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Abstract

Honeypots are fake computer systems, setup as a decoy, and are used to collect data on
intruders [12]. As long as the hacker is not aware of the Honeypot's presence, a system ad-
ministrator can collect data on the identity, access and compromise methods used by the
intruder [12]. They are useful tools that help administrators and researchers learn about net-
work attacks and the behaviour of attackers. However, traditional host monitoring tools that
reside on the Honeypot itself are prone to being disabled and prevent further movement of
the intruder from being tracked.

This report initiates the study of the use of communication channels between VMs (virtual
machines) and their host operating systems. In particular, we show that through these chan-
nels, we can surreptitiously siphon data logs from a Honeypot installed on a virtual machine,
to the host operating system, thereby increasing the secrecy of active logging activity within
the Honeypot. It is desirable for such an introspection technique to be capable of under-
standing the internal state of a honeypot by retrieving system calls and associated informa-
tion, as well as being tamper-resistant. We also present the concept of using VProbes, a pro-
prietary VMware AP, to inspect the state of a VM without any operating system specific
guest software. In addition, we built a proof of concept prototype of capturing and inter-
preting system events to recreate a form of terminal mirroring of the guest VM. Finally, we
discuss how the use of such alternative channels can be implemented in future Honeypots.
Experimental results show that the average performance penalty is about ~60%.
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1 Introduction

The popularity of malicious hacking has always plagued the internet world, and even the
largest computer networks are not spared, evident by the multi-pronged attacks on credit
companies such as Visa and MasterCard in November 2010, ever since their refusal to pro-
cess donations to the alleged whistle-blower WikilLeaks website.

Security conferences routinely hold capture-the-flag competitions as a way for security prac-
titioners and researchers to pit their skills, knowledge, and wit against one another. Organ-
isations also often use penetration tests as a tool for security evaluation. On another note,
virtual machines are widely used in organisations for development, evaluation and testing
software for use in production environments, which includes security testing. Virtual ma-
chines are often great platforms for security evaluation, as system administrators can easily
rollback to the last working system checkpoint or snapshot.

Before the real action starts for the hacker, three steps are typically performed. The first
step, footprinting, is about scoping the target of interest, understanding everything there is
to know about the target and how it relates and connects with everything around it, with-
out sending a single packet to the target. If footprinting is equivalent of casing a place for
information, then the next step, scanning, is equivalent to knocking on the walls to find all
the doors and windows. In scanning, we are determining a specific port, or a range of ports
that systems are listening for inbound network traffic and are also reachable from the Inter-
net, using a variety of tools and techniques such as ping sweeps, port scans and automated
discovery tools. Last but not least, the last step, enumeration, is a process that involves prob-
ing identified services from scanning techniques for known weaknesses. Attackers typically
intrude a corporate network via several ways typically by remote connectivity, VolP hacking,
or breaking into servers accessed by both employees and members of the public.

Even afterintrusion, it is imperative to perform monitoring and tracking of the intruder. Once
an intruder has successfully gained access to a system, we would want to know the steps
taken by the intruder to maintain his privilege, set up backdoors and install malware. For this
case a Honeypot would be most useful. A Honeypot is typically a computer, or a network of
computers that appear to be machines that contain sensitive or information that can prove
to be valuable in the eyes of a potential intruder. Honeypots are also likely to be inserted in
corporate networks, occupying unused IP addresses. However, from a security standpoint,
Honeypots are in actual fact isolated from the main network. Honeypots are resources that
should not contain any authorised activity nor do they have any production value. In theory,

a Honeypot should receive little or no traffic because real sensitive information are never



stored in them. This means any connection attempts with a Honeypot is most likely unau-
thorised or malicious activity. Any connection attempt to a Honeypot is most likely a probe,
attack, or compromise.

As Honeypots generate intrusion logs, this presents yet another issue, where an intruder can
easily sniff the available physical network interfaces and detect the presence of logs being
sent to another computer system. From there, he will be alerted to active logging services
and will most likely move to disable them. Further actions made by the intruder will not be
known to the network administrator. On the other hand, if logs are copied or moved to a
physical medium, or viewed directly on the Honeypot, the user might accidentally “taint”
the system with his “footprints”,

This paper attempts to improve the privacy of data transmission between the Honeypot and
another machine by providing an alternative data path for the Honeypot to transmit the log
files. The remainder of the paper is structured as follows. In section 2, an overview on virtual
machine technologies and related work is discussed. Furthermore, we discuss our require-
ments for the project as well as comment and critique on existing techniques and solutions
in other research papers. In particular we discuss how VMscope [9] uses a similar concept to
our project in capturing system calls outside of a guest VM. We then introduce our current
research on VProbes, a proprietary introspection technique developed by VMware.

Section 3 describes our project requirements and what we want to achieve. Design analysis
and planning is discussed in section 4. Section 5 focuses on implementation of our VProbes
monitoring solution, as well as describe the methodology of capturing system calls and their
arguments. In addition to the VProbes solution, we also discuss implementation of a proof-
of-concept "filter!, written in Perl, to track executable events and associated output from the
VProbes output log. Testing of our project is discussed in section 6, as well as performance
impact and evaluation in section 7. Finally, we discuss about future work regarding feature
extensions of this project and conclude.



2 Background

Honeypot monitoring is essential in networks deploying honeypots. Traditional methods of
honeypot monitoring include network sniffing and host-based monitoring. Network sniffing
include placing packet analysers to record every network packet flowing in and out of the
monitored honeypot. Host-based sensors are softwares installed within the honeypot that
records activity within the VM. Both techniques have their strengths and weaknesses. The
network based approach is less likely to be detected by an intruder, but would not be able
to gather much system activity happening in the VM. On the other hand, the host based ap-
proach will be able to gather extensive data since it is within the system itself, but will be very
prone to being detected and disabled.

In the next few sections, we will look into technology behind virtual machines, related work
regarding VM introspection, and in particular one paper describing VMscope [9], which places
the introspection tool on the Virtual Machine Monitor, to achieve deep inspection capability
similar as that of traditional in-guest monitoring tools while maintaining the resiliency and

invisibility of external tools.

2.1 Virtual Machine Technology

Virtual machines (VMs) are an essential building block of today’s computing infrastructures
such as enterprise data centers and multitenant cloud platforms [25]. They are easy to set
up, and are able to run most, if not all, of widely used operating systems and accompany-
ing applications. From a development standpoint, virtual machines are a godsend, because
one can easily set up snapshots to preserve virtual machine states, which captures the virtual
machine’s settings, memory, and the state of dependent virtual disks. In the case where de-
velopment has affected the running capability of the operating environment, one can easily
revert back to a recently working snapshot. From a security viewpoint, the ability to revert
to a previous snapshot allows system administrators to quickly bring a compromised system
back up and apply the necessary patches without disrupting operations for a prolonged pe-
riod of time.

Virtual machines are great tools to deploy Honeypots and Honeynets, as they occupy mini-
mal space within a datacenter and can be easily managed through centralised management
systems, such as VMware's VCenter, for VMware's ESXi systems. Another reason why Hon-
eypots are best deployed on VMs is because traditionally, Honeypots used to occupy unused
IP addresses on networks, and the scale can easily extend to hundreds or thousands of sys-



tems. The cost benefits of running Honeypots on VMs are too high to ignore.

Robert Graham [16] discussed on Honeypots and saving log files in a tamper-proof way in
his guide related to detecting intruders who attack systems through the network. [2] He de-
scribed that since the first thing a hacker does is delete/change the log files in order to hide
evidence of the break in, therefore,acommon approach is to have a “write-once” storage sys-
tem whereby once data is written, it can never be altered. WORM (Write-Once-Read-Many)
drives have historically been used for this purpose, but they are expensive, probably not the
best choice where economic efficiency is a concern. An alternative he discussed in his guide
is the usage of UDP-based transports like syslog and SNMP traps.

William W. Martin [13], went into greater detail of logging on a Honeypot by suggesting the
“establishment of multiple logging, or layers”. He believes that a single layer of logging is very
susceptible of being disabled or altered. Multiple logging agents can provide a better under-
standing of system events as well as provide a form of ‘integrity check’” when checking logs
from multiple sources. After all, logs should only be trusted if their integrity and trustworthi-
ness can be guaranteed. An excerpt of his paper is as follows.

Establishment of logging on the Honey Pot itself creates a risk that the in-
truder will learn our logging scheme through the system configuration files. These
logs and configurations could also be altered or erased if the machine is compro-
mised. The best logging method is to create logs on a system the intruder cannot
access, as well as the Honey Pot itself. A firewall or router can provide this capa-
bility. [13]

He continued to explain that logging should be sent to a dedicated server using a crypto-
graphic protocol to hide the actual logging methods from the intruder. However, encrypting
the data packets only prevent the logs from being intercepted and decrypted, it does not
hide the fact that the Honeypot is sending out information, albeit encrypted, to a centralised
location, nor does it prevent the intruder from halting the transmission altogether.

Both papers described extensively the need for logging on a Honeypot and the details of how
the transmission of logs to a server can be performed in a secure manner. However, the de-
scribed methods are still very dependent on the physical network, and a gap exists whereby
an intruder can perform packet sniffing at the physical network interfaces and close connec-
tions he deem suspicious. We can see here that no matter how effective or secure the logging
techniques are, as long as they are transmitted through network connections, an intruder
can simply terminate the connections and the central server would no longer receive further
alerts from the Honeypot. This is where we start to look into the idea of stealth communica-
tions across a virtual machine using VMM (virtual machine manager) communications.
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2.2 Virtual Machine Monitor

All computer programs are machine instructions at its base. When programs run inside of
a virtual machine, these instructions are either translated into host machine instructions by
the VMM, or executed directly on the host machine’s CPU (central processing unit), through
hardware support for VT-x or VT-d (Intel Virtualisation Technology for Directed I/O). Direct
execution offers the best performance because there are no overhead costs incurred, but has
no support for checking machine state prior to executing privileged instructions [26]. On the
other hand, translation on a VMM is a CSIM (software interpreter machine). A CSIM resides
within the VMM, and translates every virtual machine instruction into compatible instruc-
tions for the host machine. VMMs uses a combination of these two methods. It executes
a "statistically dominant subset” of program instructions (including all the basic arithmetic,
memory, and branching operations) directly on the processor, while emulating privileged in-
structions such as system calls and device I/O requests [7].

Virtual Machine Monitor Approaches Asmmgh‘:;‘

Type 2 VMM Hybrid VMM Type 1 VMM

VM VMw;re ESX
CLR MS Virtual Server MS Vﬁ'?dian

VMware Workstation

ETISS 2007 Hardware Virtualization

Figure 1: Architecture of Type |, Iland hybrid Virtual Machine Systems. AMD ETISS lecture [1]



Figure 1 shows the different architectures of existing VMMs. A Type | VMM runs directly on
the barebone hardware, and is fully responsible for allocating resources for each of the over-
layering guest OSes. Examples of Type | VMMs include VMware ESX and Xen hypervisors.
Type Il VMMs are more "home consumer friendly’; they reside on top of an existing host OS,
and the host OS allocates and schedules systems resources to the VMM just like any other
application. A hybrid VMM is a combination of both types of VMMs, and run alongside the
host OS, though system resources are now purely allocated by the VMM abstraction layer.
From a security standpoint, type 1 VMMs are the most secure because the weakest link is
limited to the VMM itself. If the VMM gets compromised, the security of other guest OSes
can also be affected as well. Host operating systems for Type Il VMMs are more heavyweight
than Type | VMMs (in terms of lines of code within the VMM), and thus more prone to secu-
rity vulnerabilities [26].
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2.3  VMCI Sockets

Since a virtual machine works over the host physical machine, it might be possible to “talk”
with the Host OS through interprocess communications (Figure 2). VMware has introduced
VMCI sockets to do just that. Like local UNIX sockets, VMCI sockets work on an individual
physical machine, and can perform interprocess communication on the local system. With
internet sockets, communicating processes usually reside on different systems across the
network [22]. Similarly, VMCI sockets allow different virtual machines to communicate with
each other, if they reside on the same VMware host [22].

Guest O3 Systems

~L Intruder
Physical NIC on the
Host

Virtualization Host

Figure 2: Intruder attacking a Guest OS through the Physical NIC on the Host

VMClsockets support datatransferamong processes on the same system (interprocess com-
munication). They also allow communication among processes on different systems, even
ones running different versions and types of operating systems as VMCI sockets comprise
a single protocol family. Modifying a networking program to use VMCI sockets does not re-
quire massive effort, because VMCI sockets behave just like traditional Internet sockets on
a given platform [22]. To start modifying an existing socket application, the first step is to
obtain the definitions for VMCI sockets by including the vmci_sockets. h header file. Fol-
lowing which, replace the structure sockaddr_in with sockaddr_vm. In the socket() call,
replace the AF_INET address family with the VMCIl address family [22].

Instead of using traditional IP addresses for connectivity, VMCl sockets uses a context ID, or

CID for short, to uniquely identify each virtual machine and the host. An application running
on a virtual machine uses its local CID for bind() and the remote CID for connect().
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ubuntu3@ubuntu3-desktop:~/Desktop$ ./persistentclient
SEND (q or Q to quit) : test message

SEND (q or Q to quit) : using vmci

SEND (q or Q to quit) : sockets

SEND (q or Q to quit) : gq
ubuntu3@ubuntu3-desktop:~/Desktop$

ubuntu2@ubuntu2-desktop:~/Desktop$ ./persistentserver

TCPServer Waiting for client on port 5000
I got a connection from (634949063 , 1035)
RECIEVED DATA = test message
RECIEVED DATA = using vmci
RECIEVED DATA = sockets
Connection closed by client

Figure 3: Sending text messages between two virtual machines

Figure 3 shows TCP communications between two Ubuntu Linux Guests. For testing pur-
poses, the server’s CID has been hardcoded into the client program. On the server, when a
connection is established, the client’s CID and outgoing port is displayed, and communica-
tions is only terminated when the client quits. This method of using stream sockets requires
two operational VMs for communication, which can occupy a fair bit of system resources.
The ideal situation is to minimise the amount of system resources used, thus a guest to host
VMCI sockets application is preferred. Note should be taken that TCP Stream sockets work
from guest to guest only. UDP Datagram sockets work from guest to guest, host to guest,
and guest to host [22].

Although the idea of using VMCI sockets sounds good, we should not forget that it still de-
pends on using network sockets to establish a connection, and a simple command can reveal
all active network connections on the system. It is desirable to have a honeypot monitoring
system that is invisible, tamper-resistent and yet is capable of recording and understand-
ing the honeypot’s system internal events such as system calls [9]. Although VMCI socket
communications makes use of the VMM to initiate a connection, it can still be disabled by
an attacker who has managed to compromise the VM. A better idea would be to utilise the
VMM itself to perform inspection of the guest OS and to determine whether the system has
been taken over without any in-guest software.

However, while existing host-based (i.e. internal) honeypot monitoring approaches are capa-

ble of observing and interpreting the honeypot's system internal events, they are fundamen-
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tally limited in achieving the transparency and tamper-resistance due to the internal deploy-
ment of sensors within the honeypot [26].

2.4  SYRINGE

SYRINGE [3], another VMI tool, boasts of “a secure and robust infrastructure for monitoring
virtual machines”. It performs monitoring of the guest OS via the VMM, however, it differs
from VMscope by using a technique called function-call injection. It does, however, require
a "secure VM (SVM)"” performing the "real” logging action. Through the SVM, monitoring
applications are “injected” into the guest OS, through carefully interrupting the guest OS
and inserting pieces of code that actually performs data extraction to the SVM. The idea is
to carefully interrupt the guest VM’s execution and manipulating the contents of its virtual
CPU and memory [3]. Through introspection, SYRINGE is able to inject a function call into
the guest VM, after which, the virtual CPU would execute the selected function as if it had
just been called from inside the guest [3].

In addition to function call injection, SYRINGE also introduces a novel technique called lo-
calised sheperding for monitoring guest threads, and prevent the threads themselves from
being compromised or hijacked by an attacker. It enforces atomic code execution and by us-
ing a form of instrumentation, it also dynamically evaluates instructions that can be used by
an attacker to divert the code’s legitimate control flow [3]. By doing this, SYRINGE is able to
detect attacks such as hooking and return-oriented programming [8] [3].

In terms of performance, SYRINGE boasts a relatively low overhead of 8%, however, it does
state that consecutive SYRINGE function injections could be 1 second or higher, indicating
or hinting some kind of limitation against high frequency attacks such as DDOS. Carbone et
al [3], went to explain the goal of SYRINGE and what it aims to achieve. He mentioned that
SYRINGE was not meant to replace a general security system. It is more tuned to monitor
process behavior within the guest VM, and to determine, based on the data returned by the
process/thread, if the system might be compromised. Furthermore, SYRINGE is only meant
to monitor and observe, not to repair nor prevent the system from getting tampered with.
An excerpt of his paper is as follows.

For safety, it will allow the monitoring thread to continue executing unsher-
perded, but will notify the monitoring application in the SVM that the results re-
turned by the function should not be trusted. An attacker can exploit this fact to
disrupt SYRINGE's monitoring, effectively causing a Denial of Service. The mon-
itoring application, however, will know at this point that the system has been
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compromised, at which point the best course of action may be to restore the
guest VM to a previous snapshot or employ another type of remediation pro-
cedure.

Although SYRINGE does look like a great VMI tool, the benefits and advantages it brings,
unfortunately has an impact on system performance due to its limitations. For example, by
forcing atomic execution of instructions, SYRINGE can only be effective on guest VMs with
a single virtual CPU. To use SYRINGE on a guest VM with multiple virtual CPUs, either SY-
RINGE or the VMM must have the ability to suspend multiple virtual CPUs to ensure atomic-
ity is achieved. This would severely dampen performance. One advantage it carries over VM-
scope (described in later sections) is that because monitoring results are returned by defined
functions used in the guest OS, in depth knowledge of the OS kernel is not really required to
interpret the system state.

2.5 ShadowContext

We also looked at ShadowContext, another VMI technique that ultilises a concept that redi-
rects system calls to a “shadowed” part of the guest OS, which should reduce overhead and
improve upon the generality of which the guest VM can be monitored. As seen from Figure 4,
we need to learn how ShadowContext achieves high generality and automation, but also how

it suffers heavily on overhead performance.

Generality Automation Security Performance
Virtuoso [6] Very limited (Need training to customizes Good (Require human Excellent 6s to run pslist
introspection tools for each guest) intervention)
VMST [8] Quite limited (Require a trusted Good (The same tool Excellent 9.3X overhead on
image of the guest OS) for different guests must average
run in different QEMU VMs)
Syringe [4] Very limited (Assume the base address Very Limited (Only able to inject Good (Defend against Take 33ms alone
of each loaded binary in one function at a time) code patching, hooking to start the
guest memory is know beforehand) and return-into-libc) injected function
ShadowContext Excellent Excellent Good (Very resilient 75% overhead
to potential attacks) on average

Figure 4. Comparison Between Different VMI Techniques: Generality means whether an in-
trospection tool works on different guest OS version. Automation means whether the frame-
work requires human effort while building or using an introspection tool [25]

ShadowContext works as by having both a trusted and untrusted VM, similar to SYRINGE.
Figure 5 shows exactly how ShadowContext performs monitoring by using system call redi-
rection. When an introspection command is executed on the trusted VM, a request to gen-
erate a shadow context is sent to the VMM. An in-guest process is then hijacked, and sys-
tem calls are executed by that process in-place of the introspection process in the trusted
VM. ShadowContext intercepts every system call issued by the introspection process, and
the system call selection identifies system calls that should be redirected [25]. The defense
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module of the architecture ensures that the hijacked process should be protected against

detection from hostile malwares.

" N
Introspection |— — -
B Process ‘./ \ Sei;on(::m
System Start Normal Process Dummy Proces Data
Call Introspection —~ < Segment
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ( )} Transform p ]
\(/ into N Heap
A4 y A ~|__
System Call Introspection | | U [ s ) Tal stack
Selectoin | Kernel Interface \ Untrusted VM S A
A Trusted VM
1. Request A
----------------------------------------- Shadow-Context-—-----r--------------—--——-— -y
5 n:m 2. Initiate A
ummy D
ummy Process .
Process y 4. Inject System
Builder Call And Retrieve
5 System Call < Result
3. System Call Redirection
Needed Defense
to be Redirected Image Protection and
o o T T e o o o oo Runtime Protection
Hypervisor
AN 4

Figure 5: System Architecture[25]

Limitations on ShadowContext include the inability to read system files, critical for diagnos-
ing and reading system logs, to check if a guest is correctly configured, or illegally modified.
Another glaring limitation is the enforcement of virtual CPUs to one, to prevent access from
concurrent processes [25]. Similar to the earlier discussion on SYRINGE, other virtual CPUs
must be suspended while the dummy process is executing introspection instructions. How-
ever, ShadowContext does have the promising outlook of very good generality on Linux dis-
tributions. Although it was designed for Linux kernel 3.1.0in mind, Wu et al have tested Shad-
owContext with Linux kernels ranging from 2.6.9 to 3.3.4. This could be representative that
ShadowContext could be highly compatible with future Linux kernels as well.

2.6 VMscope

VMscope was presented by Jiang et al [9] which is an out-of-guest monitoring tool, deployed
outside of the monitored VM. It boasts advantages such as being isolated from the guest VM,
and that collected honeypot logs are stored in the host domain, which improves on security,
being more tamper resistant. Furthermore, by using a software based virtualisation tech-
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nique called binary translation, they are able to “transparently support legacy OSes in VMs
without any modification on the guest OSes while para-virtualisation requires modification
and recompiling of the guest OSes.” Paravirtualisation, as shown in Figure 6, involves modify-
ing the OS kernel to replace nonvirtualizable instructions with hypercalls that communicate
directly with the virtualization layer hypervisor[21]. The hypervisor also provides hypercall
interfaces for other critical kernel operations such as memory management, interrupt han-
dling and time keeping [21].

Direct
Ring 2 Execution
of User
Ring 1 Requests
r— ‘Hypercalls’ to the
. B rtualized
Ring 0 gﬁ:s:ags Virtualization

Layer replace

Virtualization Layer Non-virtualizable
OS Instructions

Host Computer
System Hardware

Figure 6: The Paravirtualization approach to x86 Virtualisation[21]

VMscope leverages the page table of the guest OS to examine its system state and track
processes and file 1/0O. In addition, VMscope only captures and tracks several system calls
"which could provide important leads to understand attacker’s behavior”. This could be in-
efficient and unproductive if the attacker was to make use of other obscure system calls to
achieve the same task, as a log with an incomplete set of steps, or in this case system calls,
cannot reveal a complete picture of the attack vector. Despite an obvious flaw, VMscope
does bring up a good point where it starts to capture system activity from the moment the
system boots up, unlike traditional in-guest monitoring tools where capturing activity only

starts when the program is started by the OS.

VMscope is built to capture system events over the QEMU VMM layer, and currently only
works with Linux kernels. Before a system call is executed, a VMscope callback function will
be invoked to collect the associated context information [9]. In addition, when the system
call have completed execution, another callback routine will capture the return value. To cor-
rectly interpret the return value to make sense to the administrator, the initial system call ref-
erencing the process must be captured and tracked. As a result, VMscope needs to maintain
a per-process memory area at the VMM layer for all running processes [9]. In terms of per-

formance, VMscope reportedly has an overhead of no more than 15% compared to baseline
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without any monitoring.

Though VMscope boasts a relatively low performance overhead, it does have limitations. To
be effective, VMscope relies heavily that the VMM layer is trustworthy and hardened. Any
VMM inspection tool is just as effective as the weakest link, and in this case, its the VMM. If
the VMM itself can be exploited through the guest OS, the logs captured by the tool should
not be trusted. Secondly, VMscope requires the knowledge of system calls and system call
convention [9]. If the attacker decides to code the intrusion program in a way that it uses
non-standard system calls to perform the same tasks, VMscope might not be able to cap-
ture such unorthodox methods. Furthermore, as mentioned by Jiang, the syscall remapping
requires the modification of either interrupt descriptor table (IDT) or the system call handler
routine and the unauthourised modification on these important kernel objects could be de-
tected and prevented with security-enhanced VMMs [9].

While we are basing our project from VMscope, the primary difference is that while VMscope
runs on the QEMU VMM, VProbes runs on the VMware VMM, which allows us to track a sys-
tem event by placing a breakpoint at the memory location of the entry of the system call
we are interested in tracking. In the case of VMscope, it relies heavily on monitoring micro-
operations translated by QEMU. Such a technique can only be used if binary translation is
used at the VMM layer without any acceleration provided by the host CPU, such as Intel
VT-x/-d/EPT or AMD-V/RVI. Monitoring micro-operations and disabling all forms of mod-
ern CPU acceleration might severely impact system performance. We aim to capture and
interpret system call events similarly with VMscope, but with less of the performance loss
and with more in-depth analysis.

2.7 VProbes

We looked at VProbes, a VMM API developed by VMware for use in managing the VMM layer
for guest VMI. According to the documentation reference provided by VMware, VProbes has
the capability to extract system information without any modification to the OS itself nor
any form of in-guest software is required. In addition, VProbes scripts are designed to be
safe; they do not tamper with the state of the system. All VProbes functions only read from
vCPU registers as well as the memory layout of the system. VProbes attempts to be tamper
resistant as well. An excerpt of the reference introducing the capabilities of VProbes is as
follows.

Because the VP language has a limited stack size and lacks loop constructs,

scripts complete in a finite amount of time, avoiding denial of service impact [23].
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Similar to VMscope, VProbes scripts can be inserted into VMs as soon as they are powered
on, ensuring that we do not lose any information regarding system analysis and data cap-
ture. A VProbes script can contain one or more probes, which can also be a combination of
static and dynamic probes. Static probes are predefined hardware events, including periodic
probe checks every 1 second, 10 seconds, etc. Dynamic probes are run when guest execution
reaches a particular point in memory, set in the script. For example, the code below prints out
the memory location when program execution reaches the point specified by the probe.

(vprobe GUEST:0xc0106ae@
(printf "reached 0xc@106aed\n"))

Although VProbes is primarily a low level scripting language, which does not have any re-
semblance to other popular scripting/programming languages, it does offer a higher level
programming language interface called Emmett. According to the VProbes reference, Em-
mett has the capability to write introspection code in a high level C-like language, and compile
them down to VProbes script to be run on VMs. "It is a small language that provides C style
types, expressions, and conditional operators. Emmett has syntactic support for aggregation
and automatic inference of type for undeclared variables” [23].

An interesting example in the reference was the data extraction of memory locations within
the system. The following code reads the contents of a specific memory address (obtained
from /proc/kallsyms) and prints it out to screen, at the rate of once every second

; Print the saved Linux boot command line.

; The numeric address for "saved_command_line"” must be retrieved

; from a symbol file like /proc/kallsyms. This symbol is available

; for 32-bit Ubuntu 7.04. Look for a similar symbol in other Linux guests.

(definteger saved_command_line_addr 0xc@42b020)

(defstring command_line_str)

(vprobe VMM1Hz
(getgueststr command_line_str 255 saved_command_line_addr)
(printf "Linux command line (at %#x):\n%s\n"
saved_command_line_addr command_line_str))

Sample output:

Linux command line (at ©xc@42b020):

root=UUID=64123f18-e6fd-4b7b-ae63-d1b995cd4046 ro quiet splash

This part isimportant as we can essentially read system logs without actually interacting with
the guest. However, this does present a huge challenge ahead to find out the physical ad-
dress of where system files are stored, as well as the specific line that we need to read. A
deep knowledge of system kernels is needed to use VProbes to achieve what we want, which
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is introspection of the guest VM. In addition, we need to understand how to interpret system
states just from the knowledge of CPU registers and memory space.

2.8 Summary

We have looked into virtual machine technology, the VMM layer, as well as related work done
on gathering information about a VM without the use of traditional monitoring tools. By fo-
cusing the introspection needs on the VMM, we are pulling away from security and monitor-
ing mechanisms from the guest OS, thereby in a slight way making the guest OS less suscep-
tible to an intruder that its a Honeypot and thus a monitoring system. In the case that the
guest OS is compromised, the VMM should still remain secure and should be able to monitor
whatever is going on within the system from an observer’s point of view. Ideally, the solution
would involve monitoring all active processes within the guest OS, tracking any console ses-
sions, and lastly check if any suspicious files were added or modified. Monitoring suspicious
network activity would be handled by external IDS and IPS systems.

Theoretically, we need to make use of existing VMM APIs to access the memory space of the
VM we want to inspect, as well as intercept all running instructions between the virtual and
host CPU. From there, in theory, we can build some kind of real time reconstruction of the
entire 'live’ system outside where we can apply traditional intrusion detection techniques.
Existing VMI (virtual machine introspection) methods have highlighted a widely recognised
hurdle to cross, which is bridging the semantic gap and reconstructing the actual OS outside
of the VMM. Lin [11], went into greater detail of describing what exactly are we interested
in logging, or extracting from the memory space of a guest OS. An excerpt of his paper is as

follows.

However, what we want is the semantic information of the guest OS abstrac-
tions. Forinstance, fora memory cell, we want to know the meaning of that cell—
for example, what is the virtual address of this memory cell? Is it a kernel global
variable? If so, what does this global variable stand for? For a running instruc-
tion inside the guest OS, we also would like to know if it is a user-level instruction
or a kernel-level instruction? Which process does the instruction belong to? If
the instruction belongs to kernel space, is it a system- call-related instruction,
a kernel-module instruction, kernel-interrupt handler, or something else? For a
running system call, we also want to know the semantics of this system call, such
as the system call number and the arguments.

To obtain the information we need before we can start a deeper inspection, we need to have

"detailed knowledge of the algorithms and data structures of each OS component in order to
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rebuild high-level information” [11]. Because modern OSes have become increasingly com-
plex, and that each OS can be uniquely different from each other, its challenging enough to
bridge the semantic gap for a particular OS. In addition, acquiring the knowledge of system
and memory internals for OSes will not be straight forward, even for open sourced OSes.
When the source code is not available, sustained effort is needed to reverse engineer the un-
documented kernel algorithms and data structures [11].

Significant advances in the research within the VMI field has resulted in modern approaches
to bridge the semantic gap. Typically, two methods include kernel-data-structure-approach,
and the binary-code-reuse-approach. According to Lin[11], the data-structure-assisted ap-
proach is flexible, fast, and precise, but it requires access to kernel-debugging information
or kernel source code [20] [15]; a binary-code-reuse-based approach [4] [5] is highly auto-
mated, but it is slow and can only support limited functionality. The data-structure-assisted
approach requires knowledge of the kernel data structures to map where context information
is located within memory. This approach would allow our introspection tool to be compatible
across all OSes which use the same kernel data structures. The binary-code-reuse approach
requires inspection at near machine code level, spotting patterns that could describe normal
behavior or malicious code. In addition to being slow, using complex algorithms to spot tricky
patterns would definitely hamper system performance.
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3 Project Requirements

The aim of our project is to provide an introspection tool using VProbes, that is able to capture
and interpret system calls. In addition, the solution should be done outside of the VM being
monitored, and the VM should not be tampered with with any project related files. This is an
important requirement, since we do not want our solution to be easily detectable within the
VM. Since we want to capture system calls on one or more systems that we cannot tamper
with, it has to be a set of system calls common on many OSes. We have summarised basic
project requirements into the list below.

Targeted OS for testing is Ubuntu 14.04.2 LTS 64bit

Targeted Virtualisation software is VMware Workstation 11.1.

Targeted OS must not be tampered with prior to using this introspection tool

Tool must be able to capture system calls and associated information

Interpret events and reconstruct user activity.

VProbes will be responsible for VM introspection, as well as capturing system calls and re-
lated context information. Since we expect the output log file to contain system events orig-
inating from background and user processes, a ‘filter’ will also be required to read the log
concurrently to track useful events and recreate user activity as much as possible and to be
displayed on a terminal. While we would like the tool to be widely usable and support high
compatibility with multiple OSes, it requires extensive testing and due to time constraints,
we decide not to add it in for now. However, it should work with our testing OS and virtuali-
sation platform.

In reality, while these project requirements are strict, we expect the project to cater to all
VMware virtualisation platforms that support VProbes version 1.0 (older than Workstation
8.0). In addition, we are also capturing core system calls that should exist since early versions
of the Linux kernel. Distributions with modified Linux kernels, especially in the area of set-
ting up and invoking system calls will most likely not work with our introspection tool. The
last point on reconstructing user activity would arise from tracking user commands and out-
put which should be logged with our introspection tool. This can be useful to provide insight
as to what a user, or potential intruder, might be looking for.
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4 Project Plan, Analysis and Design

This project uses VMware VProbes for instrumentation of the target VM, which we will mainly
be focusing on monitoring Linux OSes as our proof of concept. However, the concept of in-
specting the behaviour of a VM by monitoring OSes remain the same; through actively cap-
turing and analysing system call traces. As described in the Ubuntu reference, the system
call is the fundamental interface between an application and the Linux kernel [2]. If an ap-
plication thread or process needs to read or write to a file, or stream, it must invoke the right
system call with semantically appropriate arguments.

Even when we manage to capture individual system calls, it is not very useful on its own; we
also need to know which thread (tid) invoked that call, along with its corresponding process
(pid), and parent process (ppid). All these for a start should give us a good idea of the over-
all low level workings of the Linux kernel, as well as allow us to trace each system call to its
parent process. Looking forward, assuming an attacker is able to exploit remote code exe-
cution off a vulnerable FTP server, even if he attempts to obfuscate or hide his intentions by
spawning multiple processes, we want to be able to trace his actions back to the source (i.e.
the vulnerable FTP server).

After capturing system calls, we can start to analyse the data and reconstruct executed com-
mands and data written to/read from files. We believe a few of the main system calls to look
out for are the execve, open, read and write syscalls. Each of the system calls is described
briefly as follows.

+ execve - executes specified program, taking an array of its(the program'’s) arguments
(argv[]) and an array of environment variables (envp[]) as its arguments.

int execve(const char *filename, char *const argv[], char *const
envpll);

« open - open() returns a file descriptor, a small, nonnegative integer for use in subse-
quent system calls (read(2), write(2), Iseek(2), fcntl(2), etc.).[2]

int open(const char #*pathname, int flags);
int open(const char #*pathname, int flags, mode_t mode);

« read - read() attempts to read up to count bytes from file descriptor fd into the buffer
starting at buf.[2]
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ssize_t read(int fd, void *buf, size_t count);

« write - write() writes up to count bytes from the buffer pointed buf to the file referred
to by the file descriptor fd.[2]

ssize_t write(int fd, const void *buf, size_t count);

From the description and function prototype of the execve system call, we should be able
to extract relevant information regarding the executable binary, which is crucial if we look to
monitor the invader’s activity. At the same time, we can also monitor data being written and
read to files or streams through the other 3 system calls.

Looking forward, since we are on the task of tracking activity at the kernel level, we do realise
that any invader who has gained access to a machine would attempt to spawn a command
shell where he can further try to disable any in-client monitoring tools (e.g. syslog), attain
higher privileges and siphon information. While the main aim of this project is to learn as
much as possible from the movements of the attacker from capturing his input, we can too
capture what he sees from the shell, the output of his commands. This might possibly shed
more light in determining his techniques and intention on whatever he is looking for.

The main aim and fundamental core of this project is to provide a viable and robust solution
that can monitor activity on a Linux VM, and set it apart from in-client monitoring tools by
being resilient to being detected, and disabled. Not only that, the VM must be untouched
(free from any external or internal modifications), to minimise any chance that the intruder
can detect our monitoring tool. Modern virtualisation platforms (Oracle Virtualbox, VMware
Workstation) now comes with accompanying in-client software (Virtualbox Guest Additions,
VMware Tools), that can enhance performance within the VM. They do provide API to extract
information off guest VMs, but the reason why we are not using it is because an attacker can
easily detect the presence of such software and disable them with ease.
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5 Implementation

While VProbes have the capability to read from any memory location assigned to the VM,
without knowledge of the OS installed, we could not possibly know where the essential ker-
nel structures are stored in memory. The importance of understanding the kernel structures
are crucial, as information regarding device drivers, active and suspended processes, user pe-
ripherals, 1/O access, memory management, disk and network controllers are being tracked
by the kernel. All of such information are stored in kernel structures, and thus to access what
we want, we need to understand where they are stored within the data structures.

For this project, we will be focusing on monitoring Linux based VMs, and will thus look into
the relevant Linux kernel structures. To capture system calls when they are invoked, we will
need to set a breakpoint in the VProbes script to invoke a call-back function when a the
VM executes an instruction at the system call memory probe point, which can be found in
/proc/kallsyms of the machine. This file is generated at every boot up, and could be unique
to each Linux distribution. However, from running multiple tests, we found that while the
contents of the symbol file differ slightly to each Linux distribution, they are not as likely to
change with every boot up. This means that we do not have to re-generate the VProbes file
with every reboot.

The call-back function associated with the invocation of system calls is designed to extract
relevant arguments that we can analyse. For example, the execve system call has the ex-
ecutable filename, an array of arguments (for the executable) and an array of environment
variables as its arguments. The call-back function is responsible for traversing the arrays and
print out the referenced data. For the next few sections, we will go into detail regarding Linux
kernel structures, and how the VProbes toolkit and Dehnert[24] combined to intercept sys-
tem calls and provide a basis for further interpretation and deeper analysis.

5.1 Linux Kernel Structures

To start tracing syscalls, we refer to this linux kernel map [18]. The entire map is too complex
and large to fit in this paper, but a small snippet at Figure 7 is adequate for our needs. The
map shows how different subsystems of the kernel interact with each other, and is not meant
to be any sort of official reference.
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Figure 7: Snippet of Linux 2.6.36 Kernel Map [18]

In particular, to track an invader’s activity in a shell/environment, we are interested in tracing
execution of commands/executables, which is directly linked to the execve or sys_execve
system call. To find out the task or process responsible for the call, we follow the intercon-
nections linking from sys_execve in the kernel map, to the memory mapping subsystem, and
finally we find the data structure task_struct in the scheduler. The mm_struct data struc-
ture is used to describe the virtual memory of a task or process, while details of the task or
process is in the task_struct data structure[17]. Within task_struct, there are several data
fields which are particularly useful to us, as follows.
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Listing 1: Extract of linux task_struct data structure

/* pid holds the thread id (tid), and pgrp holds the process group id
(pid) */

int pid;

int pgrp;

/*

* pointers to (original) parent process, youngest child, younger
sibling,

* older sibling, respectively. (p->father can be replaced with

* p->p_pptr->pid)

*/

struct task_struct *p_opptr, *p_pptr, *p_cptr,

*p_ysptr, xp_osptr;
/* comm holds the name of the task or process */
char comm[16];

Given the task_struct of the current task, we will be able to deference the current thread
id (tid) with task_struct->pid and process id (pid) by task_struct->pgrp. To determine the
parent pid (ppid), we have to access the parent data structure first by reading task_struct-
>p_pptr->pid. VProbes unfortunately does not have the capability to traverse through data
structures and thus we need to rely on a toolkit, provided by VMware, to access the structure.
In addition, we need to locate the whereabouts of the data structure within the memory for
inspection, which will be described in the next section.

5.2 VProbes toolkit

Inaddition to the VProbes API, VMware has also provided an accompanying toolkit with sam-
ple scripts and preloads, as well as the Emmett compiler to assist in writing in a C-like high
level language to be complied into VProbes scripts. To locate the location of the task_struct
data structure within the memory, the toolkit contains a kernel module vprobe_offsets.c
which must be complied and loaded within the VM. It could be arguable that we are inter-
fering with the vanilla installation of the guest OS, which we mentioned should be left 'un-
touched’ in early sections. However, this process of obtaining offset information is only a
one-off; once we have obtained the offsets, the kernel module can be unloaded and removed.

Compliation of the module requires kernel headers to be installed, which is by default in-
stalled in Ubuntu 14.04 LTS. Upon compliation and loading it into the kernel, we extract the
offset information from /proc/vprobe_offsets and moved the data off to our host machine.
The output is as follows. This can differ from various versions of the linux kernel.
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Listing 2: Output of /proc/vprobe_offsets

/* Linux offsets for kernel version 3.16.0-30-generic */
memmodel guest64;

#tdefine HAVE_LINUX_FILES 1
/* struct dentry */
#define __OFF_DENTRY_PARENT 0x0000000000000018

#define __OFF_DENTRY_NAME 0x0000000000000020
/* struct file / struct path x/

#define __OFF_FILE_PATH 0x0000000000000010
/* struct vfsmount / mount x/

#define __OFF_VFSMOUNT 0x20

/* struct mm_struct */
#tdefine __OFF_EXE 0x0000000000000350

/* struct task_struct */

#define __OFF_TGID 0x00000000000003fc
#define __OFF_PID 0x00000000000003f8
#tdefine __OFF_PIDS 0x0000000000000460
#define __OFF_COMM 0x00000000000005c8
#define __OFF_PARENT 0x0000000000000410
#define __OFF_MM 0x0000000000000388

/* struct current_thread */
#tdefine __OFF_TASK 0x000000000000b840

#define __CURTHRPTR (GSBASE >= 0x100000000 ? GSBASE : KERNELGSBASE)

From the output, we know the memory location of the current thread pointer (CURTHRPTR),
which is equal the the CPU's GSBASE or KERNELGSBASE value, depending on the current
value of GSBASE (>=0x100000000). Following which the memory offset to the task_struct
data structure is (OFF_TASK). From that, we can obtain the data we want from the offsets
to the specific fields (tid, pid, parent task and comm) in the data structure. We #include this

offsets file to the Emmett code we will be using.
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5.3 Capturing System Calls

To capture system calls, we have set a breakpoint in the VProbes script that invokes a callback
function to extract more system call-specific information out. Prior to this point, we can cap-
ture the tid, pid, ppid and name of the current task, but nothing specific to the system call. We
can set a 1Hz static probe to capture the active process running every second, but we what
we really want to know are the processes that invokes system calls. To begin, each system
callin the Ubuntu manual [2] is very unique in its arguments and return value, and we cannot
account for every one of them. As such, we narrowed the list down to the most important
and commonly used calls. The exact list of calls the kernel uses is taken from fusr/src/linux-
headers-3.16.0-30-generic/arch/x86/include/ generated/uapi/asm/unistd_64.h. The
numbers beside each call is important for filtering the system calls we want to capture.

A list and extract of the selected system calls and respective calling numbers we are particu-
larly interested is as follows.

Listing 3: Syscall numbers in 64bit Linux Kernel (unistd_64.h)

VMMLoad {

NR_open = 2;
NR_read = 0;
NR_write = 1;
NR_getpid = 39;
NR_clone = 56;
NR_fork = 57;
NR_vfork = 58;
NR_execve = 59;
NR_chmod = 90;

NR_exit_group = 231;

While open, read, write and execve are described in previous sections of their importance,
we selected a few others that are interconnected with the ones we have originally selected.

« getpid - returns the process ID of the calling process. (This is often used by routines
that generate unique temporary filenames).[2]

« clone - creates a new process, but allows the child process to share parts of its exe-
cution context with the calling process, such as the memory space, the table of file
descriptors, and the table of signal handlers.[2]
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« fork - creates a new process by duplicating the calling process. The child process has
its own process ID, but maintains a full copy of the parent process.[2]

« vfork - is a special case of clone. It is used to create new processes without copying the
page tables of the parent process. It may be useful in performance-sensitive applica-
tions where a child is created which then immediately issues an execve.[2]

« chmod - changes the permissions of the file specified.[2]

« exit_group - terminates not only the calling thread, but all threads in the calling pro-
cess's thread group.[2]

When the CPU executes an instruction at the system call entry point (defined by system_call
entry in /proc/kallsyms), before analysing the data, we need to know where the system call
number, as well as arguments, are stored in the CPU. This information is typically stored in
entry_64.s (in 64bit linux kernels). An extract of how the low-level system call subroutine

expects the information to be stored within CPU registers beforehand is listed below.

Listing 4: Location of arguments and syscall number (extract of entry_64.s)

System call entry. Up to 6 arguments in registers are supported.

stack pointer. However, it does mask the flags register for us, so

*
*
* SYSCALL does not save anything on the stack and does not change the
*
* CLD and CLAC are not needed.

Register setup:

rax system call number

rdi argo

rcx return address for syscall/sysret, C arg3
rsi argl

*

*

*

*

*

* rdx arg2
* r10@ arg3 (--> moved to rcx for C)

* r8 arg4

*r9 argbd

* r11 eflags for syscall/sysret, temporary for C
*

r12-ri15,rbp,rbx saved by C code, not touched.

Following which, Dehnert[24] simply extracted the system call number by reading directly
from the RAX CPU register. After it is done, a callback function is responsible to further dis-

sect the system call and arguments (listing 5). While the directory where we obtained the
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list of system calls (unistd_64.h) seems to suggest that the list is kernel-version specific, the
few system calls we are capturing exist from kernel version 1.0[2], and that the system call
numbers are consistent across other 64bit Linux kernels that we tested, thus we believe the
code does not have to be rewritten or modified across previous and near-future versions of
64bit Linux kernels.

Listing 5: Callback function when at system call entry point[24]
GUEST:ENTER:system_call
{

int syscall_num, sys_arg@d, sys_argl, sys_arg2, sys_arg3, sys_arg4,
sys_argbs;

syscall_num = RAX;
RDI;
RSI;
RDX;;
R10;
R8;
R9;

sys_argo

sys_argl

sys_arg2

sys_arg3

sys_arg4

sys_argbs

handle_syscall("system_call”, syscall_num, sys_arg@d, sys_argl,
sys_arg2, sys_arg3, sys_arg4, sys_argh);

5.4 Dissecting System Calls

Now that we have information regarding the system call number and arguments, we can ex-
tract relevant information from the registers. Starting with the open system call, we know
that the first argument holds filename that we wish to open, the second holds the flags per-
taining to the access modes (read only, write only, read and write), and an optional third ar-
gument that holds permissions for the file if it is newly created. While we can directly print
the values for the flags and mode from the RSl and RDX CPU registers (held in sys_arg1 and
sys_arg?2 respectively), reading the filename is different. We need to deference the char”
pointer before reading it as a string. The code listing for reading the open system call is as

follows
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Listing 6: Dissecting the open system call[24] in Emmett

if (syscall_num == NR_open)

{
getgueststr(arg_path, 128, sys_arg0d);
syscall_name = "open”;
sprintf(syscall_args, "\"%s\", flags=%x, mode=%x",
arg_path, sys_argl, sys_arg2);
print = 1;
}

The VProbes function getgueststr() copies a NULL-terminated string from a linear address
in the guest address space[23], and is limited to a maximum of 255 bytes/characters. We
have set the limit to 128 bytes because strings within VProbes are limited to 255 bytes, and
we are concatenating the filename with other output arguments. Although this is a limita-
tion initself, for the most part of it, we do not expect many filenames to exceed this imposed
limit of 128 bytes.

Dissecting the read and write system calls were slightly more complicated because based
on early testing and analysing output data, printing simply the file descriptor and buffer is
inadequate. To make better sense of the data, we start by differentiating if the system call
is reading or writing to or from STDIN, STDOUT, or STDERR, by comparing the value of the
file descriptor fd. Furthermore, we cannot use VProbes’ getgueststr() to directly print the
buffer, because from testing, the buffer (*buf) is not NULL-terminated most of the time, and
will print as many characters as stated (by getgueststr()). Next, the original idea is to make
use of the value of count to extract only the length of characters in the buffer. An extract of
the code listing is shown at listing 7.

However, once again its unfortunate to bring up VProbes string limitation of 255 bytes, as
count is of an integer data type, and can vary to very large numbers, above the limit that
getgueststr() can store in a string variable. As such, as long as the value of count never ex-
ceeds the length limit set in getgueststr(), we will be able to read the data in full. Otherwise,
we will only obtain a truncated version of the buffer.
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Listing 7: Dissecting read and write system calls in VProbes language

/* if syscall_num is either read or write %/

(|| (== syscall_num NR_read) (== syscall_num NR_write))

(do
/* read the buffer in RAW form and store in argintl %/
(setint ~flocalll:argintl (& Oxffffffff (getguest sys_argl)))

/* attempt to read 160 characters of the buffer and store in arg_path, if fail, store <undef> =%/
(try (getgueststr ~flocalll:arg_path 160 sys_argl) (setstr ~flocalll:arg_path "<undef>"))
(cond
((== syscall_num NR_read) (setstr ~flocalll:syscall_name "read"))
(1 (setstr ~flocalll:syscall_name "write"))
)
(cond
((== sys_arg@d @) (setstr ~flocalll:argl "STDIN"))
)
(cond
((== sys_arg@ 1) (setstr ~flocalll:argl "STDOUT"))
)
(cond
((== sys_arg0d 2) (setstr ~flocalll:argl "STDERR"))
)
(cond

(

/* if file descriptor is any of the 3 streams above, let the reader know */
(Il (== sys_argd @) (== sys_argd 1) (== sys_argd 2))
(sprintf ~flocalll:syscall_args "fd=%s text=%x count=%d\nASCIItext\n%s"” ~flocalll:argl
~flocalll:argintl sys_arg2 ~flocalll:arg_path)
)
/* for all other file descriptors */
(1 (sprintf ~flocalll:syscall_args "\nfd=%d\nHEXtext=\n%x\ncount=%d\nASCIItext\n%s" sys_argod
~flocalll:argintl sys_arg2 ~flocalll:arg_path))
)
(setint ~flocalll:print 1)

Listing 7 is manually written in VProbes language because there were areas within the listing
that we do not understand how to write in Emmett form. There is practically no documen-
tation on Emmett and we had to rely on sample Emmett scripts in the VProbes toolkit as a

learning tool.

Perhaps the most crucial aspect of this section and the project overall was dissecting the ex-
ecve system call. Capturing and dissecting this system call is crucial as it gives us much infor-
mation on what any user is executing on this machine. There is almost no information an in-
vader can extract from the system if he chooses to omit executing any commands that do not
trigger the execve system call. The code listing is shown at listing-8, and is written in VProbes
language. Extracting the executable filename is straightforward, using the getgueststr func-
tion, which deferences the address pointed by sys_argO.
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Listing 8: Dissecting the execve system call in VProbes language

(== syscall_num NR_execve)

(do

/* set arg_path to filename to execute */
(getgueststr ~flocalll:arg_path 128 sys_arg0)

/* find
(setint
(setint
(setint
(setint
(setint
(setint

addresses of argument 1-6, each

~flocalll:argintl (& Oxffffffff (getguest
~flocalll:argint2 (& Oxffffffff (getguest
~flocalll:argint3 (& Oxffffffff (getguest
~flocalll:argint4 (& Oxffffffff (getguest
~flocalll:argint5 (& Oxffffffff (getguest
~flocalll:argint6 (& Oxffffffff (getguest

/* try to deference addresses, if not set to NULL
(try (getgueststr ~flocalll:
(try (getgueststr ~flocalll:
(try (getgueststr ~flocalll:
(try (getgueststr ~flocalll:
(try (getgueststr ~flocalll:
(try (getgueststr ~flocalll:

(setstr

~flocalll:arg_path
~flocalll:argl
~flocalll:arg?2
~flocalll:arg3
~flocalll:arg4
~flocalll:arg5
~flocalll1:argb
sys_arg2 sys_arg3)

(setint ~flocalll:print 1)

argl
arg2
arg3
arg4
argb
argé

64
64
64
64
64
64

sys_argl)))

(+
(+
(+
(+
(+

%/

sys_argl
sys_argl
sys_argl
sys_argl
sys_argl

~flocalll:argintl) (setstr
~flocalll:argint2) (setstr
~flocalll:argint3) (setstr
~flocalll:argint4) (setstr
~flocalll:argint5) (setstr
~flocalll:argint6) (setstr
~flocall1:syscall_name "execve”
(sprintf ~flocalll:syscall_args
"\"%s\"\nderef_argl=%s\n
deref_arg2=%s\n
deref_arg3=%s\n
deref_arg4=%s\n
deref_arg5=%s\n
deref_arg6=%s\n
envp=%x\nregs=%x"

one of them is 8 bytes apart */

8

16))))
24))))
32))))
40))))

~flocalll:
~flocalll:
~flocalll:
~flocalll:
~flocalll:
~flocalll:

argl
arg?2
arg3
arg4
argb
argé

"NULL"))
"NULL"))
"NULL"))
"NULL"))
"NULL"))
"NULL"))

Retrieving the program arguments is different, since the address at sys_arg1 is a pointer to
an array of string pointers. To help us understand how an execve performs its memory lay-
out, we refer to Giasson[6] who described the memory layout of program execution in great

detail.

5.41 Tracing memory layout of execve system call

As an example, we will attempt to understand what happens when we enter the command
.Ja.out first second third in the command shell. This command will execute the file a.out with

Sfirst second third as its first, second and third arguments.
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0
third
second
first
Ja.out

Figure 8: Argument array passed to execve

0
HOME=/root

Figure 9: Environment variables array passed to execve

There are two main arguments passed to the execve system call; the first (argv[]) is an ar-
ray of strings (see Figure 8) that holds the command entered, as well as the arguments for
the command. The second argument (envp[]) is too an array that holds all the environment
variables (see Figure 9) that should be run with program execution. Both arrays are NULL-
terminated at the last element. After which, the do_exec() procedure will now build the initial
stack within the shell address space, and the memory manager will allocate new memory for
this newly created stack and the stack will look like Figure 10 [6].

In Figure 10, the address of the first element within the argv[] array is stored at linear address
5678 in the guest address space. Following the 64bit architecture convention, the memory
addresses are of 64bits wide, and addresses of subsequent arguments are located with an 8
bytes offset within each other. The addresses of the arguments themselves is byte-specific,
they point to the first character of the string. Being written for x86/x86-64 processors, data
is being stored in little-endian format, where the least significant byte is stored in the smallest
address.
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Byte

Number 716|543 1|0
5766 slal\D|t|o r|/
5758 =|E|/M{O|H\D|d]|Tr
5750 Vih|{t]\o|d olc
5742 e|ls|\0|t]s i|f
5734 |\D|t|ulo /
5726 0
5718 5761
5710 0
5702 5755
5694 5748
5686 5742
5678 5734

Figure 10: The stack built by execve() and after relocation by memory manager

Byte
vomber | 71815]4]3]2[1]0]
5766 slal\0|t|olo]|r|/
5758 =|E|M[{O|H|\O|d
5750 Vhit|\WOld|n|o|c
5742 els|\O|t|s|r|i]f
5734 |\O|t|u|of|.|a|/
5726 0
5718 5761
5710 0
5702 5755
5694 5748
5686 5742
5678 5734

5718

5678

<- envp
<- argv
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Figure 11: The stack as it appears to main() at the start of execution




Finally, right before execution at the point of the execve system call, in accordance to Linux
system call conventions, the pointers of the offsets of the two arrays are stored to the RSl and
RDX CPU registers. Therefore, in the eyes of an observer, or in the case of our monitoring tool,
we need to deference the pointers and apply the correct offsets to obtain the arguments we
want. There are a few limitations to our solution however. Because VProbes cannot handle
strings over 255 bytes in length, we cannot easily capture extremely long arguments. In our
current implementation, we are saving the name of the executable as well as the names of
6 arguments in a string, and because of that, we are limiting the 'read’ length of each argu-
ment to a maximum of 64 bytes each, and the ‘read’ limit of the executable name to 128
bytes. Although the maximum theoretical length exceeds the maximum permissible length
of 255 bytes, we are accepting a reasonable amount of risk that the hard limits placed are not
reached for all strings we are reading, for most of the captured execve system calls.

Although mentioned briefly in the previous paragraph, another limitation lies in the number
of arguments we can actually capture. Typically in a C program, we can always refer to the
argc variable that holds the number of arguments of the program. However, there isn‘t such
avalue available in the execve system call for us to capture. Moreover, assuming even if such
a data value was available to us, neither VProbes nor Emmett would allow us to dynamically
allocate memory for variables to hold the arguments. All variables within the VProbes script
must be declared in the beginning of the script. In this project, we accept an average num-
ber of program arguments to be 6. In addition, the VProbes language does not provision for
declaration of arrays as well, thus we have to manually declare each and every variable we
use. In theory, we could have manually declared a large number of string variables, and to
continually store the arguments until we reach a NULL, signifying we have reached the end
of the array, but retracted the idea since it was very space inefficient, and such extra logic
would put a great toll on operational performance of the guest VM.

Listing 9: Sample output of execve system call capturing ‘whoami’ command

t=1371/p=1371/pp=1343 (bash # /bin/bash): execve("/usr/bin/whoami”
deref_argl=whoami

deref_arg2=NULL

deref_arg3=NULL

deref_arg4=NULL

deref_argb=--version

deref_arg6=NULL

envp=1225808

regs=7fff82e36920);

Following the limitations by VProbes, our solution was rather rudimentary and crude. We

attempt to read in a maximum of 6 arguments, and in case interpreting each memory loca-
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tion as a string fails, we replace the string variable with a'NULL' There is a chance whereby we
captureastringwhichis not related to the program(see listing 9). The sample output was pro-
duced when a user entered the command whoami in the shell. Argument 1 and 2 were true of
the specifications; the first argument is always the filename itself, and the last element of the
array of arguments is always a NULL. Because of that, we can be sure that argument 5 was
erroneously dereferenced with —version, likely to be the remnants of a previous command, or

possibly data of another running application.

5.5 Analysing VProbes output

Now that we have the VProbes introspection tool capturing system calls and dumping the
datainto a log file, while we can interpret single events manually and its track its output from
captured STDOUT events, it is still inadequate to recreate a real-time shell in our host ma-
chine mirroring user activity from the VM. The output data log still contains numerous cap-
tured system events originating from background and user processes. To help us in capturing
and displaying any useful and meaningful user’s activity made on the shell, we need to first
establish some requirements that our "filter’ should do.

« Print executable commands made by the user/system
« Print output of commands made above

« Beingable to support and differentiate multi-user activity

Fundamentally, our script would read from the continuously growing VProbes log file, much
like a "tail -f' linux command. Besides capturing execve system calls and printing the ex-
ecutable filename as well as associated arguments, it should also concatenate STDOUT of
entered commands and print them out on the host machine. So far, it would be adequate
if it was a single user system, however, if we imagine a scenario where this project would
be deployed to a real honeypot, it would be prone to multi-angled attacks. Having multi-
ple users concurrently logged in to the system would cause a lot of difficulty in identifying
which processes are responsible for executing malicious/information-gathering commands,
and which are made by the administrative team. For example, if an intruder targets a vul-
nerable ftp server on the honeypot and manages to perform remote code execution from his
machine, it should appear on our output that the ftp server is invoking execve system calls,
which could very much be suspicious activity, compared to activity originating from an SSH
daemon.
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Given an execve system call, for example in listing 9, we have known that the user has exe-
cuted the command whoami on the bash shell. The bash shell has a tid of 1371, and its par-
ent pid is 1343. In this case, though the command is executed on the bash shell, and that
the binary file location of the bash shell is legitimate, we need to know if the bash shell was
spawned locally from the system (pid = 1, /shin/init), by remote means (e.g. sshd) or by a
vulnerable/compromised process. To do that we need to keep a table of pids and associated
names, where we can perform a backtrace with every execve call and check their parent pro-
cesses.

Since the VProbes output log is essentially a text file, we opted to use Perl to code our ‘fil-
ter’ forits fast text-parsing and regular expressions capability. There are plenty of arguments
whether Perl or Python is best suited for a particular task, but for our proof of concept, we
chose to use Perl.

The filter starts by monitoring the VProbes output log for new lines. Whenever an entry for a
system call is written to the log, we store the pid and the name of the process in a hash table.
If the new system call entry is of type execve, we store all related information regarding the
call (tid, pid, ppid, binary filename, arguments) in a temporary set of variables. Any STDOUT
write calls resultant of a preceding execve call is captured and ASCII text concatenated into
a variable. When the VProbes script captures an exit_group system call that signifies ter-
minatating all threads of the current process, the filter would print the entered command
as well as the arguments and output. At the same time, we would also perform a backtrace
lookup and print the pids and names of all parent processes starting from the terminating
process. Code listing for this Perl "filter” is in the Appendix.

This filter remains a work in progress as extensive testing have not been performed for our
test VM, as well as for various other Linux distributions. The next section would focus on
testing both the VProbes and Perl scripts, as well as interpreting extracts of our filter and dis-
cussions on its limitations.
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6 Testing

The test VM used for the majority of tests is a vanilla install of Ubuntu Server 64 bit 14.04.2
LTS, with an additional default OpenSSH server configuration. The hypervisor usedis VMware
workstation 11.1, installed on Windows 7 Professional 64bit. This section focuses on moni-
toring the VProbes output log, as well as testing the Perl ‘filter” script that reads the log and
interprets system events effectively. This section is not meant to test for performance im-
pact, which is discussed in later sections.

There are several Emmett files that must be complied into VProbes scripts for monitoring,
and are listed as follows.

« linux-offsets.emt - holds the memory offsets for the task_struct data structure and
other data fields for the specific linux kernel version we are monitoring

« linux-processes.emt - provides an interface to obtain tid, pid, ppid and filename of

current running process

« strace-linux-common.emt - prints information about system calls we are interested
in monitoring, common for 32/64 bit linux kernels

« strace-linux64.emt - holds system call numbers and responsible for invoking callback

function when guest VM enters a system call

In addition, we also need the kallsyms file that provides guest symbols and their memory
addresses. We only need to compile strace-linux64.emt, since itincludes all the prerequisite
Emmett files. We start the compliation with the following command.

emmett -s {kallsyms file} strace-linux64.emt -o {output file}.vp

VProbes scripts can only be run on active (powered on) VMs, and can be terminated either
manually or if the VM is powered off. In addition, on the target VM that the VProbes script is
meant to run, the line below must be added to the VM'’s configuration file (vmx).

vprobe.enable = TRUE

To start the VProbes monitoring script, we enter the following command in the command
prompt.

vmrun vprobelLoadFile {VM configuration file}.vmx {VProbes script}.vp

Similarly, the command to halt monitoring is

vmrun vprobeReset {VM configuration file}.vmx
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The output file (vprobe.out) is stored in the same directory of the VM. In events where the
script is attempting to read from an invalid address, the current probe is terminated and an
error is logged to vprobe.err.

6.1 Raw VProbes output

We are only capturing open, read, write, getpid, clone, fork, vfork, execve, chmod and
exit_group system calls. This specific group of 10 system calls out of 317 (total listed in
unistd_64.h) should be adequate to give us a reasonable amount of insight going on within
the OS. Our aim in this section is to understand as much as possible, what the VProbes out-
put file is telling us.

We start by looking at the output file when we enter the command uname -r to print system
information. Over 80% of the captured events are related to acpid (Advanced Configuration
and Power Interface event daemon). Over the next few sections, we will look into how we
interpret each captured event, and how activity from background daemons (e.g. acpid), shell
inputs and remote sessions are captured.

6.1.1 Background processes (acpid)

From the ubuntu manual, acpid is designed to notify user-space programs of ACPI events[2].
It reads an acpi log file for whole lines, and once an event comes in, acpid will examine a list
of rules, and execute the rules that matches the event.

Listing 10: Sample output of acpid read
t=1309/p=1309/pp=1 (acpid # /usr/sbin/acpid): read(
fd=5
HEXtext=
5573babc
count=24
ASCIItext
1esU);

From the output listing above, we are able to read that the process acpid, which has a tid
of 1309, pid of 1309, and ppid of 1, and has its binary located at fusr/sbin/acpid, is reading
from file descriptor 5. The number of characters to read from the file descriptor is 24. The
field HEXtext shows 8 bytes starting from the address location pointed by *buf. The ASCI-
ltext field holds a string of characters up to 160 characters in length (defined in our VProbes
script), or tilla NULL character is reached. From the listing, although the count is 24 charac-
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ters, the ASClItext field only shows 6 characters (most likely being NULL terminated). This
would mean that the data is meant to be read as raw hex or binary characters, rather than an
ASCII string.

Furthermore, from the listing, while we know the system call is read operation, we do not
know which file it is reading from. To trace back to the file being read, we must look further
back up the VProbes log to find the open system call associated with this process. According
to the system call manual[2],

open() returns a file descriptor, a small, nonnegative integer for use in sub-
sequent system calls (read(2), write(2), Iseek(2), fcntl(2), etc.). The file descriptor
returned by a successful call will be the lowest-numbered file descriptor not cur-
rently open for the process.

Since the first 3 file descriptors (0,1,2) are STDIN, STDOUT and STDERR respectively, it is
possible that the acpid process has opened at least an additional 3 files (fd 3,4,5) for read-
/write operations. If the VProbes monitoring script was started at the point when the VM
was powered on, we could trace back the log to find out which file was opened for file de-
scriptor 5. A better solution would be to trace return values from system calls, so that we can
perform a lookup for the filename based on the file descriptor. Currently our project does
not support collecting results from system call returns, but how it could be done is described
in the next section.

6.1.2 Tracing system call returns

Tracing return values from system calls allow us to view more details regarding the success/-
failure of calls made, and in our case, would allow us to know the file descriptor as the return
value of the open system call. To begin, similar to our system call handler, we need to invoke
a callback function to retrieve the return value in the event of a 'return from system call’. For
the x86-64 architecture, referencing listing 4, it was stated in entry_64.s the return address
from a system call resides in the RCX register. The return address is where the CPU instruc-
tion pointer would point to when execution of a system call has completed.

The initial idea was to take note of the return address when a system call is invoked, and set
up a dynamic probe point within VProbes for that memory location. As soon as the CPU exe-
cutesaninstruction at that memory location, we can retrieve the return value from one of the
CPU registers. Alternatively, in the Ubuntu 64bit guest symbol list (/proc/kallsyms), there is
a guest symbol ret_from_sys_call which points to the memory address during the return from
a system call. We can invoke a callback function to retrieve the return value when the CPU
executes an instruction at that address. To find out whereabouts the return value is stored,
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we refer to listing 11, which is an extract of the output from the command man syscall. The
listing shows the CPU registers responsible for saving system arguments, as well as return
values, for various architectures.

Listing 11: Extract from 'man syscall’ Ubuntu Server 64bit 14.04.2 LTS

Architecture calling conventions
Every architecture has its own way of invoking and passing arguments to the kernel. The details for various architec
tures are listed in the two tables below.

The first table lists the instruction used to transition to kernel mode, (which might not be the fastest or best way to
transition to the kernel, so you might have to refer to the VDSO), the register used to indicate the system call number,
and the register used to return the system call result.

arch/ABI instruction syscall # retval

Notes
arm/OABI swi NR - al NR is syscall #
arm/EABI swi 0x@ r7 ro
blackfin excpt 0x0 Po RO
1386 int $0x80 eax eax
ia64 break 0x100000 r15 r1o/r8
parisc ble 0x100(%sr2, %r0) r20 r28
$390 svc 0 ri r2 NR may be passed directly with
$390x svc 0 ri r2 "svc NR" if NR is less than 256
sparc/32 t 0x10 g1 00
sparc/64 t ox6d gl 00
x86_64 syscall rax rax

The second table shows the registers used to pass the system call arguments.

arch/ABI argl arg2 arg3 arg4 argh arg6 arg’
arm/OABI a1 a2 a3 a4 vi v2 v3
arm/EABI ro ri r2 r3 r4 r5 ré
blackfin R@ R1 R2 R3 R4 R5 -
1386 ebx ecx edx esi edi ebp -
ia64 ril r9 rie ri4 ri5 ri3 -
parisc r26 r2s r24 r23 r22 r21 -
$390 r2 r3 r4 r5 ré r7 -
$390x r2 r3 r4 r5 ré r7 -
sparc/32 00 ol 02 03 o4 o5 -
sparc/64 00 ol 02 o3 o4 o5 -
x86_64 rdi rsi rdx rie rg r9 -

Note that these tables don't cover the entire calling conventionsome architectures may indiscriminately clobber other

registers not listed here.

From the listing, we confirm that registers are saved in exactly the same way as described in
entry_64.s in the event of making a new system call. Interestingly, when a system call is ini-
tiated, it seems that both the system call number, as well as the return value are stored in the
RAX register. This would probably mean the return value would be stored in the RAX regis-
ter when the system call completes. To ensure the succeeding instruction does not overwrite
the register, we need to retrieve the value as soon as the system call is complete. This feature
is not yet implemented in our VProbes script at the time of writing.

6.1.3  Shell inputs

From the VVProbes output log file, we are also able to uncover information regarding keyboard
events. We expected to capture individual keypresses through STDIN, and output (on the
shell) through STDOUT or STDERR. However, the data captured by VProbes was confusing
and difficult to interpret. Listings 12 and 13 shows events captured upon entering the first
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character of our test command uname -r.

From listing 12, we can interpret that there is a ‘write’ operation to STDERR on bash, with
only 1 character (count=1). Within the '‘ASClltext’ field, we see a long string of characters
which does not seem to offer much useful information. Upon observation, the total number
of characters within the field is 160 characters, the maximum string limit that we have im-
posed for read and write system calls. This means that either the actual string is longer than
160 characters, or is not NULL-terminated, causing the VProbes script to interpret and print
the data as ASCII characters until the 160 character limit is reached. To help us to decide
which is right, we refer to the ‘count’ field, which in this case lists a length of 1 (character).
The first character of the ASCIItext field, the letter ‘u’, as well as the last two numbers of the
text field (40786¢75, little-endian representation), which corresponds to the letter 'u’” when
looked up in the ASClII table, also corresponds to our typed character. This confirms that the
*buf field in the read and write system calls are not NULL-terminated.

Listing 12: Output on STDERR upon keypress in bash

t=1386/p=1386/pp=1325 (bash # /bin/bash): write(fd=STDERR text=40786c75 count=1

ASCIItext

ulx@ubuntu:~/UnixBench/results$ not found

BRRRABRARARARARARARARARARAGRARAARARARARARAARAGRARAARARARARARAGRARARAARARAARARARARARARARAARARARARARARRRRARARABRARA3
BBRRRARARARARARARARARARRARARAGRAAAA) ;

Listing 13: Read on STDIN upon keypress in bash

t=1386/p=1386/pp=1325 (bash # /bin/bash): read(fd=STDIN text=45cf6000 count=1
ASCIItext

);

Our initial idea was that since we could recover keystrokes presented to the shell, we could
reconstruct, or mirror an entire shell terminal. The plan was to construct the ability to ‘see’
what anintruder would do upon obtaining access to the machine. However, mirroring exactly
what a user is typing on the shell is a huge task. To start off, we need to capture every single
keystroke presented to the shell. Within our tests, we observed that the script could capture
keyboard events within the standard alphanumeric range of characters, and were recorded
in the same manner as per listings 12 and 13. Those were trivial to take apart and replay
them on our host machine. We were interested in keyboard inputs outside of the alphanu-
meric range as well, such as (enter, arrow keys, backspace, etc), and capturing and replaying
those events were complex in nature. Listings 14, 15 and 16 show the output captured for
keystroke events ‘enter’, ‘left arrow key’ and 'backspace’ respectively.
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Listing 14: Extract of captured keypress ‘enter’
t=1386/p=1386/pp=1325 (bash # /bin/bash): write(fd=STDERR text=40786c@a count=1

Listing 15: Extract of captured keypress 'left arrow’

t=1397/p=1397/pp=1332 (bash # /bin/bash): write(fd=STDERR text=40786c08 count=1
/* ASCII text not printed as they cannot be correctly displayed */

Listing 16: Extract of captured keypress ‘backspace’ (deleting a character in the middle of a

word)

t=1397/p=1397/pp=1332 (bash # /bin/bash): write(fd=STDERR text=315b1b@8 count=7
/* ASCII text not printed as they cannot be correctly displayed */

Listing 17: Extract of captured keypress ‘backspace’ (deleting rightmost character)

t=1397/p=1397/pp=1332 (bash # /bin/bash): write(fd=STDERR text=4b5b1b@8 count=4
/* ASCII text not printed as they cannot be correctly displayed */

Listing 18: Extract of captured keypress 'backspace’ (no characters to delete)

t=1397/p=1397/pp=1332 (bash # /bin/bash): write(fd=STDERR text=4b5b1b@7 count=1
/* ASCII text not printed as they cannot be correctly displayed */

In listing 14, where the output extract is obtained from an ‘enter’ keystroke event, looking
up the ASCII table for the character equivalent for 0x0a, we find a 'new line’ character. The
‘enter’ keystroke should be associated with the carriage return character, or 0x0d. However,
because we are interpreting the keypress from the terminal output, we see a 'new line’ rather
than the intended character. In another case (listing 15), when looking up the ‘left arrow’
keystroke event in the ASCII table 0x08, it corresponds wrongly to a backspace.

During a 'backspace’ event where a character in the middle of a word is being deleted (see
listing 16), curiously it consists of 7 characters, most of which are unreadable in plaintext.
It becomes more complex during a 'backspace’ event when we are deleting the rightmost
character within a line (see listing 17), which is captured as 4 characters. We can see it varies
even further in listing 18 when we are pressing 'backspace’ in an empty line within the shell
terminal. In this case, it returns a single character, when looked up in the ASClI table, returns
a bell (0x07).

In addition, we had to account for ‘up’ and ‘down’ arrow keys for browsing shell history, as
well as command completion when the "tab’ key is pressed, among many other keyboard
shortcuts available to the Linux shell. Although this particular feature of replaying individual
keystrokes in terminal mirroring could be done through reverse engineering and extensively
analysing the output log closely, this idea has been put on hold, mainly because the solution
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could be specific to a Linux kernel version and requires extensive research and testing.

When we type on the shell terminal, the logic behind is that the system reads the keypress
from STDIN, and outputs to STDERR, where we see the character we typed on the screen.
If that is the case, we should be able to capture the keypress event by looking through cap-
tured read system calls from the STDIN file descriptor. However, the captured output says
otherwise. From listing 13, it shows that the scriptis indeed reading in a single character from
STDIN, however, the ASCII equivalent of ‘00" is NULL (text field). In addition, in the output
log file, in all keypress events, the write operation to STDERR always precedes the read op-
eration on STDIN. At the point of writing, recording individual keystrokes in the shell remains
restricted to capturing from STDERR, and further investigation is required regarding captur-
ing from STDIN events.

6.1.4 execve system calls

When a user or intruder enters a command in the shell, we want to capture not only the exe-
cutable filename, but also its arguments. In theory, based solely on following shell inputs and
outputs, we could capture entire full commands. However, in the case when a shell script
which contains forks to several other executables and commands is executed, the primitive
method of capturing shell activity will only record the first command of executing the initial
script. Capturing execve system calls will ensure that most commands that involves execut-
ing a binary executable within the kernel and user space will be logged.

Listing 19: Output sample of execve call (starting execution) in bash

t=70841/p=70841/pp=1386 (bash # /bin/bash): execve(”/bin/uname”
deref_argl=uname

deref_arg2=-r
deref_arg3=NULL
deref_arg4=NULL
deref_arg5=NULL
deref_arg6=NULL
envp=1ab7808
regs=7fff1dfca5b0);

Listing 19 shows the output extract for the execve system call capture of our test command.
As mentioned in previous sections, our project has a limitation of capturing up to 6 argu-
ments, and up to 64 characters for each argument. The latter limitation can be lifted up to
255 characters through dedicating a string variable to each argument, and while the former
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limitation can be increased as well, it is ultimately bounded by the VProbes API, which does
not allow declaring new variables dynamically, as well as a hard limit of 255 characters for
string variables.

Listing 20: Output sample of execve call (execution output)
t=70841/p=70841/pp=1386 (uname # /bin/uname): write(fd=STDOUT text=36312e33 count=18
ASCITtext

3.16.0-30-generic
)5

Besides capturing commands that the user enters, we are also interested in the output of the
command. This would be particularly usefulin understanding what the user is looking for, and
his next steps. Moreover, if an intruder copies over his own scripts meant to display exten-
sive information regarding the machine he is on, capturing execve calls can only tell part of
the story. We want to know what kind of information he is seeking, and one thing we could
do is to trace for any STDOUT events for the execve system call. In the case for listing 20,
based on the input command and output, the user was looking for the kernel version of the
machine he is currently logged in to. In the case where STDOUT is redirected and piped to
a file, or if the command involves moving or copying files to various locations, the traces are
still captured in the read and write system calls.

Exceptions that the execve system call cannot capture include printing the current direc-
tory (pwd) and changing the active directory (cd). There could well be other shell commands
which evade triggering the execve system call, and investigation is still on-going. A further

discussion on this phenomenon can be found in the evaluation section.

Surprisingly, while logging of the execve system call within the bash shell performed as ex-
pected, things seemed to have worked very differently in the dash shell. During early evalu-
ation tests when testing a trojan on our VM which opened a remote shell on our ‘attacking’
machine, the ubuntu system shell (dash) was spawned. Listing 21 was captured when we
attempted to execute the same test command from the remote machine.

Listing 21: Output sample of execve call (starting execution) in dash

t=1401/p=1401/pp=1400 (sh # /bin/dash): execve("/bin/uname”
deref_arg1=NULL
deref_arg2=NULL
deref_arg3=NULL
deref_arg4=NULL
deref_arg5=NULL
deref_arg6=NULL
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envp=7f1de124cb28
regs=8);

Surprisingly, we were unable to capture any of the arguments for the execve system call
which originated in dash. This change in logging behaviour persisted even when we man-
ually launched a dash shell on the local machine and executed different commands. Clearly,
from the listing, we were able to capture that an execve system call had occurred on the
dash shell, and the binary file was clearly identified (/bin/funame). However, none of the
arguments were able to be dereferenced by the VProbes script. As of this moment, we are
unable to offer an explanation to this anomaly, as clearly, we were following Linux system call
convention ([2]) when dereferencing the arguments. Investigation is still on-going.

However, this problem was only apparent in the execve system call, as we were still able
to capture the result of the command on STDOUT. In addition of being unable to retrieve
program arguments through the execve system call, individual keystroke events were also
not captured by read and write system calls. Instead, after program execution and output
(STDOUT) were recorded in the log file, the entered full command, as well as its arguments,
appeared in a read from STDIN (see listing 22). Contrary to an ambiguous STDIN read in the
bash shell after program execution (see listing 23), the STDIN read within the dash shell re-
vealed the full command clearly. Further tests confirmed the repeated anomalous behaviour
in the dash shell.

Listing 22: STDIN read of execve call in dash

t=1400/p=1400/pp=1380 (sh # /bin/dash): read(fd=STDIN text=6d616e75 count=8192
ASCIItext
uname -r

);

Listing 23: STDIN read of execve call in bash

t=1386/p=1386/pp=1325 (bash # /bin/bash): read(fd=STDIN text=45cf6@aa count=1
ASCIItext
2 1E);

Listings 22 and 23 show the STDIN read system call extracts after preceding execve calls
in dash and bash shells respectively. The latter’s ASClItext does not yield much meaning and
useful information we can extract, while the former call displayed the typed command. From
listing 22, the length of the 'ASClItext’ printout is much smaller than the ‘count’ value of 8192
characters. To our interpretation, this dash-shell-specific STDIN read extract will always hold
the typed command in its text field, and is NULL-terminated.
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6.1.5 Shell Outputs

As mentioned in the previous section, it is also useful to capture output of commands, es-
pecially when a user is executing his homemade programs and scripts. This is made possible
through interpreting the VProbes log file, by specifically looking for write system calls with
the originating process as the executable. The previous section showed a simple one liner
result (listing 20) from the command uname -r, but we need to understand how multiline re-
sults are displayed on the shell. Listing 24 shows extracts for STDOUT for the command w
when entered in a local bash or dash shell. The multiline result is segmented into one write
system call per line. In addition, there is no clear indication about the number of STDOUT
lines generated by the command within the write calls, nor whether the line it is currently
printing is the last.

Listing 24: STDOUT behavior of execve call in local and remote (ssh) bash and dash shells

t=1862/p=1862/pp=1380 (w # /usr/bin/w.procps): write(fd=STDOUT text=3a323220 count=61
ASCIItext

22:38:14 up 7:33, 1 user, load average: 0.02, 0.02, 0.05

);

t=1862/p=1862/pp=1380 (w # /usr/bin/w.procps): write(fd=STDOUT text=52455355 count=68
ASCIItext
USER TTY FROM LOGIN@ 1IDLE JCPU PCPU WHAT

);

t=1862/p=1862/pp=1380 (w # /usr/bin/w.procps): write(fd=STDOUT text=20786c6b count=66
ASCIItext

k1lx ttyl 06:05 6.00s 0.22s 0.09s w

T

);

t=1862/p=1862/pp=1380 (w # /usr/bin/w.procps): exit_group(0);

Behavior remained consistentin both locally-spawned bash and dash shells, as well as through
aremote connection such as SSH. However, STDOUT behavior changed while testing through
remotely spawned shells. A trojan, written using msfvenom in Kali Linux, was used to spawn
a remote shell back to the attacker’s box. More information about the trojan is described in
the evaluation section. Similarly, as an example, we executed the command w from the re-
mote box, and the STDOUT listing is shown in listing 25.

48



Listing 25: STDOUT behavior of execve call in trojan-spawned dash shell

t=2097/p=2097/pp=2096 (w # /usr/bin/w.procps): write(fd=STDOUT text=3a313020 count=195
ASCIItext

01:23:24 up 10:18, 1 user, load average: 0.00, 0.01, 0.05

USER TTY FROM LOGINe IDLE JCPU PCPU WHAT

k1x ttyl )3

t=2306/p=2306/pp=2096 (ps # /bin/ps): write(fd=STDOUT text=50202020 count=4096
ASCIItext
PID TTY STAT TIME COMMAND

17 Ss 0:02 /sbin/init
27 S 0:00 [kthreadd]
37 S 0:01 [ksoftirqd/o]
);
t=2306/p=2306/pp=2096 (ps # /bin/ps): write(fd=STDOUT text=2020203f count=274
ASCIItext
? S 0:02 [kworker/0:2]
2238 ? S 0:00 sshd: klx@pts/0

2239 pts/@ Ss 0:00 -bash
2258 pts/0 S+ 0:00 sh
2270 ? );

The only apparent change was that now the entire command output is in one single write
system call, as opposed to our observed behavior of one call per line in normal testing. This
behavior is repeated with different commands. When testing with a command with large
output (ps -ax), we can see the results being segmented into multiple write calls, with a max-
imum of 4096 characters for each call. The reason why the data in the 'ASClItext’is truncated,
is because of our string limit of 160 characters. As a result, we run into a risk of losing infor-
mation when attempting to capture STDOUT data from a trojan-spawned dash shell.

6.2 Perl script output

The VProbes script is loaded on our monitoring VM as soon as it is powered on, as well as our
Perl script. The purpose is to capture as much of the process tree as possible to store in our
pid lookup table. Listing 26 shows the output of our script when we logged in to the terminal
and performed a listing of our current directory. What the listing critically shows is

« Command that the user typed (the user originally typed Is -I, but the default Is behavior

added in additional parameters)

Output of typed command, as well as originating process

pid and full binary path of the active process

« name of direct parent process
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« Traceback of parent processes, showing both pid and name

Listing 26: Perl script output with typed command in local bash shell

pid=1439 Launched from="/bin/bash” Full binary path of executable ="/bin/ls” Command entered="1s
--color=auto -1"
pid originates from pid=1, name=init, trace(pid-name)= 1439-1s 1414-bash 1282-login 1-init
[ppid=1,name=init] : total 164
[ppid=1,name=init] : -rwxrwxr-x

1 klx klx 8510 Jun 10 22:37 a.out
[ppid=1,name=init] : -rwxr-xr-x 1 klx klx 231 Jun 10 22:47 executive
[ppid=1,name=init] : -rw-rw-r-- 1 klx klx 85 Jun 10 22:37 test.c

7 klx klx 4096 Jun 5 22:50 UnixBench

1 klx klx 143259 Jan 18 2011 UnixBench5.1.3.tgz

[ppid=1,name=init] : drwxr-xr-x
[ppid=1,name=init] : -rw-rw-r--

In another example when we enter another command through a SSH session (listing 27,
the process traceback was particularly useful as it shows the process originated from the
SSH daemon. However, even though we know the command originates through a remote
connection, it would be even more useful to know the remote address of the connection.
While the execve command does not differentiate between local and remote executions,

the VProbes script does capture such information (listing 28).

Listing 27: Perl script output with typed command in a remote ssh shell

pid=1581 Launched from="/bin/bash” Full binary path of executable ="/usr/bin/id"” Command entered="id"
pid originates from pid=1, name=init, trace(pid-name)= 1581-id 1567-bash 1566-sshd 1518-sshd
1198-sshd 1-init
[ppid=1,name=init] : uid=1000(klx) gid=1000(klx)
groups=1000(klx),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),110(lpadmin), 111 (sambashare)

Listing 28: VProbes output capturing user login

t=748/p=744/pp=1 (rs:main Q:Reg # /usr/sbin/rsyslogd): write(

fd=4

HEXtext=

206e754a

count=95

ASCIItext

Jun 12 10:07:54 ubuntu sshd[1518]: Accepted password for klx from 192.168.92.1 port 65471 ssh2
IN(uid=0)

)5

Within the VProbes output script, listing 28 was the only call which displayed the originating
address of the remote connection. However, while it is certainly helpful in monitoring users
who are remotely connected to the machine, it does leave a few questions unanswered. A
remote connection should first be picked up by sshd, and after proper authentication, this
notification call to write to syslog should be one of the final steps, yet there is no trace of the
source address in earlier sections of the log. Moreover, in the case of having multiple remote
logged in users, we have no capability in binding remote addresses to pids. We believe such
information should appear in the log, but truncated due to the VProbes string length limita-
tion. Because of such uncertainty, we chose not to incorporate login information written to
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syslog in our Perl script.

Listing 29: Perl output capturing trojan execution and remote command

pid=1640 Launched from="/bin/bash” Full binary path of executable ="./executive" Command
entered="./executive”
pid originates from pid=1, name=init, trace(pid-name)= 1640-sh 1414-bash 1282-login 1-init
pid=1641 Launched from="/bin/dash” Full binary path of executable ="/usr/bin/whoami” Command
entered="whoami”
pid originates from pid=1, name=init, trace(pid-name)= 1641-whoami 1640-sh 1414-bash 1282-login
1-init

[ppid=1,name=init] : klx

Listing 29 shows extracts of a scenario of an unsuspecting user executing a trojan which
spawns a remote shell on another machine, followed by an intruder on the other end find-
ing out the effective userid he is posing as. While we are able to capture the intruder’s com-
mands, we are unable to retrieve his source address, even by manually searching the VProbes
log. We believe this limitation lies in the few selected system calls that we opted to capture.
There are several system calls within the Linux kernel that deals with network sockets, and
we did not capture nor dissect them in our VProbes script. For example, the sendto system
call was invoked at least 40 times between the execution of the trojan and execution of the

command whoami. The description for the system call is shown below as follows.

Listing 30: Description of sendto system call

#include <sys/types.h>
#include <sys/socket.h>

ssize_t send(int sockfd, const void *buf, size_t len, int flags);

ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
const struct sockaddr *dest_addr, socklen_t addrlen);

ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
DESCRIPTION

The system calls send(), sendto(), and sendmsg() are used to transmit a
message to another socket.

To capture the data being sent to any remote host, we will need to store the contents of *buf
to a VProbes string variable. However, obtaining the destination network address is much
trickier as we need to obtain the memory offsets of the sockaddr data structure. The capa-
bility is available to capture the information, but this feature extension has not been imple-
mented at the time of writing.
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As a summary, capturing system calls is a very complex task, and activity behaviour differ
typically between various shells. Within locally spawned bash and dash shells,

« STDOUT is always segmented into one write call per output line
Within the bash shell (locally and remotely spawned),
« execve system calls can be dissected and arguments retrieved
« Individual keystrokes are captured in system calls
« STDIN read are not very meaningful
And within the dash shell (locally and remotely spawned),
« execve system calls have limited information (no information regarding arguments)

« Full entered command can be found in STDIN read system call after execution com-

pletion of command
« Individual keystrokes are not captured
Lastly, within the trojan spawned dash shell,
 Retains all aspects of a normally spawned dash shell, and

« STDOUT of commands are output within write system calls with abuffer of 4096 bytes.
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7 Evaluation

We have shown that by using VProbes as a VM introspection tool to capture system calls, and
anaccompanying script to sift through and output useful data based on the log, we can recre-
ate much user activity on our host machine. In this section, we evaluate the effectiveness as
well as efficiency of our VProbes introspection tool. Our host machine was an Intel Core i7
2620M 2.70GHz with 2 physical cores and 2 hyperthreaded cores, 16GB of RAM, running
VMware Workstation 11.1. Guest VMs were configured with 4 virtual CPUs, 2GB of RAM.

71 Effectiveness

Our project is different from existing honeypot monitoring tools by being outside of the mon-
itored VM, and removing the need to install any of such tools on the VM. To demonstrate
its stealthiness and capability, we perform an experiement whereby we install Snoopy[19],
a 'stealth’ keylogger on our VM, and disable it via a remote shell spawned by a trojan, and
demonstrate that shell events are still captured by our introspection tool.

We prepare a CentOS 7 based VM with snoopy 2.3.2 installed to monitor shell inputs. Snoopy
installs itself as a preloaded library that provides a wrapper around execv() and execve() sys-
tem calls. Logging is done via syslog[19]. Although it does not track outputs of commands,
it does however still monitor all shell inputs which trigger the execve system call. Captured
events are sent to our syslog server in our host machine. An example of an event sent to sys-
log is shown below. The listing shows that a user with uid 0 (root) has executed command Is

—color=auto -L.

06-15-2015 16:15:43 System@.Info 192.168.92.134 Jun 15 14:46:52 localhost snoopy[2550]:
[uid:@ sid:1554 tty:/dev/ttyl cwd:/root filename:/bin/ls]: 1ls --color=auto -1

We also prepared a trojan to be executed on the CentOS VM. Kali Linux boasts many ex-
ploitation tools, and the metaspoilt toolkit is used to construct our trojan for testing. The
command

msfvenom -p linux/x64/shell/reverse_tcp LHOST=192.168.92.133 LPORT=4567 -e
x64/xor -f elf -o executive

createsour trojan (named executive), an ELF binary, to contain a payload (linux/x64/shell /reverse_tcp)
that spawns a command shell on the host machine and connects the shell to the attacking
machine upon execution. The trojan connects back to port 4567 on 192.168.92.133, the ad-
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dress where our attacking machine is holding. Encoding (-e x64/xor) is used to evade antivirus
software, and encoding a binary with multiple iterations may help in evading some scanners.
However encoding is not meant to be the only solution to evade antivirus scanners. In addi-
tion, because the trojan had to be executed manually to connect back to the attacker, we will
be assuming in this scenario that through some form of social engineering, an unsuspecting
user has downloaded the trojan into this CentOS VM. On the attacking machine, we need to
prep the system to wait and listen for the trojan to connect back to it.

Listing 31: Listening for the trojan to connect back with a remote shell

msf > use exploit/multi/handler

msf exploit(handler) > set payload linux/x64/shell/reverse_tcp
payload => linux/x64/shell/reverse_tcp

msf exploit(handler) > set LHOST 192.168.92.133

LHOST => 192.168.92.133

msf exploit(handler) > set LPORT 4567

LPORT => 4567

msf exploit(handler) > run

[*] Started reverse handler on 192.168.92.133:4567
[x] Starting the payload handler...

Listing 31 shows the commands we use in msfconsole to set up a listener to wait for the re-
mote connection. Back at the CentOS machine, the user has unsuspectingly opened the file
executive and we see the command shell connected back to the attacker (listing 32).
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Listing 32: Remote shell spawned and checking for permissions

[x] Sending stage (38 bytes) to 192.168.92.134
[*] Command shell session 1 opened (192.168.92.133:4567 -> 192.168.92.134:55984) at 2015-06-15
12:35:07 -0400

id
uid=0(root) gid=0(root) groups=0(root) context=unconfined_u:unconfined_r:unconfined_t:s@-s0:c0.c1023
ps -ax
PID TTY STAT TIME COMMAND
17 Ss 0:02 /usr/lib/systemd/systemd --switched-root --system --deserialize 24
27 S 0:00 [kthreadd]
37 S 0:00 [ksoftirqd/o]
/* output truncated x/
855 ? Ssl 0:01 /usr/bin/python -Es /usr/sbin/firewalld --nofork --nopid
858 ? Ssl 0:01 /usr/sbin/rsyslogd -n
859 ? Ssl 0:03 /usr/bin/python -Es /usr/sbin/tuned -1 -P

sudo service rsyslog stop
Redirecting to /bin/systemctl stop rsyslog.service
whoami
root
w
16:20:28 up 4:40, 1 user, load average: 0.00, 0.01, 0.05
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root ttyl 11:40 1:08 0.34s 0.08s w

One of the first things when an attacker has obtained a command shell would be to check his
effective id on the compromised machine (id). After which, we (simulating as the attacker)
checked for running services/processes (ps -ax), saw that rsyslogd was active, and stopped it
(sudo service rsyslog stop). While we had no reason to believe our movements were monitored
by snoopy, stopping the syslog service should be second nature to any potential intruder. In
addition, we could also check for processes/services which are actively sending data across
the network. In this case, stopping the syslog daemon, while does not stop snoopy from cap-
turing execve events, it does prevent any further monitoring at the syslog server. After stop-
ping the syslog server, we check our effective id again (whoami) as well as the presence of
other users on the system (w).

From the administrative point of view at the syslog server (see figure 12), we can see shell
activity up till the point the syslog daemon on the compromised VM has stopped. Further
commands executed by the attacker are no longer received by the server. Our last two com-
mands performed as the intruder (whoami, w) were not received by the syslog server.
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Date Time Priority Hostname Meszzage

06-15-2015 17:47:58 Syslog.Info 192.168.92.134 Jun 15 16:20:04 localhost rsyslogd: [ongin soft “rspslogd” swWersion="7 47" x-pid="868"
x-info="http: //www_rzpslog com"] exiting on signal 15

06-15-2015 17:47:58 Daemon.Info 192.168.92.134 Jun 15 16:20:04 localhost spstemd: Stopping System Logging Service...

06-15-2015 17:47:58 SystemO.Info 192.168.92.134 Jun 15 16:20:04 localhost snoopy[2900]: [uid:0 sid:1554 tty:[none) cwd:/ filename:/bin/systemctl]:
Zbin/systemct] stop rsyslog service

06-15-2015 17:47:58 System0.Info 192.168.92.134 Jun 15 16:20:04 localhost snoopy[2908]: [uid:0 sid:1554 tty:[none) cwd:/ filename:/binfgrep]: grep -E -qw

I dilf 1 drestart

Htry
06-15-2015 17:47:58 System0.Info 192.168.92.134 Jun 15 16:20:04 localhost snoopy[2908]: [uid:0 =id:1554 tty:[none] cwd:/ filename:/binfegrep]: egrep -qw
Hery- diforce-rel di

06-15-2015 17:47:58 System0.Info 192.168.92.134 Jun 15 16:20:04 localhost snoopy[2905]: [uid:0 sid:1554 tty:[none) cwd: /root filename: /bin/basename]:
basename fsbin/service

06-15-2015 17:47:58 SystemO.Info 192.168.92.134 Jun 15 16:20:04 localhost snoopy[2904]: [uid:0 sid:1554 tty:[none) cwd: /root filename: /bin/basename]:
basename /shin/service

06-15-2015 17:47:58 System0.Info 192.168.92.134  Jun 15 16:20:04 localhost snoopy[2903]: [uid:0 sid:1554 tty:(none) cwd: /root filename: bin/mountpoint]:

Jbin/ t -q fzysfisd
06-15-2015 17:47:58 System0.Info 192.168.92.134 Jun 15 16:20:04 localhost snoopy[2902]: [uid:0 =id:1554 tty:[none] cwd: /root filename: /bin/mountpoint]:
Zhind int -q / d

06-15-2015 17:47:58 System0.Info 192.168.92.134 Jun 15 16:20:04 localhost snoopy[2900]: [uid:0 sid:1554 tty:[none) cwd: /root filename: /sbin/service]: service
rsyslog stop

06-15-2015 17:47:58 SystemO Notice 192.168.92.134 Jun 15 16:20:04 localhost sudo: root : TTY=tty1 ; PwWD=/ro0t ; USER=r00t ; COMMAND=/shin/service rsyslog
stop

06-15-2015 17:47:58 System0.Info 192.168.92.134 Jun 15 16:20:04 localhost snoopy[2899]: [uid:0 sid:1554 tty:[none] cwd: /root filename: fusr/bin/sudo]: sudo
service rsyslog stop

06-15-2015 17:47:40 Sypstem0.Info 192.168.92.134 Jun 15 16:19:45 localhost snoopy[2898]: [uid:0 =id:1554 tty:[none] cwd: froot filename: fusr/bin/ps]: ps -ax
06-15-2015 17:47:24 SystemO.Info 192.168.92.134 Jun 15 16:13:27 localhost snoopy[2896]: [uid:0 sid:1554 tty:[none) cwd: /root filename: fusr/bin/id}: id

06-15-2015 17:47:18 System0.Info 192.168.92.134 Jun 15 16:19:21 localhost snoopy[2894]: [uid:0 =id:1554 tty:fdev/tiyl cwd: /root filename:_/execulive]:
fexecutive

Figure 12: Point of view on the syslog server (oldest entry on the bottom)

However, our VProbes introspection tool is still close monitoring both shell inputs and out-
puts of the compromised VM (see listing 33). The green lines indicate command output was

in full, but we have manually truncated it for this listing.

Listing 33: Remote shell spawned and checking for permissions (oldest entry on the top)

pid=2894 Launched from="/bin/bash” Full binary path of executable ="./executive” Command entered=" ./executive”
pid originates from pid=1554, name=bash, trace(pid-name)= 2894-sh 1554-bash
pid=2896 Launched from="/bin/bash” Full binary path of executable ="/usr/bin/id” Command entered=" id"
pid originates from pid=1554, name=bash, trace(pid-name)= 2896-id 2894-sh 1554-bash
[ppid=1554,name=bash] : uid=0(root) gid=0(root) groups=0(root) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
pid=2898 Launched from="/bin/bash” Full binary path of executable ="/usr/bin/ps” Command entered=" ps -ax"
pid originates from pid=1554, name=bash, trace(pid-name)= 2898-ps 2894-sh 1554-bash
[ppid=1554,name=bash] : PID TTY STAT  TIME COMMAND

[ppid=1554,name=bash] : 17 Ss 0:02 /usr/lib/systemd/systemd --switched-root --system --deserialize 24
/* output truncated */

[ppid=1554,name=bash] : 724 ? Ss 0:00 /usr/sbin/lvmetad -f

[ppid=1554,name=bash] : 735 ? Ss H

pid=2899 Launched from="/bin/bash” Full binary path of executable ="/usr/bin/sudo” Command entered=" sudo service rsyslog stop”
pid originates from pid=1554, name=bash, trace(pid-name)= 2899-sudo 2894-sh 1554-bash

/* output truncated x/

[ppid=1554,name=bash] : Redirecting to /bin/systemctl stop rsyslog.service

pid=2900 Launched from="/bin/bash” Full binary path of executable ="/bin/systemctl” Command entered=" /bin/systemctl stop
rsyslog.service”
pid originates from pid=1554, name=bash, trace(pid-name)= 2900-systemctl 2899-sudo 2894-sh 1554-bash

pid=2910 Launched from="/bin/bash” Full binary path of executable ="/usr/bin/whoami” Command entered=" whoami”
pid originates from pid=1554, name=bash, trace(pid-name)= 2910-whoami 2894-sh 1554-bash

[ppid=1554,name=bash] : root

pid=2911 Launched from="/bin/bash” Full binary path of executable ="/usr/bin/w" Command entered=" w"
pid originates from pid=1554, name=bash, trace(pid-name)= 2911-w 2894-sh 1554-bash

[ppid=1554,name=bash] : 16:20:28 up 4:40, 1 user, load average: 0.00, 0.01, 0.05

[ppid=1554,name=bash] : USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

[ppid=1554,name=bash] : root tty1l H

Although output of commands have been truncated, the crucial point is that we (on the ad-
ministrative side) are still able to actively capture and log commands made to the shell. Since
the introspection tool is outside of the VM, the intruder cannot readily detect the presence
of the stealth monitoring tool easily.

56



7.2 Efficiency

Typically, performance of VMI techniques is based on overhead performance. Ideally, the VMI
method proposed (VProbes) should have similar or reduced overhead compared to currently
discussed techniques. However, after taking the amount of time and limited knowledge on
Linux kernels into account, a more realistic goal would be to come up with a solution that
uses a VMM API to achieve system introspection. Putting pure performance overhead aside,
other metrics that could be used to evaluate the solution would include, how in-depth the
introspection can reach, whether it can detect attacks successfully, and if it can prevent at-
tacks.

Detecting system intrusion is a much discussed and complex topic. Generally attacks consist
of network scanning for live hosts, performing port scans on those hosts and finding vulner-
able services to exploit. These exploits allow intruders to execute code remotely from their
machines and some payloads linked with these exploits can spawn a remote shell as well. Ex-
ploits are discovered from time to time and are very unique to each other, and thus makes
it very difficult to define a static 'rule’ to check if a machine has been compromised or not.
We believe that the responsibility of intrusion and prevention should remain in the hands of

commercial software such as Snort and hardware analysers from commercial providers.

Generality also plays a fair part in the evaluation of the solution. Existing solutions are cus-
tomised, or made for a select range of guest VMs, or can only work on a single virtual CPU.
Granted that having such limitations can provide more IDS/IPS like features in the monitor-
ing and introspection process, such a flaw can be a major disadvantage in itself. For exam-
ple, with the abundance of multi-core machines for both low and high performance worksta-
tions, when the attacker has successfully compromised the machine and sees a single core
machine, his suspicions could be raised on whether the compromised machine is actually a
Honeypot, and would perform additional checks to confirm that.

We tested the generality of our project by running different versions of Debian (6.0.0 and
6.0.10), Ubuntu (10.04 and 14.04) and CentOS (5, 6 and 7). Introspection worked well with
all tested distributions, mainly because the kernel versions were newer than 2.6.11, which we
could extract memory offsets from, using the vprobes toolkit. Similar to ShadowContext, the
generality comes from the compatilibilty of system calls, since the system calls were present
since kernel version 1.0, little effort is needed to inspect different Linux distributions[25].

Our project revolves around capturing and interpreting system calls made by the Linux OS,
and as such do not suffer the same limitation as some existing solutions that are only re-

stricted to running on a single virtual CPU. While system calls can be executed on differ-
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ent virtual CPUs, VProbes would select the virtual CPU to retrieve arguments from when
the callback function is being invoked. The VProbes toolkit for finding Linux memory offsets
works for both 32 and 64bit memory models, but cannot be used on Linux kernels earlier than
2.6.11. Newer versions of the kernel would allow for more introspection, such as displaying
of binary file locations. Adapting our project for use on 32bit kernels only require information
on system call numbers (unistd_32.h), system call entry (/proc/kallsyms), and knowledge
on where the system call number as well as call arguments are stored in the CPU registers
(see listing 11).

In terms of generality, some existing solutions require ‘training’ a dataset to allow the VMI
tool to be effective on the VM. SYRINGE and ShadowContext require a “trusted’ VM for each
VM to be inspected, which can be quite a performance drain. In addition, the solution itself
should also be resilient to attacks.

VProbes introspection does not require a 'training’ dataset as it does not detect nor perform
deep analysis of system events. In terms of security and being resilient to attacks, VProbes
has not been updated since 2011 (date of last published VProbes documentation [23]) and
security of the solution largely depends on VMware workstation itself, as well as any other
VMware hypervisor that VProbes can be run on.

7.3 Performance

We evaluate the performance of our VProbes introspection tool with a number of bench-
marks. Figure 13 shows configuration details for each benchmark test. We run each bench-
mark 3 times and recorded the the results, and finally, figure 14 show the normalised test
results with respect to the baseline when the VProbes script is not loaded, which is referred
to as the BASE measurement. Unixbench [10] contains a suite of tests to evaluate system
performance, as well as assess performance improvements moving from a single-core to a
multi-core configuration. nbench [14] on the other hand, is a single core benchmarking suite
thatis "designed to expose the capabilities of a system’s CPU, FPU, and memory system” [14].
In particular, we chose Unixbench for its suite of tests designed to test multiple aspects of a
system, while we were curious just how much CPU arithmetic power suffered an impact due
to our introspection. In addition to both benchmarking suites, we also wanted to test a real
world application. For this reason, we also recorded the time it took to compile v4.0.5 of the

Linux kernel, both on single-core and multi-core configurations.
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Item Version Configuration
nbench 2.2.3 Default configuration
UnixBench| 5.1.3 Default configuration
make 3.81 | Compile Linux kernel v4.0.5

Figure 13: Configuration information used for performance evaluation

Test

UnixBench-Dhrystone 2 using register variables (1 vCPU)
UnixBench-Double-Precision Whetstone (1 vCPU)
UnixBench-File Copy 1024 bufsize 2000 maxblocks (1 vCPU)
UnixBench-File Copy 4096 bufsize 8000 maxblocks (1 vCPU)
UnixBench-Execl Throughput (1 vCPU)
UnixBench-Dhrystone 2 using register variables (4 vCPU)
UnixBench-Double-Precision Whetstone (4 vCPU)
UnixBench-File Copy 1024 bufsize 2000 maxblocks (4 vCPU)
UnixBench-File Copy 4096 bufsize 8000 maxblocks (4 vCPU)
UnixBench-Execl Throughput (4 vCPU)

nbench

make (1 vCPU)

make (4 vCPU)

BASE
100
100
100
100
100
100
100
100
100
100
100
100
100

Vprobes

09.74

100.29
2.93
4.40
59.21

101.06

100.66
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60.40
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72.57

Figure 14: Normalised performance results for applications and benchmarks
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Figure 15: Normalised performance results for applications and benchmarks on 1 vCPU
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Tests conducted on 4 vCPU
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Figure 16: Normalised performance results for applications and benchmarks on 4 vCPU
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Figure 17: Normalised performance results for nbench and make
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We observe that the system does not suffer from any significant performance loss from CPU
arithmetic-heavy tests (~99% performance compared to baseline). However, when running
Unixbench, there was a massive performance drop during file copy tests (~2-5% of baseline)
running on a single virtual CPU, but negligible performance impact on 4 virtual CPUs. The Ex-
ecl Throughput test remained consistent at a ~60% of BASE throughput. Compiling the Linux
kernel on a single core suffered more performance loss than on 4 vCPUs, and we note that
the average performance of compilation between both single and multi-core configurations
is rather consistent with that of Execl Throughput.

Execl throughput measures the number of execl system calls that can be performed per sec-
ond. Execl is part of the family of system calls that replaces the current active process with
another process, similar to execve calls. We believe the results of this test is most represen-
tative of evaluating performance of our tool, as one of the aims of our project is capturing
execve system calls, and that we also obtained consistent performance on different hard-
ware configurations.

We believe the poor performance on file copy tests on a single vCPU is due to a combination
of bottlenecking CPU and disk resources. Recall that VProbes has to be enabled on the virtual
machine configuration file (vmx). It could be possible that the vCPUs are also responsible for
capturing system calls and writing the output to the log file. On a single core configuration
with VProbes disabled, the single vCPU is responsible for handling read and write system calls
continuously. With VProbes enabled, with every read or write call, the vCPU needs to execute
the VProbes callback function, dissect the call to obtain the data, write to the log before ac-
tually processing it as it was intended to do. The performance impact would be very high.

In the multi-core configuration, while all 4 vCPUs are stressed, the bottleneck lies on the hard
drive itself not being able to read and write simultaneously fast enough. To confirm that, we
refer to listing 34, which shows detailed results regarding the file copy test. We can see that
the copy speed in the multi-core configuration is much lower than that of the single-core
configuration. Since the bottleneck lies on the hard disk, the CPU would have free resources
to process the VProbes script, thus giving an illusion of having no performance penalty in
multi-core mode.
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Listing 34: File copy test results - 1 vCPU vs 4 vCPU

Benchmark Run: Wed Jun 17 2015 13:15:05 - 13:17:30
4 CPUs in system; running 1 parallel copy of tests

File Copy 1024 bufsize 2000 maxblocks 731248.2 KBps (30.0 s, 2 samples)

System Benchmarks Partial Index BASELINE RESULT  INDEX
File Copy 1024 bufsize 2000 maxblocks 3960.0 731248.2 1846.6
System Benchmarks Index Score (Partial Only) 1846.6

Benchmark Run: Wed Jun 17 2015 13:17:30 - 13:19:55
4 CPUs in system; running 4 parallel copies of tests

File Copy 1024 bufsize 2000 maxblocks 680336.4 KBps (30.0 s, 2 samples)

System Benchmarks Partial Index BASELINE RESULT  INDEX
File Copy 1024 bufsize 2000 maxblocks 3960.0 680336.4 1718.0
System Benchmarks Index Score (Partial Only) 1718.0

As a result, based on the average performance penalty of the make and Unixbench Execl
Throughput test, we find the overall average performance penalty of our VProbes introspec-
tion tool to be moderate at ~60% of BASE performance.

7.4  Limitations and Future work

Many of the challenges of this project lies in VProbes being poorly documented with very
limited examples and projects out there for reference. In addition, without support for ar-
rays, nor the ability to dynamically declare variables in runtime, we find ourselves limited in
the number of arguments we can capture in execve system calls, as well as many other un-
explored calls. Having a limited string length of 255 characters also prevent us to capture
output to STDOUT where the count is larger than our limit.

We also lack the capability to capture commands that do not invoke the execve system call,
such as directory changing commands (pwd, cd). Although these commands lacked any exe-
cution of binary files, it does not mean there are no traces. At least 300 lines of system events
were logged with the VProbes log file, and most of them were linked with ‘irgbalance’, which,
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according to its manpage, distributes hardware interrupts across processors on a multipro-
cessor system. Although these 300 lines were dumped to the log file when the command
pwd was entered, we do not have sufficient evidence as of yet, to confidently determine that
this group of 300 lines is representative of pwd. More investigation and research is needed to

understand how pwd works at a low level. An extract of the log file is shown in listing 35.

Listing 35: Extract of VProbes log upon entering command pwd

t=861/p=861/pp=1 (irgbalance # /usr/sbin/irgbalance): open("/proc/interrupts”, flags=0, mode=1b6);
t=861/p=861/pp=1 (irgbalance # /usr/sbin/irgbalance): syscall_5(other...);
t=861/p=861/pp=1 (irgbalance # /usr/sbin/irgbalance): syscall_9(other...);

fstat x/
mmap */

/* syscall_5
/* syscall_9

Based on the log, there were multiple calls to system call numbers 5and 9, which corresponds
to fstat and mmap respectively. The fstat system call simply returns information on a file de-
scriptor, and the mmap system call creates a new mapping in the virtual address space of the
calling process[2]. At this moment, the only way we are able to track that a pwd command
was entered is through STDOUT; if the output of STDOUT resembles a directory (in our Perl
script, using regular expressions), we print a statement stating that the command was a re-
sult of a pwd. As for now, we will require much investigation as to how we can better track
such events that do not trigger execve system calls.

While our VProbes solution and Perl script combination is not able to detect attacks or meth-
ods of intrusion in real time, it can be rectified or added via a feature extension if we capture
more system calls in detail, especially calls concerning network traffic. However such a fea-
ture will incur more performance penalty on the VM. In addition, we also need knowledge
regarding memory offsets for data structures not natively int or string type.

Our Perl "filter" also needs further refinement. It currently uses regular expressions heavily,
and while it works well as a proof of concept, our method of tracking STDOUT of system calls
currently only allow for a single user environment. Having multiple users using the shell con-
currently would cause a lot of confusion and discontinuities in our Perl script output. Much

improvement will come from testing with various other shells and Linux distributions.
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8 Conclusion

We have presented an introspection solution using VMware VProbes, a VMM based tool ca-
pable of monitoring system calls from outside the VM. Having an out-of-the-box monitoring
tool helps by keeping the VM free of any in-client monitoring tools that a potential intruder
candetectanddisable. Although it does retain some form of deep inspection capability com-
pared to in-guest traditional monitoring software, it does show a lot of untapped potential if
paired up with an advanced system call analyser. We evaluated the effectiveness, efficiency,

as well as performance impact of our project. Performance penalty is moderate at ~60%.
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9 Appendix

VProbes introspection and capture tool

(version 1.0)

(definteger NR_open)

(definteger NR_read)

(definteger NR_write)

(definteger NR_getpid)
(definteger NR_clone)

(definteger NR_fork)

(definteger NR_vfork)

(definteger NR_execve)
(definteger NR_chmod)

(definteger NR_exit_group)
(definteger NR_prctl)

(defstring ~tmp2)

(definteger ~flocal2:thrptr)
(defstring ~flocal7:ret)
(defstring ~flocal9:ret)
(defstring ~flocal9:parent_path)
(defstring ~flocal1@:path)
(definteger ~flocal1@:mnt)
(definteger ~flocall@:dentry)
(defstring ~flocalll:syscall_name)
(defstring ~flocalll:syscall_args)
(defstring ~flocalll:arg_path)
(defstring ~flocalll:argl)
(defstring ~flocalll:arg2)
(defstring ~flocalll:arg3)
(defstring ~flocalll:arg4)
(defstring ~flocalll:arg5)
(defstring ~flocalll:arg6)
(defstring ~flocall1l:comm)
(defstring ~flocalll:binary_path)
(definteger ~flocalll:tid)
(definteger ~flocalll:pid)
(definteger ~flocalll:ppid)
(definteger ~flocalll:argint1)
(definteger ~flocalll:argint2)
(definteger ~flocalll:argint3)
(definteger ~flocalll:argint4)
(definteger ~flocalll:argint5)
(definteger ~flocalll:argint6)
(definteger ~flocalll:print)
(defstring ~flocall2:comm)
(defstring ~flocall2:binary_path)
(definteger ~flocall2:tid)
(definteger ~flocall2:pid)
(definteger ~flocall12:ppid)
(definteger ~plocal2:syscall_num)
(definteger ~plocal2:sys_argo)
(definteger ~plocal2:sys_argl)
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(definteger ~plocal2:sys_arg2)
(definteger ~plocal2:sys_arg3)
(definteger ~plocal2:sys_arg4)
(definteger ~plocal2:sys_arg5)
(defun guestload (addr)
(cond
((< addr 4096) 0)
(1 (getguest addr))

)
(defun guestloadstr (addr)
(cond
((< addr 4096) "<NULL>")
(
1
(do (getgueststr ~tmp2 255 addr) ~tmp2)

)
(defun curprocptr ()
(do
(setint
~flocal2:thrptr
(cond
((>= GSBASE 4294967296) GSBASE)
(1 KERNELGSBASE)

)
(guestload (+ ~flocal2:thrptr 47040))

)
(defun curprocname ()
(guestloadstr
(+ (curprocptr ) 1656)

)
(defun curtid ()
(& OXFTFFffff
(getguest
(+ (curprocptr ) 1188)

)
(defun curpid ()
(& OXFFFFffff
(getguest
(+ (curprocptr ) 1192)

)
(defun curppid ()

(& OXFFfFffff
(getguest
(+
(getguest
(+ (curprocptr ) 1216)
)
1192



)
(defun get_gstr_name (str)
(do
(getgueststr
~flocal7:ret
(& OXFFFFffff
(getguest (+ str 4))
)
(getguest (+ str 8))
)
~flocal7:ret

)

(defun real_mount (mnt)
(- mnt 32)

)

(defun path_to_ascii (mnt dentry)
(do

(cond
(
dentry
(getguest (+ dentry 24))
)
(cond
(
(1l
mnt
(getguest (+ mnt 16))
)
(getguest (+ mnt 16))
Q
)
)
(setstr ~flocal9:ret "")
)
(
1
(setstr
~flocal9:ret
(path_to_ascii
(getguest (+ mnt 16))
(getguest (+ mnt 24))
)
)
)
)
)
(
1
(do
(setstr

~flocal9:parent_path
(path_to_ascii
mnt
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(getguest (+ dentry 24))

)
)
(sprintf
~flocal9:ret
"%s/%s"
~flocal9:parent_path
(get_qgstr_name (+ dentry 32))
)
)
)
)
~flocal9:ret
)
)
(defun get_file_path (file)
(do
(try
(do
(setint
~flocal1@:mnt
(real_mount
(getguest (+ file 16))
)
)
(setint
~flocal1@:dentry
(getguest (+ file 16 8))
)
(setstr ~flocall@:path (path_to_ascii ~flocall@:mnt ~flocall@:dentry))
)
(do
(printf "Caught an exception:\nname = %s\ndescription = %s\n” (excname ) (excdesc ))
(setstr ~flocall@:path "<unknown>")
)
)
~flocal10:path
)
)

(defun handle_syscall (source syscall_num sys_argd sys_argl sys_arg2 sys_arg3 sys_arg4 sys_arg5b)
(do
(setint ~flocalll:print 1)
(setstr ~flocalll:comm (curprocname ))
(setint ~flocalll:tid (curtid ))
(setint ~flocall1:pid (curpid ))
(setint ~flocalll:ppid (curppid ))
(cond
(
(== syscall_num NR_open)
(do (getgueststr ~flocalll:arg_path 128 sys_argd) (setstr ~flocalll:syscall_name "open")
(sprintf ~flocalll:syscall_args "\"%s\", flags=%x, mode=%x" ~flocalll:arg_path
sys_argl sys_arg2) (setint ~flocalll:print 1))

(|| (== syscall_num NR_read) (== syscall_num NR_write))
(do
(setint ~flocalll:argintl (& Oxffffffff (getguest sys_argl)))
(try (getgueststr ~flocalll:arg_path 160 sys_argl) (setstr ~flocalll:arg_path "<undef>"))
(cond
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((== syscall_num NR_read) (setstr ~flocalll:syscall_name "read"))
(1 (setstr ~flocalll:syscall_name "write"))
)
(cond
((== sys_arg0 0) (setstr ~flocalll:argl "STDIN"))
)
(cond
((== sys_arg@ 1) (setstr ~flocalll:argl "STDOUT"))
)
(cond
((== sys_arg@ 2) (setstr ~flocalll:argl "STDERR"))
)
(cond
(
(|| (== sys_arg@ @) (== sys_argd 1) (== sys_arg0 2))
(sprintf ~flocalll:syscall_args "fd=%s text=%x count=%d\nASCIItext\n%s"
~flocall1:argl ~flocalll:argintl sys_arg2 ~flocalll:arg_path)

; ((== sys_argd 3) (sprintf ~flocalll:syscall_args "fd=%d text=%x
count=%d" sys_arg@ ~flocalll:argintl sys_arg2))
; ((== sys_argd 9) (sprintf ~flocalll:syscall_args "fd=%d text=%x count=%d" sys_arg@
~flocalll:argintl sys_arg2))
(1 (sprintf ~flocalll:syscall_args "\nfd=%d\nHEXtext=\n%x\ncount=%d\nASCIItext\n%s"
sys_argd ~flocalll:argintl sys_arg2 ~flocalll:arg_path))
)
(setint ~flocalll:print 1)

(== syscall_num NR_getpid)

(do
(setstr ~flocalll:syscall_name "getpid")
(sprintf ~flocalll1:syscall_args "[curprocptr: %x]" (curprocptr ))
(setint ~flocalll:print 1)

(== syscall_num NR_clone)

(do (setstr ~flocalll:syscall_name "clone") (sprintf ~flocalll:syscall_args
"child_stack_base=%x, stack_size=%x, flags=%x, arg=%x" sys_argd sys_argl sys_arg2
sys_arg3) (setint ~flocalll:print 1))

(]l (== syscall_num NR_fork) (== syscall_num NR_vfork))
(do
(setstr
~flocal11:syscall_name
(cond
((== syscall_num NR_fork) "fork")
(1 "vfork™)

)

(sprintf ~flocalll:syscall_args "regs=%x" sys_argd)
(setint ~flocalll:print 1)

(== syscall_num NR_execve)
(do

71



(getgueststr ~flocalll:arg_path 128 sys_argo)
(setint ~flocalll:argintl (& Oxffffffff (getguest sys_argl)))
(setint ~flocalll:argint2 (& Oxffffffff (getguest (+ sys_argl 8))))
(setint ~flocalll:argint3 (& Oxffffffff (getguest (+ sys_argl 16))))
(setint ~flocalll:argint4 (& Oxffffffff (getguest (+ sys_argl 24))))
(setint ~flocalll:argint5 (& Oxffffffff (getguest (+ sys_argl 32))))
(setint ~flocalll:argint6 (& Oxffffffff (getguest (+ sys_argl 40))))
(try (getgueststr ~flocalll:argl 64 ~flocalll:argintl) (setstr
~flocalll:argl "NULL"))
(try (getgueststr ~flocalll:arg2 64 ~flocalll:argint2) (setstr
~flocal1l1:arg2 "NULL"))
(try (getgueststr ~flocalll:arg3 64 ~flocalll:argint3) (setstr
~flocal1l1:arg3 "NULL"))
(try (getgueststr ~flocalll:arg4 64 ~flocalll:argint4) (setstr
~flocal1l1:arg4 "NULL"))
(try (getgueststr ~flocalll:argb 64 ~flocalll:argint5) (setstr
~flocal1l1:arg5 "NULL"))
(try (getgueststr ~flocalll:arg6 64 ~flocalll:argint6) (setstr
~flocal1l1:arg6 "NULL"))
(setstr ~flocalll:syscall_name "execve”
(sprintf ~flocalll:syscall_args
"\"%s\", RSIargv=%x,
argv=%x,\nderef_argl=%s, \nderef_arg2=%s, \nderef_arg3=%s, \nderef_arg4=%s, \nderef_arg5=%s, \nderef_argé=%s, \nenvp=%x,
regs=%x"
"\"%s\"\nderef_argl=%s\nderef_arg2=%s\nderef_arg3=%s\nderef_arg4=%s\nderef_arg5=%s\r
~flocalll:arg_path
sys_argl
~flocalll:argintl
~flocalll:argl
~flocalll:arg?2
~flocall1:arg3
~flocalll:arg4
~flocalll:arg5
~flocalll:argb6
sys_arg2 sys_arg3)
(setint ~flocalll:print 1)

(== syscall_num NR_chmod)

(do (getgueststr ~flocalll:arg_path 128 sys_argd) (setstr ~flocalll:syscall_name "chmod")
(sprintf ~flocalll:syscall_args "path=\"%s\", mode=(octal)%o"” ~flocalll:arg_path
sys_argl) (setint ~flocalll:print 1))

(== syscall_num NR_exit_group)
(do (setstr ~flocalll:syscall_name "exit_group”) (sprintf ~flocalll:syscall_args "%d"
sys_argd) (setint ~flocalll:print 1))

)
(
(== syscall_num NR_prctl)
(do
(setstr ~flocalll:syscall_name "prctl")
(cond
(

(== sys_arg@ 15)
(do (getgueststr ~flocalll:arg_path 128 sys_argl) (sprintf ~flocalll:syscall_args
"PR_SET_NAME, '%s'" ~flocalll:arg_path))

72



(1 (sprintf ~flocalll:syscall_args "prctl_%d, %x, %x, %x, %x" sys_argd sys_argl
sys_arg?2 sys_arg3 sys_arg4))

)
(setint ~flocalll:print 1)
)
)
(
1
(do (sprintf ~flocalll:syscall_name "syscall %d" syscall_num) (setstr
~flocall1:syscall_args "other...") (setint ~flocalll:print 1))
)
)
(cond
(
(8&
~flocalll:print
(!'= (strcmp ~flocalll:syscall_args "...") @)
)
(do
(setstr
~flocalll:binary_path
(get_file_path
(getguest
(+
(getguest
(+ (curprocptr ) 1128)
)
824
)
)
)
)
(printf "t=%d/p=%d/pp=%d (%s # %s): %s" ~flocalll:tid ~flocalll:pid ~flocalll:ppid
~flocal1l1:comm ~flocalll:binary_path ~flocalll:syscall_name)
(printf "(%s);\n" ~flocalll:syscall_args)
)
)
)

(vprobe VMMLoad
(printf "Starting strace\n")
)
(vprobe VMMLoad
(do (setint NR_open 2) (setint NR_read @) (setint NR_write 1) (setint NR_getpid 39) (setint
NR_clone 56) (setint NR_fork 57) (setint NR_vfork 58) (setint NR_execve 59) (setint NR_chmod
90) (setint NR_exit_group 231) (setint NR_prctl 157))
)
(vprobe GUEST:ENTER:@xffffffff816149b0
(do (setint ~plocal2:syscall_num RAX) (setint ~plocal2:sys_argd RDI) (setint ~plocal2:sys_argl RSI)
(setint ~plocal2:sys_arg2 RDX) (setint ~plocal2:sys_arg3 R10) (setint ~plocal2:sys_arg4 R8)
(setint ~plocal2:sys_arg5 R9) (handle_syscall "system_call” ~plocal2:syscall_num
~plocal2:sys_argd ~plocal2:sys_argl ~plocal2:sys_arg2 ~plocal2:sys_arg3 ~plocal2:sys_arg4
~plocal2:sys_arg5))
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Perl 'filter’

Takes in the VProbes outout file as its argument

#!/usr/bin/perl

$| = 1;
$/ = "\r\n";
use strict;

use warnings;

use String::HexConvert ':all’;
use File::Tail;

my $file=File::Tail->new(
name=>"vprobe.out");
#maxinterval=>5);
#interval=>0.5);

my $execve = 0;
my $execve_pid = 0;

my @sh_execve = (0,0,0,0,”",""."" 0,0,"","" 0,""Y;
my @stdout_ids = (0,0,0,0,"","",0,0);
my %pids;

my $print_stdout = 1;
my $print_trace = 1;

sub printpids{
my ($ppid, %local_pids) = @_;
#for my $tmp (keys %local_pids) {
# print "The associated name and ppid of '$tmp' is $local_pids{$tmp}\n";
#3}
#my @keys = keys %local_pids;
#my $size = @keys;
# print "pids - Hash size: is $size\n";
my $end = 1;
my $cur_pid = $ppid;

nn

my $ppid_name = ;

my $trace = "";
do
{
if( exists($local_pids{$ppid}) )
{
my @tmp_string = split /-/, $local_pids{$ppid};
$cur_pid = $ppid;
$ppid_name = $tmp_string[0];
$ppid = $tmp_string[1];
$trace = "$trace $cur_pid-$ppid_name”;
3
else
{
$end = 0;
3

Iwhile( $end !'= 0 );
print "\tpid originates from pid=$cur_pid, name=$ppid_name, trace(pid-name)=$trace\n”;

sub printexecve{
if ($sh_execve[12] ne '")
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$sh_execve[9] = $sh_execve[12];

$sh_execve[9] = "$sh_execve[6] (unable to retrieve arguments)”;
}
my $tmp_execve = "pid=$sh_execve[2] Launched from=\"$sh_execve[5]\" Full binary path of
executable =\"$sh_execve[6]\"” Command entered=\"$sh_execve[9]\"";
print "$tmp_execve\n";
printpids($sh_execvel[2], %pids);
print "$sh_execve[10]";

while (defined(my $line=$file->read))

{
#$line =~ s/\s+$//; #vanilla chomp($line) doesnt work because linux-dos-windows formatting
chomp($line); #special attention to $/

if ($line =~ m/t=(\d+).p=(\d+).pp=(\d+) . *\((\wx)\s/)
{
$pids{$2} = "$4-$3";
# track execve syscall
if ($line =~ m/t=(\d+).p=(\d+).pp=(\d+) . *\((\w*\s) .*(\/bin\/.*sh).*execve."(.+)"/)

{
if ($sh_execvel[0] == 1)
{

printexecve();

3
$sh_execve[@] = 1; #control variable
$sh_execve[1] = $1; #tid
$sh_execve[2] = $2; #pid
$sh_execve[3] = $3; #ppid
$sh_execvel[4] = $4; #comm
$sh_execve[5] = $5; #binary path of comm
$sh_execve[6] = $6; #exe
$sh_execve[7] = @; # STDIN-READ control variable
$sh_execve[8] = 0; # ASCIItext control variable
$sh_execve[9] = ""; # raw input command
$sh_execve[10] = ""; # execve output
$sh_execve[11] = @; # mode@ (normal) or model (args == NULL)
$sh_execve[12] = ""; #mode@ arguments
@stdout_ids = (0,0,0,0,"","",0,0);
next;

3

# track STDOUT related to execve syscall

elsif (($line =~
m/t=(\d+) .p=(\d+) . pp=(\d+) . *\ ((\w*\s) . *\s(\S+)\) . *STDOUT . *count=(\d+) /) &&
($print_stdout == 1))

$stdout_ids[@] = 1; #control variable
$stdout_ids[1] = $1; #tid

$stdout_ids[2] = $2; #pid

$stdout_ids[3] = $3; #ppid

$stdout_ids[4] = $4; #comm

$stdout_ids[5] = $5; #binary path

$stdout_ids[6] = $6; #count

$stdout_ids[7] = @; # ASCIItext control variable
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next;
3
# track STDIN related to execve syscall
elsif ($line =~ m/t=(\d+).p=(\d+).pp=(\d+) . *\((\wx\s) .*\s(\S+)\) . *STDIN. *count=(\d+)/)

{
if ($sh_execve[3] == $2)
{
$sh_execvel[7] = 1;
next;
}
3
else
{
@stdout_ids = (0,0,0,0,"","",0,0);
next;
}
3
if ($sh_execve[7] ne '0")
{
if ($line =~ m/ASCIItext/)
{
$sh_execve[8] = 1;
next;
3
if ($sh_execvel[8] == 1)
{
$sh_execve[9] = $line;
if ($sh_execve[12] ne "")
{
$sh_execve[9] = $sh_execvel[12];
}
my $tmp_execve = "pid=$sh_execve[2] Launched from=\"$sh_execve[5]\" Full binary
path of executable =\"$sh_execve[6]\" Command entered=\"$sh_execve[9I\"";
print "$tmp_execve\n";
printpids($sh_execve[2], %pids);
print "$sh_execve[10]";
@sh_execve = (0,0,0,0,"","","" 0,0,"","" 0,"");
3
3

#mode@ extraction of arguments
if (($sh_execve[@] ne '0') && ($sh_execvel[11] == @))

{
if ($line =~ m/deref_arg(.)=(.*)/)
{
my $arg_num = $1;
my $arg = $2;
if ($arg ne 'NULL")
{
if ($arg_num == 1)
{
$sh_execve[12] = "$arg”;
}
else
{
$sh_execve[12] = "$sh_execve[12] $arg”;
3
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else

$sh_execvel[11] = 1;
next;

next;

if ($execve ne '0")

{

if ($line =~ m/deref_arg(.)=(.*)/)

{
my $arg_num = $1;
my $arg = $2;
if ($arg ne 'NULL")
{
$execve = "$execve $arg”;
}
else
{
print "$execve\n";
printpids($execve_pid, %pids);
$execve = 0;
$execve_pid = 0;
}
3
else
{
print "$execve\n”;
printpids($execve_pid, %pids);
$execve = 0;
$execve_pid = 0;
}
next;

if ($stdout_ids[@] == 1)

{

my $output = '';

if ($line =~ m/ASCIItext/)

{
$stdout_ids[7] = 1;
next;

}

if ($stdout_ids[7] == 1)

{

#get ppid and ppid name
my $end = 1;
my $ppid = $stdout_ids[2];
my $cur_pid = $stdout_ids[2];
my $ppid_name = "";
do
{
if( exists($pids{$ppid}) )
{
my @tmp_string = split /-/, $pids{$ppid};
$cur_pid = $ppid;
$ppid_name = $tmp_string[0];
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$ppid = $tmp_string[1];

else

$end = 0;
¥
Jwhile( $end != 0 );

#my $hex = ascii_to_hex($line);
my $strlen = length "$line\n”;
if (($line eq '') || ($line eq "); "))

{
$output = "[ppid=$cur_pid,name=$ppid_name] : \n";
3
elsif ($line =~ m/*\/(.+)*/)
{
$output = "[ppid=$cur_pid,name=$ppid_name] : $line [looks like pwd?]\n";
3
else
{
#print "[ppid=$cur_pid,name=$ppid_name] : $line len=$strlen\n”;
$output = "[ppid=$cur_pid,name=$ppid_name] : $line\n”;
3
if ($sh_execve[0] ne '0")
{
$sh_execve[10] .= $output;
3
else
{
print $output;
3
if ($stdout_ids[6] == $strlen)
{
#print ("STDOUT ENDED count=$stdout_ids[6] strlen=$strlen\n”);
@stdout_ids = (0,0,0,0,"","",0,0);
3
else
{
#print ("STDOUT NOT YET ENDED count=$stdout_ids[6] strlen=$strlen\n”);
$stdout_ids[6] -= $strlen;
3
next;
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