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Abstract

Google Native Client provides a safe, portable way of embedding native plugins in the

web browser. Native Client allows communication between the web page’s JavaScript

code and the Native Client module’s C/C++ code. However, communication is

through simple message passing. The project provides a remote procedure call (RPC)

framework to allow calling C/C++ functions directly from JavaScript. A layered

approach was taken to provide a straight forward RPC architecture.

A generator that uses a standardised Web Interface Definition Language (WebIDL)

was implemented, and is used to produce JavaScript and C++ stubs that handle

parameter marshalling.

The project is evaluated in terms of performance and amount of development effort

saved. We found that the framework’s performance impact was negligible for small

amounts of data (up to 250 objects) being sent and received, however the impact

started to increase linearly with the data size. We found that the generator saved a

considerable amount of developer effort, saving 187 lines of code for a bullet physics

simulation application, compared to previous implementation methods.
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Chapter 1

Introduction

Over the past decades, the web has quickly evolved from being a simple online cata-

logue of information to becoming a massive distributed platform for web applications

that are used by millions of people. Developers have used JavaScript to write web

applications that run on the browser, but JavaScript has some limitations.

One of the problems of JavaScript is performance. JavaScript is a single threaded

language with lack of support for concurrency. Although web browser vendors such

as Google and Mozilla are continuously improving JavaScript run time performance,

it is still a slow interpreted language, especially compared to compiled languages

such as C++. Many attempts have been made to increase performance of web

applications. One of the first solutions was browser plugins that run in the browser,

such as Flash or Java Applets. However, these have often created browser bugs and

loop-holes that can be used maliciously to compromise security.

Native Client [1] (NaCl) is a technology from Google that allows running binary

code in a sandboxed environment in the Chrome browser. This technology allows

web developers to write and use computation-heavy programs that run inside a

web application, whilst maintaining the security levels we expect when visiting web

applications.

The native code is typically written in C++, though other languages can be supported.

The code is compiled and the binary application is sandboxed by verifying the code to

ensure no potentially un-secure instructions or system-calls are made. This is done

by compiling the source code using the gcc1 based NaCl compiler. This generates a

NaCl module that can be embedded into the web page. Because no system calls can

be made, the only way an application can communicate with the operating system

1The GNU Compiler Collection (gcc) is an open-source compiler that supports C, C++, and other
languages [2]

1



Chapter 1. Introduction 2

(for example, to play audio) is through the web browser, which supports several

APIs in JavaScript that are secure to use and also cross-platform. This means that

the fast-performing C++ application needs to communicate with the JavaScript web

application.

// Send a message to the NaCl module

function sendHello () {

if (HelloTutorialModule) {

// Module has loaded, send it a message using postMessage

HelloTutorialModule.postMessage("hello");

} else {

// Module still not loaded!

console.error("The module still hasn't loaded");

}

}

// Handle a message from the NaCl module

function handleMessage(message_event) {

console.log("NACL: " + message_event.data);

}

Listing 1.1: JavaScript code sending and receiving messages from a Native Client

module

// Handle a message coming from JavaScript

virtual void HandleMessage(const pp::Var& var_message) {

// Send a message to JavaScript

PostMessage(var_message);

}

Listing 1.2: C++ code showing the use of PostMessage and HandleMessage

The way Native Client modules can communicate with the JavaScript web application

(and vice versa) is through simple message passing. The JavaScript web application

sends a message in the form of a JavaScript string to the NaCl module. The NaCl

module handles message events by receiving this string as a parameter passed into

the HandleMessage function. For example, Listing 1.1 shows a simplified example of how

JavaScript sends a message to the NaCl module, and Listing 1.2 shows how the native

module handles the message and sends the same message back to the JavaScript

application. This allows for straight forward, asynchronous communication between

the native code and the web application. Modern web browsers support message

passing using the postMessage API. This was designed to allow web applications to

communicate with one or more web workers 2.
2Web workers [3] are scripts that run in the background of a web page, independent of the web page

itself. It is a way of carrying out computations while not blocking the main page’s execution. Although
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However, message passing puts more burden on the developer to write the required

communication code between the NaCl module and the application. For example,

consider a C++ program that performs some heavy computations and has functions

that take several parameters of different types. To make the functionality accessible

from the web application, the developer would need to write a lot of code in the

HandleMessage function. A message format would need to be specified to distinguish

which function is being called. Then the parameters of the function call would need to

be identified, extracted, and converted into C++ types in order that the parameters

are passed into the C++ function. Then a similar procedure would need to be done

if the function would return anything back to the web application.

The purpose of this project is to allow developers to easily invoke NaCl modules by

creating a Remote Procedure Call (RPC) framework on top of the existing message

passing mechanism. To achieve this, the developer will simply write an Interface

Definition Language (IDL) file which specifies the functions that are to be made

accessible from JavaScript. The IDL file will be parsed in order to automatically gen-

erate JavaScript and C++ method stubs that implement the required communication

code using message passing. This is similar to how RPC is implemented in other

traditional frameworks, such as ONC RPC (page 9) or CORBA (page 11).

The main contributions of this project is to create a tool that parses IDL files and

generates JavaScript and C++ method stubs, a message format that will be used in

communication, and support libraries in JavaScript and C++ that will use message

passing to do the actual communication. This will allow functions in the Native Client

module to be called directly from the JavaScript application. We will evaluate how

much this will help developers by seeing how many lines can be saved, in different

program contexts. We will also analyse the speed and efficiency of using RPC over

hand-written message passing.

they allow concurrency, they are relatively heavyweight and are not intended to be spawned in large
numbers. Typically a web application would have one web worker to carry out computations, and the
main page to do most of the view logic (such as click listening, etc.)



Chapter 2

Background

2.1 Native Client

Native Client (NaCl) can be thought of as a new type of plugin for the Google Chrome

browser that allows binary programs to run natively in the web browser. It can be

used as a ‘back end’ for a normal web application written in JavaScript, since the

binary program will run much faster. A NaCl module can be written in any language,

including assembly languages, so long as the binary is checked and verified to be

safe by the NaCl sandbox [1]. However, NaCl provides a Software Development Kit

(SDK) that includes a compiler based on gcc that allows developers to compile C and

C++ programs into binary that will work directly with the sandbox without further

modifications. Thus, writing NaCl-compatible C++ programs is as easy as writing

normal C++ programs with the difference between them being that the sandboxes

disallow unwanted side-effects and system calls. Since many applications might want

to have this type of functionality, Native Client provides a set of cross-platform API

functions that achieve the same outcomes, but by communicating with the browser

directly. To avoid calling NaCl syscalls directly, an independent runtime (IRT) is

provided, along with two different C libraries (newlib and glibc) on top of which

the Pepper Plugin API (PPAPI or ‘Pepper’) is exposed. It can be used to do file IO,

play audio, and render graphics. The PPAPI also includes the PostMessage functionality,

which allows the NaCl module to communicate with the JavaScript application.

2.1.1 Portable Native Client

When Native Client was first released in 2011, it allowed operating system indepen-

dent binary to run in a web application. However, it produced architecture-specific

4



Chapter 2. Background 5

applications using the same source code. These were called nexe modules. For

example, it produced x86 64 bit as well as i386 binaries. However, for the developer,

distributing different binaries for the same application was tedious, and architecture

specific distributions go against the general trend of the truly independent web

platform.

PNaCl was later introduced to solve the problem of lack of portability. Instead

of producing architecture specific nexe executables, portable pexe modules are

produced instead. These have a verified bitcode format. The PNaCl runtime, which

runs as part of the browser, translates the bitcode into machine code. Because

of their cross-platform nature, PNaCl (pexe) modules are allowed to run in Google

Chrome without the user installing them, while NaCl (nexe) modules must be installed

through the Chrome Web Store. However, NaCl modules allow inline assembly and

different C standard library implementations, while PNaCl modules only support the

newlib implementation and don’t support architecture specific instructions.

2.1.2 NaCl Modules and the Pepper API

A Native Client application consists of the following [4]:

HTML/JavaScript Application: Where the user interface of the application will be

defined, and the JavaScript here could also perform computations. The HTML

file will include the NaCl module by using an embed tag, e.g.

<embed src="myModule.nmf" type="application/x-nacl" />

Pepper API: Allows the NaCl module communicate with the web browser and use

its features. Provides PostMessage to allow message passing to the JavaScript

application.

Native Client Module: The binary application, which performs heavy computation

at native speeds.

2.1.3 Communicating with JavaScript using postMessage

The HTML5 postMessage API was designed to allow web workers to communicate with

the main page’s JavaScript execution thread. The JavaScript object is copied to the

web worker by value. If the object has cycles, they are maintained as long as the

cycles exist in the same object. This is known as the structured clone algorithm, and

is part of the HTML5 draft specification [5].
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In a similar way, postMessage allows message passing to and from NaCl modules.

However, sending objects with cycles will cause an error. NaCl allows sending

and receiving primitive JavaScript objects (Number, String, Boolean, null) as well as

dictionaries (key-value Object types), arrays, and ArrayBuffers. ArrayBuffers are a new

type of JavaScript object based on Typed Arrays [6] that allows the storing of binary

data.

Another key difference is that message types need to be converted into the correct

type on the receiving end. For example, sending a JavaScript Object should translate

into a dictionary type. The JavaScript types are dynamic in nature. A JavaScript Number

object could be an integer, a float, a double, ‘infinity’, exponential, and so on. Sending

C++ data to JavaScript is simple since it is converting from a more specific type to a

less specific type (e.g. from int in C++ to Number in JavaScript). But converting from a

JavaScript type to a C++ type requires more thought. The PPAPI provides several

functions to determine the JavaScript type (e.g. bool is_double()). It also allows us to

extract and cast the data into our required type (e.g. double AsDouble()). From there,

we can use the standard C++ type to perform the required computations.
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Figure 2.1: The basic components of an RPC framework, adapted from [7]

2.2 Remote Procedure Calls (RPC)

RPC is used to uniformly call a procedure that is on a different machine or on

the same machine but on different processes. RPC is implemented on top of a

transmission protocol and should work regardless of the communication method

being used. For example, we could use TCP/IP for network communications, or any

Inter-Process Communication (IPC) method if the caller and callee are on the same

machine but in different processes. Normally, RPC implementations would consist of

the following steps, as shown in Figure 2.1.

1. The caller code is written normally, and so is the server code, but the stubs

are/can be automatically generated using interface definition files.

2. When the remote call is made, it calls the user stub (a) which packs the

parameters and function call information into a packet.

3. The packet gets transferred (b) to its destination computer or process (either

across the network as in Figure 2.1, or across the processes on the same

machine using IPC). This is done through the RPCRuntime (2.2.1), which is a

library that works on both ends (caller and callee) to handle communication

details.

4. The packet is received at the callee end by the callee’s RPCRuntime. It is then

passed on to the server stub (c).

5. The arguments and function call information are unpacked and a normal func-

tion call (d) is made to the actual procedure.

6. When the procedure returns, the result is passed back to the server stub (e)

where it is packed and transmitted back to the caller (f), which unpacks it and

uses the result (g).
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2.2.1 The Role of the RPC Runtime

The RPCRuntime is responsible for carrying out the actual communication of the

RPC call information between the caller and the callee. It exists both in the caller

and callee endpoints. When the caller makes a RPC call, the information is sent from

the RPCRuntime sitting in the caller side, and is received by the RPCRuntime in

the callee side. When the callee returns, the return data is sent from the callee’s

RPCRuntime to the caller’s RPCRuntime.

In order to keep the context of a remote call, the RPCRuntime also sends some meta

data along with the arguments. This meta data includes:

1. A call identifier. This is used for two reasons:

(a) To check if the call has already been made (i.e. to ensure no duplicate

calls)

(b) To match the return value of the callee with the correct caller.

2. The name (could be as a string or a pre-agreed ID between the caller and the

callee) of the procedure the caller is calling.

3. The actual arguments (parameters) we wish to pass to the remote procedure.

The RPCRuntime on the caller side maintains a store of call identifiers that are

currently in progress. When the remote function returns, the runtime sends the

same call identifier along with the return value. That call identifier is then removed

from the caller’s store to indicate that the remote call has completed. The call

identifier is also used to implement the call semantics. Call semantics could be at

least once, where the RPC system will keep trying to call the remote procedure if the

transport fails, and/or at most once, where the system will ensure that the function

is not called more than once (which is needed for nonidempotent functions).
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2.3 RPC Implementations

2.3.1 Open Network Computing (ONC) RPC

ONC is a suite of software originally developed and released in 1985 by Sun Mi-

crosystems [8]. It provides a RPC system along with an External Data Representation

(XDR) format used alongside it. The ONC RPC system implements some tools and

libraries that make it easy for developers to specify and use remote functions. These

are:

1. RPCGen Compiler: As mentioned earlier, the role of the user and server stubs

is to pack and unpack arguments and results of function calls. To pack the

arguments, the stub looks at the argument types and matches them with the

number of arguments and their types of the server (callee) function definition.

Thus, the stubs need to be written with knowledge of the interface of the actual

procedures that will be called. We can define these interfaces in an abstract

way, so that we could generate these stubs automatically even if the languages

used in the endpoints are different. In ONC RPC and many other systems, this

abstract representation is in the form of an Interface Definition Language (IDL)

file. When we pass the IDL file into the RPCGen compiler, it automatically

generates the stubs we need to perform remote procedure calls.

2. XDR Routines: These convert the types of the parameters and return values

to and from the external data representation. XDR routines exist for many C

types, and the system allows you to write your own XDR routines for complex

types.

3. RPC API library: This is an implementation that fulfils the role of the RPCRun-

time described in 2.2.1. It provides a set of API functions that set up the lower

level communication details, binding, etc.

Remote procedures in ONC RPC are identified by a program number, a version

number, and a procedure number. There also exists a port mapper that map the

program number to a port, so that several programs can run on the same remote

machine.

2.3.1.1 XDR files

In ONC RPC, the XDR format is used to define RPC definitions. For example, the

RPC definition in Listing 2.1 defines an interface for a simple function that takes
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in a character string and returns a structure containing two fields. As discussed

in 2.3.1, we can see the program number is 80000 and the procedure number of the

generate_keypair function is 1.

/* File: keypairgen.x */

struct key_pair_t

{

string public_key<500>;

string private_key<500>;

};

program KEYPAIRGEN_PROGRAM

{

version KEYPAIRGEN_VERSION

{

/* Produce a public/private key pair using a passphrase */

key_pair_t generate_keypair (string) = 1;

} = 0;

} = 80000;

Listing 2.1: An example RPC definition for a key-pair generator function

We can use the RPCGen compiler to then create client and server stubs. Passing

the definition file keypairgen.x (shown in Listing 2.1) into rpcgen will produce the

following files:

• keypairgen.h The header file, which would be included in both client and

server code. Includes the actual C definition of the result_t structure we

defined in the XDR.

• keypairgen_clnt.c The client stub, which packs the parameters and uses the

RPC API library to execute the actual remote procedure call.

• keypairgen_svc.c The server stub, which uses the RPC API to set up a listener

for RPC calls. RPC calls are received, parameters are unpacked, and the actual

function implementation (of generate_keypair) is called.

• keypairgen_xdr.c Defines methods for packing more complex structures, such

as the key_pair_t structure we defined.

Now we need to write the actual implementation of the RPC procedure we wish to

call remotely, namely generate_keypair. This will include the generated header file and

follow the specification we defined, as shown in Listing 2.2.
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#include "keypairgen.h"

key_pair_t *

generate_keypair_0_svc(char **argp, struct svc_req *rqstp)

{

static key_pair_t result;

// ... actual implementation

return(&result);

}

Listing 2.2: An example server-side implementation of the procedure defined in 2.1

Finally, we call the remote procedure from the client, which includes the same header

file and simply calls generate_keypair_0, passing in the string parameter.

2.3.2 Common Object Request Broker Architecture (CORBA)

CORBA is a RPC implementation introduced in 1991 by the Object Management

Group (OMG) to address some issues with existing RPC implementations and provide

more features for object oriented programming. One of the main issues it addresses

is the use and implementation of RPC on remote objects (instances of classes) to

allow remote object oriented programming.

Remote method calls on objects revolve around the use of the Object Request Broker

(ORB)[9]. A client invokes a remote object by sending a request through the ORB,

by calling one of the IDL stubs or going through the dynamic invocation interface.

The ORB locates the object on the server, and handles the communication of the

remote call from the client to that object, including parameter and result packing.

The client is statically aware of the objects it could invoke through the use of IDL

(known as OMG IDL) stubs. These specify everything about the remote object except

the implementation itself. This includes the names of classes, method interfaces, and

fields. The OMG IDL is independent of any language, and bindings exist for several

languages.

Remote objects could also be invoked dynamically at runtime, as CORBA supports

dynamic binding. This works by adding the interface definitions to an Interface

Repository service. The implementation of the remote object is not aware how it was

remotely invoked from the client as shown in Figure 2.2.

The ORB core allows the client to create and retrieve references to remote objects

via the ORB interface. A client can create an object to get its reference, which is

done by RPC calls to factory objects, which return the reference back to the client
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Figure 2.2: Interface and Implementation Repositories in CORBA, from [9]

after creating an instance. When the client has a reference, it can then use it to

perform remote method invocations by dynamic invocations or through the IDL stubs.

The client can also get information about the object by using its reference. This is

done via the ORB’s directory services, which maps object references to information

about the object - including its fields, names and other properties. [10]

2.3.3 JSON-RPC and XML-RPC

XML-RPC is a simple RPC protocol which uses Extended Mark-up Language (XML) to

define remote method calls and responses. It uses explicit data typing - the method

name and parameters are hard-coded in the message itself. Messages are typically

transported to remote servers over HTTP1. Many implementations of XML-RPC exist

in several different languages.

For example, we could represent the RPC function call we defined before (Listing

2.1) as the XML-RPC function call shown in Listing 2.3.

1Hyper-text transport protocol (HTTP) is the most common transfer protocol used by clients and
servers to transfer data on the web
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<methodCall>

<methodName>

generate_keypair

</methodName>

<params>

<param><value><string> myPassPhraseHere </string></value></param>

</params>

</methodCall>

Listing 2.3: An example XML-RPC call

The XML-RPC implementation could give a better interface for the XML calls. For

example, run-time reflection APIs could be used to dynamically translate procedure

calls into XML-RPC requests. The response from the server would also be in XML

form. For example, the response for the request shown in Listing 2.3 would be as

shown in Listing 2.4.

<methodResponse>

<params>

<param>

<value>

<struct>

<member>

<name>public_key</name>

<value><string>qo96IJJfiPYWy3q3p5nvbNME87jG</string></value>

</member>

<member>

<name>private_key</name>

<value><string>IIEpAIBAAKCAQEA4eLvDruo9CswdW</string></value>

</member>

</struct>

</value>

</param>

</params>

</methodResponse>

Listing 2.4: An example XML-RPC response

XML-RPC supports simple types like integer, double, string, and boolean values.

It also supports some complex types like arrays, and associative arrays (struct).

An example of this is in Listing 2.4, where our structure has two keys with their

respective values. Binary data can be Base642 encoded and sent in a <base64 /> tag.

Because of the fixed language, XML-RPC is naturally cross-language compatible,

as it is up to the two ends (client and server) to implement and use their own XML

parsers and converters. Several libraries in different languages exist that do this.

2Base64 is an encoding scheme that represents binary data as an ASCII string
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XML-RPC and JSON-RPC are very similar. JavaScript Object Notation (JSON) is a

simple and light-weight human-readable message format. Its advantage over XML is

that it is a lot lighter and simpler. However, XML can be extended to support complex

user-defined types using XML-Schemas, which is not possible directly using JSON.

JSON-RPC is also a protocol and message format, for which different implementa-

tions exist. For example, we can easily represent the RPC call and response shown

in Listings 2.3 and 2.4 using the JSON-RPC protocol format as shown in Listing 2.5.

// JSON-RPC request:

{

"jsonrpc": "2.0",

"method": "generate_keypair",

"params": ["myPassPhraseHere"],

"id": 1

}

// JSON-RPC response:

{

"jsonrpc": "2.0",

"result": {

"public_key": "qo96IJJfiPYWy3q3p5nvbNME87jG",

"private_key": "IIEpAIBAAKCAQEA4eLvDruo9CswdW"

},

"id": 1

}

Listing 2.5: An example JSON-RPC request and response

Both XML-RPC and JSON-RPC have well-defined protocols [11][12], and are imple-

mented in many different languages.

2.3.4 WebIDL

WebIDL is a specification [13] for an interface definition language that can be used

by web browsers. It is used in several projects, including Google Chrome’s Blink

project [14].

The WebIDL syntax is similar to ONC RPC’s XDR syntax (see section 2.3.1.1). Listing

2.6 shows the same interface as Listing 2.1, but this time using WebIDL.
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dictionary keypair {

DOMString public_key;

DOMString private_key;

};

interface KEYPAIRGEN {

keypair generate_keypair(DOMString passphrase);

};

Listing 2.6: An example interface definition written in WebIDL

Just like in ONC RPC, the WebIDL files can be parsed and used to generate stub

methods for the client and server. Because they are language independent, the client

and server files that are generated could be in different languages.

Open source parsers exist for WebIDL, and a standard-compliant one is provided in

the Chromium project [15].

There are also open source C++ bindings for WebIDL, such as esidl3. Similarly,

bindings for JavaScript also exist [17].

3esidl is a library provided with the es Operating System project, which is an experimental operating
system whose API is written in WebIDL. The WebIDL compiler can be obtained from GitHub [16]
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2.4 Data Representation and Transfer

When designing RPC systems, the data representation of the messages being trans-

ferred, including how the parameters are marshalled, needs to be defined. This is

because the client and server might have different architectures that affect how

data is represented. There are two types of data representation: implicit typing and

explicit typing.

Implicit typing refers to representations which do not encode the names or the types

of the parameters when marshalling them; only the values of the parameters are

sent. It is up to the sender and receiver to ensure that the types being sent/received

are correct, and this is normally done statically through the IDL files which specify

how the message will be structured.

Explicit typing refers to when the parameter names and types are encoded with the

message during marshalling. This increases the size of the messages but simplifies

the process of de-marshalling the parameters.

This section gives an overview of some of the different message formats that can be

used with RPC.

XML and JSON

XML and JSON are widely used data representation formats that are supported

by many languages. They are supported by default in all web browsers, which

include XML and JSON parsers. XML and JSON - based RPC implementations

exist, and we discuss them in Section 2.3.3.

Although XML and JSON are both intended to be human-readable, JSON is

often more readable. JSON is also more compact, as it requires less syntax to

represent complex structures, in contrast to XML which requires opening and

closing tags. Here is an example of representing a phone book in XML and

JSON.
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[

{

"name" : "John Smith",

"id" : 1,

"phonenumber": "+447813945734"

},

{

"name" : "Jane Taylor",

"id" : 2,

"phonenumber": "+442383045711"

},

]

Listing 2.7: Representing a phone book using JSON

<numbers type="array">

<entry>

<field name="name">John Smith</field>

<field name="id">1</field>

<field name="phonenumber">+447813945734</field>

</entry>

<entry>

<field name="name">Jane Taylor</field>

<field name="id">2</field>

<field name="phonenumber">+442383045711</field>

</entry>

</numbers>

Listing 2.8: Representing a phone book using XML

The XML would also need to be parsed to make sense of the data. For example,

a ‘field’ tag could be parsed and converted into a C++ data structure, but

that would require us to understand the structure we are using. Sometimes

the structure is well defined, like in the XML-RPC protocol (see Section 2.3.3).

However, this strict parsing requirement is easier to error check, since if the

XML was parsed successfully, we can be more confident that the data type is

correct.

Protocol Buffers

Google Protocol Buffers are “a language-neutral, platform-neutral, extensible

way of serializing structured data for use in communications protocols, data

storage, and more", according to the developer guide [18]. They are used

extensively within many Google products, including AppEngine4.

4Google AppEngine is a Platform as a Service that allows developers to run their applications on the
cloud
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Messages are defined in .proto files. Listing 2.9 shows an example, adapted

from the Developer Overview.

message Person {

required string name = 1;

required int32 id = 2;

optional string email = 3;

enum PhoneType {

MOBILE = 0;

HOME = 1;

WORK = 2;

}

message PhoneNumber {

required string number = 1;

optional PhoneType type = 2 [default = HOME];

}

repeated PhoneNumber phone = 4;

}

Listing 2.9: A .proto file

The .proto file is then parsed and compiled, to generate data access classes

used to change the content of an instance of the representation. They also

provide the methods required for serialization. These methods are shown in

Listing 2.10.

// Serialization

Person person;

person.set_name("John Doe");

person.set_id(1234);

person.set_email("jdoe@example.com");

fstream output("myfile", ios::out | ios::binary);

person.SerializeToOstream(&output);

// De-serialisation

fstream input("myfile", ios::in | ios::binary);

Person person;

person.ParseFromIstream(&input);

cout << "Name: " << person.name() << endl;

cout << "E-mail: " << person.email() << endl;

Listing 2.10: Manipulating and serialising a .proto-generated class
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Many RPC implementations which use protocol buffers exist. Although Java,

C++, and Python are the languages that are officially supported, developers

have created open source implementations for other languages, including

JavaScript [19].

2.5 Parsing and Generating Code

This section gives a brief overview of what parsers are and how they work.

In a nutshell, a parser takes a file containing some text written in some syntax, and

produces an abstract syntax tree. An abstract syntax tree is simply a more structured

representation of the text, and is constructed using the rules of the syntax and the

semantics of the language.

We can use the abstract syntax tree to produce code in another language. For

example, a compiler uses it to produce machine code. A transpiler uses it to produce

source code in another language.

Figure 2.3: Flow charts showing the role of a parser, compiler and transpiler.
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2.6 Native Client Development

Native Client applications are designed to be cross-platform. To provide cross-

platform binaries, the Native Client SDK contains different tool chains - which include

different compilers, linkers, assemblers, and other tools to build the application.

2.6.1 Toolchains

The tool chains provided by the SDK are:

• pnacl: This allows compiling C/C++ code into pnacl bitcode, as described in

2.1.1 (page 4). The pnacl toolchain uses the llvm compiler project, and the

newlib and libc++ standard library implementations.

• nacl-gcc: This allows compiling C/C++ code into verified machine code. NaCl

modules can use the newlib or glibc standard C library implementations and

libc++ or libstdc++ C++ standard library implementations.

2.6.1.1 Simplified Building using make

The SDK also includes a Makefile called common.mk which is used by the included

examples and demos to simplify the build process. This makes it easy to write an

application for any of the toolchains, without worrying about compiler locations,

include file paths, etc.

To specify the compiler, all that needs to be done is to specify the TOOLCHAIN environment

variable. For example, running make TOOLCHAIN=newlib selects the nacl-gcc toolchain and

newlib C standard library implementation.

There is also a CONFIG environment variable that can be set to specify the compiler’s

optimisation level. This can be Release or Debug.

To illustrate the usage of common.mk, Listing 2.11 shows the Makefile from the SDK’s

getting started example.
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include $(NACL_SDK_ROOT)/tools/common.mk

TARGET = part2

LIBS = ppapi_cpp ppapi pthread

CFLAGS = -Wall

SOURCES = hello_tutorial.cc

# Build rules generated by macros from common.mk:

$(foreach src,$(SOURCES),$(eval $(call COMPILE_RULE,$(src),$(CFLAGS))))

ifeq ($(CONFIG),Release)

$(eval $(call LINK_RULE,$(TARGET)_unstripped,$(SOURCES),$(LIBS),$(DEPS)))

$(eval $(call STRIP_RULE,$(TARGET),$(TARGET)_unstripped))

else

$(eval $(call LINK_RULE,$(TARGET),$(SOURCES),$(LIBS),$(DEPS)))

endif

$(eval $(call NMF_RULE,$(TARGET),))

Listing 2.11: Using the common.mk makefile, as seen in the getting started example

Now, running make TOOLCHAIN=newlib CONFIG=Debug will compile and build the same sources

for the newlib toolchain and Debug config. Running make TOOLCHAIN=all compiles and

builds the same sources for pnacl, newlib and glibc.

2.6.1.2 Creating libraries

In C/C++, libraries can be created using the ar and ranlib tools. This creates a .a file

which can be later linked with another program. Using the Native Client SDK, this is

also supported, but the locations of these tools will depend on the tool chain used.

Thankfully, the common.mk file also provides Makefile macros that make this easy.

Using the LIB macro will create the static libraries and also install the libraries into

the relevant SDK location. This means it is easy to link in a library for a specific tool

chain all using the TOOLCHAIN and CONFIG variables.

As for dynamic libraries (.so files), these are only supported using the glibc tool chain,

but common.mk takes care of this for us too, by installing the .so file if the tool chain is

glibc.
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2.6.2 Porting existing libraries

Many open source C and C++ libraries have been ported to use the Native Client

SDK and toolchains. The Native Client team have made a simple platform called

naclports to simplify the porting of existing libraries.

Most of the time, porting an existing library is straight forward, as libraries often have

generated makefiles, for example using a ./configure script, which allows specifying

the required compilers, linkers, etc. needed for building the library. naclports

automatically fills in these details.

Any changes to default build process can be overridden in a script. Any changes to

the code of the library can be specified in a patch file, which is applied before the

library is built from the original sources.

For example, creating a NaCl port for libpng, an image processing library, is as

simple as creating the pkg_info file shown in Listing 2.12 in naclports. naclports will

then automatically download and install the library to the NaCl SDK. Afterwards, the

libpng library used normally from any other C/C++ program.

NAME=libpng

VERSION=1.6.8

URL=http://download.sf.net/libpng/libpng-1.6.8.tar.gz

LICENSE=CUSTOM:LICENSE

DEPENDS=(zlib)

SHA1=a6d0be6facada6b4f26c24ffb23eaa2da8df9bd9

Listing 2.12: The libpng naclport pkg_info file

2.6.3 Using the Pepper Plugin API (PPAPI)

To interface with JavaScript, Native Client provides a C and C++ library that allows

developers to easily control the browser. One important class that is used in all

Native Client modules is the pp::Instance class, which is initialised when the embed

tag is loaded in the HTML page. The class also has the HandleMessage and PostMessage

functions, which implement message passing between the JavaScript and the C++

module. In JavaScript, JavaScript primitive types as well as reference types can

be sent using postMessage. In C++, they are sent and received as pp::Var objects.

Figure 2.4 shows how the pp::Var classes can be used.

Notice how C++ types can be extracted using the pp::Var class. For example, we

can extract a C++ double from the pp::Var using the pp::Var::AsDouble() method. Arrays
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Figure 2.4: A simplified class diagram showing the pp::Var API

are sent and received as pp::VarArray objects. JavaScript objects (dictionaries) are

sent and received as pp::VarDictionary objects. Binary data can be sent and received

from and to the browser using the pp::VarArrayBuffer class. The pp::VarArrayBuffer::map()

method returns a pointer to the sent binary data.
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2.7 JavaScript Development

In this section, we show some common JavaScript patterns and code organisation

techniques that are used throughout development.

2.7.1 JavaScript Modules

One way to achieve information hiding (like private data variables) is through the

use of the module pattern. Essentially, everything is wrapped in a function which

is immediately invoked. Listing 2.13 shows an example of this. Notice how the

private variable can’t be accessed from outside. We can use this pattern to define

encapsulated classes as in Listing 2.14.

var SingletonObject = (function(){

var private = 123;

//... other private variables here

return {

foo: function(){

console.log(private);

}

//... other exported public properties/methods here

}

})();

SingletonObject.foo(); // output: 123

Listing 2.13: An example of using the module pattern

var MyClass = (function(){

var private = 23;

return function(){

return {

public: 12,

privatePlusPublic: function(){

return this.public + private;

}

}

};

})();

var i = new MyClass();

console.log(i instanceof MyClass); // true

console.log(i.privatePlusPublic()); // 35

Listing 2.14: JavaScript ‘classes’ using the module pattern
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There are a few of ways to organise modules into different files. We discuss the two

most popular schemes, AMD and CommonJS.

2.7.2 Asynchronous Module Definition (AMD)

In AMD, modules are defined by specifying the dependencies and returning a single

export from a factory function. The export could be a constant, a function, or any

JavaScript object. Listing 2.15 defines a module that returns MyClass (which we saw

in Listing 2.14), as well as another module which depends on MyClass.

// MyClass.js

define('MyClass', [], function(){

var private = 23;

return function(){

return {

public: 12,

privatePlusPublic: function(){

return this.public + private;

}

}

};

});

// MainClass.js

define('MainClass', ['MyClass'], function(MyClass){

var i = new MyClass();

console.log(i.privatePlusPublic()); // 35

});

Listing 2.15: MyClass AMD Module

The advantage of using AMD is that we do not need to explicitly insert <script /> tags

in the HTML. It also makes it harder to set global variables, as they can only be set

through the global window object, all variables declared are local only to the module.

Since the files are asynchronously loaded, there is no need for a build process. Finally,

this allows lazily loading scripts only when you need them. A popular implementation

of AMD which works in the browser is RequireJS.

The disadvantage of using AMD is that most of the time, all dependencies are fetched

anyway - so there’s no need for them to be loaded asynchronously. Also, having many

dependencies generates several HTTP requests, which can impact performance.

Finally, writing the define function call at every file can often get tedious.
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2.7.3 CommonJS Modules

CommonJS is another API that allows exporting modules from JavaScript files. Unlike

AMD, it uses a straight forward, synchronous approach to module dependencies.

Listing 2.16 shows the same MyClass module implemented using CommonJS.

// MyClass.js

var private = 23;

exports.MyClass = function(){

return {

public: 12,

privatePlusPublic: function(){

return this.public + private;

}

}

};

// MainClass.js

var MyClass = require("./MyClass.js").MyClass;

var i = new MyClass();

console.log(i.privatePlusPublic()); // 35

Listing 2.16: MyClass CommonJS Module

Notice how only the objects in the exports property are exported, so the private variable

is still only accessible from the MyClass.js file.

The advantage of using CommonJS is that it has a much simpler, straight forward

interface. The disadvantage is that it is only implemented natively on server-side

projects. However, there is an open source library that allows CommonJS libraries

to be used in the browser, called browserify. The tool ‘builds’ the module, by

concatenating all the dependencies together with each module. In the end, one script

is inserted into the HTML page. The advantage of this is that it is only one HTTP

request to get all the JavaScript functionality. One issue is that now, instead of simply

reloading the browser every time we need to test some JavaScript, we would need

to build the JavaScript using browserify. Although this might have been an issue in

the past, nowadays there exist good tooling that improve efficiency, for example, file

watchers that build the JavaScript quickly every time a module is saved.

In the end, since the trade offs are comparable, we decide to take a AMD approach to

modules for the browser JavaScript library since it is easier to test (i.e. no front end

build steps). We take the CommonJS approach for the back end JavaScript generator,

as it is the default module API in node.js.
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Related Work

3.1 Native Client Acceleration Modules (NaClAM)

In October 2012, John McCutchan at Google came up with the idea of using Native

Client as a way to get native performance inside a normal JavaScript web application.

He called it “Native Client Acceleration Modules (NaClAM)”, with a slogan “90%

Web App. Native Performance Where You Need It”.

NaClAM is essentially a simple event-based RPC framework that allowed sending

and receiving JavaScript objects as well as binary data. The RPC framework worked

by using event listeners and handlers on both the JavaScript hand C++ ends.

On the JavaScript side, a library called NaClAM.js was provided, which allowed devel-

opers to attach listeners to a particular module using the addEventListener(type,handler)

method. To send requests to the C++, the dispatchEvent method is used. On the C++

side, messages are handled inside one overridden method called NaClAMModuleHandleMessage.

Here, checks are performed on the message received, and the appropriate method is

called. Listing 3.1 shows an example of this.

void NaClAMModuleHandleMessage(const NaClAMMessage& message) {

if (message.cmdString.compare("floatsum") == 0) {

handleFloatSum(message);

} else if (message.cmdString.compare("addfloatarrays") == 0) {

handleAddFloats(message);

} else {

NaClAMPrintf("Got message I don't understand");

}

}

Listing 3.1: NaClAM C++ message handler

27
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Figure 3.1: A NaClAM message including binary frames

3.1.1 Message Format

At the message passing level, NaClAM uses JavaScript/C++ strings to transport

messages. These messages hold information about the message such as the command

string (like “floatsum” in Listing 3.1). The strings are constructed using the jsoncpp

library.

Crucially, however, they also tell the framework how many binary frames are ex-

pected to come after this message. Figure 3.1 shows an example of a message

containing N frames. A frame is essentially a binary block of data sent by a separate

call to PostMessage. The receiver collects all the frames before triggering the event

handler.

3.1.2 Advantages and Disadvantages

NaClAM modules have the benefit of being simple and fast. There is a good distinction

between the message information stored in the header and the message data stored

as binary inside the frames. This allows developers to use the message header to

implement event logic, while using the frames to transfer actual data. It also means

that because the data is binary and almost no marshalling happens, the transfer

speed is very fast, since binary data is shared between JavaScript and C++.

However, there are a few issues with using NaClAM modules. The first is a lack of

overall, high-level structure. The developer has to be aware and understand exactly

what the framework is doing behind the scenes to write their application, adding

more burden on the developer especially since almost no documentation is provided.

The second issue is how the message header types are implemented. Although the

framework allows sending application data in binary frames, the header information

is sent as JSON, and is manipulated by the jsoncpp library - so another library the

developer needs to get used to. Importantly, this means the developer needs to

unpack and pack the data they are sending in the header section by themselves by

using the jsoncpp library. Another issue is how the framework does not use a callback
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approach to asynchronous remote procedure calls. In other words, to ‘return’ a value

from a C++ function back to JavaScript, a different event needs to be triggered from

the C++, and handled by the JavaScript library. In other words, two different events

need to be managed in both C++ and JavaScript for only one RPC call which returns

data. If there are many functions like this, the developer needs to manage several

different events, which is time consuming. Finally, although the framework has been

demoed and gained a lot of popularity, it still seems to not be well tested, as no

unit tests exist for either the C++ or JavaScript implementations have been written.

This makes it feel like an experimental project, rather than a full, well supported

framework.

Despite these issues, the Native Calls project was heavily influenced and inspired by

the overall idea of the NaClAM project, especially its use cases and scenarios.

3.2 Node.js C++ Addons

Node.js is a JavaScript platform built on top of Chrome’s V8 JavaScript engine that

allows running JavaScript on server-side applications. Listing 3.2 shows an example

of a node.js HTTP server.

var http = require('http');

http.createServer(function (req, res) {

res.writeHead(200, {'Content-Type': 'text/plain'});

res.end('Hello World\n');

}).listen(1337, '127.0.0.1');

console.log('Server running at http://127.0.0.1:1337/');

Listing 3.2: A simple node.js HTTP server

Although the full JavaScript implementation is available to use in Node.js, it is

possible to extend node.js by implementing addons. Addons are implemented using

C++, and therefore allow developers to use efficient C++ functionality inside node.js.

In fact, the C++ API allows you to wrap a C++ object with a JavaScript one. Listing

3.3 shows an example of this.
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class MyObject : public node::ObjectWrap {

public:

static void Init(v8::Handle<v8::Object> exports);

private:

explicit MyObject(double value = 0);

~MyObject();

static v8::Handle<v8::Value> New(const v8::Arguments& args);

static v8::Handle<v8::Value> PlusOne(const v8::Arguments& args);

static v8::Persistent<v8::Function> constructor;

double value_;

};

Listing 3.3: A node.js object wrapper

In the Init function, low level instructions that tell the JavaScript engine about the

new object are given. In the New member function, an instance of the C++ object is

‘wrapped’ with the JavaScript object, using the node.js library. This means when we

implement the PlusOne method, we can ‘unwrap’ the JavaScript object to get the C++

object instance, then perform the intended operation. Listing 3.4 shows how this

works with the PlusOne method.

Handle<Value> MyObject::PlusOne(const Arguments& args) {

HandleScope scope;

MyObject* obj = ObjectWrap::Unwrap<MyObject>(args.This());

obj->value_ += 1;

return scope.Close(Number::New(obj->value_));

}

Listing 3.4: Implementing methods on wrapped objects

We can now create an instance of the object in JavaScript as though it was a native

JavaScript object. Listing 3.5 shows an example of this.

var obj = new addon.MyObject(10);

console.log( obj.plusOne() ); // 11

console.log( obj.plusOne() ); // 12

Listing 3.5: Using the C++ object from JavaScript
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3.2.1 Advantages and Disadvantages

The idea of simply extending JavaScript to use your own C++ methods is powerful.

We saw how the class we created in C++ can be accessed directly from JavaScript

in a native way. It also means we have full control over the data the function can

accept, as the actual JavaScript object reference is passed into the C++. In other

words, there is no parameter marshalling - everything is native.

The obvious issue we have with C++ addons to JavaScript is how can we use them in

browser JavaScript? Well the answer is, we can’t. However, we are able to set up a

local node.js server which we can communicate with using the browser. This can be

done over the websocket protocol, which allows full-duplex communication over a

single TCP connection. However, now that messages need to be serialised, we would

need to implement a RPC framework on top of web sockets.

3.2.2 Similar approaches in the browser

Although node.js addons do not actually solve our problem, the basic idea of them is

that JavaScript is somehow extended to allow running C++ functionality. Conven-

tional browser plugins such as NPAPI based plugins or ActiveX browser plugins have

similar interfaces. Through the plugin framework, it is possible to directly access

the DOM on the page where the plugin is embedded - a bit like how this is done in

node.js, as described above.

Some frameworks such as FireBreath [20] have been created that allow cross plat-

form plugins that support ActiveX, NPAPI, etc. A crucial difference for us, however,

is that these plugin frameworks depend on direct access to the DOM of the page in

the browser. When we remove this feature, these frameworks will not work. Native

Client only allows access to the DOM through postMessage, and the data sent is

passed by value, so the data is essentially copied across to the C++ module. What

this means is that the RPC framework will need to handle all marshalling as well as

transport of the messages between C++ and JavaScript.

3.3 Apache Thrift: Cross-language services

Apache Thrift is a framework that allows cross-language services development.

Originally developed at Facebook, it was designed to provide reliable, efficient

communication between languages and services. Many languages are supported,
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Figure 3.2: The layers of the Apache Thrift RPC stack

including C++, Java, and JavaScript. Thrift provides a cross-platform generator that

can generate Thrift client and server pairs, where the client and server can be using

different languages. Similar to other RPC frameworks, it uses its own IDL file format,

Thrift IDL. The IDL file is used to generate code to support different languages.

Thrift’s implementation is based around layers in the thrift stack (Figure 3.2). The

transport layer is responsible for the transfer of messages. The protocol layer

is an interface that defines how certain data structures should be mapped into a

transferable format, such as JSON, XML, binary, etc. The process layer simply takes

an input protocol, processes it using a handler, and writes to the output protocol.

Finally the server sets up all the layers below it so that the system is functional as a

whole.

In the following code listings, we give snippets showing how Apache Thrift is used to

create a C++ server and JavaScript client. These were adapted from the original

Thrift tutorial, which is available online [21].

enum Operation {

ADD = 1,

SUBTRACT = 2,

MULTIPLY = 3,

DIVIDE = 4

}

struct Work {

1: i32 num1 = 0,

2: i32 num2,

3: Operation op,

4: optional string comment,

}

service Calculator extends shared.SharedService {

void ping(),

i32 add(1:i32 num1, 2:i32 num2),

i32 calculate(1:i32 logid, 2:Work w)

}

Listing 3.6: Thrift IDL File

class CalculatorHandler : public CalculatorIf {
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public:

CalculatorHandler() {}

int32_t add(const int32_t n1, const int32_t n2) {

return n1 + n2;

}

int32_t calculate(const int32_t logid, const Work &work) {

int32_t val;

switch (work.op) {

case Operation::ADD:

val = work.num1 + work.num2;

break;

// ... other cases and implementation

}

return val;

}

};

int main(int argc, char **argv) {

// code here to set up processor, transport and protocol.

TSimpleServer server(processor,

serverTransport,

transportFactory,

protocolFactory);

server.serve();

return 0;

}

Listing 3.7: A Thrift C++ Server

function calc() {

var transport = new Thrift.Transport("/thrift/service/tutorial/");

var protocol = new Thrift.Protocol(transport);

var client = new CalculatorClient(protocol);

var work = new Work()

work.num1 = 1;

work.num2 = 2;

work.op = 1; //1==ADD

var result = client.calculate(1, work);

console.log(result); //3

}

Listing 3.8: JavaScript client for Thrift service



Chapter 3. Related Work 34

3.3.1 Advantages and Disadvantages

Apache Thrift is a large library which seems to be well supported and used by both

industry giants and the open source community. Because the Thrift IDL file is used

to generate both clients and servers in more than a dozen languages, it seems that

it is generic enough to be used in any language context. Thrift’s implementation

seems to be well structured, showing a clear separation of concerns between each

component.

However, there are a few issues with getting Thrift to work with Native Client.

First, although it might be possible to implement a transport layer for thrift using

postMessage in JavaScript, the C++ end (Native Client), writing a protocol for PPAPI

might prove challenging. Moreover, the JSON protocol implementation uses strings

instead of actual JSON objects, which will probably impact performance as it adds

yet another marshalling step. For example, consider sending a JavaScript object from

the web browser to a C++ function as a parameter. The marshalling will probably

look something like this: we want to send a JavaScript Object, so Thrift for JavaScript

will convert it into a JavaScript string in the protocol layer. When the JavaScript

string is sent, it is marshalled by PPAPI as a pp::Var, which is then marshalled as

a std::string using pp::Var::AsString(). Thrift for C++ will then take this string and

de-marshal it in order to construct a C++ object. Finally, the C++ object is passed to

the C++ concrete function. When we add on to this the fact that JavaScript strings

are the slowest primitive types to transfer (according to our benchmarks in Section

5.3, on page 94), we can see that the performance impact might actually make

a big difference in an application. To avoid this, several changes will need to be

made on many of the layers discussed above, which might prove to be a challenging,

non-trivial task.

Finally, although unofficial port for Apache Thrift has been made for Native Client

[22], all of the communication code is still hand coded. The performance of using

Thrift for Native Client is unclear, as there is no protocol implemented using PPAPI.

3.4 JSON-RPC Implementations

We briefly discussed the use of the JSON protocol RPC in background section 2.3.3

on page 12. Here, we discuss implementations of the protocol in JavaScript and C++.
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3.4.1 JavaScript Implementations

In general, JavaScript implementations of the JSON RPC protocol are very simple,

because JSON is consumed very naturally by the browser and JavaScript. Even

if the JSON objects are sent and received as strings, implementations use the

JSON.stringify(JSObject) to turn a JavaScript object into a string, and JSON.parse(string) to

turn a string into a JavaScript object.

Although there are many implementations in JavaScript that are for several different

domains and use cases, we discuss a simple one that uses postMessage for transferring

the JSON messages between browser windows, called “PostMessage RPC (pmrpc)”.

pmrpc is an open source library available on GitHub [23] which aims to simplify

cross-window communication by using postMessage. It shows the simplicity of

remote procedure calls using JSON RPC. Listing 3.9 shows an example of using

pmrpc to set up and call remote procedures between two windows.

// in the callee window, expose a procedure

pmrpc.register({

publicProcedureName : "HelloPMRPC",

procedure : function(printParam) { alert(printParam); }

});

// in the caller window, call the exposed procedure

pmrpc.call({

destination : window.frames["ifr"],

publicProcedureName : "HelloPMRPC",

params : ["Hello World!"]

});

Listing 3.9: Using pmrpc to communicate between two windows

3.4.2 C++ Implementations

C++ does not have native support for JSON like JavaScript, but several open source

libraries exist that can read and manipulate JSON strings. JsonCpp is one of the most

popular JSON libraries for C++. We give a very brief overview of how it can be used

to parse and write JSON objects. Listing 3.10 shows how JsonCpp is used.
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Json::Value root; // will contain the root value after parsing.

Json::Reader reader;

bool parsingSuccessful = reader.parse( config_doc, root );

if(!parsingSuccessful){ /* fails to parse */ }

// Get the value of the member of root named 'encoding',

// return 'UTF-8' if there is no such member.

std::string encoding = root.get("encoding", "UTF-8" ).asString();

// Get the value of the member of root named 'encoding',

// return a 'null' value if there is no such member.

const Json::Value plugins = root["plug-ins"];

// Iterates over the sequence elements.

for ( int index = 0; index < plugins.size(); ++index )

loadPlugIn( plugins[index].asString() );

setIndentLength( root["indent"].get("length", 3).asInt() );

setIndentUseSpace( root["indent"].get("use_space", true).asBool() );

// don't need Json::Value constructor explicitly.

root["encoding"] = getCurrentEncoding();

root["indent"]["length"] = getCurrentIndentLength();

root["indent"]["use_space"] = getCurrentIndentUseSpace();

// jsoncpp to string

Json::StyledWriter writer;

std::string outputConfig = writer.write( root );

Listing 3.10: An example of using the JsonCpp library

Notice how the API for JsonCpp is very similar to pp::Var (see background section

2.6.3 on page 22). This is because pp::Var and Json::Value essentially do the same job -

they are interfaces for JavaScript objects in C++. The crucial difference, however, is

that Json::Value ends up being written to a string, while pp::Var objects are transferred

as they are using PPAPI.

Now that we’ve looked at JsonCpp and how it is used, we look at an implementation of

JSON RPC in C++ using JsonCpp called JsonRpc-Cpp [24]. Essentially, the framework

will register methods using the RpcMethod class, which calls a function that accepts a

Json::Value input and a Json::Value output passed by reference. Listing 3.11 shows an

example of setting up a handler, adapted from the original documentation.
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class MyClass

{

public:

void Init()

{

RpcMethod* method = new RpcMethod<MyClass>(

*this, &MyClass::RemoteMethod, // sets up pointer to C++ method

std::string("remote_method"), // the json-rpc "method"

std::string("Description")); // optional description

m_handler.AddMethod(method);

}

bool RemoteMethod(const Json::Value& msg, Json::Value& response)

{

// do stuff

}

private:

Handler m_handler;

};

Listing 3.11: Using a JsonRpc-Cpp handler

3.4.3 Advantages and Disadvantages

Many JSON RPC implementations for several languages exist [25], including C++

and JavaScript as we have seen. The JSON-RPC protocol is very simple, and for

most use cases, it is efficient and adequate. Although JSON RPC has a well defined

protocol, it can be extended for specific implementations. Finally, JSON RPC does not

need the messages to be sent and received as strings (although human-readability

of the messages can be a bonus). We can use any other format to marshal and de-

marshal a JSON RPC message. Some of these formats are discussed in background

section 2.4 on page 16.

JSON RPC JavaScript implementations are simple enough to be implemented and

tested in JavaScript to work for any specific project. So although libraries in

JavaScript exist, implementing it for JavaScript to work with a different project

structure / architecture should be not too difficult. As for C++ implementations,

many if not all use the JsonCpp project. None available are implemented for pp::Var.

So to get JSON RPC to work with pp::Var, an implementation will need to be writ-

ten from scratch to use pp::Var. This is also not too difficult, since as we’ve seen,

Json::Value and pp::Var have similar APIs.
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Design and Implementation

This section describes the design and implementation of the RPC framework and

generators.

4.1 RPC Framework

The structure of the RPC framework is based around the notion of layers. Each layer

solves a particular task, in order to achieve the goal of getting from a JavaScript stub

to a C++ function, and back. Figure 4.1 shows the overall structure and interactions

of each layer.

The advantages of this approach is that each layer is independent of the other. For

example, if we choose a different RPC schema (i.e. something other than JSON

RPC), we could easily replace the JSON RPC layer. Or, if we choose to have the C++

function on the server instead of as a Native Client module, we can easily change

the transport layer to use AJAX requests or Web Sockets.

The other advantage to this approach is that because the layers are independent

and each layer has a simple interface, each layer can easily be tested. For example,

to test the implementation of the run time layer, we can easily mock the JSON RPC

layer, since we know its public interface.

In the end, we have four layers: the stub layer, runtime layer, JSON RPC layer and

transport layer.

• Stub layer: This is responsible for parameter and result (de-)marshalling.

Eventually, it calls methods in the runtime layer.

38
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Figure 4.1: A layered approach to RPC. Numbering shows message flow.

• Runtime layer: This manages RPC requests and responses, matching responses

with requests and calling the correct callbacks.

• RPC Layer: This implements an RPC protocol such as JSON RPC.

• Transport layer: This allows messages to be sent and received between the

JavaScript and C++ runtimes.

Each layer is described in detail below.

4.1.1 Transport layer

The role of the transport layer is to implement the transportation of messages. Mes-

sages could be anything, JavaScript objects, strings, or even binary data. Moreover,
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the receiver could be anything - a node.js server, or a Native Client module. Fi-

nally, the transport could use any transport mechanism - web sockets, HTTP/AJAX,

WebRTC, postMessage, etc.

The important thing is that the transport must provide:

• An asynchronous API (should be non-blocking)

• The following public API:

– a send function, that accepts a payload of any type.

– a constructor which sets a message handler.

– a message handler that must be invoked when a message is received.

The reason this approach was taken was to allow any possibility of executing remote

procedure calls. It also allows the transport layer to be testable, since no concrete

implementations of the layers above or below the transport layer need to be provided

to test the functionality of the transport layer.

4.1.1.1 Implementing the Transport Layer in JavaScript

To implement the transport layer using a Native Client module, we first encapsu-

late the details of a Native Client module into its own class, called NaClModule. This

class essentially does all the DOM manipulation for a module. To explain this,

consider how a Native Client module is normally embedded in the page (as de-

scribed in the background section 2.1.2 on page 5). The module is embedded onto

the page using an embed tag. The src attribute points to the location of the NaCl

Manifest - which tells the browser which (p)nacl executable to load. For example,

<embed src="myModule.nmf" type="application/x-nacl" />. The type attribute tells the browser

what MIME type the executable is. This could take values of either x-nacl for NaCl

modules or x-pnacl for PNaCl modules.

All this detail is configured through the NaClModule constructor, which takes in

an object for configuration. In other words, the same embed tag is created (but not

actually placed on the page yet), using the following code:
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var myModule = new NaClModule({

src: 'rpc-module.nmf',

name: 'rpc',

id: "MyModule",

type: 'application/x-pnacl'

});

Listing 4.1: Constructing a NaClModule Object

However, much of the details of this can be ‘inferred’ using the name of the module:

// creates an embed tag with the same attributes

var myModule = new NaClModule({"name": "MyModule"});

Listing 4.2: Construct a NaClModule using attribute inference

The attributes are inferred by using the NaClConfig global object, or a default config

object if one does not exist. The id attribute is the same as the name attribute. The

name and the type are inferred using the config object. Listing 4.3 shows an example

of a config object and the corresponding embed attributes.

// the NaClConfig object is a global object.

// If required keys aren't found here, they are looked up in a

// default config object, defined inside the framework.

window.NaClConfig = {

TOOLCHAIN: "pnacl",

CONFIG: "Debug"

};

var myModule = new NaClModule({"name": "MyModule"});

/* produced embed tag:

<embed name="MyModule" //using name in constructor

src="./pnacl/Debug/MyModule.nmf" //using config and name

id="MyModule" //using name

type="application/x-pnacl" /> //using config

*/

Listing 4.3: Setting a NaClConfig object

Once a NaClModule is constructed, it can be loaded using the load method, which

can take in an optional callback function as a parameter. The load method essentially

inserts the embed element into the page. Event handlers can be registered with the

module by using the on method. For example:
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Figure 4.2: Class diagram showing the encapsulation of NaClModule and Embed
element inside a Transport object in JavaScript

var myModule = new NaClModule({"name": "MyModule"});

myModule.on('load', function(){...});

myModule.on('message', function(){...});

myModule.on('crash', function(){...});

...

Listing 4.4: Registering different event handlers to a module

The NaClModule class therefore makes it easy to create and alter the HTML embed

tag using only JavaScript.

Now, the transport layer encapsulate a NaClModule object, which is used as a

low-level communication object in order to send and receive messages.

4.1.1.2 Implementing the Transport Layer in C++

Since the C++ module is a singleton, the structure of the transport in C++ is a lot sim-

pler. Essentially, the transport is a class that extends the pp::Instance class provided by

the PPAPI, which we use to send and receive messages using pp::Instance::PostMessage

and pp::Instance::HandleMessage. These methods are overridden in order to link the

transport with the layer above.

4.1.2 RPC layer

The RPC Layer is responsible for validating messages sent and received by the

transport.
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Figure 4.3: Class diagram showing inheritance of pp::Instance in C++

Figure 4.4: Flow diagram showing how messages are filtered by the RPC layer and
forwarded to the runtime layer

Messages received by the transport could either be RPC requests, responses, or

errors. If a message is one of these three, it should forward the message to the layer

above (the runtime). An illustration of this is shown in Figure 4.4. If a message is

not one of these three possibilities, the message should be ignored as it is not a RPC

message.

The RPC layer can also provide RPC send functions, that allow messages to be sent

to the layer below. It allows RPC requests, responses and errors to be sent.

Therefore, the RPC layer has the following API:
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• a handleMessage function, which accepts a payload and is called by the Transport

layer when a message is received. handleMessage should filter through the mes-

sages received to categorise them as requests, responses or errors. Depending

on which type of message it is, the layer can call different methods of the layer

above.

• a sendRequest function, which validates messages to be sent as requests, and

forwards it down to the transport layer to be sent.

• a sendResponse function, which validates messages to be sent as responses, and

forwards it down to the transport layer to be sent.

• a sendError function, which validates messages to be sent as errors, and forwards

it down to the transport layer to be sent.

4.1.2.1 Choosing a protocol

To implement the RPC layer, we needed to choose a RPC protocol. We decided to go

for the simplest protocol, which is JSON RPC. We discussed the advantages of using

JSON RPC in the related work section, but there are also some benefits to do with

using PPAPI to implement marshalling. Since we are using pp::Var, more or less all of

the JavaScript types are marshalled for us using PPAPI when we use postMessage.

One alternative would have been to implement a binary based protocol, like the Ice

protocol, which uses Google Protocol Buffers. There are a couple of reasons why

we did not take this approach. The first is that there is an extra marshalling step in

both JavaScript and C++ as we are sending and receiving binary. This adds to the

complexity of both ends. The other issue is that Protocol Buffers for JavaScript aren’t

officially supported by Google but were instead implemented by a member of the

open source community on GitHub. Finally, it is unclear whether a performance gain

or loss will be achieved when Protocol Buffers are used. If time permitted, it would

have been an interesting experiment to test different protocol implementations and

measure their performance characteristics. But for now, we decided to go for the

simplest approach of using JSON RPC via PPAPI.

4.1.2.2 Implementing the JSON RPC Layer

To implement the API discussed above for JSON RPC, we first need to implement

validators for messages. These determine what kind of message it is - request, re-

sponse, error, or none. This is done in both the JavaScript and C++ implementations,
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as both will have to use the protocol. Then, when a message is received, the layer

simply uses these validators to check what kind of message it is. At the same time, it

extracts the relevant information about the message. For example, if it is a request,

it extracts the method name, parameters, etc.

To implement the JSON RPC protocol validators, we adhere closely to the specifica-

tion. Detailed unit tests are written, including passing and failing cases. The validator

is then written. This is done for both the C++ and JavaScript implementations.

As well as this, some helper functions were written to create valid RPC requests,

responses, and errors.

On the C++ side, a RPCRequest object is created. The RPCRequest object encap-

sulates generic (i.e. not necessarily JSON RPC specific) information about a RPC

call. This is passed by reference to the layers that need it, so that the validation and

extraction only happens once.

4.1.3 RPC Runtime layer

The main job of the runtime layer is to coordinate RPC requests and responses. As

described in the background section 2.2.1 (page 8), the runtime does this by keeping

track of RPC requests, and matching the requests with the responses by the use of a

call identifier.

The API the runtime provides is therefore as follows:

• send functions, that call the layer below.

– sendRequest = function(method, parameters, successCB, errorCB) will give the request

an ID, then keep track of that ID and the callback functions.

– sendResponse = function(id, result) will construct a response message and send

it to the layer below.

– sendError = function(id, errorCode, errorMessage, errorData) will construct an er-

ror message and send it to the layer below.

• handler functions (handleRequest, handleResponse, handleError). The runtime will

match the response’s identifier with a previously sent request identifier. If a

callback was provided, the callback will be called.
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4.1.3.1 Implementing the runtime layer

The role of the runtime is different depending on the caller and the callee. Due

to time constraints, the runtime has only been implemented for a JavaScript caller

(client), and a C++ callee (server). However, the implementation is very similar, as it

is only a language difference (in other words, the implementation in JavaScript will

be the same as the implementation in C++ and vice versa).

We first consider the implementation of the caller’s RPC runtime, implemented in

JavaScript. To make a RPC request, the sendRequest function is called. The remote

method name, parameters, success callback, and error callback are passed to this

function. The runtime then constructs a RPC Request object, and gives the request a

unique ID. The callbacks are added to a map of ids to callbacks. The listing below

shows an example instance of a map, where two RPC requests have been made and

are still waiting for responses.

{

1: {

success: function(){...},

error: function(){...}

},

2: {

success: function(){...},

error: function(){...}

},

...

}

Listing 4.5: An example of an id-callback map

Finally, the request object is sent. When the C++ server handles the request and

sends back a response, the same ID is sent back. The JSON RPC Layer (described

above) will handle the message and call one of the runtime’s handlers. If it was a

response, it will call the response handler. If it was an error, it will call the error

handler. In either, the runtime will look for response’s id inside the map. If the ID

exists in the map, then the appropriate callback is called and then the key/value pair

is removed from the map. Listing 4.6 shows how this is implemented for the case of

a successful response.
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RPCRuntime.prototype.handleCallback = function(rpcObject){

// see if that id is even registered with us

if(_.isUndefined(this.idCallbackMap[rpcObject.id])){

logger.error("Received a callback response for invalid call");

return false;

}

// get the success callback

var successCallback = this.idCallbackMap[rpcObject.id].success;

// call it

if(_.isFunction(successCallback)){

successCallback.call(null, rpcObject.result);

}

// delete it from the map

this.idCallbackMap[rpcObject.id] = undefined;

delete(this.idCallbackMap[rpcObject.id]);

return true;

};

Listing 4.6: The handle callback method in JavaScript

For the callee’s RPC runtime, written in C++, the implementation involves finding

the required function and then calling it. Since functions aren’t first class citizens in

C++ (unlike in JavaScript), some thought needs to be put into how to dynamically call

a function. The solution we took was to define stub classes for each RPC method. The

stub classes are derived from the RPCServerStub class, which has an overrideable

virtual pp::Var call(const pp::VarArray* params, RPCError& error); function. The call function

takes in the parameters and returns the result as a pp::Var. In other words, all type

marshalling and de-marshalling has to happen inside the call function.

When setting up the RPC Runtime object, we initialise it by adding all the functions

we wish to expose. Listing 4.7 shows an example of adding RPC stubs to the runtime.

// define ServerStub_MyInterface_Foo...

// ...

// during set up...

pprpc::RPCRuntime* rpcRuntime = new pprpc::RPCRuntime(...);

rpcRuntime->AddServerStub("MyInterface::Foo", new ServerStub_MyInterface_Foo);

Listing 4.7: Adding RPC stubs to the runtime
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The AddServerStub method works by simply maintaining a std::map of std::string method

names to RPCServerStub objects. Notice how the stubs are ‘flat’ with respect to in-

terfaces. What I mean here is how encapsulation is done using name mangling.

This was done to simplify stubs, as in the end, interfaces are singletons which have

a straightforward, static, API. In other words, since interfaces are stateless, we

only represent the functions that an interface has. This greatly simplifies both the

framework and code generation. However, implementing WebIDL interfaces in this

way means we are limiting the implementation to only include functions (WebIDL

operations), but WebIDL allows defining other interface members such as fields and

constants. Since our main concern in this project was to use WebIDL to implement

RPC functions we decided to stick to a simple approach of defining functions in C++,

which is just through normal, namespaced function definitions in header files. The

alternative, which could be a future extension, would be to implement interfaces as

classes.

We hide the details of the ServerStub as this is discussed in the stub layer section

(4.1.4, page 48).

Now that the stubs are registered with the runtime, when we receive a RPC request,

the JSON RPC layer will call the runtime’s HandleRequest method. This will look up the

string name of the function being called in the map, in order to get the corresponding

RPCServerStub. If it exists, the stub’s call method is called.

4.1.4 Stub Layer

Finally, the stub layer is just a wrapper over the runtime layer’s API, so that functions

can be called ‘natively’ from within the language. The stub layer also performs

parameter type checking and marshalling.

4.1.4.1 Implementing the stub layer

There is a distinction between the caller’s stub layer (which we call the user stub)

and the callee’s stub layer (the server stub). The user stub has the job of parameter

packing and calling the RPCRuntime’s functions while the server stub is called by

the RPC runtime, and unpacks the parameter. This distinction can be seen in the

RPC diagram shown in background section 2.2 on page 7.

Due to time constraints, RPC functionality has only been implemented one way, from

JavaScript to C++. This means only the user stubs have been implemented on the
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JavaScript side, and only the server stubs have been implemented on the C++ side.

We give an overview of these implementations.

The user stub implementation using JavaScript is greatly simplified due to the fact

that parameter packing only involves turning a function’s parameters into an array,

since the server stub is expecting pp::Var objects, which correspond naturally to

JavaScript types. In other words, the PPAPI performs all the marshalling for us by

converting JavaScript objects on the caller side into pp::Var objects on the callee side.

However, to make it more useful for the JavaScript developer, the RPC framework

will optionally perform type checking on the caller side before calling the runtime.

How JavaScript type checking is implemented is shown in the WebIDL bindings

implementation section 4.2.6 on page 61, but the basic idea is the use of JSON

Schemas which define the JavaScript types we are expecting.

What we want to achieve on the JavaScript side is the ability to access the defined

modules, interfaces, and most importantly functions on the C++ side in the most

natural way possible. We achieve this by dynamically constructing a JavaScript object

that holds all this information. The object maps interface names to maps of function

names to function stubs. To make this clearer, here is an example of such an object,

which we shall call an RPC Module.

{

"MyInterface": {

"foo": function(){...},

"bar": function(){...}

},

"SecondInterface": {

"fun": function(){...}

}

}

Listing 4.8: An example RPC Module in JavaScript

Now, to call foo, we call MyInterface.foo(). This gives a very natural way of using RPC

functions in JavaScript, as that is exactly what they are - functions! We now finally

look at how the actual stub function is implemented. This happens in JavaScript

stub layer’s constructFunction method. Essentially, it takes in a function definition as a

JavaScript object, and returns a JavaScript function that is the stub. In that sense,

the function definition is made declarative, a feature which makes the generator’s

job (discussed later) much simpler. Here is an example of a function definition:
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{

"name": "foo",

"params": [{"$ref": "unsigned long"}],

"returnType": {"$ref": "boolean"}

}

Listing 4.9: A function definition object

Then, the constructFunction method will take this object and use the information in it

to produce a JavaScript function. The JavaScript function will do the type checking

discussed earlier, but most importantly, it will call the RPC runtime to actually

execute the RPC request. Here is a simplified example of a produced function:

function(){

// get arguments dynamically

var args = Array.prototype.slice.call(arguments, 0);

// the expected number of parameters is known

// if the user gives more params, then these are probably callbacks.

// we extract the callbacks

var userSuccessCallback, userErrorCallback, userParams;

if (args.length > defnParamsLength) {

userSuccessCallback = args[defnParamsLength];

userErrorCallback = args[defnParamsLength + 1];

}

// extract the user given parameters

// now we go through each parameter and assert it is valid type

// before calling the runtime, we alter the callback

var callback = function (d) {

//type checking of the result

};

// finally call the runtime

return runtime.sendRequest(

interfacePrefix+defnName,

userParams,

callback,

userErrorCallback

);

}

Listing 4.10: A user stub function dynamically produced
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To implement the C++ server stubs, we define a RPCServerStub class for each

concrete function. For example, here is the ServerStub_MyInterface_Foo class used in

Listing 4.7.

class ServerStub_StepScene : public RPCServerStub{

public:

virtual pp::Var call(const pp::VarArray* params, RPCError& error){

// unpack params

// call concrete function

// pack result, return

}

};

Listing 4.11: Defining a server stub in C++

Notice how we have combined the role of the RPC server stub to include marshalling,

de-marshalling and calling the actual function implementation. This was done to sim-

plify the framework on the C++ side, and also to expose some of the implementation

details to the C++ developer. This allows the C++ developer to tweak the framework

in order to get higher performance if they need it, or to customise a specific case.

There a few cases where this might be necessary. One case is when the developer

wants to send and receive binary data but this is currently not supported, due to time

constraints. In this case, the developer could go ahead and edit the generated code

so that they can pass a pp::Var to their function. Another example where this might

be useful is if the developer wants to make the callback asynchronous, by creating

a thread, doing computation, and sending the result at a later time. Again, this is

not supported at this stage, but the developer can simply edit the call function to

allow this. In that sense, showing these implementation details gives power to the

developer to allow them to do what they want, without forcing them to use a specific

way of implementing their code.

Finally, in Listing 4.11, we purposely don’t show how the parameter/result (de)marshalling

happens. The implementation of this is shown in the WebIDL bindings implementa-

tion section 4.2.5 on page 58.



Chapter 4. Design and Implementations 52

Figure 4.5: The WebIDL interface

4.2 WebIDL Bindings

In order to automatically generate stubs for JavaScript and C++ that allows commu-

nication between the two languages, an independent language, WebIDL, is used to

define types and interfaces which will be used by both JavaScript and C++.

The reason why this is needed is because JavaScript and C++ have entirely different

type systems, and since the communication is two-way, we cannot simply map a C++

type into a JavaScript type. Moreover, if the RPC framework were to be completely

language independent, we would need a mapping between every language’s type

into a JavaScript type. Therefore, to generalise, WebIDL gives an intermediary type

interface so that other languages can communicate with JavaScript. The WebIDL

types and syntax is defined as a standard, and gives EcmaScript bindings. In

other words, the conversion between WebIDL and JavaScript types is defined in the

standard. It is then up to the developer of the other language to define a binding

from that language to WebIDL. This is illustrated in Figure 4.5.

In this section, we mention the C++ WebIDL bindings used in the Native Calls

project, and the design decisions behind them.

The implementation challenges involved in implementing these bindings are dis-

cussed at a later chapter.

4.2.1 Modules, Interfaces, and Functions

In Native Calls, we make a distinction between ‘modules’ and ‘interfaces’. Essentially,

a module contains several interfaces. And an interface contains several function
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definitions.

When we define a module, we must define all the interfaces, type definitions, and

dictionaries for it in the same generator call. The definitions could be in different

IDL files.

In JavaScript, a module is represented as an object which has a property for each

interface that module defines. Therefore, each interface has a property for each

function that interface defines.

In C++, a module is represented as a class, which sets up the module. When setting

up the module, each function interface is added. An IDL interface is represented by

a C++ header file. The header file defines each function that is in the interface.

4.2.2 Number and String Types

WebIDL defines a number of numeric types and also provides the JavaScript bindings

for each type. Table 4.1 shows the numeric types and their bindings in C++.

WebIDL Type Min int Max int C++ Type
byte −27 27 − 1 int8_t
octet 0 28 − 1 uint8_t
short −215 215 − 1 int16_t
unsigned short 0 216 − 1 uint16_t
long −231 231 − 1 int32_t
unsigned long 0 232 − 1 uint32_t
long long −263 263 − 1 int64_t
unsigned long long 0 264 − 1 uint64_t
float float
double double

Table 4.1: The C++ WebIDL bindings for number types

It can be observed that the integer types are represented in C++ with the size

information in it, even though C++ has equivalent type names for each of the

WebIDL integer types. For example, C++ supports the short type, but we explicitly

decide to represent short as int16_t. The reason why explicit size information is

included in the type is because of different implementations of certain types. For

example, depending on the C++ standard library implementation we use, a long can

be represented in 32 bits or 64 bits. But because WebIDL explicitly defines the actual

size of the integer types, to stick to the standard, we cannot tolerate this variation.

For this reason, we use the explicit size types as shown above. This issue does not

arise for float and double types as both C++ and JavaScript adhere to the IEEE 754

format.
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Another interesting issue to note is that the bindings for large number types, such as

long long, are represented in JavaScript by the closest numeric value. But because all

JavaScript numbers are represented by 64 bit IEEE 754 (‘double’) types, the largest

number that can be represented in JavaScript is actually 253 − 1. This means that

often the conversion between the WebIDL type and the JavaScript binding is lossy, in

the sense that it is not a one-to-one mapping. Although it would have been possible

to overcome this issue by creating or using JavaScript ‘BigNumber’ library classes, I

decided to adhere to the specification, using the lossy conversion. This was for a few

reasons:

• Forcing the JavaScript user to use a number library is bad, as it adds more

dependencies and is not conventional JavaScript e.g. the BigNumber library

will have a different API to normal JavaScript numbers, and certain operations,

such as addition, will not work properly.

• Using a different implementation, the RPC library could represent all data as

binary. JavaScript supports binary data in the form of ArrayBuffers.

• It is fairly unlikely that the developer would want to send back such large

numbers to the JavaScript, and since the developer is developing for the web

platform, they should be aware of JavaScript’s limitations - including numeric

type support.

To represent string types, the DOMString WebIDL type is converted to the JavaScript

string type, as defined in the standard. As for the C++ binding, the std::string class

was chosen to represent DOMString. The alternative was to represent strings as

character array buffers (char[]). I decided to use the std::string class for the following

reasons:

• JavaScript uses unicode (utf8) for strings. The developer would need to do

some encoding/decoding to handle unicode characters, which may not fit in a

byte.

• Simplicity: The PPAPI supports an AsString() method on pp::Var objects, which

extracts the string value as a std::string object.

• C++ developers use std::string when they can. std::string allows conversion to

C strings using the c_str() method.
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4.2.3 Dictionary Types

The WebIDL standard defines the binding of a WebIDL dictionary to be a JavaScript

Object with the keys being the identifier names of each dictionary member, and

values being of the member’s type. For example, Listing 4.12 shows an example of a

dictionary definition in WebIDL and the corresponding JavaScript object according

to the specification.

// WebIDL

dictionary myObject {

double id;

DOMString name;

};

// Example JavaScript object

var myObj = {

id: 31,

name: "John Smith"

}

Listing 4.12: A WebIDL dictionary and its JavaScript binding

When a JavaScript object (and therefore a WebIDL dictionary) is sent to the NaCl

module, it is represented in PPAPI as a pp::VarDictionary object. pp::VarDictionary allows

extracting keys and values as pp::Var. See background section 2.6.3 on page 22 for

more details.

We now consider how we can represent dictionaries in C++. The obvious approach is

to represent a dictionary as a C struct. The fields of the struct will have corresponding

names and types as defined in the dictionary. For example, the struct shown in Listing

4.13 corresponds to the dictionary shown earlier in Listing 4.12.

struct myObject {

double id;

std::string name;

}

// example use

struct myObject myObj;

myObj.id = 31;

myObj.name = "John Smith";

Listing 4.13: A C struct corresponding to the dictionary definition in Listing 4.12

The advantage of this is that the object passed to the C++ programmer will be

a normal C++ struct. However, it will impact performance, since each field of
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the struct will need to be individually converted. In fact, this makes marshalling

dictionaries the slowest conversion, according to the benchmarks (see section 5.3,

page 94).

However, other approaches are possible. One alternative is we could have sim-

ply passed the pp::VarDictionary object to the developer, without modifying it. The

advantage of doing this is that it will simplify the C++ RPC library and therefore

make it faster to send and receive complicated structures. However, there are a few

problems with this approach:

• The C++ developer is now exposed to PPAPI. This adds a learning curve, as it

is another library that the C++ developer would have to get used to in order to

write their module.

• The C++ developer will need to do all the type marshalling by themselves. This

renders the dictionary type definition that they wrote in WebIDL useless, and

adds more burden on the developer.

• The use of pp::VarDictionary is actually an implementation detail of the RPC library.

In other words, we simply use this as a way of transporting the data from

JavaScript to C++. Perhaps someone could write another implementation that

uses full binary transfer for example, using Protocol Buffers (see background

section 2.4, page 16). In that case, passing the pp::VarDictionary to the developer

would actually be more burden on the library, and probably impact performance.

Another approach is to represent a dictionary as a std::map. The advantage of this is

that the map can be added to and deleted from dynamically and unlike structs, if a

field is not specified, data is not allocated for it. The problem with std::map however

is that the keys and values of the map have strict types. If the values have the same

type, then a map will do fine; but what about if the values have different types, such

as in the example in Listing 4.12? The only way around this is by using wrapper

types. For example, using pp::Var again to represent the actual value, so the std::map

will be from std::string keys to pp::Var values. But again, this means the developer

will have to de-marshal the pp::Var to a standard library type, and this can get tedious

when the value type is complex, for example, with multiple nested dictionaries.

In the end, we take the approach of individually, recursively de-marshalling the

pp::VarDictionary into a struct type, as a trade off of simplicity and developer friendli-

ness to performance.
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4.2.4 Sequence Types

In WebIDL, there are two ways of specifying a collection of types: sequence types

(sequence<T>) and array types (T[]). The difference, according to the specification, is

that a sequence type is passed by value - meaning it is copied when passed into a

function. Array types are passed by reference.

Since postMessage only transfers objects and values by value (i.e. structures are

recursively copied), our RPC framework only supports sequence types. However, in

JavaScript, they are represented in the same way (i.e. Array objects).

In C++, there are many ways of representing WebIDL sequence types, but we can

assume that we have two options: using an array structure, or a standard library

template class such as std::vector. We compare each approach below.

The advantage of using an array is that we do not need to use an extra library, and it

might be faster for large arrays. The problem of using arrays is that anywhere we

use the array, we will need to also pass its length. This can get tedious, especially if

we have a function that accepts many parameters. To overcome this, it is possible

to send the length of the array with the actual array by augmenting the array after

a designated terminator element, such as a NULL or zero element. For example,

to specify the array [1,2,3,4], we send [1,2,3,4,NULL,4]. The 4 after the NULL element

is the length of the array. The problem with this, however, is that we need some

kind of encoding scheme to ensure that the terminator and length elements do not

get counted as actual array elements. For some array types, an encoding might not

exist. Moreover, processing will need to be done in order for the developer to get

the length of an array, thus the developer would need to get used to another library

that is not standard C++.

The advantage of using a vector is that they are dynamic and they encapsulate

the length of the vector. This means they are easy to both use and marshal. The

disadvantage is that it forces the user to use the std::vector library, especially in cases

where the developer just wants an array.

In the end, I decided to go for the vector approach, for the following reasons:

• The performance is nearly the same, since we allocate the size of the vector

before using it. Also, regardless of the approach taken, it will take O(n) time

to marshal and demarshal the array, since it needs to be converted to/from a

pp::VarArray.
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• If the developer requires an array buffer, they can use the std::vector::data()

method to get a pointer to the vector’s internal buffer.

• Vectors are generally how C++ developers represent collections of items, so

most of the time it is fine to use the std::vector library.

4.2.5 Implementation in C++

To implement WebIDL bindings in C++, we define how types are marshalled when

sent and received from JavaScript. The IDL file will define what types are expected,

whilst the C++ implementation will define how the types are accepted and received

in the functions we define.

We already discussed the C++ bindings for number and string types. However, these

types are sent and received from JavaScript as pp::Var objects. To convert them, we

define a generic RPCType class, which has static AsVar and Extract methods. Other types

then inherit from RPCType. We define a type class for each WebIDL type. For example,

Listing 4.14 shows the AsVar and Extract methods of the WebIDL long type.

pp::Var LongType::AsVar(const ValidType<int32_t>& v){

return pp::Var((int) v.getValue());

}

ValidType<int32_t> LongType::Extract(const pp::Var& v){

if(v.is_int()){

return ValidType<int32_t>((int32_t)v.AsInt());

} else {

return ValidType<int32_t>();

}

}

Listing 4.14: An example of WebIDL type marshalling

We do this for each WebIDL type. Now, complex types such as Dictionary and

Sequence types use these classes to extract each of the keys and values of the

dictionary. For example, Listing 4.15 shows how we convert a XYZ dictionary type

into an XYZ struct or a pp::Var. Notice how we use the Extract methods of other WebIDL

types, for example FloatType::Extract. In this way, type extraction is recursive - it is

simple to extract dictionaries which have values which are dictionaries, and so on.

It also allows generating these classes simpler, since each type is only concerned

about extracting its own type, thus giving a general, uniform pattern for converting

types. In fact, the code shown in Listing 4.15 is actually generated by our generator.
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Notice also the use of the ValidType class. This class is simply a wrapper over the

C++ type. The reason we have it is to be able to check if a type is valid. If it is

constructed without a value, then it is invalid. If it is constructed with a value,

then it is valid. Therefore, we can check if the type marshalling and de-marshalling

happened successfully by using the isValid method on the ValidType wrapper. We do

this, for example, in the runtime layer, where we return an error if the type extraction

failed, which can happen if an incorrect type was sent to the layer from JavaScript.
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ValidType<XYZ> XYZType::Extract(const pp::Var& v){

ValidType<XYZ> invalid;

if(v.is_dictionary()){

pp::VarDictionary vDict(v);

XYZ r;

/* member: x */

if(!vDict.HasKey("x")) return invalid;

const ValidType< float >& xPart = FloatType::Extract(vDict.Get("x"));

if(!xPart.isValid()) return invalid;

r.x = xPart.getValue();

/* member: y */

if(!vDict.HasKey("y")) return invalid;

const ValidType< float >& yPart = FloatType::Extract(vDict.Get("y"));

if(!yPart.isValid()) return invalid;

r.y = yPart.getValue();

/* member: z */

if(!vDict.HasKey("z")) return invalid;

const ValidType< float >& zPart = FloatType::Extract(vDict.Get("z"));

if(!zPart.isValid()) return invalid;

r.z = zPart.getValue();

return ValidType<XYZ>(r);

}

return ValidType<XYZ>();

}

pp::Var XYZType::AsVar(const ValidType<XYZ>& v){

XYZ value = v.getValue();

pp::VarDictionary r;

/* member: x */

r.Set("x", FloatType(value.x).AsVar());

/* member: y */

r.Set("y", FloatType(value.y).AsVar());

/* member: z */

r.Set("z", FloatType(value.z).AsVar());

return r;

}

Listing 4.15: An example of marshalling and de-marshalling a dictionary type called

‘XYZ’, which is defined to have three float members: x, y, and z.
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4.2.6 Implementation in JavaScript

Unlike C++, JavaScript doesn’t have strict typing, so it is perfectly normal to send

a number to a function which was intending to receive a string. However, in our

library, this is bad. In fact, the runtime layer will return an error callback. In order

to make it more convenient to the JavaScript developer, the Native Calls JavaScript

library also provided type checking. In other words, instead of just sending an object

to the C++, we can just throw a JavaScript error to tell the developer that that’s an

illegal call because we know what type the C++ function is expecting through the

IDL.

To do this, we use JSON schemas. JSON schemas are a declarative notation for

defining JavaScript object types. We can use a JSON schema validator to check that a

JavaScript object agrees with a JSON schema. The JSON schema notation is defined

in a specification by the Internet Engineering Task Force (IETF) [26]. Instead of

writing our own validator, we used the open source tv4 validator [27]. To get tv4 to

work with our library, it needed to support AMD (see background section 2.7.2 on

page 25), so we created a patch for it on GitHub, and the pull request was merged

successfully.

Now that we have the notation and the validator, all we needed to do is use it in our

library. We created a TypeChecker class that encapsulated a tv4 validator instance

and is used to check parameter types. We have a JSON schema for each WebIDL

type. Listing 4.16 shows some of these schemas.

{

"byte" : {"type": "integer", "maximum": 127,

"minimum": -128},

"octet" : {"type": "integer", "maximum": 255,

"minimum": 0},

"short" : {"type": "integer", "maximum": 32767,

"minimum": -32768},

// ... similar definitions for other number types ...

"any" : {},

"float" : {"type": "number"},

"double" : {"type": "number"},

"DOMString" : {"type": "string"},

"boolean" : {"type": "boolean"},

"object" : {"type": "object"},

"null" : {"type": "null"},

"void" : {"type": "null"}

};

Listing 4.16: JSON Schemas of WebIDL types
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To define dictionary types, we simply used schema references. For example, Listing

4.17 shows a dictionary definition as a JSON schema.

{

"name": "XYZ",

"required": ["x","y","z"],

"properties": { "x": {"$ref":"float"},

"y": {"$ref":"float"},

"z": {"$ref":"float"} }

}

Listing 4.17: JSON schema of a dictionary definition

The $ref key references another schema. In this case, we referenced the float schema

which we defined earlier and showed in Listing 4.16. The validator will recursively

look up the schemas and validate the objects. So nested dictionaries will be checked

recursively.

The benefit of this is that the type checking code is done entirely declarative and

therefore easy to generate automatically. In fact, the schema in Listing 4.17 was

generated automatically using a WebIDL definition. In section 4.1.4.1 on page 48,

we discuss how we use this notation to define a whole RPC function, interface, and

module in JavaScript.
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4.3 Generating RPC Code

To convert from a WebIDL file to a JavaScript and C++ RPC library, we need four

main ingredients:

• WebIDL type bindings to JavaScript and C++

• The WebIDL file(s) that define the types and interfaces of our module

• A WebIDL parser

• A generator that produces the relevant JavaScript and C++ files

In the previous section, we discussed the WebIDL bindings. In this section, we

discuss the parser and generator needed to produce the relevant code.

4.3.1 WebIDL Parser

The WebIDL parser takes as input a WebIDL file, and returns as output an Abstract

Syntax Tree (AST) representation of the file. For more information about how parsers

work, please read the background section 2.5 on page 19.

Several open source WebIDL parsers exist, so we had a choice of using an existing

parser or building our own. The advantage of building our own is that we can

define the format of the AST so that it can be used directly with our generator.

The disadvantage is the time and effort involved in writing the parser, as well as

updating it if the WebIDL specification changes. The advantage of using an existing

parser is that it will be kept relatively up to date and probably more stable, as most

available parsers are unit tested to ensure they work properly. An existing parser will

also be more complete, meaning they support most if not all of the WebIDL syntax

and specification. For these reasons, we decided to use an existing WebIDL parser.

However there were a few popular parsers to choose from. We compare and contrast

the different implementations below.

• Open source browser vendor implementations such as Chromium’s Blink We-

bIDL parser [15] or Mozilla’s WebIDL Parser [28].

• Robin Berjon’s WebIDL2.js [29].
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The advantages of using either the Chromium or Mozilla parser is that we know it’s

used in an actual web browser implementation. Therefore, they are reliable and are

probably maintained to be up to date with the specification. Both of these implemen-

tations are written in Python, and so will run fast. However, the disadvantages are

that both have very little to no documentation, making both of them hard to work

with. Because they are embedded in the source code of another project, it is difficult

to include them in our project without copying the source code and versioning the

file in our project. This means every time the parser is updated, we have to update

the file separately.

The advantages of using the WebIDL2.js parser is that it is a node.js package which

can be easily added as a dependency. This means we don’t need to worry about

updating it in our source code. Also, the parser has detailed documentation about

how the abstract syntax tree is defined. This is useful for our generator. Although the

parser isn’t written by a browser vendor, it is well tested against the actual WebIDL

specification. In fact, it is written by Robin Berjon at W3C, so we can be confident

that the parser will work well at least for the majority of cases. The disadvantage

is that it might be slightly slower, although this has not been measured and is not

noticeable.

In the end, I decided to go for WebIDL2.js because of its good documentation. I

found the parser in JavaScript a bit easier to work with, especially since the unit

tests for the generator are written in JavaScript too - so we ended up with a common

testing language for the whole project.

4.3.2 Code Generators

The generator essentially does the reverse of a parser - it takes in an AST and returns

a string representing the relevant code. However, sometimes the AST information

was not in the format which we required, so we do a single pass through the AST,

augment it, then use the augmented AST to generate the code. Figure 4.6 shows an

illustration of this.

We use the augmented AST as a context to be passed to the template engine. We

also add some helper functions on top of the template engine, to simplify the actual

template. The template engine then uses the context to substitute the relevant

strings into the correct places. For example, Listing 4.18 is a context that is used

with the template shown in Listing 4.19 to generate the output shown in Listing 4.20.

The rest of the code generator implementation is essentially augmenting the context

to allow easy access for the template engine to generate all the files we needed.
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Figure 4.6: Flow diagram showing the role of the generator

Because the parser we used produces an AST in JavaScript, it made sense to have the

generator in JavaScript too. This means we had to find a JavaScript template engine.

There is more than a dozen template engine available to choose from, however, to

simplify the templates and make them as human-readable as possible, we decided

to limit our search only to templates with simple markup and logics. One template

notation stood out, mustache [30]. Mustache is an elegant, simple, templating

language used across many languages. We decided to go with it because of its

good documentation on its notation, popularity, and simplicity. However, several

implementations of mustache existed. There was mustache.js [31], handlebars [32],

and hogan [33] by twitter. After considering each implementation, we found that

they were very similar. We decided to choose hogan for its simplicity, speed, and

extra features.
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{

timestamp: "Thu May 08 2014 21:38:16 GMT+0100 (BST)",

moduleName: "Bullet",

dictionaries: [{

name: "XYZ",

members: [

{ name: "x", STDTypeName: "float"},

{ name: "y", STDTypeName: "float"},

{ name: "z", STDTypeName: "float"}

]

}]

}

Listing 4.18: An example of a template context

/* AUTOMATICALLY GENERATED ON {{timestamp}} */

#ifndef PPRPCGEN_{{moduleName}}_TYPES_H_

#define PPRPCGEN_{{moduleName}}_TYPES_H_

#include <string>

#include <vector>

namespace pprpcgen{

{{#dictionaries}}

typedef struct {

{{#members}}

{{^typeIsSequence}}{{STDTypeName}}{{/typeIsSequence}}

{{#typeIsSequence}}std::vector<{{STDTypeName}}>{{/typeIsSequence}}

{{name}};

{{/members}}

} {{name}};

{{/dictionaries}}

}

#endif /* PPRPCGEN_{{moduleName}}_TYPES_H_ */

Listing 4.19: An example of a template
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/* AUTOMATICALLY GENERATED ON Fri Jun 06 2014 20:11:41 GMT+0100 (BST) */

#ifndef PPRPCGEN_Bullet_TYPES_H_

#define PPRPCGEN_Bullet_TYPES_H_

#include <string>

#include <vector>

namespace pprpcgen{

typedef struct {

float x;

float y;

float z;

} XYZ;

}

#endif /* PPRPCGEN_Bullet_TYPES_H_ */

Listing 4.20: An example of the output of the generator
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4.4 Test Driven Development

Test Driven Development (TDD) is a software development approach whereby the

developer writes unit tests that describe some functionality first, then implements

the functionality in order to make the tests pass.

The project includes several tests for each component of the system. Unit tests are

written to test fine-grained functionality (e.g. functions), while end-to-end (E2E)

tests have been written to test large parts of the system as a whole.

Because the project is implemented on both C++ and JavaScript, tests had to be

written for each of these languages. Thus, the project includes the following tests:

• JavaScript library tests: These test the functionality of each component of the

JavaScript library. The tests run on the browser.

• Generator tests: These test the functionality of the JS and C++ generators.

• C++ library tests: These test the functionality of the C++ RPC library.

• E2E tests: These are test applications written to test the ‘full stack’: starting

from code generation, compilation, and all the way down to individual RPC call

requests.

4.4.1 Karma Test Runner

Karma test runner [34] is a test runner framework implemented at Google that makes

running JavaScript tests easy. It was designed to simplify and speed up test-driven

development for JavaScript. It works by letting the developer specify a configuration

that states which files should be loaded, then the tests are run directly from the

command line. This means the developer does not need to open a browser manually

every time they want to run the tests.

Karma has been used extensively in this project to test the client side JavaScript and

C++.

4.4.2 JavaScript Testing Framework

Many testing frameworks exists for JavaScript. The most popular are Jasmine [35],

QUnit [36] and Mocha [37]. All of them support a similar set of features and APIs.
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• Jasmine: A generic unit testing framework that gives a behavioural driven

development (BDD) approach to testing. Jasmine is easy to set up, with little to

no configuration. It can work on any JavaScript runtime (browser or node.js).

• QUnit: A simple unit testing framework, similar to junit for Java. QUnit is used

by the popular jQuery library.

• Mocha: A testing framework that allows powerful configuration - any assertion

library can be used, including Jasmine.

In the end, I decided to use Jasmine for its straight-forward set up, BDD approach,

and easy configuration with Karma.

4.4.3 C++ Testing Framework

Again, many unit testing frameworks and libraries exist for C++. The most popular

are CppUnit, googletest, and the Boost test library.

Google Mock (gmock) is a powerful library that allows mocking classes in C++.

Mocking makes it easier to test different components of a system without requiring

the actual implementation. gmock can be used with any testing framework, and it is

one of the most mature mocking libraries for C++ available.

I decided to use googletest for its simple syntax, portability (as it was included with

the NaCl SDK) and the fact it was easy to integrate gmock for mocking classes.

4.4.4 Creating a unified testing environment

During the initial stages of the project, a lot of time was spent finding a way to

efficiently run unit tests for the generator, JavaScript library, and C++ library.

A sort of framework built on top of Jasmine, googletest, and karma was developed in

order to test the C++ library. Essentially, how this worked was as follows:

• A single JavaScript test written for Jasmine was created

“it should not fail any C++ tests”.

• The body of the test loaded a Native Client module. The Native Client module

was a single executable which linked all the C++ library tests together.
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• When a test passed or failed, a message was sent to the JavaScript using

PostMessage. This told the test suite the progress of the test.

• When a C++ test failed, the message received in JavaScript caused the test to

throw an error and therefore the JavaScript test would fail.

• When all the C++ tests passed, a message is sent to JavaScript which caused

the test to pass

So in the end, passing the JavaScript test was equivalent to passing all the C++ tests.

When a C++ test failed, detailed information would be provided in the terminal to

indicate what assertion was broken, etc.

Now, when we create a karma configuration to run the JavaScript test, it means we

are able to run the C++ tests from the terminal. In other words, we are able to

test the C++ Native Client module in the browser without having to open a browser

manually. This saved a tremendous amount of time when doing TDD.

The final issue which we had to solve was how to test the C++ code for the different

NaCl SDK tool chains available (for information about tool chains, read background

section 2.6 on page 20). The issue was how to test the NaCl module which was built

using a specific tool chain using the terminal (e.g. make TOOLCHAIN=newlib CONFIG=Debug),

given that the JavaScript code that loaded the module hard coded this information?

The solution was to pass this information down to the JavaScript test using karma,

through the main Makefile. We create a Makefile target called cpptest. When we run

make cpptest, karma is started, the JavaScript test runs - which loads the C++ test mod-

ule, which runs the C++ tests. Now, when we run make cpptest TOOLCHAIN=newlib CONFIG=Debug,

karma is started with some extra command line options. Karma passes the command

line options to the JavaScript by embedding them inside the HTML page. Now, our

JavaScript test can use this information to correctly find and load the correct NaCl

manifest and pexe/nexe.

These techniques were also done for the end to end tests, which loaded modules of

different tool chains and configurations too, based on the command line arguments.

In the end, we created a Makefile target make test which automatically ran all the

JavaScript, generator, C++, and end to end tests automatically from the terminal.
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4.5 Getting Started Guide

Now that we have discussed the design and implementation of the RPC Framework

and generators, we show here a concrete example that illustrates how the imple-

mentation works. This is in the form of the Native Calls getting started guide. The

guide was published on GitHub in order to get anyone to easily use the Native Calls

framework from scratch. The original guide includes introductions to Native Client,

the idea, and so on as well as setup instructions. But we remove these details for

brevity.

This guide shows how to create a simple C++ library using Native Calls. We will

create a complex number calculator using a C++ native module. I’ve written this

tutorial in a way such that you can follow along and write the module yourself.

4.5.1 Writing our interface using Web IDL

Native Calls works by generating JS and C++ that handles communication between

your native module and any JavaScript application. To do this, you will need to tell

Native Calls what functions you want to expose to JavaScript. You do this by writing

the interface using Web IDL (which is very simple). Native Calls then takes this IDL

file and generates the code for you.

Let’s begin by creating a folder for our complex number calculator project.

mkdir complexCalculator

cd complexCalculator

vim complex.idl

Now, we write our complex number calculator IDL file (complex.idl):

dictionary complex {

double r;

double i;

};

interface Calculator {

complex add(complex x, complex y);

complex subtract(complex x, complex y);

complex multiply(complex x, complex y);
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complex sum_all(sequence<complex> contents);

complex multiply_all(sequence<complex> contents);

sequence<double> map_abs(sequence<complex> contents);

};

Before moving on, let’s take a closer look at the interface.

4.5.1.1 Defining dictionary types

Dictionary types get converted into C++ structs. In JavaScript, they define JavaScript

objects. In the above, the complex dictionary defines a struct in C++ that has the

fields r and i. It also defines the JavaScript object with the properties r and i.

Once a dictionary is defined, it can be used as a type. Native Calls allows many types,

as defined in the Web IDL specification.

4.5.1.2 Defining interfaces

An interface can include definitions for many functions. These functions will be

exposed to the JavaScript (i.e. we’ll be able to call these functions directly from

Javascript). In the IDL above, we defined add, subtract and multiply which all take

two paramaters of complex type and return a complex type.

Meanwhile, sum_all takes a sequence type. Sequences get converted into C++

std::vectors, and on JavaScript, they’re arrays.

4.5.2 Generating the RPC module

Now that we’ve defined the interface for the module, we now pass it to the generator.

The generator lives in native-calls/generator/pprpcgen.js and can be executed

directly. In the complexCalculator folder, generate the code like this:

~/native-calls/generator/pprpcgen.js --package=Complex complex.idl

NOTE: If you installed the package using make install, you should have the

pprpcgen command installed globally. If so, you can just type pprpcgen --package=Complex

complex.idl, and use pprpcgen from any directory. You can also install only the gen-

erator globally, without cloning the repo, by typing npm install -g native-calls.

http://www.w3.org/TR/WebIDL/
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pprpcgen will create a folder called Complex (matching the --package option). Let’s

take a look inside.

cd Complex

ls

Using the IDL file, we can see that the generator generated the following files:

• PPRPCGEN_Calculator.h This is the C++ interface that we need to implement

• ComplexRPC.cpp This is the C++ RPC library, specific to our Complex number

calculator

• ComplexRPC.js The javascript file that we can include in our HTML to interface

with the C++ library.

• PPRPCGEN_ComplexTypes.h Since we defined some extra types, (the complex

dictionary type), this file is generated and includes the corresponding C++

struct.

• Makefile Finally, a makefile is generated for us to be used as a template.

Take a look at each file to see how the RPC library works. Most importantly let’s see

what’s inside Calculator.h and ComplexTypes.h.

less PPRPCGEN_ComplexTypes.h

//...

typedef struct {

double r;

double i;

} complex;

As we expected, the dictionary was converted into an equivalent struct.

less PPRPCGEN_Calculator.h

#include "ComplexTypes.h"

#include "nativecalls/RPCType.h"

#include <vector>

namespace pprpcgen{
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namespace Calculator{

complex add( complex x, complex y);

complex subtract( complex x, complex y);

complex multiply( complex x, complex y);

complex sum_all( std::vector<complex> contents);

complex multiply_all( std::vector<complex> contents);

std::vector<double> map_abs( std::vector<complex> contents);

}

}

We can see that the generator created a header file for us to implement. The header

file is entirely standard C++, using no extra libraries.

4.5.3 Implementing the interface

We can now start writing our implementation. The generated Makefile requires us

to write the implementation in a file called Calculator.cpp, matching our interface

name (Calculator.h), in the same folder (~complexCalculator/Complex/). Feel

free to skip over the actual implementation. I’ve placed it here so you can copy it if

you’ve been following along with the tutorial.

vim Calculator.cpp

#include "PPRPCGEN_Calculator.h"

#include <complex>

#include <vector>

namespace pprpcgen{

namespace Calculator{

complex add(complex x, complex y){

complex cd;

std::complex<double> std_cd = std::complex<double>(x.r, x.i)
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+ std::complex<double>(y.r, y.i);

cd.r = std_cd.real();

cd.i = std_cd.imag();

return cd;

}

complex subtract(complex x, complex y){

complex cd;

std::complex<double> std_cd = std::complex<double>(x.r, x.i)

- std::complex<double>(y.r, y.i);

cd.r = std_cd.real();

cd.i = std_cd.imag();

return cd;

}

complex multiply(complex x, complex y){

complex cd;

std::complex<double> std_cd = std::complex<double>(x.r, x.i)

* std::complex<double>(y.r, y.i);

cd.r = std_cd.real();

cd.i = std_cd.imag();

return cd;

}

complex sum_all(std::vector<complex> contents){

std::complex<double> currentSum(0,0);

complex sum;

for(std::vector<complex>::iterator it = contents.begin();

it != contents.end(); ++it) {

complex current_cd = *it;

currentSum += std::complex<double>(current_cd.r, current_cd.i);

}

sum.r = currentSum.real();

sum.i = currentSum.imag();

return sum;

}

complex multiply_all(std::vector<complex> contents){
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std::complex<double> currentSum(1,0);

complex sum;

for(std::vector<complex>::iterator it = contents.begin();

it != contents.end(); ++it) {

complex current_cd = *it;

currentSum *= std::complex<double>(current_cd.r, current_cd.i);

}

sum.r = currentSum.real();

sum.i = currentSum.imag();

return sum;

}

std::vector<double> map_abs(std::vector<complex> contents){

std::vector<double> r;

for(std::vector<complex>::iterator it = contents.begin();

it != contents.end(); ++it) {

complex current_cd = *it;

r.push_back(abs(std::complex<double>(current_cd.r, current_cd.i)));

}

return r;

}

}

}

Without delving too much into the implementation details, what we wrote here was

all pure C++. We didn’t need to use any libraries (other than std), and we simply

returned the results, just like we’re used to doing.

Now, all we have to do is compile and include the library in our html file.

4.5.4 Building our RPC Module

For the most part, our generated Makefile will do everything for us. Depending

on how complex our RPC functions are, we might need to tweak it a bit. But for

our complex number calculator project, we can simply call make and everything will

work.
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make

CXX pnacl/Release/ComplexRPC.o

CXX pnacl/Release/Calculator.o

LINK pnacl/Release/Complex_unstripped.bc

FINALIZE pnacl/Release/Complex_unstripped.pexe

CREATE_NMF pnacl/Release/Complex.nmf

This build process is actually included from $(NACL_SDK_ROOT)/tools/common.mk,

which is used to build the NaCl SDK’s examples. We use it here to make it easy to

change toolchain and configuration. The default toolchain is pnacl and the default

config is Release, but we could use any of the available toolchains (pnacl, newlib,

and glibc). For example, we can build the same application using newlib by running

make TOOLCHAIN=newlib. You can read more about the NaCl supported toolchains

here.

In the end, a .pexe file is generated along with the NaCl Manifest (Complex.nmf).

Interestingly, we can package the whole Complex folder into a zip or tar file and

distribute it for any JavaScript developer to use on their website, without even

needing to compile it.

4.5.5 Using our library from JavaScript

We now have a binary native client application that we can include into our web appli-

cation. To include it, we will use the Native Calls JavaScript library. The Native Calls

JavaScript library was generated when we installed the Native Calls library using

make install. The generated file can be found in ~/native-calls/scripts/build/NativeCalls.js.

We need to put this file into our html file, along with the generated RPC module

(complexCalculator/Complex/ComplexRPC.js).

We copy the built NativeCalls.js file into our complexCalculator folder, and then

we can write our html file that uses the library.

cp ~/native-calls/scripts/build/NativeCalls.js ./

vim index.html

<!DOCTYPE html>

<html>

https://developer.chrome.com/native-client/devguide/devcycle/building
https://developer.chrome.com/native-client/reference/nacl-manifest-format
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<head lang="en">

<meta charset="UTF-8">

<title>Complex Number Calculator</title>

<script type="text/javascript" src="require.min.js"></script>

<script>

require(['./Complex/ComplexRPC.js'], function (ComplexRPC) {

window.Complex = new ComplexRPC();

});

</script>

</head>

<body>

<h1>Complex Number Calculator</h1>

</body>

</html>

Now, all that’s left is to see the library in action! To do this, Native Client requires

that the files are hosted on a server. Let’s install a configure-free server such as

serve.

npm install -g serve

Great, now we can host a server in our complexCalculator folder, by simply running

serve.

serve

serving ~/complexCalculator on port 3000

Now, open chrome and navigate to http://localhost:3000/, then open the console

to start using the library.

4.5.6 Making remote procedure calls from JavaScript

With the console open, we can try out some remote procedure calls. You’ll notice

that the functions we exposed using the idl file are available to us in the console

window. The functions work as you would expect, but they are always completely

asynchronous since postMessage is used as the underlying transfer layer. We can

see what data is sent and received in the console. Let’s call add to add two numbers.
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Complex.Calculator.add({r:10, i:10}, {r:5, i:-10}, function(result){

console.debug(result);

});

We can see the data being transferred in the console:

[NaClModule:Complex] -> {

"jsonrpc":"2.0",

"method":"Calculator::add",

"id":3,

"params":[{"r":10,"i":10},{"r":5,"i":-10}]

}

[NaClModule:Complex] <- {

"jsonrpc":"2.0",

"id":3,

"result":{"i":0,"r":15}

}

And finally the result being logged:

Object {i: 0, r: 15}

This is the expected result. In fact, all remote procedure calls from JavaScript take in

an extra, optional, 2 paramaters: a success callback and an error callback. But what

happens if we do not provide the correct number of paramaters? The RPC library is

able to detect this, by throwing an error:

Complex.Calculator.add();

TypeError: The function add expects 2 parameter(s) but received 0

The RPC library also has reasonable type checking. For example if we did not pass

in an object:

Complex.Calculator.add("hello", "world");

TypeError: Parameter 0 has invalid type: string (expected object)
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Client side type-checking is also recursive:

Complex.Calculator.add({r:12, i:23}, {r:3 ,i:"not a number"});

TypeError: Parameter 1 has invalid type: string (expected number) [at .i]

Type checking also happens on the C++ side. In that case, the error callback is

called.

4.5.6.1 Configuration

Before the module constructs, we can specify some configuration. We can specify the

toolchain, config, and whether or not we want client-side type checking (as shown

above). To do this, we edit the script tag that loads the module, and set the global

NaClConfig object.

<script>

window.NaClConfig = {

VALIDATION: false // can also set TOOLCHAIN and CONFIG

};

require(['./Complex/ComplexRPC.js'], function (ComplexRPC) {

window.Complex = new ComplexRPC();

});

</script>

Now, when we refresh and make a remote procedure call with incorrect types, the

callback will be called - i.e. type checking in the C++ has rejected the call.

var success = function(result){ console.log(result); };

var error = function(error){ console.error("ERROR! "+error.message); };

Complex.Calculator.add({r:12,i:23},{r:3,i:"not a number"}, success, error);

ERROR! Invalid Params: Param 1 (y) has incorrect type. Expected complex

Turning off JS Validation can increase performance, especially for applications that

perform many requests per second.
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4.6 Future Extensions

This section discusses possible future extensions to the implementation of the project.

4.6.1 Transferring contiguous number types as binary

In section 4.2 we discussed how to transfer a sequence of any type. This is repre-

sented in WebIDL as sequence<T>, where T could be any type, including dictionary types.

But there is one case where it makes sense to send the data as binary data, through

the use of ArrayBuffers. This is when we want to send a contiguous array of numeric

type, for example, an array of floats.

Sending binary data in that case is efficient for two reasons. The first is the fact you

don’t need to marshal the data into a pp::VarArray type, since the binary buffer can be

sent directly using the pp::VarArrayBuffer class. The second reason is how binary data

is transferred in NaCl. When we send an ArrayBuffer to/from JavaScript, instead of

the data being copied, it is shared. Only when the data is written to does the data

get copied. This makes transferring ArrayBuffers very efficient - instead of O(n) time,

it will probably take O(1) time.

Now, considering the performance gains, if we decide to send and receive contiguous

number arrays as ArrayBuffers, a few questions arise. The first is how will the data

be represented in JavaScript, and whether or not this representation makes sense in

every context. The answer is that in JavaScript, the data will need to be sent and

received as an ArrayBuffer. It’s difficult to do anything with an ArrayBuffer though, so

in JavaScript, a few more classes were made to help with reading buffers of certain

types. These are called ArrayBufferViews. Currently available ArrayBufferViews

are Int8Array, Int16Array, Int32Array, Float32Array, and Float64Array, and also their unsigned

counterparts. These classes allow accessing the data of a buffer as though it was

a normal JavaScript array. So, when we relate these ArrayBufferViews to IDL

types, these make sense for byte, short, long, float, and double WebIDL types.

The long long type will be unsupported, but that is understandable, considering

JavaScript’s number size limitations (as described earlier). In conclusion, the answer

to the first question is “the binary data will be represented in JavaScript as an

appropriate ArrayBufferView, and this representation makes sense for most number

array types”.

The second question is when do we send binary data? To answer the question, we

consider when it’s possible to send arrays of numbers in general:
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• As a parameter

• As a result

• Embedded inside a dictionary or array

We could choose to send and receive binary for all the above scenarios, or some. To

figure out when to send, we need to run some benchmarks to find how much of a

performance improvement it might give.

The third question is how do we accept binary data in C++? The possibilities are

either to accept it as a buffer, or a vector. As discussed earlier, however, accepting it

as a buffer is problematic since we need to provide the length of the array. Luckily,

we can easily and efficiently construct a vector with the same data, by providing a

pointer to the data in the constructor of the vector. When sending it back, we use the

std::vector::data() method to efficiently get a pointer to the buffer, that we can then

use to send.

The fourth and final question we need to ask is how the data is transferred from C++

to JavaScript. The answer is through the pp::VarArrayBuffer interface. But there arises

a problem to do with copying memory. To illustrate the problem, consider how we

plan to send the array buffer:

• In the server stub, the concrete function implementation is called, and the

result - a std::vector of numbers - is returned.

• A pointer to the buffer of the returned data is retrieved std::vector::data().

• The number of elements in the buffer is retrieved using std::vector::size().

• We now want to send the data pointed to by the buffer. To send the data,

we need to use the pp::VarArrayBuffer class. But this will just allocate its own

memory.

• Problem: we already have the std::vector allocating memory to the buffer we

wish to send, but pp::VarArrayBuffer can only be constructed by allocating its own

memory.

One solution would be to copy the memory contents of the vector’s buffer to the

pp::VarArrayBuffer buffer. But this seems like a slow solution.

Another solution is to specify the array length in the IDL file, and pass the result vec-

tor by reference to the function. So, before the function is called, a pp::VarArrayBuffer is
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constructed with the correct number of bytes according to the length of the array. A

pointer to that buffer is retrieved using pp::VarArrayBuffer::map(). The pointer is used to

construct a std::vector. The std::vector is passed by reference to the concrete function

implementation. Instead of the function returning, it returns void but alters the

std::vector. When the function returns, the server stub unmaps the pp::VarArrayBuffer

again and sends it to JavaScript.
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Evaluation

The project has a qualitative evaluation as well as a quantitative evaluation.

The qualitative part is to do with how “developer friendly” the system is, as a whole.

To measure it, we look at the code written by the developer, as well as the learning

curve required to write a complete library from JavaScript to C++.

The quantitative part is to do with the performance characteristics of the RPC library.

To measure it, we measure the average time it takes to do a native computation, the

time spent in the RPC library code, and the time spent in the JavaScript library code.

Therefore, we can calculate roughly how much of an overhead using the library will

impact on the performance.

To study these two characteristics in a real world scenario, we will use two applica-

tions:

• Bullet Physics: A rigid-body physics simulation using the bullet physics [38]

library

• Oniguruma: A regular expression engine written in C++ using the Oniguruma

[39] library.

We also measure the general performance of the framework by the use of micro

benchmarks.

The section gives the results as well as implementation details of both the qualita-

tive and quantitative evaluation of the project. In the end, we analyse the overall

performance and usability of the RPC framework, and compare it to other currently

available methods.

84
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5.1 Performance Testing Environment

To test the framework and applications, we use the following machine specification:

• Processor: 2.3 GHz Intel Core i7 (1 processor, 4 cores)

• Memory: 8GB 1600 MHz DDR3. 256KB L2 cache per core; 6 MB L3 cache

• Graphics: NVIDIA GeForce GT 650M 1024 MB

• OS: Mac OS X 10.9.3

• Google Chrome version: 35.0.1916.153 (Official Build 274914)

• V8 version: 3.25.28.18

• Blink version: 537.36 (@175075)

• PPAPI version: 34

We use Benchmark JS [40] to easily and accurately measure the amount of time taken

to run JavaScript code. Benchmark JS uses high-resolution timers (microsecond

precision) and automatically runs the function we wish to test enough times so that

it returns statistically significant results.

5.2 Application Performance Evaluation

5.2.1 Bullet Physics Performance

The simplest way to measure how well the physics engine performs using Native

Calls RPC is to analyse the frames per second (FPS) for a range of scenes of varying

complexity. We identify what the biggest impact to the FPS is by measuring how

long it takes to make a request and get a response for each frame rendered. We also

measure how long it takes to perform the actual simulation step. Finally, we compare

these measurements with the original implementation, which was implemented using

Native Client Acceleration Modules and tweaked for performance using ArrayBuffers.

5.2.1.1 Setup

To test the implementation, we use seven physics scenes. A screenshot of each scene

is shown in Figure 5.2. Apart from the Jenga scenes, each scene starts with all the

objects falling from the sky and crashing on the ground.
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Figure 5.1: A graphical representation showing the times measured.

We measure three things - the frame rate, the simulation time, and the round trip

time. To measure the frame rate, we simply add to a total of frames requested. A

frame is requested by the browser automatically in order to achieve a frame rate

of 60 frames per second. This is done using the window.requestAnimationFrame API, which

conveniently takes the computation time for rendering and processing the frame into

account. This is why the frame rate drops when the round trip time and simulation

time increases. We measure the total simulation time inside the C++ application

by taking time stamps between and after the simulation step and calculating the

difference. We send it back with the results every time we do the simulation. Finally,

we calculate the round trip time by taking timestamps before and after the RPC call

and taking a difference. We average all this data over a period of one second and

send it to be plotted.

For each second, the average time per frame is calculated. This is the inverse of

frames per second, and we call this period the frame time. During that time, a RPC

request is made and a response is received. We call the period between making

a request and receiving a response the RPC time. We calculate these times and

average them for each second for a period of 20 seconds - the elapsed time. Figure

5.1 shows a visualisation of this terminology.

The graph is plotted in real time in the browser, but we make sure not to use the

same window object - as this will impact JavaScript performance and give us skewed

results. Instead, we send the data to be plotted in a different window - which in

Chrome corresponds to a different process. HighCharts was chosen to quickly and

easily create the realtime graph with very little configuration.

The actual implementation of the RPC library for the physics simulation is discussed

in the qualitative evaluation section 5.4.1 on page 99.
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(a) Jenga 10 (b) Jenga 20

(c) Random Shapes (d) 250 Cubes

(e) 500 Cylinders (f) 1000 Cubes

(g) 2000 Cubes

Figure 5.2: The bullet physics scenes used in the benchmark
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Scene
Time / ms

FPS
Frame RPC Simulation
µ Max Min µ Max Min µ Max Min µ Max Min

A 17 18 16 17 18 16 0.11 0.13 0.10 60 61 55
B 17 18 16 17 18 16 0.35 2.93 0.08 60 61 56
C 17 17 16 17 17 16 0.45 0.90 0.23 60 61 59
D 17 21 16 17 21 16 0.67 1.80 0.20 59 61 48
E 21 23 17 21 24 17 2.46 5.73 1.08 49 58 44
F 39 45 17 38 43 17 10.80 14.56 0.11 25 60 22
G 72 91 34 73 91 34 23.73 41.08 0.91 14 29 11

(a) Using Native Calls

Scene
Time / ms

FPS
Frame RPC Simulation
µ Max Min µ Max Min µ Max Min µ Max Min

A 17 18 16 17 18 16 0.13 0.14 0.12 60 61 55
B 17 18 16 17 18 16 0.38 3.37 0.10 60 61 57
C 17 17 16 17 20 16 0.60 0.93 0.27 60 61 59
D 17 19 16 17 20 17 1.14 1.87 0.22 60 61 52
E 17 18 16 17 26 16 2.64 5.82 0.97 60 61 55
F 19 21 17 19 24 17 12.06 15.49 1.09 53 59 48
G 35 40 17 35 42 18 30.77 37.93 8.86 29 58 25

(b) Using NaClAM

Table 5.1: Time measurements for the bullet physics demo, using different imple-
mentations

5.2.1.2 Results and comparison

Table 5.1 shows the results of the measurements taken during the simulation every

second, over a duration of 20 seconds. Figure 5.2 shows which scene corresponds

to which capital letter (for example, scene ‘E’ is referring to the simulation of 500

cylinders).

Because the simulation is affected by time, the table shows the range of values taken

for each measurement.

We can see that scenes A, B, C, D, and E have roughly similar results for both

implementations. Scenes F and G show some more interesting results. Figures

5.3, 5.4, and 5.5 show some plots showing how the simulation time and frame time

change per second for scenes E, F and G respectively, using the Native Calls and

NaClAM implementations.
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Figure 5.3: The mean processing times per second over a period of 20 seconds, for
Scene E: 500 cylinders. The two graphs show the results using the same scene but

different implementations.
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Figure 5.4: The mean processing times per second over a period of 20 seconds, for
Scene F: 1000 cubes.
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Figure 5.5: The mean processing times per second over a period of 20 seconds, for
Scene G: 2000 cubes.
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5.2.1.3 Analysis

From the graphs and tables, we can obviously see how the performance impact of

our framework gets higher and higher with more and more objects being sent. We

can see how for large scenes such as 2000 cubes, the Native Calls implementation

performs almost two times worse than the NaClAM implementation. However for

smaller scenes, the two implementations have very similar performance.

From the graphs we can see how the Native Calls framework contributes to the

performance impact. For example, in Figure 5.5, the large space between the

physics simulation time line and the RPC round trip time line is an indication that the

framework is doing most of the processing in the RPC call, not the simulation. When

we compare this to the NaClAM version in the same figure, it is clear that most of

the processing happens in the physics simulation.

The most likely reason for these two observations is that the data marshalling

on the C++ Native Calls RPC framework implementation negatively impacts the

performance. In our implementation, the data is processed in O(n) time in order

to convert the received pp::VarArray array of objects into a std::vector of structs. In

section 5.3 (page 94), we find that converting WebIDL dictionaries is also quite slow,

compared to converting an array of numbers. When we compare this to the NaClAM

implementation, we can see that the NaClAM version has almost O(1) time, since the

data is only being read and is shared between the module and JavaScript. This is

explained in section 3.1 on page 27.

5.2.2 Oniguruma Regular Expressions Performance

To get an insight of the performance of the oniguruma library for Native Client using

Native Calls, we shall count the number of regular expression matches. We compare

this to running the engine in Node JS server natively, and then using WebSockets to

get functionality in the browser.

5.2.2.1 Setup

Again, the actual implementation of the library is discussed later on in the evaluation,

in section 5.4.2 on page 99. In this section, we discuss how we measure the time it

took to find all matches.

For the benchmark, we searched a large code base. We took part of the jQuery

implementation in JavaScript and stored it in a string. We then performed regular
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expression searches on that string. The search string was 3467 characters. We split

it into lines. For each line, we found all instances of "this", "var", "selector", and "window"

using regular expressions. In total, there was 237 matches, and each implementation

gave the correct output. However, we measured the amount of time it took to find all

these matches.

For the browser implementations (Native Calls and web sockets), we measure it using

BenchmarkJS, to get an accurate running time, and a relative error margin. Using

BenchmarkJS, we measured the time it took from initiating a request to receiving a

response. BenchmarkJS performed the tests hundreds of times to get an accurate

running time.

For the server implementation (using node.js natively on the server), we simply timed

and performed all the searches 1000 times and got the mean of the running time.

5.2.2.2 Results and comparison

Table 5.2 shows the results of running the benchmark application using Native Calls

RPC and node-oniguruma.

Method Time Taken / s
Native Calls 0.709 ±0.47%
node-oniguruma with web sockets 0.375 ±0.32%
node-oniguruma (native) 0.045

Table 5.2: A comparison of the time taken to find all matches of a regular expression
using different implementations

5.2.2.3 Analysis

We can see that the node-oniguruma version performs much better. This is due to a

number of reasons:

• The node-oniguruma implementation is native, in the sense that it uses JavaScript

types directly. No marshalling nor transfer happens.

• The node.js V8 engine usually performs better than V8 in Chrome, as it is

optimised for server side performance.

• The web socket implementation has a very simple runtime on both client and

server sides. No error checking, type checking, etc. happens.

• Strings are the slowest primitive types to marshal, send and de-marshal in

Native Calls. See section 5.3 for details.
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5.3 Framework Performance Evaluation

We used the IDL file shown in Listing 5.1 to test transfer and processing performance

of individual operations:

dictionary dict {

DOMString str;

double d;

boolean b;

};

dictionary nestedDict {

DOMString topStr;

double topD;

boolean topB;

dict nested;

};

interface Benchmark{

long bench_long(long v);

double bench_double(double v);

DOMString bench_DOMString(DOMString v);

dict bench_dict(dict v);

nestedDict bench_nestedDict(nestedDict v);

sequence<long> bench_seq_long(sequence<long> v);

sequence<double> bench_seq_double(sequence<double> v);

sequence<DOMString> bench_seq_DOMString(sequence<DOMString> v);

sequence<dict> bench_seq_dict(sequence<dict> v);

sequence<nestedDict> bench_seq_nestedDict(sequence<nestedDict> v);

};

Listing 5.1: WebIDL file used for benchmarking

We will use the generated RPC library to test the framework’s performance. We will

do this by making RPC calls and measuring how long it takes.

5.3.1 Round trip performance

We measure the number of round trips performed in one second (round trips per

second, RT/s).

One round trip corresponds to a full remote procedure call, starting from JavaScript,

reaching the target function, returning from the function, and going back to the

JavaScript. This is illustrated in Figure 5.6.
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Figure 5.6: A depiction of the round trip time from JavaScript to C++

Type Mean RT/s Uncertainty Number of runs
long 418 ±1.79% 56
double 423 ±2.08% 48
DOMString 420 ±1.25% 43
dict 415 ±2.39% 44
nestedDict 385 ±1.29% 47

Table 5.3: Round trip performance of sending a single parameter

Array Length
Round trips per second
long double DOMString dict nestedDict

10 403 403 378 317 244
45 379 384 309 182 112
100 354 347 234 110 60.07
450 237 235 102 32.82 15.83
1000 163 160 55.41 15.39 7.43
4500 49.39 48.93 14.60 3.62 1.68
10000 24.68 24.50 6.62 1.62 0.75
45000 5.99 5.98 1.28 0.33 0.15

Table 5.4: Round trip performance for arrays of different lengths and types

Tables 5.4 and 5.3 show the number of round trips performed in a second for RPC

calls with a single parameter and different array lengths. To compare these times,

Figure 5.7 shows a column chart visualisation of the data.

5.3.2 C++ Library Time

We measure the number of microseconds taken to handle a RPC call. This is the

time it takes to detect it is an RPC call, extract parameters, convert them, find the

method, call it, pack the result, and post the message back to JS.
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The results are measured and averaged for the same runs that were performed above.

Tables 5.5 and 5.6 show the results, and Figure 5.8 shows a visualisation of the data.

Type Mean lib time/µs Uncertainty (1 sd)
long 106 18
double 104 17
DOMString 104 18
dict 136 23
nestedDict 180 28

Table 5.5: Mean C++ library time for sending and receiving single parameters of
different types

Array Length
Time / µs
long double DOMSTring dict nestedDict

10 125 126 197 453 861
45 169 163 484 1513 3273
100 243 246 906 3445 7010
450 705 704 3735 13629 28198
1000 1276 1355 7607 29582 63494
4500 5548 5564 30485 132122 292828
10000 11283 11376 68444 301438 632956
45000 50532 50843 359134 1418792 3242286
100000 104087 114020 799743 3319250 7347985

Table 5.6: Mean C++ library time for sending and receiving arrays of different
lengths and types

5.3.3 JS Library performance

The JS library performance without client-side type validation has also been mea-

sured, however its performance impact is negligible. The slowest benchmark was

found to take approx 3 microseconds (269,253 ops/sec ± 1.90%).

5.3.4 Analysis

From the data, we can see that for small types, the most contributing factor to

performance is the browser (e.g. event system, etc.) and PPAPI libraries (how PPAPI

implements postMessage). For example, sending a single long type takes 2392.34

microseconds (.002 seconds), but our library only spends 105.5 microseconds pro-

cessing the call (less than 5% of the time).

For large and complicated data, the impact of using the library becomes higher and

higher. For example, sending 45000 nested objects (which are actually quite simple)
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has a total round-trip time of 6.67s, and a whole 3.24 seconds of this is spent in our

library (i.e. half the time).

The most likely reason for this is that the C++ library takes O(n) time to process the

data in order to marshal it, by converting it from a pp::VarArray into a std::vector.

We also notice that the DOMString and Dictionary types are the slowest to marshal

and de-marshal. One reason for this could be that number types have a standard

representation so perhaps the PPAPI was able to improve how they are transferred,

whilst the string types and dictionary types would need marshalling even by the

PPAPI. One obvious reason for why the dictionary types take longer to marshal is

that they contain multiple types, each type is individually marshalled. So sending

a dictionary with multiple keys and values is almost equivalent to sending multiple

values separately.
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5.4 Usability Evaluation

To get some insight as to how usable and useful the library and generator is, we

analyse the number of lines the developer would need to write to build the same

application. We take a look at two different applications: a bullet physics simulation

which uses the C++ module to calculate simulation steps, and a regular expression

library which uses a native module to do execute regular expressions. The table

below shows how many lines the developer had to write to achieve the same program.

5.4.1 Implementation: Bullet

We use the IDL shown in Listing 5.2 as our interface. This allows us to send normal

JavaScript objects to the C++ implementation, and in C++, the dictionaries are

automatically marshalled as structs.

The rest of the implementation is taken from the original implementation. This is

basically a static object which holds all the information about the scene, allows

loading a scene, and calculates simulation steps, all using the Bullet Physics library.

5.4.2 Implementation: Oniguruma

We use the IDL shown in Listing 5.3. Again, the rest of the implementation is taken

from the node-oniguruma original project. There is a critical difference though, which

is to do with the object-oriented nature of the regular expressions. To implement

this, we have a static map of Scanner ids to C++ references to Scanner objects. RPC

requests call the C++ class methods, using the id to to get the actual instance. An

example of how this works is shown in the C++ Listing 5.4.
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dictionary XYZ{

float x;

float y;

float z;

};

dictionary Cube{

DOMString name;

float wx;

float wy;

float wz;

};

dictionary Convex{

DOMString name;

sequence<XYZ> points;

};

// Sphere, Cylinder, and Body defined similarly.

dictionary Scene{

sequence<Cube> cubes;

sequence<Convex> convices;

sequence<Sphere> spheres;

sequence<Cylinder> cylinders;

sequence<Body> bodies;

};

dictionary SceneUpdate{

sequence<float> transform;

unsigned long long delta;

};

interface BulletInterface {

double LoadScene(Scene scene);

SceneUpdate StepScene(XYZ rayTo, XYZ rayFrom);

boolean PickObject(double index, XYZ pos, XYZ cpos);

boolean DropObject();

};

Listing 5.2: WebIDL for Bullet
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dictionary CaptureIndex{

unsigned long start;

unsigned long end;

unsigned long length;

unsigned long index;

};

dictionary OnigMatch{

unsigned long index;

sequence<CaptureIndex> captureIndices;

};

interface Scanner{

unsigned long newScanner(sequence<DOMString> patterns);

OnigMatch findNextMatch(unsigned long scannerID, DOMString string,

unsigned long startPosition);

};

Listing 5.3: WebIDL for the Oniguruma implementation

uint32_t newScanner( std::vector<std::string> patterns){

return OnigScanner::newInstance(patterns);

}

OnigMatch findNextMatch( uint32_t scannerID, std::string string,

uint32_t startPosition){

OnigScanner* scanner = OnigScanner::getInstance(scannerID);

return scanner->findNextMatch(string, startPosition);

}

Listing 5.4: Wrapping C++ instance methods with RPC functions, in the Oniguruma

implementation
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5.4.3 Results: Bullet

Line count Original Native Calls Difference
C++ 404 331 73
JS 979 811 168
IDL 0 54 -54
Total 1383 1196 187

Table 5.7: The number of lines of code needed to write the Bullet demo

Table 5.7 shows the number of lines that the developer would have to write to

implement the bullet physics simulation, based on the original implementation.

We can see a total of 187 lines were saved by using the Native Calls library and

generators. In the C++ code, most of these differences occurred because the

NaClAM version required the user to marshal and de-marshal the messages manually.

For example, Listings 5.5 and 5.6 shows how both implementations handle the

PickObject RPC call.

bool PickObject(double index, XYZ pos, XYZ cpos) {

if (!bulletScene.dynamicsWorld) {

return false;

}

index++;

if (index < 0 ||

index >= bulletScene.dynamicsWorld->getNumCollisionObjects()) {

bulletScene.pickedObjectIndex = -1;

return false;

}

bulletScene.pickedObjectIndex = index;

bulletScene.addPickingConstraint(btVector3(cpos.x, cpos.y, cpos.z),

btVector3(pos.x, pos.y, pos.z));

return true;

}

Listing 5.5: Native Calls Implementation of PickObject
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void handlePickObject(const NaClAMMessage& message) {

if (!scene.dynamicsWorld) {

return;

}

const Json::Value& root = message.headerRoot;

const Json::Value& args = root["args"];

const Json::Value& objectTableIndex = args["index"];

const Json::Value& pos = args["pos"];

const Json::Value& cpos = args["cpos"];

float x = pos[0].asFloat();

float y = pos[1].asFloat();

float z = pos[2].asFloat();

float cx = cpos[0].asFloat();

float cy = cpos[1].asFloat();

float cz = cpos[2].asFloat();

int index = objectTableIndex.asInt();

index++;

if (index < 0 ||

index >= scene.dynamicsWorld->getNumCollisionObjects()) {

scene.pickedObjectIndex = -1;

return;

}

scene.pickedObjectIndex = index;

scene.addPickingConstraint(btVector3(cx, cy, cz), btVector3(x,y,z));

NaClAMPrintf("Picked \%d\n", scene.pickedObjectIndex);

}

Listing 5.6: NaClAM implementation of PickObject

In the JavaScript code, most of the lines saved were type checking code and separate

functions for the RPC calls and handlers. For example, the whole of world.js (140

lines) is type checking code similar to Listing 5.7. Notice how this doesn’t even

check the actual types, it just checks if the fields are defined. On the other hand,

the generated Native Calls library produces full, structure recursive, convenient

type checking without extra effort from the developer. Listing 5.8 shows an example

of how separate handlers had to be written for the NaClAM implementation, while

Listing 5.9 shows how the same effect is achieved by the use of callbacks.
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function verifyCubeDescription(shape) {

if (shape['wx'] == undefined) {

return false;

}

if (shape['wy'] == undefined) {

return false;

}

if (shape['wz'] == undefined) {

return false;

}

return true;

}

Listing 5.7: NaClAM implementation’s JavaScript type checking example

// somewhere in scene.js...

function loadWorld(worldDescription) {

clearWorld();

//... some JS implementation

NaClAMBulletLoadScene(worldDescription); // RPC request

lastSceneDescription = worldDescription;

}

// somewhere in NaClAMBullet.js...

function NaClAMBulletInit() {

aM.addEventListener('sceneloaded', NaClAMBulletSceneLoadedHandler);

// other handlers

}

function NaClAMBulletLoadScene(sceneDescription) {

aM.sendMessage('loadscene', sceneDescription);

}

function NaClAMBulletSceneLoadedHandler(msg) {

console.log('Scene loaded.');

console.log('Scene object count = ' + msg.header.sceneobjectcount);

}

Listing 5.8: NaClAM implementation of requests and response handlers
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function loadWorld(worldDescription, callback ) {

clearWorld();

//... some JS implementation

bullet.BulletInterface.LoadScene(rpcScene, function(result){

console.log("Scene loaded "+ result);

if(callback)callback();

});

lastSceneDescription = worldDescription;

}

Listing 5.9: Native Calls Implementation of requests and response handlers

We can see that for both the JavaScript and C++ developer, using Native Calls saves

a lot of time. The examples also show how the developer does not need to get used

to another paradigm (i.e. using listeners, requests, and handlers) or library (i.e.

JsonCpp). Instead, using Native Calls, the developer on both JavaScript and C++

can focus on the main logic of the actual native module!

5.4.4 Results: Oniguruma

Line count Original Native Calls Difference
C++ 666 601 65
JS 100 134 -34
IDL 0 15 -15
Total 766 750 16

Table 5.8: The number of lines of code needed to write the Oniguruma library

Table 5.8 shows the number of lines that the developer would have to write to

implement the Oniguruma library, based on the original implementation. Note: the

original implementation used CoffeeScript, we used the CoffeeScript compiler to get

the equivalent JavaScript code. The generated JavaScript code is what is counted -

and although it is computer generated, it maps directly to human-readable JavaScript

that would have been written. We consider this fair when we compare the number

of lines, as CoffeeScript introduces a lot of syntax sugar which can greatly reduce

the number of lines in JavaScript. The number of CoffeeScript lines in the original

implementation is 51.

We can see that only a few number of lines are saved in the Oniguruma implementa-

tion. This is because of the fact that Native Calls does not currently support object

oriented RPC. The JavaScript developer lost quite a few lines because of this. We

needed to create a class that makes the RPC calls and keeps references to objects

in the C++ code. Listing 5.10 shows this. The _whenScannerReady member function
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allows calling different RPC functions with a scannerID. Scanners are instantiated

dynamically in the C++ using the newScanner RPC call. All member functions then take

in an extra parameter, the ID, which is used to find the instance in the C++ code. We

compare this to the node-oniguruma implementation. Here, the C++ implementation

extends JavaScript, so a C++ object corresponds directly to a JavaScript object. This

is explained in the related work section 3.2 on page 29.

function OnigScanner(sources){

this.ready = false;

this.scannerID = -1;

this.sources = sources;

this.scanner = scanner; // the RPC interface

}

OnigScanner.prototype._whenScannerReady = function(callback){

var thisRef = this;

if(this.ready){

// call straightaway.

if(typeof callback == "function"){

callback.apply(this);

}

} else {

// new scanner then call. does RPC request

this.scanner.newScanner(this.sources, function(scannerID){

thisRef.ready = true;

thisRef.scannerID = scannerID;

if(typeof callback == "function"){

callback.apply(thisRef);

}

});

}

};

OnigScanner.prototype.findNextMatch = function(string, startPosition,

callback) {

this._whenScannerReady(function(){

var thisRef = this;

// RPC with scannerID which is used to find the C++ instance

this.scanner.findNextMatch(this.scannerID, string, startPosition,

function(match){

if(match.captureIndices.length == 0){

match = null;

}

if(match != null){

match.scanner = thisRef;

}

if(typeof callback == "function"){

callback(match);

}

});

});

};

Listing 5.10: Augmenting RPC: Wrapping RPC methods with a JS class
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5.5 Evaluation Conclusion

After looking at two different applications, we can see that for static or singleton-

based applications, such as the bullet physics application, the Native Calls library

and generators saves a lot of development time and provides a natural, straight

forward method of implementing a C++ library usable from JavaScript. However,

for object oriented applications, we find that the JavaScript and C++ developer must

think about implementing low level details such as instance look up in order to give

a object oriented RPC system.

As for performance, we find that the performance impact is negligible for RPC calls

with little data. The impact increases with increasing data size.

This makes using Native Calls perfect for singleton-based applications which send

and receive little data, while a trade-off must be made for object-oriented applications

or applications that send and receive large data.



Chapter 6

Conclusion

In this project, we have provided a solution for writing high performance JavaScript

applications that use a C++ Native Client modules, in a way that is natural to both

the JavaScript developer and C++ developer. To do this, we provide a code generator

that produces C++ and JavaScript code in a package that the C++ developer can

change and tweak for performance and feature extension. The C++ developer

will have to write an interface in WebIDL, then the generator will produce all the

boiler-plate code for both JavaScript and C++.

The main challenges were how to map WebIDL types and interfaces to C++ and

JavaScript language features, and using a parser to produce human readable

JavaScript and C++ code. Other challenges included using PostMessage as a trans-

port layer for a layered RPC framework on both JavaScript and C++, as well as

creating a testing framework and a build system based on the Native Client examples

to efficiently build and test C++ Native Client modules in the browser.

In the end, we developed the generator and framework and wrote demo applications

to test its usability and performance. We concluded that the framework performed

well when little data is passed to the RPC functions, however, had a larger perfor-

mance impact when large amounts of data are sent and received. We found that

the code generator saved a lot of development time when compared to previous

methods of implementing the same application, but developing object oriented RPC

functionality required some more time.
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6.1 Future Work

• Provide C++ to JavaScript RPC. Whilst we originally set out to provide a multi-

directional RPC framework, because of time constraints this was not possible

and only JavaScript to C++ RPC was implemented. However, implementing

RPC in the other direction is symmetrical in most cases, as several layers

including transport and RPC will remain the same.

• Improve performance by sending binary data when we can. In section 4.6 on

page 81, we mentioned some design considerations and possible implementa-

tion of sending binary data when an array of contiguous number types are sent.

This will greatly improve performance since binary data is shared between

JavaScript and C++.

• Experiment with different RPC protocols and data types, such as Google Proto-

col Buffers to see if a performance improvement can be achieved. Because of

our layered approach to RPC, this should be feasible and could provide some

interesting results.

• Improve performance by allowing the RPC framework to spawn a new thread

per request, thus allowing concurrent RPC calls.

• Object oriented generated code. For the evaluation, we showed how it is

possible to create an object oriented RPC library by wrapping the RPC calls in

JavaScript classes which hold a C++ instance identifier. One future extension

to the project would be to allow these classes to be generated automatically.

• Produce a JavaScript fall-back when Native Client is not supported in the

browser. This can be done using PepperJS [41], a library by Google that

uses emscripten [42] to transpile machine code produced by the Native Client

compilers, into JavaScript code.
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