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“I simply wish that, in a matter which so closely con-
cerns the wellbeing of the human race, no decision shall be
made without all the knowledge which a little analysis and
calculation can provide.”

Daniel Bernoulli, 1760



Abstract

The modern world features a plethora of social, technological and biological epidemic
phenomena. These epidemics now spread at unprecedented rates thanks to advances in
industrialisation, transport and telecommunications. Effective real-time decision making
and management of modern epidemic outbreaks based on model analysis depends on two
factors: the ability to estimate epidemic parameters as the epidemic unfolds, and the
ability to characterise rigorously the uncertainties surrounding these parameters. In this
context, uncertainty should be understood as a statement about how well something is
known, rather than being regarded as the act of not knowing.

The main contribution of this project is a generic Maximum Likelihood based approach
towards on-the-fly epidemic fitting of SIR models from a single trace, which yields con-
fidence intervals on parameter values. In contrast to traditional biological modelling
techniques, our approach is fully automated and the parameters to be estimated include
the initial number of susceptible and infected individuals in the population. Visualising
the fitted parameters gives rise to an isosurface plot of the feasible parameter ranges
corresponding to each confidence level.

We validated our methodology on both synthetic datasets generated using stochastic
simulation, and real Influenza data. Fitting parameters to those trajectories revealed
remarkable results. The model proved highly accurate in predicting from partial infor-
mation on a single trace not only the time of the peak, but also its magnitude, and the
tail of the infection. However, the “true” parameters were contained in the correspond-
ing confidence bounds only for a relatively low proportion of the time, emphasising (a)
the difficulty of obtaining accurate parameter estimations from a single epidemic trace
and (b) the large potential impact of small random variations, especially those occurring
early on in a trace.



Acknowledgements

First and foremost, I would like to thank to Dr. William Knottenbelt, his PhD student
Marily Nika, and Dr. Jeremy Bradley for the input and guidance they have given me
through the course of the project. Their dedication and passion for the subject were
truly inspiring and contagious.

Secondly, I would also like to thank to my personal tutor, Prof. John Darlington, and to
Mrs. Margaret Cunningham for their pastoral care and encouragement provided during
my studies.

Last but not least, I would like to thank my parents for their continuous care and support
throughout the years. Without them I would have not been able to pursue my dreams
and to become the person I am today.



Contents

Abstract i

Acknowledgements ii

Contents ii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Report outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6
2.1 Control of Epidemics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Traditional Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Mathematical Modelling . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Deterministic Compartmental Models . . . . . . . . . . . . . . . . . . . . 11
2.2.1 SIR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Basic Reproductive Ratio . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Epidemic Burnout . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Uncertainty Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Stochastic Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Parameter Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Other Applications of Epidemiological Models . . . . . . . . . . . . . . . . 20
2.4.1 Social Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 Economic cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Retail Sales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.4 Computer Viruses . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.1 Programming Language . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.2 Additional Libraries and Tools . . . . . . . . . . . . . . . . . . . . 25

3 Fitting Procedure using Least Squares 26
3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Optimisation Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



Contents iv

4 Uncertainty Characterisation using Maximum Likelihood 32
4.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Optimisation Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 New Approach for Uncertainty Characterisation . . . . . . . . . . . . . . . 39

4.4.1 Data Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.2 Parameter Space Searching . . . . . . . . . . . . . . . . . . . . . . 40
4.4.3 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Evaluation 43
5.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Fitting Using Least Squares . . . . . . . . . . . . . . . . . . . . . . 44
5.1.2 Fitting Using Maximum Likelihood . . . . . . . . . . . . . . . . . . 47

5.2 CDC Influenza Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.1 Fitting Using Least Squares . . . . . . . . . . . . . . . . . . . . . . 56
5.2.2 Fitting Using Maximum Likelihood . . . . . . . . . . . . . . . . . . 59

6 Conclusion 64
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography 66





Chapter 1

Introduction

As far as the laws of mathematics refer to reality, they are not certain; and
as far as they are certain, they do not refer to reality.

Albert Einstein

This project investigates uncertainty in epidemic modelling and presents a generic, fully
automated method for on-the-fly epidemic fitting of SIR models from a single trace.
It yields confidence intervals on parameter values that rigorously characterise the un-
certainty inherent in their estimates. The modern era features a plethora of social,
technological and biological epidemic phenomena. They spread at unprecedented rates
due to advances in technology, transport and telecommunications. Mathematical mod-
elling plays a key role in effective real-time decision making and management of modern
epidemic outbreaks.

The ability to characterise uncertainty is absolutely critical in the context of policy and
decision making. There is a popular misconception around the meaning of the term.
Uncertainty is often regarded as not knowing. However, when it comes to decision mak-
ing, it should be understood as a statement about how well something is known. As a
general rule, uncertainty is inherent in science. Thus, to ignore or to minimise acknowl-
edging its existence practically means to ignore science. Usually, there is a temptation
to either focus only on the best estimates and ignore the less likely results, or to only
consider the highly unlikely results based on extremely cautious assumptions. Both of
these two approaches may lead to poor decision making. Instead, we should attempt to
describe how far from the truth any given estimate is likely to be. Moreover, interpreting
and framing of uncertainty may be subject to people’s biases. It is therefore extremely
important to develop a rigorous, scientific method that characterises uncertainty.

1
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1.1 Motivation

Movement of disease constituted a major force in shaping the human history, with wars
and migrations carrying infections to susceptible populations. Before World War II, more
victims died due to microbes introduced by the enemy, than of battle wounds [1]. This
was still a period of relative isolation across different communities. More recent times
have allowed extensive contact between people around the world. Modern transport
networks continuously expand in reach, speed of travel and volume of passengers carried,
causing epidemics to spread further and faster than ever before. In the 14th century, the
Black Death travelled between 1 and 5 miles a day on average [2]. On the other hand,
the severe acute respiratory syndrome outbreak of 2003 transmitted from Hong Kong to
Hanoi, Singapore and Toronto within just a few days after the first infected case [3].

Gladwell [4] states that ideas, products, messages and behaviours spread in a similar
manner to viruses, leading to social and technological epidemics. These phenomena are
even more invasive due to the extensive coverage of internet and social media. Even so,
they are based on the same three principles that explain how measles spread or why flu
outbreaks occur every winter. Firstly, they have a contagious nature. Secondly, they
may be triggered by seemingly inconsequential causes. Lastly and most important, there
is one dramatic moment, the tipping point, when they begin to spread.

Our understanding of infectious disease dynamics has greatly improved in recent years
thanks to mathematical modelling. Insights from this increasingly-important field en-
able policy-makers at the highest levels to interpret and evaluate data, in order to
comprehend and predict transmission patterns. Compartmental models are widely used
in epidemiology, allowing us to target control measures and use limited resources more
efficiently. They reduce the population diversity to a few key characteristics, relevant
to the phenomenon studied. For example, one of the most widely-known such models
is SIR, which divides the population in susceptible, infected and recovered individuals.
Parameters such as the rate of infection and the rate of recovery determine the behaviour
of the model, but cannot be measured directly, hence they must be estimated in some
way. Ultimately, the quality of a model is highly dependent on both the data used for
parameterisation and the uncertainty present in the model outcomes.

One source of unreliability may arise when the data sets used for analysis are not entirely
relevant to the hypothesis to test. A recent study published by two PhD students
at Princeton University [5] states that Facebook will lose 80% of its users by 2017.
One of the critical errors made in this non-peer-reviewed paper comes from applying a
“correlation equals causation” principle. They deduced that a decline in the volume of
Google searches for “Facebook” causes an ongoing decline in Facebook usage. However,
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this decline does not prove anything considering that over half of Facebook’s traffic comes
from their mobile application at present. Indeed, since 2012, the number of active users
kept growing, reaching today almost 1.2 billions [6]. Another source of error in their
results is considering the Facebook phenomenon as a single outbreak, that starts by
exponentially “infecting” people who then ultimately recover, causing the extinction of
the epidemic. The user engagement strategy may be seen as a virus, but its mutations
must not be omitted. In order to keep the engagement rates high, the company will
continuously find new ways of attracting more users, generating each time new social
and technological outbreaks.

Additionally, models are often developed and presented with insufficient attention to
the uncertainties that underlie them. The authors of a recent study [7] analysed sci-
entific papers, interviews, policies, reports and outcomes of previous infectious disease
outbreaks in the United Kingdom. An extract from one of the scientific papers related
to the dynamics of the 2001 UK foot and mouth epidemic is reproduced below:

“Relative infectivity and susceptibility of sheep and cattle. Experimental results agree
with the pattern of species differences used within the model. Quantitative changes to
the species parameters will modify the predicted spatio-temporal distribution of outbreaks;
our parameters have been chosen to give the best match to the location of high risk areas.
However this choice of parameters is contingent on the accuracy of the census distribution
of animals on farms.”

The purpose of their research was to ascertain the role uncertainties played in previ-
ous models, and how these were understood by both the designers and the users of the
model. They found that many models provided only cursory reference to the uncertain-
ties inherent in the parameters used. The study concludes that greater consideration
of the limitations and uncertainties in infectious disease modelling would improve its
usefulness and value.

Models provide epidemiologists with an environment able to record every detail of the
disease spread, such that each individual component can be analysed in isolation to
the whole system. However, every model has its limitations. There will always be
an unknown or unknowable element in the system. For example, if we try to model
Influenza, we need to account for factors such as movement and interaction of individuals,
variability in susceptibility due to past infections, variations in transmission patterns
caused by temperature and many more. We cannot capture all the different scenarios
in order to predict the precise evolution of the epidemic. Instead, we should aim for
providing confidence intervals on the parameters that determine the behaviour of the
epidemic.
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1.2 Objectives

The project aims to undertake on-the-fly parameter fitting as an epidemic unfolds, given
regular observations in time of the number of infected individuals, and characterise the
uncertainty inherent in the parameter estimates.

We will first consider least-squares-based techniques for parameter fitting to predict the
future evolution of the epidemic, and answer questions such as “when will it peak?”,
“when will it have died out?”, “how many people will be infected at a particular point
in time”, or “how many people need to be vaccinated to prevent an epidemic?”

Further, we aim to develop a rigorous maximum-likelihood-based methodology of charac-
terising uncertainty. We consider uncertainty that comes from two sources: the stochas-
tic evolution of the epidemic, and the parameters values, which are often unknown or
imprecise. Traditional approaches used in biological epidemics require laborious manual
work for index case identification, laboratory testing, contact tracing and report aggre-
gation. The project will investigate to what extent a fully automated method could be
deployed and, if possible, implement it.

We consider the challenges of estimating the initial number of susceptible and infected
individuals in the target population, when these values are unknown. Currently, there is
no principled way of doing this, as traditionally they are either supposed to be known,
or can be estimated from the context [8]. However, in an era of social and technological
epidemics, we argue that time and speed of movement make it infeasible to provide
accurate estimates.

1.3 Contributions

This project made the following contributions:

• Investigation of on-the-fly parameters fitting as an epidemic unfolds, from a single
trace using compartmental models.

• Implementation of a least-squares-based methodology for data fitting on SIR model,
as en epidemic unfolds over time, tackling the challenge of unknown initial number
of susceptibles.

• Implementation of a novel, fully automated maximum-likelihood-based methodol-
ogy for data fitting on SIR model, as en epidemic unfolds over time, that provides
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rigorous characterisation of uncertainty inherent in parameter estimates. We con-
sider the challenges of applying this procedure when the initial number of suscep-
tibles and infected individuals is unknown.

• A three-dimensional visualisation of the confidence intervals characterising param-
eters uncertainty in the SIR model when the number of susceptibles is unknown.

• Validation of the methodologies on both synthetic and real data.

• A paper co-authored with Thomas Wilding, Marily Nika and Dr. William Knotten-
belt, and submitted to EPEW 2014, the 11th European Workshop on Performance
Engineering, taking place in Florence, Italy, between 11-12 September 2014.

1.4 Report outline

Chapter 2 presents background information regarding infectious disease modelling. First,
it introduces the laborious manual techniques traditionally used in developing disease
control strategies. Subsequently, it highlights the role of mathematical modelling in
epidemiology and describes in detail the main compartmental models widely used in this
field. Further, it presents the main sources of uncertainty these models must account
for. Next, an overview of other areas where compartmental models can be applied is
given. Finally, we outline the main design decisions made regarding the programming
language and additional libraries used to run the experiments.

Chapter 3 describes a least-squares based methodology for on-the-fly epidemic fitting
on the SIR model, from a single trace. It provides mathematical details concerning the
objective function, the optimisation technique, and the assessment of goodness of fit.

Chapter 4 introduces a novel, generic, and fully automated maximum-likelihood-based
methodology for on-the-fly epidemic fitting on SIR models, from a single trace, that
yields confidence intervals on parameter values. It represents a rigorous characterisa-
tion of the uncertainty inherent in parameter estimates. We first give mathematical
details of the objective function, the optimisation technique, and the computation of
confidence intervals. Then, we describe how we applied the methodology step-by-step
for various vectors of unknown parameters. Finally, a three-dimensional visualisation of
the confidence intervals is given, when dealing with three unknown parameters.

Chapter 5 presents the results of validating our methodologies on both synthetic and
real data and a detailed discussion of their interpretation.

Chapter 6 concludes with a summary of the achievements and a discussion on future
work.



Chapter 2

Background

2.1 Control of Epidemics

Improving control strategies and eradicating the disease from a population are the pri-
mary reasons behind studying infectious diseases. The Oxford English Dictionary defines
an epidemic as “a widespread occurrence of an infectious disease in a community at a
particular time.” It can be described as a sudden outbreak of a disease, infecting a
significant percentage of a population, that eventually disappears, usually leaving some
of the individuals untouched. Management of epidemics involves a series of activities,
from forecasting to investigation, control and prevention of future occurrences.

Traditional methods for disease control are applied after the extinction of an epidemic in
order to better understand its dynamics from empirical data. These techniques have the
potential of being highly efficient when dealing with a small number of cases. However,
they become very tedious at a higher scale due to the laborious manual work usually
involved, as discussed in Section 2.1.1.

During the course of an epidemic, it is extremely important to be able to predict the
future course of the outbreak in real-time. In this context, prediction should be under-
stood as both a quantitative approach, and an attempt of inferring what would happen
under certain assumptions. Forecasting may not lead to a complete prevention of the
epidemic, but it can control its severity and spread. Mathematical modelling plays a
major role in accomplishing this, as discussed in section 2.1.2.

6
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2.1.1 Traditional Methods

Traditionally, disease control strategies are developed after a series of laborious manual
efforts. Epidemiologists collect data on symptoms, past medical history, laboratory
testing, exam findings, and recent treatments that an infected individual have received,
and also trace contacts between individuals. The aim is to identify the index case and
the transmission network of the infection in order to understand its dynamics and make
informed decisions for future prevention.

In epidemiology, an index case, also referred as patient zero, is considered to be the first
documented case of a disease. Identifying these cases as soon as possible can provide
significant information about the origin of the outbreak. It is also important to trace the
pathways of the disease and construct its transmission network, which highlights details
on how the disease spread. Infection tracing is an integral component of post-epidemic
disease control policies. It aims to determine the source of infection for each case. The
basic idea is to link each infected individual to both the one whom it caught the disease
from, and the ones to whom they transmitted it to. In this way, the transmission network
can be built. We discuss below the main traditional methods used to collect the required
information.

Contact Tracing

Contact tracing is the process of identifying individuals who came in contact with an
infected person. It aims to determine all potential transmission contacts from the index
case. This methodology has many limitation. Firstly, it is highly laborious intensive
and time consuming. Additionally, it fully relies on individuals being able to recall and
provide complete, accurate information regarding their personal relationships.

Diary-based Studies

In contrast to contact tracing, diary-based studies attempt to record individual contacts
as they occur. The advantage of this strategy is that the workload is shifted from
researchers to the subjects, allowing a larger number of individuals to be tracked [9].
However, it also has a series of disadvantages. Firstly, the data collected is still at the
discretion of individuals, hence its accuracy and consistency may vary. Secondly, it
can be difficult for the coordinating researcher to organise all the information, as the
identifiers of the contacts recorded may not be consistent.
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2.1.2 Mathematical Modelling

Models represent a powerful tool in improving control strategies. They allow us to
predict things such as the population-level epidemic dynamics from an individual-level
knowledge of epidemiological factors, the long-term behaviour from the early invasion
dynamics, or the impact of the vaccination on the spread of infection [10]. They provide
a framework that conceptually explains how a system behaves. The rigour of the math-
ematical language used to define them can be combined with the simulation power of
computers, providing means of studying of a system dynamics at a larger scale. There
is an increasing interest in mathematical modelling in the epidemiological literature, as
illustrated in Figure 2.1.

Figure 2.1: The importance and use of mathematical models in the epidemiological
literature. Reproduced from [10].

Choosing the most appropriate model for a particular problem depends on various fac-
tors, such as the degree of precision required, the available data, or how fast the results
are needed. The notion of wrong, but useful, attributed to statistician George Box, ap-
plies to all models in the sense that they require a set of simplifying assumptions. While
the focus is on developing models that capture the essential features of a system, the
usefulness of a model remains a subjective measure. The authors of [10] argue that for-
mulating a model for a specific problem is a trade-off between three elements: accuracy,
transparency, and flexibility. They define accuracy as the ability to reproduce the ob-
served data and reliably predict future events. Whether a qualitative or a quantitative
fit is necessary to measure accuracy fully depends on what purpose the model serves.
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Gaining insight into the dynamics of the disease would require a qualitative fit, while
establishing control policies would rather use a quantitative approach. The accuracy of a
model is limited by computational feasibility, the modeller’s understanding of the system
in question, and the knowledge of the necessary parameters. Transparency is regarded
as the ability to understand how the individual components of the system interact and
influence the dynamics of the whole. The level of transparency usually decreases with
the number of model components, as it becomes increasingly difficult to account for the
role of each individual component. Finally, they define flexibility as a measure of how
easily the model can be adapted to new situations. This proves to be essential when
modelling diseases in an ever-changing environment.

According to [11], models can play three major roles in informing policy: prediction,
extrapolation, and experimentation. Predictive models take a set of initial conditions
and attempt to determine the future evolution of the epidemic, such as its size and
location, in order to enforce appropriate control strategies. Models can also be used to
construct the probable dynamics of a disease for a set of parameters by extrapolating
from the known dynamics for another set of parameters. This can be useful when we
are interested in studying the effects of relaxing or enhancing the control measures.
Finally, models can be used to test various control strategies in a short period of time,
by avoiding all the risks associated with testing during a real epidemic. One of the first
times that models were used to support decision making during an epidemic was the
2001 foot-and-mouth disease outbreak in the UK. Three different models were used to
investigate whether the epidemic was under control and assess to what extent targeted
culling would be effective in reducing the spread of infection, in order to inform control
measures.

No model is perfect and able to precisely predict the exact evolution of an epidemic.
However, a good model is defined by two principles [10]. Firstly, it should be suited to
its purpose. This means it should have a good balance of accuracy, transparency and
flexibility. In other words, it must be as simple as possible, but no simpler, as it is often
quoted in literature. Secondly, it should be parametrizable from available data for each
of the features included. Hence, the definition of a good model is highly dependent on
the context.

When developing a model, it is important to follow a series of steps in order to ensure
that it is suitable for the problem it tries to address, and captures all the relevant
information. Figure 2.2 illustrates the steps required in the development and use of a
model.
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Identify the question

Identify relevant facts about the infecton in question

Choose type of modelling method

Specify model input parameters

Set up model

Model validation

Prediction and optimisation

Figure 2.2: Steps in the development and use of a model. Adapted from [12].

Mathematical modelling has a long history in epidemiology. The first known result dates
back from 1760 and is attributed to Daniel Bernoulli. It was an early attempt to statis-
tically analyse the mortality caused by smallpox and defend the benefits of vaccination
against it, a matter heavily debated at the time. In terms of modern mathematical
epidemiology, the first contributions were made in the late 1880s, by Piotr Dimitrievich
En’ko, a Russian physician whose probabilistic modelling and data analysis of measles
epidemics anticipated the work of Reed and Frost in the 1920s.

One of the early triumphs in epidemiology is the approach based on simple compartmen-
tal models, developed between 1900 and 1935, having as contributors R.A. Ross, W.H.
Hamer, A.G. McKendrick, W.O. Kermack and J. Brownlee. Compartmental models
rely on two main assumptions. Firstly, it is assumed that the population under analysis
can be divided into a set of compartments, depending on the stage of the disease de-
velopment. Secondly, individuals are asserted to have equal probability to transit from
one compartment to another. There are various questions that these models help us
answer, including “how many individuals will be affected altogether and thus require
treatment?”, “what is the maximum number of people needing care at any particular
time?” or “how long will the epidemic last?” [12].
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2.2 Deterministic Compartmental Models

In a deterministic model, each state is uniquely determined by the parameters of the
model, together with the previous state. Hence, for the same initial conditions, the
model will behave exactly the same, such that each time we would observe an identical
trajectory corresponding to the evolution of the epidemic.

2.2.1 SIR model

SIR is a compartmental model initially studied in depth by Kermack and McKendrick in
1927 [13]. It consists of dividing the population into three subpopulations: Susceptible,
Infected and Recovered individuals, and uses Ordinary Differential Equations (ODEs)
as a modelling formalism. It defines:

• S(t) the number of individuals who are not yet infected at time t, but susceptible
to become infected

• I(t) the number of individuals who are infected at time t by contact with suscep-
tibles at a rate β

• R(t) the number of individuals who have recovered from the disease at time t at a
constant rate γ

The model assumes that the size of each compartment is a differentiable function of
time. It also considers a closed population, ignoring demographic processes such as
births, deaths and migrations. There are two possible transitions taking place: S →
I and I → R. The progression from S to I involves disease transmission at a rate βI,
also known as the force of infection, where β is the probability of a contact between a
susceptible and an infected individual resulting in infection. It ignores the intricacies
related to the pattern of contact between individuals. The transition from I to R occurs
at a recovery rate γ, assumed to be constant and equal to the inverse of the average
infectious period.

Based on these assumptions, the flow diagram of the model is illustrated in Figure 2.3.

S I R
βSI γI

Figure 2.3: Flow digram for the SIR model. The boxes represent compartments of
the population and the arrows indicate the flux between them.
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The assumptions made above can be translated into an initial value problem, defined
by the following set of differential equations:

dS

dt
= −βSI (2.1)

dI

dt
= βSI − γI (2.2)

dR

dt
= γI (2.3)

Differential equations used to model the transmission dynamics of a disease describe
the events occurring continuously, opposite to difference equations that depict events
taking place at discrete time intervals. Table 2.1 presents a comparison between differ-
ence equations, describing the number of susceptible, infected and recovered individuals
at time t, and differential equations, illustrating the rate of change in the number of
individuals in each compartment at time t.

Difference equations (number) Differential equations (rate)
St+1 = St − βtStIt dS

dt = −β(t)S(t)I(t)
It+1 = It + βtStIt − γtIt dI

dt = β(t)S(t)I(t)− γ(t)I(t)
Rt+1 = Rt + γtIt

dR
dt = γ(t)I(t)

Table 2.1: Comparison between difference and differential equations for the SIR
model.

The use of differential equations avoids issues regarding the time step size that would
arise in difference equations. As the size of the time step increases, the predicted epi-
demic curve becomes less and less smooth, and can even produce nonsense results. On
the other hand, with the decrease of time step size, the model becomes closer to describ-
ing events that occur in continuous time, hence the predicted epidemic curve becomes
smoother. This phenomenon is described in Figure 2.4.

The initial values of the SIR model must satisfy the following conditions:

S(0) = S0 > 0 (2.4)

I(0) = I0 > 0 (2.5)

R(0) = 0 (2.6)

and at any time t, S(t) + I(t) +R(t) = N , where N is the total population size.
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Figure 2.4: Comparison between predictions of the number of infectious individuals
for measles and influenza, using time steps ranging between 0.05 and 5 days. Repro-

duced from [12].

An example of epidemic evolution, generated with parameters β = 0.001, γ = 0.1 and
initial conditions S0 = 600, I0 = 60 and R0 = 0 over a period of 60 days are presented
in Figure 2.5.

Figure 2.5: Sample run of the SIR model with parameters β = 0.001, γ = 0.1 and
initial conditions S0 = 500 and I0 = 10 over 100 days.
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A detailed analysis in [14] shows that the model is mathematically and epidemiolog-
ically well posed, which means that there exists a unique solution and its behaviour
changes continuously with the initial conditions. The trajectories of the model’s dy-
namics in the phase plane are represented geometrically in Figure 2.6. Despite being

Figure 2.6: Phase plane portrait for the SIR model with contact rate σ = 3. Repro-
duced from [14].

extremely simple, we cannot solve this model analytically. However, it highlights impor-
tant qualitative principles in epidemiology that help us learn about the behaviour of its
solution. Firstly, it can be inferred whether an epidemic will occur or not based on the
threshold phenomenon, notion closely related to the concept of basic reproductive ratio,
described in detail in Section 2.2.3. Secondly, a rather counter-intuitive result regarding
the long-term state of the infection can be derived, as described in Section 2.2.4.

2.2.2 Other Models

Many other models were developed from the classic SIR model, in order to allow various
behaviours to be modelled. Some of them denote infections that are strongly immu-
nizing, while others were developed for infections that do no give rise to immunity.
These approaches ignore heterogeneities related susceptibility to infection, transmission
through contact networks, or immunological responses.
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SI model The SI model was developed to account for the case when the infection
can induce mortality. S and I remain the subpopulations of susceptibles and infected,
respectively. We also consider ρ as the probability of an infected individual to die before
recovery or from natural causes, which takes values between 0 and 1. Additionally, µ
is the rate of natural mortality. Mathematically, the model is described by the set of
ODEs:

dS

dt
= −βSI (2.7)

dI

dt
= βSI − (γ + µ)

1− ρ I (2.8)

There are other variations to this model that take into account various stages at which
an infection may produce mortality.

SIS model The previous described models illustrate the dynamics of epidemics that
either confer immunity after recovery or induce death. The SIS model captures those
epidemics that don’t confer life-lasting immunity, such that an individual recovered from
the infection becomes susceptible again. The long term persistence is guaranteed by the
loss of immunity, which always replenished the susceptibles pool. The following pair of
ODEs describe the model:

dS

dt
= γI − βIS (2.9)

dI

dt
= βSI − γI (2.10)

The parameters remain similar to the ones in the previous section, except that S+I = N ,
where N is the total size of the population.

SEIR model The SEIR model introduces a new category of individuals E, namely
Exposed, consisting of individuals who are infected, but not yet infectious. Taking the
average duration of this latent period is 1

α , the model is given by the following differential
equations:

dS

dt
= −βSI (2.11)

dE

dt
= βSI − αE (2.12)

dI

dt
= αE − γI (2.13)

dR

dt
= γI (2.14)

We also assume that S + E + I +R = N . Compared to the SIR model, it has a slower
growth rate due to the fact that individuals must belong to the Exposed subpopulation
before being able to transmit the infection.
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MSEIR model A more general model is MSEIR, which also includes a category
of individuals that are passively immune since their mothers developed some type of
immunity. It is suitable for modelling a directly transmitted disease with permanent
immunity after recovery, in a population with variable total size. It translates to the
following system of differential equations:

dM

dt
= b(N − S)− (δ + d)M (2.15)

dS

dt
= bS + δM − βSI/N − dS (2.16)

dE

dt
= βSI/N − (ε+ d)E (2.17)

dI

dt
= εE − (γ + d)I (2.18)

dR

dt
= (b− d)N (2.19)

where b and d are the constant rates of birth and death, respectively.

2.2.3 Basic Reproductive Ratio

For the SIR model, a famous result highlighted by Kermack and McKendrick [13] is
known in the literature as the threshold phenomenon. It states that in order for an
epidemic to spread, the initial number of susceptibles must exceed a certain threshold,
equal to γ/β. The value of the threshold is derived by re-writing Equation 2.2 as:

dI

dt
= I(βS − γ) (2.20)

In the initial stage, after I(0) infected individuals are introduced in the population,
the infection becomes extinct if dI/dt < 0, which is equivalent to S(0) < γ/β. This
threshold is referred to as the relative removal rate, which must be small enough in
order to allow the infection to spread.

The inverse of this rate is called basic reproductive ratio R0, and constitutes one of the
most important measures in epidemiology. It is formally defined in [15] as:

the expected number of secondary infections arising from a single individual during his
or her entire infectious period, in a population of susceptibles .

Figure 2.7 illustrates implications of a basic reproductive ratio R0 = 4. At each con-
secutive time point, each individual can transmit the infection to up to four others.
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Figure 2.7: Implications of a basic reproductive ratio R0 = 4.
Reproduced from [12].

In an entirely susceptible population (a), the incidence increases exponentially. In a
population that is 75% immune (b), only 25% of the contacts lead to infection.

From the definition, it follows immediately that an epidemic will spread if and only
if R0 > 1, which is just another way of expressing the threshold phenomenon. In its
simplest form, R0 is mathematically expressed as:

R0 = β

γ
N = cpD (2.21)

where
β = infection rate
γ = recovery rate
N = total size of the population

c = contact rate
p = transmission probability given contact
D = duration of infectiousness

However, estimating R0 from individual parameters is not always feasible, as they might
be unknown or impossible to estimate. Alternatively, the basic reproductive ratio can
be estimated from epidemic time series data [16].
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If the exponential growth rate of the initial phase r is available, then:

R0 = 1 + rD (2.22)

If the doubling time of the number of infected individuals td is known, then:

R0 = 1 + Dln2
td

(2.23)

If we consider s0 the number of susceptibles before the outbreak and sα the number of
susceptibles after the epidemic dies out, then:

R0 = ln(S0)− ln(sα)
s0 − sα

(2.24)

Table 2.2 presents examples of various diseases and their corresponding estimated values
for the basic reproductive ratio. Because R0 depends on both the disease and the host
populations, differences in demographics or contact rates may lead to different estimated
values for the same disease.

Infectious disease Host Estimated R0 Reference

Rabies Dogs
Kenya 1.1 - 1.5 Smith (2011)

Tuberculosis Cattle 2.6 Goodchild and
Clifton-Hadley (2001)

1918 Pandemic
Influenza Humans 2 - 3 Mills et al. (2004)

Foot-and-mouth
Disease

Livestock farms
UK 3.5 - 4.5 Ferguson et al. (2001)

Rubella Humans
UK 10 - 12 Anderson and May (1991)

Measels Humans
UK 16 - 18 Anderson and May (1982)

Table 2.2: Estimated basic reproductive ratios for various diseases. Adapted from
[12].

2.2.4 Epidemic Burnout

Another important result derived from the SIR model is related to the long-term state
of the epidemic. Firstly, it has been observed that there will always be a certain number
of susceptible individuals who do not get infected. Mathematically, this can be derived
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by dividing Equation 2.1 by Equation 2.3:

dS

dR
= −βS

γ
= −R0S (2.25)

and integrating with respect to R:

S(t) = S(0)e−R(t)R0 (2.26)

This shows that S always stays positive. The conclusion that emerges from this result is
rather counter-intuitive: the chain of transmission eventually breaks due to the decline
in infectives, not due to a complete lack of susceptibles [10].

2.3 Uncertainty Sources

The application of compartmental models in epidemiological modelling is accompanied
by concerns regarding the degree of uncertainty prevailing in their use. There are two
main sources of uncertainty that we consider, discussed below.

2.3.1 Stochastic Uncertainty

Stochastic uncertainty arises from the randomness present in the evolution of an epi-
demic. If an infectious disease outbreak would re-occur, we would not observe the exact
same number of infected individuals at the same time. This intuitively suggests that a
stochastic model is always desirable, being more realistic. However, the magnitude of the
fluctuations depend on the population size. A large population reduces the fluctuation
level, hence a deterministic model can provide a good approximation. When addressing
small populations or diseases with reduced level of incidence, stochasticity can make a
tremendous difference. It introduces variances and co-variances that may lead to chance
extinction of the disease.

Computationally, stochastic uncertainty can be simulated using Gillespie’s discrete-event
simulation algorithm (SSA) [17]. This is applicable to systems that can be modelled as a
continuous-time Markov process whose probability distribution obeys a so called “master
equation”. It produces single realisations of the stochastic process that statistically agree
with the master equation.
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2.3.2 Parameter Uncertainty

Parameter uncertainty relates to the fact that the outcomes of fitting data against a
model are themselves uncertain, because they are quantities estimated from subjective
information. Factors such as the sample size informing that estimate, and variance in
the data contribute to determining the level of parameter uncertainty.

2.4 Other Applications of Epidemiological Models

2.4.1 Social Network Analysis

Online Social Networks (OSN) represent web-based services that allow users to have
a presence via their individual profile, build a list of connections and interact with
them. The concept originated in the 1960s with Plato, a computer-based education tool
developed at University of Illinois, but the viral growth and commercial interest present
today only started after the advent of the Internet. Nowadays, online social networking
is a mass adoption phenomenon. For example, public data on Facebook’s website, the
largest OSN at present, reveals 1.23 billion monthly active users, with an average of 757
million users that log in daily as of December, 31 2013. Every 20 minutes, 1 million links
are being shared, 2 million friends requested and 3 million messages sent on average [6].

Social network analysis has a wide range of applications across multiple disciplines such
as data aggregation and mining, network modelling, user attribute and behaviour anal-
ysis, location-based interaction, social sharing and filtering, recommendation systems
development, or link prediction. In the private sector, businesses use OSN analysis for
to fulfil their marketing and business intelligence needs, while in the public sector it
serves to the development of leader engagement and community-based problem solving.
Also, law enforcement and intelligence institutions make use of this technique in fighting
and preventing crime.

The relationships among social entities and the patterns and implications they have on
content spreading developed researchers’ interest in OSN analysis. The online environ-
ment promotes viral dissemination of information, creating powerful electronic world-
of-mouth effects that result in the birth of online trends [8].

2.4.2 Economic cycles

The idea of adopting in economics tools and techniques from biology is not new, being
firstly highlighted by the neoclassical economist Alfred Marshall in the preface to his



Chapter 2. Background 21

Principles of Economics (1890): “the Mecca of the economist lies in economic biology”.
If we consider the economy as a heterogeneous system comprising of different typologies
of agents that interact, influence each other and have different levels of knowledge about
the environment and each other, then biology can provide the necessary tools to explain
various behaviours of agents.

It is interested to observe how compartmental models could be used to model the be-
haviour of economical phenomena, such as business cycles. The standard definition of
the term was given by Burns and Mitchell in 1946 [18]: business cycles are a type of
fluctuation found in the aggregate economic activity of nations that organize their work
mainly in business enterprises: a cycle consists of expansions occurring at about the
same time in many economic activities, followed by similarly general recessions, contrac-
tions, and revivals which merge into the expansion phase of the next cycle. The concept
is illustrated in Figure 2.8.

Figure 2.8: A basic illustration of the economic/business cycle

Strictly speaking, business cycles capture the upwards and downwards economical move-
ments that occur around a long-term growth trend. Beside being called “cycles”, these
fluctuations often prove unpredictable and finding an explanation for them is one the
primary concerns in macroeconomics.
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In economic literature we cannot find many applications of compartmental models. One
of the few existing works related to this subject belongs to the Nobel laureate Gary
Becker, who divides the population into various subclasses and analyses the causes of
deceleration of the flow from one category to another, without specifically using the word
”compartment”. Another approach, closer to the epidemiological models, is the one of
Aoki [19], who introduces the notion of clusters, conceptually similar to compartments.
A big difference, however, is the stochastic approach taken, which significantly increases
the complexity of the mathematical tools required. A direct application of compart-
mental models in economy is studied in [20], by introducing a simple model describing
how the government could operate in order to reach a certain goal as cost-efficiently as
possible.

2.4.3 Retail Sales

Another less explored area where epidemic models could be applied is retail sales. The
awareness of a new product spreads among customers similar to how a disease spreads
from an individual to another. Epidemic models could take various factors into account,
such as the impact of previous negative experiences with a product, and use the number
of early adopters to project peak sales or sales volume levels over time.

This subject is little explored in the literature, although we can see how compartmental
models could be constructed. For example, in the context of online retail sales, [21] sug-
gests to assign all major products categories to one of three market share groups: high,
medium or low penetration potential. This division should be based on the suitability of
the product to the online medium and its historical online success to date. However, the
authors of the report do not build a set of ODEs, but derive a specific logistic growth
function for each category.

2.4.4 Computer Viruses

The Code Red worm incident that happened in July 2011 raised awareness regarding
the urge to build models for analysing how Internet viruses propagate. Researchers
in [22] developed a general Internet worm model based on the classic epidemic SIR
model, taking into account two major factors. Firstly, they considered the dynamic
countermeasures taken by users in removing susceptible and infectious computers. The
second factor taken into account is the slowed down infection rate, as a consequence of
the congestions to some routers caused by its large-scale propagation. The results of
fitting the data for this model are illustrated in Figure 2.9.
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Figure 2.9: Comparison between observed data and the two factor model. Repro-
duced from [22].

More recent research revealed some issues present in previous epidemic models, high-
lighted in [23]:

• models including an exposed compartment do not take into account that an com-
puter can infect other computers immediately after getting infected

• models including all infected computers into one compartment do not take into
account the difference between latent and breaking-out computers

• models including a permanent immunity compartment do not take into account
that previously infected computers are prone to infection by new versions of the
virus

• most of the models do not take into account the effect of removable storage media

• all models assume that a computer is uninfected when connected to the Internet

Various models have been developed to tackle each of the five mentioned issues individu-
ally, until the authors of the same study proposed a novel epidemic model that accounts
for all of them.
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2.5 Development Environment

2.5.1 Programming Language

In terms of programming language, the obvious choices were Matlab and R, both being
powerful and widely used for statistical modelling and data analysis. With no experience
in either of the two languages, R was chosen after comparing their advantages and
disadvantages.

The main difference between the two comes from the fact that Matlab is a commercial
software, while R is open source. Therefore, R is free, allowing anyone to use it and
contribute to its enhancement. Its vast user community of over 2 million people is
constantly adding new packages, enriching its set of functionalities. At present, it is the
most comprehensive statistical analysis tool available, making it ideally suited for the
purpose of this project. Statisticians were the ones who created R. This constitutes a
major advantage because it means data analysis lies at the very heart of the language.
However, it is not as well documented as Matlab, and although many introductory
tutorials are available, none of them are comprehensive enough. It is not straightforward
to obtain a clear overview of the available functionalities, and looking for the right
package can be time consuming.

R admittedly has a steep learning curve. Apart from the poor documentation, imple-
mentation details, such as silent coercion or sometimes misleading textual presentation
of objects contribute to this phenomenon. Mistakes are very easily made and careful
consideration must be given in order to avoid common pitfalls. Despite this aspect, R
was still preferable over Matlab due to its data frames. A data frame is a core data
structure, similar to a matrix in Matlab, with two primary advantages: firstly, the rows
and columns can be named rather than being referred by index, and secondly, each
column can hold a different data type.

Similar to Matlab, R is cross-platform compatible, being available under various op-
erating systems and architectures. It also integrates well with many other tools. For
example, it can import data from sources such as CSV, Microsoft Excel, MySQL. It can
also produce graphics output in PDF, JPG, PNG, and SVG formats, and table output
for LATEX and HTML. Compared to Matlab, that can produce high quality interac-
tive plots, R’s visualisation capabilities are better suited for exploratory analysis, which
plays a major role in this project.

One of the main disadvantages of R concerns memory management. R holds objects in
virtual memory, and limits are imposed on the amount of memory that can be used.
The limitations apply to the size of the heap and the number of cons cells allowed.
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The environment may further limit the user address space of a single process and the
resources available to a single process. Because many R commands give little thought to
memory management, it can quickly run out of resources. However, this usually happens
when working with huge data sets, which is beyond the scope of this project.

In terms of performance, both R and Matlab are fast when it comes to mathematical
operations on arrays, which are the main data structures used throughout the project.
However, they have slow language interpreters, discouraging complex abstractions.

Another possible choice would have been Python, which is overall a better programming
language than both R and Matlab. Its object oriented and functional nature, together
with libraries such as Numpy, Scipy, statsmodels, and matlibplot make it a powerful
statistical tool. However, it lacks a strong community of mathematicians, so many of
the functionalities already existing in Matlab and R are not yet available.

2.5.2 Additional Libraries and Tools

R: The main R packages used in this project are: deSolve, bbmle, and GillespieSSA.

The package deSolve provides general solvers for initial value problems of first order
Ordinary Differential Equations (ODEs) systems, assuming a full or banded Jacobian
matrix. It also includes fixed and adaptive time-step Runge-Kutta solvers, as well as
the Euler method.

The package bbmle provides tools for general maximum likelihood estimations. It ex-
tends the stats4 default package, being superior to it in some respects. Firstly, the
functions are more robust, with additional warnings that allow certain computations to
return, rather than stop with an error. Secondly, it allows for more parameters to be
passed to the negative log-likelihood function via a data argument. Additionally, for
simple models an in-line formula may be passed to the optimisation procedure, instead
of defining a separate negative log-likelihood function.

The package GillespieSSA provides an interface to various stochastic simulation algo-
rithms for generating simulated trajectories of finite population continuous-time models.
The interface is simple to use, intuitive and easily extensible. Currently, it implements
various Monte Carlo procedures for Gillspie’s Stochastic Simulation Algorithm (SSA),
including both direct and approximate methods.

Matlab: Although the main implementation language was chosen to be R, it proved
a challenging environment for neat 3D surface plots. Hence, we used Matlab to produce
isosurface plots.
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Fitting Procedure using Least
Squares

This chapter describes a least-squares-based epidemic fitting procedure of an SIR model,
as the outbreak unfolds over time. We first introduce the basic idea behind this method.
Then, we describe the model used for fitting, and provide mathematical details regarding
the objective function and the optimisation technique. Finally, we outline a measure to
assess the goodness of fit. Our methodology tackles the challenge of considering the
initial number of susceptibles unknown.

Least Squares (LS) is a simple approach to investigate the evolution of epidemic dynam-
ics over time and estimate the parameters values, first documented by Gauss around
1794. We assume that the only source of variability in the data comes from measure-
ment errors and that its variance is constant, with a symmetrical distribution. Under
these circumstances, Least Squares constitutes a statistically appropriate method for es-
timation, being a procedure that allows finding approximate solutions of overdetermined
systems, i.e. systems that have more equations than unknowns. The basic idea behind
it is to test different values of parameters in order to find the best fit model for the given
data set. However, the robustness of least squares is highly dependent on how close to
the model are the data points. Thus, outliers can cause inaccurate estimates.

3.1 Model

In order to fit our SIR model using Least Squares, we analyse epidemic curves from data
reporting incidence of the disease through time. An example of such data is illustrated
in Figure 3.1.

26
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Figure 3.1: Daily number of infected individuals over a period of 100 days.

The equations describing the SIR model cannot be solved analytically, hence numerical
integration methods are required. We solve the differential equations numerically using
the function ode in the R solver package deSolve. The function requires as parameters a
set of initial values, a time sequence for which output is wanted, and a model definition.
A simplified R implementation of the SIR model is presented in Figure 3.2. For clarity,
we omit here extra checks, which ensure that data has the right type and it lies within
a sensible range of values.

sir. model <- function (t, x, params ) {
S <- x[1]
I <- x[2]
R <- x[3]

beta <- params [1]
gamma <- params [2]

dS <- -beta*S*I
dI <- beta*S*I- gamma *I
dR <- gamma *I

c(dS , dI ,dR)
}

Figure 3.2: SIR model equations implemented in R.
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As integration method we use the integrator lsoda provided in the same package. This
solver is robust due to its automatic detection of stiffness, i.e. property that makes un-
stable certain numerical methods for solving equations, unless an extremely small step
size is being used. Its implementation uses linear multi-step methods that approximate
the derivative of a given function using information computed in previous steps. In
particular, an explicit multi-step Adams method is applied for non-stiff systems, and
the Backward Differentiation Formulas (BDF) method for the stiff ones. In terms of
accuracy, the default relative tolerance and absolute tolerance are equal to 10−6, deter-
mining the error control performed by the solver. Alternatively, a maximum value for
the integration step-size may be specified.

Figure 3.3 illustrates the SIR model trajectory for parameters β = 0.001, γ = 0.1 and
initial conditions S0 = 500, I0 = 10, R0 = 0, during a period of 100 days in a closed
population.

Figure 3.3: Trajectory prediction for SIR model with parameters β = 0.001, γ = 0.1
and initial conditions S0 = 500, I0 = 10, R0 = 0
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3.2 Objective Function

The first step in trajectory matching is defining an objective function. Least Squares
finds a solution by minimising the sum of the squares of the errors. This is also one
of its limitations. Using the squares of the error differences in the presence of outlying
points may lead to a disproportionate effect in the fit, property which is usually not
desirable. Outliers can potentially cause the estimates to be outside a desired range of
accuracy. The method is therefore only as robust as the observed data points are close
to the model.

The basic idea is to find estimates of the parameters that minimise the squared offsets
of the model predictions from the observed data. Algebraically, this is equivalent to
minimising:

S =
∑

(yi − f(xi, θ))2 (3.1)

where yi is the observed value, and f(xi, θ) is the model function, with θ being the vector
of unknown parameters.

Figure 3.4 illustrates the R implementation for our objective function, that computes
the squared differences (sum of squared errors) between the observations and any pa-
rameterisation of the model.

sir.sse <- function (params , data) {
logBeta <- params [1]
logGamma <- params [2]

pred <- as.data. frame (ode(y=c(S=500 , I=10 , R=0) ,
times =data$Time ,
sir.model ,
parms =exp(c(logBeta , logGamma ))))

obs <- data [ ,2]
sse <- sum (( pred$I -obs )ˆ2)

}

Figure 3.4: R implementation of the objective function that computes the sum of
least squared errors.

It is important to highlight the modelling trick used in the implementation of the objec-
tive function. We know that β and γ must always be positive, as they represent the rate
of infection and the rate of recovery, respectively. Originally, our optimisation procedure
would have searched over the entire range between −∞ to +∞. Intuitively, we want to
constrain the search space to one that is meaningful in the context of our model, namely
0 to +∞. We achieve this by parameterising the objective function in terms of log(β)
and log(γ). Alternative approaches based on more sophisticated constraining algorithms
are available, but they may lead to problems such as stability at the boundaries.
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3.3 Optimisation Technique

The second step computes the parameter estimates that minimise the objective function.
To achieve this, we use the function optim in the R package stats, which provides robust
algorithms for general-purpose optimisations. The technique we selected is based on
the Nelder-Mead algorithm, a widely used method in multidimensional unconstrained
optimisation. It falls under the general class of direct search methods, as it does not
involve any explicit or implicit derivative information. This makes it suitable to solve
optimisation problems even when the objective function is not smooth [24].

Figure 3.5 illustrates an example of curve fitting using Least Squares. The observed data
was generated synthetically with parameters β = 0.001, γ = 0.1 and initial conditions
S0 = 500, I0 = 10, R0 = 0 over a period of 100 days within a closed population.

Figure 3.5: Curve fitting using Least Squares.
Original parameter values: β = 0.001, γ = 0.1.

Estimated parameter values: β = 0.001025721, γ = 0.093358939.
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3.4 Goodness of Fit

Finally, after fitting the data with the model, we evaluate the goodness of fit. We aim
to assess how well a chosen set of parameters fits the observed data by identifying the
discrepancies between them. After a visual examination, we make use of the coefficient
of determination, denoted R2.

R2 is a statistical measure, usually reported in the context of regression. It determines
how much of the total variation present in the observed data is explained by the model.
The sample variance is proportional to the total sum of squares SStot, given by Equation
3.2. To measure how far from the observed data are the estimates, we compute the
residual sum of squares SSres, using Equation 3.3.

SStot =
∑
i

(yi − ȳ)2 (3.2)

SSres =
∑
i

(yi − fi)2 (3.3)

where fi are the model predictions, yi are the observed data points and ȳ is the mean
of the observed data, given by Equation 3.4.

ȳ = 1
n

n∑
i=1

yi (3.4)

Based on these measures, the coefficient of determination is defined by Equation 3.5:

R2 = 1− SSres
SStot

(3.5)

Generally, R2 ranges between 0 and 1. Its interpretation denotes the degree of improve-
ment the model has made over the average of the observed data. Hence, the closer R2

is to 0, the least agreement between the actual and estimated values is observed. The
closer R2 is to 1, the better explained is the variability in the data. However, from the
definition we notice that R2 can take negative values if SSres > SStot. In this situation,
it can be inferred that the mean of the observed data provides better estimates than the
ones of the fitted model. A key limitation of R2 is that it cannot determine whether
the model prediction and estimates are biased. This is why we must also examine the
residual plots.
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Uncertainty Characterisation
using Maximum Likelihood

This chapter describes a new maximum-likelihood-based epidemic fitting procedure of
SIR model as the outbreak unfolds over time, yielding confidence intervals on the esti-
mated parameters. It is a generic, fully-automated methodology for rigorous character-
isation of the uncertainty inherent in the estimated values. We first introduce the basic
idea behind Maximum Likelihood, providing mathematical details about the objective
function and the optimisation technique used. Then, we discuss how confidence intervals
characterise uncertainty. Finally, we present step-by-step the new methodology and give
a three-dimensional visualisation of the confidence intervals. We tackle the challenges of
estimating parameters when the initial number of susceptibles and infected is unknown.

Maximum Likelihood (ML) is one of the most versatile analytic procedures for fitting
statistical models to data, dating back to early works of Fisher around 1925. Typically,
it finds parameter estimates that maximise the likelihood of a given dataset. There
are many advantages of using likelihood-based approaches. Firstly, they are flexible,
being applicable to a wide range of statistical models and various type of data sets (i.e.
discrete, continuous, truncated, categorical, etc). Secondly, not only can they estimate
parameters values, but also provide confidence intervals to characterise the uncertainty
inherent in these estimates, due to their asymptotic normality propriety. Finally, they
can be regarded as a unifying framework, as many common statistical approaches repre-
sent special cases of them. For example, Least Squares fitting is equivalent to Maximum
Likelihood when the errors are normally distributed. To summarise, Maximum Likeli-
hood based approaches are considered to be more robust, have better sufficiency and
smaller errors than other methods.

32
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4.1 Objective Function

Similar to Least Squares, the first step is defining an objective function. Maximum
Likelihood finds a solution by maximising a likelihood function, defined as the probability
of a given dataset having occurred, given a particular hypothesis. This is algebraically
equivalent to Equation 4.1:

L(D|H) = P(D|H) (4.1)

where D represents the observed data set and H is the hypothesis to be tested.

More precisely, the likelihood function is characterised by Equation 4.2.

L(θ |x1, . . . , xn) = f(x1, x2, . . . , xn|θ) =
n∏
i=1

f(xi|θ) (4.2)

where xi are the observed data points, θ is the vector of unknown parameters and f(xi, θ)
is the associated probability density function.

However, it is usually computationally more convenient to make use of the natural
logarithm of the likelihood function, referred to as the log likelihood. Mathematically,
this is defined in Equation 4.3.

logL(θ |x1, . . . , xn) =
n∑
i=1

log f(xi|θ) (4.3)

where xi are the observed data points, θ is the vector of unknown parameters and f(xi|θ)
is the associated probability density function, as before.

This substitution is possible due to the increasing monotonicity of the logarithm func-
tion. This property makes both the logarithm function and the function itself achieve the
maximum value at the same points. There are two main computational advantages of
using the logarithm of the function. Firstly, the natural logarithm reduces the potential
for underflow that may be caused by very small likelihoods. The second advantage arises
when computing the derivative of the function, which is required to find its maximum.
The likelihood function factorises into a product of functions, as shown in Equation 4.2,
because the observed data points are assumed to be independent of each other. However,
the logarithm of this product becomes a sum of individual functions in Equation 4.3,
which is considerably easier to differentiate than a product.

In our implementation, we minimise the negative log likelihood function instead, as de-
fined by Equation 4.4, which is just an equivalent characterisation.

neg logL(θ |x1, . . . , xn) = −
n∑
i=1

log f(xi|θ) (4.4)
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Based on the observation in Equation 4.5,

argmax
x

(x) = argmin
x

(−x) (4.5)

the equivalence in Equation 4.6 holds.

argmax
x

n∑
i=1

log f(xi|θ) = argmin
x

(−
n∑
i=1

log f(xi|θ)) (4.6)

Figure 4.1 illustrates the R implementation for our objective function, that minimises
the negative log-likelihood of the observations given any parameterisation of the model.
Similar to the Least Squares approach, we prevent our optimisation procedure from
searching over the entire range between −∞ to +∞ by using a log transformation on
the parameters. Consequently, we constrain the search space to 0 to +∞, which is the
meaningful one in the context of our model.

sir.nll <- function (params , data ){
logBeta <- params [1]
logGamma <- params [2]

pred <- as.data. frame (ode(y=c(S=500 ,I=10 ,R=0) ,
times =data$Day ,
sir.model ,
parms =exp( params )))

logDensities <- dpois (x=data$I , lambda =pred$I , log=TRUE)
nll <- -sum( logDensities )

}

Figure 4.1: R implementation of the negative log-likelihood function.

Note that we assume the observations to be Poisson distributed, making use of the
function dpois in the R package stats that returns the log density. According to standard
texts, epidemiologists model variability in disease occurrence using either the binomial,
the Poisson or the exponential distribution. The authors of [25] argue that the three
distributions have common attributes that lead to similar results for modelling variance
in disease occurrence. They also state that the Poisson distribution is widely used by
epidemiologists when the data involves counts of cases. Moreover, since we deal with
discrete observations, the variance is expected to scale with the number of infected
individuals [26] [27].

4.2 Optimisation Technique

The second step computes parameter estimates that minimise the negative log likelihood
function by taking its derivative. The idea of finding the maximum or the minimum of
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a function by taking its derivative is based on the extreme value theorem. This states
that if a function f(x) is continuous on a closed interval [a, b], then f(x) has a maximum
and minimum value on the interval [a, b]. Algebraically, there exist xmin and xmax such
that the formula in Equation 4.7 holds.

f(xmin) ≤ f(x) ≤ f(xmax), ∀x ∈ [a, b] (4.7)

Besides this theorem, there are two additional observations to be made. Firstly, the slope
of the tangent line of the maximum and minimum is 0. Secondly, after the maximum
the function decreases, and after the minimum it increases in value. Hence, the following
two conditions must be met by xmax in order for it to be a maximum of a function f:
f ′(xmax) = 0 and f ′′(xmax) < 0. Similarly, xmin must meet the following two conditions
in order to be a minimum of a function f: f ′(xmin) = 0 and f ′′(xmin) > 0.

For multiple unknown parameters θi, finding Maximum Likelihood based estimates be-
comes more challenging. The estimation requires determining the simultaneous solution
set for k equations, where k in the number of unknowns. Particularly, for the negative
log likelihood function neg logL and k = 2, the system is shown in Equation 4.8.

∂neg logL(θ1,θ2)
∂θ1

= 0
∂neg logL(θ1,θ2)

∂θ2
= 0

(4.8)

In our implementation, we achieve this through the mle2 function in the bbmle R pack-
age, which provides tools for general maximum likelihood estimation. This function uses
the same optimiser that we used for Least Squares, optim from the stats package, which
is based on the Nelder-Mead algorithm. It also computes an approximate covariance
matrix for the parameters by inverting the Hessian matrix at the optimum, which can
be later used to derive confidence intervals.

Figure 4.2 illustrates an example of curve fitting using the Maximum Likelihood based
approach described. The observed data was generated synthetically with parameters
β = 0.001, γ = 0.1 and initial conditions S0 = 500, I0 = 10, R0 = 0 over a period of
100 days, within a closed population.

4.3 Confidence Intervals

A confidence interval statistically measures the reliability of an estimate. It aims to an-
swer questions related to how to deal with uncertainty surrounding estimates, especially
if they are derived from data that only represent a subset of the total population.
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Figure 4.2: Curve fitting using Maximum Likelihood.
Original parameter values: β = 0.001, γ = 0.1.

Estimated parameter values: β = 0.001034596, γ = 0.092604365.

The interpretation of a confidence intervals is not strictly a mathematical issue, but also
a philosophical matter [28]. Mathematics has only a limited role in deciding why an
approach is preferred to another. Generally, there are multiple interpretations that can
be given to a confidence interval. For the purpose of our work, we will consider the case
expressed in terms of repeated samples. The 95% confidence interval will ideally contain
the true value of the parameter 95% of the time, given repeated fittings of the model. It
is only by chance that the true value of the parameter lies outside the confidence interval
with probability 5%.

Traditionally, the Wald-type confidence intervals are widely used as an approximation
to profile intervals. The standard procedure for computing such a confidence interval is
by applying Equation 4.9.

estimate± (percentile × SE(estimate)) (4.9)

where SE is the standard error and the percentile is selected according to the desired con-
fidence level and a reference distribution, i.e. a t-distribution for regression coefficients
in a linear model, otherwise a standard normal distribution.

They are easier to compute for complex models, but perform poorly when the likelihood
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surface is not quadratic. Additionally, a markedly skewed distribution of the parameter
estimator or a standard error that poorly approximates the standard deviation of the
estimator may affect their performance. Moreover, for generalised linear models, the
standard errors are based on asymptotic variance derived from the covariance matrix.
For small to medium sample sizes, this scenario may also cause poor performance.

Profile likelihood confidence intervals represent a more robust approach [29]. They do
not assume normality of the estimator and appear to perform better for small samples
sizes than Wald-type confidence intervals. These confidence intervals are based on an
asymptotic approximation of the χ2 distribution of the log-likelihood ratio statistic. To
define them, we consider a model with θ the parameter of interest and δ a vector of
the other parameters, and a likelihood function L(θ, δ). Then, the profile likelihood
function for θ, L1 is given by Equation 4.10. By definition, the profile likelihood equals
the maximum value of the likelihood function for every point.

L1(θ) = max
δ
L(θ, δ) (4.10)

The 100(1− α) profile confidence interval is computed by inverting the likelihood ratio
test. Mathematically speaking, given a parameter θ, it contains the set of all values θ0

that do not reject the two-sided test of the null hypothesis H0 : θ = θ0 at a level of
significance α. The likelihood ratio test statistic of the hypothesis is defined by:

D = 2 [logL(θ̂, δ̂)− logL1(θ0)] (4.11)

Based on the asymptotic χ2 distribution of the likelihood ratio test statistic, if the null
hypothesis is true, the test of H0 : θ = θ0 will not be rejected at the level of significance
α if and only if the relation in Equation 4.12 holds.

D ≤ χ2
1−α (4.12)

where χ2
1−α is the (1− α) quantile of the χ2 distribution on 1 degree of freedom.

We compute two sided confidence intervals using the confint function in the bbmle R
package, as illustrated in Figure 4.3. Figure 4.4 is its corresponding two-dimensional
contour plot, generated using function curve3d in the R package emdbook, and contour,
points in the package graphics.
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Figure 4.3: Profile confidence intervals for parameters log(β) and log(γ) estimated
by Maximum Likelihood for the SIR curve fitted in Figure 4.2.

Figure 4.4: Contour plot for parameters log(β) and log(γ) estimated by Maximum
Likelihood for the SIR curve fitted in Figure 4.2.
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4.4 New Approach for Uncertainty Characterisation

We implemented a generic Maximum Likelihood based methodology for on-the-fly epi-
demic fitting of SIR model from a single trace, which yields confidence intervals on
parameter values. The method is fully automated and avoids the laborious manual
efforts traditionally deployed in the modelling of biological epidemics.

Mathematical modelling of infectious disease dynamics relies on a series of assumptions
regarding key parameters that cannot be measured directly. We consider the challenges
of estimating the initial number of susceptible and infected individuals in the target
population, when these values are unknown. Currently, there is no principled way of
doing this, as traditionally they are either known or can be estimated from the context.
However, in an era of social and technological epidemics, we argue that time and speed
of movement make it infeasible to provide accurate estimates within a reasonable time
frame that allows quick action to be taken. Based on the SIR model, we developed two
new methodologies, one for estimating the vector of parameters β, γ, S0, and one for β,
γ, S0 and I0.

4.4.1 Data Transformation

By definition, all SIR model parameters we are interested in estimating represent positive
quantities. This observation allows us to apply data transformation techniques in order
to prevent the optimisation from exploring infeasible values. The obvious choice is to use
a log transformation, as before. This prevents the optimisation procedure from searching
over the entire range from −∞ to +∞, being instead constraint between 0 and +∞.

Another key observation is that the initial number of infected individuals is always
smaller than the initial number of susceptibles. This allows us to apply a logistic-based
transformation, reducing the optimisation search space of I0 between 0 and S0. A similar
transformation can be applied to the initial number of susceptibles S0 when the target
population is bounded by a known value.

A logistic function is a special case of a sigmoid function, often used to model popula-
tion growth. It is defined for real values of x from −∞ to +∞, taking values within the
range (0, 1), as shown by Equation 4.13.

logistic(x) = 1
1 + e−x (4.13)

The inverse of the logistic function is the natural logit function, being often used in
statistics for parameter representing probabilities. It is defined for parameters p between
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0 and 1, and takes values from −∞ to +∞, as shown in Equation 4.14.

logit(p) = log( p

1− p) (4.14)

We modify the logistic function and its inverse in order to map the searching space
ranging from −∞ to +∞ to one between 0 and maxV alue, where maxV alue represents
either the number of initial susceptibles, or the population bound, as discussed above.
Hence, the transformation function is given by Equation 4.15

trans(x) = maxV al

1 + e−x
(4.15)

and its corresponding inverse is defined in Equation 4.16.

untrans(y) = log( y

maxV al − y
) (4.16)

4.4.2 Parameter Space Searching

To account for uncertainty as each outbreak unfolds over time, we apply our fitting
methodology on truncated data sets. For each dataset, we initially consider the first 3
observations. Then, we add one observation at a time, until we reach the end of the
outbreak, creating new truncated datasets each time.

We compute parameters estimations for each truncated dataset, considering in turn each
of the following vectors of unknown parameters: β, γ, S0 and β, γ, S0, I0. The process
of searching the parameter space for each set of parameters takes place in two stages.
First, we find the parameters estimates that give the best fit to the data based on a Least
Squares objective function. In order to avoid the optimisation procedure being trapped
in a local minimum, we restart for 20 different randomly chosen initial values of the
parameter vectors. Sensible restrictions are imposed, such as 0 < β < γ and 0 < I0 < S0.
The final candidate is selected to be the vector that yields the lowest value for the initial
number of susceptibles S0 across all runs. Then, we use the parameter estimates obtained
in the first stage as initial values for a Maximum Likelihood fitting procedure. The reason
behind this approach is to overcome computational challenges that arises through the
estimation and confidence interval calculation within the mle2 function in the R package
bbmle. Maximum Likelihood based approaches are considerably more sensitive to the
initial guesses of the parameters to be estimated than the Least Square ones. If these
guesses are not within a sensible range, being too far off the true values, then the output
becomes unreliable. Moreover, computing the confidence intervals using mle2 involves
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calculating the covariance matrix for the parameters, which is done by inversion of the
Hessian matrix at the optimum. This procedure can also be unsuccessful depending on
the initial parameters.

4.4.3 Visualisation

Once the fitting procedure completes successfully, we provide a three-dimensional vi-
sualisation of the confidence intervals when the vector of unknown estimates is β, γ,
S0. It expands on the idea of a two-dimensional contour plot previously explored in
the literature, where each contour line connects values that lie within the same confi-
dence interval. We take this approach one step further and add more dimensions. The
resulting representation is therefore based on isosurfaces, the three-dimensional analog
of isolines. Each of the surfaces represent parameters values that lie in the same confi-
dence interval within a volume of space. Their shape is a variation of an ellipsoid. The
three unequal axes represent the size of the confidence intervals corresponding to each
of the three parameters. These intervals may be asymmetrical, hence the surfaces are
described by a modified version of the ellipsoid’s in Equation 4.17. Higher dimensional
analog representation require more complicated equations and are difficult to visualise,
hence are not discussed further.

(x− x0)2

a1a2
+ (y − y0)2

b1b2
+ (z − z0)2

c1c2
= 1 (4.17)

where x0, y0, z0 are the coordinates of the origin - the true values in our case, and ai,
bi, ci are the corresponding confidence intervals sizes.

The isosurface plots were generated in Matlab. A sample example is illustrated in
Figure 4.5. It clearly indicates that the estimated range of possible values is wider as
the confidence level increase.
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Figure 4.5: Isosurface representing the profile confidence intervals of parameters
log(β), log(γ) and log(S0) for data fitting on SIR model
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Evaluation

This section presents key results in validating our on-the-fly epidemic fitting method-
ologies on both synthetic and real datasets. For the Least Squares based approach, we
use the coefficient of determination as a metric in assessing the efficacy of the method.
For the Maximum Likelihood based approach, we analyse the confidence intervals of the
estimates and measure the true value recoverability rate.

Because we fit our datasets as the epidemic unfolds over time, our methodologies are
applied on truncated datasets. For each dataset, we initially consider the first 3 obser-
vations. Then, we add one observation at a time, until the end of the outbreak, creating
new truncated datasets each time. We estimate parameters for each truncated dataset.

5.1 Synthetic Data

The synthetic datasets were generated based on Gillespie’s Stochastic Simulation Al-
gorithm, using the ssa function in the GillespieSSA R package. The use of synthetic
datasets allows us to evaluate the ability of our methodology to recover model parame-
ters from a single trace, as the ground truth is known.

One very important aspect we had in mind when generating the synthetic data was to
avoid the so called “inversion crime” phenomenon. This expression refers to the act of
using the same model to both generate and invert synthetic data. The stochastic nature
of our data generation process avoids such issues.

We ran our experiments on 1000 different synthetic datasets. The one used for illustrative
purposes in the rest of this section was generated by simulating a SIR epidemic with
known parameters β = 0.001, γ = 0.1 and initial conditions S0 = 500, I0 = 10, R0 = 0,
in a closed population, over a period of 100 days. It is depicted in Figure 5.1.

43
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Figure 5.1: Synthetic dataset for a SIR epidemic with parameters β = 0.001, γ = 0.1
and initial conditions S0 = 500, I0 = 10, R0 = 0

5.1.1 Fitting Using Least Squares

In this section we discuss the results of applying our Least Squares based fitting proce-
dure of truncated synthetic datasets on SIR model, as the epidemic unfolds over time.
We consider two methodologies, one to estimate the vector of unknown parameters β,
γ, illustrated in Figure 5.2, and one to estimate β, γ, S0, as shown in Figure 5.3.

From a very early stage, and taking into account only the first 10 observations, our
model predicts with surprising precision the peak of the epidemic in both cases. As time
progresses, the fits become more and more stable and closer to the original epidemic
curve. We observe that the estimated parameters for the best fit curve are very close
to their true values, and the predicted curves fit well the data points. The coefficient of
determination R2 gets closer to 1 as time progresses, indicating that new observations
improve the fit, as expected.

When comparing the two procedures, we notice that adding more parameters to the set
of unknowns improves the overall quality of the fits. When we assume the initial number
of susceptibles S0 unknown, and take only the first 10 observations, the predicted curve
does not fit the data points as well as when fixing S0, but it predicts with higher accuracy
the peak of the epidemic. In addition, the prediction with S0 unknown produce higher
values for the coefficient of determination R2 once the model becomes stable - 0.9956 as
compared to 0.9935. This proves the importance of accounting for parameter uncertainty
in model-based analysis.
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Figure 5.2: Over-time Least Squares fitting of synthetic data on SIR model with
unknown parameters β and γ.
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Figure 5.3: Over-time Least Squares fitting of synthetic data on SIR model with
unknown parameters β, γ and S0.
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5.1.2 Fitting Using Maximum Likelihood

In this section we discuss the results of applying our Maximum Likelihood based fitting
procedure of truncated synthetic datasets on SIR model, as the epidemic unfolds over
time. We consider three methodologies, one to estimate the vector of unknown parame-
ters β, γ, illustrated in Figure 5.4, one to estimate β, γ, S0, shown in Figure 5.7 and one
to estimate β, γ, S0, I0, depicted in Figure 5.10. We also discuss below the uncertainty
characterisation for each of these methodologies.

From a very early stage, and taking into account only the first 15 observations, our
model predicts with surprising precision the peak of the epidemic in all three cases. As
time progresses, the fits become more and more stable and closer to the original epidemic
curve. We observe that the estimated parameters for the best fit curve are very close
to their true values, and the predicted curves fit well the data points. The coefficient of
determination R2 gets closer to 1 as time progresses, indicating how new observations
improve the fit.

When considering the vector of unknown parameters β, γ, we observe that the model
prediction do not vary very much when new observations are added. For example, at day
15 β = 0.00084, γ = 0.09064, and at day 100 β = 0.00089, γ = 0.10237. However, adding
S0 as an unknown makes β vary between 0.0007 and 0.00095, and γ from 0.06095 to
0.015128. It is interesting to notice that in this case β, γ and S0 do not progressively get
closer to the true values as more observations are added, but rather arbitrarily increase
and decrease in value, although the curve fittings improve over time. At day 100, their
estimates are reasonably close to the true values. We suggest this is a direct consequence
of allowing S0 to vary, but keeping I0 fixed. Our hypothesis is confirmed by the results
obtained when adding I0 as unknown. Accounting for the uncertainty inherent in I0

leads to a progressive improvement in the quality of the predictions, with recovered
parameters very close to the true values at the end of the epidemic: β = 0.00099,
γ = 0.09614, S0 = 462, I0 = 9. Although the variance of I0 is very small, as it is bound
by the value of S0, it does bring a significant improvement to our fitting procedure.

Figures 5.5, 5.8 and 5.11 illustrate the corresponding profile confidence intervals for
fitting the synthetic dataset on SIR model with two, three, and four unknown parameters
respectively.

We observed that the confidence intervals become narrower as more observations are
added, indicating that the uncertainty in the parameters decreases. Table 5.1 shows
some observations of lower and upper bounds on each parameter when the data is fitted
over time.
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Data% β γ S0
Lower Upper Lower Upper Lower Upper

25% 5.66e-04 8.47e-04 1.08e-01 1.93e-01 569 962
50% 7.17e-04 8.36e-04 1.17e-01 1.35e-01 590 692
75% 7.62e-04 8.68e-04 1.13e-01 1.26e-01 568 646
100% 8.39e-04 9.47e-04 1.03e-01 1.14e-01 519 582

Table 5.1: Confidence Intervals for over-time fitting of synthetic data on SIR model
with unknwon parameters β, γ, S0.

Figures 5.6 and 5.9 provide a graphical characterisation of the uncertainty when fitting
the synthetic dataset on SIR model with two and three unknown parameters respectively.
The first one is a two-dimensional contour plot; the contour lines connect values that lie
within the same confidence interval. The second one is a three-dimensional isosurface
plot; each surface embodies parameter values that lie in the same confidence interval
within a volume of space. Both these diagrams highlight the fact that the estimated
range of possible values is wider as the confidence level increase.
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Figure 5.4: Over-time Maximum Likelihood fitting of synthetic data on SIR model
with unknown parameters β and γ.
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Figure 5.5: Likelihood profiles of parameters log(β) and log(γ) for Maximum Likeli-
hood fitting of synthetic data on SIR model

Figure 5.6: Contour plot of parameters log(β) and log(γ) for Maximum Likelihood
fitting of synthetic data on SIR model
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Figure 5.7: Over-time Maximum Likelihood fitting of synthetic data on SIR model
with unknown parameters β, γ and S0.
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Figure 5.8: Likelihood profiles of parameters log(β), log(γ) and log(S0) for Maximum
Likelihood fitting of synthetic data on SIR model

Figure 5.9: Isosurface plot of parameters log(β), log(γ) and log(S0) for Maximum
Likelihood fitting of synthetic data on SIR model
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Figure 5.10: Over-time Maximum Likelihood fitting of synthetic data on SIR model
with unknown parameters β, γ, S0 and I0.
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Figure 5.11: Likelihood profiles of parameters log(β), log(γ), log(S0) and log(I0) for
Maximum Likelihood fitting of synthetic data on SIR model

True parameters recoverability rate

Another way of validating our methodology is by assessing the true value recoverability
rate. We repeatedly run our fitting procedure over 1000 stochastic simulations of the
SIR model, computing confidence interval for the estimated parameters each time. As
vector of unknown parameters, we consider, in turn, β, γ, S0 and β, γ, S0, I0.

One might hope that 95% of the times the true value will lie within the 95% confidence
intervals. However, this is not the case, as illustrated in Tables 5.2 and 5.3. We notice
that the recoverability rates for individual parameters vary between 26% and 48%, but
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they become significantly lower when considering the recoverability rate for all parame-
ters at once. This indicates that there are other sources of uncertainty that we have not
considered in our model.

Another notable remark results from comparing the recoverability rate for the two vec-
tors of unknown parameters: β, γ, S0 and β, γ, S0, I0. When assuming I0 fixed, the rate
of recoverability for β is only 26.59%, but it almost doubles, increasing up to 41.99%
when considering I0 unknown. The rate for γ stays exactly the same, at 26.28%. For S0

the rate increases slightly, from 31.82% to 34.44%. These results reveal that although the
variance of I0 is small, it has a high impact on the recoverability rate of true parameters
and should therefore be considered for better predictions.

Parameter Recoverability rate
β 26.59%
γ 26.28%
S0 31.82%

β, γ, S0 8.86%

Table 5.2: True value recoverability rate for unknown parameters β, γ and S0 on
synthetic data.

Parameter Recoverability rate
β 41.99%
γ 26.28%
S0 34.44%
I0 48.04%

β, γ, S0, I0 9.46%

Table 5.3: True value recoverability rate for unknown parameters β, γ, S0 and I0 on
synthetic data.
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5.2 CDC Influenza Data

The real dataset represents positive Influenza cases summed over all subtypes of the
flu virus, as reported to the Center of Disease Control and Prevention (CDC) during
2012 - 2013 Influenza season, starting in September 2012. This institution studies the
impact of flu in the US. The data was obtained via the FluView Web Portal 1. We chose
Influenza because it is one of the most common infectious disease present in humans,
with regular annual outbreaks. Hence, it allows us to evaluate the applicability of our
methodology in real scenarios.

5.2.1 Fitting Using Least Squares

In this section we discuss the results of applying our Least Squares based fitting proce-
dure of truncated real datasets on SIR model, as the epidemic unfolds over time. We
consider two methodologies, one to estimate the vector of unknown parameters β, γ,
illustrated in Figure 5.12, and one to estimate β, γ, S0, as shown in Figure 5.13.

We manage to predict the peak in infectious individuals from only 9 observations to be
around day 11 and of magnitude around 7000. In reality, it occurs to be only 1 day later,
with approximately the same number of infected individuals. The accuracy of predicting
from partial information on a single trace the time of the peak, the magnitude of the peak
and the tail of the infection is remarkable. As time progresses, the fits become more and
more stable and closer to the original epidemic curve. The coefficient of determination
R2 is very close to 1, stabilising it’s value at 0.991 after

When comparing the two procedures, we notice that adding more parameters to the set
of unknowns improves the overall quality of the fits. The prediction with S0 unknown
produces slightly higher values for the coefficient of determination R2 once the model
becomes stable - 0.99133 as compared to 0.99166. This confirms the results obtained on
synthetic data, validating the applicability of our methodology to real world scenarios.

1http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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Figure 5.12: Least Squares fitting over-time of Influenza data on SIR model with β,
γ unknown
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Figure 5.13: Least Squares fitting over-time of Influenza data on SIR model with β,
γ, S0 unknown
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5.2.2 Fitting Using Maximum Likelihood

In this section we discuss the results of applying our Maximum Likelihood based fitting
procedure of truncated real datasets on SIR model, as the epidemic unfolds over time.
We consider two methodologies, one to estimate the vector of unknown parameters β,
γ, S0, shown in Figure 5.14, and one to estimate β, γ, S0, I0, illustrated in Figure 5.17.
We also discuss below the uncertainty characterisation for each of these methodologies.

The experiments on real data confirmed the results obtained on synthetic datasets. The
model proved highly accurate in predicting from partial information on a single trace.
Considering only 20% of the observations, it accurately predicts the time of the peak,
its magnitude, and the tail of the infection. As before, the confidence intervals for the
parameter estimates become narrower as more observations are added, indicating that
the uncertainty in the parameters decreases. Likelihood profiles, and corresponding iso-
surface plot are illustrated in Figures 5.15, 5.16, 5.18. Table 5.4 shows some observations
of lower and upper bounds on each parameter when the data is fitted over time.

Table 5.4: Confidence Intervals for over-time Influenza data (* - non convergence)

Data% β γ S0
Lower Upper Lower Upper Lower Upper

25% * * * * * *
50% 2.95e-05 3.22e-05 3.46e-01 3.81e-01 26769 30118
75% 3.50e-05 3.69e-05 2.90e-01 3.06e-01 22091 23515
100% 3.53e-05 3.70e-05 2.90e-01 3.03e-01 22031 23292



Chapter 5. Evaluation 60

Figure 5.14: Over-time Maximum Likelihood fitting of Influenza data on SIR model
with β, γ, S0 unknown
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Figure 5.15: Likelihood Profile for Maximum Likelihood fitting of Influenza data on
SIR model with β, γ, S0 unknown.

Figure 5.16: Isosurface plot of parameters log(β), log(γ) and log(S0) for Maximum
Likelihood fitting of Influenza data on SIR model
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Figure 5.17: Over-time Maximum Likelihood fitting of Influenza data on SIR model
with β, γ, S0, I0 unknown
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Figure 5.18: Likelihood Profile for Maximum Likelihood fitting of Influenza data on
SIR model with β, γ, S0, I0 unknown



Chapter 6

Conclusion

6.1 Contributions

Researching applications of mathematical modelling techniques to epidemic phenomena
proved to be a challenging, but rewarding task. While working on this project, we had
the opportunity to deal with difficult aspects of statistical estimation of parameters and
characterising their uncertainty. We tackled the challenge of estimating key parameters,
such as the initial number of susceptible and infected individuals in the SIR model.
Traditionally, they are assumed to be known or can be inferred from the context, but
this approach is not feasible for modern outbreaks. Moreover, we had the pleasure to
address unanswered questions of wide interest in areas such as contingency planning
regarding the importance of uncertainty characterisation.

We initially implemented a Least Square based methodology for on-the-fly epidemic
fitting on SIR models from a single trace. The method was validated using both synthetic
and real data. From very early stages, our model predicted with surprising precision the
peak of the epidemic. The estimated parameters for the best fit curve were very close
to their true values, and the predicted curves fitted well the data points.

The main contribution of this project is a generic Maximum Likelihood based approach
that characterises rigorously the uncertainty inherent in parameter estimates. It is ad-
dressed to on-the-fly epidemic fitting of SIR models from a single trace, and yields
confidence intervals on parameter values. Opposite to traditional epidemiological mod-
elling techniques, our approach is fully automated. We also provide estimates for key
parameters such as the number of initial susceptibles and the initial number of infected
in the population. Visualising the fitted parameters gives rise an isosurface plot of the
feasible parameter ranges corresponding to each confidence level.
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6.2 Future Work

We believe there are many areas of improvement for our project. In this section, we
outline some ideas for potential extensions and further research:

• Estimate the starting time of the epidemic A potential extension to our method-
ology is to incorporate uncertainty inherent in the starting time of the epidemic.
Currently, we assume this t0 to be fixed, but in reality we do not know its true
value. Traditionally, laborious manual work is being undertaken to detect the in-
dex case associated with an infectious disease spread in order to determine when
did the epidemic emerge. Besides being very time consuming, such methods are
also individuals being able to recall and provide complete, accurate information
regarding their personal relationships.

• Implement uncertainty characterisation methodologies for other compartmental
models So far, we have only focused on the SIR model, which is the most simple
of the compartmental models. Another potential extension would be to develop
analog methodologies for other, more complex compartmental models. The abil-
ity to characterise uncertainty in more realistic models would add great value to
model-based analysis for policy and decision making.

• Develop a simulation-based methodology It is expected that real systems are likely
to exhibit different characteristics than the ideal ones assumed by the classical SIR
model; for example, real systems may feature time-varying parameters and the
homogeneous mixing assumption may not apply. Nevertheless, the models may
have utility in predicting the stochastic impact of candidate interventions in real
systems with bounds [30], and a simulation-based methodology for this will could
be a starting point for future work.

• Investigate model selection methodologies Development of complex epidemiological
models increased the popularity of large scale simulations of epidemic spread in the
literature. Accurate predicting on how an infection may spread is limited by the
lack of rigorous approaches to validate such models and assess which one would be
best for a particular problem. Furthermore, if we encounter a high goodness-of-fit
for a set of observed data, how can we infer which specific model has produced it?
Such questions do not have an answer yet and could be addressed in future work.
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