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Abstract

Businesses and consumers use same-day city couriers to transport time-sensitive goods.
Companies like CitySprint want to optimise the allocation of delivery jobs across its fleet
of vehicles, so as to minimise cost. An inexpensive rival service is proposed using un-
manned, autonomous cars, which also form a distributed computing platform for solving
the allocation problem. A number of algorithms and routing strategies were developed
for allocation, multi-waypoint route planning and fault tolerance. Several strategies that
implement the contract net protocol are presented and local optimisation is performed
using both a greedy and a genetic algorithm. Using mapping data from OpenStreetMap
and live traffic data from HERE Maps, an interactive multi-agent simulation was built
to test this network.

Using maps large and small, an extensive evaluation of the network is performed. The
sensitivity of many key parameters is analysed and the optimal network size is found.
Using sensible parameters and twenty cars, a courier network in Greater London was
simulated and shown to be profitable charging only £2 + £2.37 per hour – a fraction of
the current market price.
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Chapter 1

Introduction

1.1 Motivation

Whilst communication is shifting away from physical letters, the growth of the Internet
has brought about ever-increasing demand for parcel delivery. The express parcel deliv-
ery market is worth £5.8 billion a year and comprises 1.1 billion items, according to a
2010 report by Datamonitor [1]. Consumers and businesses are increasingly demanding
speedier and time-slotted deliveries, which better fit in with their busy lives and business
deadlines. In many metropolitan areas, same-day delivery services are available. Whilst
they represent a tiny proportion of deliveries, this is mainly due to the high cost. Many
small and mid-size businesses will use their own staff to make small deliveries, as this
will often be the most economical option for them.

Efficiently running a same-day courier service is a logistical nightmare. Large courier
companies use centralised computer systems to delegate delivery jobs to drivers. The
exact protocols used remain trade secrets, however humans are ultimately in control.
Those that solicit jobs at the companies’ offices cannot know the true marginal cost per
parcel, as they do not have an accurate state of the road network. Many companies use
a computer system to generate quotes. These typically include a high ‘call-out charge’
plus a function of the straight-line distance from pick-up to delivery. It does not take into
account the whereabouts of the couriers, which has a significant impact on the actual
cost to the courier. If delivery men must carry out multiple jobs concurrently, their
chosen routes may be suboptimal. Whilst some advanced satellite navigation devices
support navigation to multiple waypoints, they cannot account for all of the constraints.
The high cost for the customer can be attributed to this inefficiency and lack of real-time
knowledge.

1
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To illustrate the current state of the market, the following quotes were collected on
Monday 1st June 2015 at 9 a.m. and were for the transport of a 50x50x50 cm, 10 kg box
from Imperial College London locations, Charing Cross Hospital (W6 8RP) to South
Kensington (SW7 2AZ). Google Maps estimate the journey to be 12 minutes and 4.2
km [2], which indicates a labour cost of £1.30 (assuming a National Minimum Wage of
£6.50/hour) and a petrol cost of less than £1.00. Prices exclude VAT:

Company Quote Guaranteed pick-up Guaranteed delivery
Royal Mail [3] £33.00 10:00 (1h) direct route time
CitySprint [4] £13.95 09:46 (46m) 11:16 (+1h30)
Shutl.it (1) [5] £10.83 10:15–12:00 (1h15–3h) 12:00–13:00 (+0h–2h45)
Shutl.it (2) [5] £9.17 20:15–21:00 (11h15–12h) 21:00–22:00 (+0h–1h45)
Anywhere Sameday
Couriers [6] £75.00 10:00 (1h) direct route time

These prices seem shockingly expensive. The motivation for this project is simply to an-
swer the question, by eliminating human inefficiencies and carefully designing protocols,
can a same-day courier service be made affordable for all?

1.2 Objectives

The project will investigate whether the use of autonomous, self-driving road vehicles
can bring low cost same-day delivery. This entails:

• Accurately simulating autonomous vehicles driving on any large road network. For
meaningful results, traffic must be modelled.

• Efficient and optimal multi-hop route finding with respect to distance and/or time.

• Efficient and optimal allocation of tasks to agents.

• Agents act autonomously in that all routing decisions are made locally, not cen-
trally. This allows any computation to be done in parallel. It also means signal
loss or individual failure of any component can be tolerated.

• Simulating a busy same-day courier service.

– Jobs are spawned randomly throughout the day at times that generally reflect
consumer demand. Their properties (locations, deadlines and physical size)
conform to appropriate probability distributions, which can be adjusted for
experimentation.
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– Implementing and testing multiple protocols for the agents. Agents are de-
signed to maximise profit by minimising distance, time and fuel consumption.
Agents may cooperate or compete.

– Failure is modelled and remedied. Notably, the inability to pick up, deliver
or meet deadlines.

1.3 Report outline

Chapter 2 presents background information relevant to this project and a critical overview
of similar works. Later sections will assume an understanding of this. Among the ma-
terial is an overview of the travelling salesman problem and two algorithms to find a
near-optimal solution. A variant of this problem is that which must be solved to achieve
efficient routes between waypoints.

Chapter 3 outlines the same-day courier service that is being simulated in non-technical
terms, such that the reader understands the context and so as to guide the implemen-
tation of the simulator.

Chapter 4 introduces OpenStreetMap and HERE Maps – the data sources for this sim-
ulation’s environment. This section discusses the decisions made and challenges faced
in interpreting and unifying both datasets.

Chapter 5 fully details the implementation of the simulator written for this project: how
the street map is represented internally; how route finding is performed; how traffic flow
and obstacles such as pedestrian crossings are modelled; how the autonomous agents and
their fuel supply are represented; and lastly how the state of the simulation is visualised.

With this platform, we then describe in detail in chapter 6 the algorithms and protocols
developed to plan routes and allocate jobs to agents. After much research and many
discarded attempts, the final solution to the planning problem (a variant of the travelling
salesman problem), was to use a combination of a greedy and a genetic algorithm to
find an efficient route that minimises any deadline violations. The allocation problem is
solved using the contract net protocol – a kind-of reverse auction where agents bid the
marginal cost for themselves to fulfil the job. An extension is detailed where agents are
allowed to trade off jobs to each other in efforts to avoid delivering any late. A range of
‘idle strategies’ are proposed to control the behaviour of an agent when it has no jobs.

Chapter 7 is the evaluation wherein hundreds of simulations are performed and their
results, plotted on graphs. It begins with a critical evaluation of the route finding,
planning and allocation algorithms. We then determine the optimal routing and idle
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strategy and how different factors, like package size and probability of failure affect
performance. Using several different cities, from the small and quaint Scottish island of
Stronsay to the sprawling behemoth that is Greater London, the ideal agent population
is deduced. Using sensible parameters and these optimal populations, the break-even
point is found and we arrive at an answer to our original question. Without modelling
fixed costs, a London-based courier service with a fleet of twenty cars can be created
and will break even, charging only £2 per job, plus £2.37 per hour of extra driving. At
this price, the mean price paid by customers was only £3.75!

The report concludes with chapter 8 where the contributions of this project are critically
evaluated, the limitations to the simulation are identified and a number of extensions to
the project are proposed to the reader.

In the appendix, one will find a table of parameters in section A, listing the hundreds
of parameters in the simulation and the default values that were used in the evaluation.
To anyone who wants to install and run the simulator for themselves, a quick start
guide is provided in section B. Section C contains a brief description of the ‘playground’
mode. This was a simulation environment designed to test and benchmark the routing
algorithms and the stability of the simulator, by simulating the movements of thousands
of agents. Section D contains some extra material that is peripheral to the main body
of the report.



Chapter 2

Background

2.1 Autonomous Agents

This project endeavours to build and study a multi-agent system. Such a system must
have autonomy: the agents act autonomously and independently, they are self-aware
and they have no full global view of the system [7]. A MAS is decentralised in that there
is no designated controlling agent – otherwise it would be deemed a monolithic system
[8].

According to a paper entitled “A Taxonomy for Autonomous Agents” , an autonomous
agent is a “system situated within and a part of an environment that senses that envi-
ronment and acts on it, over time, in pursuit of its own agenda and so as to effect what
it senses in the future.” [9]. An agent is goal driven and fundamentally, reacts to stimuli
without the interference of the owner.

An autonomous courier vehicle can be characterised by this definition. Its environment
is the road network – represented as a graph of nodes and vertices. Its stimuli are
incoming, unallocated courier jobs, which are broadcast over the air to all agents, as
well as (potentially) the positions and status of other agents. Its overarching goal is
to allocate themselves to, pick up and deliver as many packages as possible, whilst
conforming to each associated deadline. There are also secondary goals, such as refuelling
whenever possible and minimising fuel consumption in various ways. These goals will
be programmed in to all agents in the hopes that the multi-agent system, as a whole,
will satisfy the owner’s goal: profit.

5
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Environment

Autonomous Agent

stimulus

sensors actuators

Amend 
representation 

of local 
environment

Construct 
response

IF-THEN-ELSE rules

Figure 2.1: A multi-agent system in its most general form.

2.1.1 Contract Net Protocol

In a multi-agent system, the Contract Net Protocol provides a method for task-sharing
through competitive negotiation. It is specified in [10]. Each agent of the ‘contract net’
is self-interested, so the solution may not be the most optimal for the network as a whole.
When an agent hears a task, it breaks it down into independent sub-tasks and acting
as ‘manager’, it broadcasts these to the net of ‘contractors’. The negotiation happens in
five stages:

1. Recognition. The manager receives a task, which it breaks down where possible.

2. Announcement. Specifications for each task, including constraints and meta-
task information are serialised and broadcast to some or all contractors.

3. Bidding. Contractors that are capable of completing the task place a bid, which
is transmitted to the manager.

4. Awarding. The manager decides on which contractor to award the contract to
and notifies all those who bid.

5. Expediting. The winning contractor either performs the task, or assumes the
role of manager and subcontracts to further contract nets.
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In some problem domains, bids are associated with cost values and the negotiation
resembles a traditional auction. For example, if there exist two capable contractors, but
one poses a greater interest in the task, it will be awarded the contract.

2.2 Autonomous Cars

An autonomous, or self-driving car is one capable of sensing the environment and navi-
gating without human input. Its vision and local mapping capabilities are realised using
technologies such as radar, lidar, GPS and cameras [11]. When provided also with a
wider representation of the environment, they are able to route autonomously through
an urban road network. In many cases, it is possible to modify existing cars to incorpo-
rate the artificial intelligence. One such example is pictured in Figure 2.2. The research
and development in this field is enormous; however this project innovates on a higher
level – on the protocols for running a courier service, rather than the low-level technolo-
gies. The project abstracts the concept of self-driving cars to autonomous agents that
are given coordinates to drive to and commands to stop or drive.

Figure 2.2: A Toyota Prius modified by Google to operate as a driverless car [12].

2.3 Route Finding and Graph Theory

2.3.1 Haversine Formula

As the simulation takes place on the oblate spheroid that is our Earth, calculating the
surface distance between two points requires special consideration. The Pythagorean
Theorem is for two-dimensional planes and can only provide a rough estimate of ortho-
dromic distance, which is too inaccurate for route finding. It may be acceptable in some
use cases, such as if one has a point P and needs to quickly determine which point from a
large set of well-distributed points is one of the closest to P . If one adjusts the latitudes
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in accordance with the Mercator projection (instead of φ, use ln(tan(φ) + sec(φ)), the
accuracy improves, but there is still substantial error. Figure 2.3 illustrates this with an
example.

For distance measurements that need to be accurate, the Haversine Formula for great-
circle/orthodromic distances is the most appropriate. We define R as the radius of the
sphere and for the Earth, we assume this to be 6,371 kilometres. In actual fact, the
Earth is not a perfect sphere and the radius of the Earth varies from 6,353 km to 6,384
km [13]. However, a spherical approximation will be appropriate, as it will only be used
for short distances and time efficiency will be crucial. Given two points, (φ1, λ1) and
(φ2, λ2), the distance d is calculated as such:

a = sin2(∆φ
2 ) + cos(φ1) cos(φ2) sin2(∆λ

2 )

c = 2 arcsin(
√
a)

d = Rc

where between the two points, ∆φ is the difference in latitude and ∆λ is the difference
in longitude [14].

2.3.2 Strongly Connected Components

A strongly connected graph is one in which every node is reachable from every other
node. As later discussed in 4.1.6, it will be necessary to find and remove disconnected
components of the graph, or rather, prune all but the largest component of the graph.
Furthermore, inescapable nodes must be pruned. This is so that agents will never be
asked to route to somewhere inaccessible, or get ‘stuck’ having completed a route.

There are a number of algorithms that solve this problem by enumerating the strongly
connected components. Whilst most utilise depth-first search, they differ in whether to
perform several rounds of DFS or to do bookkeeping, trading off spatial efficiency for
time efficiency. The former approach is that used in Kosaraju’s algorithm [15], which
must perform the second round of DFS on the transpose graph. As later documented
in 5.3.2, a bespoke algorithm, somewhat similar to Kosaraju’s, was devised to solve this
problem.



Chapter 2. Background 9

Figure 2.3: 10000 pairs of coordinates were randomly selected in Greater London
(a 60 x 54 km map). Their distances were measured using the accurate Haversine
formula, which is on all graphs’ x-axes. In the first row of graphs, the Pythagorean
theorem is used to approximate distance. In the second row, the Pythagorean theorem
on a Mercator projection is used. For both approximators, the values on the y-axis
are multiplied by the length of one degree of latitude at the map’s midpoint. Next
to each graph is a plot of the error as a percentage. In London, comparing with the
true orthodromic distance, the Euclidean distance will be up to 37% less. Using the

Mercator projection, Euclidean approximations will be ±0.5% the true value.

2.3.3 A* Search Algorithm

For a weighted graph, the shortest path problem is solved using Dijkstra’s Algorithm.
This will find the shortest path from one node to every other node in the graph. Though
this will find an optimal solution, it is wasteful if one is only interested in a single path.

The A* search algorithm uses a best-first search, expanding nodes that have the lowest
score and hence are the most promising. This section references the original formal
specification [18]. It uses a heuristic/evaluation function f(n) that combines the full cost
of the path to a node g(n), with the estimated remaining cost h(n) into an estimated
total cost. A* will always find the optimal solution if one exists, as long as there are
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finitely many nodes n with f(n) ≤ f(goal) and the heuristic is admissible. h(n) is
admissible iff ∀n.h(n) ≤ h∗(n), where h∗(n) is the true cost. In other words, it must
never overestimate, otherwise the path that is returned by the algorithm may not be
the most optimal. An underestimation or correct guess is allowable.

Theorem 2.1. Path p1 found by A* is guaranteed to have the lowest path cost.

Proof. Assume a shorter-cost path, p2 exists (i.e. g(p2) < g(p1)). Some partial path of
p2, named p3 exists also. p1, p2, p3 ∈ S, the open set. Because p1 was expanded before
p3, f(p1) ≤ f(p3) and because p1 reaches the goal, h(p1) = 0, so g(p1) ≤ g(p3) + h(p3).
Because h is admissible and p2 extends p3 towards the goal node, g(p3) +h(p3) ≤ g(p2).
Therefore g(p1) ≤ g(p2). Contradiction!

Algorithm 1 A* Search Algorithm
1: function Find-Shortest-Path(graph, start, goal)
2: openset = [start] . discovered, unexplored nodes
3: closedset = [] . discovered, fully explored nodes
4: predecessors = {} . map of node edges, forms tree rooted at startnode
5: gscores = {(start, 0)} . map of best known path costs for each node
6: while openset not empty do
7: choose n ∈ openset such that f(n) is minimal
8: if n = goal then
9: return path reconstructed from predecessors[n]
10: move n from openset to closedset
11: for all (n, neighbour, cost) ∈ graph do . test all of n’s neighbours
12: if neighbour ∈ closedset then
13: skip . assumes consistent heuristic
14: g = gscores[n] + cost . a tentative g(neighbour)
15: if neighbour /∈ openset or g < gscores[neighbour] then
16: predecessors[neighbour] = n
17: gscores[neighbour] = g
18: if neighbour /∈ openset then
19: h = costestimate(neighbour, goal) . an admissible estimate
20: f = g + h
21: add (neighbour, f) to openset
22: return null . no path exists

h(n) is monotonic if the total estimated path cost f(n) does not decrease as the heuristic
goes down the node tree. A heuristic that is admissible and monotonic is also termed
consistent. For some problem domains, this non-monotonic heuristic will demand a
modified algorithm. Line 13 exists for efficiency – there is no point recomputing h(n)
for an already explored neighbour, as it is expected to always be greater. Using a non-
monotonic heuristic will mean this sometimes may not be the case. The line would be
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replaced with code to update the neighbour with the new, lower, g value and update
the neighbour’s parent in predecessors, representing a different, more optimal path.

For an automotive navigation system, these costs can be specified as distances, travel
time or even fuel usage [19]. If we wish to minimise distance, the heuristic estimate
will be the orthodromic, as-the-crow-flies distance to the destination and the total cost
will be the sum of every orthodromic distance across each arc used. Any heuristic
function considers the possibility of a straight-line highway H from current node n to
the destination d, permitting any speed. Trivially, no path can be shorter than the
straight-line distance, so the heuristic is admissible. To find the fastest path, one must
somehow calculate the time it takes to traverse each arc. h(n), the time to drive at full
speed along H is admissible, as it would be impossible to drive from n to the destination
node in a shorter time. Hence h(n) will be a function of the orthodromic distance and
the maximum legal speed of the vehicle. Likewise for fuel usage, each arc cost will be
a function of the distance and the best fuel economy achievable (measured in miles per
gallon) given a road’s speed restrictions. If the car is most efficient at 30 mph, h(n)
would be equal to the fuel usage driving down H at 30 mph. All of these heuristics are
consistent, although they assume the arc costs do not change during the journey.

2.3.3.1 Bounded Relaxation

It is possible to speed up an A* search by increasing the effect of the heuristic function.
If h(n) is admissible, replacing the equation on line 20 to instead calculate f(n) =
g(n) + (1 + ε)h(n) may lead to a non-optimal solution, but it will not be more than
(1 + ε) times worse than the best solution [20]. Look ahead to sections 5.3.3.1 and 7.1.1
to see how this technique is used in the simulation and the real world trade-off between
speed and optimality.

2.4 Travelling Salesman Problem

Given a set of connected nodes in a graph, to find the shortest possible path that visits
each node and returns to the starting position is an NP-hard problem [21]. The same
is true for finding the optimal Hamiltonian path, which starts at some chosen node and
ends at a different node. This project will be heavily interested in this class of problem,
of which there exist many variants and methods of finding optimal or near-optimal
solutions. This section presents two heuristic methods to find near-optimal solutions.
Later on in section 6.1, it is explained how these algorithms were adapted for the courier
simulation, where there are additional constraints and a different definition of optimality.
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2.4.1 Nearest Neighbour Algorithm

The nearest neighbour algorithm is a simple, greedy heuristic for solving the travelling
salesman problem [21]. It begins with a single node n and constructs a path by repeatedly
visiting the nearest unvisited node. Once there exist no further unvisited nodes, an arc
from the last node to n is added and the algorithm terminates. If only a Hamiltonian
path is required, this last step is omitted. It runs in quadratic time, specifically, requiring
1
2(n− 1)n distance calculations.

2.4.2 Genetic Algorithms

As with many other optimisation problems, a genetic algorithm that mimics aspects of
natural evolution – inheritance, mutation, selection and crossover – can be used as a
search heuristic [21]. The initial population may be a randomly generated set of solutions
or it may be seeded with near optimal solutions. A fitness function must be defined to
assess the quality of a solution and in the case of the travelling salesman problem, it will
simply be the length of the path or cycle. In brief, a genetic algorithm would maintain a
large population of solutions (chromosomes), adding and subtracting from this pool over
the course of many loop iterations. There may be a stopping criterion or it could simply
run for a set number of iterations. Such a decision depends on the time constraints
for the system; the latter guarantees termination in a known amount of time, whereas
the former could find a more optimal solution. In each iteration, it selects the top k

solutions as ordered by their fitness. Depending on the implementation, it will perform
one or both genetic operators:

• Crossover. Creating a new chromosome, constructed using aspects of two of the
selected chromosomes. There are many methods for doing this, outlined in [22].

• Mutation. Slightly modifying the chromosome, such as by swapping two ran-
domly picked nodes of the sequence. This can be useful on its own, mimicking
natural selection of asexual organisms. It can also be used in conjunction with
crossover to maintain genetic diversity and avoid local minima.

The child chromosomes are added back into the population. Through the process of
natural selection, it is expected that after many generations, the best solution in the
population is suitably optimal.
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2.5 Related Work

This chapter will conclude by showcasing similar research projects that are publicly
available. It is very surprising how much related work there is. There seem to be
many similar papers that document the simulation of autonomous vehicles, city courier
networks and other transportation domains. Despite this, it appears that this project
will be the first to simulate a same-day courier network that uses dynamic routing and
planning algorithms to maximise efficiency. Having read many papers, it seems that
a common pitfall was that the routing strategies were rarely compared or the results
were inconclusive. Nonetheless, there will be important insights to be gained from
analysing all these related works, even those that don’t directly relate to this project’s
investigation. This section will showcase three papers that contributed the most to
this problem domain, delivered a concrete implementation and crucially provided some
results, so that this project can go above and beyond the state of the art.

2.5.1 AORTA

Approximately Orchestrated Routing and Transportation Analyzer was a software simula-
tion developed to model and optimise traffic flow of autonomous vehicles in metropolitan
areas. It was initially an undergraduate project and was later published as an academic
paper [23] [24]. Though this project will focus mainly on multi-hop routing as a means
to transport parcels, it will simulate traffic to a degree and this work provided some
valuable insight to the routing challenges I would face.

Figure 2.4: AORTA: visualising autonomous agents in downtown Austin, Texas.
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I judged their design to be somewhat flawed in certain areas, though I understand their
reasoning. Their map loader attempts to simplify certain map artefacts that were cor-
rectly drawn by OpenStreetMap contributors, but do not serve their functional purpose
if interpreted literally. Namely, two three-way intersections that are closely linked (less
than 50 metres apart) are combined into a single four-way intersection. This eliminates
unintended bottlenecks in their simulator [26]. In my opinion, hard-coding map alter-
ations like these makes the loader less flexible. Were it applied to other maps, errors are
likely to crop up, ranging from the benign (e.g. slightly suboptimal routes) to the fatal
(e.g. roads becoming inaccessible or disappearing, maps becoming altered to the state
that they are unrecognisable).

Many of the novel concepts proposed are transferable. In a follow-up paper, the authors
detail a new auction-based system for intersection management [25]. When a number of
vehicles would like to use an intersection to continue on their route, agents competitively
place bids at a price proportional to: (1) the utility of being able to use the resource and
(2) how many auctions it intends to bid on. The ‘winner’ is then free to use it and a new
round of bidding can take place if needed. From this, the paper investigates different
‘wallet agents’ to place bids on behalf of the car: free-rider (never bids anything), static
(unlimited funds, always bids a fixed amount, useful for emergency vehicles) and fair.
This latter wallet is initialised with funds proportional to the journey length and at any
given intersection, it will bid funds_left

num_of_intersections_left .

This, among other papers and self-initiated research prompted me to use OpenStreetMap
as my data source and internal data model.

2.5.2 Event-Driven Multi-Agent Simulation

A paper, originating from the University of Manchester and presented at AAMAS’14 (the
13th International Conference on Autonomous Agents and Multiagent Systems) explored
the use of a framework called FAMOS for multi-agent simulations [27]. These were
performed using an event-driven approach, which differs from the more common discrete
time-driven approach. The difficulty lies in that future events must be predetermined –
scheduled at the time of previous, causal events.

It is particularly relevant as it uses a “City Courier Service" as an example model. The
model presented was complex in that it used a real-world street map, agents were either
bikes or cars and the speeds were determined by the type of road. Though it does not
go into the exact detail, the agents decide amongst themselves who fulfils the delivery
using an adaptation of the contract net protocol, as described earlier in section 2.1.1.
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Figure 2.5: FAMOS simulation. City courier service in Hamburg, Germany.

Though the paper advocates writing an event-driven simulation, it was not convincing
enough that this approach will be more appropriate, despite the simulation model being
very similar. If one is to add in randomness and unknown time delays, particularly those
arising from the uncertainty of traffic, there will be too much overhead (i.e. too many
events) to implement a fully event-based simulation. The state of the world is dynamic
and so too will be the behaviour of the agents. The agents in the FAMOS simulation
did not respond to new jobs when they are non-idle, however this is essential for the
courier service that this project proposes. Despite this, the paper was informative as
it demonstrated a working CNP implementation. This provided some reassurance that
CNP (once modified to account for constraints like vehicle capacity that the author had
abstracted) would be appropriate for this project.

2.5.3 An Agent-Based Simulation Tool for Modelling Sustainable Lo-
gistics Systems

Finally, a 2003 joint study between the University of Hamburg and two local couri-
ers investigated optimal strategies to solve the city courier problem. They too used
FAMOS and the city of Hamburg for their investigation [28]. It compared the ‘status
quo’ method of door-to-door delivery with the use of hubs. In particular, the hub and
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shuttle strategy would require hubs to be placed in lucrative areas. Hub-to-hub deliver-
ies would take place periodically and as the packages can be bundled together, efficiency
gains were promised. For lengthy deliveries, local couriers would only travel between
customers and their local hub. The inside/outside strategy requires a single central
hub and the classification of an inside zone of high order volume and many outside
zones. Intra-zone deliveries would take place as usual, but all other deliveries must pass
through the central hub. At the hub, inside-zone packages would be speedily delivered
by bike, whilst for each outside zone, packages would be bundled together and sent out
in batches. Surprisingly, neither strategy brought consistent benefit when evaluating on
total distance travelled.

A follow-up research paper proposed a new strategy, using fixed exchange points [29].
A complex preprocessing step is taken – the city is divided up into many clusters that
best reflect the flow of orders previously observed. As they come through, cross-cluster
deliveries are split up into several orders using the Floyd-Warshall algorithm, which
minimises the number of exchanges to take place at cluster boundaries. Preliminary
results showed this strategy to be more efficient, but very sensitive to suboptimal cluster
creation.

The studies used a mediation protocol that closely resembles CNP: “When an order
is placed, the office announces the request to all potential couriers in order of their
priority. A consignment with bicycle preference is e.g. announced to inactive bicycle-
couriers first, then to active bikers and finally to motorised couriers. The couriers rate
orders according to a quantitative rating function".

The use of one or many central hubs goes against the spirit of this project, which is
to evaluate the profitability of a decentralised autonomous courier network. However,
the methodical way in which these papers presented and evaluated ‘strategies’ will be
mirrored in this report. Furthermore, it provides some useful insight on the expected
efficiency gains that will come from ‘bundling’ deliveries together. This principle is
expected to be one of the major factors in this project that will drive costs down.
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Design Specification

This chapter will provide a non-technical specification of the same-day courier service
that will be simulated – first from the customer’s perspective and then from a business
perspective. At the end of this chapter, one will find figure 3.2 – a flow chart that
summarises the process. This chapter has been written so as to guide the development
of the simulator. Some details are largely irrelevant to the simulation, however they are
provided to convince the reader that such a service is feasible (or not).

3.1 Customer Experience

As customers will not be interacting with a human courier, the user experience is vastly
different. Therefore, both sender and recipient will need to be guided through the process
to minimise the chance of failure.

3.1.1 Booking a Collection

The customer who books and pays for the delivery will need to use the company’s website
or mobile application. A user account, consisting of the customer’s contact and payment
details will need to be set up. When ordering, they will need to provide the source and
destination addresses of the delivery, a rough estimate of the size of the shipment, a
phone number for the recipient and the deadline for the package to be delivered. A
price is displayed or in rare cases, an apology, with a hyperlink to another local courier
who may be able to take the job. If the sender agrees to the price, they are asked to
wait up to a few minutes for confirmation. During this time, the recipient receives a
pre-recorded phone call, asking them to confirm that they will be able to physically take
in a delivery order to themselves up to the deadline. Additional instructions are spoken

17
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on request. If and when it is confirmed, both are presented with a hyperlink they can
use to track the delivery vehicle in real-time. If the recipient is unavailable, the sender
is unable to book the job.

The customer cannot expect an immediate pick-up, but they can expect it to take place
early enough such that the delivery deadline is met. They are notified by a pre-recorded
phone call five minutes prior to its arrival and told a pin code. Upon arrival, unless
specifically requested, the vehicle will sound its horn or play a pre-recorded message.
The sender is expected to walk up to the vehicle, enter a pin code, open the doors and
place their package into the vehicle. They are given two minutes to do this. Their
payment method is charged when the van departs and if the customer does not load the
package, the price is partially reduced based on any cost savings.

3.1.2 Receiving a Delivery

The recipient is informed by a pre-recorded phone call when the van is five minutes
away. Upon arrival, unless specifically requested in this call, the vehicle will sound its
horn or play a pre-recorded message. The recipient is expected to walk up to the vehicle,
enter a pin code, open the doors and retrieve their package into the vehicle. A spotlight
shone onto the package is used to help the user identify theirs, given there may be many
to choose from. They are given two minutes to do this. If they fail to retrieve their
package, the vehicle will continue with its later deliveries and at some point deliver the
package to one or one of many depot/collection points. The recipient and sender are
notified of their options: have the package disposed of, collect the parcel themselves or
to arrange another autonomous delivery, charged at the standard rate.

3.2 Business Operations

3.2.1 Pricing

As customers ask for quotes, they are quoted a price proportional to the amount of
additional driving time it will take to pick up and drop off the delivery, plus a base price.
Existing contracts must not be broken, however, so some demands must be refused if no
vehicle can confidently replan their route to incorporate the new job, without missing
deadlines. An example is shown in figure 3.1. The replanning must also ensure that
at no point the vehicle would become too full or run out of fuel. By providing a link
to an alternative, likely more expensive courier, additional revenue can be earned as an
affiliate.
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Customer charged  η + μ × ( SQ + QC )

Shepherdsbush                             Queensway     Marblearch            Oxfordstreet     Chancerylane            

Customer charged  η + μ × ( 0 + 0 )

Shepherdsbush                             Queensway     Marblearch            Oxfordstreet     Chancerylane            

Shepherdsbush                             Queensway     Marblearch            Oxfordstreet     Chancerylane            
Customer charged  η + μ × ( min(CO, MO) + OM )

t=0

t=1

t=2

Figure 3.1: An illustrative example of courier pricing in proportion to driving time.
Coloured arrows represent unfulfilled jobs that are booked in at different points in time,
t. They span from the pick-up to the drop-off location and the points used as examples
lie along a straight road. A route cost is the driving time in current traffic conditions
(e.g. for Shepherd’s Bush to Queensway, SQ is typically 0.2 hours). At time 0, the red
job is booked and the customer is charged for the driving time from Shepherd’s Bush
to pick-up location, Queensway, plus the additional time thereon to Chancery Lane.
Shortly after at time 1, the blue job from Marble Arch to Oxford Street is booked
and the customer only pays the base price, because they are ‘piggybacking’ on a route
already paid for by the red customer. At time 2, the agent has now picked up the
red job. The yellow customer books a more difficult job from Oxford Street to Marble
Arch. Here, there is no piggybacking possible and the cost to drive from O to M must
be paid. However, the agent can choose to either complete the red job first and double
back or complete the blue job first and return back to O. Its choice will be whatever
route is shorter and cheaper for the yellow customer, Chancery Lane to Oxford Street
or Marble Arch to Oxford Street. Base price η and unit price µ are constants that can

be set after running the simulation and performing break-even analysis (in 7.8).

3.2.2 Routing

When jobs are assigned to the vehicles, they incorporate them into their routes in the
most optimal way. For this reason, it is not possible to give customers an estimated
pick-up and drop-off time until five minutes prior to the event. Vehicles must not divert
their routes in this window, however seemingly arbitrary rerouting will be commonplace
at other times. There is a rare edge case when this promise must be revoked, when a
delivery is followed immediately by a pick-up, but the delivery failed. The vehicle may
not have enough room to carry both and so must notify the customer.

A ‘failed’ waypoint refers to the situation when the customer does not put in or take out
their package from the vehicle. This would often be due to the customer not being in.
Failed pick-ups may be partially refunded, but the base price will always be payable. The
exact amount will be proportional to the amount of driving time saved after removing
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the now unneeded delivery waypoint and replanning. Due to the triangle inequality, this
will never be zero. Failed deliveries are rerouted to one or one of many depot/collection
points. The deadline for this revised drop-off is twelve hours, so it is unlikely to pose a
substantial fuel or opportunity cost, unless it is a physically large package. Low failure
rates are expected in practice due to the real-time tracking and frequent notifications.

3.2.3 Security

Delivery vehicles are fitted with high resolution cameras and the floor of the vehicle is
a set of scales. A cellular network connection and GPS is fitted, as is standard with
autonomous vehicles. If theft, vandalism or other mischief is detected, it can alert the
company and the police. Faults with the vehicle can also be reported to the company
or its insurers, so that an engineer can repair it.

When the sender is invited to place their package into the vehicle, it will politely notify
them by pre-recorded message if the scales and cameras detect a package to be removed.
The same occurs if the recipient begins to remove packages that are not theirs. If a
harsher message is also ignored, the vehicle will send a distress signal and drive off to
complete further deliveries, whilst a company representative can inform the customers
whose packages were stolen.

It should be noted that this service we propose is not designed to carry high-value
consignments and compensation offered to customers in the event of loss would be capped
at a low amount. The simulator will not model these security measures, but the protocols
developed should be able to accommodate them as extensions when they are installed
on actual vehicles.

3.3 Summary

A summary of the courier business is presented as a flow chart overleaf, in figure 3.2.
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Chapter 4

Data Sources

4.1 OpenStreetMap

The simulator uses real-world road map data from OpenStreetMap – a UK-based non-
profit, Wikipedia-inspired, collaborative project that strives to map the whole world.
Its data is crowdsourced from the general public and made available under the Open
Database License, so it is free to use for research purposes, among others [30].

OSM data for a given region can be exported as an XML file, which lists the data
primitives – nodes, ways and relations. The simulator enumerates such files in its working
directory and upon the user selecting one, it will parse the XML into its internal data
structures. Theoretically, any sized region can be loaded, however dense cities occupy a
large amount of disk space. Instead of using the standard .NET XMLDocument loader,
to improve on speed and memory utilisation, the program developed uses a stream-based
reader to navigate the file and extract only the data required.

Greater London, as pictured, is 904 MB as an uncompressed XML file and utilises 1.27
GB of memory for 3,856,726 nodes and 167,414 ways (716,148 arcs).

4.1.1 Nodes, Ways and Relations

Minimally, a node is a point that consists of a unique ID and a pair of latitude and
longitude coordinates [31]. They can be used to identify standalone features, such as
trees (natural=tree) and telephone boxes (amenity=telephone). These tags are key-
value pairs associated with nodes, ways and relations. Both the key and value are free
format text fields, however in practice there are agreed conventions of how tags are used.

22
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Figure 4.1: Greater London, as pictured on OpenStreetMap.org and in the simulator.



Chapter 4. Data Sources 24

A way is a linear feature, defined in the XML structure as an ordered list of 2–2000 node
IDs, together with some tags [31]. In terms of graph theory, they are directed paths. As
the arcs connecting two nodes are straight lines, ways will often consist of many short
arcs, so as to represent a curve in the real world. An open way can take many forms,
such as waterway, railway, aeroway, coastline and indeed, highway [32]. There are
also closed ways and areas. These are polygons – i.e. the last node of the way is also the
first node. Examples include roundabouts and areas tagged as parks (leisure=park).
The module that parses this data is indifferent to the particular classification of way.

Relations are multi-purpose data structures that document a relationship between two
or more nodes, ways and/or other elements [31]. A common use is to label bus and
cycle routes, which will typically consist of an ordered list of ways. Another use is to
accurately identify turning restrictions across intersecting ways. This highlights one
abstraction that the simulator must make: irregular turning restrictions are ignored, as
to properly model them would either add a large overhead to the routing algorithms
or require a complete, messy redesign of the data structures that represent nodes and
edges. Such a redesign would degrade the time and spatial complexity of the simulation,
making large city simulations infeasible.

4.1.2 Highways

This application is mostly concerned with ways that are tagged as highways, specifically
those that can be traversed by a privately-owned autonomous car. OSM define this key
as “any kind of road, street or path” [33]. The highway tag will often have such values as
track (agricultural roads), path (footways), cycleway, bus_stop and other such things
that are more suited to pedestrian and public transit applications [34]. These ways are
discarded and the remaining highways are filtered further on the tag access to exclude
those that are tagged as private, only for public service vehicles (e.g. routes through
bus stations) or no throughfare.

Ways can be bidirectional or one-way and these are parsed as such. There exist some
very rare instances of oneway=reversible, which identifies a road (typically a lane of a
main road) that’s direction is scheduled to switch at certain times of day to accommodate
traffic flow. Such cases are assumed to be always one-way in an arbitrary direction. Note
that no such roads exist in any of the maps used for evaluation.

The tag, maxspeed, identifies the maximum lawful speed for vehicles on a given highway.
This is parsed and converted from miles per hour to kilometres per hour where needed.
If no tag is present, the simulation will naively assume it to be the national speed limit
for that type of road and vehicle class.
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4.1.3 Road Delays

When navigating the public road network, much of the journey time is spent waiting at
traffic lights and pedestrian crossings. These are mapped in OpenStreetMap as tagged
nodes of the road network. The parser labels the nodes as they are iterated through,
filtering for the following particular key-value combinations. As tagging standards for
crossings have changed over time and some contributors provide more detail than oth-
ers, nodes often have multiple tags, such as highway=crossing; crossing_ref=zebra,
which may appear in any order. For this reason, all tags are parsed and the classification
of the greatest magnitude is used:

1. railway=level_crossing marks a level crossing. Highest magnitude.

2. highway=traffic_signals marks a set of traffic lights, typically used at an in-
tersection to regulate traffic circulation.

3. crossing=traffic_signals and crossing_ref=pelican/toucan/pegasus/puffin

mark pedestrian crossings that use traffic lights.

4. crossing=uncontrolled/zebra, crossing_ref=zebra and highway=crossing mark
pedestrian crossings that do not use traffic lights and hence are likely to have fewer
users. These crossings are not counted at all if they lie on a residential or service
road. Lowest magnitude.

Some potential road delays are ignored, as they are of very low abundance. These include
movable bridges such as Tower Bridge in London and toll booths.

4.1.4 Businesses

Same-day city couriers are primarily used by businesses, hence the simulation spawns
a high proportion of jobs with pick-up or drop-off locations that correspond to real
businesses. A typical city contains thousands of nodes and ways that are tagged as
being one of the following:

• shop=*. Possible values include supermarket, convenience, fashion and florist.

• office=*. Possible values include company, lawyer, accountant and government.

• craft=*. Possible values include carpenter, shoemaker, brewery and electrician.

• amenity. Only the values school, restaurant, bank, fast_food, cafe, kindergarten,
pharmacy, hospital, pub, bar, fire_station, police and townhall are included.
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These nodes would not lie directly on the road network, but in most cases they will be
defined within a close proximity. In some cases, such as with shops that are within a
shopping mall, this would not be the case. In any event, the parser identifies and names
(by parsing a tag like name=HSBC) these nodes and adds them to a list, such that they
can be highlighted in the map display. Many businesses are not represented as nodes,
but instead as closed ways (polygons that resemble the building shape). In these cases,
the parser adds only the first node of the way to the list. Visiting a business node
involves routing to the geographically nearest node that is part of the road network.

In the simulator’s GUI, where the name of the business is provided, it is shown verba-
tim. Otherwise, for unnamed shops and offices, it is transformed for readability like so:
shop=mobile_phone becomes “Mobile phone shop”. For businesses of keys amenity and
craft, just the value is shown (e.g. “Fast food” or “Optician”).

4.1.5 Fuel Stations

The vehicles need designated points where they can refuel. All petrol stations are
mapped in OpenStreetMap as nodes or ways, under the tag amenity=fuel [35]. This
can be parsed alongside businesses and was initially done so to get a list of node IDs.
However for greater flexibility, it was decided to store fuel points as editable plain-text
node IDs in an .aa file to accompany the .osm (XML) file. This meant it was easy
to add missing stations and remove incorrect entries. In our model, depots serve as
fuel stations as well. After parsing the map, the .aa file is read to reveal depot node
IDs on the first line and fuel point node IDs on the second. These nodes are stored in
separate lists for fast lookup. The simulation makes the assumption that all fuel points
and depots operate 24 hours a day. As depots are frequent delivery waypoints, they
are uniquely labelled as ‘DEPOT A’ to ‘DEPOT Z’. Figure 4.2 shows all of the fuel
stations (of which some have been labelled depots also) mapped in Greater London. It
also shows all yellow business nodes and red road delay nodes.

4.1.6 Faults

As OpenStreetMap crowdsources its data, it is inevitable there will be inaccuracies in
the properties and tags of nodes and ways. Incorrect or missing information will, to some
extent, limit the realism of any simulation. For example, speed limits of roads are sourced
mainly from users and the property is often unspecified. In these cases, the parser must
estimate the speed limit based on the laws of the country the simulation takes place in.
The UK government clarify the speed limits that usually apply, but local councils specify
different speeds, which are signposted [36], but not always mapped. Furthermore, this
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Figure 4.2: Fuel stations, businesses and road delays, modelled in Greater London.

data can fall out of date. OSM do not display speed limit data on its visual maps (only
in the ‘edit mode’ and in the XML export). Such invisible discrepancies in the metadata
are more likely to go unnoticed than topological errors.

Another major issue that must be overcome is the presence of inaccessible parts of the
map, as without careful pruning, these will cause the routing algorithms to fail.

Figure 4.3 shows two examples from Jersey. In the first, a way, ‘Mont Misere’, has been
labelled a track, causing a road leading off it to be inaccessible. If a job spawned here,
no agent would be able to fulfil it. In the second, two one-way service roads off ‘Route de
la Marette’ link the entrance and exit to a private car park. Often in OpenStreetMap,
car parks are mapped out, however in this case, only an area has been formed and
tagged amenity=parking. Were a job to spawn on the entrance to this car park, the
agent would be unable to escape. Were a job to spawn on the exit, no agent would be
able to reach it. The method used to identify these as disconnected graph components
and prune them is in section 5.3.2.

4.2 HERE Traffic API

HERE is an online mapping service owned by Nokia. They provide a traffic API for
developers, accessible over HTTP. One of their endpoints is traffic flow data. When
provided a set of coordinates that define a bounding box, the API can return a list
of main roads. Each main road has properties about its current flow: free flow speed
(a motorist’s average speed given ideal conditions), jam factor, current estimated speed
capped or uncapped by the speed limit and the confidence to which it states these figures
[37]. By default, HERE identifies sections of roadways using Traffic Message Channel
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Figure 4.3: Examples of inaccessible, inescapable ways from OpenStreetMap.

point codes and lengths. A mapping from TMC codes to OpenStreetMap nodes does
not exist in the UK [38]. However, HERE also provide an alternative representation in
the form of unordered lists of coordinates that form the shape of the roadway segment.
Using a script that ran every five minutes, 20 GB of data was scraped for the Isle
of Wight, Las Vegas Valley and Greater London over the course of one typical week
(Tuesday 14th April 2015, 00:00 – Monday 20th April 2015, 23:59 GMT).

4.2.1 Integration Challenge

It was hugely challenging to integrate this data with OpenStreetMap. The complete
lack of common identifiers and the fact that roadway and OSM highway lengths can
vary significantly meant that an approximate solution had to be developed using the
lists of points. Some of the coordinates were observed to be inaccurate to such an extent
that the corresponding ways could be ambiguously construed from the data. Hence, the
solution had to be robust to noise. Realistic traffic data was of the utmost importance
to the credibility of the simulation results, so a lot of effort was put into this integration.

In the simulator, the Node class was augmented with SpeedAtT ime tables to store
speeds. Each one of the 2016 slots corresponded to time intervals of the week, with
Monday 00:00–00:05 being at index 0. For each of the 2016 XML dumps, a loop ran
over each ‘flow item’ (a road segment). For each pair of coordinates used to draw the
road shape, a mapping was found from the pair to the geographically nearest node that
was part of the map’s connected road network. This demanded a new, spatially indexed
data structure to store nodes – see section 5.3.1.2. The flow item’s estimated speed was
placed into the tables of each of these nodes at the corresponding time slot. So that the
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simulation time can start on a Monday at 00:00:00 in any time zone, the snapshots had
to be enumerated with the help of an offset – 0 for UK maps, 1920 for Las Vegas.

The next step was to iterate over all ways in the map, inspecting their nodes. If at
least 20% of its composite nodes had a full set of speeds, the mean average was taken
at each time step. This data was then exported to the ‘.aa’ files in the format WayID :
speed0, speed1, ...speed2015. Upon restarting the program, this is loaded following the
OSM map data. If it doesn’t find a complete set of traffic data snapshots for any
particular way, it will assume no traffic and use the roads’ speed limits exclusively. This
exporting step was not required, but considering the disk footprint is almost 100 times
reduced, it is highly preferable.

4.2.2 Discussion

Despite the challenges faced, the final result appears to be a very accurate translation.
On the three maps used, no falsely identified ways are apparent, nor are there any main
roads missing traffic data. There are a few short gaps in long stretches of highway, caused
by disjoint ways from the OpenStreetMap data. Not wanting to risk introducing false
positive flow data, the parser does not attempt to correct these. The peaks caused by
rush hour traffic appear to perfectly match up to time and day of week. Although certain
main roads are almost always moving at below free-flow speed, others vary day by day.
This gives more interesting consequences, however it may have been more appropriate
to use a data source that provides smoother data that has been averaged over time.

Figure 4.4: HERE Maps traffic data in Greater London, as parsed by the simulator.
Traffic intensity is shown on a Monday at 00:30, 06:30 and 08:30. Darker shades of
red indicate a high difference between the current speed and the fastest speed observed

throughout the week.
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Implementation

5.1 Implementation Language

Despite advice from previous students and the desire to build upon the related works,
it was decided very early on that the simulator would be developed from scratch. Sim-
ulation packages such as MASON, FAMOS and SWARM were investigated, however it
was decided that for full control, clean design and performance, it would be better to
develop a bespoke solution from the ground up. The lack of unnecessary overhead al-
lows for massive environments and lengthy simulations. Further, implementing complex
interactions between agents, such as the Contract Net Protocol, would have been unnec-
essarily challenging. The implementation runs as a 64-bit Common Language Runtime
(CLR) binary on the Microsoft .NET 4.5 framework and is written in Visual Basic.NET.
This decision was mainly grounded in the ability to quickly prototype GUI applications.
.NET also offers a good balance of computational performance to development/debug-
ging time. The program makes extensive use of .NET’s Language-Integrated Query
(LINQ) for powerful, yet succinct operations on lists and other collections. In the final
release, no additional libraries or frameworks were used. It can be run on Windows or
using Mono, Linux and Mac OS X.

5.2 Discrete Event Simulation

The actors within the simulation are the autonomous agents and the centralised com-
ponent that generates and broadcasts jobs to the agents. An AACourierSimulation

object holds the state of the simulation. This is a sub class of AASimulation and it has
a sibling class AAPlayground, which is discussed in the appendix, section C. The class
contains a list of Agents and the centralised component is accessed via a module named

30
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NoticeBoard. This was necessary, as with some routing strategies (namely, CNP5, as
described in section 6.2.1.5) it is required that agents are able to interact directly with
the centralised component, in addition to the other way around. The noticeboard con-
tains a global Timespan object to represent the time that has elapsed. This begins
at 00:00:00 and the simulation begins on a Monday, which is significant because job
frequency and traffic varies by the time and day of the week. The simulation object pro-
vides a Tick() method, which in turn calls NoticeBoard.T ick() and then for each agent
calls Agent.Move(). When the noticeboard is ticked, the current time is incremented
by one second, which is the smallest unit of time represented in the simulation. Every
tick, the noticeboard ‘ticks’ the dispatcher (see 5.5.1), which may or may not generate
a new job to be immediately broadcast to the agents by the broadcaster (see 5.5.2). As
would the central server of a real-world courier firm, the noticeboard also keeps records
of past and current jobs.

Agents are dynamically added to the simulation by the user via the main GUI form.
They, along with jobs that are generated, are assigned unique identifiers from a UIDAssigner
module. This is immaterial for the simulation, but it does allow the user to observe and
reason about particular jobs and agents.

5.2.1 Event Logging and Statistics Collection

Another module, named SimulationState, logs events and caches the current state
of agents and their jobs, which can then be displayed in the GUI. This approach was
favoured over direct access between the GUI code and the AASimulation object. As the
GUI must be kept asynchronous with the simulation, race conditions can occur unless
the simulation object or objects therein are locked, which would make the simulation
code cluttered and may hurt performance. The SimulationState module acts as an
intermediate data store. In addition to caching state variables, such as job counts, it
provides methods to log events to a queue, which is dequeued to the GUI form. Events
are one of fourteen neatly formatted strings that are built using the factory pattern in
an LogMessages module. For example, Agent has refuelled: {0} L at a cost of £{1}.
Events may have an associated agent ID, unless they originate from the NoticeBoard.
Figure 5.1 shows an example of a simulation state.

A separate statistics module, named StatisticsLogger, is a wrapper for a largeDataTable
that logs current and cumulative aspects of the simulation, as it runs. In the loop that
calls AASimulation.T ick(), every n ticks, a call to StatisticsLogger.Log(AgentsList)
is made to log the simulation state. For testing, a value of n = 20 was used, because
long simulations generate too much data to store and graph. The module also provides
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Figure 5.1: The simulator GUI, showing lists of agents, their jobs and simulation
events.

functionality to export the data to XML, during or after the simulation, which was used
in the evaluation to produce the final graphs.

The data table is used by a statistics GUI form. It is bound as a data source to a
.NET Chart control and the values from the most current row are displayed in the
sidebar. The chart plots simulation state variables as a line graph, with time on the
x-axis. Tick marks are drawn on the x-axis every hour (3600 ticks), and grid lines every
day. Selecting one or more column names from the sidebar plots them as series on the
chart. A checkbox, if ticked, refreshes the chart periodically for a live display. A button
allows the user to save the graph as a PNG file. This GUI form is shown in figure 5.2.

Figure 5.2: The statistics GUI, plotting over 1.5 days, the current fuel supply, with
cost and revenues. Cost and fuel reserves spike upwards when agents refuel.
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5.2.2 Simulation Parameters

All important parameters and constants reside in one particular module, SimulationParameters.
A GUI form allows the variables to be changed before or during the simulation. As well
as the speed of the simulation, the graphics refresh rate and the opacity of the traffic
graphics overlay, these include:

• Dispatch rate coefficient, to control the frequency of jobs being spawned. See 5.5.1.

• Package size. Specifically the λ value used for the exponential distribution. See
5.5.1.

• Deadline excess. Specifically the θ value used for the gamma distribution. See
5.5.1.

• Probability of failed pick-ups, and also of deliveries. See 5.5.3.

• Delivery fee base and unit price. For example, £2 + £5.00 per marginal hour of
driving.

• The value of ε to use in A* searches. See 5.3.3.1.

5.3 Geography

5.3.1 Data Structures and Objects

The data structures used to reason about the OpenStreetMap data were chosen for speed
and space efficiency. All of these are held within a single StreetMap object, which is
instantiated when parsing the OSM data and owned by the AASimulation object. The
classes that make up the geography of the simulation are described below and shown
pictorally in figure 5.3.

• Node. Represents an OSM node. StreetMap owns a list of all of these, as well as
a list of depots, fuel points and businesses, which are all just Nodes.

• Way. Represents an OSM way, but may also contain an array of traffic speeds
from HERE maps. All ways contain an ordered array of Nodes, which make up
the shape of the highway. StreetMap owns a SortedList ofWay, so that they can
be quickly accessed by their OSM ID, when the parser is iterating through traffic
data.
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• Bounds. A rectangle with coordinates for the top-left and bottom-right points.
This is parsed directly from the OSM XML file.

• Hop. An arc between two IPoints, with an associated Way and a precomputed
distance.

• HopPosition. An exact position along a Hop, represented as a floating point
percentage.

• NodesAdjacencyList. See 5.3.1.1.

• NodesGrid. See 5.3.1.2.

Node and HopPosition implement IPoint, which is used throughout the program
in cases where only GetLatitude and GetLongitude are relevant methods. When a
HopPosition is instantiated from a Hop and a percentage, the end points of the Hop
need to be downcast. Its constructor ensures that there can never be a HopPosition
defined as a point between two HopPositions, as this could start a long descending
chain. Instead, it coalesces them based on the product of their percentages.

Figure 5.3: A visual example of a StreetMap, showing five Nodes, two Ways (one of
which is directionally one-way and also has traffic information), Hops (one between a
pair of Nodes and one between a Node and a HopPosition), a HopPosition between

Nodes 1 and 2 and a NodeAdjacencyList.

5.3.1.1 Node Adjacency List

StreetMap owns an adjacency list for the nodes that make up the connected road
network. It contains a Dictionary (hash table) of NodesAdjacencyListRows, that are
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indexed by their node IDs. Each row has a list of NodesAdjacencyListCell to represent
outgoing arcs, each of which has a Node (the outgoing node), the corresponding Way

and the distance, calculated using the Haversine Formula (see 2.3.1). This is an ideal
data structure for fast exploration of the road network, as all lookups occur in constant
time. The structure is built up iteratively, using its AddWay method which creates new
cells for each arc of the Way and new rows for each newly encountered Node. Unless
the Way’s one-way flag is set, it is traversed in both directions. After processing each
way, the non-trivial task of pruning any disconnected components remains. See 5.3.2.

5.3.1.2 Nodes Grid

Initialised using the Bounds of the StreetMap, this object contains a 100 by 100 array
of Node lists. Each list is a quadrant of the map. StreetMap owns a grid of the nodes
of the connected road network. This constitutes a spatially indexed data structure. For
tasks like mapping business Nodes and HERE Maps coordinates to their nearest road
network Nodes, the speed improvement is around 1111x compared to iterating through
each node in the adjacency list. Computing distances using the Haversine formula is
expensive and large maps have millions of nodes, so this data structure was absolutely
necessary in order to run long simulations. The GetNearestNode(lat, lon,max_radius)
function determines the quadrant that the point lies in and starting with a radius of
r = 1, checks that quadrant and all neighbouring quadrants for nodes. After each scan,
if no nodes are found, r is incremented and the search space increases to (2r + 1)2. An
example of how an OSM map translates to a grid is shown in figure 5.4. The algorithm
implemented in GetNearestNode is shown diagrammatically in figure 5.5.

5.3.2 Map Pruning

The first round of pruning occurs in the parsing step (see 4.1.2). It consists of simply
ignoring the ways that are not accessible highways – for example, footpaths, dirt tracks,
private driveways and others. Having done this, the NodeAdjacencyList that remains
will represent a directed graph, which is most likely not strongly connected. Though
a number of formally documented and verified algorithms exist to enumerate strongly
connected components, of the three tried (Kosaraju’s [15], Tarjan’s [16] and path-based
strong component algorithm [17]), none of them were functional for the input data at
hand – massive graphs where 99% of the nodes are present in a single, strongly connected
component, C. A simpler, more efficient algorithm was devised to find C and is most
similar to Kosaraju’s Algorithm. It is described in pseudocode below and demonstrated
diagrammatically in Figure 5.6. It requires as input, a node start, which the user knows
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Figure 5.4: The ‘nodes grid’ for Leoti, KS, USA and its highly detailed map feature,
Leoti Cemetery, therein.

is present on C. The parser uses the first, user-specified depot node, or if one is not
available, the node that is geographically closest to the centre point of the map. In
simplest terms, the algorithm performs a non-recursive depth-first search from start,
which forms a tree of nodes that are labelled as explored. These nodes are accessible,
but not necessarily inescapable. At this point, only start is connected. Iteratively,
discovered nodes call a helper function to try and run a depth-first search to any other
connected node. If this succeeds, the node and all nodes of that path are labelled as
connected. All but the connected nodes are pruned from the graph.

On an AMD Phenom II X4 955, the time needed to prune 13346 nodes from Greater
London’s total of 706117 ranged from 4.2–4.6 seconds. The final loop in lines 15–18
takes up most of the computational time. Replacing it with a Parallel.ForEach loop
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Figure 5.5: An example of finding the nearest road network node to a point in a
sparse area of a ‘nodes grid’.

and locking the HashSet objects widened the range to 2.0–6.4 seconds and cluttered
the code, so the single-threaded version was used.
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Figure 5.6: Algorithm to prune components that are not strongly connected to node
A.

5.3.3 Route Finding

A Route object is simply an ordered list of Hops, wherein all intermediate points are
Nodes, apart from the start and/or end position, which may be a HopPosition. A
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Algorithm 2 Strongly Connected Components Algorithm
1: procedure Remove-Disconnected-Components(graph, start)
2: explored = {start}
3: dfsStack = {start}
4: while dfsStack not empty do . non-recursive DFS from start
5: n = dfsStack.peek
6: for all neighbour to n do
7: if neighbour /∈ dfsStack and neighbour /∈ explored then
8: push neighbour to dfsStack
9: break while
10: move n from dfsStack to explored
11: for all n /∈ explored do . prune unreachable nodes
12: prune n from graph

13: verified = {start}
14: unverified = explored \ verified . set difference
15: for all n ∈ unverified do . prune inescapable nodes
16: if n /∈ verified then . verified may be modified by this function
17: if not VERIFY-CONNECTED-NODES(n, verified, graph) then
18: prune n from graph

19: function VERIFY-CONNECTED-NODES(start, connected, graph)
20: explored = {start}
21: dfsStack = {start}
22: while dfsStack not empty do . DFS to any node in the connected set
23: n = dfsStack.peek
24: if current ∈ connected then
25: add all dfsStack to connected
26: return true
27: for all neighbour to n do
28: if neighbour /∈ dfsStack and neighbour /∈ explored then
29: push neighbour to dfsStack
30: break while
31: move n from dfsStack to explored
32: return false . start cannot be verified, as no path exists

Route provides methods that sum the costs of each hop to provide a total cost. These
are stored as fields, but evaluated lazily, to avoid having a heavyweight constructor.

Depending on how the agent is configured, the cost it is interested in minimising is
either distance, driving time or fuel usage. The route finding class, AStarSearch,
takes a RouteF indingMinimiser – an enum with values DISTANCE, TIME_NO_TRAFFIC,
TIME_WITH_TRAFFIC, FUEL_NO_TRAFFIC and FUEL_WITH_TRAFFIC. Optimising for fuel
efficiency is likely to yield similar results to time, however it will not prefer to use high-
ways that allow driving at over 86 km/h (section 5.6.3.1 explains why). By default,
agents attempt to minimise time with traffic.
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The implementation of the A* algorithm as described formally in section 2.3.3 is aug-
mented slightly to account for HopPositions in place of source and destination points.
It begins by checking for edge cases: where the two points reside on the same Hop or
are equal to each other, in which case the solution is trivial. If not, it runs the algorithm
as specified in the background, using a priority queue of AStarNode objects in place of
openset and predecessors. An AStarNode contains a reference to its predecessor/par-
ent node, or null if it is the source node. Upon completion, the successful AStarNode is
unravelled all the way to the root to create and return a Route. Expansion of the lowest
cost node in the priority queue is done by enumerating the NodeAdjacencyListRow.
If the first expansion is a HopPosition A

x%⇒ B, it adds B to the queue and also A if
its Way is not one-way. If the A* search’s destination is a HopPosition like denoted
above, upon exploring A (or B if the way is not one-way), it will add an AStarNode

with a heuristic cost of 0. In both cases, the costs are calculated in the same way as
if the source and destination HopPosition was a node itself. The adaptation is quite
intricate, but it is necessary to allow routing between positions that lie on arcs, not just
nodes. The costs are all calculated using the great circle distance, which is found using
the Haversine formula, as described in section 2.3.1. Where d = distance(n, dest), the
computation depends on the minimiser:

Minimiser Total cost, g(n) Heuristic, h(n)
Distance

∑
h∈hops distance(h) d

Time, no traffic
∑

h∈hops distance(h)/speed_limit(h) d/max_speed

Time with traffic
∑

h∈hops distance(h)/speed_at_time(h, th−1) where
th =

∑
i=0..h−1 distance(i)/speed_at_time(i, ti)

d/max_speed

Fuel, no traffic
∑

h∈hops fuel_usage(distance(h),min(speed_limit(h), 86)) fuel_usage(d, 86)

Fuel with traffic
∑

h∈hops fuel_usage(distance(h),min(speed_at_time(h, th−1), 86)) where
th =

∑
i=0..h−1 distance(i)/min(speed_at_time(i, ti), 86) fuel_usage(d, 86)

max_speed is a constant set to 112 km/h – the national speed limit in the UK and USA.
For minimising time and fuel and accounting for traffic, it is important to keep track
of the total time elapsed as the tree of nodes is explored. This makes g(n) a recursive
function with a base case cost of 0. In practice, to save computation time, the parent
node n′ cost g(n′) and its current time tn′ is stored in the parent AStarNode object.
Expanding the path from n′ to n involves incrementing the cost and if applicable, the
current time.

5.3.3.1 Bounded Relaxation

As discussed in the background (2.3.3.1), it is possible to speed up an A* search if
one makes the heuristic non-admissible. As evaluated in some detail in section 7.1.1,
computation time is substantially reduced and the optimality trade-off is justified. The
heuristic cost is multiplied by (1 + ε), where ε = 0 by default, but can be increased by
the user, pre- or mid-simulation.
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An admissible heuristic is one that never overestimates the cost. However, the estimate
may be so much lower than the true cost that the search is almost as inefficient as
an uninformed breadth-first search. For minimising time in particular, the admissible
heuristic suggests that any node may be the start of a motorway going straight to the
destination. In Central London, where the average traffic speed is 14.5 km/h [39], this
leads to A* searches that evaluate nearly every node. Setting a value of ε = 4, is
equivalent to adjusting the ‘speed limit’ from 112 km/h to 22.4 km/h. This reduces the
search space and is unlikely to produce a different solution.

5.3.3.2 Route Caching

As routes between waypoints need to be evaluated many times in successive runs of the
planning algorithm (see 6.1), the timing of the simulation can be improved by caching
precomputed routes that are known to be optimal. If any part of the simulation needs
a route that it suspects may be re-evaluated by itself or by another agent, instead of
instantiating a new AStarSearch, it uses the method GetRoute(src, dest, time) in the
RouteCache module. This essentially performs a constant time lookup in a table with
composite key 〈src, dest〉. It then compares the absolute difference in the starting time
of the route with any routes available – typically three or fewer. The optimal route will
vary by time of day, but using the assumption that the optimal route will be more or
less the same within thirty minutes, RouteCache may return a cached Route that was
scheduled to begin up to ±30 minutes away.

If a recent route is not present in the cache, a new one is computed and indexed.
Typically, the AStarSearch class alone accounts for 85% of the simulation’s CPU
time, even after extensive profiling and micro-optimisation. Given that in the simu-
lation, the cache hit rate is typically around 80% 1, this design decision more than
triples the simulation’s performance. The nested lookup table is implemented using
a Dictionary〈Dictionary〈IPoint, List〈Route〉〉〉〉. A standard List was appropriate to
store routes between the same points, as Routes have a StartingT ime field and this can
be accessed using a simple LINQ query.

Every twenty-four hours of simulation time, the outer Dictionary is reinstantiated and
its memory footprint reclaimed by the garbage collector. Without this, the simulator
would eventually run out of memory.

1If the agents’ RouteF indingMinimiser is not one that accounts for traffic, the time check can be
omitted. An 80–90% hit rate is achievable in this case.
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5.3.3.3 Other Attempts

Alternative optimal and near-optimal algorithms were implemented, however they are no
longer used as the final A* implementation described above was the most time efficient
and provides full control with regards to the speed/optimality trade-off:

• In the early stages of the project, a simple breadth-first-search was used. Long
routes would cause OutOfMemoryExceptions, due to the fact that the search is
uninformed.

• When experimenting with large maps with long, windy roads, a modified A*
search that iteratively expanded nodes until meeting an intersection
was written. This was still optimal and performance was marginally improved in
rural maps (such as Alaska, USA), but the increased overhead made it slower for
dense cities.2

• Bidirectional A* search was attempted, but it was unclear when to stop the
search. Stopping when a common node was reached gave solutions that were far
from optimal.

5.4 Traffic

A city road network simulation needs to simulate vehicle and pedestrian traffic to provide
meaningful results. With large maps, it is infeasible to simulate tens of millions of non-
courier agents. Instead, the simulation uses approximated traffic flow speeds for major
roads and probabilistic activation of crossings and traffic lights, which block parts of the
road for a number of seconds.

5.4.1 Traffic Flow

As discussed in section 4.2.1, the main challenge in implementing traffic was to union the
two sources of data, OpenStreetMap and HERE. As the simulation runs, the agents have
RoutePositions, which consist of an ordered list of Hops. Each Hop has an associated
Way. When the agent moves, theWay’s GetSpeedAtT ime(t) method returns the speed
in kilometres per hour at which the agent is allowed to move along thatHop. If its current
Way has traffic data, this is likely to rise and fall throughout the week. Otherwise,

2This is similar to the ‘reach algorithm’, which was used by Microsoft Research to improve route
finding along freeways in the USA [40].
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t is ignored and the way’s speed limit is returned – either the one specified in the
OpenStreetMap data, or if unspecified, the national speed limit for that type of road.

The traffic traces were sampled every five minutes for the course of a week, so if the
data for a way exists, this function first transforms t into a number corresponding to the
sample index, i ∈ [0, 2016). An internal array of floating point numbers holds the data.
Some micro-optimisation is performed in theWay class because the GetSpeedAtT ime(t)
method is called very often by the route finder. It is also called in the Route class method
GetEstimatedHours(StartT ime), which is used by the routing strategies to determine
if routes will be completed on time. As later detailed in 5.7.1.3, a separate function
is used to visualise congestion. GetSpeedDifferenceAtT ime(t) returns the difference
between the highest speed of the week and the current speed: max(SpeedAtT ime) −
GetSpeedAtT ime(t).

5.4.2 Road Delays

As discussed in section 4.1.3, nodes that represent level crossings, traffic lights and
pedestrian crossings are marked as potential delays. The main challenge was to de-
vise a probabilistic activation scheme, which determines the time points at which they
will require the vehicle to halt. The frequency and lengths of such delays should be a
reasonably accurate approximation of the real world.

For traffic lights and level crossings, the constants have been defined:

Road Delay Frequency (s) Delay Length (s) Time Range
Traffic Lights 60 30 all day
Level Crossing 600 120 all day, excluding 01:00–04:00

As an example, this means that an arbitrary level crossing node will block all agent
traffic for fixed two minute intervals between 5 a.m. and 1 a.m. Every two minute road
block is followed by an eight minute free flow at the speed dictated by the way’s traffic
flow data or in its absence, the speed limit. Traffic lights oscillate between red and
green, toggling every thirty seconds, all day. Unfortunately, more detailed schedules are
not available to the public. Given the OpenStreetMap node n, the type of road delay d
(e.g. level crossing) and the current simulation time in seconds t, the following function
is used to determine whether the node is delayed/blocked:

IsBlocked(n, d, t) =

1, if t ∈ d.range ∧ ((t+ n.id) mod d.freq) < d.length.

0, otherwise.
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The function ensures that this oscillation sequence is offset at different, well-distributed
times for each node, yet the result will be the same for each agent. Another function is
defined to determine the average, or expected delay at a certain time. This is used by
the A* route finder and in the Route class method GetEstimatedHours(StartT ime),
which is used by the routing strategies to determine if routes will be completed on time.
The function is the product of the chance of being delayed d.length

d.freq and the average length
of being delayed d.length

2 :

WaitT ime(n, d, t) =


0, if t /∈ d.range.
d.length2

2× d.range otherwise.

Pedestrian crossings differ in that their usage varies by day. There don’t seem to be
hour-by-hour statistics for pedestrian traffic in urban areas, however there is for road
traffic. A yearly statistical data set from the UK Department of Transport [41] gives a
distribution of traffic flow by hour. The simulation assumes road traffic is proportional to
pedestrian traffic. In addition, all other nodes that make up the connected road network
have the propensity to delay a vehicle and the simulation models frequent minor delays
and infrequent major delays. In the real world, vehicles may need to stop momentarily,
such as for jaywalkers (minor) or double parked cars (major). Such obstacles would
normally scale with traffic density.

Letting f be the traffic flow value at time t according to the table in appendix section
D.1 and max = 212 (the peak value in that table), the constants have been defined:

Road Delay Period (s) Delay Length (s) Probability p
Traffic Light Crossing 45 15 1.0× f

max

Zebra Crossing 30 10 1.0× f
max

Unexpected (minor) 2 2 0.00222× f
max

Unexpected (major) 30 30 0.00417× f
max

p is the probability that a road block of a given length occurs within the current period.
At peak time, this is 100% for pedestrian crossings and as low as 3.7% at 2–3 a.m. on
a Monday. For the unexpected minor and major delays, this equates to 4 and 0.5 times
per hour respectively. This may seem low for the inner city, but recall this is per node
and there are over 30,000 in London’s zone 1 alone. For pedestrian crossings, the table
ensures that vehicles are not delayed for longer than the expecting delay length. Traffic
signals ensure fairness. This is not the case with the unexpected delays as the period
and lengths are equal – it’s just really unlikely.

A uniformly distributed random variable determines whether a delay is to occur in a
given period. It is a Bernoulli distribution with probability parameter p. To ensure
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all agents in the simulation get the same value in each period, the random number
generator uses the same seed: (t div d.period) + n.id. If a 1 is sampled, a second, de-
terministic, uniformly distributed random variable is sampled to determine the discrete
offset o at which the delay occurs within the period. The IsBlocked(n, d, t) function,
as mentioned before, returns true iff a delay occurs in the given period and o ≤ t mod
d.period ≤ o+d.length. For nodes that exhibit only unexpected delays, the agents query
IsBlocked(n, u_minor, t) ∨ IsBlocked(n, u_major, t). We can derive the average wait
time in a similar way as before:

WaitT ime(n, d, t) = d.probability(t)× d.length2

2× d.period

5.5 Courier Jobs

A CourierJob object is comprised of a pick-up position, a drop-off position, a volumetric
size and a deadline. In the real world, they would be created when a customer places an
order, however in the simulator, they are spawned by a centralised ‘dispatcher’ using a
seeded random number generator, such that the simulation results are reproducible. A
centralised ‘broadcaster’ receives these and, depending on the planning and allocation
strategy, transmits the job specifics to one or all agents. A CourierJob has a status
field, which is transformed by its methods. Figure 5.7 shows the state transition of a job,
with each box representing a member of the JobStatus enumeration. The simulation
has been designed per the specification in chapter 3 and flow chart 3.2.

Unallocated

Pending delivery

Pending pickup

Completed

Cancelled

Pending delivery
(to depot or sender)

Generated by Dispatcher

Job.Collect()

Job.Collect() fails
the sender is away

Job.Deliver() fails
the recipient is away

Broadcaster.AwardJob() fails
no agents could bid for the job.

Broadcaster.AwardJob()

Broadcaster.BroadcastJob()

Job.Deliver()

Figure 5.7: State transition diagram of the JobStatus field of a CourierJob.
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5.5.1 The Dispatcher

The Dispatcher is a centralised singular component of the simulation. All dispatchers
written implement IDispatcher. They provide a single Tick() method, which is to
be called every chronon. CityDispatcher is predominantly used in the evaluation and
is described below. Within the Tick() method, a sample from a D ∼ Bernoulli(p)
distribution determines whether a job should be spawned. The p parameter is chosen
based on the hour of the day and whether it is a weekday. This probability is then
multiplied by a dispatch rate coefficient, which can be set by the user before or during
the simulation. Set to 1.0, the probability of dispatch is shown in figure 5.8. The figure
also shows the probability distribution of different types of job at different times: B2B,
B2C, C2B and C2C (where B is short for business and C is short for consumer). This
value is selected using another random number generator. These parameters can always
be altered, however sensible values have been chosen to reflect expected business and
consumer behaviour.

Figure 5.8: The distribution of jobs dispatched per hour and the types of jobs they
are, as used in CityDispatcher.

Depending on the job type, an RNG is used to pick a random business node (see 4.1.4 for
a list of those included) and/or a random position on the road network to represent the
consumer. The deadline is generated by first performing an A* search that minimises
time with traffic and then calculating the time it would take to drive directly from sender
to receiver. To this, a number of hours is added, sampled from a Gamma distribution:
X ∼ Γ(k, θ). The decision to use this distribution is based solely on its shape, which it
is assumed most accurately resembles customers’ time demands. For the evaluation, the
shape parameter was set, k = 2 and the scale parameter, θ = 1. This makes the mean
excess time kθ = 2 hours and the mode, (k−1)θ = 1 hour. If a certain flag is set, all B2B
and C2B deliveries will be assigned a deadline that is uniformly distributed around the
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end of the that business day. If the direct route could possibly be completed before 17:15,
the deadline is set as 17:15 + minutes(Uniform(0, 30)). Otherwise, it is calculated as
before. This was implemented to investigate the impacts of scattered versus concentrated
deadlines and because many real-world services like UPS promise EOB delivery instead
of arbitrary deadlines. Finally, the volumetric size of the package, simply specified in
cubic metres, is sampled from an exponential distribution: X ∼ Exp(λ). The rate
parameter is set to λ = 3 and the result is then normalised to lie within a valid range:
0.0002 ≤ x ≤ 0.999. These distributions are shown in figure 5.9.

Figure 5.9: The probability density functions for CourierJob properties.

5.5.1.1 Other Dispatchers

• SingleBusinessDispatcher. For the purposes of evaluation, an additional imple-
mentation of IDispatcher was written wherein one central depot acts as the hub
of all deliveries. This could model an online shop that offers same-day delivery
to local customers. The probability of dispatch scales with time in the same way
as before (figure 5.8), however a Bernoulli(p) distribution determines whether a
job is B2C (i.e. orders) or C2B (i.e. customer returns). Based on this, either the
pick-up or drop-off position is the first depot in the StreetMap’s list of depots (the
business) and the other is a randomly chosen point (the customer) on the map.

• HubAndSpokeDispatcher. An extension to the SBD, this dispatcher follows the
hub and spoke topology. Most large distributors use this model to reduce ‘last mile’
costs [42], which according to parcel delivery company, Parcel2Go, comprises 28%
of the total cost [43]. Many delivery companies offer reduced parcel delivery costs
if pick-up and/or collection takes place at ‘parcel shops’. Online retailer, Amazon,
have installed lockers in select cities, which some customers use for receiving and
returning items. This dispatcher models the hub and spoke topology on a small
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scale. Because the locations of these ‘spokes’ are not publicly available in machine-
readable form, it uses fuel points instead. Incidentally, many fuel stations actually
do serve as parcel shops in the UK. The dispatcher works identically to the SBD,
with the key distinction being the randomly chosen point becomes a randomly
chosen fuel point (spoke). Unless there are hundreds of fuel points in a single map,
there are likely to be great efficiency gains because many CourierJobs will overlap
and marginal costs will be extremely minimal.

• RuralDispatcher. A variant of CityDispatcher was created and is chosen by
default if the map has fewer than 50 business nodes. The dispatch frequency is the
same as before (figure 5.8), but all jobs are C2C. This allows for proper testing of
very small or rural areas.

• DepotDispatcher. See section 5.5.3.1.

5.5.2 The Broadcaster

Two broadcasters that implement IBroadcaster are presented. They both rely on a list
of agents (contractors). ContractNetBroadcaster auctions jobs to all contractors and
in line with the contract net protocol (as described in section 2.1.1) will award the job to
the winning bidder – the agent whose extra cost is lowest. This simple process is shown
in figure 5.10. Computing how much to bid is a computationally expensive operation.
Since the planning problem is independent for each agent, it is performed in parallel. If
no bids are received, the job is cancelled. Otherwise, the winning bid determines the
fee, as per the design specification (refer back to figure 3.1):

Fee = BasePrice+ EstExtraDrivingCost× UnitPrice

Customer
Order

no bid
+0.2hrs

+0.6hrs

job awarded

Figure 5.10: An example of the Contract Net Protocol, where agents report cost as
additional driving time.

RoundRobinBroadcaster is fairer and less computationally demanding, but most likely
less optimal. Instead of broadcasting jobs to all agents, it simply transmits it to one. In



Chapter 5. Implementation 48

a circular sequential fashion, it allocates the job to an agent from its list of contractors.
This ensures that jobs are distributed fairly, although it does not discriminate on the
difficulty of the job. The fee is calculated as above, but using the direct route as the
estimated extra cost. Agents are unable to refuse to be allocated a job, so a prerequisite
of using this strategy is that the capacity of the smallest vehicle is greater than the
maximum size of a package. More information on the implementation of the Contract
Net Protocol and the Round Robin allocation scheme is available in section 6.2.

5.5.3 Modelling Failure

A very common occurrence in real-world couriering is customers being absent when the
vehicle arrives. As the vehicles are autonomous, it is not possible to offload an undeliv-
ered package without a trusted human. Hence, depending on a user-specified parameter,
failed deliveries can either be routed to the nearest depot/collection point or to the pick-
up position, where delivery is guaranteed to take place3. A non-technical overview can
be seen at the tail end of the flow chart (figure 3.2) in the design specification chapter.

Failed pick-ups simply cause the job to become cancelled and a partial refund to be ap-
plied. This refund is equal to the cost saving after rerunning the planning algorithm with
the delivery waypoint removed. A sample from a Bernoulli(p) distribution determines
waypoint success or failure. As the sender pays for the order, it is expected that failure
will be more common at the receiving end. Hence, by default, for pick-ups, p = 0.99
and for drop-offs, p = 0.9. These can be changed by the user pre- or mid-simulation for
fault tolerance experiments.

5.5.3.1 Rebooking Failed Deliveries

If the simulation is configured to reroute failed deliveries to the nearest depot, the
receiving customer may rebook the package to be sent to them from their local depot.
When a job is delivered to a depot, a DepotDispatcher object is notified of the job.
It takes a sample from an exponential distribution, X ∼ Exp( 1

48). If x > 48ln2 (the
median), the job is discarded (i.e. the customer picks it up themselves or allows for it
to be disposed of). If x ≤ 48, the job is scheduled to be reordered in x hours with the
same delivery position and size, but a new deadline. Using these default parameters,
this means that the probability of rebooking a failed delivery is 0.5. The scheduling is
done using an internal priority queue. In NoticeBoard.T ick(), the CityDispatcher or

3‘Collect at depot’ and ‘return to sender’ are common options with established couriers, who will
often call the customer so that they can make the decision.
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a variant thereof is only ‘ticked’ if the DepotDispatcher has nothing to dispatch at that
second.

5.6 Autonomous Agents

In this simulation, the autonomous agents are self-driving vehicles. Three such vehicles
have been modelled and are shown in table 5.1.

Mid-size hatchback car Small commercial van 7.5 tonne truck

1m3 capacity
50 L petrol tank
34.17 mpg peak

2m3 capacity
80 L diesel tank
31.43 mpg peak

8m3 capacity
92 L diesel tank
18.79 mpg peak

Table 5.1: Courier vehicles modelled in the simulation.

5.6.1 Movement and Positioning

An agent has a CourierP lan, which contains an ordered list of waypoints and Routes
thereto. It also has a RoutePosition, which holds the exact position of the agent along a
certain Route. As a Route is a list of Hops, the exact position can be represented as the
index of the current hop, plus the distance travelled across that hop, as a percentage.

RoutePosition.Move() is called by Agent.Move() and it adjusts these variables to rep-
resent one second of driving at the current Hop’s Way speed. If the agent is minimising
fuel consumption, the speed is capped. The method calculates the distance it should
travel and iterates through the hop sequence until this distance has been reached. Every
time the hop index is incremented, a call to IsBlocked is made to see if a road delay is
active, in which case the iteration stops (see 5.4.2). The Move method is ineffective for
as long as the the road delay persists.

5.6.2 Job Fulfilment

When a route is completed, this often means that a waypoint has been reached, in
which case the relevant CourierJob’s status is transitioned (e.g. from ‘pending pickup’
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to ‘pending delivery’). This was summarised earlier in figure 5.7. The RoutePosition
is recreated with the next waypoint’s Route in the CourierP lan, or a null route if
there are none left. To model the time it takes for the customer to load or unload
the van, a Delayer object is used to block calls to RoutePosition.Move(). This is a
timer that is set to the maximum wait time of 120 seconds if the customer is away or a
uniformly distributed random variable between 20 and 120 seconds. Other actions may
be performed, depending on the routing strategy (described in section 6.2).

CourierP lan provides a number of methods for modifying and querying the plan, includ-
ing extracting fulfilled and cancelled waypoints, assessing whether any jobs will arrive
late (so that action can be taken by the routing strategy) and replanning in response to
traffic changes.

5.6.3 Fuel

The vehicles have fuel levels, a floating point number representing the litres remaining,
which deplete based on the distance travelled in RoutePosition.Move(). For example,
a car moving at 80 km/h uses 1.5 millilitres of petrol every one second tick. At times
when the vehicles are stationary, the fuel level does not deplete at all. As the simulation
starts with the agents stationed at a depot, they begin with a full tank of fuel and the
cost of this is accounted for. At the end of simulations, the value of the remaining fuel
reserves is subtracted from the total costs. Average UK fuel prices from 9th April 2015
were used: £1.1327/L for unleaded regular petrol and £1.1882/L for diesel [44].

The StreetMap object has a list of nodes that represent fuel points (see 4.1.5 for how
this was built). Agents route to and refuel themselves at these points before their fuel
level reaches zero. The same as with visiting pick-up and delivery waypoints, a Delayer
object is set upon arrival. This models the time it takes to refuel. The agent is ordered
to remain stationary for one minute.

5.6.3.1 Fuel Economy

For increased realism and accuracy to a real-world operation, the amount of fuel used
does not scale linearly with speed x. Based on data from a number of sources [45][46][47][48],
a polynomial function was approximated using k = 1, 0.92, 0.55 for car, van and truck
respectively:

MilesPerGallon = k × (−0.0119x2 + 1.2754x)
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Figure 5.11: Fuel economy model used in simulation.

The peak fuel efficiency, 34.17 mpg is reached at 53.5882 mph ≈ 86.242 kph. As such, if
the measured speed of a road is above this value and the vehicle is aiming to minimise fuel
usage, it will restrain its speed to this value. The simulation could be made more accurate
by modelling specific models of cars that have been rigorously tested. In addition, it
could account for the type of road surface, weather and weight of cargo and fuel.

5.6.3.2 Emergency Refuelling

Normally, agents will refuel once every twenty-four hours, when they have no more jobs
to fulfil (see 6.3). However, this cannot be relied upon and in some conditions the vehicle
would run out of fuel whilst fulfilling jobs. Therefore, the agents continuously monitor
their fuel supply and if their fuel tank is below a certain percentage threshold (5%), a ‘fuel
diversion’ is set. This suspends all jobs in its CourierP lan and routes the agent to the
geographically nearest fuel point. Upon arrival it refuels and resumes its CourierP lan.
There is a very slim chance that the vehicle will run out of fuel before arriving at this
point, however this never occurred in any simulation. If the time complexity of each
simulation tick was not an issue, this could be avoided by recomputing using A* the
shortest route to any fuel point. Performed every tick and adding redundancy for traffic
changes, this would alert the agent the moment the fuel cost of this route is too close
to the vehicles fuel level. If the simulation was to be run on rural areas with greater
distances between fuel points, this or a variant thereof would be necessary.
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5.7 Graphics

5.7.1 Map

.NET has excellent built-in 2D graphics capabilities. The street map and agents are
drawn onto a Bitmap using GDI+ (Graphics Device Interface) and this image is placed
into a PictureBox control of the main GUI form. The rate at which the simulation
state is redrawn is controllable using a slider or can be disabled entirely. For better
performance, instead of redrawing the map periodically, a background image is drawn
and the periodic refreshes only draw an overlay onto a clone of the original image. As a
flattened bitmap is provided, this means that the display does not suffer from a flickering
effect at high refresh rates.

5.7.1.1 Projection

A CoordinateConverter object was made to translate geographic latitude and longitude
pairs into (X,Y) points to draw. It is initialised with theBounds object of the StreetMap

and the size of the canvas. The maps in the evaluation are arguably small enough to
assume a flat earth, however as large maps such as Iceland and Alaska were used in
informal testing, a Mercator projection was implemented. Where λ is the longitude, φ
is the latitude and λ0 is the centre longitude in the map bounds, the formulae used are
as follows [52]:

x = λ− λ0 y = ln(tan(π4 + φ

2 ))

x and y are then scaled to fit inside the canvas and converted to an integer. The canvas
is allowed to be stretched in any direction. y is inverted, as the origin of the drawing
panel is in the top left corner. This operation uses the minimum and maximum values
found in the Bounds object.

x = PanelWidth× x

λmax − λmin
y = PanelHeight× (1− y − φmin

φmax − φmin
)

5.7.1.2 Background Image

By using a CoordinateConverter, map features at arbitrary coordinates within Bounds
can be drawn. The road network is drawn by iterating through the StreetMap’s list of
Ways, enumerating each Node and drawing a line between each pair of projected node
coordinates. As the parser ignores any ways that stretch outside the map’s bounds, the
road network appears as a self-contained web. Disconnected ways are still shown, but
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are neither selectable nor traversable by the agents. For large maps, it is preferable to
choose thin black lines. For small maps, a thick outlined line is used, allowing one-way
roads to be distinctly represented. The drawing mode for Ways can be changed by the
user during the simulation.

After iterating over the Ways, the StreetMap’s nodes are iterated over. Depending on
the user’s preferences, special nodes may be drawn. These include filled yellow rectangles
for each business node; road delay nodes, as small transparent red rectangles, that may
be filled in by the overlay when activated; fuel points, as white boxes with an ‘F’ inside;
and depots as pink boxes with the depot letter (A-Z) inside.

This background image can take time to render due to having to draw thousands of
arcs. Hence, a clean copy with no overlay is stored. It is redrawn only when the user
toggles the road draw mode option, toggles showing special nodes, resizes the window or
loads a new map. Figure 5.12 shows a projection of Mayfair, London with no simulation
overlay.

Figure 5.12: Map of Mayfair, using thin and thick roads, with all map features shown.

5.7.1.3 Simulation Overlay

The simulation overlay conveys ‘live’ traffic and road delay information, as well as the
position and plans of the agents.

Traffic intensity is drawn as thick, semi-transparent red lines. The alpha value of the
red colour varies by minute with the speed of the road, as compared to the best recorded
speed that week – typically equal to the speed limit. Set to 3.0 by default, a coefficient
α can be set by the user to adjust the darkness of the traffic display. The ARGB color of
the line is (A = min(α ×Way.GetSpeedDifferenceAtT ime(now), 255), R = 255, B =
0, G = 0). This is drawn for each Way that has HERE traffic data associated with it.

If road delays are shown and a road delay is ‘active’ (i.e. traffic flow at this point is
currently blocked), the red rectangle drawn on the background image is ‘filled in’ using
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a filled red rectangle on the overlay. During the simulation, a large city with many
traffic lights and crossings will have flashing red boxes, which flash more often during
busy times. If the agent is on a road delay node, the rectangle is shown on top, but
as the inverse/complimentary colour of the agent, so as to be distinguishable. This is
found by XOR-ing the ARGB integer with 0xFFFFFF. Figure 5.13 shows traffic flow
and road delays at 7 AM in Greater London. 100 agents are spawned to highlight the
aforementioned feature. To see how the traffic flow display varies by day, refer back to
figure 4.4.

Figure 5.13: Map of London Zone 1, showing the traffic overlay (red-shaded roads),
active road delay nodes (filled red squares), inactive road delay nodes (empty red

squares) and agents (coloured circles).

Agents are represented as filled circles with diameters of 10px. Each agent has a Color
field, which is selected from a set of distinct colours, or randomly after there are more
than ten agents. When they have a Delayer timer object that is not yet elapsed, they
are drawn as a pie chart sector, with the ‘sweep angle’ corresponding to the amount of
waiting time left. See figure 5.14 for an example. Optionally, an agent-coloured line can
be drawn between the agent and their destination, if one exists.

Figure 5.14: Job view for one agent, showing 5 drop-offs on the left side of the map
being rerouted to the depot in the centre. The agent is shown as a two-thirds-filled pie
circle in the bottom-right, waiting for the customer at a pick-up point. A thin line is

drawn from the agent to its next destination, a drop-off, on the far right.

The overlay displays all agents’ jobs. Three ways of drawing this are presented and
switching between them mid-simulation is a quick and effective way of assessing the
optimality of the plan, as generated by the algorithms in the next chapter. Examples of
the three are shown in figure 5.15.
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• Job view draws agent-coloured arrowed lines between the pick-up and drop-off
waypoints for each job. A dashed line is used if the pick-up has already taken
place. Each unvisited waypoint is marked with a black triangle, pointing upwards
for pick-ups and downwards for drop-offs. Failed drop-off waypoints, once visited,
are marked with a cross and a line from the cross to either the nearest depot or
the pick-up position is drawn – see figure 5.14 for an example.

• Line view simply draws a straight agent-coloured line between each waypoint in
the order that the plan dictates it will visit them in. For this reason, it is expected
for the path to mutate periodically, as waypoints are added/removed or traffic
conditions dictate a different route. An optimal plan, like an optimal solution to
the Hamiltonian Path problem, will usually have no lines crossing over.

• Route view does the same as line view, however the lines are drawn onto the
road network as exact routes. This can be more insightful, as seemingly long,
suboptimal arcs between waypoints may be explained away by the choice of road.

5.7.1.4 Route Testing

Because optimal route finding is key to efficient couriering, some effort was put into
creating the facility to find the optimal path between two points selected by the user.
From the route testing menu, the user can select a RouteF indingMinimiser (see section
5.3.3). Selecting the ‘Route from...’ item allows the user to select any node on the graph
with the mouse. Doing so labels the node ‘FROM’. Selecting a second node will draw
the route and label the node ‘TO (n hops, y km, t0 - t1 min, f0 - f1 L)’. The times
and fuel usages shown correspond to the times without traffic and with traffic on a
Monday at 8 a.m. The labels are drawn atop a white rectangle for readability. As the
AStarSearch class provides methods to get a list of the nodes in the order in which
they were explored, these are plotted and given colours of the visible light spectrum,
relative to their position in this list. The result plainly shows the order in which nodes
were evaluated, as well as the beam of the search.

Selecting a different minimiser at this point will recompute and draw a new route. If
the ‘Keep refreshing route’ menu item is checked, it will redraw the route upon the
user adjusting the A* epsilon value in the parameters GUI form. Figure 5.16 shows an
example of a route query in London, minimising time with traffic (the slowest minimiser).
Increasing ε gives a higher weight to the heuristic cost, making the search more prone
to minimise straight-line distance. This results in a suboptimal route through London,
almost twice as costly, being chosen, rather than using the M25 motorway. However,
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many fewer nodes were evaluated. Notice how, despite the shorter distance, the fuel
usage is greater for the inner city route. This is due to the slower driving speed.

5.7.2 Graphical User Interface

The simulator was built with ease of use in mind. As mentioned earlier in this chapter, in
addition to the main GUI form which provides the map display and access to commands,
there are GUIs for graphing simulation variables, viewing the statuses of agents and jobs,
viewing the event log and controlling parameters. Figure 5.17 shows a sample session
with all GUI forms open.
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Figure 5.15: An example simulation in the Isle Of Wight with two agents. The
agents’ CourierP lans are displayed in (1) job view, (2) line view and (3) route view.
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Figure 5.16: Route testing in Greater London, minimising time with 8 a.m. traffic.
Epsilon values of (1) ε = 0 and (2) ε = 4 were used on the same start and end points.
This shows how degrading the admissibility of the heuristic reduces the search space
(nodes that are either coloured or lie directly under the route drawn), but can result
in a suboptimal route being selected. Black portions of the map are unexplored nodes.
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Chapter 6

Optimisation

In the previous chapter, we described in detail the simulator that was built. Using this
as a foundation, we proceed to design and implement algorithms to locally optimise
routes through multiple waypoints, to allocate jobs to agents and to control the agents
when they are idle.

6.1 Planning

Given a starting position and a set of jobs allocated to a single agent, it should complete
these jobs by taking an optimal or near-optimal multi-hop route, in regard to driving
time or fuel usage. The main goal is minimising the number of late deliveries and as
later discussed in section 6.2, the routing and allocation strategy may also assist to this
regard. The planning algorithm is fundamental to the performance of the courier agents.
The problem at hand is a specialisation of the Hamiltonian Path problem, which differs
from the travelling salesman problem only in that the solution is a path, not a cycle.
These problems are NP-hard and are impractical to solve by brute force because given
n points to visit, there are n! different routes.

Implementing the planner was a particular challenge, as no existing solutions to this
particular problem could be found. Heuristic algorithms to more general problems like
the travelling salesman problem, the Hamiltonian path problem and even the vehicle
routing problem generally cannot be adapted such that the constraints are respected.

Many classes of algorithm were attempted, however the one presented here uses an
inexpensive greedy algorithm, followed by an expensive genetic algorithm if the latter
fails. Both of these are self-contained in a class named NNGAPlanner, which takes an
Agent and outputs a CourierP lan. In some cases, it will output null, as one can specify

60
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whether or not to use the genetic algorithm. More information on how this is used can
be found in section 6.2.

6.1.1 Problem Specification

To decompose the inputs of the planning problem, we define a set of waypoints W in
place of jobs. A job can be represented as two waypoints – one for the pick-up and one
for the drop-off. A waypoint has:

• a geographic position on the road network.

• a volume delta in cubic metres, corresponding to the amount of volumetric space
lost after visiting the waypoint. For drop-offs this is negative and for pick-ups this
is positive.

• (for drop-offs only) a predecessor waypoint

• (for drop-offs only) a deadline

Note that if a delivery fails and the job needs to be rerouted to the nearest depot, we
merely modify the position and deadline of the drop-off waypoint. If a pick-up fails, the
drop-off waypoint is removed.

Three additional inputs to the problem, representing the starting state of the agent, are
required:

• S – the geographic starting position of the agent.

• C – the current remaining capacity of the agent vehicle’s storage.

• F – the current remaining fuel supply of the agent.

• T – the current time

The happened-before relation, denoted →, is used to show that an event takes place
before another. It is a strict partial order that is transitive, irreflexive and antisymmetric.
The sequence of n waypoints w1 → w2 → w3 → ... → wn correspond to the order in
which they will be visited and fulfilled. The optimal routes between pairs of waypoints
are denoted wiwj . The chain of routes, Sw1, w1w2, ..., wn−1wn , corresponds to the
agent’s complete journey. Each route has an estimated time and fuel cost.

A sequence is valid iff:
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• @w ∈W. w → predecessor(w). Pick-ups occur before drop-offs.

• Starting from the start state, no subsequence of any length m has a negative
cumulative sum of volume deltas. ∀m ≤ n. C −

m∑
i=1

volume(wi) ≥ 0. The vehicle

is never over-capacity. 1

• F − fuel(Sw1)−
n−1∑
i=1

fuel(wiwi+1) ≥ 0. The vehicle never runs out of fuel.

Let ω be the maximum waiting time, common to all waypoints, and define a function
for arbitrary pick-up waypoints wp and delivery waypoints wd:

OnTime(wp) = 1

OnTime(wd) =


1, if deadline(wx) ≥ T + time(Sw1) +

x−1∑
i=1

(time(wiwi+1) + ω).

0, otherwise.

To improve the robustness of the solution to the planning problem, T can be substituted
for T + nτ , where τ is an arbitrary redundancy time that is added for each route to
account for road delays. A sequence is on-time iff:

n∑
i=1

OnTime(wi) = n

The goal is to find a sequence of waypoints from W that is optimal. A sequence Q =
w1 → w2 → ... → wn is optimal if it is a valid and on-time permutation of W and the
cost function is minimised:

Cost(Q) = cost(Sw1) +
n−1∑
i=1

cost(wiwi+1)

See 5.3.3 for a description of the cost functions, which may be distance, driving time or
fuel usage, with or without traffic. If there does not exist an on-time sequence, the goal
is to find valid solutions that maximise the number of on-time deliveries2 and from this
solution space, find the one that is of minimal cost.

OnTimeWayPoints =
n∑

i=1
OnTime(wi)

1It is also true that C +
n∑

i=1
capacity(wi) will equal the vehicle’s capacity

2An alternative representation could be to minimise the sum of minutes late over all jobs. However,
minimising the number is more profitable if, as is the case here, late jobs are fully refunded.
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6.1.1.1 Additional Constraints

As required in section 6.2.1.3, an alternate formulation of this problem exists. It modifies
the first condition for sequence validity by requiring that drop-offs occur immediately
after pick-ups:

∀wi ∈W, i > 1. wi−1 = predecessor(wi) ∨ wi = predecessor(wi+1)

Such a constraint greatly reduces the cost-saving opportunities for the courier agent,
however it is more fault-tolerant in practice and would be more appropriate for high
value cargo that must be delivered without any intermediate stops.

6.1.1.2 Simplifying Assumptions

To simplify the problem and reduce the search space, the following assumptions were
made:

• The deadline for a pick-up waypoint wp can be set to the deadline of their as-
sociated drop-off waypoint, wd minus the minimum duration of the direct route
(i.e. assume no traffic or delays) and the maximum wait time. deadline(wp) =
deadline(wd)− time(wpwd)− ω.

• It is almost guaranteed that an agent will be idle at least once every twenty-four
hours. The main idle strategies (see 6.3) begin by refuelling at a local fuel point.
Furthermore, in the event of a fuel shortage, the agent will suspend all jobs to
refuel and resume thereafter (see 5.6.3.2). The result is that the fuel constraint
can be ignored.

6.1.2 Preliminary Computation

The design specification in section 3.2.2 states that a customer will receive a phone
call notifying them five minutes before their courier will arrive. When the planner
is initialised with an existing CourierP lan, it first iterates through the existing list of
routes, locking any waypoints that would be reached within five minutes, as presumably,
these customers have already received their phone call. As mentioned before, there
exists a rare edge case where the agent may have locked in a pick-up, but is unable
to perform it as a delivery failure occurred in the last five minutes. For this reason,
the iteration short circuits if the capacity constraints are violated and the pick-up must
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be rescheduled whenever optimal. A CourierP lanState is a struct which is used by
the greedy algorithm to checkpoint progress. It consists of: wall time, current map
position, capacity left and a list of the remaining waypoints. NNGAPlanner first
builds a starting state. The planner ignores the deadlines for the locked waypoints when
it runs the following one or two algorithms.

6.1.3 Nearest Neighbour Search

The greedy nearest neighbour algorithm for the travelling salesman problem is described
in the background (section 2.4.1). For the purposes of this planning problem, it can be
modified such that the next neighbour chosen must maintain the validity and punctuality
of the sequence of waypoints. In addition, the arcs between waypoints are in fact paths
– Routes found by an A* search. Hence, evaluating the cost of travelling between two
waypoints requires an expensive A* search and an aggregate cost function over each
Hop. Previous attempts to solve the planning problem showed that this adaptation
was too simple. Because the algorithm picks arcs to nearby waypoints over farther ones
that are approaching their deadline, it frequently halts due to the sequence not being
on-time. Nonetheless, the algorithm is promising and with an ability to backtrack, it can
be very effective.

The nearest neighbour best-first search algorithm we developed performs a greedy search
using a Stack of NNSearchNodes. These nodes correspond to partial solutions. They
have associated parent nodes, to allow an ordered list of waypoints (a complete solution)
to be generated from the final node if the algorithm succeeds. In each loop of the
algorithm, a node is popped from the stack. From this, a set of child nodes are evaluated
for each remaining waypoint whose position here would be valid, given the predecessor
and volume delta rules. Nodes that have a wall time exceeding any of the deadlines
of its current waypoint and the remaining waypoints are filtered out. This gives a list
of valid, on-time next node selection candidates. They are ordered by route cost and
pushed onto the stack, such that the least costly, ‘nearest’ neighbour is popped in the
next iteration. If no nodes are valid and on-time, in the next iteration the algorithm
will backtrack to the next node on the stack.

With no backtracking, this algorithm runs in quadratic time, meaning that for n cities,
up to 1

2(n2−n) A* searches will be performed. With backtracking, the algorithm could
theoretically run in factorial time. For this reason, a counter is used to keep track of the
number of failed branches – where the node popped from the stack yielded no on-time
child nodes. The stopping criteria are: a solution is found, the stack is empty or 720
branches had failed. 720 is used because it allows an exhaustive search of six waypoints
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(6! = 720). Informal testing showed that increasing it further made little difference to
failure rate, but did negatively impact computation time.

It is made less expensive still by bounding the number of waypoints that are actually
considered at each node. The algorithm is summarised in 3 and a step-by-step working
of an example problem is given in figures 6.1–6.4. The LINQ query below is used to
build an array of subsequent waypoints. It first filters the invalid ones. It then orders
the waypoints by their orthodromic distance (a far less expensive computation than A*)
and selects the shortest three candidates. This query corresponds to lines 9-10 in the
pseudocode. If the speed of the planner was less important, Take-ing more than three
or omitting Take entirely would result in marginally improved solutions.

Node. State . WayPointsLeft . Where ( _

Function (W) Node. State . CapacityLeft - W. VolumeDelta >= 0 AndAlso _

Not Node. State . WayPointsLeft . Contains (W. Predecessor )). _

OrderBy ( Function (W) HaversineDistance (Node. State .Point , _

W. Position )). Take (3)

Algorithm 3 Nearest Neighbour Search (Planning)
1: function Build-Plan(start, lockedWaypoints)
2: nodeStack = {start}
3: failedBranches = 0
4: while nodeStack not empty ∧ failedBranches < 720 do
5: n = nodeStack.pop . the current node to expand
6: if waypointsLeft(n) is empty then
7: return lockedWaypoints ++ n.visited . solution found
8: nextNodes = {} . a sorted list
9: nextWaypoints = waypointsLeft(n) where valid

10: select bottom 3 from nextWaypoints, ordered by distance to position(n)
11: for all w ∈ nextWaypoints do
12: next = CREATE-CHILD-NODE(n, w)
13: if ∃w ∈ waypointsLeft(n) | deadline(w)− τ < time(next) then
14: failedBranches = failedBranches+ 1 . a deadline was missed
15: continue
16: cost = GET-COST-OF-SHORTEST-PATH(position(n), position(next))
17: add 〈cost, next〉 to nextNodes
18: for all next ∈ nextNodes do . in reverse order, greatest cost first
19: push next to nodeStack
20: return null . no solution found

6.1.4 Genetic Algorithm

If nearest neighbour search fails to produce a solution and one is required, the genetic
algorithm will be invoked. It requires an initial solution to seed the solution pool. This
solution is found using another variant of the nearest neighbour algorithm that ignores
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deadline violations. Computing this is less expensive, as the routes between waypoints
were most likely computed and cached in the nearest neighbour search phase.

The algorithm makes use of a fitness function for solutions that are valid, but potentially
not on-time. This is designed to minimise lateness first and then minimise driving cost
– i.e. a route that is twice as long is more preferable to one where any job is delivered
late. If the pick-up point is late as well, this does not affect the score. Both a real and
fuzzy/approximate score function are implemented.

For a valid sequence of waypoints, Q = w1 → w2 → ... → wn and using the definitions
in section 6.1.1:

TrueScore(Q) = 1000 ∗
n∑

i=1
(1−OnTime(wi)) + Cost(Q)

ApproximateScore(Q) = 1000 ∗
n∑

i=1
(1−OnTime(wi)) +ApproximateCost(Q)

ApproximateCost(Q) = haversine(S, w1) +
n−1∑
i=1

haversine(wi, wi+1)

The latter is an approximation of the true score, which requires expensive route finding.
The OnTime function requires a route time, which can be approximated by multiplying
the orthodromic distance (found using the Haversine function) by a coefficient µ. µ is
the average amount of time it takes to travel to a point 1 km away ‘as-the-crow-flies’
in a city. It will vary significantly, especially for cities with slow traffic speeds or road
networks that are difficult to navigate. An approximation of µ is found as the seed
solution is constructed. That is, if the seed solution is named Q:

µ =
time(Sw1) +

n−1∑
i=1

time(wiwi+1)

ApproximateCost(Q)

A mutator is also defined to swap two waypoints, without breaking the solution’s va-
lidity. It should be noted that mutating a courier plan is not as trivial as mutating
a travelling salesman problem solution, due to the constraints. Each waypoint in the
solution is highly dependent on the previous waypoints, especially when the packages
are large. For this reason, it makes sense to only perform adjacent, pairwise swaps. The
function GetAllMutations takes a valid solution, iterates over each neighbouring pair
of waypoints that are not locked in place and returns a list of mutated solutions. The
function first defines an array CR to represent the vehicle’s remaining capacity imme-
diately before fulfilling the waypoint at each index. Two adjacent waypoints wi → wj

can always be swapped if:
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• Both are pick-ups. We know CRj+1 = CRi − volume(wi) − volume(wj) ≥ 0, so
we also know CRj+1 = CRi − volume(wj)− volume(wi) ≥ 0.

• Both are drop-offs (trivially).

• wi is a pick-up and wj is a drop-off, so long as they do not correspond to the same
job – i.e. wi 6= predecessor(wj).

• wi is a drop-off and wj is a pick-up, only if at position i, there is room for wj to
come first – i.e. volume(wj) ≤ CRi.

Having defined the fitness and mutator function, and given the nearest neighbour so-
lution as the seed, the structure of the genetic algorithm is summarised as pseudocode
in algorithm 4. Figure 6.5 uses the same example as used in figure 6.1 and shows one
generation of mutations.

Algorithm 4 Genetic Algorithm (Planning)
1: function Build-Plan(seed)
2: solutionPool = {〈SCORE-SOLUTION(seed), seed〉} . a priority queue
3: topSolutions = {} . a sorted list
4: for generation = 1 to 500 do
5: 〈fitness, solutionToMutate〉 = remove-min(solutionPool)
6: add 〈fitness, solutionToMutate〉 to topSolutions
7: for all mutation ∈ GET-ALL-MUTATIONS(solutionToMutate) do
8: if mutation /∈ solutionPool ∪ topSolutions then
9: mfitness = SCORE-SOLUTION(mutation)

10: add 〈mfitness,mutation〉 to solutionPool
11: if solutionPool is empty then
12: break . all solutions evaluated and in topSolutions
13: 〈bestF itness, bestSolution〉 = remove-min(topSolutions)
14: return bestSolution

6.1.5 Other Attempts

In early stages of the project, an insertion heuristic was used to solve the planning
problem. It required as input, a CourierP lan and one additional job. It worked by
taking the existing sequence of waypoints, w1 → w2 → ... → wn, and testing each
possible interleaving of this with the new job’s waypoints: wp → wd. This ensured
the original ordering is maintained, so there would be no precedence violations. For n
waypoints, there would be 1

2(n+2)(n+1) permutations to test. If only a single waypoint
was being inserted (after a failed delivery), the time complexity was much less – only
n+ 1 permutations.
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Figure 6.1: Nearest Neighbour Search example. Inputs and steps 1–2.
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Figure 6.2: Nearest Neighbour Search example. Steps 3–5.
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Figure 6.3: Nearest Neighbour Search example. Steps 6–8, including backtracking.
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Total cost: 3 hours and 9 minutes.

03:02:00

30%

Figure 6.4: Nearest Neighbour Search example. Final step 10, showing solution.

For each permutation, it would first perform a validity check with regard to capacity
constraints. The cost, found using a function similar to the exact fitness function of
the genetic algorithm, was calculated for each new valid route and the best route was
selected. Though the time complexity of this solution was within bounds, the optimality
could be very poor depending on the order of new jobs being inserted. An attempt was
made to mitigate this effect by using a brute force solver, ExhaustiveTSPP lanner, to
test every permutation up to six waypoints (720 permutations) and then use the insertion
algorithm thereafter. Unfortunately, this made little difference to the optimality of
longer solutions and was not feasible for large maps due to the large number of A*
searches being performed. This brute force solver, however, was useful in evaluating the
above algorthms in 7.1.2.

The algorithm critically does not have the potential to replan at arbitrary times. Namely,
it was not clear how to efficiently handle failed pick-ups and drop-offs, apart from to sim-
ply remove the unneeded delivery waypoint or immediately insert a depot waypoint after
S. When traffic was added to the simulation, replanning (i.e. completely reconstruct-
ing the route from scratch) was required and the nearest neighbour search algorithm
replaced the insertion.
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Figure 6.5: Mutations performed by the genetic planning algorithm on the example
problem in figure 6.1.
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6.2 Routing and Job Allocation Strategies

The strategy pattern is used in the simulator to facilitate the development and evaluation
of multiple schemes of routing around the environment and fulfilling jobs. Agents ‘have’
one of the three subclasses of AgentStrategy that were developed and are presented
below. They also have an IIdleStrategy, which dictates an agent’s behaviour when
there are no jobs in its CourierP lan. Any two routing and idle strategies can be
selected by the user, however agents will always assume that they share the same type
of routing strategy.

6.2.1 Contract Net Protocol

The Contract Net Protocol is the most effective method for job allocation. As described
in the background section 2.1.1, the protocol entails running an auction where each
agent (members of the ‘contract net’) can bid for jobs. The implementation of this
from the perspective of the centralised ContractNetBroadcaster is in section 5.5.2. The
behaviour of the agents is realised in ContractNetStrategy and ContractNetContractor
and described here. Five routing strategies for the contract net protocol were written
and they are numbered CNP1–5, in the order of their complexity and flexibility.

Following the broadcast of a job, the agent recalculates the cost of their existing list of
routes in their CourierP lan. If the agent is on a fuel diversion (see 5.6.3.2), the starting
point S is assumed to be that of the fuel point. For predicting whether deadlines
are met, the starting time T is set to be the fuel point ETA plus the refuelling time.
Otherwise, the current HopPosition and time is used. It then attempts to create a
new CourierP lan that incorporates the new job and any such fuel diversion. The
specifics of this step depends on the CNP variant. If it finds an on-time solution, it
calculates the total cost of this new plan and ‘bids’ the extra cost. Depending on
the RouteF indingMinimiser that all agents share, this is either the extra distance
(kilometres), driving time (hours) or fuel required (litres) (see 5.3.3). If no on-time
solution was found, the agent replies with a null bid. The agent that bid the lowest
cost is awarded the job and notified. When the strategy is next run the CourierP lan
is updated to include the newly allocated job.

6.2.1.1 CNP1

Agents bid for jobs only if they are idle, hence they will only fulfil one job at a time.
Let w1 and w2 be the pick-up and delivery waypoints of the new job respectively and
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using the notation defined in 6.1.1, the condition must hold:

deadline(job) ≥ T + time(Sw1) + ω + time(w1w2) + τ

Provided that the deadline would be met, an agent will always bid:

cost(route(S, job.pickup)) + cost(route(job.pickup, job.dropoff))

6.2.1.2 CNP2

Agents can bid for jobs if they are non-idle, however new jobs can only be appended to
the tail end of their existing route, even if it would be less costly to insert the new job
at the start or mid-route. A CNP2 agent’s waypoint list is a FIFO queue. With this
variant, the agent needs to iterate through its routes, and calculate an ETA at which it
would be arriving at the drop-off position of this new job. Using the notation defined in
6.1.1, and denoting the new jobs’ waypoints as wn−1 and wn, a bid can only be made if:

deadline(job) ≥ T + nτ + time(Sw1) +
n−1∑
i=1

(time(wiwi+1) + ω)

or if the agent is currently idle, the deadline condition from CNP1 must hold. Let L
be the drop-off point of the agent’s last job, or if the agent is idle, its current position.
Provided that the deadline for this new job would be met, an agent will always bid:

cost(route(wn, job.pickup)) + cost(route(job.pickup, job.dropoff))

6.2.1.3 CNP3

CNP3 extends the specification further to allow jobs to be inserted into the plan wherever
it is most optimal. However, a job’s drop-off must always occur immediately after its
pick-up. Hence, an agent is only fulfilling one job at a time and at no time will the
vehicle’s storage contain more than one package. Using this strategy allows one to
model and evaluate an autonomous courier service for high value cargo, where packages
never come into contact with other customers, as is the case with CNP4 and CNP5.

A simpler, modified version of the nearest neighbour algorithm (as described in section
6.1.3) is used, which reasons about jobs rather than waypoints. When a new job arrives,
each agent runs the nearest neighbour algorithm to compute a near-optimal route. If
the algorithm is successful at finding a valid, on-time plan, the agent bids the difference
between the new total cost and the old total cost. Otherwise it bids nothing.
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With CNP3–5, the agent will periodically attempt to replan. Due to road delays and
uncertainty in pick-up and drop-off times, the optimality of the current CourierP lan
might be improved by constructing a new plan from scratch. Every five minutes (cor-
responding to the interval between traffic flow data samples), the agent will construct a
new plan using the planning algorithm and compare the ‘true score’ (see 6.1.4) to the old
plan. If the score is an improvement it will use the new plan. Given the resolution of this
simulation and also the fact that the agents have good knowledge about future traffic
conditions, the differences were marginal and often nil. However in the real world where
there is more uncertainty in traffic flow and job fulfilment, this would unquestionably
be required.

6.2.1.4 CNP4

With CNP4, Agents are now permitted to interleave pick-ups and drop-offs of all jobs,
provided the sequence of waypoints it visits is valid (as defined formally in 6.1.1). A
NNGAPlanner is used by the agent, who will only bid for a job if it can produce a plan
that is also on-time in a computationally short time frame. When bidding for jobs, the
agent only makes use of the nearest neighbour search algorithm (see 6.1.3) and not the
genetic algorithm for performance reasons. This behaviour can be changed by a boolean
constant in the agent’s code. In the real world, where a replanning time of 1000 ms is
just as acceptable as 100 ms, there is no reason to exclude the GA. As before, the agent
bids the difference in total cost before and after inserting the new job, however because
waypoints can be interleaved, this value is much less and at peak times is not really
proportional to the length of the job.

Unlike CNP1–3, if a failed delivery takes place, the delivery to the depot or pick-up
position can be postponed to whenever it is is most optimal. It reruns the planner,
specifying to use the genetic algorithm if and only if NNS fails to produce an on-time
solution. Diversions caused by failed deliveries are the most frequent cause of lateness –
particularly when the failed package is large enough that it could not simply remain in
the vehicle until the end of the day. For this reason, the genetic algorithm is essential
in minimising the number of late deliveries.

Failed pick-ups are handled in a similar way, however the genetic algorithm would only
need to be run if the existing plan is not on-time. Because the planning algorithm
is not optimal, in some circumstances, the act of replanning will result in an inferior
plan, especially when the old plan was one generated using the genetic algorithm. For
this reason, two candidate plans are evaluated. To begin, the existing plan is modified:
the drop-off waypoint is removed and a new Route to stitch together its preceding and
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subsequent waypoints is found using an A* search. This will always be less than or equal
to the old cost due to the triangle inequality. In addition, the agent constructs a new
plan with this set of waypoints. The CourierP lan’s ‘true score’ (see 6.1.4) is calculated
for each and the best plan is used. The customer is partially refunded using the same
cost coefficient, as applied to the difference in total cost of the old plan and the new
selected plan.

6.2.1.5 CNP5

The final and most advanced CNP-based strategy uses an alternative form of allocating
jobs, wherein the agent who fulfils the job is not fully known at the point of broadcast
and auction. Simply, jobs are not allocated to agents - they are ‘tentatively owned’
by them. As with the other strategies, the agents who bid for a job only bid their
expected additional cost. The strategy is identical to CNP4, except that the agent now
has the ability to offload some of its jobs to the other agents. It only does this when
circumstances change for the worse and replanning using NNGAPlanner could not
produce an on-time CourierP lan. Circumstances include:

• A failed delivery takes place and the agent has to factor in an additional waypoint
for the depot or pick-up position.

• Fuel runs very low and an emergency fuel diversion is required.

• Traffic conditions change. This is detected when the agent periodically replans.

The reallocation procedure is described below and an example is shown in figure 6.6:

1. The agent separates the jobs that it must fulfil – those where the pick-up has
already taken place – from those that could potentially be carried out by other
agents. Name the reallocatable list, R and the picked job list P .

2. Order r ∈ R in ascending order by the deadline urgency:

urgency(r) = deadline(r)− time(route(r.pickup, r.dropoff))

3. Send a message to the broadcaster, requesting to reallocate all of R.

4. The broadcaster performs a series of consecutive auctions with the other agents,
closely resembling the standard CNP bidding procedure. In each auction, the
agents replan to fit in the broadcast job, bid their estimated marginal cost (or
null if no on-time solution was found) and are awarded the job if they bid the
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lowest. The winning agent’s CourierP lan is updated after each job is awarded.
Like before, each auction is performed in parallel for improved speed.

5. The agent is returned a list, N , of the jobs that could not be reallocated, because
all other agents responded with null bids. N and P are combined and the agent
uses NNGAPlanner to create a new optimal CourierP lan.

Figure 6.6: An example of job reallocation for CNP5 agents. Agent A anticipates
late deliveries and successfully reallocates its two unpicked jobs to agents B and C.

If the simulation was enriched or this strategy implemented in the real world, many other
phenomena, such as mechanical faults, could be programmed to trigger a reallocation
request. The downside to this strategy is that it achieves the least autonomy, as the
central broadcaster, as well as assuming the role of an auctioneer for the tasks coming
on the job feed, must also be able to perform auctions, award jobs and report back the
results at the request of an agent. With previous variants, only the broadcaster can
initiate a conversation with agents. Due to the frequent replanning, it is also the most
demanding computationally.

This strategy addresses the problem where a few dominant agents emerge and are
awarded most of the jobs from the job feed, as their better coverage allows them to
bid less. Even accounting for the redundancy time τ , it can fall behind schedule as
circumstances change for the worse. Meanwhile, the other agents may be mostly idle.
With CNP5, this lateness will be minimised or eradicated as the other agents will assume
some of the workload. In practice, the number of jobs sent to the central broadcaster
for a secondary auction tends to be about a third of the jobs in the plan of the oversub-
scribed agent. The winning bids, as before, tend to be made by the moderately busy
agents due to their coverage. This may perpetuate the problem to some extent and it
may seem more intuitive to allocate the unwanted jobs evenly, to the least busy agents.
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However, informal testing showed that this did not affect the percentage of jobs arriving
late, though, expectedly, it led to more costly routes.

A summary of the five CNP allocation strategies is shown in figure 6.7.

Figure 6.7: Valid CourierP lans for each variant of the Contract Net Protocol, show-
ing the variance in the flexibility of planning.

6.2.2 Round-robin

Section 5.5.2 describes how jobs are allocated to agents via the broadcaster itself. The
counterpart to the RoundRobinBroadcaster is the RoundRobinStrategy, which behaves
in a similar way to CNP4 (6.2.1.4). If it has been allocated a new job, it fits it in optimally
to its current CourierP lan. As jobs are allocated in a less optimal way and agents are
unable to refuse jobs that cannot be delivered on time, the planning algorithm is more
likely to attempt to minimise the number of late deliveries rather than cost.

6.2.3 Free-for-all

Free-for-all, as defined by Merriam-Webster is “a competition, dispute, or fight open
to all comers and usually with no rules” [49]. This strategy is named such in that
there is no cooperation and little, if any, communication between the agents. The result
is disorder and it performs worse than the other strategies on all counts, however it
does showcase the benefits of effective planning and cooperation over competition. The
strategy requires only a one-way communication channel between the dispatcher and the
agent. Thus, out of all of the strategies presented, it gives the agent the most autonomy.
It could be used to model a competitive market of freelance couriers that have access to
the same job feed, but do not share information amongst themselves.

It is implemented in a similar way to the other strategies, however the FreeForAllStrategy
has access to the NoticeBoard’s list of unallocated jobs, which, in the real world would
be realised by using a periodic wireless broadcast to all agents. From this list, and using
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a cost and route function in line with the agent’s RouteF indingMinimiser (see 5.3.3),
it selects the job with the highest ‘value’, which is computed like so:

Define S as the agent’s current position, T as the current time, ω as the maximum
waiting time per waypoint and τ as some redundancy time to account for delays. Let
r1 = route(S, job.pickup) and r2 = route(job.pickup, job.dropoff):

value(job) =


0, if job.deadline < T + time(r1) + ω + time(r2) + τ .

ost(r2)
cost(r1) , otherwise.

Using the above equation makes agents prefer long (expensive) jobs that can be picked
up nearby. Having selected a job, the agent routes towards it. Often, multiple agents
will compete for the same job. An agent is not allocated the job until it has arrived at
the pick-up position. By default, agents do not know when this has occurred; they need
to arrive at the pick-up point first and replan from there. If a boolean flag is set, this
aspect of the model can be relaxed.

6.3 Idle Strategies

In this section, we discuss the strategies that an agent may execute when the agent has
completed all of its allocated jobs. Such strategies could be paramount to the efficiency
of the service, in certain circumstances:

• Jobs are infrequent, so agents are usually idle.

• Deadlines tend to be very slim, so placement is critical.

• The environment/map is large or otherwise slow to navigate.

• Pick-up locations are somewhat predictable.

Four implementations of IIdleStrategy have been created. The first is namedNoIdleStrategy,
which does absolutely nothing when run – the agent simply rests at its last drop-off way-
point until it is awarded additional jobs. It is unique in that it has no cost overhead and
is used as a control when evaluating the effectiveness of the other, more complex strate-
gies. The other strategies are named SleepingIdleStrategy, PredictiveIdleStrategy
and ScatterIdleStrategy. They attempt to do one or both of the following: premature
refuelling and strategic placement.
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6.3.1 Premature Refuelling

Emergency refuelling, as described in section 5.6.3.2, involves postponing waypoints,
thus risking late deliveries and lost revenue. It seems more reasonable to refuel when
the agent would otherwise be idle, in efforts to minimise these risky fuel diversions. Some
strategies make use of the utility function, GetOptimalFuelRoute(agent, endpoint), if
the agent’s fuel supply F is below a certain threshold (95% full). This selects a fuel
point P and returns a Route there, so that it can ‘top up’ (even if it is 90% full). P is
ideally a point that requires the smallest diversion when travelling from start point S
to some desired end point E. Specifically, the route minimises:

IdleStrategyCost = cost(route(S, P )) + cost(route(P,E))

subject to
OptimalFuelUsage(route(S, P )) < F

The cost function depends on the agent’s RouteF indingMinimiser (see section 5.3.3).
If the agent’s fuel supply is low, it may not take the optimal route, but rather one where
P is nearer to S. In fact, in very rare edge cases, it is possible to be stranded. As A*
searches are computationally expensive, instead of evaluating each fuel point, the func-
tion first uses LINQ to order the fuel points by orthodromic distance: distance(S, P ) +
distance(P,E). It then properly evaluates the first three in this list and picks the best
of the three. If none of the three are reachable given F , it iterates through the rest of
the list, computing the optimal A* route and testing each to assess whether they are
reachable given F . This continues until a suitable P is found.

With all idle strategies, the route from S to P to E is aborted when a job is awarded.

6.4 Strategic Placement

Idle strategies exist to ‘prepare the agent for the day ahead’. In addition to refuelling,
this may include routing to an ideal position (E) on the map.

The specific idle strategies implemented determine E in different ways:

• SleepingIdleStrategy. After refuelling at the nearest fuel point, the agent does
nothing until new jobs come in. Hence, agents will end up being stationed next
to fuel points and depots overnight. This has a low overhead (fuel costs that are
not paid for directly by customers), however agents will be in suboptimal positions
when new jobs come in.
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• PredictiveIdleStrategy. The agent stores all of the pick-up positions of past jobs
it has fulfilled. When idle, it will calculate the mean position of the last 100 pick-
ups and route to the node closest to that point. E is found using the NodesGrid
(see 5.3.1.2). This aims to reduce the time to route to the next job. Typically,
agents will park in areas with many business nodes or the centre of the map if
these are well dispersed. If needed, it will use GetOptimalFuelRoute to refuel
along the way to this centre point.

• ScatterIdleStrategy. This strategy requires that agents are able to know each
other’s positions. It attempts to spread the agents out across the map by, for each
agent, routing to the point that maximises the distance between all neighbours
and map bounds. Trading off accuracy for reduced computation time, it uses the
Pythagorean theorem instead of the Haversine formula for the distance function.
For each connected node, it computes the minimum of: the distance to any edge
of the map and the distances to other agents. It finds the node with the highest
minimum distance. If needed, it will use GetOptimalFuelRoute to refuel along
the way to this most isolated node, E. It has the highest cost overhead in practice,
because this node is often on the other side of the map.

6.4.1 Unimplemented Strategies

Two other strategies are proposed, however they are impractical to implement given the
data at hand. These best suit the operation of a city courier that is expected to be idle
overnight.

Parking in the city centre is often prohibited, expensive or unavailable. One solution
would be for vehicles to slowly drive around aimlessly or encircling their optimal position
to prevent incurring parking charges. Were parking charges modelled, this may be more
economical, despite the unnecessary fuel consumption. Some roads have minimum speed
limits, which would need to be avoided, such as 10 mph on the Dartford Crossing in the
Greater London map used [50]. In reality, local councils are likely to object to this, as
slow-moving vehicles can be disruptive and dangerous. Hence, implementing this would
be a waste of time.

A more efficient strategy would be for vehicles to set route to the nearest area that
offers free parking (for example, residential areas). Unfortunately, this strategy cannot
be simulated properly as OpenStreetMap contributors have provided very little data on
whether highways have parking. As of February 2015, The key parking:lane has less
than 100,000 instances world-wide and almost none in Greater London [51].



Chapter 7

Evaluation

In this chapter, we critically assess the algorithms developed for the autonomous courier
network, compare the performance of the many different strategies developed in action
and explore to what extent varying the difficulty of the job stream impacts performance.
We then proceed to determine the optimal sizes of the network for different cities and
with that, produce an achievable pricing model.

These simulations use a number of assumptions. The parameters used are those named
earlier in chapter 5 as ‘the default values’, which for the reader’s convenience have been
summarised in appendix A. Where a certain parameter has been changed for experimen-
tation, this is clearly noted. Where computation time is assessed, note that the PC used
to run these tests has an AMD Phenom II X4 955 3.2 GHz processor and 6 gigabytes of
RAM.

7.1 Optimality of Algorithms

A hierarchy of three algorithms is employed to bring about efficient fulfilment of courier
jobs. The first is route finding using the A* algorithm. The second is local optimisation
and planning (given a set of waypoints, find the optimal route to visit all of them).
The third is allocation of jobs to agents, to which we propose the contract net protocol
as the most fit solution. Optimality-wise, the third is dependent on the results of the
second, which is dependent on the results of the first. However, as time is a scarce
resource, especially when one wants to run month-long simulations, each algorithm can
be configured to execute faster, in exchange for some loss in optimality.

82
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7.1.1 Route Finding

As mentioned in section 5.3.3, a standard A* search has been implemented. However,
using an admissible heuristic can lead to very slow searches, wherein too much of the
search space is explored. Using the concept of bounded relaxation, a value of ε is used to
boost the effect of the heuristic when scoring newly discovered nodes. Here we evaluate
how this will affect the optimality of searches.

A benchmark tool is built into the simulator program, which is used to provide the user
with some guidance on which value of ε (or rather, which value of (1 + ε)) to use for a
particular map and RouteF indingMinimiser. The benchmark is conducted as follows:

1. Generate 1000 pairs of random points on the map.

2. Using the given RouteF indingMinimiser, find the most optimal route (ε = 0)
between these pairs and record the cost according to the RouteF indingMinimiser

(in kilometres, seconds or litres of petrol, were a car to drive the route). Also record
the execution time.

3. For each heuristic weight (1 + ε) from a selection of values ranging from 1.05 to
20, find the most optimal route and then the cost. For each cost, divide it by the
optimal cost found in step 2. Name this ratio r. r ≥ 1. Also record the execution
time.

4. For each heuristic weight, find the mean r over all routes and the mean execution
time over all routes.

5. Show this as a table to the user.

For each map used in this evaluation and then for each RouteF indingMinimiser, this
test was performed and the results are plotted on the graphs in figure 7.1. Images of
the maps are given in the appendix – see section D.3.

It is immediately obvious that increasing the ε value has a real effect on the optimality
of the routes found. For minimising distance, this rise happens quite early. If one can
permit a route that is about 5% less optimal, for most maps, the value of ε could not
be increased far past 0.4, which in theory would never lead to a route that is 40% more
costly. With regular maps, this is far from the typical case and this sacrifice brings a
speed improvement of between 2–17x. Note that the scale on the y-axis, representing
execution time is logarithmic. Larger maps with a dense, non-uniform road layout (i.e.
Greater London, but not Las Vegas) exhibit the best speed improvements.
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Figure 7.1: The effect on optimality and execution time for using bounded relaxation
in A* route finding. The effects are plotted for six different maps.

Minimising time, with or without traffic, is the worst, both for optimality for high
values of ε and for execution time. The average execution time for an admissible search
in Greater London was 3.082 seconds, which is too high to run a simulation where
thousands of routes are calculated per day. It is high as road speeds are comparatively
slow, which causes the search to be very undirected, almost like Dijkstra’s algorithm.
In some cases, the majority of nodes in the map are expanded and given the map has
706,117 connected nodes, the long runtime is unsurprising. This time can be reduced
to 41 milliseconds if an epsilon value of 7 is used; however this comes at the expense of
having routes that are on average, 37% longer in time. This is because of the simple
fact that travelling between two randomly picked points in Greater London often can
be done much faster by using the M25 motorway, which surrounds the county, rather
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than taking a route that is more or less a straight line. Earlier, in figure 5.16, there
is an illustration of this. In this evaluation, we actually do accept and test using this
trade-off, because long simulations would be completely infeasible otherwise. A totally
admissible search could be used if the algorithms needed to run in real-time. However,
this evaluation chapter required hundreds of lengthy simulations with tens of thousands
of A* searches performed in each.

In any event, informal testing in Greater London simulations showed that increasing ε
from 0 to 7 does not make a substantial difference to the refusal rate of jobs, nor the
total driving cost – only about a 5% decline to both. The reason is most likely due to
the fact that long routes are rarely queried, except in off-peak times where agents will
rarely have more than one job to carry out. As jobs build up and the average distance
between waypoints decreases, the fastest route tends to be through slow city streets.
Also, most B2B deliveries are in Central London anyway and those that are not are
good candidates for rejection. If businesses were mostly located around the edges of
the map, this compromise would be less wise. The M25 could massively reduce journey
times, so long as the A* search is admissible, thus permitting routes that are fast, but
geographically divergent.

The runtime issue is less of a problem with the Las Vegas Valley map, however the
route cost rises much quicker and much higher than Greater London, because of the
many main roads that run straight through and around the city. Travelling between
two randomly picked points in Las Vegas will very often benefit from interstate 15 and
the main roads connected to it. If these are missed, the likely result will be travelling
through city blocks, which are a lot slower and have traffic lights at every intersection.
The heuristic cost, when amplified even using a small value of ε = 3 gives routes that
are typically 35% longer. This reduces computation time from 868 to 15 milliseconds.
In testing, ε was set to 2 for Las Vegas, as this yielded routes only 16% suboptimal.

Jersey, Central London and Stronsay are smaller maps, whilst the Isle Of Wight has far
fewer roads. For these reasons, execution time was less of an issue and so very little
optimality was traded off for speed. ε was set to the maximum value to which routes in
these maps would be no worse than 5% suboptimal on average. It is very apparent that
execution time scales with map size and node density.

Minimising fuel with or without traffic is less difficult, as it is mostly dependent on
distance travelled rather than speed. Unfortunately, it would not make sense to minimise
anything other than time without traffic for this business, as deadlines are expected to
be quite tight. It would be more profitable to fulfil more jobs than to fulfil fewer at
a lower fuel cost, especially as having more waypoints reduces the average amount of
driving per job. This is discussed further when we evaluate dispatch rate in 7.4.
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For Stronsay, optimality does not suffer much, nor does execution time improve signifi-
cantly. This is because the road map of the island is almost like a spanning tree, with
only a few cycles. This means there are very few routes available.

7.1.2 Planning

With a near-optimal path finding algorithm at hand, the next search task is to find a
sequence of routes that connect up an agent’s allocated waypoints, in a valid, maximally
on-time and minimally costly way. For large sets of waypoints, it is difficult to fairly
evaluate the greedy and genetic algorithms developed to solve this problem. This is
because finding the actual optimal solution for n waypoints would require testing n!
permutations. However, a partial evaluation for smaller problem sizes is provided and
the test is conducted like so:

1. A small planning problem consists of 4 randomly generated jobs at 10 a.m. in the
Central London map. Generate 2500 such problems where there exist no deadlines
and 2500 such where the deadline excesses are sampled from a relatively difficult
Γ(2, 0.5) distribution1.

2. For each problem, find the actual optimum through brute-force testing of every
single solution. Then find a solution using the greedy planner and the genetic
planner. Make note of occasions where the greedy planner failed to find an on-
time solution when one existed. Where both solutions were found and on-time,
divide each solution’s cost by the cost of the optimal solution to get a percentage
– for example, 120% if the solution was 120 minutes and the optimal was 100
minutes. For the genetic solution, make note of the number of late deliveries
compared to that in the optimal.

3. Having produced a table of costs, the mean cost degradations can be found and
the results plotted to scatter graphs.

The results of the test without deadlines are plotted in figure 7.2. We can also report
the average degradation of optimality over the 2500 problems. The greedy planner
produced solutions that were on average 143.7% the cost of the optimal, which is more
than the genetic algorithm, whose average was 134.1%. If the simulation were to run
both algorithms in parallel and pick the best of the two, the average would be 133.2%.
Only in 2.0% of cases did it find the actual optimum, however given there exist 40320
solutions, this is an unrealistic expectation. The figure also shows a scatter plot of the

1With Γ(2, 0.5), the mean deadline excess is only one hour and the mode, 30 minutes.
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scores from the greedy versus the genetic solutions. Their close similarity is because the
lack of deadlines mean the nearest neighbour search does not perform any backtracking
and its output will exactly match that of the deadline-invariant greedy solution, which
is used as the seed in the genetic algorithm. Often the seed solution or a very closely
related solution will be selected as the most fit. Nonetheless, it is clear that the genetic
algorithm usually outperforms the search. The greedy search was best 17.2% of the
time; the genetic algorithm was best 66.2% of the time; and on 16.6% of occasions, they
output the same solution.

The results of the test with deadlines are summarised in table 7.1. It shows that in most
cases, if the optimal solution contains k late deliveries, the solution found by the genetic
algorithm will too have k late deliveries. Though there were some extreme cases, such
as the planner giving a solution with three late waypoints when an on-time one existed,
these were a rarity. It should be noted that in this test, the greedy algorithm succeeded
in finding an on-time solution (either as its first solution or by way of its backtracking),
in 7.0% of cases where one actually did exist. Out of these 148 cases, in 73 (49.3%)
of them, the solution was less costly than that found by the genetic algorithm. In
most simulations, this figure is likely to be much higher, because the problems are less
demanding, deadline-wise.

Genetic
Planner
Score

4000–5000 0 0 0 0 0
3000–4000 14 7 3 0
2000–3000 107 103 12
1000–2000 715 262

0–1000 1277
0–1000 1000–2000 2000–3000 3000–4000 4000–5000

Actual Optimum Score

Table 7.1: For 2500 test problems, this shows the score of the output of the genetic
planner, as compared to the optimum route. The number of 1000s in a score correspond

to the number of late deliveries.

These results at first glance give a bad impression of these algorithms. One would think
that increased costs of 33% imply that the algorithms are not very effective.

Although many, many solutions do exist for any particular planning problem, there
only exist a tiny number with the minimum number of late deliveries. Finding such a
solution can be colloquially compared to ‘finding a needle in a haystack’. We attempt
to illustrate this in figure 7.3, where for one typical problem, we enumerate and plot
the cost of every single valid permutation. This figure shows that only 0.5% of solutions
were on-time. The genetic algorithm found an on-time solution that was 133.7% the
cost of the optimal. Though this figure appears to be overly costly, it ranked 79th out of
40320. It was a local minimum and was quite distant to the global minimum, in terms
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of mutations. This figure may also persuade the reader that a hill-climbing algorithm
would not be appropriate to solve this problem, as local minima are spread rather evenly.

7.1.3 Allocation

Evaluating the optimality of the contract net protocol for task sharing is equivalent to a
utilitarian evaluating the use of an auction as a method of dispensing resources to people
with a finite amount of money. For individual auctions, the method is guaranteed to
allocate a resource or a task to the most appropriate bidder, merely by the definition of
what it means to bid the highest (or the lowest for CNP). However, for a sequence of
auctions, wherein at no time do the bidders know how many auctions are left, this is not
guaranteed to give an optimal allocation. There does not appear to be a better method
of static allocation in this problem domain and as one can see in the next section (7.2),
CNP undeniably outperforms the ‘fairer’ round-robin strategy in practice.

One method of evaluating CNP would be to compare it to the global optimum – calcu-
lating the cost of every possible allocation. However it is unclear when one would do this,
as jobs do not arrive in batches, but rather in an uneven stream. Furthermore, optimal-
ity will not degrade until agents become saturated, which would require too many jobs
to make a brute force evaluation feasible. In the related work studied (see section 2.5),
some authors used CNP, however they do not offer a method of evaluation. Therefore,
in this report, a qualitative evaluation is provided to convince the reader that CNP is a
reasonably efficient allocation strategy. Figure 7.4 gives a typical scenario of when CNP
best allocates two jobs. Figure 7.5 gives a scenario where the two jobs could have been
allocated better. It is claimed that the first scenario is more common than the second,
as the second requires agents’ schedules to be reasonably saturated.

7.2 Routing and Job Allocation Strategies

Several strategies have been developed and are described in detail in section 6.2. The
prospective courier company wants to know which strategy they should use in their
courier network. In this series of tests, we hope to determine which is the best and
by what margin. A series of experiments were conducted in different environments and
with different parameters. This is so that the full range of behaviours and responses can
be shown.

At this point in time, we will not measure performance in terms of cost and revenue, as
such things are arbitrary. Instead, we use raw variables from the simulation. A ‘good’
strategy is one that maximises:
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New job J Agents locally optimise J and bid extra cost

 

Job J awarded to BLACK (with low 00:15 bid)

Another new job J'

Job J' awarded to RED

BLACK and BLUE 
bid nothing – they 

cannot fulfil it on time!
Without reallocation of previous jobs, this 
is the most optimum allocation of J and J' 
with an extra cost of only 15 + 35 = 40 min

+00:35

+00:15
3 agents 
with pre-
existing 
routes

+00:20

+00:35

Waypoints

Figure 7.4: An example of CNP optimally allocating two jobs, J and J ′, that arrive
in sequence. The figure is to be read left-to-right, top-down.

• Availability. It completes as many jobs as possible and refuses as few jobs as
possible.

• Reliability. Of those jobs completed, very few or none of them arrive late.

• Efficiency. The amount of driving is minimised, leading to reduced operating costs
for the business.

To measure these aspects, the variables of interest are: the number of completed, refused
and late jobs, as well as the total distance covered, the amount of time driving and the
fuel usage. The following simulations all took place over the course of one week. The
predictive idle strategy was used.
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Job J awarded to BLACK (with low 00:15 bid)

A new job J'' spawns, almost exactly on 
BLACK's existing route, but it is awarded to 

BLUE, who can fulfil it at an extra cost of 
00:18. After taking J, BLACK has no time to 
fulfil J'', whilst honouring existing deadlines.

The optimum 
allocation would 

actually be if BLUE, 
the second highest 
bidder for job J was 
awarded it (at cost 
00:20) and BLACK 

took J'' (at cost 00:02).

New job J''

CNP cost:
15+18=33 min

Optimal:
18+2=20 min

Figure 7.5: Extending from the top two squares in the previous example in figure 7.4,
this is an example where CNP did not result in the best allocation, because the second
job that arrives, J ′′, would have been far more suited to the now saturated agent that

took the first job, J . The actual optimum is displayed in the second panel.

7.2.1 Efficiency Challenge

In this experiment, five cars were used in Central London (Zone 1). Given the map is
39.9 km2, this gives an agent to area ratio of 8.0. This is reasonably low, so strategies
should not struggle to allocate most jobs, however they will vary in efficiency.

Strategy Job Counts Cost (whilst driving)
Completed Late Refused Distance (km) Time (h) Fuel (l)

Free-for-all 1199 0 323 18455 509 1924
Round-robin 1532 179 0 15409 431 1620

CNP1 1089 0 428 14247 395 1489
CNP2 1281 0 242 14341 401 1509
CNP3 1344 3 181 13948 391 1469
CNP4 1473 8 58 12186 344 1290
CNP5 1477 5 54 12116 341 1280

Table 7.2: Results of the efficiency challenge.

7.2.2 Reliability Challenge

The same parameters and Central London map as in the efficiency challenge are used,
however now we alter the simulation such that failed deliveries must go back to the pick-
up position, the packages are larger (an Exp(1.5) distribution is used instead of Exp(3)
– see 5.5.1) and the probability of failed deliveries is 50%, not 10%. These parameters
are designed to bring about a lot of late deliveries, as agents will be forced to make long,
unplanned diversions. A good strategy should nonetheless minimise the late job count.
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Strategy Job Counts Cost (whilst driving)
Completed Late Refused Distance (km) Time (h) Fuel (l)

Free-for-all 1053 0 421 18565 512 1939
Round-robin 1474 219 0 17628 490 1850

CNP1 948 0 526 14600 406 1534
CNP2 1099 4 375 15294 427 1613
CNP3 1159 31 315 15416 429 1618
CNP4 1267 37 207 14682 410 1547
CNP5 1273 24 201 14563 408 1537

Table 7.3: Results of the reliability challenge.

7.2.3 Availability Challenge

This experiment takes place over the entirety of Greater London. Only 10 cars are
employed and given the map is 3221.36 km2, the agent to area ratio is 322.1. This is
very high given the dispatch rate, so it is expected that even the best strategies will
have a high number of refused jobs.

Strategy Job Counts Cost (whilst driving)
Completed Late Refused Distance (km) Time (h) Fuel (l)

Free-for-all 730 0 772 58687 1393 5578
Round-robin 1528 774 0 61543 1440 5798

CNP1 808 0 700 43259 1053 4168
CNP2 897 14 616 44656 1076 4279
CNP3 989 5 524 44184 1057 4226
CNP4 1158 8 362 41833 984 3963
CNP5 1158 3 362 41791 984 3964

Table 7.4: Results of the availability challenge.

7.2.4 Summary

These tests were designed to stress test the strategies in different scenarios: to min-
imise cost in desirable conditions, to minimise the number of late deliveries in tough
conditions and accepting the largest number of jobs despite being outnumbered. The
first observation one can make from the graphs is that the free-for-all and round-robin
strategies exhibit very different behaviour to the variants of the contract net protocol.

Round-robin allocates jobs to agents without checking that they are capable of delivering
them on time. Hence, there are no refused jobs, but a very high number of late jobs –
especially so in the Greater London test, where waypoints are more scattered around the
map. Given that the courier service being proposed refunds customers whose deliveries
are late, this strategy is not suitable. However, with the top, efficiency test, one can
observe that the number of on time deliveries (completed − late) is beaten only by
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CNP4 and CNP5. Round-robin uses the standard NNGAPlanner and can carry several
packages at once. Since it outperforms CNP3 in this respect, this flexibility seems to
outweigh the benefits of the contract net protocol, at least for easy environments.

Free-for-all is similar to CNP1 in that it only carries one package at any one time.
FFA is the worst performing amongst them all when comparing the driving cost per
completed job. This is because many agents will often route to the same pick-up points
simultaneously, thus wasting resources. The bigger the map, the greater the waste. As
FFA and CNP1 only attempt jobs that can be done on time, neither delivered any jobs
late. However, the refused job count varies. For Central London, it was about 20-24%
lower for FFA than CNP1. This is most likely because CNP1 immediately refuses jobs
when no agents are available. FFA allocates in a much different way: the broadcaster
keeps rebroadcasting jobs that are available. They only become ‘refused’ when their
deadline expires. For greater London, the wasted time outweighs this factor – fewer jobs
are even considered, because agents are too often busy routing to jobs that they will
ultimately not reach in time.

The contract net protocol, however, is the focus of this project and our intuition tells us
that it will bring the best performance. The CNP variants, numbered 1–5 are ordered by
their level of flexibility, with CNP5 allowing agents to carry out many jobs at once and
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reallocate jobs to other agents when in trouble. This last factor is the only difference
between CNP4 and CNP5 and due to the redundancy time built into the planning
algorithm, reallocations were rare. However, the effects can still be seen, because of the
length of the simulation. In all three tests, CNP5 achieved a lower rate of late jobs.
Even in the second test (where half of the jobs had to be returned to the sender and the
packages themselves were usually too big to allow this detour to be postponed), CNP5
delivered only 1.8% late. In tests 1 and 3, this rate was 0.3%. CNPs 2 and 3 had varied
rates compared to 4 and 5.

If fulfilling multiple jobs at once cannot be allowed by the business for whatever reason,
CNP3 appears to be preferable over CNP2, as the late job counts for both are relatively
low, but CNP3 is able to fit in more jobs into its schedule. This comes at a cost in
the second test, as a longer route increases the chance of any one job to be delivered
late. Comparing cost in the efficiency test, we see that for CNP 1–3, the total driving
cost was more or less the same. CNP5 marginally beats CNP4, which substantially
beats CNP1–3. For the other tests, all variants are more or less the same. However,
the efficiency gains are very apparent when one compares this to the completed jobs
count, which rises steadily over each CNP variant. During the development of CNP4
and CNP5, it quickly became apparent that it is almost impossible to have zero refused
jobs. The probability distribution used allows jobs to be spawned with deadlines so tight
that an agent needs to be stationed very close to the pick-up point, in order for it to
confidently take the job.

To conclude, whether availability, efficiency or reliability is the priority, CNP4 and
CNP5 outperform the other strategies. If the communication model cannot allow job
reallocation, CNP4 still performs well in all areas. CNP5 is used for the remainder of
this chapter.

7.3 Idle Strategies

Idle strategies are particularly important where the map is difficult to navigate, when
pick-up locations are predictable and when refuelling is a concern. It is difficult to design
a test that will effectively assess these, as it is accepted that in a normal environment,
the idle strategy is unlikely to make a significant difference. In the following tests, the
simulation has been altered such that:

• Jobs are dispatched less often. The dispatch rate coefficient is 0.1. This means at
peak times, only two jobs are dispatched per hour.
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• The deadline excess will be exactly twenty minutes, instead of being sampled from
a Γ(2, 1) distribution. Hence, a job whose direct route involves an hour of driving
will have a deadline of exactly 01:20. If no agent is within twenty minutes of the
pick-up point, the job will be refused.

• Five trucks are used instead of cars, as they have poorer fuel economy. Their fuel
tanks have been reduced from 92 litres to 10 litres, further limiting their range.

• The simulation begins with the trucks scattered randomly (not uniformly) across
the map, in contrast to all starting in the main depot. Otherwise, the first set of
jobs will mostly be refused.

• The Central London map is used and all road speeds have been halved to simulate
especially high traffic.

A 12-week long simulation will be used to test each of the four idle strategies. The
routing and allocation strategy used will be CNP5, as it performed best in the previous
test. The variables of interest are the completed/refused job counts, the total driving
cost and the number of emergency fuel diversions.

Idle
Strategy

Job Counts Cost (whilst driving) Fuel
DiversionsCompleted Late Refused Distance (km) Time (h) Fuel (l)

None 844 15 853 6546 372 2232 338
Sleeping 862 0 835 7238 417 2494 0

Scattering 1058 0 645 14208 785 4724 10
Predictive 1261 1 449 15298 864 5190 9

7.3.1 Performance

These results clearly show the trade-off that exists between minimising driving cost
and optimising agent placement. The additional cost of running each idle strategy
can be interpreted approximately as the difference between it and the costs of the
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NoIdleStrategy, which directs the agent to do absolutely nothing when idle2. About
57% of the driving cost for the predictive strategy, PredictiveIdleStrategy, is due to
the behaviour of the idle strategy. Note however that with normal dispatch rates, this
overhead is comparatively small. It is high here because the transition from being active
to idle occurs many times throughout the day, compared to once or twice with greater
levels of demand.

The fact that the predictive strategy has the highest number of completed jobs implies
that it gives the most optimal agent placement. Scattering is second best, however as it
fails to account for high density areas, it performs marginally worse. Sleeping addresses
the refuelling problem, however it results in all agents converging to fuel stations. If a
job spawns that is far away from any fuel point, it is likely to be refused.

7.3.2 Refuelling

The idle strategies address the issue of refuelling in different ways. NoIdleStrategy, in
efforts to minimise overhead costs, relies on the emergency refuelling protocol (detailed
in 5.6.3.2), which activates when an agent’s fuel tank is less than 5% full. This might nor-
mally be an acceptable strategy, however in this scenario, where deadlines are slim, such
diversions are likely to cause late deliveries – 15, to be precise. SleepingIdleStrategy
is overly cautious, but is rewarded with no fuel diversions nor late jobs. In a larger
map, fuel diversions may be inevitable if a particular job is so long that it couldn’t be
performed on one full tank alone. The predictive and scattering idle strategies work by
selecting an optimal sleeping position and then, if needed, refuelling on the way there.
As the criteria for refuelling is being less than 95% full and the routes to the sleeping
position will be substantially longer than the route to the nearest fuel point, this serves
as a middle ground. 9–10 diversions over the course of twelve weeks is exceptionally low
and as a result, it made almost no impact on meeting deadlines. Figure 7.6 shows a plot
of the sum of all agents’ fuel supplies over the course of the 84 days. This reinforces the
previous commentary.

7.3.3 Summary

In conclusion, the idle strategy only makes a noticeable effect in scenarios that require
very quick responses. Regular refuelling is a concern with agents that are busy all day.
Therefore, it is advisable to do this when one does not have any jobs, rather than waiting

2This is not absolutely the case, as the standard parameters were used for failed deliveries and a
DepotDispatcher probabilistically regenerates jobs that were sent to the depot. This means a better
performing strategy has marginally more jobs available to fulfil.
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Figure 7.6: Fuel reserves over the course of three 84 day simulations, using different
idle strategies.

until absolutely necessary. It is clear that the latter causes jobs to become late. Idle
strategies that optimise agent placement will increase the total driving costs. However,
if the agent transitions between being idle and active irregularly, such costs are less of
a concern. Based on the results, PredictiveIdleStrategy is used by default for the rest
of the evaluation.

7.4 Dispatch Rate

The efficiency of the service is likely to be largely dependent on the number of jobs.
To evaluate this, five sets of simulations using different seeds for the dispatcher were
performed, using different coefficients for the dispatch rate. As described in 5.5.1, the
dispatch rate coefficient is used in conjunction with a Bernoulli distribution and an
expected distribution of customer demand over the day. If set to 1.0, at peak time an
average of 20 jobs are generated per hour. Set to 0.5 and an average of 10 jobs are
generated per hour.

These tests were performed on the London Z1 map, using five car agents running the
CNP5 and predictive strategies. As 35 simulations were run, the simulations took place
on a weekday and were halted after 24 hours. Table 7.5 shows the mean results over the
five runs. In the appendix, table D.1 shows the raw results of each simulation. Figure
7.7 plots these results on a graph with error bars to reflect standard error. The raw
results are also shown on scatter plots.

From these results, it is very clear that average cost falls as the dispatch rate rises.
This is not due to a simple economies of scale principle, although this would apply if
fixed costs were modelled. This is due to the ability to construct more efficient routes.
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Dispatch Rate Completed Jobs Completed Jobs (%) Late Jobs (%) Distance (km) Distance per Job (km)
0.1 24.0 99.16% 0.00% 328.0 13.59

0.25 56.8 96.68% 0.00% 671.8 11.86
0.5 102.6 96.17% 0.17% 1077.6 10.62
1 226.6 92.81% 0.03% 1834.6 8.10
2 324.8 70.42% 1.05% 2259.4 6.97
3 349.2 50.95% 2.29% 2422.0 6.95
5 399.8 34.64% 2.77% 2711.0 6.79

Table 7.5: Mean results for varying the dispatch rate in a 24-hour simulation.

Figure 7.7: The effects of varying the dispatch rate on job acceptance rate, lateness
and driving cost.

The average number of kilometres that an agent drives per job falls when its schedule
is allowed to grow larger, making the distance between each waypoint smaller. If the
dispatcher generates 10 packages from one cluster of businesses C1, which are to be
delivered to another cluster of businesses C2, which is 10 km away from C1, the average
cost for an agent already near C1 is only about 10km

10 = 1.0km. If the dispatch rate

is slower and only 2 such jobs exist, each will have a cost of about 10km
2 = 5.0km.

In reality, such a pattern of dispatches is very unlikely, but the principle applies in the
same way at a smaller scale. The contract net protocol ensures that such optimisations
are allowed to occur. Performance does not scale like this for non-CNP strategies, as
shown earlier.

Comparing the number of completed jobs and the percentage of completed jobs (as
opposed to refused jobs) shows that with increased demand, availability falls steadily,
following a linear trend. It is difficult to compare simulations with small dispatch rates,
as the few number of jobs mean that one particularly difficult job could skew results
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negatively. Hence, the need for repeated testing. At higher dispatch rates, where more
jobs are refused than are accepted, the performance in all three areas may be unfairly
skewed positively, because the agents may refuse difficult jobs, whilst accepting easy
ones. With the largest dispatch rate, vehicles maintained around 20–25 jobs each in their
schedules during 09:00–18:00. When an agent’s CourierP lan is at almost full capacity
(i.e. it is almost impossible to insert any waypoint into its schedule without making
subsequent ones late), the only available slots are those that come at the tail end of the
schedule. As these schedules tend to stretch around four hours in this scenario, only
those jobs with the furthest away deadlines are accepted during peak times. This back-
to-back ordering of waypoints is to blame for the higher number of late jobs. Not only
is the agent more susceptible to unexpected delays and diversions causing subsequent
waypoints to be delivered late, the fact that its neighbours are also saturated means the
CNP5 reallocation procedure fails in most cases. Hence, agents are only able to run the
genetic planning algorithm in hopes to find a plan that minimises the number of late
deliveries.

7.5 Dispatchers

The focus of this project is to design a general purpose, same-day courier service. How-
ever, the simulator has been designed to easily support the simulation of other delivery
models. Several ‘dispatchers’ have been implemented and are all described at length
in section 5.5.1. The general purpose one, used in the rest of the evaluation is named
CityDispatcher. A RuralDispatcher (C2C deliveries only) is usually only used if there
are very few businesses. Lastly, hub-based delivery models, which could be used by online
retailers are implemented – SingleBusinessDispatcher and HubAndSpokeDispatcher.
Using the same parameters and varying only the dispatcher used, a week-long simula-
tion of three agents (cars) in the Isle Of Wight will show how the choice of pick-up and
delivery locations affects performance.

Dispatcher Job Counts Cost (whilst driving)
Completed Late Refused Distance (km) Time (h) Fuel (l)

CityDispatcher 891 9 622 19324 327 1548
RuralDispatcher 843 14 658 19172 333 1557

SingleBusinessDispatcher 1160 7 329 16601 293 1350
HubAndSpokeDispatcher 1324 0 139 15437 262 1230

Figure 7.8 shows the state of the simulations at peak time. This may give the reader a
clue as to why performance differs so greatly in some cases.

Compare the rural dispatcher to the city dispatcher and one sees only a marginal dif-
ference in the job acceptance rate and the average driving cost per job. As the city
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dispatcher mainly picks business nodes as pick-up and drop-off locations, whereas the
rural dispatcher simply uses random points on the map, the distribution of pick-up and
drop-off points are more scattered with the latter. For this reason, distances between
waypoints are generally, slightly greater. However, one can also imagine that if the open
countryside is connected by fast roads, but roads linking central business districts are
very congested, the rural dispatcher might outperform the city dispatcher.

The main observation however is the difference between the general purpose dispatchers
and the hub-based models. The hub based models have a higher acceptance rate, much
lower driving costs and fewer late jobs (mostly due to fewer failed deliveries). This
is because either the pick-up or the drop-off point generated by these dispatcher is
the centrally located depot, which results in much less driving and as a result, more
availability. Essentially, only one waypoint exists – that of the customer. With the
hub and spoke model, this gain is further amplified, as this outer waypoint is just
one out of a small set of points. Many jobs were charged only the base price, as an
identical/overlapping job had already been planned, hence no additional cost. The Isle
of Wight was chosen as it has an even distribution of fuel points, which we model as
the spokes. If a company like Amazon wanted to offer a same-day delivery and returns
service in the Isle Of Wight, these results serve as an indication of the cost savings
achievable by using collection points. In some cases, the route efficiency was impeded
by the capacity of the cars, so it would be preferable to use larger vehicles or to offer
the service only for small items.

It should be noted that some (but certainly not all) of the efficiency gain with the hub
and spoke dispatcher is due to the improbability of failed pick-ups and drop-offs, which
is programmed in. As with all dispatchers, depots never fail a pick-up or a drop-off. The
SBD therefore results in a comparatively low rate of failure and the H&SD has none.
The negative effects of failed deliveries are evaluated later on in section 7.6.2, which
shows negligible differences between a 0% and 10% failure rate (as used by default and
in this experiment).
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Figure 7.8: ‘Job view’ on a Monday at 10 a.m. in four Isle Of Wight simulations
using different dispatchers. The spatial distribution of the pick-up and drop-off points
(as marked by black triangles) impacts overall efficiency. The hub and spoke model is

the most efficient of the four, as many of the jobs overlap.

7.6 Job Difficulty

For general-purpose evaluations of the courier network, we try to use sensible values
for parameters. It is useful to determine how sensitive the performance is to changing
different properties of the CourierJobs. A volumetrically large job with a tight deadline,
succeeding other jobs that are likely to require redelivery, can be deemed ‘difficult’.
Couriering letters with a lengthy deadline in an environment where failure never occurs
is comparatively easy. An investor of the proposed courier business would need some
degree of confidence in the typical properties of jobs, to trust the results of simulations.
Some properties will be more important to get right than others. In this section, many
simulations are run on the same configuration (Central London (Zone 1) with five car
agents), but with some parameters altered.
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7.6.1 Package Size

As seen by the performance of CNP4–5 in section 7.2, there are great efficiency gains to
be made with the ability to bundle deliveries together. However, such an ability would
be of lesser consequence if the deliveries are very large and fewer will fit in the vehicles.
As explained in section 5.5.1, samples from an exponential distribution are used by the
dispatcher to generate a package size, in cubic metres. This section analyses the effects
of changing the λ parameter in the Exp(λ) distribution. By default, λ = 3, which makes
the mean package size λ = 1

3 . No package over 0.999 m3 will ever be generated and this
test uses cars, which have a 1 m3 capacity.

Package Sizes
Exp(λ), µ = 1/λ

Job Counts Cost (whilst driving)
Completed Late Refused Distance (km) Time (h) Fuel (l)

µ = 0.01 1490 0 41 11335 320 1205
µ = 0.1 1489 0 42 11210 318 1193
µ = 0.25 1477 1 54 11639 330 1241
µ = 0.5 1461 2 70 12629 356 1338
µ = 0.75 1442 5 89 13436 377 1420
µ = 0.99 1426 5 103 13571 380 1432

The results of this experiment show that larger packages do make a negative impact
on performance. There was no real difference between the first two simulations. This
implies that if the average package is 0.1 m3 or less3, capacity constraints will rarely
ever impact the agent’s efficiency. However there is a noticeable difference as this rises.
The number of refused jobs more than doubles for very large packages. The average cost
per job is shown to increase, however the range 7.61–9.52 km per job is not that great.
This is surprising, as large or heavy parcels typically incur large price premiums in the
delivery market.

With the large jobs, there are a handful of late deliveries. These often occur when a
vehicle is carrying large items, has little capacity left and has planned pick-ups that are
nearing their deadlines. If a delivery fails, the agent must replan with less flexibility.
It will have to postpone many planned, unpicked jobs, as they wouldn’t fit. Necessary

3The reader may prefer to instead picture a cube that’s length, width and height are less than 46 cm.
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diversions to the depot cause some jobs to be delivered late. As only 10% of deliveries
are expected to fail, there were only five late jobs.

7.6.2 Failed Deliveries

The probability of failed deliveries is expected to have a huge impact on performance, but
the default value of 10% is very arbitrary and not based on any official statistics. For this
reason, it is crucial to know the extent to which this impacts performance. By default,
failed deliveries are rerouted to the nearest depot and the DepotDispatcher, which
models half of customers replacing their order, is usually enabled (see section 5.5.3). In
the simulation statistics, a regenerated order counts as an additional ‘completed job’.
This can be misleading when assessing performance – the number of completed jobs
rises with more failure, merely for the fact they are so often regenerated. Two sets
of simulations were run with DepotDispatcher enabled and disabled. Another option
is that the packages are returned to the sender. The results of these three sets of
simulations are detailed in the tables and graphs below.

Pr(Failed Delivery)
to nearest depot

Job Counts (NO reorders) Cost (whilst driving)
Completed Late Refused Distance (km) Time (h) Fuel (l)

0% 1427 0 47 11430 324 1216
10% 1430 1 44 12037 339 1277
25% 1411 2 63 12379 349 1313
50% 1369 10 105 13060 367 1381
75% 1305 6 169 13803 385 1453

Pr(Failed Delivery)
to pick-up position

Job Counts (NO reorders) Cost (whilst driving)
Completed Late Refused Distance (km) Time (h) Fuel (l)

0% 1427 0 47 11430 324 1216
10% 1425 2 49 11797 335 1257
25% 1397 10 77 12365 350 1316
50% 1344 7 130 13565 382 1437
75% 1273 14 201 13988 394 1482

Pr(Failed Delivery)
to nearest depot

Job Counts (incl. reorders) Cost (whilst driving)
Completed Late Refused Distance (km) Time (h) Fuel (l)

0% 1427 0 47 11430 324 1216
10% 1470 3 61 12056 339 1277
25% 1561 8 82 13432 375 1413
50% 1660 16 205 15580 431 1630
75% 1776 10 316 17297 475 1797

Fulfilling a job that ultimately fails essentially consists of visiting three waypoints, with
the third being the depot or the pick-up position, revisited. With this in mind, it is
hardly surprising that the amount of driving cost rises as more deliveries fail. As fulfilling
these extra waypoints takes up valuable time, more jobs must be refused because they
cannot be fulfilled by any of the agents on time.



Chapter 7. Evaluation 104

It is curious that between 25% and 75%, the number of late deliveries for each simulation
is inconsistent. One would expect them to rise, as unexpected diversions to depots and
pick-up points often must postpone other deliveries, making them late. However, this
trend is not observed. It is suggested that the addition of these extra waypoints, plus
the resulting change in the jobs that are allocated (rather than refused), causes the
workload to be significantly different between these simulations. Diversions may, in
some fortunate cases, lead the agent into suboptimal positions that prevent them taking
on certain risky jobs with slim deadlines.

Lastly, compare the difference in driving cost between the policy of ‘return to depot’
versus ‘return to sender’. This, of course, will be very much dependent on the distribution
of depots in the map and how far away the sender usually is from the recipient. With the
two depots modelled in the Central London map, performance did not vary significantly
and of course, not at all with a 0% failure rate. If there were more depots scattered
around the city, the ‘return to depot’ option would surely be more efficient.

7.6.3 Deadlines

The focus of this project is to model a courier service that primarily deals with same-
day deliveries, but not those that require an instant response. However, many customers
would expect something similar to a taxi service – i.e. a driver immediately takes their
item and delivers it in as soon a time as possible without any diversions. Other customers
may be content with delivery by the end of the day. As detailed in section 5.5.1, job
deadlines are generated as the sum of the direct route time, plus a sample from a gamma
distribution, Γ(k, θ) – the excess time. By default, the excess is a sample from Γ(2, 1)
and the mean excess is 2 × 1 hours. In this experiment, the mean excess is varied by
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adjusting the scale parameter θ. Another simulation was ran, where a flag was set to
adjust all same-day C2B and B2B deadlines to a time around end-of-business (17:00–
17:30). Other deadlines come with an excess from a Γ(2, 6) distribution. This allows us
to investigate whether the burstiness of delivery deadlines has a noticeable effect.

Mean Deadline
Excess

Job Counts Cost (whilst driving)
Completed Late Refused Distance (km) Time (h) Fuel (l)

15 min 591 1 909 7026 198 745
30 min 1018 2 497 10588 298 1121
1 hour 1326 5 199 12119 340 1282
2 hours 1467 7 64 12109 341 1283
3 hours 1512 1 19 11759 331 1246
5 hours 1522 0 10 11754 331 1244

12 hours 1532 0 0 11254 317 1193
EOB or 12 hours 1455 0 61 10987 310 1165

Considering values of an hour or less, mean deadline excess has a massive impact on
performance. 61% of jobs were refused at 15 minutes, compared to almost half at 30
minutes, 33%. Surprisingly, there is also a sizeable difference between 2 hours and 3
hours. Over the course of a day, jobs begin to be refused around noon. This is when
the agent’s incrementally constructed plan becomes saturated and spans a few hours.
At this point, only jobs that lie almost directly on their existing path can be bid for. It
seems that only a small extension to a deadline can massively increase the chance of a
job being accepted.

There is a clear trend showing looser deadlines give more efficient routes. This is be-
cause the fewer constraints give the greedy planner more freedom in selecting ‘nearest
neighbours’. The genetic algorithm never needed to be invoked for the 12-hour test.

It is interesting that the number of late jobs rises and falls as deadlines become longer.
This is likely due to the fact that when more jobs are taken on, the chances of any one
of them falling behind schedule increases. However at some point the number of jobs
arriving late will fall, as deadlines become so far ahead in the future that with a limited
supply of jobs, it would be almost impossible to deliver any late.
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Comparing the 12 hour test to the EOB test, there is a very noticeable increase in the
refused job count. Figure 7.9 illustrates why this occurred. Also of note is the fact that
no jobs arrived late. Typically, jobs that arrive late are those that are both created
at, and due during peak times. Planning decisions often involve choosing which job to
deliver last, such that the others can be on time. However, with these bursty deadlines,
there is only ever one time of day when many jobs are competing to be fulfilled on time
and that is at EOB.

Figure 7.9: A graph of the simulation where business deliveries all had EOB deadlines.
The blue plot shows jobs that are currently being fulfilled and the green plot shows the
cumulative count of refused jobs over the seven days of simulation time. The burstiness
of the deadlines causes any jobs generated just before or during EOB to be refused, as
the agents’ plans are saturated with immovable waypoints at this time. The green plot

does not jump during the weekend, as fewer jobs are generated on these days.

7.7 Vehicles

A courier business launching in a new city will need an idea of the number of vehicles it
should employ. In this section, we simulate courier networks of varying population in a
variety of maps. After establishing a minimum acceptable threshold for availability and
reliability, it should be apparent how many vehicles are needed.

7.7.1 Vehicle Type

The first choice is to decide which types of vehicle to use. Whilst cars will have better
fuel economy than vans and trucks, the routes may be less efficient due to their smaller
capacity. The properties of the vehicles modelled can be found in section 5.6. Also,
autonomous vans and trucks will likely be more expensive than cars. Any improvements
in performance might be outweighed by the higher upfront cost.
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This first experiment performed consisted of a set of week-long simulations in Central
London, designed to compare performance between varying numbers and types of ve-
hicles. As the vehicles use different types of fuel, for comparison, the fuel costs are
recorded in monetary form, rather than in litres.

Cars Job Counts Cost (whilst driving)
Completed Late Refused Distance (km) Time (h) Fuel (£)

1 520 10 973 4216 116 497.40
3 1213 8 309 9416 265 1127.84
5 1473 3 58 11986 337 1437.73

10 1507 1 24 13293 375 1597.62
20 1508 1 23 13460 379 1619.02
50 1514 1 17 13624 383 1639.04

100 1510 0 21 13783 388 1666.99

Vans Job Counts Cost (whilst driving)
Completed Late Refused Distance (km) Time (h) Fuel (£)

1 581 11 917 4068 113 548.64
3 1280 4 243 9120 257 1243.62
5 1492 0 39 11373 321 1551.07

10 1508 0 23 12106 341 1647.96
20 1511 0 20 12712 359 1732.10
50 1511 0 20 12741 360 1725.76

100 1511 0 20 12741 359 1730.88

Trucks Job Counts Cost (whilst driving)
Completed Late Refused Distance (km) Time (h) Fuel (£)

1 617 1 883 4147 115 933.04
3 1311 2 213 9092 257 2078.64
5 1481 0 50 11056 313 2526.48
10 1503 0 28 11857 335 2708.99
20 1511 1 20 12342 348 2813.81
50 1511 0 20 12484 353 2844.60

100 1511 0 20 12533 353 2842.88

There are noticeable improvements as larger vehicles are used, however these are diluted
as the size of the fleet increases. The main assumption here is the inter-arrival time of
courier jobs (see section 5.5.1). The package size is also a very important factor. With
the chosen parameters, cars are only marginally less productive than vans, which are
marginally less productive than 7.5 tonne trucks. This can only be said with confidence
for agent populations of 1 and 3, however. It has been demonstrated earlier that pack-
age size does make a difference to cost efficiency (and hence, availability), as capacity
constraints will lead to suboptimal plans. This is certainly the case with employing a
single vehicle. However, as load will usually be shared amongst tens of vehicles, it is
less important that a single agent can concurrently fulfil several large jobs. The fuel
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Figure 7.10: Performance of the courier network in Central London, using different
numbers and types of vehicles. Coloured bars show the percentage of jobs that were
fulfilled (rather than refused) and the plotted lines show the total fuel cost across the

entire fleet.

economy model used requires that vans and trucks refuel more often, which may be to
blame for the inconsistent results regarding availability for the large populations.

It is also notable that vans and trucks had far fewer late jobs than cars. This is because
the impact of a failed delivery is much less. A 1 m3 package can remain at the back of
a truck for the rest of the day before it is dropped off at the depot. With a car and to
a lesser extent, a van, capacity constraints may dictate that it is dropped off earlier to
make way for other large packages.

In conclusion, we can say that in Central London, a courier company that expects
the simulated level of demand (20 jobs per hour at peak time) and aims for a 90%+
acceptance rate, would ideally want to purchase around five cars. Buying any
more or switching to vans or trucks hardly makes any difference – although due to the
nature of the idle strategies, doing so will increase operating costs (fuel). If the company
can only afford 1–3 vehicles and expected productivity is a more important factor than
capital expenditure and fuel costs, it would be more preferable to purchase vans or
trucks. In this project’s evaluation, the car is the preferred vehicle. With ever-rising
fuel costs, higher tax rates for inefficient vehicles [53] and responsibility to minimise one’s
carbon footprint, fuel economy is an important factor. The reduction in performance is
marginal when employing a sensible number of agents.

7.7.2 Population

In the following simulations, we assume that the courier company is to use cars. For
compactness, the acceptance and lateness rate are recorded instead of the individual job
counts. For example, consider a simulation where 1000 jobs were spawned, of which, 100
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were refused and 900 accepted and of those accepted, 9 were delivered late. Here, the
acceptance rate is 90% and the lateness rate is 1%. To allow direct comparison with the
Central London test, cost is measured as the monetary value of the fuel used. Note that
the value of the total fuel reserves at the end of the week is deducted from this total.

In addition to Central London (above), five additional maps with different properties
were used. See section D.3 in the appendix for images and properties of these maps.
Across all maps and aside from agent population, all parameters remain the same. No
traffic flow data could be sourced for the two small maps Stronsay and Jersey, however
neither island has a large population and the signposted road speeds are expected to be
relatively equal to the real-world road speeds.

Cars Jersey Stronsay C. London Isle Of Wight Las Vegas G. London
1 39.59% 35.16% 34.83% 24.92% 16.85% 12.93%
3 88.13% 82.47% 79.70% 58.90% 42.70% 33.00%
5 98.56% 98.22% 96.21% 82.07% 65.23% 49.05%

10 98.89% 98.88% 98.43% 97.52% 94.18% 77.32%
20 98.89% 98.95% 98.50% 97.98% 96.28% 92.28%
50 98.95% 99.01% 98.89% 98.30% 95.89% 93.59%

100 98.82% 99.01% 98.63% 98.37% 97.39% 94.77%

Table 7.6: Percentage of jobs that were accepted and delivered

Cars Jersey Stronsay C. London Isle Of Wight Las Vegas G. London
1 3.20% 3.07% 1.92% 3.77% 2.41% 1.57%
3 0.74% 0.56% 0.66% 1.01% 2.96% 0.60%
5 0.00% 0.20% 0.20% 0.72% 1.22% 0.40%

10 0.00% 0.13% 0.07% 0.07% 0.28% 0.17%
20 0.00% 0.00% 0.07% 0.00% 0.14% 0.14%
50 0.00% 0.00% 0.07% 0.13% 0.07% 0.07%

100 0.00% 0.00% 0.00% 0.13% 0.07% 0.00%

Table 7.7: Percentage of accepted jobs that were delivered late

Cars Jersey Stronsay C. London Isle Of Wight Las Vegas G. London
1 £534.16 £471.91 £497.40 £736.33 £809.98 £717.98
3 £1154.22 £1053.41 £1127.84 £1753.31 £1962.27 £1879.32
5 £1340.16 £1307.69 £1437.73 £2459.38 £2848.06 £2829.60

10 £1394.33 £1396.51 £1597.62 £3080.36 £4185.45 £4480.13
20 £1419.41 £1435.78 £1619.02 £3123.64 £4308.92 £5744.66
50 £1440.06 £1453.60 £1639.04 £3170.57 £4494.09 £5939.01

100 £1437.70 £1441.87 £1666.99 £3213.88 £4482.96 £6110.87

Table 7.8: Total fuel costs

As one would expect, increasing the agent population increases the job acceptance rate.
This rate plateaus at around 97–99%, with the remaining few being refused due to time
constraints. As the dispatcher samples the deadline excess from an exponential distri-
bution, some absurdly short deadlines are inevitable. Even with very small maps, over
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long periods a 100% acceptance rate is impossible to achieve unless a deadline-invariant
allocation strategy like RoundRobinStrategy is used. The rate at which the courier
network reaches this plateau varies depending on the size, speed and connectedness of
the road network. The courier company would experience diminishing returns were they
to continually invest in additional vehicles.

The number of vehicles appears to be the most influential, controllable factor on the
performance of the courier network. Acceptance rates rise, not only due to there being
more capacity at peak times, but also because the agents are spread out more, allowing
lower-cost insertions. Even in the toughest, largest map, Greater London, with the level
of demand used, in no simulation did the number of vehicles being employed ever exceed
20 at any point in time. However, there is a noticeable difference in acceptance rate
between the simulations of 20, 50 and 100 agents.

It was surprising that despite Stronsay being only 32.75 km2, it required more agents
than Jersey (119.5 km2) to achieve certain acceptance rate thresholds. Both islands’
performance also closely resembles that of Central London (39.9 km2), which performed
only slightly worse than Stronsay. This could be due to several factors:

• Jersey has a large number of businesses in its small capital city, Saint Helier,
whereas Stronsay has none at all. This means many of the jobs generated by the
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CityDispatcher will be of quite low cost. The businesses in Central London are
in comparison, quite spread out.

• The topology of Jersey’s road network is a lot more connected than Stronsay’s,
which is skeletal.

• Both islands mostly consist of relatively small and slow roads, however Jersey does
have a few trunk roads spanning the island. Central London has some main roads,
however during peak times for the courier, they tend to suffer heavy traffic.

Nonetheless with both islands, five cars are required to meet 95% of demand. Remember
however, that to produce comparable results, the dispatch rate coefficient is kept the
same over all maps, irrespective of their human population!

The Isle Of Wight, at 380 km2, requires many more vehicles to meet demand. The
largest town therein, Newport is located in the centre. The other towns are dotted
around the island’s coastline, separated by long trunk roads. This means most jobs
have quite a distance to travel. Hence, more vehicles are required and even with 100
vehicles, 1.6% of jobs were refused.

Las Vegas Valley and Greater London were by far the largest maps with areas of 1947
km2 and 3221 km2 respectively. In addition to larger map size, speeds within Greater
London tended to be slower than Las Vegas, which has major, multi-lane highways
surrounding and dissecting the city. Greater London, on the other hand, has far fewer
high-speed roads, especially in the city’s centre.

Between each map, the mean fuel expenditure per job is well-defined. For example, it
is distinctly higher for Greater London than it is Las Vegas. However, with most maps,
this rises steadily as the population increases. Between 1 and 100 agents, the increase
was around 10% for all maps except Las Vegas. It may seem counter-intuitive that with
greater numbers of vehicles and the same number of completed jobs, total driving cost
increases. The contract net protocol should prevent this from occurring, as only the best
placed agent should be awarded a job. In fact, this phenomenon is due to the overhead
brought on by the predictive idle strategy. Because it instructs unemployed agents to
route to a certain location upon completing a job, it follows that more agents mean
more additional routes and more occasions when an agent switches from being active to
being idle. Also, with smaller populations, the agents may avoid difficult jobs that have
far away waypoints or are otherwise costly to insert into their plan. This can skew the
cost-per-job figure downwards, even if no idle strategy is used.

It is very apparent that reliability improves with higher agent populations. Note that
this is not because of the effects of agents not taking ‘risks’ if they can be avoided. CNP



Chapter 7. Evaluation 112

does not instruct the agents to bid higher in the reverse auction if jobs are more likely to
arrive late. On the contrary, agents with busy schedules are more likely to be awarded
jobs, as their map coverage is greater. The sole reason that greater populations lead
to fewer late jobs is that CNP5 allows an agent’s awarded jobs to be reallocated before
they or other jobs in their plan arrive late. The more agents there are, the more jobs
can be reallocated at critical times. However, as can be seen in the data, this is not
a strong correlation. The reallocation procedure is used sparingly because, deadlines
aside, it offsets the benefits of the initial CNP auction, thereby increasing total cost.

In some rare and unfortunate cases, an agent will be unable to avoid certain waypoints
arriving late. A typical case is when an unpicked job that is nearing its deadline is far
away from the other agents, yet the nearby allocated agent must unexpectedly divert
to unload at the depot or refuel at a fuel point. The number of emergency refuelling
diversions tends to be 1–2 per day, per agent for the small populations. This is due to
the fact that they are all non-idle for very long stretches of the day. To demonstrate
this, figure 7.11 shows the fuel level in the single agent Greater London simulation.

Figure 7.11: The fuel level of a single, independent agent in Greater London over
seven days. The fuel level often drops below the 5% threshold, forcing the agent to
divert to the nearest fuel point and sometimes causing late deliveries. From the graph,
it is clear that the agent was overworked and rarely idle, even during the night. Only
on two occasions (the early mornings of day 2 and day 7) was it idle for long enough

to refuel, as per its idle strategy.

Finally, it should be noted that CNP5 is ill-suited towards single-agent populations.
Typically, as the agent is unable to perform reallocations, it will take on several jobs; then
it will inevitably fall behind schedule and thereafter refuse all jobs until its CourierP lan
is free of any late waypoints. For a multi-agent network, this is sensible as it places a cap
on the number of late deliveries and avoids getting a single agent into deeper trouble.
For this pathological case, this approach is arguably too cautious for a single-agent
population. Also, the behaviour of the predictive idle strategy is not tuned for very
large populations, as many will idle around the central business district. Few, if any,
will park themselves in the outer zones of the city, where jobs may still spawn. This
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doesn’t make a massive difference with regard to acceptance rates, but a hybrid of the
predictive and the scattering idle strategy could potentially bump up the plateau level.

7.8 Economics

Using sensible parameters from earlier simulations, this evaluation will conclude by an-
swering the ultimate question posed in the beginning: can an autonomous courier service
be provided at a lower cost? To answer this question, we will perform break-even anal-
ysis. Investopedia defines this as “an analysis to determine the point at which revenue
received equals the costs associated with receiving the revenue”[54]. The simulation
does not model fixed costs, nor depreciation of capital nor staff costs. However, given
the lack of drivers and the sparsity of depots, such costs are unlikely to be substantial.
The major cost – fuel – is modelled in fine detail. As zero jobs equals zero expenditure
with this configuration, traditional break-even analysis would conclude immediately by
saying that 0 units is required to break-even. For more interesting results, we are in-
stead concerned with the minimum price that can be charged, given an expected level
of demand.

The sole source of revenue is fulfilling jobs and the exact cost of a job is determined
by a base price and the number of additional cost units (time in hours, fuel in litres or
distance in kilometres) to complete the job. To produce the results below, an arbitrary
base and unit price is set. The simulation tracks the number of billable cost units that
are used to reach these prices. As in this evaluation, we choose to minimise driving time
with traffic, this number is equal to the sum of the lowest bids in the contract net and
it is around 90–97% of the total number of hours driven. For example, in the Greater
London simulation, customers were billed for 1091 hours, but the agents were driving for
1169 hours. This 6% overhead is due to having to carry failed deliveries to the depot, as
well as carrying out the predictive idle strategy. Such overhead must be accounted for in
the customer’s price. Essentially, Londoners must pay a 6% tax to pay for the vehicles
positioning themselves before receiving the job and also to pay for the 10% chance that
the recipient won’t be in. This cost could be reduced in the simulation by having more
depots, however in reality this would push up the fixed costs.

For Greater London, twenty agents were used and 1429 jobs were fulfilled over a week.
The total fuel costs amounted to £5447.62 and customers were charged for 1090.55 hours
of driving. Late deliveries result in both the base and unit price to be refunded and this
is accounted for. If the courier is often late, this pushes prices up for all customers,
as they are effectively subsidising these refunds. Partial refunds due to failed pick-ups
are already deducted from the 1090.55 figure, which would be a few percentage points
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higher otherwise. The figures can be substituted into this equation:

Profit = (Units− LateUnits)× UnitPrice

+ (JobCount− LateJobCount)×BasePrice− Cost

Setting Profit to 0 allows us to find the break-even point.

0 = (1090.55− 0)× u+ (1429− 0)× b− 5447.62

This can be plotted as a line on a Cartesian plane, showing us the minimum prices
that could be charged to customers, whilst still breaking even. See figure 7.12. For
comparison, the same experiments were ran on other maps:

• Jersey with 5 agents. 0 = (266.26− 0)× u+ (1511− 0)× b− 1372.69

• Isle Of Wight with 10 agents. 0 = (518.07− 0.27)× u+ (1488− 1)× b− 3040.82
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Figure 7.12: Pricing models for Greater London, the Isle Of Wight and Jersey. Prices
are specified in terms of a fixed base price and a unit cost which scales for more difficult
jobs. Regions under the break-even lines contain loss-making pricing models, whereas
regions above the lines contain profit-making models. In the simulations ran, if any
such model lying exactly on the line were used, the total profit at the end of the week

would be exactly £0.00.

The equations and graphs illustrate the fact that the courier company could simply
charge only a base price or only a unit price (e.g. either £3.81/job or £5.00/hour in
Greater London). However, this may be unwise given customer’s pricing expectations.
Shifting some of the unit cost into the base price ‘smoothens’ the cost curve. With
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reference to the map in figure 3.1, consider an example of two customers in Shepherd’s
Bush (S) who place orders to Chancery Lane (C) at similar times. As the pairs of
waypoints are very similar, the marginal unit cost of the second job that comes in will
be almost zero, regardless of the length of the journey. This is because the first customer
has already paid for the slow journey from S to C and also the agent’s journey from
somewhere nearby to S to S. If there is no base price, the first customer, having talked
to his ‘piggybacking’ neighbour, may feel overcharged. If only a base price is charged, a
customer located in S who sends packages to Queensway (Q) may feel overcharged if he
is paying the same price as his neighbours who send items to C. Some customers might
seize the opportunity to send very large packages across the city with slim deadlines,
whilst using competitors for easier jobs. This would require the base price to change
often with shifting demand, or the company would make a loss. For these reasons, it is
fairer and less risky from a business perspective to charge a combination of base price
and unit cost.

For London, an example pricing scheme could be £2 + £2.37/hour; for the Isle Of
Wight, a round £1.00 + £3.00/hour would cover costs; and for Jersey, we could charge
as little as £0.50 + £2.31/hour. These examples roughly correspond to the midpoint
of the lines in figure 7.12. It should be well-noted that these prices exclude VAT, which
at the time of writing (June 2015), was 20% in the UK [55]. In Jersey, there exists only
a Goods and Services Tax, which would increase the price for customers by 5% [56].

Comparing these three curves raises a few questions as to why they differ so much. It is
clear that higher costs appear to be charged for larger maps, however if you look closely,
if the courier charges only a unit price, it would be more expensive in the Isle Of Wight
than in London. This is mostly due to the relationship between time and fuel economy.
A typical hour of driving between waypoints will use more litres of petrol than in London
or Jersey, because of the higher road speeds. If the unit price was defined in terms of fuel,
it would be slightly above the modelled fuel cost of £1.1882/L. However, both base price
and unit price will be affected by the driving overhead as mentioned earlier. A Greater
London map with only one depot would have a much higher curve. The intersection
between the y-axis and the curves – the base-price-only model – varies significantly and
expectedly so. It is effectively the average cost per job and with larger maps come
geographically lengthier jobs, which require more fuel on average to complete.

Figure 7.13 shows a plot of the profit levels over a week in the Jersey simulation with the
example pricing model given earlier. Due to being unable to charge customers a fraction
of a penny, the week concludes with a tiny loss of £5.50. If customers were charged
an extra penny on the base price (£0.51), the profit would be £9.61. Changing the
balance between base price and unit cost would change this plot, but only due to these
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rounding errors. As revenue is received after each delivery, the rises and falls on the
weekdays loosely correspond to pick-ups per hour minus deliveries per hour. This can
be interpreted by the incomplete jobs count, which is plotted alongside profit. One can
see that it results in a two hour lag between surges in demand and profit. Net losses are
common on weekends because demand is halved, but overhead remains. Failed deliveries
have more of an impact – the packages must still go to the depot and fewer deliveries
can be bundled together. On a weekday, depots can more often expect several drop-offs
at a time. Also, the idle strategies are run more often. These overheads are very small,
but the plot magnifies subtle changes in efficiency.

Figure 7.13: Total, cumulative profit in the Jersey simulation, as measured by total
revenue minus total costs. The revenue model is £0.50 + £2.31/hour.

Of course, in reality, investors would expect to see profit. Were an autonomous courier
to launch in one such area, the prices would likely be a lot higher. Not just to recoup any
fixed and operating costs, but also because massively undercutting competitors would
damage the market as a whole and could be seen by competition authorities as anti-
competitive. Having said that, the courier market is small because of price elasticity of
demand. The market is elastic for some because there are much cheaper substitutes –
customers will respond a lot to price changes, because they may be willing to sacrifice
on speed and use a cheaper, next-day courier or sacrifice on convenience and deliver
the package themselves. For others who demand speed, PED may be inelastic as the
service is a necessity. Since the average cost per job drops as demand increases (as shown
in section 7.4), it would be wise to price the service low enough to attract many new
customers to the market, but high enough so that profit can be made. For example, if
the London service charged £4 + £5/hour, the simulation reports a profit of £5721.13.
For the hypothetical 12-minute journey example in the introduction (chapter 1), we can
definitely undercut Shutl’s £10.83 (ex. VAT) quote, even if the most appropriate agent
has no jobs and is an hour away. As the job is quite short and within zone 1-2, it is
unlikely to be rejected unless the deadline is very slim. Shutl and CitySprint quoted
pick-up and delivery within 3–4 hours, which would be an easy deadline for our network.
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7.8.0.1 Premium Pricing Models

An alternative, unexplored pricing model would charge premiums for difficult aspects of
the job, in addition to the base and unit price. This may be an absolute charge (e.g.
+£0.50 extra) or a percentage of some sort (e.g. +5%). Such premiums might include:

• Oversized packages, particularly if the network employs a variety of vehicles.4

• Very short deadlines.

• Failed delivery ‘insurance’, which dictates that failed drop-offs are to be returned
to the sender.

• The requirement that from pick-up to drop-off, no intermediate stops are made,
meaning the fastest, direct route must be taken.

It may not seem fair to charge a customer extra for such things. The pricing model
we use should naturally charge more for more difficult jobs, because the customer pays
for the extra cost incurred by the courier agent. If their job has a slim deadline or is
oversized (thus requiring a direct route), the solution to the planning problem with the
additional waypoints will have a much greater cost. However, if their job is objectively
difficult, but the agent is idle or otherwise happens to be in a prime position to fulfil it,
the customer is not charged more simply because of the size or deadline. This however
may be the wrong approach. Consider a case when, in the early morning, an idle agent
is awarded a large job that has a long direct route from pick-up and drop-off points P
and D. The agent picks it and begins the route. Because the agent was idle anyway, the
size would not have affected the price. At the time of bidding, the size of the job does
not have an impact on the time it takes to travel between P and D. However, future
jobs that come in will be more difficult to efficiently slot into its plan – most likely,
they will have to be appended to the end, even if they lie along the route from P to D.
Perhaps, charging for premiums would act as a disincentive for customers to place jobs
that may later affect the efficiency of the courier network.

7.9 Simulator and Software Design

7.9.1 Running Time

To allow for very long multi-agent simulations, a lot of effort was put into reducing the
running time of the simulator. This was done by designing the planning algorithms to

4Both CitySprint and Shutl charge different rates for deliveries, depending on their size and weight.
Specifically, they ask the customer to select a vehicle that is large enough to carry their package [4] [5].
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run quickly and short circuit when an acceptable solution is found (i.e. not running
the genetic algorithm unless the greedy search fails). Thereafter, the Visual Studio
profiler was used to identify ‘hot’ lines of code that could potentially be optimised
or performed in parallel. The A* algorithm typically makes up 95% of the profiler’s
samples and it is mainly invoked in parallel by the agents via their NNGAPlanner
when they need to bid for jobs. Micro-optimisation was performed on functions that
were called very frequently. For example, a function that finds the great circle distance
between two points using the Haversine formula is called thousands of times a second. At
present, profiling a typical simulation says that it accounts for 17% of CPU time. Several
other implementations of the function were benchmarked, but they were slower or too
inaccurate. In the end, a performance gain of around 30% was achieved by replacing
instances of the exponentiation operator (ˆ) with multiplication. Doing so made no
difference to accuracy.

Table 7.9 shows some examples of running times for various experiments performed
earlier, for 24 simulated hours. The values of ε are those used for said experiments
and are based on the findings from section 7.1.1. 2D graphics were disabled for these
simulations, although it only makes a noticeable difference to the two fastest simulations.
For the Isle Of Wight, runtimes for the three different dispatchers, CityDispatcher,
SingleBusinessDispatcher and HubAndSpokeDispatcher are given to illustrate the
performance benefits of being able to use cached routes. St. Agnes is a tiny island
off the coast of England that is 1.48 km2 and has only a few roads. Its tiny runtime
of 2 seconds per simulation day mainly consists of the overhead of adding rows with
simulation state data to the table used by the chart GUI.

Map Agent Population A* Epsilon Running Time
St. Agnes 1 0 0h 0m 2s
Stronsay 5 3 0h 0m 8s
Jersey 5 2 0h 0m 46s
Central London (Z1) 5 7 0h 1m 39s
Las Vegas Valley 10 1 0h 22m 54s
Greater London 20 7 0h 24m 15s
Isle of Wight (CD) 10 2 0h 2m 1s
Isle of Wight (SBD) 10 2 0h 0m 47s
Isle of Wight (H&SD) 10 2 0h 0m 26s

Table 7.9: Runtimes for simulating a number of environments.
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Conclusion

This report concludes with a summary of the project’s achievements and its contributions
to the field of logistics optimisation.

A number of algorithms were developed to enable efficient fulfilment of deliveries. Bottom-
up, these are:

• An implementation of the A* algorithm for point-to-point route finding. Depend-
ing on the user’s requirements, this can attempt to minimise distance, time or fuel.
This was designed such that it can be sped up in exchange for optimality.

• The planning algorithm, which consists of two phases: a greedy algorithm with
bounded backtracking, followed by a genetic algorithm. These solve an NP-hard
problem and as demonstrated in section 7.1.2, can be combined to find a solution
typically only a third more costly than the optimal.

• The routing and allocation strategy, which extends the Contract Net Protocol and
allows for dynamic and immediate allocation of tasks to agents. By performing
optimisation locally and in parallel over a distributed system, agents are able to
bid for jobs. If the agent with the winning bid later suffers delays, it is able to
reperform the auction in efforts to spread its workload and reduce any deadline
violations.

• A selection of idle strategies, which maximise an agent’s performance through
premature refuelling and strategic positioning.

To make journey times in the simulation more accurate, the OpenStreetMap data was
unified with minute-by-minute traffic data from Here Maps. The simulator also models
pedestrian crossings, traffic lights, level crossings and random unexpected obstacles,
which as a whole can massively influence journey times in real-world cities.
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8.1 Limitations

8.1.1 Illegal Road Turns

Due to the lack of OpenStreetMap metadata and the sheer difficulty in making accurate
estimates to this regard, turning restrictions are not modelled. On two-way streets,
vehicles are allowed to double back, which may in the real world constitute an illegal
U-turn. Some turning restrictions are marked as relations in OpenStreetMap, however
these are not read by the OSM parser. Whilst this does limit the accuracy of the
simulation to some extent, it is unlikely that such restrictions will make a substantial
difference to the results in the evaluation. Remedying this would add some additional
overhead on the AStarSearch class, necessitating a validity check before adding a node
to the open set.

8.1.2 Agent Collision

Because the number of agents modelled typically far outweigh the number of nodes in the
road network, physical agent interaction is not modelled. If a road delay node is active,
agents do not queue behind it, but rather occupy the same space. To this effect, the
simulation could be made more accurate by implementing collision avoidance; however
it is unlikely to make a substantial difference to the results gathered. In large maps,
agents will rarely come into contact with one another, apart from at depots.

8.1.3 Job Stream

Much care was put into implementing a dispatcher that would best emulate the hourly
demands of businesses and consumers. However, in the real world, demand is unlikely to
be predictable. There are so many unmodellable factors that could affect the frequency
and types of jobs ordered. A more extensive evaluation could be carried out with actual,
long-term data from a city courier such as CitySprint. Were this available, say in the form
of a CSV file, a new implementation of IDispatcher could be made. Upon instantiation,
it would parse all of this data into a queue of CourierJobs, ordered by date and time.
Like the DepotDispatcher, this queue forms a schedule and it would broadcast a job
upon dequeuing it.
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8.2 Extensions

8.2.1 Easy Additions

The simulator’s software design allows certain functionality to be developed with ease,
against interfaces. We are pleased that despite the complexity of the simulation, good
software design principles could be followed.

• Dispatchers implement IDispatcher. To control the properties, whereabouts and
frequency of the jobs in the job feed, a new class can be easily written. For example,
if one wanted to simulate a courier network for blood, this could be implemented
easily by randomly selecting waypoints from nodes tagged amenity=hospital and
perhaps using fixed deadlines (e.g. the current time plus thirty minutes).

• More autonomous vehicles can be modelled, such as a motorcycle [57] or even a
bipedal robot. The V ehicles module defines an Enum. One could add another ve-
hicle and define its fuel economy, using either a coefficient on the existing parabolic
formula, or a new formula altogether.

• Routing and idle strategies have been designed to be interchangeable. Writing a
new one or another CNP variant would prove to be an easy extension.

8.2.2 Progressive Route Finding

As can be seen in the results in section 7.1.1, if one wants to run a long simulation, they
must compromise on the optimality of the route finding algorithm. Computation time is
less of an issue if the algorithms are allowed to execute in real time, however customers
would still expect reasonably fast responses when they request a quote on a job. A
modified solution is proposed wherein the vehicles make quotes based on suboptimal
route finding, but then in the time between job requests coming in, they rerun the A*
algorithm between each pair of waypoints in the plan, using an admissible heuristic. In
fact, running Dijkstra’s algorithm and caching the results may be more appropriate in
this case, as there is more time available. The agent could also keep running the genetic
algorithm over thousands of generations, changing the plan upon seeing a less costly
one.

8.2.3 Handoff

Like in the simulations developed in [28] and [29], it would be interesting to extend the
abilities of the agents, such that they are able to hand off packages at fixed exchange
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points. The papers do not demonstrate a real improvement in efficiency over taking
the direct route, at least in terms of driving cost. However, it assumes an overly large
network of local couriers. This contrasts to this project wherein the agent population
tends to be no larger than what is necessary, which leads to agents’ schedules becoming
saturated. For us, job acceptance rate is the key performance indicator. The CNP5
extension is somewhat limited by the inability to auction off jobs that have already been
picked up. If this can be performed, perhaps with a human mediator at a depot, the
number of late deliveries may be minimised further.

8.2.4 Traditional Couriering

This project has demonstrated the efficiencies that can be made in running an unmanned
same-day courier service. It would easily be possible to modify certain agent behaviours
to emulate a traditional courier service that uses human drivers. Though it would require
changes to the functionality of each routing strategy, it would not be too difficult to have
the ‘agent’ reattempt failed deliveries at neighbouring addresses. A courier company’s
fleet tend to be parked on their own property, rather than scattered around the city.
This could be implemented by modifying the sleeping idle strategy, such that the vehicles
route towards depots, rather than fuel points.

8.2.5 Map-Specific Strategies

Certain maps would benefit from custom strategies. For example, in the Isle Of Wight,
the predictive idle strategy tends to position all the agents somewhere in the centrally
located town of Newport, as it will inevitably be the geographical ‘mean’ pick-up loca-
tion. However, this increases cost if a job spawns on one of the coastal cities. A better
strategy would be to position an agent in each town, so that the distance to the first
waypoint of the day is better minimised. This could easily be implemented as an idle
strategy, although of course, it would not be portable. If the model can be loosened,
there could be a human controller who is able to remotely send routing commands to
the agents at off-peak times. This would couple nicely with the fact that in the real
world, the cars will need occasional maintenance.

8.3 Closing Remarks

The initial objectives of this project were to design, implement and test a same-day
courier network. On reflection, we believe that due to careful time management and
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swift recovery following unexpected setbacks, these objectives have largely been ex-
ceeded in scope and this project has gone much further than initially thought. A fully
functional product has been output and with minor adjustments could be rolled out to
a fleet of vehicles. The algorithms could be eternally iterated upon and the reality is,
custom per-city strategies will always outperform general purpose implementations (i.e.
standard CNP). However, the results of this project’s evaluation show that what has
been developed is beyond fit for purpose.

A large-scale, affordable, same-day courier service has been shown to be viable once un-
manned autonomous cars become street-legal. However, there do exist some unanswered
questions that we leave to the reader. The solution proposed has made it possible for
people to cheaply transport packages across a city in a matter of hours. However, is this
what people really want, given the increasing usage of digital delivery for documents and
the advancements in 3D printing technology? Will high upfront costs of autonomous
cars largely outweigh the efficiencies made? Would customers be comfortable with their
mail being accessible to other customers? Will police forces even allow such a service
to be rolled out, given the scope for anonymous transportation of illegal or dangerous
goods? In any event, the author of this project is keen to see what the future holds for
the same-day courier industry.
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Table of Parameters

All default values for the parameters used in the simulation are given in the Implemen-
tation (chapter 5). For the reader’s convenience, they are also summarised below. Note
that time spans and frequencies/periods are usually specified in seconds, as these corre-
spond to the smallest unit of time in the simulation. Speeds are specified in kilometres
per hour. Volumetric sizes and capacities are specified in cubic metres. Fuel amounts
and tank sizes are specified in litres.

A.1 Fulfilment

Parameter Range Default value
Minimum time for a customer to load a package 1–∞ 20
Maximum time for a customer to load a package 1–∞ 120
Minimum time for a customer to retrieve a package 1–∞ 20
Maximum time for a customer to retrieve a package 1–∞ 120
Time for a depot employee to load a package 1–∞ 20
Time for a depot employee to retrieve a package 1–∞ 20
Time before arrival that the customer is notified,
meaning the waypoint is ‘locked’ in place and
cannot be rescheduled

0–∞ 300

Revised deadline for a job to reach a depot or the
sender, after delivery failure 0–∞ 12 hours

Probability of a pick-up being successful 0–1 0.99
Probability of a drop-off being successful 0–1 0.9
Planner redundancy time per waypoint, τ 0–∞ 240

Note, in most cases, the A* algorithm is configured to minimise TIME_WITH_TRAFFIC,
rather than distance or fuel. Unless otherwise specified, the routing strategy is CNP5 and
the idle strategy, PredictiveIdleStrategy. The main dispatcher is the CityDispatcher,
failed deliveries are rerouted to the nearest depot and the DepotDispatcher is enabled.

124



Appendix A. Table of Parameters 125

A.2 Speed Limits

For each OpenStreetMap way, speed limits are sometimes tagged. Where it is not or
the tag’s value cannot be parsed, we assume the following speeds for each road type:

Highway Classification Range Default value
Motorways 0–1.08× 109 112
Trunk roads 0–1.08× 109 80
Primary roads 0–1.08× 109 64
Residential roads 0–1.08× 109 32
Service roads 0–1.08× 109 8
Other roads 0–1.08× 109 48
Global speed limit (for route finding) 0–1.08× 109 112

A.3 Road Delays

Note that all probabilities are multiplied by the corresponding value in the traffic dis-
tribution table (section D.1), divided by the maximum number in that table, which is
212. By this measure, the probability of a road delay as listed below is equal to the
probability of it being activated within a period at peak time. Delay lengths must be
less than or equal to the frequency or period.

Parameter Range Default value
Traffic lights, frequency 1–∞ 60
Traffic lights, delay length 1–∞ 30
Traffic lights, activation times any range all day
Level crossings, frequency 1–∞ 600
Level crossings, delay length 1–∞ 120
Level crossings, activation times any range all day, except 01:00–04:00
Traffic light pedestrian crossings, period 1–∞ 45
Traffic light pedestrian crossings, delay length 1–∞ 15
Traffic light pedestrian crossings, probability 0–1 1
Zebra pedestrian crossings, period 1–∞ 30
Zebra pedestrian crossings, delay length 1–∞ 10
Zebra pedestrian crossings, probability 0–1 1
Unexpected minor delays, period 1–∞ 2
Unexpected minor delays, delay length 1–∞ 2
Unexpected minor delays, probability 0–1 0.00222
Unexpected major delays, period 1–∞ 30
Unexpected major delays, delay length 1–∞ 30
Unexpected major delays, probability 0–1 0.00417
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A.4 Dispatchers

For the table below, note that the maximum size of a package should be set in accordance
to the capacity of the vehicles, which will immediately refuse any job that is too large.
The mean sample from an exponential distribution is λ−1, so the mean of the default
distribution is 0.333 m3. The sum of the probabilities of jobs being B2B (business-to-
business), B2C (business-to-consumer), C2B (consumer-to-business) or C2C (consumer-
to-consumer) at any one time must equal 1.

Parameter Range Default value
Mean dispatch rate per hour 0–∞ see A.4.1
Probability of job being B2B 0–1 see A.4.1
Probability of job being B2C 0–1 see A.4.1
Probability of job being C2B 0–1 see A.4.1
Probability of job being C2C 0–1 see A.4.1
Deadline excess time in hours, X ∼ Γ(k, θ) k > 0, θ > 0 k = 2, θ = 1
End-of-business time range any, except all day 17:15–17:45
Volumetric size of packages, X ∼ Exp(λ) λ > 0 λ = 3
Volumetric size of packages, minimum > 0 0.0002
Volumetric size of packages, maximum > 0 0.999
DepotDispatcher rebooking time in hours,
X ∼ Exp(λ) λ > 0 λ = 1

48
DepotDispatcher rebooking probability 0–1 0.5
SingleBusinessDispatcher, probability of B2C 0–1 0.5
HubAndSpokeDispatcher, probability of B2C 0–1 0.5

A.4.1 Dispatch Rate

Dispatch rates and proportions of job types vary by hour and whether it is a weekday
or a weekend. In the tables below, ‘Rate’ refers to the average number of jobs that are
generated per hour.
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Monday–Friday
Hour Rate B2B B2C C2B C2C
0 1 20% 10% 0% 70%
1 1 20% 10% 0% 70%
2 1 20% 10% 0% 70%
3 1 20% 10% 0% 70%
4 1 20% 10% 0% 70%
5 1 20% 10% 0% 70%
6 1 20% 10% 0% 70%
7 10 80% 5% 5% 10%
8 15 80% 5% 5% 10%
9 20 80% 5% 5% 10%
10 20 80% 5% 5% 10%
11 20 80% 5% 5% 10%
12 20 80% 5% 5% 10%
13 20 80% 5% 5% 10%
14 20 80% 5% 5% 10%
15 20 80% 5% 5% 10%
16 18 80% 5% 5% 10%
17 14 80% 5% 5% 10%
18 10 20% 10% 0% 70%
19 6 20% 10% 0% 70%
20 4 20% 10% 0% 70%
21 3 20% 10% 0% 70%
22 2 20% 10% 0% 70%
23 1 20% 10% 0% 70%

Saturday and Sunday
Hour Rate B2B B2C C2B C2C
0 1 20% 10% 0% 70%
1 1 20% 10% 0% 70%
2 1 20% 10% 0% 70%
3 1 20% 10% 0% 70%
4 1 20% 10% 0% 70%
5 1 20% 10% 0% 70%
6 1 20% 10% 0% 70%
7 5 50% 20% 10% 20%
8 7 50% 20% 10% 20%
9 10 50% 20% 10% 20%
10 10 50% 20% 10% 20%
11 10 50% 20% 10% 20%
12 10 50% 20% 10% 20%
13 10 50% 20% 10% 20%
14 10 50% 20% 10% 20%
15 10 50% 20% 10% 20%
16 8 50% 20% 10% 20%
17 7 50% 20% 10% 20%
18 5 20% 10% 0% 70%
19 3 20% 10% 0% 70%
20 2 20% 10% 0% 70%
21 1 20% 10% 0% 70%
22 1 20% 10% 0% 70%
23 1 20% 10% 0% 70%

A.5 Vehicles

Fuel economy is specified in miles per gallon. At speed x and using the vehicle’s fuel
economy coefficient k, the vehicle achieves k×(−0.0119x2+1.2754x) mpg. The refuelling
thresholds are based on how full the fuel tank is, as a percentage.
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Parameter Range Default value
Car, capacity 0–∞ 1
Car, tank size 0–∞ 50
Car, fuel economy coefficient k 0–∞ 1
Car, fuel type petrol, diesel petrol
Van, capacity 0–∞ 2
Van, tank size 0–∞ 80
Van, fuel economy coefficient k 0–∞ 0.92
Van, fuel type petrol, diesel diesel
Truck, capacity 0–∞ 8
Truck, tank size 0–∞ 80
Truck, fuel economy coefficient k 0–∞ 0.55
Truck, fuel type petrol, diesel diesel
Petrol cost per litre (£) 0–∞ 1.1327
Diesel cost per litre (£) 0–∞ 1.1882
Emergency refuelling threshold 0–1 0.05
Idle strategy refuelling threshold 0–1 0.95
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User Guide

B.1 Installation

The courier simulator requires an installation of the .NET framework, version 4.5.2. A
portable, standalone executable is provided, which can be run as is.

B.2 Importing Maps

Maps can be downloaded from www.openstreetmap.org. Simply navigate to the desired
area, click the ‘Export’ button at the top and download the map using the ‘Overpass
API’ link. See figure B.1. Save the file with an .osm extension to the maps/ directory.

Figure B.1: Downloading a map from www.openstreetmap.org.
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B.3 Usage

B.3.1 Loading a Map

After opening the program, one first needs to choose a map from the File menu. Note
that loading very large or dense maps may take some time and will require more memory.
When it is loaded, the map will be drawn in the window, which one might want to resize
to match the proportions of the map area.

B.3.2 Configuring the Simulation

From the Agents menu, one can change any of the following preferences: routing and
allocation strategy, idle strategy, vehicle type, dispatcher and whether failed deliveries
should be returned to the nearest depot or the sender. These must be set before the
simulation is started. The simulation parameters window will be visible on start-up,
however if it has been closed, it can be reopened via the menus, Simulation > Set

Parameters. Here one can change parameters used in probability distributions that
correspond to dispatch rate, deadline excess, package size and pick-up/delivery failure.
In addition, one can change the base and unit price charged to customers and the weight
that is applied to the heuristic cost in A* route finding (equal to 1+ε). All such variables
can be changed pre- or mid-simulation by adjusting sliders or typing a value into the
adjacent text box.

B.3.3 Running the Simulation

Having configured the simulation, select Simulation > Start Simulation. Then, add
the desired number of agents from the Agents menu. The simulation begins in real-
time. To speed it up, look to the top two variables, Simulation Speed and Graphics

Refresh Rate in the parameters window. Adjust these to be higher. Turning off the
map display will allow the simulation to run faster. This can be done by selecting select
View > Pause Display.

As the simulation runs, one can observe the status of the agents and their plans by look-
ing at the ‘agent status console’. This window is opened at launch and can be reopened
via the menus, Simulation > View Console. One can also see certain simulation vari-
ables plotted on a graph by accessing Simulation > View Statistics. Here, one needs
to click the refresh button or check the timer refresh checkbox for the values to be up-
dated. The variables are presented as a list of checkboxes. Selecting one or more will
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plot them on the graph adjacent. Do note however, that due to the very large number
of data points, frequent refreshing of the chart can slow down the simulation.

B.4 Stopping a Simulation

To pause a simulation, go to Simulation > Pause and to resume, go to Simulation

> Start Simulation. To reperform a simulation on the same map, perhaps with dif-
ferent parameters or preferences, first do Simulation > Reset. Then, after making
any adjustments to the configuration (as explained earlier), select Simulation > Start

Simulation. Selecting a new map from the File menu will also reset the current sim-
ulation, giving you the chance to configure the new one, before starting the simulation
like before.
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Playground

In the early stages of the project, we worked on building a platform that could be
used to simulate a courier network. At this point, there existed autonomous agents,
however their routing strategy was pointless. They would simply choose a random
point on the map to route towards, calculate the A* route in a background thread
and begin driving there. Upon arrival, the strategy would repeat. If the user clicked
anywhere on the map, all agents would navigate to that point and recommence the
original strategy thereafter. Once courier jobs were modelled and proper routing and
allocation strategies were written, this code was moved into an AAPlayground class, a
subclass of AASimulation and a sibling class of AACourierSimulation, to which this
report is based upon. It can still be run as before, by selecting Simulation > Start

Playground.

Though this mode provides no insight, it did have a useful purpose in allowing us to
benchmark the performance of the route finding class (at this early point, several were
in development) and test the stability of the simulator. Due to the simple nature of
the strategy, it is feasible to spawn thousands of agents on a single map and have them
drive around concurrently. Figure C.1 shows one such example. Testing such things as
the strongly connected components algorithm successfully pruning all inaccessible and
inescapable nodes and road delay nodes delaying all passing agents at the same time
(see figure C.2), were reduced into simple observation tasks.
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Figure C.1: An AAPlayground in Jersey, with 5000 autonomous agents!

Figure C.2: An AAPlayground on a fictional map with a single one-way road that
forms a square. Almost all of the 500 agents are concurrently stuck waiting for a level
crossing on the middle-left node. A line is drawn from each agent to its destination.
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Extra Material

D.1 Temporal Traffic Distributions

The following data set was used for computing the likelihood of pedestrian-related road
delays occurring. It is table TRA0307, published by the UK Department of Transport
in June 2014 [41].

Time of day Mon Tue Wed Thu Fri Sat Sun
00:00-01:00 16 15 16 16 18 23 24
01:00-02:00 10 11 11 12 13 15 15
02:00-03:00 8 10 10 10 11 12 10
03:00-04:00 10 11 11 12 13 12 9
04:00-05:00 20 19 19 19 19 15 10
05:00-06:00 50 45 44 44 42 24 15
06:00-07:00 114 112 110 109 99 41 24
07:00-08:00 182 188 189 188 171 65 37
08:00-09:00 185 193 195 195 177 96 55
09:00-10:00 152 154 156 157 149 129 90
10:00-11:00 147 139 141 145 153 158 129
11:00-12:00 150 139 141 146 166 172 153
12:00-13:00 150 140 143 149 176 168 158
13:00-14:00 150 144 147 154 182 158 152
14:00-15:00 154 152 156 163 191 147 148
15:00-16:00 165 169 173 180 201 141 152
16:00-17:00 189 199 203 208 208 140 156
17:00-18:00 195 204 209 212 200 136 147
18:00-19:00 147 157 163 169 165 116 129
19:00-20:00 96 100 107 117 126 88 108
20:00-21:00 67 68 72 81 90 63 84
21:00-22:00 51 51 55 60 64 47 61
22:00-23:00 37 39 41 45 47 40 41
23:00-00:00 23 25 27 29 34 33 26
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D.2 Tables

Dispatch Rate Completed Jobs Completed Jobs (%) Late Jobs (%) Distance (km) Distance per Job (km)
0.1 19 100.00% 0.00% 241 12.68
0.1 23 95.80% 0.00% 308 13.39
0.1 27 100.00% 0.00% 355 13.15
0.1 29 100.00% 0.00% 432 14.90
0.1 22 100.00% 0.00% 304 13.82

0.25 63 94.02% 0.00% 716 11.37
0.25 49 98.00% 0.00% 581 11.86
0.25 55 96.49% 0.00% 670 12.18
0.25 54 96.43% 0.00% 690 12.78
0.25 63 98.44% 0.00% 702 11.14
0.5 115 96.64% 0.87% 1154 10.03
0.5 102 98.08% 0.00% 1043 10.23
0.5 81 93.10% 0.00% 1014 12.52
0.5 103 98.10% 0.00% 1121 10.88
0.5 112 94.91% 0.00% 1056 9.43
1 229 93.85% 0.04% 1918 8.38
1 216 90.76% 0.00% 1781 8.25
1 217 94.76% 0.00% 1756 8.09
1 231 91.67% 0.09% 1840 7.97
1 240 93.02% 0.00% 1878 7.83
2 303 68.24% 0.67% 2200 7.26
2 349 75.54% 0.28% 2319 6.64
2 323 66.19% 1.86% 2287 7.08
2 335 75.62% 1.49% 2232 6.66
2 314 66.53% 0.96% 2259 7.19
3 339 49.78% 3.54% 2409 7.11
3 345 50.15% 2.31% 2455 7.12
3 358 52.26% 2.79% 2400 6.70
3 369 55.24% 1.63% 2416 6.55
3 335 47.32% 1.19% 2430 7.25
5 403 35.35% 2.98% 2765 6.86
5 406 34.06% 1.97% 2696 6.64
5 386 35.70% 4.40% 2643 6.85
5 417 34.49% 2.16% 2733 6.55
5 387 33.59% 2.33% 2718 7.02

Table D.1: Varying the dispatch rate for a 24-hour London Z1 simulation
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D.3 Maps

Greater London
16 depots
624 fuel points
37451 businesses

Isle Of Wight

1 depot
20 fuel points
845 businesses

Las Vegas Valley
4 depots
131 fuel points
1652 businesses

Jersey
1×D  27×F  702×B

Stronsay
1×D  1×F  0×B

Central/Z1 London
2 depots
16 fuel points
10525 businesses

0
0

10 km
6.2 mi

Figure D.1: Renderings of all of the maps used in the evaluation and their properties.
The maps are drawn to scale.
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Figure D.2: Rendering of Stronsay (not to scale).

Figure D.3: Rendering of Jersey (not to scale).

Figure D.4: Rendering of Central London (TFL Zone 1) (not to scale).



Bibliography

[1] Royal Mail Group, Datamonitor, 2012. Royal Mail Group parcels expansion to create
1,000 new UK jobs. Available online at http://www.royalmailgroup.com/cy/

node/4315. Accessed on January 23, 2015.

[2] Google Maps.W6 8RP, United Kingdom to London SW7 2AZ, UK. Available online
at https://www.google.co.uk/maps/dir/W6+8RP/SW7+2AZ/. Accessed on June 1,
2015.

[3] Royal Mail. Sameday parcel delivery and courier services. Available online at
http://www.royalmail.com/parcel-despatch-low/uk-delivery/sameday. Ac-
cessed on June 1, 2015.

[4] CitySprint. Sameday Courier QuikQuote. Available online at https://onlinecc.

citysprint.co.uk/QuoteAndBooking/Quote.aspx. Accessed on June 1, 2015.

[5] Shutl Ltd. Shutl.it. Available online at https://uk.shutl.it/. Accessed on June
1, 2015.

[6] Anywhere Sameday Couriers. Instant Online Courier Prices. Available online at
http://www.anywherecouriers.co.uk/same-day-courier/. Accessed on June 1,
2015.

[7] M. Wooldridge. An Introduction to MultiAgent Systems, p 366. John Wiley & Sons,
2002.

[8] L. Panait, S. Luke. Cooperative Multi-Agent Learning: The State of the Art. In
Autonomous Agents and Multi-Agent Systems Vol. 11, No. 3, 2005, pp 387–434.
Available online at http://cs.gmu.edu/~eclab/papers/panait05cooperative.

pdf.

[9] S. Franklin, A. Graesser. Is it an Agent, or just a Program?: A Tax-
onomy for Autonomous Agents. In proceedings of the Third International
Workshop on Agent Theories, Architectures, and Languages, Springer-Verlag,
1996. Available online at http://www.inf.ufrgs.br/~alvares/CMP124SMA/

IsItAnAgentOrJustAProgram.pdf.

138

http://www.royalmailgroup.com/cy/node/4315
http://www.royalmailgroup.com/cy/node/4315
https://www.google.co.uk/maps/dir/W6+8RP/SW7+2AZ/
http://www.royalmail.com/parcel-despatch-low/uk-delivery/sameday
https://onlinecc.citysprint.co.uk/QuoteAndBooking/Quote.aspx
https://onlinecc.citysprint.co.uk/QuoteAndBooking/Quote.aspx
https://uk.shutl.it/
http://www.anywherecouriers.co.uk/same-day-courier/
http://cs.gmu.edu/~eclab/papers/panait05cooperative.pdf
http://cs.gmu.edu/~eclab/papers/panait05cooperative.pdf
http://www.inf.ufrgs.br/~alvares/CMP124SMA/IsItAnAgentOrJustAProgram.pdf
http://www.inf.ufrgs.br/~alvares/CMP124SMA/IsItAnAgentOrJustAProgram.pdf


Bibliography 139

[10] R. G. Smith. The Contract Net Protocol: High-Level Communication and Control
in a Distributed Problem Solver. In IEEE Transactions on Computers, Vol. 29, No.
12, 1980. Available online at http://www.reidgsmith.com/The_Contract_Net_

Protocol_Dec-1980.pdf.

[11] M. Horauer, B. Chen, P. Zingaretti. Mechatronic and Embedded Systems Pave the
Way for Autonomous Driving. Available online at http://sites.ieee.org/itss/

2013/08/22/y13n1/. Accessed on February 7, 2015.

[12] S. Jurvetson. Jurvetson Google driverless car [image]. Available online at http://

commons.wikimedia.org/wiki/File:Jurvetson_Google_driverless_car.jpg.
Accessed on February 7, 2015.

[13] M. M. Deza, E. Deza. Encyclopedia of Distances, p 521. Springer-Verlag Berlin
Heidelberg, 2014. Available online at https://books.google.co.uk/books?id=

q_7FBAAAQBAJ&pg=PA521&lpg=PA521#v=onepage&q&f=false.

[14] R. W. Sinnott. Virtues of the Haversine. In Sky and Telescope, Vol. 68, No. 2, 1984, p
159. Available online at http://daimi.au.dk/~dam/thesis/Sky_and_Telescope_

1984.pdf.

[15] M. Sharir. A strong-connectivity algorithm and its applications in data flow analysis.
In Computers & Mathematics with Applications, Vol. 7, No. 1, 1981. Available online
at http://www.sciencedirect.com/science/article/pii/0898122181900080.

[16] R. Tarjan. Depth-First Search and Linear Graph Algorithms. In SIAM Journal on
Computing, Vol. 1, No. 2, 1971, pp 146–160. Available online at http://epubs.

siam.org/doi/abs/10.1137/0201010.

[17] E. W. Dijkstra. A Discipline of Programming, Ch. 25. Prentice Hall, 1976.

[18] P. E. Hart, N. J. Nilsson, B. Raphael. A Formal Basis for the Heuristic De-
termination of Minimum Cost Paths. In IEEE Transactions on Systems Science
and Cybernetics, Vol. 4, No. 2, 1968, pp 100–107. Available online at http:

//ai.stanford.edu/~nilsson/OnlinePubs-Nils/PublishedPapers/astar.pdf.

[19] R. Kraujutis. Optimal Route Search in Geographical Information Systems. In Jour-
nal of Young Scientists, Vol. 26, No. 1, 2010, p 30. Available online at http://www.

su.lt/bylos/mokslo_leidiniai/jmd/10_01_26_priedas/kraujutis.pdf.

[20] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, 1984.

http://www.reidgsmith.com/The_Contract_Net_Protocol_Dec-1980.pdf
http://www.reidgsmith.com/The_Contract_Net_Protocol_Dec-1980.pdf
http://sites.ieee.org/itss/2013/08/22/y13n1/
http://sites.ieee.org/itss/2013/08/22/y13n1/
http://commons.wikimedia.org/wiki/File:Jurvetson_Google_driverless_car.jpg
http://commons.wikimedia.org/wiki/File:Jurvetson_Google_driverless_car.jpg
https://books.google.co.uk/books?id=q_7FBAAAQBAJ&pg=PA521&lpg=PA521#v=onepage&q&f=false
https://books.google.co.uk/books?id=q_7FBAAAQBAJ&pg=PA521&lpg=PA521#v=onepage&q&f=false
http://daimi.au.dk/~dam/thesis/Sky_and_Telescope_1984.pdf
http://daimi.au.dk/~dam/thesis/Sky_and_Telescope_1984.pdf
http://www.sciencedirect.com/science/article/pii/0898122181900080
http://epubs.siam.org/doi/abs/10.1137/0201010
http://epubs.siam.org/doi/abs/10.1137/0201010
http://ai.stanford.edu/~nilsson/OnlinePubs-Nils/PublishedPapers/astar.pdf
http://ai.stanford.edu/~nilsson/OnlinePubs-Nils/PublishedPapers/astar.pdf
http://www.su.lt/bylos/mokslo_leidiniai/jmd/10_01_26_priedas/kraujutis.pdf
http://www.su.lt/bylos/mokslo_leidiniai/jmd/10_01_26_priedas/kraujutis.pdf


Bibliography 140

[21] C. Nilsson. Heuristics for the Traveling Salesman Problem, Linkoping University,
2003, p 1. Available online at http://web.tuke.sk/fei-cit/butka/hop/htsp.

pdf.

[22] K Deep, H. Mebrahtu. New Variations of Order Crossover for Travel-
ling Salesman Problem. In International Journal of Combinatorial Optimiza-
tion Problems and Informatics, Vol. 2, No. 1, 2011, pp 2-13. Avail-
able online at http://www.researchgate.net/publication/50923713_New_

Variations_of_Order_Crossover_for_Travelling_Salesman_Problem.

[23] D. Carlino. Approximately Orchestrated Routing and Transportation Ana-
lyzer: City-scale traffic simulation and control schemes, University of Texas,
2013. Available online at http://apps.cs.utexas.edu/tech_reports/reports/

tr/TR-2157.pdf.

[24] D. Carlino, M. Depinet, P. Khandelwal, P. Stone. Approximately Orchestrated Rout-
ing and Transportation Analyzer: Large-scale Traffic Simulation for Autonomous
Vehicles. In Proceedings of the 15th IEEE Intelligent Transportation Systems Con-
ference (ITSC 2012), 2012. Available online at http://www.cs.utexas.edu/~aim/

papers/ITSC2012-dcarlino.pdf.

[25] D. Carlino, M. Depinet, P. Khandelwal, P. Stone. Auction-based autonomous in-
tersection management. In Proceedings of the 16th IEEE Intelligent Transportation
Systems Conference, 2013. Available online at http://www.cs.utexas.edu/~aim/

papers/ITSC13-dcarlino.pdf.

[26] D. Carlino. Spliced roads now visualized better. Available online at http://www.

aorta-traffic.org/2014/01/28/spliced-roads-now-visualized-better/.
Accessed on January 25, 2015.

[27] R. Meyer. Event-Driven Multi-Agent Simulation. Multi-Agent-
Based Simulation XV (MABS 2014). Springer International Publishing,
2015. Available online at http://cfpm.org/discussionpapers/147/

event-driven-multi-agent-simulation.

[28] N. Knaak et al. Agentenbasierte Simulation nachhaltiger Logistikkonzepte
für Stadtkurierdienste. 2004 http://edoc.sub.uni-hamburg.de/informatik/

volltexte/2009/61/pdf/B_260.pdf.

[29] N. Knaak, S. Kruse, B. Page. An agent-based simulation tool for modelling sus-
tainable logistics systems. In Proceedings of the iEMSs Third Biennial Meeting:
Summit on Environmental Modelling and Software, 2006. Available online at
http://www.iemss.org/iemss2006/papers/s7/225_Page_2.pdf.

http://web.tuke.sk/fei-cit/butka/hop/htsp.pdf
http://web.tuke.sk/fei-cit/butka/hop/htsp.pdf
http://www.researchgate.net/publication/50923713_New_Variations_of_Order_Crossover_for_Travelling_Salesman_Problem
http://www.researchgate.net/publication/50923713_New_Variations_of_Order_Crossover_for_Travelling_Salesman_Problem
http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-2157.pdf
http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-2157.pdf
http://www.cs.utexas.edu/~aim/papers/ITSC2012-dcarlino.pdf
http://www.cs.utexas.edu/~aim/papers/ITSC2012-dcarlino.pdf
http://www.cs.utexas.edu/~aim/papers/ITSC13-dcarlino.pdf
http://www.cs.utexas.edu/~aim/papers/ITSC13-dcarlino.pdf
http://www.aorta-traffic.org/2014/01/28/spliced-roads-now-visualized-better/
http://www.aorta-traffic.org/2014/01/28/spliced-roads-now-visualized-better/
http://cfpm.org/discussionpapers/147/event-driven-multi-agent-simulation
http://cfpm.org/discussionpapers/147/event-driven-multi-agent-simulation
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2009/61/pdf/B_260.pdf
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2009/61/pdf/B_260.pdf
http://www.iemss.org/iemss2006/papers/s7/225_Page_2.pdf


Bibliography 141

[30] R. Weait. OpenStreetMap data license is ODbL. Available online at https://blog.

openstreetmap.org/2012/09/12/openstreetmap-data-license-is-odbl/. Ac-
cessed on February 5, 2015.

[31] OpenStreetMap Wiki. Elements Available online at http://wiki.openstreetmap.

org/wiki/Elements. Accessed on February 7, 2015.

[32] OpenStreetMap Wiki. Map Features Available online at http://wiki.

openstreetmap.org/wiki/Map_Features. Accessed on February 7, 2015.

[33] OpenStreetMap Wiki. Key:highway Available online at http://wiki.

openstreetmap.org/wiki/Key:highway. Accessed on February 7, 2015.

[34] OpenStreetMap Taginfo. highway Available online at https://taginfo.

openstreetmap.org/keys/highway#values. Accessed on February 7, 2015.

[35] OpenStreetMap Wiki. Tag:amenity=fuel Available online at http://wiki.

openstreetmap.org/wiki/Tag:amenity%3Dfuel. Accessed on May 3, 2015.

[36] GOV.UK – Government Digital Service. Speed limits. Available online at https:

//www.gov.uk/speed-limits. Accessed on January 30, 2015.

[37] Nokia. TrafficML – XML Schema Definition. Available online at
http://traffic.cit.api.here.com/traffic/6.0/xsd/flow.xsd?app_id=

DemoAppId01082013GAL%20&app_code=AJKnXv84fjrb0KIHawS0Tg. Accessed on
May 3, 2015.

[38] OpenStreetMap Wiki. Traffic Message Channel. Available online at http://wiki.

openstreetmap.org/wiki/TMC. Accessed on May 3, 2015.

[39] Transport for London. London Streets Performance Report Quarter 1 2012/13, p 14,
2012. Available online at http://www.tfl.gov.uk/cdn/static/cms/documents/

london-streets-performance-report-q1-2012-13.pdf.

[40] J. Chang. Making the Shortest Path Even Quicker. Available online at http://

research.microsoft.com/en-us/news/features/shortestpath-070709.aspx.
Accessed on April 27, 2015.

[41] Department for Transport. Table TRA0307, Traffic distribution on all
roads by time of day in Great Britain, 2014. Dataset available on-
line at https://www.gov.uk/government/uploads/system/uploads/

attachment_data/file/316562/tra0307.xls [XLS]. Summarised at
https://www.gov.uk/government/uploads/system/uploads/attachment_

data/file/317454/annual-road-traffic-estimates-2013.pdf.

https://blog.openstreetmap.org/2012/09/12/openstreetmap-data-license-is-odbl/
https://blog.openstreetmap.org/2012/09/12/openstreetmap-data-license-is-odbl/
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/Map_Features
http://wiki.openstreetmap.org/wiki/Map_Features
http://wiki.openstreetmap.org/wiki/Key:highway
http://wiki.openstreetmap.org/wiki/Key:highway
https://taginfo.openstreetmap.org/keys/highway#values
https://taginfo.openstreetmap.org/keys/highway#values
http://wiki.openstreetmap.org/wiki/Tag:amenity%3Dfuel
http://wiki.openstreetmap.org/wiki/Tag:amenity%3Dfuel
https://www.gov.uk/speed-limits
https://www.gov.uk/speed-limits
http://traffic.cit.api.here.com/traffic/6.0/xsd/flow.xsd?app_id=DemoAppId01082013GAL%20&app_code=AJKnXv84fjrb0KIHawS0Tg
http://traffic.cit.api.here.com/traffic/6.0/xsd/flow.xsd?app_id=DemoAppId01082013GAL%20&app_code=AJKnXv84fjrb0KIHawS0Tg
http://wiki.openstreetmap.org/wiki/TMC
http://wiki.openstreetmap.org/wiki/TMC
http://www.tfl.gov.uk/cdn/static/cms/documents/london-streets-performance-report-q1-2012-13.pdf
http://www.tfl.gov.uk/cdn/static/cms/documents/london-streets-performance-report-q1-2012-13.pdf
http://research.microsoft.com/en-us/news/features/shortestpath-070709.aspx
http://research.microsoft.com/en-us/news/features/shortestpath-070709.aspx
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/316562/tra0307.xls
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/316562/tra0307.xls
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/317454/annual-road-traffic-estimates-2013.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/317454/annual-road-traffic-estimates-2013.pdf


Bibliography 142

[42] S. Abdinnour-Helm. Network design in supply chain management. In Inter-
national Journal of Agile Management Systems, 1999 Vol. 1, No. 2, pp 99–
106. Available online at http://www.emeraldinsight.com/doi/abs/10.1108/

14654659910280929.

[43] E. Coupland. The ‘last mile’ problem, by Parcel2Go. Available
online at http://www.supplychaindigital.com/logistics/3355/

The-039last-mile039-problem-by-Parcel2Go. Accessed on May 19, 2015.

[44] Fubra Limited. UK Petrol Prices for Thursday 9th April 2015. Available online at
http://www.petrolprices.com/. Accessed on April 9, 2015.

[45] S. W. Diegel, S. C. Davis, Oak Ridge National Laboratory. Transportation Energy
Databook: Edition 22, pp 7–28. DIANE Publishing, 2002. Available online at https:

//books.google.co.uk/books?id=VyzXPizRoksC.

[46] L. Reich. The Cost of Speeding: Save a Little Time, Spend a
Lot of Money. Available online at http://blog.automatic.com/

cost-speeding-save-little-time-spend-lot-money/. Accessed on April
27, 2015.

[47] Department for Transport. Table ENV0104, Average heavy goods ve-
hicle fuel consumption: Great Britain, 1999–2010. Available online at
https://www.gov.uk/government/uploads/system/uploads/attachment_

data/file/384241/env0104.xls [XLS]. Accessed on April 27, 2015.

[48] Quadrant Vehices Ltd. Van Fuel Consumption Figures. Available online at http://

www.quadrantvehicles.com/van-fuel-consumption-figures.php. Accessed on
April 27, 2015.

[49] Merriam-Webster. Definition of free-for-all. Available online at http://www.

merriam-webster.com/dictionary/free-for-all. Accessed on April 30, 2015.

[50] Google Maps. Dartford Crossing Tunnel Entrance Street View. Available on-
line at https://www.google.co.uk/maps/@51.458427,0.250475,3a,41.6y,43.

63h,87.07t/data=!3m4!1e1!3m2!1sCf_WTh6RVS-fAT2Cv0rN5w!2e0. Accessed on
February 7, 2015.

[51] OpenStreetMap Wiki. Key:parking:lane. Available online at http://wiki.

openstreetmap.org/wiki/Key:parking:lane. Accessed on February 7, 2015.

[52] J. P. Snyder. Map Projections: A Working Manual, p 41. No. 1395. USGPO, 1987.
Available online at http://pubs.er.usgs.gov/publication/pp1395.

http://www.emeraldinsight.com/doi/abs/10.1108/14654659910280929
http://www.emeraldinsight.com/doi/abs/10.1108/14654659910280929
http://www.supplychaindigital.com/logistics/3355/The-039last-mile039-problem-by-Parcel2Go
http://www.supplychaindigital.com/logistics/3355/The-039last-mile039-problem-by-Parcel2Go
http://www.petrolprices.com/
https://books.google.co.uk/books?id=VyzXPizRoksC
https://books.google.co.uk/books?id=VyzXPizRoksC
http://blog.automatic.com/cost-speeding-save-little-time-spend-lot-money/
http://blog.automatic.com/cost-speeding-save-little-time-spend-lot-money/
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/384241/env0104.xls
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/384241/env0104.xls
http://www.quadrantvehicles.com/van-fuel-consumption-figures.php
http://www.quadrantvehicles.com/van-fuel-consumption-figures.php
http://www.merriam-webster.com/dictionary/free-for-all
http://www.merriam-webster.com/dictionary/free-for-all
https://www.google.co.uk/maps/@51.458427,0.250475,3a,41.6y,43.63h,87.07t/data=!3m4!1e1!3m2!1sCf_WTh6RVS-fAT2Cv0rN5w!2e0
https://www.google.co.uk/maps/@51.458427,0.250475,3a,41.6y,43.63h,87.07t/data=!3m4!1e1!3m2!1sCf_WTh6RVS-fAT2Cv0rN5w!2e0
http://wiki.openstreetmap.org/wiki/Key:parking:lane
http://wiki.openstreetmap.org/wiki/Key:parking:lane
http://pubs.er.usgs.gov/publication/pp1395


Bibliography 143

[53] GOV.UK – Government Digital Service. Vehicle tax rate tables. Available online at
https://www.gov.uk/vehicle-tax-rate-tables. Accessed on May 19, 2015.

[54] Investopedia. Break-Even Analysis Definition. Available online at http://www.

investopedia.com/terms/b/breakevenanalysis.asp. Accessed on May 24, 2015.

[55] GOV.UK – Government Digital Service. VAT rates. Available online at https:

//www.gov.uk/vat-rates. Accessed on June 11, 2015.

[56] gov.je – Information and public services for the Island of Jersey. GST liability
of goods and services. Available online at http://www.gov.je/TaxesMoney/GST/

GSTCustomers/Pages/PayingGSTJersey.aspx. Accessed on June 11, 2015.

[57] A. Levandowski, A. Schultz, C. Smart, A. Krasnov, D. Song, H. Lee, H. Chau,
B. Majusiak, F. Wang. Autonomous Motorcycle Platform and Navigation – Blue
Team DARPA Grand Challenge 2005, DARPA, 2010. Available online at http:

//www.cs.duke.edu/courses/spring06/cps296.1/handouts/BlueTeam.pdf.

https://www.gov.uk/vehicle-tax-rate-tables
http://www.investopedia.com/terms/b/breakevenanalysis.asp
http://www.investopedia.com/terms/b/breakevenanalysis.asp
https://www.gov.uk/vat-rates
https://www.gov.uk/vat-rates
http://www.gov.je/TaxesMoney/GST/GSTCustomers/Pages/PayingGSTJersey.aspx
http://www.gov.je/TaxesMoney/GST/GSTCustomers/Pages/PayingGSTJersey.aspx
http://www.cs.duke.edu/courses/spring06/cps296.1/handouts/BlueTeam.pdf
http://www.cs.duke.edu/courses/spring06/cps296.1/handouts/BlueTeam.pdf

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Report outline

	2 Background
	2.1 Autonomous Agents
	2.1.1 Contract Net Protocol

	2.2 Autonomous Cars
	2.3 Route Finding and Graph Theory
	2.3.1 Haversine Formula
	2.3.2 Strongly Connected Components
	2.3.3 A* Search Algorithm

	2.4 Travelling Salesman Problem
	2.4.1 Nearest Neighbour Algorithm
	2.4.2 Genetic Algorithms

	2.5 Related Work
	2.5.1 AORTA
	2.5.2 Event-Driven Multi-Agent Simulation
	2.5.3 An Agent-Based Simulation Tool for Modelling Sustainable Logistics Systems


	3 Design Specification
	3.1 Customer Experience
	3.1.1 Booking a Collection
	3.1.2 Receiving a Delivery

	3.2 Business Operations
	3.2.1 Pricing
	3.2.2 Routing
	3.2.3 Security

	3.3 Summary

	4 Data Sources
	4.1 OpenStreetMap
	4.1.1 Nodes, Ways and Relations
	4.1.2 Highways
	4.1.3 Road Delays
	4.1.4 Businesses
	4.1.5 Fuel Stations
	4.1.6 Faults

	4.2 HERE Traffic API
	4.2.1 Integration Challenge
	4.2.2 Discussion


	5 Implementation
	5.1 Implementation Language
	5.2 Discrete Event Simulation
	5.2.1 Event Logging and Statistics Collection
	5.2.2 Simulation Parameters

	5.3 Geography
	5.3.1 Data Structures and Objects
	5.3.2 Map Pruning
	5.3.3 Route Finding

	5.4 Traffic
	5.4.1 Traffic Flow
	5.4.2 Road Delays

	5.5 Courier Jobs
	5.5.1 The Dispatcher
	5.5.2 The Broadcaster
	5.5.3 Modelling Failure

	5.6 Autonomous Agents
	5.6.1 Movement and Positioning
	5.6.2 Job Fulfilment
	5.6.3 Fuel

	5.7 Graphics
	5.7.1 Map
	5.7.2 Graphical User Interface


	6 Optimisation
	6.1 Planning
	6.1.1 Problem Specification
	6.1.2 Preliminary Computation
	6.1.3 Nearest Neighbour Search
	6.1.4 Genetic Algorithm
	6.1.5 Other Attempts

	6.2 Routing and Job Allocation Strategies
	6.2.1 Contract Net Protocol
	6.2.2 Round-robin
	6.2.3 Free-for-all

	6.3 Idle Strategies
	6.3.1 Premature Refuelling

	6.4 Strategic Placement
	6.4.1 Unimplemented Strategies


	7 Evaluation
	7.1 Optimality of Algorithms
	7.1.1 Route Finding
	7.1.2 Planning
	7.1.3 Allocation

	7.2 Routing and Job Allocation Strategies
	7.2.1 Efficiency Challenge
	7.2.2 Reliability Challenge
	7.2.3 Availability Challenge
	7.2.4 Summary

	7.3 Idle Strategies
	7.3.1 Performance
	7.3.2 Refuelling
	7.3.3 Summary

	7.4 Dispatch Rate
	7.5 Dispatchers
	7.6 Job Difficulty
	7.6.1 Package Size
	7.6.2 Failed Deliveries
	7.6.3 Deadlines

	7.7 Vehicles
	7.7.1 Vehicle Type
	7.7.2 Population

	7.8 Economics
	7.9 Simulator and Software Design
	7.9.1 Running Time


	8 Conclusion
	8.1 Limitations
	8.1.1 Illegal Road Turns
	8.1.2 Agent Collision
	8.1.3 Job Stream

	8.2 Extensions
	8.2.1 Easy Additions
	8.2.2 Progressive Route Finding
	8.2.3 Handoff
	8.2.4 Traditional Couriering
	8.2.5 Map-Specific Strategies

	8.3 Closing Remarks

	A Table of Parameters
	A.1 Fulfilment
	A.2 Speed Limits
	A.3 Road Delays
	A.4 Dispatchers
	A.4.1 Dispatch Rate

	A.5 Vehicles

	B User Guide
	B.1 Installation
	B.2 Importing Maps
	B.3 Usage
	B.3.1 Loading a Map
	B.3.2 Configuring the Simulation
	B.3.3 Running the Simulation

	B.4 Stopping a Simulation

	C Playground
	D Extra Material
	D.1 Temporal Traffic Distributions
	D.2 Tables
	D.3 Maps

	Bibliography

