
Department of Computing
Imperial College London

MEng Individual Project

A Model Checker for Strategy Logic

Author:
Petr Čermák

Supervisor:
Prof. Alessio R. Lomuscio

June 2014

Abstract

There is a gap between game theory and practical model checking. Although logics for expressing game-
theoretic concepts like Nash equilibria, notably Strategy Logic (Sl), have been put forward recently, there
are currently no tools supporting them. This report documents the design of the first practical model
checking algorithms for two fragments of Sl and their symbolic implementation using binary decision
diagrams. We explain how we incorporated both algorithms in the existing model checker MCMAS and
added support for strategy synthesis. We evaluate the performance of the algorithms on several scalable
scenarios and compare it with the original tool. Our results demonstrate that Sl model checking is
feasible in practice despite its high computational complexity.

Acknowledgements

I would like to thank:

• Professor Alessio Lomuscio for his invaluable guidance throughout the whole project,

• Professor Aniello Murano and Dr. Fabio Mogavero for their feedback on the algorithms and their
help with finding scalable scenarios for evaluation,

• the Department of Computing for funding my trips to the 2nd International Workshop on Strategic
Reasoning and the 26thInternational Conference on Computer Aided Verification,

• my family and friends, who have always been there for me, and

• my girlfriend Klára for her love and support.

Contents

1 Introduction 11

1.1 Objectives . 12

1.2 Challenges . 13

1.3 Contributions . 13

1.4 Published Work . 14

2 Background 15

2.1 Frameworks for Modelling Systems . 15

2.1.1 Kripke Models . 15

2.1.2 Concurrent Game Structures . 16

2.1.3 Interpreted Systems . 17

2.2 Specification Languages . 18

2.2.1 Linear Temporal Logic . 18

2.2.2 Computation Tree Logic . 20

2.2.3 Full Branching Time Logic . 22

2.2.4 Alternating-Time Temporal Logic . 24

2.2.5 Strategy Logic . 26

2.2.6 Epistemic modalities . 29

2.2.7 Model Checking Complexity . 31

2.2.8 Summary . 31

2.3 Verification Methods . 32

2.3.1 Binary Decision Diagrams . 32

2.3.2 Symbolic Model Checking . 34

2.3.3 Summary . 36

2.4 Automata and Games . 36

2.4.1 ω-Automata . 36

2.4.2 Symbolically Represented ω-Automata . 38

2.4.3 Translating Ltl Formulas to ω-automata . 39

2.4.4 Determinisation . 42

2.4.5 Games . 49

2.4.6 Summary . 56

2.5 Existing Tools . 56

2.5.1 MCK . 56

2.5.2 MCMAS . 56

2.5.3 Mocha . 57

2.5.4 NuSMV . 57

2.5.5 PRISM . 57

2.5.6 VerICS . 58

2.6 Summary . 59

8 Contents

3 Fragment Selection 61

3.1 Imperfect Recall . 62

3.2 Complete Information . 62

3.3 Toy Model . 63

3.3.1 Formal Definition . 64

3.3.2 Symbolic Implementation . 64

3.4 Summary . 66

4 Epistemic Strategy Logic 67

4.1 Logic . 67

4.1.1 Syntax . 67

4.1.2 Basic Concepts . 68

4.1.3 Semantics . 68

4.1.4 Comparison with Strategy Logic . 70

4.1.5 Limitations . 71

4.2 Model Checking . 72

4.2.1 Complexity . 72

4.2.2 Algorithm . 73

4.2.3 Strategy Synthesis . 76

4.2.4 Symbolic Implementation . 79

4.3 Summary . 83

5 One-Goal Strategy Logic 85

5.1 Logic . 85

5.2 Model Checking . 86

5.2.1 Algorithm . 87

5.2.2 Complexity . 97

5.2.3 Strategy Synthesis . 98

5.2.4 Symbolic Implementation . 102

5.2.5 Separate Determinisation . 107

5.3 Summary . 109

6 Implementation 111

6.1 Existing Tool . 111

6.1.1 Functionality . 111

6.1.2 Usage . 112

6.1.3 Architecture . 115

6.2 Epistemic Strategy Logic Extension . 117

6.2.1 Functionality . 118

6.2.2 Usage . 118

6.2.3 Architecture . 120

6.3 One-Goal Strategy Logic Extension . 123

6.3.1 Functionality . 123

6.3.2 Usage . 124

6.3.3 Architecture . 130

6.4 Experimental Results . 133

6.4.1 Dining Cryptographers . 133

6.4.2 Cake Cutting . 134

6.4.3 Scheduler . 140

6.4.4 Nim . 143

6.4.5 Analysis . 145

6.5 Summary . 147

Contents 9

7 Evaluation 149
7.1 Theory . 149

7.1.1 Strengths . 150
7.1.2 Weaknesses . 150

7.2 Implementation . 151
7.2.1 Strengths . 151
7.2.2 Weaknesses . 152

7.3 Fragment Comparison . 153
7.4 Summary . 155

8 Conclusions 157
8.1 Summary of Work . 157
8.2 Future Work . 158

Bibliography 161

A Toy Model ISPL Code 167

10 Contents

Chapter 1

Introduction

Computer systems have an ever-increasing presence in our everyday lives. We rely on them in almost all
activities both at work and during our free time. It will probably not be long until we meet driverless
cars on the road and receive deliveries from unmanned quadcopters [19,24]. It seems that more and more
decisions in the future will be made by computers without any human intervention. Yet computers are
infamous for their frequent faults. Each of us has witnessed freezing applications countless times. While
the usual type of damage caused by a computer bug today is the loss of several hours of unsaved work,
autonomous system failures in the future might result in thousands of deaths in the blink of an eye.
The six accidents caused by massive radiation overdoses by the Therac-25 medical electron accelerator
between 1985 and 1987 remind us that such scenarios are not science fiction [59]. It should be clear that
safety-critical systems need to be verified before being deployed in order to avoid loss of life and money.
Fortunately, formal verification is now finally becoming the norm in many areas including processor
design [53].

Model-checking is a popular approach to systems verification [62]. It entails translating the system
and the property to be verified to a model M and a formula ϕ respectively and then checking that the
model satisfies the formula, i.e. thatM |= ϕ holds. This approach can be applied in many areas including
reactive systems, which never terminate, by modelling them as multi-agent systems, in which agents with
local states interact with each other via synchronous actions. Various frameworks for modelling such
systems are discussed in Section 2.1.

Several temporal logics for specifying system properties have been proposed, including Linear Tem-
poral Logic (Ltl) [80], Computation Tree Logic (Ctl) [33], and Full Branching Time Logic (Ctl*) [37].
More recently, Alternating-Time Logic (Atl) and Full Alternating-Time Logic (Atl*) [18] were intro-
duced. Atl and Atl* are often more suitable for multi-agent systems since their operators refer to
properties achievable by given groups of agents. Intuitively, an Atl formula 〈〈{α, β}〉〉ϕ expresses that
“agents α and β can together enforce ϕ”. A detailed discussion of these logics can be found in Section 2.2.
All of them except Atl*, which has a high model checking complexity, are now supported by multiple
toolkits (see Section 2.5).

However, neither Atl nor Atl* syntax refers to strategies directly. Hence, the logics cannot express
properties such as “agents α and β can enforce ϕ while sharing the same strategy”. A new formalism,
Strategy Logic (Sl), which treats strategies explicitly via first-order quantifiers 〈〈x〉〉 , [[x]] and agent bind-
ing (a, x), has thus been introduced in [76]. Sl strictly subsumes all logics in the Atl* hierarchy and
can express game-theoretic concepts like Nash Equilibria. The aforementioned property, inexpressible
in Atl*, can be written in Sl as 〈〈x〉〉(α, x)(β, x)ϕ. However, the price for the large expressiveness of
Sl includes NonElementarySpace-hard model checking complexity [72], undecidability of satisfiabil-
ity [77], and non-behavioural strategies [75]. We are not aware of any existing model checker that would
support Sl.

In order to avoid the problems associated with full Sl, several syntactic fragments have been pro-
posed [72]. The least expressive subset, One-Goal Strategy Logic (Sl[1g]), has the same model checking
complexity as Atl*, namely 2ExpTime-complete with respect to the size of the formula, while still
strictly subsuming it. Moreover, Sl[1g] strategies are behavioural and can therefore be synthesised [75].
We have designed a novel model checking algorithm for Sl[1g] by reducing the problem to solving a
two-player parity game. Our algorithm, presented in Chapter 5, admits an efficient symbolic implemen-

12 Chapter 1. Introduction

tation and supports general strategy synthesis. Moreover, we prove that it is correct and has optimal
worst-case time complexity.

We introduce and investigate another variant of Sl, Epistemic Strategy Logic, or Strategy Logic
with Knowledge (Slk). Unlike Sl and Sl[1g], we define Slk on strategies with imperfect recall (i.e.
memoryless strategies where an agent’s action is determined only by its current local state) and supports
epistemic modalities expressing agents’ knowledge. We show that the theoretical complexity of Slk
model checking is PSpace with respect to both the size of the model and the formula. We then provide
an efficient model checking algorithm for Slk which can be implemented symbolically and supports
witness/counterexample strategy synthesis. We also prove that it is correct. Both the logic and the
algorithm are discussed in Chapter 4.

MCMAS is a BDD-based model checker for the verification of multi-agent systems developed at
Imperial College London [63]. The specification languages it currently supports include Ctl and Atl
with epistemic and deontic modalities. MCMAS and other existing model checking tools are discussed
in Section 2.5. Various verification methods including BDDs are explained in Section 2.3.

We implemented the novel model checking algorithms for both Slk and Sl[1g] as extensions for MC-
MAS and thereby extended the set of logics it supports. Both extensions support witness/counterexample
strategy synthesis and the Sl[1g] extension also supports general strategy synthesis. An overview of the
existing MCMAS architecture as well as the usage and implementation of our algorithms is provided in
Chapter 6. The experimental results we obtained using our extensions are presented in Section 6.4.

1.1 Objectives

Our goal was to implement the first model checker for Sl. We believed that it would be a very important
milestone for the development of Sl. It would demonstrate the potential of the logic, provide a solid
baseline for future research, and promote the synergy of systems verification and game theory. In order
to achieve this, our objectives were to:

1. Research Sl and its fragments. Sl is a relatively new formalism for specifying properties in
systems verification introduced in 2010 [76]. The first aim of this project was therefore to research
Sl as well as its syntactic fragments in order to have a good understanding of its expressiveness,
complexity, decidability, and other properties. In other words, it was necessary to obtain basic
knowledge of the research area to be able to set challenging yet achievable objectives for the
project.

2. Design an efficient model checking algorithm. The main aim of this project was to come up
with a model checking algorithm for Sl or some of its variants. While theoretical automata-based
model checking procedures have been proposed [72], it is important to design novel algorithms
which use efficient data structures (e.g. binary decision diagrams discussed in Subsection 2.3.1) in
order to reduce the effects of the high computational complexity of the problem.

3. Implement the algorithm as a tool. The next objective was to create a tool implementing the
model checking algorithm we designed. The implementation of the algorithm had to be robust,
efficient, and user-friendly. Moreover, the source code had to have a good design and appropriate
documentation as we intended to release it as open source.

A standalone tool would have to support the whole verification framework including a modelling
language parser, state space encoding, reachability calculation, etc. In order to avoid “reinventing
the wheel”, we could extend an existing tool instead (several existing tools are presented in Sec-
tion 2.5). This would give us more time to add more functionality and/or optimise the performance
of the algorithm.

4. Support strategy synthesis. In addition to model checking, i.e. determining whether a given
specification is true or false, we also wanted to synthesise the corresponding strategies for the agents.
These strategies would provide us with a deeper insight into why a particular formula holds or does
not hold. More importantly, strategy synthesis would make our tool much more useful as it would
allow users to underspecify the agents’ behaviour and have it automatically generated.

1.2. Challenges 13

1.2 Challenges

Overall, the project was very challenging due to its novelty. The work entailed transforming high-level
theoretical concepts into low-level programming code with almost no prior experience in the field. The
biggest challenges encountered throughout the project were:

1. No existing algorithms. While there has been a lot of focus on the theoretical aspects of Sl
in the past few years [72, 73, 75, 76], no practical model checking algorithm has been proposed or
implemented for either Sl or any of its fragments so far. In fact, we are not aware of any existing
tool that would support Atl*, which was introduced in 2002 [18] and is strictly subsumed even by
the least expressive fragment of Sl. Therefore, it was very difficult to find any starting points for
our research into model checking algorithms.

2. Undecidability. Sl is a very powerful formalism for expressing complex properties of multi-agent
systems. While this is desirable from the user’s perspective, it makes designing and implementing
efficient algorithms for handling the logic very difficult. Moreover, certain problems are impossible
to solve due to undecidability. Unfortunately, this was the case when we considered adding incom-
plete information to the original Sl, as described in Chapter 3. In order to achieve decidability,
we had to consider less expressive variants of Sl instead.

3. Complexity. The high model checking complexity of Sl has a severe impact on performance.
Firstly, the number of temporal operators within a formula we can handle is limited since both
Slk and Sl[1g] have high complexity with respect to the size of the formula, namely PSpace
and 2ExpTime-complete. However, it turned out that that the PSpace complexity of Slk with
respect to the size of the model is an even bigger problem, rendering Slk model checking feasible
only for very small state spaces in certain scenarios (see Section 6.4).

4. Existing codebase. MCMAS is one of the leading model checkers (see Subsection 2.5.2). However,
despite being developed as open source, it is very badly designed from a software engineering point
of view. The problems include a complete lack of testing, violation of OOP principles, frequent
usage of global variables, and inconsistent code style. The tightly coupled code design made it very
difficult for us to test our new functionality. Unfortunately, the lack of testing makes refactoring
existing code very frustrating. In our opinion, the tool has outlived its original purpose and should
be rewritten from scratch.

1.3 Contributions

We have designed and implemented model checking algorithms for two fragments of Sl. We believe this
is an important contribution to the research area, as our tool is the first model checker to support Sl or
any of its subsets. Throughout this project, we have developed:

1. New Sl fragment. We introduced a new fragment of Sl called Epistemic Strategy Logic or
Strategy Logic with Knowledge (Slk). Unlike Sl, Slk is defined with respect to imperfect recall
semantics (i.e. agents have no memory of the past) and supports epistemic modalities expressing
agents’ knowledge (see Subsection 2.2.6). Hence, Slk specifications can represent complex game-
theoretic concepts like Nash equilibria under incomplete information.

We give the syntax and semantics of Slk. We also discuss its limitations and prove that the Slk
model checking problem belongs to the PSpace complexity class with respect to both the size of
the model and the formula (see Subsection 4.2.1).

Section 4.1 provides a detailed description of Slk.

2. Model checking algorithm for Slk. We have designed a novel model checking algorithm for Slk
which has worst-case exponential time complexity both in the size of the model and the formula.
We prove its correctness and provide an efficient symbolic encoding of it using binary decision
diagrams (see Subsections 2.3.1 and 2.3.2). In addition, we explain how the algorithm (and its
symbolic encoding) can be used for the purposes of witness/counterexample strategy synthesis.

Section 4.2 provides a detailed description of the algorithm and its symbolic representation.

14 Chapter 1. Introduction

3. Model checking algorithm for Sl[1g]. We describe a novel algorithm which reduces the model
checking problem for Sl[1g] to the problem of solving two-player parity games. Moreover, we prove
its correctness, show that it is optimal, and explain how it can be used to synthesise strategies for
arbitrary Sl[1g] formulas. Again, we also provide an efficient symbolic encoding of the algorithm.

We believe that this is the biggest achievement of the project as Sl[1g] subsumes Atl*, which
(as already mentioned in Section 1.2) was introduced in 2002 [18] but, as far as we know, has no
practical implementation yet. Since Atl* has the same model checking complexity as Sl[1g], our
algorithm is also optimal for it.

Chapter 5 provides a detailed description of Sl[1g], the algorithm, and its symbolic representation.

4. Implementation of both algorithms. We have extended the functionality of the MCMAS
model checker (discussed in Subsection 2.5.2) with support for both Slk and Sl[1g]. We also
implemented strategy synthesis for both fragments. The tool will be released as open source1 so
that it could be further developed in the future.

Chapter 6 provides a detailed description of the existing MCMAS architecture and our extensions.

5. Experimental evaluation. We evaluated the performance of our Slk and Sl[1g] MCMAS
extensions on several scalable scenarios. Moreover, we demonstrated the expressiveness of the
fragments as well as the newly implemented functionality by automatically synthesising strategies
that enforce properties which were not supported by the original tool (e.g. we generate a strategy
for a scheduler which ensures the existence of Nash equilibria, see Subsection 6.4.2).

The scenarios and the experimental results of our implementation are discussed in Section 6.4.

A detailed evaluation of the project can be found in Chapter 7.

1.4 Published Work

While working on the project, we published a tool paper on Slk implementation in MCMAS [27]. The
paper was a joint work with my supervisor, Professor Alessio Lomuscio, and Dr. Fabio Mogavero and
Professor Aniello Murano from the Computer Science Division (Sezione di Informatica) of the Depart-
ment of Physical Science (Dipartimento di Scienze Fisiche) of the University of Naples “Federico II”
(Università degli Studi di Napoli “Federico II”), Italy. The paper was accepted at the 26th International
Conference on Computer Aided Verification 2014. It summarises the procedure described in Section 4.2,
its implementation provided in Section 6.2, and the experimental results presented in Section 6.4.

Given its novelty, we intend to publish a paper on our model checking algorithm for Sl[1g] in the
summer (again as a joint work).

1The Slk extension, called MCMAS-SLK, has already been released under GNU General Public License (GPL) [5] and
is available at http://vas.doc.ic.ac.uk/software/tools/.

http://vas.doc.ic.ac.uk/software/tools/

Chapter 2

Background

In this chapter we describe concepts and methods from the area of software verification which the rest
of this report is based on. We also present a list of existing tools related to our work. This chapter can
be skipped at first reading and used as a reference in the subsequent chapters.

The ultimate goal of our project is to develop a tool that can verify Sl specifications on multi-agent
systems. Formal verification techniques typically comprise three components [49]:

1. a framework for modelling systems, typically a description language of some sort;

2. a specification language for describing the properties to be verified;

3. a verification method to establish whether the description of a system satisfies the specification.

Let us consider a system S and a property P to be verified (on the system). There are two main
approaches to verification [49]:

• In proof-based verification, the system description is a set of formulas ΓS and the property to be
verified is another formula ϕP . The verification method consists of trying to prove ΓS ` ϕP . This
usually requires guidance and expertise from the user.

• In model-based verification, the system description is a modelMS and the property to be verified is
a formula φP . The verification method consists of computing whetherMS satisfies φP (MS |= φP).
This can usually be done automatically for finite models.

In this project we focus purely on a model-based verification method called model checking, which refers
to the process of determining whether a formula φP holds in a concrete model MS [49]:

MS

?

|= φP

A model checker is a tool (i.e. a computer program) which performs this calculation automatically.
We will now describe various approaches to each of the three components of formal verification using

model checking: how the system S is represented as a model MS , how the property P is expressed as a
formula φP , and how the answer (MS |= φP , or MS 6|= φP) is determined.

2.1 Frameworks for Modelling Systems

Given a system S, we aim to represent it using a model MS . We discuss here three formalisms of
increasing complexity: Kripke models, concurrent game structures, and interpreted systems.

2.1.1 Kripke Models

Kripke semantics are arguably the most popular modal semantics nowadays [48, 55]. The basic idea of
Kripke semantics is that a formula is true at some worlds, and false at others [62]. The semantics are
based on two concepts: Kripke frames and Kripke models. Intuitively, a Kripke frame represents a set
of worlds together with transitions between them.

16 Chapter 2. Background

Definition 2.1 (Kripke Frames). Let W be a non-empty set of worlds and R ⊆ W ×W a binary
accessibility relation on it. Then F , (W,R) is a Kripke frame.

For example, if we wanted to model a pedestrian traffic light as a Kripke frame FTL = (WTL, RTL), it
would have two possible states WTL = {red, green}. Assuming that the light changes at every temporal
step, the accessibility relation of FTL would be RTL = {(red, green) , (green, red)}. In order to be able
to specify properties of the system, we need to fix a set of atomic propositions and specify the set of
worlds where each of them holds. This is done by adding an assignment function to the Kripke frame.
The result is a Kripke model :

Definition 2.2 (Kripke Models). Let F = (W,R) be a Kripke frame, AP a finite non-empty set of
atomic propositions, and h : AP → 2W an assignment into F . Then M , (F , h) is a Kripke model.

Suppose we wanted to express a property regarding the current colour of the traffic light. We would
introduce two atoms AP , {green, red} and use an assignment hTL defined as hTL(green) , {green}
and hTL(red) , {red}. The resulting Kripke Model would be MTL = (FTL, hTL).

The Kripke frame and model structures described above have only one accessibility relation R. How-
ever, sometimes we need to express multiple modalities within one model (e.g. temporal evolution and
agents’ knowledge, see Subsection 2.2.6). We can achieve this by augmenting the tuples with the corre-
sponding accessibility relations as follows:

Definition 2.3 (Kripke Frames and Models with Multiple Modalities). Let W be a non-empty set
of worlds, R1, . . . , Rn ⊆ W ×W binary accessibility relations, AP a finite non-empty set of atomic
propositions, and h : AP → 2W an assignment. Then F+ = (W,R1, . . . , Rn) is a Kripke frame with
multiple modalities and M+ = (F+, h) a Kripke model with multiple modalities.

Although Kripke frames/models have no concept of local states, which are typically used to rep-
resent agents’ knowledge (see Subsection 2.1.3), it is possible to express epistemic accessibility (see
Subsection 2.2.6 for an introduction to epistemic modalities) explictly using a family of binary relations
∼i ⊆W ×W on the set of worlds W for all agents i ∈ Agt . Intuitively, w1 ∼i w2 holds iff agent i ∈ Agt
cannot distinguish between worlds w1, w2 ∈ W . We can then define a Kripke frame and model with
epistemic modalities as:

FK ,
(
W,R, (∼i)i∈Agt

)
MK , (FK, h)

Note that even with multiple modalities, Kripke models are still strictly less expressive than concurrent
game structures and interpreted systems because they lack the concept of agents’ actions.

2.1.2 Concurrent Game Structures

Another framework for modelling systems are concurrent game structures [18], which generalise Kripke
semantics by introducing the concept of actions. The temporal evolution of a concurrent game structure
depends on the concurrent actions of all agents.

Definition 2.4 (Concurrent Game Structures). Let Agt and AP be non-empty sets of agents
and atomic propositions respectively. Then a concurrent game structure is a tuple G ,
〈AP ,Agt ,Act ,St , λ, τ, s0〉 where:

• Act is a finite non-empty set of actions. Dc , Agt → Act is the set of decisions which map each
agent to its choice of an action.

• St is a finite non-empty set of states.

• λ : St → 2AP is a labelling function that maps each state to the set of atomic propositions true
in that state.

• τ : St × Dc → St is a transition function. It maps the current state and a decision to the next
state.

• s0 ∈ St is an initial state.

2.1. Frameworks for Modelling Systems 17

As we mentioned already, the main difference between Kripke models and concurrent game structures
are actions, which enable us to reason about agents’ strategies. Apart from them, the frameworks are
equivalent1: They both have a set of states (W , St), a transition relation/function (R, τ), and a labelling
function2 (h, λ). Similarly to Kripke models, epistemic accessibility can be represented explicitly by a
family of binary relations ∼i ⊆ St × St for each agent i ∈ Agt .

2.1.3 Interpreted Systems

Interpreted systems are an extension of Kripke semantics for multi-agent systems [65] in which the global
states of the whole system are composed of the internal states of all agents.

Definition 2.5 (Interpreted Systems). Let Σ = {1, . . . , n} be a set of players, E a special agent
representing the environment, Agt = Σ ∪ {E} the set of all agents, and AP a finite non-empty set of

atomic propositions. Then an interpreted system is a tuple I ,
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

where:

• Li is a finite non-empty set of internal states of an agent i ∈ Agt . A tuple g = (l1, . . . , ln, lE) ∈
L1 × · · · ×Ln ×LE is called a global state. Furthermore, LσE , Lσ ×LE is the set of local states
of a player σ ∈ Σ. The set of local states of the environment is equal to its set of internal states,
i.e. LEE , LE. li(g) and liE(g) denote the internal and local state of agent i ∈ Agt in a global
state g ∈ G respectively.

• Act i is a finite non-empty set of actions that an agent i ∈ Agt may perform. Act , Act1 ×
· · · ×Actn×ActE denotes the set of joint actions of all agents. ai(a) denotes the action of agent
i ∈ Agt in the joint action a ∈ Act . ActA ,

⋂
i∈A Act i is the set of shared actions of agents

A ⊆ Agt with A 6= ∅.

• Pi : LiE → 2Acti is the protocol of an agent i ∈ Agt . For every local state liE ∈ LiE of the agent,
Pi(liE) 6= ∅ is the set of actions available to agent i. The global protocol P : G→ 2Act is defined

as P (g) ,
{
a ∈ Act

∣∣∣ ∧i∈Agt ai(a) ∈ Pi(liE(g))
}

for all global states g ∈ G.

• ti : LiE ×Act → Li is the evolution function of the internal state of an agent i ∈ Agt .

• I ⊆ L1×· · ·×Ln×LE is a finite non-empty set of initial global states. G ⊆ L1×· · ·×Ln×LE is
the set of reachable global states obtained by considering all the possible evolutions of the system
from I.

• h : AP → 2G is a valuation function that maps each propositional variable to the set of global
reachable states in which it is true.

The evolution of the system is described by a global evolution function t : G× Act → G. It is defined
as t(g, a) = g′ iff ∀i ∈ Agt . ti(liE(g), a) = li(g

′).

Intuitively, the environment agent E represents the part of the model that all agents can “see”. That
is why its internal states lE ∈ LE are included in the other agents’ local states (li, lE) ∈ LiE. Note
that the distinction between internal and local states of agents is often not emphasised in the literature.
Internal states are sometimes referred to as private local states [65].

Interpreted systems are better suited for epistemic modalities expressing agents’ knowledge (see Sub-
section 2.2.6) because they distinguish between local and global states (unlike Kripke models and con-
current game structures). The relationship between interpreted systems and concurrent game structures
is discussed in [65].

We will consider interpreted systems exclusively in the rest of this report because they best represent
multi-agent systems (for the reasons outlined above), whose verification our project focuses on.

1The explicit initial state s0 does not increase the expressiveness of concurrent game structures. We could simulate it
in Kripke semantics by introducing a new atom init ∈ AP and setting h(init) , {s0}.

2While the signatures of h : AP → 2W and λ : St → 2AP differ, they are equivalent (assuming St = W) since
h(p) = λ−1(p) = {s ∈ St | p ∈ λ(s)} and λ(s) = h−1(s) = {p ∈ AP | s ∈ h(p)} where p ∈ AP and s ∈ St .

18 Chapter 2. Background

2.2 Specification Languages

Given a property P , we aim to describe it as a formula ϕP . We discuss multiple logics of increasing
expressiveness for specifying ϕP . Unfortunately, higher expressiveness is usually accompanied by worse
model checking complexity as we shall see in Subsection 2.2.7.

In order to compare the expressiveness of the logics described in this section, we will express the
following sample properties using each of them (if possible):

1. A socket is opened and it will stay opened in the next two states.

2. If a device is currently connected, it can be disconnected in the future.

3. A task will be finished at some point in the future (no matter what happens).

4. It is possible to permanently delete a file (at some point in the future).

5. If the light is infinitely often red, it will also be infinitely often green (in the same evolution).

6. If a car can turn infinitely often left, it can also turn infinitely often right (possibly in a different
evolution).

7. A firewall and an antivirus can (together) ensure that a computer will never be hacked.

8. If both players play the same strategies, neither of them will ever win.

2.2.1 Linear Temporal Logic

Linear Temporal Logic (Ltl) [80] is a temporal logic which models time as a sequence of states, extending
infinitely into the future [49]. These possible sequences of states are referred to as paths.

Definition 2.6 (Paths and Tracks). Let I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

be an interpreted system.

A path π ∈ Gω in I is an infinite sequence of global states g0, g1, g2, . . . ∈ G such that, ∀i ≥ 0 ∃a ∈
Act . gi+1 = t(gi, a). We write π≥i for the suffix of π starting at gi, and π(i) = gi. path(g) denotes the
set of all paths starting at a global state g ∈ G. Pth ,

⋃
g∈G path(g) is the set of all paths in I.

A track τ ∈ G+ in I is a non-empty finite sequence of global states g0, g1, . . . , gn−1 ∈ G such
that, ∀i ∈ [0 .. n− 2]∃a ∈ Act . gi+1 = t(gi, a). The length of τ is |τ | , n. last(τ) , gn−1 refers
to the last global state on τ . track(g) denotes the set of all tracks starting at a global state g ∈ G.
Trk ,

⋃
g∈G track(g) is the set of all tracks in I.

Intuitively, a path represents a possible evolution of an interpreted system from a given global state
g ∈ G (not necessarily in I). In order to express properties over the possible evolutions of a system, Ltl
augments propositional logic with temporal connectives3 X, F, G, U, W, and R.

Definition 2.7 (Ltl Syntax). Ltl formulas are built inductively from the set of atomic propositions
AP , by using the following grammar, where p ∈ AP :

ϕ ::= p | > | ⊥ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ↔ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ | ϕWϕ | ϕRϕ

LTL denotes the infinite set of formulas generated by the above rules.

The syntax allows for the construction of ambiguous formulas like X aU b, which can be interpreted
as either (X a)U b, or X (aU b). In order to resolve such ambiguities, the following binding priorities are
used [49]: Unary operators (¬, X, F, G) bind most tightly. The (decreasing) order of the other operators
is U, R, W, ∧, ∨,→, and↔. Hence, the original formula is interpreted as (X a)U b because X binds more
tightly than U. These rules allow us to use fewer brackets. Note that we do not specify the associativity
of binary operators. Thus, the formula aU bU c is not well-formed, i.e. it needs brackets to disambiguate
between aU (bU c) and (aU b)U c. We shall use similar rules for other logics.

The semantics of Ltl are traditionally defined on Kripke models (see Definition 2.2). We will however
define them on interpreted systems (see Definition 2.5) here for consistency. Note that, in order to save
space, we shall assume throughout the rest of this report that AP is a finite set of propositional atoms.

3G, F, and X are sometimes written symbolically as 2, 3, and # respectively.

2.2. Specification Languages 19

Definition 2.8 (Ltl Semantics). Let I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

be an interpreted system, and

π ∈ Pth a path in I. We define I, π |=LTL ϕ by induction on ϕ ∈ LTL:

• I, π |=Ltl >;

• I, π |=Ltl p iff π(0) ∈ h(p) for p ∈ AP ;

• I, π |=Ltl ¬ϕ iff I, π 6|=Ltl ϕ;

• I, π |=Ltl ϕ1 ∧ ϕ2 iff I, π |=Ltl ϕ1 and I, π |=Ltl ϕ2;

• I, π |=Ltl ϕ1 ∨ ϕ2 iff I, π |=Ltl ϕ1 or I, π |=Ltl ϕ2;

• I, π |=Ltl ϕ1 → ϕ2 iff I, π 6|=Ltl ϕ1 or I, π |=Ltl ϕ2;

• I, π |=Ltl ϕ1 ↔ ϕ2 iff either I, π 6|=Ltl ϕ1 and I, π 6|=Ltl ϕ2, or I, π |=Ltl ϕ1 and I, π |=Ltl ϕ2;

• I, π |=Ltl Xϕ iff I, π≥1 |=Ltl ϕ;

• I, π |=Ltl Fϕ iff there exists some i ≥ 0 such that I, π≥i |=Ltl ϕ;

• I, π |=Ltl Gϕ iff for all i ≥ 0 we have I, π≥i |=Ltl ϕ;

• I, π |=Ltl ϕ1 Uϕ2 iff there exists some i ≥ 0 such that I, π≥i |=Ltl ϕ2 and for all numbers
0 ≤ j < i we have I, π≥j |=Ltl ϕ1;

• I, π |=Ltl ϕ1 Wϕ2 iff either (i) there exists some i ≥ 0 such that I, π≥i |=Ltl ϕ2 and for all
0 ≤ j < i we have I, π≥j |=Ltl ϕ1, or (ii) for all k ≥ 0 we have I, π≥k |=Ltl ϕ1;

• I, π |=Ltl ϕ1 Rϕ2 iff either (i) there exists some i ≥ 0 such that I, π≥i |=Ltl ϕ1 and for all
0 ≤ j ≤ i we have I, π≥j |=Ltl ϕ2, or (ii) for all k ≥ 0, we have I, π≥k |=Ltl ϕ2.

A formula ϕ ∈ LTL is true at a global state g ∈ G in an interpreted system I (written as I, g |=Ltl ϕ)
iff it is true on all paths π ∈ path(g) starting at g (i.e. I, π |=Ltl ϕ).

The intuitive meanings of the temporal operators X, F, G, U, W, and R are “neXt state”, “some
Future state”, “all future states (Globally)”, “Until”, “Weak-until”, and “Release” respectively [49]. For
example, the Ltl formula aU b expresses the property that a holds until b holds. There also exist past
temporal connectives Y, S, O, and H which are opposite to X, U, F, and G respectively [49]. Their intuitive
meanings are “Yesterday”, “Since”, “Once”, and “Historically”. However, adding these operators does
not increase the expressiveness of Ltl.

From this point onwards, we will omit the operators ⊥, →, and ↔ in all logics for the sake of
conciseness. We can always express them using the following propositional equivalences:

⊥ ≡ ¬> ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2 ϕ1 ↔ ϕ2 ≡ (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2)

In fact, the set {>,¬,∧,X,U} forms an adequate set of connectives4 for Ltl [49], i.e. all the other
operators (∨, F, G, W, and R) can be expressed using equivalences:

ϕ1 ∨ ϕ2 ≡ ¬ (ϕ1 ∧ ϕ2) Fϕ ≡ >Uϕ Gϕ ≡ ¬F¬ϕ ≡ ¬ (>U¬ϕ)

ϕ1 Wϕ2 ≡ ϕ1 Uϕ2 ∨ Gϕ1 ≡ ϕ1 Uϕ2 ∨ ¬ (>U¬ϕ1) ϕ1 Rϕ2 ≡ ¬ (¬ϕ1 U¬ϕ2)

Model checking of an Ltl formula ϕ is typically performed by constructing a non-deterministic Büchi
automaton A¬ϕ =

(
SA, 2

AP , IA, RA,F
)

equivalent to ¬ϕ (see Section 2.4) and then checking if no fair
path exists in the product of the interpreted system and the automaton. More precisely, I, g 6|=Ltl ϕ iff
there exists an initial state sI ∈ IA of the automaton and a path π ∈ path((g, sI)) in I × A¬ϕ starting
at (g, sI) such that F is visited infinitely often along π. Please refer to [34] for more details about
how this is performed in practice by converting Ltl model checking to Ctl model checking with fairness

4Note that an adequate set is not necessarily unique for a given logic. For example, we could replace ∧ with ∨ and/or
U with R and the result would still be an adequate set for Ltl.

20 Chapter 2. Background

conditions using the tableau method. Another popular approach to Ltl model checking is bounded model
checking [32], which transforms the model checking problem into a propositional satisfiability problem.

We shall now demonstrate the expressive power of Ltl. The sample properties listed at the beginning
of this section can be expressed in Ltl as follows:

1. open ∧ X open ∧ XX open.

2. This property cannot be expressed directly in Ltl because it requires existential quantification
(while Ltl formulas are implicitly universally quantified over all paths). However, it is possible
to express its converse as connected ∧ G connected . If the converse does not hold in a state, then
the property is satisfied. Note that this shows that I, g |=Ltl ¬ϕ is in general not equivalent to
I, g 6|=Ltl for a global state g ∈ G. Compare this with paths π ∈ Pth for which I, π |=Ltl ¬ϕ is
defined as I, π 6|=Ltl ϕ.

3. Ffinished .

4, 6. Neither the properties nor their converses can be expressed in Ltl because they combine both
existential and universal quantification5.

5 GF red → GF green.

7–8. These properties cannot be expressed in Ltl because it cannot refer to agents’ strategies.

We can see that Ltl can only express properties that should hold on all paths. While it is possible to
assert the existence of a path (see item 2 above), existential and universal path quantification cannot
be combined within a single Ltl formula (see items 4 and 6). Certain important properties therefore
cannot be expressed in Ltl. This shortcoming is addressed by Computation Tree Logic.

2.2.2 Computation Tree Logic

Computation Tree Logic (Ctl) [33] is a temporal logic which allows us to quantify over paths explic-
itly [49]. Compared to Ltl, Ctl adds quantifiers A and E expressing “for all paths” and “there exists
a path” respectively. Again, Ctl extends the syntax of propositional logic with path and temporal
connectives:

Definition 2.9 (Ctl Syntax). Ctl formulas are built inductively from the set of atomic propositions
AP , by using the following grammar, where p ∈ AP :

ϕ ::= p | > | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | AXϕ | EXϕ | AFϕ | EFϕ | AGϕ | EGϕ | A[ϕUϕ] | E[ϕUϕ]

CTL denotes the infinite set of formulas generated by the above rules.

Observe that every path quantifier is coupled with a temporal operator and vice versa. The binding
priorities of the operators are the same as for Ltl (e.g. EF a ∧ b is interpreted as (EF a) ∧ b). Similarly
to Ltl, we define Ctl semantics on interpreted systems (see Definition 2.5) for consistency:

Definition 2.10 (Ctl Semantics). Let I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

be an interpreted system,

and g ∈ G a global state. We define I, g |=Ctl ϕ by induction on ϕ ∈ LTL:

• I, g |=Ctl >;

• I, g |=Ctl p iff g ∈ h(p) for p ∈ AP ;

• I, g |=Ctl ¬ϕ iff I, g 6|=Ctl ϕ;

• I, g |=Ctl ϕ1 ∧ ϕ2 iff I, g |=Ctl ϕ1 and I, g |=Ctl ϕ2;

• I, g |=Ctl ϕ1 ∨ ϕ2 iff I, g |=Ctl ϕ1 or I, g |=Ctl ϕ2;

5This might not be immediately obvious in property 6. Recall that ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2. Hence the property can
be interpreted as: on all paths the car does not turn infinitely often left or there is a path on which the car turns right
infinitely often.

2.2. Specification Languages 21

• I, g |=Ctl AXϕ iff for all paths π ∈ path(g), we have I, π(1) |=Ctl ϕ;

• I, g |=Ctl EXϕ iff there exists a path π ∈ path(g) such that I, π(1) |=Ctl ϕ;

• I, g |=Ctl AFϕ iff for all paths π ∈ path(g) there is some i ≥ 0 such that I, π(i) |=Ctl ϕ;

• I, g |=Ctl EFϕ iff there exist a path π ∈ path(g) and i ≥ 0 such that I, π(i) |=Ctl ϕ;

• I, g |=Ctl AGϕ iff for all paths π ∈ path(g) and i ≥ 0 we have I, π(i) |=Ctl ϕ;

• I, g |=Ctl EGϕ iff there exists a path π ∈ path(g) such that for all i ≥ 0 we have I, π(i) |=Ctl ϕ;

• I, g |=Ctl A[ϕ1 Uϕ2] iff for all paths π ∈ path(g) there exists i ≥ 0 such that I, π(i) |=Ctl ϕ2,
and for all 0 ≤ j < i, I, π(j) |=Ctl ϕ1.

• I, g |=Ctl E[ϕ1 Uϕ2] iff there exists a path π ∈ path(g) and i ≥ 0 such that I, π(i) |=Ctl ϕ2, and
for all 0 ≤ j < i, I, π(j) |=Ctl ϕ1.

The intuitive meanings of the temporal operators are the same as for Ltl (see Subsection 2.2.1).
For example, EG p means that there exists an infinite path (starting in the current global state) such
that p holds at every single state of the path. One possible adequate set of connectives for Ctl is
{>,¬,∧,EX,AF,EU} [49].

Model checking of a Ctl formula ϕ is typically6 performed by recursively calculating the sets of
states ‖ψ‖I , {g ∈ G | I, g |=Ctl ψ} of the interpreted system I at which subformulas ψ of ϕ hold in
a bottom-up manner. For example, assuming that we have already calculated ‖ψ‖I , ‖EXψ‖I is simply
the set of global states of I which have a possible transition into ‖ψ‖I , which we denote pre∃(‖ψ‖I).

Definition 2.11 (Predecessors). Let I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

be an interpreted system and

X ⊆ G a set of global states. The existential and universal predecessors of X are defined as pre∃(X) ,
{g ∈ G | ∃a ∈ P (g). t(g, a) ∈ X} and pre∀(X) , {g ∈ G | ∀a ∈ P (g). t(g, a) ∈ X} respectively.

Once we have calculated ‖ϕ‖I , determining whether the formula ϕ holds at a given global state g ∈ G
(i.e. I, g |=Ctl ϕ) is equivalent to checking whether g ∈ ‖ϕ‖I . The recursive model checking algorithm
SATICtl(·) for Ctl, which calculates ‖ϕ‖I , is defined as follows [49]:

Definition 2.12 (Ctl Model Checking Algorithm). Let I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

be an inter-

preted system and ϕ ∈ CTL a Ctl formula. The function SATICtl : CTL → 2G is defined inductively
as follows:

• SATICtl(>) , G;

• SATICtl(p) , h(p) for p ∈ AP ;

• SATICtl(¬ϕ) , G \ SATICtl(ϕ);

• SATICtl(ϕ1 ∧ ϕ2) , SATICtl(ϕ1) ∩ SATICtl(ϕ2);

• SATICtl(ϕ1 ∨ ϕ2) , SATICtl(ϕ1) ∪ SATICtl(ϕ2);

• SATICtl(AXϕ) , SATICtl(¬EX¬ϕ);

• SATICtl(EXϕ) , pre∃
(
SATICtl(ϕ)

)
;

• SATICtl(AFϕ) , lfpX
[
SATICtl(ϕ) ∪ pre∀ (X)

]
;

• SATICtl(EFϕ) , SATICtl(E[>Uϕ]);

• SATICtl(AGϕ) , SATICtl(¬EF¬ϕ);

6Alternative approaches exist. For example, a model checking algorithm for ACtl (a universal fragment of Ctl where
all path quantifiers are A) based on bounded model checking is presented in [87].

22 Chapter 2. Background

• SATICtl(EGϕ) , SATICtl(¬AF¬ϕ);

• SATICtl(A[ϕ1 Uϕ2]) , SATICtl(¬ (E[¬ϕ2 U (¬ϕ1 ∧ ¬ϕ2)] ∨ EG¬ϕ2));

• SATICtl(E[ϕ1 Uϕ2]) , lfpX
[
SATICtl(ϕ2) ∪

(
SATICtl(ϕ1) ∩ pre∃ (X)

)]
;

where lfp denotes the least fixed point.

Given a Ctl formula ϕ, the algorithm calculates the set of global states of I at which it holds. This
fact is stated formally in the following proposition.

Proposition 2.1. Let I be an interpreted system and ϕ ∈ CTL an arbitrary Ctl formula. Then we
have SATICtl(ϕ) = ‖ϕ‖I , {g ∈ G | I, g |=Ctl ϕ}.

Similarly to Ltl, we now demonstrate the expressive power of Ctl. The sample properties listed at
the beginning of this section can be expressed in Ctl as follows:

1. open ∧ AX open ∧ AXAX open.

2. connected → EF¬connected .

3. AFfinished .

4. EFAG deleted .

6–8. These properties cannot be expressed in Ctl because it does not refer to paths (properties 5 and 67)
and agents’ strategies (properties 7 and 8).

Unlike Ltl, Ctl can express properties which combine existential and universal path quantifiers (prop-
erty 4). However, it is limited by the fact that every temporal operator must be coupled with a path
quantifier, which prevents Ctl from expressing path specifications like property 5. Intuitively, we would
like to express it as A[GF red → GF green], which is exactly what Full Branching Time Logic allows us
to do.

2.2.3 Full Branching Time Logic

Full Branching Time Logic (Ctl*) [37] is a superset of both Ltl and Ctl [49]. Moreover, it is strictly
more expressive than the union of Ltl and Ctl, i.e. there exist Ctl* formulas which cannot be expressed
in either of the two logics. Ctl* supports Ctl path quantifiers A and E but relaxes the restrictions on
their coupling with temporal operators:

Definition 2.13 (Ctl* Syntax). Ctl* formulas are built inductively from the set of atomic propo-
sitions AP . State formulas ϕ and path formulas ψ are defined by the following mutually recursive
grammar, where p ∈ AP :

ϕ ::= p | > | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | A[ψ] | E[ψ]

ψ ::= ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | Xψ | Fψ | Gψ | ψUψ

CTL∗ denotes the infinite set of formulas generated by the above rules.

Ctl* semantics are very similar to Ltl and Ctl semantics with only a few adjustments. We will
also define them on interpreted systems (see Definition 2.5) for consistency:

Definition 2.14 (Ctl* Semantics). Let I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

be an interpreted system,

g ∈ G a global state, and π ∈ Pth a path in I. We define I, g |=Ctl* ϕ and I, π |=Ctl* ψ by induction
on state formulas ϕ and path formulas ψ:

7It would appear that the Ctl formula EGEFϕ means that there exists a path along which ϕ holds infinitely often.
Unfortunately, that is not the case. Consider a simple interpreted system with three global states g1, g2, g3, four possible
transitions g1 → g1, g1 → g2, g2 → g3, and g3 → g3, and an assignment h(p) , {g2}. Then we have I, g2 |=Ctl p, so
I, g1 |=Ctl EF p (g1 is an existential predecessor of g2) and I, g1 |=Ctl EGEF p (cycle in g1). However, there is no path
starting in g1 along which p would be infinitely often true. A similar relationship between the Ctl formula AGAF p and
the Ltl formula GF p is shown in [49].

2.2. Specification Languages 23

• I, g |=Ctl* A[ψ] iff for all paths π ∈ path(g) starting at g we have I, π |=Ctl* ψ;

• I, g |=Ctl* E[ψ] iff there exists a path π ∈ path(g) starting at g such that I, π |=Ctl* ψ;

• I, g |=Ctl* ϕ is defined in the same way as I, g |=Ctl ϕ for other Ctl* state formulas;

• I, π |=Ctl* ϕ iff I, π(0) |=Ctl* ϕ;

• I, π |=Ctl* ψ is defined in the same way as I, π |=Ltl ψ for other Ctl* path formulas.

Since Ltl and Ctl are subsets of Ctl*, any Ltl/Ctl formula can be transformed into an equivalent
Ctl* formula:

• Let ψ ∈ LTL be an Ltl formula. It is equivalent to the Ctl* formula A[ψ]. This can be seen from
the semantics of Ltl:

I, g |=Ltl ψ iff ∀π ∈ path(g). I, π |=Ltl ψ

iff ∀π ∈ path(g). I, π |=Ctl* ψ

iff I, g |=Ctl* A[ψ]

where the second equivalence follows from the fact that ψ contains no path quantifiers.

• Ctl is a subset of Ctl* in which (i) we do not allow Boolean combinations of path formulas, and
(ii) each temporal connective must be preceeded by a path quantifier. An alternative definition of
Ctl syntax can thus be obtained by restricting path formulas in Ctl* syntax (Definition 2.13):

ψ ::= Xϕ | Fϕ | Gϕ | ϕUϕ

Hence, any Ctl formula is also an equivalent Ctl* formula.

Ctl* model checking can be performed in the following bottom-up manner8: In order to calculate
‖A[ϕ]‖, we replace each subformula A[ψ] of ϕ with a new atom p ∈ AP such that h(p) , ‖A[ψ]‖I ,
which we calculate recursively. ϕ is now an Ltl formula, so we can use the method involving automata
outlined in Subsection 2.2.1 (or any other method for model checking Ltl) to calculate ‖A[ϕ]‖I . Please
refer to [39] for more details about this reduction from Ctl* to Ltl model checking.

Let us now investigate the expressive power of Ctl*. The sample properties listed at the beginning
of this section can be expressed in Ctl* as follows:

1. A[open ∧ X open ∧ XX open].

2. connected → E[F¬connected].

3. A[Ffinished].

4. E[FA[G deleted]].

5. A[GF red → GF green].

6. E[GF left]→ E[GF right].

7–8. These properties cannot be expressed in Ctl* because it does not refer to agents’ strategies.

We can see that Ctl* can express all properties supported by Ltl (1, 3, 5) and Ctl (1–4). Moreover, it
can express property 6, which could not be represented as a Ltl or Ctl formula. The only specifications
(on our list) which Ctl* cannot express are those that involve reasoning about agents’ ability to enforce
certain properties on the system. This issue is addressed by Alternating-Time Temporal Logic.

8To make things simpler, we only consider the universal path quantifier A. The existential quantifier E can be equivalently
expressed as ¬A¬.

24 Chapter 2. Background

2.2.4 Alternating-Time Temporal Logic

Alternating-Time Temporal Logic (Atl) [18] is an extension of Ctl for multi-agent systems. Instead of
universal and existential path quantification, Atl allows for a more fine-grained control by parametrising
temporal operators with sets of agents. This makes Atl more suitable for reasoning about open systems
(such as multi-agent systems), which interact with their environment [18]. To do this, Atl introduces
the 〈〈A〉〉 quantifier, which ranges over the set of paths that can be enforced by the agents A ⊆ Agt
(regardless of what action the other agents Agt \ A carry out) and replaces the Ctl path quantifiers A
and E.

Definition 2.15 (Atl Syntax). Atl formulas are built inductively from the set of atomic propositions
AP and agents Agt , by using the following grammar, where p ∈ AP and A ⊆ Agt :

ϕ ::= p | > | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Fϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉[ϕUϕ]

ATL denotes the infinite set of formulas generated by the above rules.

Unlike Ltl and Ctl semantics, Atl semantics are traditionally defined on concurrent game structures
(see Definition 2.4). However, we will define them here on interpreted systems (see Definition 2.5) like
we did for the previous formalisms for consistency. We first need to define the concept of a strategy.

Definition 2.16 (Individual Strategies). Let I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

be an interpreted

system and i ∈ Agt an agent. Then a partial function fi : Trk ⇀ Act i such that for all
τ ∈ dom(fi), fi(τ) ∈ Pi(liE(last(τ))), is an (individual) strategy for agent i which maps tracks to
actions. Str i ⊆ Trk ⇀ Act i denotes the set of all strategies for agent i in I. The set of all strategies
is defined as Str ,

⋃
i∈Agt Str i.

Let A ⊆ Agt be a set of agents. Then an agent assignment is a function α : A → Str which maps
each agent i ∈ A to a strategy α(i) ∈ Str i. The set of all agent assignment for agents A is denoted as
AAsgA. The set of all agent assignments is defined as AAsg ,

⋃
A⊆Agt AAsgA.

Intuitively, an agent assignment maps agents to strategies, which in turn map histories of the system
to the next actions of the agents. Given an agent assignment α ∈ AAsgA for a group of agents A ⊆ Agt ,
we want to find the set of paths that the agents can enforce (if they follow α) regardless of the other
agents’ behaviour. This is referred to as the set of outcomes.

Definition 2.17 (Outcomes). Let I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

be an interpreted system, g ∈ G a

global state, A ⊆ Agt a set of agents, and α ∈ AAsgA an agent assignment for A. The set of outcomes
out(g, α) contains all paths π ∈ Pth such that (i) π(0) = g, and (ii) for all k ≥ 0, there exists a
joint action a ∈ P (π(k)), such that t(π(k), a) = π(k + 1) and for all i ∈ A, if π≤k ∈ dom(α(i)), then
ai(a) = α(i)(π≤k).

Finally, we are ready to define Atl semantics. Intuitively, a formula 〈〈A〉〉ϕ is true iff the agents
A ⊆ Agt can enforce ϕ.

Definition 2.18 (Atl Semantics). Let I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

be an interpreted system,

g ∈ G a global state, and A ⊆ Agt a set of agents. We define I, g |=Atl ϕ by induction on ϕ ∈ ATL:

• I, g |=Atl >;

• I, g |=Atl p iff g ∈ h(p) for p ∈ AP ;

• I, g |=Atl ¬ϕ iff I, g 6|=Atl ϕ;

• I, g |=Atl ϕ1 ∧ ϕ2 iff I, g |=Atl ϕ1 and I, g |=Atl ϕ2;

• I, g |=Atl ϕ1 ∨ ϕ2 iff I, g |=Atl ϕ1 or I, g |=Atl ϕ2;

• I, g |=Atl 〈〈A〉〉Xϕ iff there exists an agent assignment α ∈ AAsgA, such that for all paths
π ∈ out(s, α) we have I, π(1) |=Atl ϕ;

2.2. Specification Languages 25

• I, g |=Atl 〈〈A〉〉Fϕ iff there exists an agent assignment α ∈ AAsgA, such that for all paths
π ∈ out(s, α) there exists i ≥ 0 such that I, π(i) |=Atl ϕ;

• I, g |=Atl 〈〈A〉〉Gϕ iff there exists an agent assignment α ∈ AAsgA, such that for all paths
π ∈ out(s, α) and i ≥ 0 we have I, π(i) |=Atl ϕ;

• I, g |=Atl 〈〈A〉〉[ϕ1 Uϕ2] iff there exists an agent assignment α ∈ AAsg , such that for all paths
π ∈ out(s, α) there exists i ≥ 0 such that I, π(i) |=Atl ϕ2 and for all 0 ≤ j < i we have
I, π(j) |=Atl ϕ1.

The meaning of the temporal operators is the same as in Ltl and Ctl. For example, the Atl formula
〈〈{a, b}〉〉G p means that there are strategies for agents a and b such that no matter what the other agents
do, p will be always true. We can now see the relationship between Ctl and Atl: Given a Ctl formula
ϕ ∈ CTL, an equivalent Atl formula ϕ′ ∈ ATL can be obtained by replacing every subformula of the
form E[ψ] and A[ψ] with 〈〈Agt〉〉ψ and 〈〈∅〉〉ψ respectively [18].

Similarly to Ctl* (see Subsection 2.2.3), which extends Ctl by relaxing its syntax constraints (see
Subsection 2.2.2), Full Alternating-Time Logic (Atl*) extends Atl by relaxing its syntax constraints, i.e.
(i) Atl* syntax distinguishes between state and path formulas and (ii) quantifiers (〈〈A〉〉) and temporal
operators (X, F, G, U) need not be coupled any more. Atl* semantics are modified analogously (see
Definition 2.14). The result is a strictly more expressive logic [18].

The model checking algorithm for Atl is very similar to the one for Ctl (see Definition 2.12). The
main difference is that the predecessor function must take into account the quantified group of agents.
For example, if we have already calculated the set of global states ‖ϕ‖I of an interpreted system I where
the Atl formula ϕ holds, the set of global states ‖〈〈A〉〉Fϕ‖I where 〈〈A〉〉Fϕ holds (A ⊆ Agt is a set of
agents) is equal to lfpX [‖ϕ‖I ∪ preA(X)] where:

preA(X) ,
{
g ∈ G

∣∣∣ ∃a ∈ (Act i)i∈A ∀a
′ ∈ (Act i)i∈Agt\A . t(g, (a, a

′)) ∈ X
}

Please refer to [65] for a complete model checking algorithm for Atl. Model checking Atl* is much
more difficult. Although a theoretical model checking algorithm for Atl* is provided in [18] (in the form
of a constructive proof of Atl* model checking complexity), we are not aware of any existing tool that
would support it. If this is true, then we have created the first model checker for Atl* as part of this
project (see Section 1.3).

We shall now demonstrate the expressive power of Atl. The sample properties listed at the beginning
of this section can be expressed in Atl as follows:

1. open ∧ 〈〈∅〉〉X open ∧ 〈〈∅〉〉X〈〈∅〉〉X open.

2. connected → 〈〈Agt〉〉F¬connected .

3. 〈〈∅〉〉Ffinished .

4. 〈〈Agt〉〉F〈〈∅〉〉G deleted .

5. This property cannot be expressed in Atl because it does not refer to paths. It can however be
expressed in Atl* as 〈〈∅〉〉(GF red → GF green).

6. This property cannot be expressed in Atl because it does not refer to paths. It can however be
expressed in Atl* as [〈〈Agt〉〉GF left]→ [〈〈Agt〉〉GF right].

7. 〈〈{firewall, antivirus}〉〉G¬hacked .

8. This property cannot be expressed in Atl/Atl* because it does not refer to strategies directly.

Atl and Atl* allow us to express almost all properties on our list. The only exception is property 8,
which cannot be expressed in either Atl or Atl* because it refers to agents’ strategies directly, while
both logics treat strategies only implicitly (via the 〈〈A〉〉 quantifier). This limitation of Atl and Atl* is
addressed by Strategy Logic.

26 Chapter 2. Background

2.2.5 Strategy Logic

Strategy Logic (Sl) is a new formalism introduced in [76], which strictly subsumes Atl*. Instead
of quantifying over agents in formulas, Sl quantifies over strategies explicitly, allowing us to express
properties like “agents a and b share the same strategy” or even game-theoretic concepts like Nash
equilibria. To do this, it augments the syntax of Ltl (see Definition 2.7) with three operators: universal
strategy quantifier [[x]]ϕ, existential strategy quantifier 〈〈x〉〉ϕ, and agent binding (a, x)ϕ.

Definition 2.19 (Sl Syntax). Sl formulas are built inductively from the set of atomic propositions
AP , strategy variables Var , and agents Agt , by using the following grammar, where p ∈ AP , x ∈ Var ,
and i ∈ Agt :

ϕ ::= p | > | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (i, x)ϕ

SL denotes the infinite set of formulas generated by the above rules.

We define vars(ϕ) ⊆ Var to be the set of strategy variables quantified in an Sl formula ϕ (e.g.
vars(〈〈x〉〉[[y]](a, x)(b, y)X〈〈z〉〉(b, z)F p) = {x, y, z}). Similarly to first-order languages, we define the set of
free agents/variables of a formula which contains (i) all agents for which there is no binding after the
occurrence of a temporal operator and (ii) all variables for which there is a binding but no quantifications.

Definition 2.20 (Free Agents/Variables). The set of free agents/variables of an Sl formula is given
by the function free : SL→ 2Agt∪Var defined as follows:

1. free(>) , ∅;

2. free(p) , ∅, where p ∈ AP ;

3. free(¬ϕ) , free(ϕ);

4. free(ϕ1 ∧ ϕ2) , free(ϕ1) ∪ free(ϕ2);

5. free(Opϕ) , Agt ∪ free(ϕ), where Op ∈ {X,F,G};

6. free(ϕ1 Uϕ2) , Agt ∪ free(ϕ1) ∪ free(ϕ2);

7. free(Qnϕ) , free(ϕ) \ {x}, where Qn ∈ {[[x]] , 〈〈x〉〉 : x ∈ Var};

8. free((i, x)ϕ) , free(ϕ), if i /∈ free(ϕ), where i ∈ Agt and x ∈ Var ;

9. free((i, x)ϕ) , (free(ϕ) \ {i}) ∪ {x}, if i ∈ free(ϕ), where i ∈ Agt and x ∈ Var .

A formula ϕ ∈ SL is agent-closed (resp. variable-closed) iff free(ϕ)∩Agt = ∅ (resp. free(ϕ)∩Var = ∅).
A formula ϕ ∈ SL is a sentence iff it is both agent-closed and variable-closed.

Consider an interpreted system with agents Agt = {a, b, c} and the Sl formula ϕ = 〈〈x〉〉(a, x)(b, y)F p
[72]. We have free(ϕ) = {c, y} because agent c is not bound to any variable after F p and variable y is
not quantified. We also have free((c, z)ϕ) = {y, z} and free((a, z)ϕ) = free(ϕ) because c ∈ free(ϕ) and
a /∈ free(ϕ). Hence, (c, z)ϕ is agent-closed while (a, z)ϕ is not.

Before defining the basic concepts necessary for Sl semantics, we briefly explain an important at-
tribute of Sl formulas called the alternation number, which we need in order to be able to describe Sl
model checking complexity (see Table 2.1). It refers to the maximum number of quantifier switches 〈〈·〉〉[[·]],
[[·]]〈〈·〉〉, 〈〈·〉〉¬ 〈〈·〉〉 or [[·]]¬ [[·]] that bind a variable in a subformula that is not a sentence. To determine
the alternation number of an Sl formula, we first replace all its subsentences with atoms and then count
the number of quantifier switches. For example, consider an interpreted system with agents Agt = {a, b}
and the Sl sentence ϕ , [[x]]〈〈y〉〉(a, x)(b, y)Fϕ′ with ϕ′ , [[x]]〈〈y〉〉(a, x)(b, y)X p [72]. The alternation
number of ϕ is 1 because ϕ′ is a sentence and there is one quantifier switch in [[x]]〈〈y〉〉(a, x)(b, y)F pϕ′

(the subsentence ϕ′ is replaced with an atom pϕ′). However, if we replaced ϕ′ with ϕ′′ , [[x]](a, x)X p in
ϕ, the alternation number of ϕ would be 2 because ϕ′′ is not a sentence. Please refer to [72] for more
details about this concept.

We shall now define several basic concepts relevant to Sl semantics. Since we allow strategies to be
shared among agents, we first need to slightly modify strategies (see Definition 2.16):

2.2. Specification Languages 27

Definition 2.21 (Shared Strategies). Let I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

be an interpreted system

and A ⊆ Agt a non-empty set of agents. Then a partial function fA : Trk ⇀ ActA, such that for all
agents i ∈ A and tracks τ ∈ dom(fA), fA(τ) ∈ Pi(liE(last(τ))), is a shared strategy for agents A which
maps tracks to actions. SStrA ⊆ Trk ⇀ ActA denotes the set of all shared strategies for agents A.

The set of all shared strategies is defined as SStr ,
⋃A6=∅
A⊆Agt SStrA.

Observe that an individual strategy fi ∈ Str i for an agent i ∈ Agt (Definition 2.16) is also a shared
strategy (Definition 2.21), i.e. fi ∈ SStr{i}. So shared strategies are a generalisation of individual
strategies, i.e. Str ⊆ SStr . We shall see that many Sl concepts are generalisations of those of Atl.

In order to determine the set of strategies over which a variable can quantify, we need to know which
agents are bound to it. We thus introduce the set of sharing agents. Intuitively, it refers to the set of
agents that share a variable within a formula.

Definition 2.22 (Sharing Agents). Let I be an interpreted system. The function sharing : SL×Var →
2Agt returns the set of agents sharing a variable in an Sl formula. It is defined inductively as follows:

1. sharing(>, x) , ∅;

2. sharing(p, x) , ∅, where p ∈ AP ;

3. sharing(¬ϕ, x) , sharing(ϕ, x);

4. sharing(ϕ1 Opϕ2, x) , sharing(ϕ1, x) ∪ sharing(ϕ2, x), where Op ∈ {∧,∨};

5. sharing(Opϕ, x) , sharing(ϕ, x), where Op ∈ {X,F,G};

6. sharing(ϕ1 Uϕ2, x) , sharing(ϕ1, x) ∪ sharing(ϕ2, x);

7. sharing(Qnϕ, x) , sharing(ϕ, x), where Qn ∈ {[[y]] , 〈〈y〉〉 : y ∈ Var};

8. sharing((i, x)ϕ, x) , {i} ∪ sharing(ϕ, x);

9. sharing((i, y)ϕ, x) , sharing(ϕ, x), where y ∈ Var \ {x};

Note that for conciseness we assume throughout this report that every variable is quantified at most
once in a given formula. This can be easily ensured by renaming variables which are not free in the
formula (e.g. (a, x)〈〈x〉〉(b, x)X p ≡ (a, x)〈〈y〉〉(a, y)X p 6≡ (a, y)〈〈x〉〉(a, x)X p).

When we define the modelling relation for Sl, we will somehow need to keep track of the strategies
assigned to variables and agents. This information is encapsulated in an assignment.

Definition 2.23 (Assignments). Let I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

be an interpreted system. An

assignment is a partial function χ : Var ∪ Agt ⇀ SStr which maps variables and agents in its domain
to shared strategies. The set Asg ⊆ Var ∪Agt ⇀ SStr contains all possible assignments.

An assignment χ ∈ Asg is complete iff it is defined on all agents, i.e. Agt ⊆ dom(χ). The set
CAsg ⊆ Asg contains all complete assignments.

Observe that an agent assignment α ∈ AAsgA for a set of agents A ⊆ Agt (Definition 2.16) is also
an assignment (Definition 2.23), i.e. α ⊆ Asg . Hence, Sl assignments are again a generalisation of Atl
agent assignments, i.e. AAsg ⊆ Asg . In addition, we also have AAsgAgt ⊆ CAsg because dom(α) = Agt
for all α ∈ AAsgAgt .

Assume that the history of the system has been ρ ∈ Trk . Given some strategy f ∈ SStr , we would
like to determine the equivalent strategy (f)ρ ∈ SStr for the new history after ρ. Informally, we want to
cut off the past. This is achieved by translating the strategy.

Definition 2.24 (Strategy Translation). Let I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

be an interpreted

system, f ∈ SStrA a shared strategy for a set of agents A ⊆ Agt , and ρ ∈ dom(f) a track
in its domain. Then (f)ρ ∈ SStrA denotes the translation of f along ρ with dom((f)ρ) ,{
ρ′ ∈ track(last(ρ))

∣∣ ρ · ρ′≥1 ∈ dom(f)
}

such that (f)ρ (ρ′) , f
(
ρ · ρ′≥1

)
for all ρ′ ∈ dom((f)ρ).

28 Chapter 2. Background

For example, let f ∈ SStrA be a shared strategy for agents A ⊆ Agt and ρ = [g0, g1, g2] and ρ′ =
[g2, g3, g4] two tracks such that ρ ·ρ′≥1 = [g0, g1, g2, g3, g4] ∈ dom(f). Then we have f([g0, g1, g2, g3, g4]) =
(f)ρ ([g2, g3, g4]). Effectively, we have cut off the past history [g0, g1] and treat g2 as the starting state.
This notion can be easily extended to assignment translation.

Definition 2.25 (Assignment Translation). Let I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

be an interpreted

system, χ ∈ Asg an assignment, and ρ ∈ Trk a track. Then (χ)ρ ∈ Asg denotes the translation of χ

along ρ such that dom((χ)ρ) , dom(χ) and (χ)ρ (l) , (χ (l))ρ for all l ∈ dom(χ).

We can now define the notion of a play. Intuitively, a play is the unique evolution of an inter-
preted system determined by the current global state and agents’ strategies (encapsulated in a complete
assignment).

Definition 2.26 (Plays). Let I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

be an interpreted system. A path

π ∈ path(g) starting at a global state g ∈ G is a play w.r.t. a complete assignment χ ∈ CAsg ((χ, g)-
play, for short) if, for all i ≥ 0, it holds that π(i + 1) = t(π(i), 〈χ(a)(π≤i) : a ∈ Agt〉). The function
play : CAsg ×G→ Pth returns the (χ, g)-play play(χ, g) ∈ Pth(g), for all pairs (χ, g) in its domain.

Once again, Sl plays are very similar to Atl outcomes (see Definition 2.17). The difference between
the two concepts is that play(χ, g) is based on a complete assignment and therefore is unique (since the
complete assignment determines the next action of every agent). In contrast, out(g, α) is a set of paths.
The two concepts are essentially equivalent if we require that α ∈ AAsgAgt since AAsgAgt ⊆ CAsg .

Informally, given a complete assignment, which contains the strategies of all agents, and the current
global state, we know exactly how the whole system will evolve. This idea is formalised in the following
definition.

Definition 2.27 (Global Translation). Let I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

be an interpreted system,

χ ∈ CAsg a complete assignment, and g ∈ G a global state. Then the i-th global translation of (χ, g),

with i ≥ 0 is defined as (χ, g)
i , ((χ)π≤i , π(i)), where π , play(χ, g).

We need to define one more concept before we give the Sl semantics. When an agent binding (i, x) is
encountered, we must update the assignment so that the strategy assigned to agent i ∈ Agt is the same
as the one for the variable x ∈ Var . We generalise this concept of redefinition to an arbitrary partial
function.

Definition 2.28 (Redefinition). Let A, B be two arbitrary sets, f : A ⇀ B a partial function, and
a ∈ A, b ∈ B elements of the sets. Then, f [a 7→ b] : A ⇀ B denotes a new partial function defined
on dom(f [a 7→ b]) , dom(f) ∪ {a} such that f [a 7→ b](a) , b and f [a 7→ b](a′) , f(a′) for all
a′ ∈ dom(f) \ {a}.

We are now finally ready to define Sl semantics. Intuitively, a formula 〈〈x〉〉ϕ is true iff there exists
a strategy for x such that ϕ is true. Conversely, a formula [[x]]ϕ is true iff for all strategies assigned to x
we have ϕ. (a, x)ϕ simply binds the strategy assigned to variable x to agent a.

Definition 2.29 (Sl Semantics). Let I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

be an interpreted system,

g ∈ G a global state, ϕ ∈ SL an Sl formula, and χ ∈ Asg an assignment with free(ϕ) ⊆ dom(χ). The
modelling relation I, χ, g |=Sl ϕ is inductively defined as follows:

1. I, χ, g |=Sl >.

2. I, χ, g |=Sl p iff g ∈ h(p), with p ∈ AP .

3. For all formulas ϕ,ϕ1, ϕ2 ∈ SL, it holds that:

(a) I, χ, g |=Sl ¬ϕ iff I, χ, g 6|=Sl ϕ;

(b) I, χ, g |=Sl ϕ1 ∧ ϕ2 iff I, χ, g |=Sl ϕ1 and I, χ, g |=Sl ϕ2;

(c) I, χ, g |=Sl ϕ1 ∨ ϕ2 iff I, χ, g |=Sl ϕ1 or I, χ, g |=Sl ϕ2.

2.2. Specification Languages 29

4. For all variables x ∈ Var and formulas ϕ ∈ SL, it holds that:

(a) I, χ, g |=Sl 〈〈x〉〉ϕ iff there exists a strategy f ∈ SStr sharing(ϕ,x) such that I, χ[x 7→ f], g |=Sl ϕ;

(b) I, χ, g |=Sl [[x]]ϕ iff for all strategies f ∈ SStr sharing(ϕ,x) it holds that I, χ[x 7→ f], g |=Sl ϕ.

5. For all agents i ∈ Agt , variables x ∈ Var , and formulas ϕ ∈ SL, it holds that I, χ, g |=Sl (i, x)ϕ
iff I, χ[i 7→ χ(x)], g |=Sl ϕ.

6. For all formulas ϕ,ϕ1, ϕ2 ∈ SL, it holds that:

(a) I, χ, g |=Sl Xϕ iff I, (χ, g)
1 |=Sl ϕ;

(b) I, χ, g |=Sl Fϕ iff there is an index i ≥ 0 such that I, (χ, g)
i |=Sl ϕ2;

(c) I, χ, g |=Sl Gϕ iff for all indices i ≥ 0 it holds that I, (χ, g)
i |=Sl ϕ2;

(d) I, χ, g |=Sl ϕ1 Uϕ2 iff there is an index i ≥ 0 such that I, (χ, g)
i |=Sl ϕ2 and, for all indices

0 ≤ j < i it holds that I, (χ, g)
j |=Sl ϕ1.

To our best knowledge, there are no existing model checkers for Sl. The aim of this project is to
develop the first such tool (see Section 1.1). The model checking problem for Sl is formally defined as:

Given an interpreted system I, a global state g ∈ G, an Sl formula ϕ ∈ SL, and an assignment
χ ∈ Asg with free(ϕ) ⊆ dom(χ), determine whether I, χ, g |=Sl ϕ.

In addition to model checking, we are also interested in the problem of strategy synthesis. Informally,
we want to construct strategies which make a particular Sl formula true. More formally, the strategy
synthesis problem is defined as:

Given an interpreted system I, a global state g ∈ G, and an Sl formula ϕ ∈ SL, find an
assignment χ ∈ Asg with free(ϕ) ⊆ dom(χ) such that I, χ, g |=Sl ϕ.

Let us now investigate the expressive power of Sl. The sample properties listed at the beginning of
this section can be expressed in Sl as follows:

1. ℘∀ (open ∧ X open ∧ XX open).

2. connected → ℘∃F¬connected .

3. ℘∀Ffinished .

4. ℘∃F℘∀G deleted .

5. ℘∀ (GF red → GF green).

6. [℘∃GF left]→ [℘∃GF right].

7. 〈〈xfirewall〉〉〈〈xantivirus〉〉([[xi]])i∈Agt\{firewall,antivirus} ((i, xi))i∈Agt G¬hacked .

8. [[x]](player1, x)(player2, x)([[xi]](i, xi))i∈Agt\{player1,player2}
G (¬win1 ∧ ¬win2).

where ℘∃ , (〈〈xi〉〉(i, xi))i∈Agt and ℘∀ , ([[xi]](i, xi))i∈Agt are two prefixes. This demonstrates that Sl
is more expressive than any of the previous formalisms including Atl* because it quantifies and binds
strategies explicitly. However, there are other types of specifications which Sl does not support. These
include statements about agents’ knowledge, which can be expressed using epistemic modalities.

2.2.6 Epistemic modalities

All formalisms defined so far deal only with time. However, there are other modalities (e.g. knowledge,
necessity, belief, etc.) which can be expressed by extending one of the logics described in the previous
subsections. In this subsection we discuss epistemic modalities expressing agents’ knowledge.

Modelling agents’ knowledge in multi-agent systems is very useful because it allows us to reason about
the decision making process of individual agents as well as the interactions within a group of agents [42].
Syntactically, the knowledge of (groups of) agents is represented using epistemic connectives with the
following informal meanings:

30 Chapter 2. Background

• Ki ϕ – agent i ∈ Agt knows that ϕ is true (individual knowledge);

• EA ϕ – each agent in A ⊆ Agt knows that ϕ is true (group knowledge);

• DA ϕ – all agents A ⊆ Agt (together) know that ϕ is true (distributed knowledge);

• CA ϕ – it is common knowledge9 among agents A ⊆ Agt that ϕ is true (common knowledge).

Any of the logics described in the previous subsections can be augmented with the epistemic connectives.
For instance, if we extend Atl (see Subsection 2.2.4) with the new operators, we obtain Alternating-Time
Temporal Logic with Knowledge (Atlk).

Definition 2.30 (Atlk Syntax). Atlk formulas are built inductively from the set of propositional
atoms AP and agents Agt , by using the following grammar, where p ∈ AP , i ∈ Agt , and A ⊆ Agt :

ϕ ::= p | > | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Fϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉[ϕUϕ] | Ki ϕ | EA ϕ | DA ϕ | CA ϕ

ATLK denotes the infinite set of formulas generated by the above rules.

The semantics of agents’ knowledge is traditionally based on epistemic accessibility [61]. Intuitively,
two states are epistemically accessible if they are indistinguishable by an agent. This is formally rep-
resented using a binary epistemic accessibility relation on states of the system. In interpreted systems
(see Definition 2.5), the individual epistemic accessibility relation ∼i ⊆ G × G of an agent i ∈ Agt is
naturally induced by its local states: two global states g1, g2 ∈ G are indistinguishable by the agent iff
its local states are the same, i.e. liE(g1) = liE(g2). A formal definition follows.

Definition 2.31 (Epistemic Accessibilities). Let I =
〈

(Li, Acti, Pi, ti)i∈Agt , I, h
〉

be an interpreted

system. Let i ∈ Agt be an agent and A ⊆ Agt a set of agents. Then the epistemic accessibility relations
on G are defined as:

• The individual epistemic accessibility relation ∼i of the agent i is defined by g ∼i g′ if and only
if liE(g) = liE(g′), i.e. the local states of agent i in global states g and g′ are the same.

• The group epistemic accessibility relation ∼E
A of the set of agents A is defined as ∼E

A ,
⋃
j∈A ∼j ,

i.e. the local states of at least one agent in A in global states g and g′ are the same.

• The distributed epistemic accessibility relation ∼D
A of the set of agents A is defined as ∼D

A ,⋂
j∈A ∼j , i.e. the local states of all agents in A in global states g and g′ are the same.

• The common epistemic accessibility relation ∼C
A of the set of agents A is defined as ∼C

A ,
(
∼E
A

)+
,

i.e. transitive closure of group accessibility relation.

We then ascribe knowledge to agents in the following sense [42]: We say that an agent knows a fact
iff it is true at all the worlds he considers possible, i.e. in all states that he cannot distinguish from the
current one. This interpretation of knowledge is reflected in the semantics of the epistemic connectives
Ki, EA, DA, and CA.

Definition 2.32 (Atlk Semantics). Let I =
〈

(Li, Acti, Pi, ti)i∈Agt , I, h
〉

be an interpreted system,

g ∈ G a global state, i ∈ Agt an agent, and A ⊆ Agt a set of agents. We define I, g |=Atlk ϕ by
induction on ϕ ∈ Atlk:

• I, g |=Atlk Ki ϕ iff for all states g′ ∈ G such that g ∼i g′ we have I, g′ |=Atlk ϕ;

• I, g |=Atlk EA ϕ iff for all states g′ ∈ G such that g ∼E
A g
′ we have I, g′ |=Atlk ϕ;

• I, g |=Atlk DA ϕ iff for all states g′ ∈ G such that g ∼D
A g
′ we have I, g′ |=Atlk ϕ;

• I, g |=Atlk CA ϕ iff for all states g′ ∈ G such that g ∼C
A g
′ we have I, g′ |=Atlk ϕ;

• I, g |=Atlk ϕ is defined in the same way as I, g |=Atl ϕ for other Atlk formulas.

9CA ϕ =
∧∞
i=1 E

i
A ϕ = EA ϕ ∧ EA EA ϕ ∧ . . . i.e. each agent in A knows that ϕ is true, each agent in A knows that each

agent in A knows that ϕ is true, . . .

2.2. Specification Languages 31

Logic Complexity Complexity w.r.t. |ϕ| Complexity w.r.t. |I|
Ltl 2O(|ϕ|)O(|I|) PSpace-complete NLogSpace-complete
Ctl O(|ϕ| × |I|) LogSpace NLogSpace-complete
Ctl* 2O(|ϕ|)O(|I|) PSpace-complete NLogSpace-complete
Atl O(|ϕ| × |I|) P-complete P-complete

Atl* |I|2
O(|ϕ|)

2ExpTime-complete P-complete
Sl — NonElementary P-complete

Table 2.1: Model checking complexities of various logics [18, 38, 58, 72, 84]. |ϕ| and |I| denote the size
of the formula and the model respectively. The precise lower and upper bounds on Sl complexity with
respect to the size of the formula are k-ExpSpace-hard and (k + 1)-ExpTime respectively where k is
the alternation number of ϕ [72].

2.2.7 Model Checking Complexity

In this subsection we discuss the computational complexity of the model checking problem. Table 2.1
shows model checking complexities for the logics described in the previous subsections. We can make
the following observations:

• There is a clear correspondence between expressiveness of a logic and its model checking complexity
(as expected).

• The complexity of model checking of all logics discussed in this section is P with respect to the
size of the model I.

• The complexity of model checking Ltl and Ctl* is exactly the same. Nevertheless, there are not
many practical tools for Ctl* verification. This is probably due to the fact that (i) Ltl model
checking is faster than Ctl* model checking in practice despite the theoretical complexity results,
and (ii) branching-time logics are less natural than linear-time ones [84].

• While both Ctl and Atl formulas can be checked in time O(|ϕ| × |I|), the theoretical complexity
of Ctl is lower because it is related to graph reachability, whereas Atl model checking is related
to AND–OR graph reachability [18].

It is important to emphasise that the size of the model |I| refers to the number of states (not variables).
In general, adding one Boolean variable to a system doubles the size of the model. This is sometimes
referred to as the state explosion problem. The size of a model with m Boolean variables is O(2m). More
generally, the size of a model with n variables where the i-th variable has vi possible values is O(

∏n
i=1 vi).

It is often the case that they are internally represented using m =
∑n
i=1 dlog2 vie Boolean variables (e.g.

when using BDDs, see Subsections 2.3.1 and 2.3.2). Since models are usually described implicitly in the
form of a program (based on variables), Ctl complexity is sometimes stated as PSpace-complete with
respect to program size [64].

2.2.8 Summary

In this section, we have described several well-established temporal logics as well as the relatively new
Sl formalism, which is central to our project. We gave the syntax and semantics of all logics. We also
briefly outlined how they can be model checked and compared their relative expressiveness on a fixed set
of properties. The following diagram summarises the relationships between the logics (L1 → L2 means
that L2 is strictly more expressive than L1):

Ltl

Ctl

Atl

Ctl*

Atl* Sl

We also discussed epistemic modalities expressing agents’ knowledge and provided the model checking
complexities of all logics.

32 Chapter 2. Background

Verification technique Number of states
Explicit approaches 106

Binary decision diagrams 1025

Bounded model checking 10100

Symmetry reduction 10150

Predicate abstraction 101000

Table 2.2: Approximate state spaces that can be handled by various techniques [62].

x y ¬ (x ∧ y)
0 0 1
0 1 1
1 0 1
1 1 0

(a) Truth table

x

y y

1 1 1 0

(b) BDT

x

y

1 0

(c) BDD

Figure 2.1: Truth table, a binary decision tree (BDT), and a binary decision diagram (BDD) for the
propositional formula ¬ (x ∧ y).

2.3 Verification Methods

Once we have converted a system S and a property P to a model MS and a formula ϕP respectively
(as described in the previous sections), we can verify whether the system indeed satisfies the property
by checking [62]:

MS , s0 |= ϕP

where s0 is the initial state of the system. As we have already mentioned, it is often more convenient to
calculate the set of states ‖ϕP ‖MS

at which ϕP is true first:

‖ϕP ‖MS
, {s | MS , s |= ϕP }

Verifying that the system satisfies the property is then equivalent to checking s0 ∈ ‖ϕP ‖MS
.

As an example demonstrating this approach, the recursive model-checking algorithm SATCtl for Ctl
was presented in the previous section (see Definition 2.12). We can use it directly to verify an arbitrary
property of an arbitrary system (so-called explicit model checking). However, models are rarely given
explicitly, but instead, in the form of a program. Moreover, we would like to avoid direct calculation
of the set operations, which could be very slow. Therefore, other more efficient techniques have been
proposed and implemented. Table 2.2 shows the maximum state spaces that can be handled by various
techniques.

2.3.1 Binary Decision Diagrams

Binary decision diagrams [49] are a technique for representing propositional formulas (similarly to truth
tables). Figure 2.1 shows a truth table (Figure 2.1a) and a binary decision tree (Figure 2.1b) for the
propositional formula ¬ (x ∧ y).

Definition 2.33 (Binary Decision Trees). A binary decision tree (BDT) is a complete binary tree
whose non-terminal nodes are labelled with Boolean variables (x1, x2, . . . , xn) and whose terminal
nodes are labelled with Boolean values 0 and 1. Each non-terminal node of a BDT has two outgoing
edges – one solid line and one dotted line (representing that the corresponding Boolean variable is 1
and 0 respectively). A BDT has one layer of non-terminal nodes for every Boolean variable.

A binary decision tree f represents a Boolean function f(x1, x2, . . . , xn). Given an assignment to
all variables x1, x2, . . . , xn occuring in f , we determine the value of the function as follows. We start
at the root of f . If the current node is non-terminal with label xi, we follow the solid line when xi = 1
and the dotted line when xi = 0. If the current node is terminal, the value of the function is the label
of the terminal node (0 or 1).

2.3. Verification Methods 33

x

y y

z z z z

0 0 0 1 0 1 1 1

(a) Original BDT

x

y y

z z z z

0 1

(b) BDD after C1 optimisation

x

y y

z z

0 1

(c) BDD after C2 optimisation (twice)

x

y y

z

0 1

(d) Final reduced BDD after C3 optimisation

Figure 2.2: All reduction steps of the BDT for the formula (x ∧ y)∨ (y ∧ z)∨ (z ∧ x) using optimisations
C1–C3.

A BDT for a formula ϕ (x1, x2, . . . , xn) with n variables has 2n − 1 non-terminal nodes and 2n

terminal nodes. Binary decision trees are thus no more efficient than truth tables (the truth table for
ϕ (x1, x2, . . . , xn) has 2n entries). Fortunately, BDTs can often be compressed. Consider the BDT in
Figure 2.1b. The left y node is redundant since both its edges point to terminal nodes labelled with
1 (although distinct). The dotted edge from the node labelled with x can thus point to a terminal
node labelled with 1 directly instead. Intuitively, once we know that x is false, the formula ¬ (x ∧ y) is
true regardless of the value of y. The resulting graph-based structure (Figure 2.1c) is a binary decision
diagram [49, p. 364]. Binary decision diagrams (BDDs) are a generalisation of binary decision trees.

There are three different ways for reducing a BDD [49, p. 363]:

C1. Removal of duplicate terminals. We merge all terminal 0-nodes into one 1-node. Similarly, we
merge all terminal 1-nodes into one 1-node.

C2. Removal of redundant tests. If both outgoing edges of a non-terminal node n point to the
same non-terminal node m, we can remove node n and send all its incoming edges to node m.

C3. Removal of duplicate non-terminals. If two distinct non-terminal nodes m, n are roots of two
structurally identical sub-BDDs, we can merge m and n.

The optimisations C1–C3 are demonstrated in Figure 2.2.

Definition 2.34 (Binary Decision Diagram). A binary decision diagram (BDD) is a finite directed
acyclic graph with a unique initial node whose non-terminal nodes are labelled with Boolean variables
(x1, x2, . . . , xn) and whose terminal nodes are labelled with Boolean values 0 and 1. Each non-
terminal node of a BDD has two outgoing edges – one solid line and one dotted line (representing that
the corresponding Boolean variable is 1 and 0 respectively).

A BDD is reduced iff none of the optimisations C1–C3 can be applied to it.

BDDs are often much more space efficient than BDTs [49, p. 366]. However, they still have several
drawbacks, (i) there may be multiple occurences of the same variable along a path (which is inefficient),
and (ii) there is no simple way of comparing two BDDs for equivalence. Figure 2.3 shows 6 different
reduced BDDs representing the same propositional formula (demonstrating the second problem). We
can solve this problem by imposing an ordering on the variables [49, p. 367].

34 Chapter 2. Background

x

y

z

0 1

(a) [x, y, z]

x

z

y

0 1

(b) [x, z, y]

y

x x

z

0 1

(c) [y, x, z]

z

x x

y

0 1

(d) [z, x, y]

y

z

x

0 1

(e) [y, z, x]

z

y

x

0 1

(f) [z, y, x]

Figure 2.3: All possible ROBDD orderings for the propositional formula x ∨ (y ∧ z).

Definition 2.35 (Ordered Binary Decision Diagram). Let [x1, x2, . . . xn] be an ordered list of variables
without duplications and f be a BDD all of whose variables occur in the list. The BDD f has the
ordering [x1, x2, . . . , xn] iff for every occurence of xi followed by xj along any path in f , we have i < j.

A BDD is an ordered binary decision diagram (OBDD) iff it has some ordering. An OBDD is a
reduced ordered binary decision diagram (ROBDD) iff it is reduced.

Figure 2.3 shows ROBDD with different orderings for the same propositional formula. In general, the
ordering of the chosen variable ordering has a significant impact on the size and shape of a ROBDD [49].
Note that the BDT in Figure 2.1b is ordered although it is not reduced. Although two structurally
different reduced BDDs can be semantically equivalent, once we fix the ordering of the variables, the
ROBDD for a given Boolean expression is unique. All OBDDs which are semantically equivalent thus
have a canonical form – the reduced form, which can be obtained by applying optimisations C1–C3 [62].

To sum up, ROBDDs have the following advantages (compared to truth tables) [49]:

1. They provide a compact representation of complex Boolean formulas. Nevertheless, the size of
the ROBDD representing certain Boolean functions (e.g. integer multiplication [49, p. 381]) is still
exponential.

2. They have a canonical form allowing very simple equivalence, satisfiability, and validity checking.

3. They support efficient calculation of various Boolean operations (e.g. conjunction). Please refer
to [49, p. 372] for more details about the corresponding algorithms.

These properties make ROBDDs suitable for use in verification as we describe in the next section.

2.3.2 Symbolic Model Checking

We will now describe how BDDs described in the previous subsection can be used for symbolic model
checking. We will proceed as follows:

1. Translate states to conjunctions of literals. Consider m Boolean variables x1, . . . xm. They
can encode 2m different values10. Given a set S of states, we need n Boolean variables such that
2n ≤ |S| [62]. The smallest n satisfying this condition is in general n = dlog2 |S|e. Each state
is then uniquely represented by a conjunct of the variables (e.g. fs1 = (¬x1 ∧ ¬x2 ∧ · · · ∧ ¬xn)).
Table 2.3a shows how this can be done.

2. Translate sets of states to Boolean formulas. We can encode a set of statesX = {s1, s2, . . . , sm}
as a Boolean formula fX =

∨m
i=1 fi = f1 ∨ f2 ∨ · · · ∨ fm. Since each disjunct fi is a conjunction of

literals, the resulting formula fX is in DNF11. Table 2.3b shows how this can be done.

3. Translate set operations to Boolean operations. Let A,B ⊆ S be arbitrary sets of states
represented by Boolean formulas fA, fB . We can express set operations as follows: fA∪B = fA∨fB
(union), fA∩B = fA ∧ fB (intersection), fA\B = fA ∧ ¬fB (difference), and fA′ = fS ∧ ¬fA
(complement).

10We can think of these values as binary numbers from x1 = 0, . . . , xm = 0 up to x1 = 1, . . . , xm = 1.
11Disjunctive normal form.

2.3. Verification Methods 35

State Equivalent formula
s1 ¬x1 ∧ ¬x2 ∧ ¬x3

s2 ¬x1 ∧ ¬x2 ∧ x3

s3 ¬x1 ∧ x2 ∧ ¬x3

s4 ¬x1 ∧ x2 ∧ x3

s5 x1 ∧ ¬x2 ∧ ¬x3

s6 x1 ∧ ¬x2 ∧ x3

(a) States.

Set Equivalent formula (simplified)
∅ 0
{s1} ¬x1 ∧ ¬x2 ∧ ¬x3

{s1, s2} ¬x1 ∧ ¬x2

{s2, s3} ¬x1 ∧ ((¬x2 ∧ x3) ∨ (x2 ∧ ¬x3))
{s4, s5, s6} (¬x1 ∧ x2 ∧ x3) ∨ (x1 ∧ ¬x2)
S ¬x1 ∨ ¬x2

(b) Sets of states.

Table 2.3: Possible encoding of states using Boolean formulas (S = {s1, s2, s3, s4, s5, s6}). Formulas for
sets of states are obtained by disjuntion, e.g. f{s1,s2} = fs1∨fs2 = (¬x1 ∧ ¬x2 ∧ ¬x3)∨(¬x1 ∧ ¬x2 ∧ x3) =
¬x1 ∧ ¬x2. Note that since certain conjuncts do not represent any states (e.g. x1 ∧ x2 ∧ x3), we do not
care if they are in a set and thus we can for example encode the set of all states simply as fS = 1. Also
note that this is not the only possible encoding of states.

4. Translate relations to Boolean formulas Let R = {(s1a, s1b) , (s2a, s2b) , . . . , (sma, smb)} ⊆
S × S be a binary relation. We can encode it as a Boolean expression fR =

∨m
i=1

(
fsia ∧ f ′sib

)
=(

fs1a ∧ f ′s1b
)
∨
(
fs2a ∧ f ′s2b

)
∨· · ·∨

(
fsma ∧ f ′smb

)
, where f ′si is obtained from fsi by replacing variables

x1, x2, . . . , xn with variables x′1, x
′
2, . . . , x

′
n. Figure 2.4 shows how a transition relation can be

encoded. Note that we need 2n variables to represent the binary relation. Relations of higher
arities can be encoded in a similar way.

This allows us to express a model MS using BDDs for sets of states, transition relations, protocols,
etc. The function SATMS (ϕP) which recursively calculates the set of states of MS satisfying a formula
ϕP can be easily modified to perform the corresponding set operations on BDDs (instead of explicitly
on sets of states).

To give a complete picture, we explain how the predecessor functions pre∃, pre∀ : 2S → 2S are
translated to BDD operations. Intuitively, given a set of states X ⊆ S, pre∃ (X) is the set of states that
can reach some state in X in one step and pre∀ (X) is the set of states such that all states reachable in
one step from them are in X. Formally, the general definitions of the functions are12:

pre∃ (X) , {s ∈ S | ∃s′ ∈ S.R(s, s′) ∧ s′ ∈ X}
pre∀ (X) , {s ∈ S | ∀s′ ∈ S.R(s, s′)→ s′ ∈ X}

We can observe that:

pre∀ (X) , {s ∈ S | ∀s′ ∈ S.R(s, s′)→ s′ ∈ X}
= S \ {s ∈ S | ¬ (∀s′ ∈ S.R(s, s′)→ s′ ∈ X)}
= S \ {s ∈ S | ∃s′ ∈ S.¬ (R(s, s′)→ s′ ∈ X)}
= S \ {s ∈ S | ∃s′ ∈ S.R(s, s′) ∧ s′ 6∈ X}
= S \ {s ∈ S | ∃s′ ∈ S.R(s, s′) ∧ s ∈ S \X}
= S \ pre∃ (S \X)

Hence, we only need to explain how pre∃ can be computed using BDDs. Let X ⊆ S be an arbitrary set
of states, R ⊆ S × S a transition relation, and fX , fR their Boolean representation (e.g. BDDs). We
calculate fpre∃(X) as follows13 [62]:

1. Obtain f ′X by replacing all variables xi with their primed versions x′i. Intuitively, we convert X
from the set of current states to the set of next states.

2. Combine the set of next states with the transition relation fR∧f ′X . The result now already contains
the set of new current states pre∃ (X). However, it also still contains the next states X.

12We defined the predecessor functions on interpreted systems in Definition 2.11.
13Please refer to [49] for details on how these operations can be efficiently performed on BDDs.

36 Chapter 2. Background

s1 s2

s3

(a) Model.

s x1 x2

s1 0 0
s2 0 1
s3 1 0
– 1 1

(b) State encoding.

s s′ x1 x2 x′1 x′2 R
s1 s1 0 0 0 0 0
s1 s2 0 0 0 1 1
s1 s3 0 0 1 0 0
s1 – 0 0 1 1 –
s2 s1 0 1 0 0 0
s2 s2 0 1 0 1 0
s2 s3 0 1 1 0 1
s2 – 0 1 1 1 –
s3 s1 1 0 0 0 1
s3 s2 1 0 0 1 0
s3 s3 1 0 1 0 1
s3 – 1 0 1 1 –
– s1 1 1 0 0 –
– s2 1 1 0 1 –
– s3 1 1 1 0 –
– – 1 1 1 1 –

(c) Transition table.

Figure 2.4: Sample encoding of the transition relation R = {(s1, s2) , (s2, s3) , (s3, s1) , (s3, s3)} of a
model with states S = {s1, s2, s3} [62]. The Boolean formula representing the transition is fR =
(¬x1 ∧ ¬x2 ∧ ¬x′1 ∧ x′2) ∨ (¬x1 ∧ x2 ∧ x′1 ∧ ¬x′2) ∨ (x1 ∧ ¬x2 ∧ ¬x′1 ∧ ¬x′2) ∨ (x1 ∧ ¬x2 ∧ x′1 ∧ ¬x′2). The
value “–” (so-called “don’t care”) represents combinations encoding invalid pairs of states.

3. Calculate fpre∃(X) = ∃x′1∃x′2 . . . ∃x′n (fR ∧ f ′X). We are effectively removing the dependence of the
current states on the next states.

2.3.3 Summary

In this section, we discussed how model checking can be performed symbolically using efficient operations
on BDDs. Compared to explicit approaches, which can handle up to 106 states, BDDs support state
spaces with up to 1025 states (see Table 2.2). We will use BDDs in later parts of this report to describe
efficient symbolic implementations of our novel model checking algorithms for fragments of Sl (see
Subsections 4.2.4 and 5.2.4).

2.4 Automata and Games

Model checking and strategy synthesis for a specification in a particular language (e.g. Ltl) can often
be reduced to solving an infinite two-player game [77]. In fact, we will use this approach to provide a
novel algorithm for the verification of Sl[1g] in Chapter 5. This section presents the relevant concepts.

2.4.1 ω-Automata

Automata on infinite words have played a central role in specifying and verifying reactive systems (sys-
tems which do not terminate, e.g. operating systems) since their introduction in the 1960’s [43]. Infor-
mally, finite ω-automata are finite state machines which accept infinite words (i.e. infinite sequences of
symbols) according to some acceptance condition. Firstly, we formally define the concept of finite and
infinite words [43].

Definition 2.36 (Words). Let Σ be a finite alphabet with symbols a, b, c, . . . ∈ Σ. Then,

• Σ∗ is the set of all finite words over Σ. We use small letters u, v, w, . . . ∈ Σ∗ to denote finite
words and write u = u(0)u(1) . . . u(n) with u(i) ∈ Σ and length |u| = n.

• Σω is the set of all infinite words over Σ. We use small greek letters α, β, γ, . . . ∈ Σω to denote
infinite words and write α = α(0)α(1) . . . with α(i) ∈ Σ and length |α| = ω.

2.4. Automata and Games 37

Given an ω-word α ∈ Σω, the set of symbols occurring in α is:

Occ(α) = {a ∈ Σ | ∃i.α(i) = a}

and the set of symbols occurring infinitely often in α is:

Inf(α) = {a ∈ Σ | ∀i∃j > i.α(j) = a}

An automaton (both finite and infinite) can be decomposed into a semi-automaton and an acceptance
condition [77]. We will introduce the two concepts separately. Intuitively, a semi-automaton is a finite
state machine whose edges are labelled with the symbols of a finite alphabet.

Definition 2.37 (Semi-automaton). Let S be a finite set of states and Σ an alphabet. Then A =
(S,Σ, I, R) is a semi-automaton where I ⊆ S is a set of initial states and R ⊆ S × Σ× S a transition
relation.

A semi-automaton A is deterministic iff (i) I = {sI} (there is a unique initial state) and (ii) for
all s ∈ S, a ∈ Σ we have |{s′ ∈ S | R(s, a, s′)}| = 1 (there is exactly one next state for every state and
input). Otherwise, A is non-deterministic.

The transitions of a semi-automaton can be (equivalently) defined as a transition function δ : S×Σ→
2S . In the case of a deterministic semi-automaton, the transition function is simply δ : S × Σ → S.
Therefore, we will sometimes write a deterministic semi-automaton as A = (S,Σ, sI , δ).

The acceptance component of an automaton is defined with respect to the set of runs of the underlying
semi-automaton on an infinite word.

Definition 2.38 (Run). Let A = (S,Σ, I, R) be a semi-automaton and α ∈ Σω an infinite word.
A run of A on α is an infinite word β ∈ Sω such that (i) β(0) ∈ I and (ii) for all i ≥ 0 we have
R(β(i), α(i), β(i+ 1)).

There are various acceptance conditions with different expressive power and translation complexity14.
Here we present only the most common ones [43].

Definition 2.39 (Acceptance). Let A = (S,Σ, I, R) be a semi-automaton. An infinite word α ∈ Σω is
accepted (according to the relevant acceptance condition) iff there exists a run β ∈ Sω of A on α such
that:

• Büchi acceptance condition F ⊆ S (a set of states):

Inf(β) ∩ F 6= ∅

• Generalised Büchi acceptance condition F1, . . . , Fn ⊆ S (sets of states):

∀i ∈ {1, . . . , k}. Inf(β) ∩ Fi 6= ∅

• Muller acceptance condition F ⊆ 2S (a set of state sets):

Inf(β) ∈ F

• Rabin acceptance condition Ω = {(E1, F1) , . . . , (Ek, Fk)} where Ei, Fi ⊆ S (a family of pairs
of state sets):

∃i ∈ {1, . . . , k}. (Inf(β) ∩ Ei = ∅) ∧ (Inf(β) ∩ Fi 6= ∅)

• Streett acceptance condition Ω = {(E1, F1) , . . . , (Ek, Fk)} where Ei, Fi ⊆ S (a family of
pairs of state sets):

∀i ∈ {1, . . . , k}. (Inf(β) ∩ Ei 6= ∅) ∨ (Inf(β) ∩ Fi = ∅)
14All automata in Definition 2.39 except for deterministic (generalised) Büchi automata have the same expressive power.

However, translations between the classes often incur an exponential blow-up. Please refer to [43, Section 1.7] and [83] for
more details.

38 Chapter 2. Background

• Parity acceptance condition c : S → {0, . . . , k} with k ∈ N (a colouring function):

min {c(s) | s ∈ Inf(β)} is even

• Generalised parity acceptance condition c1, . . . , cn : V → {0, . . . , ki} with ki ∈ N (a family
of colouring functions):

∀i ∈ {1, . . . , n}.min {ci(s) | s ∈ Inf(β)} is even

Note that the acceptance condition F of Büchi automata is often referred to as a fairness condition.
Finally, we are ready to define an ω-automaton as a combination of a semi-automaton and an acceptance
condition:

Definition 2.40 (ω-Automata). Let (S,Σ, I, R) be a semi-automaton and F an acceptance condition.
Then A = (S,Σ, I, R,F) is an (existential15) ω-automaton. Lang(A) , {α ∈ Σω | A accepts α} is the
language of A.

Clearly, Büchi automata can be transformed trivially to equivalent generalised Büchi automata by
setting k = 1 and F1 = F . We also show how a generalised Büchi automaton can be converted to an
equivalent Büchi automaton. Let A = (S,Σ, I, R, 〈F1, . . . , Fk〉) be a generalised Büchi automaton [77,83].
We construct a deterministic Büchi automaton D = ({q1, . . . , qk, qa} , S, q1, δ, {qa}) with the transition
function δ defined as:

δ(qa, s) , q1

δ(qi, s) ,

qa if s ∈ Fi ∧ i = k

qi+1 if s ∈ Fi ∧ i < k

qi if s /∈ Fi

The automaton D has k + 1 states and is shown in Figure 2.5. Whenever it is in state qi, it “waits”
until some state in Fi is encountered. Hence, if qa is visited infinitely often, some state in each of the
sets F1, . . . , Fk must be visited infinitely often. Conversely, if some state in each of the sets F1, . . . Fk is
visited infinitely often, the state qa will be visited infinitely often.

The Büchi automaton B equivalent to A is obtained using the automaton product of A (without the
generalised Büchi acceptance condition) and D:

B = A×D = 〈S × {q1, . . . , qn, qa} ,Σ, I × {q1} , R× δ, S × {qa}〉

Note that since D is deterministic, the resulting Büchi automaton B is deterministic if and only if A
is deterministic. Some other properties (e.g. unambiguity [77], see Definition 2.44) are also preserved.

2.4.2 Symbolically Represented ω-Automata

ω-automata can soon become too large to store explicitly. Therefore, it is often useful to represent them
symbolically using BDDs (see Subsection 2.3.1). In this subsection, we explain how to do that.

Let A = (S,Σ, I, R,F) be an ω-automaton. We proceed as follows:

1. We represent the sets S and Σ using finite disjoint sets of variables VS and VΣ respectively. Fur-
thermore, we introduce another set of variables V ′S = {v′ | v ∈ VS} so that we could represent the
binary transition relation. Subsection 2.3.2 explains how to do this in more detail.

2. We encode the initial set of states I ⊆ S as a propositional formula over VS .

3. We encode the transition relation R ⊆ S × Σ× S as a propositional formula over VS ∪ VΣ ∪ V ′S .

15All ω-automata in this thesis are existential because we require the acceptance condition to be satisfied by some run
(see Definition 2.39). Some authors consider ∀-automata instead, which accept an infinite word if all runs of the automaton
on the word are accepting [67].

2.4. Automata and Games 39

q1

q2

q3

· · ·

qk

qa

F1

F2

F3Fk−1

Fk

S

S \ F1

S \ F2

S \ F3S \ Fk

Figure 2.5: The deterministic Büchi automaton D = ({q1, . . . , qk, qa} , S, δ, q1, {qa}) for converting a
generalised Büchi automaton A = (S,Σ, R, I, 〈F1, . . . , Fk〉) to a Büchi automaton. Note that accepting
states have double borders and edges are labelled with sets of states (rather than individual states).

4. We encode the acceptance condition F as a propositional formula (or a set thereof depending on
the class of the automaton) over VS .

The following definition summarises the symbolic representation of ω-automata:

Definition 2.41 (Automaton Formula). Let VS and VΣ be two finite disjoint sets of Boolean variables,
I a propositional formula over VS , R a propositional formula over VS ∪ VΣ ∪ {v′ | v ∈ VS}, and F a
propositional formula (or a set thereof) over VS . ThenA∃(VS , VΣ, I,R,F) in an (existential) automaton
formula.

We often need to combine automata by means of automaton product. This can be done easily when
they are represented symbolically. Let A1 = A∃(VS1

, VΣ1
, I1,R1,F1) and A2 = A∃(VS2

, VΣ2
, I2,R2,F2)

be two automaton formulas. The automaton formula representing their product is16:

A1 × A2 = A∃(VS1 ∪ VS2 , VΣ1 ∪ VΣ2 , I1 ∧ I2,R1 ∧R2,F1 ∪ F2)

2.4.3 Translating Ltl Formulas to ω-automata

There is clearly a resemblance between Ltl formulas and ω-automata. Both identify infinite paths which
are accepted according to some criterion. Therefore, it should not come as a surprise that arbitrary Ltl
formulas can be translated to finite ω-automata which are equivalent in the sense that they accept pre-
cisely those infinite paths which satisfy the corresponding formulas [86]. In fact, as we have already
mentioned in Subsection 2.2.1, many modern model checkers including NuSMV (discussed in Subsec-
tion 2.5.4) first translate an Ltl formula to a generalised Büchi automaton (using the so-called tableau
construction [34]) and then perform Ctl model checking with fairness constraints.

In this subsection we describe the standard translation [83] of Ltl formulas to non-deterministic gen-
eralised Büchi automata. As explained in Subsection 2.4.1, it is straightforward to translate a generalised
Büchi automaton to a Büchi automaton. Firstly, we define what it means for an Ltl formula and an
ω-automaton to be equivalent.

Definition 2.42 (Ltl-ω-Automaton Equivalence). Fix a finite non-empty set of atomic propositions
AP . Let ϕ ∈ LTL be an Ltl formula and A =

(
S, 2AP , I, R,F

)
an ω-automaton. We say that ϕ and

A are equivalent if for every interpreted system I and infinite path π ∈ Pth in I, we have:

I, π |=Ltl ϕ iff A accepts h−1(π)

where h−1(π) = h−1(π(0))h−1(π(1)) . . . and h−1(g) = {p ∈ AP | g ∈ h(p)} for g ∈ G.
16We assume that A1 and A2 are generalised Büchi automata. Otherwise, the combined acceptance condition might be

different from F1 ∪ F2.

40 Chapter 2. Background

We are now ready to describe how Ltl formulas are translated to equivalent ω-automata. Figure 2.6
shows a recursive bottom-up algorithm (referred to as standard translation) which takes as input an Ltl
formula φ and returns a non-deterministic generalised Büchi automaton formula A∃(Qφ,AP , Iφ,Rφ,Fφ)
equivalent to φ.

Note that the standard translation can violate the constraints on the formulas I and F in Defini-
tion 2.41, which require that they range over the state variables VS only. It turns out that the constraint
on I can be temporarily relaxed during the construction as it can be satisfied again at any time by
simply adding an extra state variable q:

A∃(VS ∪ {q} , VΣ, q,R∧ (q ↔ I),F)

This is necessary only (i) when a temporal operator is encountered17 and (ii) at the very end so that
the final automaton formula satisfies the constraints. Thanks to temporarily relaxing the constraints,
we get the result summarised in the following proposition18.

Proposition 2.2. Let ϕ ∈ LTL be an arbitrary Ltl formula with t temporal operators. We can construct
a symbolic representation of a non-deterministic generalised Büchi automaton A∃(Q,AP , Iϕ,Rϕ,Fϕ)
equivalent to ϕ in time O(|ϕ|) with |Q| ≤ 2t+ 1 state variables. The automaton will have at most 22t+1

states.

In order to give some intuition into how the standard translation works, we will now discuss two
examples. Firstly, we consider the Ltl formula X p. The automaton formula equivalent to p is Ap =
A∃(∅,AP , p,>, ∅). Since we will apply the temporal operator X, we have to ensure that the initial
state formula contains only state variables. Therefore, we add an extra state variable q1 and obtain
the automaton formula (also equivalent to p) A′p = A∃({q1} ,AP , q1, q1 ↔ p, ∅). Finally, we apply the
rule for X and obtain the automaton formula AX p = A∃({q1, q2} ,AP , q2, (q1 ↔ p) ∧ (q2 ↔ q′1), ∅). The
automaton is shown in Figure 2.7a. Intuitively, the variables q1 and q2 stand for the Ltl formulas p and
X p respectively. This is expressed in the transition relation by the fact that q1 is true whenever p is true
and q2 is true whenever q1 will be true in the next state.

Secondly, we consider the Ltl formula aU b. The automaton formulas equivalent to the atoms a
and b are Aa = A∃(∅,AP , a,>, ∅) and Ab = A∃(∅,AP , b,>, ∅) respectively. The initial state formula of
the automaton equivalent to the right subformula of aU b must contain only state variables (so that the
associated fairness formula would contain only state variables). Therefore, we introduce an extra state
variable q1 and obtain the automaton formula A′b = A∃({q1} ,AP , q1, q1 ↔ b, ∅). Before applying the
operator U, we calculate the automaton product Aa × A′b = A∃({q1} ,AP , a ∧ q1, q1 ↔ b, ∅). We now
introduce another extra variable q2 which should be true whenever aU b is true. Intuitively, q2 should
be true when b is true (equivalent to q1) or a is true and q2 is true in the next state. Hence, we get the
following recursive relation19:

q2 ↔ q1 ∨ a ∧ q′2
However, this specification is not sufficient because it is also satisfied by a path where a holds forever
from the current state onwards. In other words, the specification admits all paths satisfying the Ltl
formula aW b ≡ (aU b) ∨ G a. In order to enforce that b (q1) is eventually true (in case q2 is true in the
current state), we must add the fairness constraint:

q2 → q1

We show that given an arbitrary infinite path along which the fairness condition is satisfied infinitely
often, q2 is true in the first state of the path if and only if aU b holds on the path:

⇒: Assume that q2 is true in the first state and the fairness constraint is satisfied infinitely often.
Then, either20 q2 is infinitely often false (in which case b must be true after a finite number of steps

17Note that when calculating the automaton formula for ϕUψ (in Figure 2.6), Iϕ need not contain only state variables
because it is neither used in a fairness constraint (like Iψ for U and Iϕ for F, G) nor are its variables switched between the
current and the next state (like Iϕ for X). Hence, every temporal operator will incur at most two new state variables in
total.

18The upper bound for the number of state variables (and consequently states) is slightly tighter than in Proposition 1
of [77].

19Note that this relation is very similar to the fixpoint rule for SATICtl(E[ϕ1 Uϕ2]) in Definition 2.12.
20We use the equivalence q2 → q1 ≡ ¬q2 ∨ q1 and the fact that a disjunction fairness constraint GF (ϕ∨ψ) is equivalent

to the disjunction of fairness constraints (GFϕ) ∨ (GFψ).

2.4. Automata and Games 41

1 function GenBüchi(Φ)
2 switch Φ do
3 case p ∈ AP :
4 return A∃(∅,AP , p,>, ∅)
5 case ¬ϕ:
6 A∃(Qϕ,AP , Iϕ,Rϕ,Fϕ) ≡ GenBüchi(ϕ)
7 return A∃(Qϕ,AP ,¬Iϕ,Rϕ,Fϕ)

8 case ϕ ∧ ψ:
9 A∃(QΦ,AP , Iϕ ∧ Iψ,RΦ,FΦ) ≡ GenBüchi(ϕ) × GenBüchi(ψ)

10 return A∃(QΦ,AP , Iϕ ∧ Iψ,RΦ,FΦ)

11 case ϕ ∨ ψ:
12 A∃(QΦ,AP , Iϕ ∧ Iψ,RΦ,FΦ) ≡ GenBüchi(ϕ) × GenBüchi(ψ)
13 return A∃(QΦ,AP , Iϕ ∨ Iψ,RΦ,FΦ)

14 case Xϕ:
15 A∃(Qϕ,AP , Iϕ,Rϕ,Fϕ) ≡ GenBüchi(ϕ)
16 q := NewVar
17 return A∃(Qϕ ∪ {q} ,AP , q,Rϕ ∧ (q ↔ X Iϕ),Fϕ)

18 case Fϕ:
19 A∃(Qϕ,AP , Iϕ,Rϕ,Fϕ) ≡ GenBüchi(ϕ)
20 q := NewVar
21 return A∃(Qϕ ∪ {q} ,AP , q,Rϕ ∧ (q ↔ Iϕ ∨ X q),Fϕ ∪ {q → Iϕ})
22 case Gϕ:
23 A∃(Qϕ,AP , Iϕ,Rϕ,Fϕ) ≡ GenBüchi(ϕ)
24 q := NewVar
25 return A∃(Qϕ ∪ {q} ,AP , q,Rϕ ∧ (q ↔ Iϕ ∧ X q),Fϕ ∪ {Iϕ → q})
26 case ϕUψ:
27 A∃(QΦ,AP , Iϕ ∧ Iψ,RΦ,FΦ) ≡ GenBüchi(ϕ) × GenBüchi(ψ)
28 q := NewVar
29 return A∃(QΦ ∪ {q} ,AP , q,RΦ ∧ (q ↔ Iψ ∨ Iϕ ∧ X q),FΦ ∪ {q → Iψ})
30 end switch
31 end function

Figure 2.6: Recursive algorithm for translating Ltl formulas to non-deterministic generalised Büchi
automata (standard translation) [83]. The function NewVar returns a new unused Boolean variable.
For an arbitrary Boolean formula ϕ, Xϕ refers to the formula obtained from ϕ by swapping all Boolean
variables with their primed versions (i.e. switching from the current state variables to the next state
variables).

42 Chapter 2. Background

q1q2 q1q2

q1q2q1q2

p

p

p

p

p

p

p

p

(a) Automaton for the Ltl formula X p. There are
2 initial states and no fairness constraints.

q1q2 q1q2

q1q2q1q2

ab

ab

b

b ab

ab

b

b

b
b

(b) Automaton for the Ltl formula aU b. There are
2 initial states and one fairness constraint (satisfied
at nodes with double borders).

Figure 2.7: Automata generated using standard translation. Negated variables are overlined for read-
ability (e.g. q1q2 stands for ¬q1 ∧ ¬q2).

in order for q2 to be true in the first state) or b is infinitely often true (so again, b will be true after
a finite number of steps). In both cases, aU b holds (thanks to the fact that b will be true for the
first time in a finite number of steps, until which point a must be true since q2 is true in the first
state).

⇐: Assume that aU b holds on the path. Then b is true at some point in the (finite) future. Moreover,
a is true in every state until that point. Hence, by the recursive relation, q2 is true in the first
state.

The resulting generalised Büchi automaton formula equivalent to the Ltl formula aU b (obtained by
adding the recursive relation and fairness constraint to the automaton product Aa × A′b) is:

AaU b = A∃({q1, q2} , AP, q2, (q1 ↔ b) ∧ (q2 ↔ q1 ∨ a ∧ q′2), {q2 → q1})

Note that the exactly same automaton formula is obtained by applying the standard translation. The
corresponding automaton is shown in figure 2.7b.

2.4.4 Determinisation

The Büchi21 automata obtained by the standard translation, discussed in Subsection 2.4.3, are non-
deterministic. In order to be able to synthesise strategies which enforce the corresponding Ltl formulas,
we need to further transform the non-deterministic automata into equivalent deterministic automata.

Translation of non-deterministic automata to deterministic ω-automata is typically performed using
Safra’s algorithm [82]. Although the procedure is optimal for Büchi automata, it is very difficult to
implement because it generates deterministic Rabin automata over trees, which cannot be efficiently
represented symbolically using BDDs [77].

In [77, Section 5], a new determinisation procedure for non-confluent Büchi automata, which we
will use in our novel model checking algorithm for Sl[1g] in Chapter 5, was proposed. Intuitively, an
ω-automaton is non-confluent if every finite prefix of a run is uniquely determined by the last visited
state [77].

Definition 2.43 (Non-confluent ω-Automata). Let A = (S,Σ, I, R,F) be an ω-automaton. We say
that A is non-confluent if for every infinite word α we have: if β1 and β2 are two runs of A on α that
intersect at a position t0 (i.e. β1(t0) = β2(t0)), then β1(t) = β2(t) for all t ≤ t0.

We show how to convert the automata generated by the standard translation to equivalent non-
confluent automata before describing the procedure itself. Firstly, we note that the standard translation
generates unambiguous automata [25]. An automaton is unambiguous if every accepted word has a
unique accepting run (although there may be other non-accepting runs).

21Standard translation constructs non-deterministic generalised Büchi automata. However, as explained in Subsec-
tion 2.4.1, it is straightforward to transform a generalised Büchi automaton into an equivalent Büchi automaton.

2.4. Automata and Games 43

Definition 2.44 (Unambiguous ω-Automata). Let A = (S,Σ, I, R,F) be an ω-automaton and set
A? = (S,Σ, S,R,F). We say that A is unambiguous iff for every infinite word α ∈ Σω, there is at most
one accepting run β ∈ Sω of A? on α22.

Proposition 2.3. The generalised Büchi automata generated by the standard translation in Figure 2.6
are unambiguous.

It turns out that there is a connection between unambiguous and non-confluent automata: An un-
ambiguous automaton without useless states is non-confluent [77]. Intuitively, a state is not useless if
(i) it is reachable from one of the initial states and (ii) there exists some accepting run starting from it.

Definition 2.45 (Useless States). Let A = (S,Σ, I, R,F) be an ω-automaton and q ∈ S a state. We
say that q is useless if (i) there is no initial state qI ∈ I such that q is reachable from qI in A or (ii)
there is no infinite word α ∈ Σω accepted by the ω-automaton A′ = (S,Σ, {q} , R,F).

Proposition 2.4. Let A = (S,Σ, I, R,F) be an unambiguous automaton with no useless states. Then
A is non-confluent.

Therefore, if we remove useless states from an unambiguous automaton, we obtain a non-confluent
automaton. Given an automaton A = (S,Σ, I, R,F), the set of reachable states which are not dead ends
(i.e. states which are not useless) can be calculated as an intersection of two fixpoints:

Q = lfpX [I ∪ {s ∈ S | ∃x ∈ X∃a ∈ Σ. R(x, a, s)}]︸ ︷︷ ︸
calculate reachable states

∩ gfpX {s ∈ S | ∃x ∈ X∃a ∈ Σ. R(s, a, x)}︸ ︷︷ ︸
remove dead ends

This is very simple to implement symbolically using operations on BDDs (see Subsection 2.3.2).
To sum up, we can convert an Ltl formula to an equivalent non-confluent non-deterministic Büchi

automaton as follows (all steps can be performed symbolically):

1. We convert the Ltl formula to a generalised Büchi automaton using the standard translation
(Subsection 2.4.3). The automaton is unambiguous (Proposition 2.3).

2. We convert the generalised Büchi automaton to a Büchi automaton using automaton product as
explained in Subsection 2.4.1. The transformation preserves unambiguity [77].

3. We remove useless states from the Büchi automaton using the fixpoint computation above. The
resulting automaton is non-confluent (Proposition 2.4).

Determinisation Procedure for Non-confluent Büchi Automata

A non-confluent Büchi automaton can be determinised using a new procedure presented in [77, 78]23,
which is a specialisation of Safra’s algorithm for non-confluent automata. Let A = (S,Σ, I, R,F) be a
non-confluent Büchi automaton with n reachable states. The procedure constructs a deterministic parity
automaton P equivalent to A. The states of P are (n + 1)-tuples of pairs (Si,mi), where Si ⊆ S is
a set of states and mi ∈ {0, 1} a Boolean flag for the visit of accepting states. The initial state of P
is ((I, 0) , (∅, 0) , . . . , (∅, 0)). To compute the successor of a state ((S0,m0) , . . . , (Sn,mn)) under input
a ∈ Σ, we proceed as follows (we treat the tuple as a list):

1. Delete empty sets. Let e be the lowest index such that Se = ∅. We delete the pair (Se,me) and
shift all pairs (Si,mi) with i > e to the left. In addition, we delete all pairs from the right end
with Si = ∅ except for (S0,m0).

2. Calculate successors. We replace each subset Si by its existential successors sucR,a∃ (Si):

sucR,a∃ (Si) = {s′ ∈ S | ∃s ∈ Si. R(s, a, s′)}

Note that S0 is the set of states that A can reach after having read a finite input word w ∈ Σ∗

starting in one of the initial states.

22i.e. there is at most one accepting run β ∈ Sω of A on α starting in an arbitrary state (β(0) ∈ S).
23The first version of the new procedure was introduced in [78]. The updated version, presented in [77], is slightly different

(as explained in the footnote on page 82 in [77]). Our implementation of the updated version did not work properly on
some examples, whereas the first one did. Therefore, we describe here the first version. We gained some useful insights
about the procedure from [89], where it is tailored for the verification of parametric linear temporal logic (PLtl).

44 Chapter 2. Background

3. Append. We append (S0 ∩ F , 0) to the end of the list to remember that the paths leading to
states S0 ∩ F have already visited F .

4. Mark and clean up. Let ` be the length of the list. For each i ∈ {0, . . . , `− 1}, if Si \ F ⊆⋃`−1
j=i+1 Sj and Si 6= ∅, then we set mi = 1 and remove Si from all Sj with j > i. Otherwise, we

set mi = 0.

As A is non-confluent, we know that a finite run is uniquely characterised by its last state. Hence,
if a state occurs in two sets Si and Sj with j > i, then we know that both sets are following the
same run. Thus, whenever a state set Si contains only states which are accepting (i.e. in F) or
in any of the state sets Sj with j > i, we know that all runs in Si have visited an accepting state
recently. Hence, we also mark Si as accepting and remove the states Si from all Sj with j > i.

5. Pad. Pad the list with n + 1 − ` pairs (∅, 0) at the end. The length of the resulting list is n + 1
and hence is a valid state of P.

After the clean up, every non-empty state set Si must contain some state q ∈ Si such that q /∈ Sj
for all j > i. Hence, the padded list with n+ 1 pairs must have at least one empty state set. Thus,
at least one pair will be removed in the step 1 and the list will again have length at most n + 1
after step 3.

We now explain how to determine the colour of an arbitrary state ((S0,m0) , . . . , (Sn,mn)) of P. Let e
be the lowest index such that Se = ∅ and m the lowest index i such that mi = 1 (or ∞ if there is no
such index). The colouring function c : S → {0, . . . , 2n− 1} is defined as24:

c(q) =

1 if e = 0

2m if m < e

2e− 1 if 0 < e < m

The idea of the construction is as follows: If an entry Si never becomes empty after a certain position on
a run π of P on α ∈ Σω and is marked infinitely often, then we know that a run ξ of A on α contained
in π is introduced infinitely often in step 3. Hence, ξ is accepting25 and π contains an accepting run of
A. Please refer to Section 3 of [78] for a more detailed explanation. The procedure described above is
formalised in the following definition.

Definition 2.46 (Non-confluent Automaton Determinisation). Let A = (S,Σ, I, R,F) be a non-
confluent Büchi automaton with |S| = n states. A deterministic parity automaton P = (T,Σ, tI , δ, c)
equivalent to A is constructed as follows:

• The states of P are (n + 1)-tuples of pairs containing a subset of S and a Boolean flag: T =
{((S0,m0) , . . . , (Sn,mn)) |Si ⊆ S ∧mi ∈ {0, 1}}.

• The initial state is tI = ((I, 0) , (∅, 0) , . . . , (∅, 0)).

• The transition function δ is defined as follows: Given a state t = ((S0,m0) , . . . , (Sn,mn)), the
next state t′ = ((S′0,m

′
0) , . . . , (S′n,m

′
n)) under input a ∈ Σ satisfies:

m′i =

(
sucR,a∃ (Si) \ F

)
⊆
(⋃n

j=i+1 suc
R,a
∃ (Sj)

)
if i < e ∧ sucR,a∃ (Si) 6= ∅(

sucR,a∃ (Si+1) \ F
)
⊆
(⋃n

j=i+2 suc
R,a
∃ (Sj)

)
if i ≥ e ∧ sucR,a∃ (Si+1) 6= ∅

0 else

S′0 = sucR,a∃ (S0)

S′i =

sucR,a∃ (Si) if i < e

sucR,a∃ (Si+1) if e ≤ i < E

sucR,a∃ (S0) ∩ F if e < i = E ∨ e = i = E + 1

∅ else

 \
 i−1⋃

j=0
m′j=1

S′j

 for i > 0

24Note that e ≤ n (at least one state set Si must be empty) and m 6= e for the reachable states. By considering all three
cases in the definition of the colouring function, we see that the maximum possible colour for any reachable state is 2n− 1
because it cannot be the case that both m = n and m < e.

25Since the introduction of ξ in step 3 occurs only when an accepting state is encountered.

2.4. Automata and Games 45

where e is the lowest index such that Se = ∅ and E is the largest index such that SE 6= ∅.

• The colour of a state t = ((S0,m0) , . . . , (Sn,mn)) is:

c(t) =

1 if e = 0

2m if m < e

2e− 1 if 0 < e < m

where e is the lowest index such that Se = ∅ and m is the lowest index i such that mi = 1 (or ∞
if there is no such index).

The complexity of the procedure is provided in the following proposition [77]26:

Proposition 2.5. Given a non-confluent Büchi automaton with n states, the construction in Defini-
tion 2.46 yields a deterministic parity automaton with at most 2(n+1)2 states and 2n colours.

Examples of the Determinisation Procedure

In order to give some intuition into how the new determinisation procedure works, we will now discuss
two examples. Firstly, we consider the non-deterministic unambiguous generalised Büchi automaton
AX p equivalent to the Ltl formula X p in Figure 2.7a. Since it has no fairness constraints, we can treat
it as a non-deterministic unambiguous Büchi automaton where all states are accepting27. We start by
calculating the set of reachable states which are not dead ends. There are four such states: s1 = q1q2,
s2 = q1q2, s3 = q1q2, and s4 = q1q2. Hence, the states of the equivalent deterministic parity automaton
PX p will be 5-tuples.

The initial state of the parity automaton is tI = (({s2, s4} , 0) , (∅, 0) , (∅, 0) , (∅, 0) , (∅, 0)). The colour
of the initial state is c(tI) = 1 since e = 1 and m =∞. In order to determine δ(tI , p), we perform steps 1–5
of the determinisation procedure and obtain the next state t1 = (({s3, s4} , 1) , (∅, 0) , (∅, 0) , (∅, 0) , (∅, 0)).
Also, we find that δ(tI , p) = t1, i.e. the second state of PX p is the same regardless of the input. This is
in line with the meaning of X p (only the second input “matters”).

The final parity automaton PX p is shown in Figure 2.8a. It has four reachable states and uses two
colours. It is indeed equivalent to the Ltl formula X p: If the second input is ¬p, the run will stay
forever in the state ((∅, 0) , (∅, 0) , (∅, 0) , (∅, 0) , (∅, 0)) with colour 1. Hence, the minimal colour occurring
infinitely often will be odd so the run will not be accepted (see Definition 2.39). Conversely, if the second
input is p, the run will stay forever in the state (({s1, s2, s3, s4} , 1) , (∅, 0) , (∅, 0) , (∅, 0) , (∅, 0)) with colour
0. Hence, the minimal colour occurring infinitely often will be even so the run will be accepted. Note
that the last four state sets S1–S4 are always empty in all reachable states of PX p. Thus, we could have
used single pairs (S0,m0) as states of PX p (instead of 5-tuples of pairs).

As a second example, we consider the non-deterministic unambiguous generalised Büchi automaton
AaU b equivalent to the Ltl formula aU b in Figure 2.7b. Since it has exactly one fairness constraint, we
can treat it as a non-deterministic unambiguous Büchi automaton straightaway28. There are only three
reachable states of AaU b which are not dead ends: s1 = q1q2, s2 = q1q2, and s3 = q1q2. Hence, the states
of the equivalent deterministic parity automaton PaU b will be 4-tuples. The parity automaton PaU b

is shown in Figure 2.8b. It has eight reachable states and uses three colours. Clearly, a much smaller
deterministic parity automaton, also equivalent to aU b, can be constructed by hand29. Note that in this
case, all four pairs (S0,m0) , . . . , (S3,m3) are required in the tuple.

26Note that since we use the original version of the procedure introduced in [78], the tuples consist of n+ 1 pairs (Si,mi)
(rather than n as in the updated version [77]). There are 2 possible values for mi and 2n possible values for each Si. Hence,

there are (2× 2n)n+1 = 2(n+1)2 possible states of the automaton. We also provide a slightly tighter bound on the number
of colours because we have shown that the maximum possible colour of any reachable state is 2n− 1.

27If we apply the general procedure for converting generalised Büchi automata to Büchi automata in Subsection 2.4.1,
the auxiliary deterministic Büchi automaton will be D = ({qa} , S, qa, δ, {qa}) with δ(qa, s) = qa for all s ∈ S. Observe that
D has only one state, which is accepting, and accepts all infinite paths π ∈ Sω . Hence, the automaton product will have
identical states and transitions as the original generalised Büchi automaton. Moreover, all its states will be accepting.

28The general procedure for converting generalised Büchi automata to Büchi automata in Subsection 2.4.1 would actually
double the number of states. This is due to the fact that the auxiliary deterministic Büchi automaton D would have two
states.

29However, constructing automata manually is only feasible for simple Ltl formulas. For a more systematic approach,
please refer to Chapter 3 of [77] for an introduction to minimisation of ω-automata.

46 Chapter 2. Background

({s2, s4} , ∅, ∅, ∅, ∅)1

({s3, s4}, ∅, ∅, ∅, ∅)0

(∅, ∅, ∅, ∅, ∅)1 ({s1, s2, s3, s4}, ∅, ∅, ∅, ∅)0

>

¬p p

> >
(a) Deterministic parity automaton for the Ltl formula X p.

({s2, s3} , ∅, ∅, ∅)1

(∅, ∅, ∅, ∅)1 ({s2, s3} , {s3}, ∅, ∅)2

({s1, s2, s3} , {s1, s3}, ∅, ∅)2({s2, s3} , ∅, {s3}, ∅)1 ({s1, s2, s3}, ∅, ∅, ∅)0

({s1, s2, s3} , {s1}, {s3}, ∅)2({s1, s2, s3} , {s1}, ∅, {s3})2

¬a ∧ ¬b
a ∧ ¬b

b¬a ∧ ¬b

a ∧ ¬b¬a ∧ ¬b b

b

>

¬a ∨ b
a ∧ ¬b

a ∧ ¬b

¬a ∨ b ¬a ∨ b

>

>

a ∧ ¬b

(b) Deterministic parity automaton for the Ltl formula aU b.

Figure 2.8: Deterministic parity automata constructed using the new determinisation procedure. Marked
sets are overlined for readability (e.g. {s3, s4} stands for ({s3, s4} , 1)). The colours of the states are
written as subscripts (e.g. the colour of the state (∅, ∅, ∅, ∅, ∅)1 is 1).

2.4. Automata and Games 47

Symbolic Implementation of the Determinisation Procedure

Although the determinisation procedure is quite complicated, it is possible to implement it symboli-
cally [77, 78]. Let A = A∃ (V,AP , I,R,F) be a non-deterministic non-confluent Büchi automaton with
m state variables v0, . . . , vm−1 ∈ V and n reachable states30 s0, s1, . . . , sn−1 ∈ S ⊆ 2V . Hence, the

states of the equivalent parity automaton P = A∃
(
Q,AP , IP ,RP , 〈Ci〉i∈{0,...,2n+1}

)
are (n + 1)-tuples

((S0,mi) , . . . , (Sn,mn)). For each subset Si, we allocate n variables q0
i , . . . q

n−1
i such that qki represents

that sk ∈ Si. Furthermore, we introduce n+ 1 variables m0, . . . ,mn to represent the markings. The set
of state variables of P is thus:

Q ,
{
qki
∣∣ 0 ≤ k < n ∧ 0 ≤ i ≤ n

}
∪ {mi | 0 ≤ i ≤ n}

In order to be able to express the transition function, we also need the next versions of all variables in
Q (i.e. qki

′
and mi

′). The initial state of P is encoded as:

IP ,

[∧
sk∈I

qk0

]
∧

 ∧
sk /∈I

¬qk0

︸ ︷︷ ︸

S0=I

∧

[
n∧
i=1

n−1∧
k=0

¬qki

]
︸ ︷︷ ︸
Si=∅ for all i>0

∧

[
n∧
i=0

¬mi

]
︸ ︷︷ ︸
mi=0 for all i

Before encoding the transition relation, we need to define several auxiliary formulas. Firstly, we need to
express the successor function sucR,a∃ (Si). For this purpose we introduce a family of formulas ϕki over

Q ∪AP , such that ϕki is true iff sk ∈ sucR,a∃ (Si):

ϕki ,
n−1∨
j=0

qji ∧ ∃v0 . . . vm−1v
′
0 . . . v

′
m−1.sj ∧R ∧ s′k︸ ︷︷ ︸

propositional formula over AP
for transition from sj to sk

Secondly, we need to express the indices e and E. We introduce a family of formulas Γi≥e and Γi=E ,
such that Γε is true iff the expression ε is true:

Γi≥e ,
i∨

j=0

n−1∧
k=0

¬qkj︸ ︷︷ ︸
Sj=∅ for some j≤i

Γi=E ,

[
n−1∨
k=0

qki

]
︸ ︷︷ ︸
Si 6=∅

∧

 n∧
j=i+1

n−1∧
k=0

¬qkj

︸ ︷︷ ︸
Sj=∅ for all j>i

We are now ready to encode the transition relation. Recall that a state set Si is marked (i.e. mi = 1)
iff it is non-empty and every non-accepting state sk ∈ Si \ F appears in some state set Sj with j > i.
Thus, the equation for the next value of each of the variables mi is:

Ξi , m′i ↔

[
n−1∨
k=0

qki
′
]

︸ ︷︷ ︸
S′i 6=∅

∧

 ∧
sk∈S\F

qki ′ → n∨
j=i+1

ϕkj

︸ ︷︷ ︸

(S′i\F)⊆(
⋃n
j=i+1 S

′
j)

There are three possible cases for the next state set S′i: (i) successors of the local state set sucR,a∃ (Si)

(when i < e), (ii) successors of the right state set sucR,a∃ (Si+1) (when e ≤ i < E), or (iii) accepting

successors of the first state set sucR,a∃ (S0) ∩ F (when e < i = E or e = i = E + 1). If none of the
conditions is satisfied, S′i = ∅. The first case always applies to the first set S′0 (regardless of the values
of e and E):

∆k
0 , qk0

′ ↔ ϕk0

30Note that although the set of reachable states can be calculated symbolically, we need to explicitly enumerate them.
Therefore, strictly speaking, the procedure is semi-symbolic.

48 Chapter 2. Background

For i > 0, when a state sk /∈ F is not accepting, the first two cases apply to S′i:

Φki , qki
′ ↔ (¬Γi≥e ∧ ϕki︸ ︷︷ ︸

first case

∨Γi≥e ∧ ϕki+1︸ ︷︷ ︸
second case

) ∧ ¬
i−1∨
j=0

(
qkj
′ ∧m′j

)
︸ ︷︷ ︸
remove marked state

sets on the left

For i > 0, when a state sk ∈ F is accepting, all three cases apply to S′i:

Ψk
i , qki

′ ↔ (¬Γi≥e ∧ ϕki ∨ Γi≥e ∧ ϕki+1 ∨ [

e<i=E︷ ︸︸ ︷
Γi≥e ∧ Γi=E ∨

e=i=E+1︷ ︸︸ ︷
¬Γi−1≥e ∧ Γi−1=E] ∧ ϕk0︸ ︷︷ ︸
third case

) ∧ ¬
i−1∨
j=0

(
qkj
′ ∧m′j

)

Finally, the complete transition relation is:

RP ,

[
n−1∧
k=0

∆k
0 ∧ Ξ0

]
︸ ︷︷ ︸

(S′0,m′0)

∧
n∧
i=1

 ∧
sk /∈F

Φki

 ∧(∧
sk∈F

Ψk
i

)
∧ Ξi

︸ ︷︷ ︸

(S′i,m′i) for all i>0

It remains to show how to encode the colouring function. We represent it by a family of formulas
C0, . . . , C2n+1 such that a state t ∈ 2Q has colour c iff the expression ∃q0 . . . q|Q|−1.Cc ∧ t is true. Recall,
that the colouring function refers to the lowest indices e and m such that Si = ∅ and mi = 1, respectively:

Γi=e , Γi≥e ∧ ¬Γi−1≥e Γi≥m ,
i∨

j=0

mj Γi=m , Γi≥m ∧ ¬Γi−1≥m

The formulas C2k and C2k−1 are defined as follows (note that C1 has an extra term for the special case
e = 0):

C1 , Γ1=e ∧ ¬Γ0≥m ∨ Γ0=e

C2k−1 , Γk=e ∧ ¬Γk−1≥m with 2 ≤ k ≤ n+ 1

C2k , Γk=m ∧ ¬Γk≥e with 0 ≤ k ≤ n

This completes the symbolic implementation of the determinisation procedure.

When considering the deterministic parity automaton PX p (shown in Figure 2.8a) equivalent to the
Ltl formula X p, we found that most often not all pairs (Si,mi) are necessary. As suggested in [77], we
can construct the parity automaton for a fixed bound b ≤ n+1 (i.e. use b-tuples instead of (n+1)-tuples)
and check if the bound is sufficient: We calculate the set of reachable states and check if any of them
requires more than b pairs under some input. More formally, let X be a formula representing the set
of reachable states when using b-tuples. The bound is sufficient iff the following logical expression is
equivalent to ⊥ (essentially, we are testing the third case in Ψb

i):

X ∧RP ∧ ¬Γb−1≥e ∧ Γb−1=E ∧
∨
sk∈F

ϕk0 ∧ ¬ b−1∨
j=0

(
qkj
′ ∧m′j

)
If the bound is not sufficient, we increase it and try again. It can be shown that the range of the colouring
function on reachable states for a sufficient bound b is {0, . . . ,min(2b− 1, 2n− 1)}31.

31We have already explained why the colour cannot be greater than 2n − 1. If the bound b is sufficient, then the state
set Sb would be empty in all reachable states (that is exactly why we did not increase the bound any further). Hence, we
have e ≤ b in all reachable states. By considering all three cases in the definition of the colouring function, we see that the
maximum colour cannot exceed 2b− 1.

2.4. Automata and Games 49

2.4.5 Games

As we have mentioned already, many problems in the area of software verification can be reduced to
solving infinite two-player games. In fact, our novel Sl[1g] model checking algorithm presented in
Chapter 5 relies on such a reduction. Therefore, we give a brief overview of infinite two-player games on
directed graphs in this subsection. Please refer to [68], which this subsection is largely based on, for a
more detailed introduction.

A game consists of an arena and a winning set32. Intuitively, an arena represents the “board” on
which a game is played. A formal definition follows.

Definition 2.47 (Arenas). Let V0 and V1 be sets of 0-vertices and 1-vertices, which are disjoint (i.e.
V0 ∩ V1 = ∅). Furthermore, let E ⊆ V × V be an edge relation, where V = V0 ∪ V1 is the set of all
vertices. Then an arena is a triple A = (V0, V1, E).

The set of successors of a vertex v ∈ V is defined as vE , {v′ ∈ V | (v, v′) ∈ E}. A vertex v ∈ V
is a dead end iff vE = ∅ (i.e. it has no successors).

The games we are considering have only two players, player 0 and player 1. We often talk about
player σ, where σ ∈ {0, 1}. The other player is referred to as player σ (i.e. σ = 1− σ).

The game is played as follows: A token is initially placed on some vertex v ∈ V . If it is a 0-vertex
(v ∈ V0), player 0 moves the token to one of its successors vE. Symmetrically, if it is a 1-vertex (v ∈ V1),
player 1 moves the token to one of its successors vE. This pattern is repeated forever or until the current
vertex v is a dead end. Such finite and infinite sequences of vertices are called plays33.

Definition 2.48 (Game Plays). Let A = (V0, V1, E) be an arena. Then a play in A is either:

• a non-empty finite path π = v0v1 . . . vn ∈ V + such that vi ∈ vi−1E for all 0 < i ≤ n and vnE = ∅
(finite play) or

• an infinite path π = v0v1 · · · ∈ V ω such that vi ∈ vi−1E for all i > 0 (infinite play).

Having defined an arena and a play, we are ready to define a game and the winner of a play.
Intuitively, player 0 wins a game if he forces player 1 into a dead end or if the infinite play satisfies some
winning condition.

Definition 2.49 (Games). Let A = (V0, V1, E) be an arena and Win ⊆ V ω a winning set. Then the
pair G = (A,Win) is a game.

Definition 2.50 (Winner of a Play). Let G = (A,Win) be a game and π a play in A. Then player 0
is the winner of π in G iff:

• π is a finite play π = v0v1 . . . vn where vn is a 1-vertex (vn ∈ V1) and a dead end (vnE = ∅) or

• π is an infinite play and π ∈Win.

Otherwise, player 1 is the winner of π in G.

Similarly to acceptance conditions for ω-automata (see Definition 2.39), there is a multitude of win-
ning conditions for games with different expressive power and translation complexity. In addition, the
conditions differ in the amount of memory that a player needs in order to be able to win. Here we present
only the basic winning conditions [68].

Definition 2.51 (Winning Conditions). Let A = (V0, V1, E) be an arena. The winning set Win of the
game G = (A,Win) is the set of all infinite plays π ∈ V ω in A such that:

• Büchi winning condition F ⊆ V (a set of vertices):

Inf(π) ∩ F 6= ∅
32Notice the analogy with ω-automata (Definition 2.40), which consist of a semi-automaton and an acceptance condition.
33We also refer to plays in the context of Sl semantics (see Definition 2.26). It should always be clear from the context

which concept we are referring to.

50 Chapter 2. Background

• Muller winning condition F ⊆ 2V (a set of vertex sets):

Inf(π) ∈ F

• Rabin winning condition Ω = {(E1, F1) , . . . , (Ek, Fk)} where Ei, Fi ⊆ V (a family of pairs of
vertex sets):

∃i ∈ {1, . . . , k}. (Inf(π) ∩ Ei = ∅) ∧ (Inf(π) ∩ Fi 6= ∅)

• Streett winning condition Ω = {(E1, F1) , . . . , (Ek, Fk)} where Ei, Fi ⊆ V (a family of pairs
of vertex sets):

∀i ∈ {1, . . . , k}. (Inf(π) ∩ Ei 6= ∅) ∨ (Inf(π) ∩ Fi = ∅)

• Parity winning condition c : V → {0, . . . , k} with k ∈ N (a colouring function):

min {c(v) | v ∈ Inf(π)} is even

• Generalised parity winning condition c1, . . . , cn : V → {0, . . . , ki} with ki ∈ N (a family of
colouring functions):

∀i ∈ {1, . . . , n}.min {ci(v) | v ∈ Inf(π)} is even

Notice the correspondence between winning conditions for games and acceptance conditions for ω-
automata (see Definition 2.39). We shall use this observation in Chapter 5 to combine an ω-automaton
and an arena into a two-player game game (see Definition 5.7).

Given a game G, we usually want to find out which states of the underlying arena are winning for
each player (i.e. from which states a player can force a winning condition to be true). The set of all such
states is referred to as the winning region. Moreover, we want to construct the corresponding winning
strategies. Intuitively, a strategy34 is a function which maps histories of the game (finite prefixes of plays)
to moves (next vertices).

Definition 2.52 (Game Strategy). Let A = (V0, V1, E) be an arena and σ ∈ {0, 1} a player index.
Then a strategy for player σ is a partial function fσ : V ∗Vσ ⇀ V , such that for all π ∈ V ∗ and v ∈ Vσ,
if πv ∈ dom(fσ), then (v, fσ(πv)) ∈ E.

A prefix of a play π = v0v1 . . . vn is conform with fσ iff for every 0 < i ≤ n, if v0v1 . . . vi−1 ∈
dom(fσ), then vi = fσ(v0v1 . . . vi−1). A play is conform with fσ iff each of its prefixes is conform with
fσ.
Definition 2.53 (Winning Strategies). Let G = (A,Win) be a game, U ⊆ V a set of vertices, and fσ
a strategy for player σ. fσ is a winning strategy for player σ on U iff all plays conform with fσ starting
in U are winning for player σ.
Definition 2.54 (Winning Regions). Let G = (A,Win) be a game. The winning region Wσ(G) ⊆ V
(or Wσ for short) is the set of all vertices v ∈ V , such that player σ has a winning strategy fσ on {v}.

Clearly, given a game G = (A,Win) the winning regions W0(G) and W1(G) are always disjoint. If it
is also the case that W0(G) and W1(G) form a partition of V (i.e. W0(G)∪W0(G) = V), then the game
is determined. Intuitively, a game is determined iff each vertex of the underlying arena is winning for
one of the players. It turns out that all the winning conditions in Definition 2.51 have this property [68].

Definition 2.55 (Determinacy). Let G = (A,Win) be a game with winning regions W0(G) and
W1(G). We say that G is determined iff {W0(G),W1(G)} is a partition of V .

Proposition 2.6. All winning conditions in Definition 2.51 are determined.

The definition of a strategy is very general. In particular, it refers to the whole history of the game,
which is finite but arbitrarily long. Thus, in theory, a player might need infinite memory to implement
such a strategy. Clearly, this is not practical. Therefore, we consider two special types of strategies:
finite memory strategies (also called forgetful) and memoryless strategies (also called positional).

34Again, we also refer to strategies in the context of Atl and Sl (see Definitions 2.16 and 2.21). The main difference is
that Atl/Sl strategies map sequences of states to actions, whereas game strategies map sequences of states to next states.
It should be clear from the context which of the concepts we are referring to.

2.4. Automata and Games 51

winning condition player 0 player 1
reachability yes yes
Büchi yes yes
Müller no no
Rabin yes no
Streett no yes
parity yes yes
generalised parity no yes

Table 2.4: Memoryless determinacy of various infinite games [28, 68]. “yes” means that the player wins
every game with the corresponding winning condition using a memoryless strategy.

Definition 2.56 (Finite Memory Strategies). Let G = (A,Win) be a game. A strategy fσ is finite
memory if there exists a finite set M , an element mI ∈M , and partial functions δ : V ×M ⇀M and
g : Vσ ×M ⇀ V such that the following holds: For each prefix of a play π = v0v1 . . . vn and sequence
m0m1 . . .mn where (i) m0 = mI and (ii) (vi,mi) ∈ dom(δ) implies mi+1 = δ(vi,mi) for all 0 ≤ i < n,
we have either (a) π /∈ dom(fσ) and (vn,mn) /∈ dom(g), or (b) π ∈ dom(fσ), (vn,mn) ∈ dom(g), and
fσ(π) = g(vn,mn).

Intuitively, the set M represents the possible memory states of player σ and mI is his initial memory
state. The strategy is executed by player σ as follows:

Let the current vertex be vi and the current memory state of player σ mi.

1. Move. If vi ∈ Vσ and (vi,mi) ∈ dom(g), then move to vi+1 = g(vi,mi). Otherwise, vi+1 ∈ viE is
arbitrary or selected by player σ.

2. Update memory. If (vi,mi) ∈ dom(δ), update the memory state of player σ to mi+1 = δ(vi,mi).
Otherwise, mi+1 ∈ M is arbitrary. Player σ can now forget mi. Note that the update is carried
out even when the move is decided by player σ.

If we set M to be the singleton set {mI}, then the strategy becomes memoryless. Intuitively, when
using a memoryless strategy, the next vertex depends only on the current vertex. Hence, we can view it
as a partial function Vσ ⇀ V .

Definition 2.57 (Memoryless Strategy). Let G = (A,Win) be a game. A strategy fσ is memoryless
iff for every prefixes of plays π1v, π2v ∈ V ∗Vσ, we have either (i) π1v /∈ dom(fσ) and π2v /∈ dom(fσ),
or (ii) π1v ∈ dom(fσ), π2v ∈ dom(fσ), and fσ(π1v) = fσ(π2v).

Finite memory is often sufficient for winning strategies in infinite games. In fact, all games considered
in this thesis have this property, referred to as finite memory determinacy [68]. Furthermore, some
games require no memory at all (so-called memoryless determinacy). These include reachability and
parity games [68], both of which will be discussed shortly. Table 2.4 shows which players always have a
memoryless winning strategy for various winning conditions.

Proposition 2.7. In every game with a winning condition from Definition 2.51, both players win using
finite memory strategies.

Proposition 2.8. In every reachability and parity game, both players win using memoryless strategies.

We will now discuss solving reachability games, parity games, and generalised parity games in more
detail, as they are relevant for the new model checking algorithm for Sl[1g] we propose in Chapter 5.

Reachability Games

We start by considering reachability games [68]. We will use them to demonstrate some concepts which
will be useful for solving more complex games later. By solving we mean finding the winning regions
and strategies for both players.

In reachability games, the aim (of player 0) is simply to reach some vertex of a designated set of
vertices (or force player 1 into a dead end).

52 Chapter 2. Background

Definition 2.58 (Reachability Game). Let A = (V0, V1, E) be an arena and X ⊆ V a set of vertices.
Then a reachability game R(A, X) is a game in which a play π is winning iff (i) some vertex from X
occurs in π or (i) a dead end for player 1 occurs in π.

Note that this differs from all games studied so far because a finite path ending in a dead end for
player 0 can still be winning for player 0 as long as some vertex from X is visited. The game is solved
by calculating the attractor of X for player 0. Intuitively, an attractor of a set of vertices X for player
σ is the set of all vertices from which player σ can force a visit of X (regardless of what player σ does).

Definition 2.59 (σ-Attractor). Let A = (V0, V1, E) be an arena and X ⊆ V a set of vertices. The
σ-attractor of X in A is the set of vertices attrσ(A, X) ,

⋃
i≥0X

i where:

X0 , X

Xi+1 ,
{
v ∈ Vσ

∣∣ vE ∩Xi 6= ∅
}
∪
{
v ∈ Vσ|vE ⊆ Xi

}
A (memoryless) attractor strategy for player σ is a partial function fσ : Vσ ⇀ V such that dom(fσ) =
Vσ ∩ (attr0(X) \X) and, for each vertex v ∈ Xi+1 ∩ Vσ, we have fσ(v) ∈ Xi.

Intuitively, the attractor strategy ensures that the play is moving “towards” X. On the other hand,
player σ is “trapped” inside V \ attrσ(A, X), i.e. player σ can ensure that the game stays outside
attrσ(A, X) forever. Such a set of vertices is referred to as a trap.

Definition 2.60 (σ-Trap). Let A = (V0, V1, E) be an arena. A set of vertices Y ⊆ V is a σ-trap iff
(i) vE ⊆ Y for every v ∈ Y ∩ Vσ and (ii) vE ∩ Y 6= ∅ for every v ∈ Y ∩ Vσ. A (memoryless) trapping
strategy for player σ is a partial function fσ : Vσ ⇀ V such that dom(fσ) = Y ∩Vσ and, for each vertex
v ∈ Y ∩ Vσ, we have fσ(v) ∈ Vσ.

Notice that all σ-attractors (including attrσ(A, ∅)) contain all dead ends for player σ (since vE = ∅ ⊆
Xi). Hence, the winning regions of a reachability game R(A, X) are:

(W0,W1) = (attr0(A, X), V \ attr0(A, X))

The winning strategies for the players are as follows: Player 0 uses an attractor strategy in his winning
region W0 = attr0(A, X), i.e. he ensures that X will be reached eventually. Conversely, player 1 uses
a trapping strategy in this winning region W1 = V \ attr0(A, X), through which he ensures that the
attractor of X will never be visited. The following proposition follows from the fact that the attractor
of any set in a finite arena with n vertices and m vertices can be calculated in time O(m+ n) [68]:

Proposition 2.9. Let A = (V0, V1, E) be an arena with n = |V | = |V0| + |V1| vertices and m = |E|
edges. The reachability game R(A, X) for an arbitrary set of vertices X ⊆ V can be calculated in time
O(m+ n).

Parity Games

The parity winning condition is the “most fundamental” winning condition [46]. It has the following
desirable properties:

• Every other winning condition for two-player infinite games can be reduced to it [68].

• It enjoys memoryless determinacy (Proposition 2.8).

• It is easily dualisable35. The dual of a parity winning condition c is again a parity winning condition
cD with cD(v) , c(v) + 1.

Recall that player 0 wins a play π in a parity game G = (A, c) iff either (i) the minimum36 colour
occurring infinitely often along π is even, or (ii) π leads to a dead end for player 1. The solution of
a parity game is obtained recursively by solving subgames first and then combining the subresults. A
subgraph and a subgame are defined as follows.

35Let G = ((V0, V1, E) ,Win) be a game. The dual of G is a game GD , ((V1, V0, E) , V ω \Win), i.e. the roles of the
players are swapped and the winning condition is complemented.

36Equivalently, the parity winning condition is sometimes defined with respect to the maximum colour occurring infinitely
often.

2.4. Automata and Games 53

Definition 2.61 (Subgraph and Subgame). Let G = (A, c) be a parity game with arenaA = (V0, V1, E)
and U ⊆ V a set of vertices. The subgraph of G induced by U is defined as G[U] , (A|U , c|U), where
A|U , (V0 ∪ U, V1 ∪ U,E ∪ (U × U)), dom(c|U) , U , and c|U (u) , c(u) for all u ∈ U .

A subgraph G[U] is a subgame of G iff every dead end in G[U] is also a dead end in G.

The algorithm for solving parity games shown in Figure 2.9 is originally due to McNaughton and
Zielonka [70, 88]. It returns the winning regions of the game and can also be used to construct the
corresponding winning strategies. It proceeds as follows:

1. Case 1. If the game has no vertices, the algorithm simply returns empty regions (line 3).

2. The algorithm finds the lowest colour among all vertices p, the associated player σ (σ = 0 if p is
even, σ = 1 if p is odd), and the set of all such vertices X. Then it calculates their attractor A.

3. The algorithm recursively finds the winning regions (W0,W1) of the subgame of G with all vertices
in A removed (line 9).

4. Case 2. If no vertices of the subgame are winning for player σ (line 10), then we are done. Player
σ will either keep winning in the subgame from some point onwards, or player σ can infinitely often
move out of the subgame into the attractor A, in which case player σ can ensure that nodes with
priority p are visited infinitely often. Hence, all vertices of the game are winning for player σ. The
winning strategy is the combination of the winning strategy for the subgame and the attractor
strategy for A.

For strategy synthesis, it is important to ensure that the moves made by player σ in vertices X
stay within G. Remember that G might be a subgame of a larger game that we are trying to solve.

5. Since V \A is a σ-trap in the game (otherwise, player σ could reach A from some vertex v ∈ V \A
and since A is an attractor we would have v ∈ A, which is a contradiction), we have Wσ(G[V \A]) ⊆
Wσ(G). Thus, the algorithm calculates the attractor B of Wσ (line 13). Clearly, B is a subset of
the winning region for player σ in G.

6. The algorithm recursively finds the winning regions (W0,W1) of the subgame of G with all vertices
in B removed (line 14).

7. Case 3. We have Wσ(G) = Wσ(G[V \B]) and Wσ(G) = Wσ(G[V \B]) ∪B since V \B is a trap
for player σ and player σ has no incentive to move to the attractor B (because it is winning for
player σ. The winning strategy for player σ is the winning strategy for the subgame G[V \B]. The
winning strategy for player σ is a combination of his winning strategy for the subgame G[V \ B],
the attractor strategy for B, and his winning strategy for the subgame G[V \A].

Given a finite parity game, the computational complexity of the algorithm is linear in the number of
edges, polynomial in the number of vertices, and exponential in the number of colours [51]:

Proposition 2.10. Let G = (A, c) be a parity game with arena A = (V0, V1, E). Further more, let
n = |V | be the number of vertices, m = |E| the number of edges, and d = |img(c)| the number of colours.

The worst-case time complexity of the algorithm in Figure 2.9 is O(m× (n/d)
d
).

Although a number of algorithms for solving parity games with better worst-case complexity have
been proposed [51, 79], Zielonka’s algorithm beats them in practice [44]. As an interesting side note,
the parity game solving problem belongs to the UP ∩ co-UP complexity class37 [50] and it is unknown
whether a polynomial algorithm for solving it exists [54].

Generalised Parity Games

Generalised parity games were introduced in [28]. They refer to games with conjunctions or disjunctions
of parity conditions. Here we consider the case that the goal of player 0 is a conjunction of parity
conditions, i.e. he wants to ensure that for each colouring function, the colour occurring infinitely often
is even. We can immediately see that the goal of player 1 is then a disjunction of parity conditions, i.e.

37Note that P ⊆ UP ∩ co-UP ⊆ NP ∩ co-NP.

54 Chapter 2. Background

1 function SolveParity(G)
2 if V = ∅ then
3 return (∅, ∅) . Case 1.
4 end if
5 p := min {c(v) | v ∈ V }
6 σ := p mod 2
7 X := c−1(p)
8 A := attrσ(A, X)
9 (W0,W1) := SolveParity(G[V \A])

10 if Wσ = ∅ then . Case 2.
11 Wσ = V
12 else . Case 3.
13 B := attrσ(A,Wσ)
14 (W0,W1) := SolveParity(G[V \B])
15 Wσ := Wσ ∪B
16 end if
17 return (W0,W1)
18 end function

Figure 2.9: Algorithm for solving parity games [79]. It returns the winning regions (W0,W1) of a parity
game G = (A, c) with arena A = (V0, V1, E) and colouring function c : V → {0, . . . , k} where k ∈ N.

he wins if for at least one of the colouring functions, the colour occurring infinitely often is odd. Hence,
the dual of a conjunctive parity game is a disjunctive parity game (and vice versa). This asymmetry
between the two players is also reflected in the fact that player 1 (disjunction) always wins memoryless
while player 0 (conjunction) requires finite memory in general.

The classical algorithm for solving generalised parity games is shown in Figure 2.10. Again, it returns
the winning regions of the game. The winning strategies are as follows [28]:

• Case 1. The game has no vertices so there are no strategies.

• Case 2. Player 0 plays according to his winning strategy for the subgame G[V \ A] when in W ′0.
The winning strategy for player 1 depends on the current vertex v:

– v ∈W ′1: winning strategy for player 1 for the subgame G[V \A];

– v ∈ c−1
i (pi + 1) ∩G: any move as long as the game stays within G;

– v ∈ attr1(A|G, c−1
i (pi + 1) ∩G) \ (c−1

i (pi + 1) ∩G): (memoryless) attractor strategy;

– v ∈W1: winning strategy for player 1 for the subgame G[H];

– v ∈ A \G: (memoryless) attractor strategy.

• Case 3. All vertices are winning for player 0. In order to satisfy all conditions infinitely often, he
needs to use the conjunct number i as memory (i.e. M = {1, . . . , n}). When his current memory
state is i and the current vertex is v, player 0 uses the following strategy:

– v ∈ c−1
i (pi): choose any successor in G and update memory to i+ 1;

– v ∈ attr0(A, c−1
i (pi)) \ c−1

i (pi): attractor strategy (keep memory set to i);

– otherwise, the following two cases apply. They refer to the value of W0 and its attractor
calculated on lines 14 and 15 in some iteration (not just the last one).

∗ v ∈W0: winning strategy for player 0 for the subgame G[H];

∗ v ∈ attr0(A|G,W0) \W0: (memoryless) attractor strategy.

Given a finite generalised parity game, the computational complexity of the algorithm is linear in the
number of edges, polynomial in the number of vertices, and exponential in the number of colours of each
colouring function [28]:

2.4. Automata and Games 55

1 function SolveGenParity(G)
2 if V = ∅ then
3 return (∅, ∅) . Case 1.
4 end if
5 for i := 1, . . . , k do
6 pi := 2 b(min {ci(v) | v ∈ V }) /2c . Ensure that pi is even.
7 end for
8 for i := 1, . . . , k do
9 if pi < ki then

10 G := V \ attr0(A, c−1
i (pi))

11 H := G \ attr1(A|G, c−1
i (pi + 1) ∩G)

12 repeat
13 (W0,W1) := SolveGenParity(G[H])
14 G := G \ attr0(A|G,W0)
15 H := G \ attr1(A|G, c−1

i (pi + 1) ∩G)
16 until W1 = ∅ ∨W1 = H
17 if W1 = H then
18 A := attr1(A, G)
19 (W ′0,W

′
1) := SolveGenParity(G[V \A])

20 return (W ′0,W
′
1 ∪A) . Case 2.

21 end if
22 end if
23 end for
24 return (V, ∅) . Case 3.
25 end function

Figure 2.10: Algorithm for solving generalised parity games [28]. It returns the winning regions (W0,W1)
of a generalised parity game G = (A, 〈c1, . . . , cn〉) with arena A = (V0, V1, E) and colouring functions
ci : V → {0, . . . , ki} where ki ∈ N.

56 Chapter 2. Background

Proposition 2.11. Let G = (A, 〈c1, . . . , ck〉) be a generalised parity game with arena A = (V0, V1, E).
Furthermore, let n = |V | be the number of vertices, m = |E| the number of edges, and di = |img(ci)|
the number of colours of colouring function ci for all i ∈ [1 .. k]. The worst-case time complexity of the
algorithm in Figure 2.10 is:

O
(
m× nd

)
×
(

dd/2e
dd1/2e , . . . , ddk/2e

)
= O

(
m× nd

)
× dd/2e!∏k

i=1 ddi/2e!

where d ,
∑k
i=1 di.

2.4.6 Summary

In this section, we gave a brief overview of concepts related to ω-automata and two-player games, which
we will use to describe our model checking algorithm for Sl[1g] in Chapter 5. We also explained how an
arbitrary Ltl formula can be converted to an equivalent deterministic parity automaton symbolically.
Finally, we discussed how the winning regions and strategies of reachability games, parity games, and
generalised parity games can be calculated.

2.5 Existing Tools

This section gives an overview of existing model checkers. We provide their key features, file formats,
and supported specification languages. We also indicate whether they use BDD-based or SAT-based
techniques (or both). The tools are presented in alphabetical order.

2.5.1 MCK

MCK is a model-checking tool for multi-agent systems developed at the School of Computer Science and
Engineering at the University of New South Wales [7,14]. It uses mainly BDDs but also supports bounded
model checking (BMC) and explicit state model checking (ESMC). The BDD packages supported by
MCK are David Long’s Binary Decision BDD package, BuDDy, and CUDD [1, 60, 85]. The basic logics
for specifying properties supported by MCK are:

• Ltl, Ctl, Ctl*;

• µ-calculus;

• Epistemic modalities including common knowledge;

• Fairness constraints.

In addition to the (traditional) observational semantics, MCK supports clock, asynchronous perfect
recall, and synchronous perfect recall semantics. It also provides a GUI and counterexample generation.
MCK is implemented in Haskell.

2.5.2 MCMAS

MCMAS is a BDD-based model-checker for the verification of multi-agent systems (MAS) developed at
Imperial College London released under GNU General Public License (GPL) [5,8,63]. It uses the CUDD
BDD package [85]. MAS descriptions are given in the form of programs in ISPL (Interpreted Systems
Programming Language). MCMAS supports the following logics for specifying properties:

• Ctl with fairness constraints;

• Atl with fairness constraints;

• Epistemic modalities;

• Deontic modalities expressing correctness of agents’ behaviour38 [66].

38The syntax is extended with the deontic modality Oi ϕ. Informally, Oi ϕ is true iff ϕ is true in all states in which agent
i ∈ Agt is functioning correctly.

2.5. Existing Tools 57

MCMAS also supports generating counterexample traces and provides a GUI in the form of an Eclipse
plug-in, whose functionalities include ISPL program editing with dynamic syntax checking, interactive
execution mode, and counterexample/witness display [63]. MCMAS is implemented in C++.

As part of this project, we implemented two extensions for MCMAS which add support for Slk
and Sl[1g] model checking (see Sections 6.2 and 6.3). Therefore, MCMAS functionality, usage, and
architecture is described in much more detail in Section 6.1. Nevertheless, we decided to include it in
this section as well so that it could be easily compared with other existing tools.

2.5.3 Mocha

Mocha is a BDD-based model checker developed jointly at the University of California at Berkeley,
the University of Pennsylvania, and the State University of New York at Stony Brook [17]. It differs
from conventional model checkers in that its main purpose is to facilitate the development of new ver-
ification techniques. Systems are modelled using reactive modules, which represent their synchronous,
asynchronous, and real-time components. Mocha supports the following formalisms for specifying prop-
erties [16]:

• Atl;

• Invariants (propositional formulas which are intended to be true in all reachable states39);

• Abstract modules, which should be implemented by the system module (refinement).

Mocha provides a GUI for interactive simulation. It is currently available in two versions, cMocha and
jMocha, implemented in C and Java respectively. The latter currently does not support Atl model
checking.

2.5.4 NuSMV

NuSMV is an open-source tool for model checking published under GNU Lesser General Public License
2.1 (LGPL) which supports both BDD-based and SAT-based model checking [6, 10, 30]. NuSMV is a
reimplementation and extension of SMV [69]. It uses the CUDD BDD package and supports the Z-Chaff
and MiniSat SAT-solvers [3, 36,85].

NuSMV processes files in the SMV format, which it first translates to a finite state machine (FSM) and
then performs either BDD-based model checking, or bounded model checking (BMC) [32]. Figure 2.11
shows an SMV file and the corresponding finite state machine. The tool supports the following logics for
specifying properties [31]:

• Ltl using either the tableau method [34], in which it is automatically converted to a Ctl formula
and verified on a tableau with fairness constraints (BDD-based), or using BMC (SAT-based);

• Ctl with fairness constraints (BDD-based);

• RTCtl (Real Time Ctl [40]) which augments Ctl with real-time constraints40 (BDD-based);

• A subset of Psl (Property Specification Language [15]).

NuSMV also supports generating counterexample traces and provides an interactive shell [31]. It is
implemented in C.

2.5.5 PRISM

PRISM is a probabilistic model checker released under the GNU General Public License [5, 11, 57]. It
uses various techniques including BDDs, MTBDDs41, discrete-event simulation, quantitative abstraction
refinement, and symmetry reduction. PRISM supports a wide range of models:

39Note that checking an invariant ϕ is equivalent to checking the Ctl formula AGϕ.
40For example, the RTCtl formula AG

(
α→ AF0..4 β

)
expresses that whenever α is true, β is true in 0 to 4 steps [31].

41Multi-terminal binary decision diagrams (MTBDDs) are a generalisation of BDDs in which terminal nodes are labelled
with arbitrary real values (not just 0 and 1) [56, Section 4].

58 Chapter 2. Background

MODULE main

VAR

b0 : boolean;

b1 : boolean;

n : {0, 1, 2, 3};

ASSIGN

init(b0) := FALSE;

init(b1) := FALSE;

init(n) := 0;

next(b0) := !b0;

next(b1) := b1 xor (b0 & !next(b0));

next(n) := (n + 1) mod 4;

LTLSPEC

G (b0 xor X b0);

CTLSPEC

AG (b0 <-> (n mod 2) = 1);

CTLSPEC

AG (b1 <-> (n / 2) = 1);

(a) SMV file.

b0 = false
b1 = false
n = 0

b0 = true
b1 = false
n = 1

b0 = false
b1 = true
n = 2

b0 = true
b1 = true
n = 3

(b) Finite state machine.

Figure 2.11: Sample SMV file (with one Ltl property and two Ctl properties) and the corresponding
finite state machine.

• Discrete deterministic – Discrete-time Markov chains (DTMCs);

• Discrete non-deterministic – Markov decision processes (MDPs) and probabilistic automata (PAs);

• Continuous deterministic – Continuous-time Markov chains (CTMCs);

• Continuous non-deterministic – Probabilistic timed automata (PTAs) and Priced probabilistic
timed automata (PPTAs).

and the extensions of these models with costs and rewards [57]. PRISM’s property specification lan-
guage42 subsumes the following logics:

• PCtl (Probabilistic computation tree logic [22]) and PCTL* which augment Ctl and Ctl* with
probability bounds43;

• Csl (Continuous stochastic logic [20]) for continuous systems inspired by Ctl44;

• Ltl;

• Most of Ctl.

PRISM also provides optimal adversary/strategy generation for nondeterministic models and a GUI. It
is implemented in a mixture of Java and C++.

2.5.6 VerICS

VerICS is a SAT-based model-checking tool for multi-agent systems developed at the Institute of Com-
puter Science, Polish Academy of Sciences [52]. It uses bounded model checking (BMC) and unbounded

42For example the property “P<0.1 [F<=100 num errors > 5]” expresses that “the probability that more than 5 errors
occur within the first 100 time units is less than 0.1” [11].

43The syntax is extended with the probabilistic operator P. Intuitively, P≥pϕ (P≤pϕ) means that ϕ holds with probability
at least (at most) p.

44Informally, Csl extends propositional logic with formulas of the form P>p φ where φ =
(
ϕ1 U[a1,b1] ϕ2 U[a2,b2] . . . ϕn

)
.

φ is true on a path π iff there exist real numbers t1, . . . tn−1 such that for each integer i ∈ [1 .. n− 1] we have ai ≤ ti ≤ bi
and ∀t′ ∈ [ti−1, ti) . π(t′) |=Csl ϕi where t0 = 0.

2.6. Summary 59

model checking (UMC) to verify temporal, epistemic, and deontic properties on timed automata and
timed Petri nets. BMC uses the MiniSat or RSat SAT-solver and UMC uses a modified version of the
Z-Chaff SAT-solver [3, 12,36]. The logics supported by VerICS include:

• Ctlpk (Ctl with past and knowledge operators) using UMC;

• ECtlkd (existential fragment of Ctl with knowledge and deontic operators) using BMC;

• TECtlk (existential fragment of timed Ctl with knowledge operators) using BMC.

VerICS provides a GUI for modelling timed automata and timed Petri nets. It is implemented in Java.

2.6 Summary

In this chapter, we provided the background theory that the rest of this report is based on. We explained
that formal verification techniques typically comprise three components, a framework for modelling
systems, a specification language, and a verification method. Model checking, which is a model-based
verification method, refers to the process of determining whether a property P encoded as a formula φP
holds in a system S represented by a model MS , i.e. MS |= φP . We then discussed each of the three
components of verification using model checking.

We first compared the most common frameworks for modelling systems and explained why interpreted
systems are best suited for modelling multi-agent systems. As a second step, we described several logics
of increasing expressiveness for specifying temporal properties of a system and demonstrated the power of
Sl. We also gave a brief overview of epistemic modalities, which express agents’ knowledge. We concluded
our tour of specification languages by pointing out the close relationship between expressiveness and
model checking complexity.

We then discussed verification methods. We introduced BDDs, which are commonly used for symbolic
model checking because of their ability to handle large state spaces efficiently, and explained how they
can represent sets and relations. A large portion of the chapter was devoted to the theory of ω-automata
and two-player infinite games, which are central to the model checking algorithms of many temporal
logics including Ltl.

Finally, we gave an overview of state of the art model checkers and compared their functionality
and architecture. Before moving on to the next chapter, we would like to point out that none of them
supports either Atl* or Sl.

60 Chapter 2. Background

Chapter 3

Fragment Selection

Our aim is to build a model checker for Sl. As explained in Subsection 2.2.5, Sl is very expressive.
Unlike Atl*, which subsumes all other logics presented in Section 2.2, Sl can express complex game-
theoretic concepts like Nash equilibria. However, as we have already pointed out, such power comes at
a cost. In fact, there are several problems with the original Sl defined on perfect recall semantics:

1. Complexity. The model checking of Sl is NonElementary with respect to the size of the for-
mula. More precisely, model checking an Sl sentence ϕ with alternation number k is k-ExpSpace-
hard and (k+1)-ExpTime [72]. This is far worse than the 2ExpTime-complete model checking
complexity of Atl* [18]. This suggests that, given the computational power of today’s computers,
any model checking algorithm would be able to verify only very simple Sl formulas, rendering Sl
expressiveness in practice very limited. Nevertheless, it is worth pointing out the the complexity
is still P-complete with respect to the size of the model. Hence, it should be possible to check
such simple Sl formulas against very large models.

2. Non-behavioural strategies. Sl admits non-behavioural strategies where an agent’s action might
depend on another agent’s action in another counterfactual game [75]. Given that an agent clearly
cannot predict another agent’s behaviour, such strategies are not synthesisable in practice. This is
a major drawback since we want to know not only whether a formula is true or false, but also why
it is the case, i.e. what strategies should the agents employ in order to either enforce it, or violate
it.

3. Undecidability under incomplete information. Sl is undecidable under perfect recall and
incomplete information1. This means that we cannot augment Sl with epistemic modalities, which
require incomplete information, unless agents have imperfect recall. Moreover, without incomplete
information, the synthesised strategies might not be uniform, i.e. an agent might have to perform
different actions in two indistinguishable local states. Such strategies are of limited use in models
where agents do not have complete knowledge of the system (e.g. interpreted systems discussed in
Subsection 2.1.3).

To sum up, model checking the original Sl (with complete information) would probably have very low
performance and limited application. Therefore, we decided to consider fragments of Sl, which do
not suffer from these limitations. Given the undecidability of Sl under perfect recall and incomplete
information, we had basically two options2:

1. Sl with imperfect recall (and incomplete information) and

2. Sl with complete information (and perfect recall).

We considered both options and identified two fragments of Sl, namely Epistemic Strategy Logic (Slk)
and One-Goal Strategy Logic (Sl[1g]), for which we designed model checking algorithms presented in
Chapters 4 and 5.

1A proof of undecidability of Atl under incomplete information and perfect recall was presented in [35]. Since Sl
(strictly) subsumes Atl, our claim follows.

2Sl with complete information and imperfect recall is a subset of Sl with incomplete information and imperfect recall.
Therefore, we do not discuss this option separately.

62 Chapter 3. Fragment Selection

3.1 Imperfect Recall

The first way to tackle the issues outlined at the beginning of this chapter is to use imperfect recall
semantics with incomplete information, under which agents have no memory of the past and do not
have complete knowledge of the global state. Hence, their actions depend solely on their current local
states, i.e. they use memoryless strategies fi : LiE → Act i. This set up, also referred to as memoryless
semantics, addresses most of the main problems associated with full Sl:

1. The model checking complexity with respect to the size of the formula is PSpace (see Theorem 4.1).
This is a massive improvement compared to Sl with perfect recall. However, the model checking
complexity with respect to the size of the model is now also PSpace.

2. Sl with imperfect recall still admits non-behavioural strategies. Moreover, it appears that under
incomplete information, behavioural semantics cannot be obtained even by restricting the syntax
of Sl as we will do in Section 3.2.

3. Incomplete information is decidable under imperfect recall. This should not come as a surprise
given that the number of local states, actions, and hence memoryless strategies is finite. Intuitively,
we could explicitly enumerate all possible strategies each time a quantifier is encountered.

Although Sl with imperfect recall admits non-behavioural strategies, we believe that it has great the-
oretical value as it supports reasoning about game-theoretic concepts under incomplete information.
Furthermore, we can increase its expressiveness by adding epistemic modalities (see Subsection 2.2.6),
which turn out to have no impact on either complexity or decidability. We refer to this new variant of
Sl with imperfect recall, incomplete information, and epistemic modalities as Epistemic Strategy Logic,
or Strategy Logic with Knowledge (Slk). We formally define it and provide a model checking algorithm
for it in Chapter 4.

3.2 Complete Information

Another approach for addressing the undecidability problem is to use complete information semantics,
under which agents have complete knowledge of the whole model. Their actions thus depend on the whole
history of global states, i.e. they use strategies3 fi : Trk → Act i. This set up was used by the original Sl,
introduced in [76], and it still suffers from the first two problems, namely NonElementarySpace-hard
model checking complexity and non-behavioural strategies.

To address this issue, several syntactic fragments of Sl have been proposed [72, 75]. The fragments
use Ltl syntax (see Definition 2.7) augmented with the quantification rule ℘ψ where ℘ is a quantification
prefix4 for all free variables in ψ, ψ is an Sl formula consisting of agent-closed goals of the form [ϕ, [is
a binding prefix, and ϕ is an Ltl formula. The syntactic fragments differ in the combinations of goals
they permit. For example, the following is a Boolean-Goal Strategy Logic formula:

[[x]]〈〈y〉〉[[z]]︸ ︷︷ ︸
quant. prefix ℘

[

binding prefix [1︷ ︸︸ ︷
(a, x)(b, y)(c, z)X p︸ ︷︷ ︸

goal [1ϕ1

∨ (a, y)(b, z)(c, x)

Ltl formula ϕ2︷ ︸︸ ︷
(FG q → FG r)︸ ︷︷ ︸

goal [2ϕ2

]

Informally, the fragments differ in which operators can occur “between” a quantification prefix ℘ and
goals [ϕ. The following syntactic fragments have been proposed in [72, 75] (k is alternation number of
the formula):

• Nested-Goal Strategy Logic (Sl[ng]).
Syntax: ψ ::= ¬ψ | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψUψ | [ψ | ϕ (any Ltl operator or bind. prefix)
Complexity: NonElementary (k-ExpSpace-hard lower b., (k + 1)-ExpTime upper b.)
Semantics: non-behavioural
Satisfiability: undecidable

3Recall that Trk ⊆ G+ is the set of all possible tracks (non-empty finite sequences of global states) in the underlying
interpreted system (see Definition 2.6).

4We define the quantification and binding prefixes formally when we introduce Sl[1g] syntax (see Definition 5.1).

3.3. Toy Model 63

• Boolean-Goal Strategy Logic (Sl[bg]).
Syntax: ψ ::= ¬ψ | ψ ∧ ψ | ψ ∨ ψ | [ϕ (any Boolean operator)
Complexity: open question (2ExpTime-hard lower b., (k + 1)-ExpTime upper b.)
Semantics: non-behavioural
Satisfiability: undecidable

• Conjunctive-Goal Strategy Logic (Sl[cg]).
Syntax: ψ ::= ψ ∧ ψ | [ϕ (conjunction only)
Complexity: 2ExpTime-complete
Semantics: behavioural
Satisfiability: open problem

• Disjunctive-Goal Strategy Logic (Sl[dg]).
Syntax: ψ ::= ψ ∨ ψ | [ϕ (disjunction only)
Complexity: 2ExpTime-complete
Semantics: behavioural
Satisfiability: open problem

• One-Goal Strategy Logic (Sl[1g]).
Syntax: ψ ::= [ϕ (quantification coupled with binding)
Complexity: 2ExpTime-complete
Semantics: behavioural
Satisfiability: decidable

Note that Sl[dg] and Sl[cg] are duals of each other. Therefore, we will refer to them jointly5 as
Sl[dg/cg]. The complete expressiveness chain of all syntactic fragments, the original Sl, and Atl*
together with their model checking complexities is [72, 75]:

Atl* < Sl[1g] < Sl[dg/cg]︸ ︷︷ ︸
2ExpTime-complete

< Sl[bg]︸ ︷︷ ︸
?

≤ Sl[ng] ≤ Sl︸ ︷︷ ︸
NonElementary-

Space-hard

Clearly, there are two candidates for our purposes: Sl[1g] and Sl[dg/cg]. Both of them have a much
lower model checking complexity than Sl and admit only behavioural strategies. In addition, they have
the same model checking complexity as Atl* while being strictly more expressive. Although there is
a difference between Sl[1g] and Sl[dg/cg], namely that the satisfiability of Sl[1g] is known to be
decidable but still remains an open problem for Sl[dg/cg], it is not relevant for our purposes and thus
not a strong criterion for fragment selection.

Given the amount of time for the project and the theoretical complexity of model checking and
strategy synthesis under perfect recall, we decided to focus on Sl[1g]. We provide a novel model checking
algorithm for Sl[1g] with perfect recall and complete information in Chapter 5. It is perfectly possible
that only minor modifications of the algorithm would be necessary in order to support Sl[dg/cg] as
well.

3.3 Toy Model

Some of the model checking concepts presented in Chapters 4 and 5 are very abstract and might be
difficult to grasp on first reading. In order to make them easier to understand for the reader, we will
demonstrate them on a very simple toy model, a game of Rock-Paper-Scissors. It is a traditional two-
player game, where both players simultaneously show a gesture (using their hands) representing one of
the three objects. This pattern is repeated, until each of the players shows a different gesture. Once their
gestures differ, the winner is determined according to the following rules: rock beats scissors, scissors
beat paper, and paper beats rock.

The simplicity of this game will allow us to provide detailed examples for almost all concepts and
procedures introduced in this thesis. However, it is very important to stress that this toy model is in

5This does not mean that both disjunctions and conjunctions can be used within one prefix. Such a fragment would be
equivalent to Sl[bg] since ¬[ϕ ≡ [¬ϕ (i.e. we could propagate all negations using De Morgan’s laws into the goals).

64 Chapter 3. Fragment Selection

no way representative of the expressive power of Sl or its fragments. Unfortunately, if we used a more
realistic example, some of the constructions could not be fully presented in this thesis as they would have
hundreds or even thousands of states. In fact, as we will see in Chapter 5, even this simple model (with
only 3 states) generates a parity game with more than 50 states when model checking the Sl[1g] formula
X p (see Figure 5.2). More compelling examples, including specifications expressing Nash equilibria and
agents’ knowledge, will be presented in Section 6.4.

3.3.1 Formal Definition

Let us now define the model more formally as an interpreted system I =
〈

(Li, Acti, Pi, ti)i∈Agt , I, h
〉

(see

Definition 2.5). To model the two-player game, we use three agents Agt = {1, 2,E}, where E represents
the environment. The internal states Li and actions Act i of the agents are as follows:

L1 , {s} Act1 , {r,p, s, i}
L2 , {s} Act2 , {r,p, s, i}
LE , {sg, s1, s2} ActE , {i}

Both agents have only one internal state s, i.e. all state information is kept in the environment (and
hence agents have complete information). Conversely, the environment can only perform the idle action i.
The environment’s states sg, s1, and s2 stand for “game”, “player 1 victory”, and “player 2 victory”

respectively. There are 3 global states6 G , L1×L2×LE = {(s, s, sg) , (s, s, s1) , (s, s, s2)}, which we will

denote gg, g1, and g2 for conciseness. The set of initial states is I , {gg}. The protocols of the agents
are as follows:

P1(s, sg) , {r,p, s} P1(s, s1) , {i} P1(s, s2) , {i}
P2(s, sg) , {r,p, s} P2(s, s2) , {i} P2(s, s2) , {i}
PE(sg) , {i} PE(s1) , {i} PE(s2) , {i}

Furthermore, there are 16 joint actions, only 10 of which are possible:

Act , Act1 ×Act2 ×ActE = { (r, r, i) , (r,p, i) , (r, s, i) ,���(r, i, i), (p, r, i) , (p,p, i) , (p, s, i) ,���(p, i, i),

(s, r, i) , (s,p, i) , (s, s, i) ,���(s, i, i),���(i, r, i),���(i,p, i),���(i, s, i), (i, i, i) }

To avoid cluttered notation, we will denote them rr, rp, . . . , ii (using only the actions of the two original
players). The transition functions of agents 1 and 2 are defined as ti(s, a) , s for all joint actions a ∈ Act .
The environment evolution function is defined as follows:

tE(sg, rr) , sg tE(sg,pr) , s1 tE(sg, sr) , s2 tE(s1, ii) , s1

tE(sg, rp) , s2 tE(sg,pp) , sg tE(sg, sp) , s1 tE(s2, ii) , s2

tE(sg, rs) , s1 tE(sg,ps) , s2 tE(sg, ss) , sg

Finally, we introduce two propositional variables p1 and p2 with h(p1) , {g1} and h(p2) , {g2}. The
complete interpreted system is shown in Figure 3.1.

3.3.2 Symbolic Implementation

Here we describe how the interpreted system for the toy problem formalised in Subsection 3.3.1 can
be encoded symbolically (see Subsection 2.3.2 for a brief overview of symbolic model checking). The
approach we describe here is used by the MCMAS model checker (see Subsection 2.5.2).

We start by describing how to encode internal states and actions. A set of internal states Li can be
encoded using log2 d|Li|e variables. Since both L1 and L2 contain only one element, we do not need any

6In Definition 2.5, we use G to denote the set of reachable states, which is a subset of the set of global states, i.e.
G ⊆ L1 × · · · × Ln × LE. However, it turns out that the set of reachable states is equal to the set of global states in this
model.

3.3. Toy Model 65

gg

∅

g1

{p1}
g2

{p2}

rs, pr, sp rp, ps, sr

rr, pp, ssii ii

Figure 3.1: Representation of the toy model as an interpreted system.

variables to encode them. LE can be represented using log2 d|LE|e = log2 d3e = 2 Boolean variables.
Thus, the global states G can be encoded using a Boolean vector v = [v0, v1]:

gg(v) = ¬v0 ∧ ¬v1 g1(v) = v0 ∧ ¬v1 g2(v) = ¬v0 ∧ v1

In addition, we need 2 Boolean variables v′0 and v′1 to represent the next state in the transition relation.
Since gg is the only initial state, we have I(v) = ¬v0 ∧ ¬v1. Actions are encoded in a very similar
manner. Hence, we need no variables to represent the action of the environment and each of the two
original players requires 2 Boolean variables to represent their 4 possible actions. A joint action can thus
be encoded using a Boolean vector w = [w0, w1, w2, w3]. For example, the encoding of the joint action
sp is:

sp(w) = ¬w0 ∧ w1︸ ︷︷ ︸
s

∧w2 ∧ ¬w3︸ ︷︷ ︸
p

In general, a protocol Pi and an evolution function ti are encoded as follows [65]:

Pi(v, w) =
∨

liE∈LiE

[
li(viE) ∧

∨
ai∈Acti

ai(wi)

]
ti(v, w, v′) =

∨
liE∈LiE

∨
a∈Act

[
liE(vi) ∧ a(w) ∧ ti(liE, a)(v′)

]
For example, the encoding of the protocol P1 is:

P1(v, w) =

sg︷ ︸︸ ︷
¬v0 ∧ ¬v1 ∧(

r︷ ︸︸ ︷
¬w0 ∧ ¬w1 ∨

p︷ ︸︸ ︷
w0 ∧ ¬w1 ∨

s︷ ︸︸ ︷
¬w0 ∧ w1)︸ ︷︷ ︸

P1(s,sg)={r,p,s}

∨
s1︷ ︸︸ ︷

v0 ∧ ¬v1 ∧
i︷ ︸︸ ︷

w0 ∧ w1︸ ︷︷ ︸
P1(s,s1)={i}

∨
s2︷ ︸︸ ︷

v0 ∧ ¬v1 ∧
i︷ ︸︸ ︷

w0 ∧ w1︸ ︷︷ ︸
P1(s,s2)={i}

If we define the global protocol and evolution function as P (v, w) =
∧
i∈Agt Pi(v, w) and t(v, w, v′) =∧

i∈Agt ti(v, w, v
′) respectively, we can derive an expression for the binary transition relation:

R(v, v′) = ∃w.P (v, w) ∧ t(v, w, v′)

Finally, we can calculate the fixpoint for reachable states7 G = lfpQ [I ∪ suc∃(Q)] symbolically as:

G(v) = lfpΘ

[
I(v) ∨ ∃v′.

(
Θ′ ∧R(v′, v)

)︸ ︷︷ ︸
suc∃(Q)

]

where Θ′ is a Boolean formula equal to Θ with variables in v and v′ swapped.
This completes the symbolic implementation of the toy model. ISPL code8 for the model is provided

in Appendix A.

7suc∃ is the opposite of pre∃ (see Definition 2.11). It calculates the set of successors of a set of global states X ⊆ G in
an interpreted system I: suc∃(X) , {g ∈ G | ∃g′ ∈ X∃a ∈ Act . t(g′, a) = g}.

8As explained in Subsection 2.5.2, ISPL is a language for modelling multi-agent systems supported by MCMAS. The
ISPL syntax is described in Subsection 6.1.2.

66 Chapter 3. Fragment Selection

3.4 Summary

In this short chapter, we discussed the problems associated with model checking full Sl, namely NonEle-
mentarySpace-hard model checking complexity, non-behavioural strategies, and undecidability under
incomplete information. In order to tackle these issues, we identified two fragments of Sl, Epistemic
Strategy Logic (Slk) and One-Goal Strategy Logic (Sl[1g]), which we will further investigate in Chap-
ters 4 and 5 respectively.

Furthermore, we provided a very simple toy model of the game of Rock-Paper-Scissors, which we will
use throughout the rest of this report to demonstrate new concepts. We encoded it as an interpreted
system and explained how it can be implemented symbolically.

Chapter 4

Epistemic Strategy Logic

In this chapter, we introduce Epistemic Strategy Logic, or Strategy Logic with Knowledge (Slk), a
modification of Sl (see Subsection 2.2.5) which is defined on imperfect recall semantics with incomplete
information (i.e. agents have no memory of the past and do not have a complete knowledge of the global
state of the system). We show that the corresponding model checking problem belongs to the PSpace
complexity class. We also provide an efficient model checking algorithm for it and prove its correctness.
Both the logic and the algorithm constitute original material developed as part of this individual project.
This chapter is split into two parts: Section 4.1 introduces the logic and Section 4.2 describes the model
checking algorithm.

4.1 Logic

Slk is a logic which combines the ability of Sl to express game-theoretic concepts with the epistemic
framework for describing agents’ knowledge. It is a unique blend of three well-established formalisms:
(i) Ltl operators X, F, G, and U, (ii) Sl strategy quantifiers 〈〈x〉〉 , [[x]] and agent binding (a, x), and
(iii) epistemic modalities Ki, EA, DA, and CA. This structure allows us to reason about the temporal,
behavioural, and epistemic aspects of a model separately. As explained in Section 3.1, the logic is defined
on imperfect recall semantics with incomplete information in order for the model checking problem to
be decidable.

This section provides formal definitions of Slk syntax, semantics, and other related concepts. The
definitions will provide us with a solid foundation for the development of the model checking algorithm
presented in the next section. We will also discuss several examples and demonstrate some limitations
of Slk.

4.1.1 Syntax

The syntax of Slk extends the syntax of Sl (Definition 2.19) with epistemic modalities representing
individual knowledge Ki, group knowledge EA, distributed knowledge DA, and common knowledge CA,
where i ∈ Agt is an agent and A ⊆ Agt a set of agents (see Subsection 2.2.6 for a brief introduction to
epistemic modalities).

Definition 4.1 (Slk Syntax). Slk formulas are built inductively using the following grammar, where
p ∈ AP is an atomic proposition, x ∈ Var a variable, i ∈ Agt an agent, and A ⊆ Agt a set of agents:

ϕ ::= p | > | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ |
〈〈x〉〉ϕ | [[x]]ϕ | (i, x)ϕ | Ki ϕ | EA ϕ | DA ϕ | CA ϕ

where epistemic operators are applied to sentences only, i.e. free(ϕ) = ∅ in Ki ϕ, Ei ϕ, DA ϕ, and CA ϕ.
SLK denotes the infinite set of formulas generated by the above rules.

We use the set of free agents/variables as in Definition 2.20 with an extra rule: free(Ki ϕ) ,
free(EA ϕ) , free(DA ϕ) , free(CA ϕ) , ∅, for all i ∈ Agt and A ⊆ Agt . The reason for this is that ϕ

68 Chapter 4. Epistemic Strategy Logic

must be a sentence according to the definition above. For example, given the set of agents Agt = {E, a, b}
and an agent i ∈ Agt , [[e]]〈〈x〉〉[[y]](E, e)(a, x)(b, y)KiX p and [[e]]〈〈x〉〉[[y]]Ki(E, e)(a, x)(b, y)X p are not well-
formed Slk formulas since free(X p) = {E, a, b} and free((E, e)(a, x)(b, y)X p) = {e, x, y}. On the other
hand, [[e]]〈〈x〉〉[[y]](E, e)(a, x)(b, y)XKi p and Ki[[e]]〈〈x〉〉[[y]](E, e)(a, x)(b, y)X p are well-formed because both
p and [[e]]〈〈x〉〉[[y]](E, e)(a, x)(b, y)X p are sentences, i.e. free(p) = free([[e]]〈〈x〉〉[[y]](E, e)(a, x)(b, y)X p) = ∅.

Observe that the syntax of Slk strictly subsumes all logics in the Atl* hierarchy with imperfect
recall and incomplete information including Ctlk and Atlk. Moreover, it allows us to express properties
which could not be expressed by any of the previous logics (including the original Sl). For example, the
Slk formula:

E{a,b} [[e]][[x]](E, e)(a, x)(b, x)[FG p ∧ FG¬p]

expresses that “the agents a and b both know that if they use the same strategy, p will be infinitely often
true and infinitely often false”. This formula demonstrates that the large expressive power of Slk comes
from the combination of temporal, strategic, and epistemic modalities.

4.1.2 Basic Concepts

Before defining the semantics of Slk, we have to introduce some basic concepts similar to the ones
introduced in Subsection 2.2.5. Essentially, we have to cater for the fact that agents now have incomplete
information and imperfect recall.

Let us consider agents’ strategies. Since agents now have imperfect recall (no memory), their next
actions depend on their current state only. Furthermore, in order for a strategy to be executable by an
agent with incomplete information, it must assign the same action to all global states that the agent
cannot distinguish, i.e. when g1, g2 ∈ G are two global states such that g1 ∼i g2, it must be the case
that the strategy of agent i ∈ Agt satisfies fi(g1) = fi(g2). This property is sometimes referred to as
Γ-uniformity [65]. Since Slk strategies can be shared among multiple agents, it must apply to all of
them. Hence, an Slk strategy must (i) comply with the protocols of all agents that share it and (ii) map
any two global states that cannot be distinguished by any of the agents to the same action. A formal
definition follows.

Definition 4.2 (Uniform Shared Memoryless Strategies). A uniform shared memoryless strategy of a
non-empty set of agents A ⊆ Agt in an interpreted system I is a function f : G→ ActA such that the
following two conditions hold:

1. Shared. For all global states g ∈ G and agents i ∈ A, f(g) ∈ Pi(liE(g)), i.e. agents comply with
their protocols.

2. Uniform. For all global states g1, g2 ∈ G and agents agents i ∈ A, if g1 ∼i g2, then we have
f(g1) = f(g2), i.e. the strategy is a mapping on local states f : LiE → Act i.

The set of all uniform shared memoryless strategies of the set of agents A satisfying the above properties

is denoted UStrA. The set of all possible shared strategies is defined as UStr ,
⋃A 6=∅
A⊆Agt UStrA.

We augment the definition of sharing (Definition 2.22) with an extra case for the epistemic modalities:
sharing(Ki ϕ) , sharing(EA ϕ) , sharing(DA ϕ) , sharing(CA ϕ) , sharing(ϕ) for all i ∈ Agt and A ⊆ Agt .
The definitions of assignment and play in Slk are analogous to the ones for Sl (Definitions 2.23 and 2.26).
The only difference is that they refer to uniform shared memoryless strategies and thus do not require
translation (Definitions 2.24 and 2.25). We will omit them for conciseness.

4.1.3 Semantics

The semantics of Slk is defined with respect to interpreted systems (see Definition 2.5). For an in-
terpreted system I, a global state g ∈ G, and an assignment χ with free(ϕ) ⊆ dom(χ), we write
I, χ, g |=Slk ϕ to indicate that the formula ϕ ∈ SLK holds at g in I under χ. A formal definition follows.

Definition 4.3 (Slk Semantics). Let I =
〈

(Li, Acti, Pi, ti)i∈Agt , I, h
〉

be an interpreted system and

AP a set of propositional formulas. For all Slk formulas ϕ ∈ SLK , global states g ∈ G, and assignments
χ ∈ Asg with free(ϕ) ⊆ dom(χ), the modelling relation I, χ, g |=Slk ϕ is inductively defined as follows:

4.1. Logic 69

1. I, χ, g |=Slk >.

2. I, χ, g |=Slk p iff g ∈ h(p), with p ∈ AP .

3. For all formulas ϕ,ϕ1, ϕ2 ∈ SLK , it holds that:

(a) I, χ, g |=Slk ¬ϕ iff I, χ, g 6|=Slk ϕ;

(b) I, χ, g |=Slk ϕ1 ∧ ϕ2 iff I, χ, g |=Slk ϕ1 and I, χ, g |=Slk ϕ2.

(c) I, χ, g |=Slk ϕ1 ∨ ϕ2 iff I, χ, g |=Slk ϕ1 or I, χ, g |=Slk ϕ2.

4. For a variable x ∈ Var and a formula ϕ ∈ SLK , it holds that:

(a) I, χ, g |=Slk 〈〈x〉〉ϕ iff there exists a strategy f ∈ UStr sharing(ϕ,x) such that I, χ[x 7→ f], g |=Slk

ϕ;

(b) I, χ, g |=Slk [[x]]ϕ iff for all strategies f ∈ UStr sharing(ϕ,x) it holds that I, χ[x 7→ f], g |=Slk ϕ.

5. For an agent i ∈ Agt , a variable x ∈ Var , and a formula ϕ ∈ SLK , it holds that I, χ, g |=Slk (i, x)ϕ
iff I, χ[i 7→ χ(x)], g |=Slk ϕ.

6. Let π = play(g, χ). For all formulas ϕ,ϕ1, ϕ2 ∈ SLK , it holds that:

(a) I, χ, g |=Slk Xϕ iff I, χ, π(1) |=Slk ϕ;

(b) I, χ, g |=Slk Fϕ iff there exists i ≥ 0 such that I, χ, π(i) |=Slk ϕ;

(c) I, χ, g |=Slk Gϕ iff for all i ≥ 0 we have I, χ, π(i) |=Slk ϕ;

(d) I, χ, g |=Slk ϕ1 Uϕ2 iff there is an index i ∈ N such that I, χ, π(i) |=Slk ϕ2 and, for all
indices j ∈ N with 0 ≤ j < i, it holds that I, χ, π(j) |=Slk ϕ1.

7. For an agent i ∈ Agt , a set of agents A ⊆ Agt , and a formula ϕ ∈ SLK , it holds that:

(a) I, χ, g |=Slk Ki ϕ iff for all g′ ∈ G such that g ∼i g′, it holds that I, ∅, g′ |=Slk ϕ;

(b) I, χ, g |=Slk EA ϕ iff for all g′ ∈ G such that g ∼E
A g
′, it holds that I, ∅, g′ |=Slk ϕ;

(c) I, χ, g |=Slk DA ϕ iff for all g′ ∈ G such that g ∼D
A g
′, it holds that I, ∅, g′ |=Slk ϕ;

(d) I, χ, g |=Slk CA ϕ iff for all g′ ∈ G such that g ∼C
A g
′, it holds that I, ∅, g′ |=Slk ϕ.

Although it is very similar, the Slk semantics differs from Sl semantics (see Definition 2.29) in
two aspects: (i) it is defined on uniform shared memoryless strategies and (ii) it supports epistemic
operators. Both modifications are consequences of using incomplete information. Notice that we assume
that agents are not aware of the strategy assignment. In fact, they are not even aware of their own strategy
for the purposes of epistemic accessibility. This assumption is expressed by the empty assignments in
the epistemic cases.

In order to complete the description of the Slk semantics, we define satisfiability and a model of an
Slk sentence. Intuitively, a formula is satisfiable if it is true in some interpreted system.

Definition 4.4 (Slk Satisfiability). We say that an interpreted system I is a model for an Slk
sentence ϕ, in symbols I |=Slk ϕ, iff, for all initial global states gi ∈ I, it holds that I, ∅, gi |=Slk ϕ.
More generally, we say that an interpreted system I is a model for an Slk sentence ϕ on a global state
g ∈ G, in symbols I, g |=Slk ϕ, iff I, ∅, g |=Slk ϕ. An Slk sentence ϕ is satisfiable iff there is a model
for it.

Finally, we define implication and equivalence between Slk formulas.

Definition 4.5 (Slk Implication and Equivalence). Given two Slk formulas ϕ1 and ϕ2 with free(ϕ1) =
free(ϕ2), we say that ϕ1 implies ϕ2, in symbols ϕ1 ⇒ ϕ2, iff, for all interpreted systems I, global
states g ∈ G and assignments χ ∈ Asg with free(ϕ) ⊆ dom(χ), it holds that if I, χ, g |=Slk ϕ1 then
I, χ, g |=Slk ϕ2. We say that ϕ1 is equivalent to ϕ2, in symbols ϕ1 ≡ ϕ2, iff both ϕ1 ⇒ ϕ2 and ϕ2 ⇒ ϕ1

hold.

We will now consider two sample Slk formulas and explain why they do or do not hold in the toy
model in Figure 3.1:

70 Chapter 4. Epistemic Strategy Logic

• I, ∅, gg |=Slk [[e]][[x]]〈〈y〉〉(E, e)(1, x)(2, y)X p2. This formula expresses that “whatever strategies the
environment and player 1 use, there is a strategy for player 2, such that he will win in the next
round”. Intuitively, this is true. To see why it is formally true, let d be an arbitrary strategy for the
environment and f an arbitrary strategy for player 1. Define a strategy h for player 2 as follows:

h(gg) ,

r if f(gg) = s

p if f(gg) = r

s if f(gg) = p

We now need to show that I, χ, gg |=Slk X p2 where χ = {(e, d) , (x, f) , (y, h) , (E, d) , (1, f) , (2, h)}.
The resulting play is π = ggg

ω
2 (player 2 always beats player 1 in the first round by the construction

of h). The formula X p2 is true at gg iff I, χ, π(1) |=Slk p2. Since we have π(1) = g2 ∈ h(p2) and d
and f were arbitrary, we are done.

• I, ∅, gg 6|=Slk 〈〈y〉〉[[e]][[x]](E, e)(1, x)(2, y)X p2. This formula expresses that “there is a strategy for
player 2, such that whatever strategies the environment and player 1 use, he will win in the next
round”. Again, our intuition tells us that this formula should be false. To see why this is indeed
false, let h an arbitrary strategy for player 2. We pick some strategy d for the environment and
define a strategy f for player 1 as follows:

f(gg) ,

r if h(gg) = s

p if h(gg) = r

s if h(gg) = p

We now need to show that I, χ, gg 6|=Slk X p2 where χ = {(e, d) , (x, f) , (y, h) , (E, d) , (1, f) , (2, h)}.
The resulting play is π = ggg

ω
1 (player 1 always beats player 2 in the first round by the construction

of f). The formula X p2 is true at gg iff I, χ, π(1) |=Slk p2. Since we have π(1) = g1 6∈ h(p2) and h
was arbitrary, we are done.

4.1.4 Comparison with Strategy Logic

Let us now reiterate the main differences between the two logics. Slk differs from Sl in the following
ways (please refer to Subsection 2.2.5 for more information about the original Sl):

1. Imperfect recall. Intuitively, Slk agents have no memory of the past and make their decisions
based on the current states only. Formally, Slk strategies are mappings from local states to actions
(f : LiE → Act i). Compare this with Atl and Sl strategies (see Definitions 2.16 and 2.21), which
map non-empty finite sequences of global states (tracks) to actions (f : Trk → Act i).

2. Incomplete information. Agents do not have complete knowledge of the whole system in Slk,
i.e. they do not “see” other agents’ variables. This puts the uniformity constraint on strategies
(see Definition 4.2) so that they could be executed by agents (see Subsection 4.1.2). As explained
in Chapter 3, Sl is undecidable under perfect recall semantics with incomplete information.

3. Epistemic modalities. Slk supports epistemic modalities expressing agents’ knowledge. The
four epistemic modalities supported by Slk are individual knowledge Ki ϕ, group knowledge EA ϕ,
distributed knowledge DA ϕ, and common knowledge CA ϕ. See Subsection 2.2.6 for more details
about epistemic modalities.

4. Underlying framework. Slk is based on interpreted systems whereas Sl was originally defined
on concurrent game structures. Note that we redefined Sl on interpreted systems in Subsec-
tion 2.2.5 so that it would be easier to compare the two logics. As explained in Subsection 2.1.3,
interpreted systems are more natural for expressing incomplete information. Both frameworks are
defined in Section 2.1.

While epistemic modalities dramatically increase the expressiveness of Slk, imperfect recall puts heavy
constraints on agents’ behaviour. The impact of no memory is discussed in the next subsection.

4.1. Logic 71

4.1.5 Limitations

As we explained in Section 3.1, Slk solves the undecidability of Sl under incomplete information using
imperfect recall semantics. Effectively, we are removing agents’ memory and forcing them to base their
decisions purely on their current local states. While memoryless strategies are easier to reason about and
more compact, they are also less powerful and non-behavioural. We will now explain these limitations.
For a start, we show that some simple properties may not be achievable using memoryless strategies.
Consider the toy model in Figure 3.1 and the following Slk specification:

〈〈e〉〉〈〈x〉〉〈〈y〉〉(E, e)(1, x)(2, y)[X (¬p1 ∧ ¬p2) ∧ XX (p1 ∨ p2)]

The rough meaning of the formula is “There exist strategies for the two players such that they draw first
and then one of them wins”. Clearly, there exist memoryful strategies which satisfy the specification
above (starting from the initial state gg): The agents simply perform the same action in the first round
(e.g. rock-rock) and different actions in the second round (e.g. rock-scissors). Formally, the memoryful
strategies f1, f2 are:

f1(gg) , r f2(gg) , r

f1(gggg) , r f2(gggg) , s

However, there are no memoryless strategies that would fulfil the specification. The reason is that since
both agents perform an action a ∈ {r,p, s} in the first round, they have to do it again in the next round
because their local state has not changed. Hence, they will keep drawing forever.

We can see that memoryless strategies have less power than memoryful strategies. This can be useful
in certain scenarios. Consider the situation where we are synthesising the behaviour of a simple hardware
device (e.g. a thermostat) with a fixed amount of memory. In this case, we consider each possible memory
settings of the device to be one local state and allow arbitrary transitions between them. Informally, we
let the agent decide what it wants to remember. It is appropriate to treat the agent as memoryless since
its memory is already encoded in its local state space. We then try to synthesise a memoryless strategy
for it. If we succeed, then the agent’s fixed-size memory is sufficient to achieve the goal. Hence, Slk can
be used to answer questions like “Does agent a have enough memory to enforce ϕ?”.

On the other hand, there are many scenarios when it is clearly inappropriate to assume that the
agent has no memory. Consider the following security protocol specification:

〈〈e〉〉[[x]](E, e)(intruder, x)G¬Kintruder password

It asserts that there is some strategy e for the environment such that whatever strategy x the intruder
uses, they will never know the password. The major flaw with this specification is that it assumes that
the intruder has no memory, i.e. it underestimates their power. Hence, we can be certain about a “yes”
answer only if we know exactly what they are capable of, which is rarely the case. Conversely, if the
answer is “no”, it does not necessarily mean that there is no memoryful strategy for the environment that
would ensure security. This simple example demonstrates that Slk is not appropriate for the verification
of security protocols1.

As we pointed out in Section 3.1, imperfect recall does not address the problem of non-behavioural
strategies, in which an agent’s action depends on another agent’s action in another counterfactual play.
Consider again the toy model in Figure 3.1 and the following Slk specification:

〈〈e〉〉(E, e)[[y]][[z]]〈〈x〉〉[((1, x)(2, y)X p1)↔ ((1, y)(2, z)X p2)]

This formula is more complicated than the previous ones. Its meaning roughly is as follows: “For all
strategies y, z there is a strategy x, such that x beats y iff z beats y”. Given this, it should be clear that
this formula is true because we can always set x = z. Now the question is, how do we determine the
strategy x? The action of player 1 in (1, x)(2, y)X p1 depends on the action of player 2 in (1, y)(2, z)X p2.
In other words, the strategy of player 1 depends on the strategy of player 2 in another counterfactual
play, i.e. it is non-behavioural. While the formula above might seem quite convoluted, it is precisely this
ability to express complicated interdependencies of agents’ behaviour why Sl was introduced in the first
place. Please refer to [75] if you want to know more about behavioural and non-behavioural fragments
of Sl.

1Nevertheless, we will do exactly that in Subsection 6.4.1.

72 Chapter 4. Epistemic Strategy Logic

4.2 Model Checking

In this section, we focus on model checking Slk. Recall that the model checking problem for Slk is as
follows: Given a system S represented by an interpreted system IS and a property P expressed as an
Slk formula ϕP ∈ SLK , we want to determine whether the formula is true in the model:

IS
?

|=Slk ϕP

We provide a model checking algorithm for Slk which calculates the set ‖ϕP ‖IS of global states of IS
in which the formula ϕP holds. The problem above is then decided by checking if all initial states I of
IS satisfy ϕP :

I
?
⊆ ‖ϕP ‖IS

We first discuss the complexity of the problem. Then we present an algorithm which admits an efficient
symbolic implementation.

4.2.1 Complexity

Before developing an algorithm for model checking Slk, we consider the complexity of the Slk model
checking (decision) problem:

Given an interpreted system I, a global state g ∈ G, and an Slk formula ϕ ∈ SLK , determine
whether I, ∅, g |=Slk ϕ.

We claim that the problem can be solved in a polynomial amount of space (PSpace) with respect to
both the size of the interpreted system2 |I| and the size of the formula |ϕ|. The idea is to determine
the problem recursively with a function that accepts a global state g′ ∈ G and an assignment χ′ ∈ Asg
as input. Since both g′ and χ′ require only a polynomial amount of space and there will be at most |ϕ|
nested calls to the function, we obtain the desired complexity.

Theorem 4.1. The Slk model checking problem is PSpace with respect to both the size of the model
|I| and the size of the formula |ϕ|.

Proof. An arbitrary state g′ ∈ G can be encoded using dlog2 |G|e Boolean variables (how this can be
done is explained in Subsection 2.3.2). An arbitrary uniform shared memoryless strategy fA : G→ ActA

for a set of agents A ⊆ Agt can be stored using
⌈
log2

∣∣∣[⋂i∈A Act i
]G∣∣∣⌉ ≤ |G|×dlog2 |maxi∈A Act i|e space.

Note that we assumed in Definition 2.22 that every variable is quantified at most once within a formula.
Therefore, we do not need to remember the full assignment on Var ∪ Agt as the entries for agents are
merely copies of the entries for the variables they are bound to. Hence, an arbitrary assignment χ′ ∈ Asg
can be stored using at most

|vars(ϕ)| × (|G| × dlog2 |maxi∈A Act i|e+ 1)︸ ︷︷ ︸
partial mapping from variables in ϕ to strategies

+ |Agt | × dlog2 |vars(ϕ)|e︸ ︷︷ ︸
“pointers” for agents into
the variable assignment

= O(|I|2 × |ϕ|)

space. The semantics of Slk (Definition 4.3) can be easily transformed into a function Check(ϕ′, g′, χ′).
The important cases are (we omit the other cases for conciseness):

• Check(〈〈x〉〉ϕ′′, g′, χ′). We store the current strategy for the variable x, s := χ′(x). Then we
perform a for loop over all possible strategies χ′(x) := fsharing(ϕ,x) and call Check(ϕ′′, g′, χ′).
After the loop we restore the current strategy for the variable x, χ′(x) := s. If any of the calls
within the loop succeeded, we return “yes”. Otherwise, we return “no”.

The temporary storage s for one strategy and some counter variables for the loop fit within the
O(|I|2 × |ϕ|) space bound.

• Check(Xϕ′′, g′, χ′). Given g′ and χ′′, it is easy to calculate the successor g′′ (by calculating π(1)
of π = play(χ′, g′) as in Definition 2.26). We then call Check(ϕ′′, g′′, χ′).

O(|I|2 × |ϕ|) space will be sufficient for calculating the successor.

2To be previse, we define |I| = |G|+ |Agt |+ |Act |.

4.2. Model Checking 73

• Check(ϕ′′ Uϕ′′′, g′, χ′). We introduce a counter i and perform the following (pseudocode):

for i := 0 to |G| do
if Check(ϕ′′′, g′, χ′) then

return “yes”
else if ¬Check(ϕ′′, g′, χ′) then

return “no”
end if
g′ := Successor(g′, χ′)

end for
return “no”

We traverse the path starting from g′ as long as ϕ′′ holds. If we reach a state where ϕ′′′ holds, the
formula ϕ′′ Uϕ′′′ holds so we return “yes”. If we do not reach such a state within |G| steps, we
must be in a cycle (since there are |G| global states) where ϕ′′′ never holds. Therefore, we return
“no”.

The extra counter (and perhaps some auxiliary variables) will surely fit within O(|I|2× |ϕ|) space.

The depth of the call stack will be at most |ϕ|. Hence, if we reuse space, Check(ϕ, g, ∅) will use at most

O(|I|2 × |ϕ|2) space. Our claim follows.

The model checking complexity of Atl* with imperfect recall is PSpace-complete [23]. Therefore,
it is tempting to immediately conclude that the problem for Slk is also PSpace-complete. However,
there is an important difference between Atl* and Slk semantics: Atl* assigns memoryless strate-
gies only to the existentially quantified agents (see Definition 2.18), whereas Slk assigns memoryless
strategies to all agents. Informally, an Atl* expression 〈〈A〉〉ψ means that “There exist memoryless
strategies for agents A such that no matter what the other agents do, ψ will be true”. The Slk formula
[〈〈xi〉〉(i, xi)]i∈A [[[yi]](i, yi)]i∈Agt\A ϕ has a slightly different meaning: “There exist memoryless strategies
for agents A, such that for all memoryless strategies of the other agents, ψ will be true”. Intuitively, Slk
restricts the universally quantified agents more than Atl* does3.

Nevertheless, we conjecture that the Slk model checking problem is indeed PSpace-complete. We
believe that this could be shown by reducing the problem of evaluating a Quantified Boolean Formula4,
which is PSpace-hard [45], to the Slk model checking problem.

4.2.2 Algorithm

The model checking algorithm SATSlk for Slk, which calculates the set of global states in which a
given formula is true, is a modification of the existing model checking algorithm for Atlk5 used by
MCMAS [65,81]. It differs in two ways:

1. It has an extra parameter, which represents the binding of agents to variables. When model
checking a formula, we start with an empty binding and augment it whenever an agent binding
operator (i, x)ϕ is encountered.

2. Unlike the original algorithm, which merely returns the set of states in which a given formula holds,
the modified algorithm returns a set of extended states. Intuitively, an extended state is a pair of
(i) a global state and (ii) a variable assignment (mapping variables to strategies) subject to which
the formula holds in that state.

We will now define the aforementioned concepts of a binding and variable assignment more formally.
For simplicity, we will fix Var to always be the set of variables quantified in the Slk formula we are
considering (e.g. if the formula to be checked is ϕ = 〈〈x〉〉[[y]](a, x)(b, y)X p, then we set Var = vars(ϕ) =
{x, y}). This will allow us to define variable assignments as total functions, which will make the theory
and proofs much simpler.

3Note that this subtle difference in semantics has no effect on the relationship between Sl[1g] and Atl* with perfect
recall (Sl[1g] strictly subsumes Atl* [72]). Imposing memoryful strategies on agents does not constrain their behaviour
in any way.

4A Quantified Boolean Formula has the form Q0x0 · · ·Qn−1xn−1. E(x0, . . . , xn−1) where E is a propositional formula
over propositional variables x0, . . . , xn−1 and for all 0 ≤ i < n, Qi is an existential quantifier ∃ or a universal quantifier ∀.

5A similar model checking algorithm for Ctl is shown in Definition 2.12.

74 Chapter 4. Epistemic Strategy Logic

Definition 4.6 (Bindings). Let I be an interpreted system. Then a binding is a partial function
b : Agt ⇀ Var which maps agents in its domain to variables. Bnd , Agt ⇀ Var denotes the set of all
bindings.

Definition 4.7 (Variable Assignments). Let I be an interpreted system. Then a variable assignment
is a function v : Var → UStr which maps variables in its domain to uniform shared memoryless
strategies. VAsg , Var → UStr denotes the set of all variable assignments.

Note that variable assignments (Definition 4.7) are also assignments (Definition 2.23 modified for Slk
strategies as explained in Subsection 4.1.2), i.e. VAsg ⊆ Asg .

As we have already explained, an extended state is a pair of a (i) global state and (ii) a variable
assignment subject to which a formula is true in that state. For example, (g1, {(x, f) , (y, g)}) is an
extended state which means roughly: “(the formula is true in) global state g1 when agents bound to
variables x and y act according to the strategies f and g respectively.”. A formal definition follows.

Definition 4.8 (Extended States). Let I be an interpreted system, g ∈ G a global state and v ∈ VAsg
a variable assignment. Then an extended state is a pair 〈g, v〉 ∈ G × VAsg . Ext , G × VAsg denotes
the set of all extended states.

The meaning of the variable assignment in an extended state is probably slightly unclear right now.
Intuitively, an extended state 〈g, v〉 ∈ Ext guarantees a formula ϕ ∈ SLK iff all assignments which agree
with v make the formula true in the state g. Since this explanation is still quite vague, we define the
notion of guarantee more formally.

Definition 4.9 (Guarantee). Let I be an interpreted system, 〈g, v〉 ∈ Ext an extended state, b ∈ Bnd
a binding, and ϕ ∈ SLK an Slk formula with free(ϕ) ∩ Agt ⊆ dom(b). We say that 〈g, v〉 guarantees
ϕ in I under b iff for the assignment χv ∈ Asg defined as:

χv , v ∪ {(a, v(b(a))) | a ∈ dom(b)}

we have I, χv, g |=Slk ϕ. We write this as I, 〈g, v〉 , b ` ϕ.

Now that we have covered the basic structures, we can define the concepts of negation and predecessors
of extended states. These will be necessary for the model checking algorithm presented at the end of this
subsection. Let us start with negation. Assume that we have calculated the set of extended states E
which guarantee the formula ϕ under a binding b. We want to find the set E′ of extended states which
guarantee the formula ¬ϕ. Intuitively, E′ should contain all extended states that somehow disagree with
E. E′ is calculated as follows:

E′ = Ext \ E

We shall now prove that our claim is correct. We assume that E is the set of all extended states that
guarantee ϕ under b and show that Ext \ E is the set of all extended states that guarantee ¬ϕ under b.

Lemma 4.1. Let I be an interpreted system, b ∈ Bnd a binding, and ϕ ∈ SLK an Slk formula with
free(ϕ) ∩ Agt ⊆ dom(b). Let E ⊆ Ext be the set of all extended states which guarantee ϕ in I under b.
Then Ext \ E is the set of all extended states which guarantee ¬ϕ in I under b.

Proof. Let E′ ⊆ Ext be the set of all extended states which guarantee ¬ϕ in I under b. We show that
E′ = Ext \ E.

⇒: Take an arbitrary extended state 〈g, v〉 ∈ E′. Since 〈g, v〉 guarantees ¬ϕ, we have I, χv, g |=Slk ¬ϕ.
By Slk semantics (Definition 4.3), I, χv, g 6|=Slk ϕ. Thus 〈g, v〉 /∈ E, so we have 〈g, v〉 ∈ Ext \ E.

⇐: Take an arbitrary extended state 〈g, v〉 ∈ Ext \E. Since 〈g, v〉 does not guarantee ϕ (otherwise, we
would have 〈g, v〉 ∈ E), we have I, χv, g 6|=Slk ϕ. By Slk semantics (Definition 4.3), I, χv, g |=Slk

¬ϕ. Thus, 〈g, v〉 ∈ Ext guarantees ¬ϕ.

4.2. Model Checking 75

Having covered negation, it remains to explain how to calculate the set of previous extended states,
i.e. given a set of extended states E ⊆ Ext which guarantee ϕ under a binding b, determine the set of
extended states E′ ⊆ Ext which guarantee Xϕ under the same binding.

We first define the transition relation on global states implied by a binding and a variable assignment.
Intuitively, there is a transition from state g1 ∈ G to a state g2 ∈ G (given the binding and variable
assignment) if there exists a joint action between them such that each agent acts according to the strategy
assigned to the variable it is bound to.

Definition 4.10 (Implied Transition Relation). Let I be an interpreted system, g1, g2 ∈ G two
global states, b ∈ Bnd a binding, and v ∈ VAsg a variable assignment. Then the transition relation
→b
v ⊆ G×G implied by b and v is defined by g1 →b

v g2, iff dom(b) = Agt and there exists a joint action
a ∈ Act such that t(g1, a) = g2, and, for all agents i ∈ Agt , it holds that ai(a) = v(b(i))(g1).

We are now ready to explain how the set of previous extended states is calculated. Intuitively, given
an extended state 〈g, v〉 ∈ Ext , the previous extended states are pairs 〈g′, v〉 where g′ is the successor of
g when all agents act according to their strategies in v.

Definition 4.11 (Previous Extended States). Let I be an interpreted system, E ⊆ Ext a set
of extended states, and b ∈ Bnd a binding such that dom(b) = Agt . Then the function pre :
2Ext × Bnd → 2Ext , which returns the set of previous extended states, is defined as pre(E, b) ,{
〈g, v〉 ∈ Ext

∣∣ ∃g′ ∈ G. 〈g′, v〉 ∈ E ∧ g →b
v g
′}.

Again, we will show that the function pre is correct. We assume that E is the set of all extended
states which guarantee ϕ under b and show that pre(E) is the set of all extended states which guarantee
Xϕ under b.

Lemma 4.2. Let I be an interpreted system, b ∈ Bnd a binding with dom(b) = Agt , and ϕ ∈ SLK
an Slk formula. Let E ⊆ Ext be the set of all extended states which guarantee ϕ in I under b. Then
pre(E) ⊆ Ext is the set of all extended states which guarantee Xϕ in I under b.

Proof. Let E′ ⊆ Ext be the set of all extended states which guarantee Xϕ in I under b. We show that
pre(E) = E′.

⇒: Take an arbitrary extended state 〈g, v〉 ∈ pre(E, b). By construction, there is a global state g′ ∈ G
such that 〈g′, v〉 ∈ E and g →b

v g
′. Since 〈g′, v〉 ∈ E guarantees ϕ, we have I, χv, g′ |=Slk ϕ.

The implied transition relation implies g′ = t(g, a) where ai(a) = v(b(i))(g) for all agents i ∈ Agt .
This can be also rewritten as g′ = t(g, 〈χv(a)(g) : a ∈ Agt〉) because χv(i) = v(b(i)) for all agents
i ∈ dom(b) = Agt .

We want to show that 〈g, v〉 guarantees Xϕ, i.e. I, χv, g |=Slk Xϕ. This is the case iff I, χv, π(1) |=Slk

ϕ where π = play(χv, g) (Definition 4.3). From Definition 2.26, we get π(1) = t(g, 〈χ(a)(g) : a ∈ Agt〉),
so π(1) = g′. Since we have already shown I, χv, g′ |=Slk ϕ, we have I, χv, g |=Slk Xϕ as required.

⇐: Take an arbitrary extended state 〈g, v〉 ∈ E′. Thus, we have I, χv, g |=Slk Xϕ. By Defi-
nition 4.3, this means I, χv, π(1) |=Slk ϕ where π = play(χv, g). From Definition 2.26, we
get π(1) = t(g, 〈χv(a)(g) : a ∈ Agt〉). This can be equivalently written as π(1) = t(g, a) where
ai(a) = χv(a)(g) = v(b(i))(g) for all agents i ∈ Agt .

As dom(b) = Agt by assumption, we have g →b
v π(1). Moreover, since I, χv, π(1) |=Slk ϕ, we have

〈π(1), v〉 ∈ E (because it guarantees ϕ). Therefore, we have 〈g, v〉 ∈ pre(E, b) as required.

Finally, we have all the ingredients to define the model checking algorithm SATISlk(·, ·) for Slk.

Definition 4.12 (Slk Model Checking Algorithm). Let I be an interpreted system, ϕ ∈ SLK an Slk
formula and b ∈ Bnd a binding, such that free(ϕ) ∩ Agt ⊆ dom(b). Then the model checking function
SATISlk : Slk× Bnd → 2Ext is inductively defined as follows:

1. SATISlk(>, b) , Ext .

2. SATISlk(p, b) , {〈g, v〉 | g ∈ h(p)}, with p ∈ AP .

76 Chapter 4. Epistemic Strategy Logic

3. For all formulas ϕ,ϕ1, ϕ2 ∈ SLK , it is defined as:

(a) SATISlk(¬ϕ, b) , Ext \ SATISlk(ϕ, b);

(b) SATISlk(ϕ1 ∧ ϕ2, b) , SATISlk(ϕ1, b) ∩ SATISlk(ϕ2, b);

(c) SATISlk(ϕ1 ∨ ϕ2, b) , SATISlk(ϕ1, b) ∪ SATISlk(ϕ2, b).

4. For an agent i ∈ Agt , a variable x ∈ Var , and a formula ϕ ∈ SLK , SATISlk((i, x)ϕ, b) ,
SATISlk(ϕ, b[i 7→ x]).

5. For a variable x ∈ Var and an Slk formula ϕ ∈ SLK , it is defined as:

(a) SATISlk(〈〈x〉〉ϕ, b) ,
{
〈g, v〉

∣∣ ∃f ∈ UStr sharing(ϕ,x). 〈g, v[x 7→ f]〉 ∈ SATISlk(ϕ, b)
}

;

(b) SATISlk([[x]]ϕ, b) ,
{
〈g, v〉

∣∣ ∀f ∈ UStr sharing(ϕ,x). 〈g, v[x 7→ f]〉 ∈ SATISlk(ϕ, b)
}

.

6. For all formulas ϕ,ϕ1, ϕ2 ∈ SLK , it is defined as:

(a) SATISlk(Xϕ, b) , pre(SATISlk(ϕ, b) , b);

(b) SATISlk(Fϕ, b) , SATISlk(>Uϕ, b);

(c) SATISlk(Gϕ, b) , SATISlk(¬F¬ϕ, b);
(d) SATISlk(ϕ1 Uϕ2, b) , lfpX

[
SATISlk(ϕ2, b) ∪

(
SATISlk(ϕ1, b) ∩ pre(X, b)

)]
.

7. For an agent i ∈ Agt , a set of agents A ⊆ Agt , and a formula ϕ ∈ SLK , it is defined as:

(a) SATISlk(Ki ϕ, b) , Ext \
{
〈g, v〉 ∈ Ext

∣∣ ∃ 〈g′, v′〉 ∈ SATISlk(¬ϕ, ∅) .g′ ∼i g
}

;

(b) SATISlk(EA ϕ, b) , Ext \
{
〈g, v〉 ∈ Ext

∣∣ ∃ 〈g′, v′〉 ∈ SATISlk(¬ϕ, ∅) .g′ ∼E
A g
}

;

(c) SATISlk(DA ϕ, b) , Ext \
{
〈g, v〉 ∈ Ext

∣∣ ∃ 〈g′, v′〉 ∈ SATISlk(¬ϕ, ∅) .g′ ∼D
A g
}

;

(d) SATISlk(CA ϕ, b) , Ext \
{
〈g, v〉 ∈ Ext

∣∣ ∃ 〈g′, v′〉 ∈ SATISlk(¬ϕ, ∅) .g′ ∼C
A g
}

.

The correctness of the algorithm is asserted in the following theorem.

Theorem 4.2. Let I be an interpreted system and ϕ ∈ SLK an Slk sentence. Then the set of all states
at which ϕ holds is: {g ∈ G | I, ∅, g |=Slk ϕ} =

{
g ∈ G

∣∣ ∃v ∈ VAsg . 〈g, v〉 ∈ SATISlk(ϕ, ∅)
}

.

Proof (Sketch). We prove by induction that for an arbitrary interpreted system I, Slk formula ϕ ∈ SLK ,
and binding b ∈ Bnd such that free(ϕ) ⊆ dom(b), SATISlk(ϕ, b) is the set of all extended states that
guarantee ϕ in I under b. The two important cases were proved in Lemmas 4.1 (negation) and 4.2
(temporal step).

Since the topmost formula ϕ is a sentence, it will either hold, or not hold in each state (regardless of
the variable assignment). Therefore, we existentially quantify over variable assignments.

Observe that the Slk model checking algorithm is decidable because the sets UStr , Var , VAsg , Agt ,
Bnd , G, and, consequently, Ext are finite. An efficient symbolic implementation of the algorithm using
BDDs is presented in Subsection 4.2.4.

4.2.3 Strategy Synthesis

As we have explained in Subsection 4.1.5, one of the main limitations of Slk are non-behavioural strate-
gies, which depend on counterfactual scenarios. Consequently, Slk strategies are very difficult6 to
synthesise. To see why this is the case, consider the Slk sentence ϕ , [[x]][[y]]〈〈z〉〉ψ. Assume that ϕ holds
at a particular state g ∈ G in an interpreted system I, i.e. I, g |=Slk ϕ. We would now like to synthesise
a uniform shared strategy fz : G → Actz for the variable z depending on the uniform shared strategies
fx : G → Actx and fy : G → Acty for the variables x and y respectively where Actv , Act sharing(ψ,v)

6Unlike perfect recall Sl strategies, which cannot be synthesised in general due to being non-behavioural, imperfect
recall Slk strategies can always be synthesised. This should not be surprising given that the set of uniform strategies is
finite for a given interpreted system and Slk formula. Hence, we can explicitly enumerate all possible combinations of
strategies.

4.2. Model Checking 77

for v ∈ Var . If Slk strategies were behavioural, there would exist a mapping m1 (also referred to as
elementary dependence map [75]) from the next actions of fx and fy in g to the next action of fz in g:

m1 : G→ (Actx ×Acty → Actz)︸ ︷︷ ︸
(g,fx(g),fy(g)) 7→ fz(g)

There would be at most |Actx| × |Acty| possible inputs to m1 to determine fz(g) as it depends only on
fx(g) and fy(g). Unfortunately, such a mapping does not exist in general because Slk strategies are
non-behavioural. Instead, a more general mapping m2 (also referred to as dependence map [75]) from
strategies fx and fy to the strategy fz must be considered:

m2 : (G→ Actx)× (G→ Acty)→ (G→ Actz)︸ ︷︷ ︸
(fx,fy,g) 7→ fz(g)

Informally, determining fz(g) requires the same amount of information as constructing the whole strategy
fz. In order to synthesise the action fz(g) or the strategy fz, we possibly need to know the complete
strategies fx and fy. More importantly, the maximum number of entries in the mappings m1 and m2

are:

m1 : |G| × |Actx| × |Acty| m2 : |G| × |Actx||G| × |Acty||G|

Assume that the interpreted system I is quite small and has |G| = 10 global states and |Actx| = |Acty| =
|Actz| = 10 actions. While the mapping m1 for behavioural strategies would require at most 1000 entries
of the form (g, fx(g), fy(g)) 7→ fz(g), the mapping m2 for non-behavioural strategies might have up to
1021 entries of the form (fx, fy, g) 7→ fz(g). Furthermore, if we encode each output of fz using only
dlog2 |Actz|e = 3 bits and store the whole mapping in a large array, m1 will use at most 375 bytes while
m2 might need up to 375 exabytes. To put this number into perspective, the total amount of stored
information in the whole world was 295 exabytes (optimally compressed) in 2007 [47]. This example
demonstrates the high impracticality of general Slk strategy synthesis on any non-trivial models.

While Slk strategy synthesis is infeasible in general, it can be performed efficiently on certain types
of formulas. We will now explain the concepts of witness and counterexample strategies and describe
how these can be synthesised using the model checking algorithm discussed in Subsection 4.2.2. Let I
be an interpreted system, g ∈ G a global state, and ϕw , 〈〈x〉〉ψw and ϕc , [[y]]ψc two Slk sentences.
Furthermore, assume that ϕw holds at g while ϕc does not, i.e. I, ∅, g |=Slk ϕw and I, ∅, g 6|=Slk ϕc. By
Slk semantics (see Definition 4.3), there is a memoryless uniform shared strategy fw for x which makes
ψw true at g. Conversely, there must be a memoryless shared strategy fc for y which makes ψc false
at g. fw and fc are referred to as a witness and a counterexample strategy respectively. Intuitively, the
strategy fw is a “witness” to ϕw being true at g while fc is a “counterexample” for ϕc at g. A slightly
more general form of the two concepts is provided in the following definition.

Definition 4.13 (Witness and Counterexample Strategies). Let I be an interpreted system, g ∈ G a
global state, and ϕw , 〈〈x0〉〉 . . . 〈〈xm−1〉〉ψw and ϕc , [[y0]] . . . [[yn−1]]ψc two Slk sentences. Then:

• Memoryless uniform shared strategies fw0, . . . , fw(m−1) are witness strategies for ϕw at g iff

(i) fwi ∈ UStr sharing(ψw,xi) for all 0 ≤ i < m and (ii) I, χw, g |=Slk ψw where χw ,
{(xi, fwi) | 0 ≤ i < m}.

• Memoryless uniform shared strategies fc0, . . . , fc(n−1) are counterexample strategies for ϕc at

g iff (i) fci ∈ UStr sharing(ψc,yi) for all 0 ≤ i < n and (ii) I, χc, g 6|=Slk ψc where χc ,
{(yi, fci) | 0 ≤ i < n}.

Consider the toy model in Figure 3.1 and the Slk formulas ϕ1 , 〈〈e〉〉〈〈x〉〉〈〈y〉〉(E, e)(1, x)(2, y)X p1 and
ϕ2 , [[e]][[x]][[y]](E, e)(1, x)(2, y)X p2. The formula ϕ1 means that “there exist strategies for all the agents,
such that player 1 wins in the next round”. The formula ϕ2 expresses that “for all strategies of the agents,
player 2 wins in the next round”. By Slk semantics, we have I, ∅, gg |=Slk ϕ1 and I, ∅, gg 6|=Slk ϕ2.
Incidentally, the following strategies are both witness strategies for ϕ1 and counterexample strategies

78 Chapter 4. Epistemic Strategy Logic

for ϕ2 at gg:

fe(gg) , i fx(gg) , p fy(gg) , r

fe(g1) , i fx(g1) , i fy(g1) , i

fe(g2) , i fx(g2) , i fy(g2) , i

The two concepts are duals of each other in the sense that if f is a witness strategy for 〈〈x〉〉ψ at g,
then it is a counterexample strategy for [[x]]¬ψ at g (and vice versa).

Lemma 4.3. Let I be an interpreted system, g ∈ G a global state, ψ an agent-closed Slk formula
with free(ψ) = {x0, . . . , xn−1}, and f0, . . . , fn−1 memoryless uniform shared strategies such that fi ∈
UStr sharing(xi,ψ) for 0 ≤ i < n. Then f0, . . . , fn−1 are witness strategies of 〈〈x0〉〉 . . . 〈〈xn−1〉〉ψ at g iff
f0, . . . , fn−1 are counterexample strategies of [[x0]] . . . [[xn−1]]¬ψ at g.

Proof. We prove both directions of the equivalence separately:

⇒: Assume that f0, . . . , fn−1 are witness strategies of 〈〈x0〉〉 . . . 〈〈xn−1〉〉ψ at g. By Definition 4.13, we
have fi ∈ UStr sharing(ψ,xi) for all 0 ≤ i < n and I, χ, g |= ψ where χ , {(xi, fi) | 0 ≤ i < n}. By
Definition 2.22, we have sharing(¬ϕ, x) = sharing(ϕ, x) for all Slk formulas ϕ ∈ SLK and variables
x ∈ Var so fi ∈ UStr sharing(¬ψ,xi) for all 0 ≤ i < n. Since I, χ, g |=Slk ψ, I, χ, g 6|=Slk ¬ψ holds
by Slk semantics (Definition 4.3). Hence, by Definition 4.13, f0, . . . , fn−1 are counterexample
strategies for [[x0]] . . . [[xn−1]]¬ψ at g.

⇐: Assume that f0, . . . , fn−1 are counterexample strategies of [[x0]] . . . [[xn−1]]¬ψ at g. By Defini-
tion 4.13, we have fi ∈ UStr sharing(¬ψ,xi) for all 0 ≤ i < n and I, χ, g 6|=Slk ¬ψ where χ ,
{(xi, fi) | 0 ≤ i < n}. Again, we have fi ∈ UStr sharing(ψ,xi) for all 0 ≤ i < n by Definition 2.22.
Since I, χ, g 6|=Slk ¬ψ, I, χ, g |=Slk ψ holds by Slk semantics (Definition 4.3). Hence, by Defini-
tion 4.13, f0, . . . , fn−1 are witness strategies of 〈〈x0〉〉 . . . 〈〈xn−1〉〉ψ at g.

This duality will allow us to focus on witness strategies and their synthesis only: Suppose an Slk
sentence ϕ , [[x0]] . . . [[xn−1]]ψ does not hold hold at a state g ∈ G in an interpreted system I and we want
to construct counterexample strategies for ϕ at g. Since I, ∅, g 6|=Slk ϕ, we must have I, ∅, g |=Slk ¬ϕ by
Slk semantics (see Definition 4.3). Using the equivalence ¬ [[x0]] . . . [[xn−1]]ψ ≡ 〈〈x0〉〉 . . . 〈〈xn−1〉〉¬ψ, we
get I, ∅, g |=Slk 〈〈x0〉〉 . . . 〈〈xn−1〉〉¬ψ. Finally, we construct witness strategies for ¬ϕ at g, which are also
counterexample strategies for ϕ at g by Lemma 4.3.

The procedure for constructing a counterexample strategy relies on witness strategy synthesis. Before
describing how witness strategies can be retrieved, we need to show that they always exist when an Slk
formula holds.

Lemma 4.4. Let I be an interpreted system, ψ an agent-closed Slk formula such that free(ψ) =
{x0, . . . , xn−1}, and ϕ , 〈〈x0〉〉 . . . 〈〈xn−1〉〉ψ an Slk sentence. Then the following holds: I, ∅, g |=Slk ϕ iff
there exist witness strategies f0, . . . , fn−1 for ϕ at g.

Proof. We prove both directions of the equivalence separately:

⇒: Assume that I, ∅, g |=Slk ϕ. By Slk semantics (Definition 4.3), there exist strategies f0, . . . , fn−1

such that fi ∈ UStr sharing(〈〈xi+1〉〉...〈〈xn−1〉〉ψ,xi) for all 0 ≤ i < n and I, χ, g |=Slk ψ where χ =
{(xi, fi) | 0 ≤ i < n}. By Definition 2.22, we have sharing(〈〈xi+1〉〉 . . . 〈〈xn−1〉〉ψ, xi) = sharing(ψ, xi)
for all 0 ≤ i < n. Hence f0, . . . , fn−1 satisfy both conditions for being witness strategies of ϕ at g
(see Definition 4.13).

⇐: Assume that there exist witness strategies f0, . . . , fn−1 for ϕ at g. By Definition 4.13, we have
fi ∈ UStr sharing(ψ,xi) for all 0 ≤ i < n and I, χ, g |=Slk ψ where χ , {(xi, fi) | 0. ≤ i < n}.
By Definition 2.22, we have sharing(ψ, xi) = sharing(〈〈xi+1〉〉 . . . 〈〈xn−1〉〉ψ, xi). Hence, we get
fi ∈ UStr sharing(〈〈xi+1〉〉...〈〈xn−1〉〉ψ,xi) for all 0 ≤ i < n. Therefore, I, ∅, g |=Slk ϕ by Slk seman-
tics (Definition 4.3).

4.2. Model Checking 79

It remains to explain how witness strategies can be synthesised using the Slk model checking algo-
rithm we introduced in Subsection 4.2.2. Consider an Slk sentence ϕ , 〈〈x0〉〉 . . . 〈〈xn−1〉〉ψ that holds
at a global state g ∈ G in some interpreted system I. Since I, ∅, g |=Slk ϕ, by Lemma 4.4, there must
be some witness strategies f0, . . . , fn−1 for ϕ at g, which we want to synthesise. The corresponding
assignment χ ∈ Asg on the variables x0, . . . , xn−1 satisfies I, χ, g |=Slk ψ. Let E , SATISlk(ψ, ∅) be the
set of extended states which guarantee ψ in I under the empty binding. E contains all possible extended
states 〈g′, v′〉 such that I, g′, v′ |=Slk ψ. Hence, it must be the case that 〈g, v〉 ∈ E where v is some
variable assignment which extends χ.

Therefore, in order to synthesise witness strategies for ϕ at g, it suffices to find an extended state
〈g, v〉 ∈ SATISlk(ψ, ∅) such that the strategies v(x0), . . . , v(xn−1) are uniform with respect to the agents
which share them. The witness strategies for ϕ at g are then v(x0), . . . , v(xn−1).

Lemma 4.5. Let I be an interpreted system, ψ an agent-closed Slk formula such that free(ψ) =
{x0, . . . , xn−1}, and ϕ , 〈〈x0〉〉 . . . 〈〈xn−1〉〉ψ an Slk sentence. Then the following properties hold:

1. For all variable assignments 〈g, v〉 ∈ SATISlk(ψ, ∅) such that v(xi) ∈ UStr sharing(ψ,xi) for 0 ≤ i < n,
v(x0), . . . , v(xn−1) are witness strategies for ϕ at g.

2. If there exist witness strategies for ϕ at g, then there exists a variable assignment v ∈ VAsg such
that v(xi) = fi for 0 ≤ i < n and 〈g, v〉 ∈ SATISlk(ψ, ∅).

Proof. We prove both properties separately:

1. Take an arbitrary extended state 〈g, v〉 ∈ SATISlk(ψ, ∅) such that v(xi) ∈ UStr sharing(ψ,xi) for 0 ≤
i < n. As we have explained in the proof of Theorem 4.2, 〈g, v〉 guarantees ψ in I under ∅. By
Definition 4.9, I, g, v |=Slk ψ. By Slk semantics (Definition 4.3), we have I, χ, g |=Slk ψ where
χ , {(xi, v(xi)) | 0 ≤ i < n} since free(ψ) ⊆ {x0, . . . , xn−1} ⊆ dom(v). Hence, v(x0), . . . , v(xm−1)
satisfy both conditions for being witness strategies for ϕ at g (see Definition 4.13).

2. Assume that f0, . . . , fn−1 are witness strategies for ϕ at g. By Definition 4.13, fi ∈ UStr sharing(ψ,xi)

for all 0 ≤ i < n and I, χ, g |=Slk ψ where χ , {(xi, fi) | 0 ≤ i < n}. Since dom(χ) = free(ψ), by
Slk semantics (Definition 4.3), we have I, g, v |=Slk ψ for all v ∈ VAsg such that χ ⊆ v. There
must exist at least one such variable assignment v because dom(χ) ⊆ Var (simply set v(x) , χ(x)
for x ∈ dom(χ) and assign arbitrary strategies to variables y ∈ Var \ dom(χ)). By Definition 4.9,
〈g, v〉 ∈ Ext guarantees ψ in I under ∅. Therefore, 〈g, v〉 ∈ SATISlk(ψ, ∅) (see proof of Theorem 4.2).

Informally, the first property in Lemma 4.5 expresses soundness of the approach, i.e. that it will
return only witness strategies for ϕ at g. Conversely, the second property asserts completeness of the
approach, i.e. that it will return witness strategies for ϕ at g, if they exist.

4.2.4 Symbolic Implementation

In this subsection, we discuss how the algorithm presented in Subsection 4.2.2 can be implemented
symbolically using BDDs. As explained in Subsection 2.3.2, BDDs are a very efficient representation for
manipulation of Boolean formulas. BDDs are used by many existing model checkers including MCMAS
(see Subsection 2.5.2), which uses them for model checking Ctl and Atl [65]. We present here a
modification of the symbolic implementation for Slk.

We start by representing the parameters of the interpreted system by means of Boolean formulas [81].
Given an interpreted system:

I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

we can represent global states and joint actions as follows [65,81]:

• For every agent i ∈ Agt , we can encode its set of internal states Li with nv(i) = dlog2 |Li|e Boolean
variables. Thus, a global state g ∈ G can be encoded as a Boolean vector v = (v0, . . . , vN−1), where
N =

∑
i∈Agt nv(i).

80 Chapter 4. Epistemic Strategy Logic

• For every agent i ∈ Agt , we can encode its set of actions Act i with na(i) = dlog2 |Act i|e Boolean
variables. Thus, a joint action a ∈ Act can be encoded as a Boolean vector w = (w0, . . . , wM−1),
where M =

∑
i∈Agt na(i).

An example of how this encoding can be done is provided in Subsection 3.3.2.

Encoding of Extended States

In order to implement our new Slk model checking algorithm, we need to represent sets of extended
states (see Definition 4.8), which consist of a global state and a variable assignment. We thus represent
the variable assignment explicitly using Boolean variables as well.

Since the number of strategy variables (and hence the domain of a variable assignment) depends
on the Slk formula we are checking, the total number of Boolean variables also depends on the for-
mula. Let ϕ ∈ SLK be an Slk sentence and vars(ϕ) ⊆ Var the set of variables quantified in ϕ,
e.g. vars(〈〈e〉〉[[x]]〈〈y〉〉(E, e)(1, x)(2, y)G [¬p1 ∧ ¬p2 ∧ 〈〈z〉〉(2, z)X p2]) = {e, x, y, z}. For each variable x ∈
vars(ϕ), we represent the strategy associated with x using a number of Boolean variables.

Let us now consider an arbitrary variable x ∈ vars(ϕ). In the Slk model checking algorithm (Defi-
nition 4.12), the variable quantifies over strategies f ∈ UStr sharing(ϕ,x). The domain and the range of a
strategy f ∈ UStrA are G and ActA respectively (see Definition 4.2). Hence, we could easily represent it
using |G| × dlog2 |ActA|e Boolean variables, i.e. we would encode the action associated with each global
state. For example, the following strategy for player 1 (A = {1}) in the toy model (see Figure 3.1):

f(gg) , r f(g1) , i f(g2) , i

could be encoded using 3× dlog2 |r,p, s, i|e = 6 Boolean variables:

¬b0 ∧ ¬b1︸ ︷︷ ︸
f(gg)=r

∧ b2 ∧ b3︸ ︷︷ ︸
f(g1)=i

∧ b4 ∧ b5︸ ︷︷ ︸
f(g2)=i

We can see that this representation is not the most compact one. Namely, we do not need 2 Boolean
variables to encode the action in state g1 because P1(s, s1) = {i}. In fact, we do not need any Boolean
variables to encode f(g1) = f(g2) = i because i is the only available action in both g1 and g2 so agent 1
always has to perform it in these states. Hence, a more compact representation can be obtained by using
only

∑
g∈G

⌈
log2

∣∣⋂
i∈A Pi(liE(g))

∣∣⌉ Boolean variables. The strategy f for the toy model would now be
encoded using dlog2 |{r,p, s}|e+ 2 dlog2 |{i}|e = 2 Boolean variables as ¬b0 ∧ ¬b1, which is optimal since
there are exactly three possible strategies available to agent 1. More generally, this encoding is almost
optimal7 for shared memoryless strategies.

However, our strategies are also uniform. If have a strategy f ∈ UStr{i} for an agent i ∈ Agt , then
for all states g1, g2 ∈ G, g1 ∼i g2 implies f(g1) = f(g2). Hence, there is no point in storing both actions
f(g1) and f(g2). Consider some interpreted system with 2 agents a, b and 3 reachable global states
g1, g2, g3 where g1 ∼a g2 and g2 ∼b g3. Furthermore, assume the following protocols:

Pa(laE(g1)) = Pa(laE(g2)) , {a1, a2, a3} Pb(lbE(g1)) , {a1, a2}
Pa(laE(g3)) , {a2, a3} Pb(lbE(g2)) = Pb(lbE(g3)) , {a1, a2, a3}

How many Boolean variables do we need to encode a strategy f ∈ UStr{a,b} for both agents? Let
us forget for a while that f is uniform. The more compact representation we found would require∑
g∈G dlog2 |Pa(laE(g)) ∩ Pb(lbE(g)))|e = dlog2 |{a1, a2, a3}|e + dlog2 |{a1, a2}|e + dlog2 |{a2, a3}|e = 4

Boolean variables. What are the possible strategies f? We require f(g) ∈ Pi(liE(g)) for all agents
i ∈ {a, b} and global states g ∈ G: f(g1) ∈ {a1, a2}, f(g2) ∈ {a1, a2, a3}, and f(g2) ∈ {a2, a3}. So there
are 12 possible shared memoryless strategies. But f must be uniform. Since g1 ∼a g2, and g2 ∼b g3,
we must have f(g1) = f(g2) = f(g3). Therefore, there is only one possible uniform strategy defined as
f(g) , a2 for all g ∈ G. This answers our first question: We do not need any Boolean variables.

7It is optimal as long as we store each action individually. Consider the situation when an agent can perform 3 actions
in state s1 and 5 actions in s2. Our encoding will require dlog2 3e+ dlog2 5e = 5 Boolean variables to represent a strategy.
Since there are 3× 5 = 15 possible strategies, it is possible to encode a strategy using only dlog2 15e = 4 Boolean variables.

4.2. Model Checking 81

The example above showed us that for a given set of agents A ⊆ Agt , the epistemic accessibility
relations ∼i with i ∈ A induce regions of the global state space, to which the uniform strategies f ∈ UStrA
must assign the same action. It turns out that these regions are equivalence classes with respect to the
common epistemic accessibility relation ∼C

A. We shall now prove this statement.

Lemma 4.6. Let I be an interpreted system and A ⊆ Agt a set of agents. Then a memoryless strategy
f : G → ActA is uniform iff for each set of global states in the quotient set S ∈ G/∼C

A, we have
f(s1) = f(s2) for all s1, s2 ∈ S.

Proof. We shall prove both directions of the equivalence separately.

⇒: Assume that f is uniform and take an arbitrary set S ∈ G/∼C
A. Furthermore, take arbitrary global

states g1, g2 ∈ S. By the definition of quotient set, we have g1 ∼C
A g2. There are two cases:

– g1 = g2. Trivially, f(g1) = f(g2).

– By the definition of common epistemic accessibility relation (Definition 2.31), there is a chain
of global states g′1, g

′
2, . . . , g

′
n ∈ G and agents i1, i2, . . . , in+1 ∈ A with n ≥ 0 such that

g1 ∼i1 g
′
1 ∼i2 g

′
2 . . . g

′
n ∼in+1

g2. By uniformity of f (Definition 4.2), we get f(g1) = f(g′1) =
· · · = f(g′n) = f(g2).

⇐: Assume that for each S ∈ G/∼C
A, we have f(s1) = f(s2) for all s1, s2 ∈ S. Take an arbitrary

agent i ∈ A and global states s1, s2 ∈ G such that s1 ∼i s2. To prove uniformity of f , we need
to show that f(s1) = f(s2). Since s1 ∼i s2, we also have s1 ∼C

A s2. Hence, s2 belongs to the
equivalence class [s1]∼C

A
. By definition of an equivalence class, it must be the case that s1 ∈ [s1]∼C

A

and [s1]∼C
A
∈ G/ ∼C

A. Since s1, s2 ∈ [s1]∼C
A

and [s1]∼C
A
∈ G/∼C

A, we get f(s1) = f(s2) by the initial

assumption as required.

This allows us to present an even more compact representation of a strategy f ∈ UStrA with A ⊆ Agt
in an interpreted system I. We only need to store one action for each shared local state S ∈ G/∼C

A.

Thus, we can represent f using
∑
S∈G/∼C

A

⌈
log2

∣∣∣⋂g∈S ⋂i∈A Pi(liE(g))
∣∣∣⌉ Boolean variables. Finally, a

variable assignment v ∈ VAsg for a formula ϕ ∈ SLK can be represented using a Boolean vector
u = (u0, . . . , uK−1) such that:

K =
∑

x∈vars(ϕ)

∑
S∈Gx

log2

∣∣∣∣∣∣
⋂
g∈S

⋂
i∈sharing(ϕ,x)

Pi(liE(g))

∣∣∣∣∣∣

where Gx , G/ ∼C
sharing(ϕ,x) is the set of shared local states for variable x. Note that despite both

optimisations, the worst case still remains K = |vars(ϕ)| × |G| × dlog2 (maxi∈Agt |Act i|)e, i.e. we need
polynomially many Boolean variables with respect to both the size of the model |I| and the number of
strategy variables in the formula |vars(ϕ)|.

An extended state 〈g, v〉 ∈ Ext can be represented by a concatenation of the Boolean vectors vg and
uv, which can in turn be identified with Boolean formulas, represented by conjunctions of literals (as in
Subsection 2.3.2). A set of extended states E ⊆ Ext can be expressed as the disjunction of the Boolean
formulas encoding each extended state in E.

Encoding of the Algorithm

Given a binding b ∈ Bnd such that dom(b) = Agt , we define a formula Sb(e, a), where e ∈ Ext and
a ∈ Act , representing the strategy restrictions of the implied transition relation (see Definition 4.10).
The formula asserts that all agents act according to their strategies:

Sb(〈g, v〉 , a) , ∀i ∈ Agt . v(b(i))(g) = ai(a)

82 Chapter 4. Epistemic Strategy Logic

Let v, v′, w, and u be the Boolean vectors for representing current global states, next global states, joint
actions, and variable assignments respectively. We can encode strategy restrictions as a Boolean formula
Sb(v, w, u):

Sb(v, w, u) =
∧
i∈Agt

∨
l∈LiE

l(viE) ∧
∨

a∈Pi(l)

a(wiE) ∧ a(uv(b(i)),l)

where:

• l(viE) is the Boolean formula representing that the local state of agent i ∈ Agt is l ∈ LiE;

• a(wiE) is the Boolean formula representing that the action of agent i ∈ Agt is a ∈ Act i;

• a(uv(x),l) is the Boolean formula representing the fact that the action in local state8 l assigned by
the strategy mapped to variable x is a.

We can represent the global protocol and evolution function as Boolean formulas P (v, w) and t(v, w, v′)
by taking the conjunctions of Boolean formulas representing the individual agent’s protocols Pi and evo-
lution functions ti (i ∈ Agt), like we did in Subsection 3.3.2. The Boolean formula Rbt(v, w, v

′) for
the implied transition relation →b

v⊆ G × G (see Definition 4.10) is then constructed from the conjunc-
tion of the Boolean formulas representing the global protocol, global evolution function, and strategy
restrictions:

Rbt(v, v
′, u) = ∃w.P (v, w) ∧ t(v, w, v′) ∧ Sb(v, w, u)

Note that we quantify over actions, encoded as w, as in Subsection 3.3.2, but we keep the variable
assignment in the extra parameter9 u. Quantification over the variable assignment is performed when
a strategy quantifier (〈〈x〉〉, [[x]]) is encountered. Also note that the strategy restrictions Sb depend on
the binding b and thus have to be recomputed when the binding is updated, i.e. when the agent binding
operator (i, x) with i ∈ Agt and x ∈ Var is encountered. This is not the case for the other Boolean
formulas (P (v, w) and t(v, w, v′)), which are constant for a given interpreted system.

The individual epistemic accessibility relation RK
i (v, v′) for each agent i ∈ Agt and the other epistemic

accessibility relations are encoded in a similar way [65]. The computation of the set of reachable states
G is explained at the end of Subsection 3.3.2.

Finally, the algorithm SATSlk : SLK × Bnd → 2Ext can be translated into operations on BDDs
representing encoded sets of extended states.

Strategy Synthesis

Synthesising witness and counterexample strategies (see Definition 4.13) using the symbolic implemen-
tation is very simple because our representation of variable assignments ensures that all strategies are
uniform (see Definition 4.2).

Assume that we want to synthesise witness strategies for an Slk sentence ϕ , 〈〈x0〉〉 . . . 〈〈xn−1〉〉ψ at
a global state g ∈ G. Since I, ∅, g |=Slk ϕ, there exist witness strategies for ϕ at g (see Lemma 4.4). We
calculate E = SATISlk(ψ, ∅) and pick an arbitrary extended state 〈g, v〉 ∈ E. Note that all strategies in v
are uniform due to our representation. By Lemma 4.5, there exists at least one such extended state 〈g, v〉
(because there exist witness strategies for ϕ at g) and for all such extended states, v(x0), . . . , v(xn−1)
are witness strategies for ϕ at g. Witness strategy synthesis for ϕ at g can be implemented symbolically
as follows:

1. Calculate E := SATISlk(ψ). This is performed using the symbolic implementation presented earlier
in this subsection.

2. Filter out extended states with a different global state E′ := {(g′, v′) ∈ E | g′ = g}. The symbolic
representation of this operation is E′(v, u) := E(v, u) ∧ g(v).

8Strictly speaking, the strategy maps global states to actions. However, as explained earlier, there exists a set S ⊆
G/ ∼C

sharing(ϕ,x)
such that, for all global states g ∈ G, if liE(g) = l then g ∈ S. Thus, we can also interpret the strategy as

a mapping from local states to actions.
9Observe that we do not need to allocate BDD variables u′ for the next value of the variable assignment because it does

not change in a temporal transition (see Definition 4.11).

4.3. Summary 83

3. Pick an arbitrary extended state 〈g, v〉 ∈ Ext . This is equivalent to selecting one conjunct (also
referred to as minterm) C(v, u) from E′(v, u). BDD packages usually provide a built-in function
for this operation10.

4. The conjunct C(v, u) encodes the extended state 〈g, v〉, where v contains the witness strategies.
If we want to find the next action fi(g

′) of a strategy fi = v(xi) for 0 ≤ i < n at a global
state g′ ∈ G, we iterate over all possible actions a ∈

⋂
j∈sharing(ψ,xi)

Pj(ljE(g′)) and pick one such

that C(v, u) ∧ a(uv(xi),g′) is not equivalent to falsity, where a(uv(xi),g′) is the Boolean formula
representing the fact that the next action of the strategy mapped to variable xi at the global state
g′ is a.

Complexity

Having explained how the Slk model checking algorithm can be implemented symbolically, it is natural
to ask what its complexity is. As we have just shown, the symbolic encoding requires polynomially many
Boolean variables. Therefore, the algorithm runs in exponential time with respect to both the size of the
model |I| and the number of quantified variables |vars(ϕ)|.

Theorem 4.3. Let I =
〈

(Li,Act i, Pi, ti)i∈Agt , I, h
〉

be an arbitrary interpreted and ϕ ∈ SLK be an

Slk sentence. The worst case time complexity of the symbolic implementation is:

2O(|G|×|vars(ϕ)|×log2|Act|)

where G is the set of reachable global states of I.

Proof (Sketch). The symbolic implementation uses:

• O(log2 |G|) Boolean variables to represent the current global state;

• O(log2 |G|) Boolean variables to represent the next global state;

• O(log2 |Act |) Boolean variables to represent the joint actions;

• O(|G| × |vars(ϕ)| × log2 (maxi∈Agt |Act i|)) Boolean variables to represent the variable assignment.

The total number of Boolean variables needed is thus O(|G|×|vars(ϕ)|×log2 |Act |). Since BDD operations
take polynomial time with respect to the size of the relevant BDDs in the worst case [49], they take at
most exponential11 time in the number of Boolean variables. Hence, our claim follows.

The proof shows that the complexity of the algorithm is dominated by the encoding of the vari-
able assignments. One of the main future directions in Slk verification is thus finding more compact
representations of extended states.

Observe that the symbolic algorithm can use more than a polynomial amount of space because it
performs operations on sets of extended states. While the procedure described in Subsection 4.2.1 uses
only a polynomial amount of space (as it operates on individual states and assignments), we believe it
is unlikely that such an explicit approach would outperform the symbolic algorithm.

4.3 Summary

In this chapter, we introduced a novel fragment of Sl called Epistemic Strategy Logic (Slk), which is
defined on imperfect recall semantics with incomplete knowledge (i.e. agents have no memory of the past
and do not have complete knowledge of the global state). Slk combines Ltl temporal operators, Sl
strategy quantifiers, and epistemic modalities. The result is a formalism which is even more expressive
than Sl because it can express combined concepts such as knowledge about Nash equilibria. We showed
that, despite its expressive power, the Slk model checking problem belongs to the PSpace complexity

10If no such function is available, we can skip step 3 (C(v, u) := E′(v, u)) and refine the conjunct upon each lookup in
step 4 (C(v, u) := C(v, u) ∧ a(uv(xi),g′)).

11Given v Boolean variables, a BDD depending only on these variables can have at most 2v nodes.

84 Chapter 4. Epistemic Strategy Logic

class. Furthermore, we provided an exponential-time model checking algorithm for Slk which admits
an efficient symbolic implementation and supports witness/counterexample strategy synthesis. Hence,
the algorithm can be used to automatically synthesise agents’ behaviour which ensures an arbitrary Slk
specification.

The first part of the chapter focused on the basic Slk theory. We gave the syntax and semantics
of the logic, which is based on uniform strategies where the next actions assigned to two global states
indistinguishable by an agent must be the same. This property ensures that the strategies are executable
by the agents despite incomplete information. We then compared the logic to the original Sl and
discussed its limitations due to memoryless and non-behavioural strategies.

The second part of the chapter discussed Slk model checking. We started by defining the model
checking problem formally and proved that it belongs to the PSpace complexity class with respect to
both the size of the model and the formula. We then provided a practical model checking algorithm for
Slk based on the concept of extended states and showed that it is correct. Furthermore, we showed
how it can be used to synthesise witness and counterexample strategies for Slk sentences of the form
〈〈x0〉〉 · · · 〈〈xm−1〉〉ψ and [[y0]] · · · [[yn−1]]ψ respectively. Finally, we described how the algorithm can be
implemented symbolically and showed that it has worst-case exponential time complexity.

In Section 6.2, we will describe how we developed an extension of MCMAS which implements the
Slk model checking algorithm introduced in this chapter using BDDs.

Chapter 5

One-Goal Strategy Logic

One-Goal Strategy Logic (Sl[1g]) is another syntactic fragment of Sl (see Subsection 2.2.5), which was
introduced in [72]. Unlike Slk, Sl[1g] is defined on perfect recall semantics with complete information
(i.e. agents have perfect memory of the past and complete knowledge of the global state). We provide the
first practical model checking algorithm for Sl[1g]. We prove its correctness and show that it has optimal
worst-case time complexity. We explain how it can be extended to support general strategy synthesis
and provide an efficient symbolic implementation. This chapter is split into two parts: Section 5.1
constitutes a very short revision of Sl[1g] and Section 5.2 describes the new model checking algorithm
we have developed.

5.1 Logic

As we have already mentioned in Section 3.2, Sl[1g] is one of the syntactic fragments of full Sl introduced
in [72]. Since it is the least expressive fragment, it does not have the full power of Sl and cannot express
game-theoretic concepts like Nash equilibria. On the other hand, the “rewards” for this reduction in
expressiveness are some very desirable properties [73]:

1. Behavioural strategies. Informally, Sl[1g] strategies depend only on the history of the game
and the next actions of other agents in the current state. More importantly they do not depend
on other agents’ actions in the future or in other counterfactual games. While this might not seem
very important, it is a fundamental property on which our model checking algorithm relies.

2. 2ExpTime-complete model checking complexity. While this is still a very high complex-
ity, it is a massive improvement over the NonElementarySpace-hard complexity of full Sl.
More importantly, Sl[1g] has exactly the same complexity as Atl* while being strictly more ex-
pressive [72]. Therefore, our new algorithm presented in Section 5.2 is also optimal1 for model
checking Atl*.

Note that we are referring to the complexity with respect to the size of the formula. The complexity
of Atl* and all perfect recall fragments of Sl with respect to the size of the model is P. Recall
that Slk, which has imperfect recall, is in PSpace with respect to both the size of the model and
the formula (see Theorem 4.1).

3. Decidable satisfiability. While this property is not important for our purposes, it is still a
desirable result. Note that Sl[1g] is the only fragment of Sl for which it is known that satisfiability
is decidable (see Section 3.2 for an overview of the fragments and their properties).

Recall that Sl[1g] uses Ltl syntax augmented with an extra rule ℘[ϕ, where ℘ is a quantification
prefix (e.g. [[e]]〈〈x〉〉[[y]]), [is a binding prefix (e.g. (E, e)(a, x)(b, y)), and ϕ is an Ltl formula. We first
define the concept of a quantification and binding prefix formally [72].

1However, this is not the case for certain fragments of Atl* like Ltl, which is PSpace-complete with respect to the
size of the formula (see Table 2.1). While our algorithm can be used for model checking Ltl, it is far from optimal.

86 Chapter 5. One-Goal Strategy Logic

Definition 5.1 (Sl[1g] Prefixes). A quantification prefix over a set of variables V ⊆ Var is a finite

word ℘ ∈ {〈〈x〉〉 , [[x]] | x ∈ V }|V | of length |V | such that each variable x ∈ V occurs in ℘ exactly once.
QPreV denotes the set of all quantification prefixes over V . QPre ,

⋃
V⊆Var QPreV is the set of all

quantification prefixes.

A binding prefix over a set of variables V ⊆ Var is a finite word [∈ {(a, x) | a ∈ Agt ∧ x ∈ V }|Agt|

of length |Agt | such that each agent i ∈ Agt occurs in [exactly once. BPreV denotes the set of all
binding prefixes over V . BPre ,

⋃
V⊆Var BPreV is the set of all binding prefixes.

For example, ℘1 = 〈〈z〉〉[[x]]〈〈y〉〉 is a valid quantification prefix over the set of variables V = {x, y, z},
i.e. ℘1 ∈ QPreV . However, ℘2 = 〈〈x〉〉〈〈y〉〉 and ℘3 = 〈〈x〉〉[[y]][[z]]〈〈x〉〉 are not valid quantification prefixes
because ℘2 does not quantify z ∈ V and ℘3 contains x ∈ V twice (also their lengths are not |V | = 3).
Similarly, [1 = (b, x)(a, x) is a valid binding prefix over V when the set of agents is Agt = {a, b}, whereas
(a, x)(a, y) and (a, x)(b, u) are not. Note that BPre = BPreVar by construction.

We are now ready to provide a formal definition of Sl[1g] syntax [72].

Definition 5.2 (Sl[1g] Syntax). Sl[1g] formulas are built inductively from the set of atomic proposi-
tions AP , strategy variables Var , agents Agt , quantification prefixes QPre, and binding prefixes BPre,
by using the following grammar, with p ∈ AP , x ∈ Var , a ∈ Agt , [∈ BPre, and ℘ ∈ QPre:

ϕ ::= p | > | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ | ℘[ϕ

where ℘ ∈ QPre free([ϕ). SL[1G] denotes the infinite set of formulas generated by the above rules.

The conditions on ℘ and [above ensure that ℘[ϕ is an Sl[1g] sentence, i.e. free(℘[ϕ) = ∅. We
must simply make sure that each agent is bound to a variable in [and that the variable is quantified in
℘. Assume that the set of agents is Agt = {a, b}. Then [[x]]〈〈y〉〉(a, x)(b, y)FG p is a well-formed Sl[1g]
formula (in fact, it is an Sl[1g] sentence). On the other hand, [[x]](a, x)q is not well-formed because it
does not bind agent b to any strategy variable. A prefix is sometimes more readable when it interleaves
quantifiers and bindings (e.g. [[x]](a, x)〈〈y〉〉(b, y)X r). While this violates the definition of Sl[1g] syntax,
we will allow it as long as each binding occurs after the corresponding quantifier (e.g. (a, x)〈〈x〉〉(b, x) s is
not a well-formed Sl[1g] formula because (a, x) appears before 〈〈x〉〉).

Sl[1g] is defined with respect to memoryful strategies. As we have explained in Chapter 3, incomplete
information is undecidable under perfect recall semantics. Therefore, we have (again) two options:
(i) consider Sl[1g] with imperfect recall, or (ii) consider Sl[1g] with complete information. The first
option turns out not to be very interesting because we obtain a logic which is strictly less expressive than
Slk while most probably still having the same complexity2, namely PSpace with respect to both the size
of the model and the formula. Therefore, we consider Sl[1g] with perfect recall and complete information.
Consequently, Sl[1g] uses shared (memoryful) strategies (Definition 2.21) instead of uniform shared
memoryless strategies (Definition 4.2). Finally, since Sl[1g] is a syntactic fragment of Sl, the semantics
remains the same (Definition 2.29).

5.2 Model Checking

In this section, we present a novel model checking algorithm for Sl[1g], which we obtain by reducing
the model checking problem to solving an infinite two-player parity game. The structure of this sec-
tion is as follows: Subsection 5.2.1 introduces the algorithm based on the reduction, Subsection 5.2.2
discusses the complexity of the algorithm, Subsection 5.2.3 explains how the algorithm can be modified
to support general strategy synthesis, Subsection 5.2.4 describes an efficient symbolic implementation of
the algorithm, and Subsection 5.2.5 presents an optimisation technique for the algorithm called separate
determinisation.

2There is a chance that a more efficient algorithm might be found for Sl[1g] with imperfect recall. However, recall that
although Atl with imperfect recall is not completely subsumed by Sl[1g] with imperfect recall (see Subsection 4.2.1), it
is less expressive. Since the complexity of model checking Atl with imperfect recall is PNP-complete [23], there is most
likely very little to be gained.

5.2. Model Checking 87

5.2.1 Algorithm

We introduce here the new algorithm for model checking arbitrary Sl[1g] formulas. Consider an inter-
preted system I and an Sl[1g] sentence ϕ ∈ SL[1G]. To make the algorithm easier to understand, we
assume that ϕ is a principal sentence of the form ℘[ψ with ℘ ∈ QPre free([ψ) and [∈ BPre. If this is not
the case, we can simply add one quantifier and agent binding for each agent (it will not matter because
ϕ is a sentence). Since our discussion will be based largely on Sl[1g] principal sentences, we shall define
the concept formally.

Definition 5.3 (Sl[1g] Principal Sentence). Let I be an interpreted system. An Sl[1g] formula ϕ ∈
SL[1G] is a principal sentence iff (i) it is a sentence and (ii) it is of the form ℘[ψ where ℘ ∈ QPre free([ψ)

is a quantification prefix, [∈ BPre a binding prefix, and ψ ∈ SL[1G] an Sl[1g] formula. Furthermore,
ϕ is a basic principal sentence iff ψ ∈ LTL is an Ltl formula.

An Sl[1g] formula ϕ′ ∈ SL[1G] is a principal subsentence of ϕ iff ϕ′ is a principal sentence and a
subformula of ϕ. Furthermore, ϕ′ is a strict principal subsentence of ϕ iff ϕ′ is a principal subsentence
of ϕ and ϕ′ 6= ϕ. Finally, ϕ′ is a direct principal subsentence of ϕ iff (i) ϕ′ is a strict principal
subsentence of ϕ and (ii) there exists no strict principal subsentence ϕ′′ of ϕ such that ϕ′ is a strict
principal subsentence of ϕ′′.

Although we introduced a considerable number of new terms in the definition above, they should be
easy to understand. To make sure that the precise meanings of all the concepts are clear, we provide a
single comprehensive example3:

ϕ = [[x]](1, x)(2, x)G [¬p1 ∧ ¬p2 ∧ [[y]]〈〈z〉〉(1, y)(2, z)X (p2 ∧ ¬
ϕ′′︷ ︸︸ ︷

〈〈u〉〉〈〈v〉〉(1, u)(2, v)F¬p2)︸ ︷︷ ︸
ϕ′

]

There are three principal sentences, namely ϕ, ϕ′, and ϕ′′. ϕ′′ is also the only basic principal sentence
(both ϕ and ϕ′ have non-Ltl subformulas). The principal subsentences of ϕ are ϕ, ϕ′, and ϕ′′. However,
only ϕ′ and ϕ′′ are strict principal subsentences of ϕ. Finally, both ϕ and ϕ′ each have exactly one
direct principal subsentence, namely ϕ′ and ϕ′′ (although in general a formula might have several direct
principal subsentences). Note that ϕ′′ cannot have any strict or direct principal subsentences because it
is a basic principal sentence.

Recursive Approach

Our aim is now to find the set of all states ‖ϕ‖I ⊆ G at which an Sl[1g] principal sentence ϕ = ℘[ψ

holds, i.e. ‖ϕ‖I , {g ∈ G | I, ∅, g |=Sl ϕ}. We proceed in a recursive manner over the structure of ϕ.
According to Sl[1g] syntax (Definition 5.2), ψ is a formula which combines atoms and direct principal
subsentences of the form ϕ′ = ℘′[′ψ′ using only Boolean and temporal connectives. For example:

ϕ = 〈〈x〉〉[[y]]︸ ︷︷ ︸
℘

(a, x)(b, y)︸ ︷︷ ︸
[

[p→ X

℘′︷ ︸︸ ︷
[[u]][[v]]

[′︷ ︸︸ ︷
(a, u)(b, v)

ψ′︷︸︸︷
FG q]︸ ︷︷ ︸

ψ

Since ϕ′ is a principal subsentence, we have free(ϕ′) = ∅. Therefore, for all g ∈ G and χ ∈ Asg , we have
I, χ, g |=Sl ϕ

′ iff I, ∅, g |=Sl ϕ
′. Using our definition of ‖ϕ′‖I , we get I, χ, g |=Sl ϕ

′ iff g ∈ ‖ϕ′‖I for all
g ∈ G and χ ∈ Asg . In other words, ϕ′ holds in all states ‖ϕ′‖I (and no other states) regardless of the
assignment χ. Therefore, we can do the following for each direct principal subsentence ϕ′ = ℘′[′ψ′ of ϕ:

1. Calculate ‖ϕ′‖I (recursively);

2. Replace ϕ′ in ϕ with a new atom pϕ′ ∈ AP ;

3. Update the assignment h := h ∪ {(pϕ′ , ‖ϕ′‖I)}.
3The example is based on the toy model in Figure 3.1. We omit strategies for the environment for conciseness (it does

not matter whether we use existential or universal quantifiers anyway). The meaning of the formula is roughly: “As long
as both players perform the same actions, neither of them wins and for each player 1 strategy there is a player 2 strategy
which ensures that player 2 wins in the next round and nothing can take his victory away after that”.

88 Chapter 5. One-Goal Strategy Logic

This procedure preserves the truth value of ϕ. The following lemma asserts this formally.

Lemma 5.1. Let I be an interpreted system and ϕ = ℘[ψ an arbitrary Sl[1g] principal sentence.
Furthermore, let ϕ∗ = ℘[ψ∗ be the principal sentence with all direct principal subsentences ϕ′ of ϕ
replaced with atoms pϕ′ such that h∗(pϕ′) , ‖ϕ′‖I and I∗ the interpreted system with the updated
assignment h∗. Then for all global states g ∈ G and assignments χ ∈ Asg , we have I, χ, g |=Sl ϕ iff
I∗, χ, g |=Sl ϕ

∗.

Proof (Sketch). The proof is performed by induction on the structure of ϕ. We show here only the case
when two corresponding subformulas of ϕ and ϕ∗ are different, i.e. when a principal subsentence ϕ′ is
replaced with a new atom pϕ′ . Let ϕ′ be an arbitrary principal subsentence of ψ. Then we have for all
states g ∈ G and assignments χ ∈ Asg :

I, χ, g |=Sl ϕ
′ iff I, ∅, g |=Sl ϕ

′

iff g ∈ ‖ϕ′‖I
iff g ∈ h∗(pϕ′)
iff I∗, ∅, g |=Sl pϕ′

iff I∗, χ, g |=Sl pϕ′

The first and the last equivalence follow from the fact that ϕ′ and pϕ′ are Sl[1g] sentences. The second
one is the very definition of ‖ϕ′‖I . The third one is true by construction of h∗. The fourth one follows
from Sl semantics (Definition 2.29).

Once we have replaced all principal subsentences of ψ, we are left with an Sl[1g] basic principal
sentence ϕ∗ = ℘[ψ∗ where ψ∗ ∈ LTL is an Ltl formula. Hence, we have reduced the problem of model
checking an arbitrary Sl[1g] principal sentence to recursive model checking of Sl[1g] basic principal
sentences. We shall now see how to solve this simpler problem.

Algorithm Overview

We outline here how the problem of model checking Sl[1g] basic principal sentences ϕ = ℘[ψ can be
reduced to the problem of solving a two-player parity game. Let I be an interpreted system. To calculate
the set of global states at which ψ holds in I, we proceed as follows:

1. Formula automaton. We construct a deterministic parity automaton Pψ
I equivalent to the Ltl

formula ψ.

2. Arena construction. We construct a two-player arena A℘[I representing the global state space
G and the interdependency of strategies in the prefix ℘[.

3. Game combination. We combine the arena A℘[I and parity automaton Pψ
I into a two-player

parity game G℘[ψI . Solving the parity game yields its winning regions, which can be used to
calculate ‖ϕ‖I .

We shall now expand on each of the steps above. Unlike the Slk model checking algorithm we proposed
in Subsection 4.2.2, our new Sl[1g] model checking algorithm relies on the theory of ω-automata and
infinite games. Please refer to Section 2.4 for a brief introduction into these areas.

Formula Automaton

The first step of our new model checking algorithm for Sl[1g] is the construction of a deterministic parity
automaton equivalent to the underlying Ltl formula ψ of an Sl[1g] basic principal formula ϕ = ℘[ψ.
This is a very standard procedure, which is usually performed in three steps:

1. We construct a non-deterministic generalised Büchi automaton Aψ equivalent to ψ. We do this
using the standard translation presented in Figure 2.6. An explanation of the procedure with
examples is provided in Subsection 2.4.3.

5.2. Model Checking 89

2. We convert Aψ to a non-deterministic Büchi automaton Bψ. As explained in Subsection 2.4.1,
this can be done easily using an automaton product with the deterministic automaton shown in
Figure 2.5.

3. We transform Bψ into an equivalent deterministic parity automaton Pψ using the determinisation
procedure outlined in Subsection 2.4.4.

The automata Aψ, Bψ, and Pψ above use sets of atomic propositions A ∈ 2AP as their alphabet. Given

an interpreted system I, we can convert them into automata AψI , Bψ
I , and Pψ

I on global states G by
modifying their transition relations accordingly:

RI(s, g, s′) iff R(s, {p ∈ AP | g ∈ h(p)} , s′) for all (s, g, s′) ∈ S ×G× S′

It is easy to see that AψI , Bψ
I , and Pψ

I accept all infinite paths π ∈ Pth in I which satisfy ψ, i.e.
I, π |=Ltl ψ. Note that the resulting automata depend only on the model I and the underlying Ltl
formula ψ, i.e. they are independent of the prefixes ℘ and [. Nevertheless, we will sometimes refer to
them as AϕI , Bϕ

I , and Pϕ
I because it simplifies the notation.

To give the reader a more concrete idea of Sl[1g] model checking and strategy synthesis, we will now
introduce an example, which we will use several times to demonstrate key concepts. Consider the toy
model in Figure 3.1 and the Sl[1g] basic principal sentence γ , [[e]][[x]]〈〈y〉〉(E, e)(1, x)(2, y)G [¬p1 ∧ ¬p2],
which means roughly: “Whichever action player 1 performs, there exists an action for player 2 such
that neither player will ever win”. The quantification and binding prefixes are ℘ = [[e]][[x]]〈〈y〉〉 and
[= (E, e)(1, x)(2, y) respectively. The underlying Ltl formula is ψ = G [¬p1 ∧ ¬p2]. The deterministic
parity automaton Pγ

I equivalent to ψ in I is shown in Figure 5.1a. We obtained it using the procedure
outlined above. Note that it is not minimal because the states tI and t1 could be merged (with colour 0).

We would like to point out that the recursive step, i.e. replacing direct principal subsentences ϕ′

of ϕ with atoms pϕ′ , can be incorporated into the procedure for constructing the non-deterministic

generalised Büchi automaton AψI . Assume that we are currently model checking an Sl[1g] principal
sentence ϕ = ℘[ψ where ψ is not necessarily an Ltl formula. We can construct the non-deterministic
generalised Büchi automaton AψI straightaway (despite ψ possibly not being an Ltl formula) by adding
an extra case to the standard translation in Figure 2.6:

function GenBüchi(Φ)
switch Φ do

. . .
case ℘′[′ψ′:

h := h ∪ {(pΦ, ‖Φ‖I)} . Solve recursively and update assignment.
Φ := pΦ . Replace subsentence with the new atom.
return A∃(∅,AP , pΦ,>, ∅)

. . .
end switch

end function

Hence, we actually do not need to transform ϕ to an Sl[1g] basic principal sentence separately because
the modified procedure will take care of all direct principal subformulas ℘′[′ψ′ automatically.

Arena Construction

The main idea of the whole transformation is to convert the model checking problem to a two-player
game (see Subsection 2.4.5 for a brief introduction to games). Intuitively, model checking an Sl[1g]
basic principal sentence ϕ = ℘[ψ, i.e. deciding whether I, ∅, g |=Sl ϕ for some global state g ∈ G, can be
imagined as a simple finite game between two players. The players take turns depending on the order of
quantifiers in ℘ and select the (whole) strategies for each variable in the quantifier:

• The existential player, selecting strategies for existentially quantified variables (e.g. 〈〈x〉〉), is trying
to satisfy the formula ψ;

• The universal player, selecting strategies for universally quantified variables (e.g. [[y]]), is trying to
falsify the formula ψ.

90 Chapter 5. One-Goal Strategy Logic

tI
1

t1
0

t2
1

ggg1, g2

g1, g2

gg∗

(a) Parity automaton Pγ
I .

(tI , 0)
1

(tI , 1)
1

(tI , 2)
1

(tI , 3)
1

∗∗∗

(t1, 0)
0

(t1, 1)
0

(t1, 2)
0

(t1, 3)
0

∗∗∗

(t2, 0)
1

(t2, 1)
1

(t2, 2)
1

(t2, 3)
1∗ ∗ ∗

gg

g1, g2

g1, g2
gg

∗

(b) Delayed automaton Dγ
I .

gg

[] [i]

[i, r]

[i, p]

[i, s]

[i, r, r]

[i, r, p]

[i, r, s]

[i, p, r]

[i,p, p]

[i, p, s]

[i, s, r]

[i, s, p]

[i, s, s]

g1

[] [i] [i, i] [i, i, i]

g2

[] [i] [i, i] [i, i, i]

(c) Formula arena Aγ
I . The existential and universal player states are represented by squares and circles respec-

tively.

Figure 5.1: Parity automaton Pγ
I , delayed automaton Dγ

I , and formula arena AγI of the toy model for

the Sl[1g] basic principal sentence γ , [[e]][[x]]〈〈y〉〉(E, e)(1, x)(2, y)G [¬p1 ∧ ¬p2]. A star represents an
arbitrary global state.

5.2. Model Checking 91

For example, if ℘ = 〈〈x〉〉[[y]]〈〈z〉〉, then the game is as follows: the existential player selects a strategy for
x, the universal player selects a strategy for y, and finally the existential player selects a strategy for z.
Once all strategies have been selected, we construct the corresponding complete assignment χ ∈ CAsg
(from the players’ choices and the binding prefix [), and check the Ltl formula ψ. Given that the way
in which the strategies were selected by the players is in accordance with Sl semantics (Definition 2.29),
we have I, ∅, g |=Sl ϕ iff I, χ, g |=Sl ψ.

The finite game we outlined above is very simple and short. In fact, it will have exactly |℘| rounds,
one for each strategy variable. However, there are possibly infinitely many strategies and hence infinitely
many moves that one of the players can make in each round. We see that the finite game idea does
not make our problem any easier. Ideally, we would want the players to make simple choices (e.g. select
a single action) as the game progresses. Instead of selecting the whole strategies up front, they would
somehow build them gradually throughout the game. After all, this is much closer to the concept of
a strategy in “games” that people play for fun. The question is now: Is such a reduction possible for
Sl[1g] model checking?

The answer is “yes”, we can reduce Sl[1g] model checking of ϕ to solving an infinite two-player game
where the players pick an action for each strategy in a given state. We will explain this reduction in more
detail shortly. We first have to justify why we can do this. It turns out that this is the very reason why
behavioural semantics of Sl[1g] is so important. It was shown in [75] that for an arbitrary Sl (including
Sl[1g]) sentence ℘ψSl ∈ SL where ℘ ∈ QPre free(ψSl) and ψSl is an agent-closed Sl formula, we have for
each global state g ∈ G, I, ∅, g |=Sl ℘ψSl iff there exists a dependence map θSl for ℘ over strategies such
that I, g, θSl(χ) |=Sl ψSl for all χ ∈ Asg with [[℘]] = dom(χ). A dependence map θ for the quantification
prefix ℘ over strategies is a function from strategies for universally quantified variables in ℘ (denoted
[[℘]]) to strategies for all quantified variables in ℘ (denoted ℘):[[℘]]→

Trk →
⋃
i∈Agt

Act i

︸ ︷︷ ︸
strategies for universally

quantified variables

→
℘→

Trk →
⋃
i∈Agt

Act i

︸ ︷︷ ︸

strategies for
all variables

which satisfies the independence of variables. For example, if ℘ = [[x]]〈〈y〉〉[[z]] then y is independent of
z (because it appears before it) and x, z are independent of all variables (because they are universally
quantified). This must be ensured by the dependence map (e.g. θSl(χ)(z) = χ(z)). The problem with θSl

is that the action of a strategy in one game might depend on the action of another strategy in another
game (non-behavioural semantics). Fortunately, a stronger result holds for Sl[1g] principal sentences
℘[ψSl[1g] [74]: There exists an elementary dependence map θSl[1g] for ℘ over strategies (iff the principal
sentence holds in the state). A dependence map is elementary iff it can be transformed into an equivalent
function (called adjoint) of the form:

Trk →

[[℘]]→
⋃
i∈Agt

Act i︸ ︷︷ ︸
next actions

for universally
quantified variables

→
℘→ ⋃

i∈Agt

Act i︸ ︷︷ ︸
next actions

for all variables

Intuitively, this means that given the history of a play Trk , the next actions of strategies depend only on
the next actions of the universally quantified strategies. This is exactly what we want! Before we return
to the reduction, it should be pointed out that this (existence of an elementary dependence map) is
the very definition of behavioural semantics4. Our explanation of dependence maps was quite informal.
Please refer to [74,75] for a more formal explanation and proofs.

We can therefore reduce the model checking of an Sl[1g] basic principal sentence ℘[ψ to solving the
following infinite game: Let g ∈ G be the current global state. For each 0 ≤ k < |℘| (in increasing order),
the existential or universal player selects an action ak ∈ Act sharing([ψ,℘(k)) for the strategy assigned to

4Formally, behavioural semantics are defined as follows [75]: Let I be an interpreted system and ϕ = [ψ an Sl sentence
with ℘ ∈ QPre free(ψ). Then for each global state g ∈ G, we have I, ∅, g |=SlB ϕ iff there exists an elementary dependence

map θ for the quantification prefix ℘ over strategies such that I, g, θ(χ) |=Sl ψ for all χ ∈ Asg with [[℘]] = dom(χ). Notice
the two different modelling relations “|=SlB” (behavioural semantics) and “|=Sl” (Sl semantics).

92 Chapter 5. One-Goal Strategy Logic

℘(k). Once all actions have been selected, a temporal transition according to the resulting joint action
a ∈ Act is performed and the new current state is g′ = t(g, a). This pattern of selecting actions and
performing a temporal transition is repeated forever. Let π = gg′ . . . ∈ Pth be the infinite path obtained
by this procedure. We define that the existential player wins the game iff the Ltl formula ψ holds along
π, i.e. I, π |=Ltl ψ. The behavioural semantics of Sl[1g] then imply:

I, ∅, g |=Sl ℘[ψ iff g is in the winning region of the existential player

Essentially, we have just reduced Sl[1g] model checking to solving a two-player infinite game with an
Ltl winning condition.

There is one rather cosmetic issue with our formulation of the game, namely the fact that multiple
decisions are made by both players within the same state (selecting actions for all strategies) before a
move occurs. We shall make it more standard by inflating the state space and constructing an arena
whose states are pairs (g, d) where g ∈ G is the current state and d is a tuple of actions selected so far.
Initially, d is empty and is gradually appended by the players as they choose actions for strategies. Once
all actions have been selected, d represents a joint action, a temporal transition occurs, and the new
state is (t(g, d), []). A formal definition of the formula arena follows.

Definition 5.4 (Formula Arena). Let I be an interpreted system and ϕ ∈ SL[1G] a Sl[1g] principal

sentence of the form ℘[ψ. We construct a formula arena A℘[I = (V0, V1, E) of I for ϕ where:

• The states V of A℘[I are pairs (g, d) ∈ G × Dec℘[I such that for all 0 ≤ i < |d| we have d(i) ∈⋂
i∈sharing([>,℘(k)) Pi(liE(g))

• The existential player states V0 ⊆ V are states (g, d) ∈ V such that |d| < |℘| and ℘(|d|) is an
existential strategy quantifier.

• The universal player states V1 ⊆ V are states (g, d) ∈ V such that |d| = |℘| or ℘(|d|) is a universal
strategy quantifier.

• The edge relation is defined as:

E = {((g, d) , (g, d · a)) ∈ V × V | |d| < |℘|} ∪
{(

(g, d) ,
(
t(g, dAct), []

)
)
)
∈ V × V

∣∣ |d| = |℘|}
where Dec℘[I ,

⋃|℘|
`=0

∏`−1
k=0

⋃
i∈sharing([>,℘(k)) Act i is the set of decisions and dAct ∈ Act is a joint action

such that for all 0 ≤ k < |℘| and i ∈ sharing([>, ℘(k)) we have ai(d
Act) = d(k).

Note that we could allow decisions of length at most |℘| − 1 (instead of |℘|) and perform temporal
transition immediately when the action for the last strategy is selected. The reason why we chose to
include the extra step is that it nicely models non-determinism in case we use an evolution relation
(instead of an evolution function). Intuitively, this is the same as adding an extra universally quantified
variable at the end of ℘ representing the final evolution choice. Again, we shall sometimes refer to a
formula arena A℘[I as A℘[ψI although it is independent of the underlying Ltl formula ψ. Finally, notice
that the definition uses the identity sharing([>, ℘(k)) = sharing([ψ, ℘(k)) which can be shown for all
Sl[1g] principal sentences ℘[ψ and indices 0 ≤ k < |℘|.

For example, the formula arena AγI of the toy model in Figure 3.1 and the Sl[1g] principal sentence

γ , [[e]][[x]]〈〈y〉〉(E, e)(1, x)(2, y)G [¬p1 ∧ ¬p2] introduced earlier is shown in Figure 5.1c. Let f ∈ SStr{E},
g ∈ SStr{1}, and h ∈ SStr{2} be the underlying strategies of the agents. Consider a game that starts
in the global state gg. The corresponding state of the arena is (gg, []), which is a universal player state
corresponding to the quantifier [[e]]. Only one action is available to the environment so the universal
player must move to the state (gg, [i]), i.e. set f(gg) = i. Now it is again the universal player’s turn. He
has three options for [[x]], namely r, p, and s. Suppose he picks r. Thus, we move to the state (gg, [i, r])
and have g(gg) = r. The existential player now has the same three options for 〈〈y〉〉. Suppose he picks s.
We end up in the state (gg, [i, r, s]) and have h(gg) = s. Since all actions have been selected, we convert
the decision [i, r, s] to the joint action a = rs. As we are using an evolution function, there is exactly
one next state that the universal player must move to, namely (t(gg, a), []) = (g1, []). The whole process
starts again. The universal player has to choose the action i for [[e]] so we move to the state (g1, [i]) and

5.2. Model Checking 93

set f(ggg1) = i. Then the universal player has to choose an action for [[x]] and so on. We hope that this
detailed example gives the reader a good understanding of the formula arena concept.

It remains to explain what the winning condition of the new game is and how it relates to Sl[1g] model

checking. Intuitively, the existential player wins an infinite play
(
g0, d

0
0

)
. . .
(
g0, d

|℘|
0

) (
g1, d

0
1

)
. . . ∈ V ω

in the formula arena A℘[I for an Sl[1g] basic principal sentence ℘[ψ iff the infinite path g0g1 . . . ∈ Pth
satisfies the Ltl formula ψ. The following definition expresses this formally.

Definition 5.5 (Pseudo-Ltl Game). Let I be an interpreted system and ℘[ψ an Sl[1g] basic principal

sentence. The pseudo-Ltl game L℘[ψI of I for ℘[ψ is a game
(
A℘[I ,Win

)
where A℘[I is the formula

arena of I for ℘[ψ and Win ⊆ V ω is the winning set which contains all possible paths π ∈ V ω such
that I, πI |=Ltl ψ. πI ∈ Pth refers to the underlying path in I, i.e. ∀i ≥ 0∃d ∈ Dec℘[I . (πI(i), d) =
π((|℘|+ 1)i).

Informally, πI is equal to π “modulo” (|℘|+ 1) without the decisions. Consider again the for-
mula arena AγI in Figure 5.1c of the toy model in Figure 3.1 and the Sl[1g] principal sentence γ ,
[[e]][[x]]〈〈y〉〉(E, e)(1, x)(2, y)G [¬p1 ∧ ¬p2]. Let π ∈ V ω be an infinite path in AγI which stays forever within
the box labelled gg, e.g. π = (gg, []) (gg, [i]) (gg, [i,p]) (gg, [i,p,p]) (gg, []) (gg, [i]) (gg, [i, s]) (gg, [i, s, s])
The underlying path in I is πI = gggg . . . = gωg . Since I, πI |=Ltl G [¬p1 ∧ ¬p2], π is winning in LγI by
the definition above.

The important relationship between pseudo-Ltl games and Sl[1g] model checking is stated in the
following lemma.

Lemma 5.2. Let I be an interpreted system and ϕ = ℘[ψ an Sl[1g] basic principal sentence. Then for
all global states g ∈ G we have: I, ∅, g |=Sl ϕ iff (g, []) is a winning state for the existential player in the

pseudo-Ltl game L℘[ψI .

Proof (Sketch). The problem of model checking Sl[1g] can be reduced to solving a so-called dependence-
vs-valuation game [72]. In this game, the players alternate as follows: the existential player chooses

a dependence map θ :
(

[[℘]]→
⋃
i∈Agt Act i

)
→
(
℘→

⋃
i∈Agt Act i

)
for ℘ over actions in the current

state g ∈ G. Then the universal player chooses a valuation v : [[℘]] →
⋃
i∈Agt Act i. The combination

θ(v) : ℘ →
⋃
i∈Agt Act i assigns actions to all variables and determines the next state g′ ∈ G. The

existential player wins the game iff the infinite path π = gg′ . . . ∈ Pth satisfies the Ltl formula ψ.
Instead of choosing the whole dependence map and valuation at once, the players in L℘[ψI assign

actions to strategies one by one for each quantifier in ℘. The order of players’ moves in L℘[ψI ensures
that the independence constraints of the dependence map are satisfied (while not imposing any extra
restrictions). Given this and the fact that the winning conditions are the same, the two games are
equivalent. Hence, our claim follows.

Game Combination

We now have all the ingredients to construct the parity game. Let I be an interpreted system and
ϕ = ℘[ψ an Sl[1g] basic principal sentence. We have done the following so far:

1. We constructed a deterministic parity automaton Pψ
I = (T,G, tI , δ, c) which accepts exactly those

paths which satisfy the Ltl formula ψ.

2. We constructed a formula arena A℘[I = (V0, V1, E) of I for ϕ. The states of the arena are possible

pairs of global states and decisions V ⊆ G×Dec℘[I . The winning set of the corresponding pseudo-

Ltl game L℘[ψI contains all infinite paths π ∈ V ω such that the underlying path in the interpreted
system πI ∈ Pth satisfies the Ltl formula ψ.

Clearly, we want to somehow combine the automaton and the arena because Pψ
I represents the winning

condition of L℘[ψI . However, we cannot simply take their product because, informally, they work at

different, albeit constant, “speeds”. While Pψ
I performs a temporal transition at every step, it takes

exactly |℘| + 1 turns before a different underlying global state is reached by A℘[I . To cater for this
asynchrony, we can make the parity automaton “wait” for |℘| + 1 steps before each actual transition.

94 Chapter 5. One-Goal Strategy Logic

We do this by extending the state of Pψ
I with a simple counter. A path t0t1t2 · · · ∈ Tω in Pψ

I will then

become the following path in the delayed automaton D℘ψ
I :

(t0, 0) (t0, 1) . . . (t0, |℘| − 1) (t0, |℘|)︸ ︷︷ ︸
|℘|+1 steps before δ transition

(t1, 0) (t1, 1) · · · ∈ (T × {0, . . . , |℘|})ω

This idea of adding a counter to the state of the parity automaton is captured in the following definition.

Definition 5.6 (Delayed Automaton). Let I be an interpreted system, Pψ
I = (T,G, tI , δ, c) a deter-

ministic parity automaton for an Sl[1g] formula ψ ∈ SL[1G] in I, and ℘ ∈ QPre a quantification

prefix. We define a deterministic parity automaton D℘ψ
I , (T × {0, . . . , |℘|} , G, (tI , 0) , δD, cD), called

the delayed automaton for ψ over ℘ in I, where the transition and colouring function are defined for
all t ∈ T , g ∈ G, and 0 ≤ k ≤ |℘| as:

δD((t, k) , g) ,

{
(t, k + 1) if k < |℘|
(δ(t, g), 0) if k = |℘|

cD((t, k)) , c(t)

Similarly to the other automata, we shall sometimes refer to a delayed automaton D℘ψ
I as Dϕ

I although

it is independent of the binding prefix [. Informally, the delayed automaton D℘ψ
I is now working at the

“same speed” as the arena A℘[I . For example, Figure 5.1b shows the delayed automaton Dγ
I for the

Sl[1g] principal sentence γ , [[e]][[x]]〈〈y〉〉(E, e)(1, x)(2, y)G [¬p1 ∧ ¬p2] in the toy model in Figure 3.1. It
was obtained by adding a counter with range 0–3 to the parity automaton Pγ

I in Figure 5.1a. Note that
both the delayed automaton Dγ

I and the formula arena AγI in Figure 5.1c perform the same number of
intermediate steps before a true transition occurs.

Let (g0, []) ∈ G×Dec℘[I be some state of A℘[I . If we run both A℘[I and D℘[ψ
I in parallel starting from

(g0, []) and (tI , 0) respectively, we obtain the following infinite paths:

(g0, [])→ (g0, [a0]) → . . . →
(
g0,
[
a0, . . . a|℘|−1

])
−−−−−−−−−−−−→ (t(g0, a), []) → . . .

(tI , 0) → (tI , 1) → . . . → (tI , |℘|) −−−−−−−−−−−−→ (δ(tI , g0), 0) → . . .
temporal transition

where a ,
[
a0, . . . , a|℘|−1

]Act
is the joint action implied by the accumulated decision. We can observe

that when a temporal transition occurs, the underlying global state of the arena g0 is used for two
purposes simultaneously (dashed arrows): (i) it determines the next state of the arena together with
the joint action a and (ii) it serves as an input to the parity automaton. Notice that the length of the
decision tuple is always equal to the value of the counter. We are now ready to define the combined
parity game G℘[ψI .

Definition 5.7 (Combined Parity Game). Let I be an interpreted system and ℘[ψ ∈ SL[1G] an Sl[1g]

basic principal formula. Furthermore, let A℘[I = (V0, V1, E) be the formula arena of I for ℘[ψ with

states V ⊆ G×Dec℘[I and D℘ψ
I = (T × {0, . . . , |℘|} , G, (tI , 0) , δD, cD) the delayed automaton for ψ over

℘ in I. We construct a two-player combined parity game G℘[ψI , ((V0 × T, V1 × T,EG) , cG) of I for ℘[ψ

where for all states (g, d, t) ∈ V ×T , the colouring function is defined as cG((g, d, t)) , cD((t, |d|)) = c(t).
The transition relation is defined as follows:

EG , {((g, d, t) , (g′, d′, t′)) ∈ (V × T)× (V × T) | E((g, d) , (g, d)) ∧ δD((t, |d|) , g)}

For all g ∈ G, we define start(g) , (g, [] , tI).

Figure 5.2 shows the combined parity game GγI of the toy model in Figure 3.1 for the Sl[1g] principal

sentence γ , [[e]][[x]]〈〈y〉〉(E, e)(1, x)(2, y)G [¬p1 ∧ ¬p2] introduced earlier. We obtained GγI by combining
the formula arena AγI in Figure 5.1c and the delayed automaton Dγ

I in Figure 5.1b. It highlights the
winning regions and strategies of the existential player5, which we will discuss shortly.

Finally, we have everything we need to explain how Sl[1g] model checking can be reduced to solving
two-player parity games. This reduction (together with its implementation) is most probably the biggest
achievement of the whole project.

5Note that the existential and universal player are players 0 and 1 of the combined parity game G℘[ψI respectively.

5.2. Model Checking 95

gg, tI ,1

[] [i]

[i, r]

[i, p]

[i, s]

[i, r, r]

[i, r, p]

[i, r, s]

[i,p, r]

[i, p,p]

[i,p, s]

[i, s, r]

[i, s,p]

[i, s, s]

g1, tI ,1

[] [i] [i, i] [i, i, i]

g2, tI ,1

[] [i] [i, i] [i, i, i]

gg, t1,0

[] [i]

[i, r]

[i,p]

[i, s]

[i, r, r]

[i, r, p]

[i, r, s]

[i, p, r]

[i, p, p]

[i, p, s]

[i, s, r]

[i, s, p]

[i, s, s]

g1, t1,0

[] [i] [i, i] [i, i, i]

g2, t1,0

[] [i] [i, i] [i, i, i]

g1, t2,1

[] [i] [i, i] [i, i, i]

g2, t2,1

[] [i] [i, i] [i, i, i]

Figure 5.2: Combined parity game GγI of the toy model for the Sl[1g] basic principal sentence

γ , [[e]][[x]]〈〈y〉〉(E, e)(1, x)(2, y)G [¬p1 ∧ ¬p2]. Existential and universal player states are represented
by squares and circles respectively. Winning states and strategies for the existential player have double
edges. The universal player can play an arbitrary strategy in his winning region in order to win. The
bold numbers (0 and 1) refer to the colours assigned by the colouring function. The three states on the
left with incoming arrows are start(g1), start(gg), and start(g2) respectively.

96 Chapter 5. One-Goal Strategy Logic

Theorem 5.1. Let I be an interpreted system, ℘[ψ an Sl[1g] basic principal sentence, and g ∈ G an
arbitrary global state. Then the following holds:

I, ∅, g |=Sl ℘[ψ iff start(g) ∈W0(G℘[ψI)

where W0(G℘[ψI) is the winning region of the existential player in the combined parity game G℘[ψI .

Proof. The claim follows directly from out construction of the combined parity game G℘[ψI . However,
given the importance of this result, we feel that a more direct proof should be provided. Essentially, we
use the following two facts:

1. The delayed automaton D℘ψ
I accepts all infinite paths τ ∈ Pth such that the infinite path π =

τ(|℘|)τ(2 |℘|+1) . . . τ((k+1) |℘|+k) · · · ∈ Pth satisfies the Ltl formula ψ, i.e. I |=Ltl ψ. This comes
directly from the correctness of the existing techniques (the standard translation, transformation
from generalised Büchi automata to Büchi automata, and the determinisation procedure) presented
in Section 2.4.

2. The winning condition for a path π in the pseudo-Ltl game L℘[ψI , based on the arena A℘[I , is that
the underlying path πI in I satisfies the Ltl formula ψ. Lemma 5.2 asserts that (g, []) is winning

for the existential player in L℘[ψI iff I, ∅, g |=Sl ℘[ψ.

We prove both directions of the equivalence separately:

⇒: Assume that I, ∅, g |=Sl ℘[ψ. Then by Lemma 5.2, (g, []) is winning for the existential player in

L℘[ψI . This means that the existential player can enforce that the infinite path π ∈ V ω starting in

(g, []) in the arena A℘[I is such that the underlying path πI ∈ Pth in I satisfies the Ltl formula

ψ. By correctness of the existing procedures, πI is accepted by Pψ
I . This means that the infinite

path constructed from the first elements of the tuples in π (i.e. a path in which each state from πI
occurs |℘|+1 times in a row) is accepted by the delayed automaton D℘ψ

I (by construction). Hence,

the existential player can enforce an infinite path in G℘[ψI starting in start(g), which is winning for

him (since the winner is decided by the parity condition of D℘ψ
I). Therefore, start(g) ∈W0(G℘[ψI).

⇐: Assume that start(g) ∈W0(G℘[ψI). By construction of G℘[ψI , this means that the existential player

can enforce an infinite path π ∈ V ω starting in (g, []) in the arena A℘[I , which is accepted by the

delayed automaton D℘ψ
I . Given the shape of π (the first element of the tuple is always repeated

|℘|+ 1 times in a row) and the acceptance condition of D℘ψ
I explained above, the underlying path

πI ∈ Pth in I satisfies the Ltl formula ψ. By definition of the winning condition (namely that

I, πI |=Ltl ψ), the existential player can enforce the path π in L℘[ψI (as it is based on A℘[I), which

is winning for him. Hence π(0) = (g, []) is winning for the existential player in L℘[ψI . Finally, by
Lemma 5.2, we have I, ∅, g |=Sl ℘[ψ as required.

Therefore, calculating the winning regions W0(G℘[ψI) and W1(G℘[ψI) of the existential and universal

player in the combined parity game G℘[ψI yields the solution to the model checking problem. This can
be done using existing algorithms for solving parity games such as the one in Figure 2.9.

Corollary 5.1. Let I be an interpreted system and ℘[ψ an Sl[1g] basic principal sentence. The set of

all global states ‖℘[ψ‖I ⊆ G of I in which ℘[ψ holds is ‖℘[ψ‖I =
{
g ∈ G

∣∣∣ start(g) ∈W0(G℘[ψI)
}

.

Consider again the combined parity game GγI in Figure 5.2 of the toy model in Figure 3.1 for the

Sl[1g] principal formula γ , [[e]][[x]]〈〈y〉〉(E, e)(1, x)(2, y)G [¬p1 ∧ ¬p2]. We have start(gg) ∈ W0(GγI) but
start(g1), start(g2) /∈ W0(GγI). Therefore, by Theorem 5.1, I, ∅, gg |=Sl γ, I, ∅, g1 6|=Sl γ, and I, ∅, g2 6|=Sl

γ. Hence, we have ‖γ‖I = {gg}. This result agrees with the intuitive meaning of the formula presented
earlier.

We have now covered all steps of our new model checking algorithm for Sl[1g]. The complete
algorithm is shown in Figure 5.3. It expects an Sl[1g] principal sentence (not necessarily basic). As

5.2. Model Checking 97

1 function CheckSl[1g](℘[ψ)

2 AψI := GenBüchi(ψ) . Standard translation (Figure 2.6).

3 Bψ
I := Büchi(AψI) . Convert to a Büchi automaton (Subsection 2.4.1).

4 Pψ
I := Parity(Bψ

I) . Determinise (Subsection 2.4.4).

5 D℘ψ
I := Delayed(Pψ

I , ℘) . Convert to a delayed automaton (Definition 5.6).

6 A℘[I := Arena(I, ℘, [) . Arena construction (Definition 5.4).

7 G℘[ψI := Combine(A℘[I , D℘[ψ
I) . Combine into a parity game (Definition 5.7).

8 (W0,W1) := SolveParity(G℘[ψI) . Solve parity game (Figure 2.9).
9 return {g ∈ G | start(g) ∈W0} . Return ‖℘[ψ‖I (Corollary 5.1).

10 end function

Figure 5.3: The model checking algorithm for Sl[1g] with references to the relevant parts of this thesis.
The argument ℘[ψ is an arbitrary Sl[1g] principal sentence. The procedure GenBüchi on line 2 calls
CheckSl[1g] recursively on direct principal subformulas of ℘[ψ and replaces them with new atoms as
explained on page 89. Therefore, ℘[ψ can be treated as a basic principal sentence from line 3 onwards.

explained earlier, an arbitrary Sl[1g] sentence ψ can be converted to an equivalent principal sentence
as follows:

[〈〈xi〉〉]i∈Agt [(i, xi)]i∈Agt ψ

For example, the Sl[1g] sentence p1 ∨ p2 for the toy model in Figure 3.1 can be converted into an
equivalent principal sentence 〈〈xE〉〉〈〈x1〉〉〈〈x1〉〉(E, xE)(1, x1)(2, x2)(p1 ∨ p2), which can then be passed as
input to the algorithm in Figure 5.3.

The algorithm is further discussed in the rest of this chapter: Its complexity is discussed in Subsec-
tion 5.2.2. Subsection 5.2.3 explains how it can be used for the purposes of strategy synthesis. An efficient
symbolic implementation of the algorithm is provided in Subsection 5.2.4. Finally, an optimisation for
improving its performance called separate determinisation is presented in Subsection 5.2.5.

5.2.2 Complexity

In this subsection, we will discuss the complexity of the model checking algorithm presented in the
previous subsection and compare it with the theoretical complexity of the Sl[1g] model checking problem.
Recall that the decision problem is as follows:

Given an interpreted system I, a global state g ∈ G, and an Sl[1g] formula ϕ ∈ SL[1G],
determine whether I, ∅, g |=Sl[1g] ϕ.

It has been shown that the theoretical complexity of this problem is 2ExpTime-complete with respect
to the size of the formula |ϕ| and P-complete with respect to the size of the model |I|. We argue that
our new algorithm satisfies both bounds.

Theorem 5.2. Let I be an interpreted system and ϕ ∈ SL[1G] an Sl[1g] sentence. Our model checking

algorithm calculates the set of all global states ‖ϕ‖I ⊆ G satisfying ϕ in time |I|2
O(|ϕ|)

.

Proof. We start by considering an arbitrary Sl[1g] basic principal sentence ℘[ψ and show that our claim
holds. The model checking algorithm (see Figure 5.3) proceeds as follows:

1. It constructs a non-deterministic generalised Büchi automaton AψI with O(2|ψ|) states (see Propo-
sition 2.2).

2. It converts AψI to a non-deterministic Büchi automaton Bψ
I . AψI can have up to O(|ψ|) fairness

constraints, so the resulting automaton will have O(|ψ| × 2|ψ|) = 2O(|ψ|) states.

3. It transforms Bψ
I to a deterministic parity automaton Pψ

I with 2(2O(|ψ|)+1)
2

= 22O(|ψ|)
states and

2× 2O(|ψ|) = 2O(|ψ|) colours (see Proposition 2.5).

4. It transforms Pψ
I to the delayed automaton D℘ψ

I with |℘| × 22O(|ψ|)
states.

98 Chapter 5. One-Goal Strategy Logic

5. It constructs the arena A[℘I with O(|I| × |℘|) states.

6. It combines A[℘I and D℘ψ
I into the combined parity game G℘[ψI with |I| × |℘| × 22O(|ψ|)

states and
2O(|ψ|) colours.

7. Finally, it solves the combined parity game G℘[ψI . The algorithm for solving parity games in
Figure 2.9 has time complexity O(m× (n/d)d) (Proposition 2.10), where m is the number of edges,

n the number of vertices, and d the number of colours. Hence, solving G℘[ψI will take time:

[
|I| × |℘| × 22O(|ψ|)

]2
︸ ︷︷ ︸

edges

×

[
|I| × |℘| × 22O(|ψ|)

2O(|ψ|)

]
︸ ︷︷ ︸

vertices/colours

colours︷ ︸︸ ︷
2O(|ψ|)

= |I|2
O(|℘[ψ|)

All the construction steps (1–6) of the algorithm fit into the |I|2
O(|℘[ψ|)

time bound. Therefore, the time

complexity of our model checking algorithm on Sl[1g] basic principal sentences is |I|2
O(|℘[ψ|)

.
Let us now come back to ϕ, which is an arbitrary Sl[1g] sentence (not necessarily principal). We

will model check ϕ in a recursive bottom-up manner as explained in Subsection 5.2.1. Hence, we will
model-check at most |ϕ| Sl[1g] basic principal sentences of size at most |ϕ|. Furthermore, if ϕ is not
a principal sentence, then it must be a Boolean combination6 of some principal sentences, the results
of which we can combine using set operations (instead of adding quantifiers and bindings so that ℘′[′ϕ
would be a principal sentence). Therefore, ϕ can be checked in time:

arbitrary sentence︷ ︸︸ ︷
|ϕ| × |I|2

O(|ϕ|)︸ ︷︷ ︸
basic

principal
sentence

= |I|(log|I||ϕ|)+2O(|ϕ|)
≤ |I|(log|I||ϕ|)×2O(|ϕ|)

= |I|2
(log2 log|I||ϕ|)+O(|ϕ|)

= |I|2
O(|ϕ|)

(5.1)

Hence, our claim follows.

This is a very positive result because our algorithm has the same time complexity as the theoretical
algorithm for model checking Atl* presented in [23]. However, it should be noted that the proof above
is rather “pessimistic” in the sense that it assumes that each principal subsentence has size |ϕ|. In fact,
a lower worst-case complexity can be derived:

|ϕ|+
∑

ϕ′∈sub(ϕ)

|I|2
O(temp(ϕ′))

where sub(ϕ) is the set of all principal subsentences of ϕ (including ϕ itself) and temp(ϕ′) is the number
of temporal operators in ϕ′ (excluding strict principal subformulas). The reason why we can use temp(ϕ′)
instead of |ϕ′| is that a non-deterministic generalised Büchi automaton for an Ltl formula with temp(ϕ′)
temporal operators has at most 22×temp(ϕ′)+1 states (see Proposition 2.2).

5.2.3 Strategy Synthesis

The model checking algorithm presented in Subsection 5.2.1 decides whether a given Sl[1g] formula holds
in a given model. In addition, we would also like to know why that is the case, i.e. what are the strategies
that make the formula true. For example, if the formula [[e]][[x]]〈〈y〉〉(E, e)(1, x)(2, y)G [¬p1 ∧ ¬p2] is true
in a given state, we want to know how the strategy assigned to y depends on the strategies assigned to
e and x. Conversely, if the formula is false in some state, we want to know the corresponding strategies
for the universally quantified variables e and x.

Let I be an interpreted system and ℘[ψ an Sl[1g] principal sentence. Our algorithm reduces the

Sl[1g] model checking problem to solving a parity game G℘[ψI . We then find its winning regions

6This follows from Sl[1g] syntax (Definition 5.2) and the fact that free(ϕ) = ∅ (if ϕ combined its direct principal
subsentences using temporal operators, we would have free(ϕ) = Agt).

5.2. Model Checking 99

(W0,W1) using the existing algorithm for solving parity games presented in Figure 2.9. As explained
in Subsection 2.4.5, the algorithm can also be used to construct the winning strategies for both play-
ers. By Proposition 2.8, the winning strategies for G℘[ψI are memoryless, i.e. they are partial functions
wσ : Vσ × T ⇀ V × T such that dom(wσ) = Wσ ∩ (Vσ × T) for players σ ∈ {0, 1}. Since the do-
mains of wσ and wσ are disjoint, we can regard them as one partial function w : V × T ⇀ V × T with
dom(w) = W0 ∩ (V0 × T)∪W1 ∩ (V1 × T) defined as w , w0 ∪w1. Intuitively, w assigns a winning move
w(s) ∈ V × T to every state s ∈ V × T that is in the winning region of the player that it belongs to, i.e.
either W0 ∩ (V0 × T), or W1 ∩ (V1 × T).

Clearly, the winning strategies for the game somehow encode the Sl[1g] shared strategies, which we
want to synthesise. For example, the winning strategy for the existential player in the combined parity
game GγI in Figure 5.2 requires that he matches the universal player’s move (notice the emphasised
transitions of the form [i, a] ⇒ [i, a, a] with a ∈ {r,p, s}). Nevertheless, there are important differences
between the two types of strategies:

1. The game strategies are memoryless, partial, and map game states to game states (wσ : Vσ × T ⇀
V × T with σ ∈ {0, 1}). There are always exactly two of them, one for the existential player w0

and one for the universal player w1.

2. The agent strategies are memoryful, total, and map non-empty finite sequences of global states
(tracks) to actions (fk : Trk → Act sharing([ψ,℘(k)) with 0 ≤ k < |℘|). There is one for each quantifier
in the quantifier prefix ℘.

Let us start with the memory. Could the agent strategies also always be memoryless? No, unfortunately
not. To see why, have a look at the example in Subsection 4.1.5, where a very simple Slk formula (which
is also an Sl[1g] formula) cannot be satisfied using memoryless strategies. Intuitively, the difference

is that the game already “contains” the deterministic parity automaton Pψ
I , which defines the winning

condition. The players can thus use its underlying state to select their moves “for free” because it is a
part of the arena. This means that if the agents simulate the progress of Pψ

I in their memory, they will

have almost the same information as they have in G℘[ψI . However, they might also need to remember
some of the other agents’ actions, which are part of the game state space as well.

The issue of wσ being a partial function is a rather cosmetic one. If it is undefined in some state
s ∈ Vσ × T , i.e. s /∈ dom(wj), it just means that player σ cannot enforce a victory from s. In that case,
we can assign an arbitrary move s′ ∈ V × T such that EG(s, s′) to player σ in state s. We shall denote
this a total game strategy ŵσ.

Definition 5.8 (Total Strategy). Let G be a memoryless determined game with an underlying arena
A = (V0, V1, E) with no dead ends, i.e. E is serial. Furthermore, let the winning strategies of G be
(w0, w1). Then a total strategy for player σ ∈ {0, 1} in G is a total function ŵσ : Vσ → V such that for
all v ∈ Vσ, we have E(v, ŵσ(v)) and if v ∈ dom(wσ), then ŵσ(v) = wσ(v). The total solution of G is a
total function ŵ : V → V such that ŵ , ŵ0 ∪ ŵ1.

The third difference is that the output of the game strategies are game states, whereas the agent
strategies return actions. Let us have a closer look at what the input an output of ŵ look like when
selecting an action for the quantifier ℘(k) with 0 ≤ k < |℘|:

ŵ((g, [a0, . . . , ak−1] , t)) = (g, [a0, . . . , ak−1, ak] , t)

It merely appends the action ak ∈ Act sharing([ψ,℘(k)), which the strategy ℘(k) will do in the current state
g ∈ G, to the tuple of actions [a0, . . . , ak−1] of the strategy variables it depends on (℘(0), . . . , ℘(k − 1)).
Intuitively, the equality above implies that the next action which the strategy assigned to the variable
℘(k) selects will depend only on the global state g ∈ G, the underlying parity automaton state t ∈ T , and
the next actions selected by the preceding strategies in the quantifier prefix. Recall that the underlying
global and parity automaton states g and t in the equation above change only when a temporal transition
occurs (i.e. every |℘|+ 1 steps in the game). Moreover, the next parity automaton state t′ = δ(t, g) does
not depend on the accumulated decisions

[
a0, . . . , a|℘|−1

]
of the players. Hence, if we regard the states

of the parity automaton T as a memory, we get the following memory update and next action functions

100 Chapter 5. One-Goal Strategy Logic

for variable ℘(k) with 0 ≤ k < |℘|:

δk : T ×G→ T αk : T ×G×

[
k−1∏
l=0

Act sharing([ψ,℘(l))

]
︸ ︷︷ ︸

next actions of strategies
℘(0), . . . , ℘(k − 1)

→ Act sharing([ψ,℘(k))︸ ︷︷ ︸
next action of
strategy ℘(k)

This is very similar to a finite memory strategy (Definition 2.56). However, αk depends on the next
actions of other strategies in the current state. Therefore, strictly speaking, the strategy might require
an infinite amount of memory. To see why this is the case, consider again the Sl[1g] formula for the
toy model in Figure 3.1 γ , [[e]][[x]]〈〈y〉〉G¬ (p1 ∨ p2). It clearly holds in the initial state gg: Player 2
just always plays the same action as player 1. Hence, for all strategies x for player 1, there exists a
corresponding strategy y for player 2, namely y = x, which ensures this property. However, consider the
case when player 1 plays rock when the current round number is a square and scissors otherwise:

0 1 4 9
r r s s r s s s s r s . . .

Clearly, player 2 can satisfy the property by applying the exact same strategy. However, such a strategy
is not finite memory because it must somehow keep track of the number of rounds until the next square,
which can become arbitrarily large. Nevertheless, the strategy can be regarded as having finite memory
in some sense if we include the next actions of other strategies in the input to the next action function
(exactly like we did for αk).

To sum up, the next action fk(π) of the synthesised strategy for variable ℘(k) depends on: (i) the
track through the interpreted system so far π ∈ Trk and (ii) the next actions f0(π), . . . , fk−1(π) of the
strategies for variables ℘(0), . . . , ℘(k − 1). The following definition expresses this idea formally.

Definition 5.9 (Sl[1g] Strategy Synthesis). Let I be an interpreted system, ℘[ψ an Sl[1g] principal
sentence, 0 ≤ k < |℘| an integer, and f0, . . . , fk−1 shared strategies for variables ℘(0), . . . , ℘(k − 1).

Furthermore, let Pψ
I = (T,G, tI , δ, c) be the deterministic parity automaton for ψ and (w0, w1) the

winning strategies of the combined parity game G℘[ψI . Then we define the strategy fk : Trk →
Act sharing([ψ,℘(k)) for variable ℘(k) for all tracks π ∈ Trk implicitly as:

ŵ((last(π), [f0(π), . . . , fk−1(π)] , δ(tI , π≤|π|−2))) = (last(π), [f0(π), . . . , fk−1(π), fk(π)], δ(tI , π≤|π|−2))

where δ(tI , π≤|π|−2) , δ(. . . δ(δ(tI , π(0)), π(1)) . . . , π(|π| − 2)).

While the definition above might look very complex, it is simply reusing the winning strategies of
the combined parity game G℘[ψI . Once more, consider the combined parity game GγI in Figure 5.2 of the

toy model in Figure 3.1 for the formula γ , [[e]][[x]]〈〈y〉〉(E, e)(1, x)(2, y)G [¬p1 ∧ ¬p2]. Assume that the
history of the game so far is π = gggggg. Hence, the current global state is last(π) = π(2) = gg. As the
environment has only one available action in gg, we know that f0(π) = i. Let us further assume that
player 1 has played scissors, i.e. f1(π) = s. The decision accumulated so far is thus [f0(π), f1(π)] = [i, s]
and the state of the parity automaton is δ(tI , π) = δ(δ(tI , gg), gg) = t1. The current implied state of the
game GγI in Figure 5.2 is therefore (gg, [i, s] , t1). We can see that this state is winning for the existential
player and we have w0((gg, [i, s] , t1)) = (gg, [i, s, s] , t1). Hence, f2(π) = s, i.e. player 2 should also play
scissors. This agrees with our expectation.

We shall now state the relationship between Sl[1g] model checking and strategy synthesis. Infor-
mally, if an Sl[1g] principal formula ℘[ψ holds in a global state g ∈ G and we are given arbitrary
strategies for the universally quantified variables in ℘, the strategies for the existentially quantified
variables synthesised7 according to Definition 5.9 ensure that the formula ψ holds in g.

Theorem 5.3. Let I be an interpreted system and ℘[ψ an Sl[1g] principal formula. Furthermore,
for each index 0 ≤ k < |℘| (in increasing order), let fk be (i) an arbitrary shared strategy fk ∈

7Note that although we assume that we are given strategies for all universally quantified variables up front (before we
synthesise the existential ones), Definition 5.9 ensures that the synthesised strategy for a variable ℘(i) does not depend on
the strategy for a variable ℘(j) with i < j.

5.2. Model Checking 101

SStr sharing([ψ,℘(k)) if ℘(k) is a universal quantifier or (ii) a strategy synthesised according to Definition 5.9
if ℘(k) is an existential quantifier. Then for all global states g ∈ G:

if I, ∅, g |=Sl ℘[ψ then I, χ, g |=Sl ψ

where χ ∈ CAsg is a complete assignment with dom(χ) = Agt such that for all indices 0 ≤ k < |℘| and
agents i ∈ sharing([ψ, ℘(k)) we have χ(i) , fk.

Proof. Let Pψ
I = (T,G, tI , δ, c) be the deterministic parity automaton equivalent to the Ltl formula

ψ and G℘[ψI = ((V0 × T, V1 × T,EG) , cG) the combined parity game in I for ℘[ψ with winning regions
(W0,W1) and strategies (w0, w1). Note that we can treat ψ as an Ltl formula because all direct principal
subsentences are removed even before determinisation (as explained in Figure 5.3). We shall now prove
the implication.

Take an arbitrary state g ∈ G and assume that I, ∅, g |=Sl ℘[ψ. Let π = play(χ, g) be the in-
finite play of the game. We want to show that the Ltl formula ψ holds along π. By the defini-
tion of a play (Definition 2.26) and the structure of the assignment χ, we have π(0) = g and for

all i ≥ 0, π(i + 1) = t
(
π(i),

[
f0(π≤i), . . . , f|℘|−1(π≤i)

]Act
)

. The Ltl formula ψ holds along π iff

Pψ
I accepts π. By construction of the combined parity game G℘[ψI (Definition 5.7) and the fact that[
f0(π≤i), . . . , f|℘|−1(π≤i)

]
is a valid decision, π is accepted by Pψ

I iff the following path is winning for
the existential player in the game:

τ , (π(0), [], tI) (π(0), [f0(π≤0)], tI) . . .(
π(0), [f0(π≤0), . . . , f|℘|−1(π≤0)], tI

)
(π(1), [] , δ (tI , π(0))) . . .

We will now argue that τ ∈ (V × T)
ω

must be winning for the existential player in G℘[ψI .
Firstly, we show that τ always stays within the winning region W0 of the existential player. Assume

(for contradiction) that this is not the case, i.e. that there is some least position k ≥ 0 such that
τ(k) /∈ W0. By Theorem 5.1, τ(0) = (g, [] , tI) ∈ W0 so k > 0. Consider the preceding state τ(k − 1). If
τ(k − 1) belongs to the universal player, it would be in his winning region W1 (as he can clearly move
to another winning state τ(k) ∈ W1 = V \W0). This is in contradiction with the assumption that k is
the first index such that τ(k) /∈W0. So τ(k− 1) must be a state which belongs to the existential player.
This state must be of the form τ(k − 1) = (π(j), [f0(π≤j), . . . , fl−1(π≤j)] , δ(tI , π≤j−1)) for some j ≥ 0
and 0 ≤ l < |℘| such that ℘(l) is an existential quantifier. Since τ(k − 1) ∈ V0 ∩W0, we must have
τ(k−1) ∈ dom(w0), i.e. the winning game strategy is defined for τ(k−1). Moreover, by Definition 5.9, we
have w0(τ(k−1)) = (π(j), [f0(π≤j), . . . , fl(π≤j)] , δ(tI , π≤j−1)) = τ(k). But then τ(k) must be a winning
state for the existential player. Therefore, by contradiction, τ stays always in the winning region of the
existential player W0.

Secondly, we show that for all k ≥ 0, if τ(k) ∈ V0, then τ(k + 1) = w0(τ(k)), i.e. the path τ follows
the winning strategy. Take an arbitrary index k ≥ 0 such that τ(k) ∈ V0. This state must be of the form
τ(k) = (π(j), [f0(π≤j), . . . , fl−1(π≤j)] , δ(tI , π≤j−1)) for some j ≥ 0 and 0 ≤ l < |℘| such that ℘(l) is an
existential quantifier. By Definition 5.9, we have w0(τ(k)) = (π(j), [f0(π≤j), . . . , fl(π≤j)] , δ(tI , π≤j−1)) =
τ(k + 1) as required.

We have just shown that τ always stays within the winning region of the existential player W0 and
follows the winning strategy w0. Therefore, it is a winning path for the existential player in G℘[ψI . This

implies that Pψ
I accepts π. Hence, the Ltl formula ψ is true along π. Our claim follows.

This approach can also be used to synthesise universally quantified strategies when a Sl[1g] principal
formula ℘[ψ does not hold in a state g ∈ G of an interpreted system I, i.e. when I, ∅, g 6|=Sl ℘[ψ. Since
we have defined interpreted systems on transition functions (see Definition 2.5), by Sl semantics (see
Definition 2.29), this is equivalent to I, ∅, g |=Sl ℘ [¬ψ, where ℘ is equal to ℘ with swapped quantifiers
(e.g. for ℘ = [[e]][[x]]〈〈y〉〉 we have ℘ = 〈〈e〉〉〈〈x〉〉[[y]]). We can thus synthesise universally quantified strategies
in ℘[ψ by synthesising existentially quantified strategies in ℘[¬ψ (using Theorem 5.3). Observe that
this is not true in general when using transition relations as we might have both I, ∅, g 6|=Sl ℘[ψ and
I, ∅, g 6|=Sl ℘[¬ψ. To see how this can happen, consider the case when the Ltl formula is ψ = X p and the
transition relation is completely non-deterministic. Then no existential (universal) strategies can ensure
p will be true (false) in the next state. One way to tackle this issue is to quantify the non-determinism

102 Chapter 5. One-Goal Strategy Logic

explicitly, i.e. set ℘′ = ℘ [[n]] and [′ = [(N, n). Essentially, we transform the transition relation into an
agent with a universally quantified strategy and a transition function. Then I, ∅, g 6|=Sl ℘

′[′ψ implies
I, ∅, g |=Sl ℘′[

′¬ψ again so we can perform strategy synthesis. Informally, in doing so, we are assuming
that the nondeterminism is “playing on the universal quantifiers’ side”.

Since the Sl[1g] strategy synthesis merely reuses the result generated by the model checking algo-
rithm, namely the winning strategies (w0, w1) of the existential and universal player in the combined

parity game G℘[ψI , it has the same complexity.
Note that Sl[1g] strategy synthesis performs essentially the same task as the elementary dependence

map θSl[1g] for a quantification prefix over strategies mentioned in Subsection 5.2.1. Similarly to Slk,
it is possible to define Sl[1g] witness and counterexample strategies (see Definition 4.13). We do not
discuss this in detail because the Sl[1g] strategy synthesis algorithm presented in this subsection is more
general and can handle both concepts without any modifications.

5.2.4 Symbolic Implementation

In this subsection we discuss how the model checking algorithm (and therfore also strategy synthesis)
presented in Subsection 5.2.1 can be implemented symbolically using BDDs (see Subsection 2.3.1). This
subsection requires a good understanding of symbolically represented interpreted systems. Most impor-
tantly, it assumes that the reader knows how global states and joint actions can be represented using
Boolean vectors. Please refer to Subsections 2.3.2, 3.3.2, and 4.2.4 for more details about this topic.

Delayed Automaton

We first explain how the delayed automaton (see Definition 5.6) is constructed symbolically as it is a
relatively straightforward process. Let I be an interpreted system and ℘[ψ ∈ SL[1G] an Sl[1g] principal
sentence. Furthermore, assume that the Boolean vectors for representing current global states, next
global states, and joint actions are v = (v0, . . . , vN−1), v′ =

(
v′0, . . . , v

′
N−1

)
, and w = (w0, . . . , wM−1).

The delayed automaton D℘ψ
I is constructed as follows (lines 2–5 in the algorithm in Figure 5.3):

1. Construction of a non-deterministic generalised Büchi automaton AψI . The standard
translation, which we use for this purpose, is already defined symbolically in Figure 2.6. It returns
an automaton formula AψI = A∃(q, v, IG,RG,FG) with a Boolean vector of new variables q =
(q0, . . . , qK−1) and their next versions q′ =

(
q′0, . . . , q

′
K−1

)
. As explained on page 5.2.1, recursive

solution of direct principal subformulas of ℘[ψ is performed at this stage.

Note that we define already the non-generalised Büchi automaton on global states. Therefore, the
formula representing an atom p ∈ AP is

∨
g∈h(p) g(v). In the case of the new atoms pϕ′ representing

direct principal subsentences, this becomes
∨
g∈‖ϕ′‖I

g(v).

2. Conversion to a non-deterministic Büchi automaton Bψ
I . This is a very straightforward

procedure. We introduce L = dlog2 (|FG|+ 1)e Boolean variables r = (r0, . . . , rL−1) (together

with their next versions r′) to represent the counter. The result is an automaton formula Bψ
I =

A∃(qr, v, IB ,RB ,FB) such that:

IB = IG ∧ 0(r)

RB = RG ∧

|FG|−1∨
i=0

i(r) ∧
(
FG(i) ∧ (i+ 1)(r′) ∨ ¬FG(i) ∧ i(r′)

) ∨ [|FG| (r) ∧ 0(r′)
]

FB = |FG| (r)

where i(r) and i(r′) are the binary representation of 0 ≤ i ≤ |FG| using the Boolean vectors r and
r′ respectively.

3. Determinisation to a parity automaton Pψ
I . A symbolic implementation of the determini-

sation procedure is provided at the end of Subsection 2.4.4. The result is an automaton formula
Pψ
I = A∃

(
t, v, IP ,RP , C

)
with a Boolean vector of new variables t = (t0, . . . , tP−1) (and their next

versions).

5.2. Model Checking 103

Note that the Boolean vectors q and r are not used from the next step onwards.

4. Transformation to a delayed automaton D℘ψ
I . This is again a very straightforward pro-

cedure. We introduce D = dlog2 (|℘|+ 1)e Boolean variables d = (d0, . . . , dD−1) (together with

their next versions d′) to represent the counter. The result is an automaton formula D℘ψ
I =

A∃
(
td, v, ID,RD, C

)
where:

ID = IP ∧ 0(d)

RD = RP ∧ |℘| (d) ∧ 0(d′) ∨

|℘|−1∨
i=0

i(d) ∧ (i+ 1)(d′)

 ∧
P−1∧
j=0

tj ↔ t′j

We shall now discuss how the formula arena A℘[I can be constructed symbolically and then combined

with the delayed automaton D[℘
I into the parity game G℘[ψI .

Formula Arena

As we have stated in Subsection 5.2.1, the formula arena A℘[I = (V0, V1, E) (see Definition 5.4) is one of
the key concepts of our new model checking algorithm for Sl[1g]. Providing a thorough explanation of
its symbolic representation is therefore of utmost importance.

We shall first explain how the state space of the arena can be represented symbolically. Recall that
the states of A℘[I are pairs (g, d) ∈ V where g ∈ G is a global state and d ∈ Dec℘[I a decision. Since
the symbolic representation of global states was already discussed in Subsection 4.2.4, we will focus on
encoding the decisions. According to Definition 5.4, the decision d is a tuple of actions such that:

1. The length of d is 0 ≤ |d| ≤ |℘|. As we have pointed out in Subsection 5.2.1, when combining the

formula arena A℘[I and the delayed automaton D℘ψ
I into the parity game G℘[ψI , the length of the

decision is always equal to the value of the counter. Therefore, we can use the Boolean variables d
for the counter of the delayed automaton D℘ψ

I to encode the length of the decision d.

2. For each index 0 ≤ k < |d|, we have d(k) ∈ Act sharing([>,℘(k)), i.e. d(k) must be some action
that all agents sharing the variable ℘(k) can perform. We can encode this by introducing E =∑|℘|−1
k=0

⌈
log2

∣∣Act sharing([>,℘(k))

∣∣⌉ Boolean variables e = (e0, . . . , eE−1). We will use ek to denote
the Boolean variables representing the action assigned to ℘(k) for 0 ≤ k ≤ |℘|. While it is not

strictly necessary, we will set the value of ek to zero for |d| ≤ k < |℘| in order to reduce the set of
reachable states.

Therefore, an arbitrary state of the arena (g, d) ∈ V is represented symbolically as follows:

(g, d) (v, d, e) = g(v) ∧ |d| (d) ∧

|d|−1∧
k=0

d(k)(ek)

 ∧
|℘|−1∧
k=|d|

0(ek)

Consider the arena AγI in Figure 5.1c of the toy model in Figure 3.1 for the Sl[1g] basic principal

sentence γ = [[e]][[x]]〈〈y〉〉(E, e)(1, x)(2, y)G [¬p1 ∧ ¬p2]. The global states of I are represented using the
Boolean vector v = (v0, v1) (see Subsection 3.3.2). Since |℘| = 3, we need D = dlog2 (3 + 1)e = 2
Boolean variables d = (d0, d1) to represent the length of the decision. Finally, we need E = dlog2 |{i}|e+
2 dlog2 |{r,p, s, i}|e = 4 Boolean variables e = (e0, e1, e2, e3) to represent the decision. Note that e0 = (),
e1 = (e0, e1), and e2 = (e2, e3). For example, the state (g, d) = (gg, [i,p]) in AγI is encoded as:

(g, d) (v, d, e) = ¬v0 ∧ ¬v1︸ ︷︷ ︸
g=gg

∧¬d0 ∧ d1︸ ︷︷ ︸
|d|=2

∧ e0 ∧ ¬e1︸ ︷︷ ︸
d(1)=p

∧¬e2 ∧ ¬e3︸ ︷︷ ︸
d(2)=⊥

We are now ready to discuss the symbolic representation of the edge relation E ⊆ V ×V of the arena
A℘[I . There are two cases we have to consider:

104 Chapter 5. One-Goal Strategy Logic

1. An action a is appended to the decision d in an arena state (g, d). Although this is relatively
straightforward, we must make sure that all agents can actually perform the action8, i.e. a ∈⋂
i∈sharing([>,℘(|d|)) Pi(liE(g)). We can do this by reusing the symbolic implementation of the in-

dividual protocols Pi(v, w) (see Subsection 3.3.2). For each 0 ≤ k < |℘| this case is encoded
as:

Ek1 (v, d, e, v′, d′, e′) = k(d) ∧ (k + 1)(d′)∧

0(ek) ∧

 |℘|∧
l=k+1

0(el) ∧ 0(e′l)

 ∧
k−1∧
j=0

|ej|−1∧
m=0

ejm ↔ e′jm

 ∧
 ∨
a∈ActSk

∧
i∈Sk

∃wi. Pi(viE, wi) ∧ a(wi) ∧ a(e′k)

where Sk = sharing([>, ℘(k)). The first line increments the length of the decision tuple. The
second line asserts that the decision does not change arbitrarily. The third line ensures that only
possible actions are appended.

2. The decision is complete and thus a temporal transition occurs. While this case is slightly more
complicated, we can simplify it by reusing the global evolution function t(v, w, v′) (see Subsec-
tion 3.3.2). Intuitively, we force all agents to perform the action that the decision assigns to them.
This case is encoded as:

E2(v, d, e, v′, d′, e′) = |℘| (d) ∧ 0(d′) ∧

|℘|−1∧
j=0

0(e′j)

 ∧
 ∨
a∈Act

∃w.a(w) ∧ t(v, w, v′) ∧
|℘|−1∧
k=0

∧
i∈Sk

ai(a)(ek)

where Sk = sharing([>, ℘(k)) for 0 ≤ k < |℘|. Again, the first line ensures that the decision (and
its successor) have the correct form. The second line finds a joint action a ∈ Act which agrees with
the decision and performs the temporal transition.

Finally, the edge relation E of the arena A℘[I is implemented as a disjunction of the two cases above:

E(v, d, e, v′, d′, e′) =

|℘|−1∨
k=0

Ek1 (v, d, e, v′, d′, e′)

 ∨ E2(v, d, e, v′, d′, e′)

We are only interested in paths in A℘[I starting in states (g, []) where g ∈ G is a reachable global

state. A symbolic representation of all vertices V of the arena A℘[I can thus be obtained as the least fixed
point V = lfpQ [{(g, []) | g ∈ G} ∪ suc∃(Q)] (similarly to the calculation of the set of reachable states at
the end of Subsection 3.3.2):

V (v, d, e) = lfpΘ

∨
g∈G

g(v) ∧ 0(d) ∧ 0(e)

 ∨ ∃v′d′e′. (Θ′ ∧ E(v′, d′, e′, v, d, e)
)

where Θ′ is a Boolean formula equal to Θ with variables in v, d, e and v′, d′, e′ swapped. The vertices

8If we do not ensure this, the game might end up in a dead end (g, d⊥) when a temporal transition should occur as the

accumulated decision d⊥ might not represent a possible joint action in g. By our construction of A℘[I , (g, d⊥) would be
a dead end for the universal player. Hence, it would always be a winning state for the existential player. Informally, this
would “encourage” the existential player to choose actions which cannot be performed in the current state.

5.2. Model Checking 105

of the existential and universal player in A℘[I can in turn be calculated symbolically as follows:

V0(v, d, e) = V (v, d, e) ∧
|℘|−1∨
k=0

k(d) ∧ existential(k)

V1(v, d, e) = V (v, d, e) ∧
|℘|−1∨
k=0

k(d) ∧ ¬existential(k)

where existstential(k) is true iff ℘(k) is an existentially quantified variable for 0 ≤ k < |℘|.

Combined Game

The parity game G℘[ψI is a combination of the delayed automaton D℘ψ
I and the formula arena A℘[I (see

Definition 5.7). This is very simple because our symbolic representations of both structures uses the
same counter d. The edge relation EG of the game is implemented symbolically as:

EG(v, d, e, t, v′, d′, e′, t′) = E(v, d, e, v′, d′, d′) ∧RD(t, d, v, t′, d′)

Again, the sets of all vertices VG, existential player vertices VG0, and universal player vertices VG1 can
be calculated symbolically as follows:

VG(v, d, e, t) = lfpΘ

∨
g∈G

g(v) ∧ 0(e) ∧ ID(d, t)

 ∨ ∃v′d′e′t′. (Θ′ ∧ E(v′, d′, e′, t′, v, d, e, t)
)

VG0(v, d, e, t) = VG(v, d, e, t) ∧
|℘|−1∨
k=0

k(d) ∧ existential(k)

VG1(v, d, e, t) = VG(v, d, e, t) ∧
|℘|−1∨
k=0

k(d) ∧ ¬existential(k)

The colouring function9 CG is represented as a family of |C| Boolean formulas:

CGi(v, d, e, t) = VG(v, d, e, t) ∧ Ci(t)

where C is the family of Boolean formulas representing the colouring function of the parity automaton
Pψ
I and 0 ≤ i < |C| a colour.

Once we have a symbolic representation of the parity game G℘[ψI , we solve it using the existing algo-
rithm in Figure 2.9. The symbolic implementation of the algorithm is quite straightforward because it
uses only basic set operations (Subsection 2.3.2 explains how set operations can be represented symbol-
ically) and attractors (see Definition 2.59). We shall therefore only discuss how attractors and attractor
strategies can be calculated symbolically. Recall that an attractor attrσ(A, X) ⊆ V of a set of nodes
X ⊆ V for a player σ ∈ {0, 1} in an arena A = (V0, V1, E) is defined as:

attrσ(A, X) , lfpQ [X ∪ {v ∈ Vσ | vE ∩Q 6= ∅} ∪ {v ∈ Vσ | vE ⊆ Q}]

Intuitively, attrσ(A, X) is the set of all vertices of A from which player σ can force a visit to X. If the
vertices of A are represented using a Boolean vector10 u (and its next version u′), the attractor can be
calculated symbolically as:

attrσ(A, X)(u) = lfpΘ

[
X(u) ∨

(
Vσ(u) ∧ ∃u′.Θ′ ∧ E(u, u′)

)
∨
(
Vσ(u) ∧ ¬∃u′.¬Θ′ ∧ E(u, u′)

)]
(5.2)

We are also interested in the winning strategies of G℘[ψI for the purposes of strategy synthesis (see
Subsection 5.2.3). In parity games, these are constructed from attractor strategies. Informally, a (mem-
oryless) attractor strategy for attrσ(A, X) assigns to states attrσ(A, X)∩Vσ moves “towards” the target

9More formally, CGi is a symbolic representation of the set of all vertices of G℘[ψI with colour 0 ≤ i < |CG|, i.e.
CGi = {v ∈ VG | cG(v) = i}.

10In the case of the combined game G℘[ψI , we have u = vdet.

106 Chapter 5. One-Goal Strategy Logic

set X. We can represent a strategy as a set of pairs (v, v′) such that v ∈ attrσ(A, X) ∩ Vσ and v′ ∈ vE.
Moreover, we can represent both the attractor and the strategy together as a disjunction of the attractor
strategy (which contains all vertices attrσ(A, X)∩Vσ) and the vertices of the other player in the attractor
attrσ(A, X) ∩ Vσ. This can be calculated as:

attrσ(A, X)(u, u′) = lfpΘ

[
X(u, u′) ∨

(
Vσ(u) ∧ ¬

(
∃u′.Θ

)
∧ (∃u.Θ′) ∧ E(u, u′)

)
∨(

Vσ(u) ∧ ¬∃u′.¬ (∃u.Θ′) ∧ E(u, u′)
)]

Note that X can be a combination of vertices v ∈ V and strategy mappings (v, v′) ∈ V ×V as well. This
fixpoint is very similar to the one in Equation 5.2. The main difference is that Θ is now a Boolean formula
over both v and v′. Hence, we have to existentially quantify it before combining it with the edge relation
(unlike in Equation 5.2), i.e. (∃u.Θ′) ∧E(u, u′) instead of ∃u′.Θ′ ∧E(u, u′). More importantly, there is
one extra term, namely ¬

(
∃u′.Θ

)
, in the existential player case. It ensures that we add each state to

the attractor only once. This is in line with the definition of the attractor strategy (see Definition 2.59).
If we did not add this restriction, we could end up in the following situation: Let A = (V0, V1, E) be
an arena with 3 vertices V = {a, b, c} such that all of them belong to the existential player, i.e. V0 = V
and V1 = ∅. Furthermore, assume that the edge relation is E = {(b, a) , (c, a) , (b, c) , (c, b)}. Consider
the calculation of attr0(A, {a}). Firstly, the pairs (b, a) and (c, a) are added to the initial set {a}. If we
do not require that each vertex is added at most once, (b, c) and (c, b) will be added to the attractor in
the second iteration. But then we would have (b, c) , (c, b) ∈ attr0(A, {a}) and b, c /∈ {a}, i.e. a strategy
which cycles between b and c forever and never reaches the target set {a}.

Model Checking and Strategy Synthesis

The symbolic implementation of the algorithm for solving parity games (see Figure 2.9) will return
Boolean formulas representing both the winning regions and strategies (WG0,WG1) of the combined

parity game G℘[ψI . The formula ‖℘[ψ‖I (v) encoding the set of all global states of I at which the Sl[1g]
principal formula ℘[ψ holds is finally calculated as (see Theorem 5.1):

‖℘[ψ‖I (v) = ∃d e t v′ d′ e′ t′.WG0(v, d, e, t, v′, d′, e′, t′) ∧ ID(d, t) ∧ 0(e)︸ ︷︷ ︸
start

The game G℘[ψI together with the winning regions and strategies (WG0,WG1) encodes the synthesised
strategies for all variables in the quantification prefix ℘. Assume that we want to determine the next
action fk(π) that the strategy fk for variable ℘(k) with 0 ≤ k < |℘| should assign to the track π ∈ Trk
in I. Given the next actions f0(π), . . . , fk−1(π) of strategies for variables ℘(0), . . . , ℘(k− 1), we proceed
as follows (see Definition 5.9):

1. We start in the state s0
0(v, d, e, t) = start(π(0))(v, d, e, t) = π(0)(v) ∧ ID(d, t) ∧ 0(e). We basically

set the initial state tI of the underlying parity automaton Pψ
I of the game (t0 = tI).

2. For i = 1 to |π| − 1: We set s0
i (v, d, e, t) = ∃v′ d′ e′ t′. EG(v′, d′, e′, t′, v, d, e, t) ∧ π(i− 1)(v) ∧ 0(d) ∧[

∃d′ e′. s0
i−1(v′, d′, e′, t′)

]
. Essentially, we are traversing the automaton Pψ

I (ti = δ(ti−1, π(i− 1))).

3. For j = 0 to k−1: We set sj+1
|π|−1(v, d, e, t) = ∃v′ d′ e′ t′. EG(v′, d′, e′, t′, v, d, e, t)∧sj|π|−1(v′, d′, e′, t′)∧

fj(π)(ej). We accumulate the decision [f0(π), . . . , fk−1(π)].

4. sk|π|−1 is the implied current state of the combined parity game G℘[I (given π and f0(π), . . . fk−1(π)).

Hence, we can use the winning regions and strategies (WG0,WG1) to determine the next ac-
tion fk(π): We select an action a ∈

⋂
i∈sharing([>,℘(k)) Pi(liE(last(π))) such that the expression

∃v d e t v′ d′ e′ t′. EG(v′, d′, e′, t′, v, d, e, t) ∧
(
WG0(v′, d′, e′, t′, v, d, e, t) ∨WG1(v′, d′, e′, t′, v, d, e, t)

)
∧

a(e′k) is not false. If there is no such action, we select any possible action a.

This concludes our symbolic implementation of Sl[1g] model checking and strategy synthesis.

5.2. Model Checking 107

Complexity

The time complexity of our symbolic implementation is the same as that of the model checking algorithm
discussed in Subsection 5.2.2, namely polynomial in the size of the model |I| and doubly exponential in
the size of the formula |ϕ|.

Theorem 5.4. Let I be a an interpreted system and ϕ an Sl[1g] sentence. The worst-case time
complexity of the symbolic implementation is:

|I|2
O(|ϕ|)

Proof (Sketch). We only need to prove the statement for an arbitrary basic principal sentence ϕ = ℘[ψ
(see the proof of Theorem 5.2). The symbolic implementation of our algorithm uses:

• O(log2 |G|) Boolean variables to represent the global state;

• O(
∑
i∈Agt log2 |Act i|) Boolean variables to represent joint actions;

• O(|ψ|) Boolean variables to represent the states of the non-deterministic (generalised) Büchi au-
tomaton;

• 2O(|ψ|) Boolean variables to represent the deterministic parity automaton;

• O(log2 |℘|) Boolean variables to represent the delayed automaton and arena counter ;

• O(
∑
i∈Agt log2 |Act i|) Boolean variables to represent decisions.

The total number of Boolean variables needed is thus O(log2 |G|+
∑
i∈Agt log2 |Act i|+ |℘|) + 2O(|ψ|) =

O(log2 |I|) + 2O(|ϕ|). Since BDD operations take polynomial time with respect to the size of the relevant

BDDs in the worst case [49], the worst-case time complexity of each BDD operation is O(|I|k)22O(|ϕ|)
for

some fixed constant k > 0. As we have stated in the proof of Theorem 5.2, the model checking algorithm

has at most |I|2
O(|ϕ|)

steps. By multiplying these two expressions, we get the desired worst-case time

complexity |I|2
O(|ϕ|)

.

5.2.5 Separate Determinisation

The Sl[1g] model checking algorithm complexity proof (see Theorem 5.2) and the experimental results
(see Section 6.4) indicate that one major bottleneck of the algorithm is parity game solving. In this
section, we propose an optimisation technique, which addresses this problem by reducing the size of the
game. Our experimental results demonstrate that it significantly reduces model checking time as well as
memory usage (see Table 6.4b).

We motivate the optimisation by means of a simple example. Consider the following Sl[1g] basic
principal sentence (for some interpreted system I with agents Agt , {a, b}):

β , [[x]]〈〈y〉〉(a, x)(b, y)[(p→ GF p) ∧ (q → GF q) ∧ (r → GF r)]

The underlying Ltl formula of β is ψβ = (p→ GF p)∧ (q → GF q)∧ (r → GF r). The non-deterministic

Büchi automaton B
ψβ
I for ψβ obtained on line 3 of our Sl[1g] model checking algorithm in Figure 5.3

has 508 reachable states which are not dead ends. Therefore, 509 Boolean variables will be required to

encode a single pair (Si,mi) in a state of the deterministic parity automaton P
ψβ
I on line 4 of our Sl[1g]

model checking algorithm (the determinisation procedure we use is described in Subsection 2.4.4). As

we shall see, at least three such pairs will be required to encode a state of P
ψβ
I . Hence, at least 1527

Boolean variables will be required to encode a state of the deterministic parity automaton. To put this

into perspective, P
ψβ
I will have at least 21527 ≈ 4.7 × 10459 states. Comparing this with Table 2.2, we

see that our symbolic implementation using BDDs will not be able to check β. This is a very negative
result given that β is a relatively concise specification. It renders our Sl[1g] model checking algorithm
presented in Subsection 5.2.1 completely infeasible for verification and synthesis of large multi-agent
systems with multiple constraints.

108 Chapter 5. One-Goal Strategy Logic

We propose an optimisation technique, which we refer to as separate determinisation, which allows
us to tackle the problem above. Specifications of systems are usually given as conjunctions of Ltl
formulas [77]. Hence, we are interested in the verifications of Sl[1g] principal sentences of the form:

℘ [[ψ0 ∧ ψ1 ∧ · · · ∧ ψn−1]

We proceed as before and recursively replace all direct principal subformulas of the formula above with
atoms (see Subsection 5.2.1). Hence we can assume ψ0, . . . , ψn−1 are Ltl formulas without any loss of

generality. Our aim is to construct a deterministic automaton Sψ
I which accepts precisely those infinite

paths π ∈ Pth along which the Ltl formula ψ , ψ0 ∧ · · · ∧ ψn−1 holds. Take an arbitrary infinite path
π ∈ Pth. We have the following chain of equivalences:

I, π |=Ltl ψ iff ∀i ∈ {0, . . . , n− 1} . I, π |=Ltl ψi

iff ∀i ∈ {0, . . . , n− 1} . π ∈ Lang(Pψi
I)

iff π ∈
n−1⋂
i=0

Lang(Pψi
I)

Therefore, ψ holds along π iff it is accepted by the deterministic parity automaton Pψi
I = (Ti, G, tIi, δi, ci)

for each conjunct ψi with 0 ≤ i < n. Consider the following generalised parity automaton (see Defini-

tion 2.39) obtained as a product of Pψ0

I , . . . ,P
ψn−1

I :

Sψ
I ,

n−1∏
i=0

Pψi
I =

(
n−1∏
i=0

Ti, G,
(
tI0, . . . , tI(n−1)

)
, δ, {c1, . . . , cn−1}

)

where δ((t0, . . . , tn−1) , g) , (δ0(t0, g), . . . , δn−1(tn−1, g)) for all (t0, . . . , tn−1) ∈
∏n−1
i=0 Ti and g ∈ G. We

claim that Sψ
I accepts exactly those infinite paths in I which satisfy ψ.

Lemma 5.3. Let I be an interpreted system, ψ0, . . . , ψn−1 arbitrary Ltl formulas such that ψ ,∧n−1
i=0 ψi, and π ∈ Pth a path in I. Furthermore, let Pψi

I be a deterministic parity automaton equivalent
to ψi for each 0 ≤ i < n. Then the following holds for the deterministic generalised parity automaton
Sψ
I ,

∏n−1
i=0 Pψ

I : π ∈ Lang(Sψ
I) iff I, π |=Ltl ψ.

Proof. We can prove this statement directly using equivalences: By construction of Sψ
I , π ∈ Lang(Sψ

I)

iff π ∈
⋂n−1
i=0 Lang(Pψi

I). By definition of set intersection, π ∈
⋂n−1
i=0 Lang(Pψi

I) iff π ∈ Lang(Pψi
I) for all

0 ≤ i < n. By our initial assumption, for all 0 ≤ i < n, we have π ∈ Lang(Pψi
I) iff I, π |=Ltl ψi. By Ltl

semantics (Definition 2.8), I, π |=Ltl ψ iff I, π |=Ltl ψi for all 0 ≤ i < n. Our claim follows.

Consider again the Ltl formula ψβ = (p→ GF p) ∧ (q → GF q) ∧ (r → GF r). Each of the non-

deterministic Büchi automata Bψ0

I , Bψ1

I , and Bψ2

I for the subformulas ψ0 = p→ GF p, ψ1 = q → GF q,
and ψ2 = r → GF r has 13 reachable states which are not dead ends. The resulting deterministic parity
automata Pψ0

I , Pψ1

I , and Pψ2

I each have 42 variables11. Therefore, the deterministic generalised parity

automaton S
ψβ
I equivalent to ψβ has 126 Boolean variables and 2126 ≈ 8.5 × 1037 states. While this is

still a very large number, it is much more manageable than the size of the deterministic parity automaton

P
ψβ
I , which would have at least 21527 ≈ 4.7× 10459 states.

Once we have constructed the deterministic generalised parity automaton Sψ
I , the optimised Sl[1g]

model checking algorithm proceeds in a very similar manner to the original one in Figure 5.3: We
construct the formula arena A℘[I and the delayed automaton D℘ψ

I . Note that A℘[I is unchanged but D℘ψ
I

is now a generalised parity automaton. Finally, we construct the combined generalised parity game G℘[ψI
and solve it using the existing algorithm in Figure 2.10. The complete optimised algorithm is shown in
Figure 5.4.

11Their states require at least three pairs (Si,mi) (see Subsection 2.4.4). Hence, they each have 3 × (13 + 1) = 42

variables. This is also the reason why we know that the original parity automaton P
ψβ
I equivalent to ψβ would require at

least three pairs (Si,mi) to encode a state.

5.3. Summary 109

1 function CheckSl[1g]Optimised(℘[ψ)
2 ψ0 ∧ · · · ∧ ψn−1 := ψ . Split conjuncts.
3 for i := 0, . . . , n− 1 do
4 AψiI := GenBüchi(ψi)

5 Bψi
I := Büchi(AψiI)

6 Pψi
I := Parity(Bψi

I)
7 end for
8 Sψ

I := GenParity(Pψ0

I , . . . , P
ψn−1

I) . Calculate automaton product.

9 D℘ψ
I := Delayed(Sψ

I , ℘) . Convert to a delayed generalised parity automaton.

10 A℘[I := Arena(I, ℘, [)

11 G℘[ψI := Combine(A℘[I , D℘ψ
I) . Combine into a generalised parity game.

12 (W0,W1) := SolveGenParity(G℘[ψI) . Solve generalised parity game (Figure 2.10).
13 return {g ∈ G | start(g) ∈W0}
14 end function

Figure 5.4: The optimised model checking algorithm for Sl[1g] which uses separate determinisation.
The steps which differ from the original algorithm (see Figure 5.3) have comments.

This optimised algorithm does not improve the general |I|2
O(|ϕ|)

time complexity of Sl[1g] model
checking (see Subsection 5.2.2) because it has no effect when ψ has only one conjunct, in which case the

generalised parity game is a parity game with one colouring function, i.e. Sψ
I = Pψ

I . Nevertheless, the
following more precise worst-case time complexity can be derived12:

|ϕ|+
∑

ϕ′∈sub(ϕ)

|I|D(ϕ′)

(
D(ϕ′)

D0(ϕ′), . . . , DN(ϕ′)−1(ϕ′)

)

where N(ϕ′) is the number of conjuncts in ϕ′ = ℘[
[
ψ0 ∧ · · · ∧ ψN(ϕ′)−1

]
, Di(ϕ

′) , 2O(temp(ψi)) for

0 ≤ i < N(ϕ′), D ,
∑N(ϕ′)−1
i=0 Di(ϕ

′),
(

n
k0,...,kn−1

)
, n!∏n−1

i=0 ki!
, and temp(ϕ′) is the number of temporal

operators in ϕ′ (without strict principal subformulas). Note that this expression is equal to Equation 5.1
when each principal subsentence of ϕ has exactly one conjunct.

The symbolic implementation of the model checking algorithm (see Subsection 5.2.4) is modified
appropriately. There is one extra issue, which is only relevant to Sl[1g] strategy synthesis (see Sub-
section 5.2.3). Recall that generalised parity games are not memoryless determined for the existential
player in general (see Subsection 2.4.5), i.e. the winning strategy for the existential player requires finite
memory, namely a counter for the current conjunct 0 ≤ i < n. We solve this problem by (i) augmenting
the Boolean vectors representing the current and next game state with dlog2 ne Boolean variables for the
counter and (ii) adding an auxiliary state after every temporal transition in which the existential player
has the option to keep or increment the value of the counter:

(
g,
[
a0, . . . , a|℘|−1

]
, t, i

)
(g′,−, t′, i)

(g′, [] , t′, i)

(g′, [] , t′, (i+ 1) modn)

temporal
transition

keep i

increment i

5.3 Summary

In this chapter, we first gave a brief overview of Sl[1g] and then introduced a practical model checking
algorithm for it. This is a very important result because there is currently no such algorithm. In fact,
we are not even aware of any practical model checking algorithms for Atl*, which is strictly subsumed

12We use the fact that the time complexity of solving a generalised parity game with n vertices, m edges, and maximum

colours d0, . . . , dk−1 is O(mnd)
(dd/2e
dd0/2e,...,ddk−1/2e

)
where d =

∑k−1
i=0 di (see Proposition 2.11). Note that we ignore the

coefficients because D(ϕ′)/2 =
∑k−1
i=0 Di(ϕ

′)/2 =
∑k−1
i=0 2O(temp(ψi))−1 =

∑k−1
i=0 2O(temp(ψi)) = D(ϕ′).

110 Chapter 5. One-Goal Strategy Logic

by Sl[1g]. Therefore, we believe that we have put forward the first practical model checking algorithm
for both Sl[1g] and Atl*. Moreover, we showed that it has optimal worst-case time complexity, proved
its correctness, and provided an efficient symbolic implementation. Since it supports general strategy
synthesis, it can be used to automatically generate agents’ behaviour from Sl[1g] specifications.

The algorithm reduces the model checking of an Sl[1g] basic principal sentence ℘[ψ to the problem
of solving a combined parity game, which is obtained as the product of a formula arena, which represents
the interdependency of the quantified strategies in the prefix ℘[, and a delayed automaton, which accepts
all paths through the arena which satisfy the underlying Ltl formula ψ. We showed how the winning
strategies of the combined parity game can be used for Sl[1g] strategy synthesis. We also provided
an optimisation technique called separate determinisation, which improves the performance of the algo-
rithm on Sl[1g] formulas of the form ℘[[ψ0 ∧ · · · ∧ ψn−1] by determinising each conjunct separately and
reducing the problem to solving a generalised parity game instead.

In Section 6.3, we will describe how we developed an extension of MCMAS which implements the
Sl[1g] model checking algorithm introduced in this chapter using BDDs.

Chapter 6

Implementation

A very important part of this project was the implementation of the novel model checking algorithms
for Slk an Sl[1g] presented in Sections 4.2 and 5.2 respectively. We developed both algorithms as
extensions for the MCMAS model checker described in Subsection 2.5.2. To our best knowledge, there
are no other tools which would support Sl or any of its fragments such as Slk or Sl[1g]. In our opinion,
this makes our contribution even more valuable, as it demonstrates the feasibility of Sl as a practical
specification language rather than a mere theoretical construct. Our belief is further supported by the
experimental results described in Section 6.4.

Extending an existing tool relieved us of the burden to design and implement all low-level procedures
from scratch. Instead, it allowed us to focus on the important aspects of the new model checking
algorithms and spend more time optimising their performance. On the other hand, we had to follow the
existing design pattern of the tool and accept its shortcomings. We shall start by describing the existing
functionality, usage, and architecture of MCMAS. We will then describe the new functionality of the Slk
and Sl[1g] extensions and explain which parts of the tool we had to modify in order to support each of
the fragments. Finally, we present the experimental results we obtained on several scalable scenarios.

6.1 Existing Tool

MCMAS is a Model Checker for Multi-Agent Systems (MAS) developed at Imperial College London
released under GNU Public Licence (GPL) [5, 8, 63]. A brief overview of its existing functionality has
already been provided in Subsection 2.5.2, where it was compared with other existing verification tools.
Here we shall describe it in more detail to give the reader a better idea of the original tool as well as the
extensions which we developed as part of this project.

6.1.1 Functionality

MCMAS has the following features:

1. Underlying framework. The multi-agent systems in MCMAS are modelled as interpreted sys-
tems (see Definition 2.5), which naturally capture temporal, strategic, deontic (correct behaviour),
and epistemic (knowledge) properties of a system. An important consequence of using this formal-
ism is that all agents evolve synchronously. The semantics of the specifications languages supported
by MCMAS (described below) are also defined with respect to interpreted systems (see Section 2.2).

The reader should be familiar with the concept of interpreted systems by now as we have been using
it heavily throughout Chapters 4 and 5. A very simple toy model and its formal representation as
an interpreted system is provided in Section 3.3.

2. Input format. The description of interpreted systems is provided in the form of ISPL files.
Such files use special syntax to describe the whole model including the agents, protocols, evolution
functions, local variables, observable variables, initial states, and specifications to be checked.
Please refer to [9] for the complete ISPL syntax. ISPL code for the toy model introduced in
Section 3.3 is provided in Appendix A.

112 Chapter 6. Implementation

3. Specification languages. MCMAS supports Ctl (see Subsection 2.2.2) and Atl (see Subsec-
tion 2.2.4) augmented with epistemic operators expressing agents’ knowledge (see Subsection 2.2.6)
and deontic modalities for correct behaviour (not relevant for our project). Moreover, MCMAS
admits arbitrary nesting of Ctl and Atl operators as well as the non-temporal modalities. In ad-
dition, basic fairness conditions1 are supported. Ltl, Ctl*, Atl*, and Sl (including all syntactic
fragments) are currently not supported by MCMAS.

4. Model checking. The main function of MCMAS is model checking of specifications against a
model of a system. The tool automatically verifies and reports whether each formula holds in all
initial states of the model or not. Thanks to its underlying efficient symbolic implementation (see
Subsection 2.3.2), MCMAS can easily handle state spaces with more than 1020 possible states [63].

5. Witness and counterexample executions. In addition to reporting whether a formula is true
or false in the given model, MCMAS can provide the user with sample executions justifying the
truth value of the formula. If the formula is true, a witness execution is generated. Conversely,
if the formula is false, a counterexample execution is generated. This is a very useful feature as
it allows the user to identify and then fix the parts of the model in which the specification is not
satisfied.

6. Interactive simulation. The tool provides an interactive simulation mode, in which the user
selects an initial state and follows a possible evolution of the model by choosing the actions of all
agents at each time step. The user can always also backtrack to the previous state. This feature
does not provide automatic verification. Instead, it allows the user to manually check that the
model is correct.

7. Graphical interface. Although MCMAS is a purely command-line tool with textual input and
output, an Eclipse plugin supporting most of its features has been developed. It can currently
perform model checking, interactive simulation, and witness/counterexample analysis. Its most
prominent feature is visualisation of witness/counterexample executions.

The tool runs on most architectures including Linux, Windows, and Mac OS.
The latest publicly available release of MCMAS at the time of writing is version 1.2.1. We describe

here version 1.1.0, which was available in October 2013 when our project forked off. The main differ-
ence between the two versions is the support for uniform Atl semantics in version 1.2.1 (uniformity is
explained in Subsection 4.1.2).

6.1.2 Usage

We provide here a short introduction to the ISPL file format and the MCMAS command-line tool. Note
that this subsection is in no way intended to be a complete manual for MCMAS. Our aim is to give the
reader a basic idea of how the tool can be used for purposes relevant to our project. Please refer to the
MCMAS manual [9] for a complete description of the ISPL Syntax and the command-line tool.

ISPL Syntax

An ISPL file contains both the multi-agent system and the properties to be verified. These are internally
represented as an interpreted system (see Definition 2.5) and logic formulas (see Section 2.2) respectively.
The file consists of the following sections [9]:

• Semantics (optional) – Statement which defines the evolution function semantics (see below). Two
options are available: MultiAssignment (default) and SingleAssignment.

• Agent – Every agent of the multi-agent system is defined separately. Defining the environment is
optional. Each specification has the following fields for an agent i ∈ Agt :

1A fairness condition is an arbitrary formula ϕ which rules out paths along which ϕ is not true infinitely often. This
increases the expressiveness of Ctl and Atl with the ability to assume that certain unwanted behaviour will not occur (e.g.
that no agent will hold a lock forever) [9]. Note that fairness constraints can be expressed naturally in Ltl as [GFϕ]→ ψ
where ψ is the formula that we want to check.

6.1. Existing Tool 113

– Vars (optional for environment) – Internal variables of the agent. Three types of variables
are supported in ISPL: Boolean (x: boolean), enumeration (y: {a, b, c}), and bounded
integer (z: 1 .. 4). These variables represent the set of internal states Li of the agent.

– Obsvars (environment only, optional) – Variables observable by all agents. The types of
variables are the same as in Vars. The set of local states LjE of each agent j ∈ Agt is induced
by the the observable variables (of the environment) and the agent’s internal variables.

– Lobsvars (other agents only, optional) – Set of local variables of the environment that the
agent can observe. This makes ISPL syntax more expressive than interpreted systems because
different agents can observe different internal variables of the environment.

– RedStates (optional) – Constraints on the correct behaviour of the agent for deontic modal-
ities. This field is not relevant for our project.

– Actions – Set of actions Act i available to the agent.

– Protocol – Protocol Pi of the agent, which maps local states LiE to sets of actions 2Acti . It
consists of lines of the form condition : {actions }, where condition is a condition on the
local state and actions is a list of actions available to agent i if the condition holds. Note
that the conditions on different lines need not be mutually exclusive. The keyword Other

represents a condition which is true iff all other conditions fail.

– Evolution – Evolution function ti of the agent. Similarly to the protocol, it consists of lines
of the form next_state if condition , where condition is a condition on the local state
of the agent and the joint action of all agents.

If multi-assignment semantics is used (default), next_state refers to all local variables that
change and exactly one condition line applies. If single-assignment semantics is used instead,
next_state can refer to only one variable and, for each local variable, exactly one condition
line applies. Please refer to the MCMAS manual [9] for the exact meaning of the two options.

• Evaluation – Atomic propositions AP and their assignment h over global states. For every atomic
proposition, the evaluation contains an entry of the form atom if condition , where condition

is a condition on the current global state.

• InitStates – Boolean formula over all variables which defines the initial states I.

• Groups (optional) – List of groups of agents. These are used in some epistemic modalities (see
Subsection 2.2.6) and Atl temporal operators (see Subsection 2.2.4).

• Fairness (optional) – List of fairness formulas. This field is not relevant to our project.

• Formulae – List of formulas to be verified. Table 6.1 shows how logic formulas are translated into
ISPL syntax.

Command-Line Tool

The general usage of the MCMAS command-line tool is as follows:

$./mcmas [OPTIONS] FILE

where [OPTIONS] is an optional list of command-line options and FILE is the name of the ISPL file. For
example, the file examples/toy_model_existing.ispl contains the toy model introduced in Section 3.3,
a Ctl specification EF p, and an Atl specification 〈〈{1, 2}〉〉G¬ (p1 ∨ p2) (see Subsections 2.2.2 and 2.2.4
for a description of Ctl and Atl respectively). These formulas are expressed in the ISPL file as EF p

and <g>G !(p1 or p2) respectively, where g is a group containing agents Player1 and Player2. The
complete ISPL file is provided in Appendix A. The following command checks the specifications and
generates witness/counterexample executions where possible:

$./mcmas -c 1 examples/toy_model_existing.ispl

The -c flag for displaying witness/counterexample executions has a numeric parameter 1–3 which spec-
ifies the format of the executions. This command generates the following output:

114 Chapter 6. Implementation

Logic Formula ISPL syntax

propositional

p atom

¬ϕ !formula

ϕ1 ∧ ϕ2 formula1 and formula2

ϕ1 ∨ ϕ2 formula1 or formula2

ϕ1 → ϕ2 formula1 -> formula2

Ctl (Subsection 2.2.2)

AXϕ AX formula

EXϕ EX formula

AFϕ AF formula

EFϕ EF formula

AGϕ AG formula

EGϕ EG formula

A[ϕ1 Uϕ2] A(formula1 U formula2)

E[ϕ1 Uϕ2] E(formula1 U formula2)

Atl (Subsection 2.2.4)

〈〈A〉〉Xϕ <group >X formula

〈〈A〉〉Fϕ <group >F formula

〈〈A〉〉Gϕ <group >G formula

〈〈A〉〉[ϕ1 Uϕ2] <group >(formula1 U formula2)

epistemic (Subsection 2.2.6)

Ki ϕ K(agent , formula)

EA ϕ GK(group , formula)

DA ϕ DK(group , formula)

CA ϕ GCK(group , formula)

deontic (not relevant) Oi ϕ O(agent , formula)

Table 6.1: Translation between logic formulas and ISPL syntax.

1 **

2 MCMAS v1.1.0

3

4 This software comes with ABSOLUTELY NO WARRANTY, to the extent

5 permitted by applicable law.

6

7 Please check http://vas.doc.ic.ac.uk/tools/mcmas/ for the latest release.

8 Please send any feedback to <mcmas@imperial.ac.uk>

9 **

10

11 Command line: ./mcmas -c 1 examples/toy_model_existing.ispl

12

13 examples/toy_model.ispl has been parsed successfully.

14 Global syntax checking...

15 Done

16 Encoding BDD parameters...

17 Building partial transition relation...

18 Building BDD for initial states...

19 Building reachable state space...

20 Checking formulae...

21 Verifying properties...

22 Formula number 1: (EF p1), is TRUE in the model

23 The following is a witness for the formula:

24 < 0 1 >

25 States description:

26 ------------- State: 0 -----------------

27 Agent Environment

28 state = game

29 Agent Player1

6.1. Existing Tool 115

30 Agent Player2

31 --

32 ------------- State: 1 -----------------

33 Agent Environment

34 state = p1win

35 Agent Player1

36 Agent Player2

37 --

38 Formula number 2: (<g>G (! (p1 || p2))), is TRUE in the model

39 The following is a witness for the formula:

40 A witness exists but could not be generated.

41 done, 2 formulae successfully read and checked

42 execution time = 0.007

43 number of reachable states = 3

44 BDD memory in use = 8968368

Lines 22 and 38 indicate that the both the Ctl formula EF p1 and the Atl formula 〈〈{1, 2}〉〉G¬ (p1 ∨ p2)
are true in all initial states of the model. A witness execution with 2 states, namely gg and g1 (see
Section 3.3), for the Ctl formula is provided on lines 24–37. According to line 40, MCMAS could not
generate a witness execution for the Atl formula.

Other flags supported by MCMAS include deadlock checking (-k), arithmetic overflow checking (-a),
interactive simulation (-s), and verbosity level (-v with a numeric parameter 1–5). The complete list of
flags supported by MCMAS is provided on the tool’s help screen:

$./mcmas -h

6.1.3 Architecture

MCMAS uses binary decision diagrams (see Subsection 2.3.1) to represent the models of systems and
implements all algorithms using very efficient symbolic operations on this data structure (see Subsec-
tion 2.3.2). The tool is written in C++ (except for the Eclipse plugin, which is implemented in Java) and
uses the CUDD BDD package [85]. Over the years, it has been developed collaboratively by members
of the Verification of Autonomous Systems Group (VAS) in the Department of Computing at Imperial
College London [13].

The aim of this subsection is to provide a high-level description of MCMAS internals and bridge
the gap between the theoretical background presented in Chapter 2 and the existing MCMAS func-
tionality described in Subsection 6.1.1. We will first give an overview of the model checking and wit-
ness/counterexample generation process and then describe the overall structure of the MCMAS source
code. Finally, we will comment on the software design of MCMAS.

Model Checking Process

Assume that MCMAS is executed with the name of an ISPL file as a command-line argument (see
Subsection 6.1.2 for a short introduction to MCMAS usage). The tool performs the following steps:

1. Parser. The ISPL file is scanned and parsed into an interpreted system I representation of the
model and an abstract syntax tree for each formula ϕ0, . . . , ϕn−1. The scanner and parser were
automatically generated using Flex [4] and Bison [2] respectively.

2. Syntax check. The program checks that the the model and the specifications are well-formed.
This includes type checking and name resolution. The tool ensures that all expressions (e.g. an
agent’s protocol) refer only to existing variables observable by the corresponding agent. If the model
or a formula violates any of the constraits, an error message is printed and the whole execution is
aborted.

3. Symbolic encoding. Each local variable (of an agent) with k possible values is allocated 2 ×
dlog2 ke BDD variables to represent its current and next value. Once all local variables of all agents
have been allocated BDD variables, the BDD vectors v, v′ for representing the current and next

116 Chapter 6. Implementation

global state are constructed as their concatenation. Similarly, the BDD vector u for representing
joint actions is composed of the BDD variables for representing individual actions. Consequently,
protocols, evolution functions, initial states, and epistemic accessibility relations are calculated. A
detailed example of how all of this can be done is provided in Subsection 3.3.2.

4. Reachability analysis. The set of states G reachable from the set of initial states I of the
interpreted system I is calculated. As explained at the end of Subsection 3.3.2, this is performed
using a simple fixpoint calculation over the temporal transition relation.

Checks for deadlocks and/or arithmetic overflow in the reachable states are carried out at this stage
if the user requests them via command-line flags.

Finally, if there is at least one fairness condition in the ISPL file, the set of reachable fair states,
at which some path satisfying all fairness conditions starts, is calculated.

5. Model checking. For each formula ϕi with 0 ≤ i < n, MCMAS checks if all initial states I of
the interpreted system I satisfy ϕi, i.e. I ⊆ ‖ϕi‖I . It does this by introducing an atom init ∈ AP
which holds in the initial states, i.e. h(init) = I, and then checking that the formula init → ϕi is
true in all reachable states, i.e. ‖init → ϕi‖I = G.

The tool uses a recursive bottom-up model checking algorithm similar to the one for Ctl in
Definition 2.12.

6. Witness/counterexample generation. If a formula starting with an E path quantifier is true
in the model (e.g. I |= EG p), a witness execution is presented. Conversely, if a formula starting
with an A path quantifier does not hold in the model (e.g. I 6|= AF p), a counterexample execution
is presented. Both witness and counterexample executions are provided for Boolean combinations
of formulas. Please refer to [9] for more details about the combinations of Ctl and Atl operators
supported by witness/counterexample generation in MCMAS.

Note that witness/counterexample generation is performed only when explicitly requested by the
user via a command-line flag.

Please refer to the MCMAS source code available at [8] for low-level details of the individual steps.

Source Code Structure

The structure of the MCMAS source code directory is as follows (not all files are listed):

• main.cc – Main file of the whole tool. It uses functions and classes defined in the other files to
implement the model checking process we discussed earlier. It is responsible for the majority of
output and defines global variables used by the other source files.

• Makefile – Project build file. This file describes how MCMAS is built from the source files. The
whole tool can be compiled easily by executing the make command. Build rules for a wide range
of platforms including Linux, Windows (using Cygwin), and Mac OS are provided. Both 32 and
64-bit architectures are supported.

• cudd-2.5.0-exp/ – The CUDD package for manipulating BDDs.

• doc/ – MCMAS documentation,

• examples/ – Sample ISPL files.

• include/ – Header files.

• parser/ – Files relevant to ISPL file parsing (e.g. token and grammar files) and syntax checking.

• utilities/ – All other source files.

– computereach.cc – Functions for calculating the set of reachable states.

– modal_formula.cc – Class representing modal formulas. This source file also implements
the recursive model checking algorithm and provides the witness/counterexample generation
functionality.

6.2. Epistemic Strategy Logic Extension 117

– read_options.cc – Command-line arguments handler.

– simulation.cc – Interactive simulation.

– utilities.cc – Model checking functions and custom BDD operations.

Software Design

Overall, MCMAS source code uses a mixture of the object-oriented paradigm and procedural paradigm:

• Object-oriented paradigm: classes, objects, inheritance, encapsulation

• Procedural paradigm: functions, global variables

As we have already pointed out in Section 1.2, the quality of the code is quite low from a software
engineering point of view, despite being developed as open source. We have encountered the following
issues during the development of the extensions:

1. Complete lack of testing. We believe that this is the biggest problem by far as there are
no guarantees about the correctness of individual functions, classes, or the program as a whole.
Furthermore, it makes any large-scale code refactoring virtually impossible because the programmer
has no easy way of verifying that they did not break any existing functionality. It is almost
paradoxical that a software verification tool is not verified in any structured way.

2. Global variables. The source code of MCMAS uses many global variables, which are generally
believed to be a bad programming practice. Consequently, it is difficult to test individual functions
and reason about their correctness because of side-effects.

3. Inconsistent style. Different parts of the codebase use different indent styles. In addition, some
files contain lines with more than 100 characters. This makes the source code difficult to read and
understand.

4. Long functions. Some of the functions are very long. For example, the body of the method for
generating witness/counterexample executions has 2053 lines. It is very difficult to understand and
modify such functions.

Ideally, the existing source code should be refactored and augmented with tests. Unfortunately, the
current situation is a vicious cycle: Refactoring is difficult without having tests and adding tests is
difficult without refactoring first. Therefore, we believe that the whole tool should be redesigned and
rewritten from scratch in the future.

Despite these shortcomings, MCMAS is on of the leading tools in the area of symbolic model checking
of multi-agent systems. More importantly, its existing source code provided us with solid foundations
on which we could build the Slk and Sl[1g] extensions. In the next two sections, we will describe
how we extended MCMAS with support for Slk and Sl[1g], which were discussed in Chapters 4 and 5
respectively.

6.2 Epistemic Strategy Logic Extension

Epistemic Strategy Logic (Slk) is a new fragment of Sl, which we introduced in Chapter 4. As it
is defined on imperfect recall semantics with incomplete information, it can combine various epistemic
and game-theoretic concepts. Consequently, Slk can express complex specifications such as an agent’s
knowledge about Nash equilibria. In Section 4.2 we provided a model checking algorithm for Slk as well
as an efficient symbolic implementation of it. We have developed an extension of MCMAS which puts
the algorithm into practice and thereby adds support for Slk model checking to MCMAS. We will now
discuss the new functionality of the extension, its usage, and the modified architecture.

118 Chapter 6. Implementation

Slk Formula ISPL syntax

〈〈x〉〉ϕ <<variable >> formula

[[x]]ϕ [[variable]] formula

(i, x)ϕ (agent , variable) formula

Xϕ X formula

Fϕ F formula

Gϕ G formula

ϕ1 Uϕ2 formula1 U formula2

Table 6.2: Translation between Slk formulas and ISPL syntax. Translation of the logics supported by
the original version of MCMAS is shown in Table 6.1.

6.2.1 Functionality

The Slk extension of MCMAS, which we developed as part of this project, has the following new features
(see Subsection 6.1.1 for the list of existing features):

1. Specification languages (updated). Our extension adds support for Slk specifications to MC-
MAS. Moreover, it can handle arbitrary nesting of Ctl, Atl, and Slk operators.

2. Model checking (updated). We have incorporated the efficient symbolic implementation of our
Slk model checking algorithm (see Subsection 4.2.4) in the extension.

In order to improve its performance, we have developed an experimental parallel implementation
of the Slk model checking algorithm which can be enabled using a command-line flag (see Subsec-
tion 6.2.2).

3. Witness and counterexample executions (updated). We have added support for Slk operators
to the witness/counterexample execution generator.

4. Witness and counterexample strategies (new). We have implemented witness and coun-
terexample strategy synthesis for Slk formulas as explained in Subsection 4.2.3. If an Slk formula
〈〈x0〉〉 . . . 〈〈xm−1〉〉ψ holds in the model, witness strategies for the variables x0, . . . , xm−1 are synthe-
sised (when requested by the user). Conversely, if an Slk formula [[y0]] . . . [[yn−1]]φ does not hold
in the model, counterexample strategies for the variables y0, . . . , yn−1 are synthesised.

To sum up, the extension adds support for Slk together with witness and counterexample strategy
synthesis. This is a major enhancement of MCMAS functionality as it provides the possibility to auto-
matically synthesise agents’ behaviour which satisfies an Slk specification.

6.2.2 Usage

The Slk extension augments ISPL syntax with the new Slk operators (see Definition 4.1). The trans-
lation from Slk formulas to ISPL syntax is shown in Table 6.2. Apart from that, the usage of the Slk
extension is the same as that of the original tool (see Subsection 6.1.2).

Consider the file examples/toy_model_slk.ispl containing the toy model introduced in Section 3.3
and the Slk specification 〈〈e〉〉(E, e)〈〈x〉〉(1, x)〈〈y〉〉(2, y)G¬ (p1 ∨ p2), which means that “there exist strate-
gies for all agents such that neither player will ever win”. This formula is expressed in ISPL syntax
as <<e>> (Environment, e) <<x>> (Player1, x) <<y>> (Player2, y) G !(p1 or p2). The com-
plete ISPL file is provided in Appendix A. The following command checks the specification and generates
a witness/counterexample execution with strategies (where possible):

$./mcmas -c 1 examples/toy_model_slk.ispl

The Slk extension generates the following output:

1 **

2 MCMAS-SL v1.1.0

3

6.2. Epistemic Strategy Logic Extension 119

4 This software comes with ABSOLUTELY NO WARRANTY, to the extent

5 permitted by applicable law.

6

7 Please check http://vas.doc.ic.ac.uk/tools/mcmas/ for the latest release.

8 Please send any feedback to <mcmas@imperial.ac.uk>

9 **

10

11 Command line: ./mcmas -c 1 examples/toy_model_slk.ispl

12

13 examples/toy_model.ispl has been parsed successfully.

14 Global syntax checking...

15 Done

16 Encoding BDD parameters...

17 Building partial transition relation...

18 Building BDD for initial states...

19 Building reachable state space...

20 Checking formulae...

21 Verifying imperfect recall properties...

22 Formula number 1: <<e>> (Environment, e) <<x>> (Player1, x) <<y>> (Player2, y)

23 G (! (p1 || p2)), is TRUE in the model

24 The following is a witness for the formula:

25 < 0 0 >

26 States description:

27 ------------- State: 0 -----------------

28 Agent Environment

29 state = game

30 Agent Player1

31 Agent Player2

32 --

33 Strategies:

34 ------- Strategy e [Environment] -------

35 Agent Environment

36 Environment.state=game (0): idle

37 Environment.state=p1win (1): idle

38 Environment.state=p2win (2): idle

39 --

40 --------- Strategy x [Player1] ---------

41 Agent Player1

42 Environment.state=game (0): rock

43 Environment.state=p1win (1): idle

44 Environment.state=p2win (2): idle

45 --

46 --------- Strategy y [Player2] ---------

47 Agent Player2

48 Environment.state=game (0): rock

49 Environment.state=p1win (1): idle

50 Environment.state=p2win (2): idle

51 --

52 done, 1 imperfect recall formulae successfully read and checked

53 execution time = 0.006

54 number of reachable states = 3

55 BDD memory in use = 8989648

Line 23 indicates that the Slk formula is true. A witness execution, namely a cycle in the state gg, is
provided on lines 25–32. More importantly, the following witness strategies for the Slk specification are

120 Chapter 6. Implementation

provided on lines 34–51:

fe(gg) , i fx(gg) , r fy(gg) , r

fe(g1) , i fx(g1) , i fy(g1) , i

fe(g2) , i fx(g2) , i fy(g2) , i

The extension adds a new command-line flag -t, which enables the experimental parallel implemen-
tation of the Slk model checking algorithm. It has a non-negative numeric parameter which defines
the maximum depth of thread branching, e.g. -t 3 allows at most 23 = 8 threads. This functionality is
disabled by default.

6.2.3 Architecture

In order to add Slk support to MCMAS, we had to modify its existing source code and add new files. We
will first give a high-level overview of how we updated the steps of the original model checking process.
Then we shall list the modified and new source files. Finally, we will discuss the experimental parallel
implementation of the model checking algorithm.

Model Checking Process

The original MCMAS model checking process (see Subsection 6.1.3) has been modified in the Slk
extension as follows:

1. Parser. The ISPL token and grammar files were augmented with Slk syntax (see Table 6.2).

2. Syntax check. The updated syntax checking procedure verifies that all Slk specifications are
sentences (see Definition 4.1), i.e. that all agents are bound to a strategy when a temporal transition
occurs.

3. Symbolic encoding. The symbolic encoding of the global states and joint actions is unchanged.
Since the number of BDD variables needed to represent variable assignments (see Definition 4.7)
depends on the Slk formula, they are allocated for each Slk specification separately in the recursive
model checking algorithm (step 5). More precisely, BDD variables for representing the strategy
assigned to a variable x are allocated when the corresponding quantifier 〈〈x〉〉 or [[x]] is encountered.

4. Reachability analysis. This step is completely unchanged in the extension.

5. Model checking. We have augmented the existing recursive symbolic model checking algorithm
of MCMAS with the symbolic implementation of our Slk model checking algorithm presented in
Subsection 4.2.4.

6. Witness/counterexample generation. We added support for Slk to the existing procedure
for generating witness/counterexample executions. More importantly, we implemented Slk wit-
ness/counterexample strategy synthesis, which we discussed in Subsection 4.2.3.

Please refer to the attached project source code for low-level details of the individual steps.

Source Code Structure

We modified and augmented the original MCMAS codebase (see Subsection 6.1.3) while developing the
Slk extension. The following files were added or updated (not all files are listed):

• main.cc – We made only minor changes to the main file (e.g. added a function for printing witness
strategies).

• Makefile – We added build rules for the new files.

• examples/ – We added several sample ISPL files which demonstrate the new functionality of the
extension.

6.2. Epistemic Strategy Logic Extension 121

• include/ – We included prototype declarations for new classes in the existing header files. In
addition, we added separate header files for benchmarking and the Slk model checking algorithm
functions.

• parser/ – We modified the ISPL token and grammar files.

• utilities/ – All new features were implemented in this folder:

– benchmark.cc (new) – Toolkit for analysing the performance of both extensions (Slk and
Sl[1g]). We developed it specifically for this project in order to find bottlenecks in the
algorithms.

– modal_formula.cc – We extended the syntax checking procedure, the recursive model check-
ing algorithm, and the function for generating witnesses/counterexamples.

– read_options.cc – We added the -t command-line flag, which enables experimental paral-
lelisation of Slk model checking.

– sl_imperfect_recall.cc (new) – This file contains the core Slk model checking procedures,
which are invoked by the recursive model checking algorithm in modal_formula.cc. The
core functionality includes calculating the shared state space of a quantifier, allocating BDD
variables for strategies, and Slk temporal operators. This file also provides the experimental
parallel implementation of the model checking algorithm.

– strategy.cc (new) – Class representing Slk strategies.

Parallel Implementation

As we have explained in Subsection 4.2.4, our symbolic implementation of the Slk model checking
algorithm represents a strategy f ∈ UStrA for a set of agents A ⊆ Agt as a mapping from shared local
states S ∈ G/∼C

A to actions. In other words, for every shared local state S ∈ G/∼C
A, we store the

corresponding action using a separate set of BDD variables. Therefore, we must explicitly enumerate
the shared local state space. The algorithm which performs this computation for a given set of agents
A ⊆ Agt is shown in Figure 6.1.

Our experimental results indicate that the enumeration of local states (function LocalStates in
Figure 6.1) is a major bottleneck of the algorithm. In order to improve the performance of our algorithm,
we created an experimental parallel implementation of the procedure which uses multiple threads. It
spawns a separate thread for one of the two recursive function calls on line 17 of the LocalStates
function in Figure 6.1. Each time such a branching occurs, both threads are left with roughly one half
of the original state space. In order not to create too many threads, branching only occurs in the t
top-most recursive calls, where t is the maximum depth of thread branching (set via the -t command-
line flag). More precisely, a new thread is spawned only when n < t, where n is the fourth argument
of LocalStates and represents the current recursion depth. The impact of this optimisation on the
performance of the model checking algorithm is shown in Table 6.3.

While the results indicate that the optimisation does reduce model checking time, the approach
appears not to be very scalable. The problem is that the CUDD BDD package has no support for
concurrency. In order to avoid race conditions, each thread has to have a separate BDD manager2.
After all the local states are enumerated by the threads, the corresponding BDDs (one per local state)
must be transferred to a single BDD manager. Since each manager might be using a completely different
variable ordering (see Subsection 2.3.1), this transfer soon becomes the bottleneck when multiple threads
are used. The only solution to this problem, apart from rewriting the CUDD library, is to use a different
BDD package which supports concurrency. Given the fact that MCMAS already uses CUDD extensively
and the limited time for our project, we decided not pursue this direction any further. Instead, we
devoted all of our remaining time to the development of a model checking algorithm for Sl[1g], which
we then implemented as another extension for MCMAS (see the next section).

2A BDD manager stores a hash table for BDD nodes, which ensures the canonicity of the BDDs, and other auxiliary
data structures. Every BDD is handled by a BDD manager. More importantly, the arguments of BDD operations must
have the same manager.

122 Chapter 6. Implementation

1 function SharedStates(A, v, G) . Enumerate shared local states of agents A.
2 for k := 0 to |A| − 1 do
3 L̂A(k) := LocalStates(A(k), v, G(v), 0)
4 end for
5 S := L̂A(0)

6 for k := 1 to |A| − 1 do
7 S := Merge(S, L̂A(k))
8 end for
9 return S

10 end function

11 function LocalStates(i, v, λ, n) . Enumerate local states of agent i.
12 if λ = ⊥ then
13 return ∅ . λ is not reachable.
14 else if n = |viE| then
15 return {λ}
16 else
17 return LocalStates(i, v, λ ∧ ¬viE(n), n+ 1) ∪ LocalStates(i, v, λ ∧ viE(n), n+ 1)
18 end if
19 end function

20 function Merge(S1, S2) . Merge state spaces S1 and S2.
21 for j := 0 to |S2| − 1 do
22 S := {s ∈ S1 | s(v) ∧ S2(j)(v) 6= ⊥} . Find states S ⊆ S1 compatible with S2(j)
23 S1 := S1 \ S . Remove the compatible states S.
24 S1 := S1 ∪

{
S2(j)(v) ∨

∨
s∈S s(v)

}
. Merge S2(j) and the compatible states S.

25 end for
26 return S1

27 end function

Figure 6.1: Functions for enumerating the set of shared local states S = G/∼C
A for a set of agents A ⊆ Agt .

v is a Boolean vector for representing the current global state and G is the set of global states.

6.3. One-Goal Strategy Logic Extension 123

6.3 One-Goal Strategy Logic Extension

One-goal Strategy Logic (Sl[1g]) is another fragment of Sl, which we discussed in Chapter 5. Unlike
Slk, it is defined with respect to perfect recall semantics and complete information, i.e. agents have both
perfect memory of the past and complete knowledge of the system. In Section 5.2 we provided a model
checking algorithm for Sl[1g] as well as an efficient symbolic implementation of it. Furthermore, we have
developed an extension of MCMAS which puts the algorithm into practice and thereby adds support for
Sl[1g] model checking and strategy synthesis to MCMAS. We will now discuss the new functionality of
the extension, its usage, and the modified architecture.

6.3.1 Functionality

The Sl[1g] extension of MCMAS, which we developed as part of this project, has the following new
features (see Subsection 6.1.1 for the list of existing features):

1. Specification languages (updated). Our extension adds support for Sl[1g] specifications to
MCMAS. The new Sl[1g] syntax is separate from the other logics (Ctl, Atl, and Slk) because
the fragment does not support epistemic modalities (due to complete information) and uses a very
different model checking algorithm based on ω-automata (see Section 5.2).

2. Model checking (updated). We have incorporated the efficient symbolic implementation of our
Sl[1g] model checking algorithm (see Subsection 5.2.4) in the extension. Hence, it now supports
the verification of Sl[1g] specifications.

We implemented both the original and the optimised version of our algorithm (see Subsection 5.2.5).

3. Strategy synthesis (new). We implemented full Sl[1g] strategy synthesis, which we discussed in
Subsection 5.2.3 and explained how it can implemented symbolically in Subsection 5.2.4. Unlike the
Slk extension (see Subsection 6.2.1), the Sl[1g] extension supports strategy synthesis for arbitrary
Sl[1g] formulas. However, unlike Slk witness and counterexample strategies, the synthesised
strategies may be inter-dependent, i.e. the next action of one strategy in the current state might
depend on the next actions of other strategies (see Subsection 5.2.3).

4. Witness and counterexample strategies (new). Although witness and counterexample strate-
gies for formulas of the form 〈〈x0〉〉 . . . 〈〈xm−1〉〉ψ and [[y0]] . . . [[yn−1]]φ are technically subsumed by
full strategy synthesis (previous point), the extension provides the option to present them dif-
ferently. Rather then generating a full solution with inter-dependent strategies for all variables
(see Figure 5.2), a separate strategy is constructed for each variable in the existential or universal
quantification prefix. Both representations are demonstrated in Subsection 6.3.2.

To sum up, the extension adds support for Sl[1g] model checking and strategy synthesis. Similarly
to the Slk extension presented in Section 6.2, this is a major enhancement of MCMAS functionality
as it provides the possibility to automatically synthesise agents’ behaviour which satisfies an Sl[1g]
specification.

As we have pointed out in Section 3.2, Sl[1g] strictly subsumes Atl*. Therefore, all logics in the
Atl* hierarchy which were previously not supported by MCMAS, notably Ltl, Ctl*, and Atl* (see
Subsections 2.2.1, 2.2.3, and 2.2.4), are now indirectly3 supported thanks to our extension. Moreover, the
extension has optimal time complexity4 for Atl* model checking and strategy synthesis (see Table 2.1
and Theorem 5.4). This is a major achievement because there are no existing tools that would support
Atl* specifications (as far as we know).

3The formulas must be rewritten into equivalent Sl[1g] formulas in order to be checked by MCMAS, e.g. an Ltl formula ψ
has to be transformed to the equivalent Sl[1g] formula [[x0]] . . .

[[
x|Agt|−1

]]
(Agt(0), x0). . .

(
Agt(|Agt | − 1), x|Agt|−1

)
ψ. This

is only a matter of adding extra ISPL syntax which would automatically perform the translation.
4This is not the case for Ltl and Ctl*, which both have PSpace-complete model checking complexity with respect to

the size of the formula (see Table 2.1).

124 Chapter 6. Implementation

6.3.2 Usage

The Sl[1g] extension augments ISPL syntax with the new Sl[1g] operators (see Definition 5.2). The
translation from Sl[1g] formulas to ISPL syntax is the same as for Slk formulas (see Table 6.2). Unlike
Slk formulas, Sl[1g] formulas cannot contain operators of the other modal logics supported by MCMAS.
In order to avoid ambiguity (Slk and Sl[1g] use the same operators), every Sl[1g] formula must be
preceded by a #PR (perfect recall) tag in an ISPL file:

1 ...

2 Formulae

3 -- SLK formula

4 <<e>> (Environment, e) <<x>> (Player, x) <<y>> (Player2, y) G !(p1 or p2)

5 -- SL[1G] formula

6 #PR <<e>> (Environment, e) <<x>> (Player, x) <<y>> (Player2, y) G !(p1 or p2)

7 end Formulae

8 ...

The Formulae section contains the formula 〈〈e〉〉(E, e)〈〈x〉〉(1, x)〈〈y〉〉(2, y)G¬ (p1 ∨ p2) twice: Line 4 repre-
sents an Slk formula (imperfect recall with incomplete information) whereas line 6 represents an Sl[1g]
formula (perfect recall with complete information). Apart from the #PR tag, the usage of the Sl[1g]
extension is the same as that of the original tool and the Slk extension (see Subsections 6.1.2 and 6.2.2).

Witness/Counterexample Strategy Synthesis

We first demonstrate the ability of the Sl[1g] extension to synthesise witness/counterexample strategies
and its limitations. Consider the file examples/toy_model_s1g.ispl containing the toy model intro-
duced in Section 3.3 and the Sl[1g] specification 〈〈e〉〉(E, e)〈〈x〉〉(1, x)〈〈y〉〉(2, y)G¬ (p1 ∨ p2), which means
that “there exist strategies for all agents such that neither player will ever win”. This formula is ex-
pressed in ISPL syntax as #PR <<e>> (Environment, e) <<x>> (Player1, x) <<y>> (Player2, y)

G !(p1 or p2). The complete ISPL file is provided in Appendix A. The following command checks the
specification and generates witness/counterexample strategies:

$./mcmas -c 1 examples/toy_model_sl1g.ispl

The Sl[1g] extension generates the following output (additional line breaks were inserted so that the
output would fit on a page):

1 **

2 MCMAS-SL v1.1.0

3

4 This software comes with ABSOLUTELY NO WARRANTY, to the extent

5 permitted by applicable law.

6

7 Please check http://vas.doc.ic.ac.uk/tools/mcmas/ for the latest release.

8 Please send any feedback to <mcmas@imperial.ac.uk>

9 **

10

11 Command line: ./mcmas -c 1 examples/toy_model_sl1g.ispl

12

13 examples/toy_model_sl1g.ispl has been parsed successfully.

14 Global syntax checking...

15 Done

16 Global reachable states:

17 g0: Environment.state=game (initial)

18 g1: Environment.state=p1win

19 g2: Environment.state=p2win

20 Perfect recall formula 1: <<e>> (Environment, e) <<x>> (Player1, x) <<y>>

21 (Player2, y) G (! (p1 || p2)), is TRUE in the model

6.3. One-Goal Strategy Logic Extension 125

22 Witness 1/1 (<<e>> (Environment, e) <<x>> (Player1, x) <<y>> (Player2, y)

23 G (! (p1 || p2))):

24 Strategy <<e>>:

25 start:

26 g0->s0 (initial)

27 g1->s1

28 g2->s2

29 s0 (winning):

30 action: idle

31 g0->s3

32 g1->s4

33 g2->s5

34 s1:

35 action: <no winning action>

36 g1->s6

37 s2:

38 action: <no winning action>

39 g2->s7

40 s3 (winning):

41 action: idle

42 g0->s3

43 g1->s4

44 g2->s5

45 s4:

46 action: <no winning action>

47 g1->s6

48 s5:

49 action: <no winning action>

50 g2->s7

51 s6:

52 action: <no winning action>

53 g1->s6

54 s7:

55 action: <no winning action>

56 g2->s7

57 Strategy <<x>>:

58 start:

59 g0->s0 (initial)

60 g1->s1

61 g2->s2

62 s0 (winning):

63 action: paper

64 g0->s3

65 g1->s4

66 g2->s5

67 s1:

68 action: <no winning action>

69 g1->s6

70 s2:

71 action: <no winning action>

72 g2->s7

73 s3 (winning):

74 action: paper

75 g0->s3

76 g1->s4

77 g2->s5

126 Chapter 6. Implementation

78 s4:

79 action: <no winning action>

80 g1->s6

81 s5:

82 action: <no winning action>

83 g2->s7

84 s6:

85 action: <no winning action>

86 g1->s6

87 s7:

88 action: <no winning action>

89 g2->s7

90 Strategy <<y>>:

91 start:

92 g0->s0 (initial)

93 g1->s1

94 g2->s2

95 s0 (winning):

96 action: paper

97 g0->s3

98 g1->s4

99 g2->s5

100 s1:

101 action: <no winning action>

102 g1->s6

103 s2:

104 action: <no winning action>

105 g2->s7

106 s3 (winning):

107 action: paper

108 g0->s3

109 g1->s4

110 g2->s5

111 s4:

112 action: <no winning action>

113 g1->s6

114 s5:

115 action: <no winning action>

116 g2->s7

117 s6:

118 action: <no winning action>

119 g1->s6

120 s7:

121 action: <no winning action>

122 g2->s7

123 done, 1 perfect recall formulae successfully read and checked

124 execution time = 0.015

125 number of reachable states = 3

126 BDD memory in use = 9163152

Line 21 indicates that the Sl[1g] formula is true. Witness strategies for the variables e, x, and y are
provided on lines 24–122. Unlike Slk witness strategies (see Subsection 6.2.2), which are memoryless,
Sl[1g] witness strategies require finite memory. Thus, they are presented to the user in the form of
automata where each automaton state corresponds to one memory state. Since the Sl[1g] formula is
true in the initial state gg, the underlying Ltl formula G¬ (p1 ∨ p2) will be true along the path if all
agents follow the corresponding witness strategies.

6.3. One-Goal Strategy Logic Extension 127

start

s0 : p

s3 : p

s1 : −

s4 : −

s6 : −

s2 : −

s5 : −

s7 : −

gg

gg

gg

g1 g2

g1 g2

g1 g2

g1 g2
g1 g2

g1 g2

Figure 6.2: Finite memory witness strategy for variable x in the Sl[1g] formula
〈〈e〉〉(E, e)〈〈x〉〉(1, x)〈〈y〉〉(2, y)G¬ (p1 ∨ p2) synthesised by the Sl[1g] extension for the toy model.
Winning memory states have double borders and contain the actions that should be performed next,
e.g. paper should be played in the memory state s3. Memory updates are represented by transitions
labelled with the new global states.

We shall now explain how the witness strategies synthesised by the extension work. The automaton
representation of the strategy for variable x is shown in Figure 6.2. The initial memory state of the
automaton depends on the initial global state. This dependency is represented by the start node. For
example, if the initial global state is gg, the initial memory state is s0. If the Sl[1g] formula can be
enforced from a memory state, it is referred to as a winning memory state and is assigned the next
action to perform, e.g. the next action in s3 is paper. The memory state is updated upon every temporal
transition with the new global state. For example, if the current memory state is s3 and a temporal
transition to the global state g1 occurs, the new memory state is s4. Note that neither the next action
nor the memory update depends directly on the current global state.

Witness strategies can only be synthesised for existential quantification prefixes 〈〈x0〉〉 . . . 〈〈xm−1〉〉
in states where the formula holds. Conversely, counterexample strategies can only be synthesised for
universal quantification prefixes [[y0]] . . . [[yn−1]] in states where the formula does not hold. Consider
the much more interesting Sl[1g] sentence γ , [[e]](E, e)[[x]](1, x)〈〈y〉〉(2, y)G¬ (p1 ∨ p2) used throughout
Chapter 5, which means roughly: “Whichever action player 1 performs, there exists an action for player 2
such that neither player will ever win”. Counterexample strategies can be synthesised for the universal
quantification prefix [[e]][[x]] of γ in states g1 and g2, where it does not hold. However, we are more
interested in synthesising a strategy for player 2 (variable y). Unfortunately, this cannot be done using
witness strategy synthesis because the strategy depends on the strategies for the environment and player 1
(variables e and x). General strategy synthesis, which we describe next, has to be used in this case.

General Strategy Synthesis

We now demonstrate the more general ability of the Sl[1g] extension to synthesise arbitrary strategies.
Consider the file examples/toy_model_sl1g2.ispl containing the toy model introduced in Section 3.3
and the Sl[1g] specification γ , [[e]](E, e)[[x]](1, x)〈〈y〉〉(2, y)G¬ (p1 ∨ p2) discussed earlier. This formula
is expressed in ISPL syntax as #PR [[e]] (Environment, e) [[x]] (Player1, x) <<y>> (Player2,

y) G !(p1 or p2). The complete ISPL file is provided in Appendix A. The following command checks
the specification γ and synthesises strategies for all variables in it:

$./mcmas -solutions examples/toy_model_sl1g2.ispl

128 Chapter 6. Implementation

where -solutions is a new command-line flag introduced by the Sl[1g] extension which enables general
strategy synthesis. The following output is generated by the extension (additional line breaks were
inserted so that the output would fit on a page):

1 **

2 MCMAS-SL v1.1.0

3

4 This software comes with ABSOLUTELY NO WARRANTY, to the extent

5 permitted by applicable law.

6

7 Please check http://vas.doc.ic.ac.uk/tools/mcmas/ for the latest release.

8 Please send any feedback to <mcmas@imperial.ac.uk>

9 **

10

11 Command line: ./mcmas -solutions examples/toy_model_sl1g2.ispl

12

13 examples/toy_model_sl1g2.ispl has been parsed successfully.

14 Global syntax checking...

15 Done

16 Encoding BDD parameters...

17 Building partial transition relation...

18 Building BDD for initial states...

19 Building reachable state space...

20 Checking formulae...

21 Verifying imperfect recall properties...

22 done, 0 imperfect recall formulae successfully read and checked

23 Verifying perfect recall properties...

24 Global reachable states:

25 g0: Environment.state=game (initial)

26 g1: Environment.state=p1win

27 g2: Environment.state=p2win

28 Perfect recall formula 1: [[e]] (Environment, e) [[x]] (Player1, x) <<y>>

29 (Player2, y) G (! (p1 || p2)), is TRUE in the model

30 Solution 1/1 ([[e]] (Environment, e) [[x]] (Player1, x) <<y>> (Player2, y)

31 G (! (p1 || p2))):

32 start:

33 g0->s0 (initial)

34 g1->s1

35 g2->s2

36 s0 (winning):

37 temporal transition:

38 g0->s3

39 g1->s4

40 g2->s5

41 strategies:

42 [[e]]=idle:

43 [[x]]=paper:

44 <<y>>=paper*: g0

45 <<y>>=rock: g1

46 <<y>>=scissors: g2

47 [[x]]=rock:

48 <<y>>=paper: g2

49 <<y>>=rock*: g0

50 <<y>>=scissors: g1

51 [[x]]=scissors:

52 <<y>>=paper: g1

6.3. One-Goal Strategy Logic Extension 129

53 <<y>>=rock: g2

54 <<y>>=scissors*: g0

55 s1:

56 temporal transition:

57 g1->s6

58 strategies:

59 [[e]]=idle*:

60 [[x]]=idle*:

61 <<y>>=idle: g1

62 s2:

63 temporal transition:

64 g2->s7

65 strategies:

66 [[e]]=idle*:

67 [[x]]=idle*:

68 <<y>>=idle: g2

69 s3 (winning):

70 temporal transition:

71 g0->s3

72 g1->s4

73 g2->s5

74 strategies:

75 [[e]]=idle:

76 [[x]]=paper:

77 <<y>>=paper*: g0

78 <<y>>=rock: g1

79 <<y>>=scissors: g2

80 [[x]]=rock:

81 <<y>>=paper: g2

82 <<y>>=rock*: g0

83 <<y>>=scissors: g1

84 [[x]]=scissors:

85 <<y>>=paper: g1

86 <<y>>=rock: g2

87 <<y>>=scissors*: g0

88 s4:

89 temporal transition:

90 g1->s6

91 strategies:

92 [[e]]=idle*:

93 [[x]]=idle*:

94 <<y>>=idle: g1

95 s5:

96 temporal transition:

97 g2->s7

98 strategies:

99 [[e]]=idle*:

100 [[x]]=idle*:

101 <<y>>=idle: g2

102 s6:

103 temporal transition:

104 g1->s6

105 strategies:

106 [[e]]=idle*:

107 [[x]]=idle*:

108 <<y>>=idle: g1

130 Chapter 6. Implementation

109 s7:

110 temporal transition:

111 g2->s7

112 strategies:

113 [[e]]=idle*:

114 [[x]]=idle*:

115 <<y>>=idle: g2

116 done, 1 perfect recall formulae successfully read and checked

117 execution time = 0.046

118 number of reachable states = 3

119 BDD memory in use = 9195888

Line 29 indicates that γ is true in the initial state gg. The synthesised strategies are provided on lines 32–
115 in the form of one large automaton which encodes both the memory and interdependencies between
strategies. Consider the memory state s0, which is winning, i.e. γ can be enforced by the existentially
quantified strategies. It has two fields:

1. temporal transition. This field defines how the memory state is updated upon temporal tran-
sition. The memory update is the same as for witness Sl[1g] strategies presented earlier.

For example, if the current memory state is s0 and the next global state is g0, the next memory
state is s3.

2. strategies This field represents how the next action of each strategy depends on the actions of
other strategies. If an existential strategy can enforce γ from its current memory state, its next
action is marked with *. Conversely, if a universal strategy can falsify γ from its current memory
state, its next action is also marked with *. The next global state for each combination of actions
is also provided for convenience.

For example, if the current memory state (of the strategy for variable y) is s0 and the next actions
of strategies for variables e and x are idle and scissors respectively, the next action of the strategy
for variable y is scissors. The next global state will then be g0, which in turn determines the next
memory state s3 (according to the temporal transition field).

Observe that the synthesised solution has a very similar structure to the combined parity game GγI
in Figure 5.2. This is a direct consequence of the Sl[1g] strategy synthesis procedure discussed in
Subsection 5.2.3.

Separate Determinisation

The separate determinisation optimisation technique for the Sl[1g] model checking algorithm proposed
in Subsection 5.2.5 is enabled by default. It can be disabled using the command-line flag -sd 0.

6.3.3 Architecture

In order to add Sl[1g] support to MCMAS, we had to modify its existing source code and add new
files. We will first give a high-level overview of how we updated the steps of the original model checking
process and then list the modified and new source files.

Model Checking Process

The original MCMAS model checking process (see Subsection 6.1.3) has been modified in the Sl[1g]
extension as follows:

1. Parser. The ISPL token and grammar files were augmented with Sl[1g] syntax (see Table 6.2).

2. Syntax check. Since Sl[1g] formulas cannot be mixed with other logics and have a distinct syntax
(thanks to the #PR tag), we implemented the syntax check as a separate procedure. It verifies that
all Sl[1g] specifications are sentences that satisfy the syntactic constraints (see Definition 5.2).

6.3. One-Goal Strategy Logic Extension 131

3. Symbolic encoding. The symbolic encoding of the global states and joint actions is unchanged.
Since the number of BDD variables needed to represent the auxiliary model checking data struc-
tures (see Subsection 5.2.1) depends on the Sl[1g] formula, they are allocated for each Sl[1g]
specification separately in the model checking algorithm (step 5).

4. Reachability analysis. This step is completely unchanged in the extension.

5. Model checking. We implemented the symbolic model checking algorithm for Sl[1g] presented
in Subsection 5.2.4. Similarly to the syntax checking procedure (step 2), the algorithm is separate
from the one for the other logics (including Slk).

6. Witness/counterexample generation. The method for Sl[1g] witness/counterexample strat-
egy synthesis is again separate from the one for the other logics supported by MCMAS. It reuses
the solution calculated by the procedure for general strategy synthesis (step 7).

7. General strategy synthesis. We implemented general strategy synthesis symbolically as ex-
plained in Subsection 5.2.4. Since this functionality is not provided by either the original tool or
the Slk extension, it was developed as a completely new procedure.

Please refer to the attached project source code for low-level details of the individual steps.

Source Code Structure

We modified and augmented the original MCMAS codebase (see Subsection 6.1.3) while developing the
Sl[1g] extension. The following files were added or updated (not all files are listed):

• main.cc – We made only minor changes to the main file (e.g. added a function for printing reachable
states).

• Makefile – We added build rules for the new files.

• examples/ – We added several sample ISPL files which demonstrate the new functionality of the
extension.

• include/ – We included prototype declarations for new classes in the existing header files. In
addition, we added separate header files for benchmarking and the Sl[1g] model checking algorithm
functions and classes.

• parser/ – We modified the ISPL token and grammar files.

• utilities/ – All new features were implemented in this folder:

– arena.cc, automaton.cc, game.cc, generalized_automaton.cc, intermediate_automaton
.cc, nondeterministic_automaton.cc, parity_automaton.cc (new) – Classes representing
auxiliary data structures used by the Sl[1g] model checking algorithm (see Subsection 5.2.1).
A UML diagram for all these classes is shown in Figure 6.3.

– benchmark.cc (new) – Toolkit for analysing the performance of both extensions (Slk and
Sl[1g]). We developed it specifically for this project in order to find bottlenecks in the
algorithms.

– modal_formula.cc – We implemented the (separate) syntax checking procedure for Sl[1g]
formulas.

– quantifier.cc (new) – Class representing a strategy quantifier (e.g. 〈〈x〉〉).
– read_options.cc – We added the -solutions and -sd command-line flags, which enable

general strategy synthesis and toggle separate determinisation respectively.

– sl_perfect_recall.cc (new) – This is the main file of the Sl[1g] extension. It contains
the implementation of the recursive model checking algorithm with strategy synthesis (see
Subsection 5.2.4).

– sl_solution.cc (new) – Class representing the solution of an Sl[1g] formula. It contains
(i) the set of global states in which the formula holds and (ii) the synthesised strategies with
interdependencies represented as one large automaton (see Subsection 6.3.2).

132 Chapter 6. Implementation

automaton

ω-automaton
(Definition 2.40)

nondeterministic
automaton

non-deterministic
Büchi automaton
(Definition 2.39)

generalized
automaton

non-deterministic
generalised Büchi

automaton
(Definition 2.39)

parity
automaton

deterministic parity
automaton

(Definition 2.39)

arena

arena
(Definition 2.47)

intermediate
automaton

(see below)

game

generalised parity game
(Definition 2.49)

Figure 6.3: UML diagram for classes representing auxiliary data structures used by the Sl[1g] model
checking algorithm. The intermediate_automaton class represents a more general form of a non-
deterministic generalised Büchi automaton, which we use for intermediate results in the standard trans-
lation (see Subsection 2.4.3).

6.4. Experimental Results 133

6.4 Experimental Results

We present here the experimental results obtained using the Slk and Sl[1g] extensions discussed in
Sections 6.2 and 6.3 respectively on several scalable real-life scenarios. We measure the amount of time
and memory used by both extensions and compare it with the performance of the original tool on Ctl
and Atl. We also demonstrate the differences in expressiveness and strategy synthesis between the two
fragments.

The following scalable real-life scenarios are discussed in this section:

1. Dining Cryptographers. A simple security protocol which ensures anonymity of participants.
We use this example to demonstrate the ability of Slk to express agents’ knowledge and compare
the performance of the tool on equivalent Ctlk, Atlk, and Slk formulas. We also use it to evaluate
the impact of the experimental parallel implementation of the Slk model checking algorithm, which
we discussed at the end of Subsection 6.2.3.

2. Cake cutting. A problem where a cake of a certain size needs to be divided fairly among a group
of agents. It demonstrates not only the ability of Slk to express Nash equilibria, but also the fact
that our Slk extension can synthesise protocols which achieve them.

3. Scheduler. A process scheduler which ensures mutual exclusion of a shared resource while pre-
venting starvation. We use this example to compare the performance of Ctl, Atl, Slk, and
Sl[1g] model checking. We also evaluate the impact of the separate determinisation optimisation
technique for the Sl[1g] model checking algorithm proposed in Subsection 5.2.5.

4. Nim. A traditional game in which players take turns to remove objects from heaps until all heaps
are empty. We use this example to compare the performance of Atl, Slk, and Sl[1g] model
checking on a fixed-size specification.

The experiments were run on an Intel R© CoreTM i7-3770 CPU 3.40GHz lab machine with 16GB RAM
running Linux kernel version 3.8.0-35-generic. ISPL files and results for all scenarios can be found
in the examples/benchmarks folder in the attached project archive. In addition, the source code of
automatic ISPL code generators for some of the scenarios can be found in the examples/generators

folder.

6.4.1 Dining Cryptographers

The dining cryptographers protocol is a hypothetical protocol introduced in [29] where the anonymity
of participants is preserved due to lack of knowledge:

“Three cryptographers are sitting down to dinner at their favourite three-star restaurant.
Their waiter informs them that arrangements have been made with the mâıtre d’hôtel for the
bill to be paid anonymously. One of the cryptographers might be paying for the dinner, or
it might have been NSA (U.S. National Security Agency). The three cryptographers respect
each other’s right to make an anonymous payment, but they wonder if NSA is paying. They
resolve their uncertainty fairly by carrying out the following protocol:

Each cryptographer flips an unbiased coin behind his menu, between him and the cryptographer
on his right, so that only the two of them can see the outcome. Each cryptographer then
states aloud whether the two coins he can see—the one he flipped and the one his left-hand
neighbour flipped—fell on the same side or on different sides. If one of the cryptographers is
the payer, he states the opposite of what he sees. An odd number of differences uttered at the
table indicates that a cryptographer is paying; an even number indicates that NSA is paying
(assuming that the dinner was paid for only once). Yet if a cryptographer is paying, neither
of the other two learns anything from the utterances about which cryptographer it is.”

The protocol described above works for an arbitrary number of cryptographers n ≥ 3. We model it as an
interpreted system (see Definition 2.5) with agents Agt , {E, c1, . . . , cn}. We model each cryptographer
as an agent whose actions represent the possible announcements (“same” and “different”). The coins
are internal variables of the Environment which we make selectively observable to the agents via their
Lobsvars fields (see Subsection 6.1.2):

134 Chapter 6. Implementation

1 Agent DinCrypt1

2 Lobsvars = {coin1, coin2};

3 ...

4 end Agent

The required property of the protocol—if a cryptographer did not pay and an odd number of differences
is uttered at the table, then (i) he knows that another cryptographer paid for the dinner but (ii) he does
not know which one it was—is expressed in Ctlk, Atlk, and Slk as:

ϕCtlk , AGψ ϕAtlk , 〈〈∅〉〉Gψ ϕSlk , [[xe]][[x1]] · · · [[xn]](E, xe)(c1, x1) · · · (cn, xn)Gψ (6.1)

where5:

ψ , (odd ∧ ¬paid1)→

[
Kc1

n∨
i=2

paid i

]
︸ ︷︷ ︸
cryptographer c1

knows that another
cryptographer paid

∧

[
n∧
i=2

¬Kc1 paid i

]
︸ ︷︷ ︸

cryptographer c1
does not know which
cryptographer paid

The model checking results for the formulas above with 3 ≤ n ≤ 18 cryptographers in Table 6.3 and
Figure 6.4 indicate that reasonably large state spaces can be verified by the Slk extension. We can
observe that it has similar running time and peak memory usage to Ctlk and Atlk for n < 10 cryp-
tographers. However, its performance drops considerably faster for n ≥ 10 cryptographers because of
the large number of shared local states that need to be enumerated (see the discussion at the end of
Subsection 6.2.3). Consequently, the Slk model checking procedure runs out of physical memory (16GB)
for n > 18 cryptographers. In contrast, Ctlk and Atlk require no assignments and their performance6

is dominated by the calculation of the reachable state space.
Table 6.3 and Figure 6.4 also show the impact of the experimental parallel implementation of the Slk

extension discussed at the end of Subsection 6.2.3. More precisely, we evaluated the performance of the
Slk algorithm with 1, 2, and 4 threads (thread branching 0, 1, and 2 set using the -t command-line flag).
We can observe that the 2-thread version is approximately 16% faster than the sequential one for n ≥ 10
cryptographers7. Although the 4-thread version is slightly faster than the sequential one for n ≥ 11
cryptographers as well, it does not outperform the 2-thread version for n < 18 cryptographers. This
result confirms our prior belief that the optimisation approach is not very scalable (see Section 6.2.3).
The execution of the 4-thread version on the problem with n = 18 cryptographers was prematurely
terminated8, possibly because it used too much memory (3.8GB) and/or CPU (166%).

Note that the protocol specification cannot be expressed in Sl[1g] because it does not support epis-
temic modalities expressing agents’ knowledge due to complete information semantics (see Section 5.1).

6.4.2 Cake Cutting

The cake-cutting problem is a well-known mathematical puzzle [41]:

“Two persons own a cake which they want to split into two parts to be allotted between them.
The cake may be made of different ingredients with different values to each person, i.e. each
person has his own measure for evaluating any given part of the cake. Is there any procedure
or protocol which will enable the two persons to cut the cake into two pieces such that each
person will get at least 1

2 of the cake by his own measure?”

We consider a generalisation of the problem [26, 27] where n ∈ N agents want to split a cake of size
d ∈ N. The problem is modelled as a multi-player game with n agents and an environment, which has
to provide a protocol to slice the cake in a fair way. The game has hybrid turns: at even rounds the n

5By symmetry of the problem, we can consider the first cryptographer without loss of generality.
6Surprisingly, the Atlk model checking algorithm is always faster than the one for Ctlk (despite Atlk being strictly

more expressive than Ctlk). However, this difference is negligible compared with the running time of the reachable state
space calculation.

7Incidentally, this is the same threshold from which Slk performance becomes considerably lower than that of Ctlk
and Atlk.

8We ran the experiment (with 4 threads and n = 18 cryptographers) repeatedly on different lab machines and it was
killed each time by the operating system.

6
.4

.
E

x
p

erim
en

tal
R

esu
lts

1
35

crypts
n

possible
states

reachable
states

reachability
time (s)

Ctlk Atlk
Slk

1 thread 2 threads 4 threads
time
(s)

mem
(MB)

time
(s)

mem
(MB)

time
(s)

mem
(MB)

time
(s)

mem
(MB)

time
(s)

mem
(MB)

3 82944 128 0.00 0.00 2.69 0.00 2.69 0.00 2.79 0.01 4.91 0.02 9.23
4 1.99× 106 320 0.02 0.00 2.71 0.00 2.70 0.00 2.91 0.02 4.97 0.04 9.24
5 4.78× 107 768 0.04 0.00 2.75 0.00 2.75 0.01 3.07 0.03 5.10 0.05 9.67
6 1.15× 109 1792 0.08 0.00 2.79 0.00 2.77 0.02 3.41 0.04 5.37 0.07 9.94
7 2.75× 1010 4096 0.21 0.00 3.03 0.00 2.97 0.05 4.47 0.08 5.88 0.12 10.71
8 6.60× 1011 9216 0.40 0.00 3.19 0.00 3.27 0.18 6.37 0.21 7.42 0.24 12.56
9 1.58× 1013 20480 0.43 0.00 3.38 0.00 3.42 0.38 9.59 0.38 9.82 0.46 15.96
10 3.80× 1014 45056 4.19 0.28 13.02 0.16 12.75 2.29 18.62 2.23 22.33 2.43 28.21
11 9.13× 1015 98304 1.69 0.04 5.49 0.01 4.75 5.01 23.55 4.37 27.51 4.77 39.59
12 2.19× 1017 212992 2.32 0.01 4.40 0.01 4.20 11.61 39.25 9.61 40.36 10.32 60.82
13 5.26× 1018 458752 2.05 0.10 6.50 0.03 5.62 32.63 81.95 26.30 79.75 28.39 118.27
14 1.26× 1020 983040 1.96 0.08 6.87 0.03 5.00 89.46 169.95 67.99 169.68 73.57 243.80
15 3.03× 1021 2.10× 106 21.35 0.35 12.73 0.08 9.29 163.77 363.66 139.42 354.18 156.57 500.96
16 7.27× 1022 4.46× 106 6.66 0.09 6.65 0.04 4.83 422.03 758.43 345.83 736.02 377.50 977.79
17 1.74× 1024 9.44× 106 9.10 0.13 6.67 0.08 6.04 734.44 1360.59 643.03 1270.93 705.44 1359.73
18 4.19× 1025 1.99× 107 65.94 0.50 12.66 0.14 12.67 2654.46 3550.66 2129.54 3680.89 process killed

Table 6.3: Experimental model checking results for the dining cryptographers protocol.

136 Chapter 6. Implementation

0

500

1000

1500

2000

2500

3000

2 4 6 8 10 12 14 16 18

ti
m

e
(s

)

cryptographers

Ctlk
Atlk

Slk (1 thread)
Slk (2 threads)
Slk (4 threads)

reachability

(a) Running time.

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16 18

m
em

or
y

(M
B

)

cryptographers

Ctlk
Atlk

Slk (1 thread)
Slk (2 threads)
Slk (4 threads)

(b) Peak memory usage.

Figure 6.4: Experimental model checking results for the dining cryptographers protocol.

6.4. Experimental Results 137

agents concurrently choose how they want to split the cake, while at odd rounds the environment decides
how to actually slice the cake and assigns the obtained pieces to a subset of the agents. Therefore, the
problem of splitting a cake of size d among n agents is divided into simpler problems in which cakes of
size d′ < d have to be split between n′ < n agents. The game terminates once each agent receives a slice.

We model the game as an interpreted system (see Definition 2.5) with agents Agt , {E, 1, . . . , n}
where [26]:

• Agents. The set of internal states of an agent i ∈ [1 .. n] is Li , [1 .. n] × [1 .. d] × {P,E}, where
the first component represents the number of agents n′ ≤ n among which the current cake has to
be split, the second component denotes the current size of the cake d′ ≤ d, and the flags P and E
indicate whether it is the agents’ or the environment’s turn.

The set of actions available to an agent i ∈ [1 .. n] is Act i , {⊥} ∪ [1 .. d] where ⊥ indicates no
choice (the agent already got his piece of cake or it is the environment’s turn) and a numeric value
represents the size of the slice he wants. The agent’s protocol is defined as Pi(〈(m, k,E) , lE〉) ,
Pi(〈(1, k,P) , lE〉) , {⊥} and Pi(〈(m, k,P) , lE〉) , [1 .. k] for m > 1.

• Environment. The internal states of the environment represent the possible divisions of the
cake among subsets of agents. To represent them, we need to introduce some auxiliary concepts.
Firstly, we define the set of functions F , {f : [1 .. n]→ [1 .. n] | ∃h ∈ [1 .. d] . img(f) = [1 .. h]}
which assign agents to pieces of cake. Secondly, the sizes of the pieces are encoded by means
of partial functions S , [1 .. n] ⇀ [1 .. d]. The possible divisions of the cake are then pairs

(f, s) ∈ H ,
{

(f, s) ∈ F × S
∣∣∣ dom(s) = img(f) ∧

∑
i∈dom(s) s(i) ≤ d

}
where f maintains the in-

formation about the splitting whose size is contained in s.

In order to define the protocol of the environment, we need to define a partial order on H which
allows us to identify all possible continuations from a given state. For all (f, s) , (f ′, s′) ∈ H, we
write that (f ′, s′) � (f, s) iff the following two conditions hold:

1. if f ′(i) = f ′(j), then f(i) = f(j), for all i, j ∈ [1 .. n];

2.
∑
j∈[1 .. n],f(j)=f(i) s

′(f ′(j)) ≤ s(f(i)), for all i ∈ [1 .. n].

Intuitively, (f ′, s′) � (f, s) if f ′ is a refinement of f , i.e. f ′ represents a finer partition than f , and
s′ is coherent with the sizes of the pieces s before the last cuts were made.

At this point, we can define the actions of the environment ActE , H and its local states LE ,
Act = H ×

∏n
i=1 Act i. Intuitively, the Cartesian product stores the previous actions of agents

i ∈ [1 .. n] (so that the environment could base its decision on their actions). Finally, the protocol
of the environment is defined as9:

PE((aE, a1, . . . , an)) ,

{
{aE} if ai = ⊥ for all i ∈ [1 .. n]

{(f, s) ∈ H | (f, s) � aE} otherwise

Intuitively, when it is the turn of the players, the environment has to preserve the previous splitting.
Otherwise, it can use all possible refinements on its previous move aE.

• Evolution. Since the states of the environment maintain both the information on the splitting
of the cake (environment’s previous action) and the choices made by the agents in the previous
round, the environment evolution function is simply tE(a, a′) , a′.

There are two cases for the agents’ evolution functions:

1. States of the form (m, k,P) (agents’ turn) merely allow a subset of m ≤ n agents to make a
proposal to the environment for the cut of their piece of cake of size k ≤ d. Therefore, we
have ti(〈(m, k,P) , a〉 , a′) , (m, k,E) for all i ∈ [1 .. n].

9The protocol might seem reversed because the environment makes no move when ai = ⊥ for all i ∈ [1 .. n]. However,
it is important to realise that a1, . . . , an refer to the previous actions of the agents. Hence, if the agents did not make any
move in the previous round, it is now their turn (unless the game is over, in which case the environment should not do
anything either).

138 Chapter 6. Implementation

2. States of the form (m, k,E) (environments’ turn) are used to adopt the decision of the
environment aE(a) = (f, s). To do this, we set ti(〈(m, k,E) , a〉 , a′) , (m′, k′,P) where
m′ , |{j ∈ [1 .. n] | f(j) = f(i)}| ≤ m and k′ , s(f(i)) for all i ∈ [1 .. n].

• Initial states. The set of initial states I , {g} contains a unique global state g ∈ G defined as:

1. li(g) = (n, d,P) for all i ∈ [1 .. n];

2. lE(g) = ((f, s) ,⊥, . . . ,⊥) where f(i) = 1 for all i ∈ [1 .. n] and s(1) = d.

• Assignment. We fix a set of atomic propositions AP , [1 .. n] × [1 .. d], where each atomic
proposition 〈i, c〉 ∈ AP indicates that agent i got piece of cake of size c. The assignment h : AP →
2G is formally defined as h(〈i, c〉) , {g ∈ G | li(g) = (1, c,P)} for all 〈i, c〉 ∈ AP .

The existence of a protocol for the environment is then given by the following Slk specification:

ϕ , 〈〈x〉〉(ϕF ∧ ϕS) (6.2)

where:

• ϕF , [[y1]] · · · [[yn]](ψNE → ψE) ensures that the protocol x is fair, i.e. all possible Nash equilibria
(y1, . . . , yn) of the agents guarantee equality of splitting;

• ϕS , 〈〈y1〉〉 · · · 〈〈yn〉〉ψNE ensures that the protocol has a solution, i.e. there is at least one Nash
equilibrium;

• ψNE ,
∧n
i=1

(∧d
v=1 (〈〈z〉〉[ipi(v))→

(∨d
c=v [pi(c)

))
ensures that if agent i has a strategy z that

allows him to obtain a piece of cake of size v once the strategies of the other agents are fixed, he
is already able to obtain a slice of size c ≥ v by means of his original strategy yi, i.e. the original
strategies y1, . . . , yn form a Nash equilibrium;

• ψE , [
∧n
i=1 pi(bd/nc) ensures that agent i is able to obtain a piece of size bd/nc;

• [, (E, x)(1, y1) · · · (n, yn), [i , (E, x)(1, y1) · · · (i, z) · · · (n, yn), and pi(c) , F 〈i, c〉 are auxiliary
abbreviations.

We were able to verify the formula ϕ defined above on a system with n = 2 agents and a cake of size d = 2.
Moreover, the Slk extension can automatically synthesise a witness strategy hx for the environment as
well as the Nash equilibrium (hy1 , hy2) of the agents10:

1 ------- Strategy x [Environment] -------

2 Agent Environment

3 E.a1=0, E.a2=0, E.f1=1, E.f2=1, E.s1=1, E.s2=0, E.turn=player (8): f_1_1_s_1

4 E.a1=0, E.a2=0, E.f1=1, E.f2=1, E.s1=2, E.s2=0, E.turn=player (7): f_1_1_s_2

5 E.a1=0, E.a2=0, E.f1=1, E.f2=2, E.s1=1, E.s2=1, E.turn=env (5): f_1_2_s_1_1

6 E.a1=0, E.a2=0, E.f1=1, E.f2=2, E.s1=1, E.s2=1, E.turn=player (9): f_1_2_s_1_1

7 E.a1=0, E.a2=0, E.f1=2, E.f2=1, E.s1=1, E.s2=1, E.turn=env (6): f_1_2_s_1_1

8 E.a1=0, E.a2=0, E.f1=2, E.f2=1, E.s1=1, E.s2=1, E.turn=player (10): f_2_1_s_1_1

9 E.a1=1, E.a2=1, E.f1=1, E.f2=1, E.s1=1, E.s2=0, E.turn=env (4): f_1_1_s_1

10 E.a1=1, E.a2=1, E.f1=1, E.f2=1, E.s1=2, E.s2=0, E.turn=env (3): f_1_1_s_2

11 E.a1=1, E.a2=2, E.f1=1, E.f2=1, E.s1=2, E.s2=0, E.turn=env (2): f_1_1_s_1

12 E.a1=2, E.a2=1, E.f1=1, E.f2=1, E.s1=2, E.s2=0, E.turn=env (1): f_2_1_s_1_1

13 E.a1=2, E.a2=2, E.f1=1, E.f2=1, E.s1=2, E.s2=0, E.turn=env (0): f_1_2_s_1_1

14 --

15 ----------- Strategy y1 [P1] -----------

16 Agent P1

17 E.a1=0, E.a2=0, E.f1=1, E.f2=1, E.s1=1, E.s2=0, E.turn=player, k=1, m=2 (8): a1

18 E.a1=0, E.a2=0, E.f1=1, E.f2=1, E.s1=2, E.s2=0, E.turn=player, k=2, m=2 (7): a2

19 E.a1=0, E.a2=0, E.f1=1, E.f2=2, E.s1=1, E.s2=1, E.turn=env, k=1, m=1 (5): a0

10Environment is abbreviated to E. A witness execution was also generated by the extension but we omit it for conciseness.

6.4. Experimental Results 139

20 E.a1=0, E.a2=0, E.f1=1, E.f2=2, E.s1=1, E.s2=1, E.turn=player, k=1, m=1 (9): a0

21 E.a1=0, E.a2=0, E.f1=2, E.f2=1, E.s1=1, E.s2=1, E.turn=env, k=1, m=1 (6): a0

22 E.a1=0, E.a2=0, E.f1=2, E.f2=1, E.s1=1, E.s2=1, E.turn=player, k=1, m=1 (10): a0

23 E.a1=1, E.a2=1, E.f1=1, E.f2=1, E.s1=1, E.s2=0, E.turn=env, k=1, m=2 (4): a0

24 E.a1=1, E.a2=1, E.f1=1, E.f2=1, E.s1=2, E.s2=0, E.turn=env, k=2, m=2 (3): a0

25 E.a1=1, E.a2=2, E.f1=1, E.f2=1, E.s1=2, E.s2=0, E.turn=env, k=2, m=2 (2): a0

26 E.a1=2, E.a2=1, E.f1=1, E.f2=1, E.s1=2, E.s2=0, E.turn=env, k=2, m=2 (1): a0

27 E.a1=2, E.a2=2, E.f1=1, E.f2=1, E.s1=2, E.s2=0, E.turn=env, k=2, m=2 (0): a0

28 --

29 ----------- Strategy y2 [P2] -----------

30 Agent P2

31 E.a1=0, E.a2=0, E.f1=1, E.f2=1, E.s1=1, E.s2=0, E.turn=player, k=1, m=2 (8): a1

32 E.a1=0, E.a2=0, E.f1=1, E.f2=1, E.s1=2, E.s2=0, E.turn=player, k=2, m=2 (7): a1

33 E.a1=0, E.a2=0, E.f1=1, E.f2=2, E.s1=1, E.s2=1, E.turn=env, k=1, m=1 (5): a0

34 E.a1=0, E.a2=0, E.f1=1, E.f2=2, E.s1=1, E.s2=1, E.turn=player, k=1, m=1 (9): a0

35 E.a1=0, E.a2=0, E.f1=2, E.f2=1, E.s1=1, E.s2=1, E.turn=env, k=1, m=1 (6): a0

36 E.a1=0, E.a2=0, E.f1=2, E.f2=1, E.s1=1, E.s2=1, E.turn=player, k=1, m=1 (10): a0

37 E.a1=1, E.a2=1, E.f1=1, E.f2=1, E.s1=1, E.s2=0, E.turn=env, k=1, m=2 (4): a0

38 E.a1=1, E.a2=1, E.f1=1, E.f2=1, E.s1=2, E.s2=0, E.turn=env, k=2, m=2 (3): a0

39 E.a1=1, E.a2=2, E.f1=1, E.f2=1, E.s1=2, E.s2=0, E.turn=env, k=2, m=2 (2): a0

40 E.a1=2, E.a2=1, E.f1=1, E.f2=1, E.s1=2, E.s2=0, E.turn=env, k=2, m=2 (1): a0

41 E.a1=2, E.a2=2, E.f1=1, E.f2=1, E.s1=2, E.s2=0, E.turn=env, k=2, m=2 (0): a0

42 --

For example, line 13 represents the following constraint on the strategy hx for the environment:

hx(((

f︷ ︸︸ ︷
{(1, 1)︸ ︷︷ ︸
E.f1=1

, (2, 1)︸ ︷︷ ︸
E.f2=1

},
s︷ ︸︸ ︷

{(1, 2)︸ ︷︷ ︸
E.s1=2

}),
a1︷ ︸︸ ︷
2︸︷︷︸

E.a1=2

,

a2︷ ︸︸ ︷
2︸︷︷︸

E.a2=2

)) = (

f ′︷ ︸︸ ︷
{(1, 1) , (2, 2)},

s′︷ ︸︸ ︷
{(1, 1) , (2, 1)})︸ ︷︷ ︸

f_1_2_s_1_1

where 2 /∈ dom(s) is encoded by E.s2=0. Observe that (f ′, s′) 4 (f, s) holds as required.

Unfortunately, we were not able to verify larger examples because the lab machine ran out of memory.
For example, consider the scenario with n = 2 agents and d = 3 pieces of cake, which has 29 reachable
states. The encoding of extended states, which contain strategies mapping each reachable state to an
action, for the formula ϕ requires 105 Boolean variables, 54 of which represent the strategy hx we wish
to synthesise. The Boolean variables in turn generate a state space with 8.09 × 1020 possible extended
states11. We found that the intermediate BDDs have order of 109 nodes, each of which has 32 bytes. A
single intermediate BDD thus requires approximately 32GB of memory and the whole algorithm would
use several hundreds of gigabytes.

This negative result should not be surprising given the theoretical difficulty of the cake-cutting prob-
lem. Moreover, we are synthesising the entire protocol and not just the agents’ optimal behaviour. In our
opinion, this is still a great achievement because our tool can automatically synthesise Nash equilibria
of arbitrary memoryless games (given enough memory and time).

Note that the specification in Equation 6.2 again cannot be expressed in Sl[1g]. Unlike the dining
cryptographers specification in Equation 6.1, which contains epistemic modalities unsupported by Sl[1g],
this one cannot be translated to an equivalent Sl[1g] formula because of the restrictions on syntax,
namely that every quantification prefix ℘ must be coupled with a goal [ϕ where [binds all agents to
variables in ℘ (see Definition 5.2).

11We were able to handle even larger state spaces (up to 4.19× 1025 possible global states) in the dining cryptographers
scenario (see Table 6.3). There are three important differences between the problems which we believe explain this
discrepancy: (i) Equation 6.1 contains only one temporal operator (unlike Equation 6.2); (ii) the global state changes
only during the first temporal transition in the dining cryptographers model, whereas the cake-cutting game might take
several rounds; and (iii) unlike the environment protocol in the cake cutting problem, which we aim to synthesise, the
dining cryptographers protocol is deterministic (once the coins are flipped).

140 Chapter 6. Implementation

6.4.3 Scheduler

Most operating systems nowadays support the concept of concurrency where several processes (or
threads) run at the same time12. While parallelism can greatly improve the performance of many
applications and simplify software design, it can also lead to race conditions where multiple processes
use a shared resource simultaneously and its final state depends on the relative timing, which is non-
deterministic and thus difficult to debug. Correctness of concurrent systems is crucial because they often
run indefinitely and provide services that other systems depend on (e.g. web servers). Since humans
generally tend to have difficulties reasoning about them and designing them, automatic verification and
synthesis of such systems is of vital importance.

We consider a simple preemptive scheduler system [26] composed of n ∈ N processes and an arbiter
(represented by the environment). The processes try to access a shared resource which is mutually
exclusive. When more than one process requests the resource, the arbiter has to decide who will obtain
it. We are interested in the following two properties:

1. Mutual exclusion. This property (also referred to as a safety property) asserts that at most one
process owns the resource at any given point in time.

2. Absence of starvation. This property (also referred to as a fairness property) requires that
every request is eventually satisfied, i.e. no process will wait for the resource forever.

Again, we model the scheduler system as an interpreted system (see Definition 2.5) with agents
Agt , {E, 1, . . . , n} where [26]:

• Processes. Every process i ∈ [1 .. n] has three possible internal states Li , {in,wt, rs} which stand
for “internal computation”, “waiting for resource”, and “owns resource” respectively. Furthermore,
the actions of the process are Act i , {id, rq, rn, rl} meaning “idle”, “request resource”, “relinquish
resource”, and “release resource” respectively. The third action (“relinquish resource”) is used
by the process to stop waiting for the resource. Finally, the protocol of the process is defined as
Pi(in) , {id, rq}, Pi(wt) , {id, rn}, and Pi(rs) , {id, rs}.

• Arbiter. A state of the environment either indicates that the resource is free, or represents the
set of processes that require the resource but do not own it LE , {fr} ∪ 2[1 .. n]. The actions of
the environment are ActE , {id}∪ [1 .. n] where id indicates that the environment does not do any
visible action (no arbitrage is required) and a numeric value i ∈ [1 .. n] represents the fact that the
arbiter has granted access to the shared resource to process i. The protocol of the environment is
defined as PE(fr) , PE(∅) , {id} and PE(A) , A for all A ⊆ [1 .. n] with A 6= ∅.

• Evolution. Before formally defining the evolution functions, we introduce some auxiliary notation.
Let a ∈ Act be a joint action. The sets of agents that request, relinquish, and release the resource
are defined as Rq(a) , {i ∈ [1 .. n] | ai(a) = rq}, Rn(a) , {i ∈ [1 .. n] | ai(a) = rn}, and Rl(a) ,
{i ∈ [1 .. n] | ai(a) = rl} respectively. Note that |Rl(a)| ≤ 1 for all possible joint actions a ∈ Act .

There are three cases to consider for the arbiter’s evolution function:

1. Starting from the state fr, if no process makes a request, the state does not change. Otherwise,
if there is exactly one process requesting the resource, the environment transits to ∅. In the
case of concurrent requests, their set Rq(a) is recorded instead:

tE(fr, a) ,

fr if |Rq(a)| = 0

∅ if |Rq(a)| = 1

Rq(a) otherwise

2. Starting from the state ∅, if the process that owns the resource releases it and no other process
requests it, the environment transits to fr. If the owner does not release the resource and no

12Note that we do not care whether the system uses real or apparent concurrency. We are interested in its high-level
behaviour instead.

6.4. Experimental Results 141

process makes a request or if the owner releases it and exactly one process makes a request,
the state does not changed. In all other cases, the set of concurrent requests Rq(a) is recorded:

tE(∅, a) ,

fr if |Rl(a)| = 1 and |Rq(a)| = 0

∅ if |Rl(a)| = |Rq(a)|
Rq(a) otherwise

3. Finally, starting from a set A 6= ∅ of processes that are waiting for the resource, the environ-
ment transits to the new set A \ ({aE(a)} ∪ Rn(a)) ∪ Rq(a) maintaining the set of processes
that do not relinquish the request and are not chosen by the arbiter, augmented with the new
ones that want to access the shared resource:

tE(A, a) , A \ ({aE(a)} ∪ Rn(a)) ∪ Rq(a)

The evolution function of a process i ∈ [1 .. n] is defined analogously:

ti(〈in, fr〉 , a) ,

in if ai(a) = id

rs if Rq(a) = {i}
wt otherwise

ti(〈in, ∅〉 , a) ,

in if ai(a) = id

rs if |Rl(a)| = 1 and Rq(a) = {i}
wt otherwise

ti(〈in, A〉 , a) ,

{
in if ai(a) = id

wt otherwise

ti(〈rs, ∅〉 , a) ,

{
in if ai(a) = rl

rs otherwise

ti(〈rs, A〉 , a) ,

{
in if ai(a) = rl or aE(a) 6= i

rs otherwise

ti(〈wt, A〉 , a) ,

in if ai(a) = rn

rs if ai(a) = id and aE(a) = i

wt otherwise

• Initial states. The set of initial states I , {g} contains a unique global state g ∈ G such that
lE(g) = fr and li(g) = in for all i ∈ [1 .. n].

• Assignment. We fix a set of atomic propositions AP , {rs,wt} × [1 .. n], where 〈wt, i〉 and 〈rs, i〉
indicate that process i ∈ [1 .. n] is waiting for and owns the resource respectively. The assignment
h : AP → 2G is formally defined as h(〈s, i〉) , {g ∈ G | li(g) = s} for all i ∈ [1 .. n] and s ∈ {wt, rs}.

The desired properties of the system can be expressed using the following Sl[1g]13 specifications:

1. Mutual exclusion. The following specification asserts that all strategies for the scheduler already
ensure mutual exclusion, i.e. we want to verify the property:

ϕME , [[x]][[y1]] · · · [[yn]](E, x)(1, y1) · · · (n, yn)G¬
n∨
i=1

n∨
j=i+1

〈rs, i〉 ∧ 〈rs, j〉

This property can be equivalently expressed in Ctl and Atl using the AG and 〈〈∅〉〉G operators
respectively (see Equation 6.1).

13Recall that Sl[1g] syntax (Definition 5.2) is a subset of Slk syntax (Definition 4.1). Thus, Sl[1g] specifications are
also Slk specifications.

142 Chapter 6. Implementation

The model checking results for the formula with 2 ≤ n ≤ 10 processes are shown in Table 6.4a. We
can see that the Ctl and Atl formulas are checked almost instantaneously. Similarly to the dining
cryptographers scenario (see Subsection 6.4.1), the Slk model checking performance on ϕME drops
quickly for n ≥ 8 processes. However, the Sl[1g] model checking performance on ϕME drops even
faster and the procedure already takes more than 2 hours and 1.4GB memory on the model with
n = 7 processes. Moreover, it runs out of physical memory (16GB) for n > 7 processes.

The individual steps of the Sl[1g] model checking algorithm (see Figure 5.3) which take more than
one second, namely arena construction, parity game combination, and parity game solution, are
also shown in Table 6.4a. We can see that the Sl[1g] model checking performance is dominated
by parity game solving. For example, calculating the parity game solution for ϕME with n = 7
processes takes approximately 1 hour and 50 minutes, which is roughly 77% of the whole model
checking time (2 hours and 23 minutes). This is in line with our expectation that parity game
solving is one of the bottlenecks of our Sl[1g] model checking algorithm.

2. Absence of starvation. The following specifications asserts the existence of a strategy for the
scheduler which ensures absence of starvation, i.e. we want to synthesise14 the strategy for:

ϕAS , 〈〈x〉〉[[y1]] . . . [[yn]](E, x)(1, y1) · · · (n, yn)

n∧
i=1

G (〈wt, i〉 → F¬ 〈wt, i〉)

This property cannot be expressed in Ctl because it refers to the capability of an agent to enforce
a property. Moreover, it cannot be expressed in Atl either because it contains nested temporal
operators (G and F) which depend on the same strategies. However, it can be translated to an
Atl* formula by replacing the whole quantification and binding prefix with the quantifier 〈〈{E}〉〉.

We can use the equivalence
∧n
i=1 Gψi ≡ G

∧n
i=1 ψi to reduce the number of temporal operators in

ϕAS in order to improve Slk and Sl[1g] model checking performance. Since the underlying Ltl
formula

∧n
i=1 Gψi is a conjunction, we can also apply the separate determinisation optimisation

technique for Sl[1g] discussed in Subsection 5.2.5. Therefore, we empirically evaluate the following
three approaches: (i) the reduced formula with the Slk algorithm, (ii) the reduced formula with the
unoptimised Sl[1g] algorithm, and (iii) the original formula with the optimised Sl[1g] algorithm.

The model checking results for the formulas with 2 ≤ n ≤ 3 processes are shown in Table 6.4b.
Unlike for ϕME, Sl[1g] in this case outperforms Slk by an order of magnitude for n ≥ 2 processes.
Moreover, the Slk extension runs out of physical memory for n > 3 processes. We believe that the
performance reversal reflects the different structures of ϕME (safety condition) and ϕAS (fairness
condition). A further investigation needs to be done in order to identify classes of formulas which
can be checked efficiently by one of the two algorithms. The optimised Sl[1g] model checking
algorithm is almost twice faster than the unoptimised one for 3 ≤ n ≤ 4 processes and almost 5
times faster for n = 5 processes, i.e. the relative speedup increases with the number of processes.
Moreover, the optimised algorithm can handle a system with n = 6 processes15, whereas the
unoptimised one runs out of memory. This is in line with our expectations (see Subsection 5.2.5).

Again, the individual steps of the Sl[1g] model checking algorithms (see Figures 5.3 and 5.4)
which take more than one second, namely automaton determinisation, arena construction, par-
ity game combination, and parity game solution, are shown in Table 6.4b. Similarly to ϕME,
Sl[1g] model checking performance is dominated by parity game solving. Unlike the optimised
determinisation procedure, which is almost instantaneous, the unoptimised one is even slower than
arena construction for n ≥ 4 processes. This is due to the different sizes of the non-deterministic
Büchi automata (see Subsection 5.2.5): The unoptimised algorithm determinises 1 automaton with

14Some of the Sl[1g] witness strategies for the formula have more than 105 states. Therefore, we do not actually request
witness strategy synthesis (-c 1 flag) because printing the strategies would become a major bottleneck of the algorithm
which would skew the performance results. Omitting the flag does not have any impact on the performance of the algorithms
themselves, which perform (symbolic) strategy synthesis internally anyway.

15Although it takes almost 24 hours.

6.4. Experimental Results 143

22(n+1)+dlog2(n+2)e states16, whereas the optimised one determinises n automata with 26 states17.
This—together with the fact that the worst-case time complexity of the determinisation procedure
is exponential with respect to the size of the non-deterministic Büchi automaton—explains why
the optimised algorithm outperforms the unoptimised one and why the relative speedup increases
with the number of processes.

6.4.4 Nim

Nim is a classical mathematical game for two players [77]:

“Nim is a two-player turn-based game in which players alternately remove objects from heaps.
On each turn, one of the two players chooses a heap and a non-zero number of objects that
he removes from this heap. The player who removes the last object wins the game.”

A complete theory for the game was developed already in 1901 [77]. Its key concept is the so-called
Nim-sum, which is calculated as an exclusive or (xor) of the heap sizes. For example, if there are three
heaps with sizes 3, 4, and 5 respectively, the Nim-sum is 011⊕100⊕101 = 010. A game state is winning
(for any of the two players) iff its Nim-sum is not 0. Consequently, the winning strategy is to finish every
move with a Nim-sum of 0. In the previous example, the state is winning for the current player and his
winning strategy is to remove 2 objects from the first heap.

We consider a variant of the game where an upper bound is imposed on the number of objects that
can be removed in a turn18. We model the game with n ∈ N heaps with k1, . . . , kn ∈ N elements and an
upper bound b > 0 as an interpreted system (see Definition 2.5) with agents Agt , {E, 1, 2}:

• Environment. The set of internal states of the environment is defined as LE , {t1, t2,w1,w2} ×∏n
j=1 [0 .. kj] where t1, t2, w1, and w2 stand for “first player’s turn”, “second player’s turn”, “first

player won”, and “second player won” respectively. The environment has only one available action
ActE , {id} meaning “idle”. The environment protocol is simply PE(lE) , {id} for all lE ∈ LE.

• Players. Both players i ∈ {1, 2} have only one available internal state Li , {in}, i.e. all in-
formation is in the internal state of the environment and thus both players have complete in-
formation (since their local states are LiE , Li × LE, see Definition 2.5). The set of actions
available to each player is Act i , {id} ∪ {〈m, l〉 ∈ N× N | 1 ≤ m ≤ n ∧ 1 ≤ l ≤ min(km, b)} where
id stands for “idle” and 〈m, l〉 indicates that the player removes l objects from heap m. The
protocol of a player i ∈ {1, 2} is defined as Pi((in, 〈w1, 0, . . . , 0〉)) , Pi((in, 〈w2, 0, . . . , 0〉)) ,
Pi((in, 〈t1−i, l1, . . . , ln〉)) , {id} and Pi((in, 〈ti, l1, . . . , ln〉) , {〈m, l〉 ∈ Act i \ {id} | l ≤ lm} for all
(l1, . . . , ln) ∈

∏n
j=1 [0 .. kj] \ {〈0, . . . , 0〉}.

• Evolution. The environment evolution is defined as follows. Firstly, if the a player i ∈ {1, 2} has
already won, the state does not change:

tE(〈wi, 0, . . . , 0〉 , a) , 〈wi, 0, . . . , 0〉

for all joint actions a ∈ Act . Secondly, if the next move of a player removes all objects from the
last non-empty heap, the player wins:

tE(〈t1, 0, . . . , lm, . . . , 0〉 , (id, 〈m, lm〉 , id)) , 〈w1, 0, . . . , 0〉
tE(〈t2, 0, . . . , lm, . . . , 0〉 , (id, id, 〈m, lm〉)) , 〈w2, 0, . . . , 0〉

16Recall that a non-deterministic Büchi automaton B equivalent to a non-deterministic generalised Büchi automaton
A is obtained as a product B = A × D with an auxiliary deterministic Büchi automaton D with a counter (see the end
of Subsection 2.4.1). In this particular case, 2(n + 1) BDD variables represent the state of the underlying generalised
non-deterministic Büchi automaton and dlog2 (n+ 2)e variables represent the counter.

174 BDD variables represent the state of the underlying generalised non-deterministic Büchi automaton and 2 variables
represent the counter. Moreover, each of the n automata has only 6 reachable states which are not dead ends (recall that
the number of BDD variables needed by the equivalent deterministic parity automaton depends on the number of reachable
states which are not dead ends, see Subsection 2.4.4).

18This variant of Nim is referred to as subtraction game at http://en.wikipedia.org/wiki/Nim. According to the article,
the winning regions of the game can be calculated using the Nim-sum of heap sizes modulo b+ 1 where b > 0 is the upper
bound.

http://en.wikipedia.org/wiki/Nim

1
44

C
h

ap
ter

6.
Im

p
lem

en
tation

procs
n

possible
states

reach.
states

reach.
time (s)

Ctl Atl Slk Sl[1g]
time
(s)

mem
(MB)

time
(s)

mem
(MB)

time
(s)

mem
(MB)

time (s) mem
(MB)total arena combine solve

2 72 9 0.00 0.00 2.64 0.00 2.64 0.00 2.67 0.01 0.00 0.00 0.01 2.99
3 432 21 0.00 0.00 2.72 0.00 2.72 0.00 2.81 0.14 0.02 0.03 0.09 5.23
4 2592 49 0.01 0.00 2.81 0.00 2.81 0.00 3.11 3.42 0.27 0.76 2.39 15.15
5 15552 113 0.02 0.00 3.02 0.00 3.03 0.02 4.20 65.81 2.82 11.58 51.40 33.37
6 93312 257 0.02 0.00 3.40 0.00 3.40 0.11 8.98 819.45 39.46 154.20 625.67 233.77
7 559872 577 0.08 0.00 4.47 0.00 4.48 0.86 23.18 8572.79 351.56 1597.84 6622.77 1500.69
8 3.36× 106 1281 0.17 0.00 6.73 0.00 6.72 4.88 91.26 out of memory
9 2.02× 107 2817 0.20 0.00 11.62 0.00 11.62 36.71 561.69 out of memory
10 1.21× 108 6145 0.10 0.00 22.23 0.00 22.23 222.36 2769.64 out of memory

(a) Mutual exclusion property ϕME.

procs
n

Slk
Sl[1g]

unoptimised optimised
time
(s)

mem
(MB)

time (s) mem
(MB)

time (s) mem
(MB)total determ. arena combine solve total determ. arena combine solve

2 0.00 2.67 0.09 0.00 0.00 0.02 0.06 4.44 0.12 0.00 0.00 0.02 0.10 4.52
3 116.78 124.90 10.11 0.01 0.02 1.06 9.02 15.14 6.39 0.00 0.01 0.65 5.72 14.54
4 out of memory 631.11 0.33 0.26 86.47 544.04 41.80 338.16 0.00 0.24 23.33 314.57 40.70
5 out of memory 29593.56 5.86 2.61 4323.81 25261.15 2792.22 6131.43 0.00 2.65 444.06 5684.69 306.41
6 out of memory out of memory 85976.57 0.00 38.27 8012.11 77925.96 2688.93

(b) Absence of starvation property ϕAS.

Table 6.4: Experimental model checking results for the preemptive scheduler system.

6.4. Experimental Results 145

where 1 ≤ m ≤ n and 1 ≤ lm ≤ min(km, b). Finally, if none of the previous cases apply, the players’
turns alternate:

tE(〈t1, l1, . . . , lm, . . . , ln〉 , (id, 〈m, l〉 , id)) , 〈t2, l1, . . . , lm − l, . . . , ln〉
tE(〈t2, l1, . . . , lm, . . . , ln〉 , (id, id, 〈m, l〉)) , 〈t1, l1, . . . , lm − l, . . . , ln〉

where 0 ≤ lj ≤ kj for all j ∈ [1 .. n], 1 ≤ m ≤ n, 1 ≤ l ≤ min(lm, b), and (l1, . . . , lm − l, . . . ln) 6=
(0, . . . , 0).

The player evolution is simply defined as ti(in, a) , in for both players i ∈ {1, 2} and all joint
actions a ∈ Act .

• Initial states. The set of initial states I , {g} contains a unique global state g ∈ G such that
lE(g) = 〈t1, k1, . . . , kn〉 and l1(g) = l2(g) = in.

• Assignment. We fix a set of atomic propositions AP , {p1, p2} where p1 and p2 mean that
the first and the second player won respectively. The assignment is formally defined as h(pi) ,
{g ∈ G | lE(g) = 〈wi, 0, . . . , 0〉} for i ∈ {1, 2}.

The existence of a winning strategy for the first player is expressed in Atl and Sl[1g] as:

ϕAtl , 〈〈{1}〉〉F p1 ϕSl[1g] , 〈〈s1〉〉[[s2]][[e]](1, s1)(2, s2)(E, e)F p1

Again, ϕSl[1g] is also an Slk formula. Note that the specification cannot be expressed in Ctl because it
refers to the capability of an agent to enforce a property.

The model checking results for the formulas on one heap (n = 1) of various sizes and an upper bound
on the number of removed objects b = 3 are shown in Table 6.5. We can observe that Atl can easily
handle heaps with 5× 105 objects in less than 1 minute. Although the Sl[1g] performance is worse (as
expected given its model checking complexity), the algorithm can still model check heaps with 5 × 104

objects in a reasonable amount of time (less than one hour)19. This is mainly due to the fact that
the specification has a fixed size. In contrast, Slk runs out of memory when there are more than 16
objects on the heap, i.e. its performance is several orders of magnitude worse than that of both Atl and
Sl[1g]. This might be surprising given that Slk outperformed Sl[1g] on the mutual exclusion property
in the scheduler scenario (see Table 6.4a). The reason is that in the Nim game, all agents have complete
information. Consequently, Slk strategies map individual states to actions (rather than shared local
states to actions as in the previous scenarios), i.e. different BDD variables must be allocated for every
single reachable global state. Hence, incomplete information actually makes Slk model checking easier20

because it reduces the number of BDD variables needed to encode strategies (see Subsection 4.2.4).
Again, the individual steps of the Sl[1g] model checking algorithm (see Figure 5.3) which take more

than one second, namely arena construction, parity game combination, and parity game solution, are
shown in Table 6.5 as well. Unlike in the previous scenarios, arena construction takes a significant
amount of time. In fact, it dominates Sl[1g] performance when the heap has more than 2× 104 objects.
This is an unexpected result, which we suspect might be caused by the size of the intermediate BDDs
and the operations of the underlying BDD package (e.g. variable reordering) triggered during the arena
construction. Observe that, unlike Slk, Sl[1g] has approximately the same memory usage as Atl.

6.4.5 Analysis

In general, both the Slk and the Sl[1g] extension have significantly lower performance than the original
tool on Ctl and Atl. We expected this outcome given the high model checking complexities of the Sl
fragments. However, this does not mean that the extensions are not useful in practice. They can verify
specifications which cannot be checked by the original tool. We have discussed two examples of such
properties: (i) Nash equilibria (see Subsection 6.4.2) and (ii) fairness conditions (see Subsection 6.4.3).
Moreover, both our extensions support witness strategy synthesis, which can be used to automatically

19Surprisingly, Sl[1g] model checking of the heap with 2 × 104 objects takes less than half the time of model checking
the heap with 105 objects. We believe this might be caused by the operations of the underlying BDD package (e.g. variable
reordering) as we could not find any other explanation.

20Paradoxically, incomplete information makes Sl[1g] model checking undecidable.

1
46

C
h

ap
ter

6.
Im

p
lem

en
tation

heap
size

possible
states

reachable
states

reachability
time (s)

Atl Slk Sl[1g]
time
(s)

mem
(MB)

time
(s)

mem
(MB)

time (s) mem
(MB)total arena combine solve

10 44 20 0.00 0.00 2.64 0.02 3.10 0.03 0.00 0.00 0.03 3.24
11 48 22 0.00 0.00 2.65 0.13 4.30 0.03 0.00 0.00 0.03 3.15
12 52 24 0.00 0.00 2.66 1.05 11.50 0.04 0.00 0.01 0.03 3.17
13 56 26 0.00 0.00 2.67 10.03 39.34 0.04 0.00 0.01 0.03 3.26
14 60 28 0.00 0.00 2.67 74.38 181.08 0.04 0.00 0.00 0.03 3.19
15 64 30 0.00 0.00 2.67 458.11 821.16 0.03 0.00 0.00 0.02 3.24
16 68 32 0.00 0.00 2.67 1423.07 1874.01 0.04 0.00 0.01 0.03 3.20
17 72 34 0.00 0.00 2.68 out of memory 0.04 0.00 0.01 0.03 3.26
18 76 36 0.00 0.00 2.68 out of memory 0.05 0.00 0.01 0.04 3.21
19 80 38 0.00 0.00 2.70 out of memory 0.04 0.00 0.00 0.04 3.20
20 84 40 0.00 0.00 2.71 out of memory 0.05 0.00 0.00 0.04 3.21

50 204 100 0.00 0.00 2.85 out of memory 0.09 0.00 0.00 0.08 3.36
100 404 200 0.00 0.00 3.06 out of memory 0.14 0.00 0.00 0.14 3.56
200 804 400 0.00 0.01 3.41 out of memory 0.31 0.00 0.00 0.30 3.95
500 2004 1000 0.01 0.01 4.55 out of memory 0.82 0.01 0.00 0.80 5.16
1000 4004 2000 0.01 0.03 6.13 out of memory 1.66 0.07 0.00 1.59 7.28
2000 8004 4000 0.03 0.06 9.23 out of memory 7.58 1.33 0.02 6.23 11.39
5000 20004 10000 0.08 0.16 19.27 out of memory 30.37 7.97 0.02 22.28 23.78
10000 40004 20000 0.20 1.39 35.31 out of memory 625.60 33.46 0.25 591.88 45.36
20000 80004 40000 0.44 0.89 67.93 out of memory 305.42 163.51 0.03 141.88 72.70
50000 200004 100000 1.12 2.62 160.76 out of memory 1894.03 1337.15 0.09 556.79 171.07
100000 400004 200000 2.26 3.56 312.25 out of memory 7606.22 7152.87 0.01 453.34 324.56
200000 800004 400000 39.62 59.35 617.69 out of memory 59235.59 32838.33 4.82 26392.43 649.08
500000 2000004 1.00× 106 43.99 57.43 1538.71 out of memory runs for more than 48 hours

Table 6.5: Experimental model checking results for the Nim game with one heap (n = 1) and at most 3 objects removed every turn (b = 3).

6.5. Summary 147

generate agents’ behaviour that ensures the properties. In other words, the aim of the extensions is
not to replace the existing tool, but to add support for completely new features. Therefore, the results
presented in this section should be regarded as an illustration of the new functionality (rather than a
benchmark with negative performance results).

The experimental results presented in this section confirm that the main performance bottleneck of
the Slk model checking algorithm is the BDD encoding of the extended states, which allocates separate
BDD variables for each shared local state of a strategy (see Subsection 4.2.4). As we have seen in the
Nim scenario (see Subsection 6.4.4), this problem is more pronounced when all agents have complete
information, in which case shared local states collapse to reachable global states. Informally, the less
information agents have the better the Slk model checking performance is. This is quite a rare situation
because incomplete information usually leads to higher model checking complexity (Atl with imperfect
recall [23]) or even undecidability (Atl with perfect recall [35]). Nevertheless, the Slk extension can
handle reasonably large state spaces for certain specifications as we have seen in the dining cryptographers
scenario (see Subsection 6.4.1). Its performance can be slightly improved by using multiple threads (see
Table 6.3). However, as we discussed at the end of Subsection 6.2.3, the potential of this approach seems
to be limited because the CUDD BDD package used by MCMAS has no built-in support for concurrency.

The performance of the Sl[1g] extension depends strongly on the specification. This is a direct
consequence of the high Sl[1g] model checking complexity (2ExpTime-complete with respect to the
size of the formula). As we have seen in the Nim scenario (see Subsection 6.4.4), the Sl[1g] extension
performs very well on large state spaces when the formula has a fixed size (see Table 6.5). Further-
more, the optimisation technique discussed in Subsection 5.2.5 significantly improves the model checking
performance of Sl[1g] conjunctions (see Table 6.4b). The relative performance of the Slk and Sl[1g]
extension also depends strongly on the type of the formula (compare Tables 6.4a and 6.4b). We found
that the main bottlenecks of the Sl[1g] model checking algorithms (see Figures 5.3 and 5.4) are parity
game solving and arena construction. While the former is in line with our expectations, the reason for
the latter remains unclear (see the discussion at the end of Subsection 6.4.4).

6.5 Summary

In this chapter, we discussed the existing MCMAS model checker and our two extensions for it which
implement the novel model checking algorithms for Slk and Sl[1g] introduced in Chapters 4 and 5 re-
spectively. The experimental results we obtained on several scalable scenarios demonstrate the feasibility
of practical model checking and strategy synthesis for both Sl fragments despite the high theoretical
complexities.

The first part of the chapter gave an overview of the existing tool and our two extensions. We started
by describing the functionality, usage, and underlying architecture of the original tool. We then explained
how each extension modified it in order to add support for the new features. We also demonstrated the
ability of the extensions to synthesise strategies for Slk and Sl[1g] specifications. Furthermore, we
described an experimental parallel implementation of the Slk extension and discussed its limitations
caused by the fact that the CUDD BDD package used by MCMAS does not support concurrency.

The second part of the chapter focused on the experimental results of the extensions. We introduced
several scalable scenarios which we used to compare the performance of the original tool on Ctl and Atl
with the performance of the extensions on Slk and Sl[1g]. The scenarios also demonstrated the greater
expressiveness of the Sl fragments (compared to Ctl and Atl) as well as their relative performance,
which strongly depends on the formula to be verified. We found that although the extensions have lower
performance than the original tool on Ctl and Atl, they are able to handle reasonably large state
spaces.

148 Chapter 6. Implementation

Chapter 7

Evaluation

In Chapters 4 and 5, we introduced novel model checking algorithms for Epistemic Strategy Logic
(Slk) and One-Goal Strategy Logic (Sl[1g]) respectively. Furthermore, in Chapter 6, we presented two
extensions of the existing model checker MCMAS (see Subsection 2.5.2) which implement the new model
checking algorithms. In this chapter, we evaluate both the algorithms and their implementation. We
then summarise the differences between the two Sl fragments.

7.1 Theory

The first part of this project involved designing novel model checking algorithms for fragments of Sl
which can be implemented symbolically. We have done the following:

1. Epistemic Strategy Logic (Chapter 4). We defined a new fragment of Sl, Epistemic Strategy
Logic (Slk), on imperfect recall semantics with incomplete information. Slk is a specification
language for multi-agent systems which combines Ltl temporal connectives, Sl strategy operators,
and epistemic modalities. On the one hand, this combination results in a very powerful formalism
for reasoning about game-theoretic concepts as well as agents’ knowledge. On the other hand,
Slk specifications suffer from certain limitations due to memoryless strategies, as discussed in
Subsection 4.1.5.

We have defined the Slk model checking problem and proved that it is in the PSpace complexity
class with respect to both the size of the model and the formula (see Theorem 4.1). Furthermore, we
have provided a model checking algorithm for Slk (see Subsection 4.2.2) which admits an efficient
symbolic implementation (see Subsection 4.2.4). Finally, we discussed the problem of general Slk
strategy synthesis and provided a procedure for constructing witness and counterexample strategies
(see Subsection 4.2.3).

2. One-Goal Strategy Logic (Chapter 5). We redefined the syntax and semantics of an existing
fragment of Sl, One-Goal Strategy Logic (Sl[1g]), on interpreted systems (see Definition 2.5).
Despite being the least expressive syntactic fragment of full Sl, Sl[1g] subsumes many well-
established temporal logics including those in the Atl* hierarchy while still having the same
model checking complexity as Atl*, namely 2ExpTime-complete with respect to the size of the
specification and P-complete with respect to the size of the model.

We provided a novel procedure which reduces Sl[1g] model checking to the problem of solving
a parity game (see Subsection 5.2.1). We proved its correctness and showed that it is optimal in
the sense that it achieves the lower complexity bound (see Theorem 5.2). Moreover, we provided
an efficient symbolic implementation of the procedure with the same time complexity (see Subsec-
tion 5.2.4). Finally, we have explained how it can be extended to support general strategy synthesis
for arbitrary Sl[1g] formulas (see Subsection 5.2.3).

In addition, we proposed an optimisation technique for the Sl[1g] model checking algorithm called
separate determinisation (see Subsection 5.2.5) and described its impact on the complexity. We
also explained how the symbolic implementation can be modified to incorporate the optimisation.

150 Chapter 7. Evaluation

We shall now discuss the strengths and weaknesses of our theoretical contributions.

7.1.1 Strengths

Our theoretical contributions possess the following strengths:

1. First practical Sl algorithm. All algorithms for model checking Sl (or its fragments) intro-
duced so far are very theoretical. They are mostly intended to serve as proofs of model checking
decidability rather than to be implemented and used in practice. In contrast, our novel Slk and
Sl[1g] model checking algorithms were designed with implementation in mind from the very be-
ginning. Furthermore, they both admit efficient symbolic representations (see Subsections 4.2.4
and 5.2.4). In our opinion, this is the first step towards practical Sl model checking.

2. Optimal Sl[1g] complexity. Not only have we designed the first practical algorithm for model
checking Sl[1g], but the algorithm also has optimal Sl[1g] model checking time complexity, i.e.
its running time is polynomial in the size of the model and doubly-exponential in the size of the
specification (see Subsection 5.2.2). Moreover, it is optimal for Atl* model checking as well because
Atl* has the same model checking complexity as Sl[1g] (despite being strictly less expressive).
However, the algorithm does not have optimal complexity for all logics in the Atl* hierarchy (e.g.
Ltl and Ctl* are PSpace-complete with respect to the size of the formula).

3. Symbolic implementation. Our model checking and strategy synthesis algorithms for both Slk
and Sl[1g] can be implemented symbolically using BDDs (see Subsections 2.3.1 and 2.3.2). While
the theoretical complexity is not improved by the data structure1, BDDs generally outperform
explicit approaches in practice by several orders of magnitude (see Table 2.2). This is especially
important because of the high model checking complexity of both fragments.

4. Modularity. Our novel model checking algorithms for Slk and Sl[1g] are highly modular in
the sense that individual steps can be replaced by alternative procedures with minimal impact
on the rest of the algorithm. For example, the method for translating a non-deterministic Büchi
automaton to a deterministic parity automaton (see Subsection 2.4.4) could be replaced with a
different determinisation procedure by changing only one line of the Sl[1g] model checking algo-
rithm. We hope that our algorithm (or some of its parts) might serve as a basis for model checking
algorithms for other Sl fragments like Disjunctive/Conjunctive-Goal Strategy Logic (Sl[dg/cg],
see Section 3.2).

5. Formally correct. All concepts used in our model checking and strategy synthesis algorithms
are formally defined. Moreover, all steps of the algorithms either reuse existing techniques (e.g.
standard translation in Figure 2.6) or apply novel procedures which we proved are correct (e.g.
combined parity game equivalence in Theorem 5.1). Therefore, our solutions of the model checking
and strategy synthesis problems for Slk and Sl[1g] are both sound and complete.

The main strength of our novel model checking algorithms for Slk and Sl[1g] is the fact that they
can be implemented symbolically. Moreover, we proved that both algorithms are correct and that the
worst-case time complexity of our Sl[1g] model checking algorithm is optimal.

7.1.2 Weaknesses

The main weakness of our theoretical contributions is the suboptimal complexity of the Slk model
checking algorithm. We have shown that the Slk model checking problem belongs to the PSpace class
in Subsection 4.2.1. However, as we have already pointed out, the symbolic implementation of the Slk
model checking algorithm presented in Subsection 4.2.4 might use more than a polynomial amount of
space. Therefore, our Slk algorithm does not have optimal space complexity. Instead, we argued that
it has singly-exponential worst-case time complexity in both the size of the model and the formula. We
strongly believe that the space suboptimality is outweighed by the empirical efficiency of binary decision
diagrams (see point 3 in Subsection 7.1.1).

1In fact, our symbolic implementation of the Slk model checking algorithm has suboptimal space complexity (see
Subsection 7.1.2).

7.2. Implementation 151

7.2 Implementation

The second part of our project involved implementing the novel model checking algorithms and testing
their performance. We have done the following:

1. Implementation (Sections 6.2 and 6.3). We implemented our model checking algorithms for Slk
and Sl[1g] as extensions of the existing model checker MCMAS (see Subsection 2.5.2). In both
cases, the existing ISPL syntax was extended to accommodate for the new operators and the algo-
rithm was translated to a sequence of symbolic operations on binary decision diagrams (see Subsec-
tions 2.3.1 and 2.3.2). In addition, the enhanced tool adds support for Slk witness/counterexample
strategy synthesis (see Subsection 6.2.2) and Sl[1g] witness/counterexample and general strategy
synthesis (see Subsection 6.3.2).

In addition, we provided an experimental parallel implementation of the Slk model checking al-
gorithm (see Subsection 6.2.3). The separate determinisation optimisation technique (see Subsec-
tion 5.2.5) is also supported by the Sl[1g] extension.

2. Experimental results (Section 6.4). We tested both extensions on several scalable real-life
scenarios and compared their performance with the performance of MCMAS on equivalent Ctl
and Atl formulas (see Tables 6.3, 6.4a, and 6.5). We also demonstrated the expressiveness of the
fragments together with witness strategy synthesis (see Subsection 6.4.2). Finally, we compared the
relative performance of the two Sl fragments and evaluated the impact of the proposed optimisation
techniques (experimental parallel implementation for Slk and separate determinisation for Sl[1g]).

We shall now discuss the strengths and weaknesses of our implementation.

7.2.1 Strengths

Our implementation possess the following strengths:

1. First Sl tool. As we have already mentioned several times, we are not aware of any existing tool
that would support Sl or any of its fragments. Therefore, MCMAS (with our extensions) is the
first tool that supports Slk and Sl[1g]. In our opinion, this is the biggest strength of our project
because it demonstrates that model checking and strategy synthesis for both fragments is feasible
in practice.

In fact, we are not even aware of any existing tool that would support Atl* (see Subsection 2.2.4).
Therefore, we believe that our product is the first tool to support2 Atl*. Consequently, MCMAS
can now handle all logics in the Atl* hierarchy which it did not support before including Ltl and
Ctl* (see Subsections 2.2.1 and 2.2.3).

2. Symbolic implementation. Since our novel model checking algorithms for Slk and Sl[1g] admit
efficient symbolic representations (see item 3 in Subsection 7.1.1), the extensions implement them
using operations on BDDs (see Subsections 2.3.1 and 2.3.2), which outperform explicit approaches
in practice by several orders of magnitude (see Table 2.1).

3. Modularity. Similarly to the new model checking algorithms (see item 4 in Subsection 7.1.1), our
implementation of both MCMAS extensions is highly modular. This is very good from a software
engineering perspective because our code can be easily reused or modified in the future by other
people.

4. Ease of use. Despite its wide range of functionality, MCMAS is a simple command-line tool which
is easy to use. The user only has to specify the name of the ISPL file to check and possibly pass a
command-line flag if extra functionality is required (e.g. counterexample/witness generation). Both
the input (ISPL syntax) and output of the tool is mostly self-explanatory and therefore simple to
understand.

2As we have already explained in Subsection 6.3.1, the Atl* formula needs to be rewritten to an equivalent Sl[1g]
formula first. However, this is a very straightforward translation, which could be automatised by extending the ISPL
syntax with Atl* strategy quantifiers.

152 Chapter 7. Evaluation

In terms of input, our extensions merely (i) add three new command-line flags (listed in MCMAS
help) and (ii) naturally extend the syntax with Sl strategy operators (see Table 6.2). We believe
that the format of the output is also quite easy to understand: Slk strategies are presented
directly as mappings from states to actions and Sl[1g] strategies are represented as automata (see
Subsections 6.2.2 and 6.3.2).

The main strength of our solution is its novelty. We developed the first tool which supports model
checking and strategy synthesis for fragments of Sl. Moreover, the underlying algorithms for both
fragments are implemented symbolically using efficient operations on BDDs.

7.2.2 Weaknesses

Our implementation has the following weaknesses:

1. Performance. The experimental results presented in Section 6.4 indicate that the biggest weak-
ness of both extensions is their relatively low performance (compared to the performance of the
original tool on Ctl and Atl). This should not be surprising given the high expressiveness and
therefore high model checking complexity of both Slk and Sl[1g]:

While Ctl and Atl belong to the P complexity class (see Table 2.1), the Slk and Sl[1g] model
checking problems are PSpace3 and 2ExpTime-complete respectively with respect the size of
the specification. For this reason, the tool cannot handle large Slk and Sl[1g] formulas in gen-
eral. Nevertheless, the performance of the extensions can be highly optimised for certain types of
formulas: We implemented an optimisation technique for Sl[1g] model checking called separate
determinisation that speeds up the model checking of conjunctions of Ltl formulas, which occur
often in practice (see Subsection 5.2.5). As we can see in Table 6.4b, the technique significantly re-
duces both model checking time and memory usage and thereby increases the size of the state space
that the extension can handle. Other possible optimisation techniques are discussed in Section 8.2.

Although our Slk model checking algorithm has exponentially lower time complexity with respect
to the size of the formula than the one for Sl[1g], it appears to be less feasible in practice. The
time complexity of the model checking algorithm with respect to the size of the model is much
more important because specifications are usually reasonably concise even for large state spaces.
This turns out to be the main problem of our Slk model checking algorithm, which cannot handle
large state spaces because it runs in (worst-case) exponential time in the size of the model (unlike
the algorithms for Ctl, Atl, and Sl[1g]). This problem manifested itself in the Nim game (see
Subsection 6.4.4), where the Slk performance was several orders of magnitude worse than that
of both Atl and Sl[1g]. Unfortunately, it appears that this is an unavoidable consequence of
imperfect recall semantics (rather than a shortcoming of our algorithm).

2. Limited testing. As we have discussed in Subsection 6.1.3, the source code of MCMAS has a
very bad design from a software engineering perspective (e.g. it has no tests whatsoever). While
we tried to apply object-oriented programming principles during the development of the extensions
(e.g. we used class hierarchy to represent different types of ω-automata as shown in Figure 6.3), we
had to reuse some existing patterns in order to avoid “reinventing the wheel”. In particular, our
code relies on global structures storing the BDD parameters, which makes it extremely difficult to
write unit tests for individual procedures.

We have partially mitigated this issue by developing a framework for system testing of MCMAS
and creating a test suite with several pairs of sample input and output files instead. Both model
checking and strategy synthesis (for the new Sl fragments) were tested by the framework. However,
we think that unit tests for all MCMAS functions (not only our extensions) should be written if
the tool is ever redesigned in the future and the dependency on global variables is reduced.

Overall, the main weakness of the implementation is its low performance, which is not surprising given
the novelty of the algorithms and the high complexity of Slk and Sl[1g] model checking. This issue can
be mitigated to a large extent by applying optimisation techniques for various types of specifications.
The development of such techniques is one of the most promising future directions of this project (see
Section 8.2).

3As we have explained in Subsection 4.2.1, we conjecture that the Slk model checking problem is also PSpace-hard.

7.3. Fragment Comparison 153

7.3 Fragment Comparison

Throughout this project, we were developing model checking frameworks for two fragments of Sl in
parallel. Our choice of the fragments, namely Slk and Sl[1g], was explained in Chapter 3. The relevant
theory and our novel model checking algorithms for both logics were presented in Chapters 4 and 5
respectively. The implementations of the algorithms in the form of MCMAS extensions were discussed
in Sections 6.2 and 6.3 respectively. Finally, the experimental results of both extensions were provided
in Section 6.4:

Slk Sl[1g]
Fragment selection Chapter 3
Theory Section 4.1 Section 5.1
Model checking Section 4.2 Section 5.2
Implementation Section 6.2 Section 6.3
Experimental results Section 6.4

We shall now summarise the differences and similarities between the two fragments as well as the corre-
sponding model checking algorithms, implementations, and experimental results:

1. Syntax. Both fragments use Sl strategy operators (〈〈x〉〉, [[x]], (i, x) with x ∈ Var and i ∈ Agt ,
see Definition 2.19) and Ltl temporal operators (X, F, G, U, see 2.7). While there are no restric-
tions4 on the structure of Slk formulas (e.g. an agent can be bound to a different strategy while
the strategies of the other agents remain the same, see Definition 4.1), Sl[1g] quantification and
binding prefixes must be coupled together (i.e. all agents are always bound to newly quantified
strategies simultaneously, see Definition 5.2). Furthermore, Slk adds support for epistemic modal-
ities expressing agents knowledge (Ki EA, DA, CA with i ∈ Agt and A ⊆ Agt , see Subsection 2.2.6),
which Sl[1g] does not support because its semantics is defined with respect to complete infor-
mation. Therefore, all Sl[1g] formulas are also Slk formulas (but not the other way round), i.e.
SL[1G] ⊂ SLK .

2. Semantics. We defined the semantics of both fragments on interpreted systems (see Defini-
tion 2.5). Slk uses imperfect recall semantics with incomplete information (i.e. agents have no
memory of the past and do not have complete knowledge of the system, see Definition 4.3), whereas
Sl[1g] uses perfect recall semantics with complete information (i.e. agents remember the whole
history and have complete knowledge of the system, see Definition 2.29). As we explained in
Chapter 3, we considered these two semantics because perfect recall semantics with incomplete
information—which we would have ideally used instead—leads to an undecidable model checking
problem.

3. Strategies. A key concept of both fragments are strategies which map possible configurations of
the system to actions. The types of strategies that both fragments use are closely connected to
their semantics (item 2):

Slk uses uniform shared memoryless strategies (see Definition 4.2), which map shared local states
(of a group of agents A ⊆ Agt) to actions, i.e. fA : G/∼C

A → ActA. Slk strategies are non-
behavioural, i.e. the next action of an agent in one state might depend on the actions of other
agents in counterfactual evolutions of the system (see Subsection 4.1.5).

Sl[1g] uses shared memoryful strategies (see Definition 2.21), which map non-empty finite se-
quences of global states (tracks) to actions, i.e. fA : Trk → ActA. Unlike Slk strategies, Sl[1g]
strategies are generally not uniform because a single local state history of an agent might be
mapped to two different actions. However, Sl[1g] strategies are behavioural (see Subsection 5.2.1).

4. Expressiveness. Both fragments can express the ability of agents to enforce temporal properties
of the system by means of shared interdependent strategies (e.g. “For all strategies of agent a, there
exists a shared strategy for agents b and c, such that for all strategies . . . ”). Therefore, Slk and
Sl[1g] are more expressive5 than Atl* with imperfect and perfect recall respectively, which only

4As long as the formulas are sentences (see Definition 2.20).
5Recall that there is a subtle difference between Slk and Atl* semantics in the way they handle universally quantified

agents (see Subsection 4.2.1). Therefore, strictly speaking, Slk does not subsume Atl* with imperfect recall. However,
Sl[1g] still strictly subsumes Atl* with perfect recall (despite the difference).

154 Chapter 7. Evaluation

Logic Complexity w.r.t. |ϕ| Complexity w.r.t. |I|

imperfect recall
Atl* PSpace-complete PSpace-complete
Slk PSpace PSpace

perfect recall
Atl* 2ExpTime-complete P-complete
Sl[1g] 2ExpTime-complete P-complete

Table 7.1: Model checking problem complexity of Atl*, Slk (see Theorem 4.1), and Sl[1g] with respect
to the size of the model |I| and the formula |ϕ| [23, 72]. We conjecture that Slk is PSpace-complete
with respect to both the size of the model and the formula (see Subsection 4.2.1).

refer to individual independent strategies (e.g. “There exists a strategy for agent d, such that no
matter what the other agents do, . . . ”). This difference is due to the fact that Sl handles strategies
explicity via quantifiers, whereas Atl* strategies are only implicit.

Since Slk syntax is not restricted and supports epistemic modalities, Slk is more expressive6 than
Sl[1g]: As we have seen in the dining cryptographers and scheduler scenarios (see Subsections 6.4.1
and 6.4.3), Slk can express agents’ knowledge and game-theoretic concepts like Nash equilibria.
We explained that neither of these properties can be expressed in Sl[1g].

5. Model checking problem complexity. The theoretical model checking problem complexity of
both Slk and Sl[1g] as well as Atl* is shown in Table 7.1. We can see that the Sl fragments
have the same worst-case complexities as their Atl* counterparts despite being more expressive.
Moreover, Sl[1g] has exactly the same model checking complexity as Atl* with perfect recall,
which it strictly subsumes. As we have explained in Subsection 4.2.1, we conjecture that Slk has
the same model checking complexity as its Atl* counterpart as well.

Both Sl fragments have high model checking complexities, which have a negative impact on the
performance of our extensions (see Section 6.4).

6. Model checking algorithm complexity. The worst-case time complexity of our Sl[1g] model
checking algorithm is optimal in the sense that it achieves the lower bounds on the problem com-
plexity, i.e. doubly-exponential in the size of the formula and polynomial in the size of the model
(see Theorems 5.2 and 5.4):

|I|2
O(|ϕ|)

Slightly tighter bounds for the unoptimised and optimised Sl[1g] algorithm are provided in Sub-
sections 5.2.2 and 5.2.5 respectively. Moreover, we argued that the the algorithm is also optimal
for Atl* (see item 2 in Subsection 7.1.1).

The worst-case time complexity of our Slk algorithm is exponential in both the size of the model
and the formula (see Theorem 4.3):

2O(|I|×|ϕ|)

While we are uncertain whether a sub-exponential time complexity can be achieved (in which case
the time complexity of our algorithm would be suboptimal), we know that the space complexity
of our algorithm is suboptimal because the problem belongs to the PSpace complexity class (see
Theorem 4.1), but our algorithm may use more than a polynomial amount of space (see Subsec-
tion 4.2.4).

7. Optimisation techniques. We have designed optimisation techniques for both Sl fragments in
order to improve the performance of the algorithms and extensions:

We developed an experimental parallel implementation of our Slk extension which uses multiple
threads to enumerate the local states of an agent (see Subsection 6.2.3). Although it does have
an impact on Slk performance (two threads reduced model checking time by roughly 16% in the
dining cryptographers scenario, see Table 6.3 and Figure 6.4), it is not very scalable because the
CUDD BDD package used by MCMAS has no built-in support for concurrency.

6This does not mean that Slk subsumes Sl[1g]. Recall that there is a fundamental difference between the semantics of
the fragments: Slk is defined with respect to memoryless strategies, whereas Sl[1g] is defined with respect to memoryful
strategies.

7.4. Summary 155

We proposed an optimisation technique for the Sl[1g] model checking algorithm called separate
determinisation (see Subsection 5.2.5), which improves the performance of the algorithm on Sl[1g]
principal sentences containing conjunctions of Ltl formulas, i.e. Sl[1g] sentences of the form
℘[
∧n
i=1 ψi. Our experimental results indicate that the optimisation has a major impact on model

checking time and memory: It reduced the time to verify an Sl[1g] formula with 5 conjuncts on a
model with 1.56×104 states almost 5 times and increased the state space that the Sl[1g] extension
can handle (see Table 6.4b). Moreover, the positive effect of the optimisation appears to increase
with the number of conjuncts.

8. Strategy synthesis. Both extensions support witness/counterexample strategy synthesis for for-
mulas of the form 〈〈x0〉〉 · · · 〈〈xm−1〉〉ψ and [[y0]] · · · [[yn−1]]φ (see Subsections 6.2.1 and 6.3.1). In
addition, the Sl[1g] extension supports general strategy synthesis for arbitrary Sl[1g] sentences,
which is demonstrated in Subsection 6.3.2. This functionality is not provided by the Slk exten-
sion because Slk strategies are non-behavioural, which makes general strategy synthesis extremely
difficult as explained in Subsection 4.2.3.

9. Command-line flags. Both extensions reuse the existing -c FORMAT flag for enabling wit-
ness/counterexample strategy synthesis (see Subsections 6.2.2 and 6.3.2). Note that the exten-
sions ignore the FORMAT parameter, which takes values 1–3. In addition, they introduce extra
command-line flags specific to their functionality:

The Slk extension adds the -t DEPTH flag which enables thread branching of the experimental
parallel implementation (with a given depth).

The Sl[1g] extension adds the -solutions and -sd SWITCH flags which enable general strategy
synthesis and toggle separate determinisation respectively (the SWITCH parameter can take values
0 and 1).

10. Performance. The performance of both extensions is relatively low compared to that of MCMAS
on Ctl and Atl (see item 1 in Subsection 7.2.2). This is not surprising given the high model
checking complexities of the two Sl fragments. We found that their performance depends on
different factors: Slk performance depends mainly on the size of the state space and the amount
of information available to the agents, whereas Sl[1g] performance depends on the size and shape of
the formula. These correlations are in line with the theoretical complexities of our model checking
algorithms.

We can see that all the differences listed above stem from the different semantics used by the two
fragments (item 2).

7.4 Summary

In this chapter, we evaluated both the theoretical and implementational contributions of our project.
We first summarised our contributions in both areas and then discussed their strengths and weaknesses.
The main strength of our solution is its novelty both on the theoretical and practical side as we have
designed and implemented the first practical model checking algorithms for fragments of Sl. The main
weakness, which is low performance, can be overcome to a large extent by using various optimisation
techniques. The impact of separate determinisation on Sl[1g] model checking performance shows that
the development of such techniques is one of the most promising future directions of this project (see
Section 8.2).

We also provided a comprehensive comparison of Slk and Sl[1g], both of which played a central
role in our project. We found that all of the differences between the two fragments, the corresponding
algorithms, and their implementations stem from their different semantics (Slk has imperfect recall with
incomplete information, whereas Sl[1g] has perfect recall with complete information).

156 Chapter 7. Evaluation

Chapter 8

Conclusions

We tackled the problem of verifying Strategy Logic (Sl) specifications. To do this, we designed the first
practical model checking algorithms for two fragments of Sl and implemented them as extensions of the
existing MCMAS model checker. Our experimental results demonstrate that Sl specifications, which
can express various game-theoretic concepts including Nash equilibria, can be used in practice to verify
and synthesise agents’ behaviour. We have thereby made the first step towards bridging the gap between
game-theory and practical model checking.

8.1 Summary of Work

To conclude the report, we summarise the work we have done and comment on whether we have met our
objectives. The main goal of our project was to develop a model checker for Sl. In order to achieve this
goal, we first had to identify fragments of Sl that are suitable for model checking. We found that the main
obstacles to our goal were the undecidability of perfect recall semantics under incomplete information
and the high model checking complexity of full Sl. We addressed these obstacles by identifying two
fragments of Sl with desirable properties.

We first put forward a novel fragment of Sl called Epistemic Strategy Logic (Slk), which is defined
on imperfect recall semantics with incomplete information and adds support for epistemic modalities
expressing agents’ knowledge. We discussed its increased expressiveness due to the combination of
strategic, temporal, and epistemic operators as well as its limitations caused by memoryless strategies.
We proved that the model checking problem for Slk is PSpace in both the size of the model and the
formula. Finally, we designed an exponential-time model checking algorithm for Slk which we showed
is correct, can be used to synthesise witness strategies, and admits an efficient symbolic implementation.

We then considered an existing fragment of Sl called One-Goal Strategy Logic (Sl[1g]), which is
defined on perfect recall semantics with complete information. Although it is strictly more expressive than
all logics in the Atl* hierarchy, it the same model checking complexity. We designed the first practical
model checking algorithm for Sl[1g] by reducing the problem to solving a two-player parity game. We
proved that procedure is correct and has optimal worst-case time complexity. Furthermore, we explained
how it can be used for general strategy synthesis and provided an efficient symbolic implementation. We
also provided an optimisation technique for the class of Sl[1g] formulas containing conjunctions of Ltl
formulas, which often occur in practice.

We implemented our novel model checking algorithms for both Slk and Sl[1g] as extensions for
the existing model checker MCMAS. We have thus developed the first model checker for fragments
of Sl and thereby achieved our main goal. The functionality of the extended tool includes witness
strategy synthesis for both fragments and general strategy synthesis for Sl[1g]. We also implemented
the optimisation technique for Sl[1g] as well as an experimental parallel implementation of the Slk
model checking algorithm. Our experimental results demonstrate that the use of the fragments for
verification and strategy synthesis is feasible in practice despite their high model checking complexities.
Given the novelty of our solution and the promising results, we deem our project successful.

158 Chapter 8. Conclusions

8.2 Future Work

Although we have achieved all our objectives outlined in Section 1.1 and implemented the first model
checker for (a subset of) Sl, the journey to practical Sl model checking is nowhere near its end. The
main obstacle, which needs to be overcome, remains the low performance of both fragments on large
models. Possible future directions of this project include:

• Automaton minimisation. Both the standard translation (see Subsection 2.4.3) and the deter-
minisation procedure (see Subsection 2.4.4), which we use in the Sl[1g] model checking algorithm
(see Figure 5.3), generate automata which are not necessarily minimal. One way to improve
Sl[1g] model checking performance is therefore to always minimise intermediate automata be-
fore performing the next step of the algorithm. A wide range of techniques for minimising both
non-deterministic and deterministic automata which can be implemented symbolically have been
presented in [77].

• Determinisation of specific formula classes. An alternative approach for reducing the size
of intermediate automata generated by the Sl[1g] model checking algorithm is to use different
determinisation procedures (such as subset and breakpoint construction) for specific classes of Ltl
formulas (e.g. safety conditions). The feasibility of this approach has been demonstrated in [77].

• Better parity game algorithm. Our Sl[1g] model checking procedure currently uses a very
simple exponential-time algorithm for solving parity games. A wide variety of other more efficient
algorithms, which we could use instead, are discussed in [79]. We expect that such a modification
would have a significant impact on Sl[1g] model checking performance since parity game solving
is one of the main bottlenecks of the procedure (see Subsection 6.4.5). Likewise, more efficient
algorithms for solving generalised parity games, which we use in our optimised Sl[1g] model
checking algorithm (see Subsection 5.2.5), have been proposed [28].

• Alternative verification techniques. In this project we focused purely on symbolic model
checking using BDDs. However, there are many other verification techniques (see Table 2.2), some
of which can handle much larger state spaces than BDDs. It is possible that a more efficient model
checker for Slk, Sl[1g], or a different Sl fragment could be based on one of them. In our opinion,
the most likely candidate is bounded model checking, which is used by some existing tools (e.g.
NuSMV, see Subsection 2.5.4) for Ltl model checking.

• Alternative BDD packages. As we have explained in Subsection 6.2.3, the main obstacle to
improving Slk model checking performance through parallelism is the fact that the CUDD BDD
package used by MCMAS has no built-in support for concurrency. There are two possible solutions
to this problem: We could either modify the package, or replace it with a different one that supports
parallelism (e.g. the BDDNOW package [71]).

• Other Sl fragments. The next step in terms of augmenting the functionality of our extensions is
to add support for other more expressive fragments of Sl (see Section 3.2). The most likely candi-
date is the Disjunctive/Conjunctive-Goal Strategy Logic (Sl[dg/cg]), which admits behavioural
strategies and still has 2ExpTime-complete model checking complexity despite being strictly
more expressive than Sl[1g]. Given the similar properties of the two fragments, we hope that
support for Sl[dg/cg] could be added by modifying our Sl[1g] model checking algorithm. On the
other hand, the high model checking complexity and non-behavioural semantics of the other Sl
fragments (Sl[bg] and Sl[ng]) might turn out to be a too big obstacle to practical model checking.
Even if that is not the case, we expect the corresponding model checking algorithms to be very
different from the one we proposed here for Sl[1g].

• Incomplete information. While perfect recall semantics with incomplete information is undecid-
able in general (see Chapter 3), there exist special settings in which the problem becomes decidable.
One example is the class of two-player parity games with imperfect information, in which the first
player has incomplete knowledge of the game, whereas the second player has complete knowledge.
An algorithm for solving such games together with a symbolic implementation was proposed in [21].
Recall that our model checking algorithm for Sl[1g] constructs a parity game where the first player

8.2. Future Work 159

represents the existentially quantified strategy variables (see Subsection 5.2.1). Hence, we could
use alternative Sl[1g] semantics where the agents bound to the existentially quantified strategy
variables in a formula have (the same) incomplete information and verify the formula by reducing
the problem to solving a parity game with imperfect recall.

• Improve support for subsumed logics. Although Sl[1g] subsumes all logics in the Atl*
hierarchy, our Sl[1g] extension does not have direct support for them, i.e. an Atl* formula must
be translated (by the user) to an equivalent Sl[1g] formula before it can be verified. Extending
ISPL syntax (see Subsection 6.1.2) with Atl* formulas should be rather easy and it would greatly
enhance the usability of the extension. Moreover, given that we have already implemented the
procedures for translating Ltl formulas to equivalent non-deterministic Büchi automata, it should
not be too difficult to add support for efficient Ltl and Ctl* model checking as well.

160 Chapter 8. Conclusions

Bibliography

[1] The BDD library. http://www.cs.cmu.edu/~modelcheck/bdd.html. Accessed 26/01/2014.

[2] Bison – GNU parser generator. http://www.gnu.org/software/bison/. Accessed 02/06/2014.

[3] Boolean satisfiability research group at Princeton. http://www.princeton.edu/~chaff/software.
html. Accessed 26/01/2014.

[4] flex: The fast lexical analyzer. http://flex.sourceforge.net/. Accessed 02/06/2014.

[5] GNU general public license. http://www.gnu.org/licenses/gpl.html. Accessed 25/01/2014.

[6] GNU lesser general public license. http://www.gnu.org/licenses/lgpl.html. Accessed
24/01/2014.

[7] MCK. http://cgi.cse.unsw.edu.au/~mck/pmck/. Accessed 26/01/2014.

[8] MCMAS home page. http://vas.doc.ic.ac.uk/software/mcmas/. Accessed 25/01/2014.

[9] MCMAS v1.2.1: User manual. http://vas.doc.ic.ac.uk/software/mcmas/documentation/. Ac-
cessed 02/06/2014.

[10] NuSMV home page. http://nusmv.fbk.eu/. Accessed 24/01/2014.

[11] PRISM – probabilistic symbolic model checker. http://www.prismmodelchecker.org/. Accessed
26/01/2014.

[12] RSat homepage. http://reasoning.cs.ucla.edu/rsat/. Accessed 26/01/2014.

[13] VAS – verification of autonomous systems. http://vas.doc.ic.ac.uk/. Accessed 02/06/2014.

[14] MCK 1.0.0 – user manual. http://cgi.cse.unsw.edu.au/~mck/pmck/mcks/docDownload/manual,
Feb. 2012. Accessed 26/01/2014.

[15] Accellera. Property specication language - reference manual - version 1.1. http://www.eda.org/

vfv/docs/PSL-v1.1.pdf. Accessed 24/01/2014.

[16] R. Alur, L. de Alfaro, T. A. Henzinger, S. C. Krishnan, F. Y. C. Mang, S. Qadeer, S. K. Rajamani,
and S. Taşıran. Mocha user manual. http://mtc.epfl.ch/software-tools/mocha/doc/. Accessed
15/06/2014.

[17] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran. Mocha: Modularity in
model checking. In A. J. Hu and M. Y. Vardi, editors, Computer Aided Verification, volume 1427
of Lecture Notes in Computer Science, pages 521–525. Springer Berlin Heidelberg, 1998.

[18] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of the
ACM, 49(5):672–713, Sept. 2002.

[19] S. Anthony. Amazon unveils 30-minute Prime Air quadcopter delivery service, but it’s completely
impractical. ExtremeTech, Dec. 2013. Accessed 25/01/2014.

http://www.cs.cmu.edu/~modelcheck/bdd.html
http://www.gnu.org/software/bison/
http://www.princeton.edu/~chaff/software.html
http://www.princeton.edu/~chaff/software.html
http://flex.sourceforge.net/
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/lgpl.html
http://cgi.cse.unsw.edu.au/~mck/pmck/
http://vas.doc.ic.ac.uk/software/mcmas/
http://vas.doc.ic.ac.uk/software/mcmas/documentation/
http://nusmv.fbk.eu/
http://www.prismmodelchecker.org/
http://reasoning.cs.ucla.edu/rsat/
http://vas.doc.ic.ac.uk/
http://cgi.cse.unsw.edu.au/~mck/pmck/mcks/docDownload/manual
http://www.eda.org/vfv/docs/PSL-v1.1.pdf
http://www.eda.org/vfv/docs/PSL-v1.1.pdf
http://mtc.epfl.ch/software-tools/mocha/doc/

162 Bibliography

[20] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time Markov chains. In
R. Alur and T. Henzinger, editors, Proc. 8th International Conference on Computer Aided Verifi-
cation (CAV’96), volume 1102 of LNCS, pages 269–276. Springer, 1996.

[21] D. Berwanger, K. Chatterjee, M. De Wulf, L. Doyen, and T. A. Henzinger. Alpaga: A tool for
solving parity games with imperfect information. CoRR, abs/0901.4728, 2009.

[22] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems. In
P. Thiagarajan, editor, Proc. 15th Conference on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS’95), volume 1026 of LNCS, pages 499–513. Springer, 1995.

[23] N. Bulling, J. Dix, and W. Jamroga. Model checking logics of strategic ability: Complexity. In
M. Dastani, K. V. Hindriks, and J.-J. C. Meyer, editors, Specification and Verification of Multi-
agent Systems, pages 125–159. Springer US, 2010.

[24] R. Carroll. CES 2014: driverless cars are coming and they want to be your friends. The Guardian,
Jan. 2014. Accessed 25/01/2014.

[25] O. Carton and M. Michel. Unambiguous Büchi automata. Theoretical Computer Science, 297(1–
3):37–81, 2003. Latin American Theoretical Informatics.

[26] P. Čermák, A. Lomuscio, F. Mogavero, and A. Murano. Few examples of interpreted systems.
Personal communication, 2014.

[27] P. Čermák, A. Lomuscio, F. Mogavero, and A. Murano. MCMAS-SLK: A model checker for the
verification of strategy logic specifications. CoRR, abs/1402.2948, 2014.

[28] K. Chatterjee, T. Henzinger, and N. Piterman. Generalized parity games. Technical Report
UCB/EECS-2006-144, University of California, Berkeley, Nov. 2006.

[29] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untraceability.
Journal of Cryptology, 1:65–75, 1988.

[30] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. NuSMV version 2: An opensource tool for symbolic model checking. In Proc. Interna-
tional Conference on Computer-Aided Verification (CAV 2002), volume 2404 of LNCS, Copenhagen,
Denmark, July 2002. Springer.

[31] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: A new symbolic model checker.
International Journal on Software Tools for Technology Transfer, 2(4):410–425, 2000.

[32] A. Cimatti, M. Pistore, M. Roveri, and R. Sebastiani. Improving the encoding of LTL model checking
into SAT. In Proc. workshop on Verification Model Checking and Abstract InterpretationVMCAI’02,
volume 2294 of LNCS, Venice, Italy, Jan. 2002. Springer.

[33] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using branching
time temporal logic. In D. Kozen, editor, Logics of Programs, volume 131 of Lecture Notes in
Computer Science, pages 52–71. Springer Berlin Heidelberg, 1982.

[34] E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking. Formal
Methods in System Design, 10(1):47–71, 1997.

[35] C. Dima and F. L. Tiplea. Model-checking ATL under imperfect information and perfect recall
semantics is undecidable. CoRR, abs/1102.4225, 2011.

[36] N. Eén and N. Sörensson. MiniSat page. http://www.minisat.se/. Accessed 26/01/2014.

[37] E. A. Emerson and J. Y. Halpern. “sometimes” and “not never” revisited: On branching versus
linear time temporal logic. J. ACM, 33(1):151–178, Jan. 1986.

[38] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments of µ-calculus. In
C. Courcoubetis, editor, Computer Aided Verification, volume 697 of Lecture Notes in Computer
Science, pages 385–396. Springer Berlin Heidelberg, 1993.

http://www.minisat.se/

Bibliography 163

[39] E. A. Emerson and C.-L. Lei. Modalities for model checking: branching time logic strikes back.
Science of Computer Programming, 8(3):275–306, 1987.

[40] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal reasoning. In
E. M. Clarke and R. P. Kurshan, editors, Computer-Aided Verification, volume 531 of Lecture Notes
in Computer Science, pages 136–145. Springer Berlin Heidelberg, 1991.

[41] S. Even and A. Paz. A note on cake cutting. Discrete Applied Mathematics, 7(3):285–296, 1984.

[42] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge, volume 1 of MIT
Press Books. The MIT Press, 2003.

[43] B. Farwer. ω-automata. In E. Grädel, W. Thomas, and T. Wilke, editors, Automata Logics, and
Infinite Games, volume 2500 of Lecture Notes in Computer Science, pages 3–21. Springer Berlin
Heidelberg, 2002.

[44] O. Friedmann and M. Lange. Solving parity games in practice. In Z. Liu and A. Ravn, editors,
Automated Technology for Verification and Analysis, volume 5799 of Lecture Notes in Computer
Science, pages 182–196. Springer Berlin Heidelberg, 2009.

[45] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[46] E. Grädel, W. Thomas, and T. Wilke, editors. Automata Logics, and Infinite Games: A Guide to
Current Research, volume 2500 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2002.

[47] M. Hilbert and P. López. The worlds technological capacity to store, communicate, and compute
information. Science, 332(6025):60–65, 2011.

[48] I. Hodkinson. C499: Modal and temporal logic. University Lecture, 2013. Department of Computing,
Imperial College London.

[49] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press, New York, NY, USA, 2004.

[50] M. Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. Information Processing
Letters, 68(3):119–124, 1998.

[51] M. Jurdziński. Small progress measures for solving parity games. In H. Reichel and S. Tison, editors,
STACS 2000, volume 1770 of Lecture Notes in Computer Science, pages 290–301. Springer Berlin
Heidelberg, 2000.

[52] M. Kacprzak, W. Nabia lek, A. Niewiadomski, W. Penczek, A. Pó lrola, M. Szreter, B. Woźna, and
A. Zbrzezny. VerICS 2007 – a model checker for knowledge and real-time. Fundamenta Informaticae,
85(1–4):313–328, 2008.

[53] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S. Pandav, A. Slobodová,
C. Taylor, V. Frolov, E. Reeber, and A. Naik. Replacing testing with formal verification in Intel R©

CoreTM i7 processor execution engine validation. In A. Bouajjani and O. Maler, editors, Computer
Aided Verification, volume 5643 of Lecture Notes in Computer Science, pages 414–429. Springer
Berlin Heidelberg, 2009.

[54] H. Klauck. Algorithms for parity games. In Automata, Logics, and Infinite Games, pages 107–129,
2001.

[55] S. Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica, 16:83–94, 1963.

[56] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking with PRISM:
A hybrid approach. International Journal on Software Tools for Technology Transfer (STTT),
6(2):128–142, 2004.

164 Bibliography

[57] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time
systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International Conference on
Computer Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011.

[58] F. Laroussinie, N. Markey, and G. Oreiby. On the expressiveness and complexity of ATL. In
H. Seidl, editor, Foundations of Software Science and Computational Structures, volume 4423 of
Lecture Notes in Computer Science, pages 243–257. Springer Berlin Heidelberg, 2007.

[59] N. G. Leveson and C. S. Turner. An investigation of the Therac-25 accidents. Computer, 26(7):18–41,
1993.

[60] J. Lind-Nielsen. BuDDy – a binary decision diagram package. http://vlsicad.eecs.umich.edu/
BK/Slots/cache/www.itu.dk/research/buddy/. Accessed 26/01/2014.

[61] A. Lomuscio. Knowledge Sharing among Ideal Agents. PhD thesis, School of Computer Science,
University of Birmingham, Birmingham, UK, June 1999.

[62] A. Lomuscio. C303: Systems verification. University Lecture, 2013. Department of Computing,
Imperial College London.

[63] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model checker for the verification of multi-agent
systems. In Computer Aided Verification, volume 5643 of Lecture Notes in Computer Science, pages
682–688. Springer Berlin Heidelberg, 2009.

[64] A. Lomuscio and F. Raimondi. The complexity of model checking concurrent programs against
CTLK specifications. In M. Baldoni and U. Endriss, editors, Declarative Agent Languages and
Technologies IV, volume 4327 of Lecture Notes in Computer Science, pages 29–42. Springer Berlin
Heidelberg, 2006.

[65] A. Lomuscio and F. Raimondi. Model checking knowledge, strategies, and games in multi-agent sys-
tems. In Proceedings of the fifth international joint conference on Autonomous agents and multiagent
systems, AAMAS ’06, pages 161–168, New York, NY, USA, 2006.

[66] A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica, 75(1):63–92, 2003.

[67] Z. Manna and A. Pnueli. Specification and verification of concurrent programs by ∀-automata. In
B. Banieqbal, H. Barringer, and A. Pnueli, editors, Temporal Logic in Specification, volume 398 of
Lecture Notes in Computer Science, pages 124–164. Springer Berlin Heidelberg, 1989.

[68] R. Mazala. Infinite games. In E. Grädel, W. Thomas, and T. Wilke, editors, Automata Logics, and
Infinite Games, volume 2500 of Lecture Notes in Computer Science, pages 23–38. Springer Berlin
Heidelberg, 2002.

[69] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell, MA, USA, 1993.

[70] R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied Logic, 65(2):149–
184, 1993.

[71] K. Milvang-Jensen, , and A. J. Hu. BDDNOW: A parallel BDD package. In Proc. FMCAD, pages
501–507. Springer, 1998.

[72] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. Reasoning about strategies: On the model-
checking problem. CoRR, abs/1112.6275, 2011.

[73] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. A decidable fragment of strategy logic.
CoRR, abs/1202.1309, 2012.

[74] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. What makes ATL* decidable? a decidable
fragment of strategy logic. In M. Koutny and I. Ulidowski, editors, CONCUR 2012 Concurrency
Theory, volume 7454 of Lecture Notes in Computer Science, pages 193–208. Springer Berlin Heidel-
berg, 2012.

http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.itu.dk/research/buddy/
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.itu.dk/research/buddy/

Bibliography 165

[75] F. Mogavero, A. Murano, and L. Sauro. On the boundary of behavioral strategies. In Logic in
Computer Science (LICS), 2013 28th Annual IEEE/ACM Symposium on, volume 0, pages 263–272,
June 2013.

[76] F. Mogavero, A. Murano, and M. Y. Vardi. Reasoning about strategies. In K. Lodaya and M. Ma-
hajan, editors, IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2010), volume 8 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 133–144, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik.

[77] A. Morgenstern. Symbolic controller synthesis for LTL specifications. PhD thesis, 2010.

[78] A. Morgenstern and K. Schneider. From LTL to symbolically represented deterministic automata.
In F. Logozzo, D. A. Peled, and L. D. Zuck, editors, Verification, Model Checking, and Abstract
Interpretation, volume 4905 of Lecture Notes in Computer Science, pages 279–293. Springer Berlin
Heidelberg, 2008.

[79] J. Obdržálek. Algorithmic Analysis of Parity Games. PhD thesis, University of Edinburgh, 2006.
Submitted: January 31, 2006. Examined: May 29, 2006.

[80] A. Pnueli. The temporal logic of programs. In Foundations of Computer Science, 1977., 18th Annual
Symposium on, pages 46–57, Oct 1977.

[81] F. Raimondi and A. Lomuscio. Automatic verification of multi-agent systems by model checking
via OBDDs. Journal of Applied Logic, 2005.

[82] S. Safra. On the complexity of ω-automata. In Foundations of Computer Science, 1988., 29th
Annual Symposium on, pages 319–327, Oct 1988.

[83] K. Schneider. Verification of Reactive Systems. Texts in Theoretical Computer Science. Springer
Berlin Heidelberg, 2004.

[84] P. Schnoebelen. The complexity of temporal logic model checking. Advances in Modal Logic, 4:393–
436, 2002.

[85] F. Somenzi. CUDD: CU decision diagram package. http://vlsi.colorado.edu/~fabio/CUDD/.
Accessed 26/01/2014.

[86] M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf. Comput., 115(1):1–37,
1994.

[87] B. Woźna and A. Zbrzezny. Bounded model checking for the universal fragment of CTL, 2002.

[88] W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite
trees. Theoretical Computer Science, 200(1–2):135–183, 1998.

[89] M. Zimmermann. Optimal Bounds in Parametric LTL Games. ArXiv e-prints, June 2011.

http://vlsi.colorado.edu/~fabio/CUDD/

166 Bibliography

Appendix A

Toy Model ISPL Code

We provide here an ISPL description of the toy model introduced in Section 3.3.

1 Agent Environment

2 Obsvars:

3 state : {game, p1win, p2win};

4 end Obsvars

5 Actions = {idle};

6 Protocol:

7 Other : {idle};

8 end Protocol

9 Evolution:

10 state = p1win if state = game and

11 (Player1.Action = rock and Player2.Action = scissors or

12 Player1.Action = paper and Player2.Action = rock or

13 Player1.Action = scissors and Player2.Action = paper);

14 state = p2win if state = game and

15 (Player2.Action = rock and Player1.Action = scissors or

16 Player2.Action = paper and Player1.Action = rock or

17 Player2.Action = scissors and Player1.Action = paper);

18 end Evolution

19 end Agent

20

21 Agent Player1

22 Vars:

23 end Vars

24 Actions = {rock, paper, scissors, idle};

25 Protocol:

26 Environment.state = game: {rock, paper, scissors};

27 Other: {idle};

28 end Protocol

29 Evolution:

30 end Evolution

31 end Agent

32

33 Agent Player2

34 Vars:

35 end Vars

36 Actions = {rock, paper, scissors, idle};

37 Protocol:

38 Environment.state = game: {rock, paper, scissors};

39 Other: {idle};

168 Appendix A. Toy Model ISPL Code

40 end Protocol

41 Evolution:

42 end Evolution

43 end Agent

44

45 Evaluation

46 p1 if Environment.state = p1win;

47 p2 if Environment.state = p2win;

48 end Evaluation

49

50 InitStates

51 Environment.state = game;

52 end InitStates

53

54 Groups

55 g = {Player1, Player2};

56 end Groups

57

58 Formulae

59 -- Existing Tool (examples/toy_model_existing.ispl)

60 EF p1;

61 <g>G !(p1 or p2);

62

63 -- SLK Extension (examples/toy_model_slk.ispl)

64 <<e>> (Environment, e) <<x>> (Player1, x) <<y>> (Player2, y) G !(p1 or p2);

65

66 -- SL[1G] Extension (examples/toy_model_sl1g.ispl, examples/toy_model_sl1g2.ispl)

67 #PR <<e>> (Environment, e) <<x>> (Player1, x) <<y>> (Player2, y) G !(p1 or p2);

68 #PR [[e]] (Environment, e) [[x]] (Player1, x) <<y>> (Player2, y) G !(p1 or p2);

69 end Formulae

	Introduction
	Objectives
	Challenges
	Contributions
	Published Work

	Background
	Frameworks for Modelling Systems
	Kripke Models
	Concurrent Game Structures
	Interpreted Systems

	Specification Languages
	Linear Temporal Logic
	Computation Tree Logic
	Full Branching Time Logic
	Alternating-Time Temporal Logic
	Strategy Logic
	Epistemic modalities
	Model Checking Complexity
	Summary

	Verification Methods
	Binary Decision Diagrams
	Symbolic Model Checking
	Summary

	Automata and Games
	omega-Automata
	Symbolically Represented omega-Automata
	Translating Ltl Formulas to omega-automata
	Determinisation
	Games
	Summary

	Existing Tools
	MCK
	MCMAS
	Mocha
	NuSMV
	PRISM
	VerICS

	Summary

	Fragment Selection
	Imperfect Recall
	Complete Information
	Toy Model
	Formal Definition
	Symbolic Implementation

	Summary

	Epistemic Strategy Logic
	Logic
	Syntax
	Basic Concepts
	Semantics
	Comparison with Strategy Logic
	Limitations

	Model Checking
	Complexity
	Algorithm
	Strategy Synthesis
	Symbolic Implementation

	Summary

	One-Goal Strategy Logic
	Logic
	Model Checking
	Algorithm
	Complexity
	Strategy Synthesis
	Symbolic Implementation
	Separate Determinisation

	Summary

	Implementation
	Existing Tool
	Functionality
	Usage
	Architecture

	Epistemic Strategy Logic Extension
	Functionality
	Usage
	Architecture

	One-Goal Strategy Logic Extension
	Functionality
	Usage
	Architecture

	Experimental Results
	Dining Cryptographers
	Cake Cutting
	Scheduler
	Nim
	Analysis

	Summary

	Evaluation
	Theory
	Strengths
	Weaknesses

	Implementation
	Strengths
	Weaknesses

	Fragment Comparison
	Summary

	Conclusions
	Summary of Work
	Future Work

	Bibliography
	Toy Model ISPL Code

