
Imperial College of Science, Technology and Medicine
Department of Computing

MEng Individual Project

Efficient Task Placement in Large Computing
Clusters

Author:

Andrei Bogdan Antonescu

Supervisor:

Dr. Peter Pietzuch

Raul Castro Fernandez

Submitted in part fulfillment of the requirements for the

MEng Honours Degree in Computing of Imperial College London

June 2015

http://www.university.com
Department or School Web Site URL Here (include http://)

Abstract

The exponential increases in information encouraged the need for large clusters to analyse huge

quantities of data in sub-second latency. This environment triggered an increase use case for

streaming computation in contrast to more classical batch computations. Over a decade of aca-

demic research was invested in crafting state-of-the-art batch schedulers. However, with the rise

of streaming computation the former cannot adapt efficiently to this new class of workloads char-

acterized by dynamic resource consumption and very long execution cycles.

In this report we describe a new scheduler that dynamically adjusts to workload changes by mi-

grating tasks at runtime. This way we constantly ensure the system throughput is maximized and

each job has a fair share of resources during the long lifespan of streaming applications. We will

discuss in detail the heuristics used to estimate task potential based on resource contention. Next

we will study different scheduling strategies that constantly monitor resource utilization to opti-

mize allocations. Lastly we evaluate our scheduler on a comprehensive set of benchmarks model

after real-world workloads and compare it with other widely-used schedulers.

2

Acknowledgements

First I would like to thank my parents. Without their support I would have not been able to pursue

my dreams and be the person that I am today.

I would like to thank my supervisor, Peter Pietzuch for all his valuable guidance and rigorousness

throughout the duration of the project. His feedback helped me improve as a scientist and raise

the standards of my work.

A special thanks goes to my second supervisor, Raul Fernandez for all his technical help especially

at the beginning of the project. All our discussions about scheduling and streaming have been very

inspiring and fuelled my enthusiasm to learn more.

I would also like to thank Tony Field for all his great feedback he gave me during our meetings.

Last but not least, I want to thank Irina Veliche for all her support and valuable discussions

throughout the year.

Contents

1 Introduction 11

1.1 Motivation . 11

1.2 Contributions . 12

1.3 Outline . 13

2 Background 15

2.1 Job Schedulers . 15

2.1.1 Quincy . 16

2.1.2 Omega . 17

2.1.3 Jockey . 18

2.1.4 Sparrow . 19

2.1.5 Mesos . 20

2.1.6 YARN . 21

2.1.7 Naiad . 22

2.2 Processing Systems . 23

2.2.1 Map Reduce . 23

2.2.2 Hadoop . 24

2.2.3 Spark . 25

2.2.4 Storm . 25

2.2.5 Samza . 26

2.2.6 Spark Streaming . 27

2.2.7 Heron . 28

2.2.8 SEEP . 29

2.3 Messaging Systems . 29

2.3.1 Rabbit MQ . 29

2.3.2 KAFKA . 31

2.4 Resource isolation . 33

2.4.1 Linux Containers . 34

2.4.2 Docker . 34

2.5 Performance Benchmarks . 35

2.6 Task Migration . 35

2.7 Conclusion . 36

3 System Design 37

3.1 Seep overview . 37

3.2 Message passing . 38

4

Contents 5

3.2.1 SEEP communication . 38

3.2.2 Alternatives . 39

3.2.3 Message brokers . 39

3.2.4 Kafka . 40

3.2.5 Integration . 40

3.2.6 Performance Overhead . 41

3.3 Resource isolation . 42

3.3.1 Locality . 43

3.3.2 YARN Cluster Setup . 43

3.3.3 Application Submission Client . 43

3.3.4 ApplicationMaster . 44

3.3.5 Implementation . 44

3.4 Summary . 46

4 Scheduler 47

4.1 Outline . 47

4.2 Default placement . 47

4.3 Analytics . 48

4.3.1 Resource Monitoring . 48

4.3.2 Performance Metrics . 49

4.4 Task placement . 49

4.4.1 First approach . 50

4.4.2 Second approach . 50

4.4.3 Limitations . 50

4.5 Runtime scheduler . 50

4.5.1 Potential . 51

4.5.2 Scoring Algorithm . 52

4.5.3 Scheduling . 53

4.5.4 Alternatives . 54

4.5.5 Similar Problems . 54

4.6 Summary . 55

5 Task migration 56

5.1 Resource utilization analysis . 56

5.1.1 Overview . 56

5.1.2 Resource Reports . 57

5.2 Migration trade-offs . 58

5.2.1 Measuring trade-offs . 58

5.2.2 Migration Scoring . 59

5.3 Fault tolerance . 60

5.3.1 Supervisor . 61

5.3.2 Leader Election . 61

5.3.3 Scheduling Failures . 62

5.4 Scalability . 63

5.4.1 Resource Monitoring Scalability . 63

5.4.2 First iteration . 64

5.4.3 Second iteration . 65

Contents 6

5.4.4 Scheduler Scalability . 65

5.5 Summary . 66

6 Evaluation 67

6.1 Scheduling Efficiency . 67

6.1.1 YARN . 68

6.1.2 Resource aware placement . 68

6.1.3 Runtime scheduling . 69

6.2 Fairness . 74

6.3 Scheduling Overhead . 76

6.3.1 Resource usage . 76

6.3.2 Migration Overhead . 76

6.4 Comparison with other systems . 79

6.4.1 Spark Streaming and Storm . 79

6.4.2 Comparison with Naiad . 79

6.5 Varying Strategies . 81

6.6 Summary . 82

7 Conclusion 84

7.1 Future work . 85

A Benchmark Overview 87

A.1 CPU benchmark: RSA factorization . 87

A.2 I/O benchmark: Virus Scanner . 88

A.3 CPU and I/O benchmark: Permutation Cipher . 89

A.4 Twitter word count . 89

A.5 Twitter k-exposure used to detects controversial topics 90

B User Manual 92

C Software verification in the cloud 96

Bibliography 98

List of Figures

1.1 CPU load distribution comparison for static and dynamic scheduling. 12

1.2 CPU load distribution comparison for static and dynamic scheduling. 12

2.1 Overivew of commonly used scheduler architectures 17

2.2 Latency span of different data analysis jobs . 19

2.3 Messos architecture diagram . 20

2.4 YARN architecture diagram . 21

2.5 Main YARN components . 22

2.6 High-level map reduce diagram . 24

2.7 RabbitMQ architecture overview . 30

2.8 Kafka architecture diagram . 31

2.9 Anatomy of a Kafka Topic . 32

2.10 Mapping Kafka partition to consumers . 33

2.11 Docker container and VMs comparison . 34

3.1 SEEP Twitter Word Frequency Query . 38

3.2 SEEP Kafka Integration Overview . 41

3.3 Kafka and Socket Performance Comparison . 42

3.4 SEEP Yarn Integration Overview . 44

3.5 SEEP worker states . 45

4.1 Runtime scheduling rounds . 53

7

Contents 8

5.1 System Design Overview . 57

5.2 Operators migration latency . 59

5.3 Leader election among supervisors in different failure scenarios 62

6.1 Cluster CPU utilization while running CPU intensive workloads with YARN scheduling 68

6.2 Cluster throughput while running CPU intensive workloads with YARN scheduling 68

6.3 Cluster CPU utilization while running CPU Heavy workloads with resource aware

scheduling . 69

6.4 Cluster throughput while running CPU Heavy workloads with resource aware schedul-

ing . 69

6.5 Cluster throughput while running CPU intensive workloads 70

6.6 Cluster CPU utilization while running CPU intensive workload 71

6.7 Cluster throughput while running I/O intensive workload 71

6.8 Disk I/O read with three different scheduling strategies 72

6.9 Disk I/O write with three different scheduling strategies 72

6.10 Network I/O sent with three different scheduling strategies 73

6.11 Network I/O receive with three different scheduling strategies 73

6.12 Cluster throughput on live tweets word count . 73

6.13 Resources and operators allocations fairness with YARN scheduling 74

6.14 Resources and operators allocations fairness with startup placement 75

6.15 Resources and operators allocations fairness with runtime scheduling 75

6.16 CPU usage on the machine running the Scheduler, Supervisor and Analytics Master

during high load benchmark . 76

6.17 Memory usage on the machine running the Scheduler, Supervisor and Analytics

Master during high load benchmark . 76

6.18 Operators migration cpu delta . 77

6.19 Operators migration performance percentage delta 78

6.20 Query recovery time after migration . 78

6.21 Node I/O Throughput with SEEP, Storm and Spark Streaming 79

Contents 9

6.22 Twitter k-exposure throughput with SEEP, Naiad and Kineograph 80

6.23 Allocations fairness for lambda = 1.7 . 81

6.24 Allocations fairness for lambda = 1.7 . 81

6.25 Allocations fairness for varying lambda . 81

6.26 Scheduling fairness with different scheduling intervals 82

6.27 Scheduling duration with different scheduling intervals 82

B.1 Admin panel overview . 92

B.2 Cluster Overview . 93

B.3 CPU and memory graphs . 93

B.4 Disk and network I/O graphs . 94

B.5 Operators overview . 94

B.6 Scheduler configuration overview . 95

B.7 Applications metrics panel . 95

C.1 CPU with highly dynamic load . 97

C.2 Disk IO with highly dynamic workload . 97

List of Tables

4.1 Potential estimations . 51

5.1 Resource Report Content . 58

5.2 Analytics module performance profiling baseline 64

5.3 Analytics module performance profiling after second iteration 65

5.4 Scheduling performance profiling . 65

10

Chapter 1

Introduction

1.1 Motivation

The amount of digital information that is created every month equals the entire size of the internet

just a decade ago [37]. Those huge amounts of data need to be analyzed and understood so we can

extract useful information that powers our world wide web.

The exponential increase in CPU performance following Moore’s law cannot keep up with the

quantities of data present in our digital world. With the possibility of using one cutting edge

supercomputer being infeasible, a lot of research effort has been invested into distributed algorithms

that run on thousands of computers, solving together tasks too large to be comprehended by one.

Important technology companies such as Google, Facebook, Amazon and Microsoft choose to

build their datacenters out of commodity hardware [50]. Most of these companies use diverse

backend systems for serving infrastructure, data analysis, ads service and many more. For those to

work efficiently many tasks need to run concurrently inside a cluster, under resource isolation and

without influencing one another‘s performance. Due to the reasons outlined above the problem of

scheduling tasks to efficiently share computing resources attracted a lot of research interest in the

last decade.

Cluster computations can be categorized into two broad types: stream and batch jobs. The first

represent one time computations processing offline data that have a finite completion time and are

scheduled in advance. The second represent non-deterministic unbounded computations which have

a dynamic workload and can create various bottlenecks for which the system needs to adjust. The

latter have to process real time data as input and run computations on the fly without acquiring

delays that could result in data loss. Stream computations have increased in frequency recently as

companies tend to have considerable amounts of data 1 and want to extract more useful information

from it by running complex algorithms such as machine learning, natural language processing or

real-time fraud detection.

Scheduling stream jobs is more difficult than batch jobs because input data can vary over time thus

streaming operators can exhibit dynamically varying resources consumption at runtime. Most of

1According to public information Google processes daily 100Pb of data [38], Facebook 600Tb [34] and Twitter
100Tb [51]

11

Chapter 1. Introduction 12

%
 p

e
rc

e
n
t

c
p
u
 u

s
e
d

Nodes cpu(s) utilization

wombat01 wombat02 wombat03 wombat04 wombat05 wombat06

0

25

50

75

100

Figure 1.1: CPU utilization per cluster
core with YARN.

throughput: 413 events / second

%
 p

e
rc

e
n
t

c
p
u
 u

s
e
d

Nodes cpu(s) utilization

wombat01 wombat02 wombat03 wombat04 wombat05 wombat06

0

25

50

75

100

Figure 1.2: CPU utilization per cluster
core with runtime scheduling.

throughput: 547 events / second

the existing schedulers concentrate solely on batch jobs [3–5, 7, 17] while others [10, 14–16] support

both types. However they are very inefficient when exposed to combined workloads since they lack

mechanisms to adjust in real-time to workflow changes. Furthermore they usually use abstractions

over the physical layer that results in the inability to place task on specific machines (i.e. to respect

data locality or prevent resource bottlenecks).

Those limitations often lead to poorly distributed workload across the cores in a cluster. To

illustrate that we measured in Figure 1.1 the CPU load distribution per core with YARN [16],

a widely used jobs scheduler and resource manager, while running a CPU intensive streaming

workload. We can observe how the load is concentrated mostly on two machines limiting the

performance of the tasks. As a consequence there is a genuinely need for a system to handle

dynamic resource-aware scheduling at run-time being able to distribute the load more efficiently

thus achieving high throughput. We propose a solution for scheduling efficiently both stream and

batch jobs on a large cluster such that we can achieve the load distribution illustrated in Figure 1.2

on an identical workload which increases the overall performance by 26 percent. We achieve this

by designing a new scheduler that runs approximation algorithms to predict the resource needs

of running jobs. Based on the prediction it tries to match ”straggling” tasks to nodes that can

provide more resource. If a match is successful we analyse the trade-offs involved and run the actual

migration. This way we manage to distribute the load evenly under a variety of workloads. To

enable our design to scale and be fault-tolerant we build our system on top of a resource isolation

manager with support for data locality and task pinning and used for communication means a fast,

fault-tolerant messaging queueing system.

1.2 Contributions

This project makes the following contributions:

• Develop New Job Scheduler

We develop a new job scheduler that can easily adapt to dynamic workloads with complex re-

source usage patterns and maximize the cluster throughput in every scenario. We implement

heuristics to detect workload changes at runtime and continuously move tasks to prevent

bottlenecks.

Chapter 1. Introduction 13

• Evaluate Several Scheduling Systems

We create benchmarks modelled after industry-like stream and batch workloads using public

streaming feeds from social networks such as Twitter. Additionally we used renowned bench-

marks published in research publications to compare the performance of our implementation

with other scheduling frameworks such as Naiad [10], Storm [21] and Spark [23].

• Fault Tolerant and Scalable Design

We designed our system such that every computation can be partitioned over a set of worker

nodes, including scheduling itself. In our scalability section 5.3.3 we show that our framework

is able to scale to thousands of jobs per second running in a large cluster. Furthermore we

implemented our system with fault-tolerance in mind by replicating data across multiple

machines and running backup services ready to replace the masters in case of failure. As a

consequence our system doesn’t have any single point of failure.

• Cluster Analytics Framework

We create a complete cluster analytics system that keeps track of resource utilization and job

performance metrics. We used the system to benchmark the performance of our scheduler

and compare to with other state-of-the-art schedulers.

1.3 Outline

In this project we use a stream processing system called SEEP [6, 8] which was developed inside

the LSDS research group at Imperial, and explore various alternatives of scheduling both batch

and stream jobs with a fine grained resource control. We aim to achieve high global throughput

and low latency.

We continue with Chapter 2 where we explore some of the existing systems for running large

scale distributed computations ranging from legacy solutions that laid the foundations, to new

state-of-the-art systems still under active development including one released this month [39]. We

briefly describe the characteristics of each framework and present its weaknesses and strengths

while emphasizing why it cannot solve our problem.

Chapter 3 describes the extensions required to SEEP to make it highly-scalable and fault-tolerant.

We do so by first describing the alternatives available to solve our problem and motive our choice.

Next we give a high-level detail of the implementation and follow with more technical details.

Chapter 4 explains the limitations of YARN scheduling while running SEEP streaming operators

and describes our first iterations of resource aware scheduling as well as the problems we encoun-

tered along the way. Finally we dive into our runtime scheduler design and explain in detail how

the scheduling algorithm works, how we predict tasks performance and what we use for scoring

allocations.

Chapter 5 describes our cluster metrics system that we developed along the way. Next we go into

detail on different key points of our system like measuring migration trade-offs and scalability. We

conclude the chapter by presenting how we made our system fault-tolerant and analyse possible

failure scenarios.

Chapter 1. Introduction 14

Chapter 6 evaluates the performance of our system under different benchmarks and evaluate dif-

ferent scheduling strategies and discuss the results. Next we analyse the latency introduced by our

system and measure the resource usage over time. We conclude this chapter by highlighting the

improvements our system makes compared to a static scheduler.

Lastly, in Conclusions (Chapter 7) we provide a retrospective of our system and discuss to what

extent we have reached our goals. We conclude by presenting the lessons learned and showing the

potential for future work.

Chapter 2

Background

Starting from the 70s networks of computer connected together in local area networks become

common. Since then there is a perpetual research interest in distributed computing and as larger

networks of computers were formed the scheduling problem became of key interest. In the last

decade many authors presented novel ways of scheduling optimized for efficiency, with fairness and

latency guarantees or even distributed schedulers. Even though a lot of research was conducted in

this field the problem of task placement is still open ended.

With the widespread adoption of data-parallel systems that execute in distributed clusters there’s

been a growth of computing frameworks to manage large batch-oriented workloads. A diverse

range of batch-only schedulers ware created with a broad range of characteristics such as: fairness

guarantees, data locality, minimize latency, distributed scheduling or high scalability. More recently

people combined cluster resource managers with schedulers to provide an abstraction over the

physical layer making it easier for schedulers to manage resources. For running computations there

were also a diverse set of processing systems from the classical Map Reduce [1] and Hadoop [12]

to specialized stream processing framework such as Storm [21] and Samza [11]. However the latter

still rely on existing cluster resource managers that lack the ability to handle stream workloads

efficiently due to their coarse abstraction. In the following chapter we will present some of the

existing frameworks and explain how they work. As we will see most of the current system are

designed for batch jobs in contrast to stream jobs which have different requirements.

2.1 Job Schedulers

Job schedulers are system for controlling backend tasks running inside a data center such that

maximum throughput it achieved and jobs don’t suppress each other while running concurrently.

In this section we will explore the latest schedulers and we will see why there is a authentic need for a

new system capable of scheduling stream tasks with respect to data locality, maximum throughput

and fairness guarantees.

15

Chapter 2. Background 16

2.1.1 Quincy

Quincy [3] was created in response to disadvantaged of traditional queue-based schedulers and its

authors argue that data-intensive computations benefit from a fine-grain resource sharing within a

cluster as opposed to existing static resource allocations. They propose a new flow-based schedul-

ing that enforces fairness such that a large job will not monopolize the whole cluster, delaying

completion of smaller jobs.

The paper concentrates on computing clusters with large disks allowing application data to be

processed locally. As these clusters grow network communications represents a bottleneck and it

becomes very important to place computation close to its inputs data. However usually require-

ments of fairness and data locality conflict and as the number of concurrent jobs with cross-cluster

network traffic increases it becomes very complex to predict performance. Quincy shows for the

first time a similarity between efficient and fair cluster scheduling and the classical problem of min-

cost flow in a directed graph. This is important since the min-cost flow algorithm is guaranteed to

find the best solution outperforming any greedy allocation.

The authors of Quincy state their goal for fairness that a job that runs t seconds when given

exclusive access to the cluster will run in less than J∗t seconds when J jobs are running concurrently

and competing for resources. To achieve fairness they use preemption: interrupt jobs that take to

long to complete in favor of other jobs that need to run. In general jobs are formed by a ”root

task” and a set of ”workers tasks” managed by the root tasks so Quincy will only choose to kill

”worker tasks” to avoid losing the whole progress of a job. To decide which worker task to kill they

start with the most recently scheduled task to minimize wasted work. This approach guarantees

eventual completion of every jobs since the longest running task will never be killed.

To apply the min-flow algorithm Quincy creates a graph from a instantaneous snapshot of the

system containing all the workers, their root tasks and all the computers. Each worker is connected

with an edge of capacity one to the node representing the machine where the task runs. All the

machines are connected with capacity one to the Sink, hence allowing only one task to run in a

node at a time. To account for ”unscheduled” tasks they introduce one special node Ui for each

task i and connect all workers with that node as well. As a consequence all paths from a worker

to the Sink lead either thorough a computer node or through a unscheduled node. To account for

fairness edges connecting worker node wi, j to node Ui have costs that represent the penalty of

leaving the jobs unscheduled at this time. Those costs increase overtime ensuring each jobs gets

its turn to be scheduled.

While evaluating the algorithm they compared 4 different fairness policies: fair sharing with pre-

emption, fair sharing without preemption, unfair sharing with preemption, unfair sharing without

preemption with the main difference is whenever the scheduler optimizes for fairness or allows un-

fair shares while optimizing tasks preference. The experimental results were very promising but the

design had its own limitations such as: limited scalability, bottlenecks arise due to the centralized

scheduler, cannot optimize for data locality and limitation to scheduling batch jobs only. Even so

Quincy laid a foundation for future research in the area.

Chapter 2. Background 17

Figure 2.1: Overivew of commonly used scheduler architectures. Source: Omega paper

2.1.2 Omega

Scheduler architectures can be divided in three categories as shown in Figure 2.1, the first being

the most widely used:

• Monolithic: all the cluster state is kept in one scheduler process making the system able to

schedule only one task at a time as is the case of Quincy [3].

• Two-level: schedulers which have a separate resource manager that offers resource to mul-

tiple scheduling frameworks such as Mesos [14, 15].

• Shared state: multiple scheduler instances work in parallel to make scheduling decisions on

the whole cluster. This design is a novel approach to scheduling.

The authors of Omega [4] observed that as the need of cloud-based computations increased clusters

began to grow in size and since the scheduler workload is proportional to the cluster size monolithic

scheduler quickly became a bottleneck. Furthermore they argue that monolithic schedulers restrict

the rate of updates, limit efficiency and eventually limit cluster growth. They propose a novel

approach for the problem of scheduling with emphasis on lock-free optimistic concurrency control.

They design was drive by real-life situation like Google production workloads. This is the first time

a distributed scheduler could scale out to thousands of machines running batch-only computations

was created.

Omega is formed by multiple scheduler running in parallel where each of them has a frequently

updated local copy of the resources available in the cluster and make decisions individually. To

present conflicts all the schedulers run an atomic commit protocol when trying to update the

common state, hence only the first will succeed in a conflict. This approach eliminates immediately

the inability to make decisions aware of the whole cluster with the potential trade-off of doing the

same work twice: two scheduler try to schedule the same job. The performance of the system is

mainly influenced by the frequency of redundant work performed by schedulers and the authors

rely on the fact that typical cluster workloads have a small odds of generating failures.

Chapter 2. Background 18

Omega’s approach does always more work than a pessimistic concurrency strategy based on a

locking scheme. In spite of that their results showed the overhead to be acceptable since the

resulting benefits of increased scalability are huge. A shared-state can be used in our scheduler as

well to increase its scalability beyond the limits of a single instance. Omega’s limitations for the

moment are providing global guarantees such as fairness, starvation or task completion guarantees.

2.1.3 Jockey

Jockey [5] looks into providing completion time guarantees for critical jobs. The key concept of

Jockey is the ability to predict accurately the run time of a job in different stages of computation

by using a simulator that precomputes statistics around low level primitives. In certain situations

missing a deadline has significant consequences such as delaying a chain of depended jobs or

even safety or financial faultiness. Older systems running critical jobs had manual operators that

monitor the status of the tasks and operators had to manually interfere if one gets left behind.

Jockey creates a framework that will guarantee automatically latency requirements for batch jobs.

Running tasks in a cluster have different type of deadlines. Most of the jobs have ”soft” deadlines

meaning it’s desired to complete within a given time bu failing to do so is not critical while others

have ”strict” deadline which means that the system has to guarantee their completion time. After

examining the scenarios in which jobs increase their latency the authors provide three approaches

to guarantee completion time:

• Additional priority classes This approach creates a new class of priorities ”SuperHigh”

and only jobs with the strictest deadlines are allocated those priorities. Repeated job profiling

to optimize allocation combined with limited admission control can provide completion time

guarantees with this design. However jobs that run with ”SuperHigh” will eliminate all

normal jobs in case of resource contention which results in unnecessary delays or progress

lost for the letter. Furthermore the cluster needs to be overly pessimistic about the number

of jobs it can allow in the high priority class to be still able to respect guarantees.

• Quotas for each job This solution assigns quotas for each ”strict” job that represent

guaranteed resource allocation. The authors investigated this approach in detail and found it

unsatisfactory for three reasons: node failures require adjustments in job quotas, determining

quotas in the first place is very difficult and static allocation doesn’t benefit from run-time

changes which could improve throughput.

• Dynamic resource management Finally this is the design they implement with Jockey by

creating a specialized scheduler that adjusts resource allocations in order to meet completion

guarantees. They used greedy algorithms to predict job’s completion time such as a event-

based simulator and an analytics model inspired from Amdahl’s Law. Their ideas inspired

us to create a job potential prediction in our scheduler.

Jockey manages to achieve 99% of the jobs deadlines based on multiple experiments in multi-tenant

clusters while requiring only 25% more resources.

Chapter 2. Background 19

Figure 2.2: Latency span of different data analysis jobs. Source: Sparrow Paper

2.1.4 Sparrow

Developed at Berkeley in 2013 Sparrow [7] tries a new approach for scheduling by creating a decen-

tralized, randomized system. Their motivation comes from the fact that today’s latest processing

frameworks like Spark [23] and Impala [24] partition work across thousands of machines and achieve

repose times into the 100ms range as we can see in Figure 2.2. To handle those workloads we need

a different setup for schedulers in contrast with traditional workloads. Size of today’s clusters

combined with very fast completion times lead to requirements of over 1 million of scheduling

decision per second. The paper describes a system composed of autonomously machines that make

scheduling decisions without a centralized state. This is the only way by their claims to achieve

sub-second tasks with high throughput.

Their design relies on the two choice load balancing technique: when placing a task consider two

random machines and pick the one which has fewer queued running, in order to achieve very low

latency. They extend this idea with three techniques to make it more suitable for scheduling.

• Batch Sampling: Two choice technique performs poorly for tasks running many short jobs

in parallel because the scheduling latency for each job adds up to a significant task latency.

To cope with that the authors solve this problem using the recently developed multiple choice

approach: placing m tasks on the least loaded of d ∗m random selected machines, where d is

a constant.

• Late Binding: Due to tasks start-up delays measuring queued tasks is not a good indicator

of wait time. The authors solution around that is delay assigning of workers until the tasks

is ready to start. Even though the difference is very small they claim this technique reduces

median job response time by 45% compared to standard batch sampling.

• Policies and Constrains: Sparrow uses multiple queues for tasks with different priorities

and supports per-job and per-task placement constraints. Their solution presents a novel

policy enforcement and constraint handling which performs 12% within an ideal scheduler.

Their ideas to achieve low latency scheduling are very interesting but not useful for streaming

workloads where tasks are long running exceeding by far typical workloads for which their scheduler

was designed. Sparrow was quite successful in practice and is integrated in widely used processing

frameworks like Spark but still is designed for batch computations mainly.

Chapter 2. Background 20

Figure 2.3: Mesos architecture diagram, showing two running frameworks (Hadoop and MPI -
Message Passing Interface). Source: http://mesos.apache.org/

2.1.5 Mesos

As we have seen so far, a diverse array of cluster frameworks have been developed by researchers

and practitioners alike with each having its own strengths and weaknesses. This patter was clearly

emphasized in recent year and we believe no framework will be optimal for all applications. With

that in mind a team of researchers from Berkely build Mesos [14, 15], a platform for sharing

resources between diverse cluster computing frameworks. Mesos aims to reduce data replication,

improve communication between frameworks and optimize utilization of resources. The system

scales up to 50,000 nodes and uses Zookeeper [29] for coordination and fault tolerance.

Mesos introduces a distributed two-layer scheduler that decides how to offer resources to each

framework while the frameworks decides which resources to accept and how to utilize them. It

achieves that by sending resource offers: list of free resources on multiple nodes. The scheduler runs

continuously iterations of scheduling and in each of them it creates a new fair share of resources

and splits them among frameworks by providing them resource offers. Each frameworks can accept

or refuse the offered resources if they are not suitable for its needs (i.e. nodes have less that R

resources free or the data is not local). In this case the framework keep its fair share for the

current round and get new resources at next scheduling iterations. Mesos uses three techniques to

make task scheduling efficient and robust to failures. First, because some framework could always

refuse certain resources the system provides filters: a way to to efficiently short-circuit the decision

process without extra communication. Second, in order to prevent time taken for a framework

to respond to allocation Mesos starts counting their share before that. Last, if a framework is

unresponsive for a long time the scheduler revokes its resources and gives them to others.

With all points described above Mesos had a lot of success and was received well by the com-

munity and later on open-sourced under Apache license. Overtime many enthusiast contributed

to the project making it more mature and also discovering its limitations. Many people con-

sider that Mesos’s scheduling capabilities are quite robust and outperformed by Hadoop’s capacity

or hierarchical schedulers. Another point is that resource offers put more overhead to the per-

son implementing the framework and can’t scale out to real time systems like stream processing

Chapter 2. Background 21

Figure 2.4: YARN Architecture (in blue the system components, and in yellow and pink two
applications running). Source: YARN paper [16]

pipelines. Lastly Mesos doesn’t provide any disk space or I/O scheduling and this is a resource

that can become a bottleneck to under certain applications.

2.1.6 YARN

Apache Hadoop began as open-source implementation of MapReduce focused initially to run mas-

sive parallel jobs to process data from web crawls. The framework popularity made it the place to

be for everyone that needed vast computational resources or wanted to analyze large amounts of

data. The open-source community began to expand Hadoop far beyond the capabilities of its orig-

inal programming model. Developers who wanted access to Hadoop clusters resorted to ingenious

ways to circumvent the existing limitations of the MapReduce API.

However the Hadoop architecture took its tool and there was a need for a new framework that would

delegate scheduling to job level and provide a great flexibility of processing framework running on

top. To solve this problem researchers created YARN [16], a new generation compute and resource

management framework open-sourced via Apache. YARN combines existing scheduler developed

for Hadoop with a separate cluster manager framework. This way the use its free to use his own

policies or rely on YARN to schedule its jobs. YARN achieves resource isolation by using cgroups

and supports currently isolation for CPU and memory. In the future they also plan as well tu

support I/O isolation.

Overview A YARN cluster is composed of two main components: Resource Manager (RM),

and Node Manager (NM) as shown in 2.5. The RM is the master of the cluster and coordinates

all container allocations and resources cluster-wide while the NM is a slave, that runs on every

host and handles container start, execution status and ensures resources, allowances are respected,

which can be include soft or hard limits.

When an application requests for a certain amount of resources the ResourceManager has enough

resources to satisfy the request and schedules the application on that host. The NodeManager starts

Chapter 2. Background 22

Figure 2.5: YARN components
Source: http://hortonworks.com/

the containers on that node and continuously monitors the resource utilization of that container.

If a resource limit is hard how is the case for memory the NM will kill the container instantly

if it exceeds its allocation. This ensures that the containers are always limited to their memory

allowances. In SEEP, most of the queries used for benchmarks keep small amounts of data in

their memory so strict memory isolation is not a concern and has no impact on performance. For

CPU, the limits are soft by default, which means that if there is spare CPU available on a node,

containers are allowed to use it, potentially far exceeding their allocation. When another container

starts on the same node existing containers CPUs are scaled back appropriately. This pattern is

similar to the way the OS kernel shares CPU time between threads. YARN has the ability to

impose hard limits on CPU as well which might be useful when running performance benchmarks

on a shared cluster without adding noise in the results from the load.

CPU resources are divided into units called Virtual Cores (vcores) which represent a percentage

of the total CPU available on a host. In practice, it is recommended that one or two vcores per

physical core are used but often this value can be adjusted for hybrid infrastructure.

All the benefits outlined above are achieved by separating the resource management function

from the programming model. However this creates an abstraction over the physical layer which

make it impossible for the application-level scheduler to map tasks to physical machines. When

resources for a new job are requested, YARN will decide where to deploy containers based entirely

on free resources without worrying of data locality in respect to input streams. This brings a big

performance impact when running stream jobs because we lack the ability to place tasks where the

data is stored, thus placing a high load on the network. However

2.1.7 Naiad

Naiad [10] was developed at Microsoft Research with the aims to combine different scheduler ar-

chitectures under one framework without losing any downside in performance. They claim that

by introducing a new computational model, timely dataflow they can achieve the high through-

put of batch systems, low latency of stream pipelines and also support incremental and iterative

computation. Further more applications build on a single platform are typically more efficient.

Chapter 2. Background 23

The authors provide a set of primitives that can sport a wide range of algorithms and diverse

computations: structured loops, stateful dataflow vertices that apply transformations over data

without coordination and notification system for the two. The computation model is based on a

directed graphs where each vertex applies an operation over data. Loops are formed by connecting

vertices in a cycle. Messages passed around contain a time-stamp to differentiate data from different

iterations of the loop. One vertex can have multiple input and output sources and the user has

choose between them properly.

To measure Naiad’s performance the authors used multiple real-world benchmarks such as: batch

iterative graph computation, batch iterative machine learning, streaming acyclic, streaming iter-

ative analysis. The results demonstrate that Naiad has very latency in the milliseconds range

when scheduling thousands of jobs and achieves throughput of 500K events / second in iterative

workers. Consequently the authors managed to make one system for each specialized type of com-

putation that at least similar performance. The only limitation of Naiad is the inability to schedule

dynamically streaming jobs which can have an impact on performance.

2.2 Processing Systems

Processing frameworks are systems that designed to ease access and analysis of huge dataset and

provide users a simple way to write their own computations over the data. They usually define a

specific programming model that restricts the type of applications that people can write. Many

different frameworks were developed over the years specialized on typical uses cases for the data.

Next we will describe the most important ones.

2.2.1 Map Reduce

MapReduce [1] is a programming model for processing and generating large data introduced in a

paper by Dean and Ghemawat. It was designed as effort to hide the complexity of parallelization,

fault-tolerance and load balancing in a framework to allow easy utilization of large distributed

systems. The abstractions behind MapReduce as the authors acknowledged is inspired by map and

reduce primitives present in functional programs like Lisp.

The computation takes a set of key/value pairs and returns as output a different set of pairs. Their

original implementation passes string within the computation but users can use arbitrary type by

providing a serialization function.

The MapReduce framework does the computation by applying two functions provided by the user:

Map and Reduce. The Map phase receives as input a list of key/value pairs and produces a

set of intermediate key/value pairs by applying a user defined function to each element. In the

intermediate phase of the computation the framework groups together all items having the same

intermediate key (all the values having the same key are grouped into a pair of key, list of values).

Finally, the Reduce phase applies the second user defined function to each pair of elements from

the previous phase. For each key/list of value pair the reduce function has the goal to from a

smaller list by combining some of the values. The implementation uses a iterator to process the

input, thus is able to process data that doesn’t fit in memory at once .

Chapter 2. Background 24

Figure 2.6: High-level map reduce diagram.
Source: http://ibm.com/developerworks/

The programming model behind MapReduce is perfectly suited for running on a distributed system

build with commodity hardware with high failure rates. Because all instances are evenly distributed

across the cluster if one fails it’s very easy for the scheduler to restart the corresponding map or

reduce instance without a significant latency to the whole computation. The features presented

so far made the MapReduce framework very suitable for running computations on large clusters

and the foundation laid by this paper inspired many engineers to build similar system and some

of them open-source.

2.2.2 Hadoop

Apache Hadoop [12] consist of a open-source framework for distributed storage and distribute

processing. It was created in 2005 by Yahoo’s Doug Cutting and Mike Cafarella as a response to

Google’s Map Reduce one year earlier. At its core it’s composed of HDFS (Hadoop Distributed File

System) and the computation part (MapReduce). While initially it was used internally by Yahoo,

the company decided to make it public in 2009 and one of the biggest early adapters was Facebook

which in 2010 claimed to have the biggest Hadoop clusters in the world of 21PB of storage [13].

Later on more components were added to the Hadoop ecosystem like: Apache Pig, Apache Hive,

Apache HBase and YARN.

Different schedulers were developed to run on top of Hadoop apart from its default FIFO queue-

based scheduling with custom priorities. Facebook created a Fair Scheduler with the aim to provide

a low latency for small jobs while assuring high throughput for important jobs. This works by

splitting jobs into pools each having a guaranteed minimum share of processing time. Yahoo

developed a Capacity Scheduler with a similar design but it allows jobs to access resources based

on their level of priority and once a jobs started there is no preemption.

Hadoop was for many years a great success and used at almost every company that handles huge

amounts of data. There was a very active community of developers extended Hadoop and tried to

make it the the framework for everything related to big data. This was perhaps both the cause of

its great success and curse. After 7 years of its release a new generation of Hadoop was created

with a complete redesign from scratch.

Chapter 2. Background 25

2.2.3 Spark

With the increase in popularity of Hadoop and MapReduce many of their limitations showed up.

One of those greatly affects the performance of iterative algorithms because MapReduce stores all

the intermediate data on disk to guarantee fault-tolerance. Spark [23] focuses on solving these issues

by storing the applications working set in memory while retaining the scalability and fault-tolerance

of MapReduce. To achieve these goals the authors introduce Resilient Distributed Dataset RDDs:

immutable dataset partitioned across several machines with can be recovered based on replicated

lineage applied to saved checkpoints. Lineage is simply a transaction log over the data which is

replicated in memory. To reduce the workload needed to recompute the RDDs in case of failure

Spark writes periodically checkpoints to disk. They achieve high parallel throughput over the data

since all the RDDs are immutable and can be written in parallel. One key advantage of RDDs is

the ability to degrade gradually when when the data grows over the size of available RAM.

Spark provided a rich semantics for accessing data by applying functional programming primitives

such as: map, filter, join over the dataset. Each of these transformations create a new dataset.

To provide easy-access to data they developed an Spark interpreter that applies transformations

over the data and return the results. Because of that the development process of Spark queries is

greatly simplified since one can test sequentially every transformation.

Their performance is several orders of magnitude faster than MapReduce because of in memory

access speed. Spark is widely-used for iterative machine learning or interactive data analysis. How-

ever not all computations are suitable for Spark since we are limited to logic that can be represented

as simple transformation on RDDs. Further we are also limited by the cluster’s total memory size.

If we exceeded it the performance downgrades to a traditional MapReduce approach. Finally Spark

is not suited for applications that apply fine-grained transformations over the datataset since RDDs

are immutable and just one value change brings the overhead of creating a new RDD.

2.2.4 Storm

The increasing use-case of stream processing running in real time motivated Nathan Marz et al. to

develop Storm [21, 22], a real time distributed computational framework that makes it easy to pro-

cess unbounded streams of data efficiently. Storm received a lot of interest from industry and was

initially acquired by Twitter and in September 2014 open-sourced under Apache license. Today

the framework is a key part of backend infrastructure in companies such as Twitter, Yelp, Spotify

or RocketFuel. Being able to process streams in real-time Storm has many use cases: real-time

analytics, fraud detection, weather prediction, real-time machine learning or music recommenda-

tions.

A Storm cluster is similar in a higher level with a Haddop cluster but instead of running batch jobs

with a finite completion time you run stream operator called topologies that simply run forever.

As Hadoop Storm use master and worker nodes and the latter runs a daemon called ”Nimbus”

which is equivalent to Hadoop’s ”JobTracker”. Nimbus performs scheduling, tasks deployment

and monitors for failure. A distinguished feature of Storm is to use a separate cluster Zookeeper, a

distributed synchronization service, to coordinate each individual node and the central scheduler.

Zookeeper remember the state history which allows the rest of the Storm system to be fail-fast and

Chapter 2. Background 26

stateless allowing instant recovery without loosing computation. This design makes Storm very

reliable and Twitter claims they have clusters running in production for months without the need

to be restated.

For tasks placement Storm uses Mesos [14, 15] configured to run tasks in resource strict isolation

environment. Because of that they don’t encounter bottlenecks due to resource contention but this

comes with the cost of wasting resource when the cluster is not fully utilized. Further more they

don’t provide any kind of I/O isolation and have encountered I/O bottlenecks in production such

as tasks under-performing when consuming data from Kafka [26] relative an independent client.

Storm was adopted with great success by many practitioners and it widely used in comapnies such

as Twitter, Yahoo, Rocket Fuel or Groupon. The main disadvantage of Storm to our use case is

that they don’t support dynamical scheduling: once a tasks if placed on a node is never moved.

The reason above as well as their inefficient resource allocations motivate us to develop a new

scheduler.

2.2.5 Samza

For similar reasons such in the case of Storm 2.2.4 has motivated the people at Linkedin to create

Samza [11], a framework with similar design as Storm. Both systems provide many of the same high-

level features such as distributed computation, fault tolerance and the same stream programming

model. Even though Samza is more recent than Storm it was open-sourced a few months before

the latter under the same Apache license. The release was anticipated with great enthusiasm by

the community since it aimed to be a near-realtime, asynchronous computational framework for

stream processing and provided a few different features than Storm that would better suit specific

applications such as guarantees for delivery of messages and always processing them in order.

In terms of architecture the framework uses Kafka, a publish-subscribe message broker, for com-

munication and it’s built on top of YARN to provide fault tolerance, processor isolation, security,

and resource management. For computation state management they use a very different approach

than Storm. Instead of keeping a external database cluster like Zookeeper Samza tasks include an

embedded database on each machine. This has the advantage of very fast read and writes since

everything its locally in memory. To be able to fail-fast this database is replicated on certain

machines that can restore the computation of failed node.

In practice the project reached its limitations when dealing with high dynamic workloads of streams

because of YARN resource allocation strategy. In the community there are many ongoing discus-

sions on how to solve or circumvent these issues but no suitable solution was discovered yet.

Considering that Samza is fairly new and the project is quite immature maybe new features will

develop in the future but YARN limitations are difficult to surpass without a whole change of the

programming model. The project is still under active development recently by Cloudtera and Hor-

tonworks. After exploring those alternatives we clearly outlined why the problem of dynamically

scheduling stream jobs is still open-ended.

Chapter 2. Background 27

2.2.6 Spark Streaming

Real-time streaming frameworks suffer have an expensive way to deal with failures or slow nodes

through replication or upstream backup. Both approaches are not desirable as replication increases

the hardware requirements and upstream backups can take a long time to recover in complex

computations. The authors propose a new processing model, discretized streams [43] that solves

this challenges. Their idea is to structure a streaming computations as a set of fined-grained batch

computations that can be ran as MapReduce jobs. For example instead or running a continuously

word count over streaming data they will divide it into segments and run a batch word count for

each. On problem with a classical MapReduce approach is the high-latency from disk access so

they use instead RDDs [23].

DStreams are formed by splitting streaming computations in small time intervals. The data received

in each interval is stored in memory with replication and when the interval ended the dataset is

processed via functional transformations. All the intermediate states are stored as RDDs, thus

avoiding data unnecessary replication. RDDs can be recovered in case of failure based on lineage:

graph of transformations applied over the input to compute the data. When a streaming node

fails the other nodes can replicate the computation in parallel from the lineage. For slow nodes the

system can execute tasks speculatively for a fine-grained interval since DStream are deterministic

and stateless.

While building Spark Streaming the authors changed the underlying Spark engine with multiple

enchantments to optimize it for streaming tasks. First they changed the communication layer to be

asynchronous so reduce processing latency. Secondly they modified the scheduler to launch many

parallel jobs at milliseconds latency and made it schedule tasks for the next timestamp even before

the current one finished to reduce latency between timestamps. Finally the made their scheduler

system fault-tolerant since streaming jobs need to run for many hours.

To evaluate Spark they used three simple benchmarks: Grep which finds the number of strings

matching a pattern, Word Count which computes word frequency, Top K which find the most

common words over a sliding time interval. They ran those benchmarks on Storm [21] and S4:

other commercially available stream processing systems. Spark achieves a significant performance

gain of 2-3X when compared to Storm on 1,000 bytes records and 5-6x on smaller records because

of fast memory access speed. Next they evaluated fault-tolerance and slow nodes mitigation. For

recovery they managed to reach a ratio of 7:1 between checkpoint time and recovery while running

on a cluster of 100 nodes. When a node is slowed down by a factor of 6x they manage to reduce

the performance loss to only 2x by speculative execution.

Spark Streaming provides a novel approach to managing failures in streaming frameworks. How-

ever their abstraction of DStream is not general enough to apply to SEEP since some streaming

computations are statefull throughput the computations if interactive used input or database ac-

cess is performed. However their techniques for handling slow nodes can be adapted to SEEP to

improve the performance. Finally we used their benchmarks to compare our system to both Spark

and Storm. [43]

Chapter 2. Background 28

2.2.7 Heron

Storm has served for several years as the main stream processing framework at Twitter as well

as other companies. As the scale of data being processed increased as well as the size of the

cluster many of Storm limitations became visible. One of the biggest issues while running Storm in

production was it’s maintainability and debug ability. Storm needs special provisioned hardware,

with prevents sharing and makes scaling elastically cumbersome since the machines need to be

provisioned. Secondly Storm uses an abstraction over the physical layer which makes it impossible

for engineers to map physical operators to machines. Lastly to allocate resources Storm treats all

workers homogeneously which results in a very inefficient use of resources. For the reasons above

the people at Twitter needed a new stream processing system and they made Heron [39], launched

very recently in June 2015.

Heron runs streaming queries organized in topologies forming a DAG. When a query is submitted

each operator is allocated in a container by an external scheduler based resource availability in

the cluster. The main advantage in their design is the ability to use any external scheduler like

YARN [16] or Aurora [41]. Heron uses the concept of topology backpressure that can dynamical

adjust the information flow within a topology. This is required as some operators can process

data faster than other thus potentially wasting disk space and resources. To achieve that they

considered a few implementations strategies: TCP Backpressure, Stage-by-Stage Backpressure and

Spout Backpressure. The last approach notifies the upstream operators or data sources connected

to the over-performing operators to reduce the flow of data. While having a small overhead due

to message passing this strategy adapts quickly to big topologies. The backpressure mechanism is

very useful in reducing resource utilization and would be nice to implement a similar concept in

SEEP in the future.

When developing Heron many useful lessons where learned from Storm the current design doesn’t

have any single point of failure. To achieve that they run a quorum of Topology Manager (TM)

where only one is acting at a given time while the others have the roll of ready hot-spot nodes.

To elect the acting TM they make use of Zookeeper [29] ephemeral, sequential nodes. The TM

is responsible to monitor each worker process via periodical heartbeats and make sure they are

running.

To evaluate Heron performance the authors extended each container with a Metrics Manager (MN)

unit responsible to collect send all the metrics to an external analytics system. The performance

benchmarks were done by direclty comparing Storm and Heron on a representative set of bench-

mark. We tested on a word count topology from tweets Heron achieved a 5-15X lower latency

and 2-3X lower CPU utilization when compared to Storm. Furthermore while measuring resources

required to reach a 6M/min throughput Storm needed 240 cores while Heron managed to use only

20 cores. The new state of the art system clearly outperforms Storm [21] as well as other systems

build around the same time such as Samza [11] and Spark Streaming [23]. They provide as well

a mechanism to adjust dynamically to differences of throughput but this come with the cost of

limiting the performance. Because of that there is a genuine need for a scheduler that can migrate

tasks when the workload changes.

Chapter 2. Background 29

2.2.8 SEEP

As amounts of data increase and more real time applications make use of it, new types of stream

processing systems were developed that are designed to scale out to large number of machines.

Those systems face two challenges: they should scale out on demand benefiting of the new re-

sources available for cloud computing like Amazon EC2 and because those systems run hundreds

of machines of commodity hardware they need to be fault-tolerant without adding a big overhead

per machine. The difficulty in solving these comes from the fact that stream processing operators

are stateful hence any movement can affect query results. This motivated a group of researchers

from Imperial to build SEEP [6, 8], a stream processing framework designed with the above ideas

in mind that uses a new type of operator state management.

SEEP works by exposing internal operator state to the stream processing system (SPS) by defining

a set of state management primitives. These allows the SPS to periodically checkpoint operators

state and back them up to upstream VMs. In case of failure the SPS would simply restore the

operator from the last checkpoint without losing significant computation time. Even more the

SPS can identify operator bottlenecks and allocate new VMs each taking a portion of the original

workload and replay any any unprocessed tuples from the last checkpoint. The authors evaluated

SEEP with the Liner Road Benchmark on Amazon EC2 cluster and the results showed that it can

scale automatically and recover quickly to a size up to 50VMs. In future work they plan to extend

SEEP to scale out more quickly and add support for scale in.

We used SEEP because is written inside our department and we can collaborate very easily people

working on it. Secondly SEEP offers us exactly the set of features that we would need to build our

scheduler on top of a stream processing network and has the benefit of running locally and small

setup overhead.

2.3 Messaging Systems

Practitioners have created specialized frameworks to allow communication between different appli-

cations within the same cluster or even different data centers. Their job is to receive messages from

applications, transform them to a universal format and route them to their destination. Their are

usually designed following the publish-subscribe patter which provides a layer of abstraction over

the communication links in the network thus it results to greater network scalability and supports

more dynamic topology. The design of those frameworks has to trade-off between persistent storage

of messages and system performance. Developers have created a broad range of messaging sys-

tem each with its own strengths and weaknesses, that span from low-level not-persistent ones like

Google’s Protocol Buffers [30] and Facebook’s Thrift [27] to complex message brokers like Rabbit

MQ [25] and Apache Kafka kafka. In this section we will outline the characteristics of each one

and argument why we chose Kafka for our system.

2.3.1 Rabbit MQ

RabbitMQ [25] is a messaging system created in 2007 with the aim of providing a open-source

alternative to existing messaging middleware, offer reliable communication and scale out to large

Chapter 2. Background 30

Figure 2.7: RabbitMQ architecture overview

computing cluster of the future. It was developed under strong collaboration of a group of users

and vendors. The system it written in Erlang, a language very well suited for programming

communication systems, and follows a direct implementation of the Advanced Message Queuing

Protocol (AMQP) which was developed in 2003 in the finance sector.

RabbitMQ system is composed of the following components described bellow:

• Producers: programs that create messages and send/publish them.

• Consumers: receives messages from the queue that are sent to them

• Queues: communication layer used to store messages temporarily and buffer them if nec-

essary. A queue can transport messages from multiple producers that are designated for

multiple consumers. Queues are ordered, stateful and can be persistent by writing data to

disk. RabbitMQ allows queues to private or shared. Consumers tell queues to bind for certain

keys.

• Exchanges: stateless routing tables that maps messages received from producers to corre-

sponding queues where the consumers are listening. They mapping is done by checking the

message routing key which binds to a certain queue. Producers send initially one or more

routing key to exchanges.

The system is coordinated by a RabbitMQ broker which runs distributed on a set of nodes and

has the responsibility to maintain the queues, exchanges and store routing information. If the

broker runs on a single node the system is vulnerable to failure. Even if persistent queues are used

to store messages after recovery from failure buffered messages may still be lost. If the system

runs on multiple nodes it can tolerate failure very well if in the worst case all nodes but one fail.

This is achieved my mirroring queues on multiple nodes such that each message is backed up on

machines that can send it again. One weakness of RabbitMQ is vulnerability to network partition,

i.e. broker nodes cannot replicate in case of failure messages from different partitions.

Chapter 2. Background 31

Figure 2.8: Kafka architecture overview.
Source: http://kafka.apache.org/

2.3.2 KAFKA

As the number of people using the internet increased companies wanted to understand better their

users, track engagement or analyze user activity of all sorts. To achieve these logging became a

critical component of every internet company and large amounts of log data began to gather in

data warehouses. This motivated people at Linkedin to create Kafka [26], a distributed publish-

subscribe messaging system developed for collecting and consuming large amounts of log data.

Kafka was designed to provide high throughput (i.e. hundreds of thousands events per second),

persistent message storage, fault-tolerance with replication, build-in partitioning and distributed

delivery.

Kafka internal design is a bit simpler than RabbitMQ. It has three main components: producers,

consumers and Kafka brokers. Producers publish messages to a topic which and then routed to the

appropriate consumer group by the broker. Consumers can be part of a group and distribute the

load evenly among them or we can allocate just one consumer per group to send a message to only

one of them. For replication Kafka makes extensive use of the file-system storing the messages

on local disk and it manages to achieve that without an impact on performance by serializing

and combining writes in a batch. The authors argument their decision of using the file-system

instead of keeping messages in memory by the big overhead oh Java and its garbage collector poor

performance.

RabbitMQ and Kafka are similar systems that both serve the goal of providing communication in

a large computing cluster. Here we will highlight some of the differences between the frameworks:

• Scalability: Kafka easily scales out to 100k messages per second while RabbitMQ cannot

handle more than 20k. This would quickly become a performance bottleneck in a huge cluster.

• Ordering: Kafka delivers messages in order while RabbitMQ cannot guarantee that. The

first would ease the design of our system.

• Routing: RabbitMQ provides complex routing strategies and message delivery guarantees.

We are fine with best effort delivery and simple routing policies.

Chapter 2. Background 32

Figure 2.9: Anatomy of a Kafka Topic
Source: http://kafka.apache.org/

• Maturity: RabbitMQ is more mature while Kafka was open-sourced for just one year but

has a pretty stable release and very good documentation.

• Programming language: Kafka is written in Java the same as SEEP so integration with

our system will be very easy where as for RabbitMQ we need to use their Java API.

• Synchronization: RabbitMQ build its own mechanism of synchronization but Kafka relies

on Zookeeper for coordination which represent an additional overhead but it’s worth it.

Topic The main concept introduced by Kafka is a topic: a communication channel where pro-

ducers can write and consumers can subscribe in order to receive the published messages. All the

messages exchanged through the system are divided into topics. For persistence Kafka stores all

the messages on disk partitioned into several files stored on different machines. Each file is an

immutable sequence of messages that is continuously appended to. Each message has assigned an

offset which represent it’s position within a partition.

Kafka has a log retention policy that retain all published messages for a given time whenever of not

they have been consumed which could happen multiple times. Because storing a new message is a

simple disk seek to the latest position in that log file, Kafka performance is not affected by storing

large amounts of data. However when using Kafka with SEEP we can delete a message as soon as

it was consumed which usually happens in less than a minute. This allows running intensive IO

queries that can write around 1G of data per second cluster wide without a significant impact of

the disk space usage.

Storing the messages in as a ordered sequence means that Kafka consumers have a lot of flexibility

while reading the data. A consumer can come and go without affecting the others and it can read

that data in any order it likes or even reset it’s reading offset if it wants to reprocess the data. The

user can also inspect in real-time the messages that are exchanged in the system by running tail

on the log file.

Partitions Partitions serve a very important rule in Kafka by allowing a topic to store data

beyond the size that will fit on a single machine but also represent a unit of parallelism. Multiple

Chapter 2. Background 33

Figure 2.10: Mapping partitions to consumers
Source: http://kafka.apache.org/

producers can write concurrently to a topic because different machines can do disk IO for each

partition.

For fault-tolerance each partition is replicated to a configured number of machines. From all the

replicas one is the leader and processes all the read and writes while other are followers and simply

mimic all the data operations. If the leader fails one of the followers will automatically become a

new leader. Each server is assigned a even number of leader and followers rule by using consistent

hashing so the load is well balanced across the cluster.

One common problems of systems that deal with multiple consumers sharing the load from mes-

sage queues is that even though messages are stored in order the system delivers the messages

asynchronously which means that multiple messages can arrive out of order to multiple consumers.

Messaging systems usually deal with this by limiting parallelism to only one consumer at a time.

Kafka has a innovative approach by introducing consumer groups and message partitions and they

create a mapping from partition to consumer within the group so a consumer receives messages only

from one partition. This way load balancing between consumers comes from the same properties

inherited from partitions, see figure 2.10.

Guarantees At a high level Kafka provides message ordering guarantees: all messages will be

stored in the order they were sent and all consumers will see the messages in that order, fault

tolerance: for a topic with a replication factor of N the system will be able to support up to N-1

failures without loosing any data written to the log.

2.4 Resource isolation

Large clusters have to share their resources: physical machines, cpu and memory among many

applications running concurrently. The developer of applications that run inside the cluster can’t

be made responsible for writing safe and fair code, i.e. won’t crush the system, won’t fill up all

machine’s memory. Considering the above there is a need to isolate tasks sharing the same cluster

by using a multitenant architecture. To achieve that we can deploy each job inside a container,

similar to a light weight virtual machine that had access to a fair share of host machine physical

resources, or use a cluster management framework that creates a abstraction over the physical layer,

like Mesos 2.1.5 and YARN 2.1.6. The latter relieves the overhead of keeping track of machines

Chapter 2. Background 34

Figure 2.11: Docker and VMs comparison.
Source: http://docker.com/whatisdocker/

from the scheduler but this come with the cost of lower granularity for task placement which is

serious performance bottleneck in real-time systems. In the following paragraphs we will describe

some of the kernel level resource isolation platforms.

2.4.1 Linux Containers

LXC [20] is an operating system level virtualization environment for running multiple isolated

containers on a single physical machine. They achieve thease by creating process containers know

as cgroups that completely isolate application view of operating system including file system,

network, cpu and memory. Each container runs a complete copy of the Linux operating system

without the overhead of a traditional virtual machine hypervisor. We consider using LXC or other

alternatives for resource isolation however because they are very low-level they create an overhead

on the scheduler to manage them.

2.4.2 Docker

Docker [19] is an open platform build with the aim of making easier to build, deploy and run

distributed applications. Solomon Hykes developed Docker with the aim of making it more user-

friendly than LXC by providing an additional layer of abstraction and automation over an operating

system virtualization. Internally it relies also on cgroups and combines the usage of virtualization

interfaces like LXC and its own library libcontainer to directly access Linux’s kernel virtualization

facilities. The platform can be integrated very easily in various infrastructure deployment systems

like: Puppet, Jenkins, Vagrant or Google Cloud Platform and it’s integrated in the 2015 release

of Windows Server. The factors outlined above along with its very big online community makes

it a good candidate for integration in our system. However after examining all these options we

decided that YARN fist the best with SEEP and the latest version offers all levels of isolation that

we can get from a low level framework but without the additional overhead.

Chapter 2. Background 35

2.5 Performance Benchmarks

To measure the performance of large computing clusters one requires representative benchmarks

modelled after realistic workloads the system is designed for. Over the years people build various

benchmarks to measure resource utilization for CPU, memory, I/O, network as well as cluster

throughput [46]. Next we will describe one evaluation approach developed by Google that supports

complex tasks placement constraints [40].

As cluster size increases it is inevitable to have heterogeneous machines with different hardware

characteristics. As some applications are dependent on kernel versions or make performance trade-

offs for disk, memory or CPU it is important to support specific constraints when scheduling tasks.

When constraints are present it is complicated to evaluate generally enough the performance of

the system because: there is a many-to-many mapping between applications and machines and

machine utilization is not adequate to quantify performance. (Some machine might be always

free because no applications can run on it but this doesn’t mean the scheduler is not efficient

in load distribution). The authors from Google propose a new solution that uses both common

metrics: task scheduling delay, machine resource utilization and introduces a new one: utilization

multiplier. Utilization Multiplier is defined as the ratio of resource utilization seen by tasks sharing

the same constrain to the average utilization of that resource. This way the manage to quantify

tasks constraints in performance benchmarks.

Their work provides as well as previous research in this area give a lot of insight on measuring

cluster performance that we applied ourselves to evaluate our scheduler.

2.6 Task Migration

With the increasing demand of large cluster computations a lot of research interest was focused on

load-balancing the workload across physical nodes. Researchers studied ways to maximize energy

efficiency [49], optimize placement module based on theoretical constraints [47] or efficient load

distribution among N-processor systems [48]. However no existing solution tried to distributed

load across multiple machines that form a computing cluster.

A similar problem but at a smaller scale was presented in [47]. The author used a set of matrix to

module allocation constraints between modules and processors such that a module could exhibit

different communication and resource usage depending on the processor where is placed. He ex-

plained why finding the optimal migration is a NP-complete and presented a heuristic algorithm

Match-maker to find a sub-optimal allocation while comparing it with other approaches. For eval-

uation he simulated various workloads and constraints by generating random modules. We used

a similar approach to migrate tasks in our cluster with the difference that we run on an actual

cluster were tasks could also change their resource usage.

Chapter 2. Background 36

2.7 Conclusion

We explored some of the existing processing systems and job schedulers and understood the specific

purpose each one was designed for. Even though some cluster managers like Mesos and Yarn can

handle both batch and stream workloads we have seen that even processing systems designed for

this purpose build on top of them have poor performance in practice 1. This due to the high

level abstraction over the physical layer which makes all tasks heterogeneous combined with the

schedulers inability to reschedule task during runtime. We want to solve this problem by creating

a new scheduler that can handle streaming workloads efficiently.

1see Samza 2.2.5 and https://issues.apache.org/jira/browse/SAMZA-335

Chapter 3

System Design

In this chapter we will explain how and why we need to extend SEEP in order to enable queries

to run independently on a multi-tenant cluster. First we need to make queries run under resource

isolation in order to prevent misbehaving queries to affect other tenants running on the same

machine. Secondly we want to make the streaming communication fault tolerant so a single query

will not be affected permanently when one of its operators stops and resumes computation when

a replacement appears. We will explain in detail how we integrated SEEP with other systems to

achieve the requirements above and analyze the overhead we introduce if any.

3.1 Seep overview

Seep is a stream processing framework written in Java that aims to provide real-time data process-

ing in the cloud and has the ability to scale on demand by increasing the number of workers. The

programming model is inspired by functional programming primitives if we consider each operator

a lambda function applied over a infinite stream of data. A typical SEEP workload is formed by

a set of operators applied over a set of streaming data . An simple query can be a real-time word

frequency application as we illustrate in Figure 3.1. This query would analyse online data such

as real-time Twitter statuses as they are published. This query can be formed of three operators:

Source, Processor and Sink, where each runs according to the following logic

• Source: reads messages from Twitter Streaming API and sends them the the Processor in

the desired format

• Processor: split sentences into words and keep track of number of occurrences for each word.

After a given time interval it send the list of the most frequent words to Sink.

• Sink: outputs the results in a user defined format for future analysis.

SEEP provides a very simple way to write streaming queries where the user only needs to specify

how the operators are connected and implement the function that transforms the data for each

operator. This is similar to the programming model used by MapReduce where the user would needs

37

Chapter 3. System Design 38

Figure 3.1: Twitter Word Frequency Query

to specify the number of workers and then implement the Map and Reduce operators. However,

SEEP is far more flexible and can support arbitrary complex queries that are both statefull and

stateless and provides rich semantics for connecting operators as a Directed Acyclic Graph (DAG).

At a high level SEEP can be divided in two components:

• Master: coordinates the worker nodes via a set of simple command primitives. In the initial

phase it is responsible for sending the query over the network to each worker and mapping a

physical worker process to a logical operator from the query that will run on it.

• Workers: are standalone processes that perform the computation and can serve the role of

one of the operators forming the query at a time.

3.2 Message passing

There are two different programming models that application can use to achieve inter-process

communication: shared memory and message passing. The first is used mostly between different

threads and can be also applied to different processes as long as they are running on the same

machine. Therefore the only way to communicate between different tasks running in a cluster

is via message passing over the network in the form of socket channels or HTTP requests. The

latter needs to establish a connection before sending any data, and this constitutes a substantial

overhead. However, this overhead becomes, insignificant if persistent connection are used. One

major limitation with of HTTP is that it uses the ”pull” diagram which means the upstream

operator would need to keep asking for data from the downstream instead of receiving it directly.

This lays unnecessary burden on the sender. For the reason above HTTP requests are not suitable

to use for recurring communication such as streaming data.

3.2.1 SEEP communication

SEEP makes extensive use of message passing between the master and workers nodes and between

workers themselves. The latter is required to pass streaming data from one operator’s output

Chapter 3. System Design 39

(upstream) to the next operator input (downstream). The pipeline uses multiple direct socket

connection for each type of operation so the master worker communication is separated from the

actual data exchange. Although fast, sockets represent a big weakness in the design: if one node

fails all the data buffered on the channels is lost and other nodes connected to it are unable to

deliver data and progress halts.

3.2.2 Alternatives

To be able to migrate operators from one node to another we needed an abstraction over the

communication layer which has build-in fault tolerance - a first class citizen in any distributed

system. Some of the classics options used with great success by engineers are distributed file

systems such as Hadoop Distributed File Systems (HDFS) or Amazon S3 however such systems

are designed for long term storage and their performance is not ideal in terms of latency and

throughput. Another options would be distributed database such as Dynamo or Casandra. Dynamo

was designed to have a very high throughput and high availability for writes with the trades-off of

weak consistency and higher latency on reads. Weaker consistency is not a concern in our use-case

since once we write some data we never touch it again but read latency is quite important and

extra latency could have a domino effect on the overall throughput of multiple operators chained

together. Casandra is a NoSQL database that offers asynchronous master-less replication and

promises low latency for all clients. Casandra has a very good performance for a database and

manage reaches 1 million writes per second on a cluster formed of over 200 Amazon EC2 instances.

[33] Even if such results look good it is possible to reach significantly higher performances by using

a more simple system as we don’t benefit in SEEP from all the extra functionality provided by

complex databases or the high replication of a distributed filesystem.

Another option is a distributed message broker, a system that handles message passing among

different nodes. Message brokers are designed mainly to write or retrieve data by using simple de-

signs such as the publish-subscribe messaging pattern. This allows the producers to send messages

without being aware of receivers at the other end of the wire. To achieve this messages are divided

into classes, known as topics where clients can subscribe and become producers or consumers of

the messages from a class. Additionally most popular systems that implement a message broker

achieve fault-tolerance via message storage replication.

3.2.3 Message brokers

After exploring several alternatives we decided that the best approach would be to use a general

purpose message broker because it has very low latency and performance is second to none as it

can easily handle 100K+/sec with just a few machines. Two of the most popular alternatives used

by data intensive companies are Kafka and RabitMQ. RabitMQ is an open source implementation

of the Advanced Message Queuing Protocol (AMQP) and provides rich semantics for filtering

messages, complex routing policies and delivery guarantees. Kafka is more producer-focused and

performance-oriented being able to handle a firehouse of events partitioned and replicated that are

served to both offline and online consumers. In SEEP we don’t need anything more complex for

message passing than basic topics which represent a unique communication channel between two

operators. With this reason in mind the choice between the two systems above relies solely on

Chapter 3. System Design 40

message passing throughput which is tightly coupled to SEEP’s query performance. By analyzing

existing benchmarks we observed that Kafka can handle more than 100K+/sec messages with

just one single producer/consumer pair while RabitMQ can handle 20K/sec as the performance is

slightly affected by the richer semantics. An interesting performance evaluation was conducted by

the engineers at Linkedin which managed to reach 2 Million writes per second with a Kafka cluster

composed of just 6 machines with common hardware [32]. Kafka is written in both Scala and Java

thus sharing the same language as SEEP which makes integration very easy.

3.2.4 Kafka

Kafka is a publish-subscribe messaging system designed as a distributed commit log where all

messages are appended to log files evenly stored across the cluster. This system is very well suited

as a communication layer for SEEP because it is:

• Fast: a single host can handle more than 100K read/writes per second from thousands of

clients.

• Scalable: their design allows to elastically scale the system by simply adding more worker

machines and all the data is partitioned evenly across the machines evenly to support much

higher loads than the capability of any host.

• Fault tolerance: all the data is replicated on at least two machines and is always available

to be read once it was written.

• Ease of use: Kafka has a simple API and the user needs to implement only a Producer and

Consumer to handle all the communication. It can be easy configured to clean messages from

time to time and prevent wasting disk space waste. Furthermore the deployment is very fast

and lightweight as only one process needs to be run per host.

3.2.5 Integration

SEEP manages input and output via classes that extend the InputAdapter and OutputAdapter

interfaces respectively and had already a Network Input and Output implementation supported

that was reading and writing data on socket byte channel shared between two operators that are

connected. The implementation can be divided in three parts.

The first step was to implement a KafkaConsumer and KafkaProducer that make use of their public

API to receive and publish data. The Producer is very simple to implement by instantiating a

Producer object that connects to any available Kafka server. Next we can call the send function

that takes a KafkaRecord which is a structure that contains the message, topic, optional partition

and optional key. The consumer implementation is a little more complex since consumers are

blocking so the main loop which waits for messages to be published needs to run in a separate

thread. It is easy to make a consumer subscribe to multiple topics by running a consuming thread

for each.

Chapter 3. System Design 41

Figure 3.2: Kafka Integration Overview

Next we simply create two classes that extend InputAdapter and OutputAdapter interfaces for

Kafka which call the provided KafkaConsumer and KafkaProducer to publish and receive data.

Finally because SEEP is designed to receive and send data to multiple sources at the same time we

implemented a separate class which reads and writes data asynchronously for each input and output

connection present in Seep Worker. To achieve this, we had to change the initial multi-threaded

implementation of a KafkaConsumer and put all the logic inside the Kafka Selector since it was

already running asynchronously and this way we don’t create redundant threads. The following is

a summary of all the classes implemented to integrate Kafka with SEEP and Figure 3.2 shows the

interactions between those classes.

• Kafka Selector: reads and writes data from multiple sources asynchronously using the

underline Input and Output Adapters for each source.

• Kafka Input Adapter: SEEP class that provided a layer of abstraction over the input

type.

• Kafka Output Adapter: SEEP class that provided a layer of abstraction over the output

type.

• Kafka Producer: implements all the logic to publish a KafkaRecord.

• Kafka Consumer: simple blocking Consumer that reads data from a given topic.

• Kafka Config: configuration file that needs to be passed when running Kafka queries.

The only required properties are the Zookeeper host and one Kafka Server host. Note that

the server to which the producer/consumer initially connect is not necessarily storing the

partition for their topic so the connection might be transferred to another server later on to

reduce latency.

3.2.6 Performance Overhead

Kafka integration brought many benefits to SEEP such as fault tolerance which enables operators

to migrate from one machine to another without data loss however this could also come with a

Chapter 3. System Design 42

ev
en

ts
pe

r s
ec

on
d

Query performance

Direct Socket connection Kafka

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00
20

30

40

50

60

70

Figure 3.3: Seep Query performance comparison

performance overhead. Before SEEP used direct socket connection between two operators while

now the data is written to Kafka from one while the next waits for the data to be delivered from

Kafka. In the process the data is also written to disk which is slower than the network. To analyze

the performance overhead we used a simple query composed of two operators which transfers 1MB

chunks of data on every iteration from Source to Sink. We ran this query a couple of times by using

both Kafka and Socket as communication layers. The results can be seen in the graph above where

we measured the number of events per second received by the Sink as a 1-minute rolling average,

which is actually the data transfer speed in MB per second. As we can see the performance impact

is small in the first minute and after that is less than 5% which is very good.

3.3 Resource isolation

A multitenant cluster usually runs multiple applications with different resource requirements and

it needs to ensure the overall throughput and fairness for all of them. To achieve this it can divide

available resources between applications by creating a layer of abstraction known as container

which isolates the rest of the resources available on a host from the application running inside it.

Without isolation we can have a scenario where a memory starving application consumes all the

available RAM memory and forces all other applications sharing the node to use swap, therefore

downgrading performance exponentially. The same scenario applies to the CPU although to a lesser

extend because the kernel also ensures a fair allocation of computation time to threads making

it unlikely that one can starve others. However CPU isolation is still important in the case of a

faulty/malicious applications that spawn a huge number or threads or sets themselves a higher

priority.

Two of the popular solutions for resource isolation widely used by engineers are Mesos and YARN

(Yet Another Resource Negotiator). Both of these have an opensource implementation and are

quite mature projects, having been used for a couple of years by the community. Both YARN and

Mesos provide memory and CPU isolation, the latter being added to yarn very recently. At their

core they have the notion of container : a sandbox where an user application can run in isolation.

YARN has a very simple API of requesting containers: the user needs to specify the application

path and the amount of memory and CPU required. After that YARN scheduler will honor the

Chapter 3. System Design 43

requests if resources are available in the cluster and start the application. Mesos is on the other

hand works quite differently: the user receives ”resource offers” from the scheduler and can choose

to accept or decline them based on their needs. Both of these models work for SEEP but the latter

would require a little extra work. Unfortunately disk usage, I/O and network cannot be isolated

yet in any of those frameworks but is currently planned for future releases.

3.3.1 Locality

One key requirement for scheduling is the ability to pin SEEP workers on a certain machine based

on an resource utilization so the resource manger needs to handle request locality. In YARN the user

can easily override the relaxed locality default where YARN scheduler performs the allocations and

asks for a specific host on each container request. Then the resource manager will honor the request

as long as resources are still available on that machine. In contrast Mesos doesn’t support that

out of the box and instead the user has to implement their own mechanism. Further more YARN

has numerous security features which allows nodes to communicate over a non-secure network by

proving their identity. This prevents a malicious application to request resource from the resource

manager and possibly flood the system. Based on the arguments above we decided that YARN is

the best option to use on our cluster and will work quite easily with an external scheduler.

3.3.2 YARN Cluster Setup

As we explained in section 2.1.6 YARN it’s composed of two main components: the Resource

Manager which is responsible for coordinating all container allocation and available resources, and

Node Manager which manages locally container execution. A typical YARN cluster needs one

dedicated host to run the Resource Manager while the Node Manager needs to run on every node

that will run queries. The deployment can be configured from over 150 individual properties, each

of which is well documented, but for a typical setup the user has only to configure a few of them,

such as: the nodemanager host and name of all the hosts.

Applications that run on YARN need to implement two main classes: Application Submission

Client and Application Master.

3.3.3 Application Submission Client

This class is responsible for submitting the application, in our case the SEEP query, to the YARN

ResourceManager (RM). To achieve this, it has to prepare the very first container of the query

which will run the ApplicationMaster (AM)- the SEEP master in our case. The Submission Client

needs to describe every detail that is needed to launch the AM to YARN such as, the command

to be executed, command line arguments and OS environment settings. During execution, the

Resource Manager will ensure the allowances are respected. For memory, the limit is hard by

default, which means that the RM will simply kill a container once it exceeds its allowance. In

contrast, for CPU the limit is soft, which means that while there are resources available, a container

is free to use more computing power, making jobs finish faster on a not fully utilized cluster.

Chapter 3. System Design 44

Figure 3.4: Seep YARN Overview

3.3.4 ApplicationMaster

The AppMaster handles the application execution by communicating with the ResourceManager, in

order to negotiate and allocate containers for each worker that needs to run. After the allocation

succeeds the AM communicates with YARN NodeManagers (NMs) via an AMRMClient object

to asynchronously launch the actual worker in a similar process as the App Submission Client.

One can use container ID provided by YARN to redirect standard output and standard error of

each SEEP worker to a unique file where it can be examined later for debugging or performance

analysis. During the execution of the containers the AM communicates with the NodeManagers

via an NMClient object and can handle events such as start, stop, status update and error for the

containers it owns. The user can implement custom logic to restart a container in case of failure

and log all status updates. By defaults YARN restarts the AppMaster in case of failure two times

and also notifies it if any container is killed by the RM such as if it exceeds the available memory.

Note that a strict memory isolation is desired to prevent the machine from using the swap which

would slow down the performance exponentially.

Bellow are the interfaces available for writing a YARN application that we implemented in SEEP:

• Submission Client: communicates with ResourceManager by using YarnClient objects.

• ApplicationMaster: communicates with ResourceManager via AMRMClient object and with

the NodeManager(s) via NMClient objects.

3.3.5 Implementation

SEEP maps all logical operators that form a query to execution units that are generic SEEP workers

ready to start execution. This mapping is done in the ClusterManager class which previously

supported only one type of deployment called Physical Cluster. The physical cluster manager

Chapter 3. System Design 45

Figure 3.5: Seep worker states

relied on the user to deploy, start and stop the query. When enough execution units were available

for all the logical operators the master was ready to deploy the query and waited again for the

user to request that. This behavior is not practical for a large cluster deployment where multiple

queries need to run automatically without any user interaction.

The first step of the YARN integration was to create an API in SEEP master that accept ex-

ternals commands for deploying, starting and stopping the query. After that we created a new

class, YarnClusterManager, that implements all the YARN AppMaster logic and extend YARN’s

AMRMClient and NMClient interfaces to handle all container related events.

The second step was to make SEEP master deploy automatically the SEEP workers required for the

query by submitting container request to YARN Resource Manager. Once the requests are fulfilled

we made SEEP master responsible for configuring the worker container and starting execution with

the help of YARN’s NodeManager. To make the integration nice both YarnClusterManager and

SEEP previous PhysicalClusterManager extend a common interface called InfrastructureManager

and the user can choose between them via the deployment.type command line argument. To simply

the deployment even more we added an option in Seep Master to automatically deploy and start

the query without waiting for any external commands. This was particularly useful later one when

running benchmarks.

To make it possible to migrate queries we made SEEP keep track of stopped operators when the

query is running and try to assign the job to another operator if it becomes available. To achieve

that we extended the QueryManager class with additional functionality that detects automatically

if a replacement can be made. This way when our scheduler decides to ”move” an operator it has

to notify SeepMaster to stop it and then make the YarnClusterManager ask for a container from

YARN on the specified host. Once the new worker is running the QueryManager will detect the

new worker and assign to it the missing logical operator. This way the query resumes computation.

Finally we extended the possible states of SEEP workers to include a ”pause” state which can be

useful if we decide to execute queries in turns. In Figure 3.5 we illustrate the previous the previous

sequential state machine of SEEP workers along with the new ”pause” state that we introduced.

To achieve that we had to change the logic responsible for running the query which was designed

to stop the worker process and close the streaming endpoint when the computation stopped.

The integration modified to small extent the rest of the SEEP to a small extent, for example the

worker is not aware if it runs on a physical cluster or YARN cluster while the master only needs

to request containers automatically if the deployment is on a yarn cluster. In Figure 3.4 we can

observe the design of YARN layer in SEEP.

Chapter 3. System Design 46

3.4 Summary

In this chapter we have shown what missing features prevented SEEP to run multiple queries

independently on a cluster and analyzed all the different alternatives to achieve them. Next, we

explained in detail how we integrated SEEP with Kafka to obtain fault-tolerant communication

and how we integrated SEEP with YARN to make queries run under resource isolation from each

other. In the following chapters we will show how we build our scheduling system on top of that.

Chapter 4

Scheduler

4.1 Outline

In this chapter we will show why a classical scheduler cannot cope with streaming jobs by presenting

YARN fair scheduler and highlighting issues encountered while scheduling streaming operators.

Next we will shortly present how we wrote a simple resource aware placement policy for allocating

new containers based on current cluster load. Due to the limitations of a static allocation we

motivate the need for a run-time scheduler. Finally we describe how we designed our scheduler

and discuss the algorithm in detail while debating over different approaches we considered and

presenting similarities to well known algorithmic problems.

4.2 Default placement

Workflow management frameworks such as YARN [16] and Mesos [14] offer a broad set of of features

for deploying jobs by coordinating how they are packaged, submitted and scheduled, their execution

runtime and upon completion we are informed of failures. After its separation from MapReduce

YARN become even more popular and many people contributed with various schedulers for different

uses-cases. Next we will list some of the most widely spread YARN schedulers and discuss why

they are not suitable for streaming queries:

• Capacity Scheduler is designed to guarantee a minimum resource share for certain users

or groups. To achieve that it partitions the resources in the cluster such that each share

can resize elastically according to one’s computing needs. This is done by using a series of

queues so multiple users can share a queue according to their needs. The approach works

well for batch jobs but for streaming computations we cannot over-allocate and wait for jobs

completion to recover since these jobs run continuously. Instead the scheduler could kill the

jobs over-allocated but that would not be beneficial.

• Fair Scheduler works similarly by using a set of queues. When new jobs are scheduled

resources shares are computed such that each jobs gets the minimum number of shares to

47

Chapter 4. Scheduler 48

satisfy its minimum requirements. Shares that are not assigned are re-distributed among all

users. As in the situation above the scheduler would need to enforce a preemption policy to

guarantee the minimum shares.

To further highlight our assumptions we discuss the issues encountered by Samza [11], a very

popular streaming framework that runs on top of YARN. From their daily usecase at Linkedin

they discovered a consistent skew in the amount of data processed by different containers. This

implied need for different resource requirements even though workers had homogeneous workloads.

To account for that they used strict resource isolation which leads inevitably to resource wastage

in the end.

When we deploy SEEP queries on the cluster we observed a significant variance across the resources

utilized by different operators. To only way to account for that is by allowing flexible shares and

running a run-time algorithm that would migrate tasks according to their resource needs.

4.3 Analytics

A critical requirement for a scheduler to be able to make informed decisions is to be aware of the

physical resource utilization across the cluster. To achieve that we would need to monitor each

node in real time for CPU, memory, disk I/O and network I/O. All the data should be accessible

to to the scheduler so it can observe when is needed to move a task and pick the best possible

destination host. To solve this problem we created a module that runs on each machine in the

cluster and periodically gathers resource utilization statistics. Further more to be able to measure

the performance we need to constantly watch all log files created by running SEEP queries since

each SEEP worker outputs its performance metrics every 30 seconds.

4.3.1 Resource Monitoring

To standard way to find resources utilization of a machine is by using various system commands

which are not always reliable and usually platform dependent or even tied to the physical hardware.

For example to measure programmatically CPU usage we need to sample the total process time

over a time interval and then add together the user time and kernel time and divide by the sampled

time. Even worse for some metrics there isn’t a programmatic way to get the information and one

would have to invoke external tools such as top and parse its output. Luckily for us there is a

cross-platform library psutil (python system and process utilities) that extract information about

running processes and system utilization. They expose a very easy to use API that gives us all the

required information with the exception of per process network and disk usage on OsX platforms.

With psutil the task of getting system usage information becomes straightforward by directly calling

their API functions: phymem usage, disk io counters, net io counters, cpu percent and additionally

getting the difference between current measurements and previous ones to calculate disk I/O and

network I/O. For getting resource usage information per process we need a bit of extra logic

because we don’t have a way of knowing the process ids of SEEP workers. Ideally we would should

have been able to get this information from YARN after the containers is started but they don’t

Chapter 4. Scheduler 49

support that yet. To solve this we created a mapping between each SEEP’s worker data.port and

the container.id which is the name of the standard output file used by that process. Data ports

are assigned uniquely by SEEP Master to each worker since we can’t have any guarantees on how

many workers will run on the same machine. To be able to get the data.port we need to read

the command line arguments of that process. This is a bit inconvenient in Java as by default all

arguments are passed directly to the JVM (Java Virtual Machine) running the process and hence

are not visible from standard process list. To solve that we parsed the output of jvm command

which gives information for all java processes running on the machine. When we detect a java

process containing a data.port along with SEEP classes on its Java classpath we can be certain

that this is a SEEP process and use the psutil library on it get all required resources information.

When parsing SEEP queries output files we search for the data.port entry (Each SEEP worker

logs this information by default at startup) and we obtain this way the mapping to the YARN

container where the process is running. The scheduler needs all those metrics from each machine

(see Chapter 5 where we explain how the data is passed) to be able to make informed decisions.

4.3.2 Performance Metrics

SEEP uses Apache Metrics library to output periodically the following metrics measured in events

per second. The value represent the number of times the processData function (called when a new

data tuple is received from the upstream connection) is hit in each Operator:

• (1, 5, 15)-minute rate: rolling average for the last number of minutes.

• mean rate: overall average since the operator started.

• count: total count since the operator started.

To evaluate the performance of SEEP queries running on the cluster we decided to use this metrics

as our building block for all the graphs that we will describe later on. We favoured this approach

among others because it allows us to read metrics offline, for a time interval when the server was

not running, as opposed to sending the metrics to the server directly.

To gather all the information efficiently we created a file system watcher module that scans period-

ically for changes all the files under a certain path. It keeps an index for each file which represent

the number of bytes read. When more data was written to the file we read the new data, filter

it using regexes for lines that contain metrics and send it to a central server. Because the system

reads everything once and minimizes the data transfer we are able to parse and extract metrics out

of a few GB of data written across the cluster in a few seconds. Furthermore this approach scales

well as the cluster grows since the size of the output files grows at a very slow rate over time due

to the use of filtering and high logging levels.

4.4 Task placement

The first step in improving the way tasks are placed in the cluster was to override YARN default

placement policy and implement our own logic based on measuring resource utilization. Even

Chapter 4. Scheduler 50

though startup only placement would not have any information about the jobs being placed we

though a sensible resource aware estimation could produce improved results. To achieve that we

changed SEEP to query an external system when submitting container requests by adding logic

in the AppMaster class to send a HTTP query to our server asking for the best host for the next

container request while setting the YARN strict locality flag.

4.4.1 First approach

For the first implementation we focused solely on CPU placement optimization as this is the most

common resource that becomes scarce and consequently limits the performance of tasks. While

running CPU intensive benchmarks we discovered 1.1 that is common for YARN to place CPU

intensive operators (1 out of three in our query) on the same machine due to its bin packing

strategy while considering all tasks homogeneous. To improve this we considered sorting the nodes

based on their average CPU utilization in the last seconds. Therefore when a new container request

is submitted we ask YARN to allocate it on the node with the lowest CPU consumption. This

approach seems to work when multiple queries are launched sequentially however if we start queries

at the same time our policy will suffer from the herd effect by allocating all the consecutive jobs

on the same machine without being aware that the resources may be depleted quickly.

4.4.2 Second approach

To account for that we kept track of the number of allocations and sort the nodes based on CPU

utilization and allocation count. After a number of experiments we discovered that this strategy

will prefer crowded nodes running few jobs in favour of free machines running many ”light” jobs.

To solve this issue we define the term CPU levels which means dividing the 0-100% utilization

range over a few levels and sorting the jobs first by the CPU level and in case of equality by the

number of allocations. This way the allocation would follow a round-robin order over the set of

nodes with the same CPU level. The time to iterate once over the nodes on the same level will be

enough in general for the operators to start on the first node pushing it to a higher CPU level.

4.4.3 Limitations

The algorithm used for placement performed reasonably well in practice (see Chapter 6 for evalua-

tion) although it can easily fail in specially crafted scenarios. Even though the placement strategy

was better there was a need for a runtime scheduler that can migrate task while knowing the

resource needs of each job.

4.5 Runtime scheduler

To be able to cope with the dynamic nature of streaming computations and their changing workload

we needed to develop a scheduler that would periodically supervise the resource utilization of

running tasks and make adjustments when required. This is very difficult because we have to find

Chapter 4. Scheduler 51

the sweet spot among different resources and carefully consider the trade-offs associated with task

migration. One example of that is how much extra resources would be able to compensate for the

query’s lost progress during migration. Furthermore we need to estimate how much extra resources

a task requires to run optimally to prevent moving more than once. Note that the upperbound

for this value won’t exceed by far one core since the operators that we run use only one thread

for processing data. Finally we need to experiment extensively all the solutions that we pick since

most of them will be based on estimation and greedy algorithms. This is difficult since to some

extent we try to predict the future needs of our tasks. First we begin by defining Potential and

Resource Score that we use to estimate node contention and tasks potential.

4.5.1 Potential

Potential is a contention estimation used on nodes to assign a score in the range [1, 2] with the

purpose of predicting additional resources that a job will utilize if the machine is loaded less. For

example if one node’s average CPU utilization is 90% we could assign a potential of 1.5 meaning

that we would expect each job to utilize 50% more CPU in an ideal situation and similarly if the

average CPU is 70% we could assign only 1.1 since there a reasonable amount of CPU free and

not claimed by any job. More generally the potential values follows an exponential distribution

with rate potential.λ = 1.5 and maximum potential.max. We experimented varying the rate

or just using a linear distribution and the strategy with λ = 1.5 seems to work the best. Similar

estimations are performed for Disk I/O and Network I/O utilization by first converting an absolute

value (such as 20Mb per second) to an relative percentage based on a user defined maximum rate

of the machine. While the potential is just an estimation which might produce wrong results (even

if a machine is loaded, tasks might not need any more extra CPU) it seems to work reasonably

well in practice as we will analyse by running multiple benchmarks. More on that in chapter 6.

To illustrate different potential values we calculated the estimated resource use for multiple values

of λ and max as we show in table 4.1 the estimated CPU usage for a worker based on his measured

CPU usage and the host load. For simplicity we consider the host CPU usage to be equal to the

worker’s usage.

potential.lambda potential.max 50 75 90 100

1.5 1.2 52 83 104 120
1.5 1.4 55 91 118 140
1.5 1.6 57 99 132 160
1.7 1.5 55 93 123 150
1.7 1.8 58 104 144 180
1.7 2.0 60 111 157 200
2.0 2.0 57 105 153 200
3.5 2.0 50 85 130 200
5.0 2.2 50 77 114 220

Table 4.1: Potential estimations

Chapter 4. Scheduler 52

4.5.2 Scoring Algorithm

Scoring is done by computing a ”resource score” for each type of resource that measures the sum

of the workers utilization percentages plus the host’s potential. For example CpuScore is equal to

the following formula:

ResourceScoreCpu =
n∑

i=1
workeri,cpu percentage + potentialhost

To account for external processes running on the machines we measure their cpu utilization as

nonSeepCpu. From analysis we have seen that auxiliary processes with a very low resource usage

are not bottlenecked from resource contention. Because of that we multiply their usage with the

node potential only if their usage is greater than a user defined threshold. Next we illustrate the

algorithms used for CPU scoring algorithm 1 and I/O scoring algorithm 2. As the CPU scoring

and I/O scoring is very similar we are going to explain the first heuristic in detail.

1 potential ← EstimateCPUPotential(host);
2 cpuScore ← 0;
3 nonSeepCpu ← destinationHost.cpu percent;
4 foreach job : host.jobs do
5 cpuScore ← cpuScore + (job.cpu percent ∗ potential);
6 nonSeepCpu ← nonSeepCpu − job.cpu percent;

7 end
8 if nonSeepCpu ≥ config.get(”significant.cpu”) then
9 cpuScore ← cpuScore+ nonSeepCpu ∗ potential;

10 end

Algorithm 1: CPU usage scoring based on task potential estimation.

To calculate the CPU usage score we first compute the host ”potential” using the technique de-

scribed above. Next on line 5 we compute the sum of all workers CPU potential usage by multi-

plying their measured usage with the host’s potential. As the host is more loaded the potential

increases thus we assign a higher CPU score. To account for external system running on the node

we subtract the sum of all workers cpu percent from the node’s own usage. If the difference is

significant we add this value to the total score on line 9. We used this in scheduling as we explain

in subsection 4.5.3.

After we calculated resource utilization scores for all the hosts and all the tasks running in the clus-

ter we can partition hosts based on their score in the following categories, where migration.to.score

and migration.from.score are part of the scheduler configuration.

• free hosts have score less than migration.to.score and accept containers migrated from other

hosts.

• crowded have score greater than migration.to.score but less than migration.from.score, won’t

accept any new container migrations.

• very crowded have score greater than migration.from.score, we need to migrate operators

from them to other hosts subject to availability.

Chapter 4. Scheduler 53

1 potential ← EstimateIOPotential(host);
2 ioScore ← 0;
3 nonSeepIo ← host.io percent;
4 // IO percent is computed by dividing estimate max I/O of machine by actual usage;
5 // IO is measured as bytes read/sent for disk and write/received for network ;
6 foreach job : host.jobs do
7 ioScore ← ioScore + (job.io percent ∗ potential);
8 nonSeepIo ← nonSeepIo − job.io percent;

9 end
10 if nonSeepIo ≥ config.get(”significant.io”) then
11 ioScore ← ioScore+ nonSeepIo ∗ potential;
12 end

Algorithm 2: IO usage scoring based on task potential estimation.

4.5.3 Scheduling

Because the resource score is basically the sum of all tasks utilization percentages multiplied by

the potential we considered initially migration.from.score at 100 and migration.to.score at 95. For

reference a cpu score of 95 would mean an average cpu utilization of 80% if running 3 tasks or 70%

if running 5 tasks. A round of scheduling consist in migrating one operator from each of the ”very

crowded” hosts to the free hosts. To achieve that we select the most resource intensive tasks from

each of the host that we need to free. Next we only need to match tasks to free hosts accordingly.

To do that we sort based on resource usage the tasks in decreasing order and the hosts in increasing

order such that we match the tasks with the biggest score to the most free host. This way we ensure

that when we have less ”free” hosts than tasks we want to move our approach would relieve the

biggest amount of load from the crowded machines. We move only one worker from one ”crowded”

Figure 4.1: Runtime scheduling rounds

Chapter 4. Scheduler 54

machine in one round, after experimentation we observed this way our performance predictions are

more accurate. In Figure 4.1 we can observe how our algorithm manages to even the load after 2

rounds of scheduling. Even when we migrate tasks based on this algorithm there are still multiple

trade-offs that we need to consider, we will examine in detail all of them in Section 5.2.

4.5.4 Alternatives

During our implementation we considered various approaches in running scheduling rounds. One

of them was to run separate rounds of scheduling for each type of resource or run a common round

for all of them. By combining the scores for each resource we were unable to estimate if a migration

was beneficial for the resource bottleneck based on which we selected the worker. Furthermore we

couldn’t use the same greedy algorithm as above that guarantees the best-effort approach when

not enough ”free” hosts are available. For the reasons stated above we decided to run separate

rounds of scheduling for each type of resource.

Another alternative was to move one or multiple jobs from and on the same machines. If we move

more tasks from a hosts we can solve a very disproportional load distribution in few iterations but

we have to estimate the resource consumption of jobs by a greater factor or alternatively measure

allocations as we have done for the placement algorithm. If we combine our scheduler with the

a simple placement policy such as the one described in Section 4.4 we won’t get disproportional

loads and we would need in general a small number of migrations to even the load over time. To

reduce the risk of wrong estimation we decided to migrate only one job from each ”crowded” host

to each ”free” host in one round. As the scheduling rounds are quite frequent, every 5 second, we

can move multiple tasks from one host quickly enough.

4.5.5 Similar Problems

If we consider resources utilization percentages to be fixed the scheduling problem can be reduced

to the Bin Packing Problem [35] which was studied extensively in the literature. More formally

we are given a list of n items with sizes a1, a2, a3, ..., an and multiple bins B of size V , we need

to find the smallest number of bins B so there exists a B-partition S1 ∪ S2 ∪ ... ∪ SB of the set

1, 2, 3, ...n such that
∑

i∈Sk
ai ≤ V for all k = 1, ..., B. A fixed instance of scheduling with d

resources types maps directly to a d-dimensional bin packing problem where S1, S2, ...Sd is the

maximum availability from each type of resource. In complexity theory bin packing is known to

be NP -hard problem but many approximate algorithms exists and some can be applied to the

multi dimensional case as well [36]. The most straightforward approximation algorithm is called

first-fit. The algorithm processes the items in a random order and for each it tries to place it in

the first bin that accommodates the item and if none is available a new bin is formed. One of the

refinements is called best-fit-decreasing which sorts the items decreasing and places them in bins

in order. Interesting enough this algorithm is similar to our scheduling algorithm with the only

difference that we cannot create new bins/hosts and we are given always a instance, not necessary

optimal, of a partially solved bin-packing as each hosts is occupied to a certain point. The main

difference is that our ”items” change their size over-time, i.e. their resource utilization percentage.

However after a few round of scheduling when the workload is balanced those sizes remain constant

in general. Therefore our approach to sorting the workers by resource utilization while sorting the

Chapter 4. Scheduler 55

hosts in reverse order reduces to best-fit-decreasing on a less general instance of the problem thus

having near optimal solution shown to be no more than 11/9 + 1 of an optimal solution.

4.6 Summary

In this chapter we explained how YARN’s default placement works and why there was a need for

a different scheduler. To solve that we started incrementally by building a resource aware placing

policy with the help of a resource monitoring system across the cluster. After we overwritten YARN

defaults we discussed why this placement is more beneficial but still limited. Finally we presented

the solution by creating a run-time scheduler that schedules jobs continuously in an effort to even

out the workload across the cluster.

Chapter 5

Task migration

In this chapter we explain how our system monitors real-time resource utilization for each process

running in the cluster and how we choose the hotspot between fast responsiveness and reliable

measurements for scheduling. Next we will analyse the trade-offs associated with workers migration

and present the techniques used to estimate them. Following we measure the application scalability

and present what were the first bottlenecks and how we improved them. Finally, we will investigate

the fault tolerance under different failure scenarios.

5.1 Resource utilization analysis

The scheduler needs to be aware in real-time of resources utilization cluster wide to be able to

make informed decisions. This becomes very difficult when many applications run concurrently on

the cluster competing for resources to the point of starvation.

5.1.1 Overview

To solve the problem we designed a system that is very responsive and provides accurate estimations

even when actual measurements are delayed. Figure 5.1 provides an overview of each module that

forms the scheduler and the analytics framework highlighting the way they interact. Next we will

briefly describe the role for each of them:

• master.server - run the web Server responsible for serving the web UI and assigning all user

interactions to the relevant module.

• master.analytics - collects resource utilization and performance metrics from the nodes

running monitors. Computes aggregated metrics per application and for the whole cluster.

Also calculates mean throughput over time, average throughput per worker and fairness.

More on that later.

• master.admin - module responsible for running administrative commands such as deploying

new queries, stopping the existing ones or restarting different systems that run on the cluster.

56

Chapter 5. Task migration 57

Figure 5.1: System Design Overview

• monitor.server - simple server responsible for executing locally commands received from

admin module. It also delivers resource and metrics to the master each time new reports

become available.

• monitor.resources - worker thread responsible for getting resource utilization metrics for

its host as a whole and for each SEEP process running locally.

• monitor.metrics - worker thread that scans periodically YARN logs files and parses per-

formance metrics reported by SEEP queries.

• scheduler.main - module that communicates with master to periodically get resource uti-

lization reports and listens for user configuration changes.

• scheduler.requests dispatcher - module responsible for dispatching migration requests to

SEEP master and monitoring progress. While the migration is pending it gives estimations

for the resource utilization effect of the movement. After a given time if pending request are

not honored it marks them as failed.

• scheduler.scheduling worker - module responsible for doing actual scheduling. Designed

as a separate unit to enable work partitioning across multiple workers as the cluster size

grows. This approach towards scalability is know as two-state scheduling

5.1.2 Resource Reports

Our system monitors usage for 4 types of resources: CPU, Memory, Disk I/O (read and writes)

and Network I/O (sends and receives). All of this information is available for each host, for each

SEEP worker and aggregated for the whole cluster. All of the metrics above are taken as average

over a user define sliding window which defaults to 5 seconds. We didn’t pick a smaller interval to

Chapter 5. Task migration 58

Overall Host Worker

cpu.usage percentage name: host name app.master ip adress
disk.io bytes read, bytes write avg.cpu: percentage app.master port number
net.io bytes sent, bytes recv memory: total, percentage cpu.percent cpu percentage used by worker
hosts [Hosts] disk.io: bytes read, bytes write memory.percent ram percentage used by worker
apps running no of apps/queries running net.io: bytes sent, bytes recv disk.io bytes read, bytes write
workers running no of operators running cpus: [percentage per core] net.io bytes sent, bytes recv
logs size kafka logs, hadoop logs workers: [Worker] pid process id

Table 5.1: Resource Report Content

prevent noise in measurements from spike that might arise due to user interaction in the cluster

or applications initialization routines. Additional identification information is collected for each

SEEP worker such as: type of operator, name of query and master identity. The time required to

collect these metrics is generally very low, around 200ms, since all the calls are native at kernel

level by using a specialized library psutil. Even so all the logic is implemented asynchronously in

a separate thread so the monitor is always available to receive commands from the master. Under

heavy loads we observed some of the external calls made by psutil or Java Virtual Machine (JVM)

to last for a few seconds. In table 5.1 we can observe all the resource utilization information

reported by the system:

5.2 Migration trade-offs

After we integrated SEEP with an external message passing system, we have the streaming data

stored reliably on disk. As a consequence we can simply stop an operator and start a replacement

for it on a new machine without loosing any data. All the data produced by the upstream oper-

ator during the migration process will be stored in Kafka for later consumption. A migration is

coordinated by SEEP master and happens in three phases:

• The master informs the assigned operator to stop computation and the worker process exits

immediately after the current data tuple is processed.

• Master requests for a new container on the destination host assigned by the scheduler.

• After YARN allocates a new containers, the SEEP master deploys the query and our operator

resumes computation as before on a new host.

5.2.1 Measuring trade-offs

Migrating tasks from one machine to another will impact the performance of the query as the

data flow is interrupted for a short period of time. However the query should be able to regain

quickly the progress lost by running with increased throughput. In order to understand the impact

a migration has on a query we analyse the time taken from the point a worker stops computation

until another start on the new hosts and resumes the data flow. We performed the measurements

while running a big suite of benchmarks with cluster utilization ranging from 10% to close to 100%

and compiled the data from over 1,600 different migrations. As we can see in Figure 5.2 the mean

Chapter 5. Task migration 59

Figure 5.2: Operators migration latency

is at around 4 seconds and the 90th percentile at around 10 seconds. Therefore on average we

lose 4 seconds of computation time when migrating an operator and if we consider a performance

increase of 25% it means the query recovers in about 16 seconds.

We extend our evaluation to measure: performance increase, CPU increase and query recovery

time in section 6.3.1. By combining all the measurements together we observe that a query needs

on average 10 seconds to recover the progress lots during the 4 seconds pause on average due to

migration.

5.2.2 Migration Scoring

Migrations requests are formed of tuples: (worker, sourceHost, destinationHost) which are gener-

ated from the matching algorithm (see section 4.5.3) for each type of resource. When a request

is received we run a greedy algorithm based on some user defined parameters to analyse if the

worker can potentially perform better on the new host. Algorithms 3 and 4 describe the logic used

to evaluate if a candidate migration send by the scheduler is likely advantageous. The algorithms

are very similar to the algorithms used for scoring resource utilization explained in section 4.5.2.

The main difference is that now we compute the potential of the destination.host by also adding

the resources used by the operator we want to migrate. This practically estimates the ”effect” of

moving the operator to a new machines with the aim of analysing if the progress price paid for

migration would pay back in increase performance. Note that we also account for external resource

usage by computing nonSeepCpu in line 7 for the CPU algorithm.

If the algorithms return a positive result based on their estimation we send the migration request

to the dispatcher module which will provide resource utilization estimates to the scheduler for the

following iterations until the migration succeeds or fails. Not that this estimation is important to

prevent the same ”heard effect” that was affecting the first version of our placement policy.

Chapter 5. Task migration 60

input : Job candidate for migration, SourceHost, DestinationHost
output: True/False if the migration is required

1 potential ← EstimateCPUPotential(destinationHost, job);
2 jobs ← destinationHost.jobs+ job;
3 newCpuScore ← 0;
4 nonSeepCpu ← destinationHost.cpu percent;
5 foreach job : jobs do
6 newCpuScore ← newCpuScore + (job.cpu percent ∗ potential);
7 nonSeepCpu ← nonSeepCpu − job.cpu percent;

8 end
9 if nonSeepCpu ≥ config.get(”significant.cpu”) then

10 newCpuScore ← newCpuScore+ nonSeepCpu ∗ potential;
11 end
12 if newCpuScore - sourceHost.cpu score ≥ config.get(”min.movement.score.difference”)

then return True ;
13 else return False ;

Algorithm 3: Decides if CPU migration is appropriate

input : Candidate job for migration, SourceHost, DestinationHost
output: True/False if the migration is required

1 potential ← EstimateIOPotential(destinationHost, job);
2 jobs ← destinationHost.job+ job;
3 newIoScore ← 0;
4 nonSeepIo ← destinationHost.io percent;
5 foreach job : jobs do
6 newIoScore ← newIoScore + (job.io percent ∗ potential);
7 nonSeepIo ← nonSeepIo − job.io percent;

8 end
9 if nonSeepIo ≥ config.get(”significant.io”) then

10 newCpuScore ← newIoScore+ nonSeepIo ∗ potential;
11 end
12 if newIoScore - sourceHost.io score ≥ config.get(”min.movement.score.difference”) then

return True ;
13 else return False ;

Algorithm 4: Decides if I/O migration is appropriate

5.3 Fault tolerance

One of our main goals was to build a fault-tolerant system that would be able to cope with failures

of worker nodes as well as the master node. To achieve that we designed the system without any

single point of failure. We considered two different designs for achieving fault tolerance:

• multiple master and scheduler workers that reach consensus for running the master logic

using a leader election algorithm

• separate service distributed on multiple machines that supervises the analytics-master and

scheduler and restarts them in case of failure.

Chapter 5. Task migration 61

1 timeout ← 0;
2 while timeout < maxTimeout do
3 sendRequest(ping, service, timeout);
4 if request.connectionError then
5 // Service certainly down.;
6 else if request.readTimeout or request.connectionTimeout then
7 timeout ← timeout ∗ 2;
8 else
9 // Service is working ;

10 end

11 end
12 // Restart the service.;

Algorithm 5: Increase the timeout exponentially while pinging a service.

The first approach would have the overhead of running multiple instances for both analytics-master

and scheduler and also would duplicate the fault tolerance logic in two modules along with any

external dependencies. The second approach creates less coupling by separating the fault tolerant

logic is in a separate module that can be simply plugged in the system. For the reasons above

be favoured the second approach and created an external fault-tolerant service that supervises the

critical components of the system.

5.3.1 Supervisor

We created a standalone module that runs in a distributed fashions in a single master multiple

slaves paradigm. The master is responsible with pinging periodically the analytics server and the

scheduler to check if they are live. While running intensive I/O benchmarks we discovered some

server requests failed even if the server was running. This is because The TCP/IP layer can timeout

requests if the network is very crowded. The best strategy in this case is to run a retry policy

since if the server is just slow timeouts are intermittent. We implemented that using an approach

inspired from TCP exponential backoff strategy, which we present in Algorithm 5. In line 2 we try

to ping the server until a maximum timeout is reached. Line 4 is hit is the DNS mapping failed

which means the server is down certainly and line 6 is typically triggered by connection errors so

we increase the timeout exponentially. This way we ensure the system is always up if at least one

out of all supervisors are still alive.

5.3.2 Leader Election

When the current supervisor leader dies the remaining standby supervisors compete to replace him

by running an election algorithm. This problem has been extensively studied in the literature as

the leader election problem. Many solutions exists for particular topologies such as rings, mesh or

hypercubes. Since our system is designed to coordinate a fully connected network we need to apply

a more general algorithm. One example is the Mega-Merger algorithm which is inspired from the

Minimum Spanning Tree problem or the YOYO algorithm which eliminates candidate in multiple

iterations and surprisingly its complexity is still an open research problem. While the idea to

Chapter 5. Task migration 62

Figure 5.3: Leader election among supervisors in different failure scenarios

implement an interesting algorithm was very appealing we decided to keep our system as simple as

possible and opted instead to use an external support system to solve our problem. Because Kafka

was already using the Zookeeper [29] synchronization service this was the obvious choice. Next we

will describe how we elect the leader by making use of Zookeeper synchronization mechanism.

Zookeeper runs as a quorum of process distributed across multiple machines that can easily cope

with node failures, network unresponsiveness and other related events. Each supervisor can create

an ephemeral node under a common path that will be deleted by Zookeeper when the service dies.

If we register watchers for a node we can be notified when the node is deleted thus allowing us

to discover failed nodes in the system. Furthermore the sequential option makes Zookeeper assign

a increasing unique sequence number to each node in the order they are formed. Therefore when

all supervisors start, each of them creates a sequential and ephemeral node and the one with the

lowest sequence number is the leader. However we still need to watch for failures of the leader so

a new candidate can replace it immediately.

A trivial solution to achieve that would be to make all supervisors watch for the node with the

lowest sequence number, the one serving as leader, and in case of failure check if their node is

the next one in line. This approach works but it suffers from the heard effect : many services are

watching the same node and Zookeeper could incur unnecessary latency to inform all. To prevent

that we can make our waiting supervisors watch for the next smaller node after theirs, while this is

not necessary the leader but still has higher priority so it will become leader before the node who

watches it. If a supervisor discovers that the node it watches fails it will needs to keep looking for

smaller nodes and become leader if none are found. In Figure 5.3 we can see how the state stored

in Zookeeper alters after a node crashes. This approach allowed us to have always a leader and

ensures the scheduler is running in an efficient and simple manner. Furthermore we can also run

the scheduler as before without any external dependencies.

5.3.3 Scheduling Failures

We designed our scheduler to be able to cope with failure of any number of the slave nodes by using

a separate module that handles migration requests: RequestDispacther. After a migration request

was sent the dispatcher will report back an estimative resource utilization change that would be

triggered when the operator is moved. This way the scheduler is aware that a migration is pending

and doesn’t consider that a host where operators are about to start is ”free”. These estimation

are import to prevent the scheduler to ”flood” a free host with more operators than it can handle.

Following is a summary of the main functions part of the dispatcher module:

Chapter 5. Task migration 63

• addRequest: the scheduling module calls this functions to add a migration request to the

main requests queue.

• checkPending: the main module calls this functions each time a new resource report was

received from the master server. Each resource report contains a list of operators running on

each host so when the Dispatcher sees that an operator is running on its destination host it

can mark the migration request as succeeded and reset the resource utilization estimation.

If there are pending requests that haven’t completed after 30 seconds we consider them as

failed and add them back to the main queue for one more attempt.

• sendRequest: this function simply sends the request to migrate an operator from the top

of the request queue. However if the corresponding SEEP Master has received a request for

less than 5 seconds we will postpone for a while the actual send. If SEEP Master fails to

accept the request we mark the migration request failed.

• getEstimation: return the estimated resource utilization of a host which comes from oper-

ators pending to start on that node.

• setEstimation: adds a given value to the estimation for a type of resource. This functions

is used when request are received or finished.

The scheduler, master server and Zookeper run on separate machines than the rest of the cluster

running scheduled jobs to prevent from resource starvation that would impact their latency. If

one of the machines running the scheduler or master server crashes the supervisor will be unable

to ping the service so it will pick an available machine and restart it by sending a command to

the monitor running there. Note that ideally we will have a few spare machines that don’t run

scheduled jobs to act as schedule only machines.

5.4 Scalability

As the size of the cluster increases it would be ideal for our scheduler to handle the load with-

out accumulating overhead or changing the implementation. To achieve this we minimized the

centralized computation and divided the heavy lifting to worker slaves.

5.4.1 Resource Monitoring Scalability

The master.analytics module is responsible for receiving all the metrics measured every ten

seconds from each worker and compute aggregate statistics every time. To analyse when this

approach would become a bottleneck we profiled the code for performance while running on a

cluster of 6 nodes over a period of intense load and measured all execution times, number of hits

for each line as well as each function of the module. The main functions responsible for 99% of the

execution times are the following:

• updateClusterData: Compute aggregated metrics for the cluster as a whole by summing

all datapoints in a common time bucket.

Chapter 5. Task migration 64

• updateStatistics: Computes additional metrics such as cluster fairness and average per

container.

• updateAppData: Computes aggregated metrics for every application (Sepp Query) by

summing all the datapoints produced by app’s operators.

• updateMetrics: Processes raw data send by the monitor.metrics module and calls for

each performance metric the functions above accordingly.

• updateResourceReport: Updates resource report per host and computes aggregated re-

source utilization per cluster.

In Table 5.2 the first column represent the function from the analytics module that we measured

and recorded the total time taken by a number of executions. The fourth column represent the

maximum times each function could run in one minute if we would run in an infinite loop. The

values are obtained by dividing 60,000 milliseconds by the average time per hit in column 3.

Finally the last column shows the maximum limit the server would support concurrently measured

as operators or nodes. This values are calculated based on the user defined update frequency

that each SEEP operator and monitor module have. Every operator outputs performance metrics

every 30 seconds and every monitor sends aggregated data every 30 seconds (where data represents

metrics gathered for the operators running on that host) and it sends a resource report every 5

seconds.

5.4.2 First iteration

After the first analysis we can observe that the first three update functions are very fast and scale

quite well, this is due to using fast lookup operations and keeping only a recent subset of data

such that everything runs in constant time. However we notice that the server cannot scale to

more than 60 nodes which in practice is less in we take into account additional delays that could

occur on the machine running the server such as I/O operations or slow network. From the table

we can see that the updateResourceReport function represent the bottleneck with an average of 78

milliseconds per hit. This was due to the function sending a updated report via HTTP request

to the scheduler for each resource report received from a monitor. The approach is not efficient

since when the number of nodes increases the scheduler will receive far more updates then it needs

leading to unnecessary latency.

Function Hits Total time (ms) Time per hit (ms) Max times / min Upper bound
updateClusterData 2,029 606 0.33 90K 45K operators
updateStatistics 2,029 86 0.04 750K 365K operators
updateAppData 2,029 353 0.17 176K 88K operators
updateContainerData 2,029 395 0.16 187K 93K operators
updateMetrics 86 4644 54 1100 550 nodes
updateResourceReport 2977 232593 78.13 767 63 nodes

Table 5.2: Analytics module performance profiling baseline

Chapter 5. Task migration 65

Function Hits Total time (ms) Time per hit (ms) Max times / min Upper bound
updateClusterData 3,190 1077 0.33 90K 45K operators
updateStatistics 3,190 68 0.02 1,500K 750K operators
updateAppData 3,190 432 0.13 230K 115K operators
updateContainerData 3,190 528 0.16 187K 93K operators
updateMetrics 970 2567 2.64 11K 5,500 nodes
updateResourceReport 24,740 4195 0.16 187K 15K nodes

Table 5.3: Analytics module performance profiling after second iteration

5.4.3 Second iteration

To eliminate the bottleneck we changed the logic and made the server request updates every

5 seconds (this value can be changed from the configuration). This way the number of nodes

won’t have any more a significant impact on the performance. The next bottleneck became the

updateMetrics function which was using some regexes to extract performance measurements from

strings received from monitors and additionally it was performing a slow list lookup to get the

operator.id associated with each container.id. The letter is defined by YARN as the name of the

corresponding operator’s stdout file. We managed to improve the performance by analysing how

regex run and modifying as well as compiling the pattern used for performance. Also we eliminated

the slow list lookup by using two dictionaries to map the attributes both ways. After this changes

we can observe how the slow functions improved substantially and we increased the upperbound

to 5,500 nodes which is good limit for our system.

5.4.4 Scheduler Scalability

The scheduler is formed of three modules: scheduler.main, scheduler.requests dispatcher, sched-

uler.scheduling worker. The main computation is performed in the scheduling module which is

responsible for calculating resource scores, deciding where is best to move a operator that runs

sub-optimally and also validating if the migration would be appropriate. To examine the perfor-

mance of the scheduler and what are its limitations we made an analysis by profiling the code

and you can see the results in Table 5.4. Notice that some functions are bounded by the product

between the number of workers and hosts while others just by the number of workers on each host.

The values in the table were measured while running 18 workers on 6 machines. To measure the

upperbound we considered how many workers times operators/just operators would be needed to

make on iteration of the function last 5 seconds, the standard frequency of the scheduling rounds.

Even though the scheduler scales quite well we made the design modular such that is easy to

partition the set of nodes and run multiple scheduling workers in parallel to be able to scale

elastically on a large cluster. The only limitation would be if the number of operators running

Function Hits Total time (ms) Time per hit (ms) Max times / 5sec Upper bound
schedule 850 8500 10 500 7,500 workers x nodes
selectIoIntensiveWorkers 850 942 1.1 4554 68K workers x nodes
selectCpuIntensiveWorkers 850 881 1.03 4854 70K workers x nodes
computeIoScore 5,100 3032 0.59 8474 10K workers
computeCpuScore 5,100 3043 0.59 8474 10K workers

Table 5.4: Scheduling performance profiling

Chapter 5. Task migration 66

on a single node increases substantially. In that case we will observe a visible latency until all

the workload is distributed evenly as the scheduler is limited to one migration per node on a

single iterations. Taking into account an approximate iteration frequency of every 5 seconds we

would need 1 minute to move 12 operators from one node. However this scenario is not feasible

since in practice we will exhaust the physical resources of a machine by placing less than 10

operators. Additionally if we consider using the default placement strategy then the workload will

be distributed more evenly and only require moving just a few operators to make it perfectly even.

5.5 Summary

In this chapter we explained how resource utilization is monitored in real-time and how we make

the information available for the scheduler with minimal latency as the cluster size grows. We

analysed carefully all the trade-offs associated with task migration and explained the algorithms

we used to evaluate if candidate migrations would beneficial. Then we presented how we made

our system fault-tolerant and analysed its behaviour under different failure scenarios. Finally we

discussed the bottlenecks present in the first iteration of the system and showed the improvements

made to scale from 50 nodes to more than 500 nodes.

Chapter 6

Evaluation

In this chapter, we will evaluate our system through a series of experiments that we run both in the

Imperial LSDS cluster and Amazon Elastic Compute Cloud (EC2). We will start by individually

evaluating each scheduling strategy under standard workloads and comparing all three in several

experiments. Following this we will compare our framework with other similar commercially avail-

able frameworks and illustrate the results based on real world benchmarks. Lastly we discuss the

overhead of the scheduler and we study how the utilization of the cluster changes under slight

variations in scheduling strategy.

6.1 Scheduling Efficiency

The main goal of our project was to create a system capable of distributing computation evenly

across a cluster. More importantly our system needs to be able to cope easily with long running

streaming jobs that exhibit dynamic workloads. To evaluate the performance we created a few

simple benchmarks that are meant to be very resource demanding and as a consequence their

performance is directly correlated to resource availability. Next we will describe two of the queries

that we used in experiments:

RSA Factorization This query is based on the RSA public-key cryptographic algorithm. The

Source continuously generates two random primes p and q of 23 binary digits and computes N =

p ∗ q. For each it calculates (n) = (p)(q) = (p1) ∗ (q1), where is Euler’s totient function, and the

public,private key pair d and e. After that it is sends an encrypted message of up to 46 binary digits

along with the public modulus N to the Processor. The Processor factorizes N to obtain back p and

q and applies Euclid Extended Algorithm to obtain e and d. Finally it sends the decrypted message

to the Sink. Notice that this query is formed of three operators where two are CPU intensive.

Virus Search This query is inspired by common anti-virus applications and it is formed of two

operators. The Source reads 512KB chunks of data from a local file, which represent suspicious

executable hashes. Each hash is sent towards the Sink which simply checks if it is equal to a known

malicious pattern. Therefore the Source is both disk I/O and network I/O intensive while the Sink

67

Chapter 6. Evaluation 68

Concurrent seep queries

CP
U

ut
iliz

ati
on

Cluster CPU Utilization

5 10 15 20 25 30
60

70

80

90

100

Figure 6.1: Cluster CPU utilization while
running CPU Heavy workloads with resource

YARN scheduling

Concurrent seep queries

CP
U

ut
iliz

ati
on

Cluster Throughput

5 10 15 20 25 30
300

325

350

375

400

425

450

Figure 6.2: Cluster throughput while run-
ning CPU Heavy workloads with resource

YARN scheduling

is only network I/O intensive. Note that both the hashes and the pattern have the same length so

only string equality is performed, otherwise this query would be CPU bound.

6.1.1 YARN

YARN’s most popular scheduler, the Fair Scheduler, allocates jobs with the aim of providing an

equal share of resources to each job over time. Its approach fits perfectly standard MapReduce

jobs for which it was designed. However for streaming computation this is not always optimal.

Some operators need far more resources than other and if the scheduler gives a proportional share,

correlated with their needs, the query performance increases. We analysed how YARN allocates

resources by running up to 30 RSA Factorization queries concurrently on a cluster of 6 machines.

In Figure 6.3 we illustrate the average cluster cpu utilization and in Figure 6.4 we show cluster

throughput measured as events per second summed from all queries. To get this data we ran

benchmarks 5 times and plotted the average. From the Figures we can observe how the cpu

utilization peaks at 90 percent although the load increases far beyond the capabilities of the

cluster. As consequence the throughput peaks at only 425 events per second and the

performance starts to downgrade soon after.

6.1.2 Resource aware placement

In this paragraph we evaluate the placement algorithm described in Section 4.4. The main difference

this approach has from YARN’s Fair Scheduler is that we try to allocate the best fair of resources

for each subsequent job by picking the most ”free” host. This allocation is static and treats all

the workers homogeneously similar in this respect to YARN. For evaluation we used the same

benchmark as above -workload composed of RSA Factorization queries.

Figure 6.3 illustrates the average cluster CPU utilization and Figure 6.4 show the overall through-

put. The data is compiled from a series of 5 runs on a cluster of 6 machines. We can observe

how the CPU utilization reaches 100% before 20 queries while the throughput peaks at

600 events per second which already represent a significant improvement when compared to

Chapter 6. Evaluation 69

Concurrent seep queries

CP
U

ut
iliz

ati
on

Cluster CPU Utilization

5 10 15 20 25 30
60

70

80

90

100

Figure 6.3: Cluster CPU utilization while
running CPU intensive workloads with re-

source aware scheduling

Concurrent seep queries

CP
U

ut
iliz

ati
on

Cluster Throughput

5 10 15 20 25 30
300

400

500

600

700

Figure 6.4: Cluster throughput while run-
ning CPU intensive workloads with resource

aware scheduling

YARN placement. However we can achieve better if we migrate jobs at runtime based on observed

resource utilization patterns.

6.1.3 Runtime scheduling

In this paragraph we evaluate the performance of our scheduler while using as a baseline the results

observed in the two previous benchmarks. To illustrate a more detailed comparison we increase the

number of queries by one for each datapoint. It is commonly known that workflow scheduling is

not deterministic, and many factors apart from the allocation itself can influence the performance

of jobs while running on a cluster. To account for that we ran the same same benchmark 15 times

and plotted the mean and standard deviation. Next we will evaluate the performance of the three

scheduling strategies under different workloads.

CPU workload In Figure 6.5 we illustrate the cluster throughput with three different scheduling

strategies while concurrently running from 1 to 12 RSA factorization queries. For these experiments

we used a cluster of 6 machines were each is equipped with 4 CPU cores and 4 GB of RAM.

We can observe how all the strategies have similar throughput up to the point of 4 queries. This

is due to the fact that each query has only one CPU intensive operator out of three. Consequently

the probability of placing 2 out of 4 operators together in 6 containers is pretty low. Starting from

5 queries we can see how the dynamic strategy begins to gain advantage. When running 8 queries

we obtain a mean throughput of 547 events/second with runtime scheduling compared

to 489 events/second with startup placement and 413 events/second with YARN. This

represent an improvement of 32% percent from YARN’s baseline and 12% percent from our

placement policy. After more than 10 queries running concurrently the startup placement seems

to achieve similar performance with runtime scheduling but the standard deviation is higher. This is

due to the worker allocation based on ”guesses” of expected resource consumption instead of making

informed decisions at runtime. Consequently YARN’s allocation strategy has a significantly larger

variance because it simply tries to allocate workers in the assumption that previous allocations are

homogeneous, i.e. consume equal shares of resources. Note that YARN could make a lucky guess

and allocate all workers optimally but this has a very small probability as the number of queries

Chapter 6. Evaluation 70

Number of SEEP queries running concurrently

ev
en

ts
pe

r s
ec

on
d

Cluster Throughput
Source: data compiled from 15 rounds

YARN placement Scheduler placement Runtime scheduling

1 2 3 4 5 6 7 8 9 10 11 12
0

200

400

600

Figure 6.5: Cluster throughput

or cluster size increases. Furthermore if the query exhibits a dynamic resource consumption then

we can adapt only by migrating operators at runtime.

For the same benchmark we measured the overall cpu utilization for the cluster in Figure 6.6. The

CPU utilization is measured on the machines running SEEP queries only and no other services

were running during the benchmarks. We can observe that when running 8 concurrent queries

we utilize 92% CPU with runtime scheduling, 82% CPU with placement scheduling

and only 67% CPU with YARN placement. This is directly correlated with the overall

throughput. To demonstrate the correlation we can measure the CPU utilization difference between

the three strategies. Runtime scheduling uses 13% more CPU than startup placement and 32%

more than YARN’s policy hence both numbers exactly match the difference in throughput we

observed earlier. Once again we can notice how the second strategy gains advantage as the number

of queries increase since it will place new operators on the most ”free” machines, thus optimizing

the allocation. However, we can notice how YARN’s scheduler and the startup placement have

quite a large variance while the runtime scheduling has a very small variance. This demonstrates

that this strategy is more reliable and deterministic than the other two.

Chapter 6. Evaluation 71

Number of SEEP queries running concurrently

cp
u

ut
iliz

ati
on

 p
er

ce
nt

Cluster cpu utilization
Source: data compiled from 15 rounds

YARN placement Scheduler placement Runtime scheduling

1 2 3 4 5 6 7 8 9 10 11 12
0

100

25

50

75

Figure 6.6: Cluster CPU Utilization while running CPU intensive workload

I/O workload To measure the scheduling performance under intensive I/O we ran the Virus

Search benchmark and measured cluster throughput and all I/O metrics. To account for non-

determinism we ran the same benchmarks 9 times and plotted the mean and standard deviation

for each metric. In Figure 6.7 we illustrate the cluster throughput with YARN, startup placement

and runtime scheduling. First we can notice how the variance is higher than in the previous

experiment and is similar in magnitude across all three scheduling strategies. This is due to the

high grade of non-determinism emerging from I/O usage pattern across the cluster.

ev
en

ts
pe

r s
ec

on
d

Cluster Throughput
Source: data compiled from 9 rounds

YARN placement Scheduler placement Runtime scheduling

1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

Figure 6.7: Cluster throughput while running I/O intensive workload

Chapter 6. Evaluation 72

MB
s p

er
se

co
nd

Cluster Disk I/O Read
Source: data compiled from 9 rounds

YARN placement Scheduler placement
Runtime scheduling

1 2 3 4 5 6 7 8 9 10
20

40

60

80

100

120

140

Figure 6.8: Disk I/O read with three dif-
ferent scheduling strategies

MB
s p

er
se

co
nd

Cluster Disk I/O Write
Source: data compiled from 9 rounds

YARN placement Scheduler placement
Runtime scheduling

1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

150

175

200

225

Figure 6.9: Disk I/O write with three dif-
ferent scheduling strategies

Secondly we observe a smaller improvement for runtime scheduling in contrast to our CPU bench-

mark resulting in a 10% increase in performance compared to YARN’s baseline. This query

has two operators and both are I/O intensive whereas the RSA Factorization benchmark has three

operators and only one is CPU intensive. Therefore a fair static allocation has a smaller chances

of distributing the I/O load unevenly. However the Virus Search query has different I/O usage

on its two operators: the first is bottlenecked on disk I/O read and network I/O send while the

second is bottlenecked on network I/O receive. Because of this runtime scheduling can still increase

performance. Finally we describe the correlation between events per second and I/O throughput.

Each event in the metrics represents a 1MB record received in the Sink and for each the query

pipeline produces 3x more I/O data: The Source reads the record and sends it on the network and

the Sink receives it from the network. Therefore we have a total throughput of 300Mb per second

while running on 6 machines.

In Figure 6.8 and Figure 6.9 we illustrate disk reads and disk writes measured as MBs per second

for the cluster overall. The first thing we can observe is how disk read peaks at 120 Mbs / second

while disk write peaks at almost 190 Mbs / second. This is surprising because both Source and

Sink operators read from disk, the later indirectly by consuming data from Kafka and only the

Source operator writes data to disk. However Kafka is configured with a replications factor of

three which means that every record written to Kafka from the Source will be replicated three

times on different machines. Because of the higher grade of non-determinism introduced by Kafka

replication we observe how the variance for I/O write is significantly higher than I/O read. Finally

in both graphs we can see the improvement runtime scheduling brings to I/O throughput: a 22%

increase in disk writes and a 11% increase in disk reads.

We conclude our experiment with the graphs that plot network I/O for the three scheduling strate-

gies. In Figure 6.10 we illustrate network sends and in Figure 6.11 network receives. Every byte

that is sent by the actual query through the network is also received so the small difference between

sends and receives comes from the metrics reports and perhaps bookkeeping information exchanged

by Kafka. The network I/O improvement peaks at 19% for receives and 8% for sends. Overall

we achieve a throughput of 400MBs exchanged every second between 6 machines. Note that heavy

Chapter 6. Evaluation 73

MB
s p

er
se

co
nd

Cluster Network I/O Sent
Source: data compiled from 9 rounds

YARN placement Scheduler placement
Runtime scheduling

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Figure 6.10: Network I/O sent with three
different scheduling strategies

MB
s p

er
se

co
nd

Cluster Network I/O Receive
Source: data compiled from 9 rounds

YARN placement Scheduler placement
Runtime scheduling

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

Figure 6.11: Network I/O receive with
three different scheduling strategies

Tw
ee

ts
pe

r s
ec

on
d

Twitter Streaming Throughput
Source: data compiled from 8 rounds

YARN placement Scheduler placement
Runtime scheduling

1 2 3 4 5 6 7 8 9 10
50k

75k

100k

125k

150k

175k

Figure 6.12: Cluster throughput on live tweets word count

I/O workloads are very common in large clusters and arise from any kind of data analysis of big

data.

Real applications Streaming workloads that people run on clusters are more complex and

can commonly become bottlenecked from both CPU or I/O. To test how our scheduler handles

mixed workloads we created a query that ingests live data from Twitter by connecting to its API

streaming endpoints. For each tweet it splits the message into words and keeps track of the number

of occurrences over a window of time. Every 10 seconds it outputs the most frequent word. This

query is I/O intensive since a huge volume of tweets are transferred every second and CPU heavy

as each tweet is split into words and each word is hashed and inserted into a data structure.

Chapter 6. Evaluation 74

Twitter limits their public API rate to only 50 tweets per second. To account for this we downloaded

2 million tweets and built our own streaming server that sends batches of 1,000 tweets over socket

channels to queries for processing from a previously downloaded database of 2,000,000 tweets. This

method increased the upperbound for the ingest rate from 50 tweets per second to 600,000 tweets

per second. In Figure 6.12 we illustrate the number of tweets per second processed in the cluster

as the number of queries increases. We can observe how the throughput peaks at 160,000 tweets

per second which is a 10% increase compared to YARN’s results. More interesting is that our

placement strategy doesn’t manage to increase the throughput as before in this benchmark. We

believe this is a consequence of the mixed CPU and I/O workload that this query exhibits.

6.2 Fairness

Now that we have seen that our scheduling strategy can maximize throughput in different scenarios

we can ask ourselves how fair the resource allocations are in general. On a multi-tenant cluster is

very important to divide the resources evenly among different tenants which may be different users

that share the cluster. YARN’s Fair Scheduler developed by Facebook is specialized in allocating

fair resource shares among multiple batch jobs over time. To evaluate fairness we used Jain’s

fairness index [42] which has the following equation:

τ(x1, x2, ..., xn) =
(
∑n

i=1 xi)
2

n×
∑n

i=1 x
2
i

where xi is the share of resources of the ith process. The results ranges from 1
n(worst case) to 1

(best case) - when users receive the same allocation)

We measured fairness for the shares of operators and for the shares of ”free” resources of machines.

Note that for the first metric we considered only CPU intensive operators which fully utilize a core

if it is available. All the measurements were taken when running from 5 to 30 RSA Factorization

queries concurrently. From our previous experiments we observed that an optimal allocation fully

Concurrent SEEP queries

Fa
irn

es
s

YARN scheduling fairness

Resource allocation fairness
Operator resource shares fairness

5 10 15 20 25 30
0.6

0.7

0.8

0.9

1

Figure 6.13: Resources and operators allocations fairness with YARN scheduling

Chapter 6. Evaluation 75

Concurrent SEEP queries

Fa
irn

es
s

Startup placement fairness

Resource allocation fairness
Operator resource shares fairness

5 10 15 20 25 30
0.6

0.7

0.8

0.9

1

Figure 6.14: Resources and operators allocations fairness with YARN scheduling

Concurrent SEEP queries

Fa
irn

es
s

Runtime scheduling fairness

Resource allocation fairness
Operator resource shares fairness

5 10 15 20 25 30 6
0.6

0.7

0.8

0.9

1

Figure 6.15: Resources and operators allocations fairness with runtime scheduling

utilizes the CPU with only 8 queries. In Figure 6.13 we illustrate the fairness under YARN’s

scheduling. We can notice how the resource shares are distributed badly initially but YARN Fair

Scheduler manages to even the shares as the number of queries increases but downgrades again

after the load exceeds 25 queries. We can also observe how the load per machine fairness grow

slowly and is distributed evenly hardly at 30 queries when there are enough operators to compete

for CPU to starvation.

Next in Figure 6.14 we illustrate allocation fairness when using the greedy startup placement.

First, we notice that the queries used are CPU intensive. This strategy tries places new workers on

the most ”free” machines so it not surprising that on a idle cluster all operators have equal share

of resources. As the load increases this strategy doesn’t manage to keep its fair allocation among

containers but manages to distribute the load evenly among the machines quite well.

Finally in Figure 6.15 we measure the same fairness metrics when our schedulers migrate operators

with the aim of distributing the load evenly. We can observe a visible improvement from the

previous strategies as the load is distributed evenly from 10 queries and manages to maintain

Chapter 6. Evaluation 76

Concurrent SEEP queries and time

CP
U

Us
ag

e (
%)

Scheduler CPU usage over time

0 10 20 30 40 50
0

100

25

50

75

Figure 6.16: CPU usage on the machine
running the Scheduler, Supervisor and Ana-
lytics Master during high load benchmark

Time (Seconds)

Me
mo

ry
Us

ag
e (

%)

Scheduler memory usage over time

0 500 1000 1500 2000
0

100

25

50

75

Figure 6.17: Memory usage on the machine
running the Scheduler, Supervisor and Ana-
lytics Master during high load benchmark

the fairness as the load increases. Furthermore the most visible difference is the fairness among

operators which downgrades very slowly as the load increases. At the highest 30 queries it still

maintains a fairness of 0.9 while YARN has 0.75 and startup placement 0.8. Note that 30 queries

formed of 90 operators is the upperbound of queries that can run concurrently on YARN, which

is higher than 48, the number of cores shares, because YARN uses statistically multiplexing when

allocating resources. This technique allows more containers to run than resource available by

betting that not all of them will utilize their share completely.

6.3 Scheduling Overhead

One important question we have to answer to evaluate our system is how large the overhead of

runtime-scheduling is and what the resource needs are as the scheduling workloads grows.

6.3.1 Resource usage

To evaluate this we deployed up to 50 queries on a cluster of 6 machines running concurrently

and measured the resource usage on the machine running the scheduler, supervisor and analytics

master. In Figure 6.16 we illustrate the CPU usage as the number of queries increases and in

Figure 6.17 we show the ram memory usage over time when running 50 queries. We can observe

how the CPU usage grows linearly with the number of queries running concurrently which matches

our scalability estimations discussed in table 5.2 and table 5.3. The memory also grows slowly

over-time due to the analytics module keeping track of cluster throughput measurements every 30

seconds. This is not desired but not a concern at the moment.

6.3.2 Migration Overhead

One key measurement that would reflect the performance of our system is the efficiency of operators

migration. The main questions we set ourselves when evaluating the algorithm were:

Chapter 6. Evaluation 77

Figure 6.18: Operators migration cpu delta percentage

• What is the performance gain a tasks get after migration?

• How is this reflected on resource utilization?

• What is the progress lost for the query from migration and how long

it takes to recover it?

To evaluate the performance gain we measured the throughput of each operator just before migra-

tion and after the migration. The second measurement was taken a few minutes after the operators

starts so it has time for initialization. To simulate a realistic workload we ran a diverse set of queries

and measured more than 1,000 operators before and after migration. In figure 6.18 we illustrate

CPU measurements normalized as a Gaussian distribution over a set of 400 datapoints.

We can observe than the mean is around 20% increase in CPU post-migration and more than 80% of

the migrations have an expected outcome of 10%-30% increase which is quite good considering the

non-determinism associated to scheduling and the mixed workloads used for the benchmarks. We

can also observe that in some cases operators end up using less CPU which means the migrations

have a regression effect. This is not desired but to some extent impossible to anticipate if at

the time of the migration the destination host is ”free” and soon after it becomes heavy loaded.

Because of the dynamic utilization it is inevitable that some decisions will be detrimental but as

long as those are rare the scheduler can move the operator again so the query throughput will

eventually increase.

The most important question that we have set ourselves to evaluate our system is the actual

performance gain measured after an operator is moved. To evaluate this we first modified our

scheduler in order to wait a few minutes before before migrating any operators so the operators

can achieve their peak performance. Secondly we ”normalized” the queries used for this benchmark

so that all achieve around 70 events per second under optimal conditions. After these we ran the

same benchmarks as before and measured the performance gain as a percentage of the before-

migration throughput. In figure 6.19 we illustrate the throughput delta measured from more than

1,000 migrations normalized as a Gaussian distribution over 480 datapoints. We can observe a

distribution correlated to the one measured for CPU with 80% of the values ranging between

Chapter 6. Evaluation 78

a 10% and 50% increase. As before we can see that some migrations are detrimental but the

percentage is too low to be a concern. Lastly we can observe three ”peaks” in the distribution at

9% 30% and 48% which is probably correlated to a small particularity in the resource utilization

patterns from our benchmark.

During a migration the query throughput is inevitability affected since streaming data cannot pass

through the affected operator for the movement duration. We observed from the previous graph

that most a significant percent of the queries improve their performance after the ”straggling”

operator was moved and we also measured how long it takes for an operator to ”recover” in

section 5.2. To measure the migration impact on the query we want to evaluate how long it

takes to recover the lost progress arising from migration. To evaluate that we combined the two

measurements considering only the successful migration that will recover eventually. We illustrate

the results in Figure 6.20 normalised as a Gaussian distribution as above. First we can notice that

on average a query needs around 10 seconds from the start of the migration to recover the lost

progress. Taking into account that an operator needs 4 seconds on average to start again on a new

host it means that in only 6 seconds the query manages to recover the short pause. Next we can

observe that 90% of the queries recover within 30 seconds. Finally we note that in some cases we

need more than one minute to recover but this is very rare.

Figure 6.19: Operators migration delta performance percentage

Figure 6.20: Query recovery time after migration

Chapter 6. Evaluation 79

Th
ro

ug
hp

ut
 (M

B/
s/

no
de

)
Grep

SEEP Spark Streaming Storm

100 1000
0
5
10
15
20
25
30

Th
ro

ug
hp

ut
 (M

B/
s/

no
de

)

Word Count

SEEP Spark Streaming Storm

100 1000
0
5

10
15
20
25
30

Th
ro

ug
hp

ut
 (M

B/
s/

no
de

)

TopK Count

SEEP Spark Streaming Storm

100 1000
0
5

10
15
20
25
30

Figure 6.21: Node I/O Throughput with SEEP, Storm and Spark Streaming

6.4 Comparison with other systems

6.4.1 Spark Streaming and Storm

We also tested the performance of our system in comparison with two other widely used, open

source distributed streaming systems. Both frameworks are continuous operators-based systems,

similar to SEEP. Spark Streaming was developed at the University of California Berkeley and while

Storm was developed at Twitter and later on open-source as an Apache project. To evaluate our

system we implemented the same benchmarks used to evaluate Spark Streaming [43]: Grep, which

finds the number of strings matching a pattern, WordCount, which counts the number of words

over a sliding time window and TopK, which find the most frequent K words over the past 30

seconds. To evaluate our system we ran SEEP on 2 ”xlarge” nodes in Amazon EC2, each having

4 cores, 16 GB of RAM and SSD in order to match the same setup used by Spark. In Figure 6.21

we illustrate the throughput measured as MBs per second per node with the three frameworks.

Performance In the first graph we can observe that SEEP has 2x smaller performance than

Spark for Grep. This is a consequence of the fault-tolerance overhead of Kafka since every piece

of data is replicated and the query is bounded by I/O performance. Despite this, it is still faster

than Storm which seems to be affected by small records size in all of the three experiments.

In the second chart we can see that SEEP has a comparable performance with Spark since this

query is CPU bounded and Kafka doesn’t play a significant role. The same results are visible in

the third benchmark. We can conclude that SEEP performs pretty well without a visible overhead

from fault-tolerance when the query is CPU bounded.

6.4.2 Comparison with Naiad

Naiad [10] is a state-of-the-art scheduler capable of executing both streaming and batch jobs

connected together in a complex manner by supporting both cyclic and acyclic computations. For

this reason Naiad processing system is more powerful than SEEP being able to execute arbitrary

iterative algorithms. We set ourselves to the task of comparing the performance of our system

along with the overhead added from our scheduler by implementing the same benchmark that

Naiad used in Microsoft’s Research paper.

Chapter 6. Evaluation 80

Tw
ee

ts
/ s

ec
on

d /
 no

de

Twitter k-exposure
Data compiled from 5 trials

SEEP kafka
replication

Naiad no
fault-

tolerance

Naiad
checkpoint
100 epochs

Naiad
continual
logging

Kineograph
0k

5k

10k

15k

20k

Figure 6.22: Twitter k-exposure throughput with SEEP, Naiad and Kineograph

This benchmark is based on application on Kineograph [44], a distributed system that constructs

dynamic graphs representing various relations in the data in real-time. One of the applications of

Kineograph used to evaluate Naiad is called k-exposure. This algorithm is based on the observa-

tion that specific topics, known as hashtags on the Twitter platform, have a different spreading

pattern over time, such as political or celebrity related posts. To study this pattern the authors

of Kineograph used an algorithm proposed in [45] that calculates for each hashtag the k-exposure

histogram. For a user U that posts a message with hashtag H at time t we define exposure k(H)

as:

k(H) = size(neighbours of U ∩ users who posted a message with H at time ≤ t).

Where ”neighbours” of U are all the users that mentioned U at that time. Note that to calculate

k-exposure we need to maintain a mapping between hashtags and users and between users and

mentions. We implemented k-exposure in SEEP in 31 lines of code A.5 as a query composed of

three operators. The Sink ingests Twitter streams of tweets, the Processor computes k-exposure

and finally the Sink shows the result to the end-user.

For this experiment the authors of Naiad used 32 computers with comparable hardware to ours.

Because we had only 6 nodes available we measured the throughput per node and compared to their

overall divided by 32. In Figure 6.22 we show the throughput in tweets per second measured over

5 trials. We also show the results achieved by the author of Kineograph in a similar setup [44]. We

can observe that SEEP with 13,753 tweets / second is slower than Naiad without fault-tolerance

by less than 10%. However if Naiad writes every 100 epochs checkpoints to disk their performance

downgrades to 10,000 tweets / second. During the benchmark the load distribution had an average

fairness factor of 0.985 for machines and 0.871 for operators. We can conclude that SEEP manages

to out-perform Naiad in this setup if both system provide fault-tolerance to some extent.

Chapter 6. Evaluation 81

Fa
irn

es
s

Allocation fairness

λ = 1.5, max = 1.3 λ = 1.5, max = 1.4
λ = 1.5, max = 1.5

Resource allocation fairness Operator resource shares
fairness

0

0.25

0.5

0.75

1

Figure 6.23: Allocations fairness for
lambda = 1.5

Fa
irn

es
s

Allocation fairness

λ = 1.7, max = 1.5 λ = 1.7, max = 1.8
λ = 1.7, max = 2.0

Resource allocation fairness Operator resource shares
fairness

0

0.25

0.5

0.75

1

Figure 6.24: Allocations fairness for
lambda = 1.7

Fa
irn

es
s

Allocation fairness

λ = 2.0, max = 2.0 λ = 3.5, max = 2.0
λ = 5.0, max = 2.2

Resource allocation fairness Operator resource shares
fairness

0

0.25

0.5

0.75

1

Figure 6.25: Allocations fairness for varying lambda

6.5 Varying Strategies

One of the most difficult parts in designing our scheduler was to fine tune our heuristics used for

estimating task potential and scoring resource utilization. From the beginning we made our sched-

uler to depend on user-defined parameters: potential.lambda and potential.max used to estimate

the expected the ”potential” as explained in section 4.5.2.

To be able to pick the best values for our heuristic we ran CPU intensive workloads while config-

uring the scheduler with different parameters and measured both task allocation fairness and host

load fairness using Jain’s equation [42]. To account for non-determinism that arises frequently in

scheduling we ran the same benchmark 5 times and plotted the mean of the measurements. In

figure 6.23 we can observe the fairness for lambda equal 1.5 and different maximum values. Next

in figure 6.24 we show the results for lambda equal to 1.7 and in figure 6.25 for higher values of

lambda. Note that by increasing the maximum potential we estimate higher resource needs for

workers. The main trade-off is between under-estimation, which leads to suboptimal migrations

and over-estimations which result in avoiding potential good migrations by a smaller margin. The

lambda variable, which characterizes the exponential distribution, controls the ”steepness” of the

estimation just before the maximum. Based on this experiment, we decided to choose lambda 1.5

and maximum 1.3 which yields the highest outcome for both worker, allocation and cluster load

fairness.

Chapter 6. Evaluation 82

Scheduling interval seconds

Fa
irn

es
s

Scheduling fairness with different intervals

Resource allocation fairness
Operator resource shares fairness

2 3 4 5 4 5
0.85

0.9

0.95

1

Figure 6.26: Scheduling fairness with dif-
ferent scheduling intervals

Scheduling interval seconds

To
ta

l d
ur

at
io

n
se

co
nd

s

Scheduling duration with different intervals

2 3 4 5 6 5
0

25

50

75

100

125

150

Figure 6.27: Scheduling duration with dif-
ferent scheduling intervals

Finally, we conclude our experiments with an analysis of what effect different scheduling intervals

have on fairness and duration. Our scheduler runs an algorithm that migrates tasks every schedul-

ing.interval seconds based on average resource utilization measurements over an time interval. Be-

cause we don’t move more than one operator from/to a host in one round the scheduling.interval

directly influences the time needed to even the load on cluster. To evaluate this we measured the

workload fairness with different scheduling.interval as well as the time needed to distribute the

load evenly from a setup where all the tasks are running on the same node. For this experiment we

deployed I/O and CPU intensive workloads composed of 30 operators on a cluster of 6 nodes and

ran each experiment 5 times. In Figure 6.26 we illustrate the average fairness and in Figure 6.27

we show the average total duration measured as the tine taken since we deploy the queries to the

last migration decision. We can observe how the total duration grows linearly as we increase the

decision interval. Although the overall delay seems significant in this case we deployed all the

operators on one node hence a lot of scheduling decisions were required resulting in an increased

latency. Next we can see how the fairness is less for small scheduling intervals which is not sur-

prising since the decisions are more vulnerable to utilizations spikes. Finally we notice that the

fairness peaks at 0.95 starting from a 5 second interval.

6.6 Summary

The benchmarks we ran have shown that our scheduler maximizes throughput under different work-

loads and always achieves higher performance than YARN’s baseline. To evaluate our scheduler we

created a diverse set of benchmarks ranging from simple toy queries to realistic applications. To

quantify the performance we measured different metrics from resource consumption and through-

put to allocation fairness. In order to fine-tune our algorithm we varied the parameters used in

estimations and picked the best among the variations. Finally we compared our scheduler with

other commercially available schedulers and processing frameworks.

We are aware that there are a lot of improvements to be made to our scheduler but we believe that

the current system achieves a good performance and more importantly is reliable under various

workloads. TO extend it we may want to support scheduling any type of tasks not only SEEP

Chapter 6. Evaluation 83

streaming queries. With a greater increase in generality we could benchmark the system for its

scheduling delay when dealing with sub-second batch tasks.

Finally, we would like to point out that running all the benchmarks proved to be much more difficult

than expected. The first problem is the high-grade of non-determinism involved in scheduling. To

get reliable measurements we needed to run each experiment a couple of times. Since some of the

experiments lasted one hour for each of the thee scheduling strategies we needed to run for half

a day just to get one statistically significant measurement. Although we developed a specialized

benchmarks module that deploys, runs the queries and collects key metrics automatically some

of the experiments were not straight-forward. For example to measure migration trade-offs we

modified both the SEEP code and the scheduler to record metrics at certain time points. To

gather all the measurements submitted from many clients around the cluster we created a statistic

server that works as a key-value store for measurements. Secondly to compare our system with

Spark we deployed everything on Amazon Ec2 which proved to be far more time consuming than

anticipated. Despite all the bash scripts that we have written deploying our system, Kafka and

YARN needs a few manual configuration and installations dependent on the machine.

Chapter 7

Conclusion

We have built an entire new system from scratch which was a rewarding experience in the end but

had many challenges along the way. While developing it, we had to deal with many typical system

aspects such as: scalability, non-determinism, network deadlocks and fault-tolerance. Moreover we

had the joy to observe, study and finally solve many bottlenecks that limited the performance of

our system during development.

Through the project we familiarized ourselves with large frameworks such as SEEP, YARN and

Kafk and integrated them in our system. To achieve that we had to comprehend poorly written

documentation and dive into large codebases if the first was not sufficient. This way we learnet

how important good documentation and well designed API are for every large system. Looking

backwards we spent more than half of our time to understand those frameworks and make them

work together.

From the beginning of the project we faced many important engineering decisions where we carefully

analysed the trade-offs for each approach. For example, initially we considered a few languages

for writing our scheduler such as Go, Erlang and Python. The latter had the best documentation

as well as rich support for communication and external libraries but we were concerned for its

performance. After running some experiments we realised that we can develop a system that

scales to more than 500 nodes in Python by writing the communication logic in a multi-threaded

and asynchronous fashion and delegating performance sensitive bits to native libraries.

In this project we managed to design a new job scheduler specialized for streaming tasks but also

reliable for batch computations. We identified a common problem and performance bottleneck

present in state-of-the-art stream processing frameworks [11, 23, 39] and managed to solve it by

migrating tasks at runtime based on fine-tuned heuristics. Along the way we build a scalable

analytics framework that is easy deployable to any cluster and we use it to reason about the

performance impact of various approaches while building our scheduler. Moreover we made our

system fault-tolerant and ensured that no single failure point exists.

To evaluate our system we developed a comprehensive set of benchmarks with various resource

usage patterns. We made all the benchmarks self-contained and simplified the code extensively in

order to make it easy for other people to use it in the future when developing stream processing

frameworks. Lastly we tested our system with different workloads and fine-tuned the heuristics

84

Chapter 7. Conclusion 85

of our scheduler to maximize the throughput and minimize the migration overhead in different

scenarios. We exposed all the configuration from the WebUI so users can easily adapt the system

to their needs.

7.1 Future work

We think there are many areas were we can improve our scheduler to support more features and

complex scheduling patterns. Following we present some ideas:

• Task scheduling in rounds

Our current system allocates all the tasks submitted even if they won’t be able to perform to

their maximum potential by allowing them to share the available resources evenly between

them. In some scenarios it would be better to schedule a few applications at a time picked

in a round-robin fashion so over time each has a equal share of the cluster at its full desired

utilization. We need to carefully consider the overhead since simply stopping the tasks could

be to extensive. We already implemented support to pause and resume operators in SEEP

but we haven’t created yet an algorithm in the scheduler to use it.

• Multiple framework integration

Currently our scheduler is build on top of YARN, SEEP and Kafka. To provide a broader

use-case we can extend it to schedule arbitrary tasks and have support for both Mesos, YARN

and even lower level resource isolation frameworks such as Linux Container and Dockers. All

these systems have their own advantages and disadvantages so it would be desired to be able

to change them depending on the scenario.

• RAM aware migration

While CPU and I/O scheduling covers a broad range of use-cases there are a few distrusted

applications that utilize a lot of RAM memory. We plan to extend our scheduler to migrate

tasks based of memory consumption. This is not very common because by default YARN

uses strict resource isolation for memory so applications can’t go over their limits to increase

performance. Furthermore, an application cannot scale elastically if more memory is available

as is the case of CPU and I/O. Moreover, if we allow applications to dynamically extend their

RAM usage it will be dangerous if the machine runs out of memory and starts using swap

space which would slow down all the computation significantly. Despite all of the above,

RAM scheduling is something interesting to explore in the future.

• Enrich support for iterative jobs

At the moment our system can execute batch jobs, only by implementing a limited duration

streaming query, which is not ideal. Furthermore, some applications need complex communi-

cation among multiple queries running in parallel as is the case of MapReduce computations.

We want to extend our scheduler to support an arbitrary graph as connections between tasks

that are deployed, even if they are streaming or batch computations. To achieve that we

need to configure output and input connections directly from the scheduler. If we support

this we will be able to support arbitrary complex computations ranging from MapReduce to

iterative machine learning algorithms running in a distributed fashion.

Chapter 7. Conclusion 86

We have considered a few approaches to build more complex tasks semantics. One idea that

we consider very suitable is to create a ”timely datafllow graph” as researchers from Microsoft

Research used in their own scheduler, Naiad [10].

• Different scheduling algorithms

Currently our scheduler uses one of the classical bin-packing algorithms to match ”straggling”

operators to ”free” nodes. We could extend our design to support a pluggable module that

runs this heuristics. This way we could easily experiment with different algorithms such as

MatchMaker, MTP or BinCompletion as well as allow users to supply their own algorithm

as YARN does.

• Back-pressure mechanism

We discovered in a state-of-the-art stream processing system published this month [39] the

”back-pressure” technique which is a way of dynamically controlling the streaming flow

throughput. If we implement a similar technique we could control with fine granularity

the resource consumption of SEEP operators by limiting the incoming streaming flow. Fur-

thermore, it is common in streaming processing queries that one operator produces more

data than others can process. If we use an external messaging system all the excess data is

buffered on disk. Ideally we would want our scheduler to observe this pattern and reduce the

downstream operators output to prevent a constantly growing buffer.

• Usability

Our system is designed to be used by other people either as a scheduler or just as an analytics

framework. However, at the moment it is not possible to simply install our system and

use it out of the box. One needs to configure manually both YARN, SEEP, Kafka and

provide required server side settings. We want to minimize the number of configurations

steps and augment our system with a detailed documentation. Finally it would be interesting

to measure the ease of use of our system compared to other available solutions.

Appendix A

Benchmark Overview

For completeness we will present the code used in our benchmarks so the experiments can be

replicated with the same setup. For the following benchmarks we show only the important operators

i.e.

A.1 CPU benchmark: RSA factorization

1 public void processData(ITuple data, API api) {

2 long ts = 0;

3 while (working) {

4 long p = getRandomPrime(6000000, 6500000); // Use primality test to find

5 long q = getRandomPrime(6500000, 7000000); // primes. O(log n) * O(log^3 n)

6 long N = p * q;

7 long e = 2;

8

9 long phi = (p - 1) * (q - 1);

10 while (BigInteger.valueOf(e).gcd(BigInteger.valueOf(phi)).intValue() != 1)

11 ++e;

12

13 Random rand = new Random();

14 long x = rand.nextLong() % N;

15 long ex = modPow(x, e, N); // Modular exponentiation

16 api.send(ts++, e, N, ex); // Sent data to next operator

17 }

18 }

Listing A.1: RSA factorization - source operator

87

Appendix A. Benchmark Evaluation 88

1 public void processData(ITuple data, API api) {

2 long ts = data.getLong("ts");

3 long e = data.getLong("pubE");

4 long N = data.getLong("pubModulus");

5 long ex = data.getLong("secret");

6

7 long p = 2, q = 1;

8 while(N % p != 0) // Brute force factorization

9 ++p;

10 q = N / p;

11

12 long d = inverse(e, (p - 1) * (q - 1)); // Modular multiplicative inverse

13 long dx = modPow(ex, d, N); // Modular exponentiation

14 api.send(ts, e, N, dx);

15 }

Listing A.2: RSA factorization - processor operator

A.2 I/O benchmark: Virus Scanner

1 public void processData(ITuple data, API api) {

2 int ts = 0;

3 while(working) {

4 Scanner sc = new Scanner(new FileInputStream("<inputFile>"););

5 while (sc.hasNextLine()) {

6 api.send(ts, sc.nextLine()); // Read 512Kb line from the file

7 }

8 inputStream.close();

9 sc.close();

10 }

11 }

Listing A.3: Virus Scanner - source operator

1 public void processData(ITuple data, API api) {

2 public void processData(ITuple data, API api) {

3 long text = data.getLong("ts");

4 String text = data.getString("text");

5 // Signatures is a preinitialized hash set with the malicious patterns

6 if (signatures.contains(text)) {

7 api.send(ts, text);

8 }

9 }

Listing A.4: Virus Scanner - processor operator

Appendix A. Benchmark Evaluation 89

A.3 CPU and I/O benchmark: Permutation Cipher

1 public void processData(ITuple data, API api) {

2 int ts = 0;

3 Random random = new Random();

4 while(working){

5 // Create 100Kb text and send it over the network

6 String text = new BigInteger(256000, random).toString(32);

7 int key = random.nextInt(128);

8 api.send(ts++, key, text);

9 }

10 }

Listing A.5: Permutation Cipher - source operator

1 public void processData(ITuple data, API api) {

2 int ts = data.getInt("ts");

3 int key = data.getInt("key");

4 String text = data.getString("text");

5

6 StringBuilder sb = new StringBuilder();

7 for(int i = 0; i < text.length(); i++)

8 sb.append((char)(text.charAt(i) ^ key));

9 api.send(ts, key, sb.toString());

10 }

Listing A.6: Permutation Cipher - processor operator

A.4 Twitter word count

1 public void processData(ITuple data, API api) {

2 while(working) {

3 // Read from socket channel that delivers batches of 1,000 tweets

4 Object obj=JSONValue.parse(socket.readLine());

5 JSONArray messages = ((JSONArray)obj);

6 for (Object message : messages) {

7 String text = ((JSONObject)(message)).get("text").toString();

8 String user = ((JSONObject)(message)).get("user").toString();

9 api.send(ts++, text, user);

10 }

11 }

12 }

Listing A.7: Twitter word count - source

Appendix A. Benchmark Evaluation 90

1 public void processData(ITuple data, API api) {

2 String text = data.getString("text");

3 for (String word : text.split(" ")) {

4 // Ignore prepositions, pronouns, etc

5 if (!ignoredWords.contains(word)) {

6 Integer prevCnt = wordCount.get(word);

7 wordCount.put(word, (prevCnt == null ? 0 : prevCnt) + 1);

8 }

9 }

10 if (System.currentTimeMillis() - timestamp > 10000) {

11 String mostFrequentWord = null;

12 long count = -1;

13 for (Entry<String, Integer> entry : wordCount.entrySet()) {

14 if (mostFrequentWord == null || entry.getValue() > count) {

15 mostFrequentWord = entry.getKey();

16 count = entry.getValue();

17 }

18 }

19 wordCount.clear();

20 api.send(count, mostFrequentWord);

21 timestamp = System.currentTimeMillis();

22 }

23 }

Listing A.8: Twitter word count - processor

A.5 Twitter k-exposure used to detects controversial topics

Here we use the same source as in Twitter word-count previous query.

1 public static long getIntersection(Set<String> set1, Set<String> set2) {

2 boolean set1IsLarger = set1.size() > set2.size();

3 Set<String> cloneSet = new HashSet<String>(set1IsLarger ? set2 : set1);

4 cloneSet.retainAll(set1IsLarger ? set1 : set2);

5 return cloneSet.size();

6 }

7

8 public void processData(ITuple data, API api) {

9 String text = data.getString("text");

10 String user = data.getString("user");

11

12 for (String word : text.split(" ")) {

13 if (word.isHashTag())) {

14 word = word.substring(1, word.length());

15 HashSet<String> nodes;

16 if (!neighbours.containsKey(user))

17 nodes = new HashSet<String>();

18 else

19 nodes = neighbours.get(user);

Appendix A. Benchmark Evaluation 91

20 nodes.add(word);

21 neighbours.put(user, nodes);

22

23 long count = getIntersection(neighbours.get(user), posters.get(word));

24 api.send(count, word);

25 }

26 if (word.isUserMention()) {

27 HashSet<String> users;

28 if (!posters.containsKey(word))

29 users = new HashSet<String>();

30 else

31 users = posters.get(word);

32 users.add(user);

33 posters.put(word, users);

34 }

35 }

36 }

37 }

Listing A.9: Twitter k-exposure - processor operator

Appendix B

User Manual

We will describe next how our system can be used through the WebUI.

Admin Panel We begin by showing the admin panel in Figure B.1 that bring together the most

common functionalities that we needed though the development. The left most panel contains

short-cuts to main YARN components and provides a way to clear all the YARN logs across the

cluster by running in background a rm command on each machine. The middle panel has the

query deployment tools from where the user can start and stop seep queries and has gives the

ability to update SEEP to a certain branch from of the repository. When a user clicks the button

each machine runs git fetch, git reset, compiles all the SEEP code and re-generates the examples

jars. Finally the last box updates our system as a whole including the scheduler, analytics system

and WebUI. This works by running bash script in the background that stop the server and all the

modules, get the latest change from the repository and restart back everything. The last button

clear the Kafka logs which we had to use quite frequently while running experiments since during

an intensive IO load we can write up to 500Mbs / second on disks across the cluster.

Figure B.1: Admin panel overview

92

Appendix B. User Manual 93

Figure B.2: Cluster Overview

Cluster Overview This page we illustrate in Figure B.2 gives general information about the

cluster such as overall throughput by number of queries as well as graphs that illustrate the per-

formance evolution over time measured as rolling averages of 1,5,15 minutes as well as from the

beginning. The top left panel shows real-time informations such as: current throughput, number

of events so far, the number of queries and containers running, memory and cores availability and

disk space occupied by logs. Finally in the top right panel we can see the current CPU and memory

usage updated every second.

Figure B.3: CPU and memory graphs

Appendix B. User Manual 94

Figure B.4: Disk and network I/O graphs

Resource utilization This panel from Figure B.3 shows on the left side the current CPU uti-

lization measured for each core in the cluster and the RAM utilization measured for each machine.

On the left hand side we can see how the utilization changes over time. We use a colour scheme to

emphasize the most ”crowded” cores or machines. The graphs are populated with data retrieved

every 5 seconds and accumulates until we refresh the page. This way we can observe the impact

of deploying new queries over the cluster. We also show the same information for both I/O and

Network as we illustrate in Figure B.4. For disk we show bytes read/write and for network bytes

sent/received.

In Figure B.5 we provide an overview of workers which run logical operator from the queries. We

group each worker by the node where it’s running and we show extra information useful when

debugging such as process id, worker id and name of the logical operator running inside the job.

We provide additionally CPU and memory utilization measured for each worker individually and

we use the same colour scheme as before to highlight the percentage of resource usage. Finally we

used a dashed pink colour to represent an operator that was just moved to another host.

Figure B.5: Operators overview

Appendix B. User Manual 95

Figure B.6: Scheduler configuration overview

Figure B.7: Applications metrics panel

To allow the users to easily configure our scheduler we provide access through the WebUI to all

the internal scheduling parameters as we can see in Figure B.6. Furthermore we support changing

the scheduling strategies or failing back to YARN in real-time. All the configuration changes are

sent to the scheduler module which updates his stored values in real-time.

Finally Figure B.7 we show throughput over time for each application running in the cluster

updated every 30 seconds. The 4 graphs show different levels of granularity by aggregating metrics

over 1,5,15 and overall sliding windows.

Appendix C

Software verification in the cloud

We show how is possible to build a static and dynamic software verification system in the cloud
1 with the help of SEEP and the system we designed, ERAS (efficient resource aware scheduler).

This system models realistically typical cluster workload as the resource utilization for CPU and

RAM memory varies greatly in depending in the program that are analysed. Furthermore the load

is dynamic because our system is based on user submitted programs for analysis. This type of

workload would represent decrease further the performance of static schedulers such as YARN.

To handle user interaction we created a simple python server that accepts programs written in

C-like syntax and send them for verification. The server acts also as a load balancer by sending

programs in a round-robin fashion to one of the running SEEP verification queries. The Source

operator waits to server queries and dispatches them to the Processor operator that does the heavy

lifting by calling our software analysis module. During the verification our module transforms the

program to a SMT formula and then we run the Z3 Theorem Prover to check if the formula can

be proven. The verification process can swan multiple threads to run different analysis strategies

in the same time. Because of that the resource consumption can fluctuate a lot at runtime. Since

some programs need up to a minute to be verified it is often desirable to migrate an operator on a

new host and finish the verification faster. Next we briefly illustrate in Figure C.1 and Figure C.2

the resource utilization pattern over time while running 6 verifiers concurrently with a average

throughput of 40 programs per second.

1based on a software verification module which we developed in a previous project https://github.com/andrei-
alpha/SRTool

96

Appendix C. Software verification in the cloud 97

%
pe

rce
nt

 cp
u

us
ed

Cluster cpu utilization

13:57 13:58 13:59 14:00 14:00 14:01 14:02
0

25

50

75

100

Figure C.1: CPU with highly dynamic load

ne
tw

or
k i

o p
er

 se
co

nd

Cluster network utilization

network sends network recvs

13:58 14:00 14:01
0 Byte

2 MB

5 MB

7 MB

10 MB

Figure C.2: Disk IO with highly dynamic
workload

Bibliography

[1] J. Dean and S. Ghemawat. Mapreduce: Simplified Data Processing on Large Clusters.

OSDI04: Proceedings of the 6th Symposium on Opearting Systems Design and Implemen-

tation, 2004.

[2] J. Dean and S. Ghemawat. Mapreduce: A Flexible Data Processing Tool. Communications

of ACM, 53(1), 2010.

[3] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg Quincy: fair

scheduling for distributed computing clusters. Proceedings of SOSP (2009).

[4] M. Schwarzkopf., A. Konwinski, M. Abd-El-Malek, J. Wilkes Omega: flexible, scalable sched-

ulers for large compute clusters EuroSys’13 April 15-17,2013, Prague, Czech Republic.

[5] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, R. Fonseca Jockey: Guaranteed Job Latency

in Data Parallel Clusters EuroSys’12 April 10-13,2012, Bern, Switzerland.

[6] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, P. Pietzuch Integrating Scale Out and

Fault Tolerance in Stream Processing using Operator State Management SIGMOD’13, June

22-27,2013, New York, New York, USA.

[7] K. Ousterhout, P. Wendell, M. Zaharia, I. Stoica Sparrow: Distributed, Low Latency Schedul-

ing SOSP’13, Nov 3-6,2013, Farmington, Pennsylvania, USA

[8] Making State Explicit for Imperative Big Data Processing R. C. Fernandez, M. Migliavacca,

E. Kalyvianaki, P. Pietzuch USENIX’14, June 17-20, Philadelphia, PA, USA

[9] Network-Aware Operator Placement for Stream-Processing Systems. P. Pietzuch, J. Shneid-

man, M. Roussopoulos, M. Welsh, M. Seltzer ICDE’06 Proceedings of the 22nd International

Confrence on Data Engineering

[10] D. G. Murray, F. McSherry, R. Issacs, M. Isard, P. Barham, M. Abadi Naiad: A Timely

Dataflow System. SOSP’13, Nov. 3-6, 2013, Farmington, Pennsylvania, USA.

[11] Apache Samza. http://samza.incubator.apache.org/

[12] Apache Hadoop. http://hadoop.apache.org/ 2009

[13] D. Borthakur, K. Muthukkaruppan, K. Ranganathan, S. Rash, J. S. Sarma, N. Spiegelberg, D.

Molkov, R. Schmidt, J. Gray H . Kuang, A. Menon, A. Aiyer Apache Hadoop Goes Realtime

at Facebook SIGMOD’11 111, June 12-16, 2011, Athens, Greece

98

http://samza.incubator.apache.org/
http://hadoop.apache.org/

Bibliography 99

[14] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker, I.

Stoica Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center NSDI’11

Proceedings of the 8th USENIX conference on Networked systems design and implementation

Pages 295-308 http://mesos.apache.org/

[15] B. Hindman, M. Konwinski, M. Zaharia, I. Stoica, A Common Substrate for Cluster Com-

puting. In Proceedings of the 2009 Conference on Hot Topics in Cloud Computing (2009).

[16] V. K. Vavilapallih, A. C. Murthyh, C. Douglasm, S. Agarwali, M. Konarh, R. Evansy, T.

Gravesy, J. Lowey, H. Shahh, S. Sethh, B. Sahah, C. Curinom, O. OMalleyh, S. Radiah, B.

Reedf, E. Baldeschwielerh YARN: Yet Another Resource Negotiator SoCC13, 13 Oct. 2013,

Santa Clara, California, USA

[17] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I. Stoica Improving MapReduce Perfor-

mance in Heterogeneous Environments OSDI’08 Proceedings of the 8th USENIX conference

on Operating systems design and implementation Pages 29-42

[18] M. Isard, M. Budiu, Y. Yu, A. Birrell, D Fetterly Dryad: Distributed Data-Parallel Programs

from Sequential Building Blocks EuroSys07, March 2123, 2007, Lisboa, Portugal

[19] Docker. https://www.docker.com/

[20] Linux containers (LXC). https://linuxcontainers.org/

[21] Apache Storm. https://storm.apache.org/

[22] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson, K.

Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, D. Ryaboy SIGMOD14, June 2227, 2014,

Snowbird, Utah, USA

[23] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica Spark: Cluster Computing

with Working Sets em Proceeding HotCloud’10 Proceedings of the 2nd USENIX conference

on Hot topics in cloud computing Pages 10-10

[24] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, et al. Impala: A Modern,

Open-Source SQL Engine for Hadoop em CIDR 2015. 7th Biennial Conference on Innovative

Data Systems Research. January 4-7, 2015, Asilomar, California, USA.

[25] RabbitMQ http://www.rabbitmq.com/

[26] J. Kreps, N. Narkhede, J. Rao Kafka: a Distributed Messaging System for Log Processing

NetDB’11, Jun. 12, 2011, Athens, Greece. http://kafka.apache.org/

[27] Apache Thrift. https://thrift.apache.org/

[28] Amazon EC2. http://aws.amazon.com/ec2

[29] P. Hunt, M. Konar, F. P. Junqueira, B. Reed ZooKeeper: wait-free coordination for internet-

scale systems USENIXATC’10 Proceedings of the 2010 USENIX conference on USENIX

annual technical conference Pages 11-11 hadoop.apache.org/zookeeper

[30] Protocol Buffers https://developers.google.com/protocol-buffers/

http://mesos.apache.org/
https://www.docker.com/
https://linuxcontainers.org/
https://storm.apache.org/
http://www.rabbitmq.com/
http://kafka.apache.org/
https://thrift.apache.org/
http://aws.amazon.com/ec2
hadoop.apache.org/zookeeper
https://developers.google.com/protocol-buffers/

Bibliography 100

[31] Facebook’s Scribe. http://wiki.github.com/facebook/scribe

[32] J. Kreps Kafka Benchmark https://engineering.linkedin.com/kafka/

benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines

[33] A. Cockcroft, D. Sheahan Benchmarking Casandra Scalability http://techblog.netflix.

com/2011/11/benchmarking-cassandra-scalability-on.html

[34] P. Vagata, K. Wilfong Scaling the Facebook data warehouse

to 300 PB https://code.facebook.com/posts/229861827208629/

scaling-the-facebook-data-warehouse-to-300-pb/

[35] S. S. Seiden On the online bin packing problem Journal of the ACM (JACM) JACM Homepage

archive, Volume 49 Issue 5, September 2002 ,Pages 640-671

[36] S. Martello, D. Pisinger, D. Vigo The Three-Dimensional Bin Packing Problem Operations

Research 2000, 48, 2, 256–267

[37] B. H. Murray, A. Moore Sizing the Internet http://www.cs.toronto.edu/~leehyun/

papers/Sizing_the_Internet.pdf

[38] K. Amin Big Data Overview 2013-2014 http://www.slideshare.net/kmstechnology/

big-data-overview-2013-2014

[39] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel*,1, K.

Ramasamy, S. Taneja Twitter Heron: Stream Processing at Scale SIGMOD15, May 31June

4, 2015, Melbourne, Victoria, Australia

[40] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, C. R. Das Modeling and Synthesizing

Task Placement Constraints in Google Compute Clusters Proceeding SOCC ’11 Proceedings

of the 2nd ACM Symposium on Cloud Computing

[41] D. J. Abadi, D. Carney, U. etintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N.

Tatbul, S. Zdonik Aurora: a new model and architecture for data stream management The

VLDB Journal The International Journal on Very Large Data, Volume 12 Issue 2, August

2003

[42] R. Jain, D. M. Chiu, W. Hawe A Quantitative Measure of Fairness and Discrimination for

Resource Allocation in Shared Computer Systems DEC Research Report TR-301, 1984

[43] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, I. Stoica Discretized streams: fault-tolerant

streaming computation at scale SOSP ’13 Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, Pages 423-438

[44] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang, L. Zhou, F. Zhao, E.

Chen Kineograph: Taking the Pulse of a Fast-Changing and Connected World EuroSys ’12,

Proceedings of the 7th ACM european conference on Computer Systems, Pages 85-98

[45] D. M. Romero, B. Meeder, J. Kleinberg Differences in the Mechanics of Information Diffusion

Across Topics: Idioms, Political Hashtags, and Complex Contagion on Twitter WWW ’11,

Proceedings of the 20th international conference on World wide web, Pages 695-704

http://wiki.github.com/facebook/scribe
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
http://www.cs.toronto.edu/~leehyun/papers/Sizing_the_Internet.pdf
http://www.cs.toronto.edu/~leehyun/papers/Sizing_the_Internet.pdf
http://www.slideshare.net/kmstechnology/big-data-overview-2013-2014
http://www.slideshare.net/kmstechnology/big-data-overview-2013-2014

Bibliography 101

[46] P. Barford and M. Crovella Generating representative web workloads for network and server

performance evaluation. In Proceedings of the ACM SIGMETRICS international conference

on Measurement and modeling of computer systems, 1998.

[47] N. Widell Migration Algorithms for Automated Load Balancing Proceedings of the 16th

IASTED International Conference on Parallel and Distributed Computing and Systems :

November 9 - 11, 2004, MIT, Cambridge, USA

[48] T. T. Y. Suen, J. S. K. Wong Efficient Task Migration Algorithm for Distributed Systems

Journal IEEE Transactions on Parallel and Distributed Systems archive Volume 3 Issue 4,

July 1992

[49] J. J. Chen, H. Hsu, K. H. Chuang, C. L. Yang, A. C. Pang, T. W. Kuo Multiprocessor Energy-

Efficient Scheduling with Task Migration Considerations ECTRS, 2004, Pages 101-108

[50] L. A. Barroso, J. Dean, U. Hlzle Web Search for a Planet: The Google Cluster Architecture

IEEE Micro archive, Volume 23 Issue 2, March 2003, Page 22-28

[51] J. Lin, D. Ryaboy Scaling big data mining infrastructure: the twitter experience ACM

SIGKDD Explorations Newsletter archive Volume 14 Issue 2, December 2012, Pages 6-19

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline

	2 Background
	2.1 Job Schedulers
	2.1.1 Quincy
	2.1.2 Omega
	2.1.3 Jockey
	2.1.4 Sparrow
	2.1.5 Mesos
	2.1.6 YARN
	2.1.7 Naiad

	2.2 Processing Systems
	2.2.1 Map Reduce
	2.2.2 Hadoop
	2.2.3 Spark
	2.2.4 Storm
	2.2.5 Samza
	2.2.6 Spark Streaming
	2.2.7 Heron
	2.2.8 SEEP

	2.3 Messaging Systems
	2.3.1 Rabbit MQ
	2.3.2 KAFKA

	2.4 Resource isolation
	2.4.1 Linux Containers
	2.4.2 Docker

	2.5 Performance Benchmarks
	2.6 Task Migration
	2.7 Conclusion

	3 System Design
	3.1 Seep overview
	3.2 Message passing
	3.2.1 SEEP communication
	3.2.2 Alternatives
	3.2.3 Message brokers
	3.2.4 Kafka
	3.2.5 Integration
	3.2.6 Performance Overhead

	3.3 Resource isolation
	3.3.1 Locality
	3.3.2 YARN Cluster Setup
	3.3.3 Application Submission Client
	3.3.4 ApplicationMaster
	3.3.5 Implementation

	3.4 Summary

	4 Scheduler
	4.1 Outline
	4.2 Default placement
	4.3 Analytics
	4.3.1 Resource Monitoring
	4.3.2 Performance Metrics

	4.4 Task placement
	4.4.1 First approach
	4.4.2 Second approach
	4.4.3 Limitations

	4.5 Runtime scheduler
	4.5.1 Potential
	4.5.2 Scoring Algorithm
	4.5.3 Scheduling
	4.5.4 Alternatives
	4.5.5 Similar Problems

	4.6 Summary

	5 Task migration
	5.1 Resource utilization analysis
	5.1.1 Overview
	5.1.2 Resource Reports

	5.2 Migration trade-offs
	5.2.1 Measuring trade-offs
	5.2.2 Migration Scoring

	5.3 Fault tolerance
	5.3.1 Supervisor
	5.3.2 Leader Election
	5.3.3 Scheduling Failures

	5.4 Scalability
	5.4.1 Resource Monitoring Scalability
	5.4.2 First iteration
	5.4.3 Second iteration
	5.4.4 Scheduler Scalability

	5.5 Summary

	6 Evaluation
	6.1 Scheduling Efficiency
	6.1.1 YARN
	6.1.2 Resource aware placement
	6.1.3 Runtime scheduling

	6.2 Fairness
	6.3 Scheduling Overhead
	6.3.1 Resource usage
	6.3.2 Migration Overhead

	6.4 Comparison with other systems
	6.4.1 Spark Streaming and Storm
	6.4.2 Comparison with Naiad

	6.5 Varying Strategies
	6.6 Summary

	7 Conclusion
	7.1 Future work

	A Benchmark Overview
	A.1 CPU benchmark: RSA factorization
	A.2 I/O benchmark: Virus Scanner
	A.3 CPU and I/O benchmark: Permutation Cipher
	A.4 Twitter word count
	A.5 Twitter k-exposure used to detects controversial topics

	B User Manual
	C Software verification in the cloud
	Bibliography

