
Imperial College London

Programming camera and lighting
systems for controlled reflectance

acquisition

Author:
Sabin Bhattarai

Supervisor:
Abhijeet Ghosh

BEng Computing

16 June 2015

Abstract

3D modelling is being used in industries like animation, gaming, filming and interior
designing in order to perform dimensional and comparative analysis, it also has
great significance in medical industries for interactive representations of anatomy.
Real world objects behave differently in different environments due to varying
colour, texture and reflectance properties, this means powerful techniques such as
photometric stereo are vital tools in image processing. These tools will be a key
focus in building high quality 3D reconstructions throughout this project. Although
much work has been done in optimising algorithms in obtaining 3D models, rather less
has been performed in creating the infrastructure required to obtain these 3D models.

Similarly various light stage systems have been built at UC Berkeley and the USC
Institute for Creative Technologies over the years, enabling a variety of facial scanning,
reflectance measurement and performance capture which has resulted in the creation
of a few of the first photoreal digital actors. This concept of light stage will be used
to create a system that allows us to gather more detailed research on image based
lighting.

In this project we will look at three main stages that will create two infrastructural
setup allowing to construct an application applicable for photo-metric stereo experi-
ment. The first stage will involve the construction of an infrastructure based on light
stage, for which it requires to control a camera out of the closed system. Therefore
a camera will be programmed to automatically capture the data it requires. Also
usage of wireless flashes acting as a light source will be examined. Secondly we will
built a system that makes use of color Kinetics lights along with the use of C++
and Python programming language. From this we will build a network to control
the lights via transferring of packets using various networking protocols. Controlling
lights means we would have an opportunity to obtain relevant data as of photo-
metric stereo technique. Lastly with all the data obtained from the previous setup
and measurements, an application will be created to represent 3D model and image
based lighting.

For evaluation, a setup that will precisely obtain the data sets required to create an
application on images based lighting and 3D model reconstruction will be examined.
Various results will be compared and analysed in accordance to various setups built.
Infrastructure required to build a system will be tested and verified by the supervisor
and PHD researchers. We will also demonstrate that our systems as a whole will
produce expected results as compared to results obtained from higher spec systems.

1

Acknowledgments

I would like to thank my supervisor, Abhijeet Ghosh, for his continuous support and
enthusiasm to successfully complete the project.

I would also like to thank Jeremy Riviere and Antoine Toisoul, PHD students, for
providing in depth knowledge on technicalities throughout the project.

2

Contents

Abstract 1

Contents 5

List of Figures 6

1 Introduction 9
1.1 Motivation . 9
1.2 Objectives . 10

2 Background 11
2.1 Photometric Stereo . 11

2.1.1 BRDF . 14
2.1.1.1 Spherical Coordinates 15
2.1.1.2 Solid Angles . 15

2.1.2 Reflectance Map . 17
2.1.2.1 Radiometry . 17
2.1.2.2 Reflectors . 18
2.1.2.3 Formulation . 20

2.1.3 Surface Normal . 21
2.1.4 Normal map integration . 23

2.2 Photometric Stereo with narrow band RGB illumination 24
2.2.1 Structured and Coloured Lights 24
2.2.2 Possible setup and measurments 25

2.3 Light Stages . 26
2.3.1 Light Stage 1: Acquiring Reflectance Field of Human Face . . 26
2.3.2 Light Stage 2: Faster Capture and Facial Animation 27
2.3.3 Light Stage 3: Lighting Reproduction 28
2.3.4 Light Stage 4: Concept . 29
2.3.5 Light Stage 5: Performance Relighting 29
2.3.6 Light Stage 6: Re-Lighting the While Body 30
2.3.7 Light Stage X . 32

3

3 Reflectance acquisition setups with DSLR and Speedlite flashes 33
3.1 Setup . 33
3.2 Canon Camera 650D . 35

3.2.1 Programming the Canon Camera 650D 35
3.3 Canon Speedlite 430EX II . 41

3.3.1 Optical pulsed-light wireless 41
3.3.2 Radio wireless . 41

3.4 Synchronisation . 42
3.5 Channels . 43
3.6 EOS utility software . 44

4 Polarization 48
4.1 Polarization of Reflection . 49
4.2 Cross polarization . 50
4.3 Interreflection . 52

4.3.1 Problem . 52

5 Reflectance Setup using LED Lighting Systems 54
5.1 Setup . 54
5.2 PDS 70mr setup . 55

5.2.1 Installation . 56
5.3 IColor MR Gen3 . 57

5.3.1 RGB Channels . 60
5.4 IW MR Gen3 . 60

5.4.1 Temperature Channels . 61
5.5 Addressing Lamps . 61
5.6 Networking . 62

5.6.1 TCP or UDP . 64
5.6.2 Quick Play Pro . 65
5.6.3 Reverse Engineering using Wireshark 66

5.6.3.1 Packet Details . 68
5.7 C++ API . 70

5.7.1 Socket Programming . 72
5.7.1.1 Initialize Winsock 73
5.7.1.2 Create Socket . 73
5.7.1.3 Obtain Host IP address and Port along with Binding

Socket to it . 74
5.7.1.4 Send and Receive packet through socket 75

5.8 Python API . 76

4

6 Photometric Stereo implementation and Results 77

6.1 Photometric Stereo Implementation in C++ 77

6.1.1 OpenCV for a mask . 78

6.1.2 Light Calibration . 80

6.1.3 Normal Map and Albedo . 82

6.1.4 Height Map and 3D Mesh . 84

6.2 Results . 85

6.2.1 With Canon Speedlite Flash lights 86

6.2.2 With IColor lamps . 88

6.2.3 With IColor MR white lights 92

6.2.4 Experiment with narrow band RGB illumination 96

7 Evaluation 98

8 Conclusion 102

APPENDIX A 104

A.1 . 104

A.2 . 105

APPENDIX B 108

B.1 . 108

B.2 . 109

Bibliography 111

5

List of Figures

[1] Aydogan Akcay. Photometric Stereo yontemi.http://www.mavis.com.tr/blog/
?tag=yuzey-kontrolu , May 2013. [Online; accessed 2015-01-18].

[2] Hugh Fisher. BRDF http://escience.anu.edu.au/lecture/cg/
GlobalIllumination/BRDF.en.html
[Online; accessed 2015-01-20].

[3] Eric W. Weisstein. Spherical Coordinates http://en.wikipedia.org/wiki/
Spherical_coordinate_system
[Online; accessed 2015-01-22].

[4] wynn2000introduction, title=An introduction to BRDF-based lighting, au-
thor=Wynn, Chris, journal=Nvidia Corporation, year=2000.

[5] Wikipedia. Specular Reflection http://en.wikipedia.org/wiki/Specular_
reflection
[Online; accessed 2015-02-02].

[6] Physics class room. Diffuse Reflection http://www.physicsclassroom.com/
class/refln/Lesson-1/Specular-vs-Diffuse-Reflection
[Online; accessed 2015-01-27].

[7] KMD Lighting Design LLC. Variants of Reflectors http://www.
kmdlightingdesign.com/optics.html
[Online; accessed 2015-02-04].

[8] R.Woodham, Photometric method for determining surface orientation from
multiple images. Optical Engineering , 19(1):139-144, 2010
[Online; accessed 2015-02-08].

[9] Kim, Hyeongwoo, Bennett Wilburn, and Moshe Ben-Ezra. "Photometric stereo for
dynamic surface orientations." Computer VisionâĂŞECCV 2010. Springer Berlin
Heidelberg, 2010. 59-72.

[10] USC Institute for Creative Technologies. Light Stage 1.0 http://gl.ict.usc.
edu/LightStages/
[Online; accessed 2015-02-13].

[11] USC Institute for Creative Technologies. Light Stage 2.0 http://gl.ict.usc.
edu/Research/LS2/
[Online; accessed 2015-02-13].

6

http://www.mavis.com.tr/blog/?tag=yuzey-kontrolu
http://www.mavis.com.tr/blog/?tag=yuzey-kontrolu
http://escience.anu.edu.au/lecture/cg/GlobalIllumination/BRDF.en.html
http://escience.anu.edu.au/lecture/cg/GlobalIllumination/BRDF.en.html
http://en.wikipedia.org/wiki/Spherical_coordinate_system
http://en.wikipedia.org/wiki/Spherical_coordinate_system
 http://en.wikipedia.org/wiki/Specular_reflection
 http://en.wikipedia.org/wiki/Specular_reflection
 http://www.physicsclassroom.com/class/refln/Lesson-1/Specular-vs-Diffuse-Reflection
 http://www.physicsclassroom.com/class/refln/Lesson-1/Specular-vs-Diffuse-Reflection
 http://www.kmdlightingdesign.com/optics.html
 http://www.kmdlightingdesign.com/optics.html
 http://gl.ict.usc.edu/LightStages/
 http://gl.ict.usc.edu/LightStages/
 http://gl.ict.usc.edu/Research/LS2/
 http://gl.ict.usc.edu/Research/LS2/

[12] USC Institute for Creative Technologies. Light Stage 3.0 http://gl.ict.usc.
edu/Research/LS3/
[Online; accessed 2015-02-13].

[13] USC Institute for Creative Technologies. Light Stage 5.0 http://gl.ict.usc.
edu/Research/LS5/
[Online; accessed 2015-02-13].

[14] USC Institute for Creative Technologies. Light Stage 6.0 http://ict.usc.edu/
prototypes/light-stages/
[Online; accessed 2015-02-15].

[15] USC Institute for Creative Technologies. Animated Digital Human http://gl.
ict.usc.edu/Research/RHL/
[Online; accessed 2015-02-19].

[16] Philips Color Kinetics http://www.colorkinetics.com/support/
datasheets/iColor_MR_gen3_ProductGuide.pdf
[Online; accessed 2015-02-26].

[17] Canon DSLR SDK Europe https://www.didp.canon-europa.com/
[Online; accessed 2015-02-15].

[18] Canon Speedlite 430 EX II http://photo-tips-online.com/review/
canon-speedlite-430ex-ii-flash/
[Online; accessed 2015-05-1].

[19] EOS utility Flash Settings http://thedigitalstory.com/photography/
[Online; accessed 2015-05-12].

[20] Canon camera setting and remote shooting http://www.usa.canon.com/cusa/
consumer/standard_display/eos_utility?pageKeyCode=noLeftNavigation/
[Online; accessed 2015-05-21].

[21] Polarization type http://www.bigshotcamera.com/learn/lcd-display/
polarization
[Online; accessed 2015-05-22].

[22] Unpolarized light to polarized light http://en.wikipedia.org/wiki/
Polarization_(waves)
[Online; accessed 2015-05-26].

[23] Polarization effect http://www.physicsclassroom.com/class/light/
Lesson-1/Polarization
[Online; accessed 2015-06-1].

[24] Cross polarization process http://www4.uwsp.edu/physastr/kmenning/
Phys250/Lect42.html
[Online; accessed 2015-06-1].

7

 http://gl.ict.usc.edu/Research/LS3/
 http://gl.ict.usc.edu/Research/LS3/
 http://gl.ict.usc.edu/Research/LS5/
 http://gl.ict.usc.edu/Research/LS5/
 http://ict.usc.edu/prototypes/light-stages/
 http://ict.usc.edu/prototypes/light-stages/
 http://gl.ict.usc.edu/Research/RHL/
 http://gl.ict.usc.edu/Research/RHL/
 http://www.colorkinetics.com/support/datasheets/iColor_MR_gen3_ProductGuide.pdf
 http://www.colorkinetics.com/support/datasheets/iColor_MR_gen3_ProductGuide.pdf
 https://www.didp.canon-europa.com/
 http://photo-tips-online.com/review/canon-speedlite-430ex-ii-flash/
 http://photo-tips-online.com/review/canon-speedlite-430ex-ii-flash/
 http://thedigitalstory.com/photography/
 http://www.usa.canon.com/cusa/consumer/standard_display/eos_utility?pageKeyCode=noLeftNavigation/
 http://www.usa.canon.com/cusa/consumer/standard_display/eos_utility?pageKeyCode=noLeftNavigation/
 http://www.bigshotcamera.com/learn/lcd-display/polarization
 http://www.bigshotcamera.com/learn/lcd-display/polarization
 http://en.wikipedia.org/wiki/Polarization_(waves)
 http://en.wikipedia.org/wiki/Polarization_(waves)
 http://www.physicsclassroom.com/class/light/Lesson-1/Polarization
 http://www.physicsclassroom.com/class/light/Lesson-1/Polarization
 http://www4.uwsp.edu/physastr/kmenning/Phys250/Lect42.html
 http://www4.uwsp.edu/physastr/kmenning/Phys250/Lect42.html

[25] Interreflection effect http://image.slidesharecdn.
com/3introlightfields-130924104409-phpapp01/95/
introduction-to-light-fields-42-638.jpg?cb=1380019981
[Online; accessed 2015-04-24].

[26] PDS-70mr http://www.colorkinetics.com/ls/pds/pds70mr/
[Online; accessed 2015-05-28].

[27] PDS-70mr with 14(max)fixtures http://www.colorkinetics.com/support/
datasheets/PDS-70mr_24V_Product_Guide.pdf
[Online; accessed 2015-05-17].

[28] IColor MR Gen3 http://www.colorkinetics.com/support/datasheets/
iColor_MR_gen3_ProductGuide.pdf
[Online; accessed 2015-05-19].

[29] IW MR Gen3 http://www.colorkinetics.com/support/datasheets/iW_MR_
gen3_ProductGuide.pdf
[Online; accessed 2015-05-19].

[30] Quickplay Pro http://www.colorkinetics.com/support/userguides/
Addressing_Configuration_Guide_QPP.pdf
[Online; accessed 2015-04-8].

[31] Wireshark https://www.wireshark.org/docs/wsug_html/
[Online; accessed 2015-03-28].

[32] Buddha http://pages.cs.wisc.edu/~csverma/CS766_09/Stereo/stereo.
html
[Online; accessed 2015-03-9].

[33] Santa Maria visits Light stage x http://i.ytimg.com/vi/9gTt1FohvDY/
maxresdefault.jpg
[Online; accessed 2015-06-15].

[34] Realistic Graphics and Imaging http://wp.doc.ic.ac.uk/rgi/
[Online; accessed 2015-06-15].

[35] VTK http://www.vtk.org/doc/nightly/html/
[Online; accessed 2015-06-1].

[36] OpenCV http://opencv.org/
[Online; accessed 2015-06-1].

8

 http://image.slidesharecdn.com/3introlightfields-130924104409-phpapp01/95/introduction-to-light-fields-42-638.jpg?cb=1380019981
 http://image.slidesharecdn.com/3introlightfields-130924104409-phpapp01/95/introduction-to-light-fields-42-638.jpg?cb=1380019981
 http://image.slidesharecdn.com/3introlightfields-130924104409-phpapp01/95/introduction-to-light-fields-42-638.jpg?cb=1380019981
 http://www.colorkinetics.com/ls/pds/pds70mr/
 http://www.colorkinetics.com/support/datasheets/PDS-70mr_24V_Product_Guide.pdf
 http://www.colorkinetics.com/support/datasheets/PDS-70mr_24V_Product_Guide.pdf
 http://www.colorkinetics.com/support/datasheets/iColor_MR_gen3_ProductGuide.pdf
 http://www.colorkinetics.com/support/datasheets/iColor_MR_gen3_ProductGuide.pdf
 http://www.colorkinetics.com/support/datasheets/iW_MR_gen3_ProductGuide.pdf
 http://www.colorkinetics.com/support/datasheets/iW_MR_gen3_ProductGuide.pdf
 http://www.colorkinetics.com/support/userguides/Addressing_Configuration_Guide_QPP.pdf
 http://www.colorkinetics.com/support/userguides/Addressing_Configuration_Guide_QPP.pdf
 https://www.wireshark.org/docs/wsug_html/
 http://pages.cs.wisc.edu/~csverma/CS766_09/Stereo/stereo.html
 http://pages.cs.wisc.edu/~csverma/CS766_09/Stereo/stereo.html
 http://i.ytimg.com/vi/9gTt1FohvDY/maxresdefault.jpg
 http://i.ytimg.com/vi/9gTt1FohvDY/maxresdefault.jpg
 http://wp.doc.ic.ac.uk/rgi/
 http://www.vtk.org/doc/nightly/html/
http://opencv.org/

1 | Introduction

1.1 Motivation

Digitally generated humans or virtual characters being able to move, speak and think
has been an experimental aspect in present digital world. Realistic representation of
such characters with convincingly being able to add lighting effects on the characters
has become important. Identifying the underlying implementation on how such
characters can be modelled and what data sets are to be captured and how to build
an infrastructure to obtain those data sets has become an essential part of research
in recent years. Thus the project will go onto describing the techniques used for
geometry orientation capture, realistic rendering, imaged based lighting and various
setups required to obtain realistic computer graphics application.

As discussed, computer based image understanding requires a larger set of data from
an image. When an object is under consideration for 3D reconstruction, knowing
the orientation of the object at each point becomes important. Photometric stereo
technique thus becomes an important aspect in understanding the orientation of
object which requires rapid reflectance measurements. Similarly by using photometric
stereo technique, one can experiment with reflectance acquisition examples such as
measuring diffuse and specular albedo (total reflectivity) as well as surface normal
maps (shape information).

The key idea is therefore to get familiarised with the concept and techniques
involved in image processing and most importantly build a programmable reflectance
acquisition setups to obtain as much relevant data required in computer based
renderings. Also with many existing setups such as Light stages used for image
processing, our goal becomes to make as much research to obtain higher understanding
on the underlying implementation and scale it up in near future.

9

1.2 Objectives

The overall aim of this project is to build a programmable reflectance acquisition
setups using DSLR and/or machine vision cameras and controllable light sources for
realistic computer graphics applications. The camera light source systems will include
DSLR cameras and flashes from Canon. For the controllable LED light source, LED
lights from Philips Colour Kinetics will be used.

As a first step, the aim is to employ the Canon SDK to control DSLR cameras
and flashes (via wireless protocol) for rapid reflectance measurements. Similarly
programmable network of LED lights from Philips Colour Kinetics for reflectance
measurement is to be built using Python/C++ based API to control the LED lights.
It also involves extending the network to control RGB and white LED lights over an
Ethernet network.

With the setup up and running, an important experiment to examine would be
understand the differences between reflectance acquisition with broad spectrum white
illumination and narrow band RGB illumination and/or combine both sources of
illumination for multispectral imaging of material reflectance including faces.

Hence to achieve the above mentioned objectives it becomes important to do
background research on photometric stereo to understand an objects orientation,
photometric stereo with narrow band RGB illumination, light stages and most
importantly the setups required to obtain relevant results.

10

2 | Background

2.1 Photometric Stereo

Photometric stereo[13] is a technique that obtains high quality image based 3D
reconstructions. The technique involves taking a sequence of images usually three
or more by varying the direction of incident illumination, while keeping the same
viewpoint as shown in Fig 2.1. With the intensity variation observed in each pixel
one can make an estimation of the local orientation of the surface onto that pixel as the
imaging geometry remains constant[5]. Once the surface orientations are observed, it
becomes easier to integrate these surface orientations to get the surface geometry of an
object. The idea therefore is to get the orientations of vectors that will perpendicularly
fall to the surface (object of interest) at multiple points. Thus by taking the increasing
number of points in the surface and normal vectors, the quality of the map can be
improved.

Figure 2.1: Photometric stereo setup under one viewpoint and varying light source
[1]

As shown in figure 2.1 we have three images obtained using one camera but different
lighting conditions. While clearly the same underlying surface is being portrayed, the

11

detailed patterns of brightness are different i.e. some areas on one picture has higher
contrast while same area on another picture is not visible. This shows the image of
a three dimensional object depends on its reflectance properties, its shape and the
distribution of light sources.

Let us take an example on the kind of output we expect when performing the
photometric stereo experiment. The result expected is a normal map, albedo, height
map and a 3D mesh. The following shows the input (including light sources) and
output images for a rock whose surface orientation has been deduced from the
photometric experiment as shown.

Figure 2.2: Photometric stereo experiment performed for Rock object

Similarly, photometric stereo provides the surface reflectance properties as part of
the same experiment. The method makes use of the so called reflectance maps in
the form of look-up tables. One of the ways in obtaining the tables is to calibrate
sphere of the same material as that of the imaged surface, allowing obtained intensities

12

to be directly mapped to surface normal. The term photometric relates to the use
of radiance values at single image location. Radiance and Irradiance being the
measure for lighting intensities, allows to indicate how much of the power a reflecting
surface will be received by an optical device observing at the surface from an angle
of view. This concept therefore becomes important for photometric stereo technique
in obtaining light intensities equations for further calculations. The mathematics for
photometric stereo involves complex vector analysis, advanced calculus along with
equating differential equations which will be discussed briefly. We therefore make few
assumptions to simplify calculations i.e. the surface reflectance model is assumed to
be Lambertian, surface albedo is already known for each point on surface and the
light sources are point light sources at infinity.

Despite its popularity in applications like facial recognition and industrial product
quality assurance/ quality control, photometric stereo has two main limitations

• One needs to keep the 3D scene as static as possible during the illumination
changes. This limitation therefore does not allow reconstruction of deformed
3D objects.

• Second limitation involves images to be taken from single viewpoint. This thus
avoids full 3D surface reconstruction

Thus a setup will be discussed which tries and overcome these limitations. Photo-
metric stereo with coloured light variant will be introduced. It will be used to obtain
separate reconstruction of object for each gathered photograph. The required setup
will consist of video camera with three coloured light sources (red, green and blue).
Observation will be done in an environment where red, green and blue light emitting
from different direction towards the object with Lambertian surfaces.

The general idea on this part would be to use the photometric setup to take three
different images, calculate the reflectance map using the BRDF function keeping in
mind the assumption of Lambertian surfaces. The calculated reflectance map will
then be used in the formula discussed below to get the surface normal for each point
in the Lambertian surface. Once the normal is deduced we will use the integration rule
to obtain the 3D orientation of the object[10]. This concept will be briefly explained
in this order.

13

2.1.1 BRDF

Figure 2.3: BRDF relating light incident and light
reflected [2]

A mechanism that plays an im-
portant role in recognising inter-
active photorealism is the idea
of Bi-directional Reflectance Dis-
tribution Function (BRDF)[9].
BRDF depends on the light un-
der consideration, the positional
variance and importantly to the
incoming and outgoing direc-
tion. BRDF in functional no-
tation can therefore be repre-
sented as

BRDF λ(θi, ϕi, θo, ϕo, u, v)

where θi, ϕi represents the in-
coming light direction in spheri-
cal coordinates, while θo, ϕo de-
notes the outward reflected di-
rection in spherical coordi-
nates. Similarly λ defines the
wavelength under consideration and u, v relates to the surface position in texture
space. The BRDF has units sr−1, with steradians (sr) being a unit of solid angle.

Excluding positional variance becomes possible when only homogenous materials are
taken into account and an assumption is made that the reflectance properties of a
material do not vary with the spatial position. This allows BRDF functions to not
include the positional variance defining itself as function of incoming and outgoing
directions along with the wavelength i.e.

BRDF λ(θi, ϕi, θo, ϕo)

Similarly λ being the wavelength and the fact that BRDF depends on the wavelength
or colour channel, it becomes convenient to obtain the BRDF value separately for each
colour channel (i.e. Red, Green and Blue) omitting the use of λ in the function[14].

The BRDF function thus allows to generate the reflectance property by integrating
over the specified solid angles, for a defined incident and reflected ray geometry. It is
therefore necessary to understand the underlying definition on spherical coordinates
and solid angles which is defined briefly below.

14

2.1.1.1 Spherical Coordinates

Figure 2.4: Spherical coordinates (r, θ, ϕ): radial
distance r, azimuthal angle θ, and polar angle ϕ.
[3]

As opposed to Cartesian coor-
dinates spherical coordinates is
specified for three dimensional
space with position defined by
radial distance(r), polar angle θ
and azimuthal angle ϕ as shown
in the figure.

Often we relate vectors to
Cartesian-space vectors as v =
(vx, vy, vz) which brings some
complications while dealing with
parameterized BRDFs. It
therefore becomes useful to
take spherical coordinate system
for representing vectors when
BRDF function is taken into
consideration. In spherical co-
ordinates, a vector will therefore
be defined as magnitude,(ρ),
and a pair of angles relating to
the difference in two reference
basis vectors.

It is possible to form a relationship between Cartesian coordinates (vx, vy, vz) and
spherical coordinates (θ, ϕ) when normalized direction vector (1 =

√
(v2x + v2y + v2z))

is considered.
vx = cosϕ sin θ, (2.1)

vy = sinϕ sin θ, (2.2)

vz = cos θ (2.3)

Hence it becomes easier to represent a direction with only two parameters in spherical
coordinates. Since direction can be represented in the form of spherical coordinates,
the BRDF function can be treated as wavelength dependent 4 dimensional function
as discussed before.

2.1.1.2 Solid Angles

An object that covers certain fraction of the sphere when seen by an observer at
the sphere’s centre is called solid angle [14]. When dealing with BRDFs, it becomes
necessary to understand how much of light arrives or leaves the surface element from

15

a particular direction with a view from various viewing positions. This brings up a
notion of differential solid angle. It becomes important to consider how much of light
is flowing through an area of space rather than considering the amount of light from
a single incoming direction.

Figure 2.5 (a) below emphasizes on considering the flow through a neighbourhood of
directions when determining how much light arrives or leaves the surface. It puts its
basis on the fact that light is always measured in terms of energy per unit surface
area. For complete understanding, it can be thought as a small rectangular region on
a unit sphere as shown in figure 2.5 (b). The figure also shows a pyramid formed on
the inside of the sphere which represents a volume of direction. The differential solid
angle is defined as the small path that can be viewed in the sphere’s surface formed
by an intersection of the pyramid and the unit sphere portion.

(a) Solid angle is the area of the small patch
on surface of sphere

(b) Energy per unit area, from neighborhood
of directions

Figure 2.5: Solid angle representation[4]

As we discussed the notion of spherical coordinates earlier, we can now define the
direction in terms of spherical coordinates as (θ, ϕ). Similarly we define the small
differential angular changes as dθ, dϕ. With these data in hand we can obtain the
differential solid angle as

Differential solid angle = height * width
= (dθ) ∗ (sin θ ∗ dϕ)
= sin θ ∗ dϕ ∗ dθ

The obtained differential solid angle will thus have a unit of radians2 also known
as steradians (sr).

16

2.1.2 Reflectance Map

Reflectance map [4] gives the association between the gradient space parameters
and brightness. For many surfaces, the surface orientation solely depends on the
section of the incident illumination reflected in particular direction. Reflectance
properties of these surfaces can be characterized as a function of incident, emergent
and phase angles. The incident and emergent angles are relative to the surface normal.
The function mentioned above is related to the bidirectional reflectance distribution
function (BRDF) which is the ratio of surface radiance to irradiance measure per unit
surface area, per unit solid angle in the same direction of the viewer. As described
above, reflectance map gives scene radiance as a function of the gradient which can
be calculated from the bidirectional reflectance-distribution function (BRDF) and the
distribution of source radiance.

Following describes few of the concepts that are necessary in understanding the
properties and calculation of reflectance map.

2.1.2.1 Radiometry

Light can be described as photons moving at the speed of 3 ∗ 108km/s in the air.
Each photon has an energy that relates to its wavelength and colour. Radiometry[6]
is thus the science of measuring photons or electromagnetic radiation in any area
of the electromagnetic spectrum. The power of electromagnetic radiation is termed
as radiant flux. Radiant flux that is reflected, emitted, received or transmitted in a
direction per unit solid angle by a surface is defined as radiance divide irradiance.

Radiance can be used to characterize the reflection or diffusion of incident light
from any surface. The SI unit of radiance is watt per steradian per square metre
(Wsr−1/m2) and is key in determining how much of the power will be received by a
system observing at the surface from some angle of view. In other words, radiance
is the amount of light radiated from a surface. Its complex concept derives from the
fact that surface are liable of radiating into whole possible directions and at the same
time can radiate different amounts of energy in different directions.

Similarly intensity or brightness of a surface is determined by how much of energy
is being received by the imaging system per unit apparent area i.e. the surface area
multiplied by the cosine of the angle between a perpendicular to the surface and the
direction specified. It will soon be apparent the importance of intensity measurements
when we evaluate reflectance map for a surface to determine its orientation.

17

2.1.2.2 Reflectors

Surfaces reflect light in accordance to the law of reflection, making it possible to
determine angle of incidence when a normal to the surface is known. Reflectivity of
surface thus is the ratio of reflected power to incident power and relates to refractive
index of a material alongside the electronic absorption spectrum[6]. Reflectors can
be categorised as

1. Specular Reflection A mirror-like reflection of light from a smooth surface,
where incoming light from a direction is reflected to a distinct outer direction.
Specular reflection does not necessarily reflect all of the incident light as some
materials can absorb and transmit lights through the surface. Polished metallic
objects can be a perfect example of specular reflection.

Figure 2.6: Diagram on Specular Reflection[5]

The reflected rays becomes parallel to the surface if the incident rays are placed
parallel to the surface allowing us to understand the direction of reflection.
Direction is determined by vector of incidence and surface normal vector
i.e. assume an incident direction (di) hits the surface with surface normal
direction (dn) and we require to deduce the specular reflected direction (ds).
So formulation to determine the ds would be as

d̂s = 2(d̂ṅd̂i) ∗ d̂n − d̂i

where d̂ṅd̂i refers to the dot product between normal and the incident direction
vector. Also note that unit vectors are taken for each vector which can be
calculated as

Unit vector of dn = dn/‖dn‖ i.e. if dn = (x, y, z) we would get ‖dn‖ by√
x2 + y2 + z2

18

2. Diffuse(Lambertian) In diffuse reflection, we have surfaces that reflects the
incident ray in many angles. This is because of the molecules that make up
the surface have different reflecting property. Although each ray falling on the
surface follows law of reflection, we might think how a rough surface diffuses the
beam of light. This is because each ray falling on the rough surface do follow
the law of reflection but each ray meets the surface at different orientation.

Figure 2.7: Law of Reflection with incident rays (labeled A, B, C, D, and E) [6]

As in the figure, we can observer A,B,C,D,E fall onto the surface with different
normal and its reflecting behaviour. Hence different normal line causes the ray
to reflect differently.

However, we are interested in Lambertian reflectance which is the property that
defines the diffusely reflecting surface. In Lambertian surfaces the brightness
observed from any angle of view will be constant i.e. the surface will have
same radiance at all view angles. This is because the Lambertian surfaces has
luminous intensity following lambert’s cosine law i.e. the reflected energy from
a surface area in a specific direction becomes proportional to the cosine of the
angle between the direction and the surface normal.

Throughout the photometric stereo setup we will be using Lambertian surfaces.
However, there are few other types of reflectors that has some similarities with
either specular or diffuse reflections as presented in the figure below.

19

Figure 2.8: Variants of Reflectors[7]

Near specular can be defined as reflection of light from a surface to a distinct
area but not in multiple directions. On the other hand near diffuse is where
surfaces reflects the incident ray in many angles equally but the intensity in
some areas is higher compared to other reflected rays.

2.1.2.3 Formulation

Figure 2.9: Reflectance properties with normal and
incident light[8]

Now that we have general idea
on what reflectance map is and
essential terminologies neces-
sary to describe the Reflectance,
we can now derive a formula in
above described terms.
Thus reflectance map can be
defined as

R(p, q) = ρ
n.s

|n||s|

Where ρ is the albedo with
s defined as [Sx, Sy, Sz]

T which
gives a relation between light
direction and viewing direction.
Furthermore n is the surface
normal.

As from figure 2.9 we can
rewrite the equation above con-
sidering s as a unit vector

R(p, q) = ρ
sxp+ syq + sz√
p2 + q2 + 1

20

This is called the reflectance equation, and is a second order equation of p and q. In
order to visualise the function R it can be drawn as a series of contours of R(p, q) =
constant. The questions here arises on how do you determine p and q. Although
a unique solution could be determined for surface orientation at each point, given
two images with different lighting conditions, an assumption has to be made that
these equation were linear and independent with known albedo (ρ). However, while
resolving the equations of this manner we encounter non linear equations having either
no solutions or several solutions.
Hence, we will use the photometric stereo technique to deduce a simple equation that
allows calculation of p, q. The next section on surface normals will show detailed
process on calculating p, q. There we will also make extensive use of reflectance map
equation R(p, q) to deduce orientation of an object.

2.1.3 Surface Normal

A directional vector that is orthogonal to the tangent plane to a surface at a point is
defined as surface normal. In order to recover the 3D structure of an object through
photometric means, we require to perform normal map integration. Hence obtaining
the surface normal vector at each point becomes a necessary calculation to make. In
order to obtain the unit surface normal vector (n) we deduce it in terms of p and q
discussed in formulation part in reflectance map above.
We know, for a given surface patch, the slopes along the x and y axis are

[1, 0,
δZ

δX
]T and [0, 1,

δZ

δY
]T respectively.

Let us thus define p = −(δZ
δX

) and q = −(δZ
δY

)

This allows us to obtain the above slope vectors as [1, 0,−p]T and [0, 1,−q]T . Hence
the unit surface normal vector (n) can be obtained by doing the cross product between
the two vectors producing

n = [1, 0,−p]T × [0, 1,−q]T

n =
1√

1 + p2 + q2
[p, q, 1]T

Now that we have surface normal (n) in terms of p and q. We try and evaluate
p and q from the photometric equation technique (assuming object as Lambertian)
that involves

• Three light sources with fixed camera

• Three different images under consideration

• Each lighting condition gives R(p, q) i.e. the reflectance map for each pixel.

21

• Depth can now be derived by integrating p and q along the surface

A simple implementation can be seen in the figure below with a setup capable of
deducing three different equations involving p and q.

Figure 2.10: Reflectance equation for three differently illuminated images[8]

From the three equations above we can take different ratios e.g.
R1

R2

,
R3

R2

to cancel

out the unknown albedo (ρ) and form a set of linear equations for each pixel. Hence
for each pixel we can now substitute to the equation below to obtain surface normal
(n). i.e.

n =
1√

1 + p2 + q2
[p, q, 1]T

22

2.1.4 Normal map integration

Finally with surface normal map deduced, it becomes easier to integrate the normal
map. There are very many ways proposed onto performing the integration as
presented by Petrovic [11]. However a simple solution becomes integrating the
normal map with an iterative method. This is believed to conserve the integrability
constraint, as proposed by Basri and Jacobs[1]. For this we work out the depth value
of an object at the pixel position (p,q) using an Gauss-Seidel scheme of iteration until
a range value K. i.e. the range is within 1 to K.

The following equation is used to obtain depth z for a given normal map (n)

zk+1
p,q =

1

4
[zkp+1,q + zkp−1,q + zkp,q+1 + zkp,q−1 + nx

p−1,q − nx
p,q + ny

p,q−1 − ny
p,q]

23

2.2 Photometric Stereo with narrow band RGB
illumination

So far we have considered photometric stereo as one of the technique that reconstructs
surfaces from images of an object. We figured, how by observing the altered
intensity throughout the object surface under changing illumination, photometric
stereo deduces the local surface orientation. Similarly we realised a way to integrate
the field of local surface orientation to construct 3D shape. However the difficulty
arises when we try to apply the technique to deforming objects. This is because the
technique requires changing of light source direction for each captured image while
keeping the object motionless. This becomes impractical when dealing with moving
objects. Thus we will introduce multispectral lighting technique which captures
three images in a single snapshot where each image corresponds to different lighting
direction.

2.2.1 Structured and Coloured Lights

For photometric stereo with narrow band RGB illumination, we need to recognise
the camera and light spectral characteristics [11]. As we are to setup a system with
LED’s positioned and filtered in a way that camera receives distinct Red, Green, Blue
lights and not an overlapping LED spectra, we require the camera relative spectral
response as shown in the figure.

Figure 2.11: Relative spectral power distributions for different colour LED’s[9]

24

2.2.2 Possible setup and measurments

The setup therefore involves a colour video camera with three filtered light sources
i.e. with red, green and blue filters. Camera and the lights are to be placed at around
2m away from the object of interest while placing at an angle of about 30 degrees but
not collinear.

Figure 2.12: Schematic diagram representing photometric Stereo for Dynamic surface
orientation [9]

As discussed in [3] an estimation can be made and by inverting the linear mapping,
a link from RGB values to surface normals is obtained. Each normal map can be
integrated using the Successive Overrelaxation solver(SOR) [7] to get the depth map.

25

2.3 Light Stages

Light stages [2] is a cage like setup with use of instruments consisting of structured
light and multiple camera to capture texture, reflectance and motion of objects,
mostly human faces. It not only provides an ability to simulate intensities, mixture
of colours and direction of illumination over wide range of directions, but also have a
degree of control over the illumination. The fact that light reflecting off the air-to-oil
holds its polarization while the light through the skin loses its polarization led to the
initial approach in capturing the reflectance field for human face. The very concept
was further used by Paul Debevec to build several variant of light stages.

2.3.1 Light Stage 1: Acquiring Reflectance Field of Human
Face

Image based lighting (IBL) allows us to simulate synthetic objects with real light.
The idea behind the Light stage 1 was to apply IBL to real world objects unlike
computer generated models. For this we capture the light by taking the series
of images of the mirrored ball which records the colour and intensity of the light
coming from every direction. We then use the global illumination algorithm to
simulate the captured illumination falling on synthetic objects. When the light from
imaged based lighting environment is simulated with global illumination, we see the
rendered object as if the object was illuminated by real world lighting. This technique
therefore becomes useful when creating the animation rendering with natural light.

Figure 2.13: Light Stage 1.0[10]

Light stage 1 simulated the per-
son’s appearance in any form of
illumination by forming the spe-
cial lighting stage to illuminate
the person from every possible
direction. As shown in Fig-
ure 2.13, Light stage spiralled
a single incandescent spotlight
around a person’s face while the
digital camera recorded the face
4D reflectance field. In the
course of minute the spiralling
light source illuminated the face
from 2000 directions. The set of
images obtained could then be
scaled according to the intensity
of the corresponding direction of
the light and its colour in the
scene. For example, to generate

26

an image of the face illuminated by the lighting environment, we resample the lighting
into the same set of direction and scale each image of the face by the colour and
intensity of the environment in the corresponding direction. Adding this scaled images
together then generates the image of the face under the sampled illumination.

In simple words, suppose we photograph a person’s face under two forms of
illumination, one from left and the other from right. Considering the additive property
of light, we can reproduce images under both light sources by adding both images
together. Furthermore we can synthetically adjust the colour and intensity of each
light source by scaling the colour channels of the two images. This concept can
therefore be used in larger scale to model the lighting effect on objects.

Similarly, Light stage 1 had the capability to create relightable 3D models of people’s
faces, while also allowing it be rendered from different viewpoints. The geometry
was obtained by placing the light video projector to the Light Stage system and the
reflectance estimation algorithms were used. With the reflectance function applied
on each pixel in the image and making use of video projection and the reflectance
estimate algorithm, it was possible to obtain reflectance maps of the face’s specular
intensity, diffuse colour and eventually surface normal. Furthermore the obtained
maps were used in traditional computer-graphics rendering process.

2.3.2 Light Stage 2: Faster Capture and Facial Animation

Light stage 2.0 is an evolved version of the first light stage where realistic computer
models of human faces are captured. It consists of arrays of lights and high-
speed cameras which makes recording the reflectance of face faster by reducing the
acquisition time to few seconds. It includes set of thirty-two sequential strobe-
lights on a semi-circular arm which rotates around the actor in 8 seconds while
the person’s appearance is recorded by synchronized high-speed video cameras. It
records the transformation of incident light into radiant light by a person’s face while
also capturing the variety of expressions that a person makes allowing to infer the
appearance of a fully animated characters. The setup can be seen in the figure below.

27

(a) Design (b) stage implementation

Figure 2.14: Light Stage 2.0[11]

Multi-view relightable images thus obtained from many different expressions allowed
to perform blends between the expressions resulting in realistic character with facial
wrinkling and also dynamic reflectance. This characteristics became useful in various
applications and was used by Sony Pictures Image-works to record actors Alfred
Molina and Tobey Maguire for their digital stunt doubles in the movie Spider-Man 2
(2004) , Brandon Routh for the film Superman Returns (2006) , and by Weta Digital
to record actress Naomi Watts for the movie King Kong (2005).

Light Stage 2.0 therefore gave an opportunity to perform basic research in human
facial reflectance. It also allowed live action composition of actors into computer-
generated environments along with enhancing the technology involving virtual actors.
Although the full measurement of field of reflectance was not achieved at early Light
stages, future versions tend to observe reflectance properties in greater details when
experiments were performed involving directional polarized light.

2.3.3 Light Stage 3: Lighting Reproduction

It soon became practical to surround an actor with colour-controllable LED light
sources in order to replicate the real-world or virtual lighting environment. It allowed
the colours and intensities of the illumination to be calculated in an imaged based
lighting environment.

28

Figure 2.15: Light Stage 3[12]

The light stage 3 is a two meter
sphere of inward-pointing RGB
light emitting diodes i.e. 156
iColor MR red-green-blue LED
light sources focused on the ac-
tor. This produces the HDRI
lighting conditions on actors
giving a flexibility to compos-
ite into real scenes with match-
ing illumination. The process
used in obtaining the accurate
maps in this stage setup was
infrared matting unlike green
screens which had a disadvan-
tage of spilling green light onto
the actors. Hence, the visible-
spectrum illumination on the
actor was not to be affected dur-
ing the lighting reproduction.
Therefore an implementation involving a digital two-camera infrared matting system
that composited the actor into the background environment was constructed. The
system was calibrated well to match the colour illuminated by the environment and
the systems colour response. Thus a moving camera composites of actors into real-
world with correct illumination could be built with light stage 3.

2.3.4 Light Stage 4: Concept

Light stage 4 was a conceptual idea which was able to control the environmental
illumination on actors in small sets. This however was never built.

2.3.5 Light Stage 5: Performance Relighting

The main idea behind light stage 5 was providing flexibility to design and modify
lighting and reflectance of an actor in postproduction. Light stage 5 consisted of
156 white LED lights which had a similar structure that of Light stage 3. With the
availability of bright white LED’s it was possible to record reflectance properties of
actors dynamically. A sequence of time-multiplexed based lights were illuminated on
the subject and high speed video camera were used to record the desired images on
all conditions at a chosen frame interval.

29

Figure 2.16: Light Stage 5[13]

Thus with the acquired data
from the setup it was possible
to find an estimation of time
varying surface normal, albedo
and ambient occlusion. These
estimation values could then be
used in transforming the ac-
tor’s reflectance for stylistic ef-
fects.

Light Stage 5 on the other hand
could be used for recording re-
flectance field similar to the tra-
ditional (one light at a time) ap-
proach. This flexibility allowed
production of various applica-
tions i.e. Sony pictures Image-
works used it to digitize the reflectance of actors Will Smith and CharlizeTheron for
the movie Hancock (2008) and a silicone maquette portraying Brad Pitt as an old
man for The Curious Case of Benjamin Button(2008)[2].

2.3.6 Light Stage 6: Re-Lighting the While Body

With enough space available to built a larger stage, Light stage 6 was introduced for
being able to illuminate the whole human body. It was just a larger version of light
stage 4 mentioned earlier. It consisted of 6,666 LumiLed’s Luxeon V LEDs controlled
in

30

Figure 2.17: Light Stage 6[14]

groups of 6[2]. It was 8m in diameter with the floor populated with its own set of
Lambertian-distribution light sources.

Light stage 6 recorded actors on a rotating treadmill at 990 frames per second. With
the data received from a surrounding set of video cameras and photometric stereo,
actors geometry was derived. Also Light stage 6 has recently been augmented with
a Laser scanning system from ICON imaging studio to obtain the geometry and
reflectance of actors such as Michael Caine and Dwagne Johnson for Journey 2 : The
Mysterious Island (2012).

Figure 2.18: Animated digital humans rendered from arbitrary view-points and
illumination from light Stage 6 data.[15]

31

2.3.7 Light Stage X

Light stage X [12] is a facial scanning system using programmable light sources
and interchangeable filters which is able to create intensity, direction, colour
and polarization of light. The following shows an image when HuffPost Science
Correspondent Cara Santa Maria visits the Light Stage X.

Figure 2.19: HuffPost Science correspondent Santa Maria visits Light stage X [33]

32

3 | Reflectance acquisition setups with
DSLR and Speedlite flashes

In this chapter we will discuss one of the setups that allows photometric stereo
experiment to be performed. The entirety of the project will consist of two different
setups including controllable LED light sources setups (as per light stages concept)
discussed in Chapter 5 and a setup involving Canon camera with wireless controlled
Speedlite flashes.

Henceforward in this chapter we will discuss the later. We will briefly mention how
we built the infrastructure to take four different images under four different lighting
conditions applicable for photometric stereo experiment. This will be done by using
the Canon Camera 650D and four speedlite 430EX II flash lights, we will observe how
the flash light gets controlled by the camera and discuss the underlying protocol used
in doing so wirelessly, the synchronization issues will also be discussed thoroughly.
In addition we will present an alternative way of controlling the flashes with camera
and make comparisons on the speed and ease of use.

3.1 Setup

Firstly as part of setup implementation, we will mention the use of Canon EOS 650D
series and Canon 430EXII electronic flash speedlite devices. As per the design, DSLR
camera in connection to the host PC (via USB) was placed in fixed position while
being controlled by a C++ program. The program (C++) was written in visual
studio 2013 which on execution provided an ability to take picture, download images,
control flash lights while also providing synchronization.

As shown in Figure 3.1, camera was placed in a tripod with a flash lights placed
at a desired angle with respect to the object of interest. A second tripod was also
used to hold the object under experiment while the flash lights are mounted to the
wall in a way that acts as a directional source of light. Here we can also visualize the
object of interest is placed at approximately 2 meter distance.

33

Similarly the background is completely covered up with black cloth so as to prevent
reflection through white walls. The flashes are to be kept at similar distance with
respect to the object.

Figure 3.1: Self built Reflectance acquisition setups with DSLR and Speedlite flashes

We will now briefly define each resources used during the setup and their underlying
implementation.

34

3.2 Canon Camera 650D

The initial approach in building programmable reflectance acquisition setups using
DSLR (Digital Single-Lens Reflex) required an understanding of functionalities each
resources used had to offer. The first approach was therefore to use and get familiar
with the DSLR camera along with understanding the underlying implementation
of the product. This led to realisation of EDSDK (EOS Digital Camera Software
Development Kit) provided by Canon.

EDSDK is a development kit that provides functions required to control camera and
its overall functionality. It gives an interface to access image data shot using the
DSLR camera along with capability to transfer images from camera to host PC. It
also offers images in RAW format e.g. .CR2 format which can be processed to obtain
various mapping data that can be useful in orientation realisation. Similarly it also
allows flash controls which becomes key in wirelessly controlling flash lights during
image capture. The important feature it holds is providing control over the camera
from a host computer. Hence this became the basic building block for the project.

3.2.1 Programming the Canon Camera 650D

Programming the Canon camera 650D was done using C++ in visual studio 2013 by
using EDSDK API. The SDK followed the pipeline as shown in Figure 3.2(a) below
which required an application to interact with EDSDK library modules via imports,
which in return used windows WIA or WPD to retrieve images. The Picture Transfer
Protocol (PTP) driver then enabled PTP devices to support the WIA driver model.
USB connection was established in obtaining the required controls for camera which
required Kernel mode driver for USB.

Similarly, it was important to understand the module configuration of EDSDK shown
in figure 3.2 (b) in order to add on the dependencies while setting up the project in
visual studio 2013.

35

(a) API implementation chart (b) Library Module configuration

Figure 3.2: EDSDK dependencies layout[17]

With the dependencies set for the canon camera in visual studio 2013, EDSDK objects
were observed to write up a code that would control the camera from host PC. EDSDK
objects employed hierarchical structure with camera list at root allowing an access to
camera as shown in Figure 3.3. The hierarchy consisted of elements such as camera
list, cameras, volumes, folders and image files. These elements belonged to either of
the four object categories

• EdsCameraListRef

• EdsCameraRef

• EdsVolumeRef

• EdsDirectoryItemRef

This hierarchy thus allowed to create C++ wrapper around these objects which in
turn could be used to control camera features from host PC. In addition to these
object categories we required different object reference that would allow to control

36

the input and output i.e. transferring images from the camera to the host. This
was possible with an introduction EdsImageRef and EdsStreamRef objects.
EdsStreamRef object represented the file I/O stream which when given the download
destination along with the image reference in camera, would allow downloading files
to the host PC.

Figure 3.3

37

Figure 3.4: Including necessary
header files

In order to make use of the EDSDK, the project
had to explicitly initialize the library. For this
it required to include headers files as shown in
figure 8. The initialisation of SDK was done at
the very beginning of the application. Alongside
the initialisation, we obtain the cameras by using
the getFirstCamera (& camera) function imple-
mented using the above hierarchy information. If
two or more cameras are connected to the USB
we return the first camera detected as an object
as shown in the program Figure 3.5.

Figure 3.5: Initialising Canon SDK and retrieving Camera object

Similarly, when SDK is initialised and camera object is obtained without any
errors i.e. initialiseErr returns 0, we require to set object, property and camera

38

state event handlers in order to operate routines asynchronously and handle inputs
received into a program. The initialisation can be observed below in the code
where handleObjectEvent, handlePropertyEvent and handleStateEvent are functions
as parameters which are static in nature and are defined globally which takes care of
the task to be performed during events.

Figure 3.6: Setting event handlers

39

After initialising SDK and performing camera checks along with setting handlers, a
wrapper to the EDSDK was implemented. The wrapper consisted of basic function
that would allow taking pictures from the host PC, view the live screen, obtain flash
information and download the image in various formats (JPEG, .CR2) as shown in
the header file (Figure 3.7) below.

Furthermore, this setup with basic implementation allowed us to model a smaller
version of light stage with an ability to take pictures , change settings for the camera
and also download images. In addition, images processing became possible with
obtained images allowing us to create applications based on image processing.

The following header file highlights the functionality the API provides

Figure 3.7: Header file for Canon DSLR class

40

3.3 Canon Speedlite 430EX II

Canon Speedlite 430EX II acts as an external flash to the Canon Camera. It is based
on ETTL(Evaluative flash metering with preflash reading)technology i.e. the flash
acts as a slave to the cameras built in flash. It then uses the preflash information
from the master. Canon Camera on the other hand has a wireless flash system that
allows two or more speedlite flashes to fire. A sensor is built into the external flash
which senses the light from the master flash i.e. the camera built in flash and causes
a remote flash to fire.

The multiple speedlite gives us the creative control over how we provide lighting
to any object. Its wireless feature capability makes it easier to mount the flashes to
various locations. Hence with variants in background lighting possible, it becomes
suitable to use these wireless flash as our light sources during our photometric stereo
implementation.

During our photometric stereo experiment it is necessary to deal with synchronisation
issues between the flash and the camera and thus understanding the type of control
within the canon system becomes important. There are two types of wireless flash
controls used within the canon system. Radio wireless and Optical pulsed-light
wireless.

3.3.1 Optical pulsed-light wireless

This system uses the pulsed optical light technique in order to send the flash settings
and the triggering pulses information from master to the slave units. It requires a line-
of-sight connection between the master and the slave flashes. This therefore ranges
within 12 m distance. Since the pulsed light wireless technique requires line-of-sight
connection and ranges over limited distance, we felt we could have synchronisation
issues during our experiment and hence chose the alternative i.e. the system using
Radio wireless.

3.3.2 Radio wireless

This system uses 2.4Ghz radio frequencies to control the slave flashguns in order
to send flash setting and triggering information. As it transmits radio signals and
require no line-of-sight connection between master and slave, it has higher range of
transmission of 30 meters.

41

Figure 3.8: Canon Speedlite 430EX II[18]

This very advantage over optical pulsed-
light wireless system makes radio wire-
less flexible system to use. It can be
hidden behind obstacles or other ob-
ject around it without having to worry
about the line-of-sight connection is-
sues.

Similarly, the system can function as
either a Radio master or a Radio
slave which welcomes it as being the
master controlling other flash units.
This provides flexibility of adding five
groups of slave units with 3 flashguns
in each group meaning a total of 15
slaves.

Hence radio wireless system was chosen as the idle method while implementing
photometric stereo and thus canon speedlite 430EXII was used.

3.4 Synchronisation

Although the flash chosen for the photo-metric stereo technique was idle, we ran into
a problem where synchronization were to be further implemented. Our idea was to
make each flash lights as point light source and thus triggering each flash differently in
different times would give us four different lighting setups used in photometric stereo
experiment. However the cameras built in flash acted as a master, also triggering itself
while sending data to its slave flashes. We would therefore have two flashes triggered,
one for master and the other for the slave at the same time. Thus in order to obtain
only one light source we tend to alter the firing of photograph. This was done by
varying the shutter speed while controlling the lights falling onto the photographic
film. It was therefore made programmatically possible by altering the exposure time
for capturing picture and the exposure time for the wireless flash as described below.

Canon Camera’s EDSDK API allows us to obtain the shutter speed currently set
on the camera. This is done by obtaining the properties of camera and image objects
using EdsGetPropertyData and EdsSetPropertyData functions. Hence the following
algorithm shows how to make use of these functions to set the shutter speed of the
camera.

42

Algorithm 1 Changing Shutter Speed algorithm
1: Initialise canon SDK and create new instance of the SDKHandler.
2: Obtain the connected cameras to the host computer and store the required camera

to EdsCameraRef camera object.
3: Open the session with a camera and get camera settings using EdsGetProperty-

Data with one of the parameter being kEdsPropID_Tv.
4: From kEdsPropID_Tv you can obtain the data size, access type and data type

the property Id for TV returns. Using this information you can set the values of
the Shutter speed by calling the EdsSetPropertyData. The Shutter speed value
varies from Bulb to 1/8000th of seconds.

The shutter speed program implemented can be seen in Appendix A.1. Now the
process of getting only one flash to trigger is done by changing the shutter speed
within the range between Bulb to 1/8000th of second. Through observation it became
apparent that when the master flash sends a signal to the slave, the camera triggers
immediately to take pictures. Thus an immediate response between camera trigger
and master flash trigger meant two observed light sources (master and slave flashes).
Hence with the introduction of little delay on taking pictures would mean we were
delaying the time the master takes to send signal to slave flash. Thus by the time the
slave flash receives signal and triggers, our camera shutter opens. This solution was
therefore implemented on all flashes for suitable results.

Similarly the slave flash had a capability of high, medium and low synchronisation
settings. By altering the synchronisation level and by further testing the slaves,
it became apparent that we had further flexibility in synchronisation. With few
attempts it became easier to deduce the values to set on the camera where the master
flash would not interfere and thus we have only one light source as required.

3.5 Channels

As discussed previously, the infrastructure we are trying to build would have four
different light source controlled independently for photometric stereo experiment.

43

Figure 3.9: EOS utility Flash Settings[19]

Now that we have managed
to get four light sources i.e.
the slave canon speedlite flash,
we need to trigger them sepa-
rately. This is where channels
play an important role. Can-
non provides four such chan-
nels: both the master unit
and the slave must be set to
the same channel. This allows
up to four photographers, each
working with different chan-
nel alongside each other with-
out their flash units interfer-
ing.

Alternatively, one photographer
can have four set-ups that
can be controlled individually.
Hence with four slaves under
four different channels we can
control the light sources allowing us to perform photometric stereo.

3.6 EOS utility software

An alternative approach to form the similar setup was to use the Canon’s EOS utility
software which provides wide range of functionality. The need for a second approach
is to observe which of the two methods would bring efficiency and more control over
the photometric experiment.

Once the camera is connected to the computer by a USB cable with correct setting in
communication menu i.e. set to either ’Normal’ or ’PC’ connect, the camera controls
becomes accessible. Starting EOS Utility and switching on the camera presents us
with the initial screen allowing us to change camera startup settings.

44

Figure 3.10: Canon camera set-
ting and remote shooting[20]

With camera initialized and connected we have
further access to Camera settings and Remote
shooting alongside the channel update function-
ality as shown in Figure 3.10.

As we can see we have capability of changing
channels shown in Figure 3.9 along with the
capability of changing the aperture and shutter
speed. Thus we will try to automatize the
process of changing channels as we take pictures
and also change the aperture alongside shutter
speed applicable for photometric stereo experi-
ment.

This is done by writing a C++ program that
detects the EOS utility software in the windows
screen. Once the position of the software is
detected we monitor the mouse clicks and key-
board press. Two threads runs simultaneously
with 100 millisecond on one thread responsible for
changing channels. This delay allows the camera
to take pictures under the channel currently set
to the camera. Below is the program that shows
how an update to a channel is obtained.

Figure 3.11: updates channel for the canon camera

45

With this program up and running we write a bash script that forms a loop on
executing this program four times. This process therefore allows us to take four
pictures with four flashes triggered alternatively.

Figure 3.12: Bash algorithm to trigger flashes and change channels

While the camera was programmed using C++ programming language to control
features in camera, an external electronic flash system was wirelessly regulated using
the camera itself. With this setup as seen above, we obtained following images
downloaded via C++ programming when the flash lights were placed in four different
positions.

Figure 3.13: varying lighting directions

46

Figure 3.14: Images taken as per light direction shown above from left to right

The images seen above clearly shows how shiny the object is and how it contains
specular highlights. These images therefore does not become very useful when
performing photometric stereo as we require objects with Lambertian surfaces and
diffuse reflection. Hence we introduce a concept of polarization discussed in next
chapter.

47

4 | Polarization

Polarization is a property of waves which oscillates in one or more orientation. Light
is an electromagnetic wave and hence exhibits polarization. Light wave is known to
vibrate in a multitude of directions and in general it can be thought to vibrate in
vertical or a horizontal plane. Thus a light wave that vibrates in more than one plane
is called unpolarized light. The experiment followed until now had unpolarized light
produced from the speedlite flash units and thus specular objects showed shininess in
the resulting images.

Figure 4.1: Polarization types[21]

Light emitted by the flash lights is unpolarized light because the light waves are
created by electric charges, thus creating an electromagnetic wave that vibrates in
a variety of directions. Hence in order to polarize the light in only one direction
we make use of Polaroid filters. Polaroid filters are designed with a special material
cable of blocking the electromagnetic wave vibrating at one plane while allowing the
wave on other plane. In other words Polaroid acts as a device to filter one half of the
vibration during the transmission of light through the filter.

Hence the output becomes one half of the light wave intensity which vibrates in
single plane as shown in Figure 4.2.

48

Figure 4.2: Unpolarized light to Polarized light[22]

4.1 Polarization of Reflection

As part of our experiment it also becomes necessary to understand how unpolarised
light undergo polarization during reflection. The polarisation that occurs during
reflection becomes directly proportional to the angle the light approaches to the
surface and also the type of material it reflects upon. Metallic surface usually reflects
light in many very direction and therefore becomes unpolarised. However non-metallic
surfaces reflects majority of lights parallel to the reflecting surfaces plane. Thus a
viewer sees a glaring effect of the object if the polarisation of light is higher.

Figure 4.3: Polarization effect[23]

49

4.2 Cross polarization

Cross polarization is the polarization orthogonal to the polarization that is currently
in place. In other words, if the light is horizontally polarized then cross-polarization
would mean introduction of vertical polarizer. Hence in the experiment we conduct we
use cross polarization. The camera taking the picture would be vertically polarized.
This is done by mounting a vertical polarizer in front of the camera as shown in
Figure 4.4.

Figure 4.4: Cross Polarized[24]

Similarly the flashes are mounted with a horizontal polarizer as shown in the figure
4.4. Now that we have cross polarized the light, we take 4 different images under this
new setup and compare them with the images observed without the polarizer. We
can see that the specularities seen earlier has disappeared and the resulting image is
diffuse. These images now becomes applicable when performing further computations
on photo-metric stereo i.e. calculating normal, albedo, Height map and getting 3D
mesh of an object.

The following images shows the specular images along with the diffuse images obtained
after polarization under varying lighting conditions. This therefore allowed us to
visualize the differences in the result.

50

Figure 4.5: Images under polarized and unpolarized lighting conditions

As can be seen from the figure above, the specular highlights has been successfully
removed after using the polarized sheet. However the object itself seem to have
interreflections making the object not very useful for our experiment. The photo-
metric experiment performed with the toy object having interreflection effects will
be discussed and analyzed in Chapter 6. Let us now understand the problem of
interreflection and its cause.

51

4.3 Interreflection

Reflectance properties of an object obtained from photo-metric stereo technique
assumes that the points in an object are only illuminated by the sources of light
under consideration. Thus the true reflectance value is obtained when the object
has a convex surfaces. However most of the objects consists of the concave surfaces
and causes the light to reflect among themselves. This very behaviour during the
photo-metric stereo experiment can cause the obtained intensity values to be error
prone. In return the normal map estimates along with varying reflectance (albedo)
calculations becomes invalid.

4.3.1 Problem

Shree K. Nayar in his paper "Shape from Interreflections" [8] mentions how points in
a scene, when illuminated, reflect light not only towards the sensor but also among
themselves.

Figure 4.6: Interreflection effect[25]

A simple interreflection
example shown in fig-
ure 4.6 suggests how
a light incident to the
surface can have in-
terreflections giving a
glare effect. If this
were to happen during
the photo-metric ex-
periment, the true in-
tensity values for each
point of an object would
not be observed caus-
ing erroneous estimates
throughout.

These interreflections also
called mutual illumina-
tion can vary the appearance of the scene. Thus if we were to choose objects of concave
surfaces, the effects of interreflections can produce erroneous results. Hence the toy
(Figure 3.14) we have chosen earlier during our experiment had interreflections within
it and caused significant error during photometric experiment i.e. while deducing
normal map, albedo and height map shown below.

52

Figure 4.7: Normal Map(left) and Albedo (right)

The normal map and an albedo recovered above clearly has invalid computational
results as the data provided during the calculation was erroneous. Also another
reason for erroneous result is because of subsurface scattering i.e. the light enters
the object at one point, scatters inside it and leaves the object at another point.
Thus with the help of the result above it becomes clear that the photo-metric stereo
experiments becomes valid for Lambertian surfaces with diffuse reflection and no
interreflection effects. Thus further experiments will consist of objects with above
mentioned properties.

53

5 | Reflectance Setup using LED Light-
ing Systems

At the beginning of Chapter 3 we mentioned two setups which will be of interest
throughout the project. In chapter 3 we discussed one of the setup involving speedlite
flash lights and camera control. This chapter will now focus on building the LED
lighting infrastructure applicable for performing photometric stereo and also flexible
enough to build light stages as discussed in Chapter 2. Thus a complete review on
equipment’s used, networking protocols followed with low level packet sniffing and
reverse engineering performed to build an entire lighting network will be discussed
throughout this chapter.

5.1 Setup

Figure 5.1: Self built Reflectance setup using LED lighting systems

54

As shown above, the design involved two PDS-70mr 24v with two Cat 5e cable
connecting to the Ethernet switch. Also two data/power cable from each PDS-70mr
system connects four Colour LED lamps and four white LED lamps in alternative
fashion. Further connection was established using the Cat 5e Ethernet connection
between the PC and the Ethernet switch forming a complete network to control
the LED lamps. Note that the setup eradicated the use of Light Stage manager
controller (discussed later) completely as it tend to control the lights via an API
(which is entirely written by us by reverse engineering). Similarly the LED lamps
were mounted on a track with a MR16 track head as seen in the complete setup
(Figure 5.1).

Hereafter, a detail understanding on the underlying resources (mentioned in last
paragraph) used in building the entire network with a brief explanation is shown.

5.2 PDS 70mr setup

PDS-70mr 24V is a power / data supply designed especially for MR LED lamps
from Philips colour kinetics. It allows LED lighting installations with an output
of maximum 72 W. It comes in three versions namely Ethernet, DMX, and Pre-
programmed. We however will be using Ethernet versions as it has an Ethernet input
to receive input from an Ethernet controller, such as Light System Manager and
becomes flexible enough to be controlled from host PC. Figure 5.2 below shows the
PDS-70mr 24V both external and internal view. It features two Ethernet port and a
24V outlet port for us to connect LED lamps as shown on the right figure below.

Figure 5.2: PDS 70mr[26]

55

Similarly we choose Ethernet version as it is not subject to the DMX addressing
limitations i.e. when forming a network there is a flexibility of giving addresses to the
connected LED lamps as per our necessity. Ethernet also is the preferred environment
for large-scale, colour-changing light shows and video displays, both of which require
large numbers of unique addresses. This therefore becomes applicable choice in long
run as our project eventually desires to form a larger light stage.

In Ethernet networks, maximum data cables lengths are 328 ft. (100 m) between
Ethernet devices without a repeater (for example, controller to switch, or switch to
PDS-70mr 24V) and each PDS-70mr 24V device can support a maximum of 14 MR
LED lamps. The fixture cable length cannot exceed 50 ft. (15.2 m). We will therefore
follow aforementioned criteria to build our infrastructure.

Figure 5.3: PDS 70mr connected to 14(max) fixtures[27]

5.2.1 Installation

Typical Ethernet installations use an Ethernet switch, an Ethernet controller such
as Light System Manager, Ethernet Controller Keypads for push-button light show
triggering, and one or more PDS-70mr 24V Ethernet devices. However here we try to
avoid using Light Stage manager and instead just use host PC to control the entire
network programmatically.

The installation we prefer to use is two PDS-70mr each with four alternatively placed
LED lamps namely IColor MR and IW MR (discussed below in detail). We will make
use of an Ethernet switch or hub to connect the controller and multiple PDS-70mr
24V Ethernet devices i.e. Each PDS-70mr 24V Ethernet device is connected to an
Ethernet switch port using CAT 5e. Figure 5.4 below shows a rough design that we
would wish to build for the project.

56

Figure 5.4: PDS 70mr installation model[27]

Similarly, the LED lamps from Philips Colour kinetics used in our setup are a unique
set of lamps that has a capability of being programmed and also controlled through a
network. The two set of lamps namely IColor MR Gen3 and IW MR Gen3 along with
its properties and how it becomes important in photometric experiments is detailed
below.

5.3 IColor MR Gen3

Figure 5.5: IColor MR Gen3 lamp[28]

Firstly we will make an illustration about
IColor MR gen3 and its underlying prop-
erties it holds that makes it useful for
our application. The sole reason for
its choice was it being an intelligent
programmable colour lamp that is able
to provide various colour changing ef-
fects and controllable saturated bursts of
colour. It becomes useful in our photo-
metric application as well as constructing
light stages because of its high-intensity LED light sources and its capability to control
each of the Red Green and Blue channels independently. However it came with three
different beam angles useful in various scenarios and a choice between three different
beam angles was to be made as per our need.

57

The beam angle is the degree of width that light emanates from a light source. Out
of the three beam angles 17, 30 and 90 degree, we made a suitable choice depending
on the degree of wider spread of light and higher lumen distribution. It was therefore
necessary to have further study on Polar candela distribution analysis along with
Illuminance at distance and further analysis on lumens and efficacy.

The following shows a comparison between the three in terms of its polar candela
distribution.

Figure 5.6: IColor MR Gen3 Polar Candela Distribution[28]

As can be seen from the Polar Candela distribution chart, 30 degree beam angle
lamp provides consistent candela distribution over 0 to 25 degrees and thus it seemed
applicable to have 30 degree beam angle under this analysis.

58

Similarly when making a comparison in terms of lumens and efficacy using the data
below, it was applicable for us to have higher efficiency of 11.5 with higher lumens
(151 lumens) which was given by IColor MR 30 degree beam angle. It was therefore
applicable to choose a 30 degree beam angle IColor lamp.

Figure 5.7: IColor MR Gen3 Lumens and Efficacy[28]

On the other hand a further analysis was done in accordance to the Illuminance at
distance. The following data was used as provided by the supplier.

Figure 5.8: IColor MR Gen3 Illuminance Distance [28]

59

Thus for our photometric stereo application it was applicable to have a beam width
just a right amount i.e. not to low and not too high. As 30 degree beam angle IColor
lamp has a beam width of 10.8 ft. and with illuminance distance of 24 ft., it was
applicable for the application we chose to build. Therefore, for us to have higher
degree of freedom while focusing to the object of interest during photometric stereo
experiment, we chose IColor with 30 degree beam angle.

5.3.1 RGB Channels

IColor MR gen3 consists of LED channels namely Red Green and Blue channels. It
has an input voltage of 24 VDC essentially provided by the PDS-70mr we discussed
earlier. The power consumption is of 5W when at its maximum output at steady
state. By default the lamps operate in 8-bit mode and hence channel 1 represents Red,
channel 2 represents Green and channel 3 for Blue. Hence these channel operating
at 8-bit mode will have 256 dimming steps. Each RGB channels can be controlled
independently by giving an intensity value ranging from 0 to 255 i.e. 0 being the
least bright and 255 the maximum brightness. Hence when programming the lamps
it becomes necessary to discover which lamp are we considering and which channels
are to be set with the intensity values.

5.4 IW MR Gen3

Figure 5.9: IW MR Gen3 Lamp[29]

Similar to IColor MR Gen3 is the IW
MR Gen3 lamps. IW MR Gen3 is an
intelligent white LED lamp that provides
intense, colour temperature modifiable
white light. It provides three different
channels of warm, neutral, and cool LED
sources. The temperatures ranges from
2700 K - 5700 K. These high-intensity
LED light sources comes in three beam
angles and is suitable for our application
on photometric stereo.

As mentioned previously on the choice of beam angle for IColor MR Gen3 lamps,
a similar analysis was performed to make a choice between 20, 26 and 100 degree
beam angles for the white lamp. Conclusion was therefore to choose 26 degree beam
angle lamp as it had higher lumens of 241 and 19.4 efficacy and would fit the purpose
of the experiment.

60

5.4.1 Temperature Channels

IW MR Gen3 consists of three LED channels for setting the temperature of 2700K,
4000K and 5700K. Similar to IColor MR Gen3 lamp IW MR Gen3 lamps has an
input voltage of 24 VDC essentially provided by the PDS-70mr we discussed earlier.
The power consumption is of 5W when at its maximum output at steady state. It
operates in 8-bit mode, where each fixtures use one address per LED channel (2700
K, 4000 K, and 5700 K).

Thus addressing the channels for warm, neutral and cool temperatures for each IW
MR Gen3 lamps along with RGB channels for each IColor lamps becomes essential.
With these channels addressed and those address capable of receiving correct intensity
values via network, it becomes easier to perform experiments that requires variations
of lighting effects. Therefore hereafter we discuss the underlying implementation on
how we address each lamps along with how we built a network to send correct packets
to those addresses.

5.5 Addressing Lamps

Figure 5.10: Address of the Lamp[29]

The lighting system from Philips Color
Kinetics comprises a controller, wiring,
Power / Data Supplies or Data Enablers,
and fixtures. Addressing therefore en-
ables the devices in the system to extract
the correct segment of data from the data
broadcast sent by the controller which is
the Host PC in our case. Using the data
targeted for its address, a fixture can
display the correct light output. Each
IColor MR Gen3 and IW MR Gen lamps
has a serial number associated to it. This
serial number is unique for each bulb and is looked-for while discovering the connected
IColor lamps in a network.

Addressing the lamps requires a local area network built through which packets has to
be sent to the specific lamp with the address you wish to assign. Since we are dealing
with PDS-70mr Ethernet version and the lamps connect to it, we can configure the
lamps address using a software called QuickPlay pro which will be discussed shortly.
However for the experiments, we require an API which can control, discover, set
intensities and assign addresses to the lamps automatically. Having said that the
Philips Company (provider of the IColor and PDS-70mr) do not provide an API to
perform these tasks. Hence, we will build our own API by reverse engineering the
software (QuickPlay pro).

61

5.6 Networking

With the infrastructure built (Figure 5.1) and PDS-70mr along with Kinetic lights
connected, we build a protocol through which the host PC controls the PDS-70mr
along with the lamps. It required us to setup a local area network through which
we send packets to the desired addresses in the network. The configured PDS-70mr
Ethernet version system followed a protocol which required us to set the local area
networks IP address within the range 10.1.3.00 to 10.1.3.XX where X relates to
maximum two digit number. This was done by following the steps below.

• In Windows we open a Network sharing centre and choose to change settings for
Ethernet network. We choose the Ethernet that we tend to use for PDS-70mr
system. We then open local area connection settings as shown in Figure 5.11
below.

Figure 5.11: Local area network setting

62

• Properties tab is selected through which we select Internet Protocol version
4(TCP/IPV4) tab. This provided an option of setting a local area network
under a desired IP address. As mentioned earlier the PDS-70mr is to have an
IP set within the range 10.1.3.00 to 10.1.3.XX. Hence we chose to set the IP
address to 10.1.3.30.

Figure 5.12: TCP/IPV4 setting

The network was now up and running and each of the resources (IColor lamps, IW
MR Lamps and PDS070 MR mounted to the electric track) used were in a local area
network with an IP address set to 10.1.3.30. Packets with relevant data on it was
now possible to be sent through the network to control the lamps. However a choice
of protocol had to be made. We had a choice of following two protocols while sending
the packets to the network. Transmission Control Protocol (TCP) or User Datagram
Protocol (UDP).

63

5.6.1 TCP or UDP

TCP is a transmission protocol that provides reliable, ordered, and error-checked
delivery of data from a host to the other over an IP network. For a reliable
transmission TCP establishes the connection using three way hand shaking which
allows no disturbance from other sources during the entire communication i.e. it
establishes connection through three way handshaking. This is done by sending and
receiving packets as follows. Here a SYN and ACK (acknowledgment) packets are
shared within client (cli_init_seq) and server(server_init_seq).

Figure 5.13: TCP/IPV4 setting

Thus a reliable data transfer is expected. TCP also has a congestion-control
mechanism that throttles the transport layer when one or more links become
congested. This therefore allows reliable delivery of data. Hence no Data loss.

On the other hand UDP uses a simple connectionless transmission model with a
minimum of protocol mechanism consisting of no handshaking dialogues and possess
following advantages as a protocol.

• UDP has a mechanism to package data inside UDP segment and send to the
network layer immediately. Hence no delay in segment transmission. Although
it could face data loss, it has a capability of tolerating some data loss and try
the transmission again.

• No connection establishment required for UDP thus connection can start to
transfer data right away. Since setting up and tearing down a TCP connection
would be wasteful.

• UDP has only 8 bytes of overhead whereas TCP has 20 bytes overhead which
results in bigger packet transmission taking more time. Thus a faster response
is gained.

As discussed above, the TCP is about reliability and thus extra steps such as
handshaking, throttling the transport layer if congested can be time consuming. The
application we tend to build and the experiment we wish to perform requires minimal
time. Thus for faster and hustle free network connection and fairly reliable and quicker
data transfer we chose User Datagram Protocol (UDP) as our transport protocol.

64

As discussed previously regarding photometric stereo experiment, we know we require
four different light sources in four different locations. And it is clear that the setup
we have built so far fits the purpose of the experiment. As mentioned earlier we wish
to atomize the whole process of creating lighting conditions and take relevant picture
i.e. we will turn on lights alternatively at a time interval and a canon camera will
take picture under these lighting conditions accordingly. Thus for us to automatically
control flash lights and capture images for the experiment, an API that controls these
flash lights is to be built. Hence we now discuss in detail how such API was built.

Firstly we will introduce the software named QuickPlay Pro that is used to send
relevant packets to the network to obtain relevant lighting effects and make a close
observation on the packets. Then a C++ based API will be built by reverse
engineering.

5.6.2 Quick Play Pro

Quick Play Pro is a multi-feature lighting system software from Philips that allows
us to configure, test, and demonstrate lighting systems via computer. Also it allows
rapidly verifying the addresses for each connected fixtures (lamps) that is configured
and make changes to the addresses as per our desire. Similarly, discovering each
specific channels becomes possible along with changing intensities values for each
channel. The following shows the software UI which gives a rough idea on things that
can be configured.

Figure 5.14: QuickplayPro settings with Tools tab[30]

65

With the IP address all set and Ethernet cable connected to all PDS-70 MR system,
QuickPlay Pro automatically discovers Ethernet Data Enablers and Ethernet Power/
Data Supplies, and IColor/ IW MR Fixtures. As shown in the figure above we require
to use the tools option to select the IP address from the list within Quick Play Pro.

As we now know that packets are constantly being sent to the network following
UDP protocol. Thus in order to create a C++ based API that would allow us to
perform similar task through our program, we require to understand, analyse and
find patterns in the packet. Thus we introduce to a software called Wireshark that
is applicable for sniffing packets in the network.

5.6.3 Reverse Engineering using Wireshark

Wireshark is an open source network packet analyser that captures network packets
and displays the packet data in a detailed fashion. It identifies the live packet data
from a network that you chose to analyse. Similarly it is capable of showing the hex
dumps, network addresses and detailed protocol information while also capable of
saving the packet data captured.

Now here we see a small example on how we obtain the desired packet information
using Wireshark. Many more packets are to be examined while creating the API.
However here we explain one simple example in detail for us to understand the
underlying principle. The example will show how we sniff packets that are responsible
for discovering the serial number of all the lights that are connected in the network
for a particular PDS-70 MR system.

Firstly we open QuickPlay pro software and choose the relevant PDS-70 MR system
(as we use two PDS-70 MR system in our project). Then open Wireshark software
as shown below and select the Ethernet network option. The Interface setting has to
be edited with an IP address of 10.1.3.30 as discussed earlier in networking section.

66

Figure 5.15: Wireshark interface setting mode[31]

With Wireshark interface setting edited and ready for reading the packets going
through this interface, we try to send data packets using quick play pro. Here in
this example we are trying to discover the serial number of all lights connected to
the network, thus using a discover button in quick play pro we send relevant packet
to the network that enables the PDS-70 MR to send back packets containing serial
number information. Let us see how it looks like.

Figure 5.16: Details of the captured packets[31]

67

Here the first five packets are sent from an IP address set by us as 10.1.3.30 to a
destination address i.e. 10.33.157.51 for the PDS-70 MR system. The first five packets
(No. 3, 4, 5, 6, 7) seen in the Figure 5.16 above are UDP packets as mentioned earlier.
These packets when received by the PDS-70 MR system, understands the packet as a
discover packet and sends back other data packets back to 10.1.3.30 address as shown.
Also in the highlighted part of the figure above we try and observe the nature of the
packet. The bottom blue highlighted packet is the actual data packet in bytes. The
orange highlight when reversed reads as "43024318" which is the serial number for
one of the lamp connected to this system. As we can see we have received four such
packets because we currently have four lamps connected to the system and each of
those packet contains serial numbers of the lamps.

Thus we analyze these five sent packets from our PC and use it to discover the
serial numbers for all lights connected to the network. It therefore becomes necessary
to understand how each packets are read by the PDS-70 MR system and how it
uses each byte in the packet to understand what lighting effects to generate. Also it
becomes useful to understand what each byte represents in the protocol PDS-70 MR
system follows. Thus we take one of the packets obtained from Wireshark software
and deduce a method to create such packets automatically through our C++ API
(will be discussed in detail later).

5.6.3.1 Packet Details

As deduced so far, 512 byte of packet is to be sent to the network where each byte
associates to some task we prefer to perform. Thus we take an example of a packet
and detail out what each byte represents. Below is sample packet that can be used
to turn off all the lamps connected to the PDS-70 MR System. Let us now analyse
the bytes for the packet.

Packet in hexadecimal with two digits signifies one byte. The below is an extraction
of first 21 bytes. The use of only 21 bytes in this example is because the rest of the
bytes among 512 bytes are zeros as our example is to turn off all lights in the network.
Here the hex value under black box (i.e. first four bytes) represents a magic number

Figure 5.17: First 21 bytes of a packet

uniquely identifying the Kinetic lighting. Similarly 0100 under brown box represents
a version number. The next two bytes (0101) under blue box represents the type of
action. Similarly next four bytes (under grey box) is for sequence. Purple box (1
byte as 00) is for Port whereas green box (1byte as 00) is for padding. The light
green box (0000), dark blue (ffff ffff) and red box (00) associates to "flags" "timer"
and "unit" value respectively. "unit" here responsible for telling what operation is

68

currently active. For example the following are some of the operations
"00" -> Mode for setting light intensities values.
"ac" -> Mode for address discovery
"aa" -> Mode for address change
"de" -> Mode for setting intensities values depending on the serial number of lights.

The above explanation became important because the first 21 bytes for any packet
is a header packet that is constant for all packets we send in a PDS-70 MR lighting
system. The remaining bytes on the packet apart from these 21 bytes are responsible
for either discovering lights, getting unique serial numbers for the light or even setting
the intensities and temperature for the lamps in the network.

As mentioned, the type of action is represented by the light blue in the header packet
above. Hence a simple discover action could be performed by changing this light blue
packet of two byte (0101) to 0102. Thus a packet would be "0401 dc4a 0100 0102
0000 0000 0000 0000 ffff ffff 00" in addition to all zeroes for remaining bytes.

Although we will not go onto analysing every possible packet used while creating
our C++ and Python API. Let us however see one more example of how lighting
intensities can be set for a particular light in the network. There are two possible
ways of telling a light to set its intensities.

• The simple but not very robust method would be to initially understand which
address a light is configured to. This is done by sending discover packets and
obtaining the address. If for example the address is 1. This means the 3 bytes
(after the first 21 byte header packet) each represents the channels (RGB).
Hence, if we would want a Red, Green and Blue channel set to their maximum
intensities, we give a hex digit of "ff" for each of the three byte just after the
first 21 byte as "0401 dc4a 0100 0101 0000 0000 0000 0000 ffff ffff 00 ff ff ff 00
00" Note the first three byte represents the lamp with address 1 set to it. Thus
wishing to set intensities to lamp with address 2 would mean 4th 5th and 6th
byte set as "ff" and so forth.

• However, this becomes a tedious task when the address is not as simple as 1, 2,
3 etc. Another approach would therefore be to go by the unique serial number
each lamp possess. Once the discover packet receives all the packet information
including its unique serial number. It now becomes possible to name the light
as first or second or third or fourth light to be set to maximum intensities
rather than having to calculate which byte number associates to which light.
The following packet sets the intensities to maximum for a light bulb that has
a serial number of "4304005a"

0401 dc4a 0100 0101 0000 0000 0000 0000 ffff ffff de 4304005a ff ff ff 0000

69

Here the header file has an addition of unique "unit" hex number of "de"
as discussed earlier as a mode for setting intensities values depending on the
serial number of lights. This is followed by the serial number of light obtained
during discovery of lights in the system. And the intensities values to be set i.e.
maximum intensities ("ff") for each Red, Green and Blue channels. The "ff" we
have referred to so far can be altered from a range 00 to ff i.e. 0 to 255 decimal
number, thus representing different intensity value.

With the above technique of identifying which packet structure performs what kind
of task, it was possible to deduce the number of possible experimental task necessary
for our project. Therefore a similar analysis was done with other packets and an API
was created to perform following tasks.

• Detecting the network and establishing a dedicated connection between the Host
PC and PDS-70 MR.

• Discovering each lamps in the network and extracting the unique serial number.

• Setting a unique address to each of the lamps discovered automatically.

• Adding a functionality to turn on lamps of choice with given intensities i.e.
RGB values for IColor lamps and temperature control for IW MR Lamps.

5.7 C++ API

We hereby introduce a C++ based application programming interface (API) that is
used for building a network for PDS-70MR system and Philips colour kinetic lights.
It is used to interact with connected lamps in the system to control their intensities,
temperatures and also deliver lighting effects accordingly. The following shows a
rough sketch on the structure of the API.

70

Figure 5.18: API structure

As the figure above suggests a structure where PDS-70MR system plays an important
part in binding the system together. Hence the API is built based on this structure.
A class named PDS-70MR is created which has the functionality as mentioned in the
Figure 5.19.

Figure 5.19: Header file listing the functionality for PDS-70mr Class

PDS-70mr class is responsible for creating and binding sockets along with creating
vector of Philips light object associated to each connected IColor or IWMR lamps. It
also provides functionality on assigning address to each lamp and allows controlling
them. This therefore binds all resources together and allows options to control each
of these resources.

71

In addition, the simple code for discovering the lights is shown in the Figure 5.20.

Figure 5.20: Discovering lights in the network

Here the discoverLights() function gets discover packet using packetBuilder() function
and makes the packet fill in zeroString ("0") to make it to the size of 512
byte. A vector of packet is formed in which the discover packet is pushed into.
sendRecievePackets() is then used to send the packets to the network and also receive
packet in vector<string> form if the receive flag is set. The raw packets received by
the function is then analyzed using packetAnalyser() function which analyses the
packet and extracts the serial number present in the packet. Hence all the unique
serial number for the lights gets stored in the PDS_70mr system which can be used
when lighting effects are to be created.

Similarly socket programming becomes the important factor in our API as it deals
with sending and receiving packets throughout the network. Thus we will detail out
the algorithm used in socket programming using C++.

5.7.1 Socket Programming

In socket programming a dedicated connection is established between the host PC
and the system of interest (PDS-70 MR). The connection process is such that the
client gets assigned a local port number and binds a socket to it. The client now can
communicate with the server by writing to the socket and obtaining information from
the server while reading from it.

As the platform chosen for the project was a windows platform and thus an API
for windows namely Winsock was used. Winsock is a specification that defines how
windows networking software should access the networking services. The following is
a step by step process implemented in our programming using Winsock and socket
programming techniques.

• Initialize Winsock

• Create Socket

• Obtain Host IP address and Port along with Binding Socket to it.

72

• Send packet through socket

• Receive packet through socket

5.7.1.1 Initialize Winsock

All processes (applications or DLLs) that call Winsock functions must initialize the
use of the Windows Sockets DLL before making other Winsock functions calls. As it
also makes sure that Winsock is supported on the system used, it becomes a useful
initialisation process to follow. The library named ws2_32.lib consists of the necessary
program files that make use of Winsock. Use of WSAStartup function loads necessary
data to WSADATA variable to make initialization successful.

Figure 5.21: Initializing windows socket

5.7.1.2 Create Socket

After initialization, a SOCKET object must be instantiated for further use. This
is done with the use of socket function that takes AF_INET (used to specify
the IPv4 address family), SOCK_DGRAM (used to specify a data socket) and
IPPROTO_UDP (used to specify the UDP protocol) as arguments shown below.

73

Figure 5.22: Creating socket

5.7.1.3 Obtain Host IP address and Port along with Binding Socket to it

In order to accept client connection a server must be bound to a network address
within the system. Thus to bind a socket we require the IP address and a port. The
IP address is obtained using the gethostname() function which returns the host object
which contains h_addr (IP address). The following code demonstrates how we obtain
host IP address and bind a socket to it.

Figure 5.23: Getting hostname and binding sockets

74

5.7.1.4 Send and Receive packet through socket

The sendto and recvfrom functions are to be used to send and receive packets. Both
of these functions return an integer value of the number of bytes sent or received,
respectively, or an error. Each function also takes the same parameters: the active
socket, a char buffer containing the packet information, number of bytes to send or
receive, any flags to use and the destination address along with its size.

Figure 5.24: Send packet to socket

Figure 5.25: Receive packet from socket

75

5.8 Python API

In addition to the C++ API a python API was written following the exact protocol
used while writing C++ API. The features it contains are the same as that of C++
API i.e. controlling the Philips LED lighting. In addition to the packet analyzer
as seen earlier which analyses the packet received, the following shows the graphical
class functionality for the API. With the API developed and an understanding on

Figure 5.26: Python class functionality

how it is used is realized, the API along with the infrastructure discussed so far is
put into practice to get some results for the photo-metric experiment performed in
next chapter.

76

6 | Photometric Stereo implementa-
tion and Results

In this chapter we will perform the photometric stereo experiment using the
infrastructure discussed in chapter 3 and 5. Before going on to explain and analyse
results, the photometric stereo implementation in C++ alongside the use of OpenCV
(APPENDIX A.2) to process images will be briefly defined. Then the raw data images
obtained from the experiment will be given as an input to the C++ implementation
to obtain results. The obtained result from the photometric stereo implementation
in C++ will consist of the following.

• Normal Map

• Albedo

• Height Map

• 3D Mesh

The result will be analyzed and compared accordingly under all experimental setups.
Let us now briefly look into the implementation of photometric stereo using C++.

6.1 Photometric Stereo Implementation in C++

As learnt previously, photometric stereo is a technique used to estimate the surface
orientation and depth from images taken from a constant view but under varying
lighting directions. Although the experiment becomes sufficient with only three such
images, four images are taken as to minimize the noises present in the process. Also
the experimental limitation it holds will be carefully managed i.e.

• Light source has to be far away from the object.

• Specular or dark spots is to be avoided as it does not output satisfactory results.

• Shadows are to be masked in order to obtain valid 3D Mesh.

An algorithm approach of implementing photometric stereo will begin with a mirror
ball as an object to obtain lighting direction. The mirror ball will be placed in the
experimental setup and a consecutive images will be taken under all four lighting

77

conditions. The mask for the mirror ball will be obtained from the image along with
the light highlights on the mirror ball. The light will be calibrated to obtain the
direction of light from this information. Secondly, the actual object of interest is
placed in the experimental setup and images are captured in similar fashion. With
these raw data in hand, we use equations to evaluate Normal map, Albedo, Height
Map and obtain a 3D Mesh.

Also the following image of Buddha[32] along with the light source images will be
taken as an experimental data in order to test the validity of C++ implementation.
Once verified we will be using our own object to further compare and contrast the
result.

Figure 6.1: Images of Buddha under given light direction[32]

C++ implementation will therefore be done in following order.

• Use OpenCV to process images and obtain a mask.

• Perform Light Calibration

• Generate Normal Map and Albedo

• Generate Height Map

• Combine the above information to get 3D Mesh.

6.1.1 OpenCV for a mask

To generate a foreground mask, a technique named Background subtraction is used.
The idea is therefore to take two static image one including the object of interest
and one without the object. Then a subtraction between the current frame with the
object in it and the background model, produces a foreground mask as shown below.

78

Figure 6.2: Subtraction of current frame image from background model to get mask

This can be done with OpenCV by using two such classes namely
cv::BackgroundSubtractor and cv::imwrite. cv::BackgroundSubtractor class contains
a method called cv::createBackgroundSubtractorMOG which creates the object that
is used to generate the foreground masks. The operator() method in this class is
performed in a loop i.e. on every frame to calculate the foreground mask and updating
the background. Finally with the mask created cv::imwrite class allows to save it as
an image. A short program shown below follows the algorithm discussed.

Figure 6.3: Subtraction of current frame image from background model to get mask

79

6.1.2 Light Calibration

Calibrating the light source to estimate the light direction is the initial step that has
to be taken when calculating the normal map. Out of many possibilities a technique
involving mirror ball that when placed under a light source allows us to identify the
direction of light as per its brightest spot.

Figure 6.4: Light calibration

R here is the view direction i.e. the direction of the camera which is taken as [0, 0,
1]. Let us consider a location of the brightest point on the mirror ball as [Px , Py].
Similarly, the centre of the mirror ball as [Cx , Cy]. N here represents the Normal to
the brightest point as [Nx,Ny,Nz]. The desired calculation is the light direction (L)
which will be deduced using the following equation.

80

The centre of the mirror ball [Cx , Cy] is obtained from the mask image of the mirror
ball. Firstly the image of the mirror ball is taken and a mask image is obtained using
the obtainMask() function discussed earlier. The mask is again cropped in such a way
that the entire circular mirror ball lies in a rectangle. To do so we use the following
C++ code along with OpenCV.

Figure 6.5: Getting a mask cropped such that it lies inside a rectangle

The following is the cropped rectangle image obtained when a mask is given as an
input. Thus the function outputs a rectangle containing the circular mask of the

Figure 6.6: Output of using getBoundingRectforMask function

mirror ball. Therefore the centre of the mirror ball becomes the width and height
of the rectangle. i.e. Cx is the width of the rectangle and Cy is the height of the
rectangle. Hence using Cx , Cy in above equation it is possible to obtain the light
direction (L).

81

6.1.3 Normal Map and Albedo

As discussed in Chapter 2(Background), intensity at any point on a Lambertian
surface is given by
Intensity (I) = Albedo Constant (kd) * Normal (N) dot Reflected Light direction (L)
i.e. I = KdN.L.........................(1)

Thus to determine Normal (N) we take four different light sources and four different
Intensity values to get four different equations as

To solve above equations we will rearrange equation (1) as
L−1I = kdN

Now using openCV we inverse the light direction calculated earlier as

Similarly the intensities for (each pixel) all four images can be loaded into a vector
of float. Note here the modeImageGrey is a vector of openCV Mat that has all four
images loaded into it.

82

Thus a normal can be calculated by getting the matrix multiplication between inverse
light direction and intensities as shown below

However we did not mention the albedo constant kd in above calculation. Thus we
calculate the albedo constant by dividing the normal by the square root of its dot
product. Also to calculate the true normal when albedo constant is taken into account
is shown below.

This above calculation is repeated for each pixel and a normal map is obtained. The
following shows the comparison of true normal map against our calculated normal
map. We observe that the result obtained from our implementation is identical to
that of the original provided normal map.

Figure 6.7: Normal map for buddha obtained from original source(right) vs our
implementation (left)

83

Similarly the identical albedo shows the C++ implementation for the provided images
is valid.

Figure 6.8: Albedo for buddha obtained from original source(right) vs our implemen-
tation (left)

6.1.4 Height Map and 3D Mesh

Heightmap is a raster image that contains one channel specifying the height from the
floor which means when specified with the amount of displacement, the contrast in
the raster image corresponds to the height. In a heightmap, surface displacement
information is often represented as black denoting the minimum height and white
denoting the maximum height.

In order for us to render bumps of an object as true geometry in a 3D mesh, we
require to modify the vertex height. Thus a height map is applied on the terrain to
obtain such bumps on the mesh. Here the height values get mapped to a regular mesh
grid with recorded value in the heightmap specifying the distance between vertices.

Furthermore the normal map obtained in previous part will be used to get the
gradients in x (PGrad) and y (QGrad) axis as

84

With P and Q gradients deduced, further integration is done as discussed in Chapter
(Background) to obtain the height map. Note the heightmap below (left) shows the
black colour pixels are closer to the viewer while the white are further away i.e. the
darkest black signifies the closest pixels to the viewer. In addition, the 3D mesh is
obtained by using the integrated height map and C++ based VTK API discussed in
APENDIX A.2. The following 3D Mesh (right) was recovered.

Figure 6.9: Height Map(left) and 3D Mesh(right) for buddha

6.2 Results

With infrastructures built and implementation carried out, we performed various
experiments under varying setups. Hereafter we compare the results obtained from
all possible setup and analyze the result. Also, the objects used throughout the
experiments is shown below.

Figure 6.10: Experimental objects

85

6.2.1 With Canon Speedlite Flash lights

Infrastructure type : - Canon Camera with Polarised Canon Speedlite Flash Lights

Figure 6.11: Results for Tango object under Polarised Canon Speedlite Flash Light
setting

The above results from the object Tango shows the normal map, Albedo along with
Height map and 3D mesh. The results however seem to have lot of noise and the
images taken into consideration was not fully valid for the photometric experiment.
It was understood that the reason behind the erroneous data obtained was the object
under the experiment had sub surface scattering and interreflection within it as
discussed in Chapter 4. Thus a further experiment with the object Egg was performed
under the exact setup and lighting conditions to obtain the following result.

86

Figure 6.12: Results for Egg object under Polarised Canon Speedlite Flash Light
settings

As the above result shows the Height map obtained using the Normal map and further
used to get the 3D mesh is visually valid compared to that of previous object (Tango)
result, it was conclusive that the setup for the experiment (Canon Camera with
Speedlite flashes) was built successfully. The normal map for egg has higher detail
and least of the noise compared to that of object Tango. The 3D mesh has been
fully recovered and has a smoother surface detail. This therefore makes object Egg
applicable for photometric stereo experiments.

87

Hereafter the results obtained will be based on the setup discussed in Chapter 5 with
IWMR Lamps and IColour MR Lamps. Note that all of the lights under consideration
are polarized lights.

6.2.2 With IColor lamps

The following result compares results from three setups. Firstly IColor lamps with
its Red Green Blue channels to maximum intensities. Secondly with IColor lamps
with its Red (only) channel to maximum intensity and finally with its Green channel
set to maximum intensity. The object is an orange for this experiment and hence
Blue(only) channel for IColor MR lamp will be obsolete as orange itself has no blue
reflectance giving no response to the camera.

The light direction for the following three setups is shown below.

Figure 6.13: Light Direction for RGB lights as reflected in the mirror ball

Infrastructure type
: - Canon Camera with IColor MR Lamp
: - Full beam i.e. Max value for Red(R), Green (G) and Blue (B) channels

88

Figure 6.14: Results for Orange object under Polarised IColor MR Lamp setting

Here we observe a detailed surface normal along with some noise at the top of an
orange. The 3D mesh is smoother and details out some bumps. The 3D Mesh also
has noise at the top of the orange which is expected as per some noise during normal
map calculation. The albedo on the other hand clearly shows the total reflectivity
property for the orange.

89

Infrastructure type
: - Canon Camera with IColor MR Lamp
: - Red Banks i.e. Max Value for Red, 0 for Green and 0 for Blue channels

Figure 6.15: Results for Orange object under Polarised IColor MR Lamp setting

The normal map observed has less surface details. However it has very less of the
noise and the 3D mesh obtained has very little details on small bumps orange possess.
It can be understood that the Red light scattered mostly in the orange and thus the
total reflectivity is minimal because of less reflectance data captured.

90

Infrastructure type
: - Canon Camera with IColor MR Lamp
: - Green Banks i.e. Max Value for Green, 0 for Red and 0 for Blue channels

Figure 6.16: Results for Orange object under Polarised IColor MR Lamp setting

From the above three figures it can be seen that the surface normal computed with
white LED’s (RGB full on) has more surface details than the surface normal computed
with red light. It is understood that the red light scatters the most in the orange and
therefore gives less of the surface details. Similarly, in comparison to the red light,
green light results in slightly higher surface details but rather less surface details to
that of white (RGB full on) lamps.

91

6.2.3 With IColor MR white lights

Let us now consider another experiment which involves a different setup. Firstly
IW MR Lamps with its warm, neutral and cold channels to maximum intensities.
Secondly with IColor lamps with its warm (only) channel to maximum intensity and
finally with its cool channel set to maximum intensity. The object is an orange for
this experiment

The light direction for the following three setups is shown below.

Figure 6.17: Light Direction for IW MR white lights as reflected in the mirror ball

92

Infrastructure type
: - Canon Camera with IW MR White lamp
: - Full beam i.e. Max value for Warm, Neutral and Cool channels

Figure 6.18: Results for Orange object under Polarised IW MR White Lamp setting

Here we can see the full beam warm, neutral and cool temperature lights produces
rather distinct result. The noise is very minimal to any of the results obtained so far.
The normal map has comparatively higher surface details and thus a rather polished
3D mesh is recovered.

93

Infrastructure type
: - Canon Camera with IW MR White lamp
: - Warm Banks i.e. Max Value for Warm, 0 for Neutral and 0 for Cool channels.

Figure 6.19: Results for Orange object under Polarised IW MR White Lamp setting

Here with warm banks, although higher details on orange is recovered as can be seen
with the bump details observed, it seems the result is rather noisy on the peripheral.
This reflects in the 3D mesh where least smooth outlining is observed.

94

Infrastructure type
: - Canon Camera with IW MR White lamp
: - Cold Banks i.e. Max Value for Cool, 0 for Neutral and 0 for Warm channels.

Figure 6.20: Results for Orange object under Polarised IW MR White Lamp setting

From the above three figures it can be seen that the surface normal computed with
warm LED produces less details in the surface normal for the orange object compared
to all the white and cold white LED’s.

95

6.2.4 Experiment with narrow band RGB illumination

So far we performed photometric experiments with four different images obtained
from four different lighting conditions. We realised how static the object under the
experiment had to be for the right results i.e. each of four images had to be obtained
without the object moving. This gave us the limitation to non-static objects. Thus
being able to perform the entire experiment with just one image rather than four
separate images was analyzed.

The next set of experiment performed was with an egg object. The experiment made
was done by using just three of the four RGB lights where we illuminate the object
with one red light, one green light and one blue light from three different directions.
Then a single photo of the egg lit by these three lights was used to compute a surface
normal map by using the red channel of the camera for the red light, green channel
of the camera for the green light and blue channel of the camera for the blue light.
However, the albedo map could not be calculated using just one picture as described
but was later deduced with a second photograph with all RGB lights on to the object.

The three lighting direction used for the experiment is shown below.

Figure 6.21: Three different (RGB) lighting direction

With varying lights i.e. Red, Green and Blue from three different direction setup, we
obtain a single image when all three lights are at its full intensities. The following
image on the left is obtained. Similarly the mask (right) is recovered for the same
image for further photo-metric experiment.

96

Figure 6.22: Single image(left) obtained from the setup along with the recovered
mask(right).

As the single obtained image would have three separate channels with Red, Green
and Blue intensities along with three separate lighting directions. We can thus use
the same C++ program discussed earlier to recover the normal map and 3D mesh
shown below.

Figure 6.23: Normal map(left) with 3D Mesh (right).

The observed normal map above seem to have artifacts which is understood to have
caused due to noise in channels. Also in earlier experiments we had four separate
images i.e. more data set to analyze and reduce noises. However with a single image
in this experiment, we could not reduce noises. Similarly the 3D mesh seen is not
smoothly plotted due to some erroneous data in normal map. Also it can be observed
that the overall surface detail has been recovered well and we can therefore make a
conclusion that the experiment with narrow band RGB illumination is valid.

97

7 | Evaluation

We have so far evaluated the performance of two of our setups by thoroughly
comparing and analyzing the results. We deduced the only way to check if the setups
built had a desired outcome was to do so visually with output images observed.
In terms of implementation perspective we compared the output between expected
results obtained from verified source and our experiment result, which was done as
presented with normal map comparison of object Buddha in Chapter 6 (Figure 6.7).

Similarly, in previous Chapter, while discussing the various results obtained under
varying setups, we performed visual analysis on the kind of output obtained. We
talked about the differences in results along with the possible cause and also the
technicalities leading to some erroneous data. We made some evaluation on choice
of setup in Chapter 3 when deciding on the type of flashes to use with regard to its
synchronisation possibilities and ease of use. Further evaluation was carried out when
choosing the right resources for the project setup in Chapter 5 i.e. when choosing the
right LED lighting system, where we analysed various beam angles lamps in terms of
its polar candela distribution, lumens with efficacy and illuminance properties.

However to give more context to the obtained results, we decided to further evaluate
the generated system and its usefulness in real world scenario, and thus decided to
use one the verified software (named Renderer) written entirely by a PHD student at
Imperial College London to validate the results obtained so far with our experimental
setup.

The software named Renderer is a Real-time Rendering system implemented in
Python with use of OpenGl and GLSL libraries. It was written by a PHD student
Jeremy Riviere who is currently working as a team member for Realistic Graphics and
Imaging group [34] responsible for conducting research in realistic computer graphics
spanning acquisition, modelling and rendering real world materials. The following is
the visual user interface for the software.

98

Figure 7.1: Realtime Rendering system by Jeremy Riviere

With many more functionality offered by the Renderer software, we will be using its
specific capability of taking a normal map and Albedo as input to render an image
under infinite lighting directions. We will then compare the results obtained from
our setup at a certain light direction against the result obtained from the Renderer
software to the same lighting direction.

99

The following shows the use of the software for an orange object with input of normal
map and albedo producing a rendered image under following light direction.

X = -0.498408
Y = 0.330270
Z = 0.801565

Figure 7.2: Obtained result for orange object using Renderer software

Similarly, the following shows the use of the software for an egg bject with input of
normal map and albedo producing a rendered image under following light direction.

100

X = -0.432004
Y = -0.333593
Z = 0.837907

Figure 7.3: Obtained result for egg object using Renderer software

As from both set of example given in Figure (7.2) and Figure (7.3) we see that the
expected image is identical to that of the rendered image. For the kind of inputs we
got precisely the result we would have hoped for as the shadow effects and the shape
has been rendered as expected for both egg and orange object. We are particularly
pleased with the results for both egg and orange as there is qualitatively a good
match visually. Since we used a pre-approved software to make the comparison on
results and the output was a good match, we evaluate that the implementation was
successfully done and the setup was rightly built.

101

8 | Conclusion

We set out to build programmable reflectance acquisition setups using DSLR cameras
and controllable light sources for realistic graphics applications. We started off with
general research on Photometric Stereo techniques and its use in obtaining surface
normal. We derived a formula and also mentioned the normal map integration to
understand the 3D reconstruction process. Finally, with the background research on
photometric stereo, we required to build a system to put photometric experiment into
action. Thus we went onto building two set of systems which involved Canon camera
with Speedlite flash lights and Colour Kinetic lighting systems. We performed various
experiments under these setups to obtain results for comparison. Finally, we wanted
to verify the working system and thus put out various implementations and testing
procedures.

Firstly we implemented the API provided by canon to program DLSR camera to
retrieve functionality that controlled the camera. The controlled camera allowed
many functions applicable for the experiments for example the images taken could
be retrieved to the host computer by programming the DSLR camera. Also with an
introduction of wireless flashes and a mechanism to control them, it soon became
possible to perform photometric stereo experiment under this setup. With a simple
setup we were able to obtain four images with fixed camera position but with varying
light sources similar to the photometric stereo technique.

Similarly, various research was done in understanding the existing light stages.
Variants of light stages were discussed in order for us to rebuild similar setups and
scale it up in near future while understanding the underlying principle in obtaining
relevant data. Thus we set out to build an initial version of light stage and did so
successfully with the use of programmable colour kinetic system. We built a system
by setting up a programmable network of LED lights from Philips Colour Kinetics.
For the complete system to link together we went onto building our own Python/C++
based API through reverse engineering data transfer in a network. The API was then
used in controlling the LED lights while also extending it to control RGB and white
LED lights over an Ethernet network. In addition it soon became apparent to test the
system which was gained by performing photometric experiments using these setup
which later extended to an experiment with narrow band RGB illumination.

102

The two setups built throughout the project allowed us to perform similar experiments
and thus a comparison was done on the practicality of the two system for future usage.
It was soon realised both setup would be useful in many other application in near
future. The project still at its extension phase, we believe the system can be further
extended as per its initial implementation. Thus the possible future work would be to
build an entire light stage based on the framework we have developed with LED lights.

On the whole, we are happy with what we have achieved throughout the project
as it also unfolds the possibilities of extending the project. As a result of this, the
setup built was tested and verified with various experiments performed as we set out
to produce the whole system that was usable.

103

APPENDIX A

A.1

Figure 8.1: C++ code for string to Hexadecimal Conversion

104

Figure 8.2: Shutter speed program using C++ and canon EDSDK API

A.2

VTK toolkit

Figure 8.3: VTK Logo[35]

The Visualization toolkit (VTK)
is an open source software sys-
tem useful for image process-
ing and 3D computer graph-
ics. It consists of several inter-
preted interface layers for exam-
ple Java, Tcl/Tk, Python and
also consist of C++ libraries.
With its C++ implementation
to provide wide variety of visual-
ization algorithms, 3D rendering
was a possibility using VTK toolkit. This therefore has become a useful tool in our
project as it allowed us to visualize 3D Mesh obtained from the photometric stereo
experiment.

The following shows the display function which makes extensive use of VTK tool
kit functionality to show 3D mesh.

105

Figure 8.4: C++ with VTK to display 3D Mesh

OpenCV

Figure 8.5: Light Stage 5[36]

OpenCv namely Open source
Computer Vision is an open
source cross platform library
that allows real time image pro-
cessing. With its computa-
tional efficiency and multi-core
processing capabilities, it takes
advantage of hardware acceler-
ation during image processing.
As its primary interface is in
C++, it was applicable for use in our application.

106

The following code written in C++ to obtain Height map from x and Y gradients
obtained while deducing normal map, makes extensive use of OpenCV functions.

Figure 8.6: C++ with opencv to obtain height map

107

APPENDIX B

B.1

Figure 8.7: IColor MR gen3 30 degree beam angle details

108

Figure 8.8: IW MR 26 degree beam angle details

B.2

Additional experimental results

Figure 8.9: Egg under IW MR white with all banks set to full intensities

109

Figure 8.10: Egg under IColor RGB lights with all channels set to full intensities

Figure 8.11: Egg under IColor lights with only Red channel set to full intensity

110

Bibliography

[1] Ronen Basri, David Jacobs, and Ira Kemelmacher. Photometric stereo with
general, unknown lighting. Int. J. Comput. Vision, 72(3):239–257, May 2007.

[2] Paul Debevec. The light stages and their applications to photoreal digital actors.
SIGGRAPH Asia Technical Briefs, 2012.

[3] Carlos Hernández, George Vogiatzis, Gabriel J Brostow, Björn Stenger, and
Roberto Cipolla. Non-rigid photometric stereo with colored lights. pages 1–8,
2007.

[4] Berthold KP Horn and Robert W Sjoberg. Calculating the reflectance map.
Applied optics, 18(11):1770–1779, 1979.

[5] Aditi Majumder, David Jones, Matthew McCrory, Michael E Papka, and Rick
Stevens. Using a camera to capture and correct spatial photometric variation in
multi-projector displays. In IEEE International Workshop on Projector-Camera
Systems, 2003.

[6] Wojciech Matusik. A data-driven reflectance model. 2003.

[7] Mohammad Mirzadeh, Maxime Theillard, and Frédéric Gibou. A second-
order discretization of the nonlinear poisson-boltzmann equation over irregular
geometries using non-graded adaptive cartesian grids. J. Comput. Phys.,
230(5):2125–2140, March 2011.

[8] Shree K Nayar, Katsushi Ikeuchi, and Takeo Kanade. Shape from interreflections.
International Journal of Computer Vision, 6(3):173–195, 1991.

[9] Addy Ngan, Frédo Durand, and Wojciech Matusik. Experimental analysis of
brdf models. Rendering Techniques, 2005:16th, 2005.

[10] Vincent Nozick. Pyramidal normal map integration for real-time photometric
stereo. In EAM Mechatronics 2010, pages 128–132, 2010.

[11] N. Petrovic, I. Cohen, B. J. Frey, R. Koetter, and T. S. Huang. Enforcing
integrability for surface reconstruction algorithms using belief propagation in
graphical models. Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on, 1:743–748, 2001.

[12] Mike Seymour. The art of digital faces at ict - digital emily to digital ira. 2013,
November 25.

111

[13] Robert J Woodham. Photometric method for determining surface orientation
from multiple images. Optical engineering, 19(1):191139–191139, 1980.

[14] Chris Wynn. An introduction to brdf-based lighting. Nvidia Corporation, 2000.

112

	Abstract
	Contents
	List of Figures
	Introduction
	Motivation
	Objectives

	Background
	Photometric Stereo
	BRDF
	Spherical Coordinates
	Solid Angles

	Reflectance Map
	Radiometry
	Reflectors
	Formulation

	Surface Normal
	Normal map integration

	Photometric Stereo with narrow band RGB illumination
	Structured and Coloured Lights
	Possible setup and measurments

	Light Stages
	Light Stage 1: Acquiring Reflectance Field of Human Face
	Light Stage 2: Faster Capture and Facial Animation
	Light Stage 3: Lighting Reproduction
	Light Stage 4: Concept
	Light Stage 5: Performance Relighting
	Light Stage 6: Re-Lighting the While Body
	Light Stage X

	Reflectance acquisition setups with DSLR and Speedlite flashes
	Setup
	Canon Camera 650D
	Programming the Canon Camera 650D

	Canon Speedlite 430EX II
	Optical pulsed-light wireless
	Radio wireless

	Synchronisation
	Channels
	EOS utility software

	Polarization
	Polarization of Reflection
	Cross polarization
	Interreflection
	Problem

	Reflectance Setup using LED Lighting Systems
	Setup
	PDS 70mr setup
	Installation

	IColor MR Gen3
	RGB Channels

	IW MR Gen3
	Temperature Channels

	Addressing Lamps
	Networking
	TCP or UDP
	Quick Play Pro
	Reverse Engineering using Wireshark
	Packet Details

	C++ API
	Socket Programming
	Initialize Winsock
	Create Socket
	Obtain Host IP address and Port along with Binding Socket to it
	Send and Receive packet through socket

	Python API

	Photometric Stereo implementation and Results
	Photometric Stereo Implementation in C++
	OpenCV for a mask
	Light Calibration
	Normal Map and Albedo
	Height Map and 3D Mesh

	Results
	With Canon Speedlite Flash lights
	With IColor lamps
	With IColor MR white lights
	Experiment with narrow band RGB illumination

	Evaluation
	Conclusion
	APPENDIX A
	A.1
	A.2

	APPENDIX B
	B.1
	B.2

	Bibliography

