
IMPERIAL COLLEGE LONDON

MENG INDIVIDUAL PROJECT

NoteEd

An Interactive Manuscript Tutor for Fundamental Music Theory

Author:

Peter HAMILTON

Supervisor:

Dr. Robert CHATLEY

Second Marker:

Dr. Tony FIELD

17th June 2014

Abstract

We present NoteED - an application that allows a child to practise their music theory and

manuscript writing. The system automatically generates feedback which would otherwise

require interaction with a human music teacher.

Using techniques from computer vision, machine learning and domain knowledge, NoteED
recognises and analyses fundamental musical symbols handwritten on a tablet. This enables

generation of useful feedback to the student in order to improve their written manuscript

quality whilst reinforcing the learning of concepts from fundamental music theory.

Initial findings suggest that NoteED can be used as an effective for students to practice

their notation and receive timely feedback. We also show that the basic level of feedback

on a student’s mistakes closely matches that of a human music teacher.

2

Acknowledgements

I would first like to thank Rob Chatley for his support throughout the ups and downs of

this project and for his ideas, advice and helping me focus my goals on the more realistic

targets. I’d also like to thank the students and teachers who helped me in gathering data

and testing out NoteED , putting up with endless notation practice, hopefully it did you

some good...

I also want to take the opportunity to thank my family who have supported me though my

four years here at Imperial with constant encouragement, advice and occasional emergency

food runs. I couldn’t have done it without you.

Last but in no way least, I would like to thank Agnes, firstly for her expertise, which has

proved invaluable, but also her constant support and encouragement, without you this

project would never have even gotten off the ground, let alone landed safely.

3

Contents

1 Introduction 9

1.1 Context . 9

1.2 Motivation . 11

1.3 Objectives . 12

1.4 Mistake Detection . 12

1.4.1 Learning Improvement . 12

1.4.2 Tablet Interface . 12

1.4.3 Engaging Experience For Child . 12

2 Background 14

2.1 Music Theory . 14

2.1.1 The Staff . 15

2.1.2 Bar Lines . 15

2.1.3 Notes and Rests . 16

2.1.3.1 Notes . 16

2.1.3.2 Rests . 16

2.1.3.3 Duration . 16

2.1.3.4 Pitch . 17

2.1.4 Accidentals . 18

2.1.5 Clefs . 18

2.1.6 Key Signatures . 19

2.1.7 Time Signatures . 20

2.2 Common Notation Mistakes . 21

2.2.1 Gathering Professional Feedback . 21

2.2.2 Note Heads . 24

2.2.2.1 Ambiguous Position . 24

2.2.2.2 Too Big/Small . 25

2.2.2.3 Broken Note Heads . 26

4

CONTENTS

2.2.2.4 Messy Note Heads . 27

2.2.2.5 Angled Heads . 27

2.2.3 Note Stems . 28

2.2.3.1 Stem Angle . 28

2.2.3.2 Stem Straightness . 28

2.2.3.3 Stem Direction . 29

2.2.3.4 Stem Side . 29

2.2.3.5 Stem Length . 30

2.2.4 Quaver Tails . 30

2.2.4.1 Quaver Tail Side . 30

2.2.5 Rests . 30

2.2.5.1 Position . 30

2.2.6 Duration Dots . 31

2.2.6.1 Wrong Side . 31

2.2.7 Accidentals . 32

2.2.7.1 Ambiguous . 32

2.2.7.2 Wrong Side . 32

2.2.7.3 Wrong Line . 33

2.2.8 Key Signatures . 33

2.2.8.1 Wrong Octave . 33

2.2.8.2 Incorrect Order . 34

2.2.8.3 Incorrect Pitch . 34

2.2.9 Beats and Timing . 35

2.2.9.1 Too Many Beats . 35

2.2.9.2 Too Few Beats . 35

2.3 Existing Music Theory Resources . 35

2.3.1 Mobile Apps . 35

2.3.2 Theory Workbooks . 36

2.3.2.1 Taylor, E.R. and Associated Board of the Royal Schools of

Music 1989 . 38

2.4 OMR Applications . 39

2.4.1 Neuratron Photoscore . 40

2.4.2 Audiveris . 40

2.4.3 Gamera . 40

2.4.4 Capella Scan . 40

5

CONTENTS

3 Technical Research 41

3.1 Previous Works . 41

3.1.1 Taubman, Odest and Jenkins 2005 41

3.1.2 Ben-Dayan and Giloh 2013 . 42

3.1.2.1 Stem Detection . 42

3.1.2.2 Note Head and Features Detection 43

3.1.3 Rebelo et al. 2011 . 43

3.2 Generating Manuscripts . 44

3.2.1 Professional GUI Tools . 44

3.2.2 LilyPond . 45

3.2.3 VexFlow . 46

3.3 OMR Architecture . 47

3.4 Segmentation . 47

3.4.1 Connected Component Analysis . 48

3.4.1.1 Recursive Labelling . 48

3.4.1.2 Two Pass Labelling . 50

3.4.2 Projections . 51

3.4.3 Template Matching . 53

3.4.4 Defects and Difficulties . 54

3.4.4.1 Touching Objects . 55

3.5 Component Features . 55

3.5.1 Vertical and Horizontal Holes . 55

3.5.2 Moments . 56

3.5.2.1 Ordinary Definition . 56

3.5.2.2 Zeroth Order Moments . 56

3.5.2.3 First Order Moments . 57

3.5.3 Run Length Encoding . 57

3.6 Classification . 58

3.6.1 Nearest Neighbour . 58

3.6.2 KNN Editing . 59

3.6.2.1 Wilson Editing . 59

3.6.2.2 Genetic Algorithms . 60

3.7 Scoring & Evaluation . 61

3.7.1 Image Difference . 61

3.7.2 Normalized Cross Correlation . 61

6

CONTENTS

3.7.3 Skeletonization . 62

3.7.4 Watershed Segmentation . 63

4 Techniques 65

4.1 Architecture . 65

4.2 Identification . 65

4.2.1 Segmentation . 65

4.2.1.1 Initial Segmentation . 66

4.2.1.2 Stem Removal . 67

4.2.2 Feature Extraction . 68

4.2.2.1 Resampling . 68

4.2.3 Classification . 68

4.2.3.1 K Nearest Neighbour . 69

4.2.3.2 Neural Networks . 74

4.2.4 Pitch . 76

4.2.4.1 Sharp Centres . 78

4.2.4.2 Flat Centres . 78

4.2.4.3 Note Head Centres . 79

4.2.5 Duration . 80

4.2.6 Domain Knowledge . 83

4.3 Scoring and Feedback . 83

4.3.1 Pitched Notes and Accidentals . 84

4.3.1.1 Position . 84

4.3.2 Key Signatures . 85

4.3.2.1 Wrong Octaves . 85

4.3.2.2 Out of Order . 85

4.3.2.3 Incorrect Accidental . 86

4.3.3 Beats and Timing . 86

4.3.4 Stems . 87

4.3.4.1 Straightness . 88

4.3.4.2 Angle . 89

4.3.4.3 Direction . 89

4.3.4.4 Side . 91

4.3.4.5 Length . 92

4.3.5 Quaver Tail . 93

4.3.5.1 Side . 93

7

CONTENTS

4.3.6 Note Heads . 93

4.3.6.1 Size . 93

4.3.6.2 Messy Crotchet Heads . 94

4.3.6.3 Broken Hollow Heads . 94

4.3.6.4 Angled Semibreve . 95

5 Implementation 96

5.1 Architecture . 96

5.1.1 Client . 97

5.1.2 Server . 98

5.1.3 Processing Service . 98

5.1.4 Core Database Schema . 99

5.1.5 Entity Relationship Diagram . 101

5.2 Input . 103

5.2.1 Medium Selection . 103

5.2.1.1 Flat Bed Scanner . 103

5.2.1.2 Gestures . 103

5.2.1.3 Tablet Input . 104

5.2.2 Capturing Strokes . 104

5.3 Data Storage and Retrieval . 106

5.3.1 Stave Drawing . 106

5.3.2 Components . 107

5.4 Feedback . 107

5.4.1 Listing Mistakes . 107

5.4.2 Colour Coding . 108

5.4.3 On Screen Correction . 109

5.4.4 The Hybrid Approach . 110

6 Evaluation 113

6.1 Mistake Detection . 113

6.2 Learning Improvement . 115

6.3 Engaging Experience For Child . 116

7 Conclusions & Future Work 117

7.1 Conclusions . 117

7.2 Future Work . 118

8

Chapter 1

Introduction

1.1 Context

The earliest sources of Western European music recorded on manuscript can be dated back

to the late 9th century1 and most likely emerged from the need for a consistent framework

by which music could be reproduced and shared, as opposed to just passed on by word of

mouth through the generations.

Where once composers could only write and reproduce music by hand, even having to

draw their own staff lines, the advent of pre-printed paper allowed rapid composition on a

rigid and regular framework. Further advances in technology led to music typesetting and

printed music scores which suddenly enabled rapid and faithful reproduction of musical

works.

Since then, the advent of personal computers, tablets, scanners and home printers means

that with the right software such as Avid’s Sibelius2, a composer can delegate the task of

manuscript representation, notation, layout, and conformity to conventions to a piece of

software, while they concentrate on the actual composition.

The benefits technology has brought to the communication of musical notation should not

be understated, however in the learning stages of music theory, handwritten notation is

a critical developmental tool which takes many students considerable time to master. I

believe technology has not yet been used to its full potential in this area, something this

1http://en.wikipedia.org/wiki/Music_manuscript, accessed 13th June 2014
2See http://www.avid.com/US/products/Sibelius/features

9

http://en.wikipedia.org/wiki/Music_manuscript

1.1. CONTEXT

project aims to change.

A variety of software and applications (Section 2.3) now exists for learning advanced music

theory concepts, composing scores, digitising existing handwritten music and a great many

other uses. However in the realm of basic music theory, primarily taught to young children

when they start their first instrument, it seems the available toolset is limited to the same

exercise books, manuscript paper and repetitive practice that it always has been. Indeed

in researching this paper, I discovered that in the 15 years since I first came across music

theory myself, the same books and learning styles are still being applied.

Now, this doesn’t mean they’re in any way ineffective, indeed one could quite rightly assume

the opposite, as these learning styles have demonstrably stood the test of time. In those

same 15 years, as noted above, there have been significant advances in the use of technology

to support the notation of music in other ways. However helping students to learn the

basics of hand forming musical notation has been neglected.

Now that children are getting more and more used to computers, tablets, games and

interactive learning styles, it is my aim to try and bring some of this technology into the

area of fundamental music theory and manuscript notation.

10

CHAPTER 1. INTRODUCTION

1.2 Motivation

In the UK national curriculum for primary education, there is no requirement for children

to learn to write or even read musical notation (DfE 2013). However, when they’re learning

an instrument and reach the point where they need to take grades3, this is something they

must be able to do (Spanswick 2012).

Learning to write musical manuscript correctly and clearly takes time and practice, much as

when children are learning normal handwriting skills. From informal research it is clear that

most instrumental teachers would like their pupils to learn written music theory alongside

their practical instrumental tuition.

However there often isn’t an abundance of time to spend on learning and practising music

theory and the options available to the student and teacher are therefore limited. Do you

go over the topic during lesson time, eating into the instrumental tuition, or do you perhaps

send the child away with some manuscript paper4 and ‘homework’, which can be marked

during their next lesson, using yet more time. Sadly both of these are often ineffective

methods of learning since without guidance and feedback on a regular basis, it’s all too

easy for a student to accidentally reinforce bad habits. A faster, unsupervised feedback

loop is needed.

Whilst several solutions exist that can help children with academic theory as we can see

in Section 2.3, the subject of handling handwritten notation and manuscript has so far

not been tackled. Optical Music Recognition (OMR) is a field I draw on heavily in this

dissertation. Commercial and research applications in this area typically focus on converting

draft or rough handwritten notation into a digital format and are not primarily educational

tools. With such applications, no feedback is provided and indeed extracting feedback

would be hard given the technical methods used to analyse the musical scores.

In short, other than their music teacher, nothing really exists which is capable of help-

ing a child learn to correctly write musical notation whilst simultaneously providing

feedback This project aims to make a start towards filling that void.

3ABRSM Subjects, Exams and Prerequisites http://gb.abrsm.org/en/our-exams/
information-and-regulations/

4An example of blank manuscript paper can be found at http://www.blanksheetmusic.net/

11

http://gb.abrsm.org/en/our-exams/information-and-regulations/
http://gb.abrsm.org/en/our-exams/information-and-regulations/
http://www.blanksheetmusic.net/

1.3. OBJECTIVES

1.3 Objectives

1.4 Mistake Detection

Objective: Enable the detection of common mistakes in notation, specific-

ally in symbols, pitch, time signatures and other musical features outlined in

Table 2.4.

I intend to get a professional to identify mistakes in a catalog of musical samples I gather

from children and other users and by building up a comparison table I will then be able to

see if the application is firstly capable of spotting the same mistakes as a human and secondly

providing contextualised, useful feedback to help them improve (Section 1.4.1)

1.4.1 Learning Improvement

Objective: Produce an application which can improve on and continue a

child’s learning outside of their music lessons

This will be be most likely evaluated by logging a child’s activity and looking for patterns in

the number of mistakes they make over time, which we would hope to see decrease.

1.4.2 Tablet Interface

Objective: To design and create a scalable tablet compatible user interface

which can provide a child with a smooth and effective writing experience in

order to facilitate written notation.

This can be evaluated using user testing. Most likely I will have perform some optimisation

to ensure the best experience and make sure that the ‘manuscript paper’ scales between

devices properly

1.4.3 Engaging Experience For Child

Objective: Combine the tablet interface and mistake detection objectives to

produce a streamlined experience which a student will happily engage with on

a repeat basis.

12

CHAPTER 1. INTRODUCTION

Success should be evaluated by examining access and activity logs to determine how

regularly a child engages with the system (particularly repeat usages).

13

Chapter 2

Background

2.1 Music Theory

“Right from the start, it is important to learn how to write down music clearly. As

a musician, unclear manuscript can waste valuable rehearsal time and might lead

to performance mistakes. In an exam, badly written work may be misunderstood

and could lose you vital marks.” (Taylor, E.R. and Associated Board of the Royal

Schools of Music 1989)

For early grades of music theory, the criteria which students need to meet in order to

maximize their marks and musical potential is covered in quite specific detail. This makes

sense as the majority of students taking the exam are likely to be young. Since they are also

unlikely to have encountered much written music before, this is the most crucial time for

teaching them good habits.

The following is a guide to the manuscript entities that a student aiming to take their grade

1 - 3 theory exams would most likely have to know about and/or write down, along with

the relevant criteria for what constitutes acceptable and unacceptable manuscript, most of

the examples below are taken from or based on the official documentation in the AB Guide

to music Theory(Taylor 2008).

14

CHAPTER 2. BACKGROUND

2.1.1 The Staff

A staff (or stave) is comprised of five horizontal parallel staff lines separating four staff

spaces, together they form a framework within which music elements are placed.

The lines are numbered from bottom (first line) to top fifth line and spaces are labelled in

a similar fashion. Notes are then placed on the staff and depending on the clef, similar

locations can indicate different actual notes. Further information about the Clef is given

in section (Section 2.1.5) below. The staff can also be used to notate untuned percussion,

however this remains out of scope of this project for the time being.

Figure 2.1: An example of a standard staff with 5 staff lines

2.1.2 Bar Lines

Aside from the staff, bar lines are one of the most important parts of the score. Bar lines

divide the music up into smaller units of time called measures or bars.

There are multiple types of bar lines, some of which are shown in Figure 4.5 but the most

important one is the single bar line which separates the bars. This is the only bar line we

will consider in the scope of this project.

(a) Single Bar Line (b) Double bar line (c) Bar line with a repeat

Figure 2.2: An example of single, double and repeated bar lines (Figure 2.2c)

15

2.1. MUSIC THEORY

2.1.3 Notes and Rests

2.1.3.1 Notes

Notes are used to represent duration (differentiated by their shape) and pitch (differentiated

by where they’re placed on the stave) of musical sounds. Most notes are comprised of a

note head and a stem but may also have beams or tails in the case of notes shorter than a

crotchet.

For reference, there are multiple variations in how note lengths are named and different

papers refer to notes using the British and American terminology. I will be using british

naming conventions throughout this project but for reference I have put both naming styles

in Table 2.1.

2.1.3.2 Rests

Rests correspond directly to notes as you can see from Table 2.1 but unlike notes, rests can

only indicate duration and do not have pitch. They’re located centred around the central

(3rd) staff line and each length is represented with a different symbol or a relative location

to the staff line.

2.1.3.3 Duration

The note length or value or duration (number of beats a note lasts for) is determined by

multiple features.

A semibreve lasts 4 beats, minims 2 and crotchets 1 beat. Further divisions for quavers and

semiquavers are notated by the number of tails (in the case of single, isolated notes) or the

number of beams (in the case of beamed notes), both of which are located on the note stem

furthest from the note head.

In general, for multiple notes with a value less than 1 the convention is to beam them

together and since multiple beams can be used in place of tails you are not limited to

beaming only notes of the same duration

There also exist duration dots which are single dots placed to the right of a note head or

rest. These indicate that the duration of the dotted note is equal to 1.5 × the length of the

16

CHAPTER 2. BACKGROUND

original note.

Name Name (American) Note Symbol Rest Symbol

Semibreve Whole Note

Minim Half Note

Crotchet Quarter Note

Quaver Eighth Note

Semiquaver Sixteenth Note

Duration Dot

Table 2.1: An overview of note and rest durations

2.1.3.4 Pitch

The absolute pitch of a note is determined by it’s vertical position on the stave relative to

the staff lines taking into account the clef (Section 2.1.5), the key signature (Section 2.1.6)

and any applicable accidentals (Section 2.1.4).

Pitch is notated by letter and number corresponding to the note itself and the octave. For

example, the central C on the piano (the first ledger line on a treble clef) is noted by C4

and the next C one octave above it is notated by C5. A sequence of notes is shown labelled

in Figure 2.3. For notes with sharps or flats applied, typically an additional lowercase

character (s for Sharp and b for Flat) is added, for example Fs4, Bb4 etc.

17

2.1. MUSIC THEORY

Figure 2.3: Pitch labelling for notes

2.1.4 Accidentals

When placed on staff lines or spaces, accidentals modify the note which they precede unless

cancelled out by another accidental (often a natural). There are three types of accidental:

sharps, flats and naturals, which are explained in Table 2.2

Name Symbol Description

Sharp Raise the pitch of a note by one semitone

Natural Cancels any previous sharp or flat which might have applied to a
note, usually from the key signature

Flat Lowers the pitch of a note by one semitone

Table 2.2: An overview of accidentals

2.1.5 Clefs

A clef is generally the first entity on a staff and defines the pitch range for the music, there

are many clefs but within the scope of this project we will focus primarily on the most

common two clefs, the treble clef and bass clef.

18

CHAPTER 2. BACKGROUND

Name Symbol

Treble Clef

Bass Clef

Table 2.3: An overview of common clefs

2.1.6 Key Signatures

Key signatures are found at the beginning of a stave next to the clef and are applicable to all

musical notes which come after them, essentially setting the accidentals for the foreseeable

future so we don’t have to add them before every single note.

The key itself is defined by the number of sharps or flats in the signature and these follow a

rigid structure and are added in a specific order left to right as shown in Figure 2.4 Sharps

and flats are never combined in a key signature.

19

2.1. MUSIC THEORY

Figure 2.4: An overview of key signatures in treble and bass clef showing the number of
accidentals and the positions on the stave, from
http://www.netplaces.com/singing/basic-music-theory/key-signatures.htm,
accessed 10/06/2014

2.1.7 Time Signatures

Time signatures can be found at the beginning of the stave or the start of a bar. The

‘numerator’ sets the number of beats per bar and the ‘denominator’ sets which note value

is used to represent a beat for the music which follows. They can be split into several

subcategories depending on the rhythm as shown in Figure 2.5.

(a) Four crotchets per bar (b) Common time, same as Figure 2.5a

(c) Two crotchets per bar (d) Three crotchets per bar (e) Six quavers per bar

Figure 2.5: Examples of different time signatures

20

http://www.netplaces.com/singing/basic-music-theory/key-signatures.htm

CHAPTER 2. BACKGROUND

2.2 Common Notation Mistakes

Notation follows a strict set of rules and conventions, however there are a lot of them

and as such it’s perfectly natural that children struggle to remember them all, resulting in

mistakes.

In order to focus the scope of this dissertation, I needed to establish exactly which mistakes

were most likely to occur. In order to understand what these might be, I referred to two

main sources.

The first is Music Theory in Practice, (Taylor 2008) This book, written specifically to

assist those teaching music theory, has some good examples of mistakes a student should

avoid.

The second is consultation with professional musicians and teachers. This is covered further

in Section 2.2.1.

2.2.1 Gathering Professional Feedback

In order to build an application which can help to compensate for the absence of a tutor,

we need to ensure that it can spot as many of the same mistakes as a tutor would.

The most logical way to establish precisely what these mistakes might be is to ask the tutors.

When I did this, several of them found it difficult to express the mistakes they had seen

children make without a piece of music in front of them.

I therefore devised the following method for gathering data to form a ‘mistake data-

base’.

1. Build the input section of the application such that a student can ‘free-draw’ on a

blank music staff.

2. Set the student challenges and ask them to have a go at as many as they can

3. Print out the attempts (labelled) and get a music tutor to mark them freehand

4. Collate and summarise the feedback

To save time (and paper) the marking was done 3-UP on a portrait sheet of A4, an example

of one of the tutor feedback sheets can be seen in Figure 2.6. It should be noted that in

21

2.2. COMMON NOTATION MISTAKES

some of the feedback tutors refer to errors differently, for example by using ‘the stem is on

the wrong side’ to mean that either a note stem is up when it should be down or that it’s

on the right when it should be on the left. Below are annotated examples of the mistakes

NoteED needs to be able to identify.

22

CHAPTER 2. BACKGROUND

Figure 2.6: Example of tutor-annotated manuscript

23

2.2. COMMON NOTATION MISTAKES

Once this data was collected I had a sample of 83 attempts at various notation challenges,

of which a number were annotated. I was then able to extract some of the recurring issues

which NoteED should aim to recognise which I’ve summarised in Table 2.4. I present what

is by no means an exhaustive list below and later on in Section 4.3 I go over how I actually

identify, score and provide feedback to the student for these mistakes.

Element Issue Description Analysis

Note Head Ambiguous Position Section 2.2.2.1 Section 4.3.1.1
Note Head Broken Lines Section 2.2.2.3 Section 4.3.6.3
Note Head Angled Section 2.2.2.5 Section 4.3.6.4
Note Head Messy Section 2.2.2.4 Section 4.3.6.2
Stem Length Section 2.2.3.5 Section 4.3.4.5
Stem Straightness Section 2.2.3.2 Section 4.3.4.1
Stem Direction Section 2.2.3.3 Section 4.3.4.3
Stem Side Section 2.2.3.4 Section 4.3.4.4
Stem Angle Section 2.2.3.1 Section 4.3.4.2
Quaver Tail Side Section 2.2.4.1 Section 4.3.5.1
Rest Position Section 2.2.5.1 Section 4.3.1.1
Key Signature Incorrect Octave Section 2.2.8.1 Section 4.3.2.1
Key Signature Incorrect Ordering Section 2.2.8.2 Section 4.3.2.2
Key Signature Incorrect Accidentals Section 2.2.8.3 Section 4.3.2.3
Beats & Timing Too Many Beats Section 2.2.9.1 Section 4.3.3
Beats & Timing Too Few Beats Section 2.2.9.2 Section 4.3.3

Table 2.4: A brief summary of some mistakes which emerged from the preliminary data
gathering. ‘FUTURE’ indicates that analysis for the mistake hasn’t yet been incorporated
into the application

2.2.2 Note Heads

2.2.2.1 Ambiguous Position

The semibreve is the easiest note to draw and is simply an oval outline, however, the

rules which govern it’s placement are quite specific as outlined in Figures Figure 2.7 &

Figure 2.9

24

CHAPTER 2. BACKGROUND

[h!]

Figure 2.7: If it is drawn on the line, the line must go exactly through the middle of the
semibreve

2.2.2.2 Too Big/Small

Figure 2.8: Note heads should be one staff space in size and not extend beyond a pair of
staff lines

Figure 2.9: If it is drawn in the space, it should only cover half the space on either side

Similar rules govern the placement of crotchet and minim heads as seen in Figure 2.10.

25

2.2. COMMON NOTATION MISTAKES

Figure 2.10: And example of an ‘ambiguous’ minim. It is placed both in a space and on a
line

2.2.2.3 Broken Note Heads

Figure 2.11: When writing semibreves and minims, it’s important to form a full ellipse

26

CHAPTER 2. BACKGROUND

2.2.2.4 Messy Note Heads

Figure 2.12: Several children drew solid noteheads rather haphazardly, leaving gaps and
giving a messy scribbled effect to the note head

2.2.2.5 Angled Heads

Figure 2.13: Semibreves are typically wider than minims so any deviation from horizontal
appears more pronounced and should be avoided

27

2.2. COMMON NOTATION MISTAKES

2.2.3 Note Stems

2.2.3.1 Stem Angle

Figure 2.14: Stems should be vertical, unlike this one which is leaning too far to the right

2.2.3.2 Stem Straightness

Figure 2.16

28

CHAPTER 2. BACKGROUND

2.2.3.3 Stem Direction

Figure 2.17: Stem direction is important and is based on which position on the staff the
note head lies. You can see examples of which way stems should go in Figure 2.3

2.2.3.4 Stem Side

Figure 2.18: Again, as you can see from Figure 2.3 depending in the direction of the stem
vertically, the side on which the stem goes also changes

29

2.2. COMMON NOTATION MISTAKES

2.2.3.5 Stem Length

Figure 2.19: Here you see examples of a stem which is too short and another which is too
long. Stems should be between 2 and 3 staff spaces in length

2.2.4 Quaver Tails

2.2.4.1 Quaver Tail Side

Figure 2.20

2.2.5 Rests

2.2.5.1 Position

Most rests should be centred around the middle staff line. However minim and semibreve

rules differ slightly. Minim rests are placed sitting on top of the middle line and semibreve

rests are placed sitting below.

30

CHAPTER 2. BACKGROUND

Figure 2.21

2.2.6 Duration Dots

2.2.6.1 Wrong Side

Figure 2.22: Duration dots should only be placed after the note

31

2.2. COMMON NOTATION MISTAKES

2.2.7 Accidentals

2.2.7.1 Ambiguous

Figure 2.23

2.2.7.2 Wrong Side

Figure 2.24: Accidentals should always appear before a note

32

CHAPTER 2. BACKGROUND

2.2.7.3 Wrong Line

Figure 2.25

2.2.8 Key Signatures

2.2.8.1 Wrong Octave

Figure 2.26

33

2.2. COMMON NOTATION MISTAKES

2.2.8.2 Incorrect Order

Figure 2.27

2.2.8.3 Incorrect Pitch

Figure 2.28

34

CHAPTER 2. BACKGROUND

2.2.9 Beats and Timing

2.2.9.1 Too Many Beats

Figure 2.29

2.2.9.2 Too Few Beats

Figure 2.30

2.3 Existing Music Theory Resources

2.3.1 Mobile Apps

In order to establish what kinds of applications might exist in and around this music

recognition and correction field, I researched online. The Apple “App Store” revealed

35

2.3. EXISTING MUSIC THEORY RESOURCES

several examples of applications which teach music theory, however none of these focus on

writing music and are more based around ideas like flashcards and memorisation.

Figure 2.31: Music Theory Applications after searching “Music Theory” on the Apple App
Store

Most of these apps however, are aimed at more advanced students and miss out a huge part

of theory exams which is the written notation section so I won’t focus on them more in this

project.

2.3.2 Theory Workbooks

The traditional teaching method typically uses template printed workbooks in which stu-

dents write the answers to a series of exercises. The following scans provide examples of

the kinds of exercises and lessons that the application might aim to replicate to be capable

of in the long term.

36

CHAPTER 2. BACKGROUND

(a)

(b)

(c)

Figure 2.32: Examples of exercises in fundamental music theory, taken from Lina Ng 2001

From a wide list of potential exercises, I have narrowed down a small list of sample exercises

types suitable for a student learning music theory at the equivalent of Grade 2-4.

37

2.3. EXISTING MUSIC THEORY RESOURCES

Figure 2.33: Some of the books on music theory targetted at the right age group

2.3.2.1 Taylor, E.R. and Associated Board of the Royal Schools of Music 1989

The AB Guide to Music Theory isn’t specifically focussed around handwritten exercises but

it gave a great reference for the more fundamental theory which I found very helpful whilst

writing Section 2.1 as it give good examples on note divisions (Figure 2.34).

38

CHAPTER 2. BACKGROUND

Figure 2.34: The AB Guide to music theory reminding me of how divisions and note
beaming work

2.4 OMR Applications

This project heavily grounded technically in the field of Optical Music Recognition (OMR).

Prior to embarking on a solution from scratch, research was done to gather an understanding

of the existing OMR landscape and whether any tools already existed. Several software

solutions were found which can assist in taking a printed score and process it to create a

digital representation. However, the majority were commercial applications which required

purchasing and almost all were designed to be used under highly supervised conditions

inside a Graphical User Interface (GUI), doing an initial conversion and then guiding the

user through the process of validating the application’s ‘best guess’.

Another issue with these applications in relation to NoteED is that most of them assume

you just want accurate classification and you therefore lose the ability to examine and

interact with the underlying components. Instead you just get out a MIDI file, MusicXML or

another format.

39

2.4. OMR APPLICATIONS

2.4.1 Neuratron Photoscore

Neuratron Photoscore1 is one of the market leading packages, features tight integration with

several composition tools like Sibelius and Finale, outputs to a range of formats (MusicXML

etc). Designed to be run by the end user in supervised conditions, it enables you to scan a

handwritten musical sheet, interprets what you intended, and enables you to correct errors

as you go.

2.4.2 Audiveris

“Audiveris is an open-source Optical Music Recognition software which processes the image

of a music sheet to automatically provide symbolic music information in MusicXML stand-

ard.”2

At present it only supports high quality printed scores and operates by utilising a neural

network which must be trained on samples provided by the end user.

2.4.3 Gamera

Gamera3 is primarily a structured document processing and symbol recognition tool (Mac-

Millan, Droettboom and Fujinaga 2002) and was spun out of one of the authors’ previous

thesis which focussed on OMR (Fujinaga 1996). Primarily used for academic purposes, one

of the overlapping areas of focus of the NoteEd project is some of its supporting research

into stave detection and removal 4.

2.4.4 Capella Scan

As with most of the other applications mentioned, Capella Scan5 is primarily designed to

convert old or dated music manuscripts into a more “preservable” digital format without

needing to manually type all the music out again. However by the authors’ own admission

it falls down slightly when it comes to handwritten music.

1http://www.neuratron.com/photoscore.htm
2https://audiveris.kenai.com/
3http://gamera.informatik.hsnr.de
4http://gamera.informatik.hsnr.de/addons/musicstaves/
5http://www.capella.de/us/index.cfm/products/capella-scan/info-capella-scan/

40

Chapter 3

Technical Research

3.1 Previous Works

3.1.1 Taubman, Odest and Jenkins 2005

In this paper, Taubman attempts to improve on notation input for professional musicians,

allowing them to input rough “sketched” music and convert it into a neatly printed form.

The application created, “MusicHand” makes use of a graphics tablet connected to a desktop

machine and records the individual strokes the user makes.

Strokes are captured individually but using a latency threshold which is then used to group

the strokes together, adjusted on a per user basis. Taubman then makes use of statistical

moments to classify these stroke groups, then making use of a K-NN algorithm to classify

the object as one of several musical entities using the generated moments.

41

3.1. PREVIOUS WORKS

/2/2
Figure 3.1: Example notation sketch from Taubman, Odest and Jenkins 2005

Since strokes are generally sketched as seen in Figure 3.1 the application also makes use

of a great deal of domain expertise, covered further in Section 4.2.6, essentially running

through a large flow chart in order to classify the entities further. However, the system

notably relies on the compatibility of the generated moment “libraries” between users, a

study of which was recommended for any future work but not done in this case. It is also

suggested that instead of a graphics tablet, one might experiment with a more direct input

method such as drawing onto a tablet directly with a stylus, the author specifically mentions

the “Wacom Cintiq”1, a “digital canvas” of sorts, which might allow a much more natural

pen-paper feel.

3.1.2 Ben-Dayan and Giloh 2013

An interesting component of the work by Ben-Dayan and Giloh was their experiments with

stem, note head and symbol detection during the segmentation phases.

3.1.2.1 Stem Detection

For stem detection, since handwritten stems are unlikely to be perfectly straight, the authors

use vertical projections combined with a high pass filter to establish likely stems. These are

represented by peaks in the vertical projection.

1http://uk.shop.wacom.eu/products/cintiq

42

CHAPTER 3. TECHNICAL RESEARCH

A bounding box is then generated and the note is split into an upper and lower region; the

upper and lower parts being used in note head and beam detection later.

3.1.2.2 Note Head and Features Detection

The author extracts the head position by way of a distances transform and then examining

the density of the pixels (distance from the nearest black pixel) the results of which you

can see graphically in Figure 3.2. The authors also make several assumptions at this stage

regarding the size of features (e.g. sharps are less than twice the stave space height) which

enables them to separate notes from other components (clefs, accidentals etc).

Figure 3.2: Finding component centres, (Ben-Dayan and Giloh 2013)

3.1.3 Rebelo et al. 2011

In this paper the authors discuss the use of domain knowledge in musical classification. In

general the NoteEd project can’t rely purely on standard musical conventions due to the

potential mistakes which students are likely to make.

However, the flow diagram reproduced in Figure 3.3 which represents their musical extrac-

tion algorithm using domain knowledge provides an excellent reference for the order in

which musical properties could be identified.

43

3.2. GENERATING MANUSCRIPTS

Figure 3.3: Musical symbols extraction algorithm from Rebelo et al. 2011

3.2 Generating Manuscripts

In order to produce enough musical examples and references for a student to use, some

automated way of producing the reference manuscript is needed.

3.2.1 Professional GUI Tools

There are several professional tools which are used in industry to generate musical scores

on the computer. The ones with most widespread usage are Sibelius2 and Finale3 and more

recently, NoteFlight4

2http://www.avid.com/US/products/SibeliusFirst/overview
3http://www.finalemusic.com/products/finale/
4http://www.noteflight.com/

44

CHAPTER 3. TECHNICAL RESEARCH

They’re worth mentioning as they’re the “industry standards” for musical notation and

composition, used by professionals and in education around the world, but their primary

use case is manual input via a GUI so for our purposes they are not ideal.

3.2.2 LilyPond

LilyPond5 is a music engraver and serves as a ‘modular, extensible and programmable

compiler for producing high-quality music notation’ (Nienhuys and Nieuwenhuizen 2003).

Originally inspired by the efforts of projects like MusixTex6 which had aimed to ‘be able

to typeset complex polyphonic, orchestral or instrumental music’ (Taupin 1999) in the

same way that it was already renowned for beautifully typeset text and maths. It’s a widely

adopted tool but its flexibility with regard to formatting makes it difficult to learn.

The idea of Lilypond is that by entering or programmatically generating a formal represent-

ation of music which is designed to be easy to type, you can then use LilyPond to produce a

manuscript engraving from that representation. Lilypond also supports conversion from

other popular text-based music formats such as MusicXML7, or ABC8.

For example, given the following LilyPond syntax:

\relative c’ {

c’ d’ e’ f’ g’2 g’2

}

We can run LilyPond to produce the output you see in Figure 3.4

Using LilyPond and some basic algorithms around music theory we could easily generate

textual representations of exercises and generate the necessary images from them. It’s also

free and accessible meaning that it can be easily installed on development machines and

servers.
5http://www.lilypond.org/
6http://www.mab.jpn.org/musictex/musixtex_e.html
7Some good examples can be found at http://www.musicxml.com/tutorial/hello-world/
8Standards can be found at http://abcnotation.com/

45

3.2. GENERATING MANUSCRIPTS

Figure 3.4: Lilypond Output Example

3.2.3 VexFlow

Vexflow9 is another music engraving application, but Vexflow is web based and makes use

of HTML5 Canvas10 and SVG11 so it can be used to generate manuscripts on the fly in a

browser.

For example if you were to include the Vexflow library and then write the javascript outlined

in Section 3.2.3 you will get the result in Figure 3.5

var canvas = $("div.one div.a canvas")[0];
var renderer = new Vex.Flow.Renderer(canvas ,

Vex.Flow.Renderer.Backends.CANVAS);

var ctx = renderer.getContext ();
var stave = new Vex.Flow.Stave(10, 0, 500);
stave.addClef("treble").setContext(ctx).draw();

An advantage Vexflow has over LilyPond is that with LilyPond, for use on the web, we

would need to render the music remotely, then synchronously or asynchronously transport

those resources (most likely images, which are expensive for web traffic) to the client. The

downside of client side rendering is of course that for anything complex, since it increases

the load on the end device, it’s important to be aware on which devices the code will

primarily be run to ensure a good user experience.

9https://github.com/0xfe/vexflow
10https://developer.mozilla.org/en/docs/HTML/Canvas
11http://en.wikipedia.org/wiki/Scalable_Vector_Graphics

46

CHAPTER 3. TECHNICAL RESEARCH

Figure 3.5: Vexflow render, see http://vexflow.com/docs/tutorial.html

3.3 OMR Architecture

In general, the challenge of OMR can be decomposed into more defined sections. Although

implementations obviously differ, an overview of some of the techniques I have come across

for the various ‘common’ stages which I researched can be summarised by:

1. Pre Processing 2. Segmentation 3. Classification 4. Reconstruction

1. Level Adjustment

2. Binarization

3. Noise Removal

4. Handling Skew

5. Rotation

6. Stave Removal

(a) Horizontal Pro-
jections

(b) Hough Trans-
forms

1. Projections

2. Template Matching

3. Connected Compon-
ents

1. K Nearest Neighbour
(KNN)

2. Neural Networks

3. Support Vector Ma-
chines

4. Statistical Moments

1. Simple Heuristics

2. Grammar

Table 3.1: Typical OMR Stages

3.4 Segmentation

Segmentation is the challenge of taking a given image or scene and extracting individual

objects or ‘components’.

47

http://vexflow.com/docs/tutorial.html

3.4. SEGMENTATION

Typically this can be a complex problem to tackle as stafflines connect almost all components

together and must therefore first be removed. Also some musical entities are themselves

comprised of multiple other entities. Good examples are the bass clef which is comprised of

two dots placed above each other to the right of the curve (Section 2.1.5). Dotted notes

would be another example (Table 2.1).

Particularly within the NoteED project, we also need to be able to break down the musical

entities further into stems and note heads and so separating these from each other presents

another problem which we must take into account.

3.4.1 Connected Component Analysis

Connected component analysis is a technique used to establish distinct regions within an

image. An individual pixel in a binary image can possess two forms of connectedness,

4-neighbour or 8-neighbour. It should be noted that this evaluation only takes place for

pixels with a value of 1 or “filled pixels”.

More formally, “A connected component labelling of a binary image B is a labeled image

LB in which the value of each pixel is the label of it’s connected component” (Shapiro and

Stockman 2001, pg 69)

To be 4-neighbour, at least one of the pixels above, below or to the left or right (which we

can refer to as the vertical and horizontal neighbours) of the pixel under investigation must

have a value of 1.

In a similar fashion, an 8-neighbour pixel is one where any of the surrounding 8 pixels

(vertical, horizontal or diagonal neighbours) has a value of 1.

Regions for 4-neighbour and 8-neighbour connected pixels are outlined in Figure 3.6

There are two primary algorithms for establishing connected regions, the first is recursive

and the second requires two scans.

3.4.1.1 Recursive Labelling

If we assume that the size of the image to be evaluated is small and we can fit it in memory

(a reasonable assumption give the scope of the project and the hardware available) we can

employ a recursive algorithm which can grow regions by visiting any pixel in the image

48

CHAPTER 3. TECHNICAL RESEARCH

(a) Image (The pixel being examined is higlighted)

(b) 4 Neighbour Regions (c) 4N - 2 Regions Identified

(d) 8 Neighbour Regions (e) 8N - 1 Region Identified

Figure 3.6: 4 and 8 Neighbour Regions and examples of connected pixels

using depth first or breadth first searching. An outline for a depth first algorithm is given in

algorithm Listing 3.1

Listing 3.1: Recursive Connected Component Labelling (DFS)

let img be the binary image

let lblimg be the labelled image

lblimg = negate(image)

lbl = 0

label_components ():

49

3.4. SEGMENTATION

for i = 0 to height:

for j = 0 to width:

if lblimg[i, j] == -1:

lbl += 1

label_ region(i, j)

label_region(i, j):

lblimg[i, j] = lbl

for (i’, j’) in neighbours(i, j):

if lblimg[i, j] == -1:

label_region(i’, j’)

3.4.1.2 Two Pass Labelling

An alternate algorithm involves performing the labelling in two passes. Assuming 8-

neighbour connectedness and that we will most likely be scanning left to right we inspect

the 3 pixels above and the pixel to the left of the current pixel as seen in Figure 3.7.

Figure 3.7: Pixels which are inspected during each row scan

We label each pixel according to these neighbours (if neighbours have multiple labels we

just pick any of them and record that they were adjacent) and then finally reduce the

number of labels by merging adjacent labels. An visual example of the process can be seen

in Figure 4.11

Listing 3.2: Iterative Two-Pass Connected Component Labelling

let img be the binary image

let lblimg be the labelled image

lblimg = negate(image)

lbl = 1

50

CHAPTER 3. TECHNICAL RESEARCH

equivalent_labels = []

first_pass():

for i = 0 to height:

for j = 0 to width:

if lblimg[i, j] == 1:

labels = neighbour_labels(i, j)

if size(labels) == 0:

lbl += 1

lblimg[i, j] = lbl

else:

lblimg[i, j] = labels [0]

if size(labels) > 1:

equivalent_labels << labels

second_pass():

for labelgroup in equivalent_labels:

firstlabel = labelgroup [0]

otherlabels = labelgroup [1..]

for label in otherlabels:

relabelpixels(label , firstlabel)

3.4.2 Projections

Projections are regularly used in OMR during the preprocessing stage to detect and re-

move staff lines (Rossant 2002), but can also be used during the segmentation stage. An

example section of score is shown in Figure 3.9 along with it’s horizontal and vertical

projections.

The technique essentially involves projecting the manuscript in the x and y axes, collecting

the pixels in either individual pixel lines or buckets in order to help establish information

about the image.

Mathematically, if the image is represented as a 1 bit (2 colour) image I(xmax, ymax) of width

xmax and height ymax, let pxy ∈ 0, 1 denotes the value for a specific pixel at row y column

x.

51

3.4. SEGMENTATION

(a) Initial Image

(b) 1st pass (Row 1) (c) 1st pass (Row 2) (d) 1st pass (Row 3)

(e) 2nd Pass

Figure 3.8: Step by step two pass connected component labelling

The horizontal and vertical projections can then be defined as:

Phorizontal(y) =
∑xmax

j=0 pjy (3.1)

Pvertical(x) =
∑ymax

j=0 pxj (3.2)

52

CHAPTER 3. TECHNICAL RESEARCH

Figure 3.9: Horizontal and Vertical Projections of handwritten music excerpt

3.4.3 Template Matching

Image segmentation using template matching is not one of the main techniques used in

segmentation due to it’s sensitivity to distortions but it has been the focus of a few OMR

related papers. It receives particular attention in the segmentation phase in Rossant 2002

where different templates of reference components can be matched to the score, where a

high correlation score in a certain position acts as both segmentation and classification.

In testing, I was able to reproduce this effect by extracting components like the note head

from the whole note as seen in Figure Figure 3.10. However, as noted by Rossant this

method is highly dependent on the font used in a printed score so for the purposes of

handling handwritten notation it’s unlikely to yield great results. Indeed, in preliminary

testing, getting regular correct matches in a handwritten score proved troublesome.

More formally, for the example in Figure 3.10, template matching involves analysing

each pixel in an image (or a region of an image) and comparing it to a reference pixel

in a template image. The score for two n × m images x and y can be generated using

Equation (3.3).

53

3.4. SEGMENTATION

Figure 3.10: Example of extracting note heads using template matching utilising OpenCV
and the sum of square differences scoring measure

SSDxy =
∑m

i=0

∑n
j=0(x(i, j)− y(i, j))2 (3.3)

In the example given above, we’re only looking for a subsection or a partial template so

if image x is m× n and image y is a× b in size where m ≤ a ∧ n ≤ b, we can search each

possible position (k, l) for y in x with Equation (3.4).

SSDxy(k, l) =
∑m+k

i=k

∑n+l
j=l (x(i, j + l)− y(i, j))2 (3.4)

and whichever positioning gives us the highest score is likely to be the best match.

3.4.4 Defects and Difficulties

There are two regular types of error that can cause issues during segmentation, touching

objects and broken objects. Since these are likely to occur a lot more regularly given the

freedom allowed by handwritten music and the beginner’s learning curve, it is important

that the application is able to spot (and subsequently feed back on) these errors.

54

CHAPTER 3. TECHNICAL RESEARCH

3.4.4.1 Touching Objects

Touching objects are where what was intended to be written as two separate objects actually

touch and this can cause issues when segmenting components using connected component

analysis Section 3.4.1.

In a printed score, you can use template matching as outlined in Section 3.4.3 in order to

separate the components. When they are handwritten, it is more likely we will have to rely

on using vertical and horizontal projections to find the point of minimal intersection as in

Fujinaga 1996.

3.5 Component Features

Some features which can be extracted from a component for use in classification include

(Fujinaga 1996): X Position, Y Position, Height, Width, Centroid X, Centroid Y, Extent, As-

pect, Area, Bounding Box Area, Avg Vertical Holes, Avg Horizontal Holes and Moments

In some cases, x and y position on the staff are used in classification but for the purposes of

the current project I have decided to perform classification assuming no prior knowledge.

There might be exercises or free-drawing where a child doesn’t want to have to follow the

rules which apply to a normal score of music but rather to draw specific symbols.

3.5.1 Vertical and Horizontal Holes

The average number of vertical and horizontal holes is used by Fujinaga 1996 and are

topological properties in that they’re generally scale invariant and as defined by Burger

et al. 2009 “do not describe the shape of a region in continuous terms; instead, they capture

its structural properties".

Average vertical and horizontal holes can be calculated by analysing the columns and rows

respectively and counting the number of segments which do not have a solid pixel in (the

runs of 0s). For example, for average horizontal holes we would count the number of white

segments per row and total them up, averaging by the number of rows. Similarly with

columns for vertical holes.

55

3.5. COMPONENT FEATURES

3.5.2 Moments

In this project the concept of low level moments is used to extract information like region

area and centroid coordinates, however I wasn’t able to get to grips with some of the higher

order moments used by Fujinaga 1996; Rebelo et al. 2011 and others to represent rotation,

skew and other properties which may go some way to explaining my failed classifier in

Table 4.1. It may be that my implementation was simply wrong, however since I was able

to achieve good classification results using a resampled and flattened image, I decided that

at least for the initial project iterations I would stick to that.

3.5.2.1 Ordinary Definition

As in Burger et al. 2009 a moment of the order p, q for an image or region I(x, y) can be

defined by Equation (3.5).

mpq =
∑

x,y∈R I(x, y) · xpyq (3.5)

When dealing with binary regions, since we only consider the pixels of value 1 we can

simplify Equation (3.5) to Equation (3.6).

mpq =
∑

x,y∈R x
pyq (3.6)

3.5.2.2 Zeroth Order Moments

Zeroth order moments can be used to calculate the total sum of grey area of a region using

Equation (3.7) and we can see the result is intuitive - the area is simply the count of the

black pixels.

area = m00 =
∑

x,y∈R x
0y0 =

∑
x,y∈R 1 (3.7)

56

CHAPTER 3. TECHNICAL RESEARCH

3.5.2.3 First Order Moments

The first order moments m01 and m10 are use to obtain the centre of mass of a component

at (x̄, ȳ).

x̄ = m10

m00
, ȳ = m01

m00
(3.8)

3.5.3 Run Length Encoding

Run Length Encoding (RLE) is something which is regularly mentioned in regard to OMR,

it involves taking a pixel based image and converting what would be a huge amount of

information into a more compact format by establishing “runs” of identical pixels which are

in a contiguous block.

For a two dimensional binary image a run of pixels can be represented by it’s row, column,

value and run length (Burger et al. 2009, p. 27-28) as seen in Table 3.2

Example RLE (row, column, value, length)


1 2 2 3

3 3 3 1

1 1 5 5

5 5 2 2


[(0, 0, 1, 1), (0, 1, 2, 2), (0, 3, 3, 1),
(1, 0, 3, 3), (1, 3, 1, 1), (2, 0, 1, 2),
(2, 2, 5, 2), (3, 0, 5, 2), (3, 2, 5, 2)]

Table 3.2: 2D Greyscale Image

Example RLE (value, length)

[1, 2, 2, 3, 3, 3, 3, 1, 1, 1, 5, 5, 5, 5, 2, 2] [(1, 1), (2, 2), (3, 4), (1, 3), (5, 4), (2, 2)]

Table 3.3: 1D Flattened Greyscale Image

57

3.6. CLASSIFICATION

Example RLE 〈value, length〉

[0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1] [0, 3, 3, 2, 4] (first bit sets ordering)
[3, 3, 2, 4] (assuming initial bit is 0)

Table 3.4: 1D Flattened Binary Image

If you then reshape this 2D image into a one dimensional array (retrieving and reshaping

it to it’s 2D representation later), you can remove 50% of the compressed data (row and

column) as seen in Table 3.3

If we are using binary data we can simplify this further, simply tracking the initial bit, then

recording runs of alternating values as seen in ??. We can simplify this further with the

additional assumption (Fujinaga 1996) that the sequence will start with a 0, removing the

need for the initial bit. If the sequence begins with a 1 we just start with an entry of length

0. Since based on my research a lot of musical entities don’t touch the top left pixel of an

image (meaning it’s value it almost always 0), this is the implementation I have used.

3.6 Classification

3.6.1 Nearest Neighbour

The K Nearest Neighbour (KNN) algorithm is an example of instance based learning and

works by extracting a set of features for each sample and using this ‘feature vector’ to

represent each sample in a multidimensional vector space.

Once this space has been generated, new samples may be classified by generating their

feature vector and calculating the k closest or ‘most similar’ samples in the model by way of

a distance calculation. By considering the k closest samples, a consensus can be reached

and the new sample is classified according to the label with the greatest majority in the k

nearest neighbours as seen in Figure 3.11.

The two most critical aspects of the KNN classifier are the distance method used and the

number of neighbours considered. In order to maximise the accuracy of the classifier, I

performed several experiments to this effect in Section 4.2.3.

58

CHAPTER 3. TECHNICAL RESEARCH

Figure 3.11: KNN example using musical symbols and a K value of 3. The new symbol
being classified is highlighted blue and the three closest three entities in green. In this case,
the sample would be classified as a treble clef

3.6.2 KNN Editing

Although KNN can produce good results, the need to store all the data makes it less

attractive. To reduce the data needed in classifiers you can use an edited KNN algorithm

where the idea is to try and remove “poor" samples which not only reduces the storage

requirements but should also improve the accuracy of the classifier.

3.6.2.1 Wilson Editing

I originally came across the idea of edited KNN classifiers in Fujinaga 1996 in which

he outlines the original KNN editing techniques from earlier work by Wilson 1972, (the

59

3.6. CLASSIFICATION

algorithm for this editing technique is outlined in Algorithm 1). You can further extend

the algorithm to multiple iterations (referred to by most as the multi-editing algorithm),

repeating the process until no more poor samples are removed, at which point you save the

model for use in classification, hopefully at a reduced dataset size.

Algorithm 1 KNN editing algorithm

procedure EDITMODEL(model)
trainingSamples = GETSAMPLES(model)
for each sample in trainingSamples do

classification = MODEL.CLASSIFY(sample)
if classification 6= sample.classification then REMOVESAMPLE(sample)
end if

end for
end procedure

3.6.2.2 Genetic Algorithms

Although I decided not to actually employ the use of genetic algorithms in this project,

they came up repeatedly in more recent research and so I felt it was worth mentioning.

Genetic algorithms for feature selection is nothing new, indeed it’s used in Fujinaga 1996 for

selecting which features to use in a classifier; a traditionally tricky problem when you have

lots of features (or indeed classifier variables such as the value of K in KNN classification)

and need to work out which ones actually produce the best division of classes. Though

there are other techniques to do this too like PCA12. However in Kuncheva 1995 it is

used specifically in editing a KNN classifier. The results suggested that it might perform

comparably to wilson’s technique and that it generally performed better than just using a

random sample training set but relative to multi-editing technique the authors state that the

results from genetic algorithm and multi editing could not be compared due to an inability

to properly evaluate the power of the multi-edit algorithm.

12Principal Component Analysis is used to find the dimension/variable in a feature vector which provides
the highest variance possible. Features which provide small variance are of little help in a classification
problem

60

CHAPTER 3. TECHNICAL RESEARCH

3.7 Scoring & Evaluation

3.7.1 Image Difference

If you’re handling simple binary images, you can perform a pixel difference comparison

which just takes the first image XOR’d with the second, I1(x, y)⊕ I2(x, y). The result (shown

in Figure Figure 3.12) is a simple highlighting of the difference between the two.

Figure 3.12: Highlighting differences between a perfect and a hand-drawn crochet

I really liked the simplicity of this approach and as a visual representation of perhaps ‘going

outside the lines’ it really gets the point across. However with some preliminary experiments

it quickly became clear that it’s not very useful in the context of scoring components like

the crotchet in Figure 3.12 where you can see by simple inspection that a small discrepancy

in the scale of the note head contributes a much greater difference than a fairly significant

error in the stem. If we therefore use the pixel difference outright we can’t reasonably

compare one component to another with respect to how ‘correct’ it is.

3.7.2 Normalized Cross Correlation

Normalized cross correlation enables a pixel-wise comparison of two images, resulting in

a score between [−1, 1] where 1 indicates a perfect match e. g.the images are the same

and −1 indicates the images are precisely the opposite of each other. The overall effect

is to penalise the score for each pixel which is different in one image than the other. The

61

3.7. SCORING & EVALUATION

normalisation is designed to help in images where the brightness and light levels vary but it

works fine on binary images too.

An NCC score between two binary images F and G of the same dimension can be calculated

by using Equation (3.9).

1
N

∑
x,y

(f(x,y)−f̄)(g(x,y)−ḡ)
σfσg

(3.9)

Where N = w × h (the number of pixels in the image), f(x, y) and g(x, y) represent the

pixel in row y column x for the respective images, f̄ , ḡ represent the average pixel values

for each image and σf , σg are the standard deviations of the two images.

3.7.3 Skeletonization

Skeletonization is the process of reducing a component in a binary image to a single-pixel

wide skeleton. The algorithm used in this project (as defined in Zhang and Suen 1984)

works by making successive passes of the image, removing pixels on object borders. This

continues until no more pixels can be removed as in Figure 3.13. The image is correlated

with a mask that assigns each pixel a number in the range [0...255] corresponding to each

possible pattern of its 8 neighbouring pixels. A look up table is then used to assign the

pixels a value of 0, 1, 2 or 3, which are selectively removed during the iterations.

62

CHAPTER 3. TECHNICAL RESEARCH

Figure 3.13: Results of the skeletonization algorithm from Zhang and Suen 1984

3.7.4 Watershed Segmentation

Watershed segmentation essentially allows us to segment an image by identifying starting

points or ‘markers’ from which we grow segments, marking the boundaries where these

segments meet. There are multiple ways to add more pixels to the markers, one is to flood

fill outwards from the marker. Another way which I found success in the context of the

NoteED project is to perform a distance transform on the (binary) image, where pixels are

assigned values according to how far they are from the nearest background pixel and use

local maxima and assign pixels to the maxima depending on which marker is reachable by

the steepest gradient ascent.

A good example from Image is that of two overlapping circles we want to separate, shown

in Figure 3.14. The first step shows the two overlapping circles, the second shows a map of

the distance transform. Here the dark red indicates a background pixel and the gradient

ends with blue indicating the maximum distance from a background pixel. Local maxima

63

3.7. SCORING & EVALUATION

are marked as starting points for the watershed algorithm. If we imagine the gradients as a

3D topographical map, and if we then assign pixels based on the steepest gradient ascent

near them, they will group around the local maxima. Pixels which are equidistant from

either peak result in a boundary forming which approximates the division between the

original entities. We can now draw contours along these boundary lines to visually segment

the image.

An example of watershed being used in NoteED to help find the centre of a broken flat is

given in Figure 4.9.

Figure 3.14: Separating two overlapping circles using watershed segmentation from Image

64

Chapter 4

Techniques

4.1 Architecture

NoteED is divided in a few core architectural components. Firstly,

4.2 Identification

As outlined in Chapter 4 above, a key challenge is identifying and isolating the various

components which are going to be analysed. Section 4.2.1 outlines from the research

conducted and which methods were selected for segmentation, feature extraction and

allocation of pitch, duration and other properties.

4.2.1 Segmentation

In order to perform a decomposition of the manuscript, within NoteED I perform multiple

stages of segmentation combined with classification. For the purposes of demonstration I

will be following the identification process using the manuscript example in Figure 4.1.

65

4.2. IDENTIFICATION

Figure 4.1: The initial clean manuscript attempt

4.2.1.1 Initial Segmentation

Connected component analysis (see Section 3.4.1) is performed to isolate the individual

components on the stave, resulting in the first stage of component segmentation seen in

Figure 4.2.

Figure 4.2: After initial segmentation of Figure 4.1

The components are then classified using the first of two KNN classifiers (KNN1 - discussed

below in Section 4.2.3) which results in the basic labelling of the manuscript components

seen in Figure 4.3.

The note_complex and split_x/split_y components are divided into sub-components using

techniques such as stem removal (Section 4.2.1.2) and vertical projections (Section 3.4.2)

respectively. The new set of components are classified using one of the specialised classifiers,

the original KNN1 classifier in the case of split components or the KNN2 classifier for note

subcomponents to produce the more detailed component labelling in Figure 4.4.

66

CHAPTER 4. TECHNIQUES

Figure 4.3: After first level classification of Figure 4.2

Figure 4.4: After second level segmentation and classification of Figure 4.3. Note the stems
are now labelled

No further segmentation is performed on the components after this point.

4.2.1.2 Stem Removal

In order to split up a note_complex into heads, tails, beam, stem etc, the first step is to try

and isolate the stems. We can do this by removing horizontal runs of black pixels which are

above a threshold greater than the typical width of a stem. Since runs like this appear at

the intersection of the stem with other components, the result is a large number of new

regions in the image, one of which is likely to be the stem.

To establish which region is a stem and remove any noise, we look for regions which are

within a set aspect ratio (I use 1 : 2, obtained experimentally and designed to catch angled

67

4.2. IDENTIFICATION

stems as well as very vertical ones) and a height above a minimum threshold (I use 40px,

also obtained experimentally).

(a) The original
component

(b) The original
component

(c) The original
component

(d) The original
component

Figure 4.5: The stages in stem detection for sharps

4.2.2 Feature Extraction

4.2.2.1 Resampling

Using the pixels of an image as the features is an approach used in several of the papers I

looked at Ben-Dayan and Giloh 2013; Rebelo 2012, however in order to be able to compare

feature vectors, they need to be the same size which means we need to resize the images to

a common dimension.

To do this, I resize the images down using bilinear interpolation to an experimentally

obtained dimension of 20× 50px obtained in Section 4.2.3.1. The smaller dataset increases

the speed at which a classifier can operate and I also found it to be comparable to if not

more accurate than the feature vectors of larger images (Table 4.2).

4.2.3 Classification

Classifiers are created by taking a sets of previously labelled samples and building a model

which provides the most accurate relation between the samples and their labels. This

68

CHAPTER 4. TECHNIQUES

allows new samples to be classified using the model to apply the most likely (and hopefully,

correct) label.

In order to maximise the accuracy of my classifications, I ran multiple experiments on

different classifiers before deciding on which one I would apply in my application.

4.2.3.1 K Nearest Neighbour

For the K Nearest Neighbour algorithm, I tried two different feature vectors, the first was

using statistical properties and the second was a resampled binary image flattened into a

1D array.

4.2.3.1.1 Statistical Feature Vector An initial attempt at classification using statistical

properties and a KNN classifier wasn’t all that successful as you can see from the confusion

matrix and accuracy scores in Table 4.1. Most components were incorrectly classified as

crotchet heads though I was unable to come up with a good explanation as to why and it’s

something which it would be interesting to investigate further in future.

4.2.3.1.2 Image Feature Vector For the resampled image features, I ran a series of trials

for different dimensions from 10px to 100px in both width and height (in 10px increments),

averaging 3 repeats per dimension (each with a different training/testing split) and then

generating a matrix of accuracies (which can be seen in full in Table 4.3).

Since most objects on a stave have a more vertical aspect ratio, I first graphed the average

and maximum of the scores for each different height across all widths to see if there were

any trends such as taller images producing higher accuracy.

The results can be seen in Figure 4.6 and it seemed that in general, very short images

(≤ 20px) gave worse results than tall ones but there wasn’t anything conclusive and the

gains from very tall images as opposed to fairly small images were minimal. Since there

wasn’t a height which clearly stood out, an analysis of the full matrix was done to find the

highest scoring height and width combinations.

The top ten experimental accuracies from the tested dimensions are listed in Table 4.2 and

I eventually selected 20× 50px as my resampled dimension, the reason being that although

larger dimensions did technically produce better accuracies, they were only slightly better

69

4.2. IDENTIFICATION

cr
ot

ch
et

re
st

m
in

im
he

ad

no
te

_c
om

pl
ex

ba
ss

cl
ef

be
am

_c
om

pl
ex

sh
ar

p

se
m

ib
re

ve

qu
av

er
re

st

ba
rl

in
e

qu
av

er
ta

ild
ow

n

m
in

im
se

m
ib

re
ve

re
st

fla
t

cr
ot

ch
et

he
ad

st
em

tr
eb

le
cl

ef

di
gi

t_
8

na
tu

ra
l

di
gi

t_
3

di
gi

t_
2

di
gi

t_
4

qu
av

er
ta

ilu
p

do
t

crotchetrest 0 0 0 0 0 0 0 0 0 0 0 0 44 0 0 0 0 0 0 0 0 0
minimhead 0 16 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0

note_complex 0 0 32 0 0 0 0 0 0 0 0 0 87 0 0 0 0 0 0 0 0 0
bassclef 0 0 0 0 0 0 0 0 0 0 0 0 37 0 0 0 0 0 0 0 0 0

beam_complex 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
sharp 0 0 0 0 0 6 0 0 0 0 0 0 46 0 0 0 0 0 0 0 0 0

semibreve 0 0 0 0 0 0 1 0 0 0 0 0 37 0 0 0 0 0 0 0 0 0
quaverrest 0 0 0 0 0 0 0 0 0 0 0 0 36 0 0 0 0 0 0 0 0 0

barline 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0
quavertaildown 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0

minimsemibreverest 0 0 0 0 0 0 0 0 0 0 1 0 9 0 0 0 0 0 0 0 0 0
flat 0 0 0 0 0 0 0 0 0 0 0 2 50 0 0 0 0 0 0 0 0 0

crotchethead 0 0 0 0 0 0 0 0 0 0 0 0 133 0 0 0 0 0 0 0 0 0
stem 0 0 0 0 0 0 0 0 0 0 0 0 60 24 0 0 0 0 0 0 0 0

trebleclef 0 0 0 0 0 0 0 0 0 0 0 0 40 0 2 0 0 0 0 0 0 0
digit_8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
natural 0 0 0 0 0 0 0 0 0 0 0 0 37 0 0 0 0 0 0 0 0 0
digit_3 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 2 0 0 0 0
digit_2 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0
digit_4 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 7 0 0

quavertailup 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 3 0
dot 0 0 0 0 0 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0 0 15

Accuracy Precision Recall

0.275 0.645 0.275

Table 4.1: KNN classifier results using statistical features

70

CHAPTER 4. TECHNIQUES

and would have resulted in many more pixels in the feature vector, slowing down the

process of building a classifier and testing samples.

Figure 4.6: The effect of resampled image height on accuracy

Width Height Total Pixels Accuracy

50 70 3500 0.974
20 60 1200 0.971
20 70 1400 0.97

→ 20 50 1000 0.969
30 70 2100 0.969
100 70 7000 0.969
20 40 800 0.968
70 50 3500 0.967
60 60 3600 0.967
20 100 2000 0.967

Table 4.2: Top 10 accuracy scores for different width and height combinations, the selection
dimensions used in the classifier are highlighted and the full matrix can be found in Table 4.3

71

4.2. IDENTIFICATION

Width (px)

Height (px) 10 20 30 40 50 60 70 80 90 100

10 0.948 0.961 0.955 0.954 0.962 0.953 0.951 0.953 0.955 0.957
20 0.947 0.963 0.963 0.962 0.964 0.962 0.956 0.961 0.960 0.966
30 0.945 0.960 0.954 0.965 0.958 0.958 0.956 0.958 0.959 0.959
40 0.946 0.968 0.957 0.963 0.958 0.950 0.961 0.964 0.960 0.966
50 0.935 0.969 0.965 0.957 0.961 0.957 0.967 0.959 0.948 0.962
60 0.953 0.971 0.960 0.963 0.962 0.967 0.948 0.957 0.957 0.963
70 0.954 0.970 0.969 0.960 0.974 0.960 0.957 0.956 0.960 0.969
80 0.959 0.962 0.959 0.964 0.963 0.965 0.957 0.963 0.963 0.954
90 0.954 0.961 0.958 0.960 0.956 0.959 0.963 0.959 0.963 0.956
100 0.955 0.967 0.965 0.963 0.958 0.960 0.960 0.965 0.960 0.962

Table 4.3: Accuracy Matrix for various Height and Width Downsampling Combinations

Initial results on attempting to distinguish between all components were positive and I was

able to achieve around 93% accuracy as seen in Table 4.4.

72

CHAPTER 4. TECHNIQUES

fla
t

tr
eb

le
cl

ef

cr
ot

ch
et

re
st

di
gi

t_
8

m
in

im
he

ad

cr
ot

ch
et

he
ad

di
gi

t_
2

di
gi

t_
4

qu
av

er
re

st

se
m

ib
re

ve

be
am

_c
om

pl
ex

qu
av

er
ta

ilu
p

ba
ss

cl
ef

sh
ar

p

di
gi

t_
3

na
tu

ra
l

ba
rl

in
e

qu
av

er
ta

ild
ow

n

do
t

m
in

im
se

m
ib

re
ve

re
st

flat 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
trebleclef 0 53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

crotchetrest 0 0 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
digit_8 0

minimhead 0 0 0 0 43 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0
crotchethead 0 0 0 0 0 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0

digit_2 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0
digit_4 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0

quaverrest 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0
semibreve 0 0 0 0 0 0 0 0 0 37 0 0 0 0 0 0 0 0 0 0

beam_complex 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
quavertailup 0 0 1 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0

bassclef 0 0 0 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0
sharp 0 0 0 0 0 0 0 0 0 0 0 0 0 55 0 0 0 0 0 0

digit_3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0
natural 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0 0 0 0
barline 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0

quavertaildown 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0
dot 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 38 0

minimsemibreverest 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0

Accuracy Precision Recall

0.933 0.922 0.933

Table 4.4: Accuracy achieved using a KNN classifier trained on resampled 20x50px images

We can see that a few components in Table 4.4 are confused more than others, for example

stems and barlines. To mitigate this, we can employ the use of hierarchical classification.

Instead of trying to classify every single component at once, we can instead perform an

initial ‘high level’ classification, followed by further secondary classifications. The best

73

4.2. IDENTIFICATION

example of this is a note. Instead of trying to separate a note straight away into heads stems

and beams, it’s sufficient to simply classify it as a ‘note_complex’ entity and perform more

detailed classification of components later.

Using a two-stage classifier much more satisfactory results were achieved, with an initial

classification accuracy of 98.5% (Table 4.5) and a secondary classification accuracy of 100%

(Table 4.6)!

m
in

im
he

ad

cr
ot

ch
et

he
ad

qu
av

er
ta

ilu
p

qu
av

er
ta

ild
ow

n

minimhead 51 0 0 0
crotchethead 0 118 0 0
quavertailup 0 0 23 0

quavertaildown 0 0 0 5

Accuracy Precision Recall

1.0 1.0 1.0

Table 4.6: 2nd level KNN Classifier Results

4.2.3.2 Neural Networks

Although neural networks are also common in OMR, I was unfortunately unable to extract

any great results from them during my experiments. The best classification result I got was

by using Hierarchical Classification, where the network achieved an accuracy of 80.38%

for the 1st level classifier as seen in Table 4.7. I used trained the network using Backwards

Propogation and used two hidden sigmoidal layers of 25 nodes each. As more potential

classes were added, unfortunately the accuracy just decreased and so I chose to use KNN as

my classification technique.

It should be noted that further depth of research in this area fell outside the scope of this

project and is not an area in which I have specific expertise. Many people have great success

74

CHAPTER 4. TECHNIQUES

fla
t

na
tu

ra
l

cr
ot

ch
et

re
st

di
gi

t_
8

no
te

_c
om

pl
ex

be
am

_o
ne

di
gi

t_
3

di
gi

t_
2

tr
eb

le
cl

ef

di
gi

t_
4

qu
av

er
re

st

st
em

se
m

ib
re

ve

ba
ss

cl
ef

do
t

sh
ar

p

ba
rl

in
e

m
in

im
se

m
ib

re
ve

re
st

flat 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
natural 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

crotchetrest 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
digit_8 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

note_complex 0 0 0 0 112 0 0 0 0 0 0 0 0 0 0 0 0 0
beam_one 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

digit_3 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
digit_2 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0

trebleclef 0 0 0 0 0 0 0 0 47 0 0 0 0 0 0 0 0 0
digit_4 0 0 0 0 1 0 0 0 1 30 0 0 0 0 0 0 0 0

quaverrest 0 0 0 0 0 0 0 0 0 0 43 0 0 0 0 0 0 0
stem 0 0 0 0 2 0 0 0 5 0 0 99 0 0 0 0 3 0

semibreve 0 0 0 0 0 0 0 0 0 0 0 0 67 0 0 0 0 0
bassclef 0 0 0 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0

dot 0 0 0 0 0 0 0 0 0 0 0 4 0 0 35 0 0 0
sharp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 74 0 0

barline 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 19 0
minimsemibreverest 0 0 0 0 0 0 0 0 0 0 0 4 0 0 2 0 0 1

Accuracy Precision Recall

0.95 0.948 0.95

Table 4.5: 1st level KNN Classifier Results

75

4.2. IDENTIFICATION

using neural networks for this and similar applications, achieving high accuracy rates and

it’s certainly something which is maybe worth coming back to again in future.

cr
ot

ch
et

re
st

se
m

ib
re

ve

do
t

fla
t

di
gi

t_
2

ba
rl

in
e

tr
eb

le
cl

ef

sh
ar

p

qu
av

er
re

st

di
gi

t_
3

no
te

_c
om

pl
ex

na
tu

ra
l

di
gi

t_
4

ba
ss

cl
ef

m
in

im
se

m
ib

re
ve

re
st

crotchetrest 29 0 1 0 1 0 3 3 0 0 5 1 1 1 0
semibreve 0 45 0 0 0 0 0 0 0 0 1 0 0 0 0

dot 0 1 43 0 0 0 0 0 0 0 0 1 0 1 0
flat 0 0 0 43 0 0 0 3 0 0 8 1 1 0 0

digit_2 0 0 1 0 5 0 0 0 0 0 4 0 0 0 0
barline 0 0 10 0 0 28 2 1 0 0 0 0 2 0 0

trebleclef 1 0 0 1 0 2 29 3 0 0 0 0 1 0 0
sharp 1 0 2 0 0 1 1 46 0 0 0 0 1 0 0

quaverrest 0 0 0 0 0 0 0 0 32 1 1 1 0 0 0
digit_3 0 0 0 0 0 0 2 1 0 0 3 0 0 0 0

note_complex 0 0 0 0 1 0 1 0 3 0 102 1 0 0 0
natural 0 0 0 0 0 0 2 1 0 0 1 31 0 0 0
digit_4 1 1 0 0 0 2 3 4 0 0 4 0 10 0 0

bassclef 0 0 0 0 0 0 0 0 1 0 4 0 0 28 0
minimsemibreverest 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0

Accuracy Precision Recall

0.804 0.797 0.804

Table 4.7: 1st level Neural Network Classifier Results

4.2.4 Pitch

For note heads and accidentals, it’s important to know exactly where the centre of the note

lies in order to correctly identify it’s position on the stave. Doing this roughly is usually

sufficient for OMR, however, since we would like to be able to feed back to the student if

76

CHAPTER 4. TECHNIQUES

they aren’t putting their notes in the right place or they’re too big/small we need to be as

accurate as possible.

Once the position has been determined, we can calculate the difference between that and

the y coordinate of the various pitched components on the stave. Assigning the pitch

which is closest using Algorithm 2 results in a pitch assignment for pitched components, an

example of which can be seen in Figure 4.7.

Algorithm 2 Assigning a pitch to a component

1: procedure GETNOTEFORCOMPONENT(component)
2: sum = GETCOMPONENTCENTRE(component)
3: min_distance =∞
4: assigned_pitch = None
5: for each pitch in pitches do
6: dist = ABS(pitch_coord - y)
7: if dist < min_dist then
8: min_dist = dist
9: allocated_pitch = pitch

10: end if
11: end forreturn assigned_pitch
12: end procedure

An example of a manuscript where the pitches have been established can be seen in

Figure 4.7

Figure 4.7: The manuscript after pitch analysis

For a rough estimate of note head position, the simplest method is to use a known position

along the vertical axis, then use that as an estimate for the centre, indeed that’s often what

77

4.2. IDENTIFICATION

is done in standard OMR. However we can get a more accurate position using alternative

techniques.

4.2.4.1 Sharp Centres

For the sharp centre, the centroid proved less than satisfactory as it was easily affected by

the length of the lines (see the blue centres in Figure 4.8), whereas in reality the ‘centre’ of

a sharp is determined by the position of its island region in the middle.

By inverting the image and performing connected component segmentation, we can isolate

the island region and after extracting the centroids from this region, we get a much more

satisfactory identification of the sharp’s centre, show in Figure 4.8 by the intersecting red

lines.

Figure 4.8: Identifying the true centres of the drawn sharps. Red intersecting lines show
the true centres and blue intersecting lines show the centroid centres

4.2.4.2 Flat Centres

An unfortunate occurrence in flats during preliminary user testing was that of not joining

the head up properly, an example of which can be seen in Figure 4.9a. Ideally we would like

to perform a similar technique to sharps, however we need some reliable way to compensate

for potential breaks.

The first experiment I ran was to perform watershed segmentation by computing a distance

transform on the flat, then by using the local maximum peaks as a starting point watershed

segmentation was performed, resulting in the initial segmentation seen in Figure 4.9c. From

78

CHAPTER 4. TECHNIQUES

there, by merging neighbouring regions from smallest to largest, we can identify the ‘island’

component (Figure 4.9d) and take the y coordinate of the centroid of this region.

(a) Original (b) Distance (c) Watershed (d) Merged (e) Centre

Figure 4.9: Identifying flat centre with watershed segmentation

An alternative solution uses dilations. This involves expanding the drawn image (and

consequently shrinking the flat’s ‘head’ region) evenly until a distinct island region is formed

(Figure 4.10b). Once that happens the vertical centre of the ‘head’ can be established in the

same way as outlined previously, using the centroid.

(a) Original (b) Dilation (c) Centre

Figure 4.10: Identifying flat centre with dilation and connected component segmentation

4.2.4.3 Note Head Centres

For note heads, it was discovered that the centroid was a good representation of the centre,

even in case of broken minims as seen in Figure 4.11e

79

4.2. IDENTIFICATION

(a) Crotchet Head (b) Wonky Crotchet Head (c) Inconsistent Crotchet Head

(d) Minim Head (e) Broken Minim Head

Figure 4.11: Filled and hollow note heads with their centres identified by two red
intersecting lines

4.2.5 Duration

There are two main steps to the process for calculating note duration. The first is the

extraction of the fundamental note value, is it a semibreve, minim, crotchet, quaver or

semiquaver? For a semibreve, the note value will always be four, however for other notes,

things are not so straightforward.

We first examine each note individually to ascertain the components which make up the

note duration and then assign it a base value. For example we are particularly interested in

the note head (is it solid or hollow?) and any tails or beaming. An outline of this heuristic

can be seen in Figure 4.13.

The number of tails is fairly straightforward as they are attached to isolated notes or are

joined in a more complex beam such as that in Figure 4.12. However, we need to have

some way to work out which notes have which values. To do this, a section the width of

Stave Space/2 is examined either side of the note’s head. The beam is analysed in these

segments for the maximum number of vertical black runs which represents the number

beams.

80

CHAPTER 4. TECHNIQUES

Figure 4.12: Calculating the number of beams to get note values. Blue areas show the
regions scanned and green lines represent the maximum count of vertical black runs found

Figure 4.13: Flow chart for establishing base note duration

81

4.2. IDENTIFICATION

Note that with regards to tails and beaming, since every additional beam or tail present for

the note divides it’s value by two (examples can be seen in Table 2.1) we can generalise

this section of the heuristic to deal with any number of beams and tails.

An example of a manuscript where the basic durations have been calculated can be seen in

Figure 4.14

Figure 4.14: The manuscript after component duration analysis

Once the base value has been obtained, we perform a final check of the area surrounding

the note centre for any ‘modifier’ dots. These extend the duration of the note by half, so for

example, a dotted crotchet would last 1.5 beats as opposed to 1 beat without the dot. The

region searched equates to half a staff space down and either side of the note as shown in

Figure 4.15, anything outside of this region is ignored.

82

CHAPTER 4. TECHNIQUES

Figure 4.15: Searching for dots which would modify a note’s length. Blue areas are the
searched space for each note

4.2.6 Domain Knowledge

After all the segmentation, classification, pitch and duration analysis we can use domain

knowledge as outlined in Sections 3.1.1 and 3.1.3 to apply musical rules (with looser

thresholds and variations in control flow to account for the potential mistakes like those in

Section 2.2) to group components as seen in Figure 4.16, enabling scoring Section 4.3 of

the manuscript.

4.3 Scoring and Feedback

In this section I cover some of the techniques used to score and evaluate the now-identified

musical entities along with their components.

Some of the rules and heuristics are very simple, but I mention them here for complete-

ness.

83

4.3. SCORING AND FEEDBACK

Figure 4.16: The manuscript after application of domain knowledge. Note the time
signature, key signature and clef components have been grouped correctly

In general, I applied heuristics and thresholds based on dimensions and features of the

musical score as well as using knowledge from the theory books Section 2.3.2 but in

future it would be interesting to try and use the mistake data gathered in Section 2.2.1

and algorithms or machine learning to automatically adjust the thresholds either globally

or maybe even on a per user level (for example, making judgement more lenient in the

beginning and stricter as a student progresses, or vice-versa).

4.3.1 Pitched Notes and Accidentals

4.3.1.1 Position

For pitched notes and accidentals, we compare their vertical centres as calculated in

the identification (Section 4.2) stages to positions of the surrounding stave lines and

spaces.

We designate the attempted stave position as being the one which is closest to this center

(the same position which was used for calculating pitch) and then measure the distance

from it. If the distance is greater than a given threshold we then designate this a potentially

ambiguous entity.

84

CHAPTER 4. TECHNIQUES

4.3.2 Key Signatures

A key signature consists of several sharps or flats which are required to be in a certain order

and position on the stave.

Before we perform any analysis, we need a reference copy of what we expect the accidentals

in the key signature to look like. We therefore count the number of drawn accidentals and

then produce the set of accidentals we would expect to see for comparison. Once this has

been done there are several analysis methods we can use to further assess the key signature

which are summarised in Table 4.8.

Mistake Feedback

Wrong Octave Which sharps were affected and whether they’re an octave too
high or too low

Incorrect Order Which sharps are in the wrong place and where they should be

Incorrect Accidentals Which accidentals are wrong and what they should be

Table 4.8: Mistakes we need to look for in key signatures

4.3.2.1 Wrong Octaves

Sometimes the student gets the right accidental, but just in the wrong octave. This can be

identified by checking to see if the actual note (C, D, E) of the drawn accidental rather than

a specific pitch (C4, D4, E4) matches that of the expected accidental.

4.3.2.2 Out of Order

Sometimes a key signature contains all the sharps required, but not in the right order. This

case can be established by taking the number of accidentals drawn, establishing what would

be the correct accidentals for that key signature and comparing the list of pitches to an

ordered list of the drawn pitches. If they match, the student has mis-ordered some of the

accidentals so we note which ones are out of order and where they should be.

85

4.3. SCORING AND FEEDBACK

4.3.2.3 Incorrect Accidental

In the case of an Incorrect Accidental, the other three conditions having been checked,

the student will have got the right number of sharps/flats but not the right accidentals

meaning it’s not a permutation or ordering issue and it’s not that an accidental is in the

wrong octave as the result of a clef mistake. Comparison with the correct reference example

for the given number of accidentals enables us to identify specifically which accidentals are

incorrect.

4.3.3 Beats and Timing

There are really only two things we need to check for when scoring beats and timing, either

too few or too many beats in a bar as outlined in Table 4.9.

Mistake Feedback to relay

Too few beats in a bar Which bar, how many beats we count and how many we expect
based on the time signature

Too many beats in a bar Which bar, how many beats we count and how many we expect
based on the time signature

Table 4.9: Mistakes we need to look for in beats per bar

Regardless of which mistake we’re checking for the algorithm is essentially the same and

can be checked at the same time as demonstrated in Algorithm 3

86

CHAPTER 4. TECHNIQUES

Algorithm 3 Searching for incorrect beats per bar

procedure CHECKBARS(bars)
for each bar in stave.bars do

expectedBeats = GETEXPECTEDBEATSINBAR(bar)
actualBeats = GETACTUALBEATSINBAR(bar)
if actualBeats > expectedBeats then

Log the mistake
else if actualBeats < expectedBeats then

Log the mistake
end if

end for
end procedure

procedure GETACTUALBEATSINBAR(bar)
totalBeats = 0
for each note in bar.notes do

totalBeats += GETNOTELENGTH(note)
end for
return totalBeats

end procedure

4.3.4 Stems

Stems are a very common component of manuscript and as such will be drawn regularly. It

is important to have detailed checking to weed out any bad habits early and so we check

for the all the potential mistakes in Table 4.10.

Mistake Feedback

Straightness Whether it’s just a bit uneven or really wonky

Angle Whether the stem was leaning just a little bit or severely

Direction Which direction the stem should have been pointing

Side Which side the stem should have been on

Length Whether it was too long or too short

Table 4.10: Mistakes we need to look for in note stems

87

4.3. SCORING AND FEEDBACK

4.3.4.1 Straightness

Given a drawn note stem, we wish to be able to determine a measure of ‘straightness’ which

we can threshold to discern a badly drawn stem shown in Figure 4.17a from a straight one

as shown in Figure 4.17b.

(a) Examples of uneven stems (b) Examples of straight stems

Figure 4.17: Examples of straight and uneven stems

Stem straightness is different to the stem angle because intuitively even if the stem is angled,

it can still be straight. Therefore, we need to establish a technique which gives a measure

irrespective of the stem angle.

To do this, we take the original stem (Figure 4.18a) and generate it’s skeletal representation

using techniques outlined in Section 3.7.3 which approximates a line following the center

of the stem (Figure 4.18b). If we treat this skeleton as a plot of points, we can draw a

line of best fit through them to approximate what a perfectly straight version of the stem

(Figure 4.18c).

(a) Original (b) Skeleton (c) Best Fit

Figure 4.18: Examples of stem skeletons

We now have a skeleton line Equation (4.1) and a best fit line Equation (4.2) we can

calculate the difference at each point Equation (4.3).

88

CHAPTER 4. TECHNIQUES

Lskeleton(x) = (a0, a1, a2, . . . , an) (4.1)

Lref(x) = (b0, b1, b2, . . . , bn) (4.2)

R(x) = Lskeleton(x)− Lref(x) = (r0, r1, r2, . . . , rn) (4.3)

Straightness = σ =

√
n∑

i=1
(ri−r̄)2

n−1
(4.4)

After experimenting with using the standard deviation Equation (4.4) of the residuals as

the straightness measure the results turned out to be positive upon visual inspection. As

you can see in Figure 4.19 when ranked according to their ‘straightness’ measure, the stems

do indeed appear to be ordered according to what one would visually define as being

‘straight’.

7.3 3.3 3.1 2.7 2.5 2.4 2.2 1.8 1.6 1.5 1.4 1.2 1.1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Figure 4.19: Ranking of stems according to their ‘straightness’ score

4.3.4.2 Angle

In order to determine the angle of a stem, we first need establish the line of best fit which

most accurately reflects the direction of the stem, we can then examine this line y = mx+ c

and compute arctan(m) to get the angle relative to vertical.

4.3.4.3 Direction

To establish the stem direction which I will refer to as Sd, the vertical position (y coordinates)

of the head and the stem are compared.

89

4.3. SCORING AND FEEDBACK

(a) Original (b) Best fit line with angle calculation

Figure 4.20: Examples of stem skeletons

-23.9 -20.0 18.7 -14.7 -9.8 -8.4 7.3 6.2 5.1 -4.1 3.0 2.0 -1.0

Figure 4.21: Ranking of stems according to their absolute angle (in degrees)

If the stem is located at (xstem, ystem) and the note head at (xhead, yhead), knowing that the

coordinate axes have an origin starting from the top right of a given image, we can establish

the following classifications:

Sd(ystem, yhead) =

 up if ystem < yhead

down if ystem > yhead

The case where a stem has the same y coordinate as it’s head isn’t possible due to the way

stems are extracted from a note complex as for this to happen a stem would need to be

extracted out of a note head. Since note heads are removed in order to identify stems as in

Section 4.2.1.2, this is impossible.

90

CHAPTER 4. TECHNIQUES

Figure 4.22: Identifying upward stems, the red line represents the stem y coordinate and
the blue represents the head’s y coordinate

Figure 4.23: Identifying downward stems, the red line represents the stem y coordinate
and the blue represents the head’s y coordinate

4.3.4.4 Side

To establish the stem side which I will refer to as Ss, we do a similar operation to in

determining the direction, however, since it is perfectly feasible that the stem and head

have the same x coordinate, we can’t just use the x coordinate directly.

Instead, we compare the x coordinate of the stem xstem to the centroid of the note head

cxhead

Again, given that the coordinate axes start from the top left, we can now establish the stem

x offset

91

4.3. SCORING AND FEEDBACK

Sxoff = xstem − cxhead

Using this, we can establish the side classification as

Ss(Sxoff) =

 left if Sxoff < 0

right if Sxoff ≥ 0

4.3.4.5 Length

Stem length may seem like a simple case of measuring the length of the extracted stem,

but it’s actually a little more complicated. In order to get the best results, we need to

take into account the fact that the stem has been extracted from the note head and that

this separation point could occur anywhere from near the bottom to the top as shown in

Figure 4.24.

Figure 4.24: An example of the effect stem and note head intersection can have on length.
Note that the right hand note would, if the raw stem was extracted, have a longer stem
(potentially perceived as too long) but in actual fact both stems reach the required height

Similarly to the straightness and angular measures, we can establish the raw length LR by

drawing a line through the perceived centre of the stem and measuring its length using

trigonometry. To be valid a stem it must lie between 2 and 3 stave spaces in length, any less

and it’s too short, any more, too long.

92

CHAPTER 4. TECHNIQUES

4.3.5 Quaver Tail

4.3.5.1 Side

To determine on which side a quaver tail lies, left (Figure 4.25a) or right (Figure 4.25b), in-

tially I attempted to utilise vertical projections, much as in segmentation (Section 3.4.2).

(a) A left sided quaver tail (b) A right sided quaver tail

Figure 4.25: Quaver tail sides

After taking a vertical projection of the quaver tail, the maximum peak in the projection is

taken and by establishing on which side of the centre the peak lies, this told us which side

the ‘flick’ of the quaver is on.

Another method I investigated was to divide the image into two horizontally, then calculate

the average black pixel column coordinate in each half as seen in Figure 4.26. By working

out which half has the highest average pixel position, we can then establish the side on

which the tail lies. In practice this proved the simpler method out of the two and the

outcomes equally successful, when tested with the same sample data.

4.3.6 Note Heads

4.3.6.1 Size

Note heads must be approximately one staff space in height and up to 1.5 staff spaces in

width. If it’s larger than these dimensions we consider it to be too large.

93

4.3. SCORING AND FEEDBACK

(a) Identifying a left sided tail (b) Identifying a right sided tail

Figure 4.26: Calculating the quaver tail side with pixel averages

4.3.6.2 Messy Crotchet Heads

Some crotchet heads are badly drawn in that they’re quite clearly not filled in all the way

and have been left full of holes. I have called these ‘messy crotchets’ and I identify then by

find all the white regions inside the filled head and counting the number of them with an

area above a threshold value which I periodically update as the application gathers more

data, but is generally between 5-10 pixels. If the number of these ‘holes’ exceeds four (also

obtained experimentally), then the head is marked as ‘messy’.

It may be interesting in future to perform a comparison with a different heuristic (like

total percentage of area which is filled) or perhaps by altering the thresholds automatically

to bring the classification more in line with the professional dataset and improve the

results.

4.3.6.3 Broken Hollow Heads

Broken minims and semibreves can be spotted trivially. One they have been classified, we

simply pad the image, resulting in a black ring (hopefully unbroken) surrounded by a white

background with a white centre. By performing a connected component analysis on the

white regions, if we only get one region, the shape is broken.

94

CHAPTER 4. TECHNIQUES

4.3.6.4 Angled Semibreve

We’ve already seen the zeroth and first order moments and to work out the angle of an

ellipse, we can use the second order moments m2,0,m0,2 and m1,1 to calculate the major

axis of a region. We can then store the angle between this axis and the horizontal, the

orientation form which we can later establish whether the semibreve is at an incorrect

angle.

95

Chapter 5

Implementation

5.1 Architecture

The architecture of NoteED consists of 3 primary components, a client application Sec-

tion 5.1.1, a server application Section 5.1.2, and an image processing and a processing

service responsible for the image analysis and machine learning Section 5.1.3. The latter two

both access a backing store in the form of a Postgres1 database as seen in Figure 5.1.

1http://www.postgresql.org/

96

CHAPTER 5. IMPLEMENTATION

Figure 5.1: Overview of the system implementation architecture

5.1.1 Client

The main component with which the user interacts is the client application. The client

application takes an MVC2 approach, is an entirely browser based application written using

2Model View Controller

97

5.1. ARCHITECTURE

Google’s AngularJS3 framework which communicates with the server via lightweight JSON

data. This means the browser only ever needs to fetch from the server once to get all

the templating information (aside from data) and the UI is then completely driven by the

data.

5.1.2 Server

The server is written in Ruby on Rails4, a web development framework. This server

handles the logic behind all the application entities like users, notation attempts, combining

components to form more advanced musical entities and marshalling data to send to the

client application.

The server is also responsible for both feeding data into the processing service and also for

classifying new data against it before relaying feedback to the client application once it has

been generated by the processing service.

5.1.3 Processing Service

The processing service takes an image and performs the techniques necessary to segment

and identify fundamental components using a number of image processing techniques as

seen in Section 4.2. To do this, the system periodically generates the two KNN classifiers

seen in Section 4.2.3.1 using existing data5 and stores them to disk using Pickle6.

When a new staff needs classifying, the processing service segments the image into compon-

ents, loads the first classifier model from disk and runs the new components through it. It

then performs further segmentation and analysis on any higher level components requiring

further decomposition, before running them through the level 2 classifier.

The processing service also extracts a component’s features such as x and y position on the

staff, width, height, area and component-specific features like straightness and angle for

stems or messiness for crotchet heads. After the processing, segmentation and classification

have taken place, the service stores the components in a database, linking them to the

3https://angularjs.org/
4http://rubyonrails.org/
5I make use of the Pedregosa et al. 2011 python module to assist with this step
6https://docs.python.org/2/library/pickle.html

98

CHAPTER 5. IMPLEMENTATION

original drawing using a database schema which maps directly to a model in the web

application.

At any point, we can request a ‘reclassification’ or a ‘re-evaluation’ of a component to

regenerate all its features if we later want to generate a different feature set, perform

improvements (for example the location of the ‘center’ for different components) or add

additional evaluation variables.

5.1.4 Core Database Schema

Column Type

id integer
email character varying(255)
created_at timestamp without time zone
updated_at timestamp without time zone

Indexes

users_pkey PRIMARY KEY, btree (id)

Table 5.1: Components Table

Column Type

id integer
user_id integer
file character varying(255)
binary_file_data bytea
created_at timestamp without time zone
updated_at timestamp without time zone
json_data json

Indexes

drawings_pkey PRIMARY KEY, btree (id)

Table 5.2: Drawings Table

99

5.1. ARCHITECTURE

Column Type

id integer
drawing_id integer
features json
created_at timestamp without time zone
updated_at timestamp without time zone
manual_class character varying(255)
parent_component_id integer
auto_class character varying(255)
feedback json

Indexes

components_pkey PRIMARY KEY, btree (id)

Table 5.3: Components Table

Column Type

id integer
type character varying(255)
drawing_id integer
created_at timestamp without time zone
updated_at timestamp without time zone

Indexes

entities_pkey PRIMARY KEY, btree (id)

Table 5.4: Entities Table

100

CHAPTER 5. IMPLEMENTATION

Column Type

id integer
user_id integer
entity_id integer
mistake character varying(255)
created_at timestamp without time zone
updated_at timestamp without time zone

Indexes

entity_mistakes_pkey PRIMARY KEY, btree (id)

Table 5.5: Entity Mistakes Table

Column Type

id integer email character varying(255)
created_at timestamp without time zone
updated_at timestamp without time zone
dob date

Indexes

entity_mistakes_pkey PRIMARY KEY, btree (id)

Table 5.6: Entity Mistakes Table - This is where we log a professional’s observations for
existing musical entities

5.1.5 Entity Relationship Diagram

The following is a summarised view of the core entities that make up NoteED and how

they’re related to each other.

101

5.1. ARCHITECTURE

Figure 5.2: NoteED Entity relationship diagram
102

CHAPTER 5. IMPLEMENTATION

5.2 Input

5.2.1 Medium Selection

The first step in this project was to establish the best method for a student to interact with

the application. As seen in Section 3.1 different mediums for OMR have been tried, however

which one would be most suitable for a student to use wouldn’t necessarily correlate with

which was best for quality of scanning, speed of analysis etc.

5.2.1.1 Flat Bed Scanner

The most simple of all the input methods, this would involve a student writing on a sheet of

manuscript paper, then using a flat bed scanner (the type commonly found as a standalone

device and in multi-function printers) to input the sheet into the computer. This method

allows for a scan with high and consistent light levels (minimising noise and light-dependent

artefacts), minimal distortion due to paper curvature (as the scanner usually flattens the

sheet) and a high resolution end image, typically 300-600dpi.

The application would process the sheet using traditional OMR techniques and then provide

feedback to the student. This technique would therefore require ownership of both a

scanner and a computer on which to install and run the application. Alternatively, the

student could upload the scanned image to a web based service for analysis, removing the

need to install software.

5.2.1.2 Gestures

Taking input on a tablet enables the capturing of individual strokes. I decided to leverage

more traditional OMR techniques by first rendering the strokes as an image but there is

potential for future research to see if using statistical features of the strokes themselves in a

similar way to the methods described by Taubman, Odest and Jenkins 2005 and George

2003. I also looked as character recognition using multi-stroke gestures and $ N-Stroke

recognisers and variations such as $ N-Protractor in Anthony and Wobbrock 2012.

My main reason for not investigating gesture based recognition further at present is that

the recognition techniques seemed to rely on users having a consistent stroke structure for

the different note entities. The most promising work is that of Taubman, Odest and Jenkins

103

5.2. INPUT

2005 but even then, the project used a very rigid structure of which entities were expected

to be drawn in which order.

There also seemed to be a small number of users in the Taubman, Odest and Jenkins 2005

study and the author notes that user testing and experiments on the transferability of

models between users was not done. Sadly I can’t perform a lengthly calibration stage

where I can trust the user’s input which makes a per-user model difficult.

5.2.1.3 Tablet Input

Although I decided not to use gestures, I did opt to use a tablet as my primary method of

input.

In testing it proved a fairly natural experience for the children who trailed NoteED using

the freedrawing environment. Interestingly although most people initially said they wanted

to use a stylus, when it came down to it they regularly interchanged between the two7.

Both finger and stylus work well as input methods and although I didn’t gather data on

the quality of drawing versus the input method, there were no immediate differences of

problems encountered by using one over the other for children.

Interesting, adults seemed to prefer the stylus, my hypothesis for this (which was then

confirmed in further conversation) was that since adults have larger fingers, it’s harder for

them to accurately track the point at which their line is being drawn on the canvas.

It was also suggested to me that if the application could be accessed through a web browser

and scale according to the browser, many schools now have smartboards8 which are in

effect large tablets.

5.2.2 Capturing Strokes

To capture strokes drawn by the user, several listeners are attached to the HTML5 canvas

element on which the manuscript is rendered. When the user presses their mouse down

or initiates a touch event, a new array of line points is created and the initial point of

interaction is stored in that array. From there, any mouse or touch movement whilst the

7This is a classic example of when watching what your users do is much better than asking them what they
want, a technique I used quite a few times in this project

8http://smarttech.com/Home+Page/Solutions/Education+Solutions/Products+for+education

104

CHAPTER 5. IMPLEMENTATION

(a) Using a finger (b) Using a stylus

Figure 5.3: Examples of a student trying different tablet input methods

touch or ‘mousedown’ event is active triggers a new point recording, until the mouse button

is released or the touch event ends. In this way, an array of points is built up which represent

a drawn line.

Each time the line changes via the addition of new points, a redraw event is triggered which

connects all the points together and renders the line onto the canvas.

In initial experiments with simple manuscript entities, this worked well, however as children

began to experiment with more complex entities (requiring more lines and therefore more

points) the length of time required to redraw the lines on the canvas became prohibitively

long. Eventually a lag occurred between ‘pen’ movement and lines being rendering on

the canvas, the result of which was that as more lines were drawn, the time between new

points being registered increased. This increase led to the drawing experience feeling (as

one user described it) ‘really clunky’ and long straight lines appearing instead of smooth

curves (Figure 5.4a).

To counteract this, I modified the code such that it renders new line segments on the

fly, rather than re-rendering all the lines every time a new point is added. Although this

requires some more logic to render the line segment, overall the experience turned out

much smoother as the small increase in the length of the code path had much less impact

than re-rendering the drawing every time (Figure 5.4b).

105

5.3. DATA STORAGE AND RETRIEVAL

(a) Drawing with refresh rendering - note that
after drawing a high density region of many
points, a spiral outward is very ‘angular’ due to
the additional time it takes to redraw so many
points on every movement event

(b) Drawing with incremental rendering, not
that after a similar high density region of points,
the curve outwards still appears smooth

5.3 Data Storage and Retrieval

5.3.1 Stave Drawing

I store the data gathered in Section 5.2.2 in two ways.

Firstly, I store the serialised JSON of the stroke data in the database which is postiive for

several reasons pertaining to future work as well as immediate benefits for NoteED . It

enables more potential experiments in future in the area of gesture based segmentation

and recognition (see Section 5.2.1.2) and could support showing a student corrections

by transforming points in the strokes as opposed to transformations on the image. It also

facilitates some great UI features like playing back the drawing for the tutor so they can see

exactly how the student approached the problem.

Secondly, I store the entire rendered canvas in the cloud using an Amazon S3 bucket, as a

106

CHAPTER 5. IMPLEMENTATION

‘reference copy’ in case I need to check the JSON against the original image at a later date

or re-analyse images after updating my classifiers, features or analysis techniques.

5.3.2 Components

Once components have been extracted from the drawing using the techniques outlined

in Section 4.2, I store both their features and Run Length Encoding (RLE) representation

of the whole component in the database for retrieval later during any further image

processing.

Although 3000 components uses around 1GB in data when raw, using compression we are

able to lower this considerably using run length encoding as shown in 5.7.

Metric Without RLE With RLE Improvement

Storage Required 759 MB 22 MB 91.7%
Total Retrieval Time 1639 ms 42 ms 97.4%

Table 5.7: To improve the speed of my application, I utilised Run Length Encoding (RLE)
(covered in Section 3.5.3) to improve storage and retrieval times during feature extraction
and classification by up to 97% (Table 5.7).

5.4 Feedback

I experimented with several ways of presenting feedback to the user leveraging all the

information extracted in previous stages but there were only three which came across

reasonably well. I outline them briefly below before explaining my eventual feedback

technique.

5.4.1 Listing Mistakes

Using knowledge of what the user has done wrong on which entities, we can display a

simple list of feedback or a "well done" message if they have no mistakes.

107

5.4. FEEDBACK

Figure 5.5: Feedback in list form

The advantages to the list-style feedback were:

• It’s explicitly stated what’s wrong

• It’s relatively easy to generate and you can use music theory to provide hints as to

what they might do to fix the problem

However in testing some of the negative feedback was that:

• It’s a little daunting if you’re just starting out

• It’s quite boring

• It takes a minute to work out which components you’re referring to and you keep

having to toggle the feedback on and off while you check

• It won’t always mean much unless the person already knows some music theory - not

great for beginners

5.4.2 Colour Coding

The next method I tried was simple colour coding. If something was wrong or had a

problem, it got coloured in.

108

CHAPTER 5. IMPLEMENTATION

Figure 5.6: Feedback in colour coded form

The obvious disadvantage to this was that while you know exactly which components are

wrong, you can’t be 100% sure what exactly the problem is. Usually if you’ve made the

mistake you’re unlikely to immediate jump to the right conclusion. For example, thinking

you’re being marked down/higlighted for drawing a crotchet messy while actually you’re

putting the stem on the wrong side would be very frustrating.

5.4.3 On Screen Correction

I toyed briefly with the idea of on screen correction using scaling, rotations and transform-

ations. For example, if a stem is at an angle, correcting it by using an animation in front

of the user worked really well if done component by component and made it immediately

obvious what the problem had been. However this style of correction couldn’t be performed

on all components and greatly increased the complexity of implementation. I therefore

decided to postpone pursuing this avenue , perhaps to revisit at a later date once more

fundamental functionality was in place.

109

5.4. FEEDBACK

5.4.4 The Hybrid Approach

My actual feedback mechanism brings together multiple components to form what I believe

to be a superior method of feedback.

1. Show a simple aggregate rating and instructions for how to load entity-specific

feedback . The aggregate score is very simple right now, just taking the number of

entities and the number of mistakes and using that to compute a percentage of how

many errors there are, before mapping it to a rating system.

2. highlight the components which have had mistakes identified, as we did in Sec-

tion 5.4.2 and allow click events on those components.

3. On click, show detailed feedback for the component as in Section 5.4.1

4. Give the option to see an animation or guide about how to correctly write that bit of

notation

For example, in the case of a bad crotchet the interface looks something like this:

In Figure 5.8 an example of a student receiving her feedback for a job well done!

110

CHAPTER 5. IMPLEMENTATION

Figure 5.8: Child receiving simplified graphical feedback

111

5.4. FEEDBACK

(a) The notation attempt (b) Keeping the user updated...

(c) Showing an aggregate piece of feedback (d) Showing instructions for detailed
feedback

(e) The clickable entity with a mistake (f) The detailed feedback (the image is
actually animated and shows a note being
drawn on loop)

Figure 5.7: The feedback process for a bad crotchet length
112

Chapter 6

Evaluation

6.1 Mistake Detection

Objective: Enable the detection of common errors in notation symbols, pitch,

time signatures and other musical features outlined in Table 2.4.

This is one of the most important evaluation components, can we in fact spot the same

mistakes which a teacher would?

In short, yes, I believe we can and although long term data gathering and trials haven’t

been performed, preliminary data is positive.

Once the likely mistakes had been established (Table 2.4), I developed an application which

assisted in rapid assignment of relevant mistakes to score entities by a human. I also used

this over the original data gathered from students and ongoing data from participants and

experiments.

The result was a database of entities and their mistakes which I then used to adjust

thresholds and parameters in Section 4.3. It would be interesting to modify these values

according to the results of scoring against this database automatically and I talk more about

this in Section 7.2.

By comparing my heuristics against the ‘true’ data provided by professionals and competent

musicians I generated confusion matrices for each of the mistakes.

The full dataset of results for the implemented mistake heuristics and algorithms can be

seen in Table 6.1. Notice that for the majority of mistakes, we obtain a great accuracy,

113

6.1. MISTAKE DETECTION

however since most samples actually do not get labelled with a mistake, the accuracy is

unfairly weighted by the large number of true negatives, meaning it isn’t necessarily the

best performance criteria. Instead, I think that it makes more sense to judge our system by

it’s predictive power or Precision (the proportion of predicted positives which are actually

positives). If we do this, the results still appear successful.

An alternative score which provides a weighted measure between recall (The number of

actual positives correctly identified) and precision is the F1 measure defined in Equa-

tion (6.1).

F1 = 2 · Precision · Recall
Precision + Recall

(6.1)

114

CHAPTER 6. EVALUATION

Mistake TP TN FP FN A
cc

ur
ac

y
(A

C
C

)

Pr
ec

is
io

n
(P

PV
)

Se
ns

it
iv

it
y

(T
PR

)

Fa
ll

O
ut

(F
PR

)

Fa
ls

e
D

is
co

ve
ry

R
at

e
(F

D
R

)

M
is

s
R

at
e

(F
N

R
)

F1

note-head-ambiguous 12 325 2 0 0.9940.8571.0 0.0060.1430.0 0.923
note-head-broken 24 314 1 0 0.9970.96 1.0 0.0030.04 0.0 0.98
note-head-angled 33 273 25 8 0.9030.5690.8050.0840.4310.1950.667
note-head-messy 7 327 0 5 0.9851.0 0.5830.0 0.0 0.4170.737

note-head-too-big 31 298 9 1 0.9710.7750.9690.0290.2250.0310.861
note-head-too-small 8 325 0 6 0.9821.0 0.5710.0 0.0 0.4290.727

note-head-wrong-type 2 337 0 0 1.0 1.0 1.0 0.0 0.0 0.0 1.0
stem-length-short 20 317 1 1 0.9940.9520.9520.0030.0480.0480.952
stem-length-long 20 313 3 3 0.9820.87 0.87 0.0090.13 0.13 0.87
stem-straightness 16 317 3 3 0.9820.8420.8420.0090.1580.1580.842

stem-direction-wrong 11 322 6 0 0.9820.6471.0 0.0180.3530.0 0.786
stem-side-wrong 15 315 9 0 0.9730.6251.0 0.0280.3750.0 0.769

stem-angle 21 302 14 2 0.9530.6 0.9130.0440.4 0.0870.724
dot-wrong-side 10 329 0 0 1.0 1.0 1.0 0.0 0.0 0.0 1.0

accidental-wrong-side 19 316 4 0 0.9880.8261.0 0.0130.1740.0 0.905
accidental-wrong-line 12 323 3 1 0.9880.8 0.9230.0090.2 0.0770.857

keysig-octave 0 29 2 1 0.9060.0 0.0 0.0651.0 1.0 0.0
keysig-order 1 29 1 1 0.9380.5 0.5 0.0330.5 0.5 0.5

keysig-incorrect 14 9 9 0 0.7190.6091.0 0.5 0.3910.0 0.757

Table 6.1: The results of NoteED vs a professional’s marking

6.2 Learning Improvement

Objective: Produce an application which can improve on and continue a

child’s learning outside of lessons

115

6.3. ENGAGING EXPERIENCE FOR CHILD

This is one of the most difficult outcomes to measure, initial in person feedback and

conversation with students after performing various notation tasks suggest that NoteED is

doing a good job so far.

However, since a conversation is not a quantifiable measure of how well a child’s learning

has been improved, there is also logging throughout the system for use over a longer period

of time, data such as average mistakes per task or mistakes compared to how many times a

task has been done before can therefore be analysed.

We propose that in order to best establish a reliable outcome for learning improvement, a

minimum of one month’s observation is needed and preferably closer in the region of 6

months if possible.

6.3 Engaging Experience For Child

Objective: Combine the tablet interface and notation analysis objectives to

produce a streamlined experience which a student will happily engage with on

a repeat basis.

Whilst talking with students was highly valuable in the design and implementation stages,

what people say and what they do are often not the same1. Therefore simply asking a

student ‘would you use this again’ wasn’t necessarily going to prove anything. Instead, we

keep track of student actions and we can subsequently ascertain from these, more reliable

readings how often the student is interacting the the application.

Preliminary data (gathered through initial trials) suggests that a student will usually perform

a task 4-5 times before wanting to move on, usually because they got it right and got bored

or in a few early cases, because the feedback and analysis wasn’t being very helpful which

was a useful discovery in itself. To keep the experience engaging, we propose that in further

iterations, NoteED supports varying levels of difficulty by way of ‘lessons’ where users are

given specific challenges to complete. Since lessons focus on very targetted criteria, they

would also reduce the amount of feedback and criticism that a new student has to deal

with.

1http://www.nngroup.com/articles/first-rule-of-usability-dont-listen-to-users/

116

http://www.nngroup.com/articles/first-rule-of-usability-dont-listen-to-users/

Chapter 7

Conclusions & Future Work

7.1 Conclusions

In this chapter we summarize what this project has achieved and where it might go next,

providing suggestions for future work and experiments.

Before this project, no application existed which was capable of helping a child learn

to correctly write musical notation whilst simultaneously providing feedback, other than

their mu- sic teacher. This project has now made some progress towards solving this

challenge.

A summary of core achievements on the way to solving this problem can be summarised as

follows:

• We have created an application which allows a student to input a musical notation

attempt by way of a graphics tablet and can send that input to a server for processing

(Section 5.2.1.3)

• A modified OMR system was implemented within the application which we have

shown to be capable of classifying the student’s handwritten notation with a high

degree of accuracy whether or not it is written in the ‘correct way’ (Section 4.2.3.1)

• We have leveraged this OMR system, along with domain expertise, to further identify

the musical entities a student draws and analyse them individually and in relation to

each other (Section 4.2.6)

• The analysis of the musical entities is capable of spotting mistakes in the notation and

117

7.2. FUTURE WORK

feeding them back to the user in a smooth and intuitive fashion via the same interface

they input their notation Section 5.4.4

• We assessed the implementation of the identification and feedback system and found

that the mistakes identified by NoteED closely match those found by a professional

music teacher, this was our primary goal and the results are promising, further

research and development are recommended ()

In conclusion, we have succeeded in building an application which, give a notation attempt

by a student on a tablet, is capable of providing meaningful feedback in a fast turnaround

time, without intervention from a human and with a quality which closely resembles the

essential feedback they would get from a music teacher.

7.2 Future Work

During the course of this project, a lot of work was put into the computational techniques

behind the notation identification and analysis, leaving less time for user interface polish

and experimentation. In preliminary testing, already pieces of feedback have been shared

which I believe warrant further investigation and development time.

• Horizontally scrolling manuscript - Students are unable to really take full advantage

of some of the features around beats, time signatures and measures since they can

only effectively write one bar at a time. The most pressing next step is

• Automatic adjustment of scoring thresholds - Though I originally based my thresholds

for spacing, neighbouring search areas and more on what I read in theory books, in

reality, small changes made a big difference to the accuracy of the system and it seems

how a professional teacher marks their students work can sometimes be more strict

and sometimes more lenient. It would be interesting, therefore to see if we could

generate thresholds based off of the EnitityMistake data we gathered for testing in

Section 7.1. Perhaps it would even be possible to generate unique “marking style" for

different teachers.

• Better features for teachers - The teachers whom I showed NoteED to were very

excited about it’s potential but some were also disappointed it was so focussed on the

students. As teachers thefeedback I got was that being able to see students’ work and

track their progress was a highly desired feature.

118

CHAPTER 7. CONCLUSIONS & FUTURE WORK

• More advanced OMR - Whilst the OMR in NoteED performs well, it does so on a

limited subset of traditional music. For example dynamics and note modifiers such

as staccato, slurs etc. are not currently recognised. Experiments into whether these

components can be added to the system are recommended.

• Alternate feature sets - Currently the resampled image is a small but not insignificant

amount of data and it loses a lot of information when resized. Sadly my attempts at

using statistical features weren’t all that successful Section 4.2.3.1 but perhaps with

further investigation some could be found.

119

Bibliography

[1] DfE. Attainment target level descriptions. 2013. URL: http://www.education.gov.

uk / schools / teachingandlearning / curriculum / primary / b00199150 / music /

attainment (visited on 24th Jan. 2014).

[2] Melanie Spanswick. Why is Grade 5 Theory so important? 2012. URL: http://

melaniespanswick.com/2012/08/12/why-is-grade-5-theory-so-important/

(visited on 27th Jan. 2014).

[3] Taylor, E.R. and Associated Board of the Royal Schools of Music. The AB Guide
to Music Theory. The AB Guide to Music Theory pt. 1. Associated Board of the

Royal Schools of Music (Publishing) Limited, 1989. ISBN: 9781854724465. URL:

http://books.google.co.uk/books?id=h7hZSAAACAAJ.

[4] E.R. Taylor. Music Theory in Practice. Simon & Schuster, 2008. ISBN: 9781860969461.

URL: http://books.google.co.uk/books?id=SeNlNwAACAAJ.

[5] Lina Ng. My First Theory Book. 2001.

[6] Karl MacMillan, Michael Droettboom and Ichiro Fujinaga. ‘Gamera: Optical music

recognition in a new shell’. In: Proceedings of the international computer music
conference. 2002, pp. 482–485.

[7] Ichiro Fujinaga. ‘Adaptive optical music recognition’. PhD thesis. McGill University,

1996.

[8] Gabriel Taubman, A Odest and C Jenkins. ‘Musichand: A handwritten music recogni-

tion system’. In: Undergraduate Thesis, Brown University (2005).

120

http://www.education.gov.uk/schools/teachingandlearning/curriculum/primary/b00199150/music/attainment
http://www.education.gov.uk/schools/teachingandlearning/curriculum/primary/b00199150/music/attainment
http://www.education.gov.uk/schools/teachingandlearning/curriculum/primary/b00199150/music/attainment
http://melaniespanswick.com/2012/08/12/why-is-grade-5-theory-so-important/
http://melaniespanswick.com/2012/08/12/why-is-grade-5-theory-so-important/
http://books.google.co.uk/books?id=h7hZSAAACAAJ
http://books.google.co.uk/books?id=SeNlNwAACAAJ

BIBLIOGRAPHY

[9] Barak Ben-Dayan and Ilai Giloh. ‘Optical Music Recognition’. In: (2013).

[10] Ana Rebelo et al. ‘A method for music symbols extraction based on musical rules’. In:

Proceedings of Bridges 2011: Mathematics, Music, Art, Architecture, Culture. Tessella-

tions Publishing. 2011, pp. 81–88.

[11] Han-Wen Nienhuys and Jan Nieuwenhuizen. ‘LilyPond, a system for automated music

engraving’. In: Proceedings of the XIV Colloquium on Musical Informatics (XIV CIM
2003). Citeseer. 2003, pp. 167–172.

[12] Daniel Taupin. MusiXTEXâĂŞ Using TEX to write polyphonic or instrumental music,
version t.93 edition. 1999.

[13] Linda G Shapiro and George C Stockman. ‘Computer Vision Prentice Hall’. In: Engle-
wood Cliffs, NJ (2001).

[14] Florence Rossant. ‘A global method for music symbol recognition in typeset music

sheets’. In: Pattern Recognition Letters 23.10 (2002), pp. 1129–1141.

[15] Wilhelm Burger et al. Principles of Digital Image Processing. Springer, 2009.

[16] Dennis L Wilson. ‘Asymptotic properties of nearest neighbor rules using edited data’.

In: Systems, Man and Cybernetics, IEEE Transactions on 3 (1972), pp. 408–421.

[17] Ludmila I Kuncheva. ‘Editing for the< i> k</i>-nearest neighbors rule by a genetic

algorithm’. In: Pattern Recognition Letters 16.8 (1995), pp. 809–814.

[18] TY Zhang and Ching Y. Suen. ‘A fast parallel algorithm for thinning digital patterns’.

In: Communications of the ACM 27.3 (1984), pp. 236–239.

[19] Scikit Image. Watershed segmentation âĂŤ skimage v0.11dev docs. (Visited on 15/06/2014).

[20] Ana Rebelo. ‘Robust Optical Recognition of Handwritten Musical Scores based on

Domain Knowledge’. PhD thesis. 2012.

[21] F. Pedregosa et al. ‘Scikit-learn: Machine Learning in Python’. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

121

BIBLIOGRAPHY

[22] Susan E George. ‘Online pen-based recognition of music notation with artificial

neural networks’. In: Computer Music Journal 27.2 (2003), pp. 70–79.

[23] Lisa Anthony and Jacob O Wobbrock. ‘$N-protractor: a fast and accurate multistroke

recognizer’. In: Proceedings of Graphics Interface 2012. Canadian Information Pro-

cessing Society. 2012, pp. 117–120.

122

	Introduction
	Context
	Motivation
	Objectives
	Mistake Detection
	Learning Improvement
	Tablet Interface
	Engaging Experience For Child

	Background
	Music Theory
	The Staff
	Bar Lines
	Notes and Rests
	Notes
	Rests
	Duration
	Pitch

	Accidentals
	Clefs
	Key Signatures
	Time Signatures

	Common Notation Mistakes
	Gathering Professional Feedback
	Note Heads
	Ambiguous Position
	Too Big/Small
	Broken Note Heads
	Messy Note Heads
	Angled Heads

	Note Stems
	Stem Angle
	Stem Straightness
	Stem Direction
	Stem Side
	Stem Length

	Quaver Tails
	Quaver Tail Side

	Rests
	Position

	Duration Dots
	Wrong Side

	Accidentals
	Ambiguous
	Wrong Side
	Wrong Line

	Key Signatures
	Wrong Octave
	Incorrect Order
	Incorrect Pitch

	Beats and Timing
	Too Many Beats
	Too Few Beats

	Existing Music Theory Resources
	Mobile Apps
	Theory Workbooks
	taylor1989ab

	OMR Applications
	Neuratron Photoscore
	Audiveris
	Gamera
	Capella Scan

	Technical Research
	Previous Works
	taubman2005musichand
	benoptical
	Stem Detection
	Note Head and Features Detection

	rebelo2011method

	Generating Manuscripts
	Professional GUI Tools
	LilyPond
	VexFlow

	OMR Architecture
	Segmentation
	Connected Component Analysis
	Recursive Labelling
	Two Pass Labelling

	Projections
	Template Matching
	Defects and Difficulties
	Touching Objects

	Component Features
	Vertical and Horizontal Holes
	Moments
	Ordinary Definition
	Zeroth Order Moments
	First Order Moments

	Run Length Encoding

	Classification
	Nearest Neighbour
	KNN Editing
	Wilson Editing
	Genetic Algorithms

	Scoring & Evaluation
	Image Difference
	Normalized Cross Correlation
	Skeletonization
	Watershed Segmentation

	Techniques
	Architecture
	Identification
	Segmentation
	Initial Segmentation
	Stem Removal

	Feature Extraction
	Resampling

	Classification
	K Nearest Neighbour
	Neural Networks

	Pitch
	Sharp Centres
	Flat Centres
	Note Head Centres

	Duration
	Domain Knowledge

	Scoring and Feedback
	Pitched Notes and Accidentals
	Position

	Key Signatures
	Wrong Octaves
	Out of Order
	Incorrect Accidental

	Beats and Timing
	Stems
	Straightness
	Angle
	Direction
	Side
	Length

	Quaver Tail
	Side

	Note Heads
	Size
	Messy Crotchet Heads
	Broken Hollow Heads
	Angled Semibreve

	Implementation
	Architecture
	Client
	Server
	Processing Service
	Core Database Schema
	Entity Relationship Diagram

	Input
	Medium Selection
	Flat Bed Scanner
	Gestures
	Tablet Input

	Capturing Strokes

	Data Storage and Retrieval
	Stave Drawing
	Components

	Feedback
	Listing Mistakes
	Colour Coding
	On Screen Correction
	The Hybrid Approach

	Evaluation
	Mistake Detection
	Learning Improvement
	Engaging Experience For Child

	Conclusions & Future Work
	Conclusions
	Future Work

