α,¬γ}
(it contradicts the theory itself) and thus further calculations will be necessary to weed
them out. This entire procedure needs to be repeated n times for just one argument with
n number of attacks.

It is therefore only a viable solution if a good strategy can be devised that can drastically
prune the search space of the possible attacks. This, consequently, remains a topic for future
work.

104



Chapter 13

Evaluation

Evaluation of this project cannot be based on user feedback. The implementation is not
addressed to a general audience, hence statistics like number of downloads on an online
store, or feedback and ratings on a particular website do not apply. At the same time,
the implementation is not a piece of software that is meant to run something in a very
optimized way, so statistics like frames per second, time intervals, etc are of no use either.
It is difficult to evaluate the project since it is based one Argumentation Logic, that is not
yet widely known. The project is mostly exploratory. Ideally the evaluation for the project
should be written one or two years after its submission.

The overall project will therefore be evaluated on its correctness, stability and on its
contributions, as well as on whether it fulfilled the objectives it set out to complete. This
evaluation section will start its criticism by evaluating the different components, procedures
and algorithms of the project and move up to its aims and objectives in general.

13.1 Theorem Prover

13.1.1 Correctness

In terms of correctness, the theorem prover should be both sound and complete regarding
its implemented logic constructs. It uses the Carnegie Mellon Proof Tutor as a starting
point which is itself sound and complete. The deviations do not lead to unsound proofs,
and completeness should still be maintained. As with any piece of software however, there
exists a possibility of errors. No software is perfect, and hence the theorem prover may
suffer from bugs. In order to be completely sure that the software works, formal verification
methods should be employed. However, such methods take too much time and require a
great deal of effort. The theorem prover is critical to the project, however it is not its main
focus. The main focus remains the Argumentation Logic. In place of formal verification
methods, testing has been applied in order to try and eliminate as many errors as possible
and to provide a good starting point for when upgrades or other changes are made to the
current version of the prover.

In order to test the implementation plunit1 was used as the unit test framework of
choice. Thankfully, the team behind SWI-Prolog created this unit test framework that
works quite well with their Prolog implementation. Several tests were laid out both trying
to test that the theorem prover can prove goals that are provable (given the necessary
theory) and that it cannot (and should not) prove goals that can’t be reached (given again

1http://www.swi-prolog.org/pldoc/package/plunit.html

105

http://www.swi-prolog.org/pldoc/package/plunit.html


13.1. Theorem Prover Chapter 13. Evaluation

the necessary theory). For the sake of brevity, the test suites will not be included in the
report, but are available in the source code of the project.

13.1.2 Performance

The theorem prover works well in general. It does sometimes seem to get slow on com-
plicated theories and proofs that exhibit a very large search space. The purpose of the
theorem prover is to be able to provide ”all” proofs that prove a goal given a theory. How-
ever it is very difficult to exactly specify what ”all” means. Obviously there can be infinite
proofs for any goal given to the theorem prover (at the very least, the theorem prover could
take any atom from the theory and start building an infinite conjunction chain, chaining
together that very atom to produce infinite proofs). Instead, the theorem prover tries to
produce all (close to) normal proofs. This means that it tries not to take detours by impos-
ing restrictions in its ruleset (see restricted rules in subsection 2.2.4). This ensures that a
finite set of proofs can be generated for a particular goal. Still, that set could be very large,
as any (allowed) permutation in a Fitch-style natural deduction proof can be considered a
completely different proof. The rest of this subsection tries to quantify the performance of
the theorem prover.

Execution Time

Consider Figure 13.1, which shows a table with a variety of theories and goals that need
to be proven. The theorem prover was tasked to prove the goals using the accompanying
theories, and its runtime was measured using the SWI-Prolog profiler2. The runtime for
each of those executions is small, suggesting that just finding a proof of any kind is not a
big job for the theorem prover.

# Theory Goal Runtime

1 α ∧ β ∧ γ β 0.00s

2 ¬¬¬¬(α ∧ ¬¬β) β ∧ α 0.00s

3 ¬¬α, α ∧ β → γ β → γ 0.00s

4 α→ β → α→ α 0.00s

5 ¬(α ∧ ¬α) 0.00s

6 α ∧ β → ⊥,¬ → ⊥ α→ ⊥ 0.00s

7 ¬(α ∧ β),¬(¬α ∧ γ), β ∧ γ ¬δ 0.00s

8 α ∧ ¬β → ⊥, β ∧ γ → ⊥, α ∧ β ∧ ¬γ → ⊥ α→ ⊥ 0.00s

9 α ∧ δ → β, δ → α,¬(δ ∧ γ) α ∧ β → γ → ¬δ 0.02s

10 ¬(α ∧ ¬β ∧ ¬ ∧ γ),¬(α ∧ β),¬(α ∧ γ ∧ ¬δ),¬(δ ∧ ¬β) ¬α 13.47s

Figure 13.1: A list of ten theories and goals proven by the theorem prover along with their
execution time. The theorem prover need only find one proof

However, here is the same table again, but this time, the runtime measured is the
total runtime to find ”all” proofs for the given theory and goal. This table is shown in
Figure 13.2. From this and the previous table, it can be inferred that finding one proof
is fairly easy, but exhausting the entire search space is an intensive job. The same would
apply for when trying to check whether something is non-provable, as required by step 3
(checking for the Genuine Absurdity Property).

2http://www.swi-prolog.org/pldoc/man?section=profile

106

http://www.swi-prolog.org/pldoc/man?section=profile


Chapter 13. Evaluation 13.1. Theorem Prover

# Theory Goal Total Runtime

1 α ∧ β ∧ γ β 0.00s

2 ¬¬¬¬(α ∧ ¬¬β) β ∧ α 5+m

3 ¬¬α, α ∧ β → γ β → γ 4.52m

4 α→ β → α→ α 0.02s

5 ¬(α ∧ ¬α) 0.00s

6 α ∧ β → ⊥,¬ → ⊥ α→ ⊥ 0.08s

7 ¬(α ∧ β),¬(¬α ∧ γ), β ∧ γ ¬δ 5+m

8 α ∧ ¬β → ⊥, β ∧ γ → ⊥, α ∧ β ∧ ¬γ → ⊥ α→ ⊥ 5+m

9 α ∧ δ → β, δ → α,¬(δ ∧ γ) α ∧ β → γ → ¬δ 5+m

10 ¬(α ∧ ¬β ∧ ¬ ∧ γ),¬(α ∧ β),¬(α ∧ γ ∧ ¬δ),¬(δ ∧ ¬β) ¬α 5+m

Figure 13.2: A list of ten theories and goals proven by the theorem prover along with their
execution time. The theorem prover finds all proofs for each of the given theory and goal

The two figures, Figure 13.1 and Figure 13.2, imply that each proof by itself may not
be too time taxing, however many of them stacked together can impose a huge execution
time. This implies that the theorem prover needs to explore a large search space. As a
future improvement, the theorem prover can use stricter rules in order to limit the size of
the search space it needs to explore.

The theorem prover is quite complex in that every rule has a chance of calling other rules,
making very long mutually-recursive chains that are difficult to measure. It is difficult to
measure precisely how much time each rule spends working, because it is difficult to define
what it means for a particular rule to be working, since the rules will most likely call others.
As an example, imagine a proof where the ⊥IE rule called the ∧I rule and that rule took
5 minutes before it returns. Can it be said that the ∧I took 5 minutes to execute, or is this
execution time attributed to the ⊥IE who called it? What about the rules that ∧I called
in order to prove its goal? Finding which rule is to blame, if any, is not straight-forward,
especially when trying to compare their execution times, but there are some indications as
to which is the most expensive.

The following list (Figure 13.3) was taken from a random (but representative, since more
tests with similar results were observed) run of the theorem prover that run for around ten
minutes. The list shows the execution time spent for each predicate for that run. Note
that this execution time is the time spent inside the predicate, but not inside any children
(callees) of the predicate. This is partly why the execution time for the rules is low. A
huge chunk of the execution time is consumed by the predicate member_/3, an internal to
Prolog predicate called by Prolog’s member/2 predicate, as seen in Figure 13.4.

Figure 13.4 shows the profile of member/2, which is highlighted in yellow. The items
below it are the callees, predicates that member/2 called in order to carry out its task.
member_/3 is the only child of member/2, which is why its ”self” time is equal to its parent’s
”children” time. The items above member/2 are the callers, predicates that called member/2

as part of their execution. m3/3 is a predicate that calls member/2 twice, in order to check
for the presence of a particular term inside two lists. Most of the times, this is used by the
theorem prover in order to look up a term in both the current and the inherited contexts.

It is easy to see from these figures that member/2 is used heavily by the theorem prover in
since the different rules it implements really are pattern matching rules that match different
terms from the context. It makes sense then, for member/2 to take up a large amount of
execution time. However so far the offending rule has still not been revealed. Figure 13.5

107



13.1. Theorem Prover Chapter 13. Evaluation

Figure 13.3: The profiler shows that most of the execution time is attributed to context
lookups, as rules really are pattern matching rules

Figure 13.4: Most of the execution time is attributed to m3/3, a predicate that calls Prolog’s
member/2 twice to look up a term in the current and inherited context

gives a good indication of that.

Figure 13.5: Most of the lookups are called by falsityIx/4, the forward rule that tries to
find α and ¬α in the context (for any α) and thus derive a contradiction

Figure 13.5 is similar to Figure 13.4, but now m3/3 is in the spotlight. What is interesting
is the usage made by its callers. A great deal of execution time is done by the predicate
falsityIx/4. This predicate is a helper predicate for the ⊥I forward rule (see section 4.1
for the rules used by the theorem prover). This rule tries to find two pairs α and ¬α for
some α, and thus add a step ⊥ indicating contradiction. This is logical, since this rule tries
to join each bit of the context with the rest of the context, resulting in an intensive task.
This can therefore be remedied in the future, either by removing this rule (if possible, while
keeping the current level of expressiveness), or by optimizing this rule, or by integrating
this rule in the other rules. This integration will allow each added step to check whether

108



Chapter 13. Evaluation 13.1. Theorem Prover

its negation (or its subformula if it is already a negation) is already in the context, so that
not all of the steps are checked against each other each time the rule runs.

Theory and Goal Complexity

The overall execution time of the theorem prover depends on the execution time of the
different rules used, thus the overall execution time will be subject to how many times each
rule was called and what the context was when it was called. These are dictated by the
theory and goal. Thus measuring the theory and goal complexity can yield information as
to what the execution time will be, if the given theory and goal are given to the theorem
prover to work on.

An accurate description of the complexity may not be possible, since several variables
may play a role as to how complex a theory and a goal are. The following list contains
different variables that might play a role in grading a theory or goal as to their complexity:

• Language Complexity: this is the size of the language used in either the theory or the
goal. For example a theory containing only α, β, γ may not be considered as complex
as a theory containing the entire Greek alphabet.

• Structure Complexity: this is the complexity of the different parts of the theory or
the goal in terms of how deep and varied their formulas are. For example, a α ∧ β
appearing in the theory may not be considered as complex as a ¬(α∧¬(β∧ε)→ γ∨¬δ)
appearing in it. Different connectives could have a different complexity, or complexity
could vary depending on how those connectives are used to make up a formula. For
example, α ∧ β → γ could bear a different complexity than α ∧ (β → γ) because
now the principle connective is a conjunction instead of an implication, even if both
formulas have the same atoms and are of the same depth.

• Theory Length Complexity: this is the size of the theory. This measures how many
elements are in the theory. Of course, this measure can vary. It could be said that
{¬(α ∧ β),¬(γ ∧ δ),¬(α ∧ δ)} is larger than {¬(α ∧ β),¬(γ ∧ δ)} (note that the
previous two complexities are the same between these two theories) and is therefore
more complex. However what happens in the case of {α ∧ β, γ} and {α, β, γ} or
{α ∧ β ∧ γ}? Should those carry different length complexity values? Perhaps this
complexity should be counted after conjunctions are broken down to constituent parts.

• Search Space Complexity: this is the size of the search space that needs to be covered
by the theorem prover in order to construct a proof. The search space is a consequence
of the rules used by the theorem prover. For example if the theorem prover had no
rules at all, then the search space would be empty regardless of the theory and goal
since the prover can’t get anywhere.

• Permutation Complexity: this is the complexity that measures permutations of the
same theory. For example, a run with theory {¬(α∧β),¬(α∧γ),¬(α∧¬β∧¬γ)}might
prove harder than an equivalent run with theory {¬(α∧¬β∧¬γ),¬(α∧β),¬(α∧γ)}.
This can be attributed to the fact that Prolog is a procedural language, and it picks
the rules in a certain order. Certain permutations of the theory may lead to a proof
faster than others depending on what order the rules are chosen in. This complexity
bears no significance when ”all” proofs are to be generated, since the entire search
space will be covered regardless.

• member/2 Complexity: this is the number of calls to the member/2 predicate that the
theory and goal would incur, since it is the most time-consuming predicate and is

109



13.1. Theorem Prover Chapter 13. Evaluation

heavily used by the rules (as seen in Figure 13.3 and Figure 13.4). This is perhaps
the most accurate measure of the complexity of a theory and a goal, as it is directly
related to execution time.

Other complexities can be defined as well. The above list is just indicative. Care must
be taken so that during measurements of one type of complexity all other complexities
remain constant. However, even this might not be enough. The different complexities may
be inter-dependent, meaning that one change in one complexity can affect how another
complexity varies. In order to fully analyze the complexities, a six-dimensional graph must
be generated. Complexities that do not seem to affect execution time could be dropped,
and correlations between the rest of the complexities should be calculated.

This reaches beyond the scope of this project, as the main focus is Argumentation Logic
itself and not the theorem prover’s optimal performance alone.

More on Theory and Goal Complexity

For the sake of curiosity mostly, an attempt to further investigate the the relationship
between execution time and theory and goal complexity was made.

In order to investigate the effects of language complexity, the other complexities were
kept constant as much as possible throughout the experiments. In order not to change
the length complexity, the theory was kept at a constant length, hence redundancy was
introduced, the nature of which will shortly become apparent. In order not to change the
structure complexity, the same structures were used between all experiment runs. Perhaps
the least intrusive way to introduce more language into a theory is to just place the new
atoms in a conjunction. The experiment involves a conjunction of the letters of the English
alphabet as the theory, and different permutations of this conjunction as the goal for each
run. The theory was a conjunction of 26 terms. In the first run, all terms were letter a.
Next run all terms were letter a except the second which was letter b, introducing b into
the language. Third run had all 26 terms a apart from the second and third which were
b and c, introducing c into the language, and so on. The length was kept constant at 26
terms, and the structure was constant at a 26-term conjunction. Permutation complexity
for the theory was not applicable since the theory kept changing (not permutating). Search
space complexity and member/2 complexity could vary, since a larger language could allow
for the same rules to be used, but with more options to choose from. Results suggested
near-constant time, since about the same time was needed to complete each run. There was
a slight increase in execution time as the language was becoming more varied, since more
terms had to be expanded since redundancy was decreasing. However, things changed when
”all” proofs were requested to be generated. The search space exploded and the theorem
prover could not complete the work as too many proofs had to be generated. For atomic
goals, the theorem prover could finish after a couple of minutes when asked to find ”all”
proofs.

Structure complexity plays an important role in the execution time of the theorem
prover through the theory complexity, discussed next. Rules tend to act on the principal
connectives of formulas. So to the ∧E rule, α∧β and (α∧β → ¬(δ∨ε))∧(¬(ζ → η)→ ¬θ)
are exactly the same in terms of complexity. They both are conjunctions of some sub-
formulas. However, the difference is made after the rule acts upon those two formulas. In
the former case, only two sub-formulas (atoms α and β) are gathered and the formulas is
more or less of no more use. The latter case allows for more expansion, until it is broken
down to much smaller parts. This adds more formulas to the theory, hence the length
complexity discussed next increases. In other words, there’s more things to do with a more
structurally complex formula, not at first glance, but when it’s broken down.

110



Chapter 13. Evaluation 13.1. Theorem Prover

Theory length complexity seems to greatly affect the performance of the theorem prover,
as this tends to greatly affect the search space (complexity). Adding negated formulas
(¬(...)) to the theory allows the ⊥IE composite rule to be applicable, which tries each of
those negations in order to prove the goal. If there are more than one negation in the
theory, then this rule can pick any of them and in the next run pick the other, thus the
search space includes permutations of the negations in terms of the order they can be picked
up and used. The more negations co-exist in the theory, the larger the search space tends
to be. A similar effect can be created by implications in the theory. The → E rule gathers
all implications and tries to prove the first subformula in order to derive and add to the
theory the second. If negations and implications are present, then the search space includes
combinations of those in terms of the order in which they are used to look for proofs. What
adds to the search is the use of ¬I, → I and proof by contradiction rules. These rules add
their hypothesis to the context of the search, essentially providing more options (negations
and implications) for the other rules above to explore. This further increases the search
space. As an example consider theory {¬(α ∧ β),¬(α ∧ ¬β)} and goal ¬α. The theorem
prover, when asked to find all the proofs proving the goal from the theory, comes back with
four proofs and near-instantly. For a theory {¬(α ∧ β),¬(α ∧ ¬β),¬(α ∧ γ),¬(α ∧ ¬γ)}
and the same goal, the theorem prover takes some time (about a minute) to come back
with hundreds of proofs. The language was increased only slightly (introducing γ), and the
structure complexity was kept constant (since the introduced terms were also negations of
conjunctions of two atoms or one atom and a negated atom).

Permutation complexity can hinder execution time, if the order in which the different
parts of the theory is chosen to produce larger and more complicated proofs, with more
dead ends in the search space. Early versions of the theorem prover were very susceptible
to this type of complexity, but with the introduction of heuristic for the ⊥IE composite
rule, execution times for permutations of the same theory converge to the same value. The
heuristic is explained in subsection 13.1.4. As an example, consider theory {¬(α ∧ β ∧
γ),¬(α ∧ ¬β ∧ δ),¬(α ∧ ¬γ),¬(α ∧ ¬δ)} and goal ¬α. Before the optimization, execution
time for permutations of this theory ranged from instant to around one minute. After
the heuristic is implemented, any permutation executes instantly. As mentioned in the
description of the complexity, permutations do not impact execution time if all proofs are
to be found, since the entire search space will be exhausted anyway.

Search space complexity is a measure of how big the search space is. This depends
on the applicability of the rules used by the theorem prover, which in turn depends on
the theory and goal. It is difficult to define, but is related to the perhaps more accurate
member/2 complexity. This complexity counts the number of calls made to this predicate
during execution. Recall that most of the execution time is attributed to the use of this
predicate by the rules. In order to estimate execution time from the theory and goal, a
function needs to be found with a theory and goal pair as the domain and time as the
range. It may be difficult or even impossible to find such a function, as the search space
depends on the theory and goal which in turn depend on the rules and vice versa. Different
applications of different rules unlock more context, which is not known in advance unless
the rules are actually applied in some order. Therefore, it is possible that the execution
time cannot by estimated, and that it can only be found by expanding the search space
which essentially is running the theorem prover itself (in order to find the number of calls
to member/2).

111



13.1. Theorem Prover Chapter 13. Evaluation

Comparison with AProS

AProS3 is a great theorem prover with a multitude of features that makes it a great en-
vironment to work in. The project’s history goes back to 1985, and from then algorithms
and interfaces have constantly been created and improved. This is a project accomplished
by many people over many years.

The current implementation uses Java to implement the theorem prover and a flexible
graphical user interface. It sports many features, from importing and exporting proofs to
slideshows and graphs of the search space. This implementation seems to be much faster
than the implementation of this project’s theorem prover, and is closed-source. However
the theorem prover used in this project enables two features that are not present in AProS,
since the focus is different between their intended usages.

The theorem prover implemented for the exploration of Argumentation Logic allows
the ability to turn off certain rules, as required by the check for the Genuine Absurdity
Property. AProS allows to modify the order in which rules are used, but not to remove
them entirely. In addition, the theorem prover allows for ”all” proofs to be found, whereas
it seems that AProS stops when the first proof is found.

AProS is a great platform that could be modified (with the approval of its authors)
to work for the purposes of Argumentation Logic, however, working on a large existing
implementation might have consequences on how much time was left for the rest of the
project which is arguably more important. Since AProS is built in Java, at the time of this
writing, modifications could prove more time-consuming than building a Prolog application.
This is because Java tends to be more verbose (which is the cost of having a great structure
in a statically-typed language), whereas Prolog tends to be very concise.

13.1.3 Pruning

The next step could be to prune the search space and drop proofs that are not good.
However, ambiguity is faced when it comes to defining ”good” proofs. Consider the proofs
in Figure 13.6 for defining the measure ”good”:

1 α given
2 α X

1 α given

2 ¬α hypothesis
3 ⊥ ⊥I(1, 2)

4 ¬¬α ¬I(2, 3)
5 α ¬E(4)

Figure 13.6: Pruning could potentially trim proofs of potential importance regarding Ar-
gumentation Logic

One could argue that the second proof is unnecessary and could be trimmed since it is
just a detour from the first proof. However, it is sometimes these scenic routes that are the
best routes, and in Argumentation Logic it is no different. The proof on the right happens
to follow the Genuine Absurdity Property and can therefore be visualized (see chapter 7).
If it were to be pruned, the remaining results would be of little use.

It is therefore necessary to devise pruning algorithms and optimizations that do not
reduce the amount of generated proofs that follow the Genuine Absurdity Property, as they
are the most valuable proofs. Argumentation Logic-compatible pruning and optimizations
remain part of future work.

3http://www.phil.cmu.edu/projects/apros/index.php?page=overview

112

http://www.phil.cmu.edu/projects/apros/index.php?page=overview


Chapter 13. Evaluation 13.1. Theorem Prover

13.1.4 Optimization

One optimization that was implemented that does not change the number of generated
proofs is an optimization that grades all of the negated formulas in the current context
of a proof, when the theorem prover decides to use the ⊥IE rule. This rule gathers all
negated formulas and tries to prove their positive sub-formulas in an attempt to prove the
goal using a contradiction. The optimization tries to find the number of subformulas of the
positive sub-formula that have not been proven yet. Then it rates each negated formula
with a number, which is the number of to-be-proven sub-formulas. The theorem prover
then orders the negated formulas according to their rating and attempts to use the most
promising negated formula first; ie the one that has the fewest sub-formulas remaining to
be proven. This is most of the times a great heuristic that guides the search but does not
prune it in any way.

13.1.5 Change of Focus

The theorem prover is currently used to perform two tasks.

• The first task is to generate ”all” proofs that reach the given goal from the given
theory. This places some restrictions on pruning and maybe optimization, since
proofs of potential value (in terms of Argumentation Logic) should not be clipped
from the search space. This is used by the client to provide a way to make proofs (in
addition to the proof builder). This is also used by the proof extractor algorithm.

• The second task is to prove that something cannot be proven, by exhausting the
search space and not finding a proof for the given goal and theory. This is currently
used by the Genuine Absurdity Property check that involves checking whether a
contradiction can be proven without the current hypothesis for each application of
the ¬I rule.

Experience from using the tool, during its construction and after, has shown that the
theorem prover was rarely necessary for creating a proof. Most of the times, this was the
job of the proof builder. Perhaps it is better to shift the focus of the jack-of-all-trades
theorem prover to use aggressive pruning and optimization in order to better serve the
second task and the proof extraction usage. The ”finding all proofs” task may prove to be
less popular and perhaps should be dropped in order to speed up the theorem prover. More
extensive usage of the application will indicate what the theorem prover should really aim
to do.

13.1.6 Summary

The theorem prover strives to be sound and complete over the logic constructs it currently
supports. However as with any implementation, bugs may interfere. Formal verification
was deemed too taxing in terms of time, so plenty of unit tests were used instead to
limit the possibility of errors. The theorem prover works, though sometimes it is slow
when the search space becomes too complex. This is because the implementation does
not prune any proofs because they may be valuable from an Argumentation Logic point of
view. Argumentation Logic-compliant pruning (and other performance enhancements) are
among the future improvements. Perhaps it might be better to make use of pruning and
optimization in order to make a theorem prover specialized in disproving goals, a procedure
required by the Genuine Absurdity Property check, and drop support for providing ”all”
proofs as this was not a frequently used function.

113



13.2. Other Algorithms and Procedures Chapter 13. Evaluation

13.2 Other Algorithms and Procedures

Other algorithms and procedures include the (extended) Genuine Absurdity Property
checker, the proof visualization algorithm, the proof extraction algorithm and the proof
and argument builders.

Unit testing was once again employed for the Genuine Absurdity Property checkers.
This is a very important procedure, so great care was taken in order for this check to be
correct. Both the original definition and the extended share a great deal of similarities,
and that is reflected in the conciseness and code reuse of different parts of the code.

Manual tests were plenty and thorough for all of the above procedures and algorithms.
Performance was very dependent on the theorem prover. Most of the runtime of the code
was spent inside the theorem prover than any of the above procedures. The runtime of
these procedures was found to be negligible, suggesting very optimal solutions. In order to
measure the time spent on the theorem prover and the time spent on the other predicates,
SWI-Prolog’s profiler4 was used.

Consider as a (representative) example the proof in Figure 13.7. The profiler was used
to measure the time spent on different predicates working to determine whether the proof
follows the Genuine Absurdity Property or not.

1 ¬(α ∧ ¬β ∧ ¬γ) given
2 ¬(α ∧ β) given
3 ¬(α ∧ γ ∧ ¬δ) given
4 ¬(δ ∧ ¬β) given

5 α hypothesis

6 β hypothesis
7 α ∧ β ∧I(5, 6)
8 ⊥ ⊥I(2, 7)

9 ¬β ¬I(6, 8)

10 γ hypothesis

11 δ hypothesis
12 δ ∧ ¬β ∧I(11, 9)
13 ⊥ ⊥I(4, 12)

14 ¬δ ¬I(11, 13)
15 α ∧ γ ∧I(5, 10)
16 α ∧ γ ∧ ¬δ ∧I(15, 14)
17 ⊥ ⊥I(3, 16)

18 ¬γ ¬I(10, 17)
19 α ∧ ¬β ∧I(5, 9)
20 α ∧ ¬β ∧ ¬γ ∧I(19, 18)
21 ⊥ ⊥I(1, 20)

22 ¬α ¬I(5, 21)

Figure 13.7: One of the proofs used to profile execution time of different algorithms versus
the theorem prover

Listing 6.1 shows the code for the predicate checkGAPX/1, and Figure 13.8 shows the
analysis done on this predicate. The code listing shows all the predicates used for checking

4http://www.swi-prolog.org/pldoc/man?section=profile

114

http://www.swi-prolog.org/pldoc/man?section=profile


Chapter 13. Evaluation 13.3. Server

for the Genuine Absurdity Property. The yellow line in the figure represents the ”current
predicate”, which is checkGAPX/1. The lines below that represent the callees. Those are the
predicates called by the current predicate. It can be seen that the time spent by any of the
Genuine Absurdity Property-specific predicates is negligible (0.0%) apart from checkGAP/7,
which accounts for most of the total runtime. Focus should now converge to this predicate.

Listing 5.5 shows the code for the predicate checkGAP/7, which makes use of other
Genuine Absurdity Property predicates but also the theorem prover. Line 4 of the code
listing in particular, makes use of the prover inside a call of the predicate not/1. Figure 13.9
shows the profiling on checkGAP/7. All of the processing time is attributed to the theorem
prover. This predicate, and checkGAPX/1, along with their children have negligible runtime.
This is not only compared to the theorem prover, but in terms of absolute time as well as
shown by Figure 13.10.

Figure 13.8: Most of checkGAPX/1’s execution time comes from the predicate checkGAP/7

Figure 13.9: Most of checkGAP/7’s execution time comes from the theorem proverwrapped
inside a call to not/1

The proof builder (step 1+), and visualizer (step 4) do not make use of the theorem
prover, but the proof extractor (step 4+) and argument builder (step 4++) do use the
prover. Runtimes were found to be similar in that algorithm-specific predicates had negli-
gible impact on runtime, and the theorem prover was dominating execution time.

The opportunity to optimize the extended version of the Genuine Absurdity Property
checker was taken and the result is that siblings do not need to be rechecked whenever
referenced. More details about this optimization can be found in section 6.5.

13.3 Server

The server is a very stable and simple unit of code. It was indirectly tested extensively
when testing the client (since the server was always running behind the scenes to support

115



13.4. Client and User Interface Chapter 13. Evaluation

Figure 13.10: The runtime of the Genuine Absurdity Property is negligible not only when
compared to that of the theorem prover, but in absolute execution time as well

it). As discussed in section 9.2, it requires virtually no maintenance and a very limited
amount of requirements to run.

13.4 Client and User Interface

The client strikes a balance between bells and whistles and minimalistic and intuitive
interface. It is easy to use and is quite stable. No unit testing was employed in favor
of manual testing, since automated GUI testing is non-trivial and quite time-consuming.
In the worst case simply hitting F5 (usual shortcut for a page refresh) on the keyboard
solves all problems. It has a variety of features that enhance the client’s usability, listed in
section 10.1.

13.5 Overall Software Engineering Evaluation

Despite the fact that software engineering was not the main focus of the project, great
effort was made to keep the different logical modules separate, independent and extensible.
The overall architecture of the project is simple and explained in chapter 3. The core
can be used standalone, however the client provides a good wrap-around that simplifies the
overall procedure of using the functionality offered by the system. Deployment is made easy
because of the client-server infrastructure. Stability is not an issue, as there is a seamless
interaction between the client and the server (and core). The only noticeable problem is
that sometimes the server is slow to reply to the client after a request was made because
the theorem prover takes longer than usual to run.

13.6 Project Aims, Objectives and Contributions

One of the main objectives of the project was to explore Argumentation Logic. Argumen-
tation Logic is a relatively new concept.

Contributions to this concept include the extension of the Genuine Absurdity Property
to work with natural deduction proofs that make use of the substitution shortcut that
allows sub-derivations to refer to sibling derivations instead of re-proving what they have
already proven. The extension explains how an optimization can be achieved by not re-
checking sibling sub-derivations for the Genuine Absurdity Property as it does not change
with respect to the content they are imported to.

Another contribution was the invention of the visualization algorithm. This algorithm
or procedure, provides an exact definition as to how a proof bearing the Genuine Absurdity

116



Chapter 13. Evaluation 13.6. Project Aims, Objectives and Contributions

Property can be converted into an argument. This algorithm is also consistent with the
extension of the property. This algorithm creates a mapping between attacks and defenses
with respect to arguments, and contradictions and hypotheses with respect to proofs.

Along the contributions made by the project is a constructive algorithm that can turn
an argument back into a proof, and this relies on the visualization algorithm definition,
namely on the mapping it defines.

The final contribution of this project is the creation of a software tool that implements
the aforementioned concepts and algorithms in order to provide a playground in which
learners of Argumentation Logic can practice.

The software tool also provides a proof builder and an argument builder (for Argumen-
tation Logic), and so at a lesser degree, it can be used to learn about propositional logic
and maybe argumentation.

Unfortunately, there was not enough time to explore the more challenging concepts of
Argumentation Logic, namely its effort to work well in a paraconsistent environment. This
topic however is still somewhat under construction, and is therefore volatile and subject to
change. Among the future work is to explore this part of Argumentation Logic.

117



Chapter 14

Conclusions and Future Work

Argumentation Logic is still new, but many lessons were learned by undertaking this project
and studying the concept of Argumentation Logic. Among what has been learned is how
this new type of logic bridges the gap between traditional propositional logic and argumen-
tation theory, and establishes a connection and an analogy between the two.

Argumentation Logic shows how proofs can be seen as exchanges of relevant arguments,
by establishing a check that enforces relevance (that is, the Genuine Absurdity Property,
step 3). Subsequently, finding a way to visualize proofs by defining a mapping that allows
to convert a natural deduction proof to an argument (step 4) and vice versa (step 4+) was
another interesting lesson, something now available for further study as a result of this
project.

Argumentation Logic can be extended further to function with more flexible versions of
natural deduction that can include substitution and potentially many more shortcuts and
derived rules or connectives (step 3+).

Finally, it can be inferred that an implementation of a particular concept is a great
way to help in discovering ideas and probing the concept at hand, leading to more im-
provements and extensions and a much better understanding of what it involves. In fact,
many of the implemented procedures (such as the extended Genuine Absurdity Property,
the visualization of proofs and the extraction of proofs from arguments) were in a sense
byproducts of probing Argumentation Logic during the journey of building this tool. The
journey (findings) could arguably be considered more important than the destination (final
product).

Future work for the theorem prover includes Argumentation Logic-compliant pruning
as well as other performance enhancements that will allow the theorem prover to run faster.
Profiling the runtime of the theorem prover has identified where most of the execution time
is spent and can allow the optimization to focus on the slow-running parts of the code.

Improvements include the ability to create arguments that distinguish between child
derivations and sibling derivations for the visualization algorithm if that is found to be
more preferable. In that way, generated arguments will contain the information that certain
parts of the attacks and their defenses came from references to siblings instead of children.
More information about this can be found in section 7.3. Identifying repeating arguments
and creating shorter proofs that reuse one instance of such arguments is a potential upgrade
to the current proof extraction algorithm as discussed in section 8.3.

With regards to the client, improvements could include database support for storing
proofs and arguments. This would impose a burden on the server however, since user
identification and a database setup and connection would be necessary.

Most of the future work however should be pointed towards understanding the paracon-

118



Chapter 14. Conclusions and Future Work

sistency realm of Argumentation Logic and perhaps upgrade the core and client to provide
a playground for playing with paraconsistency. Many of the algorithms and extensions
were the result of trying to use Argumentation Logic in order to build a concrete software
tool around it. In the same way, by trying to implement the parts of Argumentation Logic
that deal with paraconsistency, many doubts, observations, ideas and opportunities for
improving Argumentation Logic will surface.

119



List of Figures

1.1 One of the generated proofs of the theorem prover with theory T = {¬(a ∧
¬b ∧ ¬c),¬(a ∧ b),¬(a ∧ c ∧ ¬d),¬(d ∧ ¬b)} and goal ¬a. ”!” represents
negation and ”&” represents conjunction . . . . . . . . . . . . . . . . . . . . 10

1.2 The proof in Figure 1.1, now awarded the Genuine Absurdity Property rib-
bon to indicate that it follows the property. ”!” represents negation and ”&”
represents conjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 The proof in Figure 1.2, now now vizualised as an argument. Green nodes
represent defenses by the proponent, and red nodes represent attacks by the
opponent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 The proof builder initialized to build a proof with theory T = {¬(a∧b),¬(a∧
c),¬(a ∧ ¬b ∧ ¬c)} and goal ¬a. . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 The argument builder initialized with a complete argument about a, using
theory ¬(a ∧ b ∧ c),¬(a ∧ ¬b),¬(a ∧ ¬c). . . . . . . . . . . . . . . . . . . . . 13

2.1 Visualization of abstract argumentation example in subsection 2.1.6 . . . . 18

2.2 Visualization of the proof of example in section 2.3.4 . . . . . . . . . . . . . 25

2.3 Proofs showing the use of a shortcut in natural deduction. The proof on
the right derives ¬β again whereas the proof on the left simply reuses the
previous derivation of ¬β . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Proofs showing the implicit use of copying of ancestor hypotheses: the proof
in the middle makes no reference to the ancestor hypothesis α whereas the
other two implicitly copy it . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 The high-level system architecture for the chosen solution . . . . . . . . . . 33

3.2 The high-level functional map for the core. White parallelograms represent
data, purple boxes represent core predicates and blue boxes represent client
functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 The Prolog constructs accepted and used by the theorem prover . . . . . . 40

4.2 The Prolog constructs accepted and used by the theorem prover . . . . . . 42

4.3 A natural deduction proof and the corresponding output from the theorem
prover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Proofs showing that imposing an ordering on the sibling derivations makes
the extension definition results dependent on that ordering . . . . . . . . . 54

6.2 Comparisson of different candidate definitions for extending the Genuine
Absurdity Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Referencing of an ancestor’s sibling (uncle) derivation . . . . . . . . . . . . 56

7.1 Example proof for the visualization algorithm . . . . . . . . . . . . . . . . . 61

120



List of Figures

7.2 Visualization of the proof of example in Figure 7.1 . . . . . . . . . . . . . . 62

7.3 Example another proof that results in a framework like in Figure 7.2. This
proof is redundant but correct under the rules of natural deduction never-
theless. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4 Visualization example of 2-level boxes . . . . . . . . . . . . . . . . . . . . . 67

7.5 Visualization example of empty set attack . . . . . . . . . . . . . . . . . . . 68

7.6 Visualization example of ignored successful defense . . . . . . . . . . . . . . 68

7.7 Visualization example of 3-level boxes . . . . . . . . . . . . . . . . . . . . . 69

7.8 Visualization example of theory attack . . . . . . . . . . . . . . . . . . . . . 69

7.9 Visualization example of 4-level boxes . . . . . . . . . . . . . . . . . . . . . 70

8.1 Proof extraction example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.2 Proof extraction example of two proofs generated from the same argument . 73

10.1 The client GUI showing the workbench on the right, the clipboard on the
left and the options on the top right corner . . . . . . . . . . . . . . . . . . 86

10.2 Three thumbnails, from left to right: a proof, a verified Genuine Absurdity
Property proof, and an argument . . . . . . . . . . . . . . . . . . . . . . . . 87

10.3 A notification pops up when the user clicks on the ”Clear Clipboard” button
that asks for confirmation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10.4 Incorrect input is highlighted so that the user can revise it . . . . . . . . . . 89

10.5 The theorem prover generates all the proofs that arrive to the given goal
using the supplied theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10.6 The user can drop an unverified proof onto the placeholder and select be-
tween the original and extended definitions for the Genuine Absurdity Property 90

10.7 If the proof follows the Genuine Absurdity Property it is indicated using a
ribbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10.8 The Visualize GAP tab with a given verified proof and its corresponding
argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10.9 The Extract GAP Proof tab with a given argument and its corresponding
verified proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10.10A pop-up shows when the user clicks the ”Import to Clipboard” button on
the options dropdown menu . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10.11The logical symbols used by the client application . . . . . . . . . . . . . . 94

11.1 The proof builder already fills in the theory as steps for the proof that the
user is about to build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

11.2 The proof builder indicates an error when the user input is incorrect . . . . 98

11.3 Supported natural deduction rules for the proof builder. A # represents a
line number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

12.1 The argument builder draws the initial argument and enables the attack
input field awaiting for the user’s command . . . . . . . . . . . . . . . . . . 101

12.2 The argument builder draws the initial argument and enables the attack
input field awaiting for the user’s command . . . . . . . . . . . . . . . . . . 102

12.3 The user is about to attack the computer’s argument; a red link shows the
node the attack will be against if the user drops the attack node . . . . . . 103

12.4 The user gives a terminal attack on the left branch, leaving only the right
branch open; after a terminal attack on the right branch, the argument is
complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

121



List of Figures

13.1 A list of ten theories and goals proven by the theorem prover along with
their execution time. The theorem prover need only find one proof . . . . . 106

13.2 A list of ten theories and goals proven by the theorem prover along with
their execution time. The theorem prover finds all proofs for each of the
given theory and goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

13.3 The profiler shows that most of the execution time is attributed to context
lookups, as rules really are pattern matching rules . . . . . . . . . . . . . . 108

13.4 Most of the execution time is attributed to m3/3, a predicate that calls Pro-
log’s member/2 twice to look up a term in the current and inherited context 108

13.5 Most of the lookups are called by falsityIx/4, the forward rule that tries to
find α and ¬α in the context (for any α) and thus derive a contradiction . . 108

13.6 Pruning could potentially trim proofs of potential importance regarding Ar-
gumentation Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

13.7 One of the proofs used to profile execution time of different algorithms versus
the theorem prover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

13.8 Most of checkGAPX/1’s execution time comes from the predicate checkGAP/7 115
13.9 Most of checkGAP/7’s execution time comes from the theorem proverwrapped

inside a call to not/1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
13.10The runtime of the Genuine Absurdity Property is negligible not only when

compared to that of the theorem prover, but in absolute execution time as
well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

122



Listings

5.1 Genuine Absurdity Property top level predicate . . . . . . . . . . . . . . . . 45
5.2 Checking whether a proof is a RAND proof . . . . . . . . . . . . . . . . . . 45
5.3 Checking whether a proof uses only conjunction and negation . . . . . . . . 46
5.4 Checking whether a proof uses any shortcuts . . . . . . . . . . . . . . . . . 47
5.5 Checking whether a proof follows the Genuine Absurdity Property . . . . . 47
5.6 Gathering of referenced ancestor derivations for the original Genuine Absur-

dity Property definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1 Checking whether a proof is follows the extended Genuine Absurdity Property 58
6.2 Gathering of referenced sibling derivations for the extended Genuine Absur-

dity Property definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.1 First part of the proof visualization algorithm . . . . . . . . . . . . . . . . . 63
7.2 Second part of the proof visualization algorithm . . . . . . . . . . . . . . . . 65
7.3 Third part of the proof visualization algorithm . . . . . . . . . . . . . . . . 65
8.1 First part of the proof extraction algorithm . . . . . . . . . . . . . . . . . . 75
8.2 Second part of the proof extraction algorithm . . . . . . . . . . . . . . . . . 76
8.3 Third part of the proof extraction algorithm . . . . . . . . . . . . . . . . . . 77
9.1 The Prolog code that configures and runs the server . . . . . . . . . . . . . 80
9.2 The server configuration file written in Prolog . . . . . . . . . . . . . . . . . 81
9.3 The server code file that registers handlers that server client queries . . . . 81

123



Bibliography

Terence Anderson, David Schum, and William Twining. Analysis of Evidence. Cambridge
University Press, Cambridge, 2005.

David Barker-Plummer, Jon Barwise, and John Etchemendy. Language, Proof, and Logic.
University of Chicago Press, Chicago, 2011.

Trevor Bench-Capon. Value-based argumentation frameworks. In 9th International Work-
shop on Non-Monotonic Reasoning (NMR 2002), Toulouse, France, April 2002.

Phillipe Besnard and Anthony Hunter. A logic-based theory of deductive arguments. Ar-
tificial Intelligence, 128:203–235, 2001.

Phan Minh Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77:
321–357, September 1995.

Melvin Chris Fitting. First Order Logic and Automated Theorem Proving. Springer, Novem-
ber 1995.

Joseph B. Kadane and David A. Schum. A Probabilistic Analysis of the Sacco and Vanzetti
Evidence. Wiley, New York, 1996.

Antonis Kakas, Francesca Toni, and Paolo Mancarella. Argumentation logic. Technical
report, University of Cyprus, Imperial College London, Universita di Pisa, Nicosia, April
2012.

Eric C. W. Krabbe. Reason Reclaimed. Vale Press, Virginia, 2007.

Sanjay Modril and Martin Caminada. Proof theories and algorithms for abstract argumen-
tation frameworks. Technical report, King’s College London, 2008.

Wilfried Sieg and Richard Scheines. Searching for proofs (in sentential logic). Philosophy
and the Computer, pages 137–159, March 1992.

Guillermo Simari and Iyad Rahwan. Argumentation in Artificial Intelligence. Springer,
London, 2009.

Francesca Toni. A tutorial on assumption-based argumentation. Argument & Computation,
pages 89–117, 2013.

Steven Toulmin. The Uses of Argument (Updated Edition). Cambridge University Press,
Cambridge, 2003.

124


	Contents
	Introduction
	Contributions
	Structure of Remainder of Report

	Background
	Argumentation Theory
	What is Argumentation Theory
	Attacking Arguments
	Types of Arguments
	Argumentation Example
	Relevance
	Abstract Argumentation Framework
	Visualization of Abstract Argumentation Framework

	Natural Deduction
	Rules for Propositional Logic
	Example of Natural Deduction Proof
	Automated Theorem Proving and Proof Search
	Example of a Proof Search Implementation

	Argumentation Logic
	Introduction
	Argumentation Logic Framework
	Acceptability Semantics
	Reductio ad Absurdum, Genuine Absurdity Property and Acceptability Semantics
	Disjunction and Implication Connectives
	Paraconsistency

	Existing Visual Argumentation Tools

	Solution Overview
	Exploring Argumentation Logic
	Step 1: Basic Natural Deduction Proof System
	Step 2: Improving the Proof System
	Step 3: Genuine Absurdity Property
	Step 4: Argumentation Logic Visualization
	Step 5: Converting Natural Deduction Proofs to Argumentation Logic Proofs
	Step 6: Re-Introduction of Disjunction and Implication Connectives
	Step 7: Paraconsistency
	Step 1+: Proof Builder
	Step 3+: Extending the Genuine Absurdity Property
	Step 4+: Extracting proofs from arguments
	Step 4++: Argument Builder

	Solution Architecture
	Core
	Server
	Client

	Justification of Solution Architecture
	Advantages of Chosen Architecture
	Disadvantages of Chosen Architecture

	Functional Overview

	Theorem Proving System
	Ruleset Used
	Propositional Logic Format
	High-Level Description of Implementation
	Output Format
	Remarks

	Checking for Genuine Absurdity Property
	Short Description of Algorithm
	Details of Implementation
	Checking for RAND Proof
	Checking for Restricted Formulas
	Ensuring the Lack of Substitution
	Checking for Genuine Absurdity Property

	Example Walkthrough
	Remarks and Limitations

	Extending the Genuine Absurdity Property
	Arriving at the Definition
	Definition of Extension
	Correctness of Extension
	Case 1: Not Referencing Sibling Derivations
	Case 2: Referencing Sibling Derivations
	Effects of More Specific Context of Implicitly Copied Siblings
	Assumption of Proof Sketch

	Details of Implementation
	Remarks

	Visualization of Genuine Absurdity Property Proofs
	Assumptions Made by Algorithm
	Description of Algorithm
	Observations and Remarks
	Details of Implementation
	Example Walkthough
	Visualization Examples

	Extracting Proofs from Arguments
	Assumptions Made by Algorithm
	Description of the Algorithm
	Observations, Remarks and Future Work
	Details of Implementation
	Example Walkthrough

	Server Module
	Implementation Details
	Remarks
	Alternatives

	Client Module
	Features
	Usage
	Clipboard
	Workbench
	Options
	Logic Syntax and Natural Deduction in Client Module

	Alternatives

	Proof Builder
	Motivation for Client Side Implementation
	Features
	Usage

	Argument Builder
	Features
	Usage
	Generating Arguments Automatically

	Evaluation
	Theorem Prover
	Correctness
	Performance
	Pruning
	Optimization
	Change of Focus
	Summary

	Other Algorithms and Procedures
	Server
	Client and User Interface
	Overall Software Engineering Evaluation
	Project Aims, Objectives and Contributions

	Conclusions and Future Work
	List of Figures
	Listings
	Bibliography

