
Imperial College London

Department of Computing

MSc in Advanced Computing

Robust Low-Rank Modelling on
Matrices and Tensors

by

Georgios Papamakarios

Submitted in partial fulfilment of the requirements for the MSc Degree in
Advanced Computing of Imperial College London

September 2014

Abstract

Robust low-rank modelling has recently emerged as a family of powerful methods for recover-
ing the low-dimensional structure of grossly corrupted data, and has become successful in a wide
range of applications in signal processing and computer vision. In principle, robust low-rank
modelling focuses on decomposing a given data matrix into a low-rank and a sparse component,
by minimising the rank of the former and maximising the sparsity of the latter. In several prac-
tical cases, however, tensors can be a more suitable representation than matrices for higher-order
data. Nevertheless, existing work on robust low-rank modelling has mostly focused on matrices
and has largely neglected tensors.

In this thesis we aim to bridge the gap between matrix and tensor methods for robust low-
rank modelling. We conduct a thorough survey on matrix methods, in which we discuss and
analyse the state-of-the-art algorithms. We take one step further and we present—for the first
time in the literature—a set of novel algorithms for robust low-rank modelling on tensors. We
show how both matrix and tensor methods can be extended to deal with missing values and
we discuss non-convex generalisations thereof. Finally, we demonstrate the applicability of all
methods, both those already existing and those proposed herein, to a range of computer vision
problems of practical interest.

Acknowledgements

Dr Stefanos Zafeiriou has been excellent not only as a lecturer but also as a supervisor.
Dr Yannis Panagakis has been an invaluable source of help and encouragement in all aspects of
this project. Working with them has been nothing less than a great pleasure.

Christos Sagonas did the important job of preparing the Multi-PIE dataset—used in the
image reconstruction experiment—to be nicely cropped and aligned. Mihaela Rosca has been
kind enough to read parts of the report along its preparation and provide helpful suggestions.

Finally, the Lilian Voudouri foundation has supported my studies this year through its post-
graduate scholarships programme.

Contents

1 Introduction 6
1.1 Overview of Robust Low-Rank Modelling . 6

1.1.1 The Information Recovery Problem . 6
1.1.2 The Low-Rank and Sparse Assumption 7
1.1.3 The Formulation as Optimisation Problem 7
1.1.4 The Extension to Tensors . 8

1.2 Summary of Contributions . 8
1.3 Applications of Robust Low-Rank Modelling . 9

1.3.1 Denoising and Reconstruction . 9
1.3.2 Missing Data Completion . 9
1.3.3 Face Recognition . 10
1.3.4 Background Subtraction and Foreground Segmentation 10
1.3.5 Rectification and Alignment . 10
1.3.6 Other Applications . 12

2 Mathematical Preliminaries 13
2.1 Matrix Norms . 13
2.2 Multilinear Algebra Basics . 16

2.2.1 Tensor Basics . 16
2.2.2 Tensor Decompositions . 19
2.2.3 Tensor Rank . 21

2.3 Optimisation Methods . 24
2.3.1 Proximal Operators . 24
2.3.2 Accelerated Proximal Gradient . 25
2.3.3 Method of Augmented Lagrange Multipliers 28

3 Robust Low-Rank Modelling on Matrices 30
3.1 Robust Principal Component Analysis . 30

3.1.1 Solution Based on Accelerated Proximal Gradient 31
3.1.2 Solution Based on Augmented Lagrange Multipliers 32

3.2 Bilinear Robust Principal Component Analysis 33
3.3 Inductive Robust Principal Component Analysis 35

3.3.1 Solution Based on Substitution . 35
3.3.2 Solution Based on Linearisation . 36
3.3.3 Connection to Low-Rank Representation 38

3.4 Orthonormal Robust Principal Component Analysis 39
3.5 Robust Orthonormal Subspace Learning . 41
3.6 Complexity Analysis and Discussion . 43

3.6.1 Regularisation-Based and Factorisation-Based Methods 43
3.6.2 Asymptotic Computational Complexity 44

Contents 5

4 Robust Low-Rank Modelling on Tensors 46
4.1 Robust Principal Component Analysis . 47
4.2 Bilinear Robust Principal Component Analysis 49
4.3 Inductive Robust Principal Component Analysis 51

4.3.1 Solution Based on Substitution . 52
4.3.2 Solution Based on Linearisation . 54

4.4 Robust Higher Order Singular Value Decomposition 55
4.5 Robust CANDECOMP/PARAFAC Decomposition 59

4.5.1 Solution Based on Substitution . 60
4.5.2 Solution Based on Linearisation . 61

4.6 Complexity Analysis and Discussion . 63
4.6.1 Regularisation-Based and Factorisation-Based Methods 63
4.6.2 Comparison with the Matrix Case . 64
4.6.3 Asymptotic Computational Complexity 65

5 Extensions to Missing Values and Generalised Norms 67
5.1 Matrix and Tensor Completion with Missing Values 67
5.2 Generalisation to Schatten p-norms and Elementwise `q-norms 70
5.3 Bringing Everything Together: Summary of Methods 73

6 Implementation Details 75
6.1 Convergence Criteria . 75
6.2 Tuning Algorithmic Parameters . 77
6.3 Software Toolbox Implementation . 77

7 Experimental Evaluation 79
7.1 Low-Rank Recovery with Synthetic Data . 79

7.1.1 Matrix Methods . 79
7.1.2 Tensor Methods . 82

7.2 Denoising of Face Images . 85
7.3 Background Subtraction . 91
7.4 Reconstruction of Whole Missing Images . 96
7.5 Overall Evaluation of Algorithms . 103

8 Conclusions and Future Work 105
8.1 Conclusions . 105
8.2 Future Work . 106

8.2.1 Theoretical Guarantees of Convergence and Optimality 106
8.2.2 Non-Negative Factorisations . 106
8.2.3 Other Tensor Decompositions and Low-Rank Models 106
8.2.4 Probabilistic Reformulation . 107
8.2.5 Novel Optimisation Techniques . 107
8.2.6 Real-Time Applications . 107

A Notations and Symbols 108

B List of Abbreviations 110

Bibliography 111

Index 117

Chapter 1

Introduction

Real-life data are rarely, if ever, pure. They are often corrupted by noise or incomplete. In con-
trast, high data quality is essential for several practical applications. To bridge the gap between
reality and need, it is necessary to be able to recover the pure and uncorrupted information
which remains hidden within the available, possibly corrupted or incomplete, data.

Recovering information from noisy data is a problem simple to describe, yet fundamentally
difficult to solve. In recent years, a family of powerful approaches has emerged, collectively
referred to as robust low-rank modelling. These approaches are based on the observation that, in
several real-life cases, uncorrupted information is of low rank whereas noise is sparse. This simple
but powerful idea has allowed robust low-rank modelling to become the state of the art in several
signal processing and data mining applications, such as denoising, reconstruction, completion,
and many more.

Robust low-rank modelling typically treats data in the form of matrices. Matrices however
are inadequate in representing the higher-order structure of data. This can be achieved by
employing tensors, the higher-order generalisation of matrices. Nevertheless, robust low-rank
modelling with tensors is still not well studied.

In this thesis, we provide a thorough survey of robust low-rank modelling for matrices and we
review the state-of-the-art algorithms. Most importantly, we show how the matrix methods can
be extended to tensors, introducing, for the first time in the literature, several new algorithms for
robust low-rank modelling with tensors. Finally, we demonstrate how robust low-rank modelling,
both with matrices and tensors, can be successfully applied to real-life problems, with an emphasis
on image analysis and computer vision applications.

1.1 Overview of Robust Low-Rank Modelling

1.1.1 The Information Recovery Problem

Let x1,x2, . . . ,xn be a set of n vectors in Rm. In practice they can represent any measurement or
observation, such as images, videos, waveforms and so on. We assume that each vector xi ∈ Rm
was generated by corrupting ai ∈ Rm with noise ei ∈ Rm, which we express as follows

xi = ai + ei (1.1)

for i ∈ {1, 2, . . . , n}. For our purposes, it is more convenient to write the above in matrix form.
Let X =

[
x1 x2 · · · xn

]
, A =

[
a1 a2 · · · an

]
and E =

[
e1 e2 · · · en

]
be matrices

in Rm×n that contain vectors xi, ai and ei as columns respectively. Then we can equivalently
write equation (1.1) as follows

X = A + E (1.2)

1.1. Overview of Robust Low-Rank Modelling 7

The information recovery problem asks the following; given a data matrix X, can we recover the
uncorrupted data A and the noise E? It immediately becomes apparent that the problem is
ill-posed, as by knowing only mn values we require to compute 2mn values.

1.1.2 The Low-Rank and Sparse Assumption

In order to overcome the ill-posedness of the naively-stated information recovery problem, we
need to impose certain conditions on the form of A and E. Such conditions shall come from our
prior knowledge of their nature. The central idea of robust low-rank modelling is to model A as
low-rank and E as sparse.

The low-rank assumption for A comes from the fact that, in many real-life cases, uncorrupted
data (which A represents) appear to be similar or correlated to a certain degree. For instance,
an image of the same person’s face, taken under various illumination conditions, is expected to
have much fewer degrees of freedom than a general image with m pixels does. Robust low-rank
modelling expresses this form of prior knowledge by requiring that all ai ∈ Rm live in a low-
dimensional subspace. This is equivalent to requiring that the rank of A, which is equal to the
dimensionality of the subspace spanned by vectors ai, be small.

As for E, a traditional approach would be to assume that it is small and Gaussian distributed.
This assumption in fact leads to one of the most popular and widely used methods, the well-
known Principal Component Analysis [39, 43, 71]. Introduced as early as 1901, PCA can be
considered as one of the earliest approaches towards low-rank modelling. Nevertheless, PCA is
very sensitive to noise that invalidates the Gaussian assumption; and in practice such noise can
be rather common, as real-life datasets are often contaminated by gross errors and outliers.

In order to make low-rank modelling robust to a wide range of corruptions (such as cases
(c),(d) and (e) in Fig. 1.1), we need a better and more general description for noise than naively
assuming it is Gaussian. To achieve such a description, we shall note that gross errors do not
occur too often, that is, they typically corrupt a small portion of the data. This can be expressed
by requiring that the noise term E consist mostly of zeros or, equivalently, requiring that E be
sparse.

1.1.3 The Formulation as Optimisation Problem

So far, it should have become obvious that robust low-rank modelling is all about decomposing
a given data matrix X ∈ Rm×n into a low-rank component A ∈ Rm×n and a sparse component
E ∈ Rm×n. In fact, robust low-rank modelling seeks, among all possible decompositions, the
component A with the lowest rank and the sparsest E. Using rank (A) to represent the rank of
A and the so-called `0-norm ‖E‖0 to represent the number of non-zero entries of E, the above
can be simply expressed by the following optimisation problem

min
A,E

rank (A) + λ ‖E‖0 s.t. X = A + E (1.3)

where λ is a positive regularisation parameter balancing the two terms in problem (1.3).

Essentially, robust low-rank modelling reduces to solving problem (1.3). Nevertheless, due to
the discrete nature of the rank and the `0-norm, this problem is NP-hard and therefore intractable.
Luckily though, the last few years have witnessed the development of a multitude of powerful
methods capable of circumventing the intractability of problem (1.3). Most of such methods
are based on replacing problem (1.3) with an approximately equivalent tractable problem using
convex relaxation and/or matrix factorisation. In chapter 3 we will review the most important of
those methods and describe in full detail the state-of-the-art algorithms that accompany them.

8 Chapter 1. Introduction

1.1.4 The Extension to Tensors

Several forms of data have some kind of spatial, temporal or other higher-order structure. For
instance, images have a 2-dimensional spatial structure and videos have a 3-dimensional spatial
and temporal structure. By representing such forms of data by vectors, their inherent structure
is ultimately destroyed.

Tensors on the other hand are capable of preserving such structure. A tensor can be thought
of as a multidimensional array. In this sense, vectors and matrices are simply tensors with one
and two dimensions respectively. As an example, a two-dimensional tensor may represent an
image and a three-dimensional tensor may represent a video. In section 2.2 we will describe
tensors and their mathematical properties in detail.

Tensors have been successfully used in the past in the analysis of structured data, typically
by extending some relevant concept from linear algebra. Notable examples include TensorFaces
[82], which is the tensor extension of the well-known concept of EigenFaces [77], and Multilinear
Principal Component Analysis [58], which is the tensor extension of classical Principal Component
Analysis [39, 43, 71].

Using robust low-rank modelling in combination with tensors is an ongoing research challenge
and a development of both theoretical and practical significance. In principle, it consists in
decomposing a given data tensor X into a low-rank tensor A and a sparse tensor E by solving
a problem of the following kind

min
A,E

rank (A) + λ ‖E‖0 s.t. X = A+ E (1.4)

There are several non-trivial challenges that need to be addressed for this to be made possible.
Tractable measures for tensor rank and sparsity need to be defined and algorithms for solving
problem (1.4) need to be developed. So far, important work has been done in [32, 49, 56, 76,
85, 90], however most methods for robust low-rank modelling available for matrices are still not
directly applicable to tensors.

This thesis comes to fill the above gap in the literature. In chapter 4 we show how most of the
matrix methods presented in chapter 3 can be extended to tensors and we introduce tractable
algorithms for solving problem (1.4).

1.2 Summary of Contributions

Our work presented in this thesis contributes to the field of robust low-rank modelling in the
following ways.

(i) Complete survey on matrix methods. We provide a thorough survey on robust low-
rank modelling for matrices (chapter 3). We present the state-of-the-art methods and
describe in detail the available algorithms for solving them. Since robust low-rank modelling
is a relatively recent topic, it is the first time that such a survey is presented in the literature.

(ii) Extensions to tensors. We extend to tensors the most important methods of robust
low-rank modelling that are currently only applicable to matrices and we introduce novel
algorithms for solving them (chapter 4). As part of these extensions, we introduce robust
formulations of the most important tensor decompositions, the CP decomposition and the
HOSVD. To the best of our knowledge, this is the first time that such extensions are
proposed.

(iii) Comparative evaluation. We make a thorough experimental evaluation of the available
matrix algorithms and the herein developed tensor algorithms (chapter 7). We compare
them in terms of both performance and efficiency using synthetic and real benchmarks,
with an emphasis on image analysis and computer vision applications.

1.3. Applications of Robust Low-Rank Modelling 9

(a) No noise (b) Gaussian (c) Salt & pepper (d) Area (e) Text

Figure 1.1: Various types of noise in a greyscale image. Cases (c), (d) and (e) correspond to
heavy, but sparse, non-Gaussian noise.

(iv) Software toolbox release. We make available a MATLAB toolbox which implements
all the methods described herein, both the existing and the newly proposed ones. To the
best of our knowledge, this is the most comprehensive implementation of robust low-rank
modelling currently available. Our hope is that this toolbox will promote and facilitate
future research and development in this promising field.

1.3 Applications of Robust Low-Rank Modelling

Robust low-rank modelling is particularly useful in several applications, typically as a data
preprocessing step. Its applicability relies on the data under consideration fitting in some way
the low-rank and sparse assumption described in section 1.1.2. Several such cases can be found
in practice, the most representative of which are outlined in the following sections.

1.3.1 Denoising and Reconstruction

Denoising refers to reconstruction of data corrupted by noise. If the data are of low rank and
the corruption is sparsely supported, then robust low-rank modelling can be successfully used
for denoising and reconstruction (see e.g. [5, 69, 93]). Some examples of corrupted images are
depicted in Fig. 1.1. Note that the noise in cases (c), (d) and (e) can be effectively modelled as
sparse.

1.3.2 Missing Data Completion

A common case in real scenarios is that a part of the data is missing and needs to be recovered. If
the data can be modelled as low-rank, the missing value problem can be cast as a robust low-rank
modelling problem. In this case, the low-rank component contains the full dataset, whereas the
sparse component accounts for the missing values (see e.g. [16, 29, 42, 50, 56, 89]).

An example of missing data completion can be found in recommender systems [45]. Such
systems record the preferences of users for certain selections of products (e.g. films, songs, books)
and based on them they make recommendations to other users. Such a dataset of preferences can
be modelled as low-rank, based on the fact that certain groups of users have similar preferences
(e.g. similar movies may be liked by the same age group). In other words, the columns of the
preference matrix are linearly correlated. A recommendation to a new user is made by essentially
recovering their missing preferences. The Netflix prize problem1 is a famous instance of the
above.

Another example from the field of image processing is image inpainting [9]. Image inpainting
refers to the case where part of an image is missing and the information from the rest of the
image is used to fill in the unknown region, as the example in Fig. 1.2 demonstrates.

1http://www.netflixprize.com/

10 Chapter 1. Introduction

(a) Original (b) Missing values (c) Reconstructed

Figure 1.2: Example of inpainting. In (b) the white regions are the missing values. In (c) the
image is reconstructed only by the observed values in (b). Notice that the lamp and the satellite
dishes have been removed. Image taken from [56].

1.3.3 Face Recognition

Face recognition refers to the automatic identification of a person from an image of their face. It
is known [6] that an image of a convex Lambertian2 object, under various illuminations, lies ap-
proximately on a 9-dimensional subspace. Since a face is approximately convex and Lambertian,
face images typically are of low rank. This low-rank property of face images has been exploited
for face recognition as early as 1991, with the usage of EigenFaces [81].

Face images often include corruptions that compromise the low-rank assumption and therefore
the performance of recognition algorithms that rely on it. Such corruptions may include facial
expressions, glasses, specularities, shadows, beards, scarfs, and so on. Robust low-rank modelling
can be used to restore the low-rank property of the face images by removing such corruptions
(as shown in Fig. 1.3) and thus improve performance of traditional low-rank-based systems [21].

1.3.4 Background Subtraction and Foreground Segmentation

Given a set of consecutive video frames, the goal of background subtraction is to separate the
background from moving foreground objects. Background subtraction is a fundamental prepro-
cessing step in computer vision applications such as video surveillance, object tracking, motion
estimation and so on. Since the background of a video sequence changes only slightly between
consecutive video frames, it can be successfully modelled as low-rank, whereas moving foreground
objects can be thought of as sparse corruption (see e.g. [5, 12, 14, 18, 75]). A single frame from
a surveillance video is shown in Fig. 1.4, where robust low-rank modelling has been used to
separate the background from the foreground.

1.3.5 Rectification and Alignment

Data alignment refers to the process of transforming the data such that their point-to-point
correspondence is maximised. It is mostly used with respect to images (as in [72, 90, 91]),
however it can also be used with respect to data sequences, such as video sequences or trajectory
data (see e.g. [68]).

The idea behind the usage of robust low-rank modelling for data alignment is that the set of
aligned data points, due to the resulting point-to-point similarity among them, should be low-
rank, up to possible local differences. Practical systems that use robust low-rank modelling for
alignment purposes typically work by seeking the alignment which yields the best low-rank/sparse
decomposition. At the end, the low-rank component will contain the aligned data points and the
sparse component will contain the local differences between them, as well as possible corruptions
by noise. An example of image alignment is shown in Fig. 1.5.

2Lambertian is an object that reflects light equally to all directions, i.e. it exhibits no specular reflection.

1.3. Applications of Robust Low-Rank Modelling 11

(a) Original, including corruptions

(b) Reconstructed low-rank component

(c) Sparse error component

Figure 1.3: Example of corruption removal from face images for the purpose of face recognition.
Image taken from [21].

(a) Original (b) Low-rank component (c) Sparse component

Figure 1.4: Example of background subtraction from a surveillance video. A single video frame
is shown. The low-rank component (b) contains the background and the sparse component (c)
contains the foreground. The man in (b) was not moving and hence was incorporated in the
background. Image taken from [18].

12 Chapter 1. Introduction

(a) Original (b) Low-rank component (c) Sparse component

Figure 1.5: Example of aligning a set of 16 window images. The low-rank component (b) contains
the aligned images and the sparse component (c) contains the corruptions by tree branches. Image
taken from [72].

1.3.6 Other Applications

Other applications of robust low-rank modelling include structure from motion and photometric
stereo [14], image classification and segmentation [15], gait recognition from gait energy im-
ages [38], video stabilisation and moving object detection in turbulence [67], and automatic
construction of person-specific facial deformable models [74].

Chapter 2

Mathematical Preliminaries

In this chapter we provide the necessary mathematical background required for the rest of the
thesis. We discuss matrix norms, provide an overview of multilinear algebra, including tensor
decompositions, and describe the optimisation algorithms that will be used in the chapters to
follow. Although familiarity with basic concepts from linear algebra is assumed, a comprehensive
introduction to linear algebra can be found in [78].

2.1 Matrix Norms

Since matrix norms will play a central role in robust low-rank modelling for matrices, we shall
discuss them in detail here. We begin by the general definition of a norm in a real vector space.

Definition 2.1 (Norm). Let V be a vector space on the field of real numbers R. A norm on V
is any function ‖·‖ : V → [0,+∞) which satisfies the following three properties

(i) ‖v‖ = 0 ⇒ v = 0

(ii) ‖av‖ = |a| ‖v‖

(iii) ‖v + w‖ ≤ ‖v‖ + ‖w‖

for all v,w ∈ V and a ∈ R.

The following theorem follows directly from the definition of the norm.

Theorem 2.1 (Convexity of norms). A norm ‖·‖ : V → [0,+∞) is a convex function.

Proof. Let v,w ∈ V and λ ∈ [0, 1]. Notice that λv + (1− λ) w ∈ V. By the norm properties we
have

‖λv + (1− λ) w‖ ≤ ‖λv‖ + ‖(1− λ) w‖ = λ ‖v‖ + (1− λ) ‖w‖ (2.1)

which concludes the proof.

The notion of a matrix norm arises when we identify V = Rm×n, i.e. the set of real matrices
of size m × n. In this thesis, we will focus our attention on two matrix norms, namely the
elementwise `p-norm and the Schatten p-norm.1

Definition 2.2 (Matrix elementwise `p-norm). Let X ∈ Rm×n be a matrix of size m × n. For
p ≥ 1, the elementwise `p-norm of X is defined as

‖X‖p =

 m∑
i=1

n∑
j=1

|Xij |p
1/p

(2.2)

1Another common matrix norm is the operator or induced norm.

14 Chapter 2. Mathematical Preliminaries

Definition 2.3 (Matrix Schatten p-norm). Let X ∈ Rm×n be a matrix of size m× n. Let σi be
the ith singular value of X, for i ∈ {1, 2, . . . ,min (m,n)}. For p ≥ 1, the Schatten p-norm of X
is defined as

‖X‖Sp
=

min(m,n)∑
i=1

σpi

1/p

(2.3)

Notice that the elementwise `p-norm is simply the `p-norm of the vectorised matrix and the
Schatten p-norm is the `p-norm of the vector consisting of the singular values. For p = 1, the
Schatten p-norm becomes simply the sum of the singular values and it is specifically known as
the nuclear or trace norm.

Definition 2.4 (Matrix nuclear norm). Let X ∈ Rm×n be a matrix of size m× n. Let σi be the
ith singular value of X, for i ∈ {1, 2, . . . ,min (m,n)}. The nuclear norm of X is defined as

‖X‖∗ =

min(m,n)∑
i=1

σi (2.4)

The following theorem holds in general for Schatten p-norms.

Theorem 2.2 (Unitary invariance of Schatten p-norms). Schatten p-norms are unitary invari-
ant, i.e. for any matrices X,U,V such that UTU = I and VTV = I we have∥∥UXVT

∥∥
Sp

= ‖X‖Sp
(2.5)

Proof. Assume the Singular Value Decomposition X = UxSxV
T
x . Then

UXVT = (UUx) Sx (VVx)
T

(2.6)

is a valid Singular Value Decomposition, since

(UUx)
T

(UUx) = UT
xUTUUx = UT

xUx = I (2.7)

(VVx)
T

(VVx) = VT
xVTVVx = VT

xVx = I (2.8)

and, therefore, X and UXVT share the same matrix of singular values Sx. Hence∥∥UXVT
∥∥
Sp

= ‖Sx‖p = ‖X‖Sp
(2.9)

However, unlike the Schatten p-norm, the elementwise `p-norm is not unitary invariant for
all p.

The standard inner product between real vectors2 can be easily extended to matrices as
follows.

Definition 2.5 (Matrix inner product). Let X,Y ∈ Rm×n be matrices of size m × n. Their
inner product is defined by

〈X,Y〉 =

m∑
i=1

n∑
j=1

XijYij (2.10)

The following properties of the matrix inner product follow easily from the definition:

(i) 〈X,Y〉 = 〈Y,X〉
2Also known as the dot product.

2.1. Matrix Norms 15

(ii) 〈aX,Y〉 = 〈X, aY〉 = a 〈X,Y〉

(iii) 〈X1 + X2,Y〉 = 〈X1,Y〉+ 〈X2,Y〉

(iv) 〈X,Y1 + Y2〉 = 〈X,Y1〉+ 〈X,Y2〉

(v) 〈AX,Y〉 =
〈
X,ATY

〉
(vi) 〈X,YB〉 =

〈
XBT ,Y

〉
Another important matrix norm, which can be thought of as the natural generalisation of

the Euclidean norm to matrices, is the Frobenius norm.

Definition 2.6 (Matrix Frobenius norm). Let X ∈ Rm×n be a matrix of size m × n. The
Frobenius norm of X is defined as

‖X‖F =

√√√√ m∑
i=1

n∑
j=1

(Xij)
2

(2.11)

The Frobenius norm is induced by the inner product, since ‖X‖F =
√
〈X,X〉. It is also

straightforward to see that ‖X‖F = ‖X‖2. Although less obvious, the same is also true for the
Schatten p-norm, as the following theorem states.

Theorem 2.3 (Relation between the Frobenius and the Schatten p-norm). For p = 2, the
Schatten p-norm is equal to the Frobenius norm, i.e. ∀X ∈ Rm×n

‖X‖S2
= ‖X‖F (2.12)

Proof. Assume the Singular Value Decomposition X = UxSxV
T
x . Then we have

‖X‖2F = 〈X,X〉
=
〈
UxSxV

T
x ,UxSxV

T
x

〉
=
〈
SxV

T
xVx,U

T
xUxSx

〉
= 〈Sx,Sx〉

= ‖X‖2S2
(2.13)

From the above result it follows that the Frobenius norm is unitary invariant, as a special
case of the Schatten p-norm.

In this thesis, we will mostly use norms as a measure for the rank and the sparsity of
matrices. The rank of a matrix X ∈ Rm×n, denoted by rank (X), is the maximum number of
columns which, if seen as vectors, are linearly independent. It can easily be shown that the rank
is always equal to the number of non-zero singular values. The sparsity of X is quantified by the
number of its non-zero entries, denoted by ‖X‖0 and often referred to as `0-norm, for reasons
that will soon become clear. Note however that ‖·‖0 is not a norm in the strict sense, as it does
not satisfy definition 2.1.

In order to closely approximate rank (·) and ‖·‖0, we will consider the elementwise p-norm
and the Schatten p-norm when 0 < p < 1. For these values of p, property (iii) of Definition 2.1
does not hold anymore,3 which makes ‖·‖p and ‖·‖Sp

non-convex and not norms in the strict
sense. Nevertheless, the following important property holds.

Theorem 2.4 (Approximation of rank and sparsity by norms). Let X ∈ Rm×n. Then

3This property is known as subadditivity or triangle inequality and is necessary for convexity.

16 Chapter 2. Mathematical Preliminaries

(i) limp→0+ ‖X‖pp = ‖X‖0

(ii) limp→0+ ‖X‖pSp
= rank (X)

Proof. First notice that for any x ∈ R

lim
p→0+

xp =

{
1 x 6= 0

0 x = 0
(2.14)

Then, (i) is shown as follows

lim
p→0+

‖X‖pp =

m∑
i=1

n∑
j=1

lim
p→0+

|Xij |p = ‖X‖0 (2.15)

As for (ii), given that the rank is the number of non-zero singular values we have

lim
p→0+

‖X‖pSp
=

min(m,n)∑
i=1

lim
p→0+

σpi = rank (X) (2.16)

We may observe that, even though ‖·‖p and ‖·‖Sp
become non-convex for p < 1, they can

arbitrarily approximate ‖·‖0 and rank (X) respectively as p→ 0.

Definition 2.7 (Convex envelope). Let f : Rn → R be a real function. The convex envelope of
f , represented by Cf , is the pointwise largest function Cf : Rn → R which is pointwise less than
f . In other words

Cf = sup {g : Rn → R | g is convex and g (x) ≤ f (x) ∀x ∈ Rn} (2.17)

The above definition means that the convex envelope of a function is its tightest convex
underestimate. Interestingly, ‖·‖1 and ‖·‖∗ have been found to be the convex envelopes of ‖·‖0 and
rank (·) respectively. This property will be particularly useful in the development of algorithms
in chapters 3 and 4. For more details and relevant proofs, the reader may refer to [24, 28, 73].

2.2 Multilinear Algebra Basics

2.2.1 Tensor Basics

A tensor is a multidimensional array. The number of array dimensions is known as the tensor
order . Alternatively, the tensor order can be described as the necessary number of indices to
specify each of the tensor’s entries. In that sense, a tensor is a natural extension of scalars,
vectors and matrices to a higher order; a scalar is a 0th-order tensor, a vector is a 1st-order
tensor and a matrix is a 2nd-order tensor. Mathematically, an N th-order tensor is defined as an
element of a tensor space, which in turn is given by the tensor product of N vector spaces. The
study of tensors and their applications is known as multilinear algebra. For a thorough discussion
on tensors, their properties and their applications, the reader may refer to [1, 44].

Following the usual conventions found in the literature, in this thesis we will denote tensors
by boldface calligraphic letters. For instance, X ∈ RI1×I2×···×IN will be an N th-order tensor of
size I1× I2×· · ·× IN . For specifying each of its entries, an n-tuple index is needed. The entry of
X corresponding to index (i1, i2, . . . , iN), with in ∈ {1, 2, . . . , In}, will be denoted as Xi1i2···iN .
If all but one of the indices are kept fixed and the remaining index is left to vary, we get a vector
called fibre. Fibres can be thought of as the tensor equivalent of matrix rows and columns. For

2.2. Multilinear Algebra Basics 17

(a) Tensor fibres (b) Tensor slices

Figure 2.1: Illustration of a 3rd-order tensor, showing its fibres and slices along various modes.
Image taken from [44].

instance, the fibres of length In formed by letting index in vary while keeping all other indices
fixed are called n-mode fibres. Similarly to fibres, when all but two indices are fixed and the rest
are left to vary, we get a matrix called slice. Fig. 2.1 illustrates the various fibres and slices of a
3rd-order tensor.

In order to work with tensors, it is often convenient to transform them to vectors or matrices,
a process known as vectorisation and matricisation respectively.4

Definition 2.8 (Tensor vectorisation). Let X ∈ RI1×I2×···×IN be an N th-order tensor. The
vectorised tensor, denoted as vec (X), is a vector formed by the tensor entries, such that tensor
entry (i1, i2, . . . , iN) is mapped to vector entry j, where

j = 1 +

N∑
k=1

(ik − 1) Jk and Jk =

k−1∏
m=1

Im (2.18)

Definition 2.9 (Tensor matricisation). Let X ∈ RI1×I2×···×IN be an N th-order tensor. The n-
mode tensor matricisation, with n ∈ {1, 2, . . . , N}, produces a matrix of size In×

∏
k 6=n Ik which

is denoted as X[n] and is formed by the tensor entries, such that tensor entry (i1, i2, . . . , iN) is
mapped to matrix entry (in, j), where

j = 1 +

N∑
k=1
k 6=n

(ik − 1) Jk and Jk =

k−1∏
m=1
m 6=n

Im (2.19)

Even though the above definitions seem complicated, in essence vectorisation and matricisa-
tion are conceptually simple processes. Vector vec (X) is simply formed by stacking the entries
of X in a column-major order. That is, the fastest varying index is taken to be i1, then i2 and
so on up to the slowest varying index iN . Matrix X[n] is similarly formed but instead of stacking
entries, we stack fibres. In other words, the columns of X[n] are the n-mode fibres of X taken in
a column-major order, by first varying i1, then i2 up to iN , excluding of course in. The above
should be clarified by the following example.

Example 2.1 (Tensor matricisation and vectorisation). Consider the 2 × 3 × 2 tensor formed
by the following two slices

X (:, :, 1) =

[
1 3 5
2 4 6

]
X (:, :, 2) =

[
7 9 11
8 10 12

]
(2.20)

4Matricisation is also known as unfolding.

18 Chapter 2. Mathematical Preliminaries

The three matricisations of X are

X[1] =

[
1 3 5 7 9 11
2 4 6 8 10 12

]
(2.21)

X[2] =

1 2 7 8
3 4 9 10
5 6 11 12

 (2.22)

X[3] =

[
1 2 3 4 5 6
7 8 9 10 11 12

]
(2.23)

The vectorisation of X is

vec (X) =
[
1 2 3 4 5 6 7 8 9 10 11 12

]T
(2.24)

Similarly to vectors and matrices, addition and subtraction between two tensors are defined
elementwise. However, multiplication between tensors is a more complicated procedure. In this
thesis, we will mainly make use of the n-mode product between a tensor and a matrix.

Definition 2.10 (n-mode product). Let X ∈ RI1×I2×···×IN be an N th-order tensor and U ∈
RJ×In be a matrix of size J × In. The n-mode product between X and U, denoted by X ×n U,
is a tensor of size I1 × · · · × In−1 × J × In+1 × · · · × IN whose entries are given by

(X ×n U)i1···in−1jin+1···iN =

In∑
in=1

Xi1i2···iNUjin (2.25)

Conceptually, X ×n U is a tensor whose fibres are given by applying U on the fibres of X .
By the definition, the following properties can be easily proven.

(i) If m 6= n, (X ×n U1)×m U2 = (X ×m U2)×n U1

(ii) (X ×n U1)×n U2 = X ×n (U2U1)

(iii) (X ×n U)[n] = UX[n]

Property (i) implies that when cascading n-mode products along different modes the order is
unimportant, and therefore the parentheses are not necessary. From now on and for the rest of
this thesis, we shall use X ×Ni=1 Ui as shorthand for X ×1 U1 ×2 U2 ×3 · · · ×N UN .

Extending the definitions of the elementwise `p-norm and the standard inner product to
tensors is rather straightforward.

Definition 2.11 (Tensor elementwise `p-norm). Let X ∈ RI1×I2×···×IN be an N th-order tensor.
For p ≥ 1, the elementwise `p-norm of X is defined as

‖X‖p =

(
I1∑
ii=1

I2∑
i2=1

· · ·
IN∑
iN=1

|Xi1i2···iN |
p

)1/p

(2.26)

Definition 2.12 (Tensor inner product). Let X ,Y ∈ RI1×I2×···×IN be N th-order tensors. Their
inner product is defined by

〈X ,Y〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

Xi1i2···iNYi1i2···iN (2.27)

2.2. Multilinear Algebra Basics 19

Since the tensor elementwise `p-norm and the tensor inner product are defined in the same
elementwise fashion as with matrices, they have the same properties. For instance, notice that
the elementwise `2-norm is induced by the inner product, i.e. ‖X‖2 =

√
〈X ,X 〉. Similarly to

matrices, we refer to ‖X‖2 as the Frobenius norm of X and denote it as ‖X‖F . Also, similarly
to matrices, the number of non-zero entries of X , also referred to as the `0-norm of X , can be
obtained as ‖X‖0 = limp→0+ ‖X‖pp. However, extending the Schatten p-norm to tensors is not
straightforward, since this norm requires a notion of singular values.

Finally, for simplifying tensor expressions, we will make use of two important matrix products,
the Kronecker product and the Khatri-Rao product.

Definition 2.13 (Kronecker product). Let A ∈ Rm×n and B ∈ Rk×l be two matrices of sizes
m × n and k × l respectively. Their Kronecker product is a matrix of size mk × nl, which, in
block matrix form, is given by

A⊗B =


A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

. . .
...

Am1B Am2B · · · AmnB

 (2.28)

Definition 2.14 (Khatri-Rao product). Let A ∈ Rm×n and B ∈ Rk×n be two matrices of sizes
m × n and k × n respectively. Their Khatri-Rao product is a matrix of size mk × n, which, in
block matrix form, is given by

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · an ⊗ bn

]
(2.29)

where A =
[
a1 a2 · · · an

]
and B =

[
b1 b2 · · · bn

]
.

By the above definitions, the following properties can be easily proven.

(i) (A⊗B)⊗C = A⊗ (B⊗C)

(ii) (A�B)�C = A� (B�C)

(iii) (A⊗B)
T

= AT ⊗BT

(iv) (A⊗B) (C⊗D) = (AC)⊗ (BD)

(v) vec
(
X ×Ni=1 Ui

)
=
(⊗1

i=N Ui

)
vec (X)

(vi)
(
X ×Ni=1 Ui

)
[n]

= UnX[n]

(⊗1
i=N
i6=n

Ui

)T
Properties (v) and (vi) above demonstrate the usefulness of the Kronecker product in tensor ex-
pressions. Note finally that neither the Kronecker nor the Khatri-Rao product are commutative.

2.2.2 Tensor Decompositions

One of the main goals of multilinear algebra is to generalise the techniques of linear algebra,
such as matrix decompositions, to tensors. In this section, we present the two perhaps most
important tensor decompositions, the CANDECOMP/PARAFAC decomposition and the Higher
Order Singular Value Decomposition.

20 Chapter 2. Mathematical Preliminaries

Figure 2.2: Illustration of the CP decomposition of the 3rd-order tensor X as the sum of rank-1
tensors ur1 ◦ ur2 ◦ ur3, for r ∈ {1, 2, . . . , R}. Image adapted from [44].

CANDECOMP/PARAFAC Decomposition

The CANDECOMP/PARAFAC (or simply CP) decomposition was first introduced in 1970 in the
psychometrics community by Carrol and Chang [19] under the name CANDECOMP (CANonical
DECOMPosition) and simultaneously by Harshman [36] under the name PARAFAC (PARAllel
FACtors). In the same way the SVD decomposes a matrix as a sum of rank-1 matrices, the CP
decomposition expresses a tensor as the sum of rank-1 tensors.

Definition 2.15 (Rank-1 tensor). A tensor X ∈ RI1×I2×···×IN is said to be rank-1 if it can be
written as the outer product of N vectors un ∈ RIn , for i ∈ {1, 2, . . . , N}, as follows

X = u1 ◦ u2 ◦ · · · ◦ uN (2.30)

In other words, the entries of X are given by

Xi1i2···iN = ui1ui2 · · ·uiN (2.31)

Definition 2.16 (CP decomposition). Let X ∈ RI1×I2×···×IN be an N th-order tensor. The CP
decomposition of X is

X =

R∑
r=1

ur1 ◦ ur2 ◦ · · · ◦ urN (2.32)

If we define Un =
[
u1n u2n · · · uRn

]
for n ∈ {1, 2, . . . , N}, the CP decomposition can be

symbolically written as
X = U1 ◦U2 ◦ · · · ◦UN (2.33)

In the above definition, matrices Un ∈ RIn×R are known as factor matrices. Often, vectors
urn are chosen such that ‖urn‖ = 1. In this case, the CP decomposition is written as

X =

R∑
r=1

srur1 ◦ ur2 ◦ · · · ◦ urN (2.34)

where sr is a scalar that compensates for the magnitudes of vectors urn. Fig. 2.2 illustrates the
CP decomposition of a 3rd-order tensor. Finally, a computationally useful property of the CP
decomposition is the following

(U1 ◦U2 ◦ · · · ◦UN)[n] = Un

 1⊙
i=N
i 6=n

Ui


T

(2.35)

2.2. Multilinear Algebra Basics 21

Figure 2.3: Illustration of the HOSVD of the 3rd-order tensor X = V×1 U1×2 U2×3 U3. Image
adapted from [44].

Higher Order Singular Value Decomposition

The other significant tensor decomposition is the Higher Order Singular Value Decomposition
(or simply HOSVD), also known as Tucker decomposition. It was first introduced in 1966 by
Tucker [80] in the field of psychometrics. In the same way the matrix SVD computes the left
and right singular vectors, HOSVD aims to recover orthonormal bases for the spaces spanned by
the n-mode fibres.

Definition 2.17 (HOSVD). Let X ∈ RI1×I2×···×IN be an N th-order tensor. The HOSVD of X
is

X = V ×Ni=1 Ui (2.36)

where V ∈ RJ1×J2×···×JN , Ji ≤ Ii and all Ui ∈ RIi×Ji are column-orthonormal matrices such
that UT

i Ui = I.

In the above definition, V is called the core tensor . Unlike the matrix SVD, however, V does
not necessarily result to be diagonal. The HOSVD can be thought of as a higher order form
of Principal Component Analysis, where for each n ∈ {1, 2, . . . , N} the columns of matrix Un

are the principal components of the n-mode fibres of X . Fig. 2.3 illustrates the HOSVD of a
3rd-order tensor.

The HOSVD and the CP decomposition are related to a certain degree. Notice that if we
take J1 = J2 = · · · = JN and V to be diagonal (i.e. Vi1i2···iN = 0 if it is not the case that
i1 = i2 = · · · = iN) the HOSVD becomes a CP decomposition with column-orthonormal factor
matrices. In general however the CP decomposition does not require the factor matrices to be
column-orthonormal.

Other Decompositions

In this thesis, we focus our attention on the CP decomposition and the HOSVD. However, in
the literature a variety of other decompositions have been proposed, most of which are simply a
variation of either the CP decomposition or the HOSVD. Such decompositions include INDSCAL,
PARAFAC2, CANDELINC, DEDICOM and PARATUCK2. We refer the interested reader
to [44], where further information can be found on all the above decompositions (including the
CP and the HOSVD), their properties, algorithms for their computation and their applications.

2.2.3 Tensor Rank

The rank of a matrix is the number of linearly independent column vectors, or, equivalently, the
number of non-zero singular values. However, this definition of the matrix rank is not directly

22 Chapter 2. Mathematical Preliminaries

extensible to tensors. In order to extend the notion of rank to tensors, we need to consider
it from a different perspective. Let X ∈ Rm×n and assume its Singular Value Decomposition
X = USVT , where U =

[
u1 u2 · · · um

]
and V =

[
v1 v2 · · · vn

]
are the matrices of the

left and right singular vectors respectively and S = diag
(
σ1, σ2, . . . , σmin(m,n)

)
is the diagonal

matrix of ordered singular values. Since exactly the first rank (X) singular values are non-zero,
the SVD can also be written as

X =

rank(X)∑
i=1

σiuiv
T
i (2.37)

Since each uiv
T
i is a matrix of rank 1, we see that any matrix X can be written as a sum of

exactly rank (X) matrices of rank 1. Motivated by the above observation, we can formulate a
definition of the tensor rank, based on the CP decomposition.

Definition 2.18 (Tensor rank). Let X ∈ RI1×I2×···×IN be an N th-order tensor. The rank of X ,
denoted as rank (X), is defined as the smallest positive integer R for which we can write X as a
sum of R rank-1 tensors

X =

R∑
r=1

ur1 ◦ ur2 ◦ · · · ◦ urN (2.38)

Nevertheless, the above definition of tensor rank, however elegant it may be, is known to
be NP-hard to compute [37], which makes it impractical for most applications. Instead, in this
thesis we will focus our attention on the so-called tensor n-rank.

Definition 2.19 (Tensor n-rank). Let X ∈ RI1×I2×···×IN be an N th-order tensor. The n-rank
of X , denoted as rankn (X), is defined as the number of linearly independent n-mode fibres of
X . Equivalently

rankn (X) = rank
(
X[n]

)
(2.39)

In the matrix case, since rank (X) = rank
(
XT
)
, we have rank1 (X) = rank2 (X), or that

the number of linearly independent column vectors is always equal to the number of linearly
independent row vectors. However, for a general N th-order tensor this is not true, i.e. in general
rankn (X) 6= rankm (X) for n 6= m.

The following theorems provide useful upper bounds of the n-rank.

Theorem 2.5 (Upper bound of the n-rank based on CP decomposition). Let X ∈ RI1×I2×···×IN
be a tensor having the following CP decomposition

X = U1 ◦U2 ◦ · · · ◦UN (2.40)

Then, the following inequality holds

rankn (X) ≤ rank (Un) (2.41)

Proof.

rankn (X) = rank
(
X[n]

)
= rank

(
(U1 ◦U2 ◦ · · · ◦UN)[n]

)

= rank

Un

 1⊙
i=N
i 6=n

Ui


T


≤ rank (Un) (2.42)

2.2. Multilinear Algebra Basics 23

Theorem 2.6 (Relation between the rank and the n-rank). For any X ∈ RI1×I2×···×IN the
following inequality holds ∀n ∈ {1, 2, . . . , N}

rankn (X) ≤ rank (X) (2.43)

Proof. From the definition of the tensor rank, we can always write X as

X = U1 ◦U2 ◦ · · · ◦UN (2.44)

where Un ∈ RIn×rank(X). Therefore, ∀n ∈ {1, 2, . . . , N} we have

rankn (X) ≤ rank (Un) ≤ rank (X) (2.45)

Theorem 2.7 (Upper bound of the n-rank based on n-mode product). Let X ∈ RI1×I2×···×IN
be a tensor which can be written as

X = V ×Ni=1 Ui (2.46)

where V ∈ RJ1×J2×···×JN and Un ∈ RIn×Jn for n ∈ {1, 2, . . . , N}. Then, the following inequali-
ties hold

rankn (X) ≤ rank (Un) (2.47)

rankn (X) ≤ rankn (V) (2.48)

Proof. For the first inequality we have

rankn (X) = rank
(
X[n]

)
= rank

((
V ×Ni=1 Ui

)
[n]

)

= rank

UnV[n]

 1⊗
i=N
i 6=n

Ui


T


≤ rank (Un) (2.49)

Similarly, for the second inequality we have

rankn (X) = rank
(
X[n]

)
= rank

((
V ×Ni=1 Ui

)
[n]

)

= rank

UnV[n]

 1⊗
i=N
i 6=n

Ui


T


≤ rank

V[n]

 1⊗
i=N
i 6=n

Ui


T


≤ rank
(
V[n]

)
= rankn (V) (2.50)

24 Chapter 2. Mathematical Preliminaries

2.3 Optimisation Methods

2.3.1 Proximal Operators

In this thesis, proximal operators will play a major role in optimisation algorithms as building
blocks, therefore we shall discuss them in detail here. For a thorough discussion on proximal
operators, their properties and their applications, the reader may refer to [70].

Definition 2.20 (Proximal operator). Let f : Rn → R be a real function. The proximal operator
of f at x ∈ Rn is defined as

Pf {x} = arg min
y
f (y) +

1

2
‖x− y‖22 (2.51)

provided that the solution to the above optimisation problem exists and it is unique.

In a way, Pf {x} is computed by trying to minimise f without getting too far from x (with
the distance being measured by the `2-norm). Depending on the form of f , Pf {·} may or may
not have a closed form solution. In the following, we shall discuss Pf {·} for certain cases of f
which will be used in the optimisation algorithms discussed later in this thesis.

Theorem 2.8 (Shrinkage operator). If x ∈ R and f (x) = a |x| with a > 0, the proximal operator
becomes

Pf {x} =


0 −a ≤ x ≤ a
x− a x > a

x+ a x < −a
(2.52)

The above proximal operator is known as the shrinkage operator and is represented by Sa {x}.

Proof. The objective function becomes h (y) = a |y| + 1
2 (x− y)

2
. We have the following two

cases.

(i) y ≥ 0. In this case, h (y) = ay+ 1
2 (x− y)

2
and h′ (y) = a− x+ y. Studying the monotony

of h, we get that h is decreasing in [0, x− a] and increasing in [x− a,+∞). Therefore

y+ = arg min
y≥0

h (y) =

{
0 x ≤ a
x− a x > a

(2.53)

(ii) y < 0. In this case, h (y) = −ay + 1
2 (x− y)

2
and h′ (y) = −a − x + y. Studying the

monotony of h, we get that h is decreasing in (−∞, x+ a] and increasing in [x+ a, 0].
Therefore

y− = arg min
y<0

h (y) =

{
x+ a x < −a
0 x ≥ −a

(2.54)

Finally, by simply evaluating h at y+ and y−, we get that the shrinkage operator is given by

Sa {x} = arg min
y∈{y+,y−}

h (y) =


0 −a ≤ x ≤ a
x− a x > a

x+ a x < −a
(2.55)

The shrinkage operator extends naturally to vectors, matrices and, in general, tensors, as the
following theorem states.

2.3. Optimisation Methods 25

Theorem 2.9 (Shrinkage operator for tensors). Let X ∈ RI1×I2×···×IN be an N th-order tensor
and f (X) = a ‖X‖1 with a > 0. Then, the proximal operator reduces to elementwise application
of the shrinkage operator

(Pf {X})i1i2···iN = Sa {Xi1i2···iN } (2.56)

For convenience, we will represent Pf {X} as Sa {X} and we will imply that Sa {·} is applied
elementwise.

Proof. The proximal operator can be written as

Pf {X} = arg min
Y

a ‖Y‖1 +
1

2
‖X −Y‖2F

= arg min
Y

I1∑
ii=1

I2∑
i2=1

· · ·
IN∑
iN=1

(
a |Yi1i2···iN |+

1

2
(Xi1i2···iN − Yi1i2···iN)

2

)
(2.57)

Since the objective function is separable in the elements of Y , we have

(Pf {X})i1i2···iN = arg min
Yi1i2···iN

a |Yi1i2···iN |+
1

2
(Xi1i2···iN − Yi1i2···iN)

2

= Sa {Xi1i2···iN } (2.58)

Finally, the following theorem describes the proximal operator when f becomes the nuclear
norm.

Theorem 2.10 (Singular value thresholding). Let X ∈ Rm×n be a matrix of size m × n and
f (X) = a ‖X‖∗ with a > 0. Assume the Singular Value Decomposition X = USVT . Then, the
proximal operator becomes

Pf {X} = USa {S}VT (2.59)

We shall refer to the above proximal operator as singular value thresholding and represent it by
Da {X}.

Proof. This is Theorem 2.1 in [16]. See proof therein.

2.3.2 Accelerated Proximal Gradient

Consider the following unconstrained optimisation problem

min
x

g (x) + f (x) (2.60)

where f : Rn → R, g : Rn → R and f is differentiable in Rn. We allow g to be possibly non-
smooth, therefore techniques from smooth optimisation may not be always applicable. We will
describe a method for solving the above optimisation problem known as Proximal Gradient .

Proximal Gradient is an iterative first-order optimisation method, which is based on replacing
the differentiable part of the objective, f (x), by its following quadratic approximation around
some fixed point y ∈ R

Qn (x,y) = f (y) + 〈∇f (y) ,x− y〉+
n

2
‖x− y‖22 (2.61)

where n > 0 is a carefully chosen positive parameter. We will describe two versions of Proximal
Gradient, the classic version which can be viewed as a descent algorithm and its accelerated
version which makes use of Nesterov’s acceleration method.

26 Chapter 2. Mathematical Preliminaries

Proximal Gradient as Descent Algorithm

To justify the usage of Qn and the selection of n, we will make use of the following results.

Definition 2.21 (Lipschitz continuous function). A function f : Rn → Rm is called Lipschitz
continuous if and only if there exists some non-negative constant L ≥ 0 such that ∀x,y ∈ Rn
the following holds5

‖f (x)− f (y)‖2 ≤ L ‖x− y‖2 (2.62)

The smallest such L is called the Lipschitz constant of f .

Theorem 2.11 (Quadratic approximation as upper bound). Let f : Rn → R be a real function,
whose gradient ∇f is Lipschitz continuous with a Lipschitz constant L ≥ 0. Then, for n ≥ L the
following inequality holds ∀x,y ∈ Rn

f (x) ≤ f (y) + 〈∇f (y) ,x− y〉+
n

2
‖x− y‖22 (2.63)

Proof. It suffices to prove the inequality for n = L. Since ∇f is a conservative vector field, for
any line integral from y to x we have

f (x)− f (y) =

∫ x

y

〈∇f (t) ,dt〉 (2.64)

If we parameterise t to follow the line segment from y to x we have∫ x

y

〈∇f (t) ,dt〉 =

∫ 1

0

〈∇f (θx + (1− θ) y) ,x− y〉dθ (2.65)

We then have the following

f (x)− f (y)− 〈∇f (y) ,x− y〉 =

∫ 1

0

〈∇f (θx + (1− θ) y)−∇f (y) ,x− y〉dθ

≤ ‖x− y‖2
∫ 1

0

‖∇f (θx + (1− θ) y)−∇f (y)‖2 dθ

≤ L ‖x− y‖2
∫ 1

0

‖θx + (1− θ) y − y‖2 dθ

= L ‖x− y‖22
∫ 1

0

θ dθ

=
L

2
‖x− y‖22 (2.66)

which concludes the proof.

The above theorem says that if ∇f is Lipschitz continuous then Qn (x,y) is an upper bound
on f (x), as long as n is no less than the Lipschitz constant of ∇f . Based on the above, Proximal
Gradient proceeds by computing the following at each iteration k ∈ {0, 1, 2, . . .}

xk+1 = arg min
x
g (x) +Qn (x,yk)

= arg min
x
g (x) + 〈∇f (yk) ,x− yk〉+

n

2
‖x− yk‖22

= arg min
x
n−1g (x) +

1

2

∥∥x− (yk − n−1∇f (yk)
)∥∥2

2

= P(n−1g)

{
yk − n−1∇f (yk)

}
(2.67)

5Here the definition is given in terms of the `2-norm, however in general any norms on Rn and Rm (even
different ones) can be used instead.

2.3. Optimisation Methods 27

The above is the proximal operator of function n−1g, which, as we have seen in section 2.3.1,
it is often easy to compute. It is easy to see that if we choose yk = xk then the above can be
interpreted as a descent algorithm, as the following theorem states.

Theorem 2.12 (Proximal Gradient as descent algorithm). Let f : Rn → R, g : Rn → R and f
be differentiable with a Lipschitz continuous gradient. If xk+1 = arg minx g (x) +Qn (x,xk) with
n no less than the Lipschitz constant of ∇f , then the following holds

g (xk+1) + f (xk+1) ≤ g (xk) + f (xk) (2.68)

Proof. By Theorem 2.11 we have

g (xk+1) + f (xk+1) ≤ g (xk+1) +Qn (xk+1,xk) (2.69)

By the definition of xk+1 we have

g (xk+1) +Qn (xk+1,xk) ≤ g (xk) +Qn (xk,xk) (2.70)

Finally, by the definition of Qn we have

Qn (xk,xk) = f (xk) (2.71)

which concludes the proof.

Proximal Gradient is fully described in Algorithm 2.1. It can be shown [7] that this algorithm
converges with a rate of O

(
k−1

)
in the sense that

[g (xk) + f (xk)]− [g (x∗) + f (x∗)] ∈ O
(
k−1

)
(2.72)

where x∗ is the true minimiser and k is the iteration number. Finally, it is interesting to see that
in the special case where ∀x ∈ Rn we have g (x) = 0, the proximal operator P(n−1g){·} reduces
to the identity operator and therefore Algorithm 2.1 reduces to gradient descent [11]. In this
sense, Proximal Gradient can be viewed as a generalisation of gradient descent.

Algorithm 2.1: Proximal Gradient

Initialise: x0, k = 0
1 while not converged do
2 xk+1 = P(n−1g)

{
xk − n−1∇f (xk)

}
3 k ← k + 1

4 end while
Output: xk

Nesterov’s Acceleration Method

As we have seen, Proximal Gradient in its classic form has a convergence rate of O
(
k−1

)
. It has

been shown that it is possible to improve this, by simply selecting points yk, around which the
quadratic approximation Qn (x,yk) is made, in a more efficient way. Nesterov [64] showed that
in the special case where ∀x ∈ Rn we have g (x) = 0 (i.e. in the case of gradient descent) the
following selection of points yk can improve the convergence rate to O

(
k−2

)
yk = xk +

tk−1 − 1

tk
(xk − xk−1) (2.73)

as long as the sequence {tk} satisfies t2k+1− tk+1 ≤ t2k. Beck and Teboulle [7] extended the above
convergence result to a general non-smooth function g.

The Accelerated Proximal Gradient method incorporating the above scheme is described in
algorithm 2.2. It can be seen that the computational effort per iteration is not significantly
greater than in its classic form, while its convergence rate is superior. For this reason, Accelerated
Proximal Gradient is usually preferred in practice than classic Proximal Gradient.

28 Chapter 2. Mathematical Preliminaries

Algorithm 2.2: Accelerated Proximal Gradient

Initialise: x0, x−1, t0 = t−1 = 1, k = 0
1 while not converged do

2 yk = xk + tk−1−1
tk

(xk − xk−1)

3 xk+1 = P(n−1g)

{
yk − n−1∇f (yk)

}
4 tk+1 =

1+
√

1+4t2k
2

5 k ← k + 1

6 end while
Output: xk

2.3.3 Method of Augmented Lagrange Multipliers

Consider the following equality-constrained optimisation problem

min
x

f (x) s.t. h (x) = 0 (2.74)

where f : Rn → R and h : Rn → Rm.
A common approach towards solving such problems is relaxing them to an unconstrained

form, such as the following

min
x

f (x) +
µ

2
‖h (x)‖22 (2.75)

Approaches of this type are known as penalty methods [59]. Here, µ > 0 is called the penalty
parameter and as µ → +∞ the relaxed problem becomes equivalent to the original constrained
problem. Typically, penalty methods proceed with the following updates

xk+1 = arg min
x
f (x) +

µk
2
‖h (x)‖22 (2.76)

µk+1 = ρµk (2.77)

where ρ > 1. However, a drawback of penalty methods is that they typically require µ to attain
very large values, which can potentially make the problem ill-conditioned.

Another approach is transforming the original problem to its dual form. The Lagrangian of
the original problem can be written as follows

L (x,y) = f (x) + 〈h (x) ,y〉 (2.78)

where y ∈ Rm is the vector of Lagrange multipliers. The so-called Lagrangian methods [59]
attempt to find a saddle point of L, using the following updates

xk+1 = arg min
x
L (x,yk) (2.79)

yk+1 = yk + ak h (xk+1) (2.80)

In the update for y, ak ≥ 0 is known as the step size. A drawback of such approaches is that
they require tuning for the right step size ak in each iteration.

The method of Augmented Lagrange Multipliers, or simply ALM, combines both approaches.
The method starts by forming the following augmented Lagrangian

Lµ (x,y) = f (x) + 〈h (x) ,y〉+
µ

2
‖h (x)‖22 (2.81)

where y ∈ Rm is the vector of Lagrange multipliers and µ > 0 is the penalty parameter. The
objective is finding a saddle point of L, while at the same time increasing µ so as to enforce the
constraint. The method is fully described as Algorithm 2.3.

2.3. Optimisation Methods 29

Algorithm 2.3: Method of Augmented Lagrange Multipliers

Initialise: x0, y0, µ0 > 0, k = 0
1 while not converged do
2 xk+1 = arg minx Lµk

(x,yk)
3 yk+1 = yk + µk h (xk+1)
4 µk+1 = min (ρµk, µmax)
5 k ← k + 1

6 end while
Output: xk

The ALM method combines the merits of both penalty and Lagrangian methods while avoid-
ing some of their drawbacks. For instance, ALM does not require µ→ +∞ in order to converge,
thus avoiding ill-conditioning. The only requirement is that sequence {µk} is non-decreasing.
In Algorithm 2.3, µ is geometrically increased up to a preset upper limit µmax. Furthermore,
in the update for y, the optimal step size is known to be the penalty parameter µ, therefore
tuning is not required. For more information on ALM and its convergence, the reader may refer
to [10, 11, 13].

Chapter 3

Robust Low-Rank Modelling on
Matrices

Let X ∈ Rm×n be a data matrix, containing in its columns the observed data points. Our aim
is to decompose X into a low-rank component A ∈ Rm×n and a sparse component E ∈ Rm×n,
such that

X = A + E (3.1)

In order to do this, from all possible decomposition of the above form, we seek to find the one
which minimises the rank of A and maximises the sparsity of E. As we have seen in section 2.1,
the rank of A is quantified by the number of linearly independent columns and is represented by
rank (A) and the sparsity of E is quantified by the number of non-zero elements and is represented
by ‖E‖0.1 Based on the above, in order to find the desired decomposition, we need to solve the
following optimisation problem

min
A,E

rank (A) + λ ‖E‖0 s.t. X = A + E (3.2)

where λ > 0 is a positive regulariser that determines the significance of minimising ‖E‖0 com-
pared to minimising rank (A). That is, for a larger λ the optimal solution will contain a sparser
E and a less low-rank A whereas a smaller λ will result to a denser E and a lower-rank A.

Due to the discrete nature of the rank and the `0-norm, the above problem is an NP-hard
combinatorial problem. In order to address this, most approaches attempt to replace the rank
and the `0-norm with appropriate approximant functions that are easier to minimise. We shall
represent such approximants of the rank and the `0-norm by r (·) and s (·) respectively. In this
case, the original NP-hard optimisation problem is relaxed to the following

min
A,E

r (A) + λ s (E) s.t. X = A + E (3.3)

Depending on the choice of r (·) and s (·), different instantiations of the above problem can be
produced. In this chapter, we will examine the optimisation problems that result from various
choices for r (·) and s (·) and we will describe the algorithms that have been developed in the
literature for solving them. We will conclude the chapter with a discussion over the advantages
and disadvantages of each approach and an analysis of their computational cost.

3.1 Robust Principal Component Analysis

An instance of problem (3.3) involves choosing r (·) and s (·) to be the convex envelopes of the
rank and the `0-norm respectively. The convex envelope of some function f is the largest convex

1To be precise, ‖E‖0 quantifies the non-sparsity of E, as the larger ‖E‖0 is, the less sparse E is.

3.1. Robust Principal Component Analysis 31

function which is pointwise less than f . As we have seen in section 2.1, the convex envelopes
of the rank and the `0-norm are the nuclear norm and the `1-norm respectively. Under these
substitutions, problem 3.3 becomes as follows

min
A,E
‖A‖∗ + λ ‖E‖1 s.t. X = A + E (3.4)

We shall refer to the above problem as Robust Principal Component Analysis.2 RPCA has the
advantage of being a convex problem, which means that it can easily be globally optimised. Per-
haps the most interesting fact about RPCA, though, is that, under some rather weak conditions,
the solution of problem (3.4) is, with overwhelming probability, the same as the solution of the
original NP-hard optimisation problem (3.2). This result was proved by Candès et al. [18] and
it practically means that, in most cases, RPCA is theoretically guaranteed to yield the correct
solution to the problem.

Since RPCA is a convex problem, convex optimisation methods such as interior point meth-
ods [59] can in principle be used to find the (global) solution. However, as it is indicated in
[18, 52], interior point methods use second-order information and therefore, even though they
have a superior rate of convergence, computing the step direction is expensive. In fact, for an
input matrix X ∈ Rn×n each step takes O

(
n6
)

to compute, which limits interior point methods
to matrices of size n < 102 on a typical desktop computer. In contrast, applications in computer
vision, web search or bioinformatics often require matrices of size n > 104, making interior point
methods impractical for many real-life applications.

To cope with the scalability requirements, recent approaches focus on first-order optimisa-
tion methods instead. In the following sections, we describe the two state-of-the-art methods
for RPCA, which are based on Accelerated Proximal Gradient and the method of Augmented
Lagrange Multipliers.

3.1.1 Solution Based on Accelerated Proximal Gradient

The APG algorithm for RPCA was first suggested in [51, 84]. As we have seen in section 2.3.2,
APG is primarily a method for unconstrained optimisation. Therefore, in order to apply APG
to RPCA, the RPCA problem is relaxed to the following unconstrained form

min
A,E
‖A‖∗ + λ ‖E‖1 +

1

2µ
‖X−A−E‖2F (3.5)

or equivalently

min
A,E

µ ‖A‖∗ + λµ ‖E‖1 +
1

2
‖X−A−E‖2F (3.6)

where µ > 0. Notice that as µ → 0 the unconstrained relaxation becomes equivalent to the
original constrained problem. If we write the above minimisation separately for A and for E, we
get the following two problems

min
A

µ ‖A‖∗ +
1

2
‖X−A−E‖2F (3.7)

min
E

λµ ‖E‖1 +
1

2
‖X−A−E‖2F (3.8)

In both cases, the smooth term is 1
2 ‖X−A−E‖2F , whose gradients with respect to A and E

are

∇A

(
1

2
‖X−A−E‖2F

)
= ∇E

(
1

2
‖X−A−E‖2F

)
= A + E−X (3.9)

It is easy to see that the Lipschitz constant of the above gradients is L = 1.

2In [18] it is also referred to as Principal Component Pursuit.

32 Chapter 3. Robust Low-Rank Modelling on Matrices

Based on the above, APG for RPCA is presented in detail in Algorithm 3.1. The proximal
parameter n is typically set to n = 2. Note that a continuation scheme is used for µ, i.e. µ
is initialised with a typically large value and at each iteration it is geometrically decreased by
ρ < 1 down to a lower limit µmin. This continuation scheme has been found [51, 84] to accelerate
convergence.

Algorithm 3.1: Matrix Robust PCA via APG

Input: Data matrix X, regulariser λ > 0
Initialise: A0 = A−1 = 0, E0 = E−1 = 0, µ0 > 0, t0 = t−1 = 1, k = 0

1 while not converged do

2 YA
k = Ak + tk−1−1

tk
(Ak −Ak−1)

3 YE
k = Ek + tk−1−1

tk
(Ek −Ek−1)

4 Ak+1 = Dµkn−1

{
YA
k − n−1

(
YA
k + YE

k −X
)}

5 Ek+1 = Sλµkn−1

{
YE
k − n−1

(
YA
k + YE

k −X
)}

6 µk+1 = max (ρµk, µmin)

7 tk+1 =
1+
√

1+4t2k
2

8 k ← k + 1

9 end while
Output: Low-rank component Ak, sparse component Ek

Recently, a generalisation of the above algorithm was introduced by He et al. [38] by replacing
problem (3.8) by the following generalised version instead

φ (X−A) = min
E

ϕ (E) +
1

2
‖X−A−E‖2F (3.10)

Here, ϕ (·) is chosen such that φ (·) be a robust M-estimator , which allows the method to be
robust to outliers. In this case, the proximal operator Pφ{·} is equal to the minimiser function
of the M-estimator φ (·) and typically has a closed algebraic form. The only difference from
Algorithm 3.1 is that, in the update of E, the shrinkage operator Sλµn−1 {·} is replaced by the
more general Pφ{·}. The reader may refer to [38] for further details.

3.1.2 Solution Based on Augmented Lagrange Multipliers

The ALM algorithm for RPCA was introduced in [52, 87] and was subsequently used in [18].
The augmented Lagrangian of the RPCA problem can be written as follows

Lµ (A,E,Y) = ‖A‖∗ + λ ‖E‖1 + 〈X−A−E,Y〉+
µ

2
‖X−A−E‖2F (3.11)

where Y is the matrix of Lagrange multipliers and µ > 0 is the penalty parameter. At each
iteration, ALM requires the minimisation of Lµ with respect to A and E. Keeping E fixed, the
minimisation with respect to A is done as follows

arg min
A
Lµ (A,E,Y)

= arg min
A
‖A‖∗ + 〈X−A−E,Y〉+

µ

2
‖X−A−E‖2F

= arg min
A

µ−1 ‖A‖∗ +
1

2

∥∥A− (X−E + µ−1Y
)∥∥2

F

= Dµ−1

{
X−E + µ−1Y

}
(3.12)

3.2. Bilinear Robust Principal Component Analysis 33

Keeping A fixed, the minimisation with respect to E is done as follows

arg min
E
Lµ (A,E,Y)

= arg min
E
λ ‖E‖1 + 〈X−A−E,Y〉+

µ

2
‖X−A−E‖2F

= arg min
E
λµ−1 ‖E‖1 +

1

2

∥∥E− (X−A + µ−1Y
)∥∥2

F

= Sλµ−1

{
X−A + µ−1Y

}
(3.13)

The minimisation of Lµ with respect to both A and E can be achieved by alternating between
the two above steps until convergence. This has to be done in each iteration of ALM. In [52] this
is referred to as Exact ALM . However, the authors show that running each step only once per
ALM iteration is still sufficient for convergence, while requiring much less computation. They
refer to this algorithm as Inexact ALM . We presented Inexact ALM in detail in Algorithm 3.2.
For simplicity, for the remaining of this thesis, we shall refer to Inexact ALM simply as ALM.

Algorithm 3.2: Matrix Robust PCA via ALM

Input: Data matrix X, regulariser λ > 0
Initialise: E0 = 0, Y0 = 0, µ0 > 0, k = 0

1 while not converged do
2 Ak+1 = Dµ−1

k

{
X−Ek + µ−1

k Yk

}
3 Ek+1 = Sλµ−1

k

{
X−Ak+1 + µ−1

k Yk

}
4 Yk+1 = Yk + µk (X−Ak+1 −Ek+1)
5 µk+1 = min (ρµk, µmax)
6 k ← k + 1

7 end while
Output: Low-rank component Ak, sparse component Ek

3.2 Bilinear Robust Principal Component Analysis

Solving the RPCA optimisation problem, using either APG or ALM, requires at each iteration the
computation of an SVD of size m×n, for an input matrix X ∈ Rm×n. This is a consequence of the
usage of the nuclear norm and, thus, the application of the singular value thresholding operator.
While this is acceptable for many cases, as X becomes larger or performance requirements become
higher, an SVD per iteration becomes too computationally expensive.

To alleviate this problem, Cabral et al. [14] use ideas from bilinear factorisation in order to
avoid the explicit usage of the nuclear norm and therefore remove the need for singular value
thresholding. Their approach is based on the following theorem.

Theorem 3.1 (Factorisation-based formulation of the nuclear norm). Let A ∈ Rm×n,U ∈ Rm×r
and V ∈ Rr×n, such that A = UV. The nuclear norm of A is the tightest lower bound of the
average of the square Frobenius norms of U and V. In other words

‖A‖∗ = min
A,U,V

1

2

(
‖U‖2F + ‖V‖2F

)
s.t. A = UV (3.14)

Proof. This theorem is a special case of Lemma 5.1 in [73]. See proof therein.

The above theorem says that 1
2

(
‖U‖2F + ‖V‖2F

)
is an attainable upper bound for ‖A‖∗,

where A = UV. Using this fact, the RPCA optimisation problem (3.4) can be relaxed to the

34 Chapter 3. Robust Low-Rank Modelling on Matrices

following

min
U,V,E

1

2

(
‖U‖2F + ‖V‖2F

)
+ λ ‖E‖1 s.t. X = UV + E (3.15)

We will refer to the above optimisation problem as Bilinear Robust Principal Component Analy-
sis. Notice the absence of nuclear norm in the objective of BRPCA. Cabral et al. [14] developed
an ALM algorithm for BRPCA, a slight variation of which we describe in the following.

The augmented Lagrangian of the BRPCA problem can be written as follows

Lµ (U,V,E,Y) =
1

2

(
‖U‖2F + ‖V‖2F

)
+ λ ‖E‖1 + 〈X−UV −E,Y〉+

µ

2
‖X−UV −E‖2F

(3.16)
Similarly to Inexact ALM for RPCA, we will minimise Lµ with respect to U,V and E separately
while keeping all other arguments fixed. The minimisation with respect to U becomes

arg min
U
Lµ (U,V,E,Y)

= arg min
U

1

2
‖U‖2F + 〈X−UV −E,Y〉+

µ

2
‖X−UV −E‖2F (3.17)

Since the above objective is differentiable, we can easily minimise it by forcing its derivative
equal to zero. We have

∂

∂U

(
1

2
‖U‖2F + 〈X−UV −E,Y〉+

µ

2
‖X−UV −E‖2F

)
= 0 ⇒

U−YVT − µ (X−UV −E) VT = 0 ⇒
U
(
VVT + µ−1I

)
−
(
X−E + µ−1Y

)
VT = 0 ⇒

U =
(
X−E + µ−1Y

)
VT

(
VVT + µ−1I

)−1
(3.18)

Next, we minimise Lµ with respect to V as follows

arg min
V
Lµ (U,V,E,Y)

= arg min
V

1

2
‖V‖2F + 〈X−UV −E,Y〉+

µ

2
‖X−UV −E‖2F (3.19)

Similarly, we take the derivative of the above objective and force it equal to zero.

∂

∂V

(
1

2
‖V‖2F + 〈X−UV −E,Y〉+

µ

2
‖X−UV −E‖2F

)
= 0 ⇒

V −UTY − µUT (X−UV −E) = 0 ⇒(
UTU + µ−1I

)
V −UT

(
X−E + µ−1Y

)
= 0 ⇒

V =
(
UTU + µ−1I

)−1
UT

(
X−E + µ−1Y

)
(3.20)

Finally, we minimise Lµ with respect to E as follows

arg min
E
Lµ (U,V,E,Y)

= arg min
E
λ ‖E‖1 + 〈X−UV −E,Y〉+

µ

2
‖X−UV −E‖2F

= arg min
E
λµ−1 ‖E‖1 +

1

2

∥∥E− (X−UV + µ−1Y
)∥∥2

F

= Sλµ−1

{
X−UV + µ−1Y

}
(3.21)

The full ALM algorithm is presented in Algorithm 3.3. Notice that the size of factorisation r,
i.e. the number of columns of U or the number of rows of V, is required as input. In [14] no
particular suggestion is made on how to initialise U or V. In our implementation, we initialise
U to have as columns the r first left singular vectors of X.

3.3. Inductive Robust Principal Component Analysis 35

Algorithm 3.3: Matrix Bilinear Robust PCA

Input: Data matrix X, regulariser λ > 0, factorisation size r
Initialise: U0 = [r first left singular vectors of X], E0 = 0, Y0 = 0, µ0 > 0, k = 0

1 while not converged do

2 Vk+1 =
(
UT
kUk + µ−1

k I
)−1

UT
k

(
X−Ek + µ−1

k Yk

)
3 Uk+1 =

(
X−Ek + µ−1

k Yk

)
VT
k+1

(
Vk+1V

T
k+1 + µ−1

k I
)−1

4 Ek+1 = Sλµ−1
k

{
X−Uk+1Vk+1 + µ−1

k Yk

}
5 Yk+1 = Yk + µk (X−Uk+1Vk+1 −Ek+1)
6 µk+1 = min (ρµk, µmax)
7 k ← k + 1

8 end while
Output: Low-rank component A = UkVk, sparse component Ek

3.3 Inductive Robust Principal Component Analysis

A major limitation of RPCA and BRPCA is that they are essentially transductive methods
in that they are more suitable for batch than online computation. Suppose that the input
data matrix is X and RPCA (or BRPCA) has been used to recover its low-rank and sparse
components A and E respectively. Now, suppose that a new data point xnew is observed, which
we also wish to decompose as xnew = anew + enew, with anew being the true signal and enew
being sparse noise. In order to do this, we need to perform RPCA (or BRPCA) on data matrix
X′ =

[
X xnew

]
, which includes the whole data matrix X that has previously been processed. It

becomes apparent that having to run the algorithm over all data every time a new data point is
observed is particularly unsuitable for applications where online—instead of batch—computation
is required.

In order to overcome the above limitation of RPCA, Bao et al. [5] proposed Inductive Robust
Principal Component Analysis. Given an initial data matrix X, rather than learning its low-
rank component A, IRPCA attempts to learn a projection matrix P which projects X onto the
low-dimensional subspace. In other words, P is such that A = PX. Subsequently, if a new data
point xnew is observed, it can be easily projected onto the low-dimensional subspace in order to
recover anew, or, in other words, anew = Pxnew.

The optimisation problem defining Inductive RPCA can be easily obtained by the RPCA
problem (3.4) by rewriting A = PX. Furthermore, notice that

rank (A) = rank (PX) ≤ rank (P) (3.22)

therefore minimising the rank of P implies minimising an upper bound on the rank of A. The
above motivates the formulation of IRPCA as the following optimisation problem

min
P,E
‖P‖∗ + λ ‖E‖1 s.t. X = PX + E (3.23)

However, due to the existence of the multiplicative term PX, the above problem cannot be
directly solved in the same way as RPCA. In the following, we will describe two algorithms for
solving the above problem. The first one, based on substitution and using the ALM method,
was proposed in the original IRPCA paper [5]. The second one is introduced in this thesis and
it is based on ALM with an extra linearisation step.

3.3.1 Solution Based on Substitution

In order to solve the IRPCA problem, Bao et al. [5] rewrite it in the following equivalent form

min
J,P,E

‖J‖∗ + λ ‖E‖1 s.t.
X = PX + E
P = J

(3.24)

36 Chapter 3. Robust Low-Rank Modelling on Matrices

The developed solution is based on ALM. The augmented Lagrangian of the above problem is

Lµ (J,P,E,Y1,Y2) = ‖J‖∗ + λ ‖E‖1 + 〈X−PX−E,Y1〉+ 〈P− J,Y2〉

+
µ

2
‖X−PX−E‖2F +

µ

2
‖P− J‖2F (3.25)

We shall minimise the above with respect to each argument separately. Fixing P and E, min-
imisation with respect to J is done as follows

arg min
J
Lµ (J,P,E,Y1,Y2)

= arg min
J
‖J‖∗ + 〈P− J,Y2〉+

µ

2
‖P− J‖2F

= arg min
J
µ−1 ‖J‖∗ +

1

2

∥∥J− (P + µ−1Y2

)∥∥2

F

= Dµ−1

{
P + µ−1Y2

}
(3.26)

Fixing J and E, we next minimise with respect to P. Since Lµ is differentiable with respect to
P, we can easily minimise it by forcing its derivative with respect to P equal to zero. Using the
following derivatives

∂

∂P
〈X−PX−E,Y1〉 = −Y1X

T (3.27)

∂

∂P
〈P− J,Y2〉 = Y2 (3.28)

∂

∂P

(µ
2
‖X−PX−E‖2F

)
= −µ (X−PX−E) XT (3.29)

∂

∂P

(µ
2
‖P− J‖2F

)
= µ (P− J) (3.30)

we obtain the following solution for P

∂Lµ
∂P

= 0 ⇒

P
(
XXT + I

)
−
(
X−E + µ−1Y1

)
XT − J + µ−1Y2 = 0 ⇒

P =
[(

X−E + µ−1Y1

)
XT + J− µ−1Y2

] (
XXT + I

)−1
(3.31)

Then, keeping J and P fixed, we minimise with respect to E as follows

arg min
E
Lµ (J,P,E,Y1,Y2)

= arg min
E
λ ‖E‖1 + 〈X−PX−E,Y1〉+

µ

2
‖X−PX−E‖2F

= arg min
E
λµ−1 ‖E‖1 +

1

2

∥∥E− (X−PX + µ−1Y1

)∥∥2

F

= Sλµ−1

{
X−PX + µ−1Y1

}
(3.32)

The full algorithm is presented in detail in Algorithm 3.4.

3.3.2 Solution Based on Linearisation

The drawback of the substitution-based ALM solution for IRPCA is that, by introducing aux-
iliary matrix J, it increases the number of variables to be optimised. We now introduce an
alternative ALM solution which does not require auxiliary variables, but instead relies on an in-
termediate linearisation step. This solution follows the so-called Linearised Alternating Direction
Method proposed by Lin et al. [53] for the problem of Low-Rank Representation.

3.3. Inductive Robust Principal Component Analysis 37

Algorithm 3.4: Matrix Inductive Robust PCA via substitution

Input: Data matrix X, regulariser λ > 0
Initialise: P0 = 0, E0 = 0, Y0

1 = 0, Y0
2 = 0, µ0 > 0, k = 0

1 while not converged do
2 Jk+1 = Dµ−1

k

{
Pk + µ−1

k Yk
2

}
3 Pk+1 =

[(
X−Ek + µ−1

k Yk
1

)
XT + Jk+1 − µ−1

k Yk
2

] (
XXT + I

)−1

4 Ek+1 = Sλµ−1
k

{
X−Pk+1X + µ−1

k Yk
1

}
5 Yk+1

1 = Yk
1 + µk (X−Pk+1X−Ek+1)

6 Yk+1
2 = Yk

2 + µk (Pk+1 − Jk+1)
7 µk+1 = min (ρµk, µmax)
8 k ← k + 1

9 end while
Output: Projection matrix Pk, sparse component Ek

We begin by considering the augmented Lagrangian of the original IRPCA problem

Lµ (P,E,Y) = ‖P‖∗ + λ ‖E‖1 + 〈X−PX−E,Y〉+
µ

2
‖X−PX−E‖2F (3.33)

We shall minimise Lµ with respect to each parameter separately. Fixing E, the minimisation
problem with respect to P becomes

arg min
P
Lµ (P,E,Y)

= arg min
P
‖P‖∗ + 〈X−PX−E,Y〉+

µ

2
‖X−PX−E‖2F

= arg min
P

µ−1 ‖P‖∗ +
1

2

∥∥PX−
(
X−E + µ−1Y

)∥∥2

F
(3.34)

Notice that the form of problem (3.34) is similar to problem (3.12). However, due to the presence
of the term PX, problem (3.34) is no longer a proximal operator. Instead, we shall replace it
with a proximal gradient update, which we will refer to as linearisation step.

To better understand the linearisation step, consider first the more general case

min
X

g (X) + f (X) (3.35)

where g (X) = a ‖X‖∗ and f (X) = 1
2 ‖XA−B‖2F . Notice that problem (3.34) is a special case

of the above. The derivative of the smooth term f (X) is the following

∇f (X) =
∂

∂X

(
1

2
‖XA−B‖2F

)
= (XA−B) AT (3.36)

Note that ∀X1,X2

‖∇f (X1)−∇f (X2)‖F =
∥∥X1AAT −BAT −X2AAT + BAT

∥∥
F

=
∥∥(X1 −X2) AAT

∥∥
F

≤
∥∥AAT

∥∥
F
‖X1 −X2‖F (3.37)

therefore ∇f is Lipschitz continuous with Lipschitz constant L =
∥∥AAT

∥∥
F

. If we applied the
proximal gradient algorithm in order to solve problem (3.35), the update step (2.67) would
become

Xk+1 = P(n−1g)

{
Xk − n−1∇f (Xk)

}
= Dan−1

{
Xk − n−1 (XkA−B) AT

}
(3.38)

38 Chapter 3. Robust Low-Rank Modelling on Matrices

By Theorem 2.12, we know that if n ≥
∥∥AAT

∥∥
F

the above update is guaranteed to not increase
the objective function. We shall refer to the above update as linearisation step.

Based on the above discussion, in order to solve problem (3.34) we would have to iterate the
linearisation step (3.38) until convergence. This would have to be done at each ALM iteration.
Fortunately, it can be shown that running step (3.38) only once at each ALM iteration is sufficient
for convergence. This version of ALM is known in the literature as Linearised Alternating
Direction Method or simply LADM. For more information and proofs of convergence, the reader
may refer to [53, 57].

Going back to problem (3.34), the linearisation step for P can be obtained by substituting
a = µ−1, A = X and B = X−E + µ−1Y in equation (3.38), which yields

Pk+1 = D(µn)−1

{
Pk − n−1

(
PkX−X + E− µ−1Y

)
XT
}

(3.39)

At the next step, we keep P fixed and minimise Lµ with respect to E, which is done as follows

arg min
E
Lµ (P,E,Y)

= arg min
E
λ ‖E‖1 + 〈X−PX−E,Y〉+

µ

2
‖X−PX−E‖2F

= arg min
E
λµ−1 ‖E‖1 +

1

2

∥∥E− (X−PX + µ−1Y
)∥∥2

F

= Sλµ−1

{
X−PX + µ−1Y

}
(3.40)

The procedure is presented in detail in Algorithm 3.5.

Algorithm 3.5: Matrix Inductive Robust PCA via linearisation

Input: Data matrix X, regulariser λ > 0
Initialise: P0 = 0, E0 = 0, Y0 = 0, µ0 > 0, n = max

(∥∥XXT
∥∥
F
, 1.0

)
, k = 0

1 while not converged do
2 Pk+1 = D(µkn)−1

{
Pk − n−1

(
PkX−X + Ek − µ−1

k Yk

)
XT
}

3 Ek+1 = Sλµ−1
k

{
X−Pk+1X + µ−1

k Yk

}
4 Yk+1 = Yk + µk (X−Pk+1X−Ek+1)
5 µk+1 = min (ρµk, µmax)
6 k ← k + 1

7 end while
Output: Projection matrix Pk, sparse component Ek

3.3.3 Connection to Low-Rank Representation

From a computational perspective, as it is also acknowledged in its original paper [5], IRPCA
has many similarities to Low-Rank Representation. LRR was proposed by Liu et al. [55] and it
can be described by the following optimisation problem

min
Z,E
‖Z‖∗ + λ ‖E‖1 s.t. X = DZ + E (3.41)

Here, the low-rank component is factorised as A = DZ, where D ∈ Rm×r is a given “dictionary”
and Z ∈ Rr×n is the representation of A in that dictionary. The objective of LRR is to find the
lowest-rank representation of A in D, in the presence of sparse corruptions. If we choose D = I,
LRR reduces to RPCA. Liu et al. [55] showed that if the data points are approximately sampled
from a union of low-dimensional linear subspaces, for certain choices of D (such as D = X) the
optimal Z is approximately block-diagonal, with each block corresponding to a linear subspace.
Hence, LRR is most commonly used in the problem of robust subspace clustering [83].

3.4. Orthonormal Robust Principal Component Analysis 39

The connection between LRR and IRPCA is not conceptual, since they address different
problems, but computational. That is, if we choose D = X, the only difference between them
is in the factorisation of the low-rank component; in IRPCA P is right-multiplied by X whereas
in LRR Z is left-multiplied by X. Therefore, LRR can also be solved, with small modifications,
by Algorithms 3.4 and 3.5. For details, see the original LRR paper [55], where LRR is solved by
the equivalent of Algorithm 3.4, and the paper by Lin et al. [53], where LRR is solved by the
equivalent of Algorithm 3.5.

3.4 Orthonormal Robust Principal Component Analysis

Given a data matrix X ∈ Rm×n, RPCA attempts to recover the low-rank matrix A ∈ Rm×n
which can be thought of as the projection of X onto a low-dimensional subspace, which we shall
refer to as the principal subspace. IRPCA takes this idea one step further and tries to learn the
projection matrix P ∈ Rm×m which projects X onto the principal subspace in order to retrieve A
(that is, A = PX). It would be interesting however to be able to retrieve the principal subspace
itself. Assuming that the principal subspace is r-dimensional, where r ≤ min (m,n), that would
require learning a set of basis vectors U =

[
u1 u2 · · · ur

]
∈ Rm×r which span the principal

subspace. To restrict the degrees of freedom of U, we may also require that this set of basis
vectors be orthonormal, i.e. UTU = I. Classical Principal Component Analysis typically refers
to such basis vectors as principal components. Having learned the principal components, the
projected data points would be represented as linear combinations of the principal components.
In other words, if V ∈ Rr×n is a matrix of appropriate coefficients, we can write A = UV.

In the following, we will modify the RPCA problem (3.4) so that a set of principal components
can be recovered as well. From the above discussion, we can write A = UV, with UTU = I.
Due to the unitary invariance of the nuclear norm (Theorem 2.2) we have the following3

‖A‖∗ = ‖UV‖∗ = ‖V‖∗ (3.42)

The minimisation problem then becomes

min
V,E,U

‖V‖∗ + λ ‖E‖1 s.t.
X = UV + E
UTU = I

(3.43)

In this thesis, we will refer to the above problem as Orthonormal Robust Principal Component
Analysis. This problem was introduced by Liu and Yan [54] as active subspace learning and
was further generalised by Papamakarios et al. [69] as Generalised Scalable Robust Principal
Component Analysis. In the following, we will describe the ALM algorithm that was presented
in [54] for the solution of ORPCA.

We shall begin by forming the augmented Lagrangian for the ORPCA problem. Notice that
this augmented Lagrangian is only partial, since it does not incorporate the constraint UTU = I.

Lµ (V,E,U,Y) = ‖V‖∗ + λ ‖E‖1 + 〈X−UV −E,Y〉+
µ

2
‖X−UV −E‖2F (3.44)

We will first minimise Lµ with respect to V keeping all other variables fixed. Bearing in mind

3In fact, this would be true for any Schatten p-norm. Also, since U is of full column rank, we have that
rank (A) = rank (UV) = rank (V).

40 Chapter 3. Robust Low-Rank Modelling on Matrices

that UTU = I and that the Frobenius norm is unitary invariant, the minimisation becomes

arg min
V
Lµ (V,E,U,Y)

= arg min
V
‖V‖∗ + 〈X−UV −E,Y〉+

µ

2
‖X−UV −E‖2F

= arg min
V

µ−1 ‖V‖∗ +
1

2

∥∥UV −
(
X−E + µ−1Y

)∥∥2

F

= arg min
V

µ−1 ‖V‖∗ +
1

2
‖UV‖2F −

〈
UV,X−E + µ−1Y

〉
= arg min

V
µ−1 ‖V‖∗ +

1

2
‖V‖2F −

〈
V,UT

(
X−E + µ−1Y

)〉
= arg min

V
µ−1 ‖V‖∗ +

1

2

∥∥V −UT
(
X−E + µ−1Y

)∥∥2

F

= Dµ−1

{
UT

(
X−E + µ−1Y

)}
(3.45)

We then minimise Lµ with respect to E as follows

arg min
E
Lµ (V,E,U,Y)

= arg min
E
λ ‖E‖1 + 〈X−UV −E,Y〉+

µ

2
‖X−UV −E‖2F

= arg min
E
λµ−1 ‖E‖1 +

1

2

∥∥E− (X−UV + µ−1Y
)∥∥2

F

= Sλµ−1

{
X−UV + µ−1Y

}
(3.46)

Next, we minimise Lµ with respect to U, subject to UTU = I. The minimisation problem
becomes

arg min
U
Lµ (V,E,U,Y)

= arg min
U
〈X−UV −E,Y〉+

µ

2
‖X−UV −E‖2F

= arg min
U

1

2

∥∥(X−E + µ−1Y
)
−UV

∥∥2

F
s.t. UTU = I (3.47)

Assume the following Singular Value Decomposition(
X−E + µ−1Y

)
VT = USDSVT

S (3.48)

Here, we assume that US ∈ Rm×r and DS ,VS ∈ Rr×r, where r ≤ m is the number of principal
components. According to the Reduced Rank Procrustes Theorem (Theorem 4 in [94]), the
optimiser U∗ of problem (3.47) is given by

U∗ = USVT
S (3.49)

The full ALM algorithm for ORPCA is described in Algorithm 3.6. In our implementation,
the number of principal components r is required as input. In ORPCA, this parameter serves as
a controllable upper bound on the rank of A, since

rank (A) = rank (UV) ≤ rank (U) = r (3.50)

It is important also to note that the ORPCA problem, unlike RPCA and IRPCA, is non-convex,
therefore the obtained solution depends on initialisation. In our implementation we initialise U
with the r first left singular vectors of X, which we have empirically found to be sufficient for
most cases. This initialisation is equivalent to setting U to be the first r principal components
that would be computed by classical PCA.

3.5. Robust Orthonormal Subspace Learning 41

Algorithm 3.6: Matrix Orthonormal Robust PCA

Input: Data matrix X, regulariser λ > 0, number of principal components r
Initialise: U0 = [r first left singular vectors of X], E0 = 0, Y0 = 0, µ0 > 0, k = 0

1 while not converged do
2 Vk+1 = Dµ−1

k

{
UT
k

(
X−Ek + µ−1

k Yk

)}
3 Ek+1 = Sλµ−1

k

{
X−UkVk+1 + µ−1

k Yk

}
4 [US ,DS ,VS] = svd

{(
X−Ek+1 + µ−1

k Yk

)
VT
k+1

}
5 Uk+1 = USVT

S

6 Yk+1 = Yk + µk (X−Uk+1Vk+1 −Ek+1)
7 µk+1 = min (ρµk, µmax)
8 k ← k + 1

9 end while
Output: Principal components Uk, coefficients Vk, sparse component Ek

3.5 Robust Orthonormal Subspace Learning

The computational cost of ORPCA is dominated by two SVDs per iteration, of size r × n and
m× r, where m× n is the size of the input matrix X and r is the specified number of principal
components. In most cases r is small, therefore ORPCA is typically more efficient than RPCA
or IRPCA. However, the total complexity is still quadratic to both m and n, due to the existence
of the SVDs.

Recently, Shu et al. [75] introduced Robust Orthonormal Subspace Learning, with the aim of
further improving computational efficiency by completely removing the need for SVDs. In its
formulation, ROSL is quite similar to ORPCA in that it decomposes A = UV with UTU = I.
However, ROSL avoids using the nuclear norm of V as a rank surrogate, so as to avoid singular
value thresholding and therefore the need for SVD. Instead, ROSL stems from the observation
that the rank of A is upper-bounded by the number of non-zero rows of V. Using a similar
notation as the one used for the `0-norm, let ‖V‖row-0 be the number of non-zero rows of V. We
can easily see that

rank (A) = rank (UV) = rank (V) ≤ ‖V‖row-0 (3.51)

Therefore, minimising ‖V‖row-0 results to minimising an upper bound on rank (A). In the same
way that the `0 norm is surrogated by the convex `1-norm, Shu et al. [75] suggest surrogating
‖V‖row-0 by the following convex norm

‖V‖row-1 =

r∑
i=1

‖vi‖2 (3.52)

where vi is the ith row of V ∈ Rr×n. Based on the above, the minimisation problem for ROSL
becomes the following

min
U,V,E

‖V‖row-1 + λ ‖E‖1 s.t.
X = UV + E
UTU = I

(3.53)

In the following, we will describe the ALM algorithm that is used in [75] to minimise the
above. We start by forming the partial augmented Lagrangian (not incorporating constraint
UTU = I) as follows

Lµ (U,V,E,Y) = ‖V‖row-1 + λ ‖E‖1 + 〈X−UV −E,Y〉+
µ

2
‖X−UV −E‖2F (3.54)

42 Chapter 3. Robust Low-Rank Modelling on Matrices

Algorithm 3.7: Robust Orthonormal Subspace Learning

Input: Data matrix X, regulariser λ > 0, number of principal components r
Initialise: U0 = 0, V0 = rand, E0 = 0, Y0 = 0, µ0 > 0, k = 0

1 while not converged do
2 for i ∈ {1, 2, . . . , r} do

3 Ri = X + µ−1
k Yk −Ek −

∑
j<i u

k+1
j

(
vk+1
j

)T −∑j>i u
k
j

(
vkj
)T

4 Ri ← Ri −
∑i−1
j=1 uk+1

j

(
uk+1
j

)T
Rj

5 uk+1
i = Riv

k
i

6 uk+1
i ← uk+1

i

‖uk+1
i ‖2

7 vk+1
i =Mµ−1

k

{(
uk+1
i

)T
Ri

}
8 end for
9 for i ∈ {1, 2, . . . , r} do

10 if
∥∥vk+1

i

∥∥
2

= 0 then

11 delete
(
uk+1
i ,vk+1

i

)
12 r ← r − 1

13 end if

14 end for

15 Ek+1 = Sλµ−1
k

{
X−Uk+1Vk+1 + µ−1

k Yk

}
16 Yk+1 = Yk + µk (X−Uk+1Vk+1 −Ek+1)
17 µk+1 = min (ρµk, µmax)
18 k ← k + 1

19 end while
Output: Principal components Uk, coefficients Vk, sparse component Ek

ROSL begins by minimising Lµ with respect to both U and V while keeping E fixed, by solving
the following minimisation problem

arg min
U,V
Lµ (U,V,E,Y)

= arg min
U,V
‖V‖row-1 + 〈X−UV −E,Y〉+

µ

2
‖X−UV −E‖2F (3.55)

In order to solve the above, ROSL attempts a Block Coordinate Descent (BCD) approach. Let ui
and vi be the ith column of U and the ith row of V respectively, with i ∈ {1, 2, . . . , r}. The BCD
approach updates each pair (ui,vi) sequentially, such that uiv

T
i is a good rank-1 approximation

to the following residual

Ri = X + µ−1Y −E−
r∑
j=1
j 6=i

ujv
T
j (3.56)

Without the orthonormality constraint UTU = I, this can be achieved by the following updates

ui ← Rivi (3.57)

vi ←
1

‖ui‖22
Mµ−1

{
uTi Ri

}
(3.58)

Here, Ma {·} is the magnitude shrinkage function which is defined as

Ma {X} = Sa {‖X‖F }X (3.59)

3.6. Complexity Analysis and Discussion 43

In order to take into account UTU = I, ui is orthonormalised using Gram-Schmidt orthonor-
malisation. For further information on the updates of ui and vi, the reader may refer to [8, 75].

The next step of ALM is the minimisation of Lµ with respect to E, which is done in the same
way as in ORPCA

arg min
E
Lµ (U,V,E,Y)

= arg min
E
λ ‖E‖1 + 〈X−UV −E,Y〉+

µ

2
‖X−UV −E‖2F

= arg min
E
λµ−1 ‖E‖1 +

1

2

∥∥E− (X−UV + µ−1Y
)∥∥2

F

= Sλµ−1

{
X−UV + µ−1Y

}
(3.60)

Finally, the full ALM algorithm for ROSL is given in Algorithm 3.7. Notice that U is
initialised as the zero matrix, while the entries of V are initialised uniformly at random in the
interval [0, 1]. The Gram-Schmidt orthonormalisation consists of step 4 (where each Ri is made
orthogonal to the rest) and step 6 (where each uk+1

i is normalised to unit length). Finally, steps
9 to 14 correspond to a pruning process, where the pair

(
uk+1
i ,vk+1

i

)
is removed from matrices

Uk+1 and Vk+1, if vk+1
i = 0. In such a case, the number of principal components r is reduced by

one. This ensures that, at the end, U will not contain principal components whose coefficients
in V are zero.

3.6 Complexity Analysis and Discussion

We conclude this chapter with a discussion over the advantages and disadvantages of each
method, and an analysis of each algorithm’s computational cost.

3.6.1 Regularisation-Based and Factorisation-Based Methods

In retrospect, we can categorise the methods presented in this chapter in two main groups, based
on the way they determine the rank of the low-rank component.

(i) Regularisation-based methods. These include RPCA and IRPCA. In these methods,
the rank of the low-rank component A is determined by the regularisation parameter λ.

(ii) Factorisation-based methods. These include BRPCA, ORPCA and ROSL. In these
methods, the low-rank component is factorised as A = UV, where the number of columns
in U (and number or rows in V) is r. The rank of A is implicitly determined by both λ
and r.

The obvious advantage of regularisation-based methods is that they require only one param-
eter to tune, which is λ. Even better, there exist theoretical results for RPCA (but not for
IRPCA) that provide strong suggestions on the choice of λ (see [18] for details). Also, these
methods involve convex optimisation problems, therefore global optimality is guaranteed for any
initialisation of the decision variables. Their main drawback is their computational cost, since
they require the computation of one SVD per iteration.

The factorisation-based methods rewrite A = UV, with r being the size of the factorisation
(i.e. the number of columns in U and number of rows in V). The obvious disadvantage is the
introduction of a new parameter r, which needs to be tuned. However, there is an attractive
interpretation of r as a “hard-coded” upper bound on the rank of A since

rank (A) = rank (UV) ≤ rank (U) ≤ r (3.61)

In applications where it is known that the rank of A is low (and there are many such applications
in computer vision, as we shall see in chapter 7) such an upper bound that is user-controllable can

44 Chapter 3. Robust Low-Rank Modelling on Matrices

prove quite useful. What is more, in ORPCA and ROSL the columns of U can be conveniently
interpreted as the principal components, which provides a useful insight about the form of the
principal subspace. Finally, as we shall see in the next section, the factorisation allows for
a significant reduction in computational cost. Contrary to one—typically large—SVD being
required per iteration in regularisation-based methods, in ORPCA two—typically small—SVDs
are required per iteration, whereas in BRPCA and ROSL the SVDs are avoided entirely. On the
other hand, the main drawback of factorisation is that it makes the problem non-convex. As a
result, global optimality is no longer guaranteed and the result relies heavily upon initialisation.
In practice however, as we shall see in the experiments of chapter 7, our suggested initialisations
yield results that are comparable to the convex regularisation-based methods.

3.6.2 Asymptotic Computational Complexity

As all methods are iterative, the total execution time depends both on the rate of convergence of
the optimisation algorithm used and on the computational cost per iteration. All optimisation
algorithms used (i.e. APG, ALM, ALM with linearisation) are first-order methods and have
similar rates of convergence (as discussed in chapter 2 and will be experimentally verified in
chapter 7). In this section, we will focus on the other aspect of total execution time and we will
compare the algorithms with respect to their computational cost per iteration.

Since we are mainly interested in how the algorithms scale to large matrices, our calculation
of computational cost will be based on asymptotic complexity using the “big O” notation, as
described in [23]. Based on [33], the various building blocks of the algorithms have the following
computational complexities.

(i) Matrix addition and scaling. For matrices X,Y ∈ Rm×n and scalar a ∈ R, matrix
addition X + Y and scaling aX cost O (mn).

(ii) Matrix multiplication. For matrices X ∈ Rm×n and Y ∈ Rn×k, matrix multiplication
XY costs O (mnk).

(iii) Matrix inversion. For a square matrix X ∈ Rn×n, computing X−1 costs O
(
n3
)

(iv) Singular Value Decomposition. For a rectangular matrix X ∈ Rm×n, computing the
SVD X = USVT with U ∈ Rm×min(m,n), S ∈ Rmin(m,n)×min(m,n) and V ∈ Rn×min(m,n),

costs O
(
mn min (m,n) + (min (m,n))

3
)

. See also [20] for a detailed calculation.

(v) Shrinkage operator on matrices. For a matrix X ∈ Rm×n, the shrinkage operator
Sa {X} performs a constant-time operation on each matrix entry, therefore its asymptotic
cost is O (mn).

(vi) Singular value thresholding. For a matrix X ∈ Rm×n, the singular value threshold-

ing Da {X} requires computing the SVD for a cost of O
(
mn min (m,n) + (min (m,n))

3
)

,

shrinking the singular values for a cost of O (min (m,n)) and “reassembling” the matrix
for a cost of O (mn min (m,n)). The total cost is that of the SVD.

Based on the above, Table 3.1 shows the asymptotic computational complexity per iteration
for each matrix algorithm, where the size of the input data matrix is m×n and the factorisation
size is r. The following important observations can be made.

(i) RPCA and IRPCA. If m ≤ n, the complexity of RPCA becomes O
(
m2n+m3

)
which

is the same as IRPCA. If however m > n, which means that the dimensionality of the data
points is larger than their number, a rather common case in practice, then the complexity
of RPCA becomes O

(
mn2 + n3

)
, which is more efficient than IRPCA.

3.6. Complexity Analysis and Discussion 45

Algorithm Convex? Computational cost per iteration

RPCA (apg) Yes O
(
mn min (m,n) + (min (m,n))

3
)

RPCA (alm) Yes O
(
mn min (m,n) + (min (m,n))

3
)

BRPCA No O
(
rmn+ r2 (m+ n) + r3

)
IRPCA (sub) Yes O

(
m2n+m3

)
IRPCA (lin) Yes O

(
m2n+m3

)
ORPCA No O

(
rmn+ r2 (m+ n) + r3

)
ROSL No O

(
r2mn

)
Table 3.1: Convexity and asymptotic computational complexity per iteration of all matrix algo-
rithms. The size of the input data matrix X is assumed to be m× n. In the factorisation-based
algorithms (i.e. BRPCA, ORPCA and ROSL), r is the factorisation size.

(ii) Factorisation-based methods. Since r is an upper bound on the rank of the low-rank
component, it is reasonable to assume that always r ≤ min (m,n). In most applications, r
is typically much less than both m and n, therefore factorisation-based methods have much
lower complexity than regularisation-based methods. Among factorisation-based methods,
BRPCA and ORPCA have the same complexity (even though in practice BRPCA is faster
since it avoids computing the SVD), whereas ROSL has a higher complexity. In case no
upper bound in the rank of the low-rank component is required and r is set equal to
min (m,n), the complexity of BRPCA and ORPCA becomes the same as RPCA. Finally,
it is interesting to note that ROSL is the only algorithm whose complexity is a polynomial
of degree 4; in all other cases, the complexity is a polynomial of degree 3.

In chapter 7, the total execution time of all algorithms will be evaluated experimentally, and the
above theoretical results will be confirmed.

Chapter 4

Robust Low-Rank Modelling on
Tensors

In chapter 3, we discussed methods for decomposing a data matrix into a low-rank and a sparse
component. In this chapter, we will extend such methods to the more general case of tensors.
Such extensions are interesting not only from a theoretical perspective, since tensors are the
higher-order generalisation of matrices, but also from a practical one.

To better understand the practical significance of using tensors, consider a data matrix
X =

[
x1 x2 · · · xn

]
∈ Rm×n, where each column xi is a data point in Rm. In a real-

life application, such data points would represent observations, which can be measurements of
any kind, signals, images, videos and so on. It is often the case that such observations have
some sort of inherent higher-order structure, which is inevitably destroyed when they are naively
represented as vectors xi ∈ Rm. For instance, images have a spatial structure, which might
be better represented as a matrix, whereas a video has both spatial and temporal structure,
which might be better represented as a 3rd-order tensor. Therefore, it becomes evident that
extending robust low-rank modelling to tensors would enable the application of low-rank/sparse
decomposition while preserving the higher-order structure that certain observations may have.

Robust low-rank modelling on tensors consists in decomposing a general N th-order tensor
X ∈ RI1×I2×···×IN as follows

X = A+ E (4.1)

whereA ∈ RI1×I2×···×IN is low-rank and E ∈ RI1×I2×···×IN is sparse. Before we are in a position
to start developing methods for performing such a decomposition, we need to describe what a
low-rank and a sparse tensor is and define measures for the rank and the sparsity of tensors.
Similarly to matrices, it is straightforward to use the `0-norm ‖·‖0, i.e. the number of non-zero
entries, as a measure for tensor sparsity. However, defining a measure for the tensor rank is a
more complicated issue than it is with matrices. As we have seen in section 2.2.3, the rank of a
tensor X is the minimum number of rank-1 tensors that generate X as their sum. Unfortunately,
this definition of the tensor rank is NP-hard to compute [37] and therefore impractical to use.

In this work, our measure of the tensor rank is based instead on the n-rank of X , represented
by rankn (X), which is the number of linearly independent n-mode fibres and is much easier
to compute than rank (X). In particular, our measure consists of a convex combination of all
n-ranks, as follows

N∑
i=1

airanki (X) where ai ≥ 0 and

N∑
i=1

ai = 1 (4.2)

The above approach for measuring the tensor rank has recently become a common choice, mainly
in the literature of low-rank tensor recovery (in works such as [29, 56, 85]). The reason for using a

4.1. Robust Principal Component Analysis 47

convex combination is that it makes it consistent with the rank of a matrix. Indeed, in the special
case where N = 2, i.e. the tensor is a matrix, we have that rank1 (X) = rank2 (X) = rank (X)
and therefore

a1rank1 (X) + a2rank2 (X) = (a1 + a2) rank (X) = rank (X) (4.3)

Having defined appropriate measures for tensor rank and sparsity, the low-rank/sparse de-
composition problem can be formulated as follows

min
A,E

N∑
i=1

airanki (A) + λ ‖E‖0 s.t. X = A+ E (4.4)

As it is, this problem is no easier than the equivalent NP-hard matrix problem in 3.2. To make
it tractable, we need to appropriately relax it. In the remaining of this chapter, we will consider
tractable relaxations that follow the same ideas used in the matrix case and we will show how
the methods of the matrix case can be extended to solve the new problems. We will conclude the
chapter with a discussion over the advantages and disadvantages of each method, a comparison
with the matrix case and an analysis of the computational cost of each algorithm.

4.1 Robust Principal Component Analysis

Matrix RPCA was formulated by replacing the rank and the `0-norm by their convex envelopes,
the nuclear norm and the elementwise `1-norm respectively. In order to do the same for tensors,
we need a good convex surrogate for equation (4.2). Since the convex envelope of rankn (X) =
rank

(
X[n]

)
is
∥∥X[n]

∥∥
∗, we will use the following convex surrogate for equation (4.2)

r (X) =

N∑
i=1

ai
∥∥X[i]

∥∥
∗ (4.5)

The use of r (X) as a convex surrogate for equation (4.2) has been studied by Signoretto et al. [76],
who proved (Theorem 4 in their paper) that in the case where a1 = a2 = · · · = aN = 1/N, if

Cf (X) is the true convex envelope of
∑N
i=1 airanki (X) then r (X) ≤ Cf (X). In other words,

r (X) is known to underestimate the true convex envelope. However, whether the equality is
strict and therefore r (X) is indeed the true convex envelope or there exists a tighter convex
surrogate than r (X) is not known yet.

Using the above relaxation, together with the elementwise `1-norm as a surrogate for the
`0-norm, tensor RPCA can be described by the following optimisation problem

min
A,E

N∑
i=1

ai
∥∥A[i]

∥∥
∗ + λ ‖E‖1 s.t. X = A+ E (4.6)

where ai ≥ 0 and
∑N
i=1 ai = 1. This problem was first studied by Li et al. [49], who developed

a penalty-based algorithm for solving it. However, their method contains a lot of parameters
that require tuning and is far from the state-of-the-art optimisation algorithms. Tensor RPCA
was also studied by Zhang et al. [90] in the context of image alignment. The problem they
consider is more general than the above, because they also consider affine transformations on X
for the purposes of alignment. Their method is based on ALM and it contains an intermediate
proximal gradient step. Recently, tensor RPCA was extensively studied by Goldfarb and Qin
[32], who proposed both ALM and APG algorithms for solving it and studied their convergence.
They also consider non-convex variations of tensor RPCA with user-specified rank constraints.
Finally, Huang et al. [40] provided sufficient conditions under which tensor RPCA is guaranteed
to exactly recover the low-rank component, thus extending the work of Candès et al. [18] to the
tensor case.

48 Chapter 4. Robust Low-Rank Modelling on Tensors

In this thesis, we describe an ALM algorithm for solving the tensor RPCA problem, similar
to the one proposed in [32]. The difficulty in solving this problem stems from the fact that the
terms A[i] are interdependent, i.e. they contain the same entries in different arrangements. To
remove this interdependence, the problem is written in the following equivalent form

min
{Ji},A,E

N∑
i=1

ai ‖Ji‖∗ + λ ‖E‖1 s.t.
X = A+ E
A[i] = Ji ∀i ∈ {1, 2, . . . , N}

(4.7)

The corresponding augmented Lagrangian is

Lµ ({Ji},A,E,Y1, {Y2i}) =

N∑
i=1

ai ‖Ji‖∗ + λ ‖E‖1 + 〈X −A− E,Y1〉+

N∑
i=1

〈
A[i] − Ji,Y2i

〉
+
µ

2
‖X −A− E‖2F +

N∑
i=1

µ

2

∥∥A[i] − Ji
∥∥2

F
(4.8)

In the above, Y1 and {Y2i} are the Lagrange multipliers and µ > 0 is the penalty parameter.
Notice that Y1 is a tensor of multipliers whereas {Y2i} is a set of N matrices of multipliers. The
minimisation of Lµ with respect to each Ji for i ∈ {1, 2, . . . , N} is done as follows

arg min
Ji

Lµ ({Ji},A,E,Y1, {Y2i})

= arg min
Ji

ai ‖Ji‖∗ +
〈
A[i] − Ji,Y2i

〉
+
µ

2

∥∥A[i] − Ji
∥∥2

F

= arg min
Ji

aiµ
−1 ‖Ji‖∗ +

1

2

∥∥Ji − (A[i] + µ−1Y2i

)∥∥2

F

= Daiµ−1

{
A[i] + µ−1Y2i

}
(4.9)

Then, we minimise Lµ with respect to A as follows

arg min
A
Lµ ({Ji},A,E,Y1, {Y2i})

= arg min
A
〈X −A− E,Y1〉+

N∑
i=1

〈
A[i] − Ji,Y2i

〉
+
µ

2
‖X −A− E‖2F +

N∑
i=1

µ

2

∥∥A[i] − Ji
∥∥2

F

= arg min
A
〈X −A− E,Y1〉+

N∑
i=1

〈A−J i,Y2i〉+
µ

2
‖X −A− E‖2F +

N∑
i=1

µ

2
‖A−J i‖2F

(4.10)

Here we have considered the tensorised forms of each Ji and Y2i, represented by J i and Y2i

respectively, in order to avoid the repeated matricisations of A. By tensorised form we simply
mean the rearrangement of the matrix entries such that they form a tensor of the appropriate
dimensions, which can be thought of as the reverse process of matricisation. The above can be
easily minimised by forcing its derivative with respect to A equal to zero. Using the following
derivatives

∂

∂A 〈X −A− E,Y1〉 = −Y1 (4.11)

∂

∂A

(
N∑
i=1

〈A−J i,Y2i〉

)
=

N∑
i=1

Y2i (4.12)

∂

∂A

(µ
2
‖X −A− E‖2F

)
= µ (A+ E −X) (4.13)

∂

∂A

(
N∑
i=1

µ

2
‖A−J i‖2F

)
= µNA− µ

N∑
i=1

J i (4.14)

4.2. Bilinear Robust Principal Component Analysis 49

the minimisation becomes

∂Lµ
∂A = 0 ⇒

(N + 1)A−X + E − µ−1Y1 −
N∑
i=1

(
J i − µ−1Y2i

)
= 0 ⇒

A = (N + 1)
−1

[
X − E + µ−1Y1 +

N∑
i=1

(
J i − µ−1Y2i

)]
(4.15)

Next, we minimise Lµ with respect to E as follows

arg min
E
Lµ ({Ji},A,E,Y1, {Y2i})

= arg min
E
λ ‖E‖1 + 〈X −A− E,Y1〉+

µ

2
‖X −A− E‖2F

= arg min
E
λµ−1 ‖E‖1 +

1

2

∥∥E − (X −A+ µ−1Y1

)∥∥2

F

= Sλµ−1

{
X −A+ µ−1Y1

}
(4.16)

Finally, the full ALM algorithm for tensor RPCA is presented in Algorithm 4.1.

Algorithm 4.1: Tensor Robust PCA

Input: Data tensor X , regulariser λ > 0, weights {ai}
Initialise: J0

i = 0, A0 = 0, E0 = 0, Y0
1 = 0, Y0

2i = 0, µ0 > 0, k = 0
1 while not converged do
2 for i ∈ {1, 2, . . . , N} do

3 Jk+1
i = Daiµ−1

k

{
(Ak)[i] + µ−1

k Yk
2i

}
4 end for

5 Ak+1 = (N + 1)
−1
[
X − Ek + µ−1

k Y
k
1 +

∑N
i=1

(
J k+1
i − µ−1

k Y
k
2i

)]
6 Ek+1 = Sλµ−1

k

{
X −Ak+1 + µ−1

k Y
k
1

}
7 Yk+1

1 = Yk1 + µk (X −Ak+1 − Ek+1)
8 for i ∈ {1, 2, . . . , N} do

9 Yk+1
2i = Yk

2i + µk

(
(Ak+1)[i] − Jk+1

i

)
10 end for
11 µk+1 = min (ρµk, µmax)
12 k ← k + 1

13 end while
Output: Low-rank component Ak, sparse component Ek

4.2 Bilinear Robust Principal Component Analysis

On matrices, BRPCA is a technique to avoid the nuclear norm term in the RPCA formulation,
and hence the need for computing the SVD, using the following (Theorem 3.1)

‖A‖∗ = min
A,U,V

1

2

(
‖U‖2F + ‖V‖2F

)
s.t. A = UV (4.17)

50 Chapter 4. Robust Low-Rank Modelling on Tensors

Using the same idea, in this section we will extend BRPCA to tensors. Recall the following
equivalent formulation of tensor RPCA

min
{Ji},A,E

N∑
i=1

ai ‖Ji‖∗ + λ ‖E‖1 s.t.
X = A+ E
A[i] = Ji ∀i ∈ {1, 2, . . . , N}

(4.18)

If we rewrite each Ji as Ji = UiVi and use the fact that ‖Ji‖∗ ≤
1
2

(
‖Ui‖2F + ‖Vi‖2F

)
, we can

relax tensor RPCA as the following

min
{Ui},{Vi},A,E

N∑
i=1

ai
2

(
‖Ui‖2F + ‖Vi‖2F

)
+ λ ‖E‖1 s.t.

X = A+ E
A[i] = UiVi ∀i ∈ {1, 2, . . . , N}

(4.19)
The above optimisation problem defines tensor BRPCA. Notice that it contains no nuclear norm
terms. In the following, we will show how it can be solved using ALM.

We start by forming the augmented Lagrangian, which can be written as follows

Lµ ({Ui}, {Vi},A,E,Y1, {Y2i}) =

N∑
i=1

ai
2

(
‖Ui‖2F + ‖Vi‖2F

)
+ λ ‖E‖1 + 〈X −A− E,Y1〉

+

N∑
i=1

〈
A[i] −UiVi,Y2i

〉
+
µ

2
‖X −A− E‖2F +

N∑
i=1

µ

2

∥∥A[i] −UiVi

∥∥2

F
(4.20)

We will first minimise Lµ with respect to each Ui for i ∈ {1, 2, . . . , N} as follows

arg min
Ui

Lµ ({Ui}, {Vi},A,E,Y1, {Y2i})

= arg min
Ui

ai
2
‖Ui‖2F +

〈
A[i] −UiVi,Y2i

〉
+
µ

2

∥∥A[i] −UiVi

∥∥2

F
(4.21)

Since all terms in the above objective are differentiable, it suffices to set its derivative with
respect to Ui to zero.

∂

∂Ui

(ai
2
‖Ui‖2F +

〈
A[i] −UiVi,Y2i

〉
+
µ

2

∥∥A[i] −UiVi

∥∥2

F

)
= 0 ⇒

aiUi −Y2iV
T
i − µ

(
A[i] −UiVi

)
VT
i = 0 ⇒

Ui

(
ViV

T
i + aiµ

−1I
)
−
(
A[i] + µ−1Y2i

)
VT
i = 0 ⇒

Ui =
(
A[i] + µ−1Y2i

)
VT
i

(
ViV

T
i + aiµ

−1I
)−1

(4.22)

Similarly, we minimise Lµ with respect to each Vi for i ∈ {1, 2, . . . , N} as follows

arg min
Vi

Lµ ({Ui}, {Vi},A,E,Y1, {Y2i})

= arg min
Vi

ai
2
‖Vi‖2F +

〈
A[i] −UiVi,Y2i

〉
+
µ

2

∥∥A[i] −UiVi

∥∥2

F
(4.23)

Setting the derivative of the objective with respect to Vi to zero yields

∂

∂Vi

(ai
2
‖Vi‖2F +

〈
A[i] −UiVi,Y2i

〉
+
µ

2

∥∥A[i] −UiVi

∥∥2

F

)
= 0 ⇒

aiVi −UT
i Y2i − µUT

i

(
A[i] −UiVi

)
= 0 ⇒(

UT
i Ui + aiµ

−1I
)
Vi −UT

i

(
A[i] + µ−1Y2i

)
= 0 ⇒

Vi =
(
UT
i Ui + aiµ

−1I
)−1

UT
i

(
A[i] + µ−1Y2i

)
(4.24)

4.3. Inductive Robust Principal Component Analysis 51

The minimisation of Lµ with respect to A can be easily obtained by the equivalent step of tensor
RPCA. Let Ji = UiVi and assume J i to be the appropriate tensorisation of Ji (i.e. the inverse
of the i-mode factorisation of A). Then the minimisation becomes as follows

arg min
A
Lµ ({Ui}, {Vi},A,E,Y1, {Y2i})

= arg min
A
〈X −A− E,Y1〉+

N∑
i=1

〈
A[i] − Ji,Y2i

〉
+
µ

2
‖X −A− E‖2F +

N∑
i=1

µ

2

∥∥A[i] − Ji
∥∥2

F

= arg min
A
〈X −A− E,Y1〉+

N∑
i=1

〈A−J i,Y2i〉+
µ

2
‖X −A− E‖2F +

N∑
i=1

µ

2
‖A−J i‖2F

(4.25)

Notice that the above is identical to problem (4.10) and therefore its solution is given by

A = (N + 1)
−1

[
X − E + µ−1Y1 +

N∑
i=1

(
J i − µ−1Y2i

)]
(4.26)

Finally, minimising Lµ with respect to E yields

arg min
E
Lµ ({Ui}, {Vi},A,E,Y1, {Y2i})

= arg min
E
λ ‖E‖1 + 〈X −A− E,Y1〉+

µ

2
‖X −A− E‖2F

= arg min
E
λµ−1 ‖E‖1 +

1

2

∥∥E − (X −A+ µ−1Y1

)∥∥2

F

= Sλµ−1

{
X −A+ µ−1Y1

}
(4.27)

The full algorithm for tensor BRPCA is described in detail in Algorithm 4.2. Notice that the
factorisation sizes {ri} are needed as input. Here, ri is the number of columns of Ui and the
number of rows of Vi, for each i ∈ {1, 2, . . . , N}. It is important to understand the significance
of ri, since

ranki (A) = rank
(
A[i]

)
= rank (UiVi) ≤ rank (Ui) ≤ ri (4.28)

which means that ri serves as a controllable upper bound for the n-rank of A. Furthermore,
notice that in our implementation we initialise the entries of each Ui and of A uniformly at
random in the interval [0, 1]. Initialisation is important, since the problem is non-convex and
therefore initialisation determines the final solution.

4.3 Inductive Robust Principal Component Analysis

The motivation for matrix IRPCA was the need for an online equivalent of RPCA. In order to
achieve this, the low-rank component A was written as A = PX and the algorithm was modified
to learn the projection matrix P instead of the low-rank component A. In this section, we will
extend the IRPCA problem to tensors and develop algorithms to solve it.

The objective of matrix IRPCA is to learn a projection matrix P ∈ Rm×m which projects
the columns of data matrix X ∈ Rm×n onto the principal subspace. In the case of an N th-order
data tensor X ∈ RI1×I2×···×IN , the equivalent objective becomes to learn a projection matrix
Pi ∈ RIi×Ii for each mode of X ; each projection matrix Pi will project the i-mode fibres of X ,
for i ∈ {1, 2, . . . , N}. Therefore, we shall rewrite the low-rank component A ∈ RI1×I2×···×IN as
follows

A = X ×Ni=1 Pi (4.29)

52 Chapter 4. Robust Low-Rank Modelling on Tensors

Algorithm 4.2: Tensor Bilinear Robust PCA

Input: Data tensor X , regulariser λ > 0, weights {ai}, factorisation sizes {ri}
Initialise: U0

i = rand, A0 = rand, E0 = 0, Y0
1 = 0, Y0

2i = 0, µ0 > 0, k = 0
1 while not converged do
2 for i ∈ {1, 2, . . . , N} do

3 Vk+1
i =

((
Uk
i

)T
Uk
i + aiµ

−1
k I
)−1 (

Uk
i

)T (
(Ak)[i] + µ−1

k Yk
2i

)
4 Uk+1

i =
(

(Ak)[i] + µ−1
k Yk

2i

) (
Vk+1
i

)T (
Vk+1
i

(
Vk+1
i

)T
+ aiµ

−1
k I
)−1

5 Jk+1
i = Uk+1

i Vk+1
i

6 end for

7 Ak+1 = (N + 1)
−1
[
X − Ek + µ−1

k Y
k
1 +

∑N
i=1

(
J k+1
i − µ−1

k Y
k
2i

)]
8 Ek+1 = Sλµ−1

k

{
X −Ak+1 + µ−1

k Y
k
1

}
9 Yk+1

1 = Yk1 + µk (X −Ak+1 − Ek+1)
10 for i ∈ {1, 2, . . . , N} do

11 Yk+1
2i = Yk

2i + µk

(
(Ak+1)[i] − Jk+1

i

)
12 end for
13 µk+1 = min (ρµk, µmax)
14 k ← k + 1

15 end while
Output: Low-rank component Ak, sparse component Ek

By Theorem 2.7, the following holds for the n-ranks of A

ranki (A) ≤ rank (Pi) (4.30)

which means that minimising rank (Pi) is equivalent to minimising an upper bound on ranki (A).
Based on the discussion above, we define tensor IRPCA as the following optimisation problem

min
{Pi},E

N∑
i=1

ai ‖Pi‖∗ + λ ‖E‖1 s.t. X = X ×Ni=1 Pi + E (4.31)

In the following subsections, we will derive two algorithms for solving the above problem. The
first is based on ALM with substitution of variables and the second is based on ALM with a
linearisation step.

4.3.1 Solution Based on Substitution

The IRPCA problem can equivalently be written as follows

min
{Ji},{Pi},E

N∑
i=1

ai ‖Ji‖∗ + λ ‖E‖1 s.t.
X = X ×Ni=1 Pi + E
Pi = Ji ∀i ∈ {1, 2, . . . , N}

(4.32)

We will derive an ALM algorithm for solving the above. The augmented Lagrangian can be
written as

Lµ ({Ji}, {Pi},E,Y1, {Y2i}) =

N∑
i=1

ai ‖Ji‖∗ + λ ‖E‖1 +
〈
X −X ×Ni=1 Pi − E,Y1

〉
+

N∑
i=1

〈Pi − Ji,Y2i〉+
µ

2

∥∥X −X ×Ni=1 Pi − E
∥∥2

F
+

N∑
i=1

µ

2
‖Pi − Ji‖2F (4.33)

4.3. Inductive Robust Principal Component Analysis 53

We will minimise Lµ with respect to each parameter separately, keeping all others fixed. We
start by minimising Lµ with respect to each Ji for i ∈ {1, 2, . . . , N} as follows

arg min
Ji

Lµ ({Ji}, {Pi},E,Y1, {Y2i})

= arg min
Ji

ai ‖Ji‖∗ + 〈Pi − Ji,Y2i〉+
µ

2
‖Pi − Ji‖2F

= arg min
Ji

aiµ
−1 ‖Ji‖∗ +

1

2

∥∥Ji − (Pi + µ−1Y2i

)∥∥2

F

= Daiµ−1

{
Pi + µ−1Y2i

}
(4.34)

We continue by minimising Lµ with respect to each Pi for i ∈ {1, 2, . . . , N} as follows

arg min
Pi

Lµ ({Ji}, {Pi},E,Y1, {Y2i})

= arg min
Pi

〈
X −X ×Nj=1 Pj − E,Y1

〉
+ 〈Pi − Ji,Y2i〉

+
µ

2

∥∥X −X ×Nj=1 Pj − E
∥∥2

F
+
µ

2
‖Pi − Ji‖2F

= arg min
Pi

〈
X[i] −PiXi −E[i], (Y1)[i]

〉
+ 〈Pi − Ji,Y2i〉

+
µ

2

∥∥X[i] −PiXi −E[i]

∥∥2

F
+
µ

2
‖Pi − Ji‖2F (4.35)

where

Xi = X[i]

 1⊗
j=N
j 6=i

PT
j

 = (X ×j 6=i Pj)[i] (4.36)

Notice that all the terms in the above objective are differentiable, therefore we can simply
minimise it by forcing its derivative with respect to Pi equal to zero. Using the derivatives

∂

∂Pi

〈
X[i] −PiXi −E[i], (Y1)[i]

〉
= − (Y1)[i] X

T
i (4.37)

∂

∂Pi
〈Pi − Ji,Y2i〉 = Y2i (4.38)

∂

∂Pi

(µ
2

∥∥X[i] −PiXi −E[i]

∥∥2

F

)
= −µ

(
X[i] −PiXi −E[i]

)
XT
i (4.39)

∂

∂Pi

(µ
2
‖Pi − Ji‖2F

)
= µ (Pi − Ji) (4.40)

we get the following result

∂Lµ
∂Pi

= 0 ⇒

Pi

(
XiX

T
i + I

)
−
(
X[i] −E[i] + µ−1 (Y1)[i]

)
XT
i − Ji + µ−1Y2i = 0 ⇒

Pi =
[(

X[i] −E[i] + µ−1 (Y1)[i]

)
XT
i + Ji − µ−1Y2i

] (
XiX

T
i + I

)−1
(4.41)

Next, we minimise Lµ with respect to E as follows

arg min
E
Lµ ({Ji}, {Pi},E,Y1, {Y2i})

= arg min
E
λ ‖E‖1 +

〈
X −X ×Ni=1 Pi − E,Y1

〉
+
µ

2

∥∥X −X ×Ni=1 Pi − E
∥∥2

F

= arg min
E
λµ−1 ‖E‖1 +

1

2

∥∥E − (X −X ×Ni=1 Pi + µ−1Y1

)∥∥2

F

= Sλµ−1

{
X −X ×Ni=1 Pi + µ−1Y1

}
(4.42)

54 Chapter 4. Robust Low-Rank Modelling on Tensors

The substitution-based tensor IRPCA algorithm is presented in detail in Algorithm 4.3.
Note that unlike matrix IRPCA, tensor IRPCA is a non-convex optimisation problem, therefore
initialisation is important. In our implementation, we initialise projection matrices Pi as follows

P0
i = UiU

T
i (4.43)

where Ui is formed by the first ri left singular vectors of X[i]. Here, {ri} are pre-specified
parameters. Empirically, we have found this “warm” initialisation to work best.

Algorithm 4.3: Tensor Inductive Robust PCA via substitution

Input: Data tensor X , regulariser λ > 0, weights {ai}, initialisation parameters {ri}
Initialise: J0

i = P0
i = UiU

T
i , Ui =

[
ri first left singular vectors of X[i]

]
, E0 = 0, Y0

1 = 0,
Y0

2i = 0, µ0 > 0, k = 0
1 while not converged do
2 for i ∈ {1, 2, . . . , N} do

3 Jk+1
i = Daiµ−1

k

{
Pk
i + µ−1

k Yk
2i

}
4 Xi =

(
X ×1 Pk+1

1 ×2 · · · ×i−1 Pk+1
i−1 ×i+1 Pk

i+1 ×i+2 · · · ×N Pk
N

)
[i]

5 Pk+1
i =

[(
X[i] − (Ek)[i] + µ−1

k

(
Yk

1

)
[i]

)
XT
i + Jk+1

i − µ−1
k Yk

2i

] (
XiX

T
i + I

)−1

6 end for

7 Ek+1 = Sλµ−1
k

{
X −X ×Ni=1 Pk+1

i + µ−1
k Y

k
1

}
8 Yk+1

1 = Yk1 + µk
(
X −X ×Ni=1 Pk+1

i − Ek+1

)
9 for i ∈ {1, 2, . . . , N} do

10 Yk+1
2i = Yk

2i + µk
(
Pk+1
i − Jk+1

i

)
11 end for
12 µk+1 = min (ρµk, µmax)
13 k ← k + 1

14 end while

Output: Projection matrices {Pk
i }, sparse component Ek

4.3.2 Solution Based on Linearisation

Here, we will develop an algorithm for tensor IRPCA based on ALM with a linearisation step,
similar to matrix IRPCA. We start by forming the augmented Lagrangian of the tensor IRPCA
optimisation problem

Lµ ({Pi},E,Y) =

N∑
i=1

ai ‖Pi‖∗+λ ‖E‖1 +
〈
X −X ×Ni=1 Pi − E,Y

〉
+
µ

2

∥∥X −X ×Ni=1 Pi − E
∥∥2

F

(4.44)
We will minimise the above with respect to each argument separately. Keeping all other argu-
ments fixed, we minimise Lµ with respect to each Pi for i ∈ {1, 2, . . . , N} as follows

arg min
Pi

Lµ ({Pi},E,Y)

= arg min
Pi

ai ‖Pi‖∗ +
〈
X −X ×Nj=1 Pj − E,Y

〉
+
µ

2

∥∥X −X ×Nj=1 Pj − E
∥∥2

F

= arg min
Pi

aiµ
−1 ‖Pi‖∗ +

1

2

∥∥X ×Nj=1 Pj −
(
X − E + µ−1Y

)∥∥2

F

= arg min
Pi

aiµ
−1 ‖Pi‖∗ +

1

2

∥∥PiXi −
(
X[i] −E[i] + µ−1Y[i]

)∥∥2

F
(4.45)

4.4. Robust Higher Order Singular Value Decomposition 55

where

Xi = X[i]

 1⊗
j=N
j 6=i

PT
j

 = (X ×j 6=i Pj)[i] (4.46)

Notice that the above is a special case of problem (3.35). Therefore, we can apply in the same
way a linearisation step to obtain a solution to the above problem. Using equation (3.38) and
making the substitutions a = aiµ

−1, A = Xi and B = X[i] − E[i] + µ−1Y[i], we get for Pi the
following update

Pk+1
i = Dai(µn)−1

{
Pk
i − n−1

(
Pk
iXi −X[i] + E[i] − µ−1Y[i]

)
XT
i

}
(4.47)

Next, we minimise Lµ with respect to E as follows

arg min
E
Lµ ({Pi},E,Y)

= arg min
E
λ ‖E‖1 +

〈
X −X ×Ni=1 Pi − E,Y

〉
+
µ

2

∥∥X −X ×Ni=1 Pi − E
∥∥2

F

= arg min
E
λµ−1 ‖E‖1 +

1

2

∥∥E − (X −X ×Ni=1 Pi + µ−1Y
)∥∥2

F

= Sλµ−1

{
X −X ×Ni=1 Pi + µ−1Y

}
(4.48)

The linearisation-based ALM algorithm for tensor IRPCA is presented in detail in Algorithm
4.4. Notice that the projection matrices Pi are initialised in the same way as in the substitution-
based algorithm (Algorithm 4.3).

Algorithm 4.4: Tensor Inductive Robust PCA via linearisation

Input: Data tensor X , regulariser λ > 0, weights {ai}, initialisation parameters {ri}
Initialise: P0

i = UiU
T
i , Ui =

[
ri first left singular vectors of X[i]

]
, E0 = 0, Y0 = 0,

µ0 > 0, k = 0
1 while not converged do
2 for i ∈ {1, 2, . . . , N} do

3 Xi =
(
X ×1 Pk+1

1 ×2 · · · ×i−1 Pk+1
i−1 ×i+1 Pk

i+1 ×i+2 · · · ×N Pk
N

)
[i]

4 n = max
(∥∥XiX

T
i

∥∥
F
, 1.0

)
5 Pk+1

i = Dai(µkn)−1

{
Pk
i − n−1

(
Pk
iXi −X[i] + (Ek)[i] − µ

−1
k (Yk)[i]

)
XT
i

}
6 end for

7 Ek+1 = Sλµ−1
k

{
X −X ×Ni=1 Pk+1

i + µ−1
k Yk

}
8 Yk+1 = Yk + µk

(
X −X ×Ni=1 Pk+1

i − Ek+1

)
9 µk+1 = min (ρµk, µmax)

10 k ← k + 1

11 end while

Output: Projection matrices {Pk
i }, sparse component Ek

4.4 Robust Higher Order Singular Value Decomposition

The motivation behind matrix ORPCA was recovering a set of basis vectors for the principal
subspace. In order to achieve this, the low-rank component A ∈ Rm×n was written as A = UV
with UTU = I, where U ∈ Rm×r has as columns the r orthonormal basis vectors and V ∈ Rr×n
has as columns the coefficients for each data point. In this section, we will show how the above
can be extended to tensors.

56 Chapter 4. Robust Low-Rank Modelling on Tensors

Let X ∈ RI1×I2×···×IN be an N th-order data tensor and letA ∈ RI1×I2×···×IN be its low-rank
component. We shall refer to the space spanned by the n-mode fibres as n-mode space. The
tensor equivalent of ORPCA is rewriting the low-rank component A as follows

A = V ×Ni=1 Ui where UT
i Ui = I ∀i ∈ {1, 2, . . . , N} (4.49)

In other words, we seek a set of basis vectors Ui for each n-mode space. The major difference
from the matrix case is that the coefficients for the basis vectors are shared by all modes and
form the core tensor V . It is easy to see that the above expression for A is, in fact, its HOSVD.
For this reason, we will refer to the tensor extension of ORPCA as Robust Higher Order Singular
Value Decomposition.

Given the above expression for the low-rank component A, from Theorem 2.7 we have the
following

ranki (A) ≤ ranki (V) (4.50)

Therefore, minimising the n-ranks of the core tensor V is equivalent to minimising the n-ranks
of the low-rank component A. Furthermore, the following theorem holds for the nuclear norm
of each matricisation.1

Theorem 4.1 (Equality of nuclear norms in HOSVD). Let A ∈ RI1×I2×···×IN be and N th-order
tensor with the following HOSVD

A = V ×Ni=1 Ui (4.51)

with UT
i Ui = I for all i ∈ {1, 2, . . . , N}. Then, for all matricisations, the following equality

holds ∥∥A[i]

∥∥
∗ =

∥∥V[i]

∥∥
∗ (4.52)

Proof. We have that

A[i] = UiV[i]B
T
i (4.53)

where

Bi =

1⊗
j=N
j 6=i

Uj (4.54)

By definition, UT
i Ui = I. The same holds for Bi, since

BT
i Bi =

 1⊗
j=N
j 6=i

UT
j


 1⊗
j=N
j 6=i

Uj

 =

1⊗
j=N
j 6=i

UT
j Uj =

1⊗
j=N
j 6=i

I = I (4.55)

Therefore, due to the unitary invariance of the nuclear norm (see Theorem 2.2) we have∥∥A[i]

∥∥
∗ =

∥∥V[i]

∥∥
∗ (4.56)

Based on the above and using the nuclear norm as a convex relaxation for the rank, we can
write the RHOSVD optimisation problem as follows

min
V,E,{Ui}

N∑
i=1

ai
∥∥V[i]

∥∥
∗ + λ ‖E‖1 s.t.

X = V ×Ni=1 Ui + E
UT
i Ui = I ∀i ∈ {1, 2, . . . , N} (4.57)

1In fact, the theorem holds for any unitary invariant norm, including the more general Schatten p-norm.

4.4. Robust Higher Order Singular Value Decomposition 57

As we did with tensor RPCA in order to remove the interdependencies between the nuclear norm
terms, we rewrite the above optimisation problem in the following equivalent form

min
{Ji},V,E,{Ui}

N∑
i=1

ai ‖Ji‖∗ + λ ‖E‖1 s.t.
X = V ×Ni=1 Ui + E
V[i] = Ji
UT
i Ui = I

∀i ∈ {1, 2, . . . , N} (4.58)

We are now in a position to solve the above optimisation problem. In the remaining of this
section, we will develop an ALM algorithm for solving it. We shall start by forming the partial
augmented Lagrangian for the problem (without incorporating the orthonormality constraints
UT
i Ui = I) as follows

Lµ ({Ji},V ,E, {Ui},Y1, {Y2i}) =

N∑
i=1

ai ‖Ji‖∗ + λ ‖E‖1 +
〈
X − V ×Ni=1 Ui − E,Y1

〉
+

N∑
i=1

〈
V[i] − Ji,Y2i

〉
+
µ

2

∥∥X − V ×Ni=1 Ui − E
∥∥2

F
+

N∑
i=1

µ

2

∥∥V[i] − Ji
∥∥2

F
(4.59)

We first minimise Lµ with respect to each Ji for i ∈ {1, 2, . . . , N} as follows

arg min
Ji

Lµ ({Ji},V ,E, {Ui},Y1, {Y2i})

= arg min
Ji

ai ‖Ji‖∗ +
〈
V[i] − Ji,Y2i

〉
+
µ

2

∥∥V[i] − Ji
∥∥2

F

= arg min
Ji

aiµ
−1 ‖Ji‖∗ +

1

2

∥∥Ji − (V[i] + µ−1Y2i

)∥∥2

F

= Daiµ−1

{
V[i] + µ−1Y2i

}
(4.60)

Keeping in mind that UT
i Ui = I and that the Frobenius norm is unitary invariant, we minimise

Lµ with respect to V as follows

arg min
V
Lµ ({Ji},V ,E, {Ui},Y1, {Y2i})

= arg min
V

〈
X − V ×Ni=1 Ui − E,Y1

〉
+

N∑
i=1

〈
V[i] − Ji,Y2i

〉
+
µ

2

∥∥X − V ×Ni=1 Ui − E
∥∥2

F
+

N∑
i=1

µ

2

∥∥V[i] − Ji
∥∥2

F

= arg min
V

〈
V ,−Y1 ×Ni=1 UT

i

〉
+

N∑
i=1

〈V −J i,Y2i〉+
µ

2

∥∥V ×Ni=1 Ui

∥∥2

F

+
〈
V ,−µ (X − E)×Ni=1 UT

i

〉
+

N∑
i=1

µ

2
‖V −J i‖2F

= arg min
V

〈
V ,− [µ (X − E) +Y1]×Ni=1 UT

i

〉
+

N∑
i=1

〈V −J i,Y2i〉

+
µ

2
‖V‖2F +

N∑
i=1

µ

2
‖V −J i‖2F (4.61)

Note that in the above expressions we have made use of the tensorised forms of Ji and Y2i,
represented by J i and Y2i. In this sense, the tensorisation is the exact reverse procedure of

58 Chapter 4. Robust Low-Rank Modelling on Tensors

matricisation. The above is easy to minimise since all the terms are differentiable. Using the
following derivatives

∂

∂V
〈
V ,− [µ (X − E) +Y1]×Ni=1 UT

i

〉
= − [µ (X − E) +Y1]×Ni=1 UT

i (4.62)

∂

∂V

(
N∑
i=1

〈V −J i,Y2i〉

)
=

N∑
i=1

Y2i (4.63)

∂

∂V

(µ
2
‖V‖2F

)
= µV (4.64)

∂

∂V

(
N∑
i=1

µ

2
‖V −J i‖2F

)
= µNV − µ

N∑
i=1

J i (4.65)

the minimisation becomes

∂Lµ
∂V = 0 ⇒

(N + 1)V −
(
X − E + µ−1Y1

)
×Ni=1 UT

i −
N∑
i=1

(
J i − µ−1Y2i

)
= 0 ⇒

V = (N + 1)
−1

[(
X − E + µ−1Y1

)
×Ni=1 UT

i +

N∑
i=1

(
J i − µ−1Y2i

)]
(4.66)

Next, we minimise Lµ with respect to E as follows

arg min
E
Lµ ({Ji},V ,E, {Ui},Y1, {Y2i})

= arg min
E
λ ‖E‖1 +

〈
X − V ×Ni=1 Ui − E,Y1

〉
+
µ

2

∥∥X − V ×Ni=1 Ui − E
∥∥2

F

= arg min
E
λµ−1 ‖E‖1 +

1

2

∥∥E − (X − V ×Ni=1 Ui + µ−1Y1

)∥∥2

F

= Sλµ−1

{
X − V ×Ni=1 Ui + µ−1Y1

}
(4.67)

Finally, we minimise Lµ with respect to each Ui for i ∈ {1, 2, . . . , N}, subject to UT
i Ui = I, as

follows

arg min
Ui

Lµ ({Ji},V ,E, {Ui},Y1, {Y2i})

= arg min
Ui

〈
X − V ×Nj=1 Uj − E,Y1

〉
+
µ

2

∥∥X − V ×Nj=1 Uj − E
∥∥2

F

= arg min
Ui

1

2

∥∥(X − E + µ−1Y1

)
− V ×Nj=1 Uj

∥∥2

F

= arg min
Ui

1

2

∥∥∥(X[i] −E[i] + µ−1 (Y1)[i]

)
−UiBi

∥∥∥2

F
(4.68)

where

Bi = V[i]

 1⊗
j=N
j 6=i

UT
j

 = (V ×j 6=i Uj)[i] (4.69)

Assume the following Singular Value Decomposition(
X[i] −E[i] + µ−1 (Y1)[i]

)
BT
i = USiDSiV

T
Si (4.70)

4.5. Robust CANDECOMP/PARAFAC Decomposition 59

Algorithm 4.5: Robust Higher Order SVD

Input: Data tensor X , regulariser λ > 0, weights {ai}, number of principal components
{ri}

Initialise: J0
i = 0, V0 = 0, E0 = 0, U0

i =
[
ri first left singular vectors of X[i]

]
, Y0

1 = 0,
Y0

2i = 0, µ0 > 0, k = 0
1 while not converged do
2 for i ∈ {1, 2, . . . , N} do

3 Jk+1
i = Daiµ−1

k

{
(Vk)[i] + µ−1

k Yk
2i

}
4 end for

5 Vk+1 = (N + 1)
−1
[(
X − Ek + µ−1

k Y
k
1

)
×Ni=1

(
Uk
i

)T
+
∑N
i=1

(
J k+1
i − µ−1

k Y
k
2i

)]
6 Ek+1 = Sλµ−1

k

{
X − Vk+1 ×Ni=1 Uk

i + µ−1
k Y

k
1

}
7 for i ∈ {1, 2, . . . , N} do

8 Bi =
(
Vk+1 ×1 Uk+1

1 ×2 · · · ×i−1 Uk+1
i−1 ×i+1 Uk

i+1 ×i+2 · · · ×N Uk
N

)
[i]

9 [USi,DSi,VSi] = svd
{(

X[i] − (Ek+1)[i] + µ−1
k

(
Yk

1

)
[i]

)
BT
i

}
10 Uk+1

i = USiV
T
Si

11 end for

12 Yk+1
1 = Yk1 + µk

(
X − Vk+1 ×Ni=1 Uk+1

i − Ek+1

)
13 for i ∈ {1, 2, . . . , N} do

14 Yk+1
2i = Yk

2i + µk

(
(Vk+1)[i] − Jk+1

i

)
15 end for
16 µk+1 = min (ρµk, µmax)
17 k ← k + 1

18 end while

Output: Principal components {Uk
i }, core tensor Vk, sparse component Ek

where DSi is taken to be square. According to the Reduced Rank Procrustes Theorem (Theorem
4 in [94]), the optimiser U∗i of problem (4.68) is given by

U∗i = USiV
T
Si (4.71)

The ALM algorithm for RHOSVD is presented in detail in Algorithm 4.5. Notice that the
algorithm requires as input the number of principal components ri for each mode. That is, ri is
the number of columns of matrix Ui, for i ∈ {1, 2, . . . , N}. Since UT

i Ui = I, rank (Ui) = ri and
from Theorem 2.7 we have that

ranki (A) = ranki
(
V ×Ni=1 Ui

)
≤ rank (Ui) = ri (4.72)

Therefore, each ri serves as a controllable upper bound of the corresponding n-rank of the low-
rank componentA. Finally, notice that each matrix Ui is initialised with the ri first left singular
vectors of X[i]. The RHOSVD is a non-convex problem and therefore initialisation is important.
We have empirically found that this “warm” initialisation of each Ui performs well in most cases.

4.5 Robust CANDECOMP/PARAFAC Decomposition

In section 4.4 we modelled the low-rank component A using the HOSVD. In this section, we
follow a different approach and we model A using the CP decomposition. In other words, we
rewrite the low-rank component A as follows

A = U1 ◦ · · · ◦UN (4.73)

60 Chapter 4. Robust Low-Rank Modelling on Tensors

From theorem 2.5, we have that ∀ i ∈ {1, 2, . . . , N}

ranki (A) ≤ rank (Ui) (4.74)

Therefore, choosing to minimise the rank of each factor matrix Ui is equivalent to minimising
an upper bound of the corresponding n-rank of the low-rank component A. Based on the above
discussion and using the nuclear norm as a convex relaxation of the rank, we formulate the
following optimisation problem

min
{Ui},E

N∑
i=1

ai ‖Ui‖∗ + λ ‖E‖1 s.t. X = U1 ◦ · · · ◦UN + E (4.75)

We shall refer to the above problem as Robust CANDECOMP/PARAFAC Decomposition. In
the remaining of this section, we derive two algorithms for solving the above. The first is based
on ALM with substitution and the second is based on ALM with a linearisation step.

4.5.1 Solution Based on Substitution

In order to be able to develop an ALM algorithm for solving it, we rewrite the RCPD optimisation
problem in the following equivalent form

min
{Ji},{Ui},E

N∑
i=1

ai ‖Ji‖∗ + λ ‖E‖1 s.t.
X = U1 ◦ · · · ◦UN + E
Ui = Ji ∀i ∈ {1, 2, . . . , N}

(4.76)

We begin by formulating the augmented Lagrangian of the above as follows

Lµ ({Ji}, {Ui},E,Y1, {Y2i}) =

N∑
i=1

ai ‖Ji‖∗ + λ ‖E‖1 + 〈X −U1 ◦ · · · ◦UN − E,Y1〉

+

N∑
i=1

〈Ui − Ji,Y2i〉+
µ

2
‖X −U1 ◦ · · · ◦UN − E‖2F +

N∑
i=1

µ

2
‖Ui − Ji‖2F (4.77)

We first minimise Lµ with respect to each Ji for i ∈ {1, 2, . . . , N} as follows

arg min
Ji

Lµ ({Ji}, {Ui},E,Y1, {Y2i})

= arg min
Ji

ai ‖Ji‖∗ + 〈Ui − Ji,Y2i〉+
µ

2
‖Ui − Ji‖2F

= arg min
Ji

aiµ
−1 ‖Ji‖∗ +

1

2

∥∥Ji − (Ui + µ−1Y2i

)∥∥2

F

= Daiµ−1

{
Ui + µ−1Y2i

}
(4.78)

We then minimise Lµ with respect to each Ui for i ∈ {1, 2, . . . , N} as follows

arg min
Ui

Lµ ({Ji}, {Ui},E,Y1, {Y2i})

= arg min
Ui

〈X −U1 ◦ · · · ◦UN − E,Y1〉+ 〈Ui − Ji,Y2i〉

+
µ

2
‖X −U1 ◦ · · · ◦UN − E‖2F +

µ

2
‖Ui − Ji‖2F

= arg min
Ui

〈
X[i] −UiŨi −E[i], (Y1)[i]

〉
+ 〈Ui − Ji,Y2i〉

+
µ

2

∥∥∥X[i] −UiŨi −E[i]

∥∥∥2

F
+
µ

2
‖Ui − Ji‖2F (4.79)

4.5. Robust CANDECOMP/PARAFAC Decomposition 61

where

Ũi =

 1⊙
j=N
j 6=i

Uj


T

(4.80)

All the terms in the above objective are differentiable, therefore it can be easily minimised by
forcing its derivative with respect to Ui equal to zero. Using the following derivatives

∂

∂Ui

〈
X[i] −UiŨi −E[i], (Y1)[i]

〉
= − (Y1)[i] Ũ

T
i (4.81)

∂

∂Ui
〈Ui − Ji,Y2i〉 = Y2i (4.82)

∂

∂Ui

(
µ

2

∥∥∥X[i] −UiŨi −E[i]

∥∥∥2

F

)
= −µ

(
X[i] −UiŨi −E[i]

)
ŨT
i (4.83)

∂

∂Ui

(µ
2
‖Ui − Ji‖2F

)
= µ (Ui − Ji) (4.84)

the minimisation becomes

∂Lµ
∂Ui

= 0 ⇒

Ui

(
ŨiŨ

T
i + I

)
−
(
X[i] −E[i] + µ−1 (Y1)[i]

)
ŨT
i − Ji + µ−1Y2i = 0 ⇒

Ui =
[(

X[i] −E[i] + µ−1 (Y1)[i]

)
ŨT
i + Ji − µ−1Y2i

] (
ŨiŨ

T
i + I

)−1

(4.85)

Next, we minimise Lµ with respect to E as follows

arg min
E
Lµ ({Ji}, {Ui},E,Y1, {Y2i})

= arg min
E
λ ‖E‖1 + 〈X −U1 ◦ · · · ◦UN − E,Y1〉+

µ

2
‖X −U1 ◦ · · · ◦UN − E‖2F

= arg min
E
λµ−1 ‖E‖1 +

1

2

∥∥E − (X −U1 ◦ · · · ◦UN + µ−1Y1

)∥∥2

F

= Sλµ−1

{
X −U1 ◦ · · · ◦UN + µ−1Y1

}
(4.86)

The substitution-based ALM algorithm for RCPD is presented in detail in Algorithm 4.6.
The algorithm requires as input the number r of rank-1 tensors of the CP decomposition. In
other words, the user needs to specify the number of columns r of each factor matrix Ui. Notice
that, due to Theorem 2.5, we have

ranki (A) = ranki (U1 ◦ · · · ◦UN) ≤ rank (Ui) ≤ r (4.87)

therefore r serves as a controllable upper bound on each n-rank of the low-rank component
A. Unlike RHOSVD, though, which requires the specification of N sizes {ri} as input, RCPD
requires only one. Finally, it is important to mention that RCPD is a non-convex problem,
therefore initialisation is important. In our implementation, we choose to initialise each entry of
the factor matrices Ui uniformly at random in the interval [0, 1].

4.5.2 Solution Based on Linearisation

In this section, we will derive an alternative ALM algorithm for RCPD which does not require
any increase on the number of variables but instead it is based on a linearisation step. We begin

62 Chapter 4. Robust Low-Rank Modelling on Tensors

Algorithm 4.6: Robust CP Decomposition via substitution

Input: Data tensor X , regulariser λ > 0, weights {ai}, number of rank-1 tensors r
Initialise: J0

i = U0
i = rand, E0 = 0, Y0

1 = 0, Y0
2i = 0, µ0 > 0, k = 0

1 while not converged do
2 for i ∈ {1, 2, . . . , N} do

3 Jk+1
i = Daiµ−1

k

{
Uk
i + µ−1

k Yk
2i

}
4 Ũi =

(
Uk
N � · · · �Uk

i+1 �Uk+1
i−1 � · · · �Uk+1

1

)T
5 Uk+1

i =
[(

X[i] − (Ek)[i] + µ−1
k

(
Yk

1

)
[i]

)
ŨT
i + Jk+1

i − µ−1
k Yk

2i

] (
ŨiŨ

T
i + I

)−1

6 end for

7 Ek+1 = Sλµ−1
k

{
X −Uk+1

1 ◦ · · · ◦Uk+1
N + µ−1

k Y
k
1

}
8 Yk+1

1 = Yk1 + µk
(
X −Uk+1

1 ◦ · · · ◦Uk+1
N − Ek+1

)
9 for i ∈ {1, 2, . . . , N} do

10 Yk+1
2i = Yk

2i + µk
(
Uk+1
i − Jk+1

i

)
11 end for
12 µk+1 = min (ρµk, µmax)
13 k ← k + 1

14 end while

Output: Factor matrices {Uk
i }, sparse component Ek

by formulating the augmented Lagrangian of the RCPD optimisation problem as follows

Lµ ({Ui},E,Y) =

N∑
i=1

ai ‖Ui‖∗ + λ ‖E‖1 + 〈X −U1 ◦ · · · ◦UN − E,Y〉

+
µ

2
‖X −U1 ◦ · · · ◦UN − E‖2F (4.88)

Minimising Lµ with respect to each Ui for i ∈ {1, 2, . . . , N} is done as follows

arg min
Ui

Lµ ({Ui},E,Y)

= arg min
Ui

ai ‖Ui‖∗ + 〈X −U1 ◦ · · · ◦UN − E,Y〉+
µ

2
‖X −U1 ◦ · · · ◦UN − E‖2F

= arg min
Ui

aiµ
−1 ‖Ui‖∗ +

1

2

∥∥U1 ◦ · · · ◦UN −
(
X − E + µ−1Y

)∥∥2

F

= arg min
Ui

aiµ
−1 ‖Ui‖∗ +

1

2

∥∥∥UiŨi −
(
X[i] −E[i] + µ−1Y[i]

)∥∥∥2

F
(4.89)

where

Ũi =

 1⊙
j=N
j 6=i

Uj


T

(4.90)

The above minimisation problem is a special case of problem (3.35) and therefore we can use
the method of linearisation to solve it. Using equation (3.38) and making the substitutions
a = aiµ

−1, A = Ũi and B = X[i] −E[i] + µ−1Y[i], we get the following update for Ui

Uk+1
i = Dai(µn)−1

{
Uk
i − n−1

(
Uk
i Ũi −X[i] + E[i] − µ−1Y[i]

)
ŨT
i

}
(4.91)

4.6. Complexity Analysis and Discussion 63

Next, we minimise Lµ with respect to E as follows

arg min
E
Lµ ({Ui},E,Y)

= arg min
E
λ ‖E‖1 + 〈X −U1 ◦ · · · ◦UN − E,Y〉+

µ

2
‖X −U1 ◦ · · · ◦UN − E‖2F

= arg min
E
λµ−1 ‖E‖1 +

1

2

∥∥E − (X −U1 ◦ · · · ◦UN + µ−1Y
)∥∥2

F

= Sλµ−1

{
X −U1 ◦ · · · ◦UN + µ−1Y

}
(4.92)

The linearisation-based ALM algorithm for RCPD is presented in detail in Algorithm 4.7.
Similarly to the substitution-based algorithm presented in Algorithm 4.3, it requires as input the
number r of rank-1 tensors forming the CP decomposition, which is the number of columns of
factor matrices Ui. Also, the entries of each factor matrix are initialised uniformly at random
in the interval [0, 1].

Algorithm 4.7: Robust CP Decomposition via linearisation

Input: Data tensor X , regulariser λ > 0, weights {ai}, number of rank-1 tensors r
Initialise: U0

i = rand, E0 = 0, Y0 = 0, µ0 > 0, k = 0
1 while not converged do
2 for i ∈ {1, 2, . . . , N} do

3 Ũi =
(
Uk
N � · · · �Uk

i+1 �Uk+1
i−1 � · · · �Uk+1

1

)T
4 n = max

(∥∥∥ŨiŨ
T
i

∥∥∥
F
, 1.0

)
5 Uk+1

i = Dai(µkn)−1

{
Uk
i − n−1

(
Uk
i Ũi −X[i] + (Ek)[i] − µ

−1
k (Yk)[i]

)
ŨT
i

}
6 end for

7 Ek+1 = Sλµ−1
k

{
X −Uk+1

1 ◦ · · · ◦Uk+1
N + µ−1

k Yk
}

8 Yk+1 = Yk + µk
(
X −Uk+1

1 ◦ · · · ◦Uk+1
N − Ek+1

)
9 µk+1 = min (ρµk, µmax)

10 k ← k + 1

11 end while

Output: Factor matrices {Uk
i }, sparse component Ek

4.6 Complexity Analysis and Discussion

We conclude this chapter with a discussion over the advantages and disadvantages of each
method, a comparison with the matrix case and an analysis of the computational cost of each
algorithm.

4.6.1 Regularisation-Based and Factorisation-Based Methods

Similarly to the matrix case, we categorise all methods in two main groups, based on the mech-
anism that determines the rank of the low-rank component.

(i) Regularisation-based methods. These include RPCA and IRPCA. The rank of the
low-rank component is determined by the regularisation parameter λ and the weights {ai}.

(ii) Factorisation-based methods. These include BRPCA, RHOSVD and RCPD. The com-
mon element among the methods of this group is that the low-rank component is factorised
in some specific way. Its rank is determined not only by λ and {ai}, but also by the fac-
torisation size.

64 Chapter 4. Robust Low-Rank Modelling on Tensors

Each factorisation-based method relies on a different way of factorising the low-rank compo-
nent A. BRPCA factorises each n-mode matricisation of A as follows

A[i] = UiVi (4.93)

for i ∈ {1, 2, . . . , N}, where the number of columns in Ui (and number of rows in Vi) is ri.
RHOSVD factorises A based on the HOSVD as follows

A = V ×Ni=1 Ui (4.94)

where the number of columns in Ui is ri. Finally, RCPD factorises A based on the CP decom-
position as follows

A = U1 ◦ · · · ◦UN (4.95)

where the number of columns of all Ui is r. Note that BRPCA and RHOSVD involve N
factorisation sizes whereas RCPD involves only one.

The significance of the factorisation sizes {ri} and r is that they provide a “hard-coded”
controllable upper bound on each n-rank of A as follows

ranki (A) ≤ ri (4.96)

ranki (A) ≤ r (4.97)

It becomes obvious that, if the input data tensor is of size I1 × I2 × · · · × IN , the only sensible
choices for the factorisation sizes are ri ≤ Ii and r ≤ maxi (Ii). Being able to control the
factorisation sizes allows for extra flexibility, however in practice they may not always be easy
to tune. Tuning becomes easier in RCPD, since there is only one factorisation size. Finally, as
we shall see later, factorisation allows for significant savings in computational cost, particularly
when the factorisation sizes are small.

It is important to emphasise the theoretical significance of RHOSVD and RCPD, as a robusti-
fication of the classical HOSVD and CP decomposition respectively. Most approaches for fitting
a HOSVD (such as those in [25, 44]) or a CP decomposition (such as those in [22, 26, 79]) oper-
ate by minimising a fitting cost based on the `2-norm, which is not robust [41]. Our approach,
however, minimises instead the `1-norm of the error which makes it robust to gross corruptions
and outliers. To the best of our knowledge, this is the first formulation of the HOSVD and the
CP decomposition within the framework of robust low-rank modelling.

4.6.2 Comparison with the Matrix Case

The main conceptual difference between the tensor case and the matrix case is that tensor
methods involve the simultaneous minimisation of more than one ranks. Given an N th-order
input data tensor X , whose low-rank component is A, tensor methods aim at minimising each
and every ranki (A) for i ∈ {1, 2, . . . , N}. As will shall see shortly, this introduces increased
flexibility but also makes the methods harder to tune.

The multiplicity of ranks to be minimised is perhaps mostly reflected in the introduction of a
new set of parameters {ai}, for i ∈ {1, 2, . . . , N}. This set of parameters is typically taken such

that
∑N
i=1 ai = 1, for consistency with the matrix case. The value of ai controls the significance

of minimising ranki (A) as opposed to minimising the other n-ranks of A. In practice, the choice
of {ai} is driven by prior knowledge of the problem domain, typically as in the following two
cases.

(i) Minimisation of each n-rank is equally significant. In this case, we can simply
set ai = 1/N for all i ∈ {1, 2, . . . , N}. This makes the problem simpler, especially for
regularisation-based methods, where the only remaining parameter to tune is λ.

4.6. Complexity Analysis and Discussion 65

(ii) Minimisation of certain n-ranks is not desired. Say, for instance, that the rank of
mode i is not desired to be minimised. Then we can simply set ai = 0 and the corresponding
n-rank will remain unaffected.

Regularisation-based methods are not always convex in the tensor case, as they are in the
matrix case. RPCA is convex, IRPCA however is not, except in the trivial case where N = 1
(which is probably not useful in practice). This removes the guarantee of the global optimality
of the solution of IRPCA and makes initialisation important. For this reason, we have proposed
a more sophisticated initialisation scheme for the projection matrices of IRPCA, which uses the
ri first left singular vectors of X[i] for i ∈ {1, 2, . . . , N}. Here, {ri} is a set of initialisation
parameters controlled by the user. We have experimentally determined that this scheme is
capable of providing a suitable initialisation in most practical cases.

4.6.3 Asymptotic Computational Complexity

Similarly to the discussion in section 3.6.2 about the computational cost of matrix methods, in
this section we will calculate the asymptotic computational complexity per iteration for each
tensor method. We begin by calculating the complexity of the various building blocks used in
the tensor methods that did not exist in the matrix methods.

(i) Tensor addition and scaling. For tensors X ,Y ∈ RI1×I2×···×IN and scalar a ∈ R, tensor

addition X +Y and scaling aX cost O
(∏N

i=1 Ii

)
.

(ii) Shrinkage operator on tensors. For a tensor X ∈ RI1×I2×···×IN , the calculation of the
shrinkage operator Sa {X} requires the application of a constant-time operation on each

tensor entry and therefore costs O
(∏N

i=1 Ii

)
.

(iii) n-mode product. For a tensor X ∈ RI1×I2×···×IN and a matrix U ∈ RJ×In , the calcula-
tion of the n-mode product X ×n U involves the multiplication by U of each n-mode fibre
of X . Since there are

∏
i 6=n Ii such fibres and each multiplication costs O (JIn), the total

cost of the n-mode product is O
(
J
∏N
i=1 Ii

)
.

(iv) Khatri-Rao product. For matrices X ∈ Rm×n and Y ∈ Rk×n, the Khatri-Rao product
X � Y is a matrix of size mk × n, each entry of which needs one multiplication to be
computed. Therefore, the cost of the Khatri-Rao product is O (mnk).

(v) CP decomposition. For N factor matrices Ui ∈ RIi×r, computing the CP decomposition
U1 ◦ · · · ◦UN yields a tensor of size I1× I2×· · ·× IN , each element of which is given by the
addition of r factors, each of which takes N −1 multiplications to be computed. Therefore,

the total cost of computing the CP decomposition is O
(
Nr
∏N
i=1 Ii

)
.

Based on the above, Table 4.1 shows the total computational cost per iteration of each tensor
algorithm. For simplicity, we have assumed that the input tensor is of size I1 × I2 × · · · × IN
with N ≥ 2 and I1 = I2 = · · · = IN = I. In the factorisation-based algorithms we have assumed
that the factorisation sizes are r1 = r2 = · · · = rN = r. Based on this analysis, we make the
following conclusions.

(i) RPCA and IRPCA. The complexity of RPCA and IRPCA is a polynomial of the length
I of degree N + 1. This is consistent with the matrix case, where for a matrix of size n×n
the complexity of RPCA and IRPCA is O

(
n3
)
.

(ii) Factorisation-based methods. Since it will always be r ≤ I, it becomes apparent that
the factorisation-based methods, whose cost is dominated by the factor NrIN , are more

66 Chapter 4. Robust Low-Rank Modelling on Tensors

Algorithm Convex? Computational cost per iteration

RPCA Yes O
(
NIN+1

)
BRPCA No O

(
N
(
rIN + r2IN−1 + r3

))
IRPCA (sub) No O

(
N2IN+1

)
IRPCA (lin) No O

(
N2IN+1

)
RHOSVD No O

(
N
(
rIN + r2IN−1 + · · ·+ rNI + rN+1

))
RCPD (sub) No O

(
N2rIN−1 +N

(
rIN + r2IN−1 + r3

))
RCPD (lin) No O

(
N2rIN−1 +N

(
rIN + r2IN−1 + r3

))
Table 4.1: Convexity and asymptotic computational complexity per iteration of all tensor algo-
rithms. The size of the input data tensor X is assumed to be I1 × I2 × · · · × IN , with N ≥ 2
and I1 = I2 = · · · = IN = I. In the factorisation-based algorithms (i.e. BRPCA, RHOSVD and
RCPD), the factorisation size is assumed to be r1 = r2 = · · · = rN = r.

efficient than the regularisation-based methods. In fact, their computational advantage
increases as r becomes smaller, which can be the case in many practical applications, as we
shall see in chapter 7. In case r is chosen to be equal to I, the cost of regularisation-based
and factorisation-based methods becomes the same.

(iii) Cost of the SVDs. In the matrix case, the cost of RPCA and IRPCA was dominated
by the cost of the SVD. In the tensor case, RPCA requires N SVDs of size I × IN−1 per
iteration, which costs O

(
NIN+1

)
and is indeed the dominant cost. In IRPCA however,

N SVDs of size I × I are required per iteration, for a total cost of O
(
NI3

)
, which is not

dominant, compared to the cost of the n-mode products. This illustrates that in tensor
algorithms the SVDs are less of an issue compared to the matrix algorithms. Instead,
the dominant costs of the tensor algorithms are mainly due to the several higher-order
operations necessary.

(iv) Scaling with respect to N . The costs appear to scale exponentially with the tensor order
N . However, this is somewhat misleading, as this is the case only if I remains constant. In
practice, it would be fairer to consider the total number of elements M = IN as constant.

In this case, the cost of e.g. RPCA becomes O
(
NM1+ 1

N

)
, which scales almost linearly

with N . In any case, N is typically small in practice and thus not a major concern.

In chapter 7, we will evaluate the total execution time of each algorithm experimentally and we
will confirm the above theoretical results.

Chapter 5

Extensions to Missing Values and
Generalised Norms

In this chapter, we introduce two important extensions for the methods of chapters 3 and 4.
Firstly, we show how the methods can be extended to be able to deal with missing values in the
data, effectively making them capable of solving the problem of matrix and tensor completion.
Secondly, we show how their optimisation problems can be reformulated using the more gen-
eral Schatten p-norm and elementwise `q-norm, which allows for a closest approximation to the
original intractable optimisation problems. For both extensions, we show how the algorithms
described so far can be modified to accommodate them. We discuss Generalised Scalable Robust
Principal Component Analysis, the extension of ORPCA to general norms, which we first intro-
duced in our paper [69]. We conclude with a summary of the final extended methods, for both
matrices and tensors.

5.1 Matrix and Tensor Completion with Missing Values

So far, we have considered the problem of low-rank/sparse decomposition of matrices and tensors
that were fully observed, that is, all of their entries were known. Unfortunately, this is not always
the case, as in many practical applications only a portion of the entries may be observed. In this
section, we will show how the algorithms described in chapters 3 and 4 can be easily extended so
as to accommodate missing values, i.e. unobserved entries, in the data. That is, given an input
data matrix X or tensor X which is only partially known, we will show how to decompose it
into a fully known low-rank component and a sparse component accounting for both errors and
missing values. As a result, we will have reconstructed the low-rank component not only from
corruptions, but also from missing values.

For simplicity, we will focus on matrix methods first. We start by considering the slightly
different but related problem of low-rank matrix completion. This problem can be stated as
follows: given a data matrix X ∈ Rm×n with only a subset of its entries known, how can we
fill in the unknown entries such that the resulting matrix be of the lowest rank possible? More
formally, let Ω ⊆ {(i, j) | i ∈ {1, 2, . . . ,m} , j ∈ {1, 2, . . . , n}} be an index set corresponding to
the known entries of X and let πΩ : Rm×n → Rm×n be the sampling operator , which is defined
as

(πΩ (X))ij =

{
Xij (i, j) ∈ Ω

0 (i, j) /∈ Ω
(5.1)

The sampling operator πΩ can be also thought of as the projection operator onto the linear
subspace of matrices with non-zero entries only in Ω. It is trivial to show that πΩ is also a linear

68 Chapter 5. Extensions to Missing Values and Generalised Norms

operator, that is, for any X1,X2 ∈ Rm×n and a1, a2 ∈ R we have

πΩ (a1X1 + a2X2) = a1πΩ (X1) + a2πΩ (X2) (5.2)

Based on the above definitions, the low-rank matrix completion problem can be stated as follows

min
A

rank (A) s.t. πΩ (X) = πΩ (A) (5.3)

As stated previously in the thesis, the optimisation problems involving minimisation of the
rank are intractable. Therefore, using the fact that the nuclear norm is the tightest convex
surrogate of the rank function, the above problem can be relaxed to the following tractable
convex problem

min
A
‖A‖∗ s.t. πΩ (X) = πΩ (A) (5.4)

Candès and Recht [17] proved the rather remarkable result that the above convex problem can,
with high probability, exactly recover the complete matrix X, provided that X is of low-rank
and a sufficient number of entries has been observed (see their paper for more details).

Here, we will take advantage of the similarity between the relaxed low-rank matrix completion
problem (5.4) and the matrix RPCA problem (3.4) in order to extend RPCA (and all other
methods) to be able to handle missing values. The key idea is to consider that the missing values
are themselves a form of gross corruption. Let E = X−A and notice that

πΩ (X) = πΩ (A) ⇒ πΩ (X−A) = 0 ⇒ πΩ (E) = 0 (5.5)

Hence, problem (5.4) can be equivalently written as

min
A,E
‖A‖∗ s.t.

X = A + E
πΩ (E) = 0

(5.6)

In the above, the unknown entries of X can be arbitrarily set to any value (e.g. to zero for
simplicity), since this is compensated by the entries of E not in Ω. In order to allow for noise in
the observed values, we can generalise the above to the following

min
A,E
‖A‖∗ s.t.

X = A + E
‖πΩ (E)‖1 ≤ ε

(5.7)

where ε ≥ 0 is a parameter that controls the level of noise, as this is measured by the `1-norm
over the observed entries. The usage of the `1-norm allows for robustness to gross corruptions.
The above can be also seen in a “dual” form, by introducing a positive regulariser λ and rewriting
it as

min
A,E
‖A‖∗ + λ ‖πΩ (E)‖1 s.t. X = A + E (5.8)

That is, for every value of ε ≥ 0, there exists a value λ > 0 for which the two above problems
are equivalent, in the sense that they accept the same solution. In general, as ε → 0+, we have
that λ→ +∞.

It now becomes obvious that problem (5.8) is the desired extension of matrix RPCA to
handling missing values, as problem (5.8) reduces to the RPCA problem (3.4) if all entries of
X are known. It is now straightforward to extend the remaining matrix methods to be able to
handle missing values as well, by simply replacing ‖E‖1 with ‖πΩ (E)‖1 in their optimisation
problems.

The same idea can be applied to tensor methods. Let X ∈ RI1×I2×···×IN be an N th-order
input data tensor which is partially observed and let Ω be the index set of its observed entries

Ω ⊆ {(i1, i2, . . . , iN) | in ∈ {1, 2, . . . , In} , n ∈ {1, 2, . . . , N}} (5.9)

5.1. Matrix and Tensor Completion with Missing Values 69

We can easily extend the sampling operator πΩ to tensors as follows

(πΩ (X))i1i2···iN =

{
Xi1i2···iN (i1, i2, . . . , iN) ∈ Ω

0 (i1, i2, . . . , iN) /∈ Ω
(5.10)

Then, extending the tensor methods to be able to handle missing values is done simply by
replacing ‖E‖1 with ‖πΩ (E)‖1 in their optimisation problems. For instance, tensor RPCA with
missing values will be written as

min
A,E

N∑
i=1

ai
∥∥A[i]

∥∥
∗ + λ ‖πΩ (E)‖1 s.t. X = A+ E (5.11)

In order to solve the extended optimisation problems involving the sampling operator πΩ, it
is important to note that, in all the algorithms presented in chapters 3 and 4, the elementwise
`1-norm of the sparse component only appears in the form of the shrinkage operator Sa {·}.
Using for demonstration the more general case of tensors, in the update of the sparse component
E, some problem of the following form had to be solved

arg min
E
a ‖E‖1 +

1

2
‖E − Ec‖2F (5.12)

whose solution was given by Sa {Ec}. In the missing value extension, we have to solve instead
the following problem

arg min
E
a ‖πΩ (E)‖1 +

1

2
‖E − Ec‖2F (5.13)

that is, we need to find the proximal operator Pf {·} of the function f (E) = a ‖πΩ (E)‖1. We
refer to this proximal operator as selective shrinkage and we show how to calculate it in the
following theorem.

Theorem 5.1 (Selective shrinkage). Let X ∈ RI1×I2×···×IN be an N th-order tensor, Ω be an
index set of its entries and f (X) = a ‖πΩ (X)‖1. The proximal operator of f , represented by
Pf {·}, is a tensor of size I1 × I2 × · · · × IN , whose entries are given by

(Pf {X})i1i2···iN =

{
Sa {Xi1i2···iN } (i1, i2, . . . , iN) ∈ Ω

Xi1i2···iN (i1, i2, . . . , iN) /∈ Ω
(5.14)

For convenience, we will refer to Pf {·} as selective shrinkage and we will denote it by Sa,Ω {·}.

Proof. The proximal operator can be written as

Pf {X} = arg min
Y

a ‖πΩ (Y)‖1 +
1

2
‖X −Y‖2F

= arg min
Y

∑
(i1,i2,...,iN)∈Ω

(
a |Yi1i2···iN |+

1

2
(Xi1i2···iN − Yi1i2···iN)

2

)

+
∑

(i1,i2,...,iN)/∈Ω

(
1

2
(Xi1i2···iN − Yi1i2···iN)

2

)
(5.15)

Since the objective function is separable in the elements of Y , we have

(i) For (i1, i2, . . . , iN) ∈ Ω

(Pf {X})i1i2···iN = arg min
Yi1i2···iN

a |Yi1i2···iN |+
1

2
(Xi1i2···iN − Yi1i2···iN)

2
= Sa {Xi1i2···iN }

(5.16)

70 Chapter 5. Extensions to Missing Values and Generalised Norms

(ii) For (i1, i2, . . . , iN) /∈ Ω

(Pf {X})i1i2···iN = arg min
Yi1i2···iN

1

2
(Xi1i2···iN − Yi1i2···iN)

2
= Xi1i2···iN (5.17)

To conclude, in order to extend all algorithms presented in chapters 3 and 4, all that is
necessary is to replace the shrinkage operator Sa {·} used in the update of the sparse component
with the selective shrinkage Sa,Ω {·} described in the above theorem. Of course, the index set Ω
also needs to be given as input to the algorithm. The entries of the input data matrix/tensor
that are not known can be set to an arbitrary value (such as zero) and the sparse component
will account for them.

5.2 Generalisation to Schatten p-norms and Elementwise
`q-norms

As we saw in the beginning of chapter 3, the optimisation problem which we primarily wish to
solve is, in the matrix case, the following

min
A,E

rank (A) + λ ‖E‖0 s.t. X = A + E (5.18)

Similarly, for tensors, in the beginning of chapter 4 we formulated the following optimisation
problem

min
A,E

N∑
i=1

airanki (A) + λ ‖E‖0 s.t. X = A+ E (5.19)

Since problems directly involving the rank and the `0-norm are intractable, we approached the
above problem by appropriately relaxing the rank and the `0-norm using either their convex
envelopes or making use of factorisation methods (or a combination thereof). In this section,
we will generalise all the methods introduced in chapters 3 and 4 such that a better (at least
theoretically) approximation to the above two problems can be achieved.

We shall demonstrate our generalisation approach using matrix RPCA, but the following
discussion pertains to all methods in the same way. Remember that RPCA was motivated by
the usage of the nuclear norm and the elementwise `1-norm as the closest convex approximation
to the rank and the `0-norm respectively, replacing the original intractable optimisation problem
by the following convex one

min
A,E
‖A‖∗ + λ ‖E‖1 s.t. X = A + E (5.20)

Motivated by [65], we notice that, as explained in section 2.1, the nuclear norm is a special case
of the Schatten p-norm and the elementwise `1-norm is a special case of the elementwise `q-norm,
for p = q = 1. Therefore, we can generalise the above convex problem to the following

min
A,E
‖A‖pSp

+ λ ‖E‖qq s.t. X = A + E (5.21)

which for p = q = 1 gives the convex problem as a special case.
The above generalisation becomes particularly interesting in the case where 0 < p < 1 and

0 < q < 1. As we have shown in Theorem 2.4, the following holds

lim
p→0+

‖A‖pSp
= rank (A) (5.22)

lim
q→0+

‖E‖qq = ‖E‖0 (5.23)

5.2. Generalisation to Schatten p-norms and Elementwise `q-norms 71

The above means that by allowing p and q to become small, the generalised RPCA problem
(5.21) can arbitrarily approximate the original intractable problem (5.18). What is more, the
same idea can be used with all matrix or tensor methods, by simply replacing ‖·‖∗ with ‖·‖pSp

and ‖·‖1 with ‖·‖qq in their optimisation problems. For instance, the generalised version of tensor
RPCA becomes the following

min
A,E

N∑
i=1

ai
∥∥A[i]

∥∥p
Sp

+ λ ‖E‖qq s.t. X = A+ E (5.24)

and it is straightforward to see that the above problem approximates arbitrarily the intractable
problem (5.19) by allowing p and q to approach zero.

For the above generalisation to be of any practical use, we need to extend the algorithms
presented in chapters 3 and 4 to be able to handle the general norms. The key to achieving this
is to notice that the nuclear norm only appears in the form of singular value thresholding Da {·}
and the elementwise `1-norm only appears in the form of shrinkage Sa {·}. That is—using the
more general tensor case for demonstration—they only appeared in optimisation problems of the
following form

arg min
A

a ‖A‖∗ +
1

2
‖A−Ac‖2F (5.25)

arg min
E
a ‖E‖1 +

1

2
‖E − Ec‖2F (5.26)

whose solutions were given by Da {Ac} and Sa {Ec} respectively. In the generalised version, the
following problems have to be solved instead.

arg min
A

a ‖A‖pSp
+

1

2
‖A−Ac‖2F (5.27)

arg min
E
a ‖E‖qq +

1

2
‖E − Ec‖2F (5.28)

that is, we need to compute the proximal operators of ‖·‖pSp
and ‖·‖qq respectively. We will refer

to these proximal operators as generalised singular value thresholding and generalised shrinkage
respectively. The following three theorems show how to compute them.

Theorem 5.2 (Generalised shrinkage). Let x ∈ R and f (x) = a |x|q with a > 0 and 0 < q ≤ 1.

Define h (y) = α |y|q + 1
2 (x− y)

2
, c1 = [αq (1− q)]

1
2−q and c2 = c1 + αq |c1|q−1

. Then, the
proximal operator of f becomes

Pf {x} =


0 −c2 ≤ x ≤ c2
arg miny∈{0,y+} h (y) x > c2

arg miny∈{0,y−} h (y) x < −c2
(5.29)

where y+ and y− are the roots of h′ (y) = αq |y|q−1
sgn (y) − x + y = 0 in [c1, x] and [x,−c1]

respectively. We shall refer to the above proximal operator as generalised shrinkage and represent
it by Sqa {x}.

Proof. The theorem can be proven by considering the monotony of h. See [65] for a complete
proof.

In order to compute Sqa {·}, one needs a method for finding roots y+ and y−. Nie et al. [65]
suggest using the Newton-Raphson root finding method [11], initialised at x.

72 Chapter 5. Extensions to Missing Values and Generalised Norms

Theorem 5.3 (Generalised shrinkage for tensors). Let X ∈ RI1×I2×···×IN be an N th-order tensor
and f (X) = a ‖X‖qq with a > 0 and 0 < q ≤ 1. Then, the proximal operator of f is a tensor of
the same size as X whose elements are given by

(Pf {X})i1i2···iN = Sqa {Xi1i2···iN } (5.30)

For convenience, we will represent Pf {X} as Sqa {X} and we will imply that Sqa {·} is applied
elementwise.

Proof. The proximal operator can be written as

Pf {X} = arg min
Y

a ‖Y‖qq +
1

2
‖X −Y‖2F

= arg min
Y

I1∑
ii=1

I2∑
i2=1

· · ·
IN∑
iN=1

(
a |Yi1i2···iN |

q
+

1

2
(Xi1i2···iN − Yi1i2···iN)

2

)
(5.31)

Since the objective function is separable in the elements of Y , we have

(Pf {X})i1i2···iN = arg min
Yi1i2···iN

a |Yi1i2···iN |
q

+
1

2
(Xi1i2···iN − Yi1i2···iN)

2

= Sqa {Xi1i2···iN } (5.32)

Theorem 5.4 (Genaralised singular value thresholding). Let X ∈ Rm×n be a matrix of size m×n
and f (X) = a ‖X‖pSp

with a > 0 and 0 < p ≤ 1. Assume the Singular Value Decomposition

X = USVT . Then, the proximal operator of f becomes

Pf {X} = USpa {S}VT (5.33)

We shall refer to the above proximal operator as generalised singular value thresholding and
represent it by Dpa {X}.

Proof. This is Theorem 2 in in [65]. See proof therein.

It is not difficult to see that, for p = q = 1, Sqa {·} reduces to Sa {·} and Dpa {·} reduces to
Da {·}. The generalisation of all algorithms of chapters 3 and 4 to the Schatten p-norm and the
elementwise `q-norm becomes now straightforward; simply replace Da {·} with Dpa {·} and Sa {·}
with Sqa {·}.

Even though the above extensions are theoretically appealing, since they provide a way to
arbitrarily approximate the original intractable optimisation problems involving the rank and
the `0-norm, in practice they suffer from two major drawbacks that limit their applicability.
Firstly, in order to compute the generalised shrinkage, we need to iteratively solve—using the
Newton-Raphson method—one optimisation problem for each tensor element. This can make
the algorithms considerably slower. Secondly, for p < 1 and q < 1, the Schatten p-norm and the
elementwise `q-norm, and thus the optimisation problem, become non-convex. Even worse, this
non-convexity becomes more pronounced as p and q approach zero. As a result, the algorithms
converge more slowly and the obtained solution can be considerably suboptimal.

Empirically, we have found that the generalisation to Schatten p-norms and elementwise `q-
norms works particularly well for matrix ORPCA. The generalised version of matrix ORPCA
can be written as follows

min
V,E,U

‖V‖pSp
+ λ ‖E‖qq s.t.

X = UV + E
UTU = I

(5.34)

5.3. Bringing Everything Together: Summary of Methods 73

which can be solved by algorithm 3.6 provided that Dµ−1
k
{·} in step 2 be replaced by Dp

µ−1
k

{·}
and Sλµ−1

k
{·} in step 3 be replaced by Sq

λµ−1
k

{·}. For a small number of principal components r

(i.e. number of columns of U), matrices U and V are of small size and the problem is strongly
regularised, due to the orthonormality constraint UTU = I. We believe that this is the reason
why the algorithm behaves well even for very small values of p and q. We refer to this version of
ORPCA as Generalised Scalable Robust Principal Component Analysis. We have shown experi-
mentally that GSRPCA can outperform ORPCA in image denoising, producing crisper denoised
images as p and q approach zero (unlike ORPCA which oversmooths the images). Our findings
have been published in [69]. See our paper for further details.

5.3 Bringing Everything Together: Summary of Methods

The two extensions presented in the above sections (i.e. extensions to missing values and to
general norms) are independent and therefore can be easily combined. For instance, considering
both generalisations, the tensor RPCA problem becomes the following

min
A,E

N∑
i=1

ai
∥∥A[i]

∥∥p
Sp

+ λ ‖πΩ (E)‖qq s.t. X = A+ E (5.35)

To complete the puzzle, we just need to solve problems of the following form

arg min
E
a ‖πΩ (E)‖qq +

1

2
‖E − Ec‖2F (5.36)

It is easy to see, by combining the proofs of theorems 5.1 and 5.3, that the proximal operator
defined by the above problem is a combination of selective shrinkage Sa,Ω {·} and generalised
shrinkage Sqa {·}, which we shall refer to as generalised selective shrinkage and represent it by
Sqa,Ω {·}. It is trivial to show that for a tensor X ∈ RI1×I2×···×IN , Sqa,Ω {X} is also a tensor of
the same size as X whose elements are given by

(
Sqa,Ω {X}

)
i1i2···iN

=

{
Sqa {Xi1i2···iN } (i1, i2, . . . , iN) ∈ Ω

Xi1i2···iN (i1, i2, . . . , iN) /∈ Ω
(5.37)

We are now in a position to present all the methods for robust low-rank modelling, both with
matrices and tensors, capable of dealing with missing values and generalised to the Schatten
p-norm and the elementwise `q-norm. Table 5.1 summarises all methods and the corresponding
optimisation problems. By simply replacing

(i) Da {·} with Dpa {·} in the update of the low-rank component, and

(ii) Sa {·} with Sqa,Ω {·} in the update of the sparse component

where applicable in the algorithms of chapters 3 and 4, we can easily derive for each method of
Table 5.1 the algorithm(s) that solve it.

74 Chapter 5. Extensions to Missing Values and Generalised Norms

Method Objective function Constraints

M
a
tr

ic
e
s

RPCA ‖A‖pSp
+ λ ‖πΩ (E)‖qq X = A + E

BRPCA 1
2

(
‖U‖2F + ‖V‖2F

)
+ λ ‖πΩ (E)‖qq X = UV + E

IRPCA ‖P‖pSp
+ λ ‖πΩ (E)‖qq X = PX + E

ORPCA ‖V‖pSp
+ λ ‖πΩ (E)‖qq

X = UV + E
UTU = I

ROSL ‖V‖row-1 + λ ‖πΩ (E)‖qq
X = UV + E
UTU = I

T
e
n

so
rs

RPCA

N∑
i=1

ai
∥∥A[i]

∥∥p
Sp

+ λ ‖πΩ (E)‖qq X = A+ E

BRPCA

N∑
i=1

ai
2

(
‖Ui‖2F + ‖Vi‖2F

)
+λ ‖πΩ (E)‖qq

X = A+ E
A[i] = UiVi

IRPCA

N∑
i=1

ai ‖Pi‖pSp
+ λ ‖πΩ (E)‖qq X = X ×Ni=1 Pi + E

RHOSVD

N∑
i=1

ai
∥∥V[i]

∥∥p
Sp

+ ‖πΩ (E)‖qq
X = V ×Ni=1 Ui + E
UT
i Ui = I

RCPD

N∑
i=1

ai ‖Ui‖pSp
+ λ ‖πΩ (E)‖qq X = U1◦· · ·◦UN+E

Table 5.1: Summary of the generalised versions of all methods, for both matrices and tensors,
that are capable of dealing with missing values and make use of general Schatten p-norms and
elementwise `q-norms. For each method, the corresponding objective function and constraints
are given.

Chapter 6

Implementation Details

In this chapter, we provide details on the implementation of the algorithms described in this
thesis. We discuss our choice of convergence criteria, we explain how to best tune the parameters
required by APG and ALM, and we describe the implementation of our software toolbox.

6.1 Convergence Criteria

All the algorithms described in chapters 3 and 4 are iterative; that is, they continue iterating
until some condition, the convergence criterion, is satisfied. The convergence criterion is checked
at the end of every iteration. If it is satisfied, then the optimal point has been reached and the
algorithm terminates. Otherwise, the algorithm moves on to the next iteration.

In practice, with optimisation algorithms, three types of convergence criteria are commonly
used, summarised as follows.

(i) Value of the objective function. The objective function is monitored after every iter-
ation and when it ceases to decrease (or ceases to increase, for a maximisation problem)
the algorithm terminates.

(ii) Value of the decision variables. The change in the decision variables is monitored after
every iteration and when it becomes smaller than a threshold the algorithm terminates.

(iii) KKT conditions. The algorithm terminates when the Karush-Kuhn-Tucker necessary
conditions for optimality [46] are satisfied.

One of the KKT conditions is the feasibility condition, which requires that the optimal
solution be feasible, i.e. satisfy the constraints of the problem. In our implementation, the
convergence criterion is based on the feasibility condition. In each iteration, we monitor the
error in satisfying the constraints, in the `2 sense, and terminate the algorithm when this error
is below some specified small threshold. For example, in matrix RPCA, where the constraint is
X = A + E, we measure the following relative error at the end of iteration k

Ek =
‖X−Ak −Ek‖F

‖X‖F
(6.1)

and we terminate the algorithm when Ek ≤ δ, where δ is the specified threshold. For the rest
of the algorithms, the process is similar. Table 6.1 summarises the convergence criterion used
by each algorithm. Note than for the algorithms that have more than one constraints (such as
tensor RPCA), the error of each constraint is measured and the algorithm terminates only if all
of them are below δ. In our implementation, we used for all algorithms the value δ = 10−7.

76 Chapter 6. Implementation Details

Algorithm Convergence criterion (δ = 10−7)

M
a
tr

ic
e
s

RPCA (apg) ‖X−A−E‖F ≤ δ ‖X‖F

RPCA (alm) ‖X−A−E‖F ≤ δ ‖X‖F

BRPCA ‖X−UV −E‖F ≤ δ ‖X‖F

IRPCA (sub) max
(
‖X−PX−E‖F , ‖P− J‖F

)
≤ δ ‖X‖F

IRPCA (lin) ‖X−PX−E‖F ≤ δ ‖X‖F

ORPCA ‖X−UV −E‖F ≤ δ ‖X‖F

ROSL ‖X−UV −E‖F ≤ δ ‖X‖F

T
e
n

so
rs

RPCA max

(
‖X −A− E‖F ,

{∥∥A[i] − Ji
∥∥
F

})
≤ δ ‖X‖F

BRPCA max

(
‖X −A− E‖F ,

{∥∥A[i] −UiVi

∥∥
F

})
≤ δ ‖X‖F

IRPCA (sub) max

(∥∥X −X ×Ni=1 Pi − E
∥∥
F
,
{
‖Pi − Ji‖F

})
≤ δ ‖X‖F

IRPCA (lin)
∥∥X −X ×Ni=1 Pi − E

∥∥
F
≤ δ ‖X‖F

RHOSVD max

(∥∥X − V ×Ni=1 Ui − E
∥∥
F
,
{∥∥V[i] − Ji

∥∥
F

})
≤ δ ‖X‖F

RCPD (sub) max

(
‖X −U1 ◦ · · · ◦UN − E‖F ,

{
‖Ui − Ji‖F

})
≤ δ ‖X‖F

RCPD (lin) ‖X −U1 ◦ · · · ◦UN − E‖F ≤ δ ‖X‖F

Table 6.1: Convergence criterion of each algorithm. During execution, an algorithm would
continue to iterate until its convergence criterion is satisfied. In our implementation, we set
δ = 10−7 for all algorithms.

6.2. Tuning Algorithmic Parameters 77

Parameter Description APG ALM

µ0 Initial value of penalty parameter µ 103 10−3

µmin Minimum value of µ (only in APG) 10−9 –

µmax Maximum value of µ (only in ALM) – 109

ρ Multiplicative update factor of µ 0.9 1.2

δ Convergence threshold 10−7 10−7

Table 6.2: Summary of the values used for the parameters of APG and ALM algorithms. Note
that APG is only used with matrix RPCA whereas ALM is used with all methods. The values
reported here are the same for all methods, with the exception of ROSL, for which µ0 = 10−1.

6.2 Tuning Algorithmic Parameters

The algorithms described in chapters 3 and 4 were based on two optimisation methods, namely
APG and ALM. APG was used only with matrix RPCA whereas ALM was used with all methods.
APG and ALM require four parameters each that need to be tuned, three of which have to do
with the penalty parameter µ and the fourth one is the convergence threshold δ discussed in the
previous section. In the following, we explain how these parameters should be tuned and report
the values that we used in our implementation.

(i) Initial value of µ. In APG, the penalty parameter µ is decreasing in each iteration,
whereas in ALM it is increasing in each iteration. It is common to initialise µ with a large
value for APG and with a small value for ALM. In our implementation, we use µ0 = 103

for APG and µ0 = 10−3 for ALM, with the exception of the ALM algorithm for ROSL, in
which we use µ0 = 10−1.

(ii) Final value of µ. The purpose of this parameter is to set a limit in the decrease (in APG)
or increase (in ALM) of µ, so as to avoid ill-conditioning. In our implementation, we use
µmin = 10−9 in APG and µmax = 109 in ALM.

(iii) Multiplicative update factor of µ. The penalty parameter µ is multiplied at each
iteration by some factor ρ, for which we have ρ < 1 in APG and (typically) 1 < ρ < 2 in
ALM. We follow [51, 84] and we use ρ = 0.9 in APG. As for ALM, it is reported in [54] that
the value of ρ is a trade-off between precision and speed, i.e. for ρ close to 1 the algorithm
converges slowly but precisely whereas for ρ close to 2 it converges faster but less precisely.
In our ALM implementation we use ρ = 1.2, which we have empirically determined to be
a good choice for most cases.

(iv) Convergence threshold δ. This has been discussed in the previous section. A smaller
value of δ leads to a more accurate result but takes more iterations to converge. In general,
the selection of δ should be application-specific. In our implementation we use δ = 10−7.

A summary of the parameter values used is given in Table 6.2.

6.3 Software Toolbox Implementation

All the algorithms discussed in this thesis have been implemented in MATLAB [61] as a general-
purpose toolbox for robust low-rank modelling. MATLAB is suitable for the implementation of
this type of algorithms since

(i) it provides native support for matrix operations (of which the algorithms make heavy use),

78 Chapter 6. Implementation Details

(ii) its built-in matrix subroutines (such as the computation of the SVD) have efficient imple-
mentations, allowing for relatively fast computation, and

(iii) it is the most common choice in the literature of robust low-rank modelling, allowing for
direct comparisons and ease-of-use by the community.

In the tensor algorithms, we have made extensive use of the open-source MATLAB tensor
toolbox, which was (mainly) developed by Bader and Kolda [3, 4]. The tensor toolbox provides
support for tensor operations, which are not native in MATLAB, such as tensor matricisation, the
n-mode product and tensor decompositions, including the CP decomposition and the HOSVD.

Contrary to the rest of the algorithms having been implemented in MATLAB, the generalised
shrinkage operator Sqa {·} was implemented in C and linked to the rest of the MATLAB code
using the MEX compiler provided by MATLAB. This was done to maximise efficiency. The
computation of Sqa {·}, as described by Theorems 5.2 and 5.3, requires the application of the
iterative Newton-Raphson method for each tensor entry. The implementation in MATLAB of
such a nested iterative computation would be severely inefficient, so C was used instead.

To the best of our knowledge, our implementation is the most comprehensive in the literature
of robust low-rank modelling. It covers the most important state-of-the-art methods for matrices
and introduces the herein proposed novel methods for tensors. As part of this thesis, we plan to
release our implementation as an open-source MATLAB toolbox, freely available for use by the
community. It is our hope that this toolbox will facilitate and accelerate future research in the
field of robust low-rank modelling.

Chapter 7

Experimental Evaluation

In this chapter, we experimentally evaluate the algorithms described in chapters 3 and 4 and
investigate their practical applicability. We perform four sets of experiments; on synthetic data,
on face image denoising, on background subtraction in videos and on reconstruction of missing
images. We evaluate the algorithms based on their ability to correctly recover the low-rank and
sparse components, their total execution speed, their convergence behaviour and their perfor-
mance in real-life image analysis applications.

All the experiments were performed on a workstation equipped with an 8-core Intel i7 proces-
sor running at 3.40 GHz and having 16 GB of memory. The operating system was Linux kernel
version 3.8.0 and the version of MATLAB used was 8.1.0 (release R2013a).

Note, finally, that in all experiments reported in this chapter, the norm parameters were set
to p = q = 1, that is, the convex nuclear norm and elementwise `1-norm were considered.

7.1 Low-Rank Recovery with Synthetic Data

In this experiment, we will evaluate the ability of each algorithm to correctly recover a syn-
thetically generated low-rank matrix/tensor from sparse corruption. This experiment is quite
common in the literature as a “sanity check” for matrix methods and it has been performed
with slight variations in [14, 18, 38, 51, 52, 54, 75, 93]. To the best of our knowledge, this the-
sis provides the most comprehensive, in terms of number of algorithms tested under the same
conditions, version of this experiment.

7.1.1 Matrix Methods

For the evaluation of the matrix algorithms presented in chapter 3, we construct a low-rank
matrix A ∈ R1000×1000 and a sparse matrix E ∈ R1000×1000 in the following way

• A = UV, where U ∈ R1000×50 and V ∈ R50×1000. The entries of U,V are independently
sampled from a normal distribution with mean 0 and variance 1 and the entries of A are
normalised to have variance 1. As a result, we will have rank (A) ≤ 50, with the equality
holding almost surely.

• With probability 0.1, each entry of E is sampled from a uniform distribution on the interval
[−100, 100], otherwise it is set to 0. As a result, around 10% of the entries of E will be
non-zero.

Each algorithm is given as input the matrix X = A + E and produces as output a pair
(
Â, Ê

)
,

for each particular choice of λ. We run each algorithm for the following 7 values of λ

λ ∈ {0.0032, 0.0068, 0.0147, 0.0316, 0.0681, 0.1468, 0.3162} (7.1)

80 Chapter 7. Experimental Evaluation

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

10
2

R
e
la

ti
v
e
 r

e
c
o
v
e
ry

 e
rr

o
r

λ

RPCA (alm)

RPCA (apg)

BRPCA

IRPCA (sub)

IRPCA (lin)

ORPCA

ROSL

Figure 7.1: Relative recovery error against λ for all matrix algorithms on synthetic data. Both
axes are on logarithmic scale. All algorithms except both versions of IRPCA and ROSL achieve
exact recovery for a range of λ values.

10
−2

10
−1

0

10

20

30

40

50

60

70

80

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 [
s
e
c
]

λ

RPCA (alm)

RPCA (apg)

BRPCA

IRPCA (sub)

IRPCA (lin)

ORPCA

ROSL

Figure 7.2: Total execution time in seconds against λ for all matrix algorithms on synthetic data.
The horizontal axis is on logarithmic scale. RPCA via APG appears to be the slowest whereas
the factorisation-based BRPCA and ORPCA are the fastest.

7.1. Low-Rank Recovery with Synthetic Data 81

20 40 60 80 100 120 140

10
−6

10
−4

10
−2

10
0

C
o
n
v
e
rg

e
n
c
e
 c

ri
te

ri
o
n

Number of iterations

RPCA (alm)

RPCA (apg)

BRPCA

IRPCA (sub)

IRPCA (lin)

ORPCA

ROSL

Figure 7.3: Convergence behaviour of each algorithm for its best performance in terms of relative
recovery error. The convergence criterion (in logarithmic scale) is plotted against the number of
iterations. All algorithms converge similarly fast, except RPCA via APG which converges more
slowly.

Algorithm Error Time [sec] Iterations λ

RPCA (alm) 8.439× 10−7 18.536 46 0.0316

RPCA (apg) 1.198× 10−6 60.811 151 0.0316

BRPCA 9.484× 10−7 4.357 46 0.0316

IRPCA (sub) 18.271 30.789 61 0.0032

IRPCA (lin) 1.289 27.198 53 0.0032

ORPCA 9.694× 10−7 5.210 53 0.1468

ROSL 0.218 39.203 62 0.3162

Table 7.1: Summary of the best performance of each algorithm on synthetic data with respect
to its relative recovery error. The λ value corresponds to the value for which this performance
was achieved.

82 Chapter 7. Experimental Evaluation

Finally, for the factorisation-based algorithms where an upper bound for the rank r is required,
we set r = 50, which is (almost surely) the true rank of A.

We evaluate each algorithm based on its accuracy in recovering A, its total execution time
and its convergence behaviour. In order to quantify the accuracy of recovering A, we use the
following relative recovery error

E =

∥∥∥A− Â
∥∥∥
F

‖A‖F
(7.2)

Fig. 7.1 plots the relative recovery error E against λ. We can see that there is a range of λ
values for which most of the algorithms manage to recover A almost exactly, with the relative
error being around 10−6. The algorithms that fail to recover A are both versions of IRPCA and
ROSL. It is interesting to note that the optimal value of λ for RPCA, which for an m×n matrix
is proven in [18] to be λ = 1/

√
min(m,n) (here it is 0.0316), is within the range of exact recovery.

Fig. 7.2 plots the total execution time in seconds against λ. We can see that the only method
based on APG (i.e. RPCA via APG) is the slowest. Particularly fast are the algorithms that are
based on factorisation (i.e. BRPCA and ORPCA), since they operate on much smaller matrices.
ROSL is also based on factorisation however it appears to be even slower than RPCA via ALM.

For each method, we select its best execution in terms of relative recovery error E and plot
the corresponding convergence behaviour in Fig. 7.3. It becomes evident that the APG method
(RPCA via APG) has slower convergence than the ALM methods, which explains its slow speed
and justifies the preference of the state-of-the-art algorithms (including those proposed herein)
towards ALM. The ALM algorithms on the other hand appear to have similarly fast convergence.

Finally, Table 7.1 summarises the best performance in terms of relative recovery error E for
each algorithm. RPCA via ALM appears to achieve the most accurate recovery, and it is around
3 times faster than RPCA via APG. Among those algorithms that achieve exact recovery, the
fastest are BRPCA and ORPCA. The herein proposed linearisation version of IRPCA is an
improvement to the substitution-based IRPCA, however both of them, including ROSL, exhibit
poor recovery performance.

7.1.2 Tensor Methods

For the evaluation of the tensor algorithms presented in chapter 4, we synthetically generate a
low-rank tensor A ∈ R100×100×100 and a sparse tensor E ∈ R100×100×100 as follows.

• A = U1 ◦ U2 ◦ U3, where U1,U2,U3 ∈ R100×5. The entries of the factor matrices
U1,U2,U3 were independently sampled from a normal distribution with mean 0 and vari-
ance 1 and the entries of A were normalised to variance 1. This process ensures that
rank (A) ≤ 5, with the equality holding almost surely. Note that due to Theorem 2.6, we
also have that ranki (A) ≤ 5 for i ∈ {1, 2, 3}.

• Similarly to the matrix case, each entry of E was chosen with probability 0.1 from the
uniform distribution on [−100, 100] and otherwise was set to 0. As a result, around 10% of
the entries of E are non-zero.

Each algorithm was given X = A+ E as input, was executed for the same set of λ values (7.1)

as in the matrix case and produced for each run a pair
(
Â, Ê

)
. The rank parameters r1, r2, r3

of BRPCA, IRPCA, RHOSVD and parameter r of RCPD were all set to 5. Finally, for all
algorithms we set a1 = a2 = a3 = 1/3.

Fig. 7.4 plots the relative recovery error defined by

E =

∥∥∥A− Â∥∥∥
F

‖A‖F
(7.3)

7.1. Low-Rank Recovery with Synthetic Data 83

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

10
2

R
e
la

ti
v
e
 r

e
c
o
v
e
ry

 e
rr

o
r

λ

RPCA

BRPCA

IRPCA (sub)

IRPCA (lin)

RHOSVD

RCPD (sub)

RCPD (lin)

Figure 7.4: Relative recovery error against λ for all tensor algorithms on synthetic data. Both
axes are on logarithmic scale. All algorithms except both versions of IRPCA and linearisation-
based RCPD achieve exact recovery for a range of λ values.

10
−2

10
−1

0

5

10

15

20

25

30

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 [
s
e
c
]

λ

RPCA

BRPCA

IRPCA (sub)

IRPCA (lin)

RHOSVD

RCPD (sub)

RCPD (lin)

Figure 7.5: Total execution time against λ for all tensor algorithms on synthetic data. The
horizontal axis is on logarithmic scale. RPCA appears to be the slowest whereas the factorisation-
based BRPCA, RHOSVD and both versions of RCPD are particularly efficient.

84 Chapter 7. Experimental Evaluation

10 20 30 40 50 60 70 80

10
−6

10
−4

10
−2

10
0

C
o
n
v
e
rg

e
n
c
e
 c

ri
te

ri
o
n

Number of iterations

RPCA

BRPCA

IRPCA (sub)

IRPCA (lin)

RHOSVD

RCPD (sub)

RCPD (lin)

Figure 7.6: Convergence behaviour of each tensor algorithm for its execution that yielded the
lowest relative recovery error. The convergence criterion (on logarithmic scale) is plotted against
number of iterations. All algorithms exhibit similar convergence properties.

Algorithm Error Time [sec] Iterations λ

RPCA 1.770× 10−6 24.761 57 0.0147

BRPCA 1.682× 10−6 9.034 66 0.0316

IRPCA (sub) 10.141 11.791 55 0.0032

IRPCA (lin) 0.067 13.065 57 0.0068

RHOSVD 4.775× 10−7 5.205 58 0.0147

RCPD (sub) 1.510× 10−7 3.289 37 0.0068

RCPD (lin) 9.679× 10−4 8.043 85 0.1468

Table 7.2: Summary of the best executions of all tensor algorithms in terms of relative recovery
error. For each algorithm the value of λ for which the best performance was achieved is shown.
RPCA, BRPCA, RHOSVD and substitution-based RCPD achieve exact recovery, with the latter
being the fastest followed shortly by RHOSVD.

7.2. Denoising of Face Images 85

against λ. We can see that there exists a range of λ values for which most algorithms achieve
almost exact recovery of A. The best performance is achieved by RCPD via linearisation. The
algorithms that fail to recover A are both versions of IRPCA and the linearisation-based version
of RCPD.

Fig. 7.5 plots the total execution time of each algorithm against λ. The factorisation-based
BRPCA, RHOSVD and both versions of RCPD appear to be particularly efficient, in contrast
to RPCA which is the slowest.

The convergence of the best executions in terms of relative recovery error are shown in
Fig. 7.6. All algorithms appear to converge similarly fast, which means that the differences
in execution speed are mostly due to the cost per iteration rather than the total number of
iterations. The fastest and slowest algorithms to converge appear to be the substitution-based
and linearisation-based versions of RCPD respectively.

Finally, Table 7.2 summarised the best achieved performances of each algorithm in terms of
relative recovery error. We can see that both the lowest error and the highest speed are achieved
by RCPD via substitution, with RHOSVD following shortly. It is important to note that the
herein proposed BRPCA, RHOSVD and substitution-based RCPD appear to be better than
RPCA both in terms of recovery performance and speed, with substitution-based RCPD being
around 7 times faster than RPCA. However, both versions of IRPCA and the linearisation-based
version of RCPD failed to recover the low-rank tensor. This behaviour of IRPCA is similar to
the matrix case where IRPCA did not manage to recover the low-rank component either.

7.2 Denoising of Face Images

It is known [6] that an image of a convex Lambertian object lies approximately on a 9-dimensional
subspace. Since faces can be approximated as convex and Lambertian, face images typically are
of low rank and therefore constitute a suitable candidate for robust low-rank modelling. In
this experiment, we will evaluate the ability of each algorithm to recover face images that have
been corrupted by heavy non-Gaussian—but sparse—noise. Similar experiments have also been
reported in [5, 69].

We use part of the Extended Yale Face Database B [31, 48], which is a collection of greyscale
face images taken from 28 human subjects, each under 9 poses and 64 illuminations. All images
are manually cropped and aligned, and each pixel ranges between 0 (black) and 1 (white). For
the purposes of this experiment, we use the face images of a single subject in the frontal pose,
i.e. a set of 64 images spanning various illuminations, and we resize each image to 48× 42 pixels.
Fig 7.7 shows the first 8 images of the total of 64 images used.

We corrupt each one of the 64 images with heavy, non-Gaussian, sparse noise. We consider
two kinds of corruption, described as follows.

• Salt & pepper noise. Each pixel is considered for corruption with a probability p and
set equiprobably to 0 or 1. That is, with probability p/2 is set to 0 (black), with probability
p/2 is set to 1 (white) and with probability 1− p remains unchanged. We consider 3 levels
of salt & pepper noise, for p ∈ {10%, 30%, 60%}.

• Random patch. For each image, a rectangular region of size h × w pixels is randomly
chosen, where h and w are sampled uniformly from {1, 2, . . . , 40} (thus producing a different
patch size for each image). Then, all pixels within the selected region are set equiprobably
to 0 (black) or 1 (white).

In total, we have 4 corruption scenarios, i.e. salt & pepper noise with (approximately) 10%, 30%
and 60% of the pixels corrupted and random patch corruption with a maximum patch size of
40× 40.

For the matrix methods, an input data matrix X of size 2016× 64 is constructed, where each
column contains a vectorised corrupted image. For the tensor methods, an input tensor X of

86 Chapter 7. Experimental Evaluation

Figure 7.7: The first 8 images of the set of 64 face images used in the denoising experiment. The
images correspond to the first subject, in frontal pose, of the Extended Yale Face Database B
[31, 48], under 64 different illuminations.

size 48× 42× 64 is constructed, where each frontal slice (i.e. the slice corresponding to the first
two modes) contains a corrupted image. Notice that X considers the image rows, the image
columns and the illuminations as its three modes; due to the symmetry of the frontal pose and
the alignment across illuminations it is expected that all 3 modes are low-rank. If A represents
the corresponding uncorrupted matrix (orA for tensor) and Â represents the recovered low-rank
matrix (or Â for tensor), then the relative recovery error is computed (for matrices) as

E =

∥∥∥A− Â
∥∥∥
F

‖A‖F
(7.4)

For tensors, E is computed the same way, by using A and Â.
Each method is executed for a range of input parameters and its best performance in terms

of the relative reconstruction error is reported. The following values for λ are used

λ ∈ {0.0001, 0.0003, 0.0010, 0.0032, 0.0100, 0.0316, 0.1000} (7.5)

For matrix BRPCA, ORPCA, ROSL and both versions of RCPD, where an upper bound r of
the rank is required, we use the following values

r ∈ {10, 20, 30, 40, 50} (7.6)

From tensor methods, BRPCA, the two versions of IRPCA and RHOSVD require parameters
r1, r2 and r3 as input. Here we use the following setting

r1 = 48α (7.7)

r2 = 42α (7.8)

r3 = 64α (7.9)

α ∈ {0.2, 0.4, 0.6, 0.8, 1.0} (7.10)

That is, r1, r2 and r3 are set to a varying proportion of the corresponding tensor size. Finally,
for all tensor algorithms we set a1 = a2 = a3 = 1/3.

Fig. 7.8 and Fig. 7.9 show the reconstruction of the first image in the data achieved by
the matrix and tensor methods respectively, when various levels of salt & pepper noise are
considered. Most methods cope well with 10% and 30% corruption, however reconstruction in
general becomes poor in the extreme case of 60% corruption. The substitution-based version of
IRPCA appears to have the worst performance. In general, tensor methods produce a smoother
result than the matrix methods. It is particularly impressive that the substitution-based version
of RCPD achieves a high-quality reconstruction even for the extreme case of 60% corruption.

The numerical results for salt & pepper noise are given in Tables 7.3, 7.4 and 7.5 for 10%,
30% and 60% corruption respectively. We can see that in terms of relative recovery error, the
tensor methods outperform the matrix methods in general. In both matrices and tensors, the
factorisation-based methods appear to outperform the rest. In particular, ORPCA and RHOSVD

7.2. Denoising of Face Images 87

Original RPCA
(alm)

RPCA
(apg)

BRPCA IRPCA
(sub)

IRPCA
(lin)

ORPCA ROSL

Figure 7.8: Reconstruction of the first image in the data using matrix methods. Corruption
with salt & pepper noise with 10% (first row), 30% (second row) and 60% (third row). First
column shows the corrupted input image and each following column shows its reconstruction by
the corresponding matrix method.

Original RPCA BRPCA IRPCA
(sub)

IRPCA
(lin)

RHOSVD RCPD
(sub)

RCPD
(lin)

Figure 7.9: Reconstruction of the first image in the data using tensor methods. Corruption
with salt & pepper noise with 10% (first row), 30% (second row) and 60% (third row). First
column shows the corrupted input image and each following column shows its reconstruction by
the corresponding tensor method.

88 Chapter 7. Experimental Evaluation

Original RPCA
(alm)

RPCA
(apg)

BRPCA IRPCA
(sub)

IRPCA
(lin)

ORPCA ROSL

Figure 7.10: Reconstruction using matrix methods with random patch corruption of maximum
size 40 × 40. Images number 1, 7 and 30 of the data are shown (first, second and third row
respectively). First column shows the corrupted input image and each following column shows
its reconstruction by the corresponding matrix method.

Original RPCA BRPCA IRPCA
(sub)

IRPCA
(lin)

RHOSVD RCPD
(sub)

RCPD
(lin)

Figure 7.11: Reconstruction using tensor methods with random patch corruption of maximum
size 40 × 40. Images number 1, 7 and 30 of the data are shown (first, second and third row
respectively). First column shows the corrupted input image and each following column shows
its reconstruction by the corresponding tensor method.

7.2. Denoising of Face Images 89

Algorithm Error Time [sec] Iterations λ r

M
a
tr

ic
e
s

RPCA (alm) 0.131 0.414 59 0.0316 –

RPCA (apg) 0.131 1.329 192 0.0316 –

BRPCA 0.106 0.577 99 0.1000 50

IRPCA (sub) 0.157 241.143 68 0.0003 –

IRPCA (lin) 0.174 212.495 72 0.0032 –

ORPCA 0.105 0.698 103 0.1000 40

ROSL 0.137 0.951 75 0.1000 10

T
e
n

so
rs

RPCA 0.111 3.651 76 0.0316 –

BRPCA 0.088 2.518 104 0.1000 0.8×
IRPCA (sub) 0.189 2.879 92 0.0003 0.2×
IRPCA (lin) 0.169 2.910 84 0.1000 0.2×
RHOSVD 0.084 4.431 101 0.1000 0.6×
RCPD (sub) 0.121 5.552 95 0.1000 50

RCPD (lin) 0.220 3.570 86 0.1000 30

Table 7.3: Numerical results for 10% salt & pepper noise for both matrices and tensors. Best
method of each category in terms of relative recovery error is shown in bold. For each algorithm,
the values used for λ and r (if applicable) are reported.

Algorithm Error Time [sec] Iterations λ r

M
a
tr

ic
e
s

RPCA (alm) 0.176 0.409 57 0.0316 –

RPCA (apg) 0.200 1.411 190 0.0316 –

BRPCA 0.151 0.609 99 0.1000 10

IRPCA (sub) 0.508 194.946 53 0.0001 –

IRPCA (lin) 0.220 225.636 73 0.0032 –

ORPCA 0.142 0.604 98 0.1000 20

ROSL 0.179 2.120 67 0.0316 30

T
e
n

so
rs

RPCA 0.237 3.659 74 0.0316 –

BRPCA 0.123 2.491 98 0.1000 0.6×
IRPCA (sub) 0.564 1.779 53 0.0001 1.0×
IRPCA (lin) 0.213 2.994 84 0.1000 0.2×
RHOSVD 0.122 3.282 93 0.1000 0.4×
RCPD (sub) 0.128 5.363 94 0.1000 50

RCPD (lin) 0.237 3.240 86 0.1000 30

Table 7.4: Numerical results for 30% salt & pepper noise for both matrices and tensors. Best
method of each category in terms of relative recovery error is shown in bold. For each algorithm,
the values used for λ and r (if applicable) are reported.

90 Chapter 7. Experimental Evaluation

Algorithm Error Time [sec] Iterations λ r

M
a
tr

ic
e
s

RPCA (alm) 0.829 0.492 71 0.0100 –

RPCA (apg) 0.864 1.757 181 0.0100 –

BRPCA 0.429 0.469 85 0.0316 50

IRPCA (sub) 0.970 184.868 50 0.0001 –

IRPCA (lin) 0.520 231.687 72 0.0032 –

ORPCA 0.417 0.401 97 0.1000 10

ROSL 0.375 0.595 66 0.0316 10

T
e
n

so
rs

RPCA 0.821 3.339 68 0.0100 –

BRPCA 0.226 1.838 87 0.1000 0.2×
IRPCA (sub) 1.047 1.734 51 0.0001 0.2×
IRPCA (lin) 0.342 4.218 82 0.1000 0.2×
RHOSVD 0.193 2.475 87 0.1000 0.2×
RCPD (sub) 0.173 3.440 83 0.0316 40

RCPD (lin) 0.292 3.292 84 0.1000 30

Table 7.5: Numerical results for 60% salt & pepper noise for both matrices and tensors. Best
method of each category in terms of relative recovery error is shown in bold. For each algorithm,
the values used for λ and r (if applicable) are reported.

Algorithm Error Time [sec] Iterations λ r

M
a
tr

ic
e
s

RPCA (alm) 0.281 0.408 59 0.0316 –

RPCA (apg) 0.328 2.065 191 0.0316 –

BRPCA 0.215 0.483 91 0.0316 30

IRPCA (sub) 0.463 351.084 94 0.0001 –

IRPCA (lin) 0.300 200.991 64 0.0010 –

ORPCA 0.148 0.604 98 0.1000 20

ROSL 0.240 0.581 67 0.0316 10

T
e
n

so
rs

RPCA 0.214 3.660 74 0.0316 –

BRPCA 0.166 2.139 94 0.1000 0.4×
IRPCA (sub) 0.441 3.293 91 0.0001 0.2×
IRPCA (lin) 0.304 2.721 72 0.0100 0.2×
RHOSVD 0.183 3.960 93 0.0316 0.6×
RCPD (sub) 0.188 2.958 89 0.0100 40

RCPD (lin) 0.243 1.980 79 0.0316 20

Table 7.6: Numerical results for random patch corruption of maximum size 40 × 40 for both
matrices and tensors. Best method of each category in terms of relative recovery error is shown
in bold. For each algorithm, the values used for λ and r (if applicable) are reported.

7.3. Background Subtraction 91

are the best matrix and tensor method respectively for 10% and 20%, whereas ROSL and RCPD
via substitution are the best matrix and tensor method respectively for 60%. IRPCA has the
poorest performance in both matrices and tensors.

Fig. 7.10 and Fig. 7.11 show the reconstruction of 3 sample images in the case of corruption
with a random patch. Notice that there are cases (such as the third image) where, although
the corruption is particularly heavy, certain methods still achieve a high-quality reconstruction.
Table 7.6 shows the numerical results for the random patch case. Both matrix and tensor methods
achieve respectable reconstruction. The best methods are ORPCA for matrices (and overall) and
BRPCA for tensors.

7.3 Background Subtraction

Given a set of video frames, background subtraction (or foreground segmentation) refers to
segmenting (in each frame) the static background from any moving foreground objects. By
modelling the background as low-rank and the foreground objects as sparse, robust low-rank
modelling is well-suited for this task. Being one of the most common benchmarks for robust
low-rank modelling, background subtraction has been used in [5, 14, 18, 38, 49, 75, 84].

In this experiment, we use the highway video taken from [34], which shows a highway
where passing cars are the foreground objects. The video comes with manually created bi-
nary foreground masks, which indicate for each pixel whether it belongs to the background or
the foreground. Six sample video frames and their corresponding foreground masks are shown
in Fig. 7.12. For our purposes, we resize the video to a resolution of 48 × 64 pixels and use
400 consecutive frames. For the matrix methods, the input data matrix is X ∈ R3072×400,
where each column is a vectorised video frame. For the tensor methods, the input data tensor is
X ∈ R48×64×400, where each frontal slice (i.e. the slice corresponding to the two first modes) is
a video frame.

All algorithms return (ideally) a low-rank component containing the background and a sparse
component containing the foreground. In order to calculate the recovered foreground mask, the
values of the sparse component are thresholded. That is, an entry E in the sparse component is
classified as background if |E| ≤ T and as foreground if |E| > T , with T ≥ 0 being the chosen
threshold. We evaluate each algorithm’s performance by comparing the recovered foreground
mask to the ground truth foreground mask. Our evaluation is based on ROC analysis [27, 60],
a common framework for assessing the performance of binary classifiers. To better understand
this type of analysis, the following terminology is used.

• True positive. A foreground pixel correctly classified as such. The number of true
positives is represented by TP .

• False positive. A background pixel wrongly classified as foreground. The number of false
positives is represented by FP .

• True negative. A background pixel correctly classified as such. The number of true
negatives is represented by TN .

• False negative. A foreground pixel wrongly classified as background. The number of false
negatives is represented by FN .

• True positive rate. The probability of a foreground pixel being classified correctly,
calculated as TPR = TP

TP+FN .

• False positive rate. The probability of a background pixel being classified wrongly,
calculated as FPR = FP

TN+FP .

• False negative rate. The probability of a background pixel being classified correctly,
calculated as FNR = 1− FPR.

92 Chapter 7. Experimental Evaluation

Figure 7.12: Six sample frames, together with their ground truth foreground masks, from the
highway video used in the background subtraction experiment. The video is taken from [34].

Choosing the value of the threshold T is a trade-off between the number or true positives and
the number of true negatives. That is, increasing T also increases FPR but decreases FNR, or in
simpler words, it produces more background in expense to less foreground. Plotting TPR versus
FPR for various values of T yields a curve known as Receiver Operating Characteristic [27]. The
area under ROC, known as Area Under the Curve, will be used herein as an evaluation metric.
This metric ranges from 0.5 (classification is no better than random choice) to 1.0 (classification
is perfect).

Each method is executed for a range of input parameters and its best performance in terms
of AUC is reported. The range of parameters is the same as in the denoising experiment (sec-
tion 7.2). That is, λ ranges as follows

λ ∈ {0.0001, 0.0003, 0.0010, 0.0032, 0.0100, 0.0316, 0.1000} (7.11)

For matrix BRPCA, ORPCA, ROSL and both versions of RCPD, r ranges as follows

r ∈ {10, 20, 30, 40, 50} (7.12)

For tensor BRPCA, the two versions of tensor IRPCA and RHOSVD, r1, r2 and r3 range as
follows

r1 = 48α (7.13)

r2 = 64α (7.14)

r3 = 400α (7.15)

α ∈ {0.2, 0.4, 0.6, 0.8, 1.0} (7.16)

Finally, for all tensor algorithms we set a1 = a2 = a3 = 1/3.
Fig. 7.13 shows two example video frames together with their ground truth foreground masks

(top row) and the background subtraction achieved by each matrix algorithm (subsequent rows).
All matrix algorithms appear to perform excellently, apart from IRPCA via substitution. Simi-
larly, Fig. 7.14 shows the same video frames as segmented by each tensor algorithm. Both versions
of RCPD achieve excellent results. However, the results of the rest of the tensor algorithms are
less good, as there are still foreground ‘shadows” in the recovered backgrounds.

For an objective numerical comparison, we plot for each algorithm the Detection Error Trade-
off curve [60]. The DET curve is obtained by plotting FNR against FPR for various values
of T . It is semantically equivalent to the ROC curve but more visually pleasing. Fig. 7.15 and
Fig. 7.16 show the DET curves for matrix and tensor methods respectively. The interpretation
of the curves is that the closest they are to the origin, the better the performance is. We can see
that all matrix methods perform similarly, with the notable exception of IRPCA via substitution.
As for tensor algorithms, the DET curves confirm the visual observation that RCPD performs
the best whereas IRPCA performs the worst.

7.3. Background Subtraction 93

Video
frames

RPCA
(alm)

RPCA
(apg)

BRPCA

IRPCA
(sub)

IRPCA
(lin)

ORPCA

ROSL

Figure 7.13: Background subtraction using matrix methods. Two sample video frames are
shown. Top row shows the original video frames and the ground truth foreground masks. Each
consecutive row shows the segmentation achieved by the corresponding matrix algorithm. Note
that the foreground (sparse component) is rescaled to [0, 1] for display purposes.

94 Chapter 7. Experimental Evaluation

Video
frames

RPCA

BRPCA

IRPCA
(sub)

IRPCA
(lin)

ORPCA

RCPD
(sub)

RCPD
(lin)

Figure 7.14: Background subtraction using tensor methods. Two sample video frames are shown.
Top row shows the original video frames and the ground truth foreground masks. Each consecu-
tive row shows the segmentation achieved by the corresponding tensor algorithm. Note that the
foreground (sparse component) is rescaled to [0, 1] for display purposes.

7.3. Background Subtraction 95

0.0001 0.001 0.01 0.1 0.5

0.1

0.3

0.5

0.7

0.9

F
a
ls

e
 N

e
g
a
ti
v
e
 R

a
te

False Positive Rate

RPCA (alm)

RPCA (apg)

BRPCA

IRPCA (sub)

IRPCA (lin)

ORPCA

ROSL

Figure 7.15: Detection Error Trade-off curves showing the performance of matrix algorithms
in foreground segmentation. The closer a curve is to the origin, the better the performance.
All algorithms exhibit similar performance, except IRPCA via substitution whose performance
stands out as the worst.

0.0001 0.001 0.01 0.1 0.5

0.1

0.3

0.5

0.7

0.9

F
a
ls

e
 N

e
g
a
ti
v
e
 R

a
te

False Positive Rate

RPCA

BRPCA

IRPCA (sub)

IRPCA (lin)

RHOSVD

RCPD (sub)

RCPD (lin)

Figure 7.16: Detection Error Trade-off curves showing the performance of tensor algorithms in
foreground segmentation. The closer a curve is to the origin, the better the performance. The
two versions of RCPD perform the best, whereas the two versions of IRPCA perform the worst.

96 Chapter 7. Experimental Evaluation

Algorithm AUC Time [sec] Iterations λ r
M

a
tr

ic
e
s

RPCA (alm) 0.944 13.658 85 0.0100 –

RPCA (apg) 0.944 30.138 183 0.0100 –

BRPCA 0.945 3.430 82 0.0100 10

IRPCA (sub) 0.918 1347.867 92 0.0001 –

IRPCA (lin) 0.929 935.764 74 0.0100 –

ORPCA 0.946 5.737 88 0.0316 30

ROSL 0.944 16.590 58 0.0100 50

T
e
n

so
rs

RPCA 0.920 52.136 76 0.0100 –

BRPCA 0.915 19.034 91 0.0316 0.6×
IRPCA (sub) 0.884 34.748 85 0.0010 0.2×
IRPCA (lin) 0.814 35.028 83 0.1000 0.2×
RHOSVD 0.921 52.495 89 0.0100 0.8×
RCPD (sub) 0.937 37.039 82 0.0010 40

RCPD (lin) 0.921 46.206 88 0.1000 50

Table 7.7: Numerical results on foreground segmentation using both matrix and tensor methods.
The first numerical column shows the Area Under the Curve (AUC). Higher AUC implies better
performance. The algorithms with higher AUC for each category are shown in bold. The best
performance for each algorithm is reported, for which the corresponding values of λ and r (if
applicable) are shown.

Finally, Table 7.7 shows the AUC for all methods, together with their total execution time
and number of iterations. For each algorithm its best performance is reported (as measured by
AUC) and the values of λ and r (if applicable) for which it was obtained are shown. Matrix
algorithms perform in general better than most tensor algorithms, with the exception of RCPD
which performs as good as most matrix algorithms. In terms of time efficiency, matrix BRPCA
and ORPCA are particularly fast, with a running time of less than 6 seconds. The slowest are
the two versions of matrix IRPCA, with a running time of more than 15 minutes.

7.4 Reconstruction of Whole Missing Images

So far, the experiments on denoising and background subtraction have shown that matrix and
tensor methods are comparable. In this last experiment, we will demonstrate the superiority of
tensors over matrices in the problem of reconstructing whole missing images.

Robust low-rank modelling has been used extensively in missing value recovery, both with
matrices (e.g. [16, 42, 50, 89]) and with tensors (e.g. [29, 56]). Nevertheless, in most experiments,
the values to be missing were selected at random within the data matrix or the data tensor.
Instead, in this experiment we will consider that the missing values are whole data points (in our
case, images), similarly to the experimental setting used in [30]. To the best of our knowledge,
it is the first time in the literature that this type of experiment is performed in the context of
robust low-rank modelling.

For the purposes of this experiment, we will use part of the CMU Multi-PIE database of face
images [35]. The Multi-PIE database consists of face images taken from various subjects, using a
wide range of viewpoints, facial expressions and illuminations for each subject. Here, we use 10
subjects, 5 viewpoints (−30◦, −15◦, 0◦, 15◦, 30◦), 6 expressions (neutral, surprise, squint, smile,
disgust, scream) and 5 illuminations, with a total of 1500 images. All images have been cropped,

7.4. Reconstruction of Whole Missing Images 97

aligned and resized to a resolution of 40× 30 pixels. Some examples of images that were used in
the experiments of this section are shown in Fig. 7.17.

For the matrix methods, the data are represented by a matrix X ∈ R1200×1500, where each
column is a vectorised image. For the tensor methods, the data are represented by a 6th-order
tensor X ∈ R10×5×6×5×40×30, where the modes correspond to subjects, viewpoints, expressions,
illuminations, image rows and image columns respectively. The input data are then formed as
follows.

• Missing images. With probability p, each of the 1500 images is considered to be entirely
missing, in which case the corresponding entries in X or X are set to zeros. Here we use
p ∈ {0.2, 0.5, 0.8}.

• Observed images. With probability 1− p, the image is considered to be observed and is
kept unaffected.

• Binary observation mask. A matrix W (or tensor W) is formed with the same size
as X (or, respectively, X), with each entry W indicating whether the corresponding pixel
is observed (W = 1) or missing (W = 0). This mask informs the algorithm about the
location of the missing values, as explained in section 5.1.

The purpose of this experiment is to use the robust low-rank modelling algorithms in order to
reconstruct the missing images, given the rest of the dataset.

Using any matrix method to reconstruct the missing images fails dramatically, since all re-
constructed pixels turn out to be zero (i.e. black) or very close to zero. As we have shown in
section 5.1, robust low-rank modelling—in principle—works by freely modifying the unknown en-
tries such that the resulting matrix/tensor is low-rank. For matrices, this works quite well when
the missing values are randomly dispersed throughout the data, as it has been demonstrated in
the literature (see references above). In this experiment, however, the missing values are entire
matrix columns; the rank of the resulting matrix can trivially be minimised by simply setting
the missing columns to zero.

Although such a task is beyond the capabilities of matrix algorithms, tensor algorithms can
still achieve respectable results, as we shall demonstrate below. The reason for this is that tensor
algorithms can take advantage of the higher-order structure in the data. The Multi-PIE dataset
is particularly structured, due to the contribution of various factors (subjects, viewpoints, ex-
pressions and illuminations). By representing the above factors as different modes and requiring
that these modes be low-rank, the entire reconstruction of previously unseen images becomes
possible.

In the following, we will evaluate the performance of all tensor algorithms in the reconstruction
task. Each algorithm is run for the following values of λ

λ ∈ {1, 10, 1000, 1000} (7.17)

and the best result in terms of reconstruction is reported. Since we wish to minimise the rank
of the first four modes (i.e. subjects, viewpoints, expressions and illuminations) but not of the
last two (i.e. rows and columns), we set a1 = a2 = a3 = a4 = 0.25 and a5 = a6 = 0. In order to
achieve good reconstruction (and since no noise is being considered) the upper bounds for the
ranks are set to high values. For BRPCA, both versions of IRPCA and RHOSVD we set

(r1, r2, r3, r4, r5, r6) = (10, 5, 6, 5, 40, 30) (7.18)

that is, equal to the size of the tensor. For both versions of RCPD we set r = 40, that is, equal
to the maximum mode size.

We evaluate the quality of the reconstruction using the average correlation coefficient across
reconstructed images. Let ai be a missing image (represented here in a vectorised form) and âi

98 Chapter 7. Experimental Evaluation

(a) The 10 different subjects

(b) The 5 different viewpoints

(c) The 6 different expressions

(d) The 5 different illuminations

Figure 7.17: Examples of images in the CMU Multi-PIE face database [35] that are used for the
missing image reconstruction experiment.

7.4. Reconstruction of Whole Missing Images 99

Original RPCA BRPCA IRPCA
(sub)

IRPCA
(lin)

RHOSVD RCPD
(sub)

RCPD
(lin)

Figure 7.18: Examples of missing images (first column) and their reconstruction by each tensor
algorithm. Here, 20% of the images are missing from the dataset. Five images are shown,
corresponding to different subjects, expressions and viewpoints.

100 Chapter 7. Experimental Evaluation

Original RPCA BRPCA IRPCA
(sub)

IRPCA
(lin)

RHOSVD RCPD
(sub)

RCPD
(lin)

Figure 7.19: Examples of missing images (first column) and their reconstruction by each tensor
algorithm. Here, 50% of the images are missing from the dataset. Five images are shown,
corresponding to different subjects, expressions and viewpoints.

7.4. Reconstruction of Whole Missing Images 101

Original RPCA BRPCA IRPCA
(sub)

IRPCA
(lin)

RHOSVD RCPD
(sub)

RCPD
(lin)

Figure 7.20: Examples of missing images (first column) and their reconstruction by each tensor
algorithm. Here, 80% of the images are missing from the dataset. Five images are shown,
corresponding to different subjects, expressions and viewpoints.

102 Chapter 7. Experimental Evaluation

Algorithm Correlation Time [sec] Iterations λ
2
0

%
m

is
si

n
g

RPCA 0.906 90.186 98 1

BRPCA 0.879 63.341 117 100

IRPCA (sub) 0.835 86.445 84 1

IRPCA (lin) 0.872 127.349 119 10

RHOSVD 0.905 206.114 97 1

RCPD (sub) 0.832 158.370 137 1000

RCPD (lin) 0.801 139.213 109 10

5
0

%
m

is
si

n
g

RPCA 0.860 98.559 99 1

BRPCA 0.802 62.500 113 1

IRPCA (sub) 0.590 95.278 93 1

IRPCA (lin) 0.801 126.892 118 10

RHOSVD 0.860 216.610 99 1

RCPD (sub) 0.821 130.115 112 10

RCPD (lin) 0.788 176.313 134 1000

8
0

%
m

is
si

n
g

RPCA 0.774 94.416 102 1

BRPCA 0.692 66.603 121 1000

IRPCA (sub) 0.576 122.107 119 10

IRPCA (lin) 0.640 152.437 141 1000

RHOSVD 0.774 199.691 94 1

RCPD (sub) 0.529 157.299 136 1000

RCPD (lin) 0.739 180.912 134 1000

Table 7.8: Numerical results for the missing image reconstruction experiment with the Multi-PIE
face database. The reconstruction performance is assessed by the average correlation coefficient
across reconstructed images. For each missing percentage, the best performing algorithms are
shown in boldface. For each algorithm, its best performance in terms of reconstruction is re-
ported, together with the value of λ for which this was achieved.

be its reconstruction, for i ∈ {1, 2, . . . , N}, and assume that both ai and âi have been centred to
have zero mean. The (absolute) correlation coefficient ci between ai and âi is computed as

ci =
|〈ai, âi〉|
‖ai‖2 ‖âi‖2

(7.19)

and its average value across reconstructed images is

c̄ =
1

N

N∑
i=1

ci (7.20)

By definition, the value of c̄ will be between 0 and 1, with a higher value indicating a better
reconstruction.

Fig. 7.18, 7.19 and 7.20 show the reconstruction of 5 example missing images from the dataset,
corresponding to different subjects, expressions and viewpoints, with 20%, 50% and 80% of the
total number of images missing respectively. It is rather impressive that previously unseen images
can be reconstructed with often very good results, even if the majority of the images from the

7.5. Overall Evaluation of Algorithms 103

dataset is missing. Visually, the best results are given by RPCA and RHOSVD, whereas the
worst results are produced by both versions of RCPD.

Finally, Table 7.8 shows the numerical results in terms of average correlation coefficient c̄,
total execution time and total number of iterations. RPCA and RHOSVD yield the best results
and are almost equivalent in terms of reconstruction performance. Both versions of IRPCA and
both versions of RCPD have, in general, the poorest performance. BRPCA is in every case
the fastest algorithm. Due to the use of high values for the r parameters, which was necessary
to achieve a high-quality reconstruction, the efficiency of the factorisation-based methods was
compromised. As a result, RPCA appears to be faster than the—otherwise more efficient—
RHOSVD and RCPD.

7.5 Overall Evaluation of Algorithms

In this chapter we have evaluated all algorithms in a variety of tasks, both including simulated
and real-life data. In general, all algorithms were found to perform respectably. In particular,
the following conclusions can be drawn.

(i) Ability of exact recovery. Using synthetically generated low-rank data, we were able
to evaluate whether the algorithms were capable of exactly recovering the low-rank data
from sparse gross corruptions. It was found that most algorithms were indeed capable of
doing so. The algorithms that failed to do so were IRPCA (both for matrices and tensors)
and ROSL. In fact, the ability of exact recovery has been theoretically proven for matrix
RPCA [18] and for tensor RPCA [40], which we experimentally verified. The fact that also
other algorithms achieved exact recovery, including most of the tensor algorithms, suggest
that the theoretical results for RPCA might be extensible to other cases as well.

(ii) Convergence. All algorithms converged in all cases. The rate of convergence relied
mainly on the underlying optimisation algorithm. In general, three optimisation algorithms
were used; APG, ALM and ALM with linearisation. The algorithms that were based on
ALM and ALM with linearisation exhibited a similarly fast convergence behaviour. The
algorithm based on APG (i.e. matrix RPCA via APG) converged more slowly, even though
its rate of convergence is theoretically shown [7] to be O

(
k−2

)
. This is consistent with the

findings of [52], where it was also reported that RPCA via ALM is faster than RPCA via
APG.

(iii) Speed. Since all algorithms—except matrix RPCA via APG—converged with the same
rate, the main factor in determining their speed is the computational cost per iteration. Our
experimental results confirm our theoretical analysis in sections 3.6.2 (for matrix methods)
and 4.6.3 (for tensor methods), where we predicted that the factorisation-based methods
(i.e. BRPCA, ORPCA, ROSL, RHOSVD and RCPD) would outperform regularisation-
based methods (i.e. RPCA and IRPCA) in terms of computational efficiency.

(iv) Performance in image analysis tasks. We evaluated all algorithms in three tasks of
practical significance in image analysis and computer vision; image denoising, background
subtraction and image reconstruction. Our results show that most algorithms achieved
very good results, suggesting that robust low-rank modelling is a competitive candidate in
such applications. Certain algorithms achieved impressive results even in cases of signif-
icantly heavy corruption. In general, it was observed that factorisation-based algorithms
performed better than regularisation-based algorithms. We believe this is due to the in-
creased flexibility of factorisation-based algorithms in the manipulation of ranks by the
user. However, this comes at the cost of extra difficulty in tuning. Arguably, the method
with the consistently worst performance was IRPCA, both with matrices and tensors.

104 Chapter 7. Experimental Evaluation

(v) Matrix versus tensor methods. Matrix and tensor methods performed comparably
well in the first three experiments (i.e. synthetic data recovering, denoising and background
subtraction). Tensor methods in general outperformed matrix methods in image denoising
whereas the opposite was true for background subtraction. However, tensor methods were
far more superior than matrix methods in the last experiment, i.e. reconstruction of wholly
missing images. This suggests that tensor methods are comparably good to matrix meth-
ods where both are applicable, however tensor methods have also the potential of further
extending the applicability of robust low-rank modelling in cases where matrix methods
are no longer applicable.

To conclude, it is difficult to say whether a particular algorithm is better or should be pre-
ferred, since this depends on the application under consideration and the practical requirements.
Perhaps factorisation methods should be preferred, as they are faster and more flexible, provided
the extra difficulty in tuning them can be afforded. Otherwise, RPCA should be preferred, pro-
vided that its slower speed is not a concern. Essentially, the final choice is a trade-off between
speed and flexibility on the one hand and ease of use on the other hand.

It is easy to say though which algorithms should probably be avoided. There seems to be
no reason to use matrix RPCA with APG, as its ALM version is faster and yields the same
results. Also, the worst performance was consistently observed to be by IRPCA, both with
matrices and tensors. Apart from performance, IRPCA has no computational advantage over
other algorithms in terms of speed. Therefore, based on our evaluation and given the better
alternatives, we consider matrix RPCA via APG and all versions of IRPCA to be now obsolete.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

Robust low-rank modelling is a general-purpose framework based on two powerful assumptions;
that the data are low-rank and the corruptions are sparse. These assumptions are general enough
to cover a wide range of practical scenarios, including several applications in image analysis and
computer vision.

The applicability of robust low-rank modelling relies upon the existence of practical methods
for its computation. Recent advances in convex non-smooth optimisation have made the existence
of such methods a reality. As a result, in recent years a multitude of approaches have been
developed that focus on the simultaneous minimisation of the rank and the `0-norm of suitable
matrices.

Part of this thesis was devoted in reviewing the state-of-the art methods for robust low-rank
modelling on matrices. Our exposition was based on the realisation that all such methods can be
viewed as different instantiations of the same generic problem, employing in each case a different
approximation of the rank and the sparsity of suitable matrices. Such approximations involve
surrogating the rank and the `0-norm with their convex envelopes and/or explicitly factorising
the low-rank term. Hence, we made a distinction between regularisation-based and factorisation-
based methods.

We contributed to the field of robust low-rank modelling by extending several state-of-the-art
matrix-only methods to the more general case of tensors. Tensors are the multilinear generalisa-
tion of matrices and are capable of expressing higher-order structure in the data more faithfully
than matrices. The significance of our contribution relies on the fact that we extended the ap-
plicability of robust low-rank modelling to real-life cases where the matrix-only methods were
inadequate. On the theoretical side, we provided the first formulation of the two most impor-
tant tensor decompositions (i.e. HOSVD and CP decomposition) within the framework of robust
low-rank modelling.

We demonstrated the flexibility of our approach by showing how all methods under our
consideration—both those already existing and those that were developed herein—can be easily
extended to handle missing values in the data and incorporate more general norms. As a result,
we developed a comprehensive and flexible framework for robust low-rank modelling on both
matrices and tensors, whose applicability we demonstrated on a variety of real-life computer
vision applications.

Finally, by making our implementation of our robust low-rank modelling framework available
to the research community as a MATLAB toolbox, we hope to support and accelerate further
developments in the area, both on the theoretical and the applications side.

106 Chapter 8. Conclusions and Future Work

8.2 Future Work

As a starting point for future research in the field of robust low-rank modelling, in this section
we identify and propose a list of potential future research directions.

8.2.1 Theoretical Guarantees of Convergence and Optimality

Robust low-rank modelling relies on optimisation techniques, the convergence of which is crucial.
Apart from the existing proofs of convergence for the already-established algorithms, our work
lacks a theoretical analysis on the convergence of the newly proposed tensor methods. Empirically
we observed that fast convergence was always achieved, which suggests that theoretical proofs
of convergence may be possible to obtain. Ideally, a theoretical analysis of convergence should
also characterise the rate of convergence (which is not known even for several of the already-
established matrix algorithms) and the optimality of the result (i.e. local or global).

In addition to the above, it would be of notable significance to extend the theoretical results
of [18, 40] regarding the guaranteed optimality of RPCA to other methods as well. Our exper-
iments showed that most algorithms are also capable of exactly recovering low-rank synthetic
data, which suggests the plausibility of such extensions. Ideally, such extensions should also
provide suggestions for parameter tuning, which would be of great usefulness regarding practical
applicability.

8.2.2 Non-Negative Factorisations

The factorisation-based methods described in this thesis are based on reformulating existing
matrix or tensor decompositions within the framework of robust low-rank modelling. Matrix
and tensor decompositions are important in that they provide insights on the structure of the
data. For some applications (such as image analysis) the decomposition components need to have
non-negative entries in order to make sense within the application domain. Such constrained
decompositions are known as non-negative matrix factorisations [47] and non-negative tensor
factorisations [88]. Reformulating such factorisations within the framework of robust low-rank
modelling would be a novel and important extension. Note that the non-negativity is a convex
inequality constraint and as such it would not compromise convexity. Some preliminary work
was presented in [57], based on projections on the feasible non-negative space.

8.2.3 Other Tensor Decompositions and Low-Rank Models

The tensor decompositions on which this work has focused are the HOSVD and the CP de-
composition, since they are probably the two most widely used. However, in the tensor litera-
ture, several other decompositions have been proposed—some of which are mentioned in section
2.2.2—which are worth being studied under a robust low-rank modelling framework. Other in-
teresting tensor decompositions include CP with column-orthonormal factor matrices [22] and
the newly-proposed tensor-SVD or t-SVD [92].

As a convex relaxation for the tensor rank, in this work we considered a convex combination
of the nuclear norms of all matricisations. As we discussed in the beginning of chapter 4, this
is indeed the most common choice in the literature. However, recently Mu et al. [62] showed
that using the nuclear norm of only one matricisation that is reshaped so as to become as square
as possible can achieve recovery from fewer samples. In another approach, in [32, 86] the so-
called mixture model for describing a low-rank tensor was considered, in which an N th-order
low-rank tensor is written as the sum of N tensors, each of which is low-rank along a different
mode. The authors argue that the mixture model allows for increased flexibility without the
further introduction of parameters that require tuning. Both of these alternative approaches are
promising and therefore worth investigating in future research.

8.2. Future Work 107

8.2.4 Probabilistic Reformulation

An interesting development in robust low-rank modelling would be its probabilistic reformulation.
Such a reformulation would provide a principled probabilistic interpretation of the optimisation
problems used. More importantly, under a probabilistic framework the regularisation parameters
could be treated as random variables and hence be determined automatically (see e.g. the relevant
discussion in [93]). To this end, an interesting approach has been proposed by Babacan et al. [2],
who reformulated BRPCA as a generative probabilistic model and solved it using variational
Bayesian inference. The extension of such works to other methods and/or tensors would be of
particular interest.

8.2.5 Novel Optimisation Techniques

This work uses in total three optimisation algorithms; APG, ALM and ALM with linearisation.
Currently, ALM is considered state-of-the-art for robust low-rank modelling and is employed by
most approaches in the literature. Even though ALM is empirically known to converge quickly,
no theoretical description of its rate of convergence is known. Orabona et al. [66] have proposed a
different approach for convex non-smooth optimisation to which they refer as PRoximal Iterative
SMoothing Algorithm or PRISMA and which is based on replacing the non-smooth term with its
smooth Moreau envelope and proceeding with APG updates. They prove that PRISMA’s rate of
convergence is O

(
L1k

−2 + L2k
−1 log k

)
, with L1 and L2 being certain Lipschitz constants, and

apply it to solve matrix RPCA, in which they report faster convergence than ALM. This suggests
that employing PRISMA in other matrix or tensor methods may be a promising development
towards improving their speed.

A drawback of ALM with linearisation is the lack of a theoretical guarantee of convergence
when the blocks of variables to be updated are more than two (even though in our experiments
we always found it to converge). To address this problem, Liu et al. [57] showed that a certain
reformulation of ALM with linearisation based on parallel updates is guaranteed to converge
for any number of blocks of variables. Even though their proof is for convex problems only,
it is worth investigating whether applying their ideas on the methods described in this work
(especially in the tensor case, where the blocks of variables may be several) can improve their
convergence.

Finally, as we saw in section 3.6.2, matrix methods have, in principle, a cost of O
(
n3
)

per

iteration, for an input matrix of size n× n, which can be reduced to O
(
rn2
)

using factorisation
with r ≤ n. Although this is a significant improvement compared to interior point methods
that have a cost of O

(
n6
)

per iteration, it still may be prohibitive for very large datasets. In
a recent work, Mu et al. [63] showed that combining Frank-Wolfe and proximal optimisation
techniques for solving matrix RPCA can yield linear cost per iteration. The drawback of their
method is its convergence rate of O

(
k−1

)
, which is suboptimal compared to O

(
k−2

)
achievable

by APG. However, their method is worth of further investigation, and possible extension to
factorisation-based and/or tensor methods, especially for very large datasets.

8.2.6 Real-Time Applications

So far, the computational cost of robust low-rank modelling has prevented it from being used in
real-time applications, even though this would be an exciting practical development. As a poten-
tial application, consider the real-time subtraction of the background in video frames at real time.
This could be used for e.g. real-time motion detection and tracking. Based on our experimen-
tal results, the most promising candidates for real-time performance are the factorisation-based
BRPCA and ORPCA, due to their efficiency compared to other methods. However, applying
them at real time would require a more efficient implementation choice than MATLAB, such as
C or C++ combined with the high performance capabilities of graphics processing units.

Appendix A

Notations and Symbols

x, y, z,X, Y, Z Scalars (lowercase or uppercase letters)

x,y, z Vectors (lowercase bold letters)

X,Y,Z Matrices (uppercase bold letters)

X ,Y ,Z Tensors of order N ≥ 3 (uppercase calligraphic bold letters)

xi Entry at position i of vector x

Xij Entry at position (i, j) of matrix X

Xi1i2···iN Entry at position (i1, i2, . . . , iN) of N th-order tensor X
I Identity matrix of appropriate dimensions

xT ,XT Transpose of vector x and matrix X

{. . .} A set, depending on context

[x, y] Closed interval from x to y

R The set of real numbers

Rn The set of all real vectors of length n

Rm×n The set of all real matrices of size m× n
RI1×I2×···×IN The set of all N th-order real tensors of size I1 × I2 × · · · × IN
|·| Absolute value of a real number

‖·‖ Norm (in general)

‖·‖Sp
Schatten p-norm (matrices only)

‖·‖∗ Nuclear norm (matrices only)

‖·‖p Elementwise `p-norm

‖·‖F Frobenius norm

‖·‖0 `0-norm

〈·, ·〉 Inner product

rank (·) Matrix or tensor rank

rankn (·) Tensor n-rank

vec (X) Vectorisation of tensor X
X[n] n-mode matricisation of tensor X
X⊗Y Kronecker product between matrices X and Y

109

⊗N
i=1 Ui Shorthand for U1 ⊗U2 ⊗ · · · ⊗UN

X�Y Khatri-Rao product between matrices X and Y⊙N
i=1 Ui Shorthand for U1 �U2 � · · · �UN

X ×n U n-mode product between tensor X and matrix U

X ×Ni=1 Ui Shorthand for X ×1 U1 ×2 U2 ×3 · · · ×N UN

x ◦ y Outer product between vectors x and y

U1 ◦U2 ◦ · · · ◦UN CP decomposition with factor matrices {Ui}
∇f (x) , ∂f∂x Gradient of function f with respect to x

Cf Convex envelope of function f

Pf {·} Proximal operator of function f

Sa {·} Shrinkage operator

Sa,Ω {·} Selective shrinkage

Spa {·} Generalised shrinkage

Spa,Ω {·} Generalised selective shrinkage

Da {·} Singular value thresholding (matrices only)

Dpa {·} Generalised singular value thresholding (matrices only)

Ma{·} Magnitude shrinkage

πΩ (·) Sampling operator

O (·) Asymptotic “big O” notation

min (x1, x2, . . . , xN) The smallest among scalars {xi}
minx f (x) The minimum value of real function f with respect to x

arg minx f (x) The minimiser of real function f with respect to x

Appendix B

List of Abbreviations

ALM Augmented Lagrange Multipliers

APG Accelerated Proximal Gradient

AUC Area Under the Curve

BCD Block Coordinate Descent

BRPCA Bilinear Robust PCA

CANDECOMP CANonical DECOMPosition

CP CANDECOMP/PARAFAC

DET Detection Error Trade-off

GSRPCA Generalised Scalable Robust PCA

HOSVD Higher Order SVD

IRPCA Inductive Robust PCA

KKT Karush-Kuhn-Tucker

LADM Linearised Alternating Direction Method

LRR Low-Rank Representation

ORPCA Orthonormal Robust PCA

PARAFAC PARallel FACtors

PCA Principal Component Analysis

PRISMA PRoximal Iterative SMoothing Algorithm

RCPD Robust CP Decomposition

RHOSVD Robust Higher Order SVD

ROC Receiver Operating Characteristic

ROSL Robust Orthonormal Subspace Learning

RPCA Robust PCA

SVD Singular Value Decomposition

Bibliography

[1] E. Acar and B. Yener. Unsupervised multiway data analysis: A literature survey. Knowledge
and Data Engineering, IEEE Transactions on, 21(1):6–20, Jan. 2009.

[2] S. D. Babacan, M. Luessi, R. Molina, and A. K. Katsaggelos. Sparse bayesian methods
for low-rank matrix estimation. Signal Processing, IEEE Transactions on, 60(8):3964–3977,
Aug. 2012.

[3] B. W. Bader and T. G. Kolda. Algorithm 862: MATLAB tensor classes for fast algorithm
prototyping. ACM Transactions on Mathematical Software, 32(4):635–653, Dec. 2006.

[4] B. W. Bader, T. G. Kolda, et al. MATLAB Tensor Toolbox Version 2.5. Available online,
Jan. 2012. URL http://www.sandia.gov/~tgkolda/TensorToolbox/.

[5] B.-K. Bao, G. Liu, C. Xu, and S. Yan. Inductive Robust Principal Component Analysis.
Image Processing, IEEE Transactions on, 21(8):3794–3800, Aug. 2012.

[6] R. Basri and D. Jacobs. Lambertian reflectance and linear subspaces. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 25(2):218–233, Feb. 2003.

[7] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Img. Sci., 2(1):183–202, Mar. 2009.

[8] S. Bengio, F. Pereira, Y. Singer, and D. Strelow. Group Sparse Coding. In Advances in
Neural Information Processing Systems, 2009.

[9] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In Proceedings
of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pages
417–424, 2000.

[10] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Athena sci-
entific series in optimization and neural computation. Athena Scientific, 1996.

[11] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition, Sept. 1999.

[12] T. Bouwmans and E. H. Zahzah. Robust PCA via principal component pursuit: A review for
a comparative evaluation in video surveillance. Computer Vision and Image Understanding,
122:22–34, 2014.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Found. Trends Mach.
Learn., 3(1):1–122, Jan. 2011.

[14] R. S. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino. Unifying nuclear norm and
bilinear factorization approaches for low-rank matrix decomposition. In Computer Vision
(ICCV), 2013 IEEE International Conference on, pages 2488–2495, Dec. 2013.

http://www.sandia.gov/~tgkolda/TensorToolbox/

112 Bibliography

[15] R. S. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino. Matrix completion for
weakly-supervised multi-label image classification. IEEE Transactions Pattern Analysis
and Machine Intelligence (PAMI), 2014.

[16] J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix
completion. SIAM J. on Optimization, 20(4):1956–1982, Mar. 2010.

[17] E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Commun.
ACM, 55(6):111–119, June 2012.

[18] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust Principal Component Analysis? J.
ACM, 58(3):11:1–11:37, June 2011.

[19] J. D. Carroll and J.-J. Chang. Analysis of individual differences in multidimensional scaling
via an n-way generalization of “Eckart-Young” decomposition. Psychometrika, 35(3):283–
319, 1970.

[20] T. F. Chan. An improved algorithm for computing the singular value decomposition. ACM
Trans. Math. Softw., 8(1):72–83, Mar. 1982.

[21] C.-F. Chen, C.-P. Wei, and Y.-C. Wang. Low-rank matrix recovery with structural inco-
herence for robust face recognition. In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, pages 2618–2625, June 2012.

[22] J. Chen and Y. Saad. On the tensor SVD and the optimal low rank orthogonal approximation
of tensors. SIAM J. Matrix Anal. Appl., 30(4):1709–1734, Jan. 2009.

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edition, 2009.

[24] D. Donoho. For most large underdetermined systems of equations, the minimal `1-norm
near-solution approximates the sparsest near-solution. Communications on Pure and Applied
Mathematics, 59(7):907–934, 2006.

[25] L. Eldén and B. Savas. A Newton-Grassmann method for computing the best multilin-
ear rank-(r1, r2, r3) approximation of a tensor. SIAM Journal on Matrix Analysis and
Applications, 31(2):248–271, 2009.

[26] N. M. Faber, R. Bro, and P. K. Hopke. Recent developments in CANDECOMP/PARAFAC
algorithms: a critical review. Chemometrics and Intelligent Laboratory Systems, 65(1):
119–137, 2003.

[27] T. Fawcett. An introduction to ROC analysis. Pattern Recogn. Lett., 27(8):861–874, June
2006.

[28] M. Fazel. Matrix Rank Minimization with Applications. PhD thesis, Dept. Electrical Engi-
neering, Stanford University, CA, USA, 2002.

[29] S. Gandy, B. Recht, and I. Yamada. Tensor completion and low-n-rank tensor recovery via
convex optimization. Inverse Problems, 27(2):025010, 2011.

[30] X. Geng, K. Smith-Miles, Z.-H. Zhou, and L. Wang. Face image modeling by multilinear
subspace analysis with missing values. Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, 41(3):881–892, June 2011.

[31] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to many: Illumination
cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern
Anal. Mach. Intelligence, pages 643–660.

Bibliography 113

[32] D. Goldfarb and Z. Qin. Robust low-rank tensor recovery: Models and algorithms. SIAM
Journal on Matrix Analysis and Applications, 35(1):225–253, 2014.

[33] G. H. Golub and C. F. Van Loan. Matrix Computations (4th Ed.). Johns Hopkins University
Press, Baltimore, MD, USA, 2013.

[34] N. Goyette, P. Jodoin, F. Porikli, J. Konrad, and P. Ishwar. Changedetection.net: A
new change detection benchmark dataset. In Computer Vision and Pattern Recognition
Workshops (CVPRW), 2012 IEEE Computer Society Conference on, pages 1–8, June 2012.

[35] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker. Multi-PIE. Image Vision
Comput., 28(5):807–813, May 2010.

[36] R. A. Harshman. Foundations of the PARAFAC procedure: Models and conditions for an
“explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics, 16:1–84,
1970.

[37] J. H̊astad. Tensor rank is NP-complete. J. Algorithms, 11(4):644–654, Dec. 1990.

[38] R. He, T. Tan, and L. Wang. Robust recovery of corrupted low-rank matrix by implicit
regularizers. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 36(4):770–
783, Apr. 2014.

[39] H. Hotelling. Analysis of a complex of statistical variables into principal components. J.
Educ. Psych., 24, 1933.

[40] B. Huang, C. Mu, D. Goldfarb, and J. Wright. Provable low-rank tensor recovery. Available
online, 2014. URL http://www.optimization-online.org/DB_FILE/2014/02/4252.pdf.

[41] P. J. Huber, J. Wiley, and W. InterScience. Robust statistics. Wiley New York, 1981.

[42] H. Ji, C. Liu, Z. Shen, and Y. Xu. Robust video denoising using low rank matrix completion.
In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages
1791–1798, June 2010.

[43] I. T. Jolliffe. Principal Component Analysis. Springer, second edition, Oct. 2002.

[44] T. Kolda and B. Bader. Tensor decompositions and applications. SIAM Review, 51(3):
455–500, 2009.

[45] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender sys-
tems. Computer, 42(8):30–37, Aug. 2009.

[46] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proceedings of the Second
Berkeley Symposium on Mathematical Statistics and Probability, pages 481–492. University
of California Press, 1951.

[47] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In Advances
in Neural Information Processing Systems 13, pages 556–562. 2001.

[48] K. C. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition under
variable lighting. IEEE Trans. Pattern Anal. Mach. Intelligence, pages 684–698.

[49] Y. Li, J. Yan, Y. Zhou, and J. Yang. Optimum subspace learning and error correction for
tensors. In Computer Vision - ECCV 2010, volume 6313 of Lecture Notes in Computer
Science, pages 790–803. Springer Berlin Heidelberg, 2010.

http://www.optimization-online.org/DB_FILE/2014/02/4252.pdf

114 Bibliography

[50] X. Liang, X. Ren, Z. Zhang, and Y. Ma. Repairing sparse low-rank texture. In Proceedings
of the 12th European Conference on Computer Vision - Volume Part V, ECCV’12, pages
482–495, 2012.

[51] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma. Fast convex optimization
algorithms for exact recovery of a corrupted low-rank matrix. In In Intl. Workshop on
Comp. Adv. in Multi-Sensor Adapt. Processing, Aruba, Dutch Antilles, 2009.

[52] Z. Lin, M. Chen, and Y. Ma. The Augmented Lagrange Multiplier Method for Exact
Recovery of Corrupted Low-Rank Matrices. arXiv, Mar. 2011.

[53] Z. Lin, R. Liu, and Z. Su. Linearized alternating direction method with adaptive penalty for
low-rank representation. In Advances in Neural Information Processing Systems 24, pages
612–620. 2011.

[54] G. Liu and S. Yan. Active subspace: Toward scalable low-rank learning. Neural Comput.,
24(12):3371–3394, Dec. 2012.

[55] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust recovery of subspace structures
by low-rank representation. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 35(1):171–184, 2013.

[56] J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor completion for estimating missing values
in visual data. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(1):
208–220, Jan. 2013.

[57] R. Liu, Z. Lin, and Z. Su. Linearized alternating direction method with parallel splitting
and adaptive penalty for separable convex programs in machine learning. arXiv preprint
arXiv:1310.5035, 2013.

[58] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos. MPCA: Multilinear Principal Com-
ponent Analysis of Tensor Objects. IEEE Trans. Neural Networks, 19(1):18–39, Jan. 2008.

[59] D. Luenberger and Y. Ye. Linear and Nonlinear Programming. International Series in
Operations Research & Management Science. Springer, 2008.

[60] A. F. Martin, G. R. Doddington, T. Kamm, M. Ordowski, and M. A. Przybocki. The DET
curve in assessment of detection task performance. In EUROSPEECH. ISCA, 1997.

[61] MATLAB. version 8.1.0 (R2013a). The MathWorks Inc., Natick, Massachusetts, 2013.

[62] C. Mu, B. Huang, J. Wright, and D. Goldfarb. Square Deal: Lower Bounds and Improved
Relaxations for Tensor Recovery. In International Conference on Machine Learning (ICML
2014), June 2014.

[63] C. Mu, Y. Zhang, J. Wright, and D. Goldfarb. Scalable robust matrix recovery: Frank-Wolfe
meets proximal methods. ArXiv e-prints, Mar. 2014.

[64] Y. Nesterov. A method of solving a convex programming problem with convergence rate
O
(
1/k2

)
. Soviet Mathematics Doklady, 27(2):372–376, 1983.

[65] F. Nie, H. Wang, H. Huang, and C. Ding. Joint schatten p-norm and `p-norm robust matrix
completion for missing value recovery. Knowledge and Information Systems, pages 1–20,
2013.

[66] F. Orabona, A. Argyriou, and N. Srebro. PRISMA: PRoximal Iterative SMoothing Algo-
rithm. ArXiv e-prints, June 2012.

Bibliography 115

[67] O. Oreifej, X. Li, and M. Shah. Simultaneous video stabilization and moving object detection
in turbulence. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(2):
450–462, Feb. 2013.

[68] Y. Panagakis, M. Nicolaou, S. Zafeiriou, and M. Pantic. Robust canonical time warping for
the alignment of grossly corrupted sequences. In Computer Vision and Pattern Recognition
(CVPR), 2013 IEEE Conference on, pages 540–547, June 2013.

[69] G. Papamakarios, Y. Panagakis, and S. Zafeiriou. Generalised Scalable Robust Principal
Component Analysis. In Proceedings of the British Machine Vision Conference, Sept. 2014.

[70] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1
(3), 2014.

[71] K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical
Magazine, 2(6):559–572, 1901.

[72] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma. RASL: Robust alignment by sparse
and low-rank decomposition for linearly correlated images. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 34(11):2233–2246, Nov. 2012.

[73] B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM Review, 52(3):471–501, 2010.

[74] C. Sagonas, Y. Panagakis, S. Zafeiriou, and M. Pantic. RAPS: Robust and Efficient Auto-
matic Construction of Person-Specific Deformable Models. In IEEE Int. Conf. on Computer
Vision and Pattern Recognition (CVPR 2014), June 2014.

[75] X. Shu, F. Porikli, and N. Ahuja. Robust Orthonormal Subspace Learning: Efficient recovery
of corrupted low-rank matrices. In Computer Vision and Pattern Recognition (CVPR), 2014
IEEE Conference on, June 2014.

[76] M. Signoretto, L. De Lathauwer, and J. A. K. Suykens. Nuclear Norms for Tensors and
Their Use for Convex Multilinear Estimation. Technical report, ESAT-SISTA, K. U. Leuven
(Leuven, Belgium), 2010.

[77] L. Sirovich and M. Kirby. Low-Dimensional Procedure for the Characterization of Human
Faces. Journal of the Optical Society of America A, 4(3):519–524, 1987.

[78] G. Strang. Linear Algebra and Its Applications. Thomson Brooks/Cole Cengage learning,
2006. ISBN 9780534422004.

[79] G. Tomasi and R. Bro. A comparison of algorithms for fitting the PARAFAC model.
Computational Statistics & Data Analysis, 50(7):1700–1734, 2006.

[80] L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31
(3):279–311, 1966.

[81] M. Turk and A. Pentland. Face recognition using eigenfaces. In Computer Vision and
Pattern Recognition, 1991. Proceedings CVPR ’91., IEEE Computer Society Conference
on, pages 586–591, June 1991.

[82] M. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensembles: TensorFaces. In
Computer Vision - ECCV 2002, volume 2350 of Lecture Notes in Computer Science, pages
447–460. Springer Berlin Heidelberg, 2002.

[83] R. Vidal. Subspace clustering. Signal Processing Magazine, IEEE, 28(2):52–68, Mar. 2011.

116 Bibliography

[84] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma. Robust principal component analysis:
Exact recovery of corrupted low-rank matrices via convex optimization. In Advances in
Neural Information Processing Systems 22, pages 2080–2088. 2009.

[85] L. Yang, Z.-H. Huang, and X. Shi. A fixed point iterative method for low n-rank tensor
pursuit. Signal Processing, IEEE Transactions on, 61(11):2952–2962, June 2013.

[86] Y. Yang, Y. Feng, and J. A. K. Suykens. Robust low rank tensor recovery with regularized
redescending m-estimator. 2014.

[87] X. Yuan and J. Yang. Sparse and low-rank matrix decomposition via alternating direction
methods. Technical report, 2009.

[88] S. Zafeiriou. Algorithms for nonnegative tensor factorization. In Tensors in Image Processing
and Computer Vision, Advances in Pattern Recognition, pages 105–124. Springer London,
2009.

[89] D. Zhang, Y. Hu, J. Ye, X. Li, and X. He. Matrix completion by truncated nuclear norm reg-
ularization. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on, pages 2192–2199, June 2012.

[90] X. Zhang, D. Wang, Z. Zhou, and Y. Ma. Simultaneous rectification and alignment via
robust recovery of low-rank tensors. In Advances in Neural Information Processing Systems,
pages 1637–1645. Curran Associates, Inc., 2013.

[91] Z. Zhang, A. Ganesh, X. Liang, and Y. Ma. TILT: Transform Invariant Low-Rank Textures.
International Journal of Computer Vision, 99(1):1–24, 2012.

[92] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer. Novel methods for multilinear data
completion and de-noising based on tensor-SVD. In IEEE Int. Conf. on Computer Vision
and Pattern Recognition (CVPR 2014), June 2014.

[93] X. Zhou, C. Yang, H. Zhao, and W. Yu. Low-rank modeling and its applications in image
analysis. arXiv preprint arXiv:1401.3409, 2014.

[94] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of
Computational and Graphical Statistics, 15(2):265–286, 2006.

Index

Active subspace learning, 39
Area Under the Curve, 92
Augmented Lagrangian, 28

Background subtraction, 10
Bilinear Robust Principal Component Analysis

on matrices, 33
on tensors, 49

Convex envelope, 16, 30

Decomposition
CP decomposition, 20
Higher Order SVD, 21, 56
Singular Value Decomposition, 22
Tensor decompositions, 19
Tucker decomposition, 21

Detection Error Trade-off, 92

Exact ALM, 33

Factor matrix, 20, 60

Generalised Scalable Robust Principal Compo-
nent Analysis, 39, 67, 73

Generalised selective shrinkage, 73
Gram-Schmidt orthonormalisation, 43

Image inpainting, 9
Inductive Robust Principal Component Analy-

sis
on matrices, 35
on tensors, 51

Inexact ALM, 33
Inner product

Matrix inner product, 14
Tensor inner product, 18

Khatri-Rao product, 19
Kronecker product, 19

Lagrange multiplier, 28
Lagrangian, 28

Linearisation step, 38
Lipschitz constant, 26
Lipschitz continuous function, 26
Low-rank matrix completion, 67
Low-Rank Representation, 38

M-estimator, 32
Magnitude shrinkage, 42
Multilinear algebra, 16

Norm, 13
`0-norm, 15, 19
Matrix elementwise `p-norm, 13
Matrix Frobenius norm, 15
Matrix Schatten p-norm, 14
Nuclear norm, 14
Tensor elementwise `p-norm, 18
Tensor Frobenius norm, 19

Optimisation method, 24
Accelerated Proximal Gradient, 27
Augmented Lagrange Multipliers, 28
Gradient descent, 27
Lagrangian method, 28
Newton-Raphson, 71
Penalty method, 28
Proximal Gradient, 25

Orthonormal Robust Principal Component Anal-
ysis, 39

Penalty parameter, 28
Principal Component Analysis, 7
PRoximal Iterative SMoothing Algorithm, 107
Proximal operator, 24

Generalised shrinkage, 71
Generalised singular value thresholding, 72
Shrinkage operator, 24
Singular value thresholding, 25

Rank
Matrix rank, 15, 21
Tensor n-rank, 22
Tensor rank, 22

118 Index

Receiver Operating Characteristic, 92
Recommender system, 9
Reduced Rank Procrustes Theorem, 40, 59
Robust CANDECOMP/PARAFAC Decompo-

sition, 59
Robust Higher Order Singular Value Decompo-

sition, 55
Robust Orthonormal Subspace Learning, 41
Robust Principal Component Analysis

on matrices, 30
on tensors, 47

Sampling operator, 67
Selective shrinkage, 69

Tensor, 16
n-mode product, 18
Core tensor, 21, 56
Rank-1 tensor, 20
Tensor fibre, 16
Tensor matricisation, 17
Tensor order, 16
Tensor slice, 17
Tensor space, 16
Tensor vectorisation, 17

	Introduction
	Overview of Robust Low-Rank Modelling
	The Information Recovery Problem
	The Low-Rank and Sparse Assumption
	The Formulation as Optimisation Problem
	The Extension to Tensors

	Summary of Contributions
	Applications of Robust Low-Rank Modelling
	Denoising and Reconstruction
	Missing Data Completion
	Face Recognition
	Background Subtraction and Foreground Segmentation
	Rectification and Alignment
	Other Applications

	Mathematical Preliminaries
	Matrix Norms
	Multilinear Algebra Basics
	Tensor Basics
	Tensor Decompositions
	Tensor Rank

	Optimisation Methods
	Proximal Operators
	Accelerated Proximal Gradient
	Method of Augmented Lagrange Multipliers

	Robust Low-Rank Modelling on Matrices
	Robust Principal Component Analysis
	Solution Based on Accelerated Proximal Gradient
	Solution Based on Augmented Lagrange Multipliers

	Bilinear Robust Principal Component Analysis
	Inductive Robust Principal Component Analysis
	Solution Based on Substitution
	Solution Based on Linearisation
	Connection to Low-Rank Representation

	Orthonormal Robust Principal Component Analysis
	Robust Orthonormal Subspace Learning
	Complexity Analysis and Discussion
	Regularisation-Based and Factorisation-Based Methods
	Asymptotic Computational Complexity

	Robust Low-Rank Modelling on Tensors
	Robust Principal Component Analysis
	Bilinear Robust Principal Component Analysis
	Inductive Robust Principal Component Analysis
	Solution Based on Substitution
	Solution Based on Linearisation

	Robust Higher Order Singular Value Decomposition
	Robust CANDECOMP/PARAFAC Decomposition
	Solution Based on Substitution
	Solution Based on Linearisation

	Complexity Analysis and Discussion
	Regularisation-Based and Factorisation-Based Methods
	Comparison with the Matrix Case
	Asymptotic Computational Complexity

	Extensions to Missing Values and Generalised Norms
	Matrix and Tensor Completion with Missing Values
	Generalisation to Schatten p-norms and Elementwise q-norms
	Bringing Everything Together: Summary of Methods

	Implementation Details
	Convergence Criteria
	Tuning Algorithmic Parameters
	Software Toolbox Implementation

	Experimental Evaluation
	Low-Rank Recovery with Synthetic Data
	Matrix Methods
	Tensor Methods

	Denoising of Face Images
	Background Subtraction
	Reconstruction of Whole Missing Images
	Overall Evaluation of Algorithms

	Conclusions and Future Work
	Conclusions
	Future Work
	Theoretical Guarantees of Convergence and Optimality
	Non-Negative Factorisations
	Other Tensor Decompositions and Low-Rank Models
	Probabilistic Reformulation
	Novel Optimisation Techniques
	Real-Time Applications

	Notations and Symbols
	List of Abbreviations
	Bibliography
	Index

